Single or Dual Representations for Reading and Spelling?
ERIC Educational Resources Information Center
Holmes, Virginia M.; Babauta, Mariko L.
2005-01-01
Neuropsychological models postulate that the memory representation acquired for use in reading words is separate from the one acquired for use in spelling, while developmental models assume that the same representation is developed for access in both reading and spelling. The dual-representation model contends that there is often more precise…
Holographic representation of higher spin gauge fields
NASA Astrophysics Data System (ADS)
Sarkar, Debajyoti; Xiao, Xiao
2015-04-01
Extending the results of [1,2] on the holographic representation of local gauge field operators in anti-de Sitter space, here we construct the bulk operators for higher spin gauge fields at the leading order in 1/N expansion. Working in the holographic gauge for higher spin gauge fields, we show that gauge field operators with integer spin s >1 can be represented by an integration over a ball region, which is the interior region of the spacelike bulk light cone on the boundary. The construction is shown to be anti-de Sitter covariant up to gauge transformations, and the two-point function between higher spin gauge fields and the boundary higher spin current exhibits singularities on both bulk and boundary light cones. We also comment on a possible extension to the level of three-point functions and carry out a causal construction for higher spin fields in de Sitter spacetime.
Dual character concepts and the normative dimension of conceptual representation.
Knobe, Joshua; Prasada, Sandeep; Newman, George E
2013-05-01
Five experiments provide evidence for a class of 'dual character concepts.' Dual character concepts characterize their members in terms of both (a) a set of concrete features and (b) the abstract values that these features serve to realize. As such, these concepts provide two bases for evaluating category members and two different criteria for category membership. Experiment 1 provides support for the notion that dual character concepts have two bases for evaluation. Experiments 2-4 explore the claim that dual character concepts have two different criteria for category membership. The results show that when an object possesses the appropriate concrete features, but does not fulfill the appropriate abstract value, it is judged to be a category member in one sense but not in another. Finally, Experiment 5 uses the theory developed here to construct artificial dual character concepts and examines whether participants react to these artificial concepts in the same way as naturally occurring dual character concepts. The present studies serve to define the nature of dual character concepts and distinguish them from other types of concepts (e.g., natural kind concepts), which share some, but not all of the properties of dual character concepts. More broadly, these phenomena suggest a normative dimension in everyday conceptual representation. PMID:23454798
Children's Learning from Touch Screens: A Dual Representation Perspective.
Sheehan, Kelly J; Uttal, David H
2016-01-01
Parents and educators often expect that children will learn from touch screen devices, such as during joint e-book reading. Therefore an essential question is whether young children understand that the touch screen can be a symbolic medium - that entities represented on the touch screen can refer to entities in the real world. Research on symbolic development suggests that symbolic understanding requires that children develop dual representational abilities, meaning children need to appreciate that a symbol is an object in itself (i.e., picture of a dog) while also being a representation of something else (i.e., the real dog). Drawing on classic research on symbols and new research on children's learning from touch screens, we offer the perspective that children's ability to learn from the touch screen as a symbolic medium depends on the effect of interactivity on children's developing dual representational abilities. Although previous research on dual representation suggests the interactive nature of the touch screen might make it difficult for young children to use as a symbolic medium, the unique interactive affordances may help alleviate this difficulty. More research needs to investigate how the interactivity of the touch screen affects children's ability to connect the symbols on the screen to the real world. Given the interactive nature of the touch screen, researchers and educators should consider both the affordances of the touch screen as well as young children's cognitive abilities when assessing whether young children can learn from it as a symbolic medium. PMID:27570516
The Linked Dual Representation model of vocal perception and production
Hutchins, Sean; Moreno, Sylvain
2013-01-01
The voice is one of the most important media for communication, yet there is a wide range of abilities in both the perception and production of the voice. In this article, we review this range of abilities, focusing on pitch accuracy as a particularly informative case, and look at the factors underlying these abilities. Several classes of models have been posited describing the relationship between vocal perception and production, and we review the evidence for and against each class of model. We look at how the voice is different from other musical instruments and review evidence about both the association and the dissociation between vocal perception and production abilities. Finally, we introduce the Linked Dual Representation (LDR) model, a new approach which can account for the broad patterns in prior findings, including trends in the data which might seem to be countervailing. We discuss how this model interacts with higher-order cognition and examine its predictions about several aspects of vocal perception and production. PMID:24204360
Dual-Career Couples in Higher Education.
ERIC Educational Resources Information Center
Weishaar, Marjorie; And Others
1984-01-01
Surveyed 45 dual-career couples to identify conflicts and solutions of professinals pursuing academic careers and bearing family responsibilities. Compared males and females, couples with children and those without, couples under 40 years of age and older couples, and this sample with one from business and industry. (Author/JAC)
Workplace Learning in Dual Higher Professional Education
ERIC Educational Resources Information Center
Poortman, Cindy L.; Reenalda, Marloes; Nijhof, Wim J.; Nieuwenhuis, Loek F. M.
2014-01-01
Workplace learning is considered an effective strategy for the development of vocation, career and professional identity. Dual training programs, in which learning at a vocational school and learning at work in a company are combined, are seen as strong carriers for skill formation processes. In this study we explore workplace learning in dual…
Australian Indigenous Higher Education: Politics, Policy and Representation
ERIC Educational Resources Information Center
Wilson, Katie; Wilks, Judith
2015-01-01
The growth of Aboriginal and Torres Strait Islander participation in Australian higher education from 1959 to the present is notable statistically, but below population parity. Distinct patterns in government policy-making and programme development, inconsistent funding and political influences, together with Indigenous representation during the…
Symplectic representation of higher-order guiding-center theory
NASA Astrophysics Data System (ADS)
Brizard, Alain; Tronko, Natalia
2012-03-01
Two representations of guiding-center theory are possible depending on whether the guiding-center Poisson bracket (i.e., the symplectic structure) or the Hamiltonian contains higher-order corrections due to the nonuniformity of the magnetic field. By combining the guiding-center parallel hierarchy with the symplectic representation, the guiding-center equations of motion are derived with second-order corrections included in the symplectic structure without the need of carrying out the guiding-center transformation to second order. Guiding-center polarization and magnetization are thus shown to arise naturally from higher-order guiding-center theory within the context of a two-step derivation of nonlinear gyrokinetic theory.footnotetextA. J. Brizard and T. S. Hahm, Rev. Mod. Phys. 79, 421 (2007).
The Effects of Single and Dual Representations on Children's Gesture Production
ERIC Educational Resources Information Center
Thurnham, Angela J.; Pine, Karen J.
2006-01-01
Investigations that focus on children's hand gestures often conclude that gesture production arises as a result of having multiple representations. To date, the predictive validity of this notion has not been tested. In this study, we compared the gestures of 82 five-year-old children holding either a single or a dual representation. The children…
Dual Character Concepts and the Normative Dimension of Conceptual Representation
ERIC Educational Resources Information Center
Knobe, Joshua; Prasada, Sandeep; Newman, George E.
2013-01-01
Five experiments provide evidence for a class of "dual character concepts." Dual character concepts characterize their members in terms of both (a) a set of concrete features and (b) the abstract values that these features serve to realize. As such, these concepts provide two bases for evaluating category members and two different criteria for…
RENORMALIZATION OF POLYAKOV LOOPS IN FUNDAMENTAL AND HIGHER REPRESENTATIONS
KACZMAREK,O.; GUPTA, S.; HUEBNER, K.
2007-07-30
We compare two renormalization procedures, one based on the short distance behavior of heavy quark-antiquark free energies and the other by using bare Polyakov loops at different temporal entent of the lattice and find that both prescriptions are equivalent, resulting in renormalization constants that depend on the bare coupling. Furthermore these renormalization constants show Casimir scaling for higher representations of the Polyakov loops. The analysis of Polyakov loops in different representations of the color SU(3) group indicates that a simple perturbative inspired relation in terms of the quadratic Casimir operator is realized to a good approximation at temperatures T{approx}>{Tc}, for renormalized as well as bare loops. In contrast to a vanishing Polyakov loop in representations with non-zero triality in the confined phase, the adjoint loops are small but non-zero even for temperatures below the critical one. The adjoint quark-antiquark pairs exhibit screening. This behavior can be related to the binding energy of glue-lump states.
Dual-Process Theories of Higher Cognition: Advancing the Debate.
Evans, Jonathan St B T; Stanovich, Keith E
2013-05-01
Dual-process and dual-system theories in both cognitive and social psychology have been subjected to a number of recently published criticisms. However, they have been attacked as a category, incorrectly assuming there is a generic version that applies to all. We identify and respond to 5 main lines of argument made by such critics. We agree that some of these arguments have force against some of the theories in the literature but believe them to be overstated. We argue that the dual-processing distinction is supported by much recent evidence in cognitive science. Our preferred theoretical approach is one in which rapid autonomous processes (Type 1) are assumed to yield default responses unless intervened on by distinctive higher order reasoning processes (Type 2). What defines the difference is that Type 2 processing supports hypothetical thinking and load heavily on working memory. PMID:26172965
NASA Astrophysics Data System (ADS)
Schreiber, Tomasz
2010-08-01
We consider polygonal Markov fields originally introduced by Arak in 4th USSR-Japan Symposium on Probability Theory and Mathematical Statistics, Abstracts of Communications, 1982; Arak and Surgailis in Probab. Theory Relat. Fields 80:543-579, 1989. Our attention is focused on fields with nodes of order two, which can be regarded as continuum ensembles of non-intersecting contours in the plane, sharing a number of salient features with the two-dimensional Ising model. The purpose of this paper is to establish an explicit stochastic representation for the higher-order correlation functions of polygonal Markov fields in their consistency regime. The representation is given in terms of the so-called crop functionals (defined by a Möbius-type formula) of polygonal webs which arise in a graphical construction dual to that giving rise to polygonal fields. The proof of our representation formula goes by constructing a martingale interpolation between the correlation functions of polygonal fields and crop functionals of polygonal webs.
Detection of dual-band infrared small target based on joint dynamic sparse representation
NASA Astrophysics Data System (ADS)
Zhou, Jinwei; Li, Jicheng; Shi, Zhiguang; Lu, Xiaowei; Ren, Dongwei
2015-10-01
Infrared small target detection is a crucial and yet still is a difficult issue in aeronautic and astronautic applications. Sparse representation is an important mathematic tool and has been used extensively in image processing in recent years. Joint sparse representation is applied in dual-band infrared dim target detection in this paper. Firstly, according to the characters of dim targets in dual-band infrared images, 2-dimension Gaussian intensity model was used to construct target dictionary, then the dictionary was classified into different sub-classes according to different positions of Gaussian function's center point in image block; The fact that dual-band small targets detection can use the same dictionary and the sparsity doesn't lie in atom-level but in sub-class level was utilized, hence the detection of targets in dual-band infrared images was converted to be a joint dynamic sparse representation problem. And the dynamic active sets were used to describe the sparse constraint of coefficients. Two modified sparsity concentration index (SCI) criteria was proposed to evaluate whether targets exist in the images. In experiments, it shows that the proposed algorithm can achieve better detecting performance and dual-band detection is much more robust to noise compared with single-band detection. Moreover, the proposed method can be expanded to multi-spectrum small target detection.
A CAD system based on spherical dual representations
Roach, J.W.; Paripati, P.K.; Wright, J.S.
1987-08-01
Computer-aided design (CAD) systems typically have many different functions: drafting, two-dimensional modeling, three-dimensional modeling, finite element analysis, and fit and tolerancing of parts. The authors report on the construction of a CAD system based on shape representation ideas used in the vision community to determine the shape of an object from its image. In the long term, they propose to construct a combined CAD and sensing system based on the same underlying object models. Considerable advantages follow from building a model-driven sensor fusion system that uses a common geometric model. In a manufacturing environment, for example, a library of objects can be built up and its models used in a vision and touch sensing system integrated into an automated assembly line to discriminate between objects and determine orientation and distance. If such a system could be made robust and highly reliable, then some of the most difficult problems that plague attempts to create a fully flexible automated environment would be solved.
Higher Order Pattern Structure Influences Auditory Representational Momentum
ERIC Educational Resources Information Center
Johnston, Heather Moynihan; Jones, Mari Riess
2006-01-01
Representational momentum refers to the phenomenon that observers tend to incorrectly remember an event undergoing real or implied motion as shifted beyond its actual final position. This has been demonstrated in both visual and auditory domains. In 5 pitch discrimination experiments, listeners heard tone sequences that implied either linear,…
Vehicle path planning via dual-world representations
NASA Astrophysics Data System (ADS)
Peck, Alex N.; Breul, Harry T.
1991-03-01
A technique is developed whereby a mobile robot equipped with sonar sensors autonomously explores a hallway environment and during exploration dynamically builds two types of maps: a graph of places defined by distinctive sonar events and a grid map from dead reckoning data that is accurate in the neighborhood of a place. With both maps available the robot can quickly plan a path between arbitrary locations and then define a sequence of behaviors that will move the robot along the selected path. Robust performance is achieved by dividing the computational processes into two parallel operations. Time-critical low-level behaviors like driving and steering in the exploratory mode are controlled by an onboard computer that uses sonar data as input to simple subsumption-based algorithms. 1 Higher level more computationally intense and less-time-critical activities like place designation map making display generation and path planning are performed in parallel on a remote computer that fetches sonar data and issues high-level commands via a radio link. An approach to integrating this work with efforts in planning and navigation to form a larger activity in intelligent vehicle research is discussed in a companion paper.
The free energy of higher representation sources in lattice gauge theories
NASA Astrophysics Data System (ADS)
Damgaard, P. H.
1987-07-01
Deconfinement of higher representation sources in SU(2) lattice gauge theory is studied by a Monte Carlo simulation on an 83×2 lattice. Results for the free energy are compared with expectations from the effective theory of thermal Polyakov loops, and critical exponents for the magnetization of different representations in SU(2) are computed. We also compare the predictions for higher representations in SU(3) lattice gauge theory with some recent Monte Carlo data. Finally, possible phenomenological consequences of the deconfinement associated with higher representation sources are discussed. I would like to thank Urs Heller and Alan Luther for helpful discussions.
Dual representation for the generating functional of the Feynman path-integral
NASA Astrophysics Data System (ADS)
Matone, Marco
2016-09-01
The generating functional for scalar theories admits a representation which is dual with respect to the one introduced by Schwinger, interchanging the role of the free and interacting terms. It maps $\\int V(\\delta_J)$ and $J\\Delta J$ to $\\delta_{\\phi_c}\\Delta\\delta_{\\phi_c}$ and $\\int V(\\phi_c)$, respectively, with $\\phi_c=\\int J\\Delta$ and $\\Delta$ the Feynman propagator. Comparing the Schwinger representation with its dual version one gets a little known relation that we prove to be a particular case of a more general operatorial relation. We then derive a new representation of the generating functional $T[\\phi_c]=W[J]$ expressed in terms of covariant derivatives acting on 1 $$ T[\\phi_c] = {N\\over N_0} \\exp(-U_0[\\phi_c])\\exp\\Big(-\\int V({\\cal D}_{\\phi_c}^-)\\Big) \\cdot 1 $$ where ${\\cal D}_{\\phi}^{\\pm}(x)=\\mp\\Delta{\\delta\\over\\delta\\phi}(x)+\\phi(x)$. The dual representation, which is deeply related to the Hermite polynomials, is the key to express the generating functional associated to a sum of potentials in terms of factorized generating functionals. This is applied to renormalization, leading to a factorization of the counterterms of the interaction. We investigate the structure of the functional generator for normal ordered potentials and derive an infinite set of relations in the case of the potential ${\\lambda\\over n!}:\\phi^n:$. Such relations are explicitly derived by using the Fa\\`a di Bruno formula. This also yields the explicit expression of the generating functional of connected Green's functions.
Children’s Learning from Touch Screens: A Dual Representation Perspective
Sheehan, Kelly J.; Uttal, David H.
2016-01-01
Parents and educators often expect that children will learn from touch screen devices, such as during joint e-book reading. Therefore an essential question is whether young children understand that the touch screen can be a symbolic medium – that entities represented on the touch screen can refer to entities in the real world. Research on symbolic development suggests that symbolic understanding requires that children develop dual representational abilities, meaning children need to appreciate that a symbol is an object in itself (i.e., picture of a dog) while also being a representation of something else (i.e., the real dog). Drawing on classic research on symbols and new research on children’s learning from touch screens, we offer the perspective that children’s ability to learn from the touch screen as a symbolic medium depends on the effect of interactivity on children’s developing dual representational abilities. Although previous research on dual representation suggests the interactive nature of the touch screen might make it difficult for young children to use as a symbolic medium, the unique interactive affordances may help alleviate this difficulty. More research needs to investigate how the interactivity of the touch screen affects children’s ability to connect the symbols on the screen to the real world. Given the interactive nature of the touch screen, researchers and educators should consider both the affordances of the touch screen as well as young children’s cognitive abilities when assessing whether young children can learn from it as a symbolic medium. PMID:27570516
ERIC Educational Resources Information Center
Garrod, Neil; Macfarlane, Bruce
2007-01-01
Dual sector universities (or duals) are a growing international phenomenon that cut across the divide that typically exists in post-secondary education. Duals combine "further" and "higher" education within a single institution providing enhanced opportunities for student transition between post-secondary sectors. This paper reports the results of…
Brewin, Chris R; Burgess, Neil
2014-03-01
Three recent studies (Pearson, 2012; Pearson, Ross, & Webster, 2012) purported to test the revised dual representation theory of posttraumatic stress disorder (Brewin, Gregory, Lipton, & Burgess, 2010) by manipulating the amount of additional information accompanying traumatic stimulus materials and assessing the effect on subsequent intrusive memories. Here we point out that these studies involve a misunderstanding of the meaning of "contextual" within the theory, such that the manipulation would be unlikely to have had the intended effect and the results are ambiguous with respect to the theory. Past and future experimental tests of the theory are discussed. PMID:24041427
Conformal window of SU(N) gauge theories with fermions in higher dimensional representations
Dietrich, Dennis D.; Sannino, Francesco
2007-04-15
We study the phase diagram as a function of the number of colors and flavors of asymptotically free nonsupersymmetric theories with matter in higher-dimensional representations of arbitrary SU(N) gauge groups. Since matter in higher-dimensional representations screens more than in the fundamental a general feature is that a lower number of flavors is needed to achieve a near-conformal theory.
Sound representation in higher language areas during language generation
Magrassi, Lorenzo; Aromataris, Giuseppe; Cabrini, Alessandro; Annovazzi-Lodi, Valerio; Moro, Andrea
2015-01-01
How language is encoded by neural activity in the higher-level language areas of humans is still largely unknown. We investigated whether the electrophysiological activity of Broca’s area correlates with the sound of the utterances produced. During speech perception, the electric cortical activity of the auditory areas correlates with the sound envelope of the utterances. In our experiment, we compared the electrocorticogram recorded during awake neurosurgical operations in Broca’s area and in the dominant temporal lobe with the sound envelope of single words versus sentences read aloud or mentally by the patients. Our results indicate that the electrocorticogram correlates with the sound envelope of the utterances, starting before any sound is produced and even in the absence of speech, when the patient is reading mentally. No correlations were found when the electrocorticogram was recorded in the superior parietal gyrus, an area not directly involved in language generation, or in Broca’s area when the participants were executing a repetitive motor task, which did not include any linguistic content, with their dominant hand. The distribution of suprathreshold correlations across frequencies of cortical activities varied whether the sound envelope derived from words or sentences. Our results suggest the activity of language areas is organized by sound when language is generated before any utterance is produced or heard. PMID:25624479
Sound representation in higher language areas during language generation.
Magrassi, Lorenzo; Aromataris, Giuseppe; Cabrini, Alessandro; Annovazzi-Lodi, Valerio; Moro, Andrea
2015-02-10
How language is encoded by neural activity in the higher-level language areas of humans is still largely unknown. We investigated whether the electrophysiological activity of Broca's area correlates with the sound of the utterances produced. During speech perception, the electric cortical activity of the auditory areas correlates with the sound envelope of the utterances. In our experiment, we compared the electrocorticogram recorded during awake neurosurgical operations in Broca's area and in the dominant temporal lobe with the sound envelope of single words versus sentences read aloud or mentally by the patients. Our results indicate that the electrocorticogram correlates with the sound envelope of the utterances, starting before any sound is produced and even in the absence of speech, when the patient is reading mentally. No correlations were found when the electrocorticogram was recorded in the superior parietal gyrus, an area not directly involved in language generation, or in Broca's area when the participants were executing a repetitive motor task, which did not include any linguistic content, with their dominant hand. The distribution of suprathreshold correlations across frequencies of cortical activities varied whether the sound envelope derived from words or sentences. Our results suggest the activity of language areas is organized by sound when language is generated before any utterance is produced or heard. PMID:25624479
Urban traffic simulated from the dual representation: Flow, crisis and congestion
NASA Astrophysics Data System (ADS)
Hu, Mao-Bin; Jiang, Rui; Wang, Ruili; Wu, Qing-Song
2009-05-01
We propose a traffic simulation model for urban system based on the dual graph representation of a urban road network and with a random entering vehicle rate. To avoid the shortcoming of “Space Syntax” of ignoring the road's metric distance, we consider both the motion of the vehicles along roads and the navigation of the vehicles in the network. Simulations have shown some basic properties of urban traffic system, such as flux fluctuation, crisis and dissipation, phase transition from a free flow to jams, overall capacity, the distribution of traveling time, and the fundamental diagram. The system's behavior greatly depends on the topology of the transportation network. A well-planned lattice grid can keep more vehicles travelling. The critical entering vehicle rate is much greater in lattice grid than in a self-organized network. The vehicles have to travel longer time in a self-organized urban system due to the navigation cost.
ERIC Educational Resources Information Center
Schuch, Stefanie; Koch, Iring
2004-01-01
In 5 experiments, the authors investigated the costs associated with repeating the same or a similar response in a dual-task setting. Using a psychological refractory period paradigm, they obtained response-repetition costs when the cognitive representation of a specific response (i.e., the category-response mapping) changed (Experiment 1) but…
Dual-Mode Universities in Higher Education: Way Station or Final Destination?
ERIC Educational Resources Information Center
Daniel, John
2012-01-01
In the title the author asked whether dual-mode institutions were a stable "final" model for higher education or a step on the way to something else. Only a few institutions seem able to function in dual mode (i.e. with distinct groups of distance and classroom students) in a successful and sustainable way. Some institutions now claim that all…
ERIC Educational Resources Information Center
Marschke, Robyn; Laursen, Sandra; Nielsen, Joyce McCarl; Rankin, Patricia
2007-01-01
Progress toward equitable gender representation among faculty in higher education has been "glacial" since the early 1970s (Glazer-Raymo, 1999; Lomperis, 1990; Trower & Chait, 2002). Women, who now make up a majority of undergraduate degree earners and approximately 46% of Ph.D. earners nationwide (National Center for Education Statistics [NCES],…
Female Representation in the Higher Education of Geography in Hungary. Symposium
ERIC Educational Resources Information Center
Timar, Judit; Jelenszkyne, Ildiko Fabian
2004-01-01
This paper charts the changing female representation in the higher education of geography, connecting it with the faltering development of feminist geography in Hungary. The transition from socialism to capitalism has compounded gender inequalities while many of the relevant statistical data display gender blindness. Gender issues fail to form a…
Color-motion feature-binding errors are mediated by a higher-order chromatic representation.
Shevell, Steven K; Wang, Wei
2016-03-01
Peripheral and central moving objects of the same color may be perceived to move in the same direction even though peripheral objects have a different true direction of motion [Nature429, 262 (2004)10.1038/429262a]. The perceived, illusory direction of peripheral motion is a color-motion feature-binding error. Recent work shows that such binding errors occur even without an exact color match between central and peripheral objects, and, moreover, the frequency of the binding errors in the periphery declines as the chromatic difference increases between the central and peripheral objects [J. Opt. Soc. Am. A31, A60 (2014)JOAOD60740-323210.1364/JOSAA.31.000A60]. This change in the frequency of binding errors with the chromatic difference raises the general question of the chromatic representation from which the difference is determined. Here, basic properties of the chromatic representation are tested to discover whether it depends on independent chromatic differences on the l and the s cardinal axes or, alternatively, on a more specific higher-order chromatic representation. Experimental tests compared the rate of feature-binding errors when the central and peripheral colors had the identical s chromaticity (so zero difference in s) and a fixed magnitude of l difference, while varying the identical s level in center and periphery (thus always keeping the s difference at zero). A chromatic representation based on independent l and s differences would result in the same frequency of color-motion binding errors at everyslevel. The results are contrary to this prediction, thus showing that the chromatic representation at the level of color-motion feature binding depends on a higher-order chromatic mechanism. PMID:26974945
Lesaint, Florian; Sigaud, Olivier; Khamassi, Mehdi
2014-01-01
Animals, including Humans, are prone to develop persistent maladaptive and suboptimal behaviours. Some of these behaviours have been suggested to arise from interactions between brain systems of Pavlovian conditioning, the acquisition of responses to initially neutral stimuli previously paired with rewards, and instrumental conditioning, the acquisition of active behaviours leading to rewards. However the mechanics of these systems and their interactions are still unclear. While extensively studied independently, few models have been developed to account for these interactions. On some experiment, pigeons have been observed to display a maladaptive behaviour that some suggest to involve conflicts between Pavlovian and instrumental conditioning. In a procedure referred as negative automaintenance, a key light is paired with the subsequent delivery of food, however any peck towards the key light results in the omission of the reward. Studies showed that in such procedure some pigeons persisted in pecking to a substantial level despite its negative consequence, while others learned to refrain from pecking and maximized their cumulative rewards. Furthermore, the pigeons that were unable to refrain from pecking could nevertheless shift their pecks towards a harmless alternative key light. We confronted a computational model that combines dual-learning systems and factored representations, recently developed to account for sign-tracking and goal-tracking behaviours in rats, to these negative automaintenance experimental data. We show that it can explain the variability of the observed behaviours and the capacity of alternative key lights to distract pigeons from their detrimental behaviours. These results confirm the proposed model as an interesting tool to reproduce experiments that could involve interactions between Pavlovian and instrumental conditioning. The model allows us to draw predictions that may be experimentally verified, which could help further investigate
Lesaint, Florian; Sigaud, Olivier; Khamassi, Mehdi
2014-01-01
Animals, including Humans, are prone to develop persistent maladaptive and suboptimal behaviours. Some of these behaviours have been suggested to arise from interactions between brain systems of Pavlovian conditioning, the acquisition of responses to initially neutral stimuli previously paired with rewards, and instrumental conditioning, the acquisition of active behaviours leading to rewards. However the mechanics of these systems and their interactions are still unclear. While extensively studied independently, few models have been developed to account for these interactions. On some experiment, pigeons have been observed to display a maladaptive behaviour that some suggest to involve conflicts between Pavlovian and instrumental conditioning. In a procedure referred as negative automaintenance, a key light is paired with the subsequent delivery of food, however any peck towards the key light results in the omission of the reward. Studies showed that in such procedure some pigeons persisted in pecking to a substantial level despite its negative consequence, while others learned to refrain from pecking and maximized their cumulative rewards. Furthermore, the pigeons that were unable to refrain from pecking could nevertheless shift their pecks towards a harmless alternative key light. We confronted a computational model that combines dual-learning systems and factored representations, recently developed to account for sign-tracking and goal-tracking behaviours in rats, to these negative automaintenance experimental data. We show that it can explain the variability of the observed behaviours and the capacity of alternative key lights to distract pigeons from their detrimental behaviours. These results confirm the proposed model as an interesting tool to reproduce experiments that could involve interactions between Pavlovian and instrumental conditioning. The model allows us to draw predictions that may be experimentally verified, which could help further investigate
Bounding higher-order ionosphere errors for the dual-frequency GPS user
NASA Astrophysics Data System (ADS)
Datta-Barua, S.; Walter, T.; Blanch, J.; Enge, P.
2008-10-01
Civil signals at L2 and L5 frequencies herald a new phase of Global Positioning System (GPS) performance. Dual-frequency users typically assume a first-order approximation of the ionosphere index of refraction, combining the GPS observables to eliminate most of the ranging delay, on the order of meters, introduced into the pseudoranges. This paper estimates the higher-order group and phase errors that occur from assuming the ordinary first-order dual-frequency ionosphere model using data from the Federal Aviation Administration's Wide Area Augmentation System (WAAS) network on a solar maximum quiet day and an extremely stormy day postsolar maximum. We find that during active periods, when ionospheric storms may introduce slant range delays at L1 as high as 100 m, the higher-order group errors in the L1-L2 or L1-L5 dual-frequency combination can be tens of centimeters. The group and phase errors are no longer equal and opposite, so these errors accumulate in carrier smoothing of the dual-frequency code observable. We show the errors in the carrier-smoothed code are due to higher-order group errors and, to a lesser extent, to higher-order phase rate errors. For many applications, this residual error is sufficiently small as to be neglected. However, such errors can impact geodetic applications as well as the error budgets of GPS Augmentation Systems providing Category III precision approach.
Review of Dual Admissions Agreements and Programs in the Virginia Higher Education System
ERIC Educational Resources Information Center
State Council of Higher Education for Virginia, 2010
2010-01-01
The State Council of Higher Education for Virginia (SCHEV) is gathering information about the extent to which dual admissions agreements and programs between two- and four-year institutions have been developed in the Commonwealth. This is in response to the State Transfer Module legislation passed in 2004 requiring that two- and four-year…
Higher representations on the lattice: Numerical simulations, SU(2) with adjoint fermions
Del Debbio, Luigi; Patella, Agostino; Pica, Claudio
2010-05-01
We discuss the lattice formulation of gauge theories with fermions in arbitrary representations of the color group and present in detail the implementation of the hybrid Monte Carlo (HMC)/rational HMC algorithm for simulating dynamical fermions. We discuss the validation of the implementation through an extensive set of tests and the stability of simulations by monitoring the distribution of the lowest eigenvalue of the Wilson-Dirac operator. Working with two flavors of Wilson fermions in the adjoint representation, benchmark results for realistic lattice simulations are presented. Runs are performed on different lattice sizes ranging from 4{sup 3}x8 to 24{sup 3}x64 sites. For the two smallest lattices we also report the measured values of benchmark mesonic observables. These results can be used as a baseline for rapid cross-checks of simulations in higher representations. The results presented here are the first steps toward more extensive investigations with controlled systematic errors, aiming at a detailed understanding of the phase structure of these theories, and of their viability as candidates for strong dynamics beyond the standard model.
MaBouDi, HaDi; Shimazaki, Hideaki; Amari, Shun-Ichi; Soltanian-Zadeh, Hamid
2016-03-01
Natural scenes contain richer perceptual information in their spatial phase structure than their amplitudes. Modeling phase structure of natural scenes may explain higher-order structure inherent to the natural scenes, which is neglected in most classical models of redundancy reduction. Only recently, a few models have represented images using a complex form of receptive fields (RFs) and analyze their complex responses in terms of amplitude and phase. However, these complex representation models often tacitly assume a uniform phase distribution without empirical support. The structure of spatial phase distributions of natural scenes in the form of relative contributions of paired responses of RFs in quadrature has not been explored statistically until now. Here, we investigate the spatial phase structure of natural scenes using complex forms of various Gabor-like RFs. To analyze distributions of the spatial phase responses, we constructed a mixture model that accounts for multi-modal circular distributions, and the EM algorithm for estimation of the model parameters. Based on the likelihood, we report presence of both uniform and structured bimodal phase distributions in natural scenes. The latter bimodal distributions were symmetric with two peaks separated by about 180°. Thus, the redundancy in the natural scenes can be further removed by using the bimodal phase distributions obtained from these RFs in the complex representation models. These results predict that both phase invariant and phase sensitive complex cells are required to represent the regularities of natural scenes in visual systems. PMID:26278166
Using the Dual-Target Cost to Explore the Nature of Search Target Representations
ERIC Educational Resources Information Center
Stroud, Michael J.; Menneer, Tamaryn; Cave, Kyle R.; Donnelly, Nick
2012-01-01
Eye movements were monitored to examine search efficiency and infer how color is mentally represented to guide search for multiple targets. Observers located a single color target very efficiently by fixating colors similar to the target. However, simultaneous search for 2 colors produced a dual-target cost. In addition, as the similarity between…
A geometric modeler based on a dual-geometry representation polyhedra and rational b-splines
NASA Technical Reports Server (NTRS)
Klosterman, A. L.
1984-01-01
For speed and data base reasons, solid geometric modeling of large complex practical systems is usually approximated by a polyhedra representation. Precise parametric surface and implicit algebraic modelers are available but it is not yet practical to model the same level of system complexity with these precise modelers. In response to this contrast the GEOMOD geometric modeling system was built so that a polyhedra abstraction of the geometry would be available for interactive modeling without losing the precise definition of the geometry. Part of the reason that polyhedra modelers are effective is that all bounded surfaces can be represented in a single canonical format (i.e., sets of planar polygons). This permits a very simple and compact data structure. Nonuniform rational B-splines are currently the best representation to describe a very large class of geometry precisely with one canonical format. The specific capabilities of the modeler are described.
Higher sympathetic nerve activity during ventricular (VVI) than during dual-chamber (DDD) pacing
NASA Technical Reports Server (NTRS)
Taylor, J. A.; Morillo, C. A.; Eckberg, D. L.; Ellenbogen, K. A.
1996-01-01
OBJECTIVES: We determined the short-term effects of single-chamber ventricular pacing and dual-chamber atrioventricular (AV) pacing on directly measured sympathetic nerve activity. BACKGROUND: Dual-chamber AV cardiac pacing results in greater cardiac output and lower systemic vascular resistance than does single-chamber ventricular pacing. However, it is unclear whether these hemodynamic advantages result in less sympathetic nervous system outflow. METHODS: In 13 patients with a dual-chamber pacemaker, we recorded the electrocardiogram, noninvasive arterial pressure (Finapres), respiration and muscle sympathetic nerve activity (microneurography) during 3 min of underlying basal heart rate and 3 min of ventricular and AV pacing at rates of 60 and 100 beats/min. RESULTS: Arterial pressure was lowest and muscle sympathetic nerve activity was highest at the underlying basal heart rate. Arterial pressure increased with cardiac pacing and was greater with AV than with ventricular pacing (change in mean blood pressure +/- SE: 10 +/- 3 vs. 2 +/- 2 mm Hg at 60 beats/min; 21 +/- 5 vs. 14 +/- 2 mm Hg at 100 beats/min; p < 0.05). Sympathetic nerve activity decreased with cardiac pacing and the decline was greater with AV than with ventricular pacing (60 beats/min -40 +/- 11% vs. -17 +/- 7%; 100 beats/min -60 +/- 9% vs. -48 +/- 10%; p < 0.05). Although most patients showed a strong inverse relation between arterial pressure and muscle sympathetic nerve activity, three patients with severe left ventricular dysfunction (ejection fraction < or = 30%) showed no relation between arterial pressure and sympathetic activity. CONCLUSIONS: Short-term AV pacing results in lower sympathetic nerve activity and higher arterial pressure than does ventricular pacing, indicating that cardiac pacing mode may influence sympathetic outflow simply through arterial baroreflex mechanisms. We speculate that the greater incidence of adverse outcomes in patients treated with single-chamber ventricular
ERIC Educational Resources Information Center
Castellanos, Jeanett, Ed.; Jones, Lee, Ed.
This collection discusses various aspects of increasing the representation of Latinas and Latinos in U.S. higher education. The selections provide historical background, review issues of access and achievement, and present problems of status and barriers to success. The book opens with "Latina/o Undergraduate Experiences in American Higher…
Linear duals of graded bundles and higher analogues of (Lie) algebroids
NASA Astrophysics Data System (ADS)
Bruce, Andrew James; Grabowska, Katarzyna; Grabowski, Janusz
2016-03-01
Graded bundles are a class of graded manifolds which represent a natural generalisation of vector bundles and include the higher order tangent bundles as canonical examples. We present and study the concept of the linearisation of graded bundle which allows us to define the notion of the linear dual of a graded bundle. They are examples of double structures, graded-linear (GL) bundles, including double vector bundles as a particular case. On GL-bundles we define what we shall call weighted algebroids, which are to be understood as algebroids in the category of graded bundles. They can be considered as a geometrical framework for higher order Lagrangian mechanics. Canonical examples are reductions of higher tangent bundles of Lie groupoids. Weighted algebroids represent also a generalisation of VB-algebroids as defined by Gracia-Saz & Mehta and the LA-bundles of Mackenzie. The resulting structures are strikingly similar to Voronov's higher Lie algebroids, however our approach does not require the initial structures to be defined on supermanifolds.
"Engineered dual NbTa barriers for higher Jc Nb3Sn superconductors"
Robert E. Barber; Karl T. Hartwig
2012-07-07
The tantalum (Ta) diffusion barrier in advanced Nb3Sn superconductors often develops a failure mode during wire drawing where the Nb and Ta layers deform non-uniformly leading to a rough interface with adjacent copper. The non-uniform deformation of these layers can lead to premature wire breakage and breaches in the barrier, and contamination of the copper stabilizer by tin (Sn). The objective of the proposed work was to demonstrate that a dual NbTa layer made from severely deformed Nb and Ta exhibits improved co-deformation behavior with pure Cu in advanced Nb3Sn superconductors. This phase I project demonstrated improved microstructural uniformity and superior mechanical property characteristics of equal channel angular extrusion (ECAE) processed and rolled Nb and Ta sheets. The results of this work point to a method for fabrication of higher field and lower cost superconducting magnets for high energy physics applications.
ERIC Educational Resources Information Center
Touchstone, Allison J. L.
2010-01-01
Dual credit programs have become increasingly popular with 71% U.S. public high schools offering dual credit courses in 2002-2003. As this popularity has grown, so have concerns regarding academic rigor, course quality, parity with college courses, and effects on higher education. Determining actual dual credit course equivalent in higher…
Asian Pacific Americans in Higher Education: Faculty and Administrative Representation and Tenure.
ERIC Educational Resources Information Center
Nakanishi, Don T.
1993-01-01
Three prevalent misconceptions about Asian Pacific Americans in higher education are challenged, based on distribution data and documented tenure cases: that they are well represented in college faculties and key administrative positions, do not face discriminatory or unfair employment practices, and are less likely than others to contest…
ERIC Educational Resources Information Center
Ashwin, Paul; Abbas, Andrea; McLean, Monica
2015-01-01
This article examines the ways in which a high-quality system of undergraduate education is represented in recent policy documents from a range of actors interested in higher education. Drawing on Basil Bernstein's ideas, the authors conceptualise the policy documents as reflecting a struggle over competing views of quality that are expressed…
Higher Education Policy Reform in Ethiopia: The Representation of the Problem of Gender Inequality
ERIC Educational Resources Information Center
Molla, Tebeje
2013-01-01
The higher education (HE) subsystem in Ethiopia has passed through a series of policy reforms in the last 10 years. Key reform areas ranged from improving quality and relevance of programmes to promoting equality in access to and success in HE. Despite the effort underway, gender inequality has remained a critical challenge in the subsystem. This…
ERIC Educational Resources Information Center
Suspitsyna, Tatiana
2015-01-01
This paper presents the results of a discourse analysis of the "Chronicle of Higher Education" publications about China in 2011 and 2012. Drawing on postcolonial appropriations of governmentality to frame the discussion of globalization as the context of the study, the author analyzes the stylistic, rhetorical, and semantic strategies…
ERIC Educational Resources Information Center
Tennyson, Robert D.
Educational experiences can now be an important element for people who want to obtain a college degree but were unable to because of the limited structure of traditional schools. This can be achieved through the nonresidential school in higher education that emphasizes student-environment interaction. If the nonresidential school is to be a…
ERIC Educational Resources Information Center
Marcucci, Pamela; Johnstone, D. Bruce; Ngolovoi, Mary
2008-01-01
Three universal demands characterize higher education globally: the demand for higher quality, for increased access, and for greater equity. In East Africa, where resources are highly constrained, no nation has been able to meet these demands on the basis of public expenditures alone. Instead countries have had to increase resources from nonpublic…
Novel asymmetric representation method for solving the higher-order Ginzburg-Landau equation
NASA Astrophysics Data System (ADS)
Wong, Pring; Pang, Lihui; Wu, Ye; Lei, Ming; Liu, Wenjun
2016-04-01
In ultrafast optics, optical pulses are generated to be of shorter pulse duration, which has enormous significance to industrial applications and scientific research. The ultrashort pulse evolution in fiber lasers can be described by the higher-order Ginzburg-Landau (GL) equation. However, analytic soliton solutions for this equation have not been obtained by use of existing methods. In this paper, a novel method is proposed to deal with this equation. The analytic soliton solution is obtained for the first time, and is proved to be stable against amplitude perturbations. Through the split-step Fourier method, the bright soliton solution is studied numerically. The analytic results here may extend the integrable methods, and could be used to study soliton dynamics for some equations in other disciplines. It may also provide the other way to obtain two-soliton solutions for higher-order GL equations.
Novel asymmetric representation method for solving the higher-order Ginzburg-Landau equation
Wong, Pring; Pang, Lihui; Wu, Ye; Lei, Ming; Liu, Wenjun
2016-01-01
In ultrafast optics, optical pulses are generated to be of shorter pulse duration, which has enormous significance to industrial applications and scientific research. The ultrashort pulse evolution in fiber lasers can be described by the higher-order Ginzburg-Landau (GL) equation. However, analytic soliton solutions for this equation have not been obtained by use of existing methods. In this paper, a novel method is proposed to deal with this equation. The analytic soliton solution is obtained for the first time, and is proved to be stable against amplitude perturbations. Through the split-step Fourier method, the bright soliton solution is studied numerically. The analytic results here may extend the integrable methods, and could be used to study soliton dynamics for some equations in other disciplines. It may also provide the other way to obtain two-soliton solutions for higher-order GL equations. PMID:27086841
Novel asymmetric representation method for solving the higher-order Ginzburg-Landau equation.
Wong, Pring; Pang, Lihui; Wu, Ye; Lei, Ming; Liu, Wenjun
2016-01-01
In ultrafast optics, optical pulses are generated to be of shorter pulse duration, which has enormous significance to industrial applications and scientific research. The ultrashort pulse evolution in fiber lasers can be described by the higher-order Ginzburg-Landau (GL) equation. However, analytic soliton solutions for this equation have not been obtained by use of existing methods. In this paper, a novel method is proposed to deal with this equation. The analytic soliton solution is obtained for the first time, and is proved to be stable against amplitude perturbations. Through the split-step Fourier method, the bright soliton solution is studied numerically. The analytic results here may extend the integrable methods, and could be used to study soliton dynamics for some equations in other disciplines. It may also provide the other way to obtain two-soliton solutions for higher-order GL equations. PMID:27086841
NASA Technical Reports Server (NTRS)
Namburu, R. R.; Tamma, K. K.
1991-01-01
The applicability and evaluation of a generalized gamma(T) family of flux-based representations are examined for two different thermal analysis formulations for structures and materials which exhibit no phase change effects. The so-called H-theta and theta forms are demonstrated for numerous test models and linear and higher-order elements. The results show that the theta form with flux-based representations is generally superior to traditional approaches.
Dual Learning--A Challenge for Higher Education in the New Landscape of Governance
ERIC Educational Resources Information Center
Aili, Carola; Nilsson, Lars-Erik
2015-01-01
In many countries, practice-oriented programmes have been recast as university programmes, fuelling debate on the purpose of higher education. We highlight two ways of talking about the challenges for higher education we think are already familiar to readers. We label them "political-worry discourse" and "academic-worry…
Dual Mode Offering as Viable Approach for Promotion of Higher Education in Pakistan
ERIC Educational Resources Information Center
Hussain, Irshad
2014-01-01
Pakistan is a developing country with 148 universities and degree awarding institutions including public and private sector. The enrolment as given in the National Educational Policy 2009 was up to 5% only. It reflects greater demands of higher/tertiary education and calls for alternative strategic measures for addressing the issue. An innovative…
Lesaint, Florian; Sigaud, Olivier; Flagel, Shelly B; Robinson, Terry E; Khamassi, Mehdi
2014-02-01
Reinforcement Learning has greatly influenced models of conditioning, providing powerful explanations of acquired behaviour and underlying physiological observations. However, in recent autoshaping experiments in rats, variation in the form of Pavlovian conditioned responses (CRs) and associated dopamine activity, have questioned the classical hypothesis that phasic dopamine activity corresponds to a reward prediction error-like signal arising from a classical Model-Free system, necessary for Pavlovian conditioning. Over the course of Pavlovian conditioning using food as the unconditioned stimulus (US), some rats (sign-trackers) come to approach and engage the conditioned stimulus (CS) itself - a lever - more and more avidly, whereas other rats (goal-trackers) learn to approach the location of food delivery upon CS presentation. Importantly, although both sign-trackers and goal-trackers learn the CS-US association equally well, only in sign-trackers does phasic dopamine activity show classical reward prediction error-like bursts. Furthermore, neither the acquisition nor the expression of a goal-tracking CR is dopamine-dependent. Here we present a computational model that can account for such individual variations. We show that a combination of a Model-Based system and a revised Model-Free system can account for the development of distinct CRs in rats. Moreover, we show that revising a classical Model-Free system to individually process stimuli by using factored representations can explain why classical dopaminergic patterns may be observed for some rats and not for others depending on the CR they develop. In addition, the model can account for other behavioural and pharmacological results obtained using the same, or similar, autoshaping procedures. Finally, the model makes it possible to draw a set of experimental predictions that may be verified in a modified experimental protocol. We suggest that further investigation of factored representations in computational
Lesaint, Florian; Sigaud, Olivier; Flagel, Shelly B.; Robinson, Terry E.; Khamassi, Mehdi
2014-01-01
Reinforcement Learning has greatly influenced models of conditioning, providing powerful explanations of acquired behaviour and underlying physiological observations. However, in recent autoshaping experiments in rats, variation in the form of Pavlovian conditioned responses (CRs) and associated dopamine activity, have questioned the classical hypothesis that phasic dopamine activity corresponds to a reward prediction error-like signal arising from a classical Model-Free system, necessary for Pavlovian conditioning. Over the course of Pavlovian conditioning using food as the unconditioned stimulus (US), some rats (sign-trackers) come to approach and engage the conditioned stimulus (CS) itself – a lever – more and more avidly, whereas other rats (goal-trackers) learn to approach the location of food delivery upon CS presentation. Importantly, although both sign-trackers and goal-trackers learn the CS-US association equally well, only in sign-trackers does phasic dopamine activity show classical reward prediction error-like bursts. Furthermore, neither the acquisition nor the expression of a goal-tracking CR is dopamine-dependent. Here we present a computational model that can account for such individual variations. We show that a combination of a Model-Based system and a revised Model-Free system can account for the development of distinct CRs in rats. Moreover, we show that revising a classical Model-Free system to individually process stimuli by using factored representations can explain why classical dopaminergic patterns may be observed for some rats and not for others depending on the CR they develop. In addition, the model can account for other behavioural and pharmacological results obtained using the same, or similar, autoshaping procedures. Finally, the model makes it possible to draw a set of experimental predictions that may be verified in a modified experimental protocol. We suggest that further investigation of factored representations in
NASA Astrophysics Data System (ADS)
Li, Wen-long; Wang, Gang; Zhang, Gang; Pang, Chang-tao; Yin, Zhou-pin
2016-09-01
Onsite surface inspection with a touch probe or a laser scanner is a promising technique for efficiently evaluating surface profile error. The existing work of 5-axis inspection path generation bears a serious drawback, however, as there is a drastic orientation change of the inspection axis. Such a sudden change may exceed the stringent physical limit on the speed and acceleration of the rotary motions of the machine tool. In this paper, we propose a novel path generation method for onsite 5-axis surface inspection. The accessibility cones are defined and used to generate alternative interference-free inspection directions. Then, the control points are optimally calculated to obtain the dual-cubic non-Uniform rational B-splines (NURBS) curves, which respectively determine the path points and the axis vectors in an inspection path. The generated inspection path is smooth and non-interference, which deals with the ‘mutation and shake’ problems and guarantees a stable speed and acceleration of machine tool rotary motions. Its feasibility and validity is verified by the onsite inspection experiments of impeller blade.
Fan, Chao; Shi, Zhaomei; Pan, Yiting; Song, Zifeng; Zhang, Wanjun; Zhao, Xinyuan; Tian, Fang; Peng, Bo; Qin, Weijie; Cai, Yun; Qian, Xiaohong
2014-02-01
In an age of whole-genome analysis, the mass spectrometry-based bottom-up strategy is now considered to be the most powerful method for in-depth proteomics analysis. As part of this strategy, highly efficient and complete proteolytic digestion of proteins into peptides is crucial for successful proteome profiling with deep coverage. To achieve this goal, prolonged digestion time and the use of multiple proteases have been adopted. The long digestion time required and tedious sample treatment steps severely limit the sample processing throughput. Though utilization of immobilized protease greatly reduces the digestion time, highly efficient proteolysis of extremely complex proteomic samples remains a challenging task. Here, we propose a dual matrix-based complementary digestion method using two types of immobilized trypsin with opposite matrix hydrophobicity prepared by attaching trypsin on hydrophobic or hydrophilic polymer-brush-modified nanoparticles. The polymer brushes on the nanoparticles serve as three-dimensional supports for a large amount of trypsin immobilization and lead to ultrafast and highly efficient protein digestion. More importantly, the two types of immobilized trypsin show high complementarity in protein digestion with only ∼60% overlap in peptide identification for yeast and membrane protein of mouse liver. Complementary digestion by applying these two types of immobilized trypsin together leads to obviously enhanced protein and peptide identification. Furthermore, the dual matrix-based complementary digestion shows particular advantage in the digestion of membrane proteins, as twice the number of identified peptides is obtained compared with solution digestion using free proteases, demonstrating its potential as a promising alternative to promote proteomics analysis with higher protein sequence coverage. PMID:24447065
ERIC Educational Resources Information Center
Addessi, Anna Rita; Carugati, Felice
2010-01-01
This paper deals with an empirical study undertaken at the University of Bologna about the social representations of music held by university students studying to become teachers in nursery, kindergarten and primary education. An open questionnaire was submitted to the university students at the beginning and end of the music education teaching…
NASA Astrophysics Data System (ADS)
Athenodorou, Andreas; Teper, Michael
2013-06-01
We calculate, numerically, the low-lying spectrum of closed confining flux tubes that carry flux in different representations of SU( N). We do so for SU(6) at β = 171, where the calculated low-energy physics is very close to the continuum limit and, in many respects, also close to N = ∞. We focus on the adjoint, 84, 120, k = 2 A, 2 S and k = 3 A,3 M,3 S representations and provide evidence that the corresponding flux tubes, albeit mostly unstable, do in fact exist. We observe that the ground state of a flux tube with momentum along its axis appears to be well defined in all cases and is well described by the Nambu-Goto spectrum (in flat space-time), all the way down to very small lengths, just as it is for flux tubes carrying fundamental flux. Excited states, however, typically show very much larger deviations from Nambu-Goto than the corresponding excitations of fundamental flux tubes and, indeed, cannot be extracted in many cases. We discuss whether what we are seeing here are separate stringy and massive modes or simply large corrections to energy levels that will become string-like at larger lengths.
ERIC Educational Resources Information Center
Carey, Philip
2013-01-01
Student engagement is increasingly part of higher education rhetoric. It is seen as a means for universities to understand and enhance the student experience. This has been prompted by a number of potentially conflicting factors. These include growing consumerism in higher education, the rise of user involvement and the notion of students as…
ERIC Educational Resources Information Center
Bótas, Paulo Charles Pimentel; Huisman, Jeroen
2012-01-01
This article explores how power relations are constructed in the governance of higher education institutions. It examines and deconstructs, from a Foucauldian perspective, power relations and mechanisms in the relationship between the state and higher education institutions, and between academic and management staff. This research article…
ERIC Educational Resources Information Center
Toynton, Robert
2007-01-01
A group of science students self-identifying as gay or queer have only talked of their sexuality and gender feelings, and their experiences within higher education, on the completion of their studies. The reasons for their alienation from, and further marginalisation by the queer discourse are discussed. These include the stereotyping of gay…
Pop, Marcel; Hollós, Sándor; Vingender, István; Mészáros, Judit
2009-03-01
Our paper is presenting a new initiative regarding an international cooperation willing to develop a dual degree program in nursing, the so-called Transatlantic Curriculum in Nursing. The candidates--after successful completion of their studies--will get a European and an American partner diploma in nursing. The objective is to prepare an internationally and culturally competent workforce; develop the practice of nursing students' exchange programs; process the model of dual degree independent of geographical, political or cultural borders; spread the evidence-based nursing standards in the daily practice. The partners in this initiative are Semmelweis University in Budapest, Hungary, Nazareth College of Rochester, NY, USA and Laurea University in Tikkurila, Finland. The planned activities in the framework of the program: mutual student and staff mobility, joint curriculum development and teaching process, determining joint standards. The expected outcomes are: to develop a standardised model for the enhancement and implementation of international educational programs in nursing; to improve institutional work culture; to improve professional terminology and cultural abilities; to create the model of a new type of nursing professional having a high level of cultural and language competence which are indispensable for participating in global programs. PMID:19240013
Zhao, Xin-Cheng; Kvello, Pål; Løfaldli, Bjarte B.; Lillevoll, Siri C.; Mustaparta, Hanna; Berg, Bente G.
2014-01-01
The arrangement of anatomically separated systems for information about general and pheromone odorants is well documented at the initial levels of the olfactory pathway both in vertebrates and insects. In the primary olfactory center of the moth brain, for example, a few enlarged glomeruli situated dorsally, at the entrance of the antennal nerve, are devoted to information about female-produced substances whereas a set of more numerous ordinary glomeruli (OG) receives input about general odorants. Heliothine moths are particularly suitable for studying central chemosensory mechanisms not only because of their anatomically separated systems for plant odors and pheromones but also due to their use of female-produced substances in communication across the species. Thus, the male-specific system of heliothine moths includes two sub-arrangements, one ensuring attraction and mating behavior by carrying information about pheromones released by conspecifics, and the other inhibition of attraction via signal information emitted from heterospecifics. Based on previous tracing experiments, a general chemotopic organization of the male-specific glomeruli has been demonstrated in a number of heliothine species. As compared to the well explored organization of the moth antennal lobe (AL), demonstrating a non-overlapping representation of the biologically relevant stimuli, less is known about the neural arrangement residing at the following synaptic level, i.e., the mushroom body calyces and the lateral horn. In the study presented here, we have labeled physiologically characterized antennal-lobe projection neurons in males of the two heliothine species, Heliothis virescens and Helicoverpa assulta, for the purpose of mapping their target regions in the protocerebrum. In order to compare the representation of plant odors, pheromones, and interspecific signals in the higher brain regions of each species, we have created standard brain atlases and registered three-dimensional models
Araoz, Philip A.; Kirsch, Jacobo; Primak, Andrew N.; Braun, Natalie N.; Saba, Osama; Williamson, Eric E.; Harmsen, W. Scott; Mandrekar, Jayawant N.; McCollough, Cynthia H.
2010-01-01
Objective To compare coronary image quality at temporal resolutions associated with dual-source computed tomography (DSCT; 83 milliseconds) and 64–detector row scanning (165 milliseconds). Methods In 30 patients with a heart rate of less than 70 beats per minute, DSCT coronary angiograms were reconstructed at 83- and 165-millisecond temporal resolutions over different cardiac phases. A blinded observer graded coronary quality. Results The typical DSCT temporal resolution (83 milliseconds) showed a significantly greater quality at end-systole for all coronary vessels and at end-diastole for the right coronary and left anterior descending coronary arteries. For all vessels, the end-diastole produced the highest quality for both temporal resolutions. Conclusions Imaging at 83 milliseconds creates superior quality at end-systole for all coronary vessels and at end-diastole for the right coronary and left anterior descending coronary arteries. At low heart rates, end-diastole produces the highest quality at both temporal resolutions. PMID:20118724
Silverman, Lewis R; Greenberg, Peter; Raza, Azra; Olnes, Matthew J; Holland, James F; Reddy, Premkumar; Maniar, Manoj; Wilhelm, Francois
2015-06-01
Rigosertib (ON 01910.Na) is an inhibitor of the phosphoinositide 3-kinase and polo-like kinase pathways that induces mitotic arrest and apoptosis in neoplastic cells, while sparing normal cells. Our purpose is to summarize the clinical activity and safety of intravenous (IV) rigosertib delivered by an external ambulatory infusion pump in patients with refractory anemia with excess blasts-1, -2, or, -t myelodysplastic syndromes (MDS) following prior treatment with DNA methyltransferase (DNMT) inhibitors. A total of 39 patients with MDS who fulfilled these criteria were enrolled in four phase 1-2 clinical trials of IV rigosertib. Thirty five (88%) had higher risk disease according to the Revised International Prognostic Scoring System. Median overall survival for this group of 39 patients was 35 weeks. Of 30 evaluable patients with follow-up bone marrow biopsies, 12 (40%) achieved complete (n = 5) or partial (n = 7) bone marrow blast responses. In addition, 15 patients achieved stabilization of bone marrow blasts. One patient with a complete bone marrow response also achieved a complete cytogenetic response. A second patient with stable bone marrow blasts achieved a partial cytogenetic response. Two of the responding patients and three patients with stable disease had hematological improvements. Rigosertib-induced bone marrow blast decreases and stability appeared to be predictive of prolonged survival. IV rigosertib had a favorable safety profile without significant myelosuppression. Most common drug-related toxicities included fatigue, diarrhea, nausea, dysuria, and hematuria. In summary, IV rigosertib is well tolerated and has clinical activity in patients with higher risk MDS following DNMT inhibitor treatment. A multinational pivotal phase 3 randomized clinical trial of rigosertib versus best supportive care for patients with MDS with excess blasts following prior treatment with DNMT inhibitors (ONTIME: ON 01910.Na Trial In Myelodysplastic SyndromE) has recently
Atypical language representation in children with intractable temporal lobe epilepsy.
Maulisova, Alice; Korman, Brandon; Rey, Gustavo; Bernal, Byron; Duchowny, Michael; Niederlova, Marketa; Krsek, Pavel; Novak, Vilem
2016-05-01
This study evaluated language organization in children with intractable epilepsy caused by temporal lobe focal cortical dysplasia (FCD) alone or dual pathology (temporal lobe FCD and hippocampal sclerosis, HS). We analyzed clinical, neurological, fMRI, neuropsychological, and histopathologic data in 46 pediatric patients with temporal lobe lesions who underwent excisional epilepsy surgery. The frequency of atypical language representation was similar in both groups, but children with dual pathology were more likely to be left-handed. Atypical receptive language cortex correlated with lower intellectual capacity, verbal abstract conceptualization, receptive language abilities, verbal working memory, and a history of status epilepticus but did not correlate with higher seizure frequency or early seizure onset. Histopathologic substrate had only a minor influence on neuropsychological status. Greater verbal comprehension deficits were noted in children with atypical receptive language representation, a risk factor for cognitive morbidity. PMID:27064828
Givati, Assaf; Hatton, Kieron
2015-04-01
Traditional acupuncturists' quest for external legitimacy in Britain involves the standardization of their knowledge bases through the development of training schools and syllabi, formal educational structures, and, since the 1990s, the teaching of undergraduate courses within (or validated by) Higher Education Institutions (HEIs), a process which entails biomedical alignment of the curriculum. However, as holistic discourses were commonly used as a rhetorical strategy by CAM practitioners to distance themselves from biomedicine and as a source of public appeal, this 'mainstreaming' process evoked practitioners' concerns that their holistic claims are being compromised. An additional challenge is being posed by a group of academics and scientists in Britain who launched an attack on CAM courses taught in HEIs, accusing them of being 'unscientific' and 'non-academic' in nature. This paper explores the negotiation of all these challenges during the formalization of traditional acupuncture education in Britain, with a particular focus on the role of HEIs. The in-depth qualitative investigation draws on several data sets: participant observation in a university validated acupuncture course; in-depth interviews; and documentary analysis. The findings show how, as part of the formalization process, acupuncturists in Britain (re)negotiate their holistic, anti-reductionist discourses and claims in relation to contemporary societal, political and cultural forces. Moreover, the teaching and validation of acupuncture courses by HEIs may contribute to broadening acupuncturists' 'holistic awareness' of societal and cultural influences on individuals' and communities' ill-health. This investigation emphasises the dynamic and context-specific (rather than fixed and essentialized) nature of acupuncture practice and knowledge. PMID:25779622
ERIC Educational Resources Information Center
Schultz, James E.; Waters, Michael S.
2000-01-01
Discusses representations in the context of solving a system of linear equations. Views representations (concrete, tables, graphs, algebraic, matrices) from perspectives of understanding, technology, generalization, exact versus approximate solution, and learning style. (KHR)
Valla, Jeffrey M; Williams, Wendy M
2012-01-01
The under-representation of women and ethnic minorities in Science, Technology, Engineering, and Mathematics (STEM) education and professions has resulted in a loss of human capital for the US scientific workforce and spurred the development of myriad STEM educational intervention programs. Increased allocation of resources to such programs begs for a critical, prescriptive, evidence-based review that will enable researchers to develop optimal interventions and administrators to maximize investments. We begin by providing a theoretical backdrop for K-12 STEM programs by reviewing current data on under-representation and developmental research describing individual-level social factors undergirding these data. Next, we review prototypical designs of these programs, highlighting specific programs in the literature as examples of program structures and components currently in use. We then evaluate these interventions in terms of overall effectiveness, as a function of how well they address age-, ethnicity-, or gender-specific factors, suggesting improvements in program design based on these critiques. Finally, program evaluation methods are briefly reviewed and discussed in terms of how their empirical soundness can either enable or limit our ability to delineate effective program components. "Now more than ever, the nation's changing demographics demand that we include all of our citizens in science and engineering education and careers. For the U.S. to benefit from the diverse talents of all its citizens, we must grow the pipeline of qualified, underrepresented minority engineers and scientists to fill positions in industry and academia."-Irving P. McPhail.. PMID:22942637
Gabor representation with oversampling
NASA Astrophysics Data System (ADS)
Zibulski, Meir; Zeevi, Yehoshua Y.
1992-11-01
An approach for characterizing the properties of the basis functions of the Gabor representation in the context of oversampling is presented. The approach is based on the concept of frames and utilizes the Piecewise Zak Transform (PZT). The frame operator associated with the Gabor-type frame, the so-called Weyl-Heisenberg frame, is examined for a rational oversampling rate by representing the frame operator as a matrix-valued function in the PZT domain. Completeness and frame properties of the Gabor representation functions are examined in relation to the properties of the matrix-valued function. The frame bounds are calculated by means of the eigenvalues of the matrix-valued function, and the dual-frame, which is used in calculation of the expansion coefficients, is expressed by means of the inverse matrix.
Valla, Jeffrey M.; Williams, Wendy M.
2012-01-01
The under-representation of women and ethnic minorities in Science, Technology, Engineering, and Mathematics (STEM) education and professions has resulted in a loss of human capital for the US scientific workforce and spurred the development of myriad STEM educational intervention programs. Increased allocation of resources to such programs begs for a critical, prescriptive, evidence-based review that will enable researchers to develop optimal interventions and administrators to maximize investments. We begin by providing a theoretical backdrop for K-12 STEM programs by reviewing current data on under-representation and developmental research describing individual-level social factors undergirding these data. Next, we review prototypical designs of these programs, highlighting specific programs in the literature as examples of program structures and components currently in use. We then evaluate these interventions in terms of overall effectiveness, as a function of how well they address age-, ethnicity-, or gender-specific factors, suggesting improvements in program design based on these critiques. Finally, program evaluation methods are briefly reviewed and discussed in terms of how their empirical soundness can either enable or limit our ability to delineate effective program components. “Now more than ever, the nation’s changing demographics demand that we include all of our citizens in science and engineering education and careers. For the U.S. to benefit from the diverse talents of all its citizens, we must grow the pipeline of qualified, underrepresented minority engineers and scientists to fill positions in industry and academia.”—Irving P. McPhail.. PMID:22942637
Dual Enrollment Academy Programs
ERIC Educational Resources Information Center
Gonzalez, Nicolas; Chavez, Guadalupe
2009-01-01
Dual Enrollment Engineering (DEEA) and Medical Science (DEMSA) Academies are two-year dual enrollment programs for high school students. Students explore engineering and medical careers through college coursework. Students prepare for higher education in engineering and medical fields while completing associate degrees in biology or engineering…
ERIC Educational Resources Information Center
Manning, Sabine, Ed.
This document is the second report on results achieved in the project, "The Acquisition of Integrated Qualifications for Professional Work and Study--An Assessment of Innovative Approaches in Seven European Countries (INTEQUAL)," which was undertaken to identify innovative approaches to granting dual qualifications that can ultimately increase the…
ERIC Educational Resources Information Center
Hubain, Bryan S.; Allen, Evette L.; Harris, Jessica C.; Linder, Chris
2016-01-01
In this paper, we employ Critical Race Theory theoretically and methodologically to examine the racialized experiences of students of color in higher education and student affairs (HESA) graduate preparation programs. We employ counter-storytelling as a method for constructing narratives that disrupt the master narrative found within HESA graduate…
Representation is representation of similarities.
Edelman, S
1998-08-01
Advanced perceptual systems are faced with the problem of securing a principled (ideally, veridical) relationship between the world and its internal representation. I propose a unified approach to visual representation, addressing the need for superordinate and basic-level categorization and for the identification of specific instances of familiar categories. According to the proposed theory, a shape is represented internally by the responses of a small number of tuned modules, each broadly selective for some reference shape, whose similarity to the stimulus it measures. This amounts to embedding the stimulus in a low-dimensional proximal shape space spanned by the outputs of the active modules. This shape space supports representations of distal shape similarities that are veridical as Shepard's (1968) second-order isomorphisms (i.e., correspondence between distal and proximal similarities among shapes, rather than between distal shapes and their proximal representations). Representation in terms of similarities to reference shapes supports processing (e.g., discrimination) of shapes that are radically different from the reference ones, without the need for the computationally problematic decomposition into parts required by other theories. Furthermore, a general expression for similarity between two stimuli, based on comparisons to reference shapes, can be used to derive models of perceived similarity ranging from continuous, symmetric, and hierarchical ones, as in multidimensional scaling (Shepard 1980), to discrete and nonhierarchical ones, as in the general contrast models (Shepard & Arabie 1979; Tversky 1977). PMID:10097019
ERIC Educational Resources Information Center
Kuntz, Aaron M.
2010-01-01
What can be known and how to render what we know are perpetual quandaries met by qualitative research, complicated further by the understanding that the everyday discourses influencing our representations are often tacit, unspoken or heard so often that they seem to warrant little reflection. In this article, I offer analytic memos as a means for…
Active maintenance of semantic representations.
Nishiyama, Ryoji
2014-12-01
In research on verbal working memory, articulatory rehearsal, a maintenance mechanism for phonological representations, has undergone intensive and excellent study. Possible mechanisms for semantic representation have received less attention. However, several studies have reported a double dissociation in types of memory deficits (semantic memory difficulties vs. phonological memory difficulties). This suggests the separability of two maintenance mechanisms. The present study focused on this separability in individuals with normal memory abilities, using a dual-task interference paradigm. The results indicate a crossover interaction between memory and interference task effects: Preventing articulatory rehearsal more strongly disrupted the phonological memory task, whereas performing a tapping task that interfered with attentional control more strongly disrupted semantic memory. These results suggest that semantic representations are actively maintained by a mechanism other than phonological maintenance. PMID:24687734
Sparse representation of complex MRI images.
Nandakumar, Hari Prasad; Ji, Jim
2008-01-01
Sparse representation of images acquired from Magnet Resonance Imaging (MRI) has several potential applications. MRI is unique in that the raw images are complex. Complex wavelet transforms (CWT) can be used to produce flexible signal representations when compared to Discrete Wavelet Transform (DWT). In this work, five different schemes using CWT or DWT are tested for sparse representation of MRI images which are in the form of complex values, separate real/imaginary, or separate magnitude/phase. The experimental results on real in-vivo MRI images show that appropriate CWT, e.g., dual-tree CWT (DTCWT), can achieve sparsity better than DWT with similar Mean Square Error. PMID:19162677
Classification of non-coding RNA using graph representations ofsecondary structure
Karklin, Yan; Meraz, Richard F.; Holbrook, Stephen R.
2004-06-07
Some genes produce transcripts that function directly in regulatory, catalytic, or structural roles in the cell. These non-coding RNAs are prevalent in all living organisms, and methods that aid the understanding of their functional roles are essential. RNA secondary structure, the pattern of base-pairing, contains the critical information for determining the three dimensional structure and function of the molecule. In this work we examine whether the basic geometric and topological properties of secondary structure are sufficient to distinguish between RNA families in a learning framework. First, we develop a labeled dual graph representation of RNA secondary structure by adding biologically meaningful labels to the dual graphs proposed by Gan et al [1]. Next, we define a similarity measure directly on the labeled dual graphs using the recently developed marginalized kernels [2]. Using this similarity measure, we were able to train Support Vector Machine classifiers to distinguish RNAs of known families from random RNAs with similar statistics. For 22 of the 25 families tested, the classifier achieved better than 70% accuracy, with much higher accuracy rates for some families. Training a set of classifiers to automatically assign family labels to RNAs using a one vs. all multi-class scheme also yielded encouraging results. From these initial learning experiments, we suggest that the labeled dual graph representation, together with kernel machine methods, has potential for use in automated analysis and classification of uncharacterized RNA molecules or efficient genome-wide screens for RNA molecules from existing families.
Recchia-Luciani, Angelo N M
2012-04-01
The present paper proposes a definition for the complex polysemic concepts of consciousness and awareness (in humans as well as in other species), and puts forward the idea of a progressive ontological development of consciousness from a state of 'childhood' awareness, in order to explain that humans are not only able to manipulate objects, but also their mental representations. The paper builds on the idea of qualia intended as entities posing regular invariant requests to neural processes, trough the permanence of different properties. The concept of semantic differential introduces the properties of metaphorical qualia as an exclusively human ability. Furthermore this paper proposes a classification of qualia, according to the models-with different levels of abstraction-they are implied in, in a taxonomic perspective. This, in turn, becomes a source of categorization of divergent representations, sign systems, and forms of intentionality, relying always on biological criteria. New emerging image-of-the-world-devices are proposed, whose qualia are likely to be only accessible to humans: emotional qualia, where emotion accounts for the invariant and dominant property; and the qualic self where continuity, combined with the oneness of the self, accounts for the invariant and dominant property. The concept of congruence between different domains in a metaphor introduces the possibility of a general evaluation of truth and falsity of all kinds of metaphorical constructs, while the work of Matte Blanco enables us to classify conscious versus unconscious metaphors, both in individuals and in social organizations. PMID:22347988
NASA Astrophysics Data System (ADS)
Bergshoeff, Eric A.; Hohm, Olaf; Penas, Victor A.; Riccioni, Fabio
2016-06-01
We present the dual formulation of double field theory at the linearized level. This is a classically equivalent theory describing the duals of the dilaton, the Kalb-Ramond field and the graviton in a T-duality or O( D, D) covariant way. In agreement with previous proposals, the resulting theory encodes fields in mixed Young-tableau representations, combining them into an antisymmetric 4-tensor under O( D, D). In contrast to previous proposals, the theory also requires an antisymmetric 2-tensor and a singlet, which are not all pure gauge. The need for these additional fields is analogous to a similar phenomenon for "exotic" dualizations, and we clarify this by comparing with the dualizations of the component fields. We close with some speculative remarks on the significance of these observations for the full non-linear theory yet to be constructed.
Dual isomonodromic deformations and moment maps to loop algebras
NASA Astrophysics Data System (ADS)
Harnad, J.
1994-12-01
The Hamiltonian structure of the monodromy preserving deformation equations of Jimbo et al [JMMS] is explained in terms of parameter dependent pairs of moment maps from a symplectic vector space to the dual spaces of two different loop algebras. The nonautonomous Hamiltonian systems generating the deformations are obtained by pulling back spectral invariants on Poisson subspaces consisting of elements that are rational in the loop parameter and identifying the deformation parameters with those determining the moment maps. This construction is shown to lead to “dual” pairs of matrix differential operators whose monodromy is preserved under the same family of deformations. As illustrative examples, involving discrete and continuous reductions, a higher rank generalization of the Hamiltonian equations governing the correlation functions for an impenetrable Bose gas is obtained, as well as dual pairs of isomonodromy representations for the equations of the Painlevé transcendents P V and VI .
The Representation of Abstract Words: Why Emotion Matters
ERIC Educational Resources Information Center
Kousta, Stavroula-Thaleia; Vigliocco, Gabriella; Vinson, David P.; Andrews, Mark; Del Campo, Elena
2011-01-01
Although much is known about the representation and processing of concrete concepts, knowledge of what abstract semantics might be is severely limited. In this article we first address the adequacy of the 2 dominant accounts (dual coding theory and the context availability model) put forward in order to explain representation and processing…
Technology Transfer Automated Retrieval System (TEKTRAN)
Targhee Russet is a dark-skinned russet potato variety with tubers slightly longer than Russet Burbank. It produces higher total and marketable yields than does Russet Burbank at most of the sites it was tested in the western United States. Tuber dormancy is about 58 days shorter than Russet Burba...
ERIC Educational Resources Information Center
Hoareau, Cecile
2011-01-01
The French Government has had a paradoxical relationship with globalization. Globalization is perceived as both a threat to react against and a cradle for new policy ideas. French policymakers have a love-hate relationship with the European higher education reforms that started in the 1990s, a mixed sentiment that French singer Serge Gainsbourg…
NASA Astrophysics Data System (ADS)
Koma, Y.; Koma (Takayama), M.
2003-01-01
The ratios between the string tensions σ_D of color-electric flux tubes in higher and fundamental SU(3) representations, dD equiv σD/σ3, are systematically studied in a Weyl symmetric formulation of the DGL theory. The ratio is found to depend on the Ginzburg-Landau (GL) parameter, kappa equiv m_{χ}/mB, the mass ratio between the monopoles (m_{χ}) and the masses of the dual gauge bosons (mB). While the ratios dD follow a simple flux counting rule in the Bogomol'nyi limit, kappa=1.0, systematic deviations appear with increasing kappa due to interactions between the fundamental flux inside a higher representation flux tube. We find that in a type-II dual superconducting vacuum near kappa = 3.0 this leads to a consistent description of the ratios dD as observed in lattice QCD simulations.
Attentional Control via Parallel Target-Templates in Dual-Target Search
Barrett, Doug J. K.; Zobay, Oliver
2014-01-01
Simultaneous search for two targets has been shown to be slower and less accurate than independent searches for the same two targets. Recent research suggests this ‘dual-target cost’ may be attributable to a limit in the number of target-templates than can guide search at any one time. The current study investigated this possibility by comparing behavioural responses during single- and dual-target searches for targets defined by their orientation. The results revealed an increase in reaction times for dual- compared to single-target searches that was largely independent of the number of items in the display. Response accuracy also decreased on dual- compared to single-target searches: dual-target accuracy was higher than predicted by a model restricting search guidance to a single target-template and lower than predicted by a model simulating two independent single-target searches. These results are consistent with a parallel model of dual-target search in which attentional control is exerted by more than one target-template at a time. The requirement to maintain two target-templates simultaneously, however, appears to impose a reduction in the specificity of the memory representation that guides search for each target. PMID:24489793
NASA Astrophysics Data System (ADS)
Nichols, Kim; Gillies, Robyn; Hedberg, John
2016-06-01
This study explored the impact of argumentation-promoting collaborative inquiry and representational work in science on primary students' representational fluency. Two hundred sixty-six year 6 students received instruction on natural disasters with a focus on collaborative inquiry. Students in the Comparison condition received only this instruction. Students in the Explanation condition were also instructed with a focus on explanations using representations. Students in the Argumentation condition received similar instruction to the Comparison and Explanation conditions but were also instructed with a focus on argumentation using representations. Conceptual understanding and representational competencies (interpreting, explaining and constructing representations) were measured prior to and immediately following the instruction. A small group collaborative representational task was video recorded at the end of the instruction and coded for modes of knowledge-building discourse; knowledge-sharing and knowledge-construction. Higher measures of conceptual understanding, representational competencies and knowledge-construction discourse were taken together as representational fluency. Students in all conditions showed significant improvement in conceptual understanding, interpreting representations and explaining representations. Students in the Comparison and Argumentation conditions also showed significantly improved scores in constructing representations. When compared to the other conditions, the Explanation group had the highest scores in conceptual understanding and also interpreting and explaining representations. While the Argumentation group had the highest scores for constructing representations, their scores for conceptual understanding as well as interpreting and explaining representations were also high. There was no difference between the groups in knowledge-sharing discourse; however, the Argumentation group displayed the highest incidence of knowledge
Computer aided surface representation
Barnhill, R.E.
1990-02-19
The central research problem of this project is the effective representation, computation, and display of surfaces interpolating to information in three or more dimensions. If the given information is located on another surface, then the problem is to construct a surface defined on a surface''. Sometimes properties of an already defined surface are desired, which is geometry processing''. Visualization of multivariate surfaces is possible by means of contouring higher dimensional surfaces. These problems and more are discussed below. The broad sweep from constructive mathematics through computational algorithms to computer graphics illustrations is utilized in this research. The breadth and depth of this research activity makes this research project unique.
L1 and L2 Picture Naming in Mandarin-English Bilinguals: A Test of Bilingual Dual Coding Theory
ERIC Educational Resources Information Center
Jared, Debra; Poh, Rebecca Pei Yun; Paivio, Allan
2013-01-01
This study examined the nature of bilinguals' conceptual representations and the links from these representations to words in L1 and L2. Specifically, we tested an assumption of the Bilingual Dual Coding Theory that conceptual representations include image representations, and that learning two languages in separate contexts can result in…
Sparse representation with kernels.
Gao, Shenghua; Tsang, Ivor Wai-Hung; Chia, Liang-Tien
2013-02-01
Recent research has shown the initial success of sparse coding (Sc) in solving many computer vision tasks. Motivated by the fact that kernel trick can capture the nonlinear similarity of features, which helps in finding a sparse representation of nonlinear features, we propose kernel sparse representation (KSR). Essentially, KSR is a sparse coding technique in a high dimensional feature space mapped by an implicit mapping function. We apply KSR to feature coding in image classification, face recognition, and kernel matrix approximation. More specifically, by incorporating KSR into spatial pyramid matching (SPM), we develop KSRSPM, which achieves a good performance for image classification. Moreover, KSR-based feature coding can be shown as a generalization of efficient match kernel and an extension of Sc-based SPM. We further show that our proposed KSR using a histogram intersection kernel (HIK) can be considered a soft assignment extension of HIK-based feature quantization in the feature coding process. Besides feature coding, comparing with sparse coding, KSR can learn more discriminative sparse codes and achieve higher accuracy for face recognition. Moreover, KSR can also be applied to kernel matrix approximation in large scale learning tasks, and it demonstrates its robustness to kernel matrix approximation, especially when a small fraction of the data is used. Extensive experimental results demonstrate promising results of KSR in image classification, face recognition, and kernel matrix approximation. All these applications prove the effectiveness of KSR in computer vision and machine learning tasks. PMID:23014744
and as Vertex Operator Extensionsof Dual Affine Algebras
NASA Astrophysics Data System (ADS)
Bowcock, P.; Feigin, B. L.; Semikhatov, A. M.; Taormina, A.
We discover a realisation of the affine Lie superalgebra and of the exceptional affine superalgebra as vertex operator extensions of two algebras with ``dual'' levels (and an auxiliary level-1 algebra). The duality relation between the levels is . We construct the representation of on a sum of tensor products of , , and modules and decompose it into a direct sum over the spectral flow orbit. This decomposition gives rise to character identities, which we also derive. The extension of the construction to is traced to the properties of embeddings into and their relation with the dual pairs. Conversely, we show how the representations are constructed from representations.
ERIC Educational Resources Information Center
Rumelhart, David E.; Norman, Donald A.
This paper reviews work on the representation of knowledge from within psychology and artificial intelligence. The work covers the nature of representation, the distinction between the represented world and the representing world, and significant issues concerned with propositional, analogical, and superpositional representations. Specific topics…
Contractions of the irreducible representations of the quantum algebras suq(2) and soq(3)
NASA Astrophysics Data System (ADS)
Gromov, N. A.; Man'ko, V. I.
1992-04-01
The contractions of the irreducible representations of the unitary quantum algebra suq(2) and the orthogonal quantum algebra soq(3) in the Gel'fand-Tsetlin basis are regarded in detail with the help of the dual numbers.
Computer aided surface representation
Barnhill, R.E.
1991-04-02
Modern computing resources permit the generation of large amounts of numerical data. These large data sets, if left in numerical form, can be overwhelming. Such large data sets are usually discrete points from some underlying physical phenomenon. Because we need to evaluate the phenomenon at places where we don't have data, a continuous representation (a surface'') is required. A simple example is a weather map obtained from a discrete set of weather stations. (For more examples including multi-dimensional ones, see the article by Dr. Rosemary Chang in the enclosed IRIS Universe). In order to create a scientific structure encompassing the data, we construct an interpolating mathematical surface which can evaluate at arbitrary locations. We can also display and analyze the results via interactive computer graphics. In our research we construct a very wide variety of surfaces for applied geometry problems that have sound theoretical foundations. However, our surfaces have the distinguishing feature that they are constructed to solve short or long term practical problems. This DOE-funded project has developed the premiere research team in the subject of constructing surfaces (3D and higher dimensional) that provide smooth representations of real scientific and engineering information, including state of the art computer graphics visualizations. However, our main contribution is in the development of fundamental constructive mathematical methods and visualization techniques which can be incorporated into a wide variety of applications. This project combines constructive mathematics, algorithms, and computer graphics, all applied to real problems. The project is a unique resource, considered by our peers to be a de facto national center for this type of research.
Pedagogical Affordances of Multiple External Representations in Scientific Processes
ERIC Educational Resources Information Center
Wu, Hsin-Kai; Puntambekar, Sadhana
2012-01-01
Multiple external representations (MERs) have been widely used in science teaching and learning. Theories such as dual coding theory and cognitive flexibility theory have been developed to explain why the use of MERs is beneficial to learning, but they do not provide much information on pedagogical issues such as how and in what conditions MERs…
R. KELSEY
2001-02-01
For focused applications with limited user and use application communities, XML can be the right choice for representation. It is easy to use, maintain, and extend and enjoys wide support in commercial and research sectors. When the knowledge and information to be represented is object-based and use of that knowledge and information is a high priority, then XML-based representation should be considered. This paper discusses some of the issues involved in using XML-based representation and presents an example application that successfully uses an XML-based representation.
ERIC Educational Resources Information Center
Dick, Anthony Steven; Overton, Willis F.; Kovacs, Stacie L.
2005-01-01
Children's developing competence with symbolic representations was assessed in 3 studies. Study 1 examined the hypothesis that the production of imaginary symbolic objects in pantomime requires the simultaneous coordination of the dual representations of a dynamic action and a symbolic object. We explored this coordination of symbolic…
Hologram representation of design data in an expert system knowledge base
NASA Technical Reports Server (NTRS)
Shiva, S. G.; Klon, Peter F.
1988-01-01
A novel representational scheme for design object descriptions is presented. An abstract notion of modules and signals is developed as a conceptual foundation for the scheme. This abstraction relates the objects to the meaning of system descriptions. Anchored on this abstraction, a representational model which incorporates dynamic semantics for these objects is presented. This representational model is called a hologram scheme since it represents dual level information, namely, structural and semantic. The benefits of this scheme are presented.
Inscriptions Becoming Representations in Representational Practices
ERIC Educational Resources Information Center
Medina, Richard; Suthers, Daniel
2013-01-01
We analyze the interaction of 3 students working on mathematics problems over several days in a virtual math team. Our analysis traces out how successful collaboration in a later session is contingent upon the work of prior sessions and shows how the development of representational practices is an important aspect of these participants' problem…
Reading Visual Representations
ERIC Educational Resources Information Center
Rubenstein, Rheta N.; Thompson, Denisse R.
2012-01-01
Mathematics is rich in visual representations. Such visual representations are the means by which mathematical patterns "are recorded and analyzed." With respect to "vocabulary" and "symbols," numerous educators have focused on issues inherent in the language of mathematics that influence students' success with mathematics communication.…
Dual instantons in antimembranes theory
Imaanpur, A.; Naghdi, M.
2011-04-15
We introduce two ansatzs for the 3-form potential of Euclidean 11d supergravity on skew-whiffed AdS{sub 4}xS{sup 7} background which results in two scalar modes with m{sup 2}=-2 on AdS{sub 4}. Being conformally coupled with a quartic interaction, it is possible to find the exact solutions of the scalar equation on this background. These modes turn out to be invariant under the SU(4) subgroup of the SO(8) isometry group, whereas there are no corresponding SU(4) singlet Bogomol'nyi-Prasad-Sommerfeld operators of dimensions one or two on the boundary theory constructed by Aharony, Bergman, Jafferis, and Maldacena. Noticing the interchange of 8{sub s} and 8{sub c} representations under skew-whiffing in the bulk, we propose the theory of antimembranes should similarly be obtained from Aharony, Bergman, Jafferis, and Maldacena's theory by swapping these representations. In particular, this enables us to identify the dual boundary operators of the two scalar modes. We deform the boundary theory by the dual operators and examine the fermionic field equations, and compare the solutions of the deformed theory with those of the bulk.
Conformal field theories, representations and lattice constructions
NASA Astrophysics Data System (ADS)
Dolan, L.; Goddard, P.; Montague, P.
1996-07-01
An account is given of the structure and representations of chiral bosonic meromorphic conformal field theories (CFT's), and, in particular, the conditions under which such a CFT may be extended by a representation to form a new theory. This general approach is illustrated by considering the untwisted and Z 2-twisted theories, ℋ( Λ) andtilde H(Λ ) respectively, which may be constructed from a suitable even Euclidean lattice Λ. Similarly, one may construct latticesΛ _C andtilde Λ _C by analogous constructions from a doubly-even binary codeC. In the case whenC is self-dual, the corresponding lattices are also. Similarly, ℋ( Λ) andtilde H(Λ ) are self-dual if and only if Λ is. We show thatH(Λ _C ) has a natural “triality” structure, which induces an isomorphismH(tilde Λ _C ) ≡tilde H(Λ _C ) and also a triality structure ontilde H(tilde Λ _C ). ForC the Golay code,tilde Λ _C is the Leech lattice, and the triality ontilde H(tilde Λ _C ) is the symmetry which extends the natural action of (an extension of) Conway's group on this theory to the Monster, so setting triality and Frenkel, Lepowsky and Meurman's construction of the natural Monster module in a more general context. The results also serve to shed some light on the classification of self-dual CFT's. We find that of the 48 theories ℋ( Λ) andtilde H(Λ ) with central charge 24 that there are 39 distinct ones, and further that all 9 coincidences are accounted for by the isomorphism detailed above, induced by the existence of a doubly-even self-dual binary code.
Facial expression recognition with facial parts based sparse representation classifier
NASA Astrophysics Data System (ADS)
Zhi, Ruicong; Ruan, Qiuqi
2009-10-01
Facial expressions play important role in human communication. The understanding of facial expression is a basic requirement in the development of next generation human computer interaction systems. Researches show that the intrinsic facial features always hide in low dimensional facial subspaces. This paper presents facial parts based facial expression recognition system with sparse representation classifier. Sparse representation classifier exploits sparse representation to select face features and classify facial expressions. The sparse solution is obtained by solving l1 -norm minimization problem with constraint of linear combination equation. Experimental results show that sparse representation is efficient for facial expression recognition and sparse representation classifier obtain much higher recognition accuracies than other compared methods.
Knowledge representation techniques for seismic signal understanding
Not Available
1986-03-01
Seismic monitoring and discrimination of seismic events for purposes of nuclear test ban verification require the interpretation of large volumes of uncertain signal data by seismic experts. Several levels of knowledge representation are envisioned to make the transduction from raw signal data to the level of symbolic representation used to represent knowledge by AI techniques. At the lower level, techniques drawn from the feature based approach to speech recognition and syntactic pattern recognition address primitive features and segmentation into symbolic units of syntax which apply to various representations or transforms of the seismic signal, such as seismograms. At a higher level, conventional knowledge representation schemes and new algebraic approaches to knowledge representation based on algebraic systems are considered as they might apply to representations of the signal established by the lower level techniques. This report defines and outlines these techniques as well as describes how they are likely to be successfully integrated into a unified approach for representing knowledge in seismic signals for symbolic signal processing. The report also recommends further steps and directions the research should take and includes a preliminary bibliography covering both theoretical and applied aspects of the knowledge representation techniques discussed. (ACR)
Learning Sparse Representations of Depth
NASA Astrophysics Data System (ADS)
Tosic, Ivana; Olshausen, Bruno A.; Culpepper, Benjamin J.
2011-09-01
This paper introduces a new method for learning and inferring sparse representations of depth (disparity) maps. The proposed algorithm relaxes the usual assumption of the stationary noise model in sparse coding. This enables learning from data corrupted with spatially varying noise or uncertainty, typically obtained by laser range scanners or structured light depth cameras. Sparse representations are learned from the Middlebury database disparity maps and then exploited in a two-layer graphical model for inferring depth from stereo, by including a sparsity prior on the learned features. Since they capture higher-order dependencies in the depth structure, these priors can complement smoothness priors commonly used in depth inference based on Markov Random Field (MRF) models. Inference on the proposed graph is achieved using an alternating iterative optimization technique, where the first layer is solved using an existing MRF-based stereo matching algorithm, then held fixed as the second layer is solved using the proposed non-stationary sparse coding algorithm. This leads to a general method for improving solutions of state of the art MRF-based depth estimation algorithms. Our experimental results first show that depth inference using learned representations leads to state of the art denoising of depth maps obtained from laser range scanners and a time of flight camera. Furthermore, we show that adding sparse priors improves the results of two depth estimation methods: the classical graph cut algorithm by Boykov et al. and the more recent algorithm of Woodford et al.
Contacts de langues et representations (Language Contacts and Representations).
ERIC Educational Resources Information Center
Matthey, Marinette, Ed.
1997-01-01
Essays on language contact and the image of language, entirely in French, include: "Representations 'du' contexte et representations 'en' contexte? Eleves et enseignants face a l'apprentissage de la langue" ("Representations 'of' Context or Representations 'in' Context? Students and Teachers Facing Language Learning" (Laurent Gajo); "Le crepuscule…
Grassmannian sparse representations
NASA Astrophysics Data System (ADS)
Azary, Sherif; Savakis, Andreas
2015-05-01
We present Grassmannian sparse representations (GSR), a sparse representation Grassmann learning framework for efficient classification. Sparse representation classification offers a powerful approach for recognition in a variety of contexts. However, a major drawback of sparse representation methods is their computational performance and memory utilization for high-dimensional data. A Grassmann manifold is a space that promotes smooth surfaces where points represent subspaces and the relationship between points is defined by the mapping of an orthogonal matrix. Grassmann manifolds are well suited for computer vision problems because they promote high between-class discrimination and within-class clustering, while offering computational advantages by mapping each subspace onto a single point. The GSR framework combines Grassmannian kernels and sparse representations, including regularized least squares and least angle regression, to improve high accuracy recognition while overcoming the drawbacks of performance and dependencies on high dimensional data distributions. The effectiveness of GSR is demonstrated on computationally intensive multiview action sequences, three-dimensional action sequences, and face recognition datasets.
Spacecraft Attitude Representations
NASA Technical Reports Server (NTRS)
Markley, F. Landis
1999-01-01
The direction cosine matrix or attitude matrix is the most fundamental representation of the attitude, but it is very inefficient: It has six redundant parameters, it is difficult to enforce the six (orthogonality) constraints. the four-component quaternion representation is very convenient: it has only one redundant parameter, it is easy to enforce the normalization constraint, the attitude matrix is a homogeneous quadratic function of q, quaternion kinematics are bilinear in q and m. Euler angles are extensively used: they often have a physical interpretation, they provide a natural description of some spacecraft motions (COBE, MAP), but kinematics and attitude matrix involve trigonometric functions, "gimbal lock" for certain values of the angles. Other minimum (three-parameter) representations: Gibbs vector is infinite for 180 deg rotations, but useful for analysis, Modified Rodrigues Parameters are nonsingular, no trig functions, Rotation vector phi is nonsingular, but requires trig functions.
ERIC Educational Resources Information Center
Wei, Liew Tze; Sazilah, Salam
2012-01-01
This study investigated the effects of visual cues in multiple external representations (MER) environment on the learning performance of novices' program comprehension. Program codes and flowchart diagrams were used as dual representations in multimedia environment to deliver lessons on C-Programming. 17 field independent participants and 16 field…
Umbra's system representation.
McDonald, Michael James
2005-07-01
This document describes the Umbra System representation. Umbra System representation, initially developed in the spring of 2003, is implemented in Incr/Tcl using concepts borrowed from Carnegie Mellon University's Architecture Description Language (ADL) called Acme. In the spring of 2004 through January 2005, System was converted to Umbra 4, extended slightly, and adopted as the underlying software system for a variety of Umbra applications that support Complex Systems Engineering (CSE) and Complex Adaptive Systems Engineering (CASE). System is now a standard part Of Umbra 4. While Umbra 4 also includes an XML parser for System, the XML parser and Schema are not described in this document.
NASA Technical Reports Server (NTRS)
Walsh, Brian M.
2010-01-01
Dual wavelength lasers are discussed, covering fundamental aspects on the spectroscopy and laser dynamics of these systems. Results on Tm:Ho:Er:YAG dual wavelength laser action (Ho at 2.1 m and Er at 2.9 m) as well as Nd:YAG (1.06 and 1.3 m) are presented as examples of such dual wavelength systems. Dual wavelength lasers are not common, but there are criteria that govern their behavior. Based on experimental studies demonstrating simultaneous dual wavelength lasing, some general conclusions regarding the successful operation of multi-wavelength lasers can be made.
22 CFR 145.17 - Certifications and representations.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Certifications and representations. 145.17 Section 145.17 Foreign Relations DEPARTMENT OF STATE CIVIL RIGHTS GRANTS AND AGREEMENTS WITH INSTITUTIONS OF HIGHER EDUCATION, HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Pre-Award Requirements § 145.17 Certifications and representations....
SNARC Hunting: Examining Number Representation in Deaf Students
ERIC Educational Resources Information Center
Bull, R.; Marschark, M.; Blatto-Vallee, G.
2005-01-01
Many deaf children and adults show lags in mathematical abilities. The current study examines the basic number representations that allow individuals to perform higher-level arithmetical procedures. These representations are normally present in the earliest stages of development, but they may be affected by cultural, developmental, and educational…
Student Engagement: Stakeholder Perspectives on Course Representation in University Governance
ERIC Educational Resources Information Center
Carey, Philip
2013-01-01
Student engagement has become a key feature of UK higher education policy and analysis. At the core of this is a notion of engagement characterised by dialogue and joint venture. The article explores this by considering the role of student representation in university governance. It focuses on the system of course representation that is a feature…
Reading Students' Representations
ERIC Educational Resources Information Center
Diezmann, Carmel M.; McCosker, Natalie T.
2011-01-01
Representations play a key role in mathematical thinking: They offer "a medium" to express mathematical knowledge or organize mathematical information and to discern mathematical relationships (e.g., relative household expenditures on a pie chart) using text, symbols, or graphics. They also furnish "tools" for mathematical processes (e.g., use of…
ERIC Educational Resources Information Center
Tervo, Juuso
2012-01-01
In "Postphysical Vision: Art Education's Challenge in an Age of Globalized Aesthetics (AMondofesto)" (2008) and "Beyond Aesthetics: Returning Force and Truth to Art and Its Education" (2009), jan jagodzinski argued for politics that go "beyond" representation--a project that radically questions visual culture…
[Time perceptions and representations].
Tordjman, S
2015-09-01
Representations of time and time measurements depend on subjective constructs that vary according to changes in our concepts, beliefs, societal needs and technical advances. Similarly, the past, the future and the present are subjective representations that depend on each individual's psychic time and biological time. Therefore, there is no single, one-size-fits-all time for everyone, but rather a different, subjective time for each individual. We need to acknowledge the existence of different inter-individual times but also intra-individual times, to which different functions and different rhythms are attached, depending on the system of reference. However, the construction of these time perceptions and representations is influenced by objective factors (physiological, physical and cognitive) related to neuroscience which will be presented and discussed in this article. Thus, studying representation and perception of time lies at the crossroads between neuroscience, human sciences and philosophy. Furthermore, it is possible to identify several constants among the many and various representations of time and their corresponding measures, regardless of the system of time reference. These include the notion of movements repeated in a stable rhythmic pattern involving the recurrence of the same interval of time, which enables us to define units of time of equal and invariable duration. This rhythmicity is also found at a physiological level and contributes through circadian rhythms, in particular the melatonin rhythm, to the existence of a biological time. Alterations of temporality in mental disorders will be also discussed in this article illustrated by certain developmental disorders such as autism spectrum disorders. In particular, the hypothesis will be developed that children with autism would need to create discontinuity out of continuity through stereotyped behaviors and/or interests. This discontinuity repeated at regular intervals could have been
On representations for joint moments using a joint coordinate system.
O'Reilly, Oliver M; Sena, Mark P; Feeley, Brian T; Lotz, Jeffrey C
2013-11-01
In studies of the biomechanics of joints, the representation of moments using the joint coordinate system has been discussed by several authors. The primary purpose of this technical brief is to emphasize that there are two distinct, albeit related, representations for moment vectors using the joint coordinate system. These distinct representations are illuminated by exploring connections between the Euler and dual Euler bases, the "nonorthogonal projections" presented in a recent paper by Desroches et al. (2010, "Expression of Joint Moment in the Joint Coordinate System," ASME J. Biomech. Eng., 132(11), p. 11450) and seminal works by Grood and Suntay (Grood and Suntay, 1983, "A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee," ASME J. Biomech. Eng., 105(2), pp. 136-144) and Fujie et al. (1996, "Forces and Moment in Six-DOF at the Human Knee Joint: Mathematical Description for Control," Journal of Biomechanics, 29(12), pp. 1577-1585) on the knee joint. It is also shown how the representation using the dual Euler basis leads to straightforward definition of joint stiffnesses. PMID:24008987
Poetic Re-Presentations on Trust in Higher Education
ERIC Educational Resources Information Center
West, Kim; Bloomquist, Candace
2015-01-01
This article discusses using poetic transcription (Glesne, 1997) as a tool for examining trust, including what trust looks and feels like from the "lived experiences" (Richardson, 1992) of university educators. We first explore the rationale for using poetic transcription in this study, discussing how and why poetry may be used as a…
Student Representation and Multiparty Politics in African Higher Education
ERIC Educational Resources Information Center
Luescher-Mamashela, Thierry M.; Mugume, Taabo
2014-01-01
The transition from one-party rule and other forms of authoritarianism to multiparty democracy in the 1990s has had a profound impact on the organisation and role of student politics in Africa. Against the background of student involvement in African politics in the twentieth century, leading up to student participation in Africa's…
The Functions of Multiple Representations.
ERIC Educational Resources Information Center
Ainsworth, Shaaron
1999-01-01
Discusses multiple representations and multimedia learning environments; describes a functional taxonomy of MERs (multiple external representations); and considers how MERs are used to support cognitive processes in learning and problem solving with computers. (Contains 41 references.) (Author/LRW)
Standard model of knowledge representation
NASA Astrophysics Data System (ADS)
Yin, Wensheng
2016-03-01
Knowledge representation is the core of artificial intelligence research. Knowledge representation methods include predicate logic, semantic network, computer programming language, database, mathematical model, graphics language, natural language, etc. To establish the intrinsic link between various knowledge representation methods, a unified knowledge representation model is necessary. According to ontology, system theory, and control theory, a standard model of knowledge representation that reflects the change of the objective world is proposed. The model is composed of input, processing, and output. This knowledge representation method is not a contradiction to the traditional knowledge representation method. It can express knowledge in terms of multivariate and multidimensional. It can also express process knowledge, and at the same time, it has a strong ability to solve problems. In addition, the standard model of knowledge representation provides a way to solve problems of non-precision and inconsistent knowledge.
A-Optimal Projection for Image Representation.
He, Xiaofei; Zhang, Chiyuan; Zhang, Lijun; Li, Xuelong
2016-05-01
We consider the problem of image representation from the perspective of statistical design. Recent studies have shown that images are possibly sampled from a low dimensional manifold despite of the fact that the ambient space is usually very high dimensional. Learning low dimensional image representations is crucial for many image processing tasks such as recognition and retrieval. Most of the existing approaches for learning low dimensional representations, such as principal component analysis (PCA) and locality preserving projections (LPP), aim at discovering the geometrical or discriminant structures in the data. In this paper, we take a different perspective from statistical experimental design, and propose a novel dimensionality reduction algorithm called A-Optimal Projection (AOP). AOP is based on a linear regression model. Specifically, AOP finds the optimal basis functions so that the expected prediction error of the regression model can be minimized if the new representations are used for training the model. Experimental results suggest that the proposed approach provides a better representation and achieves higher accuracy in image retrieval. PMID:26353361
In defense of abstract conceptual representations.
Binder, Jeffrey R
2016-08-01
An extensive program of research in the past 2 decades has focused on the role of modal sensory, motor, and affective brain systems in storing and retrieving concept knowledge. This focus has led in some circles to an underestimation of the need for more abstract, supramodal conceptual representations in semantic cognition. Evidence for supramodal processing comes from neuroimaging work documenting a large, well-defined cortical network that responds to meaningful stimuli regardless of modal content. The nodes in this network correspond to high-level "convergence zones" that receive broadly crossmodal input and presumably process crossmodal conjunctions. It is proposed that highly conjunctive representations are needed for several critical functions, including capturing conceptual similarity structure, enabling thematic associative relationships independent of conceptual similarity, and providing efficient "chunking" of concept representations for a range of higher order tasks that require concepts to be configured as situations. These hypothesized functions account for a wide range of neuroimaging results showing modulation of the supramodal convergence zone network by associative strength, lexicality, familiarity, imageability, frequency, and semantic compositionality. The evidence supports a hierarchical model of knowledge representation in which modal systems provide a mechanism for concept acquisition and serve to ground individual concepts in external reality, whereas broadly conjunctive, supramodal representations play an equally important role in concept association and situation knowledge. PMID:27294428
Nonlinear control for dual quaternion systems
NASA Astrophysics Data System (ADS)
Price, William D.
The motion of rigid bodies includes three degrees of freedom (DOF) for rotation, generally referred to as roll, pitch and yaw, and 3 DOF for translation, generally described as motion along the x, y and z axis, for a total of 6 DOF. Many complex mechanical systems exhibit this type of motion, with constraints, such as complex humanoid robotic systems, multiple ground vehicles, unmanned aerial vehicles (UAVs), multiple spacecraft vehicles, and even quantum mechanical systems. These motions historically have been analyzed independently, with separate control algorithms being developed for rotation and translation. The goal of this research is to study the full 6 DOF of rigid body motion together, developing control algorithms that will affect both rotation and translation simultaneously. This will prove especially beneficial in complex systems in the aerospace and robotics area where translational motion and rotational motion are highly coupled, such as when spacecraft have body fixed thrusters. A novel mathematical system known as dual quaternions provide an efficient method for mathematically modeling rigid body transformations, expressing both rotation and translation. Dual quaternions can be viewed as a representation of the special Euclidean group SE(3). An eight dimensional representation of screw theory (combining dual numbers with traditional quaternions), dual quaternions allow for the development of control techniques for 6 DOF motion simultaneously. In this work variable structure nonlinear control methods are developed for dual quaternion systems. These techniques include use of sliding mode control. In particular, sliding mode methods are developed for use in dual quaternion systems with unknown control direction. This method, referred to as self-reconfigurable control, is based on the creation of multiple equilibrium surfaces for the system in the extended state space. Also in this work, the control problem for a class of driftless nonlinear systems is
Representation in incremental learning
NASA Technical Reports Server (NTRS)
1993-01-01
Work focused on two areas in machine learning: representation for inductive learning and how to apply concept learning techniques to learning state preferences, which can represent search control knowledge for problem solving. Specifically, in the first area the issues of the effect of representation on learning, on how learning formalisms are biased, and how concept learning can benefit from the use of a hybrid formalism are addressed. In the second area, the issues of developing an agent to learn search control knowledge from the relative values of states, of the source of that qualitative information, and of the ability to use both quantitative and qualitative information in order to develop an effective problem-solving policy are examined.
Naturalising Representational Content
Shea, Nicholas
2014-01-01
This paper sets out a view about the explanatory role of representational content and advocates one approach to naturalising content – to giving a naturalistic account of what makes an entity a representation and in virtue of what it has the content it does. It argues for pluralism about the metaphysics of content and suggests that a good strategy is to ask the content question with respect to a variety of predictively successful information processing models in experimental psychology and cognitive neuroscience; and hence that data from psychology and cognitive neuroscience should play a greater role in theorising about the nature of content. Finally, the contours of the view are illustrated by drawing out and defending a surprising consequence: that individuation of vehicles of content is partly externalist. PMID:24563661
Naturalising Representational Content.
Shea, Nicholas
2013-05-01
This paper sets out a view about the explanatory role of representational content and advocates one approach to naturalising content - to giving a naturalistic account of what makes an entity a representation and in virtue of what it has the content it does. It argues for pluralism about the metaphysics of content and suggests that a good strategy is to ask the content question with respect to a variety of predictively successful information processing models in experimental psychology and cognitive neuroscience; and hence that data from psychology and cognitive neuroscience should play a greater role in theorising about the nature of content. Finally, the contours of the view are illustrated by drawing out and defending a surprising consequence: that individuation of vehicles of content is partly externalist. PMID:24563661
SLE and Virasoro Representations: Fusion
NASA Astrophysics Data System (ADS)
Dubédat, Julien
2015-06-01
We continue the study of null-vector equations in relation with partition functions of (systems of) Schramm-Loewner Evolutions (SLEs) by considering the question of fusion. Starting from n commuting SLEs seeded at distinct points, the partition function satisfies n null-vector equations (at level 2). We show how to obtain higher level null-vector equations by coalescing the seeds one by one. As an example, we extend Schramm's formula (for the position of a marked bulk point relatively to a chordal SLE trace) to an arbitrary number of SLE strands. The argument combines input from representation theory—the study of Verma modules for the Virasoro algebra—with regularity estimates, themselves based on hypoellipticity and stochastic flow arguments.
Supramodal representation of emotions.
Klasen, Martin; Kenworthy, Charles A; Mathiak, Krystyna A; Kircher, Tilo T J; Mathiak, Klaus
2011-09-21
Supramodal representation of emotion and its neural substrates have recently attracted attention as a marker of social cognition. However, the question whether perceptual integration of facial and vocal emotions takes place in primary sensory areas, multimodal cortices, or in affective structures remains unanswered yet. Using novel computer-generated stimuli, we combined emotional faces and voices in congruent and incongruent ways and assessed functional brain data (fMRI) during an emotional classification task. Both congruent and incongruent audiovisual stimuli evoked larger responses in thalamus and superior temporal regions compared with unimodal conditions. Congruent emotions were characterized by activation in amygdala, insula, ventral posterior cingulate (vPCC), temporo-occipital, and auditory cortices; incongruent emotions activated a frontoparietal network and bilateral caudate nucleus, indicating a greater processing load in working memory and emotion-encoding areas. The vPCC alone exhibited differential reactions to congruency and incongruency for all emotion categories and can thus be considered a central structure for supramodal representation of complex emotional information. Moreover, the left amygdala reflected supramodal representation of happy stimuli. These findings document that emotional information does not merge at the perceptual audiovisual integration level in unimodal or multimodal areas, but in vPCC and amygdala. PMID:21940454
Spatial representation of soundscape
NASA Astrophysics Data System (ADS)
Boubezari, Mohammed; Bento Coelho, Jos-Luis
2001-05-01
For the last 30 years the concept of soundscape has been largely adopted in many scientific disciplines and by the urban experts for the benefit of a better comprehension and management of the sound environment. However, the spatial representation of the soundscape as a simple tool for the description, management or composition of sound environment is always needed. In this article a method is presented for the spatial sound representation with differentiated sources. The first results are shown. This method gives an account of the soundscape as close as possible to the way it can be perceived by the listener in each location. This method generates qualitative sound maps in a reduced urban scale, based on in situ measurements and on the implication of the measuring subject perception. The maps are sufficient enough to isolate many sound sources of the overall sound field. In this manner, sound quality refers to the sound attribute of a perceived object. It is neither an aesthetic judgment nor traditional psychoacoustics criteria. Concrete examples of application to squares in the city of Lisbon will be shown and discussed. The limits and the prospects of such a qualitative representation will also be presented and discussed.
Mental Representations of Weekdays
Ellis, David A.; Wiseman, Richard; Jenkins, Rob
2015-01-01
Keeping social appointments involves keeping track of what day it is. In practice, mismatches between apparent day and actual day are common. For example, a person might think the current day is Wednesday when in fact it is Thursday. Here we show that such mismatches are highly systematic, and can be traced to specific properties of their mental representations. In Study 1, mismatches between apparent day and actual day occurred more frequently on midweek days (Tuesday, Wednesday, and Thursday) than on other days, and were mainly due to intrusions from immediately neighboring days. In Study 2, reaction times to report the current day were fastest on Monday and Friday, and slowest midweek. In Study 3, participants generated fewer semantic associations for “Tuesday”, “Wednesday” and “Thursday” than for other weekday names. Similarly, Google searches found fewer occurrences of midweek days in webpages and books. Analysis of affective norms revealed that participants’ associations were strongly negative for Monday, strongly positive for Friday, and graded over the intervening days. Midweek days are confusable because their mental representations are sparse and similar. Mondays and Fridays are less confusable because their mental representations are rich and distinctive, forming two extremes along a continuum of change. PMID:26288194
Translation between representation languages
NASA Technical Reports Server (NTRS)
Vanbaalen, Jeffrey
1994-01-01
A capability for translating between representation languages is critical for effective knowledge base reuse. A translation technology for knowledge representation languages based on the use of an interlingua for communicating knowledge is described. The interlingua-based translation process consists of three major steps: translation from the source language into a subset of the interlingua, translation between subsets of the interlingua, and translation from a subset of the interlingua into the target language. The first translation step into the interlingua can typically be specified in the form of a grammar that describes how each top-level form in the source language translates into the interlingua. In cases where the source language does not have a declarative semantics, such a grammar is also a specification of a declarative semantics for the language. A methodology for building translators that is currently under development is described. A 'translator shell' based on this methodology is also under development. The shell has been used to build translators for multiple representation languages and those translators have successfully translated nontrivial knowledge bases.
Technology Transfer Automated Retrieval System (TEKTRAN)
Teton Russet is an early-maturing, medium- russeted, potato cultivar with high merit for both fresh-pack and processing. In early harvest trials in the Pacific Northwest, Teton Russet had total yields similar to Russet Norkotah, and higher than Ranger Russet and Russet Burbank. Marketable yield of T...
Tilt representation beyond the retinotopic level.
Parwaga, Sandeep; Buckley, David; Duke, Philip A
2016-01-01
We perceive a stable visual world, which enables successful interaction with our environment, despite movements of the eyes, head, and body. How are such perceptions formed? One possibility is that retino-centric visual input is transformed into representations at higher levels, such as head-, body-, or world-centered representations. We investigated this hypothesis using the tilt aftereffect in a balanced adaptation paradigm designed to isolate head-, body-, and world-centered aftereffects. Observers adapted to two oppositely tilted stimuli, each contingent on one of two different gaze, head, or body directions. We found aftereffects contingent on gaze direction, but not head or body direction. This demonstrates that adaptable tilt representations exist in a head-centric frame but not in higher reference frames. These aftereffects may be attributed to adaptation of retinotopic tilt-sensitive neurons whose responses are modulated by gaze direction (gain fields). Such neurons could support functionally head-centric tilt representations and are found as early as V1. On the basis of our results we would not expect activity in tilt-sensitive neurons to be modulated by head or body direction. The balanced adaptation paradigm is a useful tool for examining properties of the process responsible for gaze modulation of activity in visual neurons. PMID:26868889
Back in the USSR: Path Dependence Effects in Student Representation in Russia
ERIC Educational Resources Information Center
Chirikov, Igor; Gruzdev, Ivan
2014-01-01
This paper analyses the current state of student representation in Russia as deeply rooted in the institutional structure of the Soviet higher education system. The study traces the origins of existing institutional arrangements for student representation at the level of university governance and analyses how representation practices have been…
ERIC Educational Resources Information Center
McKitric, Eloise J.
The impact of economic conditions on two-earner families was examined. Three family types were studied: (1) dual-career family--both the husband and wife are in the labor force but in occupations classified as professional-technical or managerial; (2) dual-earner--both the husband and wife are in the labor force; and (3) traditional family--the…
ERIC Educational Resources Information Center
Gurtin, Lee
1980-01-01
The dual career couple is forced to make a series of choices and compromises that impact the realms of marriage and career. The dilemmas that confront dual career marriages can be overcome only by compromise, accommodation, and mutual understanding on the part of the individuals involved. A revamping of human resources and recruitment programs is…
NASA Technical Reports Server (NTRS)
Packard, D. T.
1982-01-01
A new class of electromechanical actuators is described. These dual drive actuators were developed for the NASA-JPL Galileo Spacecraft. The dual drive actuators are fully redundant and therefore have high inherent reliability. They can be used for a variety of tasks, and they can be fabricated quickly and economically.
The string tension of SU(3) representations
NASA Astrophysics Data System (ADS)
Deldar, Sedigheh
In this thesis, I study the theory of confinement by measuring the potentials and in particular the string tension, between static sources in a background of gluons in pure gauge SU(3). The potentials between static sources in a variety of representations (fundamental, 8, 6, 15-antisymmetric, 10, 27 and 15- symmetric) have been computed by measuring Wilson loops. Wilson loops for higher representations have been measured in terms of Wilson loops of the fundamental representation. The string tensions have been computed from fitting the potentials to a Coloumbic plus a linear term. The simulations have been done primarily on anisotropic lattices, using a O(a2) tadpole improved action. A range of lattice spacings (0.43 fm, 0.25 fm and 0.11 fm) and volumes (83 × 24, 103 × 24, 163 × 24 and 183 × 24) has been used to extrapolate to the continuum and to control finite volume effects. In addition, a simulation at a single lattice spacing has been performed on an isotropic (84) lattice. The potentials between static sources in various representations in SU(3) have also been calculated based on the fat-center-vortices model. At intermediate distances, the results from both the numerical and model calculations are in qualitative agreement with ``Casimir scaling,'' which says that the string tension is proportional to the quadratic operator of the representation. For large distances (as large as 2.4 fm) no color screening or change of the potential slope has been observed from the lattice calculations of this work. However, from the fat-center- vortices model, screening and change of the potential slope is seen for zero triality and non-zero triality representations, respectively.
Women in Higher Education Management.
ERIC Educational Resources Information Center
Commonwealth Secretariat, London (England).
This volume contains 11 papers on the under-representation of women in higher education management in Bahrain, Finland, France, India, Indonesia, Malaysia, Nigeria, Peru, the United States and Canada, the South Pacific and the West Indies. All papers were written by women vice-chancellors, presidents and senior managers of universities in those…
Dual Credit/Dual Enrollment and Data Driven Policy Implementation
ERIC Educational Resources Information Center
Lichtenberger, Eric; Witt, M. Allison; Blankenberger, Bob; Franklin, Doug
2014-01-01
The use of dual credit has been expanding rapidly. Dual credit is a college course taken by a high school student for which both college and high school credit is given. Previous studies provided limited quantitative evidence that dual credit/dual enrollment is directly connected to positive student outcomes. In this study, predictive statistics…
Holographic Wilson loops in symmetric representations in {N} = {2}^{ast } super-Yang-Mills theory
NASA Astrophysics Data System (ADS)
Chen-Lin, Xinyi; Dekel, Amit; Zarembo, Konstantin
2016-02-01
We construct the D3-brane solution in the holographic dual of the {N} = {2}^{ast } theory that describes Wilson lines in symmetric representations of the gauge group. The results perfectly agree with the direct field-theory predictions based on localization.
Internal representation of two-dimensional shape.
Makioka, S; Inui, T; Yamashita, H
1996-01-01
The psychological space of shapes has been studied in many experiments. However, how shapes are represented in the brain has not been a major issue in psychological literature. Here, the characteristics of internal representation and how it was formed have been considered and an attempt has been made to explain the results of experiments in a unified manner. First, the data of similarity of alphabetic characters and random-dot patterns were reexamined. Multivariate analysis suggested that those patterns were represented by the combination of global features. Second, three-layer neural networks were trained to perform categorization or identity transformation of the same sets of patterns as used in psychological experiments, and activation patterns of the hidden units were analyzed. When the network learned categorization of the patterns, its internal representation was not similar to the representation suggested by psychological experiments. But a network which learned identity transformation of the patterns could acquire such an internal representation. The transformation performed by this kind of network is similar to principal-component analysis in that it projects the input image onto a lower-dimensional space. From these results it is proposed that two-dimensional shapes are represented in human brain by a process like principal-component analysis. This idea is compatible with the findings in neurophysiological studies about higher visual areas. PMID:8938008
Unilateral Vestibular Loss Impairs External Space Representation
Borel, Liliane; Redon-Zouiteni, Christine; Cauvin, Pierre; Dumitrescu, Michel; Devèze, Arnaud; Magnan, Jacques; Péruch, Patrick
2014-01-01
The vestibular system is responsible for a wide range of postural and oculomotor functions and maintains an internal, updated representation of the position and movement of the head in space. In this study, we assessed whether unilateral vestibular loss affects external space representation. Patients with Menière's disease and healthy participants were instructed to point to memorized targets in near (peripersonal) and far (extrapersonal) spaces in the absence or presence of a visual background. These individuals were also required to estimate their body pointing direction. Menière's disease patients were tested before unilateral vestibular neurotomy and during the recovery period (one week and one month after the operation), and healthy participants were tested at similar times. Unilateral vestibular loss impaired the representation of both the external space and the body pointing direction: in the dark, the configuration of perceived targets was shifted toward the lesioned side and compressed toward the contralesioned hemifield, with higher pointing error in the near space. Performance varied according to the time elapsed after neurotomy: deficits were stronger during the early stages, while gradual compensation occurred subsequently. These findings provide the first demonstration of the critical role of vestibular signals in the representation of external space and of body pointing direction in the early stages after unilateral vestibular loss. PMID:24523916
Reference duality and representation duality in information geometry
NASA Astrophysics Data System (ADS)
Zhang, Jun
2015-01-01
Classical information geometry prescribes, on the parametric family of probability functions Mθ: (i) a Riemannian metric given by the Fisher information; (ii) a pair of dual connections (giving rise to the family of α-connections) that preserve the metric under parallel transport by their joint actions; and (iii) a family of (non-symmetric) divergence functions (α-divergence) defined on Mθ × Mθ, which induce the metric and the dual connections. The role of α parameter, as used in α-connection and in α-embedding, is not commonly differentiated. For instance, the case with α = ±1 may refer either to dually-flat (e- or m-) connections or to exponential and mixture families of density functions. Here we illuminate that there are two distinct types of duality in information geometry, one concerning the referential status of a point (probability function, normalized or denormalized) expressed in the divergence function ("reference duality") and the other concerning the representation of probability functions under an arbitrary monotone scaling ("representation duality"). They correspond to, respectively, using α as a mixture parameter for constructing divergence functions or as a power exponent parameter for monotone embedding of probability functions. These two dualities are coupled into referential-representational biduality for manifolds of denormalized probability functions with α-Hessian structure (i.e, transitively flat α-geometry) and for manifolds induced from homogeneous divergence functions with (α,β)-parameters but one-parameter family of (α ṡ β)-connections.
NASA Astrophysics Data System (ADS)
Chang, Chi-Ming
This dissertation splits into two distinct halves. The first half is devoted to the study of the holography of higher spin gauge theory in AdS 3. We present a conjecture that the holographic dual of W N minimal model in a 't Hooft-like large N limit is an unusual "semi-local" higher spin gauge theory on AdS3 x 1. At each point on the S1 lives a copy of three-dimensional Vasiliev theory, that contains an infinite tower of higher spin gauge fields coupled to a single massive complex scalar propagating in AdS3. The Vasiliev theories at different points on the S1 are correlated only through the AdS3 boundary conditions on the massive scalars. All but one single tower of higher spin symmetries are broken by the boundary conditions. This conjecture is checked by comparing tree-level two- and three-point functions, and also one-loop partition functions on both side of the duality. The second half focuses on the holography of higher spin gauge theory in AdS 4. We demonstrate that a supersymmetric and parity violating version of Vasiliev's higher spin gauge theory in AdS4 admits boundary conditions that preserve N = 0,1,2,3,4 or 6 supersymmetries. In particular, we argue that the Vasiliev theory with U( M) Chan-Paton and N = 6 boundary condition is holographically dual to the 2+1 dimensional U(N) k x U(M) -k ABJ theory in the limit of large N, k and finite M. In this system all bulk higher spin fields transform in the adjoint of the U(M) gauge group, whose bulk t'Hooft coupling is M/N. Our picture suggests that the supersymmetric Vasiliev theory can be obtained as a limit of type IIA string theory in AdS4 x CP3, and that the non-Abelian Vasiliev theory at strong bulk 't Hooft coupling smoothly turn into a string field theory. The fundamental string is a singlet bound state of Vasiliev's higher spin particles held together by U(M) gauge interactions.
Geographic representation in spatial analysis
NASA Astrophysics Data System (ADS)
Miller, Harvey J.
Spatial analysis mostly developed in an era when data was scarce and computational power was expensive. Consequently, traditional spatial analysis greatly simplifies its representations of geography. The rise of geographic information science (GISci) and the changing nature of scientific questions at the end of the 20th century suggest a comprehensive re-examination of geographic representation in spatial analysis. This paper reviews the potential for improved representations of geography in spatial analysis. Existing tools in spatial analysis and new tools available from GISci have tremendous potential for bringing more sophisticated representations of geography to the forefront of spatial analysis theory and application.
Resource representation in COMPASS
NASA Technical Reports Server (NTRS)
Fox, Barry R.
1991-01-01
A set of viewgraphs on resource representation in COMPASS is given. COMPASS is an incremental, interactive, non-chronological scheduler written in Ada with an X-windows user interface. Beginning with an empty schedule, activities are added to the schedule one at a time, taking into consideration the placement of the activities already on the timeline and the resources that have been reserved for them. The order that the activities are added to the timeline and their location on the timeline are controlled by selection and placement commands invoked by the user. The order that activities are added to the timeline and their location are independent. The COMPASS code library is a cost effective platform for the development of new scheduling applications. It can be effectively used off the shelf for compatible scheduling applications or it can be used as a parts library for the development of custom scheduling systems.
Parental representations of transsexuals.
Parker, G; Barr, R
1982-06-01
The parental representations of 30 male-to-female transsexuals were rated using a measure of fundamental parental dimensions and shown to be of acceptable validity as a measure both of perceived and actual parental characteristics. Scores on that measure were compared separately against scores returned by matched male and female controls. The transsexuals did not differ from the male controls in their scoring of their mothers but did score their fathers as less caring and more overprotective. These differences were weaker for the comparisons made against the female controls. Item analyses suggested that the greater paternal "overprotection" experienced by transsexuals was due to their fathers being perceived as offering less encouragement to their sons' independence and autonomy. Several interpretations of the findings are considered. PMID:7138296
Intentionality, Representation, and Anticipation
NASA Astrophysics Data System (ADS)
De Preester, Helena
2002-09-01
Both Brentano and Merleau-Ponty have developed an account of intentionality, which nevertheless differ profoundly in the following respect. According to Brentano, intentionality mainly is a matter of mental presentations. This marks the beginning of phenomenology's difficult relation with the nature of the intentional reference. Merleau-Ponty, on the other hand, has situated intentionality on the level of the body, a turn which has important implications for the nature of intentionality. Intentionality no longer is primarily based on having (re)presentations, but is rooted in the dynamics of the living body. To contrast those approaches enables us to make clear in what way intentionality is studied nowadays. On the one hand, intentionality is conceived of as a matter of formal-syntactical causality in cognitive science, and in particular in classical-computational theory. On the other hand, a interactivist approach offers a more Merleau-Ponty-like point of view, in which autonomy, embodiment and interaction are stressed.
Age Differences in Symbolic Representation: Fluidity in Representational Construction.
ERIC Educational Resources Information Center
Reifel, Stuart
This paper reports a cross-sectional, developmental study of the fluidity of children's mental functioning (representational skills) in contexts involving the representational use of blocks. Data were collected from a sample of 40 children from a laboratory school: 20 four-year-olds and 20 seven-year-olds, with an equal number of boys and girls in…
Cervigram image segmentation based on reconstructive sparse representations
NASA Astrophysics Data System (ADS)
Zhang, Shaoting; Huang, Junzhou; Wang, Wei; Huang, Xiaolei; Metaxas, Dimitris
2010-03-01
We proposed an approach based on reconstructive sparse representations to segment tissues in optical images of the uterine cervix. Because of large variations in image appearance caused by the changing of the illumination and specular reflection, the color and texture features in optical images often overlap with each other and are not linearly separable. By leveraging sparse representations the data can be transformed to higher dimensions with sparse constraints and become more separated. K-SVD algorithm is employed to find sparse representations and corresponding dictionaries. The data can be reconstructed from its sparse representations and positive and/or negative dictionaries. Classification can be achieved based on comparing the reconstructive errors. In the experiments we applied our method to automatically segment the biomarker AcetoWhite (AW) regions in an archive of 60,000 images of the uterine cervix. Compared with other general methods, our approach showed lower space and time complexity and higher sensitivity.
Holography, unfolding and higher spin theory
NASA Astrophysics Data System (ADS)
Vasiliev, M. A.
2013-05-01
Holographic duality is argued to relate classes of models that have equivalent unfolded formulation, hence exhibiting different space-time visualizations for the same theory. This general phenomenon is illustrated by the AdS4 higher spin gauge theory shown to be dual to the theory of 3d conformal currents of all spins interacting with 3d conformal higher spin fields of Chern-Simons type. Generally, the resulting 3d boundary conformal theory is nonlinear, providing an interacting version of the 3d boundary sigma model conjectured by Klebanov and Polyakov to be dual to the AdS4 higher spin theory in the large N limit. Being a gauge theory, it escapes the conditions of the theorem of Maldacena and Zhiboedov, which force a 3d boundary conformal theory to be free. Two reductions of particular higher spin gauge theories where boundary higher spin gauge fields decouple from the currents and which have free-boundary duals are identified. Higher spin holographic duality is also discussed for the cases of AdS3/CFT2 and duality between higher spin theories and nonrelativistic quantum mechanics. In the latter case, it is shown in particular that (dS) AdS geometry in the higher spin setup is dual to the (inverted) harmonic potential in the quantum-mechanical setup. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Higher spin theories and holography’.
The tri-Hamiltonian dual system of supersymmetric two boson system
NASA Astrophysics Data System (ADS)
Zhang, Mengxia; Tian, Kai; Zhang, Lei
2016-09-01
The dual system of the supersymmetric two boson system is constructed through the approach of tri-Hamiltonian duality, and inferred from this duality, its zero-curvature representation is also figured out. Furthermore, the dual system is shown to be equivalent to a N = 2 supersymmetric Camassa-Holm equation, and this relation results in a new linear spectral problem for the N = 2 supersymmetric Camassa-Holm equation.
Knowledge Representation: A Brief Review.
ERIC Educational Resources Information Center
Vickery, B. C.
1986-01-01
Reviews different structures and techniques of knowledge representation: structure of database records and files, data structures in computer programming, syntatic and semantic structure of natural language, knowledge representation in artificial intelligence, and models of human memory. A prototype expert system that makes use of some of these…
A Philosophical Discussion of Representation.
ERIC Educational Resources Information Center
Moriarty, Sandra E.; Kenney, Keith
One of the most basic theoretical areas in the study of visual communication and visual literacy is the nature of representation. Some of the important research in this area is reviewed in this paper, and a model of representation is developed that satisfies many of the philosophical concerns. The paper begins with a discussion on the relationship…
Symbolic Representation of Probabilistic Worlds
ERIC Educational Resources Information Center
Feldman, Jacob
2012-01-01
Symbolic representation of environmental variables is a ubiquitous and often debated component of cognitive science. Yet notwithstanding centuries of philosophical discussion, the efficacy, scope, and validity of such representation has rarely been given direct consideration from a mathematical point of view. This paper introduces a quantitative…
The Representational Value of Hats
ERIC Educational Resources Information Center
Watson, Jane M.; Fitzallen, Noleine E.; Wilson, Karen G.; Creed, Julie F.
2008-01-01
The literature that is available on the topic of representations in mathematics is vast. One commonly discussed item is graphical representations. From the history of mathematics to modern uses of technology, a variety of graphical forms are available for middle school students to use to represent mathematical ideas. The ideas range from algebraic…
Polyakov loop of antisymmetric representations as a quantum impurity model
Mueck, Wolfgang
2011-03-15
The Polyakov loop of an operator in the antisymmetric representation in N=4 supersymmetric Yang-Mills theory on spacial R{sup 3} is calculated, to leading order in 1/N and at large 't Hooft coupling, by solving the saddle point equations of the corresponding quantum impurity model. Agreement is found with previous results from the supergravity dual, which is given by a D5-brane in an asymptotically AdS{sub 5}xS{sup 5} black brane background. It is shown that the azimuth angle, at which the dual D5-brane wraps the S{sup 5}, is related to the spectral asymmetry angle in the spectral density associated with the Green's function of the impurity fermions. Much of the calculation also applies to the Polyakov loop on spacial S{sup 3} or H{sup 3}.
UNDERSTANDING DUAL ACTIVE GALACTIC NUCLEUS ACTIVATION IN THE NEARBY UNIVERSE
Koss, Michael; Mushotzky, Richard; Veilleux, Sylvain; Vasudevan, Ranjan; Trippe, Margaret; Treister, Ezequiel
2012-02-20
We study the fraction of dual active galactic nuclei (AGNs) in a sample of 167 nearby (z < 0.05), moderate-luminosity, ultra-hard X-ray-selected AGNs from the all-sky Swift Burst Alert Telescope (BAT) survey. Combining new Chandra and Gemini observations together with optical and X-ray observations, we find that the dual AGN frequency at scales <100 kpc is {approx}10% (16/167). Of the 16 dual AGNs, only 3 (19%) were detected using X-ray spectroscopy and were not detected using emission line diagnostics. Close dual AGNs (<30 kpc) tend to be more common among the most X-ray luminous systems. In dual AGNs, the X-ray luminosity of both AGNs increases strongly with decreasing galaxy separation, suggesting that the merging event is key in powering both AGNs. Fifty percent of the AGNs with a very close companion (<15 kpc) are dual AGNs. We also find that dual AGNs are more likely to occur in major mergers and tend to avoid absorption line galaxies with elliptical morphologies. Finally, we find that SDSS Seyferts are much less likely than BAT AGNs (0.25% versus 7.8%) to be found in dual AGNs at scales <30 kpc because of a smaller number of companion galaxies, fiber collision limits, a tendency for AGNs at small separations to be detected only in X-rays, and a higher fraction of dual AGN companions with increasing AGN luminosity.
Revealing children's implicit spelling representations.
Critten, Sarah; Pine, Karen J; Messer, David J
2013-06-01
Conceptualizing the underlying representations and cognitive mechanisms of children's spelling development is a key challenge for literacy researchers. Using the Representational Redescription model (Karmiloff-Smith), Critten, Pine and Steffler (2007) demonstrated that the acquisition of phonological and morphological knowledge may be underpinned by increasingly explicit levels of spelling representation. However, their proposal that implicit representations may underlie early 'visually based' spelling remains unresolved. Children (N = 101, aged 4-6 years) were given a recognition task (Critten et al., 2007) and a novel production task, both involving verbal justifications of why spellings are correct/incorrect, strategy use and word pattern similarity. Results for both tasks supported an implicit level of spelling characterized by the ability to correctly recognize/produce words but the inability to explain operational strategies or generalize knowledge. Explicit levels and multiple representations were also in evidence across the two tasks. Implications for cognitive mechanisms underlying spelling development are discussed. PMID:23659891
A generalized wavelet extrema representation
Lu, Jian; Lades, M.
1995-10-01
The wavelet extrema representation originated by Stephane Mallat is a unique framework for low-level and intermediate-level (feature) processing. In this paper, we present a new form of wavelet extrema representation generalizing Mallat`s original work. The generalized wavelet extrema representation is a feature-based multiscale representation. For a particular choice of wavelet, our scheme can be interpreted as representing a signal or image by its edges, and peaks and valleys at multiple scales. Such a representation is shown to be stable -- the original signal or image can be reconstructed with very good quality. It is further shown that a signal or image can be modeled as piecewise monotonic, with all turning points between monotonic segments given by the wavelet extrema. A new projection operator is introduced to enforce piecewise inonotonicity of a signal in its reconstruction. This leads to an enhancement to previously developed algorithms in preventing artifacts in reconstructed signal.
M-idempotent and self-dual morphological filters.
Bouaynaya, Nidhal; Charif-Chefchaouni, Mohammed; Schonfeld, Dan
2012-04-01
In this paper, we present a comprehensive analysis of self-dual and m-idempotent operators. We refer to an operator as m-idempotent if it converges after m iterations. We focus on an important special case of the general theory of lattice morphology: spatially variant morphology, which captures the geometrical interpretation of spatially variant structuring elements. We demonstrate that every increasing self-dual morphological operator can be viewed as a morphological center. Necessary and sufficient conditions for the idempotence of morphological operators are characterized in terms of their kernel representation. We further extend our results to the representation of the kernel of m-idempotent morphological operators. We then rely on the conditions on the kernel representation derived and establish methods for the construction of m-idempotent and self-dual morphological operators. Finally, we illustrate the importance of the self-duality and m-idempotence properties by an application to speckle noise removal in radar images. PMID:22184254
Jenkins, Rob; Burton, A. Mike
2011-01-01
Photographs are often used to establish the identity of an individual or to verify that they are who they claim to be. Yet, recent research shows that it is surprisingly difficult to match a photo to a face. Neither humans nor machines can perform this task reliably. Although human perceivers are good at matching familiar faces, performance with unfamiliar faces is strikingly poor. The situation is no better for automatic face recognition systems. In practical settings, automatic systems have been consistently disappointing. In this review, we suggest that failure to distinguish between familiar and unfamiliar face processing has led to unrealistic expectations about face identification in applied settings. We also argue that a photograph is not necessarily a reliable indicator of facial appearance, and develop our proposal that summary statistics can provide more stable face representations. In particular, we show that image averaging stabilizes facial appearance by diluting aspects of the image that vary between snapshots of the same person. We review evidence that the resulting images can outperform photographs in both behavioural experiments and computer simulations, and outline promising directions for future research. PMID:21536553
Archival Representation in the Digital Age
ERIC Educational Resources Information Center
Zhang, Jane
2012-01-01
This study analyzes the representation systems of three digitized archival collections using the traditional archival representation framework of provenance, order, and content. The results of the study reveal a prominent role of provenance representation, a compromised role of order representation, and an active role of content representation in…
Dual adaptive control: Design principles and applications
NASA Technical Reports Server (NTRS)
Mookerjee, Purusottam
1988-01-01
The design of an actively adaptive dual controller based on an approximation of the stochastic dynamic programming equation for a multi-step horizon is presented. A dual controller that can enhance identification of the system while controlling it at the same time is derived for multi-dimensional problems. This dual controller uses sensitivity functions of the expected future cost with respect to the parameter uncertainties. A passively adaptive cautious controller and the actively adaptive dual controller are examined. In many instances, the cautious controller is seen to turn off while the latter avoids the turn-off of the control and the slow convergence of the parameter estimates, characteristic of the cautious controller. The algorithms have been applied to a multi-variable static model which represents a simplified linear version of the relationship between the vibration output and the higher harmonic control input for a helicopter. Monte Carlo comparisons based on parametric and nonparametric statistical analysis indicate the superiority of the dual controller over the baseline controller.
ERIC Educational Resources Information Center
Hendrickson, Robert M.; Gregory, Dennis E.
Decisions made by federal and state courts during 1983 concerning higher education are reported in this chapter. Issues of employment and the treatment of students underlay the bulk of the litigation. Specific topics addressed in these and other cases included federal authority to enforce regulations against age discrimination and to revoke an…
ERIC Educational Resources Information Center
Hendrickson, Robert M.
Litigation in 1987 was very brisk with an increase in the number of higher education cases reviewed. Cases discussed in this chapter are organized under four major topics: (1) intergovernmental relations; (2) employees, involving discrimination claims, tenured and nontenured faculty, collective bargaining and denial of employee benefits; (3)…
ERIC Educational Resources Information Center
Hendrickson, Robert M.; Finnegan, Dorothy E.
The higher education case law in 1988 is extensive. Cases discussed in this chapter are organized under five major topics: (1) intergovernmental relations; (2) employees, involving discrimination claims, tenured and nontenured faculty, collective bargaining, and denial of employee benefits; (3) students, involving admissions, financial aid, First…
ERIC Educational Resources Information Center
Hendrickson, Robert M.
This eighth chapter of "The Yearbook of School Law, 1986" summarizes and analyzes over 330 state and federal court cases litigated in 1985 in which institutions of higher education were involved. Among the topics examined were relationships between postsecondary institutions and various governmental agencies; discrimination in the employment of…
Computer aided surface representation
Barnhill, R.E.
1989-02-09
The central research problem of this project is the effective representation and display of surfaces, interpolating to given information, in three or more dimensions. In a typical problem, we wish to create a surface from some discrete information. If this information is itself on another surface, the problem is to determine a surface defined on a surface,'' which is discussed below. Often, properties of an already constructed surface are desired: such geometry processing'' is described below. The Summary of Proposed Research from our original proposal describes the aims of this research project. This Summary and the Table of Contents from the original proposal are enclosed as an Appendix to this Progress Report. The broad sweep from constructive mathematics through algorithms and computer graphics displays is utilized in the research. The wide range of activity, directed in both theory and applications, makes this project unique. Last month in the first Ardent Titan delivered in the State of Arizona came to our group, funded by the DOE and Arizona State University. Although the Titan is a commercial product, its newness requires our close collaboration with Ardent to maximize results. During the past year, four faculty members and several graduate research assistants have worked on this DOE project. The gaining of new professionals is an important aspect of this project. A listing of the students and their topics is given in the Appendix. The most significant publication during the past year is the book, Curves and Surfaces for Computer Aided Geometric Design, by Dr. Gerald Farin. This 300 page volume helps fill a considerable gap in the subject and includes many new results on Bernstein-Bezier curves and surfaces.
Representations of mechanical assembly sequences
NASA Astrophysics Data System (ADS)
Homem de Mello, Luiz S.; Sanderson, Arthur C.
1991-04-01
Five types of representations for assembly sequences are reviewed: the directed graph of feasible assembly sequences, the AND/OR graph of feasible assembly sequences, the set of establishment conditions, and two types of sets of precedence relationships. (precedence relationships between the establishment of one connection between parts and the establishment of another connection, and precedence relationships between the establishment of one connection and states of the assembly process). The mappings of one representation into the others are established. The correctness and completeness of these representations are established. The results presented are needed in the proof of correctness and completeness of algorithms for the generation of mechanical assembly sequences.
Attitude Representations for Kalman Filtering
NASA Technical Reports Server (NTRS)
Markley, F. Landis; Bauer, Frank H. (Technical Monitor)
2001-01-01
The four-component quaternion has the lowest dimensionality possible for a globally nonsingular attitude representation, it represents the attitude matrix as a homogeneous quadratic function, and its dynamic propagation equation is bilinear in the quaternion and the angular velocity. The quaternion is required to obey a unit norm constraint, though, so Kalman filters often employ a quaternion for the global attitude estimate and a three-component representation for small errors about the estimate. We consider these mixed attitude representations for both a first-order Extended Kalman filter and a second-order filter, as well for quaternion-norm-preserving attitude propagation.
Representations of mechanical assembly sequences
NASA Technical Reports Server (NTRS)
Homem De Mello, Luiz S.; Sanderson, Arthur C.
1991-01-01
Five types of representations for assembly sequences are reviewed: the directed graph of feasible assembly sequences, the AND/OR graph of feasible assembly sequences, the set of establishment conditions, and two types of sets of precedence relationships. (precedence relationships between the establishment of one connection between parts and the establishment of another connection, and precedence relationships between the establishment of one connection and states of the assembly process). The mappings of one representation into the others are established. The correctness and completeness of these representations are established. The results presented are needed in the proof of correctness and completeness of algorithms for the generation of mechanical assembly sequences.
NASA Astrophysics Data System (ADS)
Hasegawa, Bruce; Tang, H. Roger; Da Silva, Angela J.; Wong, Kenneth H.; Iwata, Koji; Wu, Max C.
2001-09-01
In comparison to conventional medical imaging techniques, dual-modality imaging offers the advantage of correlating anatomical information from X-ray computed tomography (CT) with functional measurements from single-photon emission computed tomography (SPECT) or with positron emission tomography (PET). The combined X-ray/radionuclide images from dual-modality imaging can help the clinician to differentiate disease from normal uptake of radiopharmaceuticals, and to improve diagnosis and staging of disease. In addition, phantom and animal studies have demonstrated that a priori structural information from CT can be used to improve quantification of tissue uptake and organ function by correcting the radionuclide data for errors due to photon attenuation, partial volume effects, scatter radiation, and other physical effects. Dual-modality imaging therefore is emerging as a method of improving the visual quality and the quantitative accuracy of radionuclide imaging for diagnosis of patients with cancer and heart disease.
The link between mental rotation ability and basic numerical representations
Thompson, Jacqueline M.; Nuerk, Hans-Christoph; Moeller, Korbinian; Cohen Kadosh, Roi
2013-01-01
Mental rotation and number representation have both been studied widely, but although mental rotation has been linked to higher-level mathematical skills, to date it has not been shown whether mental rotation ability is linked to the most basic mental representation and processing of numbers. To investigate the possible connection between mental rotation abilities and numerical representation, 43 participants completed four tasks: 1) a standard pen-and-paper mental rotation task; 2) a multi-digit number magnitude comparison task assessing the compatibility effect, which indicates separate processing of decade and unit digits; 3) a number-line mapping task, which measures precision of number magnitude representation; and 4) a random number generation task, which yields measures both of executive control and of spatial number representations. Results show that mental rotation ability correlated significantly with both size of the compatibility effect and with number mapping accuracy, but not with any measures from the random number generation task. Together, these results suggest that higher mental rotation abilities are linked to more developed number representation, and also provide further evidence for the connection between spatial and numerical abilities. PMID:23933002
Student Representation in Italy
ERIC Educational Resources Information Center
Foroni, Marzia
2011-01-01
The analysis begins with a comprehensive overview of legal provisions for student participation in higher education governance over the past few decades. How has the involvement of students in decision-making processes developed? The answer will be provided for the sub-institutional level of faculties and degree programmes; the institutional…
NASA Astrophysics Data System (ADS)
Weber, Joshua; Korver, Anna; Thrasher, Daniel; Walker, Thad
2016-05-01
We present progress towards a dual species nuclear magnetic oscillator using synchronous spin exchange optical pumping. By applying the bias field as a sequence of alkali 2 π pulses, we generate alkali polarization transverse to the bias field. The alkali polarization is then modulated at the noble gas resonance so that through spin exchange collisions the noble gas becomes polarized. This novel method of NMR suppresses the alkali field frequency shift by at least a factor of 2500 as compared to longitudinal NMR. We will present details of the apparatus and measurements of dual species co-magnetometry using this method. Research supported by the NSF and Northrop-Grumman Corp.
NASA Technical Reports Server (NTRS)
Trefny, Charles J (Inventor); Dippold, Vance F (Inventor)
2013-01-01
A new dual-mode ramjet combustor used for operation over a wide flight Mach number range is described. Subsonic combustion mode is usable to lower flight Mach numbers than current dual-mode scramjets. High speed mode is characterized by supersonic combustion in a free-jet that traverses the subsonic combustion chamber to a variable nozzle throat. Although a variable combustor exit aperture is required, the need for fuel staging to accommodate the combustion process is eliminated. Local heating from shock-boundary-layer interactions on combustor walls is also eliminated.
Dual Funding for Dual Enrollment: An Inducement or an Impediment?
ERIC Educational Resources Information Center
Hunt, Erika
2007-01-01
While the strategy of funding both systems provides an incentive for both school districts and community colleges to participate with dual enrollment, the current fiscal environment has drawn attention to the inefficient use of the dual funding structure. This article highlights the results of a case study on Florida's dual enrollment program…
Kernel weighted joint collaborative representation for hyperspectral image classification
NASA Astrophysics Data System (ADS)
Du, Qian; Li, Wei
2015-05-01
Collaborative representation classifier (CRC) has been applied to hyperspectral image classification, which intends to use all the atoms in a dictionary to represent a testing pixel for label assignment. However, some atoms that are very dissimilar to the testing pixel should not participate in the representation, or their contribution should be very little. The regularized version of CRC imposes strong penalty to prevent dissimilar atoms with having large representation coefficients. To utilize spatial information, the weighted sum of local spatial neighbors is considered as a joint spatial-spectral feature, which is actually for regularized CRC-based classification. This paper proposes its kernel version to further improve classification accuracy, which can be higher than those from the traditional support vector machine with composite kernel and the kernel version of sparse representation classifier.
Dynamic speech representations in the human temporal lobe
Leonard, Matthew K.; Chang, Edward F.
2014-01-01
Speech perception requires rapid integration of acoustic input with context-dependent knowledge. Recent methodological advances have allowed researchers to identify underlying information representations in primary and secondary auditory cortex, and to examine how context modulates these representations. We review recent studies that focus on contextual modulations of neural activity in the superior temporal gyrus (STG), a major hub for spectrotemporal encoding. Recent findings suggest a highly interactive flow of information processing through the auditory ventral stream, including influences of higher-level linguistic and metalinguistic knowledge. Such mechanisms may give rise to more abstract representations, such as those for words. We discuss the importance of characterizing neural representations of context-dependent and dynamic patterns of neural activity in the approach to speech perception research. PMID:24906217
Computer representation of molecular surfaces
Max, N.L.
1981-07-06
This review article surveys recent work on computer representation of molecular surfaces. Several different algorithms are discussed for producing vector or raster drawings of space-filling models formed as the union of spheres. Other smoother surfaces are also considered.
Vietnamese Document Representation and Classification
NASA Astrophysics Data System (ADS)
Nguyen, Giang-Son; Gao, Xiaoying; Andreae, Peter
Vietnamese is very different from English and little research has been done on Vietnamese document classification, or indeed, on any kind of Vietnamese language processing, and only a few small corpora are available for research. We created a large Vietnamese text corpus with about 18000 documents, and manually classified them based on different criteria such as topics and styles, giving several classification tasks of different difficulty levels. This paper introduces a new syllable-based document representation at the morphological level of the language for efficient classification. We tested the representation on our corpus with different classification tasks using six classification algorithms and two feature selection techniques. Our experiments show that the new representation is effective for Vietnamese categorization, and suggest that best performance can be achieved using syllable-pair document representation, an SVM with a polynomial kernel as the learning algorithm, and using Information gain and an external dictionary for feature selection.
Texture Representations Using Subspace Embeddings
Yang, Xiaodong; Tian, YingLi
2013-01-01
In this paper, we propose a texture representation framework to map local texture patches into a low-dimensional texture subspace. In natural texture images, textons are entangled with multiple factors, such as rotation, scaling, viewpoint variation, illumination change, and non-rigid surface deformation. Mapping local texture patches into a low-dimensional subspace can alleviate or eliminate these undesired variation factors resulting from both geometric and photometric transformations. We observe that texture representations based on subspace embeddings have strong resistance to image deformations, meanwhile, are more distinctive and more compact than traditional representations. We investigate both linear and non-linear embedding methods including Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Locality Preserving Projections (LPP) to compute the essential texture subspace. The experiments in the context of texture classification on benchmark datasets demonstrate that the proposed subspace embedding representations achieve the state-of-the-art results while with much fewer feature dimensions. PMID:23710105
Texture Representations Using Subspace Embeddings.
Yang, Xiaodong; Tian, Yingli
2013-07-15
In this paper, we propose a texture representation framework to map local texture patches into a low-dimensional texture subspace. In natural texture images, textons are entangled with multiple factors, such as rotation, scaling, viewpoint variation, illumination change, and non-rigid surface deformation. Mapping local texture patches into a low-dimensional subspace can alleviate or eliminate these undesired variation factors resulting from both geometric and photometric transformations. We observe that texture representations based on subspace embeddings have strong resistance to image deformations, meanwhile, are more distinctive and more compact than traditional representations. We investigate both linear and non-linear embedding methods including Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Locality Preserving Projections (LPP) to compute the essential texture subspace. The experiments in the context of texture classification on benchmark datasets demonstrate that the proposed subspace embedding representations achieve the state-of-the-art results while with much fewer feature dimensions. PMID:23710105
Dictionary Learning Algorithms for Sparse Representation
Kreutz-Delgado, Kenneth; Murray, Joseph F.; Rao, Bhaskar D.; Engan, Kjersti; Lee, Te-Won; Sejnowski, Terrence J.
2010-01-01
Algorithms for data-driven learning of domain-specific overcomplete dictionaries are developed to obtain maximum likelihood and maximum a posteriori dictionary estimates based on the use of Bayesian models with concave/Schur-concave (CSC) negative log priors. Such priors are appropriate for obtaining sparse representations of environmental signals within an appropriately chosen (environmentally matched) dictionary. The elements of the dictionary can be interpreted as concepts, features, or words capable of succinct expression of events encountered in the environment (the source of the measured signals). This is a generalization of vector quantization in that one is interested in a description involving a few dictionary entries (the proverbial “25 words or less”), but not necessarily as succinct as one entry. To learn an environmentally adapted dictionary capable of concise expression of signals generated by the environment, we develop algorithms that iterate between a representative set of sparse representations found by variants of FOCUSS and an update of the dictionary using these sparse representations. Experiments were performed using synthetic data and natural images. For complete dictionaries, we demonstrate that our algorithms have improved performance over other independent component analysis (ICA) methods, measured in terms of signal-to-noise ratios of separated sources. In the overcomplete case, we show that the true underlying dictionary and sparse sources can be accurately recovered. In tests with natural images, learned overcomplete dictionaries are shown to have higher coding efficiency than complete dictionaries; that is, images encoded with an over-complete dictionary have both higher compression (fewer bits per pixel) and higher accuracy (lower mean square error). PMID:12590811
Ebbert, Jon O.; Morgan, Glen D.; Sherrill-Mittleman, Deborah; Asfar, Taghrid; Talcott, Wayne G.; DeBon, Margaret
2011-01-01
Introduction: Concomitant use of two forms of tobacco is an increasing public health concern, yet there is little consensus regarding a consistent definition of so-called “dual use.” We defined dual use as cigarette and smokeless tobacco (ST) consumption with either product used daily or nondaily. Methods: We analyzed a cohort of 36,013 Air Force recruits. We categorized dual tobacco use across 2 dimensions, type of tobacco products (cigarettes, ST, or others), and the frequency of use (daily vs. nondaily). We determined how varying the definition impacted the prevalence estimates and evaluated the prevalence estimate based on our recommended definition of dual use. Multivariate logistic regression analysis was used to evaluate the risk profile of dual users of ST and cigarettes versus mono users of ST and mono users of cigarettes. Results: Varying definitions of dual use vary prevalence estimates 50-fold (0.5%–25.3%). Including only ST and cigarettes narrows the prevalence estimate to less than 4-fold (2.0%–9.7%). Dual users are more likely to be young Caucasian males, with lower education, and from families with relatively higher incomes. Compared with mono users, dual users of cigarettes and ST have a distinct pattern of risk profiles. Conclusions: Depending on the definition of dual use, markedly different prevalence and risk profiles are observed. Dual users of ST and cigarettes are a unique group of tobacco users. We propose a common definition of dual use to advance our understanding of this unique group. PMID:21436298
Partial Data Traces: Efficient Generation and Representation
Mueller, F; De Supinski, B R; McKee, S A; Yoo, A
2001-08-20
Binary manipulation techniques are increasing in popularity. They support program transformations tailored toward certain program inputs, and these transformations have been shown to yield performance gains beyond the scope of static code optimizations without profile-directed feedback. They even deliver moderate gains in the presence of profile-guided optimizations. In addition, transformations can be performed on the entire executable, including library routines. This work focuses on program instrumentation, yet another application of binary manipulation. This paper reports preliminary results on generating partial data traces through dynamic binary rewriting. The contributions are threefold. First, a portable method for extracting precise data traces for partial executions of arbitrary applications is developed. Second, a set of hierarchical structures for compactly representing these accesses is developed. Third, an efficient online algorithm to detect regular accesses is introduced. The authors utilize dynamic binary rewriting to selectively collect partial address traces of regions within a program. This allows partial tracing of hot paths for only a short time during program execution in contrast to static rewriting techniques that lack hot path detection and also lack facilities to limit the duration of data collection. Preliminary results show reductions of three orders of a magnitude of inline instrumentation over a dual process approach involving context switching. They also report constant size representations for regular access patters in nested loops. These efforts are part of a larger project to counter the increasing gap between processor and main memory speeds by means of software optimization and hardware enhancements.
ERIC Educational Resources Information Center
Burton, John K.; Wildman, Terry M.
The purpose of this study was to test the applicability of the dual coding hypothesis to children's recall performance. The hypothesis predicts that visual interference will have a small effect on the recall of visually presented words or pictures, but that acoustic interference will cause a decline in recall of visually presented words and…
ERIC Educational Resources Information Center
Genesee, Fred
2008-01-01
Parents and child care personnel in English-dominant parts of the world often express misgivings about raising children bilingually. Their concerns are based on the belief that dual language learning during the infant-toddler stage confuses children, delays their development, and perhaps even results in reduced language competence. In this…
Dual Christoffel Transformations
NASA Astrophysics Data System (ADS)
Odake, S.; Sasaki, R.
2011-07-01
Crum's theorem and its modification à la Krein-Adler are formulated for the discrete quantum mechanics with real shifts, whose eigenfunctions consist of orthogonal polynomials of a discrete variable. The modification produces the associated polynomials with a finite number of degrees deleted. This in turn provides the well known Christoffel transformation for the dual orthogonal polynomials with the corresponding positions deleted.
A new dispenser cathode with dual-layer
NASA Astrophysics Data System (ADS)
Li, Yutao; Zhang, Honglai; Liu, Pukun; Zhang, Mingchen
2005-09-01
The emission and surface characteristics of the dispenser cathode coated with Os-W alloy and that coated with Os-W/Re are studied and compared. The dispenser cathode coated with Os-W/Re has been applied in electron gun measurement system for making measurement of higher emission current and life test. We called the cathode coated with Os-W/Re as the cathode with dual-layer. It is found that the dispenser cathode coated with dual-layer has higher current density than that coated only with Os-W alloy. After being activated, the cathode coated with dual-layer presents ternary composition on the surface of it. The W surface composition does not rise with time comparing with that of the cathode coated with Os-W alloy. In electron gun, the dispenser cathode coated with dual-layer has pulse current density of 30 A/cm 2 and life of more than 800 h.
Dual Coding Theory, Word Abstractness, and Emotion: A Critical Review of Kousta et al. (2011)
ERIC Educational Resources Information Center
Paivio, Allan
2013-01-01
Kousta, Vigliocco, Del Campo, Vinson, and Andrews (2011) questioned the adequacy of dual coding theory and the context availability model as explanations of representational and processing differences between concrete and abstract words. They proposed an alternative approach that focuses on the role of emotional content in the processing of…
Dual superconformal invariance, momentum twistors and Grassmannians
NASA Astrophysics Data System (ADS)
Mason, Lionel; Skinner, David
2009-11-01
Dual superconformal invariance has recently emerged as a hidden symmetry of planar scattering amplitudes in Script N = 4 super Yang-Mills theory. This symmetry can be made manifest by expressing amplitudes in terms of `momentum twistors', as opposed to the usual twistors that make the ordinary superconformal properties manifest. The relation between momentum twistors and on-shell momenta is algebraic, so the translation procedure does not rely on any choice of space-time signature. We show that tree amplitudes and box coefficients are succinctly generated by integration of holomorphic δ-functions in momentum twistors over cycles in a Grassmannian. This is analogous to, although distinct from, recent results obtained by Arkani-Hamed et al. in ordinary twistor space. We also make contact with Hodges' polyhedral representation of NMHV amplitudes in momentum twistor space.
World representations for unmanned vehicles
NASA Astrophysics Data System (ADS)
Broten, Gregory S.; Monckton, Simon P.; Mackay, David; Collier, Jack
2007-04-01
Unmanned vehicles (UxV) operate in numerous environments, with air, ground and marine representing the majority of the implementations. All unmanned vehicles, when traversing unknown space, have similar requirements. They must sense their environment, create a world representation, and, then plan a path that safely avoids obstacles and hazards. Traditionally, each unmanned vehicle class used environment specific assumptions to create a unique world representation that was tailored to it operating environment. Thus, an unmanned aerial vehicle (UAV) used the simplest possible world representation, where all space above the ground plane was free of obstacles. Conversely, an unmanned ground vehicle (UGV) required a world representation that was suitable to its complex and unstructured environment. Such a clear cut differentiation between UAV and UGV environments is no longer valid as UAVs have migrated down to elevations where terrestrial structures are located. Thus, the operating environment for a low flying UAV contains similarities to the environments experienced by UGVs. As a result, the world representation techniques and algorithms developed for UGVs are now applicable to UAVs, since low flying UAVs must sense and represent its world in order to avoid obstacles. Defence R&D Canada (DRDC) conducts research and development in both the UGV and UAV fields. Researchers have developed a platform neutral world representation, based upon a uniform 21/ II-D elevation grid, that is applicable to many UxV classes, including aerial and ground vehicles. This paper describes DRDC's generic world representation, known as the Global Terrain map, and provides an example of unmanned ground vehicle implementation, along with details of it applicability to aerial vehicles.
On representations of conformal field theories and the construction of orbifolds
NASA Astrophysics Data System (ADS)
Montague, P. S.
1996-09-01
We consider representations of meromorphic bosonic chiral conformal field theories and demonstrate that such a representation is completely specified by a state within the theory. The necessary and sufficient conditions upon this state are derived and, because of their form, we show that we may extend the representation to a representation of a suitable larger conformal field theory. In particular, we apply this procedure to the (untwisted) lattice conformal field theories (i.e. corresponding to the propagation of a bosonic string on a torus), and deduce that Dong's proof of the uniqueness of the twisted representation for the reflection-twisted projection of the Leech lattice conformal field theory generalises to an arbitrary even (self-dual) lattice. As a consequence, we see that the reflection-twisted lattice theories of Dolan, Goddard and Montague are truly self-dual, extending the analogies with the theories of lattices and codes which were being pursued. Some comments are also made on the general concept of the definition of an orbifold of a conformal field theory in relation to this point of view.
Performance of a dual anode nickel-hydrogen cell
NASA Technical Reports Server (NTRS)
Gahn, Randall F.
1991-01-01
An experimental study was conducted to characterize the voltage performance of a nickel hydrogen cell containing a hydrogen electrode on both sides of the nickel electrode. The dual anode cell was compared with a convenient single anode cell using the same nickel electrode. Higher discharge voltages and lower charge voltages were obtained with the dual anode cell during constant current discharges to 10C, pulse discharges to 8C, and polarization measurements at 50 percent of charge.
Deformed twistors and higher spin conformal (super-)algebras in four dimensions
NASA Astrophysics Data System (ADS)
Govil, Karan; Günaydin, Murat
2015-03-01
Massless conformal scalar field in d = 4 corresponds to the minimal unitary representation (minrep) of the conformal group SU(2, 2) which admits a one-parameter family of deformations that describe massless fields of arbitrary helicity. The minrep and its deformations were obtained by quantization of the nonlinear realization of SU(2, 2) as a quasiconformal group in arXiv:0908.3624. We show that the generators of SU(2,2) for these unitary irreducible representations can be written as bilinears of deformed twistorial oscillators which transform nonlinearly under the Lorentz group and apply them to define and study higher spin algebras and superalgebras in AdS 5. The higher spin (HS) algebra of Fradkin-Vasiliev type in AdS 5 is simply the enveloping algebra of SU(2, 2) quotiented by a two-sided ideal (Joseph ideal) which annihilates the minrep. We show that the Joseph ideal vanishes identically for the quasiconformal realization of the minrep and its enveloping algebra leads directly to the HS algebra in AdS 5. Furthermore, the enveloping algebras of the deformations of the minrep define a one parameter family of HS algebras in AdS 5 for which certain 4 d covariant deformations of the Joseph ideal vanish identically. These results extend to superconformal algebras SU(2, 2| N) and we find a one parameter family of HS superalgebras as enveloping algebras of the minimal unitary supermultiplet and its deformations. Our results suggest the existence of a family of (supersymmetric) HS theories in AdS 5 which are dual to free (super)conformal field theories (CFTs) or to interacting but integrable (supersymmetric) CFTs in 4 d. We also discuss the corresponding picture in HS algebras in AdS 4 where the corresponding 3 d conformal group admits only two massless representations (minreps), namely the scalar and spinor singletons.
Deformed twistors and higher spin conformal (super-)algebras in six dimensions
NASA Astrophysics Data System (ADS)
Govil, Karan; Günaydin, Murat
2014-07-01
Massless conformal scalar field in six dimensions corresponds to the minimal unitary representation (minrep) of the conformal group SO(6, 2). This minrep admits a family of "deformations" labelled by the spin t of an SU(2) T group, which is the 6 d analog of helicity in four dimensions. These deformations of the minrep of SO(6 , 2) describe massless conformal fields that are symmetric tensors in the spinorial representation of the 6 d Lorentz group. The minrep and its deformations were obtained by quantization of the nonlinear realization of SO(6 , 2) as a quasiconformal group in arXiv:1005.3580. We give a novel reformulation of the generators of SO(6 , 2) for these representations as bilinears of deformed twistorial oscillators which transform nonlinearly under the Lorentz group SO(5 , 1) and apply them to define higher spin algebras and superalgebras in AdS 7. The higher spin (HS) algebra of Fradkin-Vasiliev type in AdS 7 is simply the enveloping algebra of SO(6 , 2) quotiented by a two-sided ideal (Joseph ideal) which annihilates the minrep. We show that the Joseph ideal vanishes identically for the quasiconformal realization of the minrep and its enveloping algebra leads directly to the HS algebra in AdS 7. Furthermore, the enveloping algebras of the deformations of the minrep define a discrete infinite family of HS algebras in AdS 7 for which certain 6 d Lorentz covariant deformations of the Joseph ideal vanish identically. These results extend to superconformal algebras OSp(8*|2 N ) and we find a discrete infinite family of HS superalgebras as enveloping algebras of the minimal unitary supermultiplet and its deformations. Our results suggest the existence of a discrete family of (supersymmetric) HS theories in AdS 7 which are dual to free (super)conformal field theories (CFTs) or to interacting but integrable (supersymmetric) CFTs in 6 d.
Data Representations for Geographic Information Systems.
ERIC Educational Resources Information Center
Shaffer, Clifford A.
1992-01-01
Surveys the field and literature of geographic information systems (GIS) and spatial data representation as it relates to GIS. Highlights include GIS terms, data types, and operations; vector representations and raster, or grid, representations; spatial indexing; elevation data representations; large spatial databases; and problem areas and future…
Relativity of representations in quantum mechanics
NASA Astrophysics Data System (ADS)
de la Torre, A. C.
2002-03-01
Only the position representation is used in introductory quantum mechanics and the momentum representation is not usually presented until advanced undergraduate courses. To emphasize the relativity of the representations of the abstract formulation of quantum mechanics, two examples of representations related to the operators αX+(1-α)P and 1/2(XP+PX) are presented.
Culture as shared cognitive representations.
Romney, A K; Boyd, J P; Moore, C C; Batchelder, W H; Brazill, T J
1996-01-01
Culture consists of shared cognitive representations in the minds of individuals. This paper investigates the extent to which English speakers share the "same" semantic structure of English kinship terms. The semantic structure is defined as the arrangement of the terms relative to each other as represented in a metric space in which items judged more similar are placed closer to each other than items judged as less similar. The cognitive representation of the semantic structure, residing in the mind of an individual, is measured by judged similarity tasks involving comparisons among terms. Using six independent measurements, from each of 122 individuals, correspondence analysis represents the data in a common multidimensional spatial representation. Judged by a variety of statistical procedures, the individuals in our sample share virtually identical cognitive representations of the semantic structure of kinship terms. This model of culture accounts for 70-90% of the total variability in these data. We argue that our findings on kinship should generalize to all semantic domains--e.g., animals, emotions, etc. The investigation of semantic domains is important because they may reside in localized functional units in the brain, because they relate to a variety of cognitive processes, and because they have the potential to provide methods for diagnosing individual breakdowns in the structure of cognitive representations typical of such ailments as Alzheimer disease. PMID:11607678
Dual-throat thruster thermal model
NASA Technical Reports Server (NTRS)
Ewen, R. L.; Obrien, C. J.; Matthews, L. W.
1986-01-01
The dual-throat engine is one of the dual nozzle engine concepts studied for advanced space transportation applications. It provides a thrust change and an in-flight area ratio change through the use of two concentric combustors with their throats arranged in series. Test results are presented for a dual throat thruster burning gaseous oxygen and hydrogen at primary (inner) chamber pressures from 380 to 680 psia. Heat flux profiles were obtained from calorimetric cooling channels in the inner nozzle, outer or secondary chamber and the tip of the inner nozzle. Data were obtained for two nozzle spacings over a chamber pressure ratio (secondary/primary) range of 0.45 to 0.83 with both chambers firing (Mode I). Fluxes near the end of the inner nozzle were significantly higher than in Mode II when only the inner chamber was fired, due to the flow separation and recirculation caused by the back pressure imposed by the secondary chamber. As the pressure ratio increased, these heat fluxes increased and the region of high heat flux relative to Mode II extended farther upstream. The use of the gaseous hydrogen bleed flow in the secondary chamber to control heat fluxes in the primary plume attachment region was investigated in Mode II testing. A thermal model of a dual throat thruster was developed and upgraded using the experimental data.
On push-forward representations in the standard gyrokinetic model
Miyato, N. Yagi, M.; Scott, B. D.
2015-01-15
Two representations of fluid moments in terms of a gyro-center distribution function and gyro-center coordinates, which are called push-forward representations, are compared in the standard electrostatic gyrokinetic model. In the representation conventionally used to derive the gyrokinetic Poisson equation, the pull-back transformation of the gyro-center distribution function contains effects of the gyro-center transformation and therefore electrostatic potential fluctuations, which is described by the Poisson brackets between the distribution function and scalar functions generating the gyro-center transformation. Usually, only the lowest order solution of the generating function at first order is considered to explicitly derive the gyrokinetic Poisson equation. This is true in explicitly deriving representations of scalar fluid moments with polarization terms. One also recovers the particle diamagnetic flux at this order because it is associated with the guiding-center transformation. However, higher-order solutions are needed to derive finite Larmor radius terms of particle flux including the polarization drift flux from the conventional representation. On the other hand, the lowest order solution is sufficient for the other representation, in which the gyro-center transformation part is combined with the guiding-center one and the pull-back transformation of the distribution function does not appear.
ERIC Educational Resources Information Center
Vigliocco, Gabriella; Kousta, Stavroula; Vinson, David; Andrews, Mark; Del Campo, Elena
2013-01-01
In Kousta, Vigliocco, Vinson, Andrews, and Del Campo (2011), we presented an embodied theory of semantic representation, which crucially included abstract concepts as internally embodied via affective states. Paivio (2013) took issue with our treatment of dual coding theory, our reliance on data from lexical decision, and our theoretical proposal.…
No Telescoping Effect with Dual Tendon Vibration
Bellan, Valeria; Wallwork, Sarah B.; Stanton, Tasha R.; Reverberi, Carlo; Gallace, Alberto; Moseley, G. Lorimer
2016-01-01
The tendon vibration illusion has been extensively used to manipulate the perceived position of one’s own body part. However, findings from previous research do not seem conclusive sregarding the perceptual effect of the concurrent stimulation of both agonist and antagonist tendons over one joint. On the basis of recent data, it has been suggested that this paired stimulation generates an inconsistent signal about the limb position, which leads to a perceived shrinkage of the limb. However, this interesting effect has never been replicated. The aim of the present study was to clarify the effect of a simultaneous and equal vibration of the biceps and triceps tendons on the perceived location of the hand. Experiment 1 replicated and extended the previous findings. We compared a dual tendon stimulation condition with single tendon stimulation conditions and with a control condition (no vibration) on both ‘upward-downward’ and ‘towards-away from the elbow’ planes. Our results show a mislocalisation towards the elbow of the position of the vibrated arm during dual vibration, in line with previous results; however, this did not clarify whether the effect was due to arm representation contraction (i.e., a ‘telescoping’ effect). Therefore, in Experiment 2 we investigated explicitly and implicitly the perceived arm length during the same conditions. Our results clearly suggest that in all the vibration conditions there was a mislocalisation of the entire arm (including the elbow), but no evidence of a contraction of the perceived arm length. PMID:27305112
Assimilation of Dual-Polarimetric Radar Observations with WRF GSI
NASA Technical Reports Server (NTRS)
Li, Xuanli; Mecikalski, John; Fehnel, Traci; Zavodsky, Bradley; Srikishen, Jayanthi
2014-01-01
Dual-polarimetric (dual-pol) radar typically transmits both horizontally and vertically polarized radio wave pulses. From the two different reflected power returns, more accurate estimate of liquid and solid cloud and precipitation can be provided. The upgrade of the traditional NWS WSR-88D radar to include dual-pol capabilities will soon be completed for the entire NEXRAD network. Therefore, the use of dual-pol radar network will have a broad impact in both research and operational communities. The assimilation of dual-pol radar data is especially challenging as few guidelines have been provided by previous research. It is our goal to examine how to best use dual-pol radar data to improve forecast of severe storm and forecast initialization. In recent years, the Development Testbed Center (DTC) has released the community Gridpoint Statistical Interpolation (GSI) DA system for the Weather Research and Forecasting (WRF) model. The community GSI system runs in independently environment, yet works functionally equivalent to operational centers. With collaboration with the NASA Short-term Prediction Research and Transition (SPoRT) Center, this study explores regional assimilation of the dual-pol radar variables from the WSR-88D radars for real case storms. Our presentation will highlight our recent effort on incorporating the horizontal reflectivity (ZH), differential reflectivity (ZDR), specific differential phase (KDP), and radial velocity (VR) data for initializing convective storms, with a significant focus being on an improved representation of hydrometeor fields. In addition, discussion will be provided on the development of enhanced assimilation procedures in the GSI system with respect to dual-pol variables. Beyond the dual-pol variable assimilation procedure developing within a GSI framework, highresolution (=1 km) WRF model simulations and storm scale data assimilation experiments will be examined, emphasizing both model initialization and short-term forecast
Turning Symbolic: The Representation of Motion Direction in Working Memory
Seidel Malkinson, Tal; Pertzov, Yoni; Zohary, Ehud
2016-01-01
What happens to the representation of a moving stimulus when it is no longer present and its motion direction has to be maintained in working memory (WM)? Is the initial, sensorial representation maintained during the delay period or is there another representation, at a higher level of abstraction? It is also feasible that multiple representations may co-exist in WM, manifesting different facets of sensory and more abstract features. To that end, we investigated the mnemonic representation of motion direction in a series of three psychophysical experiments, using a delayed motion-discrimination task (relative clockwise∖counter-clockwise judgment). First, we show that a change in the dots’ contrast polarity does not hamper performance. Next, we demonstrate that performance is unaffected by relocation of the Test stimulus in either retinotopic or spatiotopic coordinate frames. Finally, we show that an arrow-shaped cue presented during the delay interval between the Sample and Test stimulus, strongly biases performance toward the direction of the arrow, although the cue itself is non-informative (it has no predictive value of the correct answer). These results indicate that the representation of motion direction in WM could be independent of the physical features of the stimulus (polarity or position) and has non-sensorial abstract qualities. It is plausible that an abstract mnemonic trace might be activated alongside a more basic, analog representation of the stimulus. We speculate that the specific sensitivity of the mnemonic representation to the arrow-shaped symbol may stem from the long term learned association between direction and the hour in the clock. PMID:26909059
Representation of Ideal Magnetohydrodynamic Modes
Roscoe B. White
2013-01-15
One of the most fundamental properties of ideal magnetohydrodynamics is the condition that plasma motion cannot change magnetic topology. The conventional representation of ideal magnetohydrodynamic modes by perturbing a toroidal equilibrium field through δ Β = ∇ X (xi X B) ensures that δ B • ∇ ψ = 0 at a resonance, with ψ labelling an equilibrium flux surface. Also useful for the analysis of guiding center orbits in a perturbed field is the representation δ Β = ∇ X αB. These two representations are equivalent, but the vanishing of δ B • ∇ψ at a resonance is necessary but not sufficient for the preservation of field line topology, and a indiscriminate use of either perturbation in fact destroys the original equilibrium flux topology. It is necessary to find the perturbed field to all orders in xi to conserve the original topology. The effect of using linearized perturbations on stability and growth rate calculations is discussed
Assessing value representation in animals.
San-Galli, Aurore; Bouret, Sebastien
2015-01-01
Among all factors modulating our motivation to perform a given action, the ability to represent its outcome is clearly the most determining. Representation of outcomes, rewards in particular, and how they guide behavior, have sparked much research. Both practically and theoretically, understanding the relationship between the representation of outcome value and the organization of goal directed behavior implies that these two processes can be assessed independently. Most of animal studies essentially used instrumental actions as a proxy for the expected goal-value. The purpose of this article is to consider alternative measures of expected outcome value in animals, which are critical to understand the behavioral and neurobiological mechanisms relating the representation of the expected outcome to the organization of the behavior oriented towards its obtention. This would be critical in the field of decision making or social interactions, where the value of multiple items must often be compared and/or shared among individuals to determine the course of actions. PMID:25092260
Social representations of female orgasm.
Lavie-Ajayi, Maya; Joffe, Hélène
2009-01-01
This study examines women's social representations of female orgasm. Fifty semi-structured interviews were conducted with British women. The data were thematically analysed and compared with the content of female orgasm-related writing in two women's magazines over a 30-year period. The results indicate that orgasm is deemed the goal of sex with emphasis on its physiological dimension. However, the women and the magazines graft onto this scientifically driven representation the importance of relational and emotive aspects of orgasm. For the women, particularly those who experience themselves as having problems with orgasm, the scientifically driven representations induce feelings of failure, but are also resisted. The findings highlight the role played by the social context in women's subjective experience of their sexual health. PMID:19129342
Interferometric seismoelectric Green's function representations
NASA Astrophysics Data System (ADS)
de Ridder, Sjoerd A. L.; Slob, Evert; Wapenaar, Kees
2009-09-01
Interferometric Green's function representations can be used to retrieve a Green's function between two receiver stations, effectively turning one receiver into a source. Through reciprocity theorems of the convolution and correlation types, we derive interferometric Green's function representations for coupled electromagnetic and seismic wave propagation in 1-D. These representations express a symmetrized Green's function in terms of correlations of sources distributed throughout the domain of reciprocity and on its boundary. The main challenge for practical implementation is the necessity of sources throughout a domain. Numerical examples show how this constraint can be relaxed for different configurations. In a configuration of two layers bounded by a vacuum, seismic noise sources behind the interface can be used to recover seismoelectric reflection responses that suffer from small amplitude losses, but are not corrupted by spurious events.
Learning multiple layers of representation.
Hinton, Geoffrey E
2007-10-01
To achieve its impressive performance in tasks such as speech perception or object recognition, the brain extracts multiple levels of representation from the sensory input. Backpropagation was the first computationally efficient model of how neural networks could learn multiple layers of representation, but it required labeled training data and it did not work well in deep networks. The limitations of backpropagation learning can now be overcome by using multilayer neural networks that contain top-down connections and training them to generate sensory data rather than to classify it. Learning multilayer generative models might seem difficult, but a recent discovery makes it easy to learn nonlinear distributed representations one layer at a time. PMID:17921042
Context representations, context functions, and the parahippocampal–hippocampal system
Rudy, Jerry W.
2009-01-01
Psychologists and neurobiologists have a long-standing interest in understanding how the context surrounding the events of our lives is represented and how it influences our behavior. The hippocampal formation emerged very early as a major contributor to how context is represented and functions. There is a large literature examining its contribution that on the surface reveals an array of conflicting outcomes and controversy. This review reveals that these conflicts can be resolved by building Nadel and Willner's dual-process theory of context representations. Two general conclusions emerge: (1) There are two neural systems that can support context representations and functions—a neocortical system composed primarily of perirhinal and postrhinal cortices and a hippocampal system that includes perirhinal, postrhinal, entorhinal cortices, and the hippocampal formation. (2) These two systems are not equivalent—some context representations and functions are uniquely supported by the hippocampal system. These conclusions are discussed in the context of canonical ideas about the special properties of the hippocampal system that enable it to make unique contributions to memory. PMID:19794181
Pedagogical Affordances of Multiple External Representations in Scientific Processes
NASA Astrophysics Data System (ADS)
Wu, Hsin-Kai; Puntambekar, Sadhana
2012-12-01
Multiple external representations (MERs) have been widely used in science teaching and learning. Theories such as dual coding theory and cognitive flexibility theory have been developed to explain why the use of MERs is beneficial to learning, but they do not provide much information on pedagogical issues such as how and in what conditions MERs could be introduced and used to support students' engagement in scientific processes and develop competent scientific practices (e.g., asking questions, planning investigations, and analyzing data). Additionally, little is understood about complex interactions among scientific processes and affordances of MERs. Therefore, this article focuses on pedagogical affordances of MERs in learning environments that engage students in various scientific processes. By reviewing literature in science education and cognitive psychology and integrating multiple perspectives, this article aims at exploring (1) how MERs can be integrated with science processes due to their different affordances, and (2) how student learning with MERs can be scaffolded, especially in a classroom situation. We argue that pairing representations and scientific processes in a principled way based on the affordances of the representations and the goals of the activities is a powerful way to use MERs in science education. Finally, we outline types of scaffolding that could help effective use of MERs including dynamic linking, model progression, support in instructional materials, teacher support, and active engagement.
Sequence comparison via polar coordinates representation and curve tree.
Dai, Qi; Guo, Xiaodong; Li, Lihua
2012-01-01
Sequence comparison has become one of the essential bioinformatics tools in bioinformatics research, which could serve as evidence of structural and functional conservation, as well as of evolutionary relations among the sequences. Existing graphical representation methods have achieved promising results in sequence comparison, but there are some design challenges with the graphical representations and feature-based measures. We reported here a new method for sequence comparison. It considers whole distribution of dual bases and employs polar coordinates method to map a biological sequence into a closed curve. The curve tree was then constructed to numerically characterize the closed curve of biological sequences, and further compared biological sequences by evaluating the distance of the curve tree of the query sequence matching against a corresponding curve tree of the template sequence. The proposed method was tested by phylogenetic analysis, and its performance was further compared with alignment-based methods. The results demonstrate that using polar coordinates representation and curve tree to compare sequences is more efficient. PMID:22001081
Representation Theory over Tropical Semifield and Langlands Duality
NASA Astrophysics Data System (ADS)
Gerasimov, Anton A.; Lebedev, Dimitri R.
2013-06-01
Recently we propose a class of infinite-dimensional integral representations of classical {{gl}_{ell+1}}-Whittaker functions and local Archimedean local L-factors using two-dimensional topological field theory framework. The local Archimedean Langlands duality was identified in this setting with the mirror symmetry of the underlying topological field theories. In this note we introduce elementary analogs of the Whittaker functions and the Archimedean L-factors given by U ℓ+1-equivariant symplectic volumes of appropriate Kähler U ℓ+1-manifolds. We demonstrate that the functions thus defined have a dual description as matrix elements of representations of monoids {GL_{ell+1}({R}), {R}} being the tropical semifield. We also show that the elementary Whittaker functions can be obtained from the non-Archimedean Whittaker functions over {{Q}_p} by taking the formal limit p→ 1. Hence the elementary special functions constructed in this way might be considered as functions over the mysterious field {{Q}_1}. The existence of two representations for the elementary Whittaker functions, one as an equivariant volume and the other as a matrix element, should be considered as a manifestation of a hypothetical elementary analog of the local Langlands duality for number fields. We would like to note that the elementary local L-factors coincide with L-factors introduced previously by Kurokawa.
Multiwindow Gabor-type transform for signal representation and analysis
NASA Astrophysics Data System (ADS)
Zibulski, Meir; Zeevi, Yehoshua Y.
1995-09-01
The Gabor scheme is generalized to incorporate several window functions as well as kernels other than the exponential. The properties of the sequence of representation functions are characterized by an approach based on the concept of frames. the frame operator associated with the multi-window Gabor-type frame, is examined for a rational oversampling rate by representing the frame operator as a finite order matrix-valued function in the Zak Transform domain. Completeness and frame properties of the sequence of representation functions are examined in relation to the properties of the matrix-valued function. Calculation of the frame bounds and the dual frame, as well as the issue of tight frames are considered. It is shown that the properties of the sequence of representation functions are essentially not changed by replacing the widely-used exponential kernel with other kernels. The issue of a different sampling rate for each window is also considered. The so-called Balian-Low theorem is generalized to consideration of a scheme of multi-windows, which makes it possible to overcome the constraint imposed by the original theorem in the case of a single window.
The Statistics of Visual Representation
NASA Technical Reports Server (NTRS)
Jobson, Daniel J.; Rahman, Zia-Ur; Woodell, Glenn A.
2002-01-01
The experience of retinex image processing has prompted us to reconsider fundamental aspects of imaging and image processing. Foremost is the idea that a good visual representation requires a non-linear transformation of the recorded (approximately linear) image data. Further, this transformation appears to converge on a specific distribution. Here we investigate the connection between numerical and visual phenomena. Specifically the questions explored are: (1) Is there a well-defined consistent statistical character associated with good visual representations? (2) Does there exist an ideal visual image? And (3) what are its statistical properties?
Corner detection and classification using anisotropic directional derivative representations.
Shui, Peng-Lang; Zhang, Wei-Chuan
2013-08-01
This paper proposes a corner detector and classifier using anisotropic directional derivative (ANDD) representations. The ANDD representation at a pixel is a function of the oriented angle and characterizes the local directional grayscale variation around the pixel. The proposed corner detector fuses the ideas of the contour- and intensity-based detection. It consists of three cascaded blocks. First, the edge map of an image is obtained by the Canny detector and from which contours are extracted and patched. Next, the ANDD representation at each pixel on contours is calculated and normalized by its maximal magnitude. The area surrounded by the normalized ANDD representation forms a new corner measure. Finally, the nonmaximum suppression and thresholding are operated on each contour to find corners in terms of the corner measure. Moreover, a corner classifier based on the peak number of the ANDD representation is given. Experiments are made to evaluate the proposed detector and classifier. The proposed detector is competitive with the two recent state-of-the-art corner detectors, the He & Yung detector and CPDA detector, in detection capability and attains higher repeatability under affine transforms. The proposed classifier can discriminate effectively simple corners, Y-type corners, and higher order corners. PMID:23743776
NASA Astrophysics Data System (ADS)
Taniguchi, Tadahiro; Sawaragi, Tetsuo
In this paper, a new machine-learning method, called Dual-Schemata model, is presented. Dual-Schemata model is a kind of self-organizational machine learning methods for an autonomous robot interacting with an unknown dynamical environment. This is based on Piaget's Schema model, that is a classical psychological model to explain memory and cognitive development of human beings. Our Dual-Schemata model is developed as a computational model of Piaget's Schema model, especially focusing on sensori-motor developing period. This developmental process is characterized by a couple of two mutually-interacting dynamics; one is a dynamics formed by assimilation and accommodation, and the other dynamics is formed by equilibration and differentiation. By these dynamics schema system enables an agent to act well in a real world. This schema's differentiation process corresponds to a symbol formation process occurring within an autonomous agent when it interacts with an unknown, dynamically changing environment. Experiment results obtained from an autonomous facial robot in which our model is embedded are presented; an autonomous facial robot becomes able to chase a ball moving in various ways without any rewards nor teaching signals from outside. Moreover, emergence of concepts on the target movements within a robot is shown and discussed in terms of fuzzy logics on set-subset inclusive relationships.
34 CFR 74.17 - Certifications and representations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 34 Education 1 2014-07-01 2014-07-01 false Certifications and representations. 74.17 Section 74.17 Education Office of the Secretary, Department of Education ADMINISTRATION OF GRANTS AND AGREEMENTS WITH INSTITUTIONS OF HIGHER EDUCATION, HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Pre-Award Requirements § 74.17 Certifications and...
22 CFR 145.17 - Certifications and representations.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Certifications and representations. 145.17 Section 145.17 Foreign Relations DEPARTMENT OF STATE CIVIL RIGHTS GRANTS AND AGREEMENTS WITH INSTITUTIONS OF HIGHER EDUCATION, HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Pre-Award Requirements §...
22 CFR 145.17 - Certifications and representations.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Certifications and representations. 145.17 Section 145.17 Foreign Relations DEPARTMENT OF STATE CIVIL RIGHTS GRANTS AND AGREEMENTS WITH INSTITUTIONS OF HIGHER EDUCATION, HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Pre-Award Requirements §...
34 CFR 74.17 - Certifications and representations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 34 Education 1 2012-07-01 2012-07-01 false Certifications and representations. 74.17 Section 74.17 Education Office of the Secretary, Department of Education ADMINISTRATION OF GRANTS AND AGREEMENTS WITH INSTITUTIONS OF HIGHER EDUCATION, HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Pre-Award Requirements §...
34 CFR 74.17 - Certifications and representations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 34 Education 1 2010-07-01 2010-07-01 false Certifications and representations. 74.17 Section 74.17 Education Office of the Secretary, Department of Education ADMINISTRATION OF GRANTS AND AGREEMENTS WITH INSTITUTIONS OF HIGHER EDUCATION, HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Pre-Award Requirements §...
22 CFR 145.17 - Certifications and representations.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Certifications and representations. 145.17 Section 145.17 Foreign Relations DEPARTMENT OF STATE CIVIL RIGHTS GRANTS AND AGREEMENTS WITH INSTITUTIONS OF HIGHER EDUCATION, HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS Pre-Award Requirements §...
More than Skin Deep: Body Representation beyond Primary Somatosensory Cortex
ERIC Educational Resources Information Center
Longo, Matthew R.; Azanon, Elena; Haggard, Patrick
2010-01-01
The neural circuits underlying initial sensory processing of somatic information are relatively well understood. In contrast, the processes that go beyond primary somatosensation to create more abstract representations related to the body are less clear. In this review, we focus on two classes of higher-order processing beyond Somatosensation.…
45 CFR 2543.17 - Certifications and representations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 45 Public Welfare 4 2011-10-01 2011-10-01 false Certifications and representations. 2543.17 Section 2543.17 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE GRANTS AND AGREEMENTS WITH INSTITUTIONS OF HIGHER EDUCATION, HOSPITALS,...
45 CFR 2543.17 - Certifications and representations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 45 Public Welfare 4 2010-10-01 2010-10-01 false Certifications and representations. 2543.17 Section 2543.17 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE GRANTS AND AGREEMENTS WITH INSTITUTIONS OF HIGHER EDUCATION, HOSPITALS,...
A verification logic representation of indeterministic signal states
NASA Technical Reports Server (NTRS)
Gambles, J. W.; Windley, P. J.
1991-01-01
The integration of modern CAD tools with formal verification environments require translation from hardware description language to verification logic. A signal representation including both unknown state and a degree of strength indeterminacy is essential for the correct modeling of many VLSI circuit designs. A higher-order logic theory of indeterministic logic signals is presented.
36 CFR 1210.17 - Certifications and representations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Certifications and representations. 1210.17 Section 1210.17 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION GENERAL RULES UNIFORM ADMINISTRATIVE REQUIREMENTS FOR GRANTS AND AGREEMENTS WITH INSTITUTIONS OF HIGHER EDUCATION, HOSPITALS, AND...
36 CFR 1210.17 - Certifications and representations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Certifications and representations. 1210.17 Section 1210.17 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION GENERAL RULES UNIFORM ADMINISTRATIVE REQUIREMENTS FOR GRANTS AND AGREEMENTS WITH INSTITUTIONS OF HIGHER EDUCATION, HOSPITALS, AND...
36 CFR 1210.17 - Certifications and representations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Certifications and representations. 1210.17 Section 1210.17 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION GENERAL RULES UNIFORM ADMINISTRATIVE REQUIREMENTS FOR GRANTS AND AGREEMENTS WITH INSTITUTIONS OF HIGHER EDUCATION, HOSPITALS, AND...
36 CFR 1210.17 - Certifications and representations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Certifications and representations. 1210.17 Section 1210.17 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION GENERAL RULES UNIFORM ADMINISTRATIVE REQUIREMENTS FOR GRANTS AND AGREEMENTS WITH INSTITUTIONS OF HIGHER EDUCATION, HOSPITALS, AND...
36 CFR 1210.17 - Certifications and representations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true Certifications and representations. 1210.17 Section 1210.17 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION GENERAL RULES UNIFORM ADMINISTRATIVE REQUIREMENTS FOR GRANTS AND AGREEMENTS WITH INSTITUTIONS OF HIGHER EDUCATION, HOSPITALS, AND OTHER...
Students Protest Lack of Representation at Spellings Summit
ERIC Educational Resources Information Center
Smith, Lauren
2007-01-01
Student lobbyists have sent Secretary of Education Margaret Spellings a letter scolding her for what they see as a minimizing of student representation at the higher-education summit held last week. The Department of Education responded by saying that students had indeed been invited to participate. The letter, which was signed by Jennifer S. Pae,…
The Changing Role of Students' Representation in Poland: An Historical Appraisal
ERIC Educational Resources Information Center
Antonowicz, Dominik; Pinheiro, Rómulo; Smuzewska, Marcelina
2014-01-01
Student representation in Poland has a relatively short but turbulent history. This article offers an historical appraisal of the development of student representation at the national level in the context of rapid and deep structural changes in Polish higher education. Based on a desktop analysis of official documentation, legislation, ideological…
ERIC Educational Resources Information Center
Scharf, Miri
2001-01-01
Explored long-term effects of different childrearing contexts on attachment and separation representations of Israeli 16- to 18-year-olds. Found that adolescents raised in a kibbutz communal setting showed higher incidence of nonautonomous attachment representations and less competent coping with imagined separations than adolescents raised in a…
Graphical Representation of Complex Solutions of the Quadratic Equation in the "xy" Plane
ERIC Educational Resources Information Center
McDonald, Todd
2006-01-01
This paper presents a visual representation of complex solutions of quadratic equations in the xy plane. Rather than moving to the complex plane, students are able to experience a geometric interpretation of the solutions in the xy plane. I am also working on these types of representations with higher order polynomials with some success.
Acquired Equivalence Changes Stimulus Representations
ERIC Educational Resources Information Center
Meeter, M.; Shohamy, D.; Myers, C. E.
2009-01-01
Acquired equivalence is a paradigm in which generalization is increased between two superficially dissimilar stimuli (or antecedents) that have previously been associated with similar outcomes (or consequents). Several possible mechanisms have been proposed, including changes in stimulus representations, either in the form of added associations or…
A qualia representation of cyberspace
NASA Astrophysics Data System (ADS)
Lacey, Timothy H.; Mills, Robert F.; Raines, Richard A.; Oxley, Mark E.; Bauer, Kenneth W.; Rogers, Steven K.
2008-04-01
E.C Adam defined Situational Awareness (SA) as "the mental representation and understanding of objects, events, people, system states, interactions, environmental conditions, and other situation-specific factors affecting human performance in complex and dynamic tasks. Stated in lay terms, SA is simply knowing what is going on so you can figure out what to do." We propose a novel idea to assist the human in gaining SA. Our hypothesis is that nature uses qualia as a compression scheme to represent the many concepts encountered in everyday life. Qualia enable humans to quickly come up with SA based on many complex measurements from their sensors, (eyes, ears, taste, touch, memory, etc.), expectations, and experiences. Our ultimate objective is to develop a computer that uses qualia concepts to transform sensor data to assist the human in gaining and maintaining improved SA. However, before any computer can use qualia, we must first define a representation for qualia that can be implemented computationally. This paper will present our representation for qualia. The representation is not simply a hierarchical aggregation of input data. Instead, it is a prediction of what will happen next, derived from computations resulting from sensory inputs and the computational engine of a qualia generator and qualia processor.
Mental Representations of Social Status
ERIC Educational Resources Information Center
Chiao, Joan Y.; Bordeaux, Andrew R.; Ambady, Nalni
2004-01-01
How do people think about social status? We investigated the nature of social status and number representations using a semantic distance latency test. In Study 1, 21 college students compared words connoting different social status as well as numbers, which served as a control task. Participants were faster at comparing occupations and numbers…
Lie antialgebras: cohomology and representations
Ovsienko, V.
2008-11-18
We describe the main algebraic and geometric properties of the class of algebras introduced in [1]. We discuss their origins in symplectic geometry and associative algebra, and the notions of cohomology and representations. We formulate classification theorems and give a number of examples.
Grobner Basis Representations of Sudoku
ERIC Educational Resources Information Center
Taalman, Laura; Arnold, Elizabeth; Lucas, Stephen
2010-01-01
This paper uses Grobner bases to explore the inherent structure of Sudoku puzzles and boards. In particular, we develop three different ways of representing the constraints of Sudoku puzzles with a system of polynomial equations. In one case, we explicitly show how a Grobner basis can be used to obtain a more meaningful representation of the…
Correct Representation of Conformational Equilibria.
ERIC Educational Resources Information Center
Fulop, F.; And Others
1983-01-01
In representing conformational equilibria of compounds having only one chiral center, erroneous formulas showing different antipodes on the two sides of the equilibrium are rare. In contrast, with compounds having two or more chiral centers especially with saturated heterocycles, this erroneous representation occurs frequently in the chemical…
Representational Momentum in Older Adults
ERIC Educational Resources Information Center
Piotrowski, Andrea S.; Jakobson, Lorna S.
2011-01-01
Humans have a tendency to perceive motion even in static images that simply "imply" movement. This tendency is so strong that our memory for actions depicted in static images is distorted in the direction of implied motion--a phenomenon known as representational momentum (RM). In the present study, we created an RM display depicting a pattern of…
Self-dual electromagnetic fields
NASA Astrophysics Data System (ADS)
Chubykalo, Andrew E.; Espinoza, Augusto; Kosyakov, B. P.
2010-08-01
We demonstrate the utility of self-dual fields in electrodynamics. Stable configurations of free electromagnetic fields can be represented as superpositions of standing waves, each possessing zero Poynting vector and zero orbital angular momentum. The standing waves are themselves superpositions of self-dual and anti-self-dual solutions. The idea of self-duality provides additional insights into the geometrical and spectral properties of stable electromagnetic configurations, such as those responsible for the formation of ball lightning.
NASA Astrophysics Data System (ADS)
Frey, Steven K.; Hwang, Hyoun-Tae; Park, Young-Jin; Hussain, Syed I.; Gottschall, Natalie; Edwards, Mark; Lapen, David R.
2016-04-01
Tile drainage management is considered a beneficial management practice (BMP) for reducing nutrient loads in surface water. In this study, 2-dimensional dual permeability models were developed to simulate flow and transport following liquid swine manure and rhodamine WT (strongly sorbing) tracer application on macroporous clay loam soils under controlled (CD) and free drainage (FD) tile management. Dominant flow and transport characteristics were successfully replicated, including higher and more continuous tile discharge and lower peak rhodamine WT concentrations in FD tile effluent; in relation to CD, where discharge was intermittent, peak rhodamine concentrations higher, and mass exchange from macropores into the soil matrix greater. Explicit representation of preferential flow was essential, as macropores transmitted >98% of surface infiltration, tile flow, and tile solute loads for both FD and CD. Incorporating an active 3rd type lower boundary condition that facilitated groundwater interaction was imperative for simulating CD, as the higher (relative to FD) water table enhanced water and soluble nutrient movement from the soil profile into deeper groundwater. Scenario analysis revealed that in conditions where slight upwards hydraulic gradients exist beneath tiles, groundwater upwelling can influence the concentration of surface derived solutes in tile effluent under FD conditions; whereas the higher and flatter CD water table can restrict groundwater upwelling. Results show that while CD can reduce tile discharge, it can also lead to an increase in surface-application derived nutrient concentrations in tile effluent and hence surface water receptors, and it can promote NO3 loading into groundwater. This study demonstrates dual permeability modeling as a tool for increasing the conceptual understanding of tile drainage BMPs.
[Dual diagnosis in anxiety disorders: pharmacologic treatment recommendations].
Sáiz Martínez, Pilar Alejandra; Jimenez Treviño, Luis; Díaz Mesa, Eva M; García-Portilla González, M Paz; Marina González, Pedro; Al-Halabí, Susana; Szerman, Néstor; Bobes García, Julio; Ruiz, Pedro
2014-01-01
Anxiety disorders and substance use disorders are highly comorbid (between 18% and 37%), and such comorbidity complicates treatment and worsens prognosis (including higher suicide risk). There are not many research works on the specific pharmacologic treatment of dual comorbid anxiety disorders. Most authors recommend a simultaneous approach of both, anxiety and substance use, disorders. Research data on pharmacotherapy suggest that psychotropics used in the treatment of anxiety disorders are also effective in dual diagnosis. SSRIs are considered first-line therapy in the treatment of dual anxiety while benzodiacepines should be avoided. New generation antiepileptic have shown efficacy in case series and open label studies in the latest years, thus being a promising treatment option for dual comorbid anxiety disorders, specially pregabalin in generalized anxiety disorder. PMID:25314041
Diagrammatic Monte Carlo for dual fermions
NASA Astrophysics Data System (ADS)
Iskakov, Sergei; Antipov, Andrey E.; Gull, Emanuel
2016-07-01
We introduce a numerical algorithm to stochastically sample the dual fermion perturbation series around the dynamical mean field theory, generating all topologies of two-particle interaction vertices. We show results in the weak and strong coupling regime of the half-filled Hubbard model in two dimensions, illustrating that the method converges quickly where dynamical mean field theory is a good approximation, and show that corrections are large in the strong correlation regime at intermediate interaction. The fast convergence of dual corrections to dynamical mean field results illustrates the power of the approach and opens a practical avenue towards the systematic inclusion of nonlocal correlations in correlated materials simulations. An analysis of the frequency scale shows that only low-frequency propagators contribute substantially to the diagrams, putting the inclusion of higher order vertices within reach.
Dual-Band Optical Bench for Terahertz Radiometer for Outer Planet Atmospheres (TROPA)
NASA Technical Reports Server (NTRS)
Schlecht, Erich; Jamnejad, Vahraz
2012-01-01
We have developed a wide-band dual frequency spectrometer for use in deep space planetary atmospheric spectroscopy. The instrument uses a dual-band architecture, both to be able to observe spectral lines from a wide range of atmospheric species, and to allow a higher precision retrieval of temperature/pressure/partial pressure and wind profiles. This dual-band approach requires a new design for the optical bench to couple both frequencies into their respective receivers.
Dual resonant structure for energy harvesting from random vibration sources at low frequency
NASA Astrophysics Data System (ADS)
Li, Shanshan; Peng, Zhuoteng; Zhang, Ai; Wang, Fei
2016-01-01
We introduce a design with dual resonant structure which can harvest energy from random vibration sources at low frequency range. The dual resonant structure consists of two spring-mass subsystems with different frequency responses, which exhibit strong coupling and broad bandwidth when the two masses collide with each other. Experiments with piezoelectric elements show that the energy harvesting device with dual resonant structure can generate higher power output than the sum of the two separate devices from random vibration sources.
Dual-band relativistic backward wave oscillators based on a single beam and dual beams
NASA Astrophysics Data System (ADS)
Ting, Wang; Jian-de, Zhang; Bao-liang, Qian; Xiao-ping, Zhang
2010-04-01
Two types of relativistic backward wave oscillators (RBWOs) used to produce dual-band microwaves are proposed and investigated by use of the particle-in-cell (PIC) simulation code KARAT [V. P. Tarakanov, User's Manual for Code Karat (Berkeley Research Associates, Springfield, VA, 1992)]. The first type of RBWO, for generation of C-band and X-band microwaves, is designed based on a single beam and a sectioned structure. With an electron beam of 650 keV and 5.0 kA guided by a magnetic field of 2.0 T, an average power of 380 MW with a total power conversion efficiency of 11.7% is obtained and the frequencies are 5.48 and 9.60 GHz, respectively. By changing the distance between the two sections, single-band oscillations are realized with higher power conversion efficiency than that of the dual-band oscillation. The second type, based on a coaxial structure and dual parallel annular beams, is a dual-band RBWO designed with separated beam-wave interaction regions for generation of C-band and X-band microwaves. With a dual beam of 650 keV and 11.8 kA (the outer beam current is 6.4 kA and inner beam current is 5.4 kA) guided by a magnetic field of 2.0 T, an output power of 1400 MW with a total power conversion efficiency of 18.3% is generated and the frequencies are 4.60 and 8.40 GHz, respectively. PIC simulations demonstrate that the two beam-wave interaction regions operate independently. The two types of dual-band RBWO are also compared and analyzed.
Neuronal foundations of human numerical representations.
Eger, E
2016-01-01
The human species has developed complex mathematical skills which likely emerge from a combination of multiple foundational abilities. One of them seems to be a preverbal capacity to extract and manipulate the numerosity of sets of objects which is shared with other species and in humans is thought to be integrated with symbolic knowledge to result in a more abstract representation of numerical concepts. For what concerns the functional neuroanatomy of this capacity, neuropsychology and functional imaging have localized key substrates of numerical processing in parietal and frontal cortex. However, traditional fMRI mapping relying on a simple subtraction approach to compare numerical and nonnumerical conditions is limited to tackle with sufficient precision and detail the issue of the underlying code for number, a question which more easily lends itself to investigation by methods with higher spatial resolution, such as neurophysiology. In recent years, progress has been made through the introduction of approaches sensitive to within-category discrimination in combination with fMRI (adaptation and multivariate pattern recognition), and the present review summarizes what these have revealed so far about the neural coding of individual numbers in the human brain, the format of these representations and parallels between human and monkey neurophysiology findings. PMID:27339006
NASA Astrophysics Data System (ADS)
Sommer, F. Graham; Brody, William R.; Cassel, Douglas M.; Macovski, Albert
1981-11-01
Dual energy scanned projection radiography of the abdomen has been performed using an experimental line-scanned radiographic system. Digital images simultaneously obtained at 85 and 135 kVp are combined, using photoelectric/Compton decomposition algorithms to create images from which selected materials are cancelled. Soft tissue cancellation images have proved most useful in various abdominal imaging applications, largely due to the elimination of obscuring high-contrast bowel gas shadows. These techniques have been successfully applied to intravenous pyelography, oral cholecystography, intravenous abdominal arteriog-raphy and the imaging of renal calculi.
NASA Technical Reports Server (NTRS)
Whitten, D. E. (Inventor)
1973-01-01
A dual stage seat valve head arrangement is described which consists of a primary sealing point located between a fixed orifice seat and a valve poppet, and a secondary sealing point between an orifice poppet and a valve poppet. Upstream of the valve orifice is a flexible, convoluted metal diaphragm attached to the orifice poppet. Downstream of the valve orifice, a finger spring exerts a force against the valve poppet, tending to keep the valve in a closed position. The series arrangement of a double seat and poppet is able to tolerate small particle contamination while minimizing chatter by controlling throttling or metering across the secondary seat, thus preserving the primary sealing surface.
Woodle, R.A.
1982-04-20
A dual solvent refining process is claimed for solvent refining petroleum based lubricating oil stocks with n-methyl-2-pyrrolidone as selective solvent for aromatic oils wherein a highly paraffinic oil having a narrow boiling range approximating the boiling point of n-methyl-2-pyrrolidone is employed as a backwash solvent. The process of the invention results in an increased yield of refined lubricating oil stock of a predetermined quality and simplifies separation of the solvents from the extract and raffinate oil fractions.
Dual modification of biomolecules.
Maruani, Antoine; Richards, Daniel A; Chudasama, Vijay
2016-07-14
With the advent of novel bioorthogonal reactions and "click" chemistry, an increasing number of strategies for the single labelling of proteins and oligonucleotides have emerged. Whilst several methods exist for the site-selective introduction of a single chemical moiety, site-selective and bioorthogonal dual modification of biomolecules remains a challenge. The introduction of multiple modules enables a plethora of permutations and combinations and can generate a variety of bioconjuguates with many potential applications. From de novo approaches on oligomers to the post-translational functionalisation of proteins, this review will highlight the main strategies to dually modify biomolecules. PMID:27278999
Representations of swine flu: perspectives from a Malaysian pig farm.
Goodwin, Robin; Haque, Shamsul; Hassan, Sharifah Binti Syed; Dhanoa, Amreeta
2011-07-01
Novel influenza viruses are seen, internationally, as posing considerable health challenges, but public responses to such viruses are often rooted in cultural representations of disease and risk. However, little research has been conducted in locations associated with the origin of a pandemic. We examined representations and risk perceptions associated with swine flu amongst 120 Malaysian pig farmers. Thirty-seven per cent of respondents felt at particular risk of infection, two-thirds were somewhat or very concerned about being infected. Those respondents who were the most anxious believed particular societal "out-groups" (homosexuals, the homeless and prostitutes) to be at higher infection risk. Although few (4%) reported direct discrimination, 46% claimed friends had avoided them since the swine flu outbreak. Findings are discussed in the context of evolutionary, social representations and terror management theories of response to pandemic threat. PMID:21936262
Language modulates brain activity underlying representation of kinship terms
Wu, Haiyan; Ge, Yue; Tang, Honghong; Luo, Yue-Jia; Mai, Xiaoqin; Liu, Chao
2015-01-01
Kinship terms have been found to be highly diverse across languages. Here we investigated the brain representation of kinship terms in two distinct populations, native Chinese and Caucasian English speakers, with a five-element kinship identification (FEKI) task. The neuroimaging results showed a common extensive frontal and parietal lobe brain activation pattern for different kinship levels for both Chinese and Caucasian English speakers. Furthermore, Chinese speakers had longer reaction times and elicited more fronto-parietal brain networks activation compared to English speakers in level three (e.g., uncle and nephew) and four (e.g., cousin), including an association between the middle frontal gyrus and superior parietal lobe, which might be associated with higher working memory, attention control, and social distance representation load in Chinese kinship system processing. These results contribute to our understanding of the representation of kinship terms in the two languages. PMID:26685907
Ethnicity, Inequality, and Higher Education in Malaysia.
ERIC Educational Resources Information Center
Selvaratnam, Viswanathan
1988-01-01
Traces the development since 1957 of Malaysian education policies aimed at providing equitable access to higher education. Suggests that these policies have increased representation of the Malay underclass in tertiary institutions and the professions, but have had little effect on intraethnic class inequalities. 46 references. (SV)
Strategy and Quality Maps in Higher Education
ERIC Educational Resources Information Center
Kettunen, Juha
2011-01-01
The purpose of this study is to investigate the integration of strategic management and quality assurance in higher education. The study presents how the value chain can be described in the strategy and quality maps, which are, respectively graphical representations of the strategic plan and the quality assurance system. The quality map is a new…
Relational Knowledge in Higher Cognitive Processes.
ERIC Educational Resources Information Center
Halford, Graeme S.
Explicit representation of relations plays some role in virtually all higher cognitive processes, but relational knowledge has seldom been investigated systematically. This paper considers how relational knowledge is involved in some tasks that have been important to cognitive development, including transitivity, the balance scale, classification…
Trends in Higher Education Collective Bargaining.
ERIC Educational Resources Information Center
Anderson, Jon E.
This paper--part of a collection of 54 papers from the 48th annual conference of the Education Law Association held in November 2002--is an outline of a presentation on collective bargaining in higher education. The first section covers representation issues, historical issues, and current trends, and includes subsections on faculty; training and…
Quantization maps, algebra representation, and non-commutative Fourier transform for Lie groups
Guedes, Carlos; Oriti, Daniele; Raasakka, Matti
2013-08-15
The phase space given by the cotangent bundle of a Lie group appears in the context of several models for physical systems. A representation for the quantum system in terms of non-commutative functions on the (dual) Lie algebra, and a generalized notion of (non-commutative) Fourier transform, different from standard harmonic analysis, has been recently developed, and found several applications, especially in the quantum gravity literature. We show that this algebra representation can be defined on the sole basis of a quantization map of the classical Poisson algebra, and identify the conditions for its existence. In particular, the corresponding non-commutative star-product carried by this representation is obtained directly from the quantization map via deformation quantization. We then clarify under which conditions a unitary intertwiner between such algebra representation and the usual group representation can be constructed giving rise to the non-commutative plane waves and consequently, the non-commutative Fourier transform. The compact groups U(1) and SU(2) are considered for different choices of quantization maps, such as the symmetric and the Duflo map, and we exhibit the corresponding star-products, algebra representations, and non-commutative plane waves.
Representability of Bloch states on Projector-augmented-wave (PAW) basis sets
NASA Astrophysics Data System (ADS)
Agapito, Luis; Ferretti, Andrea; Curtarolo, Stefano; Buongiorno Nardelli, Marco
2015-03-01
Design of small, yet `complete', localized basis sets is necessary for an efficient dual representation of Bloch states on both plane-wave and localized basis. Such simultaneous dual representation permits the development of faster more accurate (beyond DFT) electronic-structure methods for atomistic materials (e.g. the ACBN0 method.) by benefiting from algorithms (real and reciprocal space) and hardware acceleration (e.g. GPUs) used in the quantum-chemistry and solid-state communities. Finding a `complete' atomic-orbital basis (partial waves) is also a requirement in the generation of robust and transferable PAW pseudopotentials. We have employed the atomic-orbital basis from available PAW data sets, which extends through most of the periodic table, and tested the representability of Bloch states on such basis. Our results show that PAW data sets allow systematic and accurate representability of the PAW Bloch states, better than with traditional quantum-chemistry double-zeta- and double-zeta-polarized-quality basis sets.
Remarks on the string dual to N=1 supersymmetric QCD
Hoyos, Carlos; Nunez, Carlos; Papadimitriou, Ioannis
2008-10-15
We study the string dual to N=1 supersymmetric QCD deformed by a quartic superpotential in the quark superfields. We present a unified view of the previous results in the literature and find new exact solutions and new asymptotic solutions. Then we study the physics encoded in these backgrounds, giving, among other things, a resolution to an old puzzle related to the beta function and a sufficient criteria for screening. We also extend our results to the SO(N{sub c}) case where we present a candidate for the Wilson loop in the spinorial representation. Various aspects of this line of research are critically analyzed.
Fang, Z.; Lockwood, G.; Griffo, A.
1999-12-01
Hardness, fracture toughness, and wear resistance are strongly inter-related properties of cemented tungsten carbide. Higher hardness usually dictates higher wear resistance but at the cost of fracture toughness. A new dual composite of WC-Co, named DC carbide, is reported in this article. The new, hybrid, particulate composite material has higher fracture toughness than conventional WC-Co material at equivalent wear resistance. Moreover, it has higher wear resistance at equivalent fracture toughness when compared to tool steels. The improved properties are achieved by the composite microstructure that maximizes mean free path (MFP) between hard reinforcement particles. The new composite material is also unique in that the reinforcement phase is a composite material in and of itself.
Visual Tracking Based on Extreme Learning Machine and Sparse Representation
Wang, Baoxian; Tang, Linbo; Yang, Jinglin; Zhao, Baojun; Wang, Shuigen
2015-01-01
The existing sparse representation-based visual trackers mostly suffer from both being time consuming and having poor robustness problems. To address these issues, a novel tracking method is presented via combining sparse representation and an emerging learning technique, namely extreme learning machine (ELM). Specifically, visual tracking can be divided into two consecutive processes. Firstly, ELM is utilized to find the optimal separate hyperplane between the target observations and background ones. Thus, the trained ELM classification function is able to remove most of the candidate samples related to background contents efficiently, thereby reducing the total computational cost of the following sparse representation. Secondly, to further combine ELM and sparse representation, the resultant confidence values (i.e., probabilities to be a target) of samples on the ELM classification function are used to construct a new manifold learning constraint term of the sparse representation framework, which tends to achieve robuster results. Moreover, the accelerated proximal gradient method is used for deriving the optimal solution (in matrix form) of the constrained sparse tracking model. Additionally, the matrix form solution allows the candidate samples to be calculated in parallel, thereby leading to a higher efficiency. Experiments demonstrate the effectiveness of the proposed tracker. PMID:26506359
Visual tracking based on extreme learning machine and sparse representation.
Wang, Baoxian; Tang, Linbo; Yang, Jinglin; Zhao, Baojun; Wang, Shuigen
2015-01-01
The existing sparse representation-based visual trackers mostly suffer from both being time consuming and having poor robustness problems. To address these issues, a novel tracking method is presented via combining sparse representation and an emerging learning technique, namely extreme learning machine (ELM). Specifically, visual tracking can be divided into two consecutive processes. Firstly, ELM is utilized to find the optimal separate hyperplane between the target observations and background ones. Thus, the trained ELM classification function is able to remove most of the candidate samples related to background contents efficiently, thereby reducing the total computational cost of the following sparse representation. Secondly, to further combine ELM and sparse representation, the resultant confidence values (i.e., probabilities to be a target) of samples on the ELM classification function are used to construct a new manifold learning constraint term of the sparse representation framework, which tends to achieve robuster results. Moreover, the accelerated proximal gradient method is used for deriving the optimal solution (in matrix form) of the constrained sparse tracking model. Additionally, the matrix form solution allows the candidate samples to be calculated in parallel, thereby leading to a higher efficiency. Experiments demonstrate the effectiveness of the proposed tracker. PMID:26506359
Knowledge representation in fuzzy logic
NASA Technical Reports Server (NTRS)
Zadeh, Lotfi A.
1989-01-01
The author presents a summary of the basic concepts and techniques underlying the application of fuzzy logic to knowledge representation. He then describes a number of examples relating to its use as a computational system for dealing with uncertainty and imprecision in the context of knowledge, meaning, and inference. It is noted that one of the basic aims of fuzzy logic is to provide a computational framework for knowledge representation and inference in an environment of uncertainty and imprecision. In such environments, fuzzy logic is effective when the solutions need not be precise and/or it is acceptable for a conclusion to have a dispositional rather than categorical validity. The importance of fuzzy logic derives from the fact that there are many real-world applications which fit these conditions, especially in the realm of knowledge-based systems for decision-making and control.
Sparse representation for vehicle recognition
NASA Astrophysics Data System (ADS)
Monnig, Nathan D.; Sakla, Wesam
2014-06-01
The Sparse Representation for Classification (SRC) algorithm has been demonstrated to be a state-of-the-art algorithm for facial recognition applications. Wright et al. demonstrate that under certain conditions, the SRC algorithm classification performance is agnostic to choice of linear feature space and highly resilient to image corruption. In this work, we examined the SRC algorithm performance on the vehicle recognition application, using images from the semi-synthetic vehicle database generated by the Air Force Research Laboratory. To represent modern operating conditions, vehicle images were corrupted with noise, blurring, and occlusion, with representation of varying pose and lighting conditions. Experiments suggest that linear feature space selection is important, particularly in the cases involving corrupted images. Overall, the SRC algorithm consistently outperforms a standard k nearest neighbor classifier on the vehicle recognition task.
Ephemeris representations for communications satellites
NASA Astrophysics Data System (ADS)
Proulx, R. J.; Cefola, P. J.; McClain, W. D.
1984-08-01
Large orbit determination (OD) centers are the primary source of artificial satellite ephemeris data. The ephemeris message of the OD facility contains implicitly the predicted satellite trajectory. The user can recover ephemeris data on the basis of two conceptual approaches. The current investigation is concerned with an alternative solution to the ephemeris representation problem. According to the procedure employed in this case, the mean equinoctial element time histories corresponding to the predicted satellite trajectory generated by the OD facility are approximated by low degree Legendre polynomials to represent their secular behavior and by trigonometric terms to represent their mean periodic behavior. This approach provides a simple, low cost, and accurate ephemeris representation, which satisfies the potential autonomy requirements for Military Satellite Communications.
Berry phase in Heisenberg representation
NASA Technical Reports Server (NTRS)
Andreev, V. A.; Klimov, Andrei B.; Lerner, Peter B.
1994-01-01
We define the Berry phase for the Heisenberg operators. This definition is motivated by the calculation of the phase shifts by different techniques. These techniques are: the solution of the Heisenberg equations of motion, the solution of the Schrodinger equation in coherent-state representation, and the direct computation of the evolution operator. Our definition of the Berry phase in the Heisenberg representation is consistent with the underlying supersymmetry of the model in the following sense. The structural blocks of the Hamiltonians of supersymmetrical quantum mechanics ('superpairs') are connected by transformations which conserve the similarity in structure of the energy levels of superpairs. These transformations include transformation of phase of the creation-annihilation operators, which are generated by adiabatic cyclic evolution of the parameters of the system.
Representations of mad cow disease.
Washer, Peter
2006-01-01
This paper examines the reporting of the story of Bovine Spongiform Encephalopathy (BSE) and its human derivative variant Creutzfeld-Jacob Disease (vCJD) in the British newspapers. Three 'snapshots' of newspaper coverage are sampled and analysed between the period 1986 and 1996 focusing on how representations of the disease evolved over the 10-year period. Social representations theory is used to elucidate how this new disease threat was conceptualised in the newspaper reporting and how it was explained to the UK public. This paper examines who or what was said to be at risk from the new disease, and whether some individuals or groups held to blame for the diseases' putative origins, the appearance of vCJD in human beings, and its spread. PMID:16046039
Representations to support terrain reasoning
Powell, D.R.; Wright, J.C.; Slentz, G.E.; Knudsen, P.D.
1988-01-01
Los Alamos National Laboratory has been cooperating with the Training and Doctrine Command of the US Army to develop a Corps level combat simulation for quick turn around studies. The simulation of ground combat requires representation of combat units, unit activities, command and control, and terrain. This simulation model emphasizes command and control with particular attention to the potential for automating operational planning. As terrain analysis is an essential part of Army operational planning, this has direct influence on the representation of terrain. The availability of digitized terrain makes it feasible to apply computer based techniques to emulate the terrain analysis process for use in the planning cycle. This paper describes processes used to calculate relevant terrain features for use in a simulation model. 13 refs., 6 figs., 6 tabs.
Free boundary ballooning mode representation
Zheng, L. J.
2012-10-15
A new type of ballooning mode invariance is found in this paper. Application of this invariance is shown to be able to reduce the two-dimensional problem of free boundary high n modes, such as the peeling-ballooning modes, to a one-dimensional problem. Here, n is toroidal mode number. In contrast to the conventional ballooning representation, which requires the translational invariance of the Fourier components of the perturbations, the new invariance reflects that the independent solutions of the high n mode equations are translationally invariant from one radial interval surrounding a single singular surface to the other intervals. The conventional ballooning mode invariance breaks down at the vicinity of plasma edge, since the Fourier components with rational surfaces in vacuum region are completely different from those with rational surfaces in plasma region. But, the new type of invariance remains valid. This overcomes the limitation of the conventional ballooning mode representation for studying free boundary modes.
Time representations in social science
Schulz, Yvan
2012-01-01
Time has long been a major topic of study in social science, as in other sciences or in philosophy. Social scientists have tended to focus on collective representations of time, and on the ways in which these representations shape our everyday experiences. This contribution addresses work from such disciplines as anthropology, sociology and history. It focuses on several of the main theories that have preoccupied specialists in social science, such as the alleged “acceleration” of life and overgrowth of the present in contemporary Western societies, or the distinction between so-called linear and circular conceptions of time. The presentation of these theories is accompanied by some of the critiques they have provoked, in order to enable the reader to form her or his own opinion of them. PMID:23393420
NASA Astrophysics Data System (ADS)
Borsten, L.; Duff, M. J.; Ferrara, S.; Marrani, A.
2013-12-01
The global U-dualities of extended supergravity have played a central role in differentiating the distinct classes of extremal black hole solutions. When the U-duality group satisfies certain algebraic conditions, as is the case for a broad class of supergravities, the extremal black holes enjoy a further symmetry known as Freudenthal duality (F-duality), which although distinct from U-duality preserves the Bekenstein-Hawking entropy. Here it is shown that, by adopting the doubled Lagrangian formalism, F-duality, defined on the doubled field strengths, is not only a symmetry of the black hole solutions, but also of the equations of motion themselves. A further role for F-duality is introduced in the context of world-sheet actions. The Nambu-Goto world-sheet action in any (t, s) signature spacetime can be written in terms of the F-dual. The corresponding field equations and Bianchi identities are then related by F-duality allowing for an F-dual formulation of Gaillard-Zumino duality on the world-sheet. An equivalent polynomial ‘Polyakov-type’ action is introduced using the so-called black hole potential. Such a construction allows for actions invariant under all groups of type E7, including E7 itself, although in this case the stringy interpretation is less clear.
NASA Astrophysics Data System (ADS)
Enejder, Annika; Brackmann, Christian; Burkacky, Ondrej; Åkeson, Madeleine
2007-02-01
We present a new Coherent Anti-Stokes Raman Scattering (CARS) microscopy technique for label-free imaging of biomolecules in living cells; dual-CARS microscopy. The use of three synchronized laser pulses in a dual-pump/dualdetection configuration enables imaging of two species with different molecular vibrations simultaneously, as well as acquisition of images free of non-resonant background. We show the power of the method by imaging deuterated nonadecane slowly diffusing into a suspension of living yeast cells in medium, clearly distinguishing the medium and the lipid droplets in the cells by probing the CH II vibration from the D-nonadecane by probing the CD vibration. In addition, images of lipid stores in living C. elegans nematodes free of non-resonant background are shown. This results in a significant enhancement of the image contrast, allowing the visualization of emerging, low-density lipid stores in a dauer larva, difficult to distinguish in conventional CARS microscopy. The separation of the non-resonant background is shown to be beneficial also when monitoring molecules with weak vibrational modes. The improved sensitivity obtained is illustrated by probing the C=C vibration in polyunsaturated lipids extracted from fish. This enables the monitoring of the degree of unsaturation of lipids, a high value of which is reported in foods known to have positive effects on human health.
SAR Image Complex Pixel Representations
Doerry, Armin W.
2015-03-01
Complex pixel values for Synthetic Aperture Radar (SAR) images of uniform distributed clutter can be represented as either real/imaginary (also known as I/Q) values, or as Magnitude/Phase values. Generally, these component values are integers with limited number of bits. For clutter energy well below full-scale, Magnitude/Phase offers lower quantization noise than I/Q representation. Further improvement can be had with companding of the Magnitude value.
Temporal Representation in Semantic Graphs
Levandoski, J J; Abdulla, G M
2007-08-07
A wide range of knowledge discovery and analysis applications, ranging from business to biological, make use of semantic graphs when modeling relationships and concepts. Most of the semantic graphs used in these applications are assumed to be static pieces of information, meaning temporal evolution of concepts and relationships are not taken into account. Guided by the need for more advanced semantic graph queries involving temporal concepts, this paper surveys the existing work involving temporal representations in semantic graphs.
Fock representation for quaternion fields
Govorkov, A.B.
1987-04-01
A Fock representation is determined for a nonrelativistic self-adjoint (Majorana) field based on quaternions, and the quantum mechanics of the parafermions of third order corresponding to it is formulated. Attention is drawn to the difference between the gauge pseudocolor SO(3) symmetry of the automorphisms of such a field and the global SU(3) symmetry of the states of the particles corresponding to it in the Fock space.
Computational representation of biological systems
Frazier, Zach; McDermott, Jason E.; Guerquin, Michal; Samudrala, Ram
2009-04-20
Integration of large and diverse biological data sets is a daunting problem facing systems biology researchers. Exploring the complex issues of data validation, integration, and representation, we present a systematic approach for the management and analysis of large biological data sets based on data warehouses. Our system has been implemented in the Bioverse, a framework combining diverse protein information from a variety of knowledge areas such as molecular interactions, pathway localization, protein structure, and protein function.
Representations of metabolic knowledge: pathways.
Karp, P D; Paley, S M
1994-01-01
The automatic generation of drawings of metabolic pathways is a challenging problem that depends intimately on exactly what information has been recorded for each pathway, and on how that information is encoded. The chief contributions of the paper are a minimized representation for biochemical pathways called the predecessor list, and inference procedures for converting the predecessor list into a pathway-graph representation that can serve as input to a pathway-drawing algorithm. The predecessor list has several advantages over the pathway graph, including its compactness and its lack of redundancy. The conversion between the two representations can be formulated as both a constraint-satisfaction problem and a logical inference problem, whose goal is to assign directions to reactions, and to determine which are the main chemical compounds in the reaction. We describe a set of production rules that solves this inference problem. We also present heuristics for inferring whether the exterior compounds that are substrates of reactions at the periphery of a pathway are side or main compounds. These techniques were evaluated on 18 metabolic pathways from the EcoCyc knowledge base. PMID:7584392
On Performance Skill Representation Framework
NASA Astrophysics Data System (ADS)
Furukawa, Koichi; Shimizu, Satoshi; Yoshinaga, Saori
In this paper, we propose a framework for representing performance skill. Firstly, we notice the importance of performance skill representation. We introduce five different representation targets: performance tasks, performance rules, pre-shaping actions, dynamic integrity constraints, and performance states. Performance task description consists of a sequence of performance tasks and expressions. It acts as a goal description in planning. Performance rules describe model performance methods for given tasks including how to shape body parts and how to use various muscles. Pre-shaping action rules are similar to performance rules. Its role is to pre-shape in between consecutive tasks to prepare for the next task. Dynamic integrity constraints specify constraints to be satisfied during performance. They provide such general rules as prohibiting simultaneous strong activations of agonist and antagonist. Performance states are for describing real performance done by players including professionals and amateurs. The aim of the framework is to provide a uniform scheme for representing model performance methods given performance score such as music score. The representation framework will define targets of inducing formal skill rules as well as describing performance states automatically from biomechanical performance data. It also is related to a fundamental research issue of attributes finding/selection in discovering useful rules for skillful performance. We conclude our paper by stating future research direction.
Body representations and brain damage.
Rousseaux, M; Honoré, J; Saj, A
2014-01-01
We review changes in body representation in patients with brain hemisphere damage and discuss their relationship with impaired limb movements in peripersonal space, navigation between objects/obstacles and control of the body's general posture and balance. The egocentric representation of the body's median sagittal axis (considered as the main zone around which movements are anchored) has been studied in most detail. This reference is distorted in patients with spatial neglect and involves a combination of ipsilesional translation and contralesional tilt. There are clear links with the patients' difficulties in egocentric tasks, activities of daily living and postural control. In both healthy subjects and patients, this reference axis can be modulated by somaesthetic, vestibular and visual stimulations; these phenomena have been used in rehabilitation programmes to reduce disease-induced deviations. A few studies have analyzed other lateral body reference (at the shoulders, in particular). These references were found to be more severely affected than the body midline (notably on the contralesional side). The severity of the distortion was related to the presence of lesions that mainly affected the parietal, somatosensory and multimodal association cortex (notably around the intraparietal sulcus) and, to a lesser extent, the middle temporal and frontal dorsolateral premotor cortex. These convergent results suggested that patients (notably those with neglect) have a complex distortion of the body schema and the perceptive representations of the body, that does not simply correspond to poor awareness of the contralateral hemicorpus. PMID:24502906
Neural Representations of Physics Concepts.
Mason, Robert A; Just, Marcel Adam
2016-06-01
We used functional MRI (fMRI) to assess neural representations of physics concepts (momentum, energy, etc.) in juniors, seniors, and graduate students majoring in physics or engineering. Our goal was to identify the underlying neural dimensions of these representations. Using factor analysis to reduce the number of dimensions of activation, we obtained four physics-related factors that were mapped to sets of voxels. The four factors were interpretable as causal motion visualization, periodicity, algebraic form, and energy flow. The individual concepts were identifiable from their fMRI signatures with a mean rank accuracy of .75 using a machine-learning (multivoxel) classifier. Furthermore, there was commonality in participants' neural representation of physics; a classifier trained on data from all but one participant identified the concepts in the left-out participant (mean accuracy = .71 across all nine participant samples). The findings indicate that abstract scientific concepts acquired in an educational setting evoke activation patterns that are identifiable and common, indicating that science education builds abstract knowledge using inherent, repurposed brain systems. PMID:27113732
Double groups and projective representations
NASA Astrophysics Data System (ADS)
Altmann, S. L.; Herzig, P.
Some problems are discussed in relation to the usual treatment of improper groups through their double groups, in particular the identification (rather than the mere isomorphism) of such groups as C3v and D3. The enhancement of SU(2) by the addition of the inversion is analysed for this purpose. This requires a careful discussion of the behaviour of spinors under inversion and two types of spinors are defined, Cartan and Pauli spinors, that behave differently with respect to inversion, although it is shown that this difference merely entails a choice of gauge in the language of projective representations. A distinction is proposed between the inversion operation and the parity operator: when the former is realized as a binary rotation in 4-space, the latter can be identified with its infinitesimal generator. The passage from SO(3) to O(3) (group of all proper and improper rotations) is studied and a hitherto unknown faithful projective representations of O(3) is given. It is shown how spinor representations can be constructed for improper point groups in either the Cartan or Pauli gauges. A choice of gauge is proposed to ensure agreement with current practice in angular momentum theory and with that in single point groups. As an example, Clebsch-Gordan coefficients are constructed for C3v.
Representation of ideal magnetohydrodynamic modes
White, R. B.
2013-02-15
One of the most fundamental properties of ideal magnetohydrodynamics is the condition that plasma motion cannot change magnetic topology. The conventional representation of ideal magnetohydrodynamic modes by perturbing a toroidal equilibrium field through {delta}B(vector sign)={nabla} Multiplication-Sign ({xi}(vector sign) Multiplication-Sign B(vector sign)) ensures that {delta}B(vector sign){center_dot}{nabla}{psi}=0 at a resonance, with {psi} labelling an equilibrium flux surface. Also useful for the analysis of guiding center orbits in a perturbed field is the representation {delta}B(vector sign)={nabla} Multiplication-Sign {alpha}B(vector sign). These two representations are equivalent, but the vanishing of {delta}B(vector sign){center_dot}{nabla}{psi} at a resonance is necessary but not sufficient for the preservation of field line topology, and a indiscriminate use of either perturbation in fact destroys the original equilibrium flux topology. It is necessary to find the perturbed field to all orders in {xi}(vector sign) to conserve the original topology. The effect of using linearized perturbations on stability and growth rate calculations is discussed.
Connected Representations: From Proportion to Linear Functions
ERIC Educational Resources Information Center
Baltus, Christopher
2010-01-01
Mathematics may be inconceivable without its diagrams and symbols--its representations. Mathematical representations help individuals organize their thinking; they bring a visual component to abstract ideas and serve as templates for computation with understanding. But the inevitability of representations is no guarantee that they are used…
Imitation and the Dialectic of Representation.
ERIC Educational Resources Information Center
Zelazo, Philip David; Lourenco, Stella Felix
2003-01-01
Describes a theory of the understanding and use of representations, drawing heavily on Paul Ricoeur's and James Mark Baldwin's theories. Presents this theory as construing representation as intrinsically mimetic, characterizing the development of representational understanding as internalization, and emphasizing the importance of self-reflection…
48 CFR 1480.802 - Representation provision.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Representation provision... AFFAIRS SUPPLEMENT ACQUISITIONS UNDER THE BUY INDIAN ACT Representation by an Indian Economic Enterprise Offeror 1480.802 Representation provision. (a) IA contracting offices must provide copies of the...
48 CFR 1480.802 - Representation provision.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Representation provision... AFFAIRS SUPPLEMENT ACQUISITIONS UNDER THE BUY INDIAN ACT Representation by an Indian Economic Enterprise Offeror 1480.802 Representation provision. (a) IA contracting offices must provide copies of the...
Methods and Strategies: The Science Representation Continuum
ERIC Educational Resources Information Center
Olson, Joanne K.
2008-01-01
Research indicates that people more easily understand abstractions when they are preceded by concrete representations (Lawson 2002). This article describes how educators can use science representations to help students form lasting understandings of abstract concepts. A spectrum illustrating some commonly used representation types and their level…
Promoting Decimal Number Sense and Representational Fluency
ERIC Educational Resources Information Center
Suh, Jennifer M.; Johnston, Chris; Jamieson, Spencer; Mills, Michelle
2008-01-01
The abstract nature of mathematics requires the communication of mathematical ideas through multiple representations, such as words, symbols, pictures, objects, or actions. Building representational fluency involves using mathematical representations flexibly and being able to interpret and translate among these different models and mathematical…
ERIC Educational Resources Information Center
Stephenson, Lisa G.
2013-01-01
Credit-based transition programs provide high school students with opportunities to jump start their college education. The Kentucky Community and Technical College System (KCTCS) offers college credit through dual-credit programs. While KCTCS dual-credit offerings have been successful in helping high school students start their college education…
The cognitive and neural architecture of sequence representation.
Keele, Steven W; Ivry, Richard; Mayr, Ulrich; Hazeltine, Eliot; Heuer, Herbert
2003-04-01
The authors theorize that 2 neurocognitive sequence-learning systems can be distinguished in serial reaction time experiments, one dorsal (parietal and supplementary motor cortex) and the other ventral (temporal and lateral prefrontal cortex). Dorsal system learning is implicit and associates noncategorized stimuli within dimensional modules. Ventral system learning can be implicit or explicit It also allows associating events across dimensions and therefore is the basis of cross-task integration or interference, depending on degree of cross-task correlation of signals. Accordingly, lack of correlation rather than limited capacity is responsible for dual-task effects on learning. The theory is relevant to issues of attentional effects on learning; the representational basis of complex, sequential skills; hippocampal-versus basal ganglia-based learning; procedural versus declarative memory; and implicit versus explicit memory. PMID:12747526
Dual-exposure technique for extending the dynamic range of x-ray flat panel detectors
NASA Astrophysics Data System (ADS)
Sisniega, A.; Abella, M.; Desco, M.; Vaquero, J. J.
2014-01-01
This work presents an approach to extend the dynamic range of x-ray flat panel detectors by combining two acquisitions of the same sample taken with two different x-ray photon flux levels and the same beam spectral configuration. In order to combine both datasets, the response of detector pixels was modelled in terms of mean and variance using a linear model. The model was extended to take into account the effect of pixel saturation. We estimated a joint probability density function (j-pdf) of the pixel values by assuming that each dataset follows an independent Gaussian distribution. This j-pdf was used for estimating the final pixel value of the high-dynamic-range dataset using a maximum likelihood method. The suitability of the pixel model for the representation of the detector signal was assessed using experimental data from a small-animal cone-beam micro-CT scanner equipped with a flat panel detector. The potential extension in dynamic range offered by our method was investigated for generic flat panel detectors using analytical expressions and simulations. The performance of the proposed dual-exposure approach in realistic imaging environments was compared with that of a regular single-exposure technique using experimental data from two different phantoms. Image quality was assessed in terms of signal-to-noise ratio, contrast, and analysis of profiles drawn on the images. The dynamic range, measured as the ratio between the exposure for saturation and the exposure equivalent to instrumentation noise, was increased from 76.9 to 166.7 when using our method. Dual-exposure results showed higher contrast-to-noise ratio and contrast resolution than the single-exposure acquisitions for the same x-ray dose. In addition, image artifacts were reduced in the combined dataset. This technique to extend the dynamic range of the detector without increasing the dose is particularly suited to image samples that contain both low and high attenuation regions.
Solution Representations and Pedagogical Representations in Chinese and U.S. Classrooms
ERIC Educational Resources Information Center
Cai, Jinfa; Lester, Frank K., Jr.
2005-01-01
This study involved an investigation of the relationship between the kinds of solution representations Chinese and U.S. students use and the sorts of pedagogical representations Chinese and U.S. teachers use during instruction. The findings suggest that the representations teachers use influence the representations their students use and, hence,…
ERIC Educational Resources Information Center
Danish, Joshua A.; Enyedy, Noel
2007-01-01
In this paper, we synthesize two bodies of work related to students' representational activities: the notions of meta-representational competence and representation as a form of practice. We report on video analyses of kindergarten and first-grade students as they create representations of pollination in a science classroom, as well as summarize…
Finite Higher Spin Transformations from Exponentiation
NASA Astrophysics Data System (ADS)
Monnier, Samuel
2015-05-01
We study the exponentiation of elements of the gauge Lie algebras hs(λ) of three-dimensional higher spin theories. Exponentiable elements generate one-parameter groups of finite higher spin symmetries. We show that elements of hs(λ) in a dense set are exponentiable, when pictured in certain representations of hs(λ), induced from representations of in the complementary series. We also provide a geometric picture of higher spin gauge transformations clarifying the physical origin of these representations. This allows us to construct an infinite-dimensional topological group HS(λ) of finite higher spin symmetries. Interestingly, this construction is possible only for 0 ≤ λ ≤ 1, which are the values for which the higher spin theory is believed to be unitary and for which the Gaberdiel-Gopakumar duality holds. We exponentiate explicitly various commutative subalgebras of hs(λ). Among those, we identify families of elements of hs(λ) exponentiating to the unit of HS(λ), generalizing the logarithms of the holonomies of BTZ black hole connections. Our techniques are generalizable to the Lie algebras relevant to higher spin theories in dimensions above three.
Alternative Approach to Nuclear Data Representation
Pruet, J; Brown, D; Beck, B; McNabb, D P
2005-07-27
This paper considers an approach for representing nuclear data that is qualitatively different from the approach currently adopted by the nuclear science community. Specifically, they examine a representation in which complicated data is described through collections of distinct and self contained simple data structures. This structure-based representation is compared with the ENDF and ENDL formats, which can be roughly characterized as dictionary-based representations. A pilot data representation for replacing the format currently used at LLNL is presented. Examples are given as is a discussion of promises and shortcomings associated with moving from traditional dictionary-based formats to a structure-rich or class-like representation.
Modular invariant representations of infinite-dimensional Lie algebras and superalgebras
Kac, Victor G.; Wakimoto, Minoru
1988-01-01
In this paper, we launch a program to describe and classify modular invariant representations of infinite-dimensional Lie algebras and superalgebras. We prove a character formula for a large class of highest weight representations L(λ) of a Kac-Moody algebra [unk] with a symmetrizable Cartan matrix, generalizing the Weyl-Kac character formula [Kac, V. G. (1974) Funct. Anal. Appl. 8, 68-70]. In the case of an affine [unk], this class includes modular invariant representations of arbitrary rational level m = t/u, where t [unk] Z and u [unk] N are relatively prime and m + g ≥ g/u (g is the dual Coxeter number). We write the characters of these representations in terms of theta functions and calculate their asymptotics, generalizing the results of Kac and Peterson [Kac, V. G. & Peterson, D. H. (1984) Adv. Math. 53, 125-264] and of Kac and Wakimoto [Kac, V. G. & Wakimoto, M. (1988) Adv. Math. 70, 156-234] for the u = 1 (integrable) case. We work out in detail the case [unk] = A1(1), in particular classifying all its modular invariant representations. Furthermore, we show that the modular invariant representations of the Virasoro algebra Vir are precisely the “minimal series” of Belavin et al. [Belavin, A. A., Polyakov, A. M. & Zamolodchikov, A. B. (1984) Nucl. Phys. B 241, 333-380] using the character formulas of Feigin and Fuchs [Feigin, B. L. & Fuchs, D. B. (1984) Lect. Notes Math. 1060, 230-245]. We show that tensoring the basic representation and modular invariant representations of A1(1) produces all modular invariant representations of Vir generalizing the results of Goddard et al. [Goddard P., Kent, A. & Olive, D. (1986) Commun. Math. Phys. 103, 105-119] and of Kac and Wakimoto [Kac, V. G. & Wakimoto, M. (1986) Lect. Notes Phys. 261, 345-371] in the unitary case. We study the general branching functions as well. All these results are generalized to the Kac-Moody superalgebras introduced by Kac [Kac, V. G. (1978) Adv. Math. 30, 85-136] and to N = 1 super
Wagner, Richard William; Burkhard, James Frank; Dauer, Kenneth John
1999-11-16
A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.
Pardue, Robert M.; Williams, Richard R.
1982-01-01
A double-pass interferometer is provided which allows direct measurement of relative displacement between opposed surfaces. A conventional plane mirror interferometer may be modified by replacing the beam-measuring path cube-corner reflector with an additional quarter-wave plate. The beam path is altered to extend to an opposed plane mirrored surface and the reflected beam is placed in interference with a retained reference beam split from dual-beam source and retroreflected by a reference cube-corner reflector mounted stationary with the interferometer housing. This permits direct measurement of opposed mirror surfaces by laser interferometry while doubling the resolution as with a conventional double-pass plane mirror laser interferometer system.
Pardue, R.M.; Williams, R.R.
1980-09-12
A double-pass interferometer is provided which allows direct measurement of relative displacement between opposed surfaces. A conventional plane mirror interferometer may be modified by replacing the beam-measuring path cube-corner reflector with an additional quarterwave plate. The beam path is altered to extend to an opposed plane mirrored surface and the reflected beam is placed in interference with a retained reference beam split from dual-beam source and retroreflected by a reference cube-corner reflector mounted stationary with the interferometer housing. This permits direct measurement of opposed mirror surfaces by laser interferometry while doubling the resolution as with a conventional double-pass plane mirror laser interferometer system.
NASA Technical Reports Server (NTRS)
Goyne, Christopher P.; McDaniel, James C.
2002-01-01
The Department of Mechanical and Aerospace Engineering at the University of Virginia has conducted an investigation of the mixing and combustion processes in a hydrogen fueled dual-mode scramjet combustor. The experiment essentially consisted of the "direct connect" continuous operation of a Mach 2 rectangular combustor with a single unswept ramp fuel injector. The stagnation enthalpy of the test flow simulated a flight Mach number of 5. Measurements were obtained using conventional wall instrumentation and laser based diagnostics. These diagnostics included, pressure and wall temperature measurements, Fuel Plume Imaging (FPI) and Particle Image Velocimetry (PIV). A schematic of the combustor configuration and a summary of the measurements obtained are presented. The experimental work at UVa was parallel by Computational Fluid Dynamics (CFD) work at NASA Langley. The numerical and experiment results are compared in this document.
Ortolon, Ken
2012-06-01
Texas physicians are feeling the pinch of a decision Texas lawmakers made last year to drastically cut what the state will pay for "dual-eligible" patients - those who are old enough to qualify for Medicare and whose income qualifies them for Medicaid. On top of those cuts, a glitch in the computer systems that are supposed to communicate claims data between Medicare and the Medicaid program meant that thousands of claims for which Medicaid should have paid at least a portion of the bill were returned with zero payment. Texas Health and Human Services Commission officials say the computer glitch is resolved, but Texas Medical Association officials and physicians in the Rio Grande Valley say the damage may already be done. PMID:22714987
Dual quartz crystal microbalance
Dunham, G.C.; Benson, N.H.; Petelenz, D.; Janata, J. )
1995-01-15
Construction and performance of a dual quartz crystal microbalance is described. The final probe has a dipstick configuration that is particularly suitable for sensing and monitoring applications in viscous and/or conducting liquids. The differential (heterodyned) frequency measurement substantially eliminates the deleterious effects of viscosity, temperature, and conductivity. The corresponding performance coefficients are temperature df/dT = 1.5 Hz/[degree]C, viscosity df/d[eta][sub L] = 103 Hz/cP, and conductivity df/dM = 108 Hz/M, where conductivity is expressed in terms of molarity of sodium chloride. As an example, the etching of a 2000-A-thick layer of aluminum has been monitored as a function of time. 13 refs., 8 figs., 1 tab.
Inclusion in Higher Education: Issues in University-School Partnership
ERIC Educational Resources Information Center
Armstrong, D.; Cairnduff, A.
2012-01-01
The significant under-representation of people from low socio-economic backgrounds in higher education in Australia has been placed squarely at the front of the Australian Federal Government's higher education agenda. The barriers for students from low socio-economic backgrounds to access higher education are broad and multi-causal. The…
Maltreated children's representations of mother and an additional caregiver: a longitudinal study.
Manashko, Shany; Besser, Avi; Priel, Beatriz
2009-04-01
In the current longitudinal investigation, we explored the continuity of and changes in the mental representations of the mother and an additional caregiver among forty-five 9- to 11-year-old children who had been severely maltreated and subsequently placed in long-term residential care as well as the relationships between the content and structure of these representations and teacher's assessments of the child's externalizing and internalizing symptoms. At Time 1, a nonmaltreated comparison group was assessed concomitantly. Compared to nonmaltreated children, maltreated children scored higher for externalizing and internalizing symptoms, and their maternal representations were found to be significantly less benevolent and integrated and more punitive. In addition, among the maltreated children, the additional caregiver representations were found to be more benevolent and integrated, and less punitive, than the maternal representations. After 30 months, the maltreated children's levels of externalizing and internalizing symptoms diminished, their maternal representations become more benevolent and less punitive, and the additional caregiver representations became less benevolent. Moreover, the Benevolence of the additional caregiver representation was found to predict these children's changes in externalizing symptoms beyond the effects of their symptomatology and its associations with the Benevolence of these representations at Time 1. PMID:19220720
Unitary Representations of Gauge Groups
NASA Astrophysics Data System (ADS)
Huerfano, Ruth Stella
I generalize to the case of gauge groups over non-trivial principal bundles representations that I. M. Gelfand, M. I. Graev and A. M. Versik constructed for current groups. The gauge group of the principal G-bundle P over M, (G a Lie group with an euclidean structure, M a compact, connected and oriented manifold), as the smooth sections of the associated group bundle is presented and studied in chapter I. Chapter II describes the symmetric algebra associated to a Hilbert space, its Hilbert structure, a convenient exponential and a total set that later play a key role in the construction of the representation. Chapter III is concerned with the calculus needed to make the space of Lie algebra valued 1-forms a Gaussian L^2-space. This is accomplished by studying general projective systems of finitely measurable spaces and the corresponding systems of sigma -additive measures, all of these leading to the description of a promeasure, a concept modeled after Bourbaki and classical measure theory. In the case of a locally convex vector space E, the corresponding Fourier transform, family of characters and the existence of a promeasure for every quadratic form on E^' are established, so the Gaussian L^2-space associated to a real Hilbert space is constructed. Chapter III finishes by exhibiting the explicit Hilbert space isomorphism between the Gaussian L ^2-space associated to a real Hilbert space and the complexification of its symmetric algebra. In chapter IV taking as a Hilbert space H the L^2-space of the Lie algebra valued 1-forms on P, the gauge group acts on the motion group of H defining in an straight forward fashion the representation desired.
Neural representation of probabilistic information.
Barber, M J; Clark, J W; Anderson, C H
2003-08-01
It has been proposed that populations of neurons process information in terms of probability density functions (PDFs) of analog variables. Such analog variables range, for example, from target luminance and depth on the sensory interface to eye position and joint angles on the motor output side. The requirement that analog variables must be processed leads inevitably to a probabilistic description, while the limited precision and lifetime of the neuronal processing units lead naturally to a population representation of information. We show how a time-dependent probability density rho(x; t) over variable x, residing in a specified function space of dimension D, may be decoded from the neuronal activities in a population as a linear combination of certain decoding functions phi(i)(x), with coefficients given by the N firing rates a(i)(t) (generally with D < N). We show how the neuronal encoding process may be described by projecting a set of complementary encoding functions phi;(i)(x) on the probability density rho(x; t), and passing the result through a rectifying nonlinear activation function. We show how both encoders phi;(i)(x) and decoders phi(i)(x) may be determined by minimizing cost functions that quantify the inaccuracy of the representation. Expressing a given computation in terms of manipulation and transformation of probabilities, we show how this representation leads to a neural circuit that can carry out the required computation within a consistent Bayesian framework, with the synaptic weights being explicitly generated in terms of encoders, decoders, conditional probabilities, and priors. PMID:14511515
Representing higher-order dependencies in networks
Xu, Jian; Wickramarathne, Thanuka L.; Chawla, Nitesh V.
2016-01-01
To ensure the correctness of network analysis methods, the network (as the input) has to be a sufficiently accurate representation of the underlying data. However, when representing sequential data from complex systems, such as global shipping traffic or Web clickstream traffic as networks, conventional network representations that implicitly assume the Markov property (first-order dependency) can quickly become limiting. This assumption holds that, when movements are simulated on the network, the next movement depends only on the current node, discounting the fact that the movement may depend on several previous steps. However, we show that data derived from many complex systems can show up to fifth-order dependencies. In these cases, the oversimplifying assumption of the first-order network representation can lead to inaccurate network analysis results. To address this problem, we propose the higher-order network (HON) representation that can discover and embed variable orders of dependencies in a network representation. Through a comprehensive empirical evaluation and analysis, we establish several desirable characteristics of HON, including accuracy, scalability, and direct compatibility with the existing suite of network analysis methods. We illustrate how HON can be applied to a broad variety of tasks, such as random walking, clustering, and ranking, and we demonstrate that, by using it as input, HON yields more accurate results without any modification to these tasks. PMID:27386539
Quantum correlations and tomographic representation
NASA Astrophysics Data System (ADS)
Man'ko, O. V.; Chernega, V. N.
2013-07-01
We review the probabilistic representation of quantum mechanics within which states are described by the probability distribution rather than by the wavefunction and density matrix. Uncertainty relations have been obtained in the form of integral inequalities containing measurable optical tomograms of quantum states. Formulas for the transition probabilities and purity parameter have been derived in terms of the tomographic probability distributions. Inequalities for Shannon and Rényi entropies associated with quantum tomograms have been obtained. A scheme of the star product of tomograms has been developed.
Superalgebraic representation of Dirac matrices
NASA Astrophysics Data System (ADS)
Monakhov, V. V.
2016-01-01
We consider a Clifford extension of the Grassmann algebra in which operators are constructed from products of Grassmann variables and derivatives with respect to them. We show that this algebra contains a subalgebra isomorphic to a matrix algebra and that it additionally contains operators of a generalized matrix algebra that mix states with different numbers of Grassmann variables. We show that these operators are extensions of spin-tensors to the case of superspace. We construct a representation of Dirac matrices in the form of operators of a generalized matrix algebra.
Efficient Type Representation in TAL
NASA Technical Reports Server (NTRS)
Chen, Juan
2009-01-01
Certifying compilers generate proofs for low-level code that guarantee safety properties of the code. Type information is an essential part of safety proofs. But the size of type information remains a concern for certifying compilers in practice. This paper demonstrates type representation techniques in a large-scale compiler that achieves both concise type information and efficient type checking. In our 200,000-line certifying compiler, the size of type information is about 36% of the size of pure code and data for our benchmarks, the best result to the best of our knowledge. The type checking time is about 2% of the compilation time.
Representation of haptic objects during mental rotation in congenital blindness.
Güçlü, Burak; Celik, Serkan; Ilci, Civan
2014-04-01
The representation of haptic objects by three groups of participants (sighted, blindfolded, and congenitally blind) was studied in a mental-rotation task. Three models were tested. The participants explored a standard object continuously with the left hand and tried to find the mirror object among two alternatives explored sequentially with the right hand. Sighted participants were tested in the visual version of the task. The accuracy of judgments was very high (> 95%) for all groups, and the blind group had the highest identification times. Correlation analyses were performed between (both single-trial and average) identification times and angular differences. The identification times of the sighted and blindfolded groups increased as linear functions of the angular difference between the mirror and the standard stimuli, supporting the classical model. The identification times of the blind group changed non-monotonically and were consistent with an antiparallel image (180 degrees rotation superimposed) in the mental representation. The dual code model did not fit the data well for any participant group. The performance differences between the blindfolded and blind groups may be attributed to a modified mapping function from the object-properties-processing sub-system to the visual buffer, which was conjectured to be available also to the blind group while processing haptic objects. PMID:24897889
Matrix algebra approach to Gabor-type image representation
NASA Astrophysics Data System (ADS)
Zibulski, Meir; Zeevi, Yehoshua Y.
1993-10-01
Properties of basis functions which constitute a finite scheme of discrete Gabor representation are investigated. The approach is based on the concept of frames and utilizes the Piecewise Finite Zak Transform (PFZT). The frame operator associated with the Gabor-type frame is examined by representing it as a matrix-values function in the PFZT domain. The frame property of the Gabor representation functions are examined in relation to the properties of the matrix-valued function. The frame bounds are calculated by means of the eignevalues of the matrix-valued function, and the dual frame, which is used in calculation of the expansion coefficients, is expressed by means of the inverse matrix. DFT-based algorithms for computation of the expansion coefficients, and for the reconstruction of signals from these coefficients are generalized for the case of oversampling of the Gabor space. It is illustrated by an example that a better reconstruction is obtained in from the same number of coefficients in the case of oversampling.
AbdusSalam, Shehu S.; Chowdhury, Talal Ahmed E-mail: chowdhu@sissa.it
2014-05-01
The extension of the standard model's minimal Higgs sector with an inert SU(2){sub L} scalar doublet can provide light dark matter candidate and simultaneously induce a strong phase transition for explaining Baryogenesis. There is however no symmetry reasons to prevent the extension using scalars with higher SU(2){sub L} representations. By making random scans over the models' parameters, we show that in the light of electroweak physics constraints, strong first order electroweak phase transition and the possibility of having sub-TeV cold dark matter candidate the higher representations are rather disfavored compared to the inert doublet. This is done by computing generic perturbativity behavior and impact on electroweak phase transitions of higher representations in comparison with the inert doublet model. Explicit phase transition and cold dark matter phenomenology within the context of the inert triplet and quartet representations are used for detailed illustrations.
When higher working memory capacity hinders insight.
DeCaro, Marci S; Van Stockum, Charles A; Wieth, Mareike B
2016-01-01
Higher working memory capacity (WMC) improves performance on a range of cognitive and academic tasks. However, a greater ability to control attention sometimes leads individuals with higher WMC to persist in using complex, attention-demanding approaches that are suboptimal for a given task. We examined whether higher WMC would hinder insight problem solving, which is thought to rely on associative processes that operate largely outside of close attentional control. In addition, we examined whether characteristics of the insight problems influence whether this negative relationship will be revealed. In Experiment 1, participants completed matchstick arithmetic problems, which require a similar initial problem representation for all problems. Higher WMC was associated with less accurate insight problem solving. In Experiment 2, participants completed insight word problems, which require substantially different representations for each problem. Higher WMC was again negatively associated with insight, but only after statistically controlling for shared variance between insight and incremental problem-solving accuracy. These findings suggest that WMC may benefit performance on fundamental processes common to both incremental and insight problem solving (e.g., initial problem representation), but hinder performance on the processes that are unique to insight (e.g., solution and restructuring). By considering the WMC of the individual, and the nature of the insight task, we may better understand the process of insight and how to best support it. (PsycINFO Database Record PMID:26120772
A tandem-based compact dual-energy gamma generator
Persaud, A.; Kwan, J.W.; Leitner, M.; Leung, K.N.; Ludewigt, B.; Tanaka, N.; Waldron, W.; Wilde, S.; Antolak, A.J.; Morse, D.H.; Raber, T.
2009-11-11
A dual-energy tandem-type gamma generator has been developed at E.O. Lawrence Berkeley National Laboratory and Sandia National Laboratories. The tandem accelerator geometry allows higher energy nuclear reactions to be reached, thereby allowing more flexible generation of MeV-energy gammas for active interrogation applications.
Different but Equal? Assessing European Dual HE Systems
ERIC Educational Resources Information Center
Kivinen, Osmo; Nurmi, Jouni
2010-01-01
In higher education dual systems, graduates are qualified to apply for jobs in same professional fields along two separated educational routes. The research problem is whether the rival applicants for professional positions are treated equally in the labour market despite their different qualifications. From the graduates point of view, to be…
Higher spins in the symmetric orbifold of K3
NASA Astrophysics Data System (ADS)
Baggio, Marco; Gaberdiel, Matthias R.; Peng, Cheng
2015-07-01
The symmetric orbifold of K3 is believed to be the conformal field theory (CFT) dual of string theory on AdS3×S3×K 3 at the tensionless point. For the case when the K3 is described by the orbifold T4/Z2 , we identify a subsector of the symmetric orbifold theory that is dual to a higher spin theory on AdS3 . We analyze how the Bogomol'nyi-Prasad-Sommerfield (BPS) spectrum of string theory can be described from the higher spin perspective and determine which single-particle BPS states are accounted for by the perturbative higher spin theory.
Temperature representation in the Drosophila brain
Frank, Dominic D.; Jouandet, Genevieve C.; Kearney, Patrick J.; Macpherson, Lindsey J.; Gallio, Marco
2015-01-01
SUMMARY In Drosophila, rapid temperature changes are detected at the periphery by dedicated receptors forming a simple sensory map for hot and cold in the brain1. However, flies show a host of complex innate and learned responses to temperature, indicating that they are able to extract a range of information from this simple input. Here, we define the anatomical and physiological repertoire for temperature representation in the Drosophila brain. First, we use a photolabeling strategy2 to trace the connections that relay peripheral thermosensory information to higher brain centers, and show that they largely converge onto three target regions: the Mushroom Body, Lateral Horn (well-known centers for sensory processing) and the Posterior Lateral Protocerebrum, a region we now define as a major site of thermosensory representation. Then, using in vivo calcium imaging3, we describe the thermosensory projection neurons selectively activated by hot or cold stimuli. Fast-adapting neurons display transient “ON” and “OFF” responses and track rapid temperature shifts remarkably well, while slow-adapting cell responses better reflect the magnitude of simple thermal changes. Unexpectedly, we also find a population of ‘broadly-tuned’ cells that respond to both heating and cooling, and show that they are required for normal behavioral avoidance of both hot and cold in a simple 2-choice temperature preference assay. Taken together, our results uncover a coordinated ensemble of neural responses to temperature in the fly brain, demonstrate that a broadly tuned thermal-line contributes to rapid avoidance behavior, and illustrate how stimulus quality, temporal structure, and intensity can be extracted from a simple glomerular map at a single synaptic station. PMID:25739506
On volume-source representations based on the representation theorem
NASA Astrophysics Data System (ADS)
Ichihara, Mie; Kusakabe, Tetsuya; Kame, Nobuki; Kumagai, Hiroyuki
2016-01-01
We discuss different ways to characterize a moment tensor associated with an actual volume change of ΔV C , which has been represented in terms of either the stress glut or the corresponding stress-free volume change ΔV T . Eshelby's virtual operation provides a conceptual model relating ΔV C to ΔV T and the stress glut, where non-elastic processes such as phase transitions allow ΔV T to be introduced and subsequent elastic deformation of - ΔV T is assumed to produce the stress glut. While it is true that ΔV T correctly represents the moment tensor of an actual volume source with volume change ΔV C , an explanation as to why such an operation relating ΔV C to ΔV T exists has not previously been given. This study presents a comprehensive explanation of the relationship between ΔV C and ΔV T based on the representation theorem. The displacement field is represented using Green's function, which consists of two integrals over the source surface: one for displacement and the other for traction. Both integrals are necessary for representing volumetric sources, whereas the representation of seismic faults includes only the first term, as the second integral over the two adjacent fault surfaces, across which the traction balances, always vanishes. Therefore, in a seismological framework, the contribution from the second term should be included as an additional surface displacement. We show that the seismic moment tensor of a volume source is directly obtained from the actual state of the displacement and stress at the source without considering any virtual non-elastic operations. A purely mathematical procedure based on the representation theorem enables us to specify the additional imaginary displacement necessary for representing a volume source only by the displacement term, which links ΔV C to ΔV T . It also specifies the additional imaginary stress necessary for representing a moment tensor solely by the traction term, which gives the "stress glut." The
Visual representations of Iranian transgenders.
Shakerifar, Elhum
2011-01-01
Transsexuality in Iran has gained much attention and media coverage in the past few years, particularly in its questionable depiction as a permitted loophole for homosexuality, which is prohibited under Iran's Islamic-inspired legal system. Of course, attention in the West is also encouraged by the “shock” that sex change is available in Iran, a country that Western media and society delights in portraying as monolithically repressive. As a result, Iranian filmmakers inevitably have their own agendas, which are unsurprisingly brought into the film making process—from a desire to sell a product that will appeal to the Western market, to films that endorse specific socio-political agendas. This paper is an attempt to situate sex change and representations of sex change in Iran within a wider theoretical framework than the frequently reiterated conflation with homosexuality, and to open and engage with a wider debate concerning transsexuality in Iran, as well as to specifically analyze the representation of transexuality, in view of its current prominent presence in media. PMID:21910275
Spatial Representation of Ordinal Information
Zhang, Meng; Gao, Xuefei; Li, Baichen; Yu, Shuyuan; Gong, Tianwei; Jiang, Ting; Hu, Qingfen; Chen, Yinghe
2016-01-01
Right hand responds faster than left hand when shown larger numbers and vice-versa when shown smaller numbers (the SNARC effect). Accumulating evidence suggests that the SNARC effect may not be exclusive for numbers and can be extended to other ordinal sequences (e.g., months or letters in the alphabet) as well. In this study, we tested the SNARC effect with a non-numerically ordered sequence: the Chinese notations for the color spectrum (Red, Orange, Yellow, Green, Blue, Indigo, and Violet). Chinese color word sequence reserves relatively weak ordinal information, because each element color in the sequence normally appears in non-sequential contexts, making it ideal to test the spatial organization of sequential information that was stored in the long-term memory. This study found a reliable SNARC-like effect for Chinese color words (deciding whether the presented color word was before or after the reference color word “green”), suggesting that, without access to any quantitative information or exposure to any previous training, ordinal representation can still activate a sense of space. The results support that weak ordinal information without quantitative magnitude encoded in the long-term memory can activate spatial representation in a comparison task. PMID:27092100
Spatial Representation of Ordinal Information.
Zhang, Meng; Gao, Xuefei; Li, Baichen; Yu, Shuyuan; Gong, Tianwei; Jiang, Ting; Hu, Qingfen; Chen, Yinghe
2016-01-01
Right hand responds faster than left hand when shown larger numbers and vice-versa when shown smaller numbers (the SNARC effect). Accumulating evidence suggests that the SNARC effect may not be exclusive for numbers and can be extended to other ordinal sequences (e.g., months or letters in the alphabet) as well. In this study, we tested the SNARC effect with a non-numerically ordered sequence: the Chinese notations for the color spectrum (Red, Orange, Yellow, Green, Blue, Indigo, and Violet). Chinese color word sequence reserves relatively weak ordinal information, because each element color in the sequence normally appears in non-sequential contexts, making it ideal to test the spatial organization of sequential information that was stored in the long-term memory. This study found a reliable SNARC-like effect for Chinese color words (deciding whether the presented color word was before or after the reference color word "green"), suggesting that, without access to any quantitative information or exposure to any previous training, ordinal representation can still activate a sense of space. The results support that weak ordinal information without quantitative magnitude encoded in the long-term memory can activate spatial representation in a comparison task. PMID:27092100
Private Higher Education: The Job Ahead. Volume 9.
ERIC Educational Resources Information Center
American Association of Presidents of Independent Colleges and Universities, Rockford, IL.
Issues pertaining to private higher education are considered in five articles. In "Toward a Philosophy of Higher Education," Ben C. Fisher suggests a need for greater unity of purpose, more attention to producing good citizens, and a sense of the importance of religious values. The maintenance of a strong dual system of education, both at the…
Representation and Re-Presentation in Litigation Science
Jasanoff, Sheila
2008-01-01
Federal appellate courts have devised several criteria to help judges distinguish between reliable and unreliable scientific evidence. The best known are the U.S. Supreme Court’s criteria offered in 1993 in Daubert v. Merrell Dow Pharmaceuticals, Inc. This article focuses on another criterion, offered by the Ninth Circuit Court of Appeals, that instructs judges to assign lower credibility to “litigation science” than to science generated before litigation. In this article I argue that the criterion-based approach to judicial screening of scientific evidence is deeply flawed. That approach buys into the faulty premise that there are external criteria, lying outside the legal process, by which judges can distinguish between good and bad science. It erroneously assumes that judges can ascertain the appropriate criteria and objectively apply them to challenged evidence before litigation unfolds, and before methodological disputes are sorted out during that process. Judicial screening does not take into account the dynamics of litigation itself, including gaming by the parties and framing by judges, as constitutive factors in the production and representation of knowledge. What is admitted through judicial screening, in other words, is not precisely what a jury would see anyway. Courts are sites of repeated re-representations of scientific knowledge. In sum, the screening approach fails to take account of the wealth of existing scholarship on the production and validation of scientific facts. An unreflective application of that approach thus puts courts at risk of relying upon a “junk science” of the nature of scientific knowledge. PMID:18197311
Evaluation of Representations and Response Models for Polarizable Force Fields
2016-01-01
For classical simulations of condensed-phase systems, such as organic liquids and biomolecules, to achieve high accuracy, they will probably need to incorporate an accurate, efficient model of conformation-dependent electronic polarization. Thus, it is of interest to understand what determines the accuracy of a polarizable electrostatics model. This study approaches this problem by breaking polarization models down into two main components: the representation of electronic polarization and the response model used for mapping from an inducing field to the polarization within the chosen representation. Among the most common polarization representations are redistribution of atom-centered charges, such as those used in the fluctuating charge model, and atom-centered point dipoles, such as those used in a number of different polarization models. Each of these representations has been combined with one or more response models. The response model of fluctuating charge, for example, is based on the idea of electronegativity equalization in the context of changing electrostatic potentials (ESPs), whereas point-dipole representations typically use a response model based on point polarizabilities whose induced dipoles are computed based on interaction with other charges and dipoles. Here, we decouple polarization representations from their typical response models to analyze the strengths and weaknesses of various polarization approximations. First, we compare the maximal possible accuracies achievable by the charge redistribution and point-dipole model representations, by testing their ability to replicate quantum mechanical (QM) ESPs around small molecules polarized by external inducing charges. Perhaps not surprisingly, the atom-centered dipole model can yield higher accuracy. Next, we test two of the most commonly used response functions used for the point-dipole representations, self-consistent and direct (or first-order) inducible point polarizabilities, where the
Uncovering the Images and Meanings of International Organizations (IOs) in Higher Education Research
ERIC Educational Resources Information Center
Shahjahan, Riyad A.; Madden, Meggan
2015-01-01
Employing Stuart Hall's concept of representation, we examine how international organizations (IOs) are presented in the higher education literature. This paper examines how IOs, such as the World Bank, OECD, and UNESCO, are conceptualized and represented by higher education researchers. We focus on three main representations of IOs in the higher…
Extended loop representation of quantum gravity
Di Bartolo, C. ); Gambini, R.; Griego, J. )
1995-01-15
A new representation of quantum gravity is developed. This formulation is based on an extension of the group of loops. The enlarged group that we call the extended loop group behaves locally as an infinite dimensional Lie group. Quantum gravity can be realized on the state space of extended loop-dependent wave functions. The extended representation generalizes the loop representation and contains this representation as a particular case. The resulting diffeomorphism and Hamiltonian constraints take a very simple form and allow us to apply functional methods and simplify the loop calculus. In particular we show that the constraints are linear in the momenta. The nondegenerate solutions known in the loop representation are also solutions of the constraints in the new representation. An approach to the regularization problems associated with the formal calculus is performed. We show that the solutions are generalized knot invariants, smooth in the extended variables, and any framing is unnecessary.
Dual-Arm Generalized Compliant Motion With Shared Control
NASA Technical Reports Server (NTRS)
Backes, Paul G.
1994-01-01
Dual-Arm Generalized Compliant Motion (DAGCM) primitive computer program implementing improved unified control scheme for two manipulator arms cooperating in task in which both grasp same object. Provides capabilities for autonomous, teleoperation, and shared control of two robot arms. Unifies cooperative dual-arm control with multi-sensor-based task control and makes complete task-control capability available to higher-level task-planning computer system via large set of input parameters used to describe desired force and position trajectories followed by manipulator arms. Some concepts discussed in "A Generalized-Compliant-Motion Primitive" (NPO-18134).
Neuroretinitis with dual infections
Kiu, Kwong-Han; Hanizasurana, Hashim; Zunaina, Embong
2015-01-01
A 22-year-old Malay female presented with left eye floaters for 2 weeks, associated with temporal visual field defect and metamorphopsia for 3 days. She has a guinea pig and a hedgehog at home, but denied being bitten or scratched by them. Her visual acuity at presentation was 6/12 on the left eye and 6/6 on the right eye. Her left eye relative afferent pupillary defect was barely positive with mild anterior chamber reaction. Fundus examination of the left eye showed mild vitritis, swollen optic disc with macular star, crops of active choroidal lesions at superonasal retina with a linear arrangement in the form of migratory track nasally. However, there were no nematodes seen on fundus examination. Investigations showed normal full blood count with no eosinophilia and positive serology test for Bartonella henselae. She was diagnosed to have dual infection – diffuse unilateral subacute neuroretinitis (DUSN), based on the presence of crops of choroidal lesions with migratory track, and cat scratch disease (CSD) based on a positive serological test. She was treated with oral albendazole 400 mg 12 hourly for 6 weeks for DUSN and oral doxycycline 100 mg 12 hourly for 4 weeks for CSD. Focal laser had been applied to the area of migratory track in the left eye. Her left eye vision improved to 6/6 at 1 month after treatment, with resolution of neuroretinitis. PMID:26527902
Learning Warps Object Representations in the Ventral Temporal Cortex.
Clarke, Alex; Pell, Philip J; Ranganath, Charan; Tyler, Lorraine K
2016-07-01
The human ventral temporal cortex (VTC) plays a critical role in object recognition. Although it is well established that visual experience shapes VTC object representations, the impact of semantic and contextual learning is unclear. In this study, we tracked changes in representations of novel visual objects that emerged after learning meaningful information about each object. Over multiple training sessions, participants learned to associate semantic features (e.g., "made of wood," "floats") and spatial contextual associations (e.g., "found in gardens") with novel objects. fMRI was used to examine VTC activity for objects before and after learning. Multivariate pattern similarity analyses revealed that, after learning, VTC activity patterns carried information about the learned contextual associations of the objects, such that objects with contextual associations exhibited higher pattern similarity after learning. Furthermore, these learning-induced increases in pattern information about contextual associations were correlated with reductions in pattern information about the object's visual features. In a second experiment, we validated that these contextual effects translated to real-life objects. Our findings demonstrate that visual object representations in VTC are shaped by the knowledge we have about objects and show that object representations can flexibly adapt as a consequence of learning with the changes related to the specific kind of newly acquired information. PMID:26967942
Braid group representation on quantum computation
Aziz, Ryan Kasyfil; Muchtadi-Alamsyah, Intan
2015-09-30
There are many studies about topological representation of quantum computation recently. One of diagram representation of quantum computation is by using ZX-Calculus. In this paper we will make a diagrammatical scheme of Dense Coding. We also proved that ZX-Calculus diagram of maximally entangle state satisfies Yang-Baxter Equation and therefore, we can construct a Braid Group representation of set of maximally entangle state.
Attitude Error Representations for Kalman Filtering
NASA Technical Reports Server (NTRS)
Markley, F. Landis; Bauer, Frank H. (Technical Monitor)
2002-01-01
The quaternion has the lowest dimensionality possible for a globally nonsingular attitude representation. The quaternion must obey a unit norm constraint, though, which has led to the development of an extended Kalman filter using a quaternion for the global attitude estimate and a three-component representation for attitude errors. We consider various attitude error representations for this Multiplicative Extended Kalman Filter and its second-order extension.
ERIC Educational Resources Information Center
Mc Taggart, Breda
2016-01-01
A growing number of studies are focusing on the "fit" between the higher education student and the educational institution. These studies show that a lack of fit between the two generates anxiety, ultimately acting as a barrier to student learning. Research involving 23 higher education students attending a dual-sector further and higher…
NASA Astrophysics Data System (ADS)
Adam, A.; Pavlidis, D.; Percival, J. R.; Salinas, P.; Xie, Z.; Fang, F.; Pain, C. C.; Muggeridge, A. H.; Jackson, M. D.
2016-09-01
A general, higher-order, conservative and bounded interpolation for the dynamic and adaptive meshing of control-volume fields dual to continuous and discontinuous finite element representations is presented. Existing techniques such as node-wise interpolation are not conservative and do not readily generalise to discontinuous fields, whilst conservative methods such as Grandy interpolation are often too diffusive. The new method uses control-volume Galerkin projection to interpolate between control-volume fields. Bounded solutions are ensured by using a post-interpolation diffusive correction. Example applications of the method to interface capturing during advection and also to the modelling of multiphase porous media flow are presented to demonstrate the generality and robustness of the approach.
Kane, Robert L; Wysocki, Andrea; Parashuram, Shriram; Shippee, Tetyana; Lum, Terry
2013-01-01
Background: Dual eligible Medicare and Medicaid beneficiaries consume disproportionate shares of both programs. Objectives: To compare Medicare and Medicaid expenditures of elderly dual eligible beneficiaries with non-dual eligible beneficiaries based on their long-term care (LTC) use. Research Design: Secondary analysis of linked MAX and Medicare data in seven states. Subjects: Dual eligible adults (65+) receiving LTC in institutions, in the community, or not at all; and Medicare non-dual eligibles. Measures: Medicaid acute medical and LTC expenditures per beneficiary year, Medicare expenditures. Results: Among dual eligibles and non-dual eligibles, the average number of diseases and case mix scores are higher for LTC users. Adjusting for case mix virtually eliminates the difference for medical costs, but not for LTC expenditures. Adjusting for LTC status reduces the difference in LTC costs, but increases the difference in medical costs. Conclusions: Efforts to control costs for dual eligibles should target those in LTC while better coordinating medical and LTC expenditures. PMID:24753971
Precedence relationship representations of mechanical assembly sequences
NASA Technical Reports Server (NTRS)
Homendemello, L. S.; Sanderson, A. C.
1989-01-01
Two types of precedence relationship representations for mechanical assembly sequences are presented: precedence relationships between the establishment of one connection between two parts and the establishment of another connection, and precedence relationships between the establishment of one connection and states of the assembly process. Precedence relationship representations have the advantage of being very compact. The problem with these representations was how to guarantee their correctness and completeness. Two theorems are presented each of which leads to the generation of one type of precedence relationship representation guaranteeing its correctness and completeness for a class of assemblies.
Standardization of beam line representations
NASA Astrophysics Data System (ADS)
Carey, David C.
1999-05-01
Standardization of beam line representations means that a single set of data can be used in many situations to represent a beam line. This set of data should be the same no matter what the program to be run or the calculation to be made. We have concerned ourselves with three types of standardization: (1) The same set of data should be usable by different programs. (2) The inclusion of other items in the data, such as calculations to be done, units to be used, or preliminary specifications, should be in a notation similar to the lattice specification. (3) A single set of data should be used to represent a given beam line, no matter what is being modified or calculated. The specifics of what is to be modified or calculated can be edited into the data as part of the calculation. These three requirements all have aspects not previously discussed in a public forum. Implementations into TRANSPORT [1] will be discussed.
Wavelet Representation of Contour Sets
Bertram, M; Laney, D E; Duchaineau, M A; Hansen, C D; Hamann, B; Joy, K I
2001-07-19
We present a new wavelet compression and multiresolution modeling approach for sets of contours (level sets). In contrast to previous wavelet schemes, our algorithm creates a parametrization of a scalar field induced by its contoum and compactly stores this parametrization rather than function values sampled on a regular grid. Our representation is based on hierarchical polygon meshes with subdivision connectivity whose vertices are transformed into wavelet coefficients. From this sparse set of coefficients, every set of contours can be efficiently reconstructed at multiple levels of resolution. When applying lossy compression, introducing high quantization errors, our method preserves contour topology, in contrast to compression methods applied to the corresponding field function. We provide numerical results for scalar fields defined on planar domains. Our approach generalizes to volumetric domains, time-varying contours, and level sets of vector fields.
Updating representations of temporal intervals.
Danckert, James; Anderson, Britt
2015-12-01
Effectively engaging with the world depends on accurate representations of the regularities that make up that world-what we call mental models. The success of any mental model depends on the ability to adapt to changes-to 'update' the model. In prior work, we have shown that damage to the right hemisphere of the brain impairs the ability to update mental models across a range of tasks. Given the disparate nature of the tasks we have employed in this prior work (i.e. statistical learning, language acquisition, position priming, perceptual ambiguity, strategic game play), we propose that a cognitive module important for updating mental representations should be generic, in the sense that it is invoked across multiple cognitive and perceptual domains. To date, the majority of our tasks have been visual in nature. Given the ubiquity and import of temporal information in sensory experience, we examined the ability to build and update mental models of time. We had healthy individuals complete a temporal prediction task in which intervals were initially drawn from one temporal range before an unannounced switch to a different range of intervals. Separate groups had the second range of intervals switch to one that contained either longer or shorter intervals than the first range. Both groups showed significant positive correlations between perceptual and prediction accuracy. While each group updated mental models of temporal intervals, those exposed to shorter intervals did so more efficiently. Our results support the notion of generic capacity to update regularities in the environment-in this instance based on temporal information. The task developed here is well suited to investigations in neurological patients and in neuroimaging settings. PMID:26303026
Better dual-task processing in simultaneous interpreters
Strobach, Tilo; Becker, Maxi; Schubert, Torsten; Kühn, Simone
2015-01-01
Simultaneous interpreting (SI) is a highly complex activity and requires the performance and coordination of multiple, simultaneous tasks: analysis and understanding of the discourse in a first language, reformulating linguistic material, storing of intermediate processing steps, and language production in a second language among others. It is, however, an open issue whether persons with experience in SI possess superior skills in coordination of multiple tasks and whether they are able to transfer these skills to lab-based dual-task situations. Within the present study, we set out to explore whether interpreting experience is associated with related higher-order executive functioning in the context of dual-task situations of the Psychological Refractory Period (PRP) type. In this PRP situation, we found faster reactions times in participants with experience in simultaneous interpretation in contrast to control participants without such experience. Thus, simultaneous interpreters possess superior skills in coordination of multiple tasks in lab-based dual-task situations. PMID:26528232
Dual-processing accounts of reasoning, judgment, and social cognition.
Evans, Jonathan St B T
2008-01-01
This article reviews a diverse set of proposals for dual processing in higher cognition within largely disconnected literatures in cognitive and social psychology. All these theories have in common the distinction between cognitive processes that are fast, automatic, and unconscious and those that are slow, deliberative, and conscious. A number of authors have recently suggested that there may be two architecturally (and evolutionarily) distinct cognitive systems underlying these dual-process accounts. However, it emerges that (a) there are multiple kinds of implicit processes described by different theorists and (b) not all of the proposed attributes of the two kinds of processing can be sensibly mapped on to two systems as currently conceived. It is suggested that while some dual-process theories are concerned with parallel competing processes involving explicit and implicit knowledge systems, others are concerned with the influence of preconscious processes that contextualize and shape deliberative reasoning and decision-making. PMID:18154502
Better dual-task processing in simultaneous interpreters.
Strobach, Tilo; Becker, Maxi; Schubert, Torsten; Kühn, Simone
2015-01-01
Simultaneous interpreting (SI) is a highly complex activity and requires the performance and coordination of multiple, simultaneous tasks: analysis and understanding of the discourse in a first language, reformulating linguistic material, storing of intermediate processing steps, and language production in a second language among others. It is, however, an open issue whether persons with experience in SI possess superior skills in coordination of multiple tasks and whether they are able to transfer these skills to lab-based dual-task situations. Within the present study, we set out to explore whether interpreting experience is associated with related higher-order executive functioning in the context of dual-task situations of the Psychological Refractory Period (PRP) type. In this PRP situation, we found faster reactions times in participants with experience in simultaneous interpretation in contrast to control participants without such experience. Thus, simultaneous interpreters possess superior skills in coordination of multiple tasks in lab-based dual-task situations. PMID:26528232
Krefta, Marlena; Michałowski, Bartosz; Kowalczyk, Jacek; Króliczak, Gregory
2015-01-01
When reading, proficient bilinguals seem to engage the same cognitive circuits regardless of the language in use. Yet, whether or not such “bilingual” mechanisms would be lateralized in the same way in distinct—single or dual—language contexts is a question for debate. To fill this gap, we tested 18 highly proficient Polish (L1) —English (L2) childhood bilinguals whose task was to read aloud one of the two laterally presented action verbs, one stimulus per visual half field. While in the single-language blocks only L1 or L2 words were shown, in the subsequent mixed-language blocks words from both languages were concurrently displayed. All stimuli were presented for 217 ms followed by masks in which letters were replaced with hash marks. Since in non-simultaneous bilinguals the control of language, skilled actions (including reading), and representations of action concepts are typically left lateralized, the vast majority of our participants showed the expected, significant right visual field advantage for L1 and L2, both for accuracy and response times. The observed effects were nevertheless associated with substantial variability in the strength of the lateralization of the mechanisms involved. Moreover, although it could be predicted that participants' performance should be better in a single-language context, accuracy was significantly higher and response times were significantly shorter in a dual-language context, irrespective of the language tested. Finally, for both accuracy and response times, there were significant positive correlations between the laterality indices (LIs) of both languages independent of the context, with a significantly greater left-sided advantage for L1 vs. L2 in the mixed-language blocks, based on LIs calculated for response times. Thus, despite similar representations of the two languages in the bilingual brain, these results also point to the functional separation of L1 and L2 in the dual-language context. PMID:26300834
Wagner, Nicholas J.; Mills-Koonce, W. Roger; Willoughby, Michael T.; Zvara, Bharathi; Cox, Martha J.
2015-01-01
Data from a large prospective longitudinal study (n = 1,239) was used to investigate the association between observed sensitive parenting in early childhood and children's representations of family relationships as measured by the Family Drawing Paradigm (FDP) in first grade as well as the extent to which these representations partially mediate the influences of early caregiving experiences on later conduct problems and callous-unemotional behaviors. A structural equation modeling approach revealed that less sensitive parenting at 24, 36, and 58 months predicts higher levels of conduct problems (CP) and callous-unemotional (CU) behaviors in first grade controlling for earlier measures of CP and CU behaviors. Results also indicated that greater dysfunctional family representations, as assessed with the FDP, are significantly associated with higher CU behaviors in the first grade, but not CP. Finally, a test of the indirect pathway suggests that children's dysfunctional family representations may, in part, account for the association between sensitive parenting and CU behaviors. PMID:26010385
Dual Engine application of the Performance Seeking Control algorithm
NASA Technical Reports Server (NTRS)
Mueller, F. D.; Nobbs, S. G.; Stewart, J. F.
1993-01-01
The Dual Engine Performance Seeking Control (PSC) flight/propulsion optimization program has been developed and will be flown during the second quarter of 1993. Previously, only single engine optimization was possible due to the limited capability of the on-board computer. The implementation of Dual Engine PSC has been made possible with the addition of a new state-of-the-art, higher throughput computer. As a result, the single engine PSC performance improvements already flown will be demonstrated on both engines, simultaneously. Dual Engine PSC will make it possible to directly compare aircraft performance with and without the improvements generated by PSC. With the additional thrust achieved with PSC, significant improvements in acceleration times and time to climb will be possible. PSC is also able to reduce deceleration time from supersonic speeds. This paper traces the history of the PSC program, describes the basic components of PSC, discusses the development and implementation of Dual Engine PSC including additions to the code, and presents predictions of the impact of Dual Engine PSC on aircraft performance.
Baykara, N. A.; Guervit, Ercan; Demiralp, Metin
2012-12-10
In this work a study on finite dimensional matrix approximations to products of quantum mechanical operators is conducted. It is emphasized that the matrix representation of the product of two operators is equal to the product of the matrix representation of each of the operators when all the fluctuation terms are ignored. The calculation of the elements of the matrices corresponding to the matrix representation of various operators, based on three terms recursive relation is defined. Finally it is shown that the approximation quality depends on the choice of higher values of n, namely the dimension of Hilbert space.
The Relative Lie Algebra Cohomology of the Weil Representation
NASA Astrophysics Data System (ADS)
Ralston, Jacob
We study the relative Lie algebra cohomology of so(p,q) with values in the Weil representation piof the dual pair Sp(2k, R) x O(p,q ). Using the Fock model defined in Chapter 2, we filter this complex and construct the associated spectral sequence. We then prove that the resulting spectral sequence converges to the relative Lie algebra cohomology and has E0 term, the associated graded complex, isomorphic to a Koszul complex, see Section 3.4. It is immediate that the construction of the spectral sequence of Chapter 3 can be applied to any reductive subalgebra g ⊂ sp(2k(p + q), R). By the Weil representation of O( p,|q), we mean the twist of the Weil representation of the two-fold cover O(pq)[special character omitted] by a suitable character. We do this to make the center of O(pq)[special character omitted] act trivially. Otherwise, all relative Lie algebra cohomology groups would vanish, see Proposition 4.10.2. In case the symplectic group is large relative to the orthogonal group (k ≥ pq), the E 0 term is isomorphic to a Koszul complex defined by a regular sequence, see 3.4. Thus, the cohomology vanishes except in top degree. This result is obtained without calculating the space of cochains and hence without using any representation theory. On the other hand, in case k < p, we know the Koszul complex is not that of a regular sequence from the existence of the class ϕkq of Kudla and Millson, see te{KM2}, a nonzero element of the relative Lie algebra cohomology of degree kq. For the case of SO0(p, 1) we compute the cohomology groups in these remaining cases, namely k < p. We do this by first computing a basis for the relative Lie algebra cochains and then splitting the complex into a sum of two complexes, each of whose E0 term is then isomorphic to a Koszul complex defined by a regular sequence. This thesis is adapted from the paper, [BMR], this author wrote with his advisor John Millson and Nicolas Bergeron of the University of Paris.
ERIC Educational Resources Information Center
Yesildag Hasançebi, Funda; Günel, Murat
2013-01-01
Problem Statement: In recent years, researchers on learning have focused on learning with multimodal representation and this research has shown that when learners can interact with an appropriate representation their performance is enhanced. If students have the opportunity to interact consciously with modal representation, learning can be…
Distributed neural representations of phonological features during speech perception.
Arsenault, Jessica S; Buchsbaum, Bradley R
2015-01-14
A fundamental goal of the human auditory system is to map complex acoustic signals onto stable internal representations of the basic sound patterns of speech. Phonemes and the distinctive features that they comprise constitute the basic building blocks from which higher-level linguistic representations, such as words and sentences, are formed. Although the neural structures underlying phonemic representations have been well studied, there is considerable debate regarding frontal-motor cortical contributions to speech as well as the extent of lateralization of phonological representations within auditory cortex. Here we used functional magnetic resonance imaging (fMRI) and multivoxel pattern analysis to investigate the distributed patterns of activation that are associated with the categorical and perceptual similarity structure of 16 consonant exemplars in the English language used in Miller and Nicely's (1955) classic study of acoustic confusability. Participants performed an incidental task while listening to phonemes in the MRI scanner. Neural activity in bilateral anterior superior temporal gyrus and supratemporal plane was correlated with the first two components derived from a multidimensional scaling analysis of a behaviorally derived confusability matrix. We further showed that neural representations corresponding to the categorical features of voicing, manner of articulation, and place of articulation were widely distributed throughout bilateral primary, secondary, and association areas of the superior temporal cortex, but not motor cortex. Although classification of phonological features was generally bilateral, we found that multivariate pattern information was moderately stronger in the left compared with the right hemisphere for place but not for voicing or manner of articulation. PMID:25589757
Concept Representation Reflects Multimodal Abstraction: A Framework for Embodied Semantics.
Fernandino, Leonardo; Binder, Jeffrey R; Desai, Rutvik H; Pendl, Suzanne L; Humphries, Colin J; Gross, William L; Conant, Lisa L; Seidenberg, Mark S
2016-05-01
Recent research indicates that sensory and motor cortical areas play a significant role in the neural representation of concepts. However, little is known about the overall architecture of this representational system, including the role played by higher level areas that integrate different types of sensory and motor information. The present study addressed this issue by investigating the simultaneous contributions of multiple sensory-motor modalities to semantic word processing. With a multivariate fMRI design, we examined activation associated with 5 sensory-motor attributes--color, shape, visual motion, sound, and manipulation--for 900 words. Regions responsive to each attribute were identified using independent ratings of the attributes' relevance to the meaning of each word. The results indicate that these aspects of conceptual knowledge are encoded in multimodal and higher level unimodal areas involved in processing the corresponding types of information during perception and action, in agreement with embodied theories of semantics. They also reveal a hierarchical system of abstracted sensory-motor representations incorporating a major division between object interaction and object perception processes. PMID:25750259
Numerical Magnitude Representations Influence Arithmetic Learning
ERIC Educational Resources Information Center
Booth, Julie L.; Siegler, Robert S.
2008-01-01
This study examined whether the quality of first graders' (mean age = 7.2 years) numerical magnitude representations is correlated with, predictive of, and causally related to their arithmetic learning. The children's pretest numerical magnitude representations were found to be correlated with their pretest arithmetic knowledge and to be…
Geometric Representations for Discrete Fourier Transforms
NASA Technical Reports Server (NTRS)
Cambell, C. W.
1986-01-01
Simple geometric representations show symmetry and periodicity of discrete Fourier transforms (DFT's). Help in visualizing requirements for storing and manipulating transform value in computations. Representations useful in any number of dimensions, but particularly in one-, two-, and three-dimensional cases often encountered in practice.
Body-Specific Representations of Spatial Location
ERIC Educational Resources Information Center
Brunye, Tad T.; Gardony, Aaron; Mahoney, Caroline R.; Taylor, Holly A.
2012-01-01
The body specificity hypothesis (Casasanto, 2009) posits that the way in which people interact with the world affects their mental representation of information. For instance, right- versus left-handedness affects the mental representation of affective valence, with right-handers categorically associating good with rightward areas and bad with…
Improving Representational Competence with Concrete Models
ERIC Educational Resources Information Center
Stieff, Mike; Scopelitis, Stephanie; Lira, Matthew E.; DeSutter, Dane
2016-01-01
Representational competence is a primary contributor to student learning in science, technology, engineering, and math (STEM) disciplines and an optimal target for instruction at all educational levels. We describe the design and implementation of a learning activity that uses concrete models to improve students' representational competence and…
Identities, Social Representations and Critical Thinking
ERIC Educational Resources Information Center
Lopez-Facal, Ramon; Jimenez-Aleixandre, Maria Pilar
2009-01-01
This comment on L. Simonneaux and J. Simonneaux paper focuses on the role of "identities" in dealing with socio-scientific issues. We argue that there are two types of identities (social representations) influencing the students' positions: On the one hand their social representations of the bears' and wolves' identities as belonging to particular…
Drawings as Representations of Children's Conceptions
ERIC Educational Resources Information Center
Ehrlen, Karin
2009-01-01
Drawings are often used to obtain an idea of children's conceptions. Doing so takes for granted an unambiguous relation between conceptions and their representations in drawings. This study was undertaken to gain knowledge of the relation between children's conceptions and their representation of these conceptions in drawings. A theory of…
Characterizing Interaction with Visual Mathematical Representations
ERIC Educational Resources Information Center
Sedig, Kamran; Sumner, Mark
2006-01-01
This paper presents a characterization of computer-based interactions by which learners can explore and investigate visual mathematical representations (VMRs). VMRs (e.g., geometric structures, graphs, and diagrams) refer to graphical representations that visually encode properties and relationships of mathematical structures and concepts.…
Representations of the Magnitudes of Fractions
ERIC Educational Resources Information Center
Schneider, Michael; Siegler, Robert S.
2010-01-01
We tested whether adults can use integrated, analog, magnitude representations to compare the values of fractions. The only previous study on this question concluded that even college students cannot form such representations and instead compare fraction magnitudes by representing numerators and denominators as separate whole numbers. However,…
Transqueer Representations and How We Educate
ERIC Educational Resources Information Center
Siebler, Kay
2010-01-01
This article examines the representations of transqueers (specifically female to male transsexuals) in popular media and how these representations shape attitudes of transqueers both with those outside the LGBT community and those within the community. The article discusses how these cultural images of FTM transqueers imply that being accepted…
School Board Election Structure and Democratic Representation
ERIC Educational Resources Information Center
Allen, Ann; Plank, David N.
2005-01-01
Policies governing the organization and timing of school elections affect democratic representation in school decision making. Some argue that school board elections should be consolidated with general municipal elections on the grounds that this will increase participation and representation, but little empirical work addresses the consequences…
Representational Issues in Students Learning about Evaporation
ERIC Educational Resources Information Center
Tytler, Russell; Prain, Vaughan; Peterson, Suzanne
2007-01-01
This study draws on recent research on the central role of representation in learning. While there has been considerable research on students' understanding of evaporation, the representational issues entailed in this understanding have not been investigated in depth. The study explored students' engagement with evaporation phenomena through…
Elementary School Students' Mental Representation of Fractions
ERIC Educational Resources Information Center
Pitta-Pantazi, Demetra; Gray, Eddie M.; Christou, Constantinos
2004-01-01
Based on psychological approaches that evoke mental representations through verbal and visual cues, this paper investigates the different kinds of mental representations projected by 8 to 11 year old children of identified arithmetical achievement when responding to verbal and visual stimuli associated with fractions. It examines how the visual…
Representable states on quasilocal quasi *-algebras
Bagarello, F.; Trapani, C.; Triolo, S.
2011-01-15
Continuing a previous analysis originally motivated by physics, we consider representable states on quasilocal quasi *-algebras, starting with examining the possibility for a compatible family of local states to give rise to a global state. Some properties of local modifications of representable states and some aspects of their asymptotic behavior are also considered.
Parts, Cavities, and Object Representation in Infancy
ERIC Educational Resources Information Center
Hayden, Angela; Bhatt, Ramesh S.; Kangas, Ashley; Zieber, Nicole
2011-01-01
Part representation is not only critical to object perception but also plays a key role in a number of basic visual cognition functions, such as figure-ground segregation, allocation of attention, and memory for shapes. Yet, virtually nothing is known about the development of part representation. If parts are fundamental components of object shape…
Identifying Bilingual Semantic Neural Representations across Languages
ERIC Educational Resources Information Center
Buchweitz, Augusto; Shinkareva, Svetlana V.; Mason, Robert A.; Mitchell, Tom M.; Just, Marcel Adam
2012-01-01
The goal of the study was to identify the neural representation of a noun's meaning in one language based on the neural representation of that same noun in another language. Machine learning methods were used to train classifiers to identify which individual noun bilingual participants were thinking about in one language based solely on their…
Elementary Teachers' Instructional Practices Involving Graphical Representations
ERIC Educational Resources Information Center
Coleman, Julianne
2010-01-01
The goal of this study was to gather data on US elementary school teachers' (K-5) instructional practices with graphical representations. The results revealed high percentages of usage for graphical representations but with varying levels of frequency. Overall, the most frequently reported instructional practices by teachers included 1) pointing…
Self-Representation and Brain Development
ERIC Educational Resources Information Center
Lewis, Michael; Carmody, Dennis P.
2008-01-01
This study examined the relation between self-representation and brain development in infants and young children. Self-representation was assessed by mirror recognition, personal pronoun use, and pretend play. Structural brain images were obtained from magnetic resonance imaging (MRI). Brain development was assessed by a quantitative measure of…
Sparse representation for the ISAR image reconstruction
NASA Astrophysics Data System (ADS)
Hu, Mengqi; Montalbo, John; Li, Shuxia; Sun, Ligang; Qiao, Zhijun G.
2016-05-01
In this paper, a sparse representation of the data for an inverse synthetic aperture radar (ISAR) system is provided in two dimensions. The proposed sparse representation motivates the use a of a Convex Optimization that recovers the image with far less samples, which is required by Nyquist-Shannon sampling theorem to increases the efficiency and decrease the cost of calculation in radar imaging.
Efficient online bootstrapping of sensory representations.
Gepperth, Alexander
2013-05-01
This is a simulation-based contribution exploring a novel approach to the open-ended formation of multimodal representations in autonomous agents. In particular, we address the issue of transferring ("bootstrapping") feature selectivities between two modalities, from a previously learned or innate reference representation to a new induced representation. We demonstrate the potential of this algorithm by several experiments with synthetic inputs modeled after a robotics scenario where multimodal object representations are "bootstrapped" from a (reference) representation of object affordances. We focus on typical challenges in autonomous agents: absence of human supervision, changing environment statistics and limited computing power. We propose an autonomous and local neural learning algorithm termed PROPRE (projection-prediction) that updates induced representations based on predictability: competitive advantages are given to those feature-sensitive elements that are inferable from activities in the reference representation. PROPRE implements a bi-directional interaction of clustering ("projection") and inference ("prediction"), the key ingredient being an efficient online measure of predictability controlling learning in the projection step. We show that the proposed method is computationally efficient and stable, and that the multimodal transfer of feature selectivity is successful and robust under resource constraints. Furthermore, we successfully demonstrate robustness to noisy reference representations, non-stationary input statistics and uninformative inputs. PMID:23266481
The Decimal Representation of Real Numbers
ERIC Educational Resources Information Center
Kalapodi, A.
2010-01-01
The representation of natural numbers in decimal form is an unequivocal procedure while for the representation of real numbers some ambiguities concerning the existence of infinitely many digits equal to 9 still emerge. One of the most frequently confronted misunderstandings is whether 0.999...equals 1 or not, and if not what number does this…
Media Representation of Teachers across Five Countries
ERIC Educational Resources Information Center
Alhamdan, Bandar; Al-Saadi, Khalid; Baroutsis, Aspa; Du Plessis, Anna; Hamid, Obaidul M.; Honan, Eileen
2014-01-01
This paper reports on an investigation into the representation of teachers in newspapers in five countries. An innovative methodology was used to develop a method of inquiry that supports a deeper understanding of media representations of teachers which can also be used by other researchers in comparative education. The paper explores relevant…
48 CFR 1480.803 - Representation process.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Representation process. 1480.803 Section 1480.803 Federal Acquisition Regulations System DEPARTMENT OF THE INTERIOR INDIAN... Offeror 1480.803 Representation process. (a) Only IEEs may participate in acquisitions set aside...
Generating Descriptions of Motion from Cognitive Representations
ERIC Educational Resources Information Center
Keil, Benjamin
2010-01-01
This dissertation presents a novel method of sentence generation, drawing on the insight from Cognitive Semantics (Talmy, 2000a,b) that the effect of uttering a sentence is to evoke a Cognitive Representation in the mind of the listener. Under the assumption that this Cognitive Representation is also present in the speaker and defines (part of)…
The logical model for pattern representation
NASA Astrophysics Data System (ADS)
Telnarova, Zdenka; Schenk, Jiri
2016-06-01
Patterns are mentioned usually in the extraction context. Little stress is posed in their representation and management. This paper is focused on representation of the patterns, manipulation with patterns and query patterns. Crucial issue can be seen in systematic approach to pattern management and specific pattern query language which takes into consideration semantics of patterns..
How Do Students Misunderstand Number Representations?
ERIC Educational Resources Information Center
Herman, Geoffrey L.; Zilles, Craig; Loui, Michael C.
2011-01-01
We used both student interviews and diagnostic testing to reveal students' misconceptions about number representations in computing systems. This article reveals that students who have passed an undergraduate level computer organization course still possess surprising misconceptions about positional notations, two's complement representation, and…
32 CFR 724.215 - Military representation.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 5 2013-07-01 2013-07-01 false Military representation. 724.215 Section 724.215 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL NAVAL DISCHARGE REVIEW BOARD Authority/Policy for Departmental Discharge Review § 724.215 Military representation....
32 CFR 724.215 - Military representation.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 5 2014-07-01 2014-07-01 false Military representation. 724.215 Section 724.215 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL NAVAL DISCHARGE REVIEW BOARD Authority/Policy for Departmental Discharge Review § 724.215 Military representation....
32 CFR 724.215 - Military representation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 5 2012-07-01 2012-07-01 false Military representation. 724.215 Section 724.215 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL NAVAL DISCHARGE REVIEW BOARD Authority/Policy for Departmental Discharge Review § 724.215 Military representation....
Information entrophy via Glauber's Q-representation
NASA Technical Reports Server (NTRS)
Keitel, C. H.; Wodkiewicz, K.
1993-01-01
We present a convenient way to evaluate the information entropy of a quantum mechanical state via the Glauber Q-representation. As an example we discuss the information entropy of a thermally relaxing squeezed state in terms of its Q-representation and show the validity of the corresponding entropic uncertainty- and Araki-Lieb inequalities.
10 CFR 60.65 - Representation.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Representation. 60.65 Section 60.65 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Participation by State Governments and Affected Indian Tribes § 60.65 Representation. Any person who acts...
10 CFR 60.65 - Representation.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Representation. 60.65 Section 60.65 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Participation by State Governments and Affected Indian Tribes § 60.65 Representation. Any person who acts...
10 CFR 60.65 - Representation.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Representation. 60.65 Section 60.65 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Participation by State Governments and Affected Indian Tribes § 60.65 Representation. Any person who acts...
10 CFR 60.65 - Representation.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Representation. 60.65 Section 60.65 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Participation by State Governments and Affected Indian Tribes § 60.65 Representation. Any person who acts...
10 CFR 60.65 - Representation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Representation. 60.65 Section 60.65 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Participation by State Governments and Affected Indian Tribes § 60.65 Representation. Any person who acts...
32 CFR 724.215 - Military representation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 5 2010-07-01 2010-07-01 false Military representation. 724.215 Section 724.215 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL NAVAL DISCHARGE REVIEW BOARD Authority/Policy for Departmental Discharge Review § 724.215 Military representation....
32 CFR 724.215 - Military representation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 5 2011-07-01 2011-07-01 false Military representation. 724.215 Section 724.215 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL NAVAL DISCHARGE REVIEW BOARD Authority/Policy for Departmental Discharge Review § 724.215 Military representation....
Representing Energy. II. Energy Tracking Representations
ERIC Educational Resources Information Center
Scherr, Rachel E.; Close, Hunter G.; Close, Eleanor W.; Vokos, Stamatis
2012-01-01
The Energy Project at Seattle Pacific University has developed representations that embody the substance metaphor and support learners in conserving and tracking energy as it flows from object to object and changes form. Such representations enable detailed modeling of energy dynamics in complex physical processes. We assess student learning by…
Gifted Children's Representations of Learner Identities
ERIC Educational Resources Information Center
Porath, Marion; Lupart, Judy
2009-01-01
Elementary and secondary students identified as gifted produced representations of themselves as readers, writers, and mathematicians and were interviewed about what they chose to represent. Interviews indicated a developmental progression in the way academic learning is understood, a progression that also was evident in their representations.…
Gender and Shifts in Higher Education Managerial Regimes
ERIC Educational Resources Information Center
Carvalho, Teresa; Machado, Maria de Lurdes
2010-01-01
While Portugal is one of the European countries with a high representation of women in higher education, there is both horizontal and vertical segregation. The way universities and especially managerial positions are culturally embedded by masculinity is one of the obstacles women have traditionally faced. Recently, higher education institutions…
Piecewise Polynomial Representations of Genomic Tracks
Tarabichi, Maxime; Detours, Vincent; Konopka, Tomasz
2012-01-01
Genomic data from micro-array and sequencing projects consist of associations of measured values to chromosomal coordinates. These associations can be thought of as functions in one dimension and can thus be stored, analyzed, and interpreted as piecewise-polynomial curves. We present a general framework for building piecewise polynomial representations of genome-scale signals and illustrate some of its applications via examples. We show that piecewise constant segmentation, a typical step in copy-number analyses, can be carried out within this framework for both array and (DNA) sequencing data offering advantages over existing methods in each case. Higher-order polynomial curves can be used, for example, to detect trends and/or discontinuities in transcription levels from RNA-seq data. We give a concrete application of piecewise linear functions to diagnose and quantify alignment quality at exon borders (splice sites). Our software (source and object code) for building piecewise polynomial models is available at http://sourceforge.net/projects/locsmoc/. PMID:23166601
Piecewise polynomial representations of genomic tracks.
Tarabichi, Maxime; Detours, Vincent; Konopka, Tomasz
2012-01-01
Genomic data from micro-array and sequencing projects consist of associations of measured values to chromosomal coordinates. These associations can be thought of as functions in one dimension and can thus be stored, analyzed, and interpreted as piecewise-polynomial curves. We present a general framework for building piecewise polynomial representations of genome-scale signals and illustrate some of its applications via examples. We show that piecewise constant segmentation, a typical step in copy-number analyses, can be carried out within this framework for both array and (DNA) sequencing data offering advantages over existing methods in each case. Higher-order polynomial curves can be used, for example, to detect trends and/or discontinuities in transcription levels from RNA-seq data. We give a concrete application of piecewise linear functions to diagnose and quantify alignment quality at exon borders (splice sites). Our software (source and object code) for building piecewise polynomial models is available at http://sourceforge.net/projects/locsmoc/. PMID:23166601
Improved input representation for enhancement of neural network performance
Aldrich, C.H.; An, Z.G.; Lee, K.; Lee, Y.C.
1987-01-01
The performance of an associate memory network depends significantly on the representation of the data. For example, it has already been recognized that bipolar representation of neurons with -1 and +1 states out- perform neurons with on and off states of +1 and 0 respectively. This paper will show that a simple modification of the pattern vector to have zero bias will provide even more significant increase for the performance of an associative memory network. The higher order algorithm is used for the numerical simulation studies of this paper. To the lowest order this algorithm reduces to the Hopfield model for auto-associative memory and the bidirectional associative memory (BAM) for hetero-associative memory model respectively. 16 refs., 4 figs., 1 tabs.
Cosmological attractor models and higher curvature supergravity
NASA Astrophysics Data System (ADS)
Cecotti, Sergio; Kallosh, Renata
2014-05-01
We study cosmological α-attractors in superconformal/supergravity models, where α is related to the geometry of the moduli space. For α = 1 attractors [1] we present a generalization of the previously known manifestly superconformal higher curvature supergravity model [2]. The relevant standard 2-derivative supergravity with a minimum of two chiral multiplets is shown to be dual to a 4-derivative higher curvature supergravity, where in general one of the chiral superfields is traded for a curvature superfield. There is a degenerate case when both matter superfields become non-dynamical and there is only a chiral curvature superfield, pure higher derivative supergravity. Generic α-models [3] interpolate between the attractor point at α = 0 and generic chaotic inflation models at large α, in the limit when the inflaton moduli space becomes flat. They have higher derivative duals with the same number of matter fields as the original theory or less, but at least one matter multiplet remains. In the context of these models, the detection of primordial gravity waves will provide information on the curvature of the inflaton submanifold of the Kähler manifold, and we will learn if the inflaton is a fundamental matter multiplet, or can be replaced by a higher derivative curvature excitation.
Soylu, Firat; Newman, Sharlene D
2016-02-01
Fingers are used as canonical representations for numbers across cultures. In previous imaging studies, it was shown that arithmetic processing activates neural resources that are known to participate in finger movements. Additionally, in one dual-task study, it was shown that anatomically ordered finger tapping disrupts addition and subtraction more than multiplication, possibly due to a long-lasting effect of early finger counting experiences on the neural correlates and organization of addition and subtraction processes. How arithmetic task difficulty and tapping complexity affect the concurrent performance is still unclear. If early finger counting experiences have bearing on the neural correlates of arithmetic in adults, then one would expect anatomically and non-anatomically ordered tapping to have different interference effects, given that finger counting is usually anatomically ordered. To unravel these issues, we studied how (1) arithmetic task difficulty and (2) the complexity of the finger tapping sequence (anatomical vs. non-anatomical ordering) affect concurrent performance and use of key neural circuits using a mixed block/event-related dual-task fMRI design with adult participants. The results suggest that complexity of the tapping sequence modulates interference on addition, and that one-digit addition (fact retrieval), compared to two-digit addition (calculation), is more affected from anatomically ordered tapping. The region-of-interest analysis showed higher left angular gyrus BOLD response for one-digit compared to two-digit addition, and in no-tapping conditions than dual tapping conditions. The results support a specific association between addition fact retrieval and anatomically ordered finger movements in adults, possibly due to finger counting strategies that deploy anatomically ordered finger movements early in the development. PMID:26410214
Gamma power reductions accompany stimulus-specific representations of dynamic events.
Zhang, Hui; Fell, Juergen; Staresina, Bernhard P; Weber, Bernd; Elger, Christian E; Axmacher, Nikolai
2015-03-01
Neural representations of specific stimuli rely on activity patterns in distributed neural assemblies [1-4]. According to one influential view, these assemblies are characterized by synchronized gamma-band activity (GBA) [5-11] that reflects stimulus-specific representations [12-14]. However, recent studies have shown that GBA is closely correlated with the overall amount of cellular activity and may be detrimental for precise representations of specific stimuli [15, 16]. Until now, the role of GBA for the formation of dynamically changing representations has been unknown. Here, we applied representational similarity analysis (RSA) [17] to intracranial electroencephalogram (iEEG) data from ten presurgical epilepsy patients to identify stimulus-specific neural representations. Patients first learned and then retrieved their paths through virtual houses. Dynamic representations were identified by the rapidly changing distributions of frequency-specific global (spatial) activity patterns across the brain. We found that GBA patterns during successful (but not unsuccessful) retrieval of one sequence were more similar to activity during encoding of that same sequence compared to other sequences. The contribution of individual electrodes to these global representations was correlated with local similarity in individual electrodes (i.e., with RSA across time). Moreover, time-resolved RSA values were negatively correlated with the magnitude of iEEG gamma power: RSA values were higher at time points when gamma power was reduced. Both global and local representations relied on a small proportion of electrodes. These results show that behaviorally relevant neural representations of specific dynamically changing stimuli can be tracked by iEEG recordings and that they are associated with reductions of gamma power. PMID:25683804
Neural Network of Body Representation Differs between Transsexuals and Cissexuals
Lin, Chia-Shu; Ku, Hsiao-Lun; Chao, Hsiang-Tai; Tu, Pei-Chi; Li, Cheng-Ta; Cheng, Chou-Ming; Su, Tung-Ping; Lee, Ying-Chiao; Hsieh, Jen-Chuen
2014-01-01
Body image is the internal representation of an individual’s own physical appearance. Individuals with gender identity disorder (GID), commonly referred to as transsexuals (TXs), are unable to form a satisfactory body image due to the dissonance between their biological sex and gender identity. We reasoned that changes in the resting-state functional connectivity (rsFC) network would neurologically reflect such experiential incongruence in TXs. Using graph theory-based network analysis, we investigated the regional changes of the degree centrality of the rsFC network. The degree centrality is an index of the functional importance of a node in a neural network. We hypothesized that three key regions of the body representation network, i.e., the primary somatosensory cortex, the superior parietal lobule and the insula, would show a higher degree centrality in TXs. Twenty-three pre-treatment TXs (11 male-to-female and 12 female-to-male TXs) as one psychosocial group and 23 age-matched healthy cissexual control subjects (CISs, 11 males and 12 females) were recruited. Resting-state functional magnetic resonance imaging was performed, and binarized rsFC networks were constructed. The TXs demonstrated a significantly higher degree centrality in the bilateral superior parietal lobule and the primary somatosensory cortex. In addition, the connectivity between the right insula and the bilateral primary somatosensory cortices was negatively correlated with the selfness rating of their desired genders. These data indicate that the key components of body representation manifest in TXs as critical function hubs in the rsFC network. The negative association may imply a coping mechanism that dissociates bodily emotion from body image. The changes in the functional connectome may serve as representational markers for the dysphoric bodily self of TXs. PMID:24465785
Matrix approach to frame analysis of Gabor-type image representation
NASA Astrophysics Data System (ADS)
Zibulski, Meir; Zeevi, Yehoshua Y.
1993-11-01
An approach for characterizing the properties of basis functions which constitute a finite scheme of discrete Gabor representation is presented in the context of oversampling. The approach is based on the concept of frames and utilizes the Piecewise Finite Zak Transform (PFZT). The frame operator associated with the Gabor-type frame is examined by representing the frame operator as a matrix-valued function in the PFZT domain. The frame property of the Gabor representation functions are examined in relation to the properties of the matrix-valued function. The frame bounds are calculated by means of the eigenvalues of the matrix-valued function, and the dual frame, which is used in calculation of the expansion coefficients, is expressed by means of the inverse matrix. DFT-based algorithms for computation of the expansion coefficients, and for the reconstruction of signals from these coefficients are generalized for the case of oversampling of the Gabor space.
Evidence for a relation between executive function and pretense representation in preschool children
Carlson, Stephanie M.; White, Rachel E.; Davis-Unger, Angela
2013-01-01
Several theoretical formulations suggest a relation between children’s pretense and executive function (EF) skills. However, there is little empirical evidence for a correlation between these constructs in early development. Preschool children (N = 104; M age = 4-0) were given batteries of EF and pretense representation measures, as well as verbal, memory, and appearance-reality control tasks. Confirmatory factor analysis revealed two separable but overlapping aspects of EF (Conflict and Delay). EF was significantly related to pretense after accounting for all controls. Understanding the pretend-reality distinction was strongly related to Conflict EF, whereas performing pretend actions was more strongly related to Delay EF. These results, although correlational, are consistent with the claim that EF skills are implicated in pretense, such as inhibiting reality and flexibly manipulating dual representations, and offer a potential mechanism by which pretend play interventions may enhance childhood EF. PMID:24357896
Reducing noise in the time-frequency representation using sparsity promoting kernel design
NASA Astrophysics Data System (ADS)
Jokanović, Branka; Amin, Moeness G.; Zhang, Yimin D.
2014-05-01
Missing samples in the time domain introduce noise-like artifacts in the ambiguity domain due to their de facto zero values assumed by the bilinear transform. These artifacts clutter the dual domain of the time-frequency signal representation and obscures the time-frequency signature of single and multicomponent signals. In order to suppress the artifacts influence, we formulate a problem based on the sparsity aware kernel. The proposed kernel design is more robust to the artifacts caused by the missing samples.
Efficient image representations and features
NASA Astrophysics Data System (ADS)
Dorr, Michael; Vig, Eleonora; Barth, Erhardt
2013-03-01
Interdisciplinary research in human vision and electronic imaging has greatly contributed to the current state of the art in imaging technologies. Image compression and image quality are prominent examples and the progress made in these areas relies on a better understanding of what natural images are and how they are perceived by the human visual system. A key research question has been: given the (statistical) properties of natural images, what are the most efficient and perceptually relevant image representations, what are the most prominent and descriptive features of images and videos? We give an overview of how these topics have evolved over the 25 years of HVEI conferences and how they have influenced the current state of the art. There are a number of striking parallels between human vision and electronic imaging. The retina does lateral inhibition, one of the early coders was using a Laplacian pyramid; primary visual cortical areas have orientation- and frequency-selective neurons, the current JPEG standard defines similar wavelet transforms; the brain uses a sparse code, engineers are currently excited about sparse coding and compressed sensing. Some of this has indeed happened at the HVEI conferences and we would like to distill that.
Continuum representations of cellular solids
Neilsen, M.K.
1993-09-01
Cellular materials consist of interconnected struts or plates which form cells. The struts or plates are constructed from a variety of metals, polymers, ceramics and wood products. Cellular materials are often used in impact limiters for shipping containers to protect the contents from accidental impact events. These materials exhibit a variety of complex behavior when subjected to crushing loads. This research focuses on the development of continuum representations of cellular solids that can be used in the finite element analysis of shipping container accidents. A significant portion of this work is the development of a new methodology to relate localized deformations to appropriate constitutive descriptions. This methodology provides the insight needed to select constitutive descriptions for cellular solids that capture the localized deformations that are observed experimentally. Constitutive relations are developed for two different cellular materials, aluminum honeycomb and polyurethane foam. These constitutive relations are based on plasticity and continuum damage theories. Plasticity is used to describe the permanent deformation exhibited by both aluminum honeycomb and polyurethane foam. Continuum damage is needed to capture the change in elastic parameters due to cracking of the polyurethane cell wall materials. The new constitutive description of polyurethane foam is implemented in both static and dynamic finite element codes, and analytical and numerical predictions are compared with available experimental data.
Representation of probabilistic scientific knowledge
2013-01-01
The theory of probability is widely used in biomedical research for data analysis and modelling. In previous work the probabilities of the research hypotheses have been recorded as experimental metadata. The ontology HELO is designed to support probabilistic reasoning, and provides semantic descriptors for reporting on research that involves operations with probabilities. HELO explicitly links research statements such as hypotheses, models, laws, conclusions, etc. to the associated probabilities of these statements being true. HELO enables the explicit semantic representation and accurate recording of probabilities in hypotheses, as well as the inference methods used to generate and update those hypotheses. We demonstrate the utility of HELO on three worked examples: changes in the probability of the hypothesis that sirtuins regulate human life span; changes in the probability of hypotheses about gene functions in the S. cerevisiae aromatic amino acid pathway; and the use of active learning in drug design (quantitative structure activity relation learning), where a strategy for the selection of compounds with the highest probability of improving on the best known compound was used. HELO is open source and available at https://github.com/larisa-soldatova/HELO PMID:23734675
Computational Fluid Dynamics Simulation of Dual Bell Nozzle Film Cooling
NASA Technical Reports Server (NTRS)
Braman, Kalen; Garcia, Christian; Ruf, Joseph; Bui, Trong
2015-01-01
Marshall Space Flight Center (MSFC) and Armstrong Flight Research Center (AFRC) are working together to advance the technology readiness level (TRL) of the dual bell nozzle concept. Dual bell nozzles are a form of altitude compensating nozzle that consists of two connecting bell contours. At low altitude the nozzle flows fully in the first, relatively lower area ratio, nozzle. The nozzle flow separates from the wall at the inflection point which joins the two bell contours. This relatively low expansion results in higher nozzle efficiency during the low altitude portion of the launch. As ambient pressure decreases with increasing altitude, the nozzle flow will expand to fill the relatively large area ratio second nozzle. The larger area ratio of the second bell enables higher Isp during the high altitude and vacuum portions of the launch. Despite a long history of theoretical consideration and promise towards improving rocket performance, dual bell nozzles have yet to be developed for practical use and have seen only limited testing. One barrier to use of dual bell nozzles is the lack of control over the nozzle flow transition from the first bell to the second bell during operation. A method that this team is pursuing to enhance the controllability of the nozzle flow transition is manipulation of the film coolant that is injected near the inflection between the two bell contours. Computational fluid dynamics (CFD) analysis is being run to assess the degree of control over nozzle flow transition generated via manipulation of the film injection. A cold flow dual bell nozzle, without film coolant, was tested over a range of simulated altitudes in 2004 in MSFC's nozzle test facility. Both NASA centers have performed a series of simulations of that dual bell to validate their computational models. Those CFD results are compared to the experimental results within this paper. MSFC then proceeded to add film injection to the CFD grid of the dual bell nozzle. A series of
UWB dual burst transmit driver
Dallum, Gregory E.; Pratt, Garth C.; Haugen, Peter C.; Zumstein, James M.; Vigars, Mark L.; Romero, Carlos E.
2012-04-17
A dual burst transmitter for ultra-wideband (UWB) communication systems generates a pair of precisely spaced RF bursts from a single trigger event. An input trigger pulse produces two oscillator trigger pulses, an initial pulse and a delayed pulse, in a dual trigger generator. The two oscillator trigger pulses drive a gated RF burst (power output) oscillator. A bias driver circuit gates the RF output oscillator on and off and sets the RF burst packet width. The bias driver also level shifts the drive signal to the level that is required for the RF output device.
Dual porosity gas evolving electrode
Townsend, Carl W.
1994-01-01
A dual porosity electrode for use in thermoelectrochemical systems where simultaneous transport of gas and liquid into and/or out of the electrode is required. The electrode includes catalytic electrode particles having diameters ranging from about 25 to 100 angstroms. The catalytic electrode particles are anchored to a support network in clusters which have internal pores ranging in size from 25 to 100 angstroms. The pores between the clusters range in size from between about 1 to 20 microns. A method for making the dual porosity electrodes is also disclosed.
Dual porosity gas evolving electrode
Townsend, C.W.
1994-11-15
A dual porosity electrode is described for use in thermoelectrochemical systems where simultaneous transport of gas and liquid into and/or out of the electrode is required. The electrode includes catalytic electrode particles having diameters ranging from about 25 to 100 angstroms. The catalytic electrode particles are anchored to a support network in clusters which have internal pores ranging in size from 25 to 100 angstroms. The pores between the clusters range in size from between about 1 to 20 microns. A method for making the dual porosity electrodes is also disclosed.
Dual energy CT with photon counting and dual source systems: comparative evaluation
NASA Astrophysics Data System (ADS)
Atak, Haluk; Shikhaliev, Polad M.
2015-12-01
Recently, new dual energy (DE) computed tomography (CT) systems—dual source CT (DSCT) and photon counting CT (PCCT) have been introduced. Although these systems have the same clinical targets, they have major differences as they use dual and single kVp acquisitions and different x-ray detection and energy resolution concepts. The purpose of this study was theoretical and experimental comparisons of DSCT and PCCT. The DSCT Siemens Somatom Flash was modeled for simulation study. The PCCT had the same configuration as DSCT except it used a photon counting detector. The soft tissue phantoms with 20, 30, and 38 cm diameters included iodine, CaCO3, adipose, and water samples. The dose (air kerma) was 14 mGy for all studies. The low and high energy CT data were simulated at 80 kVp and 140 kVp for DSCT, and in 20-58 keV and 59-120 keV energy ranges for PCCT, respectively. The experiments used Somatom Flash DSCT system and PCCT system based on photon counting CdZnTe detector with 2 × 256 pixel configuration and 1 × 1 mm2 pixels size. In simulated general CT images, PCCT provided higher contrast-to-noise ratio (CNR) than DSCT with 0.4/0.8 mm Sn filters. The PCCT with K-edge filter provided higher CNR than the PCCT with a Cu filter, and DSCT with 0.4 mm Sn filter provided higher CNR than the DSCT with a 0.8 mm Sn filter. In simulated DE subtracted images, CNR of the DSCT was comparable to the PCCT with a Cu filter. However, DE PCCT with Ho a K-edge filter provided 30-40% higher CNR than the DE DSCT with 0.4/0.8 mm Sn filters. The experimental PCCT provided higher CNR in general imaging compared to the DSCT. In experimental DE subtracted images, the DSCT provided higher CNR than the PCCT with a Cu filter. However, experimental CNR with DE PCCT with K-edge filter was 15% higher than in DE DSCT, which is less than 30-40% increase predicted by the simulation study. It is concluded that ideal PCCT can provide substantial advantages over ideal
Dual energy CT with photon counting and dual source systems: comparative evaluation.
Atak, Haluk; Shikhaliev, Polad M
2015-12-01
Recently, new dual energy (DE) computed tomography (CT) systems-dual source CT (DSCT) and photon counting CT (PCCT) have been introduced. Although these systems have the same clinical targets, they have major differences as they use dual and single kVp acquisitions and different x-ray detection and energy resolution concepts. The purpose of this study was theoretical and experimental comparisons of DSCT and PCCT. The DSCT Siemens Somatom Flash was modeled for simulation study. The PCCT had the same configuration as DSCT except it used a photon counting detector. The soft tissue phantoms with 20, 30, and 38 cm diameters included iodine, CaCO3, adipose, and water samples. The dose (air kerma) was 14 mGy for all studies. The low and high energy CT data were simulated at 80 kVp and 140 kVp for DSCT, and in 20-58 keV and 59-120 keV energy ranges for PCCT, respectively. The experiments used Somatom Flash DSCT system and PCCT system based on photon counting CdZnTe detector with 2 × 256 pixel configuration and 1 × 1 mm(2) pixels size. In simulated general CT images, PCCT provided higher contrast-to-noise ratio (CNR) than DSCT with 0.4/0.8 mm Sn filters. The PCCT with K-edge filter provided higher CNR than the PCCT with a Cu filter, and DSCT with 0.4 mm Sn filter provided higher CNR than the DSCT with a 0.8 mm Sn filter. In simulated DE subtracted images, CNR of the DSCT was comparable to the PCCT with a Cu filter. However, DE PCCT with Ho a K-edge filter provided 30-40% higher CNR than the DE DSCT with 0.4/0.8 mm Sn filters. The experimental PCCT provided higher CNR in general imaging compared to the DSCT. In experimental DE subtracted images, the DSCT provided higher CNR than the PCCT with a Cu filter. However, experimental CNR with DE PCCT with K-edge filter was 15% higher than in DE DSCT, which is less than 30-40% increase predicted by the simulation study. It is concluded that ideal PCCT can provide substantial advantages over ideal
FACULTY DIVERSITY AND TENURE IN HIGHER EDUCATION.
Abdul-Raheem, Jalelah
2016-01-01
There is a need for minority faculty in higher education due to the increase in minority high school graduates and higher education enrollees. Faculty members who are tenured have the ability to advocate for cultural equality in their institutions and serve as mentors for students. Minority faculty whose tenured process is hindered by inequality may also be unable to become a proper mentor for minority students. The purpose of this paper is to identify why faculty diversity will lead to increased student success and comfort, minority mentors, minority research, and equity advocacy, and representation from all minority groups. PMID:27439231
Higher order Godunov schemes for isothermal hydrodynamics
NASA Technical Reports Server (NTRS)
Balsara, Dinshaw S.
1994-01-01
In this paper we construct higher order Godunov schemes for isothermal flow. Isothermal hydrodynamics serves as a good representation for several systems of astrophysical interest. The schemes designed here have second-order accuracy in space and time and some are third-order accurate for advection. Moreover, several ingredients of these schemes are essential components of even higher order. The methods designed here have excellent ability to represent smooth flow yet capture shocks with high resolution. Several test problems are presented. The algorithms presented here are compared with other algorithms having a comparable formal order of accuracy.
Dual-Doppler Feasibility Study
NASA Technical Reports Server (NTRS)
Huddleston, Lisa L.
2012-01-01
When two or more Doppler weather radar systems are monitoring the same region, the Doppler velocities can be combined to form a three-dimensional (3-D) wind vector field thus providing for a more intuitive analysis of the wind field. A real-time display of the 3-D winds can assist forecasters in predicting the onset of convection and severe weather. The data can also be used to initialize local numerical weather prediction models. Two operational Doppler Radar systems are in the vicinity of Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS); these systems are operated by the 45th Space Wing (45 SW) and the National Weather Service Melbourne, Fla. (NWS MLB). Dual-Doppler applications were considered by the 45 SW in choosing the site for the new radar. Accordingly, the 45th Weather Squadron (45 WS), NWS MLB and the National Aeronautics and Space Administration tasked the Applied Meteorology Unit (AMU) to investigate the feasibility of establishing dual-Doppler capability using the two existing systems. This study investigated technical, hardware, and software requirements necessary to enable the establishment of a dual-Doppler capability. Review of the available literature pertaining to the dual-Doppler technique and consultation with experts revealed that the physical locations and resulting beam crossing angles of the 45 SW and NWS MLB radars make them ideally suited for a dual-Doppler capability. The dual-Doppler equations were derived to facilitate complete understanding of dual-Doppler synthesis; to determine the technical information requirements; and to determine the components of wind velocity from the equation of continuity and radial velocity data collected by the two Doppler radars. Analysis confirmed the suitability of the existing systems to provide the desired capability. In addition, it is possible that both 45 SW radar data and Terminal Doppler Weather Radar data from Orlando International Airport could be used to alleviate any
Phase space representation of quantum dynamics
Polkovnikov, Anatoli
2010-08-15
We discuss a phase space representation of quantum dynamics of systems with many degrees of freedom. This representation is based on a perturbative expansion in quantum fluctuations around one of the classical limits. We explicitly analyze expansions around three such limits: (i) corpuscular or Newtonian limit in the coordinate-momentum representation, (ii) wave or Gross-Pitaevskii limit for interacting bosons in the coherent state representation, and (iii) Bloch limit for the spin systems. We discuss both the semiclassical (truncated Wigner) approximation and further quantum corrections appearing in the form of either stochastic quantum jumps along the classical trajectories or the nonlinear response to such jumps. We also discuss how quantum jumps naturally emerge in the analysis of non-equal time correlation functions. This representation of quantum dynamics is closely related to the phase space methods based on the Wigner-Weyl quantization and to the Keldysh technique. We show how such concepts as the Wigner function, Weyl symbol, Moyal product, Bopp operators, and others automatically emerge from the Feynmann's path integral representation of the evolution in the Heisenberg representation. We illustrate the applicability of this expansion with various examples mostly in the context of cold atom systems including sine-Gordon model, one- and two-dimensional Bose-Hubbard model, Dicke model and others.
Localization of Unitary Braid Group Representations
NASA Astrophysics Data System (ADS)
Rowell, Eric C.; Wang, Zhenghan
2012-05-01
Governed by locality, we explore a connection between unitary braid group representations associated to a unitary R-matrix and to a simple object in a unitary braided fusion category. Unitary R-matrices, namely unitary solutions to the Yang-Baxter equation, afford explicitly local unitary representations of braid groups. Inspired by topological quantum computation, we study whether or not it is possible to reassemble the irreducible summands appearing in the unitary braid group representations from a unitary braided fusion category with possibly different positive multiplicities to get representations that are uniformly equivalent to the ones from a unitary R-matrix. Such an equivalence will be called a localization of the unitary braid group representations. We show that the q = e π i/6 specialization of the unitary Jones representation of the braid groups can be localized by a unitary 9 × 9 R-matrix. Actually this Jones representation is the first one in a family of theories ( SO( N), 2) for an odd prime N > 1, which are conjectured to be localizable. We formulate several general conjectures and discuss possible connections to physics and computer science.
Spatially variant morphological restoration and skeleton representation.
Bouaynaya, Nidhal; Charif-Chefchaouni, Mohammed; Schonfeld, Dan
2006-11-01
The theory of spatially variant (SV) mathematical morphology is used to extend and analyze two important image processing applications: morphological image restoration and skeleton representation of binary images. For morphological image restoration, we propose the SV alternating sequential filters and SV median filters. We establish the relation of SV median filters to the basic SV morphological operators (i.e., SV erosions and SV dilations). For skeleton representation, we present a general framework for the SV morphological skeleton representation of binary images. We study the properties of the SV morphological skeleton representation and derive conditions for its invertibility. We also develop an algorithm for the implementation of the SV morphological skeleton representation of binary images. The latter algorithm is based on the optimal construction of the SV structuring element mapping designed to minimize the cardinality of the SV morphological skeleton representation. Experimental results show the dramatic improvement in the performance of the SV morphological restoration and SV morphological skeleton representation algorithms in comparison to their translation-invariant counterparts. PMID:17076415
General Regression and Representation Model for Classification
Qian, Jianjun; Yang, Jian; Xu, Yong
2014-01-01
Recently, the regularized coding-based classification methods (e.g. SRC and CRC) show a great potential for pattern classification. However, most existing coding methods assume that the representation residuals are uncorrelated. In real-world applications, this assumption does not hold. In this paper, we take account of the correlations of the representation residuals and develop a general regression and representation model (GRR) for classification. GRR not only has advantages of CRC, but also takes full use of the prior information (e.g. the correlations between representation residuals and representation coefficients) and the specific information (weight matrix of image pixels) to enhance the classification performance. GRR uses the generalized Tikhonov regularization and K Nearest Neighbors to learn the prior information from the training data. Meanwhile, the specific information is obtained by using an iterative algorithm to update the feature (or image pixel) weights of the test sample. With the proposed model as a platform, we design two classifiers: basic general regression and representation classifier (B-GRR) and robust general regression and representation classifier (R-GRR). The experimental results demonstrate the performance advantages of proposed methods over state-of-the-art algorithms. PMID:25531882
ERIC Educational Resources Information Center
Haley, Katrina A.
2013-01-01
This study provides an in-depth analysis of whether students who take dual enrollment and/or AP classes have higher ACT test scores compared to a group of their peers that did not take dual enrollment or AP courses. The study also identified the demographic characteristics (ethnicity, gender, and socio-economic status) of students with a 3.0 or…
Dual of QCD with one adjoint fermion
Mojaza, Matin; Nardecchia, Marco; Pica, Claudio; Sannino, Francesco
2011-03-15
We construct the magnetic dual of QCD with one adjoint Weyl fermion. The dual is a consistent solution of the 't Hooft anomaly matching conditions, allows for flavor decoupling, and remarkably constitutes the first nonsupersymmetric dual valid for any number of colors. The dual allows to bound the anomalous dimension of the Dirac fermion mass operator to be less than one in the conformal window.
Decomposition of the polynomial kernel of arbitrary higher spin Dirac operators
Eelbode, D.; Raeymaekers, T.; Van der Jeugt, J.
2015-10-15
In a series of recent papers, we have introduced higher spin Dirac operators, which are generalisations of the classical Dirac operator. Whereas the latter acts on spinor-valued functions, the former acts on functions taking values in arbitrary irreducible half-integer highest weight representations for the spin group. In this paper, we describe how the polynomial kernel spaces of such operators decompose in irreducible representations of the spin group. We will hereby make use of results from representation theory.
Lee, Su-Jin; Hong, Joo Yeon; Lee, Eun-Jung; Chung, Hyun-Jung; Lim, Seung-Taik
2015-05-20
The japonica (JR) and indica (IR) rice starches were modified by acetylation, hydroxypropylation, cross-linking, and dual modification (cross-linked acetylation and cross-linked hydroxypropylation) and the effects of single and dual chemical modifications of JR and WR on the physicochemical properties were investigated. The JR had a greater substitution degree of acetyl or hydroxypropyl groups than IR. The dual-modified JR showed broader gelatinization temperature range than corresponding single-modified starches, but narrower it in IR. The dual-modified JR and IR showed higher pasting temperature and lower breakdown than their corresponding single-modified starches. The dual modification with JR and IR induced significant increase in gel hardness as compared to the corresponding unmodified and single-modified starches. The dual-modified JR had a greater hardness, gumminess, and chewiness than the dual-modified IR. The different impact of single and dual modification with JR and IR on the physicochemical properties could be due to the differences in the location and distribution of substituent groups on the starch molecules. PMID:25817645
Artistic Representation with Pulsed Holography
NASA Astrophysics Data System (ADS)
Ishii, S.
2013-02-01
This thesis describes artistic representation through pulsed holography. One of the prevalent practical problems in making holograms is object movement. Any movement of the object or film, including movement caused by acoustic vibration, has the same fatal results. One way of reducing the chance of movement is by ensuring that the exposure is very quick; using a pulsed laser can fulfill this objective. The attractiveness of using pulsed laser is based on the variety of materials or objects that can be recorded (e.g., liquid material or instantaneous scene of a moving object). One of the most interesting points about pulsed holograms is that some reconstructed images present us with completely different views of the real world. For example, the holographic image of liquid material does not appear fluid; it looks like a piece of hard glass that would produce a sharp sound upon tapping. In everyday life, we are unfamiliar with such an instantaneous scene. On the other hand, soft-textured materials such as a feather or wool differ from liquids when observed through holography. Using a pulsed hologram, we can sense the soft touch of the object or material with the help of realistic three-dimensional (3-D) images. The images allow us to realize the sense of touch in a way that resembles touching real objects. I had the opportunity to use a pulsed ruby laser soon after I started to work in the field of holography in 1979. Since then, I have made pulsed holograms of activities, including pouring water, breaking eggs, blowing soap bubbles, and scattering feathers and popcorn. I have also created holographic art with materials and objects, such as silk fiber, fabric, balloons, glass, flowers, and even the human body. Whenever I create art, I like to present the spectator with a new experience in perception. Therefore, I would like to introduce my experimental artwork through those pulsed holograms.
Preschoolers' narrative representations and childhood adaptation in an ethnoracially diverse sample.
Grey, Izabela K; Yates, Tuppett M
2014-01-01
This investigation evaluated relations between preschoolers' representational content and coherence in the MacArthur Story Stem Battery (MSSB) at age four as related to child adjustment at age six. A community sample of 250 preschoolers (50% female; M(age) = 49.05 months, SD = 2.9; 46% Hispanic, 18% Black, 11.2% White, 0.4% Asian, and 24.4% multiracial) completed assessments of relational representations using the MSSB at age four and of child adjustment at age six, including a measure of child-reported depressive symptomatology and observer ratings of child aggression during a Bobo doll task and inhibitory control during a delay of gratification task. Regression analyses demonstrated prospective relations between negative mother representation and less inhibitory control, negative child representation and higher aggression, and narrative coherence and more inhibitory control. Interactive analyses revealed relations between negative mother representation and difficulties in inhibitory control among White children and weaker relations among Black children. Prospective relations between narrative coherence and increased inhibitory control were less pronounced for Hispanic children. Findings indicate that preschoolers' narratives can reveal the thematic content and structural coherence of their internalized beliefs and expectations of self and (m)other. Associations between representations and children's adaptation have clear implications for representational processes and interventions in development. PMID:25299891
ERIC Educational Resources Information Center
Hill, Matthew; Sharma, Manjula Devi
2015-01-01
To succeed within scientific disciplines, using representations, including those based on words, graphs, equations, and diagrams, is important. Research indicates that the use of discipline specific representations (sometimes referred to as expert generated representations), as well as multi-representational use, is critical for problem solving…
Associative memory - An optimum binary neuron representation
NASA Technical Reports Server (NTRS)
Awwal, A. A.; Karim, M. A.; Liu, H. K.
1989-01-01
Convergence mechanism of vectors in the Hopfield's neural network is studied in terms of both weights (i.e., inner products) and Hamming distance. It is shown that Hamming distance should not always be used in determining the convergence of vectors. Instead, weights (which in turn depend on the neuron representation) are found to play a more dominant role in the convergence mechanism. Consequently, a new binary neuron representation for associative memory is proposed. With the new neuron representation, the associative memory responds unambiguously to the partial input in retrieving the stored information.
Death representation of caregivers in hospice.
Andruccioli, Jessica; Russo, Maria Maffia; Bruschi, Angela; Pedrabissi, Luigi; Sarti, Donatella; Monterubbianesi, Maria Cristina; Rossi, Sabina; Rocconi, Sabina; Raffaeli, William
2012-11-01
In this study, we investigated caregiver's death representation in hospice. The results presented here are a further analysis of the data collected in our previous study, concerning the evaluation of the caregiver in hospice. The data analysis of 24 caregivers of patients hospitalized in Rimini Hospice (Italy) underlined that caregivers avoiding death representation of the patient admitted to hospice had fewer protective factors (52.3%) and more risk factors (47.7%) than caregivers nonavoiding (66.5% and 33.5%, respectively). Caregivers avoiding death representation, moreover, experienced a greater distress (58%) than those nonavoiding (42%). PMID:22241459
Understanding as Integration of Heterogeneous Representations
NASA Astrophysics Data System (ADS)
Martínez, Sergio F.
2014-03-01
The search for understanding is a major aim of science. Traditionally, understanding has been undervalued in the philosophy of science because of its psychological underpinnings; nowadays, however, it is widely recognized that epistemology cannot be divorced from psychology as sharp as traditional epistemology required. This eliminates the main obstacle to give scientific understanding due attention in philosophy of science. My aim in this paper is to describe an account of scientific understanding as an emergent feature of our mastering of different (causal) explanatory frameworks that takes place through the mastering of scientific practices. Different practices lead to different kinds of representations. Such representations are often heterogeneous. The integration of such representations constitute understanding.
Minimal representations, geometric quantization, and unitarity.
Brylinski, R; Kostant, B
1994-01-01
In the framework of geometric quantization we explicitly construct, in a uniform fashion, a unitary minimal representation pio of every simply-connected real Lie group Go such that the maximal compact subgroup of Go has finite center and Go admits some minimal representation. We obtain algebraic and analytic results about pio. We give several results on the algebraic and symplectic geometry of the minimal nilpotent orbits and then "quantize" these results to obtain the corresponding representations. We assume (Lie Go)C is simple. PMID:11607478
Sparse representation in speech signal processing
NASA Astrophysics Data System (ADS)
Lee, Te-Won; Jang, Gil-Jin; Kwon, Oh-Wook
2003-11-01
We review the sparse representation principle for processing speech signals. A transformation for encoding the speech signals is learned such that the resulting coefficients are as independent as possible. We use independent component analysis with an exponential prior to learn a statistical representation for speech signals. This representation leads to extremely sparse priors that can be used for encoding speech signals for a variety of purposes. We review applications of this method for speech feature extraction, automatic speech recognition and speaker identification. Furthermore, this method is also suited for tackling the difficult problem of separating two sounds given only a single microphone.
On a categorial aspect of knowledge representation
NASA Astrophysics Data System (ADS)
Tataj, Emanuel; Mulawka, Jan; Nieznański, Edward
Adequate representation of data is crucial for modeling any type of data. To faithfully present and describe the relevant section of the world it is necessary to select the method that can easily be implemented on a computer system which will help in further description allowing reasoning. The main objective of this contribution is to present methods of knowledge representation using categorial approach. Next to identify the main advantages for computer implementation. Categorical aspect of knowledge representation is considered in semantic networks realisation. Such method borrows already known metaphysics properties for data modeling process. The potential topics of further development of categorical semantic networks implementations are also underlined.
7 CFR 247.19 - Dual participation.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 4 2014-01-01 2014-01-01 false Dual participation. 247.19 Section 247.19 Agriculture... CHILD NUTRITION PROGRAMS COMMODITY SUPPLEMENTAL FOOD PROGRAM § 247.19 Dual participation. (a) What must State and local agencies do to prevent and detect dual participation? The State agency must work...
7 CFR 247.19 - Dual participation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 4 2010-01-01 2010-01-01 false Dual participation. 247.19 Section 247.19 Agriculture... CHILD NUTRITION PROGRAMS COMMODITY SUPPLEMENTAL FOOD PROGRAM § 247.19 Dual participation. (a) What must State and local agencies do to prevent and detect dual participation? The State agency must work...
7 CFR 247.19 - Dual participation.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 4 2013-01-01 2013-01-01 false Dual participation. 247.19 Section 247.19 Agriculture... CHILD NUTRITION PROGRAMS COMMODITY SUPPLEMENTAL FOOD PROGRAM § 247.19 Dual participation. (a) What must State and local agencies do to prevent and detect dual participation? The State agency must work...
7 CFR 247.19 - Dual participation.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 4 2011-01-01 2011-01-01 false Dual participation. 247.19 Section 247.19 Agriculture... CHILD NUTRITION PROGRAMS COMMODITY SUPPLEMENTAL FOOD PROGRAM § 247.19 Dual participation. (a) What must State and local agencies do to prevent and detect dual participation? The State agency must work...
7 CFR 247.19 - Dual participation.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 4 2012-01-01 2012-01-01 false Dual participation. 247.19 Section 247.19 Agriculture... CHILD NUTRITION PROGRAMS COMMODITY SUPPLEMENTAL FOOD PROGRAM § 247.19 Dual participation. (a) What must State and local agencies do to prevent and detect dual participation? The State agency must work...
Dual Enrollment in Spanish: One Working Model
ERIC Educational Resources Information Center
Bloom, Melanie; Chambers, Laura
2009-01-01
Dual enrollment is now a nation-wide phenomenon as all 50 states currently offer some form of dual-enrollment program to secondary-school students (Karp, Bailey, Hughes, and Fermin 2005). However, dual enrollment itself is often difficult to define as programs vary from school to school (Jordan, Cavalluzzo, and Corallo 2006). Therefore, language…
Dual Enrollment for High School Students
ERIC Educational Resources Information Center
Edwards, Linsey; Hughes, Katherine
2011-01-01
Dual enrollment programs allow high school students to enroll in college courses and potentially earn college credit. The term concurrent enrollment is sometimes used interchangeably with dual enrollment, and sometimes to refer to a particular model of dual enrollment. In some programs, students earn high school and college credit simultaneously;…
NASA Technical Reports Server (NTRS)
Trinh, Huu; Early, James W.; Thomas, Matthew E.; Bossard, John A.
2006-01-01
A dual-pulse laser (DPL) technique has been demonstrated for generating laser-induced sparks (LIS) to ignite fuels. The technique was originally intended to be applied to the ignition of rocket propellants, but may also be applicable to ignition in terrestrial settings in which electric igniters may not be suitable.
Dual shell pressure balanced vessel
Fassbender, Alexander G.
1992-01-01
A dual-wall pressure balanced vessel for processing high viscosity slurries at high temperatures and pressures having an outer pressure vessel and an inner vessel with an annular space between the vessels pressurized at a pressure slightly less than or equivalent to the pressure within the inner vessel.
Dual numbers and supersymmetric mechanics
NASA Astrophysics Data System (ADS)
Frydryszak, Andrzej M.
2005-11-01
We show that dual numbers, apart from the known practical applications to the description of a rigid body movements in three dimensional space and natural presence in abstract differential algebra, play a role in field theory and are related to supersymmetry as well. Relevant models are considered.
Dual function conducting polymer diodes
Heeger, Alan J.; Yu, Gang
1996-01-01
Dual function diodes based on conjugated organic polymer active layers are disclosed. When positively biased the diodes function as light emitters. When negatively biased they are highly efficient photodiodes. Methods of preparation and use of these diodes in displays and input/output devices are also disclosed.
Dual Processing and Diagnostic Errors
ERIC Educational Resources Information Center
Norman, Geoff
2009-01-01
In this paper, I review evidence from two theories in psychology relevant to diagnosis and diagnostic errors. "Dual Process" theories of thinking, frequently mentioned with respect to diagnostic error, propose that categorization decisions can be made with either a fast, unconscious, contextual process called System 1 or a slow, analytical,…
Dual acting slit control mechanism
NASA Technical Reports Server (NTRS)
Struthoff, G. L. (Inventor)
1980-01-01
A dual acting control system for mass spectrometers is described, which permits adjustment of the collimating slit width and centering of the collimating slit while using only one vacuum penetration. Coaxial shafts, each with independent vacuum bellows are used to independently move the entire collimating assembly or to adjust the slit dimension through a parallelogram linkage.
Dual wire weld feed proportioner
NASA Technical Reports Server (NTRS)
Nugent, R. E.
1968-01-01
Dual feed mechanism enables proportioning of two different weld feed wires during automated TIG welding to produce a weld alloy deposit of the desired composition. The wires are fed into the weld simultaneously. The relative feed rates of the wires and the wire diameters determine the weld deposit composition.
Pose and Motion Estimation Using Dual Quaternion-Based Extended Kalman Filtering
Goddard, J.S.; Abidi, M.A.
1998-06-01
A solution to the remote three-dimensional (3-D) measurement problem is presented for a dynamic system given a sequence of two-dimensional (2-D) intensity images of a moving object. The 3-D transformation is modeled as a nonlinear stochastic system with the state estimate providing the six-degree-of-freedom motion and position values as well as structure. The stochastic model uses the iterated extended Kalman filter (IEKF) as a nonlinear estimator and a screw representation of the 3-D transformation based on dual quaternions. Dual quaternions, whose elements are dual numbers, provide a means to represent both rotation and translation in a unified notation. Linear object features, represented as dual vectors, are transformed using the dual quaternion transformation and are then projected to linear features in the image plane. The method has been implemented and tested with both simulated and actual experimental data. Simulation results are provided, along with comparisons to a point-based IEKF method using rotation and translation, to show the relative advantages of this method. Experimental results from testing using a camera mounted on the end effector of a robot arm are also given.
Pose and motion estimation using dual quaternion-based extended Kalman filtering
NASA Astrophysics Data System (ADS)
Goddard, J. S.; Abidi, Mongi A.
1998-03-01
A solution to the remote three-dimensional (3-D) measurement problem is presented for a dynamic system given a sequence of two-dimensional (2-D) intensity images of a moving object. The 3-D transformation is modeled as a nonlinear stochastic system with the state estimate providing the six-degree-of-freedom motion and position values as well as structure. The stochastic model uses the iterated extended Kalman filter (IEKF) as a nonlinear estimator and a screw representation of the 3-D transformation based on dual quaternions. Dual quaternions, whose elements are dual numbers, provide a means to represent both rotation and translation in a unified notation. Linear object features, represented as dual vectors, are transformed using the dual quaternion transformation and are then projected to linear features in the image plane. The method has been implemented and tested with both simulated and actual experimental data. Simulation results are provided, along with comparisons to a point-based IEKF method using rotation and translation, to show the relative advantages of this method. Experimental results from testing using a camera mounted on the end effector of a robot arm are also given.
Student Satisfaction and Academic Performance in a Dual PharmD/MBA Degree Program
Chumney, Elinor CG.; Ragucci, Kelly R.
2006-01-01
Objectives Evaluate the academic experience and satisfaction of students enrolled in the dual PharmD/MBA degree program between the South Carolina College of Pharmacy and The Citadel's School of Business Administration. Compare grade point averages of students enrolled in the dual degree program with those of traditional student colleagues. Methods A standardized satisfaction survey instrument was administered to 32 students currently enrolled in the dual PharmD/MBA degree program. Grade point averages (GPAs) in both pharmacy and business coursework were also collected for analysis. Results There were slightly higher percentages of both female and minority students in the dual degree program compared to the pharmacy class as a whole. Eighteen (56%) of students completed the survey, and responses were generally positive. The mean GPA of students in the dual degree program was higher than that of both pharmacy (3.37 vs 3.08, p < 0.001) and business (3.72 vs 3.64, not statistically significant) students not enrolled in the dual degree program. Conclusions Students enrolled in the dual degree program did better academically than their counterparts and indicated an overall high level of satisfaction with the program. PMID:17149409
2013-01-01
The results of performance of 40 healthy volunteers (29.8 ± 2.47 y.o.) in four dual tasks that included postural balance task as a motor sub-task and calculation as a cognitive sub-task were compared to results of individual psychological assessment which measured working and spatial memory capacity, speed of attention switch etc. Performance of participants in dual tasks was not uniform. For each of four tasks four types of performance were observed. Those included decrease of performance in both or one task and increase of performance in both tasks. In one of the four dual tasks 30% of the group of participants performed in both components of dual task better then in separate motor and cognitive tasks. Better performance in this dual task correlated with higher speed of attention switch, higher estimates of spatial and working memory. Analysis of results of psychological and stabilografic investigations showed negative correlation between speed of sway of center of pressure (CoP) and speed of attention switch test, and also between amplitude of CoP sway along frontal axis and capacity of spatial and working memory. These correlations reflect involvement of cognitive resources in voluntary postural control and motor automatism in successful dual task performance. Selected variant of dual task could be used as an instrument of selection of individuals for activities related to high informational loads. PMID:25508959
Zharikov, A V; Zhavoronkova, L A; Kuptsova, S B; Kushnir, E M; Kulikov, M A; Mikhalkova, A A
2013-01-01
The results of performance of 40 healthy volunteers (29.8 ± 2.47 y.o.) in four dual tasks that included postural balance task as a motor sub-task and calculation as a cognitive sub-task were compared to results of individual psychological assessment which measured working and spatial memory capacity, speed of attention switch etc. Performance of participants in dual tasks was not uniform. For each of four tasks four types of performance were observed. Those included decrease of performance in both or one task and increase of performance in both tasks. In one of the four dual tasks 30% of the group of participants performed in both components of dual task better then in separate motor and cognitive tasks. Better performance in this dual task correlated with higher speed of attention switch, higher estimates of spatial and working memory. Analysis of results of psychological and stabilografic investigations showed negative correlation between speed of sway of center of pressure (CoP) and speed of attention switch test, and also between amplitude of CoP sway along frontal axis and capacity of spatial and working memory. These correlations reflect involvement of cognitive resources in voluntary postural control and motor automatism in successful dual task performance. Selected variant of dual task could be used as an instrument of selection of individuals for activities related to high informational loads. PMID:25486828
Composite behaviors of dual meminductor circuits
NASA Astrophysics Data System (ADS)
Zheng, Ci-Yan; Yu, Dong-Sheng; Liang, Yan; Chen, Meng-Ke
2015-11-01
This paper focuses on analyzing the composite dynamic behaviors of two meminductors in serial and parallel connections with different polarities. Based on the constitutive relations, two time-integral-of-flux (TIF) controlled meminductors are adopted to theoretically demonstrate the variation of memductance in terms of TIF, charge, flux, and current. By utilizing a floating memristor-less meminductor emulator, the theoretical analysis reported in this paper is confirmed via a PSPICE simulation study and hardware experiment. Good agreement among theoretical analysis, simulation, and hardware validation confirms that dual meminductor circuits in composite connections behave as a new meminductor with higher complexity. Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2013QNB28.)
Representation of the Alpine snowpack in CMIP5 models
NASA Astrophysics Data System (ADS)
Terzago, Silvia; Palazzi, Elisa; von Hardenberg, Jost; Provenzale, Antonello
2016-04-01
Global Climate Models (GCMs) still have too coarse spatial resolution to adequately reproduce the small-scale variability of precipitation and snowpack in orographically complex areas but increasingly higher resolutions are currently being introduced for the next generation of models. As a preliminary step a comparative assessment of the performances of the current, state-of-art GCMs in the representation of the snowpack characteristics is needed. Our study investigates how the GCMs participating in the Coupled Models Intercomparison Project phase 5 (CMIP5) represent the snow water equivalent and snow depth climatology over the Greater Alpine Region (4-19°E, 43-49°N) during the historical period 1980-2005. We compare the CMIP5 model outputs to the available satellite and reanalysis products, including Global Monthly EASE-Grid Snow Water Equivalent Climatology, Climate Forecast System Reanalysis, Modern Era-Retrospective analysis for Research and Applications, ERA-Interim/Land and 20th Century reanalyses, highlighting common features and discrepancies. We also explore the models spread in the representation of the snow seasonal cycle and its projected changes for the XXI century in RCP4.5 and RCP8.5 scenarios, discussing the results in the frame of the latest literature studies. The present analysis aims at providing a comprehensive picture of the current uncertainties in the representation of snowpack by the major gridded snow datasets derived from remote sensing, reanalyses and model simulations, in condition of complex orography.
Perceptual Learning Selectively Refines Orientation Representations in Early Visual Cortex
Jehee, Janneke F.M.; Ling, Sam; Swisher, Jascha D.; van Bergen, Ruben S.; Tong, Frank
2013-01-01
Although practice has long been known to improve perceptual performance, the neural basis of this improvement in humans remains unclear. Using fMRI in conjunction with a novel signal detection-based analysis, we show that extensive practice selectively enhances the neural representation of trained orientations in the human visual cortex. Twelve observers practiced discriminating small changes in the orientation of a laterally presented grating over 20 or more daily one-hour training sessions. Training on average led to a two-fold improvement in discrimination sensitivity, specific to the trained orientation and the trained location, with minimal improvement found for untrained orthogonal orientations or for orientations presented in the untrained hemifield. We measured the strength of orientation-selective responses in individual voxels in early visual areas (V1–V4) using signal detection measures, both pre- and post-training. Although the overall amplitude of the BOLD response was no greater after training, practice nonetheless specifically enhanced the neural representation of the trained orientation at the trained location. This training-specific enhancement of orientation-selective responses was observed in the primary visual cortex (V1) as well as higher extrastriate visual areas V2–V4, and moreover, reliably predicted individual differences in the behavioral effects of perceptual learning. These results demonstrate that extensive training can lead to targeted functional reorganization of the human visual cortex, refining the cortical representation of behaviorally relevant information. PMID:23175828
Altered representation of facial expressions after early visual deprivation
Gao, Xiaoqing; Maurer, Daphne; Nishimura, Mayu
2013-01-01
We investigated the effects of early visual deprivation on the underlying representation of the six basic emotions. Using multi-dimensional scaling (MDS), we compared the similarity judgments of adults who had missed early visual input because of bilateral congenital cataracts to control adults with normal vision. Participants made similarity judgments of the six basic emotional expressions, plus neutral, at three different intensities. Consistent with previous studies, the similarity judgments of typical adults could be modeled with four underlying dimensions, which can be interpreted as representing pleasure, arousal, potency and intensity of expressions. As a group, cataract-reversal patients showed a systematic structure with dimensions representing pleasure, potency, and intensity. However, an arousal dimension was not obvious in the patient group's judgments. Hierarchical clustering analysis revealed a pattern in patients seen in typical 7-year-olds but not typical 14-year-olds or adults. There was also more variability among the patients than among the controls, as evidenced by higher stress values for the MDS fit to the patients' data and more dispersed weightings on the four dimensions. The findings suggest an important role for early visual experience in shaping the later development of the representations of emotions. Since the normal underlying structure for emotion emerges postnatally and continues to be refined until late childhood, the altered representation of emotion in adult patients suggests a sleeper effect. PMID:24312071
Dual keel space station control/structures interaction study
NASA Technical Reports Server (NTRS)
Young, John W.; Lallman, Frederick J.; Cooper, Paul A.
1987-01-01
A study was made to determine the influence of truss bay size on the performance of the space station control system. The objective was to determine if any control problems existed during reboost and to assess the level of potential control/structures interaction during operation of the control moment gyros used for vertical stabilization. The models analyzed were detailed finite-element representations of the 5 meter and 9 foot growth versions of the 300 kW dual keel station. Results are presented comparing the performance of the reboost control system for both versions of the space station. Standards for comparison include flexible effects at the attitude control sensor locations and flexible contributions to pointing error at the solar collectors. Bode analysis results are presented for the attitude control system and control, structural, and damping sensitivities are examined.
Urban traffic from the perspective of dual graph
NASA Astrophysics Data System (ADS)
Hu, M.-B.; Jiang, R.; Wu, Y.-H.; Wang, W.-X.; Wu, Q.-S.
2008-05-01
Urban traffic is modeled using a dual graph representation of the urban transport network, where roads are mapped to nodes and intersections are mapped to links. The proposed model considers both the navigation of the vehicles in the network and the motion of the vehicles along roads. The vehicle-holding ability of roads and the vehicle-turning ability at intersections are also incorporated. The overall handling ability of the system can be quantified by a phase transition from free flow to congestion. Simulations show that the system's handling ability greatly depends on the topology of the transportation network. In general, a well-planned grid can hold more vehicles, and its overall handling ability is much greater than that of a growing self-organized network.
16 CFR 322.3 - Prohibited representations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... and relies upon competent and reliable evidence that substantiates that the representation is true. For the purposes of this paragraph, “competent and reliable evidence” means tests, analyses, research... accepted in the profession to yield accurate and reliable results....
16 CFR 322.3 - Prohibited representations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... and relies upon competent and reliable evidence that substantiates that the representation is true. For the purposes of this paragraph, “competent and reliable evidence” means tests, analyses, research... accepted in the profession to yield accurate and reliable results....
Identities, social representations and critical thinking
NASA Astrophysics Data System (ADS)
López-Facal, Ramón; Jiménez-Aleixandre, María Pilar
2009-09-01
This comment on L. Simonneaux and J. Simonneaux paper focuses on the role of identities in dealing with socio-scientific issues. We argue that there are two types of identities (social representations) influencing the students' positions: On the one hand their social representations of the bears' and wolves' identities as belonging to particular countries (Slovenia versus France for bears, France and Italy for wolves), in other words, as having national identities; on the other hand representations of their own identities as belonging to the field of agricultural practitioners, and so sharing this socio-professional identity with shepherds and breeders, as opposed to ecologists. We discuss how these representations of identities influenced students' reasoning and argumentation, blocking in some cases the evaluation of evidence. Implications for developing critical thinking and for dealing with SSI in the classrooms are outlined.
29 CFR 452.127 - Proportionate representation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the election provisions of the Act. Congress did not attempt to specify the organizational structure... delegates who have been chosen by secret ballot, the structure of representation of the membership is...
48 CFR 2009.570-4 - Representation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Organizational Conflicts of Interest 2009.570-4 Representation... whether situations or relationships exist which may constitute organizational conflicts of interest with... criteria stated in the following paragraph (b) of this section. (b) The organizational conflicts...
through the Use of Aesthetic Representations
ERIC Educational Resources Information Center
Crim, Courtney L.; Kennedy, Kimberley D.; Thornton, Jenifer S.
2013-01-01
multiple intelligences, and aesthetic representations. Next, it presents the methodology, reports findings, and discusses themes related to the authors' research questions. Finally, it concludes that tapping into students' multiple intelligence strength(s) is an…
2-Group Representations for Spin Foams
Baratin, Aristide; Wise, Derek K.
2009-12-15
Just as 3d state sum models, including 3d quantum gravity, can be built using categories of group representations, '2-categories of 2-group representations' may provide interesting state sum models for 4d quantum topology, if not quantum gravity. Here we focus on the 'Euclidean 2-group', built from the rotation group SO (4) and its action on the translation group R{sup 4} of Euclidean space. We explain its infinite-dimensional unitary representations, and construct a model based on the resulting representation 2-category. This model, with clear geometric content and explicit 'metric data' on triangulation edges, shows up naturally in an attempt to write the amplitudes of ordinary quantum field theory in a background independent way.
Galois Representations Connected with Hyperbolic Curves
NASA Astrophysics Data System (ADS)
Voevodskiĭ, V. A.
1992-06-01
The author considers Galois group actions on the fundamental groups of curves of hyperbolic type, and proves certain cases of Grothendieck's conjecture about the possibility of recovering a curve from its Galois representation.
Mental Representations Formed From Educational Website Formats
Elizabeth T. Cady; Kimberly R. Raddatz; Tuan Q. Tran; Bernardo de la Garza; Peter D. Elgin
2006-10-01
The increasing popularity of web-based distance education places high demand on distance educators to format web pages to facilitate learning. However, limited guidelines exist regarding appropriate writing styles for web-based distance education. This study investigated the effect of four different writing styles on reader’s mental representation of hypertext. Participants studied hypertext written in one of four web-writing styles (e.g., concise, scannable, objective, and combined) and were then administered a cued association task intended to measure their mental representations of the hypertext. It is hypothesized that the scannable and combined styles will bias readers to scan rather than elaborately read, which may result in less dense mental representations (as identified through Pathfinder analysis) relative to the objective and concise writing styles. Further, the use of more descriptors in the objective writing style will lead to better integration of ideas and more dense mental representations than the concise writing style.
Students' understanding of molecular structure representations
NASA Astrophysics Data System (ADS)
Ferk, Vesna; Vrtacnik, Margareta; Blejec, Andrej; Gril, Alenka
2003-10-01
The purpose of the investigation was to determine the meanings attached by students to the different kinds of molecular structure representations used in chemistry teaching. The students (n = 124) were from primary (aged 13-14 years) and secondary (aged 17-18 years) schools and a university (aged 21-25 years). A computerised 'Chemical Visualisation Test' was developed and applied. The research indicates that students' appreciation of three-dimensional molecular structures differs according to the kind of representation used. The best results were achieved with the use of concrete, and pseudo-concrete types of representations (e.g. three-dimensional models, their photographs, computer-generated models). However, the use of more abstract types (e.g. schematic representations, stereochemical formula) was less effective. A correlation between students' results on the Chemical Visualisation Test and their educational level, spatial visualisation, and spatial relations skills was shown statistically, but no statistically significant gender differences were observed.
Applied research in auditory data representation
NASA Astrophysics Data System (ADS)
Frysinger, Steve P.
1990-08-01
A class of data displays, characterized generally as Auditory Data Representation, is described and motivated. This type of data representation takes advantage of the tremendous pattern recognition capability of the human auditory channel. Audible displays offer an alternative means of conveying quantitative data to the analyst to facilitate information extraction, and are successfully used alone and in conjunction with visual displays. The Auditory Data Representation literature is reviewed, along with elements of the allied fields of investigation, Psychoacoustics and Musical Perception. A methodology for applied research in this field, based upon the well-developed discipline of psychophysics, is elaborated using a recent experiment as a case study. This method permits objective estimation of a data representation technique by comparing it to alternative displays for the pattern recognition task at hand. The psychophysical threshold of signal to noise level, for constant pattern recognition performance, is the measure of display effectiveness.
Representation and perception of scenic layout.
Sanocki, Thomas
2003-08-01
This paper presents a cognitive approach to on-line spatial perception within scenes. A theoretical framework is developed, based on the idea that experience with a scene can activate a complex representation of layout that facilitates subsequent processing of spatial relations within the scene. The representations integrate significant, relevant scenic information and are substantial in amount or extent. The representations are active across short periods of time and across changes in the retinal position of the image. These claims were supported in a series of experiments in which pictures of scenes (primes) facilitated subsequent spatial relations processing within the scenes. The prime-induced representations integrated object identity and layout, were broad in scope, involved both foreground and background information, and were effective across changes in image position. PMID:12852935
Interactive information retrieval systems with minimalist representation
Domeshek, E.; Kedar, S.; Gordon, A.
1996-12-31
Almost any information you might want is becoming available on-line. The problem is how to find what you need. One strategy to improve access to existing information sources, is intelligent information agents - an approach based on extensive representation and inference. Another alternative is to simply concentrate on better information organization and indexing. Our systems use a form of conceptual indexing sensitive to users` task-specific information needs. We aim for minimalist representation, coding only select aspects of stored items. Rather than supporting reliable automated inference, the primary purpose of our representations is to provide sufficient discrimination and guidance to a user for a given domain and task. This paper argues, using case studies, that minimal representations can make strong contributions to the usefulness and usability of interactive information systems, while minimizing knowledge engineering effort. We demonstrate this approach in several broad spectrum applications including video retrieval and advisory systems.
Division algebra representations of SO(4, 2)
NASA Astrophysics Data System (ADS)
Kincaid, Joshua; Dray, Tevian
2014-08-01
Representations of SO(4, 2) are constructed using 4×4 and 2×2 matrices with elements in ℍ' ⊗ ℂ and the known isomorphism between the conformal group and SO(4, 2) is written explicitly in terms of the 4×4 representation. The Clifford algebra structure of SO(4, 2) is briefly discussed in this language, as is its relationship to other groups of physical interest.
One dimensional representations in quantum optics
NASA Technical Reports Server (NTRS)
Janszky, J.; Adam, P.; Foldesi, I.; Vinogradov, An. V.
1993-01-01
The possibility of representing the quantum states of a harmonic oscillator not on the whole alpha-plane but on its one dimensional manifolds is considered. It is shown that a simple Gaussian distribution along a straight line describes a quadrature squeezed state while a similar Gaussian distribution along a circle leads to the amplitude squeezed state. The connection between the one dimensional representations and the usual Glauber representation is discussed.
Compact 2-D graphical representation of DNA
NASA Astrophysics Data System (ADS)
Randić, Milan; Vračko, Marjan; Zupan, Jure; Novič, Marjana
2003-05-01
We present a novel 2-D graphical representation for DNA sequences which has an important advantage over the existing graphical representations of DNA in being very compact. It is based on: (1) use of binary labels for the four nucleic acid bases, and (2) use of the 'worm' curve as template on which binary codes are placed. The approach is illustrated on DNA sequences of the first exon of human β-globin and gorilla β-globin.
Properties of Artifact Representations for Evolutionary Design
NASA Technical Reports Server (NTRS)
Hornby, Gregory S.
2004-01-01
To achieve evolutionary design systems that scale to the levels achieved by man-made artifacts we can look to their characteristics of modularity, hierarchy and regularity to guide us. For this we focus on design representations, since they strongly determine the ability of evolutionary design systems to evolve artifacts with these characteristics. We identify three properties of design representations - combination, control-flow and abstraction - and discuss how they relate to hierarchy, modularity and regularity.
Dual nozzle aerodynamic and cooling analysis study
NASA Technical Reports Server (NTRS)
Meagher, G. M.
1981-01-01
Analytical models to predict performance and operating characteristics of dual nozzle concepts were developed and improved. Aerodynamic models are available to define flow characteristics and bleed requirements for both the dual throat and dual expander concepts. Advanced analytical techniques were utilized to provide quantitative estimates of the bleed flow, boundary layer, and shock effects within dual nozzle engines. Thermal analyses were performed to define cooling requirements for baseline configurations, and special studies of unique dual nozzle cooling problems defined feasible means of achieving adequate cooling.
Renal applications of dual-energy CT.
Kaza, Ravi K; Platt, Joel F
2016-06-01
Dual-energy CT is being increasingly used for abdominal imaging due to its incremental benefit of material characterization without significant increase in radiation dose. Knowledge of the different dual-energy CT acquisition techniques and image processing algorithms is essential to optimize imaging protocols and understand potential limitations while using dual-energy CT renal imaging such as urinary calculi characterization, assessment of renal masses and in CT urography. This review article provides an overview of the current dual-energy CT techniques and use of dual-energy CT in renal imaging. PMID:27010938
Parsed and fixed block representations of visual information for image retrieval
NASA Astrophysics Data System (ADS)
Bae, Soo Hyun; Juang, Biing-Hwang
2009-02-01
The theory of linguistics teaches us the existence of a hierarchical structure in linguistic expressions, from letter to word root, and on to word and sentences. By applying syntax and semantics beyond words, one can further recognize the grammatical relationship between among words and the meaning of a sequence of words. This layered view of a spoken language is useful for effective analysis and automated processing. Thus, it is interesting to ask if a similar hierarchy of representation of visual information does exist. A class of techniques that have a similar nature to the linguistic parsing is found in the Lempel-Ziv incremental parsing scheme. Based on a new class of multidimensional incremental parsing algorithms extended from the Lempel-Ziv incremental parsing, a new framework for image retrieval, which takes advantage of the source characterization property of the incremental parsing algorithm, was proposed recently. With the incremental parsing technique, a given image is decomposed into a number of patches, called a parsed representation. This representation can be thought of as a morphological interface between elementary pixel and a higher level representation. In this work, we examine the properties of two-dimensional parsed representation in the context of imagery information retrieval and in contrast to vector quantization; i.e. fixed square-block representations and minimum average distortion criteria. We implemented four image retrieval systems for the comparative study; three, called IPSILON image retrieval systems, use parsed representation with different perceptual distortion thresholds and one uses the convectional vector quantization for visual pattern analysis. We observe that different perceptual distortion in visual pattern matching does not have serious effects on the retrieval precision although allowing looser perceptual thresholds in image compression result poor reconstruction fidelity. We compare the effectiveness of the use of the
Equivalent-circuit consideration of dual-gate MESFETs at high frequency
NASA Technical Reports Server (NTRS)
Kim, B.
1983-01-01
The simplified high-frequency equivalent circuit of a dual-gate FET is described. It is shown that the input impedance is similar to that of a single-gate FET but the output resistance and capacitance (parallel equivalent circuit) are higher. The output resistance and the transconductance decrease as frequency increases. The unilateral gain of a dual-gate FET rolls off 12 dB/octave.
Exploring the Structure of Spatial Representations.
Madl, Tamas; Franklin, Stan; Chen, Ke; Trappl, Robert; Montaldi, Daniela
2016-01-01
It has been suggested that the map-like representations that support human spatial memory are fragmented into sub-maps with local reference frames, rather than being unitary and global. However, the principles underlying the structure of these 'cognitive maps' are not well understood. We propose that the structure of the representations of navigation space arises from clustering within individual psychological spaces, i.e. from a process that groups together objects that are close in these spaces. Building on the ideas of representational geometry and similarity-based representations in cognitive science, we formulate methods for learning dissimilarity functions (metrics) characterizing participants' psychological spaces. We show that these learned metrics, together with a probabilistic model of clustering based on the Bayesian cognition paradigm, allow prediction of participants' cognitive map structures in advance. Apart from insights into spatial representation learning in human cognition, these methods could facilitate novel computational tools capable of using human-like spatial concepts. We also compare several features influencing spatial memory structure, including spatial distance, visual similarity and functional similarity, and report strong correlations between these dimensions and the grouping probability in participants' spatial representations, providing further support for clustering in spatial memory. PMID:27347681
Mental representation and motor imagery training
Schack, Thomas; Essig, Kai; Frank, Cornelia; Koester, Dirk
2014-01-01
Research in sports, dance and rehabilitation has shown that basic action concepts (BACs) are fundamental building blocks of mental action representations. BACs are based on chunked body postures related to common functions for realizing action goals. In this paper, we outline issues in research methodology and an experimental method, the structural dimensional analysis of mental representation (SDA-M), to assess action-relevant representational structures that reflect the organization of BACs. The SDA-M reveals a strong relationship between cognitive representation and performance if complex actions are performed. We show how the SDA-M can improve motor imagery training and how it contributes to our understanding of coaching processes. The SDA-M capitalizes on the objective measurement of individual mental movement representations before training and the integration of these results into the motor imagery training. Such motor imagery training based on mental representations (MTMR) has been applied successfully in professional sports such as golf, volleyball, gymnastics, windsurfing, and recently in the rehabilitation of patients who have suffered a stroke. PMID:24904368
Exploring the Structure of Spatial Representations
Madl, Tamas; Franklin, Stan; Chen, Ke; Trappl, Robert; Montaldi, Daniela
2016-01-01
It has been suggested that the map-like representations that support human spatial memory are fragmented into sub-maps with local reference frames, rather than being unitary and global. However, the principles underlying the structure of these ‘cognitive maps’ are not well understood. We propose that the structure of the representations of navigation space arises from clustering within individual psychological spaces, i.e. from a process that groups together objects that are close in these spaces. Building on the ideas of representational geometry and similarity-based representations in cognitive science, we formulate methods for learning dissimilarity functions (metrics) characterizing participants’ psychological spaces. We show that these learned metrics, together with a probabilistic model of clustering based on the Bayesian cognition paradigm, allow prediction of participants’ cognitive map structures in advance. Apart from insights into spatial representation learning in human cognition, these methods could facilitate novel computational tools capable of using human-like spatial concepts. We also compare several features influencing spatial memory structure, including spatial distance, visual similarity and functional similarity, and report strong correlations between these dimensions and the grouping probability in participants’ spatial representations, providing further support for clustering in spatial memory. PMID:27347681
Spinor representations of affine Lie algebras
Frenkel, I. B.
1980-01-01
Let [unk] be an infinite-dimensional Kac-Moody Lie algebra of one of the types Dl+1(2), Bl(1), or Dl(1). These algebras are characterized by the property that an elimination of any endpoint of their Dynkin diagrams gives diagrams of types Bl or Dl of classical orthogonal Lie algebras. We construct two representations of a Lie algebra [unk], which we call spinor representations, following the analogy with the classical case. We obtain that every spinor representation is either irreducible or has two irreducible components. This provides us with an explicit construction of fundamental representations of [unk], two for the type Dl+1(2), three for Bl(1), and four for Dl(1). We note the profound connection of our construction with quantum field theory—in particular, with fermion fields. Comparing the character formulas of our representations with another construction of the fundamental representations of Kac-Moody Lie algebras of types Al(1), Dl(1), El(1), we obtain classical Jacobi identities and addition formulas for elliptic θ-functions. PMID:16592912
Seismic-source representation for spall
Day, S.M.; McLaughlin, K.L.
1990-11-21
Spall may be a significant secondary source of seismic waves from underground explosions. The proper representation of spall as a seismic source is important for forward and inverse modeling of explosions for yield estimation and discrimination studies. We present a new derivation of a widely used point force representation for spall, which is based on a horizontal tension crack model. The derivation clarifies the relationship between point force and moment tensor representations of the tension crack. For wavelengths long compared with spall depth, the two representations are equivalent, and the moment tensor time history is proportional to the doubly integrated time history of the point force. Numerical experiments verify that, for regional seismic phases, this equivalence is valid for all frequencies for which the point-source (long wavelength) approximation is valid. Further analysis shows that the moment tensor and point force representations retain their validity for non-planar spall surfaces, provided that the average dip of the surface is small. The equivalency of the two representations implies that a singular inverse problem will result from attempts to infer simultaneously the spectra of both these source terms from seismic waveforms. If the spall moment tensor alone is estimated by inversion of waveform data, the inferred numerical values of its components will depend inversely upon the source depth which is assumed in the inversion formalism.
The Representation and Parametrization of Orthogonal Matrices.
Shepard, Ron; Brozell, Scott R; Gidofalvi, Gergely
2015-07-16
Four representations and parametrizations of orthogonal matrices Q ∈ R(m×n) in terms of the minimal number of essential parameters {φ} are discussed: the exponential representation, the Householder reflector representation, the Givens rotation representation, and the rational Cayley transform representation. Both square n = m and rectangular n < m situations are considered. Two separate kinds of parametrizations are considered: one in which the individual columns of Q are distinct, the Stiefel manifold, and the other in which only span(Q) is significant, the Grassmann manifold. The practical issues of numerical stability, continuity, and uniqueness are discussed. The computation of Q in terms of the essential parameters {φ}, and also the extraction of {φ} for a given Q are considered for all of the parametrizations. The transformation of gradient arrays between the Q and {φ} variables is discussed for all representations. It is our hope that developers of new methods will benefit from this comparative presentation of an important but rarely analyzed subject. PMID:25946418
The Representation of Polysemy: MEG Evidence
Pylkkänen, Liina; Llinás, Rodolfo; Murphy, Gregory L.
2006-01-01
Most words in natural language are polysemous; i.e., they can be used in more than one way. For example, paper can be used to refer to a substance made out of wood pulp or to a daily publication printed on that substance. Even though virtually every sentence contains polysemy, there is little agreement as to how polysemy is represented in the mental lexicon. Do different uses of polysemous words involve access to a single representation or do our minds store distinct representations for each different sense? Here we investigated priming between senses with a combination of behavioral and magnetoencephalographic (MEG) measures in order to test whether different senses of the same word involve identity or mere formal and semantic similarity. Our results show that polysemy effects are clearly distinct from similarity effects bilaterally. In the left hemisphere, sense-relatedness elicited shorter latencies of the M350 source, which has been hypothesized to index lexical activation. Concurrent activity in the right hemisphere, on the other hand, peaked later for sense-related than for unrelated target stimuli, suggesting competition between related senses. The obtained pattern of results supports models in which the representation of polysemy involves both representational identity and difference: Related senses connect to same abstract lexical representation, but are distinctly listed within that representation. PMID:16417686
Mental representation and motor imagery training.
Schack, Thomas; Essig, Kai; Frank, Cornelia; Koester, Dirk
2014-01-01
Research in sports, dance and rehabilitation has shown that basic action concepts (BACs) are fundamental building blocks of mental action representations. BACs are based on chunked body postures related to common functions for realizing action goals. In this paper, we outline issues in research methodology and an experimental method, the structural dimensional analysis of mental representation (SDA-M), to assess action-relevant representational structures that reflect the organization of BACs. The SDA-M reveals a strong relationship between cognitive representation and performance if complex actions are performed. We show how the SDA-M can improve motor imagery training and how it contributes to our understanding of coaching processes. The SDA-M capitalizes on the objective measurement of individual mental movement representations before training and the integration of these results into the motor imagery training. Such motor imagery training based on mental representations (MTMR) has been applied successfully in professional sports such as golf, volleyball, gymnastics, windsurfing, and recently in the rehabilitation of patients who have suffered a stroke. PMID:24904368
The representation of polysemy: MEG evidence.
Pylkkänen, Liina; Llinás, Rodolfo; Murphy, Gregory L
2006-01-01
Most words in natural language are polysemous, that is, they can be used in more than one way. For example, paper can be used to refer to a substance made out of wood pulp or to a daily publication printed on that substance. Although virtually every sentence contains polysemy, there is little agreement as to how polysemy is represented in the mental lexicon. Do different uses of polysemous words involve access to a single representation or do our minds store distinct representations for each different sense? Here we investigated priming between senses with a combination of behavioral and magnetoencephalographic measures in order to test whether different senses of the same word involve identity or mere formal and semantic similarity. Our results show that polysemy effects are clearly distinct from similarity effects bilaterally. In the left hemisphere, sense-relatedness elicited shorter latencies of the M350 source, which has been hypothesized to index lexical activation. Concurrent activity in the right hemisphere, on the other hand, peaked later for sense-related than for unrelated target stimuli, suggesting competition between related senses. The obtained pattern of results supports models in which the representation of polysemy involves both representational identity and difference: Related senses connect to same abstract lexical representation, but are distinctly listed within that representation. PMID:16417686