Radial quantization of the 3d CFT and the higher spin/vector model duality
NASA Astrophysics Data System (ADS)
Hu, Shan; Li, Tianjun
2014-10-01
We study the radial quantization of the 3dO(N) vector model. We calculate the higher spin charges whose commutation relations give the higher spin algebra. The Fock states of higher spin gravity in AdS4 are realized as the states in the 3d CFT. The dynamical information is encoded in their inner products. This serves as the simplest explicit demonstration of the CFT definition for the quantum gravity.
Spin-polarized confined states in Ag films on Fe(110)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moras, Paolo; Bihlmayer, G.; Vescovo, Elio
Spin- and angle-resolved photoemission spectroscopy of thin Ag(111) films on ferromagnetic Fe(110) shows a series of spin-polarized peaks. These features derive from Ag sp-bands, which form quantum well states and resonances due to confinement by a spin-dependent interface potential barrier. The spin-up states are broader and located at higher binding energy than the corresponding spin-down states at Gamma, although the differences attenuate near the Fermi level. The spin-down states display multiple gap openings, which interrupt their parabolic-like dispersion. As a result, first-principles calculations attribute these findings to the symmetry- and spin-selective hybridization of the Ag states with the exchange-split bandsmore » of the substrate.« less
Spin-polarized confined states in Ag films on Fe(110)
Moras, Paolo; Bihlmayer, G.; Vescovo, Elio; ...
2017-11-16
Spin- and angle-resolved photoemission spectroscopy of thin Ag(111) films on ferromagnetic Fe(110) shows a series of spin-polarized peaks. These features derive from Ag sp-bands, which form quantum well states and resonances due to confinement by a spin-dependent interface potential barrier. The spin-up states are broader and located at higher binding energy than the corresponding spin-down states at Gamma, although the differences attenuate near the Fermi level. The spin-down states display multiple gap openings, which interrupt their parabolic-like dispersion. As a result, first-principles calculations attribute these findings to the symmetry- and spin-selective hybridization of the Ag states with the exchange-split bandsmore » of the substrate.« less
Ground-state energies of the nonlinear sigma model and the Heisenberg spin chains
NASA Technical Reports Server (NTRS)
Zhang, Shoucheng; Schulz, H. J.; Ziman, Timothy
1989-01-01
A theorem on the O(3) nonlinear sigma model with the topological theta term is proved, which states that the ground-state energy at theta = pi is always higher than the ground-state energy at theta = 0, for the same value of the coupling constant g. Provided that the nonlinear sigma model gives the correct description for the Heisenberg spin chains in the large-s limit, this theorem makes a definite prediction relating the ground-state energies of the half-integer and the integer spin chains. The ground-state energies obtained from the exact Bethe ansatz solution for the spin-1/2 chain and the numerical diagonalization on the spin-1, spin-3/2, and spin-2 chains support this prediction.
Magnetic Field Dependence of Excitations Near Spin-Orbital Quantum Criticality
NASA Astrophysics Data System (ADS)
Biffin, A.; Rüegg, Ch.; Embs, J.; Guidi, T.; Cheptiakov, D.; Loidl, A.; Tsurkan, V.; Coldea, R.
2017-02-01
The spinel FeSc2 S4 has been proposed to realize a near-critical spin-orbital singlet (SOS) state, where entangled spin and orbital moments fluctuate in a global singlet state on the verge of spin and orbital order. Here we report powder inelastic neutron scattering measurements that observe the full bandwidth of magnetic excitations and we find that spin-orbital triplon excitations of an SOS state can capture well key aspects of the spectrum in both zero and applied magnetic fields up to 8.5 T. The observed shift of low-energy spectral weight to higher energies upon increasing applied field is naturally explained by the entangled spin-orbital character of the magnetic states, a behavior that is in strong contrast to spin-only singlet ground state systems, where the spin gap decreases upon increasing applied field.
Solution of the Lindblad equation for spin helix states.
Popkov, V; Schütz, G M
2017-04-01
Using Lindblad dynamics we study quantum spin systems with dissipative boundary dynamics that generate a stationary nonequilibrium state with a nonvanishing spin current that is locally conserved except at the boundaries. We demonstrate that with suitably chosen boundary target states one can solve the many-body Lindblad equation exactly in any dimension. As solution we obtain pure states at any finite value of the dissipation strength and any system size. They are characterized by a helical stationary magnetization profile and a ballistic spin current which is independent of system size, even when the quantum spin system is not integrable. These results are derived in explicit form for the one-dimensional spin-1/2 Heisenberg chain and its higher-spin generalizations, which include the integrable spin-1 Zamolodchikov-Fateev model and the biquadratic Heisenberg chain.
NASA Astrophysics Data System (ADS)
Miyashita, A.; Maekawa, M.; Wada, K.; Kawasuso, A.; Watanabe, T.; Entani, S.; Sakai, S.
2018-05-01
In spin-polarized surface positronium annihilation measurements, the spin polarizations of graphene and h -BN on Co(0001) were higher than those on Ni(111), while no significant differences were seen between graphene and h -BN on the same metal. The obtained spin polarizations agreed with those expected from first-principles calculations considering the positron wave function and the electron density of states from the first surface layer to the vacuum region. The higher spin polarizations of graphene and h -BN on Co(0001) as compared to Ni(111) simply reflect the spin polarizations of these metals. The comparable spin polarizations of graphene and h -BN on the same metal are attributed to the creation of similar electronic states due to the strong influence of the metals: the Dirac cone of graphene and the band gap of h -BN disappear as a consequence of d -π hybridization.
Cobaltites: Emergence of magnetism and metallicity from a non-magnetic, insulating state
NASA Astrophysics Data System (ADS)
Phelan, Daniel Patrick
In cobalt oxides, the energy splitting between different spin-states of Co3+ ions can be quite small, which means that more than one spin-state can simultaneously co-exist in the same compound and that transitions between different spin-state can occur. This makes understanding the magnetic coupling between cobalt sites rather complex. Such is the case for pure and hole-doped LaCoO3. In its ground state, LaCoO3 is a non-magnetic insulator. The lack of a magnetic moment, is due to the fact that the ground spin-state of Co3+ ions is a low-spin, S=0, state. However, since a spin-state that has a net spin is on the order of 100 K higher in energy than the ground spin-state, a magnetic moment appears as the temperature is increased, and the system behaves as a paramagnet above 100 K. The higher-energy spin-state is either an intermediate-spin (S=1) state of a high-spin (S=2) state - an issue that has been debated for quite some time. When holes are chemically doped into the system, as in La1- xSrxCoO3 (LSCO), the non-magnetic, insulating ground state evolves into a ferromagnetic, metallic state. This evolution is complicated because it occurs due to the convoluted effects of Co4+ ions being doped into the system and the fact that the ground spin-state of Co3+ ions changes as a function of the hole concentration. In this dissertation, the magnetic transitions in pure and hole-doped LaCoO3 are investigated by neutron scattering techniques. In the pure compound, it is shown that thermally excited spins have both fluctuating ferromagnetic and antiferro-magnetic spin-correlations, which is suggested to result from a dynamic orbital ordering of the occupied e. g orbitals of the intermediate-spin state. It is also shown that the thermally excited spin-state is split in energy by 0.6 meV. In the hole-doped compound, LSCO, it is shown that the evolution into a metallic ferromagnet occurs by the percolation of isotropic ferromagnetic droplets. It is also shown that incommensurate spin-correlations co-exist and compete with ferromagnetic spin correlations in LSCO, and it is argued that this competition is manifested in the thermodynamic properties. The role of the lattice upon the magnetic transitions in the hole-doped compounds is addressed by simultaneous analysis of magnetic Bragg peaks, the local atomic structure, and the average crystal structure from powder neutron diffraction patterns of La1- xCaxCoO3 and La 1-xBaxCoO3. It is suggested that the fraction of ions with intermediate spin-states at a fixed hole concentration depends on the radius of the A-site dopant.
1999-06-18
functional theory [8]. The Hamiltonian (Ĥ↑ and Ĥ↓ for spin ↑ and spin ↓ electrons, respectively) is given by: Ĥ↑(↓) = − 2 2 ∇ [ 1 m∗(r) ∇ ] + Ec(r)+ µ...the rapid vanishing of the mean spin of electrons in this state. At the same time, the electron spin polarization at higher energy levels dramat...electrons with spin −1/2 than with spin +1/2, so energy relaxation will lead to a predominant population of higher energy levels by electrons with spin
Role of entropy and structural parameters in the spin-state transition of LaCoO3
NASA Astrophysics Data System (ADS)
Chakrabarti, Bismayan; Birol, Turan; Haule, Kristjan
2017-11-01
The spin-state transition in LaCoO3 has eluded description for decades despite concerted theoretical and experimental effort. In this study, we approach this problem using fully charge self-consistent density functional theory + embedded dynamical mean field theory (DFT+DMFT). We show from first principles that LaCoO3 cannot be described by a single, pure spin state at any temperature. Instead, we observe a gradual change in the population of higher-spin multiplets with increasing temperature, with the high-spin multiplets being excited at the onset of the spin-state transition followed by the intermediate-spin multiplets being excited at the metal-insulator-transition temperature. We explicitly elucidate the critical role of lattice expansion and oxygen octahedral rotations in the spin-state transition. We also reproduce, from first principles, that the spin-state transition and the metal-insulator transition in LaCoO3 occur at different temperature scales. In addition, our results shed light on the importance of electronic entropy in driving the spin-state transition, which has so far been ignored in all first-principles studies of this material.
Local quenches and quantum chaos from higher spin perturbations
NASA Astrophysics Data System (ADS)
David, Justin R.; Khetrapal, Surbhi; Kumar, S. Prem
2017-10-01
We study local quenches in 1+1 dimensional conformal field theories at large- c by operators carrying higher spin charge. Viewing such states as solutions in Chern-Simons theory, representing infalling massive particles with spin-three charge in the BTZ back-ground, we use the Wilson line prescription to compute the single-interval entanglement entropy (EE) and scrambling time following the quench. We find that the change in EE is finite (and real) only if the spin-three charge q is bounded by the energy of the perturbation E, as | q| /c < E 2 /c 2. We show that the Wilson line/EE correlator deep in the quenched regime and its expansion for small quench widths overlaps with the Regge limit for chaos of the out-of-time-ordered correlator. We further find that the scrambling time for the two-sided mutual information between two intervals in the thermofield double state increases with increasing spin-three charge, diverging when the bound is saturated. For larger values of the charge, the scrambling time is shorter than for pure gravity and controlled by the spin-three Lyapunov exponent 4 π/β. In a CFT with higher spin chemical potential, dual to a higher spin black hole, we find that the chemical potential must be bounded to ensure that the mutual information is a concave function of time and entanglement speed is less than the speed of light. In this case, a quench with zero higher spin charge yields the same Lyapunov exponent as pure Einstein gravity.
Observation of the spin-polarized surface state in a noncentrosymmetric superconductor BiPd
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neupane, Madhab; Alidoust, Nasser; Hosen, M. Mofazzel
Recently, noncentrosymmetric superconductor BiPd has attracted considerable research interest due to the possibility of hosting topological superconductivity. Here in this paper we report a systematic high-resolution angle-resolved photoemission spectroscopy (ARPES) and spin-resolved ARPES study of the normal state electronic and spin properties of BiPd. Our experimental results show the presence of a surface state at higher-binding energy with the location of Dirac point at around 700 meV below the Fermi level. The detailed photon energy, temperature-dependent and spin-resolved ARPES measurements complemented by our first-principles calculations demonstrate the existence of the spin-polarized surface states at high-binding energy. The absence of suchmore » spin-polarized surface states near the Fermi level negates the possibility of a topological superconducting behaviour on the surface. Our direct experimental observation of spin-polarized surface states in BiPd provides critical information that will guide the future search for topological superconductivity in noncentrosymmetric materials.« less
Observation of the spin-polarized surface state in a noncentrosymmetric superconductor BiPd
Neupane, Madhab; Alidoust, Nasser; Hosen, M. Mofazzel; ...
2016-11-07
Recently, noncentrosymmetric superconductor BiPd has attracted considerable research interest due to the possibility of hosting topological superconductivity. Here in this paper we report a systematic high-resolution angle-resolved photoemission spectroscopy (ARPES) and spin-resolved ARPES study of the normal state electronic and spin properties of BiPd. Our experimental results show the presence of a surface state at higher-binding energy with the location of Dirac point at around 700 meV below the Fermi level. The detailed photon energy, temperature-dependent and spin-resolved ARPES measurements complemented by our first-principles calculations demonstrate the existence of the spin-polarized surface states at high-binding energy. The absence of suchmore » spin-polarized surface states near the Fermi level negates the possibility of a topological superconducting behaviour on the surface. Our direct experimental observation of spin-polarized surface states in BiPd provides critical information that will guide the future search for topological superconductivity in noncentrosymmetric materials.« less
Spin-state polarons as a precursor to ferromagnetism and metallicity in hole-doped LaCoO3
NASA Astrophysics Data System (ADS)
Podlesnyak, A.; Russina, M.; Pomjakushina, E.; Conder, K.; Khomskii, D.
2008-03-01
Lightly doped cobaltites La1-xSrxCoO3 exhibit magnetic properties at low temperatures, in strong contrast to the diamagnetic LaCoO3. We undertook an inelastic neutron scattering study with the goal to identify the energy spectrum and magnetic state of cobalt ions in the doped system with x=0.002. In distinguish to the parent compound, where no excitations have been found for T<30 K, an inelastic peak at δE ˜0.75 meV was observed in La0.998Sr0.002CoO3 at T=1.5 K. The intensity of this excitation is much higher than what is expected from an estimated concentration of doped holes. Furthermore, strong Zeeman splitting of the inelastic peak corresponds to an unusually high effective magnetic moment ˜15 μB. Neighboring low-spin (LS) Co^4+ and intermediate-spin Co^3+ ions can share an eg electron by swapping configuration. The t2g electrons, in their turn, couple ferromagnetically. Therefore, we propose that the holes introduced in the LS state of LaCoO3 are extended over the neighboring Co sites forming spin-state polarons and transforming the involved Co^3+ ions to the higher spin state. Grows of spin-state polarons with hole doping finally results in a metallic ferromagnetic state for x > 0.3.
Fukui, Hiroshi; Baron, Alfred Q R; Ishikawa, Daisuke; Uchiyama, Hiroshi; Ohishi, Yasuo; Tsuchiya, Taku; Kobayashi, Hisao; Matsuzaki, Takuya; Yoshino, Takashi; Katsura, Tomoo
2017-06-21
We investigated transverse acoustic (TA) phonons in iron-bearing magnesium oxide (ferropericlase) up to 56 GPa using inelastic x-ray scattering (IXS). The results show that the energy of the TA phonon far from the Brillouin zone center suddenly increases with increasing pressure above the spin transition pressure of ferropericlase. Ab initio calculations revealed that the TA phonon energy far from the Brillouin zone center is higher in the low-spin state than in the high spin state; that the TA phonon energy depend weakly on pressure; and that the energy gap between the TA and the lowest-energy-optic phonons is much narrower in the low-spin state than in the high-spin state. This allows us to conclude that the anomalous behavior of the TA mode in the present experiments is the result of gap narrowing due to the spin transition and explains contradictory results in previous experimental studies.
Imprints of spinning particles on primordial cosmological perturbations
NASA Astrophysics Data System (ADS)
Franciolini, Gabriele; Kehagias, Alex; Riotto, Antonio
2018-02-01
If there exist higher-spin particles during inflation which are light compared to the Hubble rate, they may leave distinct statistical anisotropic imprints on the correlators involving scalar and graviton fluctuations. We characterise such signatures using the dS/CFT3 correspondence and the operator product expansion techniques. In particular, we obtain generic results for the case of partially massless higher-spin states.
A state interaction spin-orbit coupling density matrix renormalization group method
NASA Astrophysics Data System (ADS)
Sayfutyarova, Elvira R.; Chan, Garnet Kin-Lic
2016-06-01
We describe a state interaction spin-orbit (SISO) coupling method using density matrix renormalization group (DMRG) wavefunctions and the spin-orbit mean-field (SOMF) operator. We implement our DMRG-SISO scheme using a spin-adapted algorithm that computes transition density matrices between arbitrary matrix product states. To demonstrate the potential of the DMRG-SISO scheme we present accurate benchmark calculations for the zero-field splitting of the copper and gold atoms, comparing to earlier complete active space self-consistent-field and second-order complete active space perturbation theory results in the same basis. We also compute the effects of spin-orbit coupling on the spin-ladder of the iron-sulfur dimer complex [Fe2S2(SCH3)4]3-, determining the splitting of the lowest quartet and sextet states. We find that the magnitude of the zero-field splitting for the higher quartet and sextet states approaches a significant fraction of the Heisenberg exchange parameter.
Role of Entropy and Structural Parameters in the Spin State Transition of LaCoO3
NASA Astrophysics Data System (ADS)
Chakrabarti, Bismayan; Birol, Turan; Haule, Kristjan
The spin state transition in LaCoO3 has eluded description for decades despite concerted theoretical and experimental effort. In this study, we approach this problem using fully charge consistent Density Functional Theory + Dynamical Mean Field Theory (DFT+DMFT). We show, from first principles, that LaCoO3 cannot be described by a single, pure spin state at any temperature, but instead shows a gradual change in the population of higher spin multiples as temperature is increased. We explicitly elucidate the critical role of the lattice expansion and oxygen octahedral rotations in the spin state transition. We also show that the spin state transition and the metal-insulator transition in the compound occur at different temperatures. In addition, our results shed light on the importance of electronic entropy, which has so far been ignored in all first principles studies of this material.
Modelling magnetic anisotropy of single-chain magnets in |d/J| ≥ 1 regime
NASA Astrophysics Data System (ADS)
Haldar, Sumit; Raghunathan, Rajamani; Sutter, Jean-Pascal; Ramasesha, S.
2017-11-01
Single-molecule magnets (SMMs) with single-ion anisotropies comparable to exchange interactions J between spins have recently been synthesised. Here, we provide theoretical insights into the magnetism of such systems. We study spin chains with site-spins, s = 1, 3/2 and 2 and strength of on-site anisotropy comparable to the exchange constants between the spins. We find that large on-site anisotropies lead to crossing of the states with different MS values in the same spin manifold to which they belong in the absence of anisotropy. When on-site anisotropy is increased further, we also find that the MS states of the higher energy spin states descend below the MS states of the ground spin manifold. Giant spin in this limit is no longer conserved and describing the axial and rhombic anisotropies of the molecule, DM and EM, respectively, is not possible. However, the giant spin of the low-lying large MS states is very nearly an integer and, using this spin value, it is possible to construct an effective spin-Hamiltonian and compute the molecular magnetic anisotropy constants DM and EM. We report effect of finite sizes, rotations of site anisotropies and chain dimerisation on the effective anisotropy of the spin chains.
Designing Quantum Spin-Orbital Liquids in Artificial Mott Insulators
Dou, Xu; Kotov, Valeri N.; Uchoa, Bruno
2016-01-01
Quantum spin-orbital liquids are elusive strongly correlated states of matter that emerge from quantum frustration between spin and orbital degrees of freedom. A promising route towards the observation of those states is the creation of artificial Mott insulators where antiferromagnetic correlations between spins and orbitals can be designed. We show that Coulomb impurity lattices on the surface of gapped honeycomb substrates, such as graphene on SiC, can be used to simulate SU(4) symmetric spin-orbital lattice models. We exploit the property that massive Dirac fermions form mid-gap bound states with spin and valley degeneracies in the vicinity of a Coulomb impurity. Due to electronic repulsion, the antiferromagnetic correlations of the impurity lattice are driven by a super-exchange interaction with SU(4) symmetry, which emerges from the bound states degeneracy at quarter filling. We propose that quantum spin-orbital liquids can be engineered in artificially designed solid-state systems at vastly higher temperatures than achievable in optical lattices with cold atoms. We discuss the experimental setup and possible scenarios for candidate quantum spin-liquids in Coulomb impurity lattices of various geometries. PMID:27553516
Investigation of high spin states in 133Cs
NASA Astrophysics Data System (ADS)
Xu, Q.; Xiao, Z. G.; Zhu, S. J.; Qi, C.; Jia, H.; Qi, B.; Wang, R. S.; Cheng, W. J.; Zhang, Y.; Yi, H.; Lü, L. M.; Wang, Y. J.; Li, H. J.; Huang, Y.; Zhang, Z.; Wu, X. G.; Li, C. B.; Zheng, Y.; Chen, Q. M.; Zhou, W. K.; Li, G. S.
2018-05-01
High spin states in 133Cs nucleus have been studied with the reaction 130Te (7Li, 4n) at a beam energy of 38 MeV. The level scheme has been expanded with spin up to 31/2 \\hbar. Compared with a recent paper, ground state band and other two collective band structures at lower spin states have been confirmed. Another collective band structure at higher spin states as well as some levels and transitions are updated. Compared with the experimental data, large-scale shell model and tilted axis cranking model calculations have been carried out. The results show that the band-head configuration of yrast band based on 7/2+ ground state and the side band built on the 5/2+ state are a pair of pseudospin partner states with π \\tilde{f}_{7/2,5/2}. The negative parity band based on 1071.5 keV level originates from π h_{11/2} orbital. Another band built on 2642.9 keV level at high spin states has been proposed with oblate deformation. Other characteristics for these bands were also discussed.
NASA Astrophysics Data System (ADS)
Romming, Niklas; Pralow, Henning; Kubetzka, André; Hoffmann, Markus; von Malottki, Stephan; Meyer, Sebastian; Dupé, Bertrand; Wiesendanger, Roland; von Bergmann, Kirsten; Heinze, Stefan
2018-05-01
Using spin-polarized scanning tunneling microscopy and density functional theory we demonstrate the occurrence of a novel type of noncollinear spin structure in Rh /Fe atomic bilayers on Ir(111). We find that higher-order exchange interactions depend sensitively on the stacking sequence. For fcc-Rh /Fe /Ir (111 ) , frustrated exchange interactions are dominant and lead to the formation of a spin spiral ground state with a period of about 1.5 nm. For hcp-Rh /Fe /Ir (111 ) , higher-order exchange interactions favor an up-up-down-down (↑↑↓↓) state. However, the Dzyaloshinskii-Moriya interaction at the Fe /Ir interface leads to a small angle of about 4° between adjacent magnetic moments resulting in a canted ↑↑↓↓ ground state.
Yu, Jiadong; Wang, Lai; Di Yang; Zheng, Jiyuan; Xing, Yuchen; Hao, Zhibiao; Luo, Yi; Sun, Changzheng; Han, Yanjun; Xiong, Bing; Wang, Jian; Li, Hongtao
2016-10-19
The spin and optical polarization based on a coupled InGaN/GaN quantum well (QW) and quantum dots (QDs) structure is investigated. In this structure, spin-electrons can be temporarily stored in QW, and spin injection from the QW into QDs via spin-conserved tunneling is enabled. Spin relaxation can be suppressed owing to the small energy difference between the initial state in the QW and the final states in the QDs. Photoluminescence (PL) and time-resolved photoluminescence (TRPL) measurements are carried out on optical spin-injection and -detection. Owing to the coupled structure, spin-conserved tunneling mechanism plays a significant role in preventing spin relaxation process. As a result, a higher circular polarization degree (CPD) (~49.1%) is achieved compared with conventional single layer of QDs structure. Moreover, spin relaxation time is also extended to about 2.43 ns due to the weaker state-filling effect. This coupled structure is believed an appropriate candidate for realization of spin-polarized light source.
A state interaction spin-orbit coupling density matrix renormalization group method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sayfutyarova, Elvira R.; Chan, Garnet Kin-Lic
We describe a state interaction spin-orbit (SISO) coupling method using density matrix renormalization group (DMRG) wavefunctions and the spin-orbit mean-field (SOMF) operator. We implement our DMRG-SISO scheme using a spin-adapted algorithm that computes transition density matrices between arbitrary matrix product states. To demonstrate the potential of the DMRG-SISO scheme we present accurate benchmark calculations for the zero-field splitting of the copper and gold atoms, comparing to earlier complete active space self-consistent-field and second-order complete active space perturbation theory results in the same basis. We also compute the effects of spin-orbit coupling on the spin-ladder of the iron-sulfur dimer complex [Fe{submore » 2}S{sub 2}(SCH{sub 3}){sub 4}]{sup 3−}, determining the splitting of the lowest quartet and sextet states. We find that the magnitude of the zero-field splitting for the higher quartet and sextet states approaches a significant fraction of the Heisenberg exchange parameter.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dou, Xu; Kotov, Valeri N.; Uchoa, Bruno
Quantum spin-orbital liquids are elusive strongly correlated states of matter that emerge from quantum frustration between spin and orbital degrees of freedom. A promising route towards the observation of those states is the creation of artificial Mott insulators where antiferromagnetic correlations between spins and orbitals can be designed. We show that Coulomb impurity lattices on the surface of gapped honeycomb substrates, such as graphene on SiC, can be used to simulate SU(4) symmetric spin-orbital lattice models. We exploit the property that massive Dirac fermions form mid-gap bound states with spin and valley degeneracies in the vicinity of a Coulomb impurity.more » Due to electronic repulsion, the antiferromagnetic correlations of the impurity lattice are driven by a super-exchange interaction with SU(4) symmetry, which emerges from the bound states degeneracy at quarter filling. We propose that quantum spin-orbital liquids can be engineered in artificially designed solid-state systems at vastly higher temperatures than achievable in optical lattices with cold atoms. Lastly, we discuss the experimental setup and possible scenarios for candidate quantum spin-liquids in Coulomb impurity lattices of various geometries.« less
Designing Quantum Spin-Orbital Liquids in Artificial Mott Insulators
Dou, Xu; Kotov, Valeri N.; Uchoa, Bruno
2016-08-24
Quantum spin-orbital liquids are elusive strongly correlated states of matter that emerge from quantum frustration between spin and orbital degrees of freedom. A promising route towards the observation of those states is the creation of artificial Mott insulators where antiferromagnetic correlations between spins and orbitals can be designed. We show that Coulomb impurity lattices on the surface of gapped honeycomb substrates, such as graphene on SiC, can be used to simulate SU(4) symmetric spin-orbital lattice models. We exploit the property that massive Dirac fermions form mid-gap bound states with spin and valley degeneracies in the vicinity of a Coulomb impurity.more » Due to electronic repulsion, the antiferromagnetic correlations of the impurity lattice are driven by a super-exchange interaction with SU(4) symmetry, which emerges from the bound states degeneracy at quarter filling. We propose that quantum spin-orbital liquids can be engineered in artificially designed solid-state systems at vastly higher temperatures than achievable in optical lattices with cold atoms. Lastly, we discuss the experimental setup and possible scenarios for candidate quantum spin-liquids in Coulomb impurity lattices of various geometries.« less
NASA Astrophysics Data System (ADS)
Kitazawa, Takafumi; Kishida, Takanori; Kawasaki, Takeshi; Takahashi, Masashi
2017-11-01
We have prepared the 2D spin crossover complexes Fe(L)2Pd(CN)4 (L = py : 1a; py-D5 : 1b and py-15N : 1c). 1a has been characterised by 57Fe Mossbauer spectroscopic measurements, single crystal X-ray determination and SQUID measurements. The Mössbauer spectra for 1a indicate that the iron(II) spin states are in high spin states at 298 K and are in low spin states at 77 K. The crystal structures of 1a at 298 K and 90 K also show the high spin state and the low spin state respectively, associated with the Fe(II)-N distances. The spin transition temperature range of 1a is higher than that of Fe(py)2Ni(CN)4 since Pd(II) ions are larger and heavier than Ni(II) ions. SQUID data indicate isotope effects among 1a, 1b and 1c are observed in very small shifts of the transition temperatures probably due to larger and heavier Pd(II) ions. The delicate shifts would be associated with subtle balances between different vibrations around Fe(II) atoms and electronic factors.
Constraints on higher spin CFT2
NASA Astrophysics Data System (ADS)
Afkhami-Jeddi, Nima; Colville, Kale; Hartman, Thomas; Maloney, Alexander; Perlmutter, Eric
2018-05-01
We derive constraints on two-dimensional conformal field theories with higher spin symmetry due to unitarity, modular invariance, and causality. We focus on CFTs with W_N symmetry in the "irrational" regime, where c > N - 1 and the theories have an infinite number of higher-spin primaries. The most powerful constraints come from positivity of the Kac matrix, which (unlike the Virasoro case) is non-trivial even when c > N - 1. This places a lower bound on the dimension of any non-vacuum higher-spin primary state, which is linear in the central charge. At large c, this implies that the dual holographic theories of gravity in AdS3, if they exist, have no local, perturbative degrees of freedom in the semi-classical limit.
Spin Crossover in Solid and Liquid (Mg,Fe)O at Extreme Conditions
NASA Astrophysics Data System (ADS)
Stixrude, L. P.; Holmstrom, E.
2016-12-01
Ferropericlase, (Mg,Fe)O, is a major constituent of the Earth's lowermantle (24-136 GPa). Understanding the properties of this component is importantnot only in the solid state, but also in the molten state, as theplanet almost certainly hosted an extensive magma ocean initiallyWith increasing pressure, the Fe ions in the material begin to collapse from a magnetic to a nonmagnetic spin state. This crossover affects thermodynamic, transport, and electrical properties.Using first-principles molecular dynamics simulations,thermodynamic integration, and adiabatic switching, we present a phasediagram of the spin crossover In both solid and liquid, we find a broad pressure range of coexisting magnetic and non-magnetic ions due to the favorable enthalpy of mixing of the two. In the solid increasingtemperature favors the high spin state, while in the liquid the oppositeoccurs, due to the higher electronic entropy of the low spin state. Becausethe physics of the crossover differ in solid and liquid, melting produces a large change in spin state that may affect the buoyancy of crystals freezing from the magma ocean in the earliest Earth.
NASA Technical Reports Server (NTRS)
Green, S.
1972-01-01
Previous accurate dipole moment calculation techniques are modified to be applicable to higher excited states of symmetry. The self-consistent fields and configuration interactions are calculated for the X(2)Sigma(+) and B(2)Sigma(+) states of CN. Spin hyperfine constants and spin density at the nucleus are considered in the context of one-electron operator properties. The values of the self-consistent field and configuration interaction for the spin density are compared with experimental values for several diatomic molecules.
Higher triplet state of fullerene C{sub 70} revealed by electron spin relaxation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uvarov, Mikhail N., E-mail: uvarov@kinetics.nsc.ru; Behrends, Jan; Kulik, Leonid V.
2015-12-28
Spin-lattice relaxation times T{sub 1} of photoexcited triplets {sup 3}C{sub 70} in glassy decalin were obtained from electron spin echo inversion recovery dependences. In the range 30–100 K, the temperature dependence of T{sub 1} was fitted by the Arrhenius law with an activation energy of 172 cm{sup −1}. This indicates that the dominant relaxation process of {sup 3}C{sub 70} is described by an Orbach-Aminov mechanism involving the higher triplet state t{sub 2} which lies 172 cm{sup −1} above the lowest triplet state t{sub 1}. Chemical modification of C{sub 70} fullerene not only decreases the intrinsic triplet lifetime by about tenmore » times but also increases T{sub 1} by several orders of magnitude. The reason for this is the presence of a low-lying excited triplet state in {sup 3}C{sub 70} and its absence in triplet C{sub 70} derivatives. The presence of the higher triplet state in C{sub 70} is in good agreement with the previous results from phosphorescence spectroscopy.« less
Feeding of Rh and Ag isomers in fast-neutron-induced reactions
Fotiades, Nikolaos; Devlin, Matthew James; Nelson, Ronald Owen; ...
2016-10-17
In (n,n') reactions on stable Ir and Au isotopes in the mass A=190 region, the experimentally established feeding of the isomers relative to the feeding of the corresponding ground states increases with increasing neutron energy, up to the neutron energy where the (n,2n) reaction channel opens up, and then decreases. In order to check for similar behavior in the mass A=100 region, the feeding of isomers and ground states in fast-neutron-induced reactions on stable isotopes in this mass region was studied. This is of especial interest for Rh which can be used as a radiochemical detector. Here, excited states weremore » studied using the (n,n'γ), (n,2nγ), and (n,3nγ) reactions on 103Rh and 109Ag. A germanium detector array for γ-ray detection and the broad-spectrum pulsed neutron source of the Los Alamos Neutron Science Center's Weapons Neutron Research facility were used for the measurement. The energy of the incident neutrons was determined using the time-of-flight technique. Absolute partial γ-ray cross sections were measured for 57 transitions feeding isomers and ground states in 101,102,103Rh and 107,108,109Ag. The feeding of the isomers was found to be very similar in the corresponding reaction channels and it is compared to the feeding determined for the ground states. In conclusion, the opening of reaction channels at higher neutron energies removes angular momentum from the residual nucleus and reduces the population of the higher-spin isomers relative to the feeding of the lower-spin ground states. Similar behavior was observed in the mass A=190 region in the feeding of higher-spin isomers, but the reverse behavior was observed in 176Lu with a lower-spin isomer and a higher-spin ground state.« less
Feeding of Rh and Ag isomers in fast-neutron-induced reactions
NASA Astrophysics Data System (ADS)
Fotiades, N.; Devlin, M.; Nelson, R. O.; Kawano, T.; Carroll, J. J.
2016-10-01
Background: In (n ,n' ) reactions on stable Ir and Au isotopes in the mass A =190 region, the experimentally established feeding of the isomers relative to the feeding of the corresponding ground states increases with increasing neutron energy, up to the neutron energy where the (n ,2 n ) reaction channel opens up, and then decreases. Purpose: In order to check for similar behavior in the mass A =100 region, the feeding of isomers and ground states in fast-neutron-induced reactions on stable isotopes in this mass region was studied. This is of especial interest for Rh which can be used as a radiochemical detector. Methods: Excited states were studied using the (n ,n'γ ), (n ,2 n γ ), and (n ,3 n γ ) reactions on 103Rh and 109Ag. A germanium detector array for γ -ray detection and the broad-spectrum pulsed neutron source of the Los Alamos Neutron Science Center's Weapons Neutron Research facility were used for the measurement. The energy of the incident neutrons was determined using the time-of-flight technique. Results: Absolute partial γ -ray cross sections were measured for 57 transitions feeding isomers and ground states in 101,102,103Rh and 107,108,109Ag. The feeding of the isomers was found to be very similar in the corresponding reaction channels and it is compared to the feeding determined for the ground states. Conclusions: The opening of reaction channels at higher neutron energies removes angular momentum from the residual nucleus and reduces the population of the higher-spin isomers relative to the feeding of the lower-spin ground states. Similar behavior was observed in the mass A =190 region in the feeding of higher-spin isomers, but the reverse behavior was observed in 176Lu with a lower-spin isomer and a higher-spin ground state.
Feeding of Rh and Ag isomers in fast-neutron-induced reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fotiades, Nikolaos; Devlin, Matthew James; Nelson, Ronald Owen
In (n,n') reactions on stable Ir and Au isotopes in the mass A=190 region, the experimentally established feeding of the isomers relative to the feeding of the corresponding ground states increases with increasing neutron energy, up to the neutron energy where the (n,2n) reaction channel opens up, and then decreases. In order to check for similar behavior in the mass A=100 region, the feeding of isomers and ground states in fast-neutron-induced reactions on stable isotopes in this mass region was studied. This is of especial interest for Rh which can be used as a radiochemical detector. Here, excited states weremore » studied using the (n,n'γ), (n,2nγ), and (n,3nγ) reactions on 103Rh and 109Ag. A germanium detector array for γ-ray detection and the broad-spectrum pulsed neutron source of the Los Alamos Neutron Science Center's Weapons Neutron Research facility were used for the measurement. The energy of the incident neutrons was determined using the time-of-flight technique. Absolute partial γ-ray cross sections were measured for 57 transitions feeding isomers and ground states in 101,102,103Rh and 107,108,109Ag. The feeding of the isomers was found to be very similar in the corresponding reaction channels and it is compared to the feeding determined for the ground states. In conclusion, the opening of reaction channels at higher neutron energies removes angular momentum from the residual nucleus and reduces the population of the higher-spin isomers relative to the feeding of the lower-spin ground states. Similar behavior was observed in the mass A=190 region in the feeding of higher-spin isomers, but the reverse behavior was observed in 176Lu with a lower-spin isomer and a higher-spin ground state.« less
Pairing States of Spin-3/2 Fermions: Symmetry-Enforced Topological Gap Functions
NASA Astrophysics Data System (ADS)
Venderbos, Jörn W. F.; Savary, Lucile; Ruhman, Jonathan; Lee, Patrick A.; Fu, Liang
2018-01-01
We study the topological properties of superconductors with paired j =3/2 quasiparticles. Higher spin Fermi surfaces can arise, for instance, in strongly spin-orbit coupled band-inverted semimetals. Examples include the Bi-based half-Heusler materials, which have recently been established as low-temperature and low-carrier density superconductors. Motivated by this experimental observation, we obtain a comprehensive symmetry-based classification of topological pairing states in systems with higher angular momentum Cooper pairing. Our study consists of two main parts. First, we develop the phenomenological theory of multicomponent (i.e., higher angular momentum) pairing by classifying the stationary points of the free energy within a Ginzburg-Landau framework. Based on the symmetry classification of stationary pairing states, we then derive the symmetry-imposed constraints on their gap structures. We find that, depending on the symmetry quantum numbers of the Cooper pairs, different types of topological pairing states can occur: fully gapped topological superconductors in class DIII, Dirac superconductors, and superconductors hosting Majorana fermions. Notably, we find a series of nematic fully gapped topological superconductors, as well as double- and triple-Dirac superconductors, with quadratic and cubic dispersion, respectively. Our approach, applied here to the case of j =3/2 Cooper pairing, is rooted in the symmetry properties of pairing states, and can therefore also be applied to other systems with higher angular momentum and high-spin pairing. We conclude by relating our results to experimentally accessible signatures in thermodynamic and dynamic probes.
Holography and quantum states in elliptic de Sitter space
NASA Astrophysics Data System (ADS)
Halpern, Illan F.; Neiman, Yasha
2015-12-01
We outline a program for interpreting the higher-spin dS/CFT model in terms of physics in the causal patch of a dS observer. The proposal is formulated in "elliptic" de Sitter space d{S}_4/{Z}_2 , obtained by identifying antipodal points in dS 4. We discuss recent evidence that the higher-spin model is especially well-suited for this, since the antipodal symmetry of bulk solutions has a simple encoding on the boundary. For context, we test some other (free and interacting) theories for the same property. Next, we analyze the notion of quantum field states in the non-time-orientable d{S}_4/{Z}_2 . We compare the physics seen by different observers, with the outcome depending on whether they share an arrow of time. Finally, we implement the marriage between higher-spin holography and observers in d{S}_4/{Z}_2 , in the limit of free bulk fields. We succeed in deriving an observer's operator algebra and Hamiltonian from the CFT, but not her S-matrix. We speculate on the extension of this to interacting higher-spin theory.
Strain-sensitive spin-state ordering in thin films of perovskite LaCoO3
NASA Astrophysics Data System (ADS)
Fujioka, J.; Yamasaki, Y.; Doi, A.; Nakao, H.; Kumai, R.; Murakami, Y.; Nakamura, M.; Kawasaki, M.; Arima, T.; Tokura, Y.
2015-11-01
We have investigated the lattice distortion coupled to the Co 3 d -spin-state ordering in thin films of perovskite LaCoO3 with various epitaxial strains by measurements of the magnetization, x-ray diffraction, and optical spectra. In the system with tensile strain about 0.5%, a lattice distortion characterized by the modulation vector q =(1 /6 ,1 /6 ,1 /6 ) emerges at 40 K, followed by a ferromagnetic ordering at 24 K. Alternatively, in systems with tensile strain exceeding 1%, the lattice distortion characterized by q =(1 /4 ,1 /4 ,1 /4 ) emerges at 120 K or higher, and subsequently the ferromagnetic or ferrimagnetic ordering occurs around 90 K. The evolution of infrared phonon spectra and resonant x-ray scattering at the Co K edge suggests that the population change in the Co 3 d spin state causes the strain-induced switching of spin-state ordering as well as of magnetic ordering in this canonical spin-state crossover system.
Aspects of Higher-Spin Conformal Field Theories and Their Renormalization Group Flows
NASA Astrophysics Data System (ADS)
Diab, Kenan S.
In this thesis, we study conformal field theories (CFTs) with higher-spin symmetry and the renormalization group flows of some models with interactions that weakly break the higher-spin symmetry. When the higher-spin symmetry is exact, we will present CFT analogues of two classic results in quantum field theory: the Coleman-Mandula theorem, which is the subject of chapter 2, and the Weinberg-Witten theorem, which is the subject of chapter 3. Schematically, our Coleman-Mandula analogue states that a CFT that contains a symmetric conserved current of spin s > 2 in any dimension d > 3 is effectively free, and our Weinberg-Witten analogue states that the presence of certain short, higher-spin, "sufficiently asymmetric" representations of the conformal group is either inconsistent with conformal symmetry or leads to free theories in d = 4 dimensions. In both chapters, the basic strategy is to solve certain Ward identities in convenient kinematical limits and thereby show that the number of solutions is very limited. In the latter chapter, Hofman-Maldacena bounds, which constrain one-point functions of the stress tensor in general states, play a key role. Then, in chapter 4, we will focus on the particular examples of the O(N) and Gross-Neveu model in continuous dimensions. Using diagrammatic techniques, we explicitly calculate how the coefficients of the two-point function of a U(1) current and the two-point function of the stress tensor (CJ and CT, respectively) are renormalized in the 1/N and epsilon expansions. From the higher-spin perspective, these models are interesting since they are related via the AdS/CFT correspondence to Vasiliev gravity. In addition to checking and extending a number of previously-known results about CT and CJ in these theories, we find that in certain dimensions, CJ and CT are not monotonic along the renormalization group flow. Although it was already known that certain supersymmetric models do not satisfy a "CJ"- or " CT"-theorem, this shows that such a theorem is unlikely to hold even under more restrictive assumptions.
Spin-orbit configuration interaction calculation of the potential energy curves of iodine oxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roszak, S.; Krauss, M.; Alekseyev, A.B.
2000-04-06
An ab initio configuration interaction (CI) study including spin-orbit coupling is carried out for the ground and excited states of the IO radical by employing relativistic effective core potentials. The computed spectroscopic constants are in good agreement with available experimental data, with some tendency to underestimate the strength of bonding. The first excited state, a{sup 4}{Sigma}{sup {minus}}, which has not yet been observed experimentally, is predicted to be bound by 30.1 kJ/mol and to have a significantly larger equilibrium distance than the ground state. It is split by spin-orbit interaction into 1/2 and 3/2 components, with the 1/2 component beingmore » the lower one with a calculated spin-orbit splitting of 210 cm{sup {minus}1}. The most interesting state in the low-energy IO spectrum, A{sub 1}{sup 2}{Pi}{sub 3/2}, is shown to be predissociated due to interaction with a number of repulsive electronic states. Predissociation of the A{sup 1}, {nu}{prime} = 0, 1 vibrational levels is attributed to a fairly weak spin-orbit coupling with the {sup 2}{Delta}{sub 3/2} state, while rotationally dependent predissociation of the {nu}{prime} = 2 level is explained by the coupling with the 1/2(III) state having mainly {sup 2}{Sigma}{sup {minus}} character. Strong predissociation of the {nu}{prime} {ge} 4 levels is attributed to interaction with the higher-lying {Omega} = 3/2 states, with predominantly {sup 4}{Sigma}{sup +} and {sup 4}{Delta} origin.« less
Spin polarization of two-dimensional electron system in parabolic potential
NASA Astrophysics Data System (ADS)
Miyake, Takashi; Totsuji, Chieko; Nakanishi, Kenta; Tsuruta, Kenji; Totsuji, Hiroo
2008-09-01
We analyze the ground state of the two-dimensional quantum system of electrons confined in a parabolic potential with the system size around 100 at 0 K. We map the system onto a classical system on the basis of the classical-map hypernetted-chain (CHNC) method which has been proven to work in the integral-equation-based analyses of uniform systems and apply classical Monte Carlo and molecular dynamics simulations. We find that, when we decrease the strength of confinement keeping the number of confined electrons fixed, the energy of the spin-polarized state with somewhat lower average density becomes smaller than that of the spin-unpolarized state with somewhat higher average density. This system thus undergoes the transition from the spin-unpolarized state to the spin polarized state and the corresponding critical value of r estimated from the average density is as low as r∼0.4 which is much smaller than the r value for the Wigner lattice formation. When we compare the energies of spin-unpolarized and spin-polarized states for given average density, our data give the critical r value for the transition between unpolarized and polarized states around 10 which is close to but still smaller than the known possibility of polarization at r∼27. The advantage of our method is a direct applicability to geometrically complex systems which are difficult to analyze by integral equations and this is an example.
Hanle measurements of electrodeposited Fe/GaAs spin tunnel contacts
NASA Astrophysics Data System (ADS)
Majumder, Sarmita; Hohertz, Donna; McNeil, James; SpringThorpe, Anthony; Kavanagh, Karen L.
2014-03-01
We report spin transport in electrodeposited Fe/n-GaAs tunnel diodes via three-terminal Hanle measurements. For temperatures between 20 K and 150 K, the spin resistance was up to 20 times higher than expected from theoretical calculations and 1000 times larger compared to a vacuum-deposited counterpart. This higher spin resistance was correlated with a higher contact resistance, and a higher concentration of oxygen impurities in the electrodeposited Fe film and interface, as detected via x-ray photoelectron and Auger spectroscopies, and inferred from Fe film nucleation rates. These results can be explained via a small effective tunnel-contact area of 5%, but extra spin filtering via interfacial states or magnetic oxide layers cannot be ruled out. The spin diffusion times (8.5 ± 0.4 ns to 1.8 ± 0.4 ns, for 20 K to 150 K) extracted from Lorentzian fits were in good agreement with values obtained from earlier 4-terminal Hanle measurements (7.8 ± 0.4 ns to 3.2 ± 0.4 ns, for 25 K to 77 K), both 10 times slower than reported vacuum-deposited contacts.
Investigation of negative-parity states in Dy 156 : Search for evidence of tetrahedral symmetry
Hartley, D. J.; Riedinger, L. L.; Janssens, R. V. F.; ...
2017-01-01
An experiment populating low/medium-spin states in 156Dy was performed to investigate the possibility of tetrahedral symmetry in this nucleus. In particular, focus was placed on the low-spin, negative-parity states since recent theoretical studies suggest that these may be good candidates for this high-rank symmetry. The states were produced in the 148Nd( 12C,4 n) reaction and the Gammasphere array was utilized to detect the emitted rays. B(E 2) /B(E1) ratios of transition probabilities from the low-spin, negative-parity bands were determined and used to interpret whether these structures are best associated with tetrahedral symmetry or, as previously assigned, to octupole vibrations. Additionally,more » several other negative-parity structures were observed to higher spin and two new sequences were established« less
Investigation of negative-parity states in Dy 156 : Search for evidence of tetrahedral symmetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartley, D. J.; Riedinger, L. L.; Janssens, R. V. F.
2017-01-01
An experiment populating low/medium-spin states in 156 Dy was performed to investigate the possibility of tetrahedral symmetry in this nucleus. In particular, focus was placed on the low-spin, negative-parity states since recent theoretical studies suggest that these may be good candidates for this high-rank symmetry. The states were produced in the 148 Nd ( 12 C , 4 n ) reaction and the Gammasphere array was utilized to detect the emitted γ rays. B ( E 2 ) / B ( E 1 ) ratios of transition probabilities from the low-spin, negative-parity bands were determined and used to interpret whethermore » these structures are best associated with tetrahedral symmetry or, as previously assigned, to octupole vibrations. In addition, several other negative-parity structures were observed to higher spin and two new sequences were established.« less
Magnetic Ground State Stabilized by Three-Site Interactions: Fe /Rh (111 )
NASA Astrophysics Data System (ADS)
Krönlein, Andreas; Schmitt, Martin; Hoffmann, Markus; Kemmer, Jeannette; Seubert, Nicolai; Vogt, Matthias; Küspert, Julia; Böhme, Markus; Alonazi, Bandar; Kügel, Jens; Albrithen, Hamad A.; Bode, Matthias; Bihlmayer, Gustav; Blügel, Stefan
2018-05-01
We report the direct observation of a theoretically predicted magnetic ground state in a monolayer Fe on Rh(111), which is referred to as an up-up-down-down (↑↑↓↓) double-row-wise antiferromagnetic spin structure, using spin-polarized scanning tunneling microscopy. This exotic phase, which exists in three orientational domains, is revealed by experiments with magnetic probe tips performed in external magnetic fields. It is shown that a hitherto unconsidered four-spin-three-site beyond-Heisenberg interaction distinctly contributes to the spin coupling of atoms with S ≥1 spins. The observation of the ↑↑↓↓ order substantiates the presence of higher-order, in particular, three-site interactions, in thin magnetic films of itinerant magnets.
NASA Astrophysics Data System (ADS)
Ertan, Ünal
2018-05-01
The spin-down rate of PSR J1023+0038, one of the three confirmed transitional millisecond pulsars, was measured in both radio pulsar (RMSP) and X-ray pulsar (LMXB) states. The spin-down rate in the LMXB state is only about 27% greater than in the RMSP state (Jaodand et al. 2016). The inner disk radius, rin, obtained recently by Ertan (2017) for the propeller phase, which is close to the co-rotation radius, rco, and insensitive to the mass-flow rate, can explain the observed torques together with the X-ray luminosities, Lx . The X-ray pulsar and radio pulsar states correspond to accretion with spin-down (weak propeller) and strong propeller situations respectively. Several times increase in the disk mass-flow rate takes the source from the strong propeller with a low Lx to the weak propeller with a higher Lx powered by accretion on to the star. The resultant decrease in rin increases the magnetic torque slightly, explaining the observed small increase in the spin-down rate. We have found that the spin-up torque exerted by accreting material is much smaller than the magnetic spin-down torque exerted by the disk in the LMXB state.
The Thomas–Fermi quark model: Non-relativistic aspects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Quan, E-mail: quan_liu@baylor.edu; Wilcox, Walter, E-mail: walter_wilcox@baylor.edu
The first numerical investigation of non-relativistic aspects of the Thomas–Fermi (TF) statistical multi-quark model is given. We begin with a review of the traditional TF model without an explicit spin interaction and find that the spin splittings are too small in this approach. An explicit spin interaction is then introduced which entails the definition of a generalized spin “flavor”. We investigate baryonic states in this approach which can be described with two inequivalent wave functions; such states can however apply to multiple degenerate flavors. We find that the model requires a spatial separation of quark flavors, even if completely degenerate.more » Although the TF model is designed to investigate the possibility of many-quark states, we find surprisingly that it may be used to fit the low energy spectrum of almost all ground state octet and decuplet baryons. The charge radii of such states are determined and compared with lattice calculations and other models. The low energy fit obtained allows us to extrapolate to the six-quark doubly strange H-dibaryon state, flavor symmetric strange states of higher quark content and possible six quark nucleon–nucleon resonances. The emphasis here is on the systematics revealed in this approach. We view our model as a versatile and convenient tool for quickly assessing the characteristics of new, possibly bound, particle states of higher quark number content. -- Highlights: • First application of the statistical Thomas–Fermi quark model to baryonic systems. • Novel aspects: spin as generalized flavor; spatial separation of quark flavor phases. • The model is statistical, but the low energy baryonic spectrum is successfully fit. • Numerical applications include the H-dibaryon, strange states and nucleon resonances. • The statistical point of view does not encourage the idea of bound many-quark baryons.« less
Barrett, Simon A; Kilner, Colin A; Halcrow, Malcolm A
2011-12-07
The temperature of spin-crossover in [Fe(3-bpp)(2)][BF(4)](2) (3-bpp = 2,6-di{pyrazol-3-yl}pyridine) tends to increase in associating solvents. In particular, T(½) shifts to 60-70 K higher temperature in water compared to organic solvents.
Spin crossover in Fe(phen)2(NCS)2 complexes on metallic surfaces
NASA Astrophysics Data System (ADS)
Gruber, Manuel; Miyamachi, Toshio; Davesne, Vincent; Bowen, Martin; Boukari, Samy; Wulfhekel, Wulf; Alouani, Mebarek; Beaurepaire, Eric
2017-03-01
In this review, we give an overview on the spin crossover of Fe(phen)2(NCS)2 complexes adsorbed on Cu(100), Cu2N/Cu(100), Cu(111), Co/Cu(111), Co(100), Au(100), and Au(111) surfaces. Depending on the strength of the interaction of the molecules with the substrates, the spin crossover behavior can be drastically changed. Molecules in direct contact with non-magnetic metallic surfaces coexist in both the high- and low-spin states but cannot be switched between the two. Our analysis shows that this is due to a strong interaction with the substrate in the form of a chemisorption that dictates the spin state of the molecules through its adsorption geometry. Upon reducing the interaction to the surface either by adding a second molecular layer or inserting an insulating thin film of Cu2N, the spin crossover behavior is restored and molecules can be switched between the two states with the help of scanning tunneling microscopy. Especially on Cu2N, the two states of single molecules are stable at low temperature and thus allow the realization of a molecular memory. Similarly, the molecules decoupled from metallic substrates in the second or higher layers display thermally driven spin crossover as has been revealed by X-ray absorption spectroscopy. Finally, we discuss the situation when the complex is brought into contact with a ferromagnetic substrate. This leads to a strong exchange coupling between the Fe spin in the high-spin state and the magnetization of the substrate as deduced from spin-polarized scanning tunneling spectroscopy and ab initio calculation.
Magnetic Molecules from Chemist's Point of View
NASA Astrophysics Data System (ADS)
Hendrickson, David
2002-03-01
A single-molecule magnet (SMM) is a molecule that functions as a nanoscale, single-domain magnetic particle that, below its blocking temperature, exhibits magnetization hysteresis [1]. SMMs have attracted considerable interest because they : (1) can serve as the smallest nanomagnet, monodisperse in size, shape and anisotropy; (2) exhibit quantum tunneling of magnetization (QTM); and (3) may function as memory devices in a quantum computer. SMM’s are synthetically designed nanomagnets, built from a core containing metal ion unpaired spin carriers bridged by oxide or other simple ions which is surrounded by organic ligands. Many systematic changes can be made in the structure of these molecular nanomagnets. Manganese-containing SMM’s are known with from Mn4 to Mn_30 compositions. The magnetic bistability, which is desirable for data storage applications, is achievable at temperatures below 3K. The largest spin of the ground state of a SMM is presently S = 13. Appreciable largely uniaxial magnetoanisotropy in the ground state leads to magnetic bistability. Rather than a continuum of higher energy states separating the “spin-up” and “spin-down” ground states, the quantum nature of the molecular nanomagnets result in a well defined ladder of discrete quantum states. Recent studies have definitively shown that, under conditions that can be controlled via the application of external perturbations, quantum tunneling may occur through the energy separating the “spin-up” and “spin-down” states. The tunneling is due to weak symmetry breaking perturbations that give rise to long-lived quantum states consisting of coherent superpositions of the “spin-up” and “spin-down” states. It is the ability to manipulate these coherent states that makes SMMs particularly attractive for quantum computation. Reference: [1] G. Christou, D. Gatteschi, D. N. Hendrickson, R. Sessoli, “Single-molecule Magnets”, M.R.S. Bull. 25, 66 (2001).
Spin crossover in solid and liquid (Mg,Fe)O at extreme conditions
NASA Astrophysics Data System (ADS)
Stixrude, Lars; Holmstrom, Eero
Ferropericlase, (Mg,Fe)O, is a major constituent of the Earth's lower mantle (24-136 GPa). Understanding the properties of this component is important not only in the solid state, but also in the molten state, as the planet almost certainly hosted an extensive magma ocean initially. With increasing pressure, the Fe ions in the material begin to collapse from a magnetic to a nonmagnetic spin state. This crossover affects thermodynamic, transport, and electrical properties. Using first-principles molecular dynamics simulations, thermodynamic integration, and adiabatic switching, we present a phase diagram of the spin crossover. In both solid and liquid, we find a broad pressure range of coexisting magnetic and non-magnetic ions due to the favorable enthalpy of mixing of the two. In the solid increasing temperature favors the high spin state, while in the liquid the opposite occurs, due to the higher electronic entropy of the low spin state. Because the physics of the crossover differ in solid and liquid, melting produces a large change in spin state that may affect the buoyancy of crystals freezing from the magma ocean in the earliest Earth. This research was supported by the European Research Council under Advanced Grant No. 291432 ``MoltenEarth'' (FP7/2007-2013).
Partition functions with spin in AdS2 via quasinormal mode methods
Keeler, Cynthia; Lisbão, Pedro; Ng, Gim Seng
2016-10-12
We extend the results of [1], computing one loop partition functions for massive fields with spin half in AdS 2 using the quasinormal mode method proposed by Denef, Hartnoll, and Sachdev [2]. We find the finite representations of SO(2,1) for spin zero and spin half, consisting of a highest weight state |hi and descendants with non-unitary values of h. These finite representations capture the poles and zeroes of the one loop determinants. Together with the asymptotic behavior of the partition functions (which can be easily computed using a large mass heat kernel expansion), these are sufficient to determine the fullmore » answer for the one loop determinants. We also discuss extensions to higher dimensional AdS 2n and higher spins.« less
NASA Astrophysics Data System (ADS)
Vinson, Alec M.; Hansen, Brad M. S.
2017-12-01
One long-standing problem for the potential habitability of planets within M dwarf systems is their likelihood to be tidally locked in a synchronously rotating spin state. This problem thus far has largely been addressed only by considering two objects: the star and the planet itself. However, many systems have been found to harbour multiple planets, with some in or very near to mean motion resonances. The presence of a planetary companion near a mean motion resonance can induce oscillatory variations in the mean motion of the planet, which we demonstrate can have significant effects on the spin state of an otherwise synchronously rotating planet. In particular, we find that a planetary companion near a mean motion resonance can excite the spin states of planets in the habitable zone of small, cool stars, pushing otherwise synchronously rotating planets into higher amplitude librations of the spin state, or even complete circulation resulting in effective stellar days with full surface coverage on the order of years or decades. This increase in illuminated area can have potentially dramatic influences on climate, and thus on habitability. We also find that the resultant spin state can be very sensitive to initial conditions due to the chaotic nature of the spin state at early times within certain regimes. We apply our model to two hypothetical planetary systems inspired by the K00255 and TRAPPIST-1 systems, both of which have Earth-sized planets in mean motion resonances orbiting cool stars.
Extremal Optimization for estimation of the error threshold in topological subsystem codes at T = 0
NASA Astrophysics Data System (ADS)
Millán-Otoya, Jorge E.; Boettcher, Stefan
2014-03-01
Quantum decoherence is a problem that arises in implementations of quantum computing proposals. Topological subsystem codes (TSC) have been suggested as a way to overcome decoherence. These offer a higher optimal error tolerance when compared to typical error-correcting algorithms. A TSC has been translated into a planar Ising spin-glass with constrained bimodal three-spin couplings. This spin-glass has been considered at finite temperature to determine the phase boundary between the unstable phase and the stable phase, where error recovery is possible.[1] We approach the study of the error threshold problem by exploring ground states of this spin-glass with the Extremal Optimization algorithm (EO).[2] EO has proven to be a effective heuristic to explore ground state configurations of glassy spin-systems.[3
Universal Binding and Recoil Corrections to Bound State g Factors in Hydrogenlike Ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eides, Michael I.; Martin, Timothy J. S.
2010-09-03
The leading relativistic and recoil corrections to bound state g factors of particles with arbitrary spin are calculated. It is shown that these corrections are universal for any spin and depend only on the free particle gyromagnetic ratios. To prove this universality we develop nonrelativistic quantum electrodynamics (NRQED) for charged particles with an arbitrary spin. The coefficients in the NRQED Hamiltonian for higher spin particles are determined only by the requirements of Lorentz invariance and local charge conservation in the respective relativistic theory. For spin one charged particles, the NRQED Hamiltonian follows from the renormalizable QED of the charged vectormore » bosons. We show that universality of the leading relativistic and recoil corrections can be explained with the help of the Bargmann-Michael-Telegdi equation.« less
Spin filter and spin valve in ferromagnetic graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Yu, E-mail: kwungyusung@gmail.com; Dai, Gang; Research Center for Microsystems and Terahertz, China Academy of Engineering Physics, Mianyang 621999
2015-06-01
We propose and demonstrate that a EuO-induced and top-gated graphene ferromagnetic junction can be simultaneously operated as a spin filter and a spin valve. We attribute such a remarkable result to a coexistence of a half-metal band and a common energy gap for opposite spins in ferromagnetic graphene. We show that both the spin filter and the spin valve can be effectively controlled by a back gate voltage, and they survive for practical metal contacts and finite temperature. Specifically, larger single spin currents and on-state currents can be reached with contacts with work functions similar to graphene, and the spinmore » filter can operate at higher temperature than the spin valve.« less
Spin-polarized ground state and exact quantization at ν=5/2
NASA Astrophysics Data System (ADS)
Pan, Wei
2002-03-01
The nature of the even-denominator fractional quantum Hall effect at ν=5/2 remains elusive, in particular, its ground state spin-polarization. An earlier, so-called "hollow core" model arrived at a spin-unpolarized wave function. The more recent calculations based on a model of BCS-like pairing of composite fermions, however, suggest that its ground state is spin-polarized. In this talk, I will first review the earlier experiments and then present our recent experimental results showing evidence for a spin-polarized state at ν=5/2. Our ultra-low temperature experiments on a high quality sample established the fully developed FQHE state at ν=5/2 as well as at ν=7/3 and 8/3, manifested by a vanishing R_xx and exact quantization of the Hall plateau. The tilted field experiments showed that the added in-plane magnetic fields not only destroyed the FQHE at ν=5/2, as seen before, but also induced an electrical anisotropy, which is now interpreted as a phase transition from a paired, spin-polarized ν=5/2 state to a stripe phase, not unlike the ones at ν=9/2, 11/2, etc in the N > 1 higher Landau levels. Furthermore, in the experiments on the heterojunction insulated-gate field-effect transistors (HIGFET) at dilution refrigerator temperatures, a strong R_xx minimum and a concomitant developing Hall plateau were observed at ν=5/2 in a magnetic field as high as 12.6 Tesla. This and the subsequent density dependent studies of its energy gap largely rule out a spin-singlet state and point quite convincingly towards a spin-polarized ground state at ν=5/2.
Persistence of a surface state arc in the topologically trivial phase of MoTe2
NASA Astrophysics Data System (ADS)
Crepaldi, A.; Autès, G.; Sterzi, A.; Manzoni, G.; Zacchigna, M.; Cilento, F.; Vobornik, I.; Fujii, J.; Bugnon, Ph.; Magrez, A.; Berger, H.; Parmigiani, F.; Yazyev, O. V.; Grioni, M.
2017-01-01
The prediction of Weyl fermions in the low-temperature noncentrosymmetric 1 T' phase of MoTe2 still awaits clear experimental confirmation. Here, we report angle-resolved photoemission (ARPES) data and ab initio calculations that reveal a surface state arc dispersing between the valence and the conduction band, as expected for a Weyl semimetal. However, we find that the arc survives in the high-temperature centrosymmetric 1 T'' phase. Therefore, a surface Fermi arc is not an unambiguous fingerprint of a topologically nontrivial phase. We have also investigated the surface state spin texture of the 1 T' phase by spin-resolved ARPES, and identified additional topologically trivial spin-split states within the projected band gap at higher binding energies.
Magnetic quantum tunneling: key insights from multi-dimensional high-field EPR.
Lawrence, J; Yang, E-C; Hendrickson, D N; Hill, S
2009-08-21
Multi-dimensional high-field/frequency electron paramagnetic resonance (HFEPR) spectroscopy is performed on single-crystals of the high-symmetry spin S = 4 tetranuclear single-molecule magnet (SMM) [Ni(hmp)(dmb)Cl](4), where hmp(-) is the anion of 2-hydroxymethylpyridine and dmb is 3,3-dimethyl-1-butanol. Measurements performed as a function of the applied magnetic field strength and its orientation within the hard-plane reveal the four-fold behavior associated with the fourth order transverse zero-field splitting (ZFS) interaction, (1/2)B(S + S), within the framework of a rigid spin approximation (with S = 4). This ZFS interaction mixes the m(s) = +/-4 ground states in second order of perturbation, generating a sizeable (12 MHz) tunnel splitting, which explains the fast magnetic quantum tunneling in this SMM. Meanwhile, multi-frequency measurements performed with the field parallel to the easy-axis reveal HFEPR transitions associated with excited spin multiplets (S < 4). Analysis of the temperature dependence of the intensities of these transitions enables determination of the isotropic Heisenberg exchange constant, J = -6.0 cm(-1), which couples the four spin s = 1 Ni(II) ions within the cluster, as well as a characterization of the ZFS within excited states. The combined experimental studies support recent work indicating that the fourth order anisotropy associated with the S = 4 state originates from second order ZFS interactions associated with the individual Ni(II) centers, but only as a result of higher-order processes that occur via S-mixing between the ground state and higher-lying (S < 4) spin multiplets. We argue that this S-mixing plays an important role in the low-temperature quantum dynamics associated with many other well known SMMs.
Persistence of collective behavior at high spin in the N = 88 nucleus Tb 153
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartley, D. J.; Riley, M. A.; Wang, X.
Excited states in the N = 88 nucleus Tb-153 were observed up to spin similar to 40 in an experiment utilizing the Gammasphere array. The Tb-153 states were populated in a weak alpha 4n evaporation channel of the Cl-37 + Sn-124 reaction. Two previously known sequences were extended to higher spins, and a new decoupled structure was identified. The pi h(11/2) band was observed in the spin region where other N = 88 isotopes exhibit effects of prolate to oblate shape changes leading to band termination along the yrast line, whereas Tb-153 displays a persistent collective behavior. However, minor perturbationsmore » of the very highest state in both signatures of this h(11/2) band are observed, which perhaps signal the start of the transition towards band termination.« less
Non-Abelian Geometric Phases Carried by the Quantum Noise Matrix
NASA Astrophysics Data System (ADS)
Bharath, H. M.; Boguslawski, Matthew; Barrios, Maryrose; Chapman, Michael
2017-04-01
Topological phases of matter are characterized by topological order parameters that are built using Berry's geometric phase. Berry's phase is the geometric information stored in the overall phase of a quantum state. We show that geometric information is also stored in the second and higher order spin moments of a quantum spin system, captured by a non-abelian geometric phase. The quantum state of a spin-S system is uniquely characterized by its spin moments up to order 2S. The first-order spin moment is the spin vector, and the second-order spin moment represents the spin fluctuation tensor, i.e., the quantum noise matrix. When the spin vector is transported along a loop in the Bloch ball, we show that the quantum noise matrix picks up a geometric phase. Considering spin-1 systems, we formulate this geometric phase as an SO(3) operator. Geometric phases are usually interpreted in terms of the solid angle subtended by the loop at the center. However, solid angles are not well defined for loops that pass through the center. Here, we introduce a generalized solid angle which is well defined for all loops inside the Bloch ball, in terms of which, we interpret the SO(3) geometric phase. This geometric phase can be used to characterize topological spin textures in cold atomic clouds.
Higher spin gravitational couplings: Ghosts in the Yang-Mills detour complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gover, A. R.; Hallowell, K.; Waldron, A.
2007-01-15
Gravitational interactions of higher spin fields are generically plagued by inconsistencies. There exists however, a simple framework that couples higher spins to a broad class of gravitational backgrounds (including Ricci flat and Einstein) consistently at the classical level. The model is the simplest example of a Yang-Mills detour complex and has broad mathematical applications, especially to conformal geometry. Even the simplest version of the theory, which couples gravitons, vectors and scalar fields in a flat background is rather rich, providing an explicit setting for detailed analysis of ghost excitations. Its asymptotic scattering states consist of a physical massless graviton, scalar,more » and massive vector along with a degenerate pair of zero norm photon excitations. Coherent states of the unstable sector do have positive norms, but their evolution is no longer unitary and amplitudes grow with time. The class of models proposed is extremely general and of considerable interest for ghost condensation and invariant theory.« less
Beyond triplet: Unconventional superconductivity in a spin-3/2 topological semimetal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hyunsoo; Wang, Kefeng; Nakajima, Yasuyuki
In all known fermionic super fluids, Cooper pairs are composed of spin-1/2 quasi-particles that pair to form either spin-singlet or spin-triplet bound states. The "spin" of a Bloch electron, however, is xed by the symmetries of the crystal and the atomic orbitals from which it is derived, and in some cases can behave as if it were a spin-3/2 particle. The superconducting state of such a system allows pairing beyond spin-triplet, with higher spin quasi-particles combining to form quintet or even septet pairs. Here, we report evidence of unconventional superconductivity emerging from a spin-3/2 quasiparticle electronic structure in the half-Heuslermore » semimetal YPtBi, a low-carrier density noncentrosymmetric cubic material with a high symmetry that preserves the p-like j = 3/2 manifold in the Bi-based Γ 8 band in the presence of strong spin-orbit coupling. With a striking linear temperature dependence of the London penetration depth, the existence of line nodes in the superconducting order parameter Δ is directly explained by a mixed-parity Cooper pairing model with high total angular momentum, consistent with a high-spin fermionic super fluid state. We propose a k ∙ p model of the j = 3/2 fermions to explain how a dominant J=3 septet pairing state is the simplest solution that naturally produces nodes in the mixed even-odd parity gap. Together with the underlying topologically non-trivial band structure, the unconventional pairing in this system represents a truly novel form of super fluidity that has strong potential for leading the development of a new generation of topological superconductors.« less
Beyond triplet: Unconventional superconductivity in a spin-3/2 topological semimetal
Kim, Hyunsoo; Wang, Kefeng; Nakajima, Yasuyuki; ...
2018-04-06
In all known fermionic super fluids, Cooper pairs are composed of spin-1/2 quasi-particles that pair to form either spin-singlet or spin-triplet bound states. The "spin" of a Bloch electron, however, is xed by the symmetries of the crystal and the atomic orbitals from which it is derived, and in some cases can behave as if it were a spin-3/2 particle. The superconducting state of such a system allows pairing beyond spin-triplet, with higher spin quasi-particles combining to form quintet or even septet pairs. Here, we report evidence of unconventional superconductivity emerging from a spin-3/2 quasiparticle electronic structure in the half-Heuslermore » semimetal YPtBi, a low-carrier density noncentrosymmetric cubic material with a high symmetry that preserves the p-like j = 3/2 manifold in the Bi-based Γ 8 band in the presence of strong spin-orbit coupling. With a striking linear temperature dependence of the London penetration depth, the existence of line nodes in the superconducting order parameter Δ is directly explained by a mixed-parity Cooper pairing model with high total angular momentum, consistent with a high-spin fermionic super fluid state. We propose a k ∙ p model of the j = 3/2 fermions to explain how a dominant J=3 septet pairing state is the simplest solution that naturally produces nodes in the mixed even-odd parity gap. Together with the underlying topologically non-trivial band structure, the unconventional pairing in this system represents a truly novel form of super fluidity that has strong potential for leading the development of a new generation of topological superconductors.« less
Rb-NMR study of the quasi-one-dimensional competing spin-chain compound R b2C u2M o3O12
NASA Astrophysics Data System (ADS)
Matsui, Kazuki; Yagi, Ayato; Hoshino, Yukihiro; Atarashi, Sochiro; Hase, Masashi; Sasaki, Takahiko; Goto, Takayuki
2017-12-01
A Rb-NMR study has been performed on the quasi-one-dimensional competing spin chain R b2C u2M o3O12 with ferromagnetic and antiferromagnetic exchange interactions on nearest-neighboring and next-nearest neighboring spins, respectively. The system changes from a gapped ground state at zero field to a gapless state at HC≃2 T , where the existence of magnetic order below 1 K was demonstrated by a broadening of the NMR spectrum, associated with a critical divergence of 1 /T1 . In the higher-temperature region, T1-1 showed a power-law-type temperature dependence, from which the field dependence of the Luttinger parameter K was obtained and compared with theoretical calculations based on the spin nematic Tomonaga-Luttinger liquid (TLL) state.
Classification of trivial spin-1 tensor network states on a square lattice
NASA Astrophysics Data System (ADS)
Lee, Hyunyong; Han, Jung Hoon
2016-09-01
Classification of possible quantum spin liquid (QSL) states of interacting spin-1/2's in two dimensions has been a fascinating topic of condensed matter for decades, resulting in enormous progress in our understanding of low-dimensional quantum matter. By contrast, relatively little work exists on the identification, let alone classification, of QSL phases for spin-1 systems in dimensions higher than one. Employing the powerful ideas of tensor network theory and its classification, we develop general methods for writing QSL wave functions of spin-1 respecting all the lattice symmetries, spin rotation, and time reversal with trivial gauge structure on the square lattice. We find 25 distinct classes characterized by five binary quantum numbers. Several explicit constructions of such wave functions are given for bond dimensions D ranging from two to four, along with thorough numerical analyses to identify their physical characters. Both gapless and gapped states are found. The topological entanglement entropy of the gapped states is close to zero, indicative of topologically trivial states. In D =4 , several different tensors can be linearly combined to produce a family of states within the same symmetry class. A rich "phase diagram" can be worked out among the phases of these tensors, as well as the phase transitions among them. Among the states we identified in this putative phase diagram is the plaquette-ordered phase, gapped resonating valence bond phase, and a critical phase. A continuous transition separates the plaquette-ordered phase from the resonating valence bond phase.
Observation of a second metastable spin-ordered state in ferrimagnet Cu2OSeO3
NASA Astrophysics Data System (ADS)
Huang, C. L.; Tseng, K. F.; Chou, C. C.; Mukherjee, S.; Her, J. L.; Matsuda, Y. H.; Kindo, K.; Berger, H.; Yang, H. D.
2011-02-01
dc and ac magnetization measurements were performed on single-crystal Cu2OSeO3 under magnetic field (H) and hydrostatic pressure (P) conditions. Increasing H shifts the ferrimagnetic transition observed at TC~60 K to a higher-temperature region. Moreover, the TC increases linearly and magnetization is enhanced with P. Features of the ladder in the M-vs-H curve or the peak in the dM/dH-vs-H curve are observed at HSF~0.5 kOe, suggesting a competing ordered state under magnetic fields below TC. Remarkably, a second shoulder is observed at ˜1 kOe in the dM/dH-vs-H curve, revealing another metastable spin-ordered state in Cu2OSeO3. This state is retained and enhanced by applying pressure. As H rises to 55 T, no further slope changes in the M-H curve are observed. These magnetic properties indicate a complex spin orientation in the geometrically spin-frustrated system Cu2OSeO3.
Spin-lattice relaxation of individual solid-state spins
NASA Astrophysics Data System (ADS)
Norambuena, A.; Muñoz, E.; Dinani, H. T.; Jarmola, A.; Maletinsky, P.; Budker, D.; Maze, J. R.
2018-03-01
Understanding the effect of vibrations on the relaxation process of individual spins is crucial for implementing nanosystems for quantum information and quantum metrology applications. In this work, we present a theoretical microscopic model to describe the spin-lattice relaxation of individual electronic spins associated to negatively charged nitrogen-vacancy centers in diamond, although our results can be extended to other spin-boson systems. Starting from a general spin-lattice interaction Hamiltonian, we provide a detailed description and solution of the quantum master equation of an electronic spin-one system coupled to a phononic bath in thermal equilibrium. Special attention is given to the dynamics of one-phonon processes below 1 K where our results agree with recent experimental findings and analytically describe the temperature and magnetic-field scaling. At higher temperatures, linear and second-order terms in the interaction Hamiltonian are considered and the temperature scaling is discussed for acoustic and quasilocalized phonons when appropriate. Our results, in addition to confirming a T5 temperature dependence of the longitudinal relaxation rate at higher temperatures, in agreement with experimental observations, provide a theoretical background for modeling the spin-lattice relaxation at a wide range of temperatures where different temperature scalings might be expected.
NASA Astrophysics Data System (ADS)
Vaz, Louis C.; Alexander, John M.
1983-07-01
Fission angular distributions have been studied for years and have been treated as classic examples of trasitions-state theory. Early work involving composite nuclei of relatively low excitation energy E ∗ (⪅35 MeV) and spin I (⪅25ħ) gave support to theory and delimited interesting properties of the transitions-state nuclei. More recent research on fusion fission and sequential fission after deeply inelastic reactions involves composite nuclei of much higher energies (⪅200 MeV) and spins (⪅100ħ). Extension of the basic ideas developed for low-spin nuclei requires detailed consideration of the role of these high spins and, in particular, the “spin window” for fussion. We have made empirical correlations of cross sections for evaporation residues and fission in order to get a description of this spin window. A systematic reanalysis has been made for fusion fission induced by H, He and heavier ions. Empirical correlations of K 20 (K 20 = {IeffT }/{h̷2}) are presented along with comparisons of Ieff to moments of inertia for saddle-point nuclei from the rotating liquid drop model. This model gives an excellent guide for the intermidiate spin zone (30⪅ I ⪅65), while strong shell and/or pairing effects are evident for excitations less than ⪅35 MeV. Observations of strong anisotropies for very high-spin systems signal the demise of certain approximation commonly made in the theory, and suggestions are made toward this end.
Generalized spin-wave theory: Application to the bilinear-biquadratic model
NASA Astrophysics Data System (ADS)
Muniz, Rodrigo A.; Kato, Yasuyuki; Batista, Cristian D.
2014-08-01
We present a mathematical framework for the multi-boson approach that has been used several times for treating spin systems. We demonstrate that the multi-boson approach corresponds to a generalization of the traditional spin-wave theory from SU(2) to SU(N), where N is the number of states of the local degree of freedom. Low-energy excitations are waves of the local order parameter that fluctuates in the SU(N) space of unitary transformations of the local spin states, instead of the SU(2) space of local spin rotations. Since the generators of the SU(N) group can be represented as bilinear forms in N-flavored bosons, the low-energy modes of the generalized spin-wave theory (GSWT) are described with N-1 different bosons, which provide a more accurate description of low-energy excitations even for the usual ferromagnetic and antiferromagnetic phases. The generalization enables the treatment of quantum spin systems whose ground states exhibit multipolar ordering as well as the detection of instabilities of magnetically ordered states (dipolar ordering) towards higher multipolar orderings. We illustrate the advantages of the GSWT by applying it to a bilinear-biquadratic model of arbitrary spin S on hypercubic lattices, and then analyzing the spectrum of dipolar phases in order to find their instabilities. In contrast to the known results for S=1 when the biquadratic term in the Hamiltonian is negative, we find that there is no nematic phase between the ferromagnetic or antiferromagnetic orderings for S>1.
Thermodynamics of higher spin black holes in AdS3
NASA Astrophysics Data System (ADS)
de Boer, Jan; Jottar, Juan I.
2014-01-01
We discuss the thermodynamics of recently constructed three-dimensional higher spin black holes in SL( N, ) × SL( N, ) Chern-Simons theory with generalized asymptotically-anti-de Sitter boundary conditions. From a holographic perspective, these bulk theories are dual to two-dimensional CFTs with WN symmetry algebras, and the black hole solutions are dual to thermal states with higher spin chemical potentials and charges turned on. Because the notion of horizon area is not gauge-invariant in the higher spin theory, the traditional approaches to the computation of black hole entropy must be reconsidered. One possibility, explored in the recent literature, involves demanding the existence of a partition function in the CFT, and consistency with the first law of thermodynamics. This approach is not free from ambiguities, however, and in particular different definitions of energy result in different expressions for the entropy. In the present work we show that there are natural definitions of the thermodynamically conjugate variables that follow from careful examination of the variational principle, and moreover agree with those obtained via canonical methods. Building on this intuition, we derive general expressions for the higher spin black hole entropy and free energy which are written entirely in terms of the Chern-Simons connections, and are valid for both static and rotating solutions. We compare our results to other proposals in the literature, and provide a new and efficient way to determine the generalization of the Cardy formula to a situation with higher spin charges.
Cobalt spin states and hyperfine interactions in LaCoO3 investigated by LDA+U calculations
NASA Astrophysics Data System (ADS)
Leighton, C.; Hsu, H.; Blaha, P.; Wentzcovitch, R. M.
2010-12-01
The spin states of cobalt ions in the bulk and epitaxial-thin-film lanthanum cobaltite (LaCoO3) have been controversial for years. The controversial point is mainly the presence of intermediate-spin (IS) Co in the temperature range of 0-85 K. In this region, bulk LaCoO3 experiences a crossover from a diamagnetic to a paramagnetic phase, and the thin-film LaCoO3 is ferromagnetic and insulator. An approach to probe the Co spin state is thus of interest. With a series of LDA+U calculations, we have demonstrated that the electric field gradient (EFG) at the Co nucleus can be used as a fingerprint to identify the spin state of the Co ion in each case. Therefore, in principle, the spin state of the Co ion can be unambiguously determined from nuclear magnetic resonance (NMR) spectra. Our calculations also suggest that the presence of IS Co in this temperature range is unlikely, based not only on its relatively higher energy, but also on its associated conducting band structure incompatible with the measured insulating conductivity. This work was primarily supported by the MRSEC Program of NSF under Awards Number DMR-0212302 and DMR-0819885, and partially supported by NSF under ATM-0428774 (V-Lab), EAR-1019853, and EAR-0810272. The computations were performed mainly at the Minnesota Supercomputing Institute (MSI).
Units of rotational information
NASA Astrophysics Data System (ADS)
Yang, Yuxiang; Chiribella, Giulio; Hu, Qinheping
2017-12-01
Entanglement in angular momentum degrees of freedom is a precious resource for quantum metrology and control. Here we study the conversions of this resource, focusing on Bell pairs of spin-J particles, where one particle is used to probe unknown rotations and the other particle is used as reference. When a large number of pairs are given, we show that every rotated spin-J Bell state can be reversibly converted into an equivalent number of rotated spin one-half Bell states, at a rate determined by the quantum Fisher information. This result provides the foundation for the definition of an elementary unit of information about rotations in space, which we call the Cartesian refbit. In the finite copy scenario, we design machines that approximately break down Bell states of higher spins into Cartesian refbits, as well as machines that approximately implement the inverse process. In addition, we establish a quantitative link between the conversion of Bell states and the simulation of unitary gates, showing that the fidelity of probabilistic state conversion provides upper and lower bounds on the fidelity of deterministic gate simulation. The result holds not only for rotation gates, but also to all sets of gates that form finite-dimensional representations of compact groups. For rotation gates, we show how rotations on a system of given spin can simulate rotations on a system of different spin.
High-spin spectroscopy of 139Ce
NASA Astrophysics Data System (ADS)
Kaim, S.; Petrache, C. M.; Gargano, A.; Itaco, N.; Zerrouki, T.; Leguillon, R.; Astier, A.; Deloncle, I.; Konstantinopoulos, T.; Régis, J. M.; Wilmsen, D.; Melon, B.; Nannini, A.; Ducoin, C.; Guinet, D.; Bhattacharjee, T.
2015-02-01
High-spin states in 139Ce have been populated using the 130Te(14C,5 n ) reaction. The level scheme has been extended to higher spins, including a new band of dipole transitions. The parity of several states has been changed from negative to positive, mainly based on the comparison with the level structure of the core nucleus 140Ce and the results of a realistic shell-model calculation. The dipole band is interpreted as a magnetic rotation band with π h11/2 2⊗ν h11/2 -1 configuration built on small deformation axial shape with (ɛ2=0.12 ,γ =0∘) .
Electronic spin state of Fe,Al-containing MgSiO3 perovskite at lower mantle conditions
NASA Astrophysics Data System (ADS)
Kupenko, I.; McCammon, C.; Sinmyo, R.; Prescher, C.; Chumakov, A. I.; Kantor, A.; Rüffer, R.; Dubrovinsky, L.
2014-02-01
We have investigated silicate perovskite with composition Mg0.83Fe0.21Al0.06Si0.91O3 relevant for the lower mantle at pressures up to 81 GPa and temperatures up to 2000 K using conventional Mössbauer spectroscopy and synchrotron Nuclear Forward Scattering (NFS) combined with double-sided laser heating in a diamond anvil cell. Room temperature Mössbauer and NFS spectra at low pressure are dominated by high-spin Fe2 +, with minor amounts of Fe3 + and a component assigned to a metastable position of high-spin Fe2 + in the A-site predicted by computational studies. NFS data show a sharp transition (< 20 GPa) from high-spin Fe2 + to a new component with extremely high quadrupole splitting, similar to previous studies. Mössbauer data show the same transition, but over a broader pressure range likely due to the higher pressure gradient. The new Fe2 + component is assigned to intermediate-spin Fe2 +, consistent with previous X-ray emission studies. NFS data at high temperatures and high pressures comparable to those in the lower mantle are consistent with the presence of Fe2 + only in the intermediate-spin state and Fe3 + only in the high-spin state. Our results are therefore consistent with the occurrence of spin crossover only in Fe2 + in Fe-, Al-containing perovskite within the lower mantle.
NASA Astrophysics Data System (ADS)
Fehr, M.; Schnegg, A.; Rech, B.; Astakhov, O.; Finger, F.; Bittl, R.; Teutloff, C.; Lips, K.
2014-02-01
Light-induced degradation of hydrogenated amorphous silicon (a-Si :H), known as the Staebler-Wronski effect, has been studied by time-domain pulsed electron-paramagnetic resonance. Electron-spin echo relaxation measurements in the annealed and light-soaked state revealed two types of defects (termed type I and II), which can be discerned by their electron-spin echo relaxation. Type I exhibits a monoexponential decay related to indirect flip-flop processes between dipolar coupled electron spins in defect clusters, while the phase relaxation of type II is dominated by H1 nuclear spin dynamics and is indicative for isolated spins. We propose that defects are either located at internal surfaces of microvoids (type I) or are isolated and uniformly distributed in the bulk (type II). The concentration of both defect type I and II is significantly higher in the light-soaked state compared to the annealed state. Our results indicate that in addition to isolated defects, defects on internal surfaces of microvoids play a role in light-induced degradation of device-quality a-Si :H.
Experimental status of the nuclear spin scissors mode
NASA Astrophysics Data System (ADS)
Balbutsev, E. B.; Molodtsova, I. V.; Schuck, P.
2018-04-01
With the Wigner function moments (WFM) method the scissors mode of the actinides and rare earth nuclei are investigated. The unexplained experimental fact that in 232Th a double hump structure is found finds a natural explanation within WFM. It is predicted that the lower peak corresponds to an isovector spin scissors mode whereas the higher-lying states corresponds to the conventional isovector orbital scissors mode. The experimental situation is scrutinized in this respect concerning practically all results of M 1 excitations.
Fan-out Estimation in Spin-based Quantum Computer Scale-up.
Nguyen, Thien; Hill, Charles D; Hollenberg, Lloyd C L; James, Matthew R
2017-10-17
Solid-state spin-based qubits offer good prospects for scaling based on their long coherence times and nexus to large-scale electronic scale-up technologies. However, high-threshold quantum error correction requires a two-dimensional qubit array operating in parallel, posing significant challenges in fabrication and control. While architectures incorporating distributed quantum control meet this challenge head-on, most designs rely on individual control and readout of all qubits with high gate densities. We analysed the fan-out routing overhead of a dedicated control line architecture, basing the analysis on a generalised solid-state spin qubit platform parameterised to encompass Coulomb confined (e.g. donor based spin qubits) or electrostatically confined (e.g. quantum dot based spin qubits) implementations. The spatial scalability under this model is estimated using standard electronic routing methods and present-day fabrication constraints. Based on reasonable assumptions for qubit control and readout we estimate 10 2 -10 5 physical qubits, depending on the quantum interconnect implementation, can be integrated and fanned-out independently. Assuming relatively long control-free interconnects the scalability can be extended. Ultimately, the universal quantum computation may necessitate a much higher number of integrated qubits, indicating that higher dimensional electronics fabrication and/or multiplexed distributed control and readout schemes may be the preferredstrategy for large-scale implementation.
Broad diphoton resonance at the TeV? Not alone
NASA Astrophysics Data System (ADS)
Roig, Pablo; Sanz-Cillero, Juan José
2016-11-01
The hint for a possible resonance in the diphoton channel with mass of 750 GeV disappeared in the data presented at ICHEP'16 by ATLAS and CMS. However, the diphoton final state remains as one of the golden channels for new physics discoveries at the TeV scale in the LHC experiments. This motivates us to analyze model independently the implications of an O (TeV ) bump in the γ γ final state. By means of forward sum rules for γ γ scattering, we show that a spin-zero resonance with mass of the order of the TeV and a sizable γ γ partial width—-of the order of a few GeV—must be accompanied by higher-spin resonances with JR≥2 with similar properties, as expected in strongly coupled extensions of the Standard Model or, alternatively, in higher-dimensional deconstructed duals. Furthermore, independently of whether the putative O (TeV ) candidate is a scalar or a tensor, the large contribution to the forward sum rules in the referred scenario implies the presence of states in the spectrum with JR≥2 , these high-spin particles being a manifestation of new extra dimensions or composite states of a new strong sector.
NASA Astrophysics Data System (ADS)
Chan, GuoXuan; Wang, Xin
2018-04-01
We consider two typical approximations that are used in the microscopic calculations of double-quantum dot spin qubits, namely, the Heitler-London (HL) and the Hund-Mulliken (HM) approximations, which use linear combinations of Fock-Darwin states to approximate the two-electron states under the double-well confinement potential. We compared these results to a case in which the solution to a one-dimensional Schr¨odinger equation was exactly known and found that typical microscopic calculations based on Fock-Darwin states substantially underestimate the value of the exchange interaction, which is the key parameter that controls the quantum dot spin qubits. This underestimation originates from the lack of tunneling of Fock-Darwin states, which is accurate only in the case with a single potential well. Our results suggest that the accuracies of the current two-dimensional molecular- orbit-theoretical calculations based on Fock-Darwin states should be revisited since underestimation could only deteriorate in dimensions that are higher than one.
Ferromagnetic Interactions in the Surface State of LaCoO3
NASA Astrophysics Data System (ADS)
Yan, J.-Q.; Zhou, J.-S.; Goodenough, J. B.
2004-03-01
The spin-state degree of freedom is a peculiar property of LaCoO3 and has been the subject of continuing interest since the 1950s.The thermal excitation from low-spin state to higher-spin state induces a sharp increase of magnetic susceptibility,c(T), above 35 K. A Curie-like paramagnetism below 35 K has been attributed to impurities, oxygen nonstoichiometry, or localized spins of the surface layer. The minimum at 35 K of c(T) varies in magnitude in different reports and single crystals exhibit a smaller c(T) than polycrystals. A ferromagnetic component in LaCoO3 has been found and attributed to CoIV or isolated regions of magnetic phase in a nonmagnetic matrix. We report magnetic measurements of both single crystal and cold-pressed single-crystal powders. Cold-pressing significantly reduces the grain size and the increased surface area gives a strong ferromagnetism with Tc 85 K. The magnitude of c(T) at 35 K depends on the contribution of both the low-T paramagnetism and the ferromagnetic component.
Transition from the diamagnetic insulator to ferromagnetic metal in La1-xSrxCoO3
NASA Astrophysics Data System (ADS)
Knížek, Karel; Jirák, Zdeněk; Hejtmánek, Jiří; Novák, Pavel
2010-05-01
We have analyzed, using the theoretical GGA+U calculations, different configurations of spin states (low-spin, LS; intermediate-spin, IS and high-spin, HS Co) and proposed a model that accounts for magnetic and electric transport properties of perovskite cobaltites upon doping by charge carriers. In particular, it appears that the compositional transition from the diamagnetic LS phase of LaCoO3 to the ferromagnetic metallic IS phase in La1-xSrxCoO3 ( x>0.2) involves the same mechanisms as the high-temperature transition in pure LaCoO3. The process occurs gradually via a phase-separated state, where metallic IS domains stabilized through a charge transfer between Co and Co neighbors coexist with the Co poor regions in the LS ground state (or at higher temperatures, in mixed LS/HS state). This phase separation vanishes when doping in La1-xSrxCoO3 reaches x˜0.2, and a uniform IS phase, analogous to that in pure LaCoO3 in the high-temperature limit, is established.
A second metastable spin-ordered state on ferrimagnetic single crystal Cu2 OSeO 3
NASA Astrophysics Data System (ADS)
Chou, Chih Chieh; Huang, C. L.; Tseng, K. F.; Mukherjee, S.; Her, J. L.; Matsuda, Y. H.; Kindo, K.; Berger, H.; Yang, H. D.
2011-03-01
DC and AC susceptibilities were executed on ferrimagnetic single crystal Cu 2 OSe O3 under magnetic field (H) and hydrostatic pressure (P) circumstance. With increasing H , the ferrimagnetic transition at TC ~ 60 K tends to a higher temperature. Furthermore, the TC rises with a linear slope and magnetization is enhanced with increasing P . Features of the ladder shown in the M vs. H curve or the peak observed in the d M / d H vs. H curve are noted at HSF ~ 0.5 kOe, exhibiting a competing ordered state in magnetic fields below TC . Remarkably, another shoulder is observed at ~ 1 kOe in the d M / d H vs. H curve, revealing a metastable spin ordered state in Cu 2 OSe O3 . In addition, the novel state is retained and enhanced by applied pressure. However, at H up to 55 T, there is no more observable slop change in magnetization. These magnetic properties suggest a complex spin orientation in the spin-frustrated system Cu 2 OSe O3 .
NASA Astrophysics Data System (ADS)
Schmidt, Rainer; Wu, J.; Leighton, C.; Terry, I.
2009-03-01
The dielectric and magnetic properties and their correlations were investigated in polycrystalline perovskite LaCoO3-δ . The intrinsic bulk and grain-boundary (GB) dielectric relaxation processes were deconvoluted using impedance spectroscopy between 20 and 120 K, and resistivity and capacitance were analyzed separately. A thermally induced magnetic transition from a Co3+ low-spin (LS) (S=0;t2g6eg0) to a higher spin state occurs at Ts1≈80K , which is controversial in nature and has been suggested to be an intermediate-spin (IS) state (S=1;t2g5eg1) or a high-spin (HS) state (S=2;t2g4eg2) transition. This spin state transition was confirmed by magnetic-susceptibility measurements and was reflected in the impedance by a split of the single GB relaxation process into two coexisting contributions. This apparent electronic phase coexistence at T>80K was interpreted as a reflection of the coexistence of magnetic LS and IS/HS states. At lower temperatures (T≤40K) perceptible variation in bulk dielectric permittivity with temperature appeared to be correlated with the magnetic susceptibility associated with a magnetic defect structure. At 40K
Bounding the space of holographic CFTs with chaos
Perlmutter, Eric
2016-10-13
In this study, thermal states of quantum systems with many degrees of freedom are subject to a bound on the rate of onset of chaos, including a bound on the Lyapunov exponent, λ L ≤ 2π/β. We harness this bound to constrain the space of putative holographic CFTs and their would-be dual theories of AdS gravity. First, by studying out-of-time-order four-point functions, we discuss how λ L = 2π/β in ordinary two-dimensional holographic CFTs is related to properties of the OPE at strong coupling. We then rule out the existence of unitary, sparse two-dimensional CFTs with large central charge andmore » a set of higher spin currents of bounded spin; this implies the inconsistency of weakly coupled AdS 3 higher spin gravities without infinite towers of gauge fields, such as the SL(N) theories. This fits naturally with the structure of higher-dimensional gravity, where finite towers of higher spin fields lead to acausality. On the other hand, unitary CFTs with classical W ∞[λ] symmetry, dual to 3D Vasiliev or hs[λ] higher spin gravities, do not violate the chaos bound, instead exhibiting no chaos: λ L = 0. Independently, we show that such theories violate unitarity for |λ| > 2. These results encourage a tensionless string theory interpretation of the 3D Vasiliev theory.« less
NASA Astrophysics Data System (ADS)
Salberger, Olof; Korepin, Vladimir
We introduce a new model of interacting spin 1/2. It describes interactions of three nearest neighbors. The Hamiltonian can be expressed in terms of Fredkin gates. The Fredkin gate (also known as the controlled swap gate) is a computational circuit suitable for reversible computing. Our construction generalizes the model presented by Peter Shor and Ramis Movassagh to half-integer spins. Our model can be solved by means of Catalan combinatorics in the form of random walks on the upper half plane of a square lattice (Dyck walks). Each Dyck path can be mapped on a wave function of spins. The ground state is an equally weighted superposition of Dyck walks (instead of Motzkin walks). We can also express it as a matrix product state. We further construct a model of interacting spins 3/2 and greater half-integer spins. The models with higher spins require coloring of Dyck walks. We construct a SU(k) symmetric model (where k is the number of colors). The leading term of the entanglement entropy is then proportional to the square root of the length of the lattice (like in the Shor-Movassagh model). The gap closes as a high power of the length of the lattice [5, 11].
Pressure Induced Iron Spin Crossover in MgGeO3 Perovskite and Post-perovskite
NASA Astrophysics Data System (ADS)
Wentzcovitch, R. M.; Shukla, G.; Topsakal, M.
2014-12-01
MgGeO3-perovskite is known to be a low-pressure analog of MgSiO3-perovskite in many respects, but especially in regard to the post-perovskite transition. As such, investigation of spin state changes in Fe-bearing MgGeO3 might help to clarify some aspects of this type of state change in Fe-bearing MgSiO3. Using DFT+U calculations, we have investigated pressure induced state changes in Fe-bearing MgGeO3 perovskite and post-perovskite. Owing to the relatively larger atomic size of germanium compared to silicon, germanate phases have larger unit cell volume and interatomic distances than equivalent silicate phases at same pressures. As a result, all pressure induced state changes in iron occur at higher pressures in germanate phases than in the silicate ones, be it a spin state change or position change of (ferrous) iron in the perovskite cage. The effect of iron in the post-perovskite transition is also investigated.
Boron nitride nanotubes for spintronics.
Dhungana, Kamal B; Pati, Ranjit
2014-09-22
With the end of Moore's law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR) effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT), which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics.
Boron Nitride Nanotubes for Spintronics
Dhungana, Kamal B.; Pati, Ranjit
2014-01-01
With the end of Moore's law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR) effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT), which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics. PMID:25248070
Geppert, H; Denkmayr, T; Sponar, S; Lemmel, H; Hasegawa, Y
2014-11-01
For precise measurements with polarised neutrons high efficient spin-manipulation is required. We developed several neutron optical elements suitable for a new sophisticated setup, i.e., DC spin-turners and Larmor-accelerators which diminish thermal disturbances and depolarisation considerably. The gain in performance is exploited demonstrating violation of a Bell-like inequality for a spin-path entangled single-neutron state. The obtained value of [Formula: see text], which is much higher than previous measurements by neutron interferometry, is [Formula: see text] above the limit of S =2 predicted by contextual hidden variable theories. The new setup is more flexible referring to state preparation and analysis, therefore new, more precise measurements can be carried out.
Higher-order spin and charge dynamics in a quantum dot-lead hybrid system.
Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R; Amaha, Shinichi; Yoneda, Jun; Takeda, Kenta; Allison, Giles; Stano, Peter; Noiri, Akito; Ito, Takumi; Loss, Daniel; Ludwig, Arne; Wieck, Andreas D; Tarucha, Seigo
2017-09-22
Understanding the dynamics of open quantum systems is important and challenging in basic physics and applications for quantum devices and quantum computing. Semiconductor quantum dots offer a good platform to explore the physics of open quantum systems because we can tune parameters including the coupling to the environment or leads. Here, we apply the fast single-shot measurement techniques from spin qubit experiments to explore the spin and charge dynamics due to tunnel coupling to a lead in a quantum dot-lead hybrid system. We experimentally observe both spin and charge time evolution via first- and second-order tunneling processes, and reveal the dynamics of the spin-flip through the intermediate state. These results enable and stimulate the exploration of spin dynamics in dot-lead hybrid systems, and may offer useful resources for spin manipulation and simulation of open quantum systems.
Higher spin conformal geometry in three dimensions and prepotentials for higher spin gauge fields
NASA Astrophysics Data System (ADS)
Henneaux, Marc; Hörtner, Sergio; Leonard, Amaury
2016-01-01
We study systematically the conformal geometry of higher spin bosonic gauge fields in three spacetime dimensions. We recall the definition of the Cotton tensor for higher spins and establish a number of its properties that turn out to be key in solving in terms of prepotentials the constraint equations of the Hamiltonian (3 + 1) formulation of four-dimensional higher spin gauge fields. The prepotentials are shown to exhibit higher spin conformal symmetry. Just as for spins 1 and 2, they provide a remarkably simple, manifestly duality invariant formulation of the theory. While the higher spin conformal geometry is developed for arbitrary bosonic spin, we explicitly perform the Hamiltonian analysis and derive the solution of the constraints only in the illustrative case of spin 3. In a separate publication, the Hamiltonian analysis in terms of prepotentials is extended to all bosonic higher spins using the conformal tools of this paper, and the same emergence of higher spin conformal symmetry is confirmed.
Li, Zhendong; Liu, Wenjian
2010-08-14
The spin-adaptation of single-reference quantum chemical methods for excited states of open-shell systems has been nontrivial. The primary reason is that the configuration space, generated by a truncated rank of excitations from only one component of a reference multiplet, is spin-incomplete. Those "missing" configurations are of higher ranks and can, in principle, be recaptured by a particular class of excitation operators. However, the resulting formalisms are then quite involved and there are situations [e.g., time-dependent density functional theory (TD-DFT) under the adiabatic approximation] that prevent one from doing so. To solve this issue, we propose here a tensor-coupling scheme that invokes all the components of a reference multiplet (i.e., a tensor reference) rather than increases the excitation ranks. A minimal spin-adapted n-tuply excited configuration space can readily be constructed by tensor products between the n-tuple tensor excitation operators and the chosen tensor reference. Further combined with the tensor equation-of-motion formalism, very compact expressions for excitation energies can be obtained. As a first application of this general idea, a spin-adapted open-shell random phase approximation is first developed. The so-called "translation rule" is then adopted to formulate a spin-adapted, restricted open-shell Kohn-Sham (ROKS)-based TD-DFT (ROKS-TD-DFT). Here, a particular symmetry structure has to be imposed on the exchange-correlation kernel. While the standard ROKS-TD-DFT can access only excited states due to singlet-coupled single excitations, i.e., only some of the singly excited states of the same spin (S(i)) as the reference, the new scheme can capture all the excited states of spin S(i)-1, S(i), or S(i)+1 due to both singlet- and triplet-coupled single excitations. The actual implementation and computation are very much like the (spin-contaminated) unrestricted Kohn-Sham-based TD-DFT. It is also shown that spin-contaminated spin-flip configuration interaction approaches can easily be spin-adapted via the tensor-coupling scheme.
A modern approach to superradiance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endlich, Solomon; Penco, Riccardo
In this paper, we provide a simple and modern discussion of rotational super-radiance based on quantum field theory. We work with an effective theory valid at scales much larger than the size of the spinning object responsible for superradiance. Within this framework, the probability of absorption by an object at rest completely determines the superradiant amplification rate when that same object is spinning. We first discuss in detail superradiant scattering of spin 0 particles with orbital angular momentum ℓ = 1, and then extend our analysis to higher values of orbital angular momentum and spin. Along the way, we providemore » a simple derivation of vacuum friction — a ''quantum torque'' acting on spinning objects in empty space. Our results apply not only to black holes but to arbitrary spinning objects. We also discuss superradiant instability due to formation of bound states and, as an illustration, we calculate the instability rate Γ for bound states with massive spin 1 particles. For a black hole with mass M and angular velocity Ω, we find Γ ~ (GMμ) 7Ω when the particle’s Compton wavelength 1/μ is much greater than the size GM of the spinning object. This rate is parametrically much larger than the instability rate for spin 0 particles, which scales like (GM μ) 9Ω. This enhanced instability rate can be used to constrain the existence of ultralight particles beyond the Standard Model.« less
A modern approach to superradiance
Endlich, Solomon; Penco, Riccardo
2017-05-10
In this paper, we provide a simple and modern discussion of rotational super-radiance based on quantum field theory. We work with an effective theory valid at scales much larger than the size of the spinning object responsible for superradiance. Within this framework, the probability of absorption by an object at rest completely determines the superradiant amplification rate when that same object is spinning. We first discuss in detail superradiant scattering of spin 0 particles with orbital angular momentum ℓ = 1, and then extend our analysis to higher values of orbital angular momentum and spin. Along the way, we providemore » a simple derivation of vacuum friction — a ''quantum torque'' acting on spinning objects in empty space. Our results apply not only to black holes but to arbitrary spinning objects. We also discuss superradiant instability due to formation of bound states and, as an illustration, we calculate the instability rate Γ for bound states with massive spin 1 particles. For a black hole with mass M and angular velocity Ω, we find Γ ~ (GMμ) 7Ω when the particle’s Compton wavelength 1/μ is much greater than the size GM of the spinning object. This rate is parametrically much larger than the instability rate for spin 0 particles, which scales like (GM μ) 9Ω. This enhanced instability rate can be used to constrain the existence of ultralight particles beyond the Standard Model.« less
Titan's Spin State from Cassini SAR Data: Evidence for an Internal Ocean
NASA Astrophysics Data System (ADS)
Stiles, B. W.; Lorenz, R. D.; Kirk, R. L.; Hensley, S.; Lee, E. M.; Allison, M. D.; Perci Del Marmo, P.; Lunine, J. I.; Ostro, S. J.; Gim, Y.; Hamilton, G. A.; Johnson, W. T.; West, R. D.
2007-12-01
Nineteen areas on Titan's surface have been imaged with Cassini SAR on two separate flybys with intervals from 2 months to 2 years. We have used the apparent misregistration of features between separate flybys (which is 10-30 km) to construct a refined model of Titan's spin state, estimating six parameters: pole right ascension and declination, spin rate, and these quantities' first time derivatives. Because we have only observed Titan for 2-3 years, our dataset is unlikely to be sensitive to higher order derivatives. We have studied the uncertainty and degree of correlation of the model parameters, and have also searched the parameter space to eliminate the possibility of more than one solution. Our model spin state differs significantly from both the zero-inclination synchronous model and from any other plausible Cassini state. The previously estimated pole location and spin rate used by the IAU and the Cassini mission definitely cannot account for the observed misregistration. Because our imaging resolution is between 300 m and 1 km, we are very sensitive to the pole location and spin rate. Our estimated corrections to the pole and spin rate exceed their corresponding standard errors by factors of 40 and 4, respectively. We examined 150 different features in 19 different twice-observed regions. Applying our pole correction reduces the feature misregistration from tens of km to 3-4 km. Applying the spin rate and derivative corrections further reduces the misregistration to 1-2 km. We propose that our result reflects coupling between atmospheric angular momentum changes and an internal water ocean, for two reasons. First, astrodynamical theory predicts that if Titan is in a dynamically relaxed Cassini state there is a relationship between the moment of inertia factor C/MR2 and the obliquity of a few tenths of a degree. Our results (from two independent analyses of the overlaps) show an appreciable deviation from the expected range of states: either Titan suffered a recent dynamical excitation, or the theory does not hold because the surface is decoupled from the deep interior. We cannot identify an evident source of a recent excitation, so we favor the latter. Second, much as the Earth's length-of-day changes by ~1 ms over a year, seasonal changes in Titan's atmospheric angular momentum (Tokano and Neubauer, 2005) will manifest themselves in a change in surface rotation rate. The change in rate is ~10x higher, amounting to some hundreds of seconds, when the surface is decoupled from the interior by a water-ammonia ocean. Our preliminary rotation solutions indicate a present- day spin rate offset of several tenths of a degree per year that may be accelerating. The spin rate and its rate of change suggest that significant atmospheric changes are occurring and that Titan has an internal ocean. The research described here was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
Proposal for a graphene-based all-spin logic gate
NASA Astrophysics Data System (ADS)
Su, Li; Zhao, Weisheng; Zhang, Yue; Querlioz, Damien; Zhang, Youguang; Klein, Jacques-Olivier; Dollfus, Philippe; Bournel, Arnaud
2015-02-01
In this work, we present a graphene-based all-spin logic gate (G-ASLG) that integrates the functionalities of perpendicular anisotropy magnetic tunnel junctions (p-MTJs) with spin transport in graphene-channel. It provides an ideal integration of logic and memory. The input and output states are defined as the relative magnetization between free layer and fixed layer of p-MTJs. They can be probed by the tunnel magnetoresistance and controlled by spin transfer torque effect. Using lateral non-local spin valve, the spin information is transmitted by the spin-current interaction through graphene channels. By using a physics-based spin current compact model, the operation of G-ASLG is demonstrated and its performance is analyzed. It allows us to evaluate the influence of parameters, such as spin injection efficiency, spin diffusion length, contact area, the device length, and their interdependence, and to optimize the energy and dynamic performance. Compared to other beyond-CMOS solutions, longer spin information transport length (˜μm), higher data throughput, faster computing speed (˜ns), and lower power consumption (˜μA) can be expected from the G-ASLG.
First-order symmetry-adapted perturbation theory for multiplet splittings.
Patkowski, Konrad; Żuchowski, Piotr S; Smith, Daniel G A
2018-04-28
We present a symmetry-adapted perturbation theory (SAPT) for the interaction of two high-spin open-shell molecules (described by their restricted open-shell Hartree-Fock determinants) resulting in low-spin states of the complex. The previously available SAPT formalisms, except for some system-specific studies for few-electron complexes, were restricted to the high-spin state of the interacting system. Thus, the new approach provides, for the first time, a SAPT-based estimate of the splittings between different spin states of the complex. We have derived and implemented the lowest-order SAPT term responsible for these splittings, that is, the first-order exchange energy. We show that within the so-called S 2 approximation commonly used in SAPT (neglecting effects that vanish as fourth or higher powers of intermolecular overlap integrals), the first-order exchange energies for all multiplets are linear combinations of two matrix elements: a diagonal exchange term that determines the spin-averaged effect and a spin-flip term responsible for the splittings between the states. The numerical factors in this linear combination are determined solely by the Clebsch-Gordan coefficients: accordingly, the S 2 approximation implies a Heisenberg Hamiltonian picture with a single coupling strength parameter determining all the splittings. The new approach is cast into both molecular-orbital and atomic-orbital expressions: the latter enable an efficient density-fitted implementation. We test the newly developed formalism on several open-shell complexes ranging from diatomic systems (Li⋯H, Mn⋯Mn, …) to the phenalenyl dimer.
First-order symmetry-adapted perturbation theory for multiplet splittings
NASA Astrophysics Data System (ADS)
Patkowski, Konrad; Żuchowski, Piotr S.; Smith, Daniel G. A.
2018-04-01
We present a symmetry-adapted perturbation theory (SAPT) for the interaction of two high-spin open-shell molecules (described by their restricted open-shell Hartree-Fock determinants) resulting in low-spin states of the complex. The previously available SAPT formalisms, except for some system-specific studies for few-electron complexes, were restricted to the high-spin state of the interacting system. Thus, the new approach provides, for the first time, a SAPT-based estimate of the splittings between different spin states of the complex. We have derived and implemented the lowest-order SAPT term responsible for these splittings, that is, the first-order exchange energy. We show that within the so-called S2 approximation commonly used in SAPT (neglecting effects that vanish as fourth or higher powers of intermolecular overlap integrals), the first-order exchange energies for all multiplets are linear combinations of two matrix elements: a diagonal exchange term that determines the spin-averaged effect and a spin-flip term responsible for the splittings between the states. The numerical factors in this linear combination are determined solely by the Clebsch-Gordan coefficients: accordingly, the S2 approximation implies a Heisenberg Hamiltonian picture with a single coupling strength parameter determining all the splittings. The new approach is cast into both molecular-orbital and atomic-orbital expressions: the latter enable an efficient density-fitted implementation. We test the newly developed formalism on several open-shell complexes ranging from diatomic systems (Li⋯H, Mn⋯Mn, …) to the phenalenyl dimer.
Sun, J; Osborne, J P; Kahlow, M A; Kaysser, T M; Hil, J J; Gennis, R B; Loehr, T M
1995-09-26
Cytochrome bd oxidase is a terminal bacterial oxidase containing three cofactors: a low-spin heme (b558), a high-spin heme (b595), and a chlorin d. The center of dioxygen reduction has been proposed to be at a dinuclear b595/d site, whereas b558 is mainly involved in transferring electrons from ubiquinone. One of the unique functional features of this enzyme is its resistance to high concentrations of cyanide (Ki in the millimolar range). With the appropriate selection of laser lines, the ligation and spin states of the b558, b595, and d hemes can be probed selectively by resonance Raman (rR) spectroscopy. Wavelengths between 400 and 500 nm predominantly excite the rR spectra of the b558 and b595 chromophores. Spectra obtained within this interval show a mixed population of spin and ligation states arising from b558 and b595, with the former more strongly enhanced at higher energy. Red excitation wavelengths (590-650 nm) generate rR spectra characteristic of chlorins, indicating the selective enhancement of the d heme. These rR results reveal that cytochrome bd oxidase "as isolated" contains the b558 heme in a six-coordinate low-spin ferric state, the b595 heme in a five-coordinate high-spin (5cHS) ferric state, and the d heme in a mixture of oxygenated (FeIIO2 <--> FeIIIO2-; d650) and ferryl-oxo (FeIV = O; d680) states. However, the rR spectra of these two chlorin species indicate that they are both in the 5cHS state, suggesting that the d heme is lacking a strongly coordinated sixth ligand.(ABSTRACT TRUNCATED AT 250 WORDS)
Evolution of the phonon density of states of LaCoO3 over the spin state transition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golosova, N. O.; Kozlenko, D. P.; Kolesnikov, Alexander I
2011-01-01
The phonon spectra of LaCoO3 were studied by inelastic neutron scattering in the temperature range of 4 120 K. The DFT calculations of the lattice dynamics have been made for interpretation of the experimental data. The observed and calculated phonon frequencies were found to be in a reasonable agreement. The evolution of the phonon density of states over the spin state transition was analyzed. In the low-temperature range (T < 50 K), an increase in the energy of resolved breathing, stretching, and bending phonon modes was found, followed by their softening and broadening at higher temperatures due to the spinmore » state transition and relevant orbital-phonon coupling.« less
FRW and domain walls in higher spin gravity
NASA Astrophysics Data System (ADS)
Aros, R.; Iazeolla, C.; Noreña, J.; Sezgin, E.; Sundell, P.; Yin, Y.
2018-03-01
We present exact solutions to Vasiliev's bosonic higher spin gravity equations in four dimensions with positive and negative cosmological constant that admit an interpretation in terms of domain walls, quasi-instantons and Friedman-Robertson-Walker (FRW) backgrounds. Their isometry algebras are infinite dimensional higher-spin extensions of spacetime isometries generated by six Killing vectors. The solutions presented are obtained by using a method of holomorphic factorization in noncommutative twistor space and gauge functions. In interpreting the solutions in terms of Fronsdal-type fields in space-time, a field-dependent higher spin transformation is required, which is implemented at leading order. To this order, the scalar field solves Klein-Gordon equation with conformal mass in ( A) dS 4 . We interpret the FRW solution with de Sitter asymptotics in the context of inflationary cosmology and we expect that the domain wall and FRW solutions are associated with spontaneously broken scaling symmetries in their holographic description. We observe that the factorization method provides a convenient framework for setting up a perturbation theory around the exact solutions, and we propose that the nonlinear completion of particle excitations over FRW and domain wall solutions requires black hole-like states.
Kosevich, Yuriy A; Gann, Vladimir V
2013-06-19
We study the localization of magnon states in finite defect-free Heisenberg spin-1/2 ferromagnetic chains placed in an inhomogeneous magnetic field with a constant spatial gradient. Continuous transformation from the extended magnon states to the localized Wannier-Zeeman states in a finite spin chain placed in an inhomogeneous field is described both analytically and numerically. We describe for the first time the non-monotonic dependence of the energy levels of magnons, both long and short wavelength, on the magnetic field gradient, which is a consequence of magnon localization in a finite spin chain. We show that, in contrast to the destruction of the magnon band and the establishment of the Wannier-Stark ladder in a vanishingly small field gradient in an infinite chain, the localization of magnon states at the chain ends preserves the memory of the magnon band. Essentially, the localization at the lower- or higher-field chain end resembles the localization of the positive- or negative-effective-mass band quasiparticles. We also show how the beat dynamics of coherent superposition of extended spin waves in a finite chain in a homogeneous or weakly inhomogeneous field transforms into magnon Bloch oscillations of the superposition of localized Wannier-Zeeman states in a strongly inhomogeneous field. We provide a semiclassical description of the magnon Bloch oscillations and show that the correspondence between the quantum and semiclassical descriptions is most accurate for Bloch oscillations of the magnon coherent states, which are built from a coherent superposition of a large number of the nearest-neighbour Wannier-Zeeman states.
Magnetic and structural transitions in La1-xAxCoO3 ( A=Ca , Sr, and Ba)
NASA Astrophysics Data System (ADS)
Kriener, M.; Braden, M.; Kierspel, H.; Senff, D.; Zabara, O.; Zobel, C.; Lorenz, T.
2009-06-01
We report thermal-expansion, lattice-constant, and specific-heat data of the series La1-xAxCoO3 for 0≤x≤0.30 with A=Ca , Sr, and Ba. For the undoped compound LaCoO3 , the thermal-expansion coefficient α(T) exhibits a pronounced maximum around T=50K caused by a temperature-driven spin-state transition from a low-spin state of the Co3+ ions at low temperatures toward a higher spin state at higher temperatures. The partial substitution of the La3+ ions by divalent Ca2+ , Sr2+ , or Ba2+ ions causes drastic changes in the macroscopic properties of LaCoO3 . The large maximum in α(T) is suppressed and completely vanishes for x≳0.125 . For A=Ca three different anomalies develop in α(T) with further increasing x , which are visible in specific-heat data as well. Together with temperature-dependent x-ray data, we identify several phase transitions as a function of the doping concentration x and temperature. From these data we propose an extended phase diagram for La1-xCaxCoO3 .
Solid State Spin-Wave Quantum Memory for Time-Bin Qubits.
Gündoğan, Mustafa; Ledingham, Patrick M; Kutluer, Kutlu; Mazzera, Margherita; de Riedmatten, Hugues
2015-06-12
We demonstrate the first solid-state spin-wave optical quantum memory with on-demand read-out. Using the full atomic frequency comb scheme in a Pr(3+):Y2SiO5 crystal, we store weak coherent pulses at the single-photon level with a signal-to-noise ratio >10. Narrow-band spectral filtering based on spectral hole burning in a second Pr(3+):Y2SiO5 crystal is used to filter out the excess noise created by control pulses to reach an unconditional noise level of (2.0±0.3)×10(-3) photons per pulse. We also report spin-wave storage of photonic time-bin qubits with conditional fidelities higher than achievable by a measure and prepare strategy, demonstrating that the spin-wave memory operates in the quantum regime. This makes our device the first demonstration of a quantum memory for time-bin qubits, with on-demand read-out of the stored quantum information. These results represent an important step for the use of solid-state quantum memories in scalable quantum networks.
Current interactions from the one-form sector of nonlinear higher-spin equations
NASA Astrophysics Data System (ADS)
Gelfond, O. A.; Vasiliev, M. A.
2018-06-01
The form of higher-spin current interactions in the sector of one-forms is derived from the nonlinear higher-spin equations in AdS4. Quadratic corrections to higher-spin equations are shown to be independent of the phase of the parameter η = exp iφ in the full nonlinear higher-spin equations. The current deformation resulting from the nonlinear higher-spin equations is represented in the canonical form with the minimal number of space-time derivatives. The non-zero spin-dependent coupling constants of the resulting currents are determined in terms of the higher-spin coupling constant η η bar . Our results confirm the conjecture that (anti-)self-dual nonlinear higher-spin equations result from the full system at (η = 0) η bar = 0.
A Non-Abelian Geometric Phase for Spin Systems
NASA Astrophysics Data System (ADS)
H M, Bharath; Boguslawski, Matthew; Barrios, Maryrose; Chapman, Michael
Berry's geometric phase has been used to characterize topological phase transitions. Recent works have addressed the question of whether generalizations of Berry's phase to mixed states can be used to characterize topological phase transitions. Berry's phase is essentially the geometric information stored in the overall phase of a quantum system. Here, we show that geometric information is also stored in the higher order spin moments of a quantum spin system. In particular, we show that when the spin vector of a quantum spin system with a spin 1 or higher is transported along a closed path inside the Bloch ball, the tensor of second moments picks up a geometric phase in the form of an SO(3) operator. Geometrically interpreting this phase is tantamount to defining a steradian angle for closed paths inside the Bloch ball. Typically the steradian angle is defined by projecting the path onto the surface of the Bloch ball. However, paths that pass through the center cannot be projected onto the surface. We show that the steradian angles of all paths, including those that pass through the center can be defined by projecting them onto a real projective plane, instead of a sphere. This steradian angle is equal to the geometric phase picked up by a spin system.
Zhang, Kai; Nusran, N. M.; Slezak, B. R.; ...
2016-05-17
While it is often thought that the geometric phase is less sensitive to fluctuations in the control fields, a very general feature of adiabatic Hamiltonians is the unavoidable dynamic phase that accompanies the geometric phase. The effect of control field noise during adiabatic geometric quantum gate operations has not been probed experimentally, especially in the canonical spin qubit system that is of interest for quantum information. We present measurement of the Berry phase and carry out adiabatic geometric phase gate in a single solid-state spin qubit associated with the nitrogen-vacancy center in diamond. We manipulate the spin qubit geometrically bymore » careful application of microwave radiation that creates an effective rotating magnetic field, and observe the resulting Berry phase signal via spin echo interferometry. Our results show that control field noise at frequencies higher than the spin echo clock frequency causes decay of the quantum phase, and degrades the fidelity of the geometric phase gate to the classical threshold after a few (~10) operations. This occurs in spite of the geometric nature of the state preparation, due to unavoidable dynamic contributions. In conclusion, we have carried out systematic analysis and numerical simulations to study the effects of the control field noise and imperfect driving waveforms on the quantum phase gate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Kai; Nusran, N. M.; Slezak, B. R.
While it is often thought that the geometric phase is less sensitive to fluctuations in the control fields, a very general feature of adiabatic Hamiltonians is the unavoidable dynamic phase that accompanies the geometric phase. The effect of control field noise during adiabatic geometric quantum gate operations has not been probed experimentally, especially in the canonical spin qubit system that is of interest for quantum information. We present measurement of the Berry phase and carry out adiabatic geometric phase gate in a single solid-state spin qubit associated with the nitrogen-vacancy center in diamond. We manipulate the spin qubit geometrically bymore » careful application of microwave radiation that creates an effective rotating magnetic field, and observe the resulting Berry phase signal via spin echo interferometry. Our results show that control field noise at frequencies higher than the spin echo clock frequency causes decay of the quantum phase, and degrades the fidelity of the geometric phase gate to the classical threshold after a few (~10) operations. This occurs in spite of the geometric nature of the state preparation, due to unavoidable dynamic contributions. In conclusion, we have carried out systematic analysis and numerical simulations to study the effects of the control field noise and imperfect driving waveforms on the quantum phase gate.« less
Equation-of-motion coupled cluster method for the description of the high spin excited states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musiał, Monika, E-mail: musial@ich.us.edu.pl; Lupa, Łukasz; Kucharski, Stanisław A.
2016-04-21
The equation-of-motion (EOM) coupled cluster (CC) approach in the version applicable for the excitation energy (EE) calculations has been formulated for high spin components. The EE-EOM-CC scheme based on the restricted Hartree-Fock reference and standard amplitude equations as used in the Davidson diagonalization procedure yields the singlet states. The triplet and higher spin components require separate amplitude equations. In the case of quintets, the relevant equations are much simpler and easier to solve. Out of 26 diagrammatic terms contributing to the R{sub 1} and R{sub 2} singlet equations in the case of quintets, only R{sub 2} operator survives with 5more » diagrammatic terms present. In addition all terms engaging three body elements of the similarity transformed Hamiltonian disappear. This indicates a substantial simplification of the theory. The implemented method has been applied to the pilot study of the excited states of the C{sub 2} molecule and quintet states of C and Si atoms.« less
NASA Astrophysics Data System (ADS)
Mansikkamäki, Akseli; Popov, Alexey A.; Deng, Qingming; Iwahara, Naoya; Chibotaru, Liviu F.
2017-09-01
The magnetic properties and electronic structure of the ground and excited states of two recently characterized endohedral metallo-fullerenes, [Gd2@C78]- (1) and [Gd2@C80]- (2), have been studied by theoretical methods. The systems can be considered as [Gd2]5+ dimers encapsulated in a fullerene cage with the fifteen unpaired electrons ferromagnetically coupled into an S = 15/2 high-spin configuration in the ground state. The microscopic mechanisms governing the Gd-Gd interactions leading to the ferromagnetic ground state are examined by a combination of density functional and ab initio calculations and the full energy spectrum of the ground and lowest excited states is constructed by means of ab initio model Hamiltonians. The ground state is characterized by strong electron delocalization bordering on a σ type one-electron covalent bond and minor zero-field splitting (ZFS) that is successfully described as a second order spin-orbit coupling effect. We have shown that the observed ferromagnetic interaction originates from Hund's rule coupling and not from the conventional double exchange mechanism. The calculated ZFS parameters of 1 and 2 in their optimized geometries are in qualitative agreement with experimental EPR results. The higher excited states display less electron delocalization, but at the same time they possess unquenched first-order angular momentum. This leads to strong spin-orbit coupling and highly anisotropic energy spectrum. The analysis of the excited states presented here constitutes the first detailed study of the effects of spin-dependent delocalization in the presence of first order orbital angular momentum and the obtained results can be applied to other mixed valence lanthanide systems.
Husimi function and phase-space analysis of bilayer quantum Hall systems at ν = 2/λ
NASA Astrophysics Data System (ADS)
Calixto, M.; Peón-Nieto, C.
2018-05-01
We propose localization measures in phase space of the ground state of bilayer quantum Hall systems at fractional filling factors , to characterize the three quantum phases (shortly denoted by spin, canted and ppin) for arbitrary -isospin λ. We use a coherent state (Bargmann) representation of quantum states, as holomorphic functions in the 8-dimensional Grassmannian phase-space (a higher-dimensional generalization of the Haldane’s 2-dimensional sphere ). We quantify the localization (inverse volume) of the ground state wave function in phase-space throughout the phase diagram (i.e. as a function of Zeeman, tunneling, layer distance, etc, control parameters) with the Husimi function second moment, a kind of inverse participation ratio that behaves as an order parameter. Then we visualize the different ground state structure in phase space of the three quantum phases, the canted phase displaying a much higher delocalization (a Schrödinger cat structure) than the spin and ppin phases, where the ground state is highly coherent. We find a good agreement between analytic (variational) and numeric diagonalization results.
Spin transport in carbon nanotubes bundles: An ab-initio study
NASA Astrophysics Data System (ADS)
Meena, Shweta; Choudhary, Sudhanshu
2017-10-01
First principles investigations are performed on understanding the spin-polarized transport in carbon nanotubes and carbon nanotube bundles consisting of (8 , 0) and (17 , 0) SWCNTs kept in vertical (out-of-plane) arrangement and contacted by two CrO2 Half-Metallic-Ferromagnetic (HMF) electrodes. On comparison of the results for all the structures, it is observed that carbon nanotube bundle consisting of (17 , 0) CNT offers high TMR ∼100% and the transport phenomenon is tunneling, since there are no transmission states near Fermi level. However, in individual (8 , 0) and (17 , 0) CNT the transport is not because of tunneling, since there are significant number of transmission states near Fermi level. High Magneto Resistance (MR) 96% and 99% is observed in individual (8 , 0) and (17 , 0) CNTs respectively. Both TMR and Spin Injection Efficiency η (Spin-Filtration) are higher in (17 , 0) carbon nanotube bundle structure, which is due to carbon nanotube bundle acting as a perfect barrier in vertical (out-of-plane) arrangement resulting in negligible spin-down current (I↓) in both Parallel Configuration (PC) and Antiparallel Configuration (APC).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furukawa, Yuji
This paper presents a comprehensive review of nuclear magnetic resonance (NMR) studies performed on three nanoscale molecular magnets with different novel configurations of geometrically frustrated antiferromagnetic (AFM) triangles: (1) the isolated single AFM triangle K 6[V 15As 6O 42(H 2O)]·8H 2O (in short V15), (2) the spin ball [Mo 72Fe 30O 252(Mo 2O 7(H 2O)) 2(Mo 2O 8H 2(H 2O)) (CH 3COO) 12(H 2O) 91]·150H 2O (in short Fe30 spin ball), and (3) the twisted triangular spin tube [(CuCl 2tachH) 3Cl]Cl 2 (in short Cu3 spin tube). In V15t, from 51V NMR spectra, the local spin configurations were directly determinedmore » in both the nonfrustrated total spin S T = 3/2 state at higher magnetic fields (H ge; 2.7 T) and the two nearly degenerate S T = 1/2 ground states at lower magnetic fields (H ≤ 2.7 T). The dynamical magnetic properties of V15 were investigated by proton spin-lattice relaxation rate (1/T 1) measurements. In the S T = 3/2 state, 1/T 1 shows thermally activated behaviour as a function of temperature. On the other hand, the temperature independent behaviour of 1/T 1 at very low temperatures is observed in the frustrated S T = 1/2 ground state. Possible origins for the peculiar behaviour of 1/T 1 will be discussed in terms of magnetic fluctuations due to spin frustrations. In Fe30, static and dynamical properties of Fe 3+ (s = 5/2) have been investigated by proton NMR spectra and 1/T 1 measurements. From the temperature dependence of 1/T 1, the fluctuation frequency of the Fe 3+ spins is found to decrease with decreasing temperature, indicating spin freezing at low temperatures. The spin freezing is also evidenced by the observation of a sudden broadening of 1H NMR spectra below 0.6 K. Finally, 1H NMR data in Cu3 will be described. An observation of magnetic broadening of 1H NMR spectra at low temperatures below 1 K directly revealed a gapless ground state. The 1/T 1 measurements revealed a usual slow spin dynamics in the Cu3 spin tube.« less
Furukawa, Yuji
2016-10-01
This paper presents a comprehensive review of nuclear magnetic resonance (NMR) studies performed on three nanoscale molecular magnets with different novel configurations of geometrically frustrated antiferromagnetic (AFM) triangles: (1) the isolated single AFM triangle K 6[V 15As 6O 42(H 2O)]·8H 2O (in short V15), (2) the spin ball [Mo 72Fe 30O 252(Mo 2O 7(H 2O)) 2(Mo 2O 8H 2(H 2O)) (CH 3COO) 12(H 2O) 91]·150H 2O (in short Fe30 spin ball), and (3) the twisted triangular spin tube [(CuCl 2tachH) 3Cl]Cl 2 (in short Cu3 spin tube). In V15t, from 51V NMR spectra, the local spin configurations were directly determinedmore » in both the nonfrustrated total spin S T = 3/2 state at higher magnetic fields (H ge; 2.7 T) and the two nearly degenerate S T = 1/2 ground states at lower magnetic fields (H ≤ 2.7 T). The dynamical magnetic properties of V15 were investigated by proton spin-lattice relaxation rate (1/T 1) measurements. In the S T = 3/2 state, 1/T 1 shows thermally activated behaviour as a function of temperature. On the other hand, the temperature independent behaviour of 1/T 1 at very low temperatures is observed in the frustrated S T = 1/2 ground state. Possible origins for the peculiar behaviour of 1/T 1 will be discussed in terms of magnetic fluctuations due to spin frustrations. In Fe30, static and dynamical properties of Fe 3+ (s = 5/2) have been investigated by proton NMR spectra and 1/T 1 measurements. From the temperature dependence of 1/T 1, the fluctuation frequency of the Fe 3+ spins is found to decrease with decreasing temperature, indicating spin freezing at low temperatures. The spin freezing is also evidenced by the observation of a sudden broadening of 1H NMR spectra below 0.6 K. Finally, 1H NMR data in Cu3 will be described. An observation of magnetic broadening of 1H NMR spectra at low temperatures below 1 K directly revealed a gapless ground state. The 1/T 1 measurements revealed a usual slow spin dynamics in the Cu3 spin tube.« less
Qudit quantum computation on matrix product states with global symmetry
NASA Astrophysics Data System (ADS)
Wang, Dongsheng; Stephen, David; Raussendorf, Robert
Resource states that contain nontrivial symmetry-protected topological order are identified for universal measurement-based quantum computation. Our resource states fall into two classes: one as the qudit generalizations of the qubit cluster state, and the other as the higher-symmetry generalizations of the spin-1 Affleck-Kennedy-Lieb-Tasaki (AKLT) state, namely, with unitary, orthogonal, or symplectic symmetry. The symmetry in cluster states protects information propagation (identity gate), while the higher symmetry in AKLT-type states enables nontrivial gate computation. This work demonstrates a close connection between measurement-based quantum computation and symmetry-protected topological order.
Qudit quantum computation on matrix product states with global symmetry
NASA Astrophysics Data System (ADS)
Wang, Dong-Sheng; Stephen, David T.; Raussendorf, Robert
2017-03-01
Resource states that contain nontrivial symmetry-protected topological order are identified for universal single-qudit measurement-based quantum computation. Our resource states fall into two classes: one as the qudit generalizations of the one-dimensional qubit cluster state, and the other as the higher-symmetry generalizations of the spin-1 Affleck-Kennedy-Lieb-Tasaki (AKLT) state, namely, with unitary, orthogonal, or symplectic symmetry. The symmetry in cluster states protects information propagation (identity gate), while the higher symmetry in AKLT-type states enables nontrivial gate computation. This work demonstrates a close connection between measurement-based quantum computation and symmetry-protected topological order.
NASA Astrophysics Data System (ADS)
Mondal, Padmabati; Opalka, Daniel; Poluyanov, Leonid V.; Domcke, Wolfgang
2012-02-01
Multiconfiguration ab initio methods have been employed to study the effects of Jahn-Teller (JT) and spin-orbit (SO) coupling in the transition-metal trifluorides TiF3, CrF3, and NiF3, which possess spatially doubly degenerate excited states (ME) of even spin multiplicities (M = 2 or 4). The ground states of TiF3, CrF3, and NiF3 are nondegenerate and exhibit minima of D3h symmetry. Potential-energy surfaces of spatially degenerate excited states have been calculated using the state-averaged complete-active-space self-consistent-field method. SO coupling is described by the matrix elements of the Breit-Pauli operator. Linear and higher order JT coupling constants for the JT-active bending and stretching modes as well as SO-coupling constants have been determined. Vibronic spectra of JT-active excited electronic states have been calculated, using JT Hamiltonians for trigonal systems with inclusion of SO coupling. The effect of higher order (up to sixth order) JT couplings on the vibronic spectra has been investigated for selected electronic states and vibrational modes with particularly strong JT couplings. While the weak SO couplings in TiF3 and CrF3 are almost completely quenched by the strong JT couplings, the stronger SO coupling in NiF3 is only partially quenched by JT coupling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nirmala, R.; Jang, Kwang-Hyun; Sim, Hasung
2017-02-15
CuAl 2O 4 is a normal spinel oxide having quantum spin, S = 1/2 for Cu 2+. It is a rather unique feature that the Cu 2+ ions of CuAl 2O 4 sit at a tetrahedral position, not like the usual octahedral position for many oxides. At low temperatures, it exhibits all the thermodynamic evidence of a quantum spin glass. For example, the polycrystalline CuAl 2O 4 shows a cusp centered at ~2 K in the low-field dc magnetization data and a clear frequency dependence in the ac magnetic susceptibility while it displays logarithmic relaxation behavior in a time dependencemore » of the magnetization. At the same time, there is a peak at ~2.3 K in the heat capacity, which shifts towards a higher temperature with magnetic fields. Conversely, there is no evidence of new superlattice peaks in the high-resolution neutron powder diffraction data when cooled from 40 to 0.4 K. This implies that there is no long-ranged magnetic order down to 0.4 K, thus confirming a spin glass-like ground state for CuAl 2O 4. Interestingly, there is no sign of structural distortion either although Cu 2+ is a Jahn–Teller active ion. Therefore, we claim that an orbital liquid state is the most likely ground state in CuAl 2O 4. Of further interest, it also exhibits a large frustration parameter, f = |θ CW/T m| ~ 67, one of the largest values reported for spinel oxides. These observations suggest that CuAl 2O 4 should be a rare example of a frustrated quantum spin glass with a good candidate for an orbital liquid state.« less
NASA Astrophysics Data System (ADS)
Bañados, Máximo; Düring, Gustavo; Faraggi, Alberto; Reyes, Ignacio A.
2017-08-01
We study the thermodynamic phase diagram of three-dimensional s l (N ;R ) higher spin black holes. By analyzing the semiclassical partition function we uncover a rich structure that includes Hawking-Page transitions to the AdS3 vacuum, first order phase transitions among black hole states, and a second order critical point. Our analysis is explicit for N =4 but we extrapolate some of our conclusions to arbitrary N . In particular, we argue that even N is stable in the ensemble under consideration but odd N is not.
Magnetic Excitations in α-RuCl3
NASA Astrophysics Data System (ADS)
Nagler, Stephen; Banerjee, Arnab; Bridges, Craig; Yan, Jiaqiang; Mandrus, David; Stone, Matthew; Aczel, Adam; Li, Ling; Yiu, Yuen; Lumsden, Mark; Knolle, Johannes; Moessner, Roderich; Tennant, Alan
2015-03-01
The layered material α-RuCl3 is composed of stacks of weakly coupled honeycomb lattices of octahedrally coordinated Ru3+ ions. The Ru ion ground state has 5 d electrons in the low spin state, with spin-orbit coupling very strong compared to other terms in the single ion Hamiltonian. The material is therefore an excellent candidate for investigating possible Heisenberg-Kitaev physics. In addition, this compound is very amenable to investigation by neutron scattering to explore the magnetic ground state and excitations in detail. Here we discuss new time-of-flight inelastic neutron scattering data on α-RuCl3. A high energy excitation near 200 meV is identified as a transition from the single ion J=1/2 ground state to the J=3/2 excited state, yielding a direct measurement of the spin orbit coupling energy. Higher resolution measurements reveal two collective modes at much lower energy scales. The results are compared with the theoretical expectations for excitations in the Heisenberg - Kitaev model on a honeycomb lattice, and show that Kitaev interactions are important. Research at SNS supported by the DOE BES Scientific User Facilities Division.
1992-03-14
overdoped Lal. 66 Sr0 34 CuO4 . 1. Introduction Understanding the normal state charge and spin dynamics of cuprates is closely tied to an explanation of high...frequency of the tank circuit of 160 MHz. As predicted by theory [191, the SQUID noise is reduced significantly when using the higher frequency. This...emphasized that the spin excitation gap is not decreasing with temperature as expected in the classical BCS theory . An other astonishing result is
Entangled spins and ghost-spins
NASA Astrophysics Data System (ADS)
Jatkar, Dileep P.; Narayan, K.
2017-09-01
We study patterns of quantum entanglement in systems of spins and ghost-spins regarding them as simple quantum mechanical toy models for theories containing negative norm states. We define a single ghost-spin as in [20] as a 2-state spin variable with an indefinite inner product in the state space. We find that whenever the spin sector is disentangled from the ghost-spin sector (both of which could be entangled within themselves), the reduced density matrix obtained by tracing over all the ghost-spins gives rise to positive entanglement entropy for positive norm states, while negative norm states have an entanglement entropy with a negative real part and a constant imaginary part. However when the spins are entangled with the ghost-spins, there are new entanglement patterns in general. For systems where the number of ghost-spins is even, it is possible to find subsectors of the Hilbert space where positive norm states always lead to positive entanglement entropy after tracing over the ghost-spins. With an odd number of ghost-spins however, we find that there always exist positive norm states with negative real part for entanglement entropy after tracing over the ghost-spins.
The pure rotational spectrum of TiF (X 4Φr): 3d transition metal fluorides revisited
NASA Astrophysics Data System (ADS)
Sheridan, P. M.; McLamarrah, S. K.; Ziurys, L. M.
2003-11-01
The pure rotational spectrum of TiF in its X 4Φr (v=0) ground state has been measured using millimeter/sub-millimeter wave direct absorption techniques in the range 140-530 GHz. In ten out of the twelve rotational transitions recorded, all four spin-orbit components were observed, confirming the 4Φr ground state assignment. Additional small splittings were resolved in several of the spin components in lower J transitions, which appear to arise from magnetic hyperfine interactions of the 19F nucleus. In contrast, no evidence for Λ-doubling was seen in the data. The rotational transitions of TiF were analyzed using a case (a) Hamiltonian, resulting in the determination of rotational and fine structure constants, as well as hyperfine parameters for the fluorine nucleus. The data were readily fit in a case (a) basis, indicating strong first order spin-orbit coupling and minimal second-order effects, as also evidenced by the small value of λ, the spin-spin parameter. Moreover, only one higher order term, η, the spin-orbit/spin-spin interaction term, was needed in the analysis, again suggesting limited perturbations in the ground state. The relative values of the a, b, and c hyperfine constants indicate that the three unpaired electrons in this radical lie in orbitals primarily located on the titanium atom and support the molecular orbital picture of TiF with a σ1δ1π1 single electron configuration. The bond length of TiF (1.8342 Å) is significantly longer than that of TiO, suggesting that there are differences in the bonding between 3d transition metal fluorides and oxides.
NMR in Pulsed Magnetic Fields on the Orthogonal Shastry-Sutherland spin system SrCu2 (BO3)2
NASA Astrophysics Data System (ADS)
Stern, Raivo; Kohlrautz, Jonas; Kühne, Hannes; Greene, Liz; Wosnitza, Jochen; Haase, Jügen
2015-03-01
SrCu2(BO3)2 is a quasi-two-dimensional spin system consisting of Cu2+ ions which form orthogonal spin singlet dimers, also known as the Shastry-Sutherland lattice, in the ground state. Though this system has been studied extensively using a variety of techniques to probe the spin triplet excitations, including recent magnetization measurements over 100 T, microscopic techniques, such as nuclear magnetic resonance (NMR), could provide further insight into the spin excitations and spin-coupling mechanisms. We demonstrate the feasibility of performing NMR on real physics system in pulsed magnets. We present 11B NMR spectra measured in pulsed magnetic fields up to 53 T, and compare those with prior results obtained in static magnetic fields. Herewith we prove the efficacy of this technique and then extend to higher fields to fully explore the spin structure of the 1/3 plateau. Support by EMFL, DFG, ETAg (EML+ & PUT210).
NASA Astrophysics Data System (ADS)
Raturi, Ashish; Choudhary, Sudhanshu
2016-11-01
First principles calculations of spin-dependent electronic transport properties of magnetic tunnel junction (MTJ) consisting of MgO adsorbed graphene nanosheet sandwiched between two CrO2 half-metallic ferromagnetic (HMF) electrodes is reported. MgO adsorption on graphene opens bandgap in graphene nanosheet which makes it more suitable for use as a tunnel barrier in MTJs. It was found that MgO adsorption suppresses transmission probabilities for spin-down channel in case of parallel configuration (PC) and also suppresses transmission in antiparallel configuration (APC) for both spin-up and spin-down channel. Tunnel magneto-resistance (TMR) of 100% is obtained at all bias voltages in MgO adsorbed graphene-based MTJ which is higher than that reported in pristine graphene-based MTJ. HMF electrodes were found suitable to achieve perfect spin filtration effect and high TMR. I-V characteristics for both parallel and antiparallel magnetization states of junction are calculated. High TMR suggests its usefulness in spin valves and other spintronics-based applications.
Theoretical Study of Spin Crossover in 30 Iron Complexes.
Kepp, Kasper P
2016-03-21
Iron complexes are important spin crossover (SCO) systems with vital roles in oxidative metabolism and promising technological potential. The SCO tendency depends on the free energy balance of high- and low-spin states, which again depends on physical effects such as dispersion, relativistic effects, and vibrational entropy. This work studied 30 different iron SCO systems with experimentally known thermochemical data, using 12 different density functionals. Remarkably general entropy-enthalpy compensation across SCO systems was identified (R = 0.82, p = 0.002) that should be considered in rational SCO design. Iron(II) complexes displayed higher ΔH and ΔS values than iron(III) complexes and also less steep compensation effects. First-coordination sphere ΔS values computed from numerical frequencies reproduce most of the experimental entropy and should thus be included when modeling spin-state changes in inorganic chemistry (R = 0.52, p = 3.4 × 10(-3); standard error in TΔS ≈ 4.4 kJ/mol at 298 K vs 16 kJ/mol of total TΔS on average). Zero-point energies favored high-spin states by 9 kJ/mol on average. Interestingly, dispersion effects are surprisingly large for the SCO process (average: 9 kJ/mol, but up to 33 kJ/mol) and favor the more compact low-spin state. Relativistic effects favor low-spin by ∼9 kJ/mol on average, but up to 24 kJ/mol. B3LYP*, TPSSh, B2PLYP, and PW6B95 performed best for the typical calculation scheme that includes ZPE. However, if relativistic and dispersion effects are included, only B3LYP* remained accurate. On average, high-spin was favored by LYP by 11-15 kJ/mol relative to other correlation functionals, and by 4.2 kJ/mol per 1% HF exchange in hybrids. 13% HF exchange was optimal without dispersion, and 15% was optimal with all effects included for these systems.
Brajuskovic, V.; Barrows, F.; Phatak, C.; ...
2016-10-03
Artificial spin ice lattices have emerged as model systems for studying magnetic frustration in recent years. Most work to date has looked at periodic artificial spin ice lattices. In this paper, we observe frustration effects in quasicrystal artificial spin ice lattices that lack translational symmetry and contain vertices with different numbers of interacting elements. We find that as the lattice state changes following demagnetizing and annealing, specific vertex motifs retain low-energy configurations, which excites other motifs into higher energy configurations. In addition, we find that unlike the magnetization reversal process for periodic artificial spin ice lattices, which occurs through 1Dmore » avalanches, quasicrystal lattices undergo reversal through a dendritic 2D avalanche mechanism.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brajuskovic, V.; Barrows, F.; Phatak, C.
Artificial spin ice lattices have emerged as model systems for studying magnetic frustration in recent years. Most work to date has looked at periodic artificial spin ice lattices. In this paper, we observe frustration effects in quasicrystal artificial spin ice lattices that lack translational symmetry and contain vertices with different numbers of interacting elements. We find that as the lattice state changes following demagnetizing and annealing, specific vertex motifs retain low-energy configurations, which excites other motifs into higher energy configurations. In addition, we find that unlike the magnetization reversal process for periodic artificial spin ice lattices, which occurs through 1Dmore » avalanches, quasicrystal lattices undergo reversal through a dendritic 2D avalanche mechanism.« less
Usharani, Dandamudi; Janardanan, Deepa; Li, Chunsen; Shaik, Sason
2013-02-19
Over the past decades metalloenzymes and their synthetic models have emerged as an area of increasing research interest. The metalloenzymes and their synthetic models oxidize organic molecules using oxometal complexes (OMCs), especially oxoiron(IV)-based ones. Theoretical studies have helped researchers to characterize the active species and to resolve mechanistic issues. This activity has generated massive amounts of data on the relationship between the reactivity of OMCs and the transition metal's identity, oxidation state, ligand sphere, and spin state. Theoretical studies have also produced information on transition state (TS) structures, reaction intermediates, barriers, and rate-equilibrium relationships. For example, the experimental-theoretical interplay has revealed that nonheme enzymes carry out H-abstraction from strong C-H bonds using high-spin (S = 2) oxoiron(IV) species with four unpaired electrons on the iron center. However, other reagents with higher spin states and more unpaired electrons on the metal are not as reactive. Still other reagents carry out these transformations using lower spin states with fewer unpaired electrons on the metal. The TS structures for these reactions exhibit structural selectivity depending on the reactive spin states. The barriers and thermodynamic driving forces of the reactions also depend on the spin state. H-Abstraction is preferred over the thermodynamically more favorable concerted insertion into C-H bonds. Currently, there is no unified theoretical framework that explains the totality of these fascinating trends. This Account aims to unify this rich chemistry and understand the role of unpaired electrons on chemical reactivity. We show that during an oxidative step the d-orbital block of the transition metal is enriched by one electron through proton-coupled electron transfer (PCET). That single electron elicits variable exchange interactions on the metal, which in turn depend critically on the number of unpaired electrons on the metal center. Thus, we introduce the exchange-enhanced reactivity (EER) principle, which predicts the preferred spin state during oxidation reactions, the dependence of the barrier on the number of unpaired electrons in the TS, and the dependence of the deformation energy of the reactants on the spin state. We complement EER with orbital-selection rules, which predict the structure of the preferred TS and provide a handy theory of bioinorganic oxidative reactions. These rules show how EER provides a Hund's Rule for chemical reactivity: EER controls the reactivity landscape for a great variety of transition-metal complexes and substrates. Among many reactivity patterns explained, EER rationalizes the abundance of high-spin oxoiron(IV) complexes in enzymes that carry out bond activation of the strongest bonds. The concepts used in this Account might also be applicable in other areas such as in f-block chemistry and excited-state reactivity of 4d and 5d OMCs.
Demonstrating ultrafast polarization dynamics in spin-VCSELs
NASA Astrophysics Data System (ADS)
Lindemann, Markus; Pusch, Tobias; Michalzik, Rainer; Gerhardt, Nils C.; Hofmann, Martin R.
2018-02-01
Vertical-cavity surface-emitting lasers (VCSELs) are used for short-haul optical data transmission with increasing bit rates. The optimization involves both enhanced device designs and the use of higher-order modulation formats. In order to improve the modulation bandwidth substantially, the presented work employs spin-pumped VCSELs (spin-VCSELs) and their polarization dynamics instead of relying on intensity-modulated devices. In spin-VCSELs, the polarization state of the emitted light is controllable via spin injection. By optical spin pumping a single-mode VCSEL is forced to emit light composed of both orthogonal linearly polarized fundamental modes. The frequencies of these two modes differ slightly by a value determined by the cavity birefringence. As a result, the circular polarization degree oscillates with their beat frequency, i.e., with the birefringence-induced mode splitting. We used this phenomenon to show so-called polarization oscillations, which are generated by pulsed spin injection. Their frequency represents the polarization dynamics resonance frequency and can be tuned over a wide range via the birefringence, nearly independent from any other laser parameter. In previous work we demonstrated a maximum birefringence-induced mode splitting of more than 250 GHz. In this work, compared to previous publications, we show an almost doubled polarization oscillation frequency of more than 80 GHz. Furthermore, we discuss concepts to achieve even higher values far above 100 GHz.
Absence of paired crossing in the positive parity bands of 124Cs
NASA Astrophysics Data System (ADS)
Singh, A. K.; Basu, A.; Nag, Somnath; Hübel, H.; Domscheit, J.; Ragnarsson, I.; Al-Khatib, A.; Hagemann, G. B.; Herskind, B.; Elema, D. R.; Wilson, J. N.; Clark, R. M.; Cromaz, M.; Fallon, P.; Görgen, A.; Lee, I.-Y.; Ward, D.; Ma, W. C.
2018-02-01
High-spin states in 124Cs were populated in the 64Ni(64Ni,p 3 n ) reaction and the Gammasphere detector array was used to measure γ -ray coincidences. Both positive- and negative-parity bands, including bands with chiral configurations, have been extended to higher spin, where a shape change has been observed. The configurations of the bands before and after the alignment are discussed within the framework of the cranked Nilsson-Strutinsky model. The calculations suggest that the nucleus undergoes a shape transition from triaxial to prolate around spin I ≃22 of the positive-parity states. The alignment gain of 8 ℏ , observed in the positive-parity bands, is due to partial alignment of several valence nucleons. This indicates the absence of band crossing due to paired nucleons in the bands.
Holographic spin networks from tensor network states
NASA Astrophysics Data System (ADS)
Singh, Sukhwinder; McMahon, Nathan A.; Brennen, Gavin K.
2018-01-01
In the holographic correspondence of quantum gravity, a global on-site symmetry at the boundary generally translates to a local gauge symmetry in the bulk. We describe one way how the global boundary on-site symmetries can be gauged within the formalism of the multiscale renormalization ansatz (MERA), in light of the ongoing discussion between tensor networks and holography. We describe how to "lift" the MERA representation of the ground state of a generic one dimensional (1D) local Hamiltonian, which has a global on-site symmetry, to a dual quantum state of a 2D "bulk" lattice on which the symmetry appears gauged. The 2D bulk state decomposes in terms of spin network states, which label a basis in the gauge-invariant sector of the bulk lattice. This decomposition is instrumental to obtain expectation values of gauge-invariant observables in the bulk, and also reveals that the bulk state is generally entangled between the gauge and the remaining ("gravitational") bulk degrees of freedom that are not fixed by the symmetry. We present numerical results for ground states of several 1D critical spin chains to illustrate that the bulk entanglement potentially depends on the central charge of the underlying conformal field theory. We also discuss the possibility of emergent topological order in the bulk using a simple example, and also of emergent symmetries in the nongauge (gravitational) sector in the bulk. More broadly, our holographic model translates the MERA, a tensor network state, to a superposition of spin network states, as they appear in lattice gauge theories in one higher dimension.
Spin-lattice coupling mediated multiferroicity in (ND 4) 2FeCl 5 • D 2O
Tian, Wei; Cao, Huibo; Wang, Jincheng; ...
2016-12-07
In this paper, we report a neutron diffraction study of the multiferroic mechanism in (ND 4) 2FeCl 5 • D 2O, a molecular compound that exhibits magnetically induced ferroelectricity. This material exhibits two successive magnetic transitions on cooling: a long-range order transition to an incommensurate (IC) collinear sinusoidal spin state at T N = 7.3 K, followed by a second transition to an IC cycloidal spin state at T FE = 6.8 K, the latter of which is accompanied by spontaneous ferroelectric polarization. The cycloid structure is strongly distorted by spin-lattice coupling, as evidenced by the observations of both oddmore » and even higher-order harmonics associated with the cycloid wave vector, and a weak commensurate phase that coexists with the IC phase. The second-order harmonic appears at T FE, thereby providing unambiguous evidence that the onset of the electric polarization is accompanied by a lattice modulation due to spin-lattice interaction. The neutron results, in conjunction with the negative thermal expansion and large magnetostriction observed, indicate that spin-lattice coupling plays a critical role in the ferroelectric mechanism of (ND 4) 2FeCl 5 • D 2O.« less
Field dependence of magnetic order and excitations in the Kitaev candidate alpha-RuCl3
NASA Astrophysics Data System (ADS)
Banerjee, Arnab; Kelley, Paula; Winn, Barry; Aczel, Adam; Lumsden, Mark; Mandrus, David; Nagler, Stephen
The search for new quantum states of matter has been one of the forefront endeavors of condensed matter physics. The two-dimensional Kitaev quantum spin liquid (QSL) is of special interest as an exactly solvable spin-liquid model exhibiting exotic fractionalized excitations. Recently, alpha-RuCl3 has been identified as a candidate system for exhibiting some aspects of Kitaev QSL physics. The spins in this material exhibit zig-zag order at low temperatures, and show both low energy spin wave excitation arising from the ordered state as well as a continuum excitation extending to higher energies that has been taken as evidence for QSL relate Majorana fermions. In this talk, we show that the application of an in-plane magnetic field suppresses the zig-zag order possibly resulting in a state devoid of long-range order. Field-dependent inelastic neutron scattering on single-crystal shows a remarkable effect on the excitation spectrum above the critical field. The work is supported by US-DOE, Office of Science, Basic Energy Sciences and User Facilities Divisions, and also the Gordon and Betty Moore Foundation EPiQS Grant GBFM4416.
Spin-polarized surface resonances accompanying topological surface state formation
Jozwiak, Chris; Sobota, Jonathan A.; Gotlieb, Kenneth; Kemper, Alexander F.; Rotundu, Costel R.; Birgeneau, Robert J.; Hussain, Zahid; Lee, Dung-Hai; Shen, Zhi-Xun; Lanzara, Alessandra
2016-01-01
Topological insulators host spin-polarized surface states born out of the energetic inversion of bulk bands driven by the spin-orbit interaction. Here we discover previously unidentified consequences of band-inversion on the surface electronic structure of the topological insulator Bi2Se3. By performing simultaneous spin, time, and angle-resolved photoemission spectroscopy, we map the spin-polarized unoccupied electronic structure and identify a surface resonance which is distinct from the topological surface state, yet shares a similar spin-orbital texture with opposite orientation. Its momentum dependence and spin texture imply an intimate connection with the topological surface state. Calculations show these two distinct states can emerge from trivial Rashba-like states that change topology through the spin-orbit-induced band inversion. This work thus provides a compelling view of the coevolution of surface states through a topological phase transition, enabled by the unique capability of directly measuring the spin-polarized unoccupied band structure. PMID:27739428
Spin Transfer Torque in Spin Filter Tunnel Junctions
NASA Astrophysics Data System (ADS)
Ortiz Pauyac, Christian; Kalitsov, Alan; Manchon, Aurelien; Chshiev, Mair
2014-03-01
STT in MTJs is well known for its potential spin electronic applications. However, recently a new class of MTJs based on spin filtering across magnetic insulators (SFTJ) has been attracting much attention since in such MTJs electrons with a certain spin orientation tunnel much more efficiently. In this structure, STT remains to be addressed and clarified. Here we present a systematic study of its angular and voltage bias dependences consisting of one or two FM layers separated by a magnetic insulator (MI). The calculations were performed within the tight-binding model using NEGF technique in the framework of Keldysh formalism. We predict that STT is higher in magnitude compared to regular MTJs, which strongly depends in the relative directions of the magnetic states of the free layer (FM2) and MI. Namely, in case of parallel orientation of MI and FM2 moments in a FM1|MI|FM2 structure, the system behaves as a regular MTJ with a modest increase of STT magnitude. However, as the angle between MI and FM2 moments increases, the field-like torque becomes three orders of magnitude higher than the Slonczewski component and oscillates with bias as band-filling increases. This may have practical implications.
Polarized photon scattering of 52Cr: Determining the parity of dipole states
NASA Astrophysics Data System (ADS)
Krishichayan, Fnu; Bhike, M.; Tornow, W.
2014-03-01
Observation of dipole states in nuclei are important because they provide information on various collective and single-particle nuclear excitation modes, e.g., pygmy dipole resonance (PDR) and spin-flip M1 resonance. The PDR has been extensively studied in the higher and medium mass region, whereas not much information is available around the low mass (A ~ 50) region where, apparently,the PDR starts to form. The present photoresponse of 52Cr has been investigated to test the evolution of the PDR in a nucleus with a small number of excess neutrons as well as to look for spin-flip M1 resonance excitation mode. Spin-1 states in 52Cr between 5.0 to 9.5 MeV excitation energy were excited by exploiting fully polarized photons using the (γ ,γ') nuclear resonance fluorescence technique, a completely model-independent electromagnetic method. The de-excitation γ-rays were detected using a HPGe array. The experiment was carried out using the HIGS facility at TUNL. Results of unambiguous parity determinations of dipole states in 52Cr will be presented.
Zhang, Yajun; Sahoo, Mpk; Wang, Jie
2016-09-23
Single vacancy (SV)-induced magnetism in graphene has attracted much attention motivated by its potential in achieving new functionalities. However, a much higher vacancy formation energy limits its direct application in electronic devices and the dependency of spin interaction on the strain is unclear. Here, through first-principles density-functional theory calculations, we investigate the possibility of strain engineering towards lowering vacancy formation energy and inducing new magnetic states in defective graphene. It is found that the SV-graphene undergoes a phase transition from an initial ferromagnetic state to a ferrimagnetic state under a biaxial tensile strain. At the same time, the biaxial tensile strain significantly lowers the vacancy formation energy. The charge density, density of states and band theory successfully identify the origin and underlying physics of the transition. The predicted magnetic phase transition is attributed to the strain driven spin flipping at the C-atoms nearest to the SV-site. The magnetic semiconducting graphene induced by defect and strain engineering suggests an effective way to modulate both spin and electronic degrees of freedom in future spintronic devices.
Geometry of spin coherent states
NASA Astrophysics Data System (ADS)
Chryssomalakos, C.; Guzmán-González, E.; Serrano-Ensástiga, E.
2018-04-01
Spin states of maximal projection along some direction in space are called (spin) coherent, and are, in many respects, the ‘most classical’ available. For any spin s, the spin coherent states form a 2-sphere in the projective Hilbert space \
Theory of the magnetism in La2NiMnO6
NASA Astrophysics Data System (ADS)
Sanyal, Prabuddha
2017-12-01
The magnetism of ordered and disordered La2NiMnO6 is explained using a model involving double exchange and superexchange. An important feature of this model is the majority spin hybridization in the large coupling limit, which results in ferromagnetism rather than ferrimagnetism as in Sr2FeMoO6 . The ferromagnetic insulating ground state in the ordered phase is explained. The essential role played by the Ni-Mn superexchange between the Ni eg electron spins and the Mn t2 g core electron spins in realizing this ground state is outlined. In the presence of antisite disorder, the model system is found to exhibit a tendency of becoming a spin glass at low temperatures, while it continues to retain a ferromagnetic transition at higher temperatures, similar to recent experimental observations [D. Choudhury et al., Phys. Rev. Lett. 108, 127201 (2012), 10.1103/PhysRevLett.108.127201]. This reentrant spin glass or reentrant ferromagnetic behavior is explained in terms of the competition of the ferromagnetic double exchange between the Ni eg and the Mn eg electrons, and the ferromagnetic Ni-Mn superexchange, with the antiferromagnetic antisite Mn-Mn superexchange.
Rigorous decoupling between edge states in frustrated spin chains and ladders
NASA Astrophysics Data System (ADS)
Chepiga, Natalia; Mila, Frédéric
2018-05-01
We investigate the occurrence of exact zero modes in one-dimensional quantum magnets of finite length that possess edge states. Building on conclusions first reached in the context of the spin-1/2 X Y chain in a field and then for the spin-1 J1-J2 Heisenberg model, we show that the development of incommensurate correlations in the bulk invariably leads to oscillations in the sign of the coupling between edge states, and hence to exact zero energy modes at the crossing points where the coupling between the edge states rigorously vanishes. This is true regardless of the origin of the frustration (e.g., next-nearest-neighbor coupling or biquadratic coupling for the spin-1 chain), of the value of the bulk spin (we report on spin-1/2, spin-1, and spin-2 examples), and of the value of the edge-state emergent spin (spin-1/2 or spin-1).
How to construct self/anti-self charge conjugate states for higher spins
NASA Astrophysics Data System (ADS)
Dvoeglazov, Valeriy V.
2012-10-01
We construct self/anti-self charge conjugate (Majorana-like) states for the (1/2,0)⊕(0,1/2) representation of the Lorentz group, and their analogs for higher spins within the quantum field theory. The problem of the basis rotations and that of the selection of phases in the Diraclike and Majorana-like field operators are considered. The discrete symmetries properties (P, C, T) are studied. The corresponding dynamical equations are presented. In the (1/2,0)⊕(0,1/2) representation they obey the Dirac-like equation with eight components, which has been first introduced by Markov. Thus, the Fock space for corresponding quantum fields is doubled (as shown by Ziino). The particular attention has been paid to the questions of chirality and helicity (two concepts which are frequently confused in the literature) for Dirac and Majorana states. We further review several experimental consequences which follow from the previous works of M. Kirchbach et al. on neutrinoless double beta decay, and G.J.Ni et al. on meson lifetimes.
Laser-stimulated electric quadrupole transitions in the molecular hydrogen ion H2+
NASA Astrophysics Data System (ADS)
Korobov, V. I.; Danev, P.; Bakalov, D.; Schiller, S.
2018-03-01
Molecular hydrogen ions are of metrological relevance due to the possibility of precise theoretical evaluation of their spectrum and of external-field-induced shifts. We report the results of the calculations of the rate of laser-induced electric quadrupole transitions between a large set of ro-vibrational states of H2+. The hyperfine and Zeeman structure of the E 2 transition spectrum and the effects of the laser polarization are treated in detail. The treatment is generally applicable to molecules in 2Σ states. We also present the nuclear spin-electron spin-coupling constants, computed with a precision ten times higher than previously obtained.
Asymmetric Quintuplet Condensation in the Frustrated S=1 Spin Dimer Compound Ba3Mn2O8
NASA Astrophysics Data System (ADS)
Samulon, E. C.; Kohama, Y.; McDonald, R. D.; Shapiro, M. C.; Al-Hassanieh, K. A.; Batista, C. D.; Jaime, M.; Fisher, I. R.
2009-07-01
Ba3Mn2O8 is a spin-dimer compound based on pairs of S=1, 3d2, Mn5+ ions arranged on a triangular lattice. Antiferromagnetic intradimer exchange leads to a singlet ground state in zero field, with excited triplet and quintuplet states at higher energy. High field thermodynamic measurements are used to establish the phase diagram, revealing a substantial asymmetry of the quintuplet condensate. This striking effect, all but absent for the triplet condensate, is due to a fundamental asymmetry in quantum fluctuations of the paramagnetic phases near the various critical fields.
Massive gravity in three dimensions.
Bergshoeff, Eric A; Hohm, Olaf; Townsend, Paul K
2009-05-22
A particular higher-derivative extension of the Einstein-Hilbert action in three spacetime dimensions is shown to be equivalent at the linearized level to the (unitary) Pauli-Fierz action for a massive spin-2 field. A more general model, which also includes "topologically-massive" gravity as a special case, propagates the two spin-2 helicity states with different masses. We discuss the extension to massive N-extended supergravity, and we present a "cosmological" extension that admits an anti-de Sitter vacuum.
Spin filter effect of hBN/Co detector electrodes in a 3D topological insulator spin valve
NASA Astrophysics Data System (ADS)
Vaklinova, Kristina; Polyudov, Katharina; Burghard, Marko; Kern, Klaus
2018-03-01
Topological insulators emerge as promising components of spintronic devices, in particular for applications where all-electrical spin control is essential. While the capability of these materials to generate spin-polarized currents is well established, only very little is known about the spin injection/extraction into/out of them. Here, we explore the switching behavior of lateral spin valves comprising the 3D topological insulator Bi2Te2Se as channel, which is separated from ferromagnetic Cobalt detector contacts by an ultrathin hexagonal boron nitride (hBN) tunnel barrier. The corresponding contact resistance displays a notable variation, which is correlated with a change of the switching characteristics of the spin valve. For contact resistances below ~5 kΩ, the hysteresis in the switching curve reverses upon reversing the applied current, as expected for spin-polarized currents carried by the helical surface states. By contrast, for higher contact resistances an opposite polarity of the hysteresis loop is observed, which is independent of the current direction, a behavior signifying negative spin detection efficiency of the multilayer hBN/Co contacts combined with bias-induced spin signal inversion. Our findings suggest the possibility to tune the spin exchange across the interface between a ferromagnetic metal and a topological insulator through the number of intervening hBN layers.
Classical aspects of higher spin topologically massive gravity
NASA Astrophysics Data System (ADS)
Chen, Bin; Long, Jiang; Zhang, Jian-Dong
2012-10-01
We study the classical solutions of three-dimensional topologically massive gravity (TMG) and its higher spin generalization, in the first-order formulation. The action of higher spin TMG has been proposed by Chen and Long (2011 J. High Energy Phys. JHEP12(2011)114) to be of a Chern-Simons-like form. The equations of motion are more complicated than the ones in pure higher spin AdS3 gravity, but are still tractable. As all the solutions in higher spin gravity are automatically the solutions of higher spin TMG, we focus on other solutions. We manage to find the AdS pp-wave solutions with higher spin hair and find that the non-vanishing higher spin fields may or may not modify the pp-wave geometry. In order to discuss the warped spacetime, we introduce the notion of a special Killing vector, which is defined to be the symmetry on the frame-like fields. We reproduce various warped spacetimes of TMG in our framework, with the help of special Killing vectors.
Chiral higher spin theories and self-duality
NASA Astrophysics Data System (ADS)
Ponomarev, Dmitry
2017-12-01
We study recently proposed chiral higher spin theories — cubic theories of interacting massless higher spin fields in four-dimensional flat space. We show that they are naturally associated with gauge algebras, which manifest themselves in several related ways. Firstly, the chiral higher spin equations of motion can be reformulated as the self-dual Yang-Mills equations with the associated gauge algebras instead of the usual colour gauge algebra. We also demonstrate that the chiral higher spin field equations, similarly to the self-dual Yang-Mills equations, feature an infinite algebra of hidden symmetries, which ensures their integrability. Secondly, we show that off-shell amplitudes in chiral higher spin theories satisfy the generalised BCJ relations with the usual colour structure constants replaced by the structure constants of higher spin gauge algebras. We also propose generalised double copy procedures featuring higher spin theory amplitudes. Finally, using the light-cone deformation procedure we prove that the structure of the Lagrangian that leads to all these properties is universal and follows from Lorentz invariance.
NASA Astrophysics Data System (ADS)
Longhi, Pietro
In this thesis we develop and apply novel techniques for analyzing BPS spectra of supersymmetric quantum field theories of class S. By a combination of wall-crossing, spectral networks and quiver methods we explore the BPS spectra of higher rank four-dimensional N = 2 super Yang-Mills, uncovering surprising new phenomena. Focusing on the SU(3) case, we prove the existence of wild BPS spectra in field theory, featuring BPS states of higher spin whose degeneracies grow exponentially with the energy. The occurrence of wild BPS states is surprising because it appears to be in tension with physical expectations on the behavior of the entropy as a function of the energy scale. The solution to this puzzle comes from realizing that the size of wild BPS states grows rapidly with their mass, and carefully analyzing the volume-dependence of the entropy of BPS states. We also find some interesting structures underlying wild BPS spectra, such as a Regge-like relation between the maximal spin of a BPS multiplet and the square of its mass, and the existence of a universal asymptotic distribution of spin-j irreps within a multiplet of given charge. We also extend the spectral networks construction by introducing a refinement in the topological classification of 2d-4d BPS states, and identifying their spin with a topological invariant known as the "writhe of soliton paths". A careful analysis of the 2d-4d wall-crossing behavior of this refined data reveals that it is described by motivic Kontsevich-Soibelman transformations, controlled by the Protected Spin Character, a protected deformation of the BPS index encoding the spin of BPS states. Our construction opens the way for the systematic study of refined BPS spectra in class S theories. We apply it to several examples, including ones featuring wild BPS spectra, where we find an interesting relation between spectral networks and certain functional equations. For class S theories of A 1 type, we derive an alternative technique for computing generating functions of 2d-4d BPS spectra, based on the topological data of an ideal triangulation of the Riemann surface defining the theory. We provide a set of building blocks and corresponding rules, from which the 2d-4d spectra of a vast class of theories can be algorithmically recovered. Finally, we present previously unpublished exact results on the BPS spectrum of the SU(2) N = 2* theory, and briefly comment on its wall crossing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sufian, Raza Sabbir; de Teramond, Guy F.; Brodsky, Stanley J.
We present a comprehensive analysis of the space-like nucleon electromagnetic form factors and their flavor decomposition within the framework of light-front holographic QCD. We show that the inclusion of the higher Fock componentsmore » $$|{qqqq\\bar{q}}$$ has a significant effect on the spin-flip elastic Pauli form factor and almost zero effect on the spin-conserving Dirac form factor. We present light-front holographic QCD results for the proton and neutron form factors at any momentum transfer range, including asymptotic predictions, and show that our results agree with the available experimental data with high accuracy. In order to correctly describe the Pauli form factor we need an admixture of a five quark state of about 30$$\\%$$ in the proton and about 40$$\\%$$ in the neutron. We also extract the nucleon charge and magnetic radii and perform a flavor decomposition of the nucleon electromagnetic form factors. The free parameters needed to describe the experimental nucleon form factors are very few: two parameters for the probabilities of higher Fock states for the spin-flip form factor and a phenomenological parameter $r$, required to account for possible SU(6) spin-flavor symmetry breaking effects in the neutron, whereas the Pauli form factors are normalized to the experimental values of the anomalous magnetic moments. As a result, the covariant spin structure for the Dirac and Pauli nucleon form factors prescribed by AdS$$_5$$ semiclassical gravity incorporates the correct twist scaling behavior from hard scattering and also leads to vector dominance at low energy.« less
Sufian, Raza Sabbir; de Teramond, Guy F.; Brodsky, Stanley J.; ...
2017-01-10
We present a comprehensive analysis of the space-like nucleon electromagnetic form factors and their flavor decomposition within the framework of light-front holographic QCD. We show that the inclusion of the higher Fock componentsmore » $$|{qqqq\\bar{q}}$$ has a significant effect on the spin-flip elastic Pauli form factor and almost zero effect on the spin-conserving Dirac form factor. We present light-front holographic QCD results for the proton and neutron form factors at any momentum transfer range, including asymptotic predictions, and show that our results agree with the available experimental data with high accuracy. In order to correctly describe the Pauli form factor we need an admixture of a five quark state of about 30$$\\%$$ in the proton and about 40$$\\%$$ in the neutron. We also extract the nucleon charge and magnetic radii and perform a flavor decomposition of the nucleon electromagnetic form factors. The free parameters needed to describe the experimental nucleon form factors are very few: two parameters for the probabilities of higher Fock states for the spin-flip form factor and a phenomenological parameter $r$, required to account for possible SU(6) spin-flavor symmetry breaking effects in the neutron, whereas the Pauli form factors are normalized to the experimental values of the anomalous magnetic moments. As a result, the covariant spin structure for the Dirac and Pauli nucleon form factors prescribed by AdS$$_5$$ semiclassical gravity incorporates the correct twist scaling behavior from hard scattering and also leads to vector dominance at low energy.« less
Spin-photon interface and spin-controlled photon switching in a nanobeam waveguide
NASA Astrophysics Data System (ADS)
Javadi, Alisa; Ding, Dapeng; Appel, Martin Hayhurst; Mahmoodian, Sahand; Löbl, Matthias Christian; Söllner, Immo; Schott, Rüdiger; Papon, Camille; Pregnolato, Tommaso; Stobbe, Søren; Midolo, Leonardo; Schröder, Tim; Wieck, Andreas Dirk; Ludwig, Arne; Warburton, Richard John; Lodahl, Peter
2018-05-01
The spin of an electron is a promising memory state and qubit. Connecting spin states that are spatially far apart will enable quantum nodes and quantum networks based on the electron spin. Towards this goal, an integrated spin-photon interface would be a major leap forward as it combines the memory capability of a single spin with the efficient transfer of information by photons. Here, we demonstrate such an efficient and optically programmable interface between the spin of an electron in a quantum dot and photons in a nanophotonic waveguide. The spin can be deterministically prepared in the ground state with a fidelity of up to 96%. Subsequently, the system is used to implement a single-spin photonic switch, in which the spin state of the electron directs the flow of photons through the waveguide. The spin-photon interface may enable on-chip photon-photon gates, single-photon transistors and the efficient generation of a photonic cluster state.
Invariant functionals in higher-spin theory
NASA Astrophysics Data System (ADS)
Vasiliev, M. A.
2017-03-01
A new construction for gauge invariant functionals in the nonlinear higher-spin theory is proposed. Being supported by differential forms closed by virtue of the higher-spin equations, invariant functionals are associated with central elements of the higher-spin algebra. In the on-shell AdS4 higher-spin theory we identify a four-form conjectured to represent the generating functional for 3d boundary correlators and a two-form argued to support charges for black hole solutions. Two actions for 3d boundary conformal higher-spin theory are associated with the two parity-invariant higher-spin models in AdS4. The peculiarity of the spinorial formulation of the on-shell AdS3 higher-spin theory, where the invariant functional is supported by a two-form, is conjectured to be related to the holomorphic factorization at the boundary. The nonlinear part of the star-product function F* (B (x)) in the higher-spin equations is argued to lead to divergencies in the boundary limit representing singularities at coinciding boundary space-time points of the factors of B (x), which can be regularized by the point splitting. An interpretation of the RG flow in terms of proposed construction is briefly discussed.
Magnetic vortex core reversal by excitation of spin waves.
Kammerer, Matthias; Weigand, Markus; Curcic, Michael; Noske, Matthias; Sproll, Markus; Vansteenkiste, Arne; Van Waeyenberge, Bartel; Stoll, Hermann; Woltersdorf, Georg; Back, Christian H; Schuetz, Gisela
2011-01-01
Micron-sized magnetic platelets in the flux-closed vortex state are characterized by an in-plane curling magnetization and a nanometer-sized perpendicularly magnetized vortex core. Having the simplest non-trivial configuration, these objects are of general interest to micromagnetics and may offer new routes for spintronics applications. Essential progress in the understanding of nonlinear vortex dynamics was achieved when low-field core toggling by excitation of the gyrotropic eigenmode at sub-GHz frequencies was established. At frequencies more than an order of magnitude higher vortex state structures possess spin wave eigenmodes arising from the magneto-static interaction. Here we demonstrate experimentally that the unidirectional vortex core reversal process also occurs when such azimuthal modes are excited. These results are confirmed by micromagnetic simulations, which clearly show the selection rules for this novel reversal mechanism. Our analysis reveals that for spin-wave excitation the concept of a critical velocity as the switching condition has to be modified.
Spin-polarized surface resonances accompanying topological surface state formation
Jozwiak, Chris; Sobota, Jonathan A.; Gotlieb, Kenneth; ...
2016-10-14
Topological insulators host spin-polarized surface states born out of the energetic inversion of bulk bands driven by the spin-orbit interaction. Here we discover previously unidentified consequences of band-inversion on the surface electronic structure of the topological insulator Bi 2Se 3. By performing simultaneous spin, time, and angle-resolved photoemission spectroscopy, we map the spin-polarized unoccupied electronic structure and identify a surface resonance which is distinct from the topological surface state, yet shares a similar spin-orbital texture with opposite orientation. Its momentum dependence and spin texture imply an intimate connection with the topological surface state. Calculations show these two distinct states canmore » emerge from trivial Rashba-like states that change topology through the spin-orbit-induced band inversion. As a result, this work thus provides a compelling view of the coevolution of surface states through a topological phase transition, enabled by the unique capability of directly measuring the spin-polarized unoccupied band structure.« less
Higher spin black holes with soft hair
NASA Astrophysics Data System (ADS)
Grumiller, Daniel; Pérez, Alfredo; Prohazka, Stefan; Tempo, David; Troncoso, Ricardo
2016-10-01
We construct a new set of boundary conditions for higher spin gravity, inspired by a recent "soft Heisenberg hair"-proposal for General Relativity on three-dimensional Anti-de Sitter space. The asymptotic symmetry algebra consists of a set of affine û(1) current algebras. Its associated canonical charges generate higher spin soft hair. We focus first on the spin-3 case and then extend some of our main results to spin- N , many of which resemble the spin-2 results: the generators of the asymptotic W 3 algebra naturally emerge from composite operators of the û(1) charges through a twisted Sugawara construction; our boundary conditions ensure regularity of the Euclidean solutions space independently of the values of the charges; solutions, which we call "higher spin black flowers", are stationary but not necessarily spherically symmetric. Finally, we derive the entropy of higher spin black flowers, and find that for the branch that is continuously connected to the BTZ black hole, it depends only on the affine purely gravitational zero modes. Using our map to W -algebra currents we recover well-known expressions for higher spin entropy. We also address higher spin black flowers in the metric formalism and achieve full consistency with previous results.
Complete quantum control of a single quantum dot spin using ultrafast optical pulses.
Press, David; Ladd, Thaddeus D; Zhang, Bingyang; Yamamoto, Yoshihisa
2008-11-13
A basic requirement for quantum information processing systems is the ability to completely control the state of a single qubit. For qubits based on electron spin, a universal single-qubit gate is realized by a rotation of the spin by any angle about an arbitrary axis. Driven, coherent Rabi oscillations between two spin states can be used to demonstrate control of the rotation angle. Ramsey interference, produced by two coherent spin rotations separated by a variable time delay, demonstrates control over the axis of rotation. Full quantum control of an electron spin in a quantum dot has previously been demonstrated using resonant radio-frequency pulses that require many spin precession periods. However, optical manipulation of the spin allows quantum control on a picosecond or femtosecond timescale, permitting an arbitrary rotation to be completed within one spin precession period. Recent work in optical single-spin control has demonstrated the initialization of a spin state in a quantum dot, as well as the ultrafast manipulation of coherence in a largely unpolarized single-spin state. Here we demonstrate complete coherent control over an initialized electron spin state in a quantum dot using picosecond optical pulses. First we vary the intensity of a single optical pulse to observe over six Rabi oscillations between the two spin states; then we apply two sequential pulses to observe high-contrast Ramsey interference. Such a two-pulse sequence realizes an arbitrary single-qubit gate completed on a picosecond timescale. Along with the spin initialization and final projective measurement of the spin state, these results demonstrate a complete set of all-optical single-qubit operations.
Enhanced power factor of higher manganese silicide via melt spin synthesis method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Xiaoya; Li, Qiang, E-mail: liqiang@bnl.gov; Shi, Xun
We report on the thermoelectric properties of the higher manganese silicide MnSi{sub 1.75} synthesized by means of a one-step non-equilibrium method. The ultrahigh cooling rate generated from the melt-spin technique is found to be effective in reducing second phases, which are inevitable during the traditional solid state diffusion processes. Aside from being detrimental to thermoelectric properties, second phases skew the revealing of the intrinsic properties of this class of materials, for example, the optimal level of carrier concentration. With this melt-spin sample, we are able to formulate a simple model based on a single parabolic band that can well describemore » the carrier concentration dependence of the Seebeck coefficient and power factor of the data reported in the literature. An optimal carrier concentration around 5 × 10{sup 20 }cm{sup −3} at 300 K is predicted according to this model. The phase-pure melt-spin sample shows the largest power factor at high temperature, resulting in the highest zT value among the three samples in this paper.« less
Electronic Structures of Anti-Ferromagnetic Tetraradicals: Ab Initio and Semi-Empirical Studies.
Zhang, Dawei; Liu, Chungen
2016-04-12
The energy relationships and electronic structures of the lowest-lying spin states in several anti-ferromagnetic tetraradical model systems are studied with high-level ab initio and semi-empirical methods. The Full-CI method (FCI), the complete active space second-order perturbation theory (CASPT2), and the n-electron valence state perturbation theory (NEVPT2) are employed to obtain reference results. By comparing the energy relationships predicted from the Heisenberg and Hubbard models with ab initio benchmarks, the accuracy of the widely used Heisenberg model for anti-ferromagnetic spin-coupling in low-spin polyradicals is cautiously tested in this work. It is found that the strength of electron correlation (|U/t|) concerning anti-ferromagnetically coupled radical centers could range widely from strong to moderate correlation regimes and could become another degree of freedom besides the spin multiplicity. Accordingly, the Heisenberg-type model works well in the regime of strong correlation, which reproduces well the energy relationships along with the wave functions of all the spin states. In moderately spin-correlated tetraradicals, the results of the prototype Heisenberg model deviate severely from those of multi-reference electron correlation ab initio methods, while the extended Heisenberg model, containing four-body terms, can introduce reasonable corrections and maintains its accuracy in this condition. In the weak correlation regime, both the prototype Heisenberg model and its extended forms containing higher-order correction terms will encounter difficulties. Meanwhile, the Hubbard model shows balanced accuracy from strong to weak correlation cases and can reproduce qualitatively correct electronic structures, which makes it more suitable for the study of anti-ferromagnetic coupling in polyradical systems.
Revisiting static and dynamic spin-ice correlations in Ho2Ti2O7 with neutron scattering
NASA Astrophysics Data System (ADS)
Clancy, J. P.; Ruff, J. P. C.; Dunsiger, S. R.; Zhao, Y.; Dabkowska, H. A.; Gardner, J. S.; Qiu, Y.; Copley, J. R. D.; Jenkins, T.; Gaulin, B. D.
2009-01-01
Elastic and inelastic neutron-scattering studies have been carried out on the pyrochlore magnet Ho2Ti2O7 . Measurements in zero applied magnetic field show that the disordered spin-ice ground state of Ho2Ti2O7 is characterized by a pattern of rectangular diffuse elastic scattering within the [HHL] plane of reciprocal space, which closely resembles the zone-boundary scattering seen in its sister compound Dy2Ti2O7 . Well-defined peaks in the zone-boundary scattering develop only within the spin-ice ground state below ˜2K . In contrast, the overall diffuse-scattering pattern evolves on a much higher-temperature scale of ˜17K . The diffuse scattering at small wave vectors below [001] is found to vanish on going to Q=0 , an explicit signature of expectations for dipolar spin ice. Very high energy-resolution inelastic measurements reveal that the spin-ice ground state below ˜2K is also characterized by a transition from dynamic to static spin correlations on the time scale of 10-9s . Measurements in a magnetic field applied along the [11¯0] direction in zero-field-cooled conditions show that the system can be broken up into orthogonal sets of polarized α chains along [11¯0] and quasi-one-dimensional β chains along [110]. Three-dimensional correlations between β chains are shown to be very sensitive to the precise alignment of the [11¯0] externally applied magnetic field.
Lifetime measurements in N=Z 72Kr
NASA Astrophysics Data System (ADS)
Andreoiu, C.; Svensson, C. E.; Austin, R. A. E.; Carpenter, M. P.; Dashdorj, D.; Finlay, P.; Freeman, S. J.; Garrett, P. E.; Görgen, A.; Greene, J.; Grinyer, G. F.; Hyland, B.; Jenkins, D.; Johnston-Theasby, F.; Joshi, P.; Machiavelli, A. O.; Moore, F.; Mukherjee, G.; Phillips, A. A.; Reviol, W.; Sarantites, D. G.; Schumaker, M. A.; Seweryniak, D.; Smith, M. B.; Valiente-Dobón, J. J.; Wadsworth, R.
2006-07-01
High-spin states in the N=Z nucleus 72Kr have been populated in the 40Ca(40Ca, 2α)72Kr fusion-evaporation reaction at a beam energy of 165 MeV and using a thin isotopically enriched 40Ca target. The experiment, performed at Argonne National Laboratory close to Chicago, USA, employed the Gammasphere array for γ-ray detection coupled to the Microball array for charged particle detection. The previously observed bands in 72Kr were extended to a higher excitation energy of ~24 MeV and higher angular momentum of 30planck. Using the Doppler-shift attenuation method, the lifetimes of high-spin states were measured for the first time in order to investigate deformation changes associated with the g9/2 proton and neutron alignments in this N=Z nucleus. An excellent agreement with theoretical calculations including only standard t=1 np pairing was observed.
Semiconductor-inspired design principles for superconducting quantum computing.
Shim, Yun-Pil; Tahan, Charles
2016-03-17
Superconducting circuits offer tremendous design flexibility in the quantum regime culminating most recently in the demonstration of few qubit systems supposedly approaching the threshold for fault-tolerant quantum information processing. Competition in the solid-state comes from semiconductor qubits, where nature has bestowed some very useful properties which can be utilized for spin qubit-based quantum computing. Here we begin to explore how selective design principles deduced from spin-based systems could be used to advance superconducting qubit science. We take an initial step along this path proposing an encoded qubit approach realizable with state-of-the-art tunable Josephson junction qubits. Our results show that this design philosophy holds promise, enables microwave-free control, and offers a pathway to future qubit designs with new capabilities such as with higher fidelity or, perhaps, operation at higher temperature. The approach is also especially suited to qubits on the basis of variable super-semi junctions.
NASA Astrophysics Data System (ADS)
Yan, J.-Q.; Zhou, J.-S.; Goodenough, J. B.
2004-07-01
A systematic investigation of the low-temperature magnetic properties of LaCoO3 has demonstrated a ferromagnetism with Tc≈85K from surface cobalt atoms. The experimental investigation involved comparison of the magnetic susceptibility of (1) a single crystal, (2) a powder ground from the same crystal, and (3) a cold-pressed pellet from the ground powder that was unannealed and annealed at 400°C followed by a later anneal at 1000°C . The low-temperature magnetic susceptibility was found to have three contributions: a Curie-Weiss paramagnetism, a thermally driven spin-state transition, and a surface-related ferromagnetism with Tc≈85K . The ferromagnetic component has a remanence and coercivity at 5K that increases dramatically with increasing surface/volume ratio of the different samples. The presence of the surface ferromagnetism explains the discrepancies of the low-temperature magnetic susceptibility reported by different groups. An anion coordination at surface Co(III) ions that differs from that of the bulk cobalt is shown to be capable of stabilizing higher spin states. A Tc≈85K is argued to be too low for ferromagnetic coupling by oxidized clusters, and possible mechanisms for a ferromagnetic coupling between higher-spin Co(III) ions are discussed.
Estimation of electronegativity values of elements in different valence states.
Li, Keyan; Xue, Dongfeng
2006-10-05
The electronegativities of 82 elements in different valence states and with the most common coordination numbers have been quantitatively calculated on the basis of an effective ionic potential defined by the ionization energy and ionic radius. It is found that for a given cation, the electronegativity increases with increasing oxidation state and decreases with increasing coordination number. For the transition-metal cations, the electronegativity of the low-spin state is higher than that of the high-spin state. The ligand field stabilization, the first filling of p orbitals, the transition-metal contraction, and especially the lanthanide contraction are well-reflected by the relative values of our proposed electronegativity. This new scale is useful for us to estimate some quantities (e.g., the Lewis acid strength for the main group elements and the hydration free energy for the first transition series) and predict the structure and property of materials.
NASA Astrophysics Data System (ADS)
Bhatt, Samir; Mund, H. S.; Kumar, Kishor; Bapna, Komal; Dashora, Alpa; Itou, M.; Sakurai, Y.; Ahuja, B. L.
2018-05-01
Spin momentum densities of ferromagnetic ZrFe2 and Zr0.8Sc0.2Fe2 have been measured using magnetic Compton scattering with 182.65 keV circularly polarized synchrotron radiations. Site specific spin moments, which are responsible for the formation of total spin moment, have been deduced from Compton line shapes. At room temperature, the computed spin moment of ZrFe2 is found to be slightly higher than that of Sc doped ZrFe2 which is in consensus with the magnetization data. To compare the experimental data, we have also computed magnetic Compton profiles (MCPs), total and partial spin projected density of states (DOS) and the site specific spin moments using spin-polarized relativistic Korringa-Kohn-Rostoker method. It is observed that the spin moment at Fe site is aligned antiparallel to that of Zr site in both ZrFe2 and Zr0.8Sc0.2Fe2. The MCP results when compared with vibrating sample magnetometer based magnetization data, show a very small contribution of orbital moment in the formation of total magnetic moments in both the compounds. The DOS of ferromagnetic ground state of ZrFe2 and Zr0.8Sc0.2Fe2 are interpreted on the basis of a covalent magnetic model beyond the Stoner rigid band model. It appears that on alloying between a magnetic and a non-magnetic partner (with low valence), a polarization develops on the non-magnetic atom which is anti-parallel to that of the magnetic atom.
NASA Astrophysics Data System (ADS)
Suzuki, Shu-Ichiro; Kawaguchi, Yuki; Tanaka, Yukio
2018-04-01
We study quasiparticle states on a surface of a topological insulator (TI) with proximity-induced superconductivity under an external magnetic field. An applied magnetic field creates two Majorana bound states: a vortex Majorana state localized inside a vortex core and an exterior Majorana state localized along a circle centered at the vortex core. We calculate the spin-resolved local density of states (LDOS) and demonstrate that the shrinking of the radius of the exterior Majorana state, predicted in R. S. Akzyanov et al., Phys. Rev. B 94, 125428 (2016), 10.1103/PhysRevB.94.125428, under a strong magnetic field can be seen in LDOS without smeared out by nonzero-energy states. The spin-resolved LDOS further reveals that the spin of the exterior Majorana state is strongly spin-polarized. Accordingly, the induced odd-frequency spin-triplet pairs are found to be spin-polarized as well. In order to detect the exterior Majorana states, however, the Fermi energy should be closed to the Dirac point to avoid contributions from continuum levels. We also study a different two-dimensional topological-superconducting system where a two-dimensional electron gas with the spin-orbit coupling is sandwiched between an s -wave superconductor and a ferromagnetic insulator. We show that the radius of an exterior Majorana state can be tuned by an applied magnetic field. However, on the contrary to the results at a TI surface, neither the exterior Majorana state nor the induced odd-frequency spin-triplet pairs are spin-polarized. We conclude that the spin polarization of the Majorana state is attributed to the spin-polarized Landau level, which is characteristic for systems with the Dirac-like dispersion.
NASA Astrophysics Data System (ADS)
Nonoyama, Yoshito; Maekawa, Yukiko; Kobayashi, Akito; Suzumura, Yoshikazu; Yamada, Jun-ichi
2008-10-01
Mechanisms of superconductivity in quasi-two-dimensional organic conductors have been investigated using an extended Hubbard model by using the transfer energies between BDA-TTP molecules for β-(BDA-TTP)2I3 based on the X-ray experiment data and the extended Hückel calculation. We obtain several mean-field solutions with charge orderings which may represent short-range orderings or low-energy fluctuations in the low-dimensional electronic system. In the pressure-temperature phase diagram, a charge ordered metal state almost degenerates with a normal metal state between an insulating phase with charge ordering and the normal metal phase. Using the random phase approximation (RPA) and the linearized gap equation, the transition temperature of the superconducting state is estimated for the charge-ordered metal state and the normal metal state. It is found that transition temperature of the superconductivity induced by spin fluctuations in the charge-ordered metal state is much higher than that of the normal metal state and that the superconductivity in the charge-ordered metal state is the gapless d-wave. This suggests that the short range charge ordering may also contribute to an enhancement of spin-fluctuation-mediated superconductivity. The difference in the superconducting states between β-(BDA-TTP)2I3 and β-(BDA-TTP)2SbF6 are briefly discussed.
Anomalous magnetic and spin glass behavior in Nb-substituted LaCo1 -xNbxO3
NASA Astrophysics Data System (ADS)
Shukla, Rishabh; Dhaka, R. S.
2018-01-01
We report the structural, magnetic, transport, and electronic properties of Nb-substituted LaCo1 -xNbxO3 (x =0 -0.2 ). The Rietveld refinement of x-ray diffraction data demonstrate structural phase transitions from rhombohedral to orthorhombic and further to monoclinic with increasing the Nb concentration up to x ≥0.2 . Interestingly, we observed dramatic changes in the magnetization (M ) with increasing the Nb concentration, as the M sharply increases below 10 K even at 2.5% substitution. Furthermore, ac susceptibility data show the spin glass behavior in x =0.1 sample. We find that the density of states near the Fermi level decreases and the activation energy increases, which results in the decreasing conductivity with higher Nb concentration. A significant shift in the peak position of A2 g phonon mode has been observed using Raman spectroscopy, which indicates the change in the coupling due to the structural distortion with Nb substitution. The core-level photoemission study confirms that the Nb is present in 5 + valence state. Our study reveals that the nonmagnetic Nb5 + (d0) substitution converts Co3 + ions to Co2 + and stabilizes both in the high-spin state. Our results suggest that structural and spin-state transitions as well as the difference in the ionic radii between Nb5 + and Co3 + are playing an important role in tuning the physical properties.
How the axial anomaly controls flavor mixing among mesons
NASA Astrophysics Data System (ADS)
Giacosa, Francesco; Koenigstein, Adrian; Pisarski, Robert D.
2018-05-01
It is well known that, because of the axial anomaly in QCD, mesons with JP=0- are close to S U (3 )V eigenstates; the η'(958 ) meson is largely a singlet, and the η meson an octet. In contrast, states with JP=1- are flavor diagonal; e.g., the ϕ (1020 ) is almost pure s ¯s . Using effective Lagrangians, we show how this generalizes to states with higher spin, assuming that they can be classified according to the unbroken chiral symmetry of Gfl=S U (3 )L×S U (3 )R. We construct effective Lagrangians from terms invariant under Gfl and introduce the concept of hetero- and homochiral multiplets. Because of the axial anomaly, only terms invariant under the Z (3 )A subgroup of the axial U (1 )A enter. For heterochiral multiplets, which begin with that including the η and η'(958 ), there are Z (3 )A invariant terms with low mass dimension which cause states to mix according to S U (3 )V flavor. For homochiral multiplets, which begin with that including the ϕ (1020 ), there are no Z (3 )A invariant terms with low mass dimension, and so states are diagonal in flavor. In this way, we predict the flavor mixing for the heterochiral multiplet with spin 1 as well as for hetero- and homochiral multiplets with spin 2 and spin 3.
NASA Astrophysics Data System (ADS)
Chen, Wei; Deng, Wei-Yin; Hou, Jing-Min; Shi, D. N.; Sheng, L.; Xing, D. Y.
2016-08-01
The quantum spin Hall insulator is characterized by helical edge states, with the spin polarization of the electron being locked to its direction of motion. Although the edge-state conduction has been observed, unambiguous evidence of the helical spin texture is still lacking. Here, we investigate the coherent edge-state transport in an interference loop pinched by two point contacts. Because of the helical character, the forward interedge scattering enforces a π spin rotation. Two successive processes can only produce a nontrivial 2 π or trivial 0 spin rotation, which can be controlled by the Rashba spin-orbit coupling. The nontrivial spin rotation results in a geometric π Berry phase, which can be detected by a π phase shift of the conductance oscillation relative to the trivial case. Our results provide smoking gun evidence for the helical spin texture of the edge states. Moreover, it also provides the opportunity to all electrically explore the trajectory-dependent spin Berry phase in condensed matter.
The topological basis realization and the corresponding XXX spin chain
NASA Astrophysics Data System (ADS)
Sun, C. F.; Xue, K.; Wang, G. C.; Zhou, C. C.; Du, G. J.
2011-06-01
In this paper, it is shown that the XXX model can be constructed from the Temperley-Lieb algebra (TLA) generator. We find that the topological basis states are the two eigenstaes of a closed four-qubit Heisenberg XXX spin chain. Specifically, the spin single states and the energy single state of the system all fall on the topological basis states. It is worth mentioning that for the closed 2N-qubit (N=2, 3, 4, ...) Heisenberg XXX spin chain, all the topological basis states for 2N particles are the spin single states of the system. And the number of the topological basis states is equal to the number of the spin single states of the system, which is \\frac{(2N)!}{N!(N+1)!} .
Physics and application of persistent spin helix state in semiconductor heterostructures
NASA Astrophysics Data System (ADS)
Kohda, Makoto; Salis, Gian
2017-07-01
In order to utilize the spin degree of freedom in semiconductors, control of spin states and transfer of the spin information are fundamental requirements for future spintronic devices and quantum computing. Spin orbit (SO) interaction generates an effective magnetic field for moving electrons and enables spin generation, spin manipulation and spin detection without using external magnetic field and magnetic materials. However, spin relaxation also takes place due to a momentum dependent SO-induced effective magnetic field. As a result, SO interaction is considered to be a double-edged sword facilitating spin control but preventing spin transport over long distances. The persistent spin helix (PSH) state solves this problem since uniaxial alignment of the SO field with SU(2) symmetry enables the suppression of spin relaxation while spin precession can still be controlled. Consequently, understanding the PSH becomes an important step towards future spintronic technologies for classical and quantum applications. Here, we review recent progress of PSH in semiconductor heterostructures and its device application. Fundamental physics of SO interaction and the conditions of a PSH state in semiconductor heterostructures are discussed. We introduce experimental techniques to observe a PSH and explain both optical and electrical measurements for detecting a long spin relaxation time and the formation of a helical spin texture. After emphasizing the bulk Dresselhaus SO coefficient γ, the application of PSH states for spin transistors and logic circuits are discussed.
NASA Astrophysics Data System (ADS)
Pederzoli, Marek; Pittner, Jiří
2017-03-01
We present surface hopping dynamics on potential energy surfaces resulting from the spin-orbit splitting, i.e., surfaces corresponding to the eigenstates of the total electronic Hamiltonian including the spin-orbit coupling. In this approach, difficulties arise because of random phases of degenerate eigenvectors and possibility of crossings of the resulting mixed states. Our implementation solves these problems and allows propagation of the coefficients both in the representation of the spin free Hamiltonian and directly in the "diagonal representation" of the mixed states. We also provide a detailed discussion of the state crossing and point out several peculiarities that were not mentioned in the previous literature. We also incorporate the effect of the environment via the quantum mechanics/molecular mechanics approach. As a test case, we apply our methodology to deactivation of thiophene and selenophene in the gas phase, ethanol solution, and bulk liquid phase. First, 100 trajectories without spin-orbit coupling have been calculated for thiophene starting both in S1 and S2 states. A subset of 32 initial conditions starting in the S2 state was then used for gas phase simulations with spin-orbit coupling utilizing the 3-step integrator of SHARC, our implementation of the 3-step propagator in Newton-X and two new "one-step" approaches. Subsequently, we carried out simulations in ethanol solution and bulk liquid phase for both thiophene and selenophene. For both molecules, the deactivation of the S2 state proceeds via the ring opening pathway. The total population of triplet states reaches around 15% and 40% after 80 fs for thiophene and selenophene, respectively. However, it only begins growing after the ring opening is initiated; hence, the triplet states do not directly contribute to the deactivation mechanism. For thiophene, the resulting deactivation lifetime of the S2 state was 68 fs in the gas phase, 76 fs in ethanol solution, and 78 fs in the liquid phase, in a good agreement with the experimental value of 80 fs (liquid phase). For selenophene, the obtained S2 lifetime was 60 fs in the gas phase and 62 fs for both ethanol solution and liquid phase. The higher rate of intersystem crossing to the triplet states in selenophene is likely the reason for the lower fluorescence observed in selenium containing polymer compounds.
Gaulin, B. D.; Kermarrec, E.; Dahlberg, M. L.; ...
2015-06-01
Solid-solutions of the "soft" quantum spin ice pyrochlore magnets Tb 2B 2O 7 with B=Ti and Sn display a novel magnetic ground state in the presence of strong B-site disorder, characterized by a low susceptibility and strong spin fluctuations to temperatures below 0.1 K. These materials have been studied using ac-susceptibility and muSR techniques to very low temperatures, and time-of-flight inelastic neutron scattering techniques to 1.5 K. Remarkably, neutron spectroscopy of the Tb 3+ crystal field levels appropriate to at high B-site mixing (0.5 < x < 1.5 in Tb 2Sn 2-xTi xO 7) reveal that the doublet ground andmore » first excited states present as continua in energy, while transitions to singlet excited states at higher energies simply interpolate between those of the end members of the solid solution. The resulting ground state suggests an extreme version of a random-anisotropy magnet, with many local moments and anisotropies, depending on the precise local configuration of the six B sites neighboring each magnetic Tb 3+ ion.« less
NASA Astrophysics Data System (ADS)
Denning, Emil V.; Iles-Smith, Jake; McCutcheon, Dara P. S.; Mork, Jesper
2017-12-01
Multiphoton entangled states are a crucial resource for many applications in quantum information science. Semiconductor quantum dots offer a promising route to generate such states by mediating photon-photon correlations via a confined electron spin, but dephasing caused by the host nuclear spin environment typically limits coherence (and hence entanglement) between photons to the spin T2* time of a few nanoseconds. We propose a protocol for the deterministic generation of multiphoton entangled states that is inherently robust against the dominating slow nuclear spin environment fluctuations, meaning that coherence and entanglement is instead limited only by the much longer spin T2 time of microseconds. Unlike previous protocols, the present scheme allows for the generation of very low error probability polarization encoded three-photon GHZ states and larger entangled states, without the need for spin echo or nuclear spin calming techniques.
Li, Chunsen; Wu, Wei; Cho, Kyung-Bin; Shaik, Sason
2009-08-24
Two types of tertiary amine oxidation processes, namely, N-dealkylation and N-oxygenation, by compound I (Cpd I) of cytochrome P450 are studied theoretically using hybrid DFT calculations. All the calculations show that both N-dealkylation and N-oxygenation of trimethylamine (TMA) proceed preferentially from the low-spin (LS) state of Cpd I. Indeed, the computed kinetic isotope effects (KIEs) for the rate-controlling hydrogen abstraction step of dealkylation show that only the KIE(LS) fits the experimental datum, whereas the corresponding value for the high-spin (HS) process is much higher. These results second those published before for N,N-dimethylaniline (DMA), and as such, they further confirm the conclusion drawn then that KIEs can be a sensitive probe of spin state reactivity. The ferric-carbinolamine of TMA decomposes most likely in a non-enzymatic reaction since the Fe-O bond dissociation energy (BDE) is negative. The computational results reveal that in the reverse reaction of N-oxygenation, the N-oxide of aromatic amine can serve as a better oxygen donor than that of aliphatic amine to generate Cpd I. This capability of the N-oxo derivatives of aromatic amines to transfer oxygen to the heme, and thereby generate Cpd I, is in good accord with experimental data previously reported.
NASA Astrophysics Data System (ADS)
Joers, James M.
The use of magic angle spinning to obtain high resolution solid state spectra has been well documented. This resolution occurs by coherently averaging the chemical shift anisotropy and dipolar interactions to zero over the period of a full rotation. While this allows for higher resolution, the structural information is seemingly lost to the spectrometer eye. Thus, high resolution spectra and structural information appear to be mutually exlusive. Recently, the push in solid state NMR is the development of recoupling techniques which afford both high resolution and structural information. The following dissertation demonstrates the feasibility of implementing such experiments in solving real world problems, and is centered on devising a method to recover homonuclear dipolar interactions in the high resolution regime.
Optical probe of Heisenberg-Kitaev magnetism in α -RuCl3
NASA Astrophysics Data System (ADS)
Sandilands, Luke J.; Sohn, C. H.; Park, H. J.; Kim, So Yeun; Kim, K. W.; Sears, Jennifer A.; Kim, Young-June; Noh, Tae Won
2016-11-01
We report a temperature-dependent optical spectroscopic study of the Heisenberg-Kitaev magnet α -RuCl3 . Our measurements reveal anomalies in the optical response near the magnetic ordering temperature. At higher temperatures, we observe a redistribution of spectral weight over a broad energy range that is associated with nearest-neighbor spin-spin correlations. This finding is consistent with highly frustrated magnetic interactions and in agreement with theoretical expectations for this class of material. The optical data also reveal significant electron-hole interaction effects, including a bound excitonic state. These results demonstrate a clear coupling between charge and spin degrees of freedom and provide insight into the properties of thermally disordered Heisenberg-Kitaev magnets.
SELF-TRAPPING OF DISKOSEISMIC CORRUGATION MODES IN NEUTRON STAR SPACETIMES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsang, David; Pappas, George
2016-02-10
We examine the effects of higher-order multipole contributions of rotating neutron star (NS) spacetimes on the propagation of corrugation (c-)modes within a thin accretion disk. We find that the Lense–Thirring precession frequency, which determines the propagation region of the low-frequency fundamental corrugation modes, can experience a turnover allowing for c-modes to become self-trapped for sufficiently high dimensionless spin j and quadrupole rotational deformability α. If such self-trapping c-modes can be detected, e.g., through phase-resolved spectroscopy of the iron line for a high-spin low-mass accreting neutron star, this could potentially constrain the spin-induced NS quadrupole and the NS equation of state.
Self-Trapping of Diskoseismic Corrugation Modes in Neutron Star Spacetimes
NASA Astrophysics Data System (ADS)
Tsang, David; Pappas, George
2016-02-01
We examine the effects of higher-order multipole contributions of rotating neutron star (NS) spacetimes on the propagation of corrugation (c-)modes within a thin accretion disk. We find that the Lense-Thirring precession frequency, which determines the propagation region of the low-frequency fundamental corrugation modes, can experience a turnover allowing for c-modes to become self-trapped for sufficiently high dimensionless spin j and quadrupole rotational deformability α. If such self-trapping c-modes can be detected, e.g., through phase-resolved spectroscopy of the iron line for a high-spin low-mass accreting neutron star, this could potentially constrain the spin-induced NS quadrupole and the NS equation of state.
Solitonic Spin-Liquid State Due to the Violation of the Lifshitz Condition in Fe(1+y)Te.
Materne, Ph; Koz, C; Rössler, U K; Doerr, M; Goltz, T; Klauss, H H; Schwarz, U; Wirth, S; Rössler, S
2015-10-23
A combination of phenomenological analysis and Mössbauer spectroscopy experiments on the tetragonal Fe(1+y)Te system indicates that the magnetic ordering transition in compounds with higher Fe excess, y≥0.11, is unconventional. Experimentally, a liquidlike magnetic precursor with quasistatic spin order is found from significantly broadened Mössbauer spectra at temperatures above the antiferromagnetic transition. The incommensurate spin-density wave order in Fe(1+y)Te is described by a magnetic free energy that violates the weak Lifshitz condition in the Landau theory of second-order transitions. The presence of multiple Lifshitz invariants provides the mechanism to create multidimensional, twisted, and modulated solitonic phases.
Solitonic Spin-Liquid State Due to the Violation of the Lifshitz Condition in Fe1 +yTe
NASA Astrophysics Data System (ADS)
Materne, Ph.; Koz, C.; Rößler, U. K.; Doerr, M.; Goltz, T.; Klauss, H. H.; Schwarz, U.; Wirth, S.; Rößler, S.
2015-10-01
A combination of phenomenological analysis and Mössbauer spectroscopy experiments on the tetragonal Fe1 +yTe system indicates that the magnetic ordering transition in compounds with higher Fe excess, y ≥0.11 , is unconventional. Experimentally, a liquidlike magnetic precursor with quasistatic spin order is found from significantly broadened Mössbauer spectra at temperatures above the antiferromagnetic transition. The incommensurate spin-density wave order in Fe1 +yTe is described by a magnetic free energy that violates the weak Lifshitz condition in the Landau theory of second-order transitions. The presence of multiple Lifshitz invariants provides the mechanism to create multidimensional, twisted, and modulated solitonic phases.
Spin-Controlled Conductivity in a Thiophene-Functionalized Iron-Bis(dicarbollide)
NASA Astrophysics Data System (ADS)
Beach, Benjamin; Sauriol, Dustin; Derosa, Pedro
2016-04-01
The relationship between spin state and conductivity is studied for a thiophene-functionalized iron(III)-bis(dicarbollide) with one or two thiophenes at each end of the cage. Iron has a high ground state spin that can be adjusted by external electromagnetic fields to produce different magnetic states. The hypothesis explored here is that changes in the spin state of these Fe-containing molecules can lead to significant changes in molecular conductivity. Two examples of the possible application of such spin-dependent conductivity are its use as a molecular switch, the basic building block in digital logic, or as a memory bit. The molecules were first optimized using the Becke-3 Lee-Yang-Parr functional (B3LYP) with the 6-31G(d) basis set. A relaxed molecular geometry at each spin state was then placed between gold electrodes to conduct spin-polarized electron transport calculations with the density functional theory/non-equilibrium Green's functions formalism. The revised Perdew-Burke-Ernzerhf solids exchange-correlation functional (PBES) with double zeta polarized basis set was used. The result of these calculations show that the conductivity increases with the spin state. The cage structure is shown to exhibit fully delocalized molecular orbitals (MOs) appropriate for high conductivity and thus, in this system, the conductivity depends on the position of the MOs relative to the Fermi level. Minority spins are responsible for the conductivity of the doublet spin state while majority spins dominate for the quartet and sextet spin states as they are found closer to the Fermi level when they are occupied. Energy calculations predict a difference in energy between the more and the less conductive spin states (sextet and doublet respectively) that is 15-20 times greater than the thermal energy, which would imply stability at room temperature; however, the energy difference is sufficiently small that transitions between spin states can be induced.
Higher-spin theory and holography
NASA Astrophysics Data System (ADS)
Gaberdiel, Matthias; Vasiliev, Mikhail
2013-05-01
This special issue of Journal of Physics A: Mathematical and Theoretical reviews recent developments in higher-spin gauge theories and their applications to holographic dualities. The analysis of higher-spin theories has a very long history, but it took until the mid 1980s for the first consistent higher-spin interactions to be constructed by Bengtsson, Bengtsson and Brink [1] and Berends, Burgers and van Dam [2]. Somewhat later it was shown by Fradkin and Vasiliev [3] that consistent higher-spin gauge theories that involve gravity should necessarily be defined on a curved background. The first consistent interacting higher-spin theories were then formulated at the classical level by Vasiliev in the early 1990s [4]. These higher-spin theories involve an infinite number of massless higher-spin fields that support higher-spin gauge symmetries, and indeed, are largely characterized by this underlying gauge symmetry. The simplest examples are provided by higher-spin theories on (anti)-de Sitter spaces, and in a sense, this anticipated the AdS/CFT correspondence. Indeed, in the tensionless limit of string theory, the massive excitations of string theory become massless, and hence define higher-spin gauge fields. On the other hand, from the dual gauge theory perspective, this is the limit in which the field theory becomes free, and therefore has many conserved higher-spin currents. By the usual AdS/CFT dictionary, these are dual to the higher-spin gauge symmetries of the bulk description. Following this line of argument, Sundborg [5] and Witten [6] suggested in 2001 that a duality relating a higher-spin theory on AdSd to a weakly coupled (d - 1)-dimensional conformal field theory should exist. A concrete proposal was then made by Klebanov and Polyakov [7] who conjectured that the simplest version of a higher-spin gauge theory on AdS4 should be dual to the 3d O(N ) vector model. Recently, much support for this conjecture was obtained by Giombi and Yin [8], and in turn, this has triggered a significant amount of activity in this general area. Among other things, the constraints that are implied by the higher-spin symmetries were analysed (see the paper by Maldacena and Zhiboedov in this issue [9]), and a fairly concrete proposal for how higher-spin theories are related to string theory was made (see the paper by Chang, Minwalla, Sharma and Yin in this issue [10]). Furthermore, a lower dimensional version of the conjecture was put forward by Gaberdiel and Gopakumar [11] that was subsequently also checked in some detail. These dualities hold the promise of offering insights into the inner workings of the AdS/CFT correspondence since they are complex enough to capture the essence of the duality, while at the same time being sufficiently simple in order to allow for a detailed analysis. Moreover, the methods specifically developed in higher-spin theory may be useful for understanding a general mechanism underlying holography, both in higher-spin models and beyond (see the paper by Vasiliev in this issue [12]). Another fascinating aspect of these higher-spin theories lies in the fact that the higher-spin symmetries mix generically fields of different spin, and in particular, the spin-2 metric and higher-spin excitations are related to one another by gauge transformations. As a result, higher-spin theories require a modification of the standard framework of Riemannian geometry since the usual diffeomorphism-invariant tensors are not gauge invariant any longer. In particular, higher-spin theories may therefore open the way towards understanding fundamental concepts of space-time geometry; for example, they may well have key lessons in store for how string theory resolves space-time singularities. In this issue we have collected together a number of review papers, summarizing the aforementioned recent developments, as well as research papers indicating current directions of interest in the study of higher-spin gauge theories. We hope that it will be useful, both for beginners interested in an introduction to the subject, and for experts already working in the field. Three of the reviews deal with the holographic dualities mentioned above: the paper by Giombi and Yin [13] reviews the situation for AdS4/CFT3, while the review by Gaberdiel and Gopakumar [14] deals with the lower-dimensional AdS3/CFT2 version. In addition, the review by Jevicki, Jin and Ye [15] explains a possible way of proving the duality using collective fields. There are two reviews on the construction of black holes in higher-spin gauge theories: the review by Iazeolla and Sundell [16] reviews the situation for 4d higher-spin theories, while the review by Ammon, Gutperle, Kraus and Perlmutter [17] deals with the three-dimensional case for which much progress has been made recently. Finally, the review of Sagnotti [18] explains various general aspects of higher-spin gauge theories. The research papers deal with different aspects of current developments; some are concerned with the holographic duality, while others develop the general theory of higher-spin fields. References [1] Bengtsson A K H, Bengtsson I and Brink L 1983 Cubic interaction terms for arbitrarily extended supermultiplets Nucl. Phys. B 227 41 [2] Berends F A, Burgers G J H Van Dam H 1984 On spin three self interactions Z. Phys. C 24 247 [3] Fradkin E S Vasiliev M A 1987 On the gravitational interaction of massless higher-spin fields Phys. Lett. B 189 89 [4] Vasiliev M A 1992 More on equations of motion for interacting massless fields of all spins in 3+1 dimensions Phys. Lett. B 285 225 [5] Sundborg B 2001 Stringy gravity, interacting tensionless strings and massless higher spins Nucl. Phys. Proc. Suppl. 102 113 (arXiv:hep-th/0103247) [6] Witten E 2001 Spacetime reconstruction Talk at the John Schwarz 60th Birthday Symp. (http://theory.caltech.edu/jhs60/witten/1.html) [7] Klebanov I R Polyakov A M 2002 AdS dual of the critical O (N ) vector model Phys. Lett. B 550 213 (arXiv:hep-th/0210114) [8] Giombi S Yin X 2010 Higher spin gauge theory and holography: the three-point functions J. High Energy Phys. JHEP09(2010)115 (arXiv:0912.3462 [hep-th]) [9] Maldacena J Zhiboedov A 2013 Constraining conformal field theories with a higher spin symmetry J. Phys. A: Math. Theor. 46 214011 (arXiv:1204.3882 [hep-th]) [10] Chang C-M, Minwalla A, Sharma T Yin X 2013 ABJ triality: from higher spin fields to strings J. Phys. A: Math. Theor. 46 214009 (arXiv:1207.4485 [hep-th]) [11] Gaberdiel M R Gopakumar R 2011 An AdS3 dual for minimal model CFTs Phys. Rev. D 83 066007 (arXiv:1011.2986 [hep-th]) [12] Vasiliev M A 2013 Holography, unfolding and higher-spin theory J. Phys. A: Math. Theor. 46 214013 (arXiv:1203.5554 [hep-th]) [13] Giombi S Yin X 2013 The higher spin/vector model duality J. Phys. A: Math. Theor. 46 214003 (arXiv:1208.4036 [hep-th]) [14] Gaberdiel M R Gopakumar R 2013 Minimal model holography J. Phys. A: Math. Theor. 46 214002 (arXiv:1207.6697 [hep-th]) [15] Jevicki A, Jin K Ye Q 2013 Perturbative and non-perturbative aspects in vector model/higher spin duality J. Phys. A: Math. Theor. 46 214005 (arXiv:1212.5215 [hep-th]) [16] Iazeolla C Sundell P 2013 Biaxially symmetric solutions to 4D higher-spin gravity J. Phys. A: Math. Theor. 46 214004 (arXiv:1208.4077 [hep-th]) [17] Ammon M, Gutperle M, Kraus P Perlmutter E 2013 Black holes in three dimensional higher spin gravity: a review J. Phys. A: Math. Theor. 46 214001 (arXiv:1208.5182 [hep-th]) [18] Sagnotti A 2013 Notes on strings and higher spins J. Phys. A: Math. Theor. 46 214006 (arXiv:1112.4285 [hep-th])
NASA Astrophysics Data System (ADS)
Gessner, Manuel; Bastidas, Victor Manuel; Brandes, Tobias; Buchleitner, Andreas
2016-04-01
We study the excitation spectrum of a family of transverse-field spin chain models with variable interaction range and arbitrary spin S , which in the case of S =1 /2 interpolates between the Lipkin-Meshkov-Glick and the Ising model. For any finite number N of spins, a semiclassical energy manifold is derived in the large-S limit employing bosonization methods, and its geometry is shown to determine not only the leading-order term but also the higher-order quantum fluctuations. Based on a multiconfigurational mean-field ansatz, we obtain the semiclassical backbone of the quantum spectrum through the extremal points of a series of one-dimensional energy landscapes—each one exhibiting a bifurcation when the external magnetic field drops below a threshold value. The obtained spectra become exact in the limit of vanishing or very strong external, transverse magnetic fields. Further analysis of the higher-order corrections in 1 /√{2 S } enables us to analytically study the dispersion relations of spin-wave excitations around the semiclassical energy levels. Within the same model, we are able to investigate quantum bifurcations, which occur in the semiclassical (S ≫1 ) limit, and quantum phase transitions, which are observed in the thermodynamic (N →∞ ) limit.
Making the Moon from a fast-spinning Earth: a giant impact followed by resonant despinning.
Ćuk, Matija; Stewart, Sarah T
2012-11-23
A common origin for the Moon and Earth is required by their identical isotopic composition. However, simulations of the current giant impact hypothesis for Moon formation find that most lunar material originated from the impactor, which should have had a different isotopic signature. Previous Moon-formation studies assumed that the angular momentum after the impact was similar to that of the present day; however, Earth-mass planets are expected to have higher spin rates at the end of accretion. Here, we show that typical last giant impacts onto a fast-spinning proto-Earth can produce a Moon-forming disk derived primarily from Earth's mantle. Furthermore, we find that a faster-spinning early Earth-Moon system can lose angular momentum and reach the present state through an orbital resonance between the Sun and Moon.
Li, Hai; Zhao, Yuan Yuan
2017-11-22
In the framework of the Bogoliubov-de Gennes equation, we investigate the thermal transport properties in topological-insulator-based superconducting hybrid structures with mixed spin-singlet and spin-triplet pairing states, and emphasize the different manifestations of the spin-singlet and spin-triplet pairing states in the thermal transport signatures. It is revealed that the temperature-dependent differential thermal conductance strongly depends on the components of the pairing state, and the negative differential thermal conductance only occurs in the spin-singlet pairing state dominated regime. It is also found that the thermal conductance is profoundly sensitive to the components of the pairing state. In the spin-singlet pairing state controlled regime, the thermal conductance obviously oscillates with the phase difference and junction length. With increasing the proportion of the spin-triplet pairing state, the oscillating characteristic of the thermal conductance fades out distinctly. These results suggest an alternative route for distinguishing the components of pairing states in topological-insulator-based superconducting hybrid structures.
Thermoelectronic transport through spin-crossover single molecule Fe[(H2Bpz2)2bipy
NASA Astrophysics Data System (ADS)
Liu, N.; Zhu, L.; Yao, K. L.
2018-04-01
By means of density functional theory combined with the method of Keldysh nonequilibrium Green’s function, the thermal transport properties of high- and low-spin states of mononuclear FeII molecules with spin-crossover characteristics are studied. It is found that the high-spin molecular junction has a larger current than the low-spin one, producing thermally-induced switching effect. Furthermore, for high spin state molecule, the spin-up thermo-current is strongly blocked, thus achieving a pure thermo spin current. The enhanced Seebeck coefficient and the figure of merit value of high-spin state indicate that it is an ideal candidate for thermoelectric applications.
Li, C. H.; van ‘t Erve, O. M. J.; Rajput, S.; ...
2016-11-17
Three-dimensional topological insulators (TIs) exhibit time-reversal symmetry protected, linearly dispersing Dirac surface states with spin–momentum locking. Band bending at the TI surface may also lead to coexisting trivial two-dimensional electron gas (2DEG) states with parabolic energy dispersion. A bias current is expected to generate spin polarization in both systems, although with different magnitude and sign. Here we compare spin potentiometric measurements of bias current-generated spin polarization in Bi2Se3(111) where Dirac surface states coexist with trivial 2DEG states, and in InAs(001) where only trivial 2DEG states are present. We observe spin polarization arising from spin–momentum locking in both cases, with oppositemore » signs of the measured spin voltage. We present a model based on spin dependent electrochemical potentials to directly derive the sign expected for the Dirac surface states, and show that the dominant contribution to the current-generated spin polarization in the TI is from the Dirac surface states.« less
NASA Astrophysics Data System (ADS)
Wilbraham, Liam; Adamo, Carlo; Ciofini, Ilaria
2018-01-01
The computationally assisted, accelerated design of inorganic functional materials often relies on the ability of a given electronic structure method to return the correct electronic ground state of the material in question. Outlining difficulties with current density functionals and wave function-based approaches, we highlight why double hybrid density functionals represent promising candidates for this purpose. In turn, we show that PBE0-DH (and PBE-QIDH) offers a significant improvement over its hybrid parent functional PBE0 [as well as B3LYP* and coupled cluster singles and doubles with perturbative triples (CCSD(T))] when computing spin-state splitting energies, using high-level diffusion Monte Carlo calculations as a reference. We refer to the opposing influence of Hartree-Fock (HF) exchange and MP2, which permits higher levels of HF exchange and a concomitant reduction in electronic density error, as the reason for the improved performance of double-hybrid functionals relative to hybrid functionals. Additionally, using 16 transition metal (Fe and Co) complexes, we show that low-spin states are stabilised by increasing contributions from MP2 within the double hybrid formulation. Furthermore, this stabilisation effect is more prominent for high field strength ligands than low field strength ligands.
Nienhaus, Lea; Wu, Mengfei; Bulović, Vladimir; Baldo, Marc A; Bawendi, Moungi G
2018-03-01
The process of upconversion leads to emission of photons higher in energy than the incident photons. Near-infrared-to-visible upconversion, in particular, shows promise in sub-bandgap sensitization of silicon and other optoelectronic materials, resulting in potential applications ranging from photovoltaics that exceed the Shockley-Queisser limit to infrared imaging. A feasible mechanism for near-infrared-to-visible upconversion is triplet-triplet annihilation (TTA) sensitized by colloidal nanocrystals (NCs). Here, the long lifetime of spin-triplet excitons in the organic materials that undergo TTA makes upconversion possible under incoherent excitation at relatively low photon fluxes. Since this process relies on optically inactive triplet states, semiconductor NCs are utilized as efficient spin mixers, absorbing the incident light and sensitizing the triplet states of the TTA material. The state-of-the-art system uses rubrene with a triplet energy of 1.14 eV as the TTA medium, and thus allows upconversion of light with photon energies above ∼1.1 eV. In this perspective, we review the field of lead sulfide (PbS) NC-sensitized near-infrared-to-visible upconversion, discuss solution-based upconversion, and highlight progress made on solid-state upconversion devices.
Correlations and Werner states in finite spin linear arrays
NASA Astrophysics Data System (ADS)
Wells, P. R.; Chaves, C. M.; d'Albuquerque e Castro, J.; Koiller, Belita
2013-10-01
Pairwise quantum correlations in the ground state of an N-spins antiferromagnetic Heisenberg chain are investigated. By varying the exchange coupling between two neighboring sites, it is possible to reversibly drive spins from entangled to disentangled states. For even N, the two-spin density matrix is written in the form of a Werner state, allowing identification of its single parameter with the usual spin-spin correlation function. The N = 4 chain is identified as a promising system for practical demonstrations of non-classical correlations and the realization of Werner states in familiar condensed matter systems. Fabrication and measurement ingredients are within current capabilities.
Spin State of Co3+ Ions in Layered GdBaCo2O5.5 Cobaltite in the Paramagnetic Phase
NASA Astrophysics Data System (ADS)
Solin, N. I.; Naumov, S. V.; Telegin, S. V.
2018-04-01
A new scheme interpreting the changes in the spin state of Co3+ ions in GdBaCo2O5.5 in the course of the metal-insulator transition is proposed. The transition occurs gradually within a wide ( 100 K) temperature range. The changes in the spin state of Co3+ ions are revealed using the data on the linear thermal expansion. In the metallic state, less than one-half of Co3+ ions are in the high-spin (HS, S = 2) state in octahedra, whereas the remaining ions are in the low-spin (LS, S = 0) state. The transition to the nonmetallic state occurs owing to the transformation of the HS state to the LS state in octahedra and to the transformation of some part of LS Co3+ in pyramids to the intermediate-spin (IS, S = 1) state.
Elastic interaction among transition metals in one-dimensional spin-crossover solids
NASA Astrophysics Data System (ADS)
Boukheddaden, K.; Miyashita, S.; Nishino, M.
2007-03-01
We present an exact examination of a one-dimensional (1D) spin-phonon model describing the thermodynamical properties of spin-crossover (SC) solids. This model has the advantage of giving a physical mechanism for the interaction between the SC units. The origin of the interaction comes from the fact that the elastic constant of the spring linking two atoms depends on their electronic states. This leads to local variation of the elastic constant. Up to now, all the statistical studies of this model have been performed in the frame of the mean-field (MF) approach, which is not adequate to describe 1D systems with short-range interactions. An alternative method, based on the variational approach and taking into account the short-range correlations between neighboring molecules, was also suggested, but it consists in an extension of the previous MF approximation. Here, we solve exactly this Hamiltonian in the frame of classical statistical mechanics using the transfer-matrix technique. The temperature dependence of the high spin fraction and that of the total energy are obtained analytically. Our results clearly show that there is a clear tendency to a sharp transition when we tune the elastic constants adequately, which indicates that first-order phase transition takes place at higher dimensions. In addition, we demonstrate the existence of an interesting isomorphism between the present model and Ising model under effective interaction and effective ligand field energy, in which both depend linearly on temperature and both come from the phonon contribution. We have also studied the effect of the pressure (the tension) on the thermodynamical properties of the high spin (HS) fraction and have found a nontrivial pressure effect that while for weak tension values, the low spin state is stabilized for the pressure above a threshold value, it enhances the interaction between the HS states. Finally, we have also introduced elastic interactions between the chains. Treating exactly (in mean field) the intrachain (interchain) contributions, we found that our model leads us to obtain first-order spin transitions when both short- and long-range interactions are ferroelastic. We show also that competing (antiferroelastic short-range and ferroelastic long-range) interactions between spin-state ions reproduce qualitatively the two-step-like spin-crossover transitions.
NASA Astrophysics Data System (ADS)
Schaibley, John; Burgers, Alex; McCracken, Greg; Duan, Luming; Berman, Paul; Steel, Duncan; Bracker, Allan; Gammon, Daniel; Sham, Lu
2013-03-01
A single electron spin confined to a single InAs quantum dot (QD) can serve as a qubit for quantum information processing. By utilizing the QD's optically excited trion states in the presence of an externally applied magnetic field, the QD spin can be rapidly initialized, manipulated and read out. A key resource for quantum information is the ability to entangle distinct QD spins. One approach relies on intermediate spin-photon entanglement to mediate the entanglement between distant QD spin qubits. We report a demonstration of quantum entanglement between a photon's polarization state and the spin state of a single electron confined to a single QD. Here, the photon is spontaneously emitted from one of the QD's trion states. The emitted photon's polarization along the detection axis is entangled with the resulting spin state of the QD. By performing projective measurements on the photon's polarization state and correlating these measurements with the state of the QD spin in two different bases, we obtain a lower bound on the entanglement fidelity of 0.59 (after background correction). The fidelity bound is limited almost entirely by the timing resolution of our single photon detector. The spin-photon entanglement generation rate is 3 ×103 s-1. Supported by: NSF, MURI, AFOSR, DARPA, ARO.
Kumar, Krishan; Moudgil, R K
2012-10-17
We have studied symmetric electron-electron and electron-hole bilayers to explore the stable homogeneous spin phase and the feasibility of inhomogeneous charge-/spin-density ground states. The former is resolved by comparing the ground-state energies in states of different spin polarizations, while the latter is resolved by searching for a divergence in the wavevector-dependent static charge/spin susceptibility. For this endeavour, we have used the dielectric approach within the self-consistent mean-field theory of Singwi et al. We find that the inter-layer interactions tend to change an abrupt spin-polarization transition of an isolated layer into a nearly gradual one, even though the partially spin-polarized phases are not clearly stable within the accuracy of our calculation. The transition density is seen to decrease with a reduction in layer spacing, implying a suppression of spin polarization by inter-layer interactions. Indeed, the suppression shows up distinctly in the spin susceptibility computed from the spin-polarization dependence of the ground-state energy. However, below a critical layer spacing, the unpolarized liquid becomes unstable against a charge-density-wave (CDW) ground state at a density preceding full spin polarization, with the transition density for the CDW state increasing on further reduction in the layer spacing. Due to attractive e-h correlations, the CDW state is found to be more pronounced in the e-h bilayer. On the other hand, the static spin susceptibility diverges only in the long-wavelength limit, which simply represents a transition to the homogeneous spin-polarized phase.
Exact transition probabilities for a linear sweep through a Kramers-Kronig resonance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Chen; Sinitsyn, Nikolai A.
2015-11-19
We consider a localized electronic spin controlled by a circularly polarized optical beam and an external magnetic field. When the frequency of the beam is tuned near an optical resonance with a continuum of higher energy states, effective magnetic fields are induced on the two-level system via the inverse Faraday effect. We explore the process in which the frequency of the beam is made linearly time-dependent so that it sweeps through the optical resonance, starting and ending at the values far away from it. In addition to changes of spin states, Kramers-Kronig relations guarantee that a localized electron can alsomore » escape into a continuum of states. We argue that probabilities of transitions between different possible electronic states after such a sweep of the optical frequency can be found exactly, regardless the shape of the resonance. In conclusion, we also discuss extension of our results to multistate systems.« less
Electrical control of flying spin precession in chiral 1D edge states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakajima, Takashi; Komiyama, Susumu; Lin, Kuan-Ting
2013-12-04
Electrical control and detection of spin precession are experimentally demonstrated by using spin-resolved edge states in the integer quantum Hall regime. Spin precession is triggered at a corner of a biased metal gate, where electron orbital motion makes a sharp turn leading to a nonadiabatic change in the effective magnetic field via spin-orbit interaction. The phase of precession is controlled by the group velocity of edge-state electrons tuned by gate bias voltage: Spin-FET-like coherent control of spin precession is thus realized by all-electrical means.
Full-gap superconductivity in spin-polarised surface states of topological semimetal β-PdBi2.
Iwaya, K; Kohsaka, Y; Okawa, K; Machida, T; Bahramy, M S; Hanaguri, T; Sasagawa, T
2017-10-17
A bulk superconductor possessing a topological surface state at the Fermi level is a promising system to realise long-sought topological superconductivity. Although several candidate materials have been proposed, experimental demonstrations concurrently exploring spin textures and superconductivity at the surface have remained elusive. Here we perform spectroscopic-imaging scanning tunnelling microscopy on the centrosymmetric superconductor β-PdBi 2 that hosts a topological surface state. By combining first-principles electronic-structure calculations and quasiparticle interference experiments, we determine the spin textures at the surface, and show not only the topological surface state but also all other surface bands exhibit spin polarisations parallel to the surface. We find that the superconducting gap fully opens in all the spin-polarised surface states. This behaviour is consistent with a possible spin-triplet order parameter expected for such in-plane spin textures, but the observed superconducting gap amplitude is comparable to that of the bulk, suggesting that the spin-singlet component is predominant in β-PdBi 2 .Although several materials have been proposed as topological superconductors, spin textures and superconductivity at the surface remain elusive. Here, Iwaya et al. determine the spin textures at the surface of a superconductor β-PdBi 2 and find the superconducting gap opening in all spin-polarised surface states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eliav, U., E-mail: amirgo@tau.ac.il, E-mail: eliav@tau.ac.il; Haimovich, A.; Goldbourt, A., E-mail: amirgo@tau.ac.il, E-mail: eliav@tau.ac.il
2016-01-14
We discuss and analyze four magic-angle spinning solid-state NMR methods that can be used to measure internuclear distances and to obtain correlation spectra between a spin I = 1/2 and a half-integer spin S > 1/2 having a small quadrupolar coupling constant. Three of the methods are based on the heteronuclear multiple-quantum and single-quantum correlation experiments, that is, high rank tensors that involve the half spin and the quadrupolar spin are generated. Here, both zero and single-quantum coherence of the half spins are allowed and various coherence orders of the quadrupolar spin are generated, and filtered, via active recoupling ofmore » the dipolar interaction. As a result of generating coherence orders larger than one, the spectral resolution for the quadrupolar nucleus increases linearly with the coherence order. Since the formation of high rank tensors is independent of the existence of a finite quadrupolar interaction, these experiments are also suitable to materials in which there is high symmetry around the quadrupolar spin. A fourth experiment is based on the initial quadrupolar-driven excitation of symmetric high order coherences (up to p = 2S, where S is the spin number) and subsequently generating by the heteronuclear dipolar interaction higher rank (l + 1 or higher) tensors that involve also the half spins. Due to the nature of this technique, it also provides information on the relative orientations of the quadrupolar and dipolar interaction tensors. For the ideal case in which the pulses are sufficiently strong with respect to other interactions, we derive analytical expressions for all experiments as well as for the transferred echo double resonance experiment involving a quadrupolar spin. We show by comparison of the fitting of simulations and the analytical expressions to experimental data that the analytical expressions are sufficiently accurate to provide experimental {sup 7}Li–{sup 13}C distances in a complex of lithium, glycine, and water. Discussion of the regime for which such an approach is valid is given.« less
Mobile bound states of Rydberg excitations in a lattice
NASA Astrophysics Data System (ADS)
Letscher, Fabian; Petrosyan, David
2018-04-01
Spin-lattice models play a central role in the studies of quantum magnetism and nonequilibrium dynamics of spin excitations—-magnons. We show that a spin lattice with strong nearest-neighbor interactions and tunable long-range hopping of excitations can be realized by a regular array of laser-driven atoms, with an excited Rydberg state representing the spin-up state and a Rydberg-dressed ground state corresponding to the spin-down state. We find exotic interaction-bound states of magnons that propagate in the lattice via the combination of resonant two-site hopping and nonresonant second-order hopping processes. Arrays of trapped Rydberg-dressed atoms can thus serve as a flexible platform to simulate and study fundamental few-body dynamics in spin lattices.
NASA Astrophysics Data System (ADS)
Fielding, Alistair J.; Usselman, Robert J.; Watmough, Nicholas; Simkovic, Martin; Frerman, Frank E.; Eaton, Gareth R.; Eaton, Sandra S.
2008-02-01
Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) is a membrane-bound electron transfer protein that links primary flavoprotein dehydrogenases with the main respiratory chain. Human, porcine, and Rhodobacter sphaeroides ETF-QO each contain a single [4Fe-4S] 2+,1+ cluster and one equivalent of FAD, which are diamagnetic in the isolated enzyme and become paramagnetic on reduction with the enzymatic electron donor or with dithionite. The anionic flavin semiquinone can be reduced further to diamagnetic hydroquinone. The redox potentials for the three redox couples are so similar that it is not possible to poise the proteins in a state where both the [4Fe-4S] + cluster and the flavoquinone are fully in the paramagnetic form. Inversion recovery was used to measure the electron spin-lattice relaxation rates for the [4Fe-4S] + between 8 and 18 K and for semiquinone between 25 and 65 K. At higher temperatures the spin-lattice relaxation rates for the [4Fe-4S] + were calculated from the temperature-dependent contributions to the continuous wave linewidths. Although mixtures of the redox states are present, it was possible to analyze the enhancement of the electron spin relaxation of the FAD semiquinone signal due to dipolar interaction with the more rapidly relaxing [4Fe-4S] + and obtain point-dipole interspin distances of 18.6 ± 1 Å for the three proteins. The point-dipole distances are within experimental uncertainty of the value calculated based on the crystal structure of porcine ETF-QO when spin delocalization is taken into account. The results demonstrate that electron spin relaxation enhancement can be used to measure distances in redox poised proteins even when several redox states are present.
Fielding, Alistair J.; Usselman, Robert J.; Watmough, Nicholas; Simkovic, Martin; Frerman, Frank E.; Eaton, Gareth R.; Eaton, Sandra S.
2008-01-01
Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) is a membrane-bound electron transfer protein that links primary flavoprotein dehydrogenases with the main respiratory chain. Human, porcine, and Rhodobacter sphaeroides ETF-QO each contain a single [4Fe-4S]2+,1+ cluster and one equivalent of FAD, which are diamagnetic in the isolated enzyme and become paramagnetic on reduction with the enzymatic electron donor or with dithionite. The anionic flavin semiquinone can be reduced further to diamagnetic hydroquinone. The redox potentials for the three redox couples are so similar that it is not possible to poise the proteins in a state where both the [4Fe-4S]+ cluster and the flavoquinone are fully in the paramagnetic form. Inversion recovery was used to measure the electron spin-lattice relaxation rates for the [4Fe-4S]+ between 8 and 18 K and for semiquinone between 25 and 65 K. At higher temperatures the spin-lattice relaxation rates for the [4Fe-4S]+ were calculated from the temperature-dependent contributions to the continuous wave linewidths. Although mixtures of the redox states are present, it was possible to analyze the enhancement of the electron spin relaxation of the FAD semiquinone signal due to dipolar interaction with the more rapidly relaxing [4Fe-4S]+ and obtain point dipole interspin distances of 18.6 ± 1 Å for the three proteins. The point-dipole distances are within experimental uncertainty of the value calculated based on the crystal structure of porcine ETF-QO when spin delocalization is taken into account. The results demonstrate that electron spin relaxation enhancement can be used to measure distances in redox poised proteins even when several redox states are present. PMID:18037314
Fielding, Alistair J; Usselman, Robert J; Watmough, Nicholas; Simkovic, Martin; Frerman, Frank E; Eaton, Gareth R; Eaton, Sandra S
2008-02-01
Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) is a membrane-bound electron transfer protein that links primary flavoprotein dehydrogenases with the main respiratory chain. Human, porcine, and Rhodobacter sphaeroides ETF-QO each contain a single [4Fe-4S](2+,1+) cluster and one equivalent of FAD, which are diamagnetic in the isolated enzyme and become paramagnetic on reduction with the enzymatic electron donor or with dithionite. The anionic flavin semiquinone can be reduced further to diamagnetic hydroquinone. The redox potentials for the three redox couples are so similar that it is not possible to poise the proteins in a state where both the [4Fe-4S](+) cluster and the flavoquinone are fully in the paramagnetic form. Inversion recovery was used to measure the electron spin-lattice relaxation rates for the [4Fe-4S](+) between 8 and 18K and for semiquinone between 25 and 65K. At higher temperatures the spin-lattice relaxation rates for the [4Fe-4S](+) were calculated from the temperature-dependent contributions to the continuous wave linewidths. Although mixtures of the redox states are present, it was possible to analyze the enhancement of the electron spin relaxation of the FAD semiquinone signal due to dipolar interaction with the more rapidly relaxing [4Fe-4S](+) and obtain point-dipole interspin distances of 18.6+/-1A for the three proteins. The point-dipole distances are within experimental uncertainty of the value calculated based on the crystal structure of porcine ETF-QO when spin delocalization is taken into account. The results demonstrate that electron spin relaxation enhancement can be used to measure distances in redox poised proteins even when several redox states are present.
NASA Astrophysics Data System (ADS)
Rosenkranz, S.; Phelan, D.; Louca, D.; Lee, S. H.; Chupas, P. J.; Osborn, R.; Zheng, H.; Mitchell, J. F.
2006-03-01
The cobalt perovskites La1-xSrxCoO3 show intriguing spin, lattice, and orbital properties similar to the ones observed in colossal magnetoresistive manganites. The x=0 parent compound is a non-magnetic insulator at low temperatures, but shows evidence of a spin-state transition of the cobalt ions above 50K from a low-spin to an intermediate or high-spin configuration. Using high resolution, inelastic neutron scattering, we observe a distinct low energy excitation at 0.6meV coincident with the thermally induced spin state transition observed in susceptibility measurements. The thermal activation of this excited spin state also leads to short-range, dynamic ferro- and antiferromagnetic correlations. These observations are consistent with the activation of a zero-field split intermediate spin state as well as the presence of dynamic orbital ordering of these excited states. Work supported by US DOE BES-DMS W-31-109-ENG-38 and NSF DMR-0454672
Song, Qi; Mi, Jian; Zhao, Dan; Su, Tang; Yuan, Wei; Xing, Wenyu; Chen, Yangyang; Wang, Tianyu; Wu, Tao; Chen, Xian Hui; Xie, X. C.; Zhang, Chi; Shi, Jing; Han, Wei
2016-01-01
There has been considerable interest in exploiting the spin degrees of freedom of electrons for potential information storage and computing technologies. Topological insulators (TIs), a class of quantum materials, have special gapless edge/surface states, where the spin polarization of the Dirac fermions is locked to the momentum direction. This spin–momentum locking property gives rise to very interesting spin-dependent physical phenomena such as the Edelstein and inverse Edelstein effects. However, the spin injection in pure surface states of TI is very challenging because of the coexistence of the highly conducting bulk states. Here, we experimentally demonstrate the spin injection and observe the inverse Edelstein effect in the surface states of a topological Kondo insulator, SmB6. At low temperatures when only surface carriers are present, a clear spin signal is observed. Furthermore, the magnetic field angle dependence of the spin signal is consistent with spin–momentum locking property of surface states of SmB6. PMID:27834378
Song, Qi; Mi, Jian; Zhao, Dan; ...
2016-11-11
There has been considerable interest in exploiting the spin degrees of freedom of electrons for potential information storage and computing technologies. Topological insulators (TIs), a class of quantum materials, have special gapless edge/surface states, where the spin polarization of the Dirac fermions is locked to the momentum direction. This spin–momentum locking property gives rise to very interesting spin-dependent physical phenomena such as the Edelstein and inverse Edelstein effects. However, the spin injection in pure surface states of TI is very challenging because of the coexistence of the highly conducting bulk states. Here, we experimentally demonstrate the spin injection and observemore » the inverse Edelstein effect in the surface states of a topological Kondo insulator, SmB 6. At low temperatures when only surface carriers are present, a clear spin signal is observed. Moreover, the magnetic field angle dependence of the spin signal is consistent with spin–momentum locking property of surface states of SmB6.« less
NASA Astrophysics Data System (ADS)
Han, Lei; Liu, Sheng; Li, Peng; Zhang, Yi; Cheng, Huachao; Zhao, Jianlin
2018-05-01
We report on the catalystlike effect of orbital angular momentum (OAM) on local spin-state conversion within the tightly focused radially polarized beams associated with optical spin-orbit interaction. It is theoretically demonstrated that the incident OAM can lead to a conversion of purely transverse spin state to a three-dimensional spin state on the focal plane. This conversion can be conveniently manipulated by altering the sign and value of the OAM. By comparing the total OAM and spin angular momentum (SAM) on the incident plane to those on the focal plane, it is indicated that the incident OAM have no participation in the angular momentum intertransfer, and just play a role as a catalyst of local SAM conversion. Such an effect of OAM sheds new light on the optical spin-orbit interaction in tight-focusing processes. The resultant three-dimensional spin states may provide more degrees of freedom in optical manipulation and spin-dependent directive coupling.
Protecting a Diamond Quantum Memory by Charge State Control.
Pfender, Matthias; Aslam, Nabeel; Simon, Patrick; Antonov, Denis; Thiering, Gergő; Burk, Sina; Fávaro de Oliveira, Felipe; Denisenko, Andrej; Fedder, Helmut; Meijer, Jan; Garrido, Jose A; Gali, Adam; Teraji, Tokuyuki; Isoya, Junichi; Doherty, Marcus William; Alkauskas, Audrius; Gallo, Alejandro; Grüneis, Andreas; Neumann, Philipp; Wrachtrup, Jörg
2017-10-11
In recent years, solid-state spin systems have emerged as promising candidates for quantum information processing. Prominent examples are the nitrogen-vacancy (NV) center in diamond, phosphorus dopants in silicon (Si:P), rare-earth ions in solids, and V Si -centers in silicon-carbide. The Si:P system has demonstrated that its nuclear spins can yield exceedingly long spin coherence times by eliminating the electron spin of the dopant. For NV centers, however, a proper charge state for storage of nuclear spin qubit coherence has not been identified yet. Here, we identify and characterize the positively charged NV center as an electron-spin-less and optically inactive state by utilizing the nuclear spin qubit as a probe. We control the electronic charge and spin utilizing nanometer scale gate electrodes. We achieve a lengthening of the nuclear spin coherence times by a factor of 4. Surprisingly, the new charge state allows switching of the optical response of single nodes facilitating full individual addressability.
Majorana spin in magnetic atomic chain systems
NASA Astrophysics Data System (ADS)
Li, Jian; Jeon, Sangjun; Xie, Yonglong; Yazdani, Ali; Bernevig, B. Andrei
2018-03-01
In this paper, we establish that Majorana zero modes emerging from a topological band structure of a chain of magnetic atoms embedded in a superconductor can be distinguished from trivial localized zero energy states that may accidentally form in this system using spin-resolved measurements. To demonstrate this key Majorana diagnostics, we study the spin composition of magnetic impurity induced in-gap Shiba states in a superconductor using a hybrid model. By examining the spin and spectral densities in the context of the Bogoliubov-de Gennes (BdG) particle-hole symmetry, we derive a sum rule that relates the spin densities of localized Shiba states with those in the normal state without superconductivity. Extending our investigations to a ferromagnetic chain of magnetic impurities, we identify key features of the spin properties of the extended Shiba state bands, as well as those associated with a localized Majorana end mode when the effect of spin-orbit interaction is included. We then formulate a phenomenological theory for the measurement of the local spin densities with spin-polarized scanning tunneling microscopy (STM) techniques. By combining the calculated spin densities and the measurement theory, we show that spin-polarized STM measurements can reveal a sharp contrast in spin polarization between an accidental-zero-energy trivial Shiba state and a Majorana zero mode in a topological superconducting phase in atomic chains. We further confirm our results with numerical simulations that address generic parameter settings.
Flux Noise due to Spins in SQUIDs
NASA Astrophysics Data System (ADS)
LaForest, Stephanie
Superconducting Quantum Interference Devices (SQUIDs) are currently being used as flux qubits and read-out detectors in a variety of solid-state quantum computer architectures. The main limitation of SQUID qubits is that they have a coherence time of the order of 10 micros, due to the presence of intrinsic flux noise that is not yet fully understood. The origin of flux noise is currently believed to be related to spin impurities present in the materials and interfaces that form the device. Here we present a novel numerical method that enables calculations of the flux produced by spin impurities even when they are located quite close to the SQUID wire. We show that the SQUID will be particularly sensitive to spins located at its wire edges, generating flux shifts of up to 4 nano flux quanta, much higher than previous calculations based on the software package FastHenry. This shows that spin impurities in a particular region along the wire's surface play a much more important role in producing flux noise than other spin impurities located elsewhere in the device.
High-fidelity readout and control of a nuclear spin qubit in silicon.
Pla, Jarryd J; Tan, Kuan Y; Dehollain, Juan P; Lim, Wee H; Morton, John J L; Zwanenburg, Floris A; Jamieson, David N; Dzurak, Andrew S; Morello, Andrea
2013-04-18
Detection of nuclear spin precession is critical for a wide range of scientific techniques that have applications in diverse fields including analytical chemistry, materials science, medicine and biology. Fundamentally, it is possible because of the extreme isolation of nuclear spins from their environment. This isolation also makes single nuclear spins desirable for quantum-information processing, as shown by pioneering studies on nitrogen-vacancy centres in diamond. The nuclear spin of a (31)P donor in silicon is very promising as a quantum bit: bulk measurements indicate that it has excellent coherence times and silicon is the dominant material in the microelectronics industry. Here we demonstrate electrical detection and coherent manipulation of a single (31)P nuclear spin qubit with sufficiently high fidelities for fault-tolerant quantum computing. By integrating single-shot readout of the electron spin with on-chip electron spin resonance, we demonstrate quantum non-demolition and electrical single-shot readout of the nuclear spin with a readout fidelity higher than 99.8 percent-the highest so far reported for any solid-state qubit. The single nuclear spin is then operated as a qubit by applying coherent radio-frequency pulses. For an ionized (31)P donor, we find a nuclear spin coherence time of 60 milliseconds and a one-qubit gate control fidelity exceeding 98 percent. These results demonstrate that the dominant technology of modern electronics can be adapted to host a complete electrical measurement and control platform for nuclear-spin-based quantum-information processing.
Epitaxial strain-mediated spin-state transitions: can we switch off magnetism?
NASA Astrophysics Data System (ADS)
Rondinelli, James; Spaldin, Nicola
2008-03-01
We use first-principles density functional theory calculations to explore spin-state transitions in epitaxially strained LaCoO3. While high-spin to low-spin state transitions in minerals are common in geophysics, where pressures can reach over 200 GPa, we explore whether heteroepitaxial strain can achieve similar transitions with moderate strain in thin films. LaCoO3 is known to undergo a low-spin (S=0, t2g^6eg^0) to intermediate-spin (S=1, t2g^5eg^1) or high-spin (S=2, t2g^4eg^2) state transition with increasing temperature, and thus makes it a promising candidate material for strain-mediated spin transitions. Here we discuss the physics of the low-spin transition and changes in the electronic structure of LaCoO3, most notably, the metal-insulator transition that accompanies the spin-state transitions with epitaxial strain. As thin film growth techniques continue to reach atomic-level precision, we suggest this is another approach for controlling magnetism in complex oxide heterostructures.
Yrare low-spin positive-parity states in N = 88 66 154 Dy
NASA Astrophysics Data System (ADS)
Zimba, G. L.; Bvumbi, S. P.; Masiteng, L. P.; Jones, P.; Sharpey-Schafer, J. F.; Majola, S. N. T.; Dinoko, T. S.; Shirinda, O.; Lawrie, J. J.; Easton, J. E.; Khumalo, N. A.; Msebi, L.; Mashita, P. I.; Papka, P.; Roux, D. G.; Negi, D.
2018-04-01
Low-spin positive-parity yrare states of 66 154 Dy88 were established using the 155Gd(3He,4n) reaction at a beam energy of E_{lab} = 37.5 MeV. The AFRODITE spectrometer array at iThemba LABS was used to record γγ coincidences and measure DCO ratios and polarisation asymmetries. The K^{π}=2+ γ band has been observed up to spin 13+ in the odd spins and to 12+ in the even spins. The staggering parameter S( I) of the γ band is compared to that found in other N = 88 isotones. Different behaviour of S( I) with increasing spin is observed for each of the isotones. We conjecture that the variation in S( I) is mainly due to mixing of the even-spin states with the same spin and parity states in neighbouring rotational bands. A second K^{π}=2+ band has been established up to a spin of 12+ in the even spins. We suggest that this is a γ band based on the J^{π} = 0+ state at Ex = 660.6 keV.
Identification and properties of the non-cubic phases of Mg 2Pb
Li, Yuwei; Bian, Guang; Singh, David J.
2016-12-20
Mg 2Pb occurs in the cubic fluorite structure and is a semimetal with a band structure strongly affected by spin-orbit interaction on the Pb p states. Its properties are therefore of interest in the context of topological materials. In addition a different phase of Mg 2Pb was experimentally reported, but its crystal structure and properties remain unknown. Here we determine the structure of this phase using ab initio evolutionary methods and report its properties. The energy of one tetragonal phase, space group P4/ nmm, is 2 meV per atom higher than that of the ground state structure supporting the experimentalmore » observation. We find this tetragonal phase to be a compenstated anisotropic metal with strong spin orbit effects. As a result, many other metastable structures have also been identified, especially one orthorhombic structure, space group Pnma, of which energy is 17 meV per atom higher than that of ground state structure and which perhaps could be the phase that was reported based on similarity of lattice parameters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreev, Pavel A., E-mail: andreevpa@physics.msu.ru; Kuz’menkov, L.S., E-mail: lsk@phys.msu.ru
We consider quantum plasmas of electrons and motionless ions. We describe separate evolution of spin-up and spin-down electrons. We present corresponding set of quantum hydrodynamic equations. We assume that plasmas are placed in an uniform external magnetic field. We account different occupation of spin-up and spin-down quantum states in equilibrium degenerate plasmas. This effect is included via equations of state for pressure of each species of electrons. We study oblique propagation of longitudinal waves. We show that instead of two well-known waves (the Langmuir wave and the Trivelpiece–Gould wave), plasmas reveal four wave solutions. New solutions exist due to bothmore » the separate consideration of spin-up and spin-down electrons and different occupation of spin-up and spin-down quantum states in equilibrium state of degenerate plasmas.« less
Evidence for a spinon Fermi surface in a triangular-lattice quantum-spin-liquid candidate
Shen, Yao; Li, Yao-Dong; Wo, Hongliang; ...
2016-12-05
A quantum spin liquid is an exotic quantum state of matter in which spins are highly entangled and remain disordered down to zero temperature. Such a state of matter is potentially relevant to high-temperature superconductivity and quantum-information applications, and experimental identification of a quantum spin liquid state is of fundamental importance for our understanding of quantum matter. Theoretical studies have proposed various quantum-spin-liquid ground states, most of which are characterized by exotic spin excitations with fractional quantum numbers (termed ‘spinons’). In this paper, we report neutron scattering measurements of the triangular-lattice antiferromagnet YbMgGaO 4 that reveal broad spin excitations coveringmore » a wide region of the Brillouin zone. The observed diffusive spin excitation persists at the lowest measured energy and shows a clear upper excitation edge, consistent with the particle–hole excitation of a spinon Fermi surface. Finally, our results therefore point to the existence of a quantum spin liquid state with a spinon Fermi surface in YbMgGaO 4, which has a perfect spin-1/2 triangular lattice as in the original proposal of quantum spin liquids.« less
NASA Astrophysics Data System (ADS)
Bielecki, J.; Rata, A. D.; Börjesson, L.
2014-01-01
We present results on the temperature dependence of ultrafast electron and lattice dynamics, measured with pump-probe transient reflectivity experiments, of an epitaxially grown LaCoO3 thin film under tensile strain. Probing spin-polarized transitions into the antibonding eg band provides a measure of the low-spin fraction, both as a function of temperature and time after photoexcitation. It is observed that femtosecond laser pulses destabilize the constant low-spin fraction (˜63%-64%) in equilibrium into a thermally activated state, driven by a subpicosecond change in spin gap Δ. From the time evolution of the low-spin fraction, it is possible to disentangle the thermal and lattice contributions to the spin state. A lattice mediated spin repulsion, identified as the governing factor determining the equilibrium spin state in thin-film LaCoO3, is observed. These results suggests that time-resolved spectroscopy is a sensitive probe of the spin state in LaCoO3 thin films, with the potential to bring forward quantitative insight into the complicated interplay between structure and spin state in LaCoO3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshizumi, K.; Sasaki, A.; Kohda, M.
We demonstrate gate-controlled switching between persistent spin helix (PSH) state and inverse PSH state, which are detected by quantum interference effect on magneto-conductance. These special symmetric spin states showing weak localization effect give rise to a long spin coherence when the strength of Rashba spin-orbit interaction (SOI) is close to that of Dresselhaus SOI. Furthermore, in the middle of two persistent spin helix states, where the Rashba SOI can be negligible, the bulk Dresselhaus SOI parameter in a modulation doped InGaAs/InAlAs quantum well is determined.
Classification and properties of quantum spin liquids on the hyperhoneycomb lattice
NASA Astrophysics Data System (ADS)
Huang, Biao; Choi, Wonjune; Kim, Yong Baek; Lu, Yuan-Ming
2018-05-01
The family of "Kitaev materials" provides an ideal platform to study quantum spin liquids and their neighboring magnetic orders. Motivated by the possibility of a quantum spin liquid ground state in pressurized hyperhoneycomb iridate β -Li2IrO3 , we systematically classify and study symmetric quantum spin liquids on the hyperhoneycomb lattice, using the Abrikosov-fermion representation. Among the 176 symmetric U (1 ) spin liquids (and 160 Z2 spin liquids), we identify eight "root" U (1 ) spin liquids in proximity to the ground state of the solvable Kitave model on the hyperhonecyomb lattice. These eight states are promising candidates for possible U (1 ) spin liquid ground states in pressurized β -Li2IrO3 . We further discuss physical properties of these eight U (1 ) spin liquid candidates, and show that they all support nodal-line-shaped spinon Fermi surfaces.
Spin-dependent recombination probed through the dielectric polarizability
Bayliss, Sam L.; Greenham, Neil C.; Friend, Richard H.; Bouchiat, Hélène; Chepelianskii, Alexei D
2015-01-01
Despite residing in an energetically and structurally disordered landscape, the spin degree of freedom remains a robust quantity in organic semiconductor materials due to the weak coupling of spin and orbital states. This enforces spin-selectivity in recombination processes which plays a crucial role in optoelectronic devices, for example, in the spin-dependent recombination of weakly bound electron-hole pairs, or charge-transfer states, which form in a photovoltaic blend. Here, we implement a detection scheme to probe the spin-selective recombination of these states through changes in their dielectric polarizability under magnetic resonance. Using this technique, we access a regime in which the usual mixing of spin-singlet and spin-triplet states due to hyperfine fields is suppressed by microwave driving. We present a quantitative model for this behaviour which allows us to estimate the spin-dependent recombination rate, and draw parallels with the Majorana–Brossel resonances observed in atomic physics experiments. PMID:26439933
Spin transition in a four-coordinate iron oxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawakami, T.; Sutou, S.; Hirama, H.
2009-01-01
The spin transition, or spin crossover, is a manifestation of electronic instability induced by external constraints such as pressure1. Among known examples that exhibit spin transition, 3d ions with d6 electron configurations represent the vast majority, but the spin transition observed thus far has been almost exclusively limited to that between high-spin (S = 2) and low-spin (S = 0) states2-9. Here we report a novel high-spin to intermediate-spin (S = 1) state transition at 33 GPa induced by pressurization of an antiferromagnetic insulator SrFeO2 with a square planar coordination10. The change in spin multiplicity brings to ferromagnetism as wellmore » as metallicity, yet keeping the ordering temperature far above ambient. First-principles calculations attribute the origin of the transition to the strong inlayer hybridization between Fe dx 2 -y 2 O p , leading to a pressure-induced electronic instability toward the depopulation of Fe dx 2 -y 2 O p antibonding states. Furthermore, the ferromagnetic S = 1 state is half-metallic due to the inception of half-occupied spin-down (dxz, dyz) degenerate states upon spin transition. These results highlight the square-planar coordinated iron oxides as a new class of magnetic and electric materials and provide new avenues toward realizing multi-functional sensors and data-storage devices.« less
Antiferromagnetic and topological states in silicene: A mean field study
NASA Astrophysics Data System (ADS)
Liu, Feng; Liu, Cheng-Cheng; Yao, Yu-Gui
2015-08-01
It has been widely accepted that silicene is a topological insulator, and its gap closes first and then opens again with increasing electric field, which indicates a topological phase transition from the quantum spin Hall state to the band insulator state. However, due to the relatively large atomic spacing of silicene, which reduces the bandwidth, the electron-electron interaction in this system is considerably strong and cannot be ignored. The Hubbard interaction, intrinsic spin orbital coupling (SOC), and electric field are taken into consideration in our tight-binding model, with which the phase diagram of silicene is carefully investigated on the mean field level. We have found that when the magnitudes of the two mass terms produced by the Hubbard interaction and electric potential are close to each other, the intrinsic SOC flips the sign of the mass term at either K or K‧ for one spin and leads to the emergence of the spin-polarized quantum anomalous Hall state. Project supported by the National Key Basic Research Program of China (Grant Nos. 2014CB920903, 2013CB921903, 2011CBA00108, and 2012CB937500), the National Natural Science Foundation of China (Grant Nos. 11021262, 11172303, 11404022, 11225418, and 11174337), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20121101110046), the Excellent Young Scholars Research Fund of Beijing Institute of Technology (Grant No. 2014CX04028), and the Basic Research Funds of Beijing Institute of Technology (Grant No. 20141842001).
Gaudet, J.; Ross, K. A.; Kermarrec, E.; ...
2016-02-03
We know the ground state of the quantum spin ice candidate magnet Yb 2Ti 2O 7 to be sensitive to weak disorder at the similar to 1% level which occurs in single crystals grown from the melt. Powders produced by solid state synthesis tend to be stoichiometric and display large and sharp heat capacity anomalies at relatively high temperatures, T-C similar to 0.26 K. We have carried out neutron elastic and inelastic measurements on well characterized and equilibrated stoichiometric powder samples of Yb 2Ti 2O 7 which show resolution-limited Bragg peaks to appear at low temperatures, but whose onset correlatesmore » with temperatures much higher than T-C. The corresponding magnetic structure is best described as an icelike splayed ferromagnet. In the spin dynamics of Yb 2Ti 2O 7 we see the gapless on an energy scale <0.09 meV at all temperatures and organized into a continuum of scattering with vestiges of highly overdamped ferromagnetic spin waves present. These excitations differ greatly from conventional spin waves predicted for Yb 2Ti 2O 7's mean field ordered state, but appear robust to weak disorder as they are largely consistent with those displayed by nonstoichiometric crushed single crystals and single crystals, as well as by powder samples of Yb 2Ti 2O 7's sister quantum magnet Yb 2Ti 2O 7.« less
De Paëpe, Gaël; Lewandowski, Józef R; Griffin, Robert G
2008-03-28
We introduce a family of solid-state NMR pulse sequences that generalizes the concept of second averaging in the modulation frame and therefore provides a new approach to perform magic angle spinning dipolar recoupling experiments. Here, we focus on two particular recoupling mechanisms-cosine modulated rotary resonance (CMpRR) and cosine modulated recoupling with isotropic chemical shift reintroduction (COMICS). The first technique, CMpRR, is based on a cosine modulation of the rf phase and yields broadband double-quantum (DQ) (13)C recoupling using >70 kHz omega(1,C)/2pi rf field for the spinning frequency omega(r)/2=10-30 kHz and (1)H Larmor frequency omega(0,H)/2pi up to 900 MHz. Importantly, for p>or=5, CMpRR recouples efficiently in the absence of (1)H decoupling. Extension to lower p values (3.5
Conformal higher spin theory and twistor space actions
NASA Astrophysics Data System (ADS)
Hähnel, Philipp; McLoughlin, Tristan
2017-12-01
We consider the twistor description of conformal higher spin theories and give twistor space actions for the self-dual sector of theories with spin greater than two that produce the correct flat space-time spectrum. We identify a ghost-free subsector, analogous to the embedding of Einstein gravity with cosmological constant in Weyl gravity, which generates the unique spin-s three-point anti-MHV amplitude consistent with Poincaré invariance and helicity constraints. By including interactions between the infinite tower of higher-spin fields we give a geometric interpretation to the twistor equations of motion as the integrability condition for a holomorphic structure on an infinite jet bundle. Finally, we conjecture anti-self-dual interaction terms which give an implicit definition of a twistor action for the full conformal higher spin theory.
Enhanced power factor of higher manganese silicide via melt spin synthesis method
Shi, Xiaoya; Shi, Xun; Li, Yulong; ...
2014-12-30
We report on the thermoelectric properties of the Higher Manganese Silicide MnSi₁.₇₅ (HMS) synthesized by means of a one-step non-equilibrium method. The ultrahigh cooling rate generated from the melt-spin technique is found to be effective in reducing second phases, which are inevitable during the traditional solid state diffusion processes. Aside from being detrimental to thermoelectric properties, second phases skew the revealing of the intrinsic properties of this class of materials, for example the optimal level of carrier concentration. With this melt-spin sample, we are able to formulate a simple model based on a single parabolic band that can well describemore » the carrier concentration dependence of the Seebeck coefficient and power factor of the data reported in the literature. An optimal carrier concentration around 5x10²⁰ cm⁻³ at 300 K is predicted according to this model. The phase-pure melt-spin sample shows the largest power factor at high temperature, resulting in the highest zT value among the three samples in this paper; the maximum value is superior to those reported in the literatures.« less
Enhanced power factor of higher manganese silicide via melt spin synthesis method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Xiaoya; Shi, Xun; Li, Yulong
We report on the thermoelectric properties of the Higher Manganese Silicide MnSi₁.₇₅ (HMS) synthesized by means of a one-step non-equilibrium method. The ultrahigh cooling rate generated from the melt-spin technique is found to be effective in reducing second phases, which are inevitable during the traditional solid state diffusion processes. Aside from being detrimental to thermoelectric properties, second phases skew the revealing of the intrinsic properties of this class of materials, for example the optimal level of carrier concentration. With this melt-spin sample, we are able to formulate a simple model based on a single parabolic band that can well describemore » the carrier concentration dependence of the Seebeck coefficient and power factor of the data reported in the literature. An optimal carrier concentration around 5x10²⁰ cm⁻³ at 300 K is predicted according to this model. The phase-pure melt-spin sample shows the largest power factor at high temperature, resulting in the highest zT value among the three samples in this paper; the maximum value is superior to those reported in the literatures.« less
Memory-built-in quantum cloning in a hybrid solid-state spin register
NASA Astrophysics Data System (ADS)
Wang, W.-B.; Zu, C.; He, L.; Zhang, W.-G.; Duan, L.-M.
2015-07-01
As a way to circumvent the quantum no-cloning theorem, approximate quantum cloning protocols have received wide attention with remarkable applications. Copying of quantum states to memory qubits provides an important strategy for eavesdropping in quantum cryptography. We report an experiment that realizes cloning of quantum states from an electron spin to a nuclear spin in a hybrid solid-state spin register with near-optimal fidelity. The nuclear spin provides an ideal memory qubit at room temperature, which stores the cloned quantum states for a millisecond under ambient conditions, exceeding the lifetime of the original quantum state carried by the electron spin by orders of magnitude. The realization of a cloning machine with built-in quantum memory provides a key step for application of quantum cloning in quantum information science.
Memory-built-in quantum cloning in a hybrid solid-state spin register.
Wang, W-B; Zu, C; He, L; Zhang, W-G; Duan, L-M
2015-07-16
As a way to circumvent the quantum no-cloning theorem, approximate quantum cloning protocols have received wide attention with remarkable applications. Copying of quantum states to memory qubits provides an important strategy for eavesdropping in quantum cryptography. We report an experiment that realizes cloning of quantum states from an electron spin to a nuclear spin in a hybrid solid-state spin register with near-optimal fidelity. The nuclear spin provides an ideal memory qubit at room temperature, which stores the cloned quantum states for a millisecond under ambient conditions, exceeding the lifetime of the original quantum state carried by the electron spin by orders of magnitude. The realization of a cloning machine with built-in quantum memory provides a key step for application of quantum cloning in quantum information science.
NASA Astrophysics Data System (ADS)
Sørensen, L. K.; Fleig, T.; Olsen, J.
2009-08-01
Aimed at obtaining complete and highly accurate potential energy surfaces for molecules containing heavy elements, we present a new general-order coupled cluster method which can be applied in the framework of the spin-free Dirac formalism. As an initial application we present a systematic study of electron correlation and relativistic effects on the spectroscopic and electric properties of the LiCs molecule in its electronic ground state. In particular, we closely investigate the importance of excitations higher than coupled cluster doubles, spin-free and spin-dependent relativistic effects and the correlation of outer-core electrons on the equilibrium bond length, the harmonic vibrational frequency, the dissociation energy, the dipole moment and the static electric dipole polarizability. We demonstrate that our new implementation allows for highly accurate calculations not only in the bonding region but also along the complete potential curve. The quality of our results is demonstrated by a vibrational analysis where an almost complete set of vibrational levels has been calculated accurately.
Effects of Nickel Doping on the Multiferroic and Magnetic Phases of MnWO 4
Poudel, N.; Lorenz, B.; Lv, B.; ...
2015-12-15
There are various orders in multiferroic materials with a frustrated spiral spin modulation inducing a ferroelectric state are extremely sensitive to small perturbations such as magnetic and electric fields, external pressure, or chemical substitutions. A classical multiferroic, the mineral Hubnerite with chemical formula MnWO 4, shows three different magnetic phases at low temperature. The intermediate phase between 7.5K < T < 12.7K is multiferroic and ferroelectricity is induced by an inversion symmetry breaking spiral Mn-spin order and strong spin-lattice interactions. Furthermore, the substitution of Ni 2+ (spin 1) for Mn 2+ (spin 5/2) in MnWO 4 and its effects onmore » the magnetic and multiferroic phases are studied. The ferroelectric phase is stabilized for low Ni content (up to 10%). Upon further Ni doping, the polarization in the ferroelectric phase is quickly suppressed while a collinear and commensurate magnetic phase, characteristic of the magnetic structure in NiWO 4, appears first at higher temperature, gradually extends to lower temperature, and becomes the ground state above 30% doping. Between 10% and 30%, the multiferroic phase coexists with the collinear commensurate phase. In this concentration region, the spin spiral plane is close to the a-b plane which explains the drop of the ferroelectric polarization. Finally, the phase diagram of Mn 1-xNi xWO 4 is derived by a combination of magnetic susceptibility, specific heat, electric polarization, and neutron scattering measurements.« less
Topological winding properties of spin edge states in the Kane-Mele graphene model
NASA Astrophysics Data System (ADS)
Wang, Zhigang; Hao, Ningning; Zhang, Ping
2009-09-01
We study the spin edge states in the quantum spin-Hall (QSH) effect on a single-atomic layer graphene-ribbon system with both intrinsic and Rashba spin-orbit couplings. The Harper equation for solving the energies of the spin edge states is derived. The results show that in the QSH phase, there are always two pairs of gapless spin-filtered edge states in the bulk energy gap, corresponding to two pairs of zero points of the Bloch function on the complex-energy Riemann surface (RS). The topological aspect of the QSH phase can be distinguished by the difference of the winding numbers of the spin edge states with different polarized directions cross the holes of the RS, which is equivalent to the Z2 topological invariance proposed by Kane and Mele [Phys. Rev. Lett. 95, 146802 (2005)].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niccoli, G.
The antiperiodic transfer matrices associated to higher spin representations of the rational 6-vertex Yang-Baxter algebra are analyzed by generalizing the approach introduced recently in the framework of Sklyanin's quantum separation of variables (SOV) for cyclic representations, spin-1/2 highest weight representations, and also for spin-1/2 representations of the 6-vertex reflection algebra. Such SOV approach allow us to derive exactly results which represent complicate tasks for more traditional methods based on Bethe ansatz and Baxter Q-operator. In particular, we both prove the completeness of the SOV characterization of the transfer matrix spectrum and its simplicity. Then, the derived characterization of local operatorsmore » by Sklyanin's quantum separate variables and the expression of the scalar products of separate states by determinant formulae allow us to compute the form factors of the local spin operators by one determinant formulae similar to those of the scalar products.« less
SPIN CORRELATIONS OF THE FINAL LEPTONS IN THE TWO-PHOTON PROCESSES γγ → e+e-, μ+μ-, τ+τ-
NASA Astrophysics Data System (ADS)
Lyuboshitz, Valery V.; Lyuboshitz, Vladimir L.
2014-12-01
The spin structure of the process γγ → e+e- is theoretically investigated. It is shown that, if the primary photons are unpolarized, the final electron and positron are unpolarized as well but their spins are strongly correlated. For the final (e+e-) system, explicit expressions for the components of the correlation tensor are derived, and the relative fractions of singlet and triplet states are found. It is demonstrated that in the process γγ → e+e- one of the Bell-type incoherence inequalities for the correlation tensor components is always violated and, thus, spin correlations of the electron and positron in this process have the strongly pronounced quantum character. Analogous consideration can be wholly applied as well to the two-photon processes γγ → μ+μ- and γγ → τ+τ-, which become possible at considerably higher energies.
Spin-controlled negative magnetoresistance resulting from exchange interactions
NASA Astrophysics Data System (ADS)
Agrinskaya, N. V.; Kozub, V. I.; Mikhailin, N. Yu.; Shamshur, D. V.
2017-04-01
We studied conductivity of AlGaAs-GaAs quantum well structures (where centers of the wells were doped by Be) at temperatures higher than 4 K in magnetic fields up 10 T. Throughout all the temperature region considered the conductivity demonstrated activated behavior. At moderate magnetic fields 0.1 T < H < 1 T, we observed negative isotropic magnetoresistance, which was linear in magnetic field while for magnetic field normal with respect to the plane of the wells the magnetoresistance was positive at H > 2T. To the best of our knowledge, it was the first observation of linear negative magnetoresistance, which would be isotropic with respect to the direction of magnetic field. While the isotropic character of magnetoresistance apparently evidences role of spins, the existing theoretical considerations concerning spin effects in conductance fail to explain our experimental results. We believe that such a behavior can be attributed to spin effects supported by exchange interactions between localized states.
Morello, A; Millán, A; de Jongh, L J
2014-03-21
A single-molecule magnet placed in a magnetic field perpendicular to its anisotropy axis can be truncated to an effective two-level system, with easily tunable energy splitting. The quantum coherence of the molecular spin is largely determined by the dynamics of the surrounding nuclear spin bath. Here we report the measurement of the nuclear spin-lattice relaxation rate 1/T1n in a single crystal of the single-molecule magnet Mn12-ac, at T ≈ 30 mK in perpendicular fields B⊥ up to 9 T. The relaxation channel at B ≈ 0 is dominated by incoherent quantum tunneling of the Mn12-ac spin S, aided by the nuclear bath itself. However for B⊥>5 T we observe an increase of 1/T1n by several orders of magnitude up to the highest field, despite the fact that the molecular spin is in its quantum mechanical ground state. This striking observation is a consequence of the zero-point quantum fluctuations of S, which allow it to mediate the transfer of energy from the excited nuclear spin bath to the crystal lattice at much higher rates. Our experiment highlights the importance of quantum fluctuations in the interaction between an "effective two-level system" and its surrounding spin bath.
Ground-state phase diagram in the Kugel-Khomskii model with finite spin-orbit interactions
NASA Astrophysics Data System (ADS)
Koga, Akihisa; Nakauchi, Shiryu; Nasu, Joji
2018-05-01
We study ground-state properties in the Kugel-Khomskii model on the two-dimensional honeycomb lattice. Using the cluster mean-field approximations, we deal with the exchange and spin-orbit couplings on an equal footing. We then discuss the stability of the ferromagnetically ordered states against the nonmagnetic state, which is adiabatically connected to the quantum spin liquid state realized in a strong spin-orbit coupling limit.
Huang, Xiaokun; Zhang, Weiyi
2016-01-01
The misfit layered Bi2A2Co2O8 (A = Ca, Sr, Ba) compounds experience an insulator to metal transition as A’s ionic radius increases. This feature is contradictory to the conventional wisdom that larger lattice constant favors insulating rather than metallic state, and is also difficult to be reconciled using the Anderson weak localization theory. In this paper, we show from the first-principles calculation that an insulator-metal transition takes place from a nonmagnetic low-spin state of Co3+ ions to a hexagonally arranged intermediate-spin low-spin mixed-state in CoO2 plane when ionic radius increases from Ca to Ba. The predicted low-spin state of Bi2Ca2Co2O8 and Bi2Sr2Co2O8 and intermediate-spin low-spin mixed-state of Bi2Ba2Co2O8 are consistent not only with their measured transport properties, but also with the magnetic-field suppressed specific-heat peak observed at the transition temperature. In agreement with experiments, strong electronic correlation is required to stabilize the low-spin insulator and intermediate-spin low-spin metal. PMID:27901119
Huang, Xiaokun; Zhang, Weiyi
2016-11-30
The misfit layered Bi 2 A 2 Co 2 O 8 (A = Ca, Sr, Ba) compounds experience an insulator to metal transition as A's ionic radius increases. This feature is contradictory to the conventional wisdom that larger lattice constant favors insulating rather than metallic state, and is also difficult to be reconciled using the Anderson weak localization theory. In this paper, we show from the first-principles calculation that an insulator-metal transition takes place from a nonmagnetic low-spin state of Co 3+ ions to a hexagonally arranged intermediate-spin low-spin mixed-state in CoO 2 plane when ionic radius increases from Ca to Ba. The predicted low-spin state of Bi 2 Ca 2 Co 2 O 8 and Bi 2 Sr 2 Co 2 O 8 and intermediate-spin low-spin mixed-state of Bi 2 Ba 2 Co 2 O 8 are consistent not only with their measured transport properties, but also with the magnetic-field suppressed specific-heat peak observed at the transition temperature. In agreement with experiments, strong electronic correlation is required to stabilize the low-spin insulator and intermediate-spin low-spin metal.
Min, J; Ziurys, L M
2016-05-14
Pure rotational spectroscopy of the CrC (X(3)Σ(-)) and CrCCH (X̃ (6)Σ(+)) radicals has been conducted using millimeter/sub-millimeter direct absorption methods in the frequency range 225-585 GHz. These species were created in an AC discharge of Cr(CO)6 and either methane or acetylene, diluted in argon. Spectra of the CrCCD were also recorded for the first time using deuterated acetylene as the carbon precursor. Seven rotational transitions of CrC were measured, each consisting of three widely spaced, fine structure components, arising from spin-spin and spin-rotation interactions. Eleven rotational transitions were recorded for CrCCH and five for CrCCD; each transition in these cases was composed of a distinct fine structure sextet. These measurements confirm the respective (3)Σ(-) and (6)Σ(+) ground electronic states of these radicals, as indicated from optical studies. The data were analyzed using a Hund's case (b) Hamiltonian, and rotational, spin-spin, and spin-rotation constants have been accurately determined for all three species. The spectroscopic parameters for CrC were significantly revised from previous optical work, while those for CrCCH are in excellent agreement; completely new constants were established for CrCCD. The chromium-carbon bond length for CrC was calculated to be 1.631 Å, while that in CrCCH was found to be rCr-C = 1.993 Å - significantly longer. This result suggests that a single Cr-C bond is present in CrCCH, preserving the acetylenic structure of the ligand, while a triple bond exists in CrC. Analysis of the spin constants suggests that CrC has a nearby excited (1)Σ(+) state lying ∼16 900 cm(-1) higher in energy, and CrCCH has a (6)Π excited state with E ∼ 4800 cm(-1).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiyama, H., E-mail: kiyama@meso.t.u-tokyo.ac.jp; Fujita, T.; Teraoka, S.
2014-06-30
Spin filtering with electrically tunable efficiency is achieved for electron tunneling between a quantum dot and spin-resolved quantum Hall edge states by locally gating the two-dimensional electron gas (2DEG) leads near the tunnel junction to the dot. The local gating can change the potential gradient in the 2DEG and consequently the edge state separation. We use this technique to electrically control the ratio of the dot–edge state tunnel coupling between opposite spins and finally increase spin filtering efficiency up to 91%, the highest ever reported, by optimizing the local gating.
Phase structure of higher spin black hole
NASA Astrophysics Data System (ADS)
Chen, Bin; Long, Jiang; Wang, Yi-Nan
2013-03-01
In this paper, we investigate the phase structure of the black holes with one single higher spin hair, focusing specifically on the spin 3 and spin widetilde{4} black holes. Based on dimensional analysis and the requirement of thermodynamic consistency, we derive a universal formula relating the entropy with the conserved charges for arbitrary AdS 3 higher spin black holes. Then we use it to study the phase structure of the higher spin black holes. We find that there are six branches of solutions in the spin 3 gravity, eight branches of solutions in the spin widetilde{4} gravity and twelve branches of solutions in the G 2 gravity. In each case, all the branches are related by a simple angle shift in the entropy functions. In the spin 3 case, we reproduce all the results found before. In the spin widetilde{4} case, we find that at low temperature it lies in the BTZ branch while at high temperature it undergoes a phase transition to one of the two other branches, depending on the signature of the chemical potential, a reflection of charge conjugate asymmetry found before.
NASA Astrophysics Data System (ADS)
Cheng, Jiang-feng; Li, Gui-rong; Wang, Hong-ming; Li, Pei-si; Li, Chao-qun
2018-03-01
At T6 state, Al-Zn-Mg-Cu aluminum matrix composites reinforced with Al2O3 particles generated in situ were subjected to high pulsed magnetic fields at different magnetic induction intensities ( B = 2, 3 and 4 T). The results show that the dislocation densities in the treated samples increased with increasing B, and the magnetoplastic effect was determined to be the primary cause. The effect of the magnetic field is believed to alter the spin state of free electrons between dislocations and obstacles from the singlet state (associated with high bonding energy) to the triplet state (low bonding energy). The maximum ultimate tensile strength of 532 MPa was obtained at B = 4 T with 30 pulses, which was 20.7% higher than that of the initial sample, primarily because of dislocation strengthening. At B = 2 T, the elongation was at its maximum of 9.3%, representing an increase of 12% compared with the initial sample, while the associated ultimate tensile strength (447 MPa) was still higher than that of the untreated sample (440 MPa). The relationship between mechanical properties and microstructure was analyzed, and the improved properties observed in this work are explained by the transition of the electron spin state and the piling up of dislocations.
Noise resistance of the violation of local causality for pure three-qutrit entangled states
NASA Astrophysics Data System (ADS)
Laskowski, Wiesław; Ryu, Junghee; Żukowski, Marek
2014-10-01
Bell's theorem started with two qubits (spins 1/2). It is a ‘no-go’ statement on classical (local causal) models of quantum correlations. After 25 years, it turned out that for three qubits the situation is even more astonishing. General statements concerning higher dimensional systems, qutrits, etc, started to appear even later, once the picture with spin (higher than 1/2) was replaced by a broader one, allowing all possible observables. This work is a continuation of the Gdansk effort to take advantage of the fact that Bell's theorem can be put in the form of a linear programming problem, which in turn can be translated into a computer code. Our results are numerical and classify the strength of the violation of local causality by various families of three-qutrit states, as measured by the resistance to noise. This is previously uncharted territory. The results may be helpful in suggesting which three-qutrit states will be handy for applications in quantum information protocols. One of the surprises is that the W state turns out to reveal a stronger violation of local causality than the GHZ (Greenberger-Horne-Zeilinger) state. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘50 years of Bell's theorem’.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Man, Zhong-Xiao, E-mail: zxman@mail.qfnu.edu.cn; An, Nguyen Ba, E-mail: nban@iop.vast.ac.vn; Xia, Yun-Jie, E-mail: yjxia@mail.qfnu.edu.cn
In combination with the theories of open system and quantum recovering measurement, we propose a quantum state transfer scheme using spin chains by performing two sequential operations: a projective measurement on the spins of ‘environment’ followed by suitably designed quantum recovering measurements on the spins of interest. The scheme allows perfect transfer of arbitrary multispin states through multiple parallel spin chains with finite probability. Our scheme is universal in the sense that it is state-independent and applicable to any model possessing spin–spin interactions. We also present possible methods to implement the required measurements taking into account the current experimental technologies.more » As applications, we consider two typical models for which the probabilities of perfect state transfer are found to be reasonably high at optimally chosen moments during the time evolution. - Highlights: • Scheme that can achieve perfect quantum state transfer is devised. • The scheme is state-independent and applicable to any spin-interaction models. • The scheme allows perfect transfer of arbitrary multispin states. • Applications to two typical models are considered in detail.« less
Tidal friction and generalized Cassini's laws in the solar system. [for planetary spin axis rotation
NASA Technical Reports Server (NTRS)
Ward, W. R.
1975-01-01
The tidal drift toward a generalized Cassini state of rotation of the spin axis of a planet or satellite in a precessing orbit is described. Generalized Cassini's laws are applied to several solar system objects and the location of their spin axes estimated. Of those considered only the moon definitely occupies state 2 with the spin axis near to the normal of the invariable plane. Most objects appear to occupy state 1 with the spin axis near to the orbit normal. Iapetus could occupy either state depending on its oblateness. In addition, the resonant rotation of Mercury is found to have little effect on the tidal drift of its spin axis toward state 1.
Manipulation of a Nuclear Spin by a Magnetic Domain Wall in a Quantum Hall Ferromagnet.
Korkusinski, M; Hawrylak, P; Liu, H W; Hirayama, Y
2017-03-06
The manipulation of a nuclear spin by an electron spin requires the energy to flip the electron spin to be vanishingly small. This can be realized in a many electron system with degenerate ground states of opposite spin polarization in different Landau levels. We present here a microscopic theory of a domain wall between spin unpolarized and spin polarized quantum Hall ferromagnet states at filling factor two with the Zeeman energy comparable to the cyclotron energy. We determine the energies and many-body wave functions of the electronic quantum Hall droplet with up to N = 80 electrons as a function of the total spin, angular momentum, cyclotron and Zeeman energies from the spin singlet ν = 2 phase, through an intermediate polarization state exhibiting a domain wall to the fully spin-polarized phase involving the lowest and the second Landau levels. We demonstrate that the energy needed to flip one electron spin in a domain wall becomes comparable to the energy needed to flip the nuclear spin. The orthogonality of orbital electronic states is overcome by the many-electron character of the domain - the movement of the domain wall relative to the position of the nuclear spin enables the manipulation of the nuclear spin by electrical means.
Manipulation of a Nuclear Spin by a Magnetic Domain Wall in a Quantum Hall Ferromagnet
Korkusinski, M.; Hawrylak, P.; Liu, H. W.; Hirayama, Y.
2017-01-01
The manipulation of a nuclear spin by an electron spin requires the energy to flip the electron spin to be vanishingly small. This can be realized in a many electron system with degenerate ground states of opposite spin polarization in different Landau levels. We present here a microscopic theory of a domain wall between spin unpolarized and spin polarized quantum Hall ferromagnet states at filling factor two with the Zeeman energy comparable to the cyclotron energy. We determine the energies and many-body wave functions of the electronic quantum Hall droplet with up to N = 80 electrons as a function of the total spin, angular momentum, cyclotron and Zeeman energies from the spin singlet ν = 2 phase, through an intermediate polarization state exhibiting a domain wall to the fully spin-polarized phase involving the lowest and the second Landau levels. We demonstrate that the energy needed to flip one electron spin in a domain wall becomes comparable to the energy needed to flip the nuclear spin. The orthogonality of orbital electronic states is overcome by the many-electron character of the domain - the movement of the domain wall relative to the position of the nuclear spin enables the manipulation of the nuclear spin by electrical means. PMID:28262758
Influence of DC-biasing on the performance of graphene spin valve
NASA Astrophysics Data System (ADS)
Iqbal, Muhammad Zahir; Hussain, Ghulam; Siddique, Salma; Hussain, Tassadaq; Iqbal, Muhammad Javaid
2018-04-01
Generating and controlling the spin valve signal are key factors in 'spintronics', which aims to utilize the spin degree of electrons. For this purpose, spintronic devices are constructed that can detect the spin signal. Here we investigate the effect of direct current (DC) on the magnetoresistance (MR) of graphene spin valve. The DC input not only decreases the magnitude of MR but also distorts the spin valve signal at higher DC inputs. Also, low temperature measurements revealed higher MR for the device, while the magnitude is noticed to decrease at higher temperatures. Furthermore, the spin polarization associated with NiFe electrodes is continuously increased at low DC bias and low temperatures. We also demonstrate the ohmic behavior of graphene spin valve by showing linear current-voltage (I-V) characteristics of the junction. Our findings may contribute significantly in modulating and controlling the spin transport properties of vertical spin valve structures.
Chattopadhyaya, Surya; Nath, Abhijit; Das, Kalyan Kumar
2014-04-24
Ab initio based relativistic configuration interaction calculations have been performed to study the electronic states and spectroscopic properties of tellurium selenide (TeSe) - the heaviest heteronuclear diatomic group 16-16 molecule. Potential energy curves of several spin-excluded (Λ-S) electronic states of TeSe have been constructed and spectroscopic constants of low-lying bound Λ-S states within 3.85 eV are reported in the first stage of calculations. The X(3)Σ(-), a(1)Δ and b(1)Σ(+) are found as the ground, first excited and second excited state, respectively, at the Λ-S level and all these three states are mainly dominated by …π(4)π(*2) configuration. The computed ground state dissociation energy is in very good agreement with the experimental results. In the next stage of calculations, effects of spin-orbit coupling on the potential energy curves and spectroscopic properties of the species are investigated in details and compared with the existing experimental results. After inclusion of spin-orbit coupling the X(3)(1)Σ(-)(0(+)) is found as the ground-state spin component of TeSe. The computed spin-orbit splitting between two components of X(3)Σ(-) state is 1285 cm(-1). Also, significant amount of spin-orbit splitting are found between spin-orbit components (Ω-components) of several other excited states. Transition moments of some important spin-allowed and spin-forbidden transitions are calculated from configuration interaction wave functions. The spin-allowed transition B(3)Σ(-)-X(3)Σ(-) and spin-forbidden transition b(1)Σ(+)(0(+))-X(3)(1)Σ(-)(0(+)) are found to be the strongest in their respective categories. Electric dipole moments of all the bound Λ-S states along with those of the two Ω-components of X(3)Σ(-) are also calculated in the present study. Copyright © 2014 Elsevier B.V. All rights reserved.
Spin-state blockade in Te6+-substituted electron-doped LaCoO3
NASA Astrophysics Data System (ADS)
Tomiyasu, Keisuke; Koyama, Shun-Ichi; Watahiki, Masanori; Sato, Mika; Nishihara, Kazuki; Onodera, Mitsugi; Iwasa, Kazuaki; Nojima, Tsutomu; Yamasaki, Yuuichi; Nakao, Hironori; Murakami, Youichi
2015-03-01
Perovskite-type LaCoO3 (Co3+: d6) is a rare inorganic material with sensitive and characteristic responses among low, intermediate, and high spin states. For example, in insulating nonmagnetic low-spin states below about 20 K, light hole doping (Ni substitution) induces much larger magnetization than expected; over net 10μB/hole (5μB/Ni) for 1μB/hole (1μB/Ni), in which the nearly isolated dopants locally change the surrounding Co low-spin states to magnetic ones and form spin molecules with larger total spin. Further, the former is isotropic, whereas the latter exhibits characteristic anisotropy probably because of Jahn-Teller distortion. In contrast, for electron doping, relatively insensitive spin-state responses were reported, as in LaCo(Ti4+) O3, but are not clarified, and are somewhat controversial. Here, we present macroscopic measurement data of another electron-doped system LaCo(Te6+) O3 and discuss the spin-state responses. This study was financially supported by Grants-in-Aid for Young Scientists (B) (No. 22740209 and 26800174) from the MEXT of Japan.
Reinvestigation of the giant Rashba-split states on Bi-covered Si(111)
NASA Astrophysics Data System (ADS)
Berntsen, M. H.; Götberg, O.; Tjernberg, O.
2018-03-01
We study the electronic and spin structures of the giant Rashba-split surface states of the Bi/Si(111)-(√{3 }×√{3 }) R 30∘ trimer phase by means of spin- and angle-resolved photoelectron spectroscopy (spin-ARPES). Supported by tight-binding calculations of the surface state dispersion and spin orientation, our findings show that the spin experiences a vortexlike structure around the Γ ¯ point of the surface Brillouin zone—in accordance with the standard Rashba model. Moreover, we find no evidence of a spin vortex around the K ¯ point in the hexagonal Brillouin zone and thus no peculiar Rashba split around this point, something that has been suggested by previous works. Rather the opposite, our results show that the spin structure around K¯ can be fully understood by taking into account the symmetry of the Brillouin zone and the intersection of spin vortices centered around the Γ ¯ points in neighboring Brillouin zones. As a result, the spin structure is consistently explained within the standard framework of the Rashba model although the spin-polarized surface states experience a more complex dispersion compared to free-electron-like parabolic states.
Theoretical study of the density of states and magnetic properties of LaCoO3
NASA Astrophysics Data System (ADS)
Zhuang, Min; Zhang, Weiyi; Hu, Cheng; Ming, Naiben
1998-05-01
The density of states and magnetic properties of low-spin, high-spin, and mixing states of LaCoO3 have been studied within the unrestricted Hartree-Fock approximation. The real-space recursion method is adopted for computing the electronic structure of the disordered system. The paramagnetic high-spin state is dealt with using the usual binary alloy coherent potential approximation (CPA); an extended trinary alloy CPA approximation is developed to describe the mixing state. In agreement with experiments, our results show that the main features of the quasiparticle spectra in the mixing state are not a sensitive function of the high-spin component, but the spectrum does get broadened due to spin scattering. The increasing of the high-spin component also results in a pileup of the density of states at the Fermi energy which indicates an insulator to metal phase transition. Some limitations of the present approach are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Tzu-Chieh; C. N. Yang Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook, New York 11794-3840; Raussendorf, Robert
2011-10-15
Universal quantum computation can be achieved by simply performing single-qubit measurements on a highly entangled resource state, such as cluster states. Cai, Miyake, Duer, and Briegel recently constructed a ground state of a two-dimensional quantum magnet by combining multiple Affleck-Kennedy-Lieb-Tasaki quasichains of mixed spin-3/2 and spin-1/2 entities and by mapping pairs of neighboring spin-1/2 particles to individual spin-3/2 particles [Phys. Rev. A 82, 052309 (2010)]. They showed that this state enables universal quantum computation by single-spin measurements. Here, we give an alternative understanding of how this state gives rise to universal measurement-based quantum computation: by local operations, each quasichain canmore » be converted to a one-dimensional cluster state and entangling gates between two neighboring logical qubits can be implemented by single-spin measurements. We further argue that a two-dimensional cluster state can be distilled from the Cai-Miyake-Duer-Briegel state.« less
NASA Astrophysics Data System (ADS)
Mori, Yukie; Hoshino, Mikio; Hayashi, Hisaharu
The excited trip-sextet ( 6 T 1 ) state of chloro-(3-methylimidazol)-( meso -tetraphenylporphyrinato) chromium(III) (Cr III P) is quenched by 1,1 '-dibenzyl-4,4 '-bipyridinium (BV 2+ ) in acetonitrile through electron transfer to give 5 (Cr III P .+ ) and 2 BV .+ . The intermediate is a geminate ion pair in the sextet (Sx) state 6 [ 5 (Cr III P .+ ) 2 BV .+ ], which decays through either the escape from a solvent cage to give the free ions or the spin conversion to the quartet (Qa) state followed by back electron transfer. The free ion yield ( ΦFI ) increased with increasing magnetic field from 0 to 4 T and then slightly decreased from 4 T to 10 T. These magnetic field effects are explained as follows. Under low fields where the Zeeman splitting of the spin sublevels is lower than or comparable with the electron spin dipole-dipole interaction within 5 (Cr III P .+ ), this interaction effectively induces the Sx ⇔Qa conversion of [ 5 (Cr III P .+ ) 2 BV + ] to result in low ΦFI values. Under high fields where the Zeeman splitting is larger than the dipole-dipole interaction, the Sx Qa conversion is decreased with increasing field to cause higher ΦFI values. The slight decrease in ΦFI above 4 T may be due to the Δg mechanism.
Three-level mixing model for nuclear chiral rotation: Role of the planar component
NASA Astrophysics Data System (ADS)
Chen, Q. B.; Starosta, K.; Koike, T.
2018-04-01
Three- and two-level mixing models are proposed to understand the doubling of states at the same spin and parity in triaxially deformed atomic nuclei with odd numbers of protons and neutrons. The particle-rotor model for such nuclei is solved using the newly proposed basis which couples angular momenta of two valence nucleons and the rotating triaxial mean field into left-handed |L > , right-handed |R > , and planar |P > configurations. The presence and impact of the planar component is investigated as a function of the total spin for mass A ≈130 nuclei with the valence h11 /2 proton particle, valence h11 /2 neutron hole, and the maximum difference between principal axes allowed by the quadrupole deformation of the mean field. It is concluded that at each spin value the higher energy member of a doublet of states is built on the antisymmetric combination of |L > and |R > and is free of the |P > component, indicating that it is of pure chiral geometry. For the lower energy member of the doublet, the contribution of the |P > component to the eigenfunction first decreases and then increases as a function of the total spin. This trend as well as the energy splitting between the doublet states are both determined by the Hamiltonian matrix elements between the planar (|P > ) and nonplanar (|L > and |R > ) subspaces of the full Hilbert space.
NASA Astrophysics Data System (ADS)
Wang, F.; Huang, Y.-Y.; Zhang, Z.-Y.; Zu, C.; Hou, P.-Y.; Yuan, X.-X.; Wang, W.-B.; Zhang, W.-G.; He, L.; Chang, X.-Y.; Duan, L.-M.
2017-10-01
We experimentally demonstrate room-temperature storage of quantum entanglement using two nuclear spins weakly coupled to the electronic spin carried by a single nitrogen-vacancy center in diamond. We realize universal quantum gate control over the three-qubit spin system and produce entangled states in the decoherence-free subspace of the two nuclear spins. By injecting arbitrary collective noise, we demonstrate that the decoherence-free entangled state has coherence time longer than that of other entangled states by an order of magnitude in our experiment.
NASA Astrophysics Data System (ADS)
Milyaev, M. A.; Naumova, L. I.; Chernyshova, T. A.; Proglyado, V. V.; Kulesh, N. A.; Patrakov, E. I.; Kamenskii, I. Yu.; Ustinov, V. V.
2016-12-01
Spin valves with a synthetic antiferromagnet have been prepared by magnetron sputtering. Regularities of the formation of single- and two-phase spin-flop states in the synthetic antiferromagnet have been studied using magnetoresistance measurements and imaging the magnetic structure. A thermomagnetic treatment of spin valve in a field that corresponds to the single-phase spin-flop state of synthetic antiferromagnet was shown to allow us to obtain a magnetically sensitive material characterized by hysteresis-free field dependence of the magnetoresistance.
Memory-built-in quantum cloning in a hybrid solid-state spin register
Wang, W.-B.; Zu, C.; He, L.; Zhang, W.-G.; Duan, L.-M.
2015-01-01
As a way to circumvent the quantum no-cloning theorem, approximate quantum cloning protocols have received wide attention with remarkable applications. Copying of quantum states to memory qubits provides an important strategy for eavesdropping in quantum cryptography. We report an experiment that realizes cloning of quantum states from an electron spin to a nuclear spin in a hybrid solid-state spin register with near-optimal fidelity. The nuclear spin provides an ideal memory qubit at room temperature, which stores the cloned quantum states for a millisecond under ambient conditions, exceeding the lifetime of the original quantum state carried by the electron spin by orders of magnitude. The realization of a cloning machine with built-in quantum memory provides a key step for application of quantum cloning in quantum information science. PMID:26178617
Chemical potential of quasi-equilibrium magnon gas driven by pure spin current.
Demidov, V E; Urazhdin, S; Divinskiy, B; Bessonov, V D; Rinkevich, A B; Ustinov, V V; Demokritov, S O
2017-11-17
Pure spin currents provide the possibility to control the magnetization state of conducting and insulating magnetic materials. They allow one to increase or reduce the density of magnons, and achieve coherent dynamic states of magnetization reminiscent of the Bose-Einstein condensation. However, until now there was no direct evidence that the state of the magnon gas subjected to spin current can be treated thermodynamically. Here, we show experimentally that the spin current generated by the spin-Hall effect drives the magnon gas into a quasi-equilibrium state that can be described by the Bose-Einstein statistics. The magnon population function is characterized either by an increased effective chemical potential or by a reduced effective temperature, depending on the spin current polarization. In the former case, the chemical potential can closely approach, at large driving currents, the lowest-energy magnon state, indicating the possibility of spin current-driven Bose-Einstein condensation.
Spin eigen-states of Dirac equation for quasi-two-dimensional electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eremko, Alexander, E-mail: eremko@bitp.kiev.ua; Brizhik, Larissa, E-mail: brizhik@bitp.kiev.ua; Loktev, Vadim, E-mail: vloktev@bitp.kiev.ua
Dirac equation for electrons in a potential created by quantum well is solved and the three sets of the eigen-functions are obtained. In each set the wavefunction is at the same time the eigen-function of one of the three spin operators, which do not commute with each other, but do commute with the Dirac Hamiltonian. This means that the eigen-functions of Dirac equation describe three independent spin eigen-states. The energy spectrum of electrons confined by the rectangular quantum well is calculated for each of these spin states at the values of energies relevant for solid state physics. It is shownmore » that the standard Rashba spin splitting takes place in one of such states only. In another one, 2D electron subbands remain spin degenerate, and for the third one the spin splitting is anisotropic for different directions of 2D wave vector.« less
Emotion dynamics and tinnitus: Daily life data from the “TrackYourTinnitus” application
Probst, Thomas; Pryss, Rüdiger; Langguth, Berthold; Schlee, Winfried
2016-01-01
It is well established that emotions influence tinnitus, but the role of emotion dynamics remains unclear. The present study investigated emotion dynamics in N = 306 users of the “TrackYourTinnitus” application who completed the Mini-Tinnitus Questionnaire (Mini-TQ) at one assessment point and provided complete data on at least five assessment points for the following state variables: tinnitus loudness, tinnitus distress, arousal, valence. The repeated arousal and valence ratings were used for two operationalizations of emotion dynamics: intra-individual variability of affect intensity (pulse) as well as intra-individual variability of affect quality (spin). Pearson correlation coefficients showed that the Mini-TQ was positively correlated with pulse (r = 0.19; p < 0.05) as well as with spin (r = 0.12; p < 0.05). Multilevel models revealed the following results: increases in tinnitus loudness were more strongly associated with increases in tinnitus distress at higher levels of pulse as well as at higher levels of spin (both p < 0.05), whereby increases in tinnitus loudness correlated even stronger with increases in tinnitus distress when both pulse as well as spin were high (p < 0.05). Moreover, increases in spin were associated with a less favorable time course of tinnitus loudness (p < 0.05). To conclude, equilibrating emotion dynamics might be a potential target in the prevention and treatment of tinnitus. PMID:27488227
Analysis of the transient response of nuclear spins in GaAs with/without nuclear magnetic resonance
NASA Astrophysics Data System (ADS)
Rasly, Mahmoud; Lin, Zhichao; Yamamoto, Masafumi; Uemura, Tetsuya
2016-05-01
As an alternative to studying the steady-state responses of nuclear spins in solid state systems, working within a transient-state framework can reveal interesting phenomena. The response of nuclear spins in GaAs to a changing magnetic field was analyzed based on the time evolution of nuclear spin temperature. Simulation results well reproduced our experimental results for the transient oblique Hanle signals observed in an all-electrical spin injection device. The analysis showed that the so called dynamic nuclear polarization can be treated as a cooling tool for the nuclear spins: It works as a provider to exchange spin angular momentum between polarized electron spins and nuclear spins through the hyperfine interaction, leading to an increase in the nuclear polarization. In addition, a time-delay of the nuclear spin temperature with a fast sweep of the external magnetic field produces a possible transient state for the nuclear spin polarization. On the other hand, the nuclear magnetic resonance acts as a heating tool for a nuclear spin system. This causes the nuclear spin temperature to jump to infinity: i.e., the average nuclear spins along with the nuclear field vanish at resonant fields of 75As, 69Ga and 71Ga, showing an interesting step-dip structure in the oblique Hanle signals. These analyses provide a quantitative understanding of nuclear spin dynamics in semiconductors for application in future computation processing.
Lifting SU(2) spin networks to projected spin networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupuis, Maiete; Livine, Etera R.
2010-09-15
Projected spin network states are the canonical basis of quantum states of geometry for the recent EPRL-FK spinfoam models for quantum gravity introduced by Engle-Pereira-Rovelli-Livine and Freidel-Krasnov. They are functionals of both the Lorentz connection and the time-normal field. We analyze in detail the map from these projected spin networks to the standard SU(2) spin networks of loop quantum gravity. We show that this map is not one to one and that the corresponding ambiguity is parameterized by the Immirzi parameter. We conclude with a comparison of the scalar products between projected spin networks and SU(2) spin network states.
Magnetic field sensors using 13-spin cat states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmons, Stephanie; Karlen, Steven D.; Jones, Jonathan A.
2010-08-15
Measurement devices could benefit from entangled correlations to yield a measurement sensitivity approaching the physical Heisenberg limit. Building upon previous magnetometric work using pseudoentangled spin states in solution-state NMR, we present two conceptual advancements to better prepare and interpret the pseudoentanglement resource. We apply these to a 13-spin cat state to measure the local magnetic field with a 12.2 sensitivity increase over an equivalent number of isolated spins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Atsushi, E-mail: suzuki@mat.usp.ac.j; Iguchi, Motoi; Oku, Takeo
2010-04-15
Influence of chemical substitution in the Fe{sup II} spin crossover complex on magnetic properties in emulsion polymerization of trifluoroethylmethacrylate using poly(vinyl alcohol) as a protective colloid was investigated near its high spin/low spin (HS/LS) phase transition. The obvious bi-stability of the HS/LS phase transition was considered by the identification of multiple spin states between the quintet (S=2) states to single state (S=0) across the excited triplet state (S=1). Magnetic parameters of gradual shifts of anisotropy g-tensor supported by the molecular distortion of the spin crossover complex would arise from a Jahn-Teller effect regarding ligand field theory on the basis ofmore » a B3LYP density functional theory using electron spin resonance (ESR) spectrum and X-ray powder diffraction. - Graphical abstract: AFM surface image of the emulsion particles with the spin crossover complex.« less
Topological Phases in the Real World
NASA Astrophysics Data System (ADS)
Hsu, Yi-Ting
The experimental discovery and subsequent theoretical understanding of the integer quantum Hall effect, the first known topological phase, has started a revolutionary breakthrough in understanding states of matter since its discovery four decades ago. Topological phases are predicted to have many generic signatures resulting from their underlying topological nature, such as quantized Hall transport, robust boundary states, and possible fractional excitations. The intriguing nature of these signatures and their potential applications in quantum computation has intensely fueled the efforts of the physics community to materialize topological phases. Among various topological phases initially predicted on theoretical grounds, chiral topological superconductors and time-reversal symmetric topological insulators (TI) in three dimension (3D) are two promising candidates for experimental realization and application. The family of materials, Bi2X3 (X = Se, Te), has been predicted and shown experimentally to be time-reversal symmetric 3D TIs through the observation of robust Dirac surface states with Rashba-type spin-winding. Due to their robust surface states with spin-windings, these 3D TIs are expected to be promising materials for producing large spin-transfer torques which are advantageous for spintronics application. As for topological superconductors, despite the exotic excitations that have been extensively proposed as qubits for topological quantum computing, materials hosting topological superconductivity are rare to date and the leading candidate in two dimensions (2D), Sr 2RuO4, has a low transition temperature (Tc ). The goal of my phd study is to push forward the current status of realization of topological phases by materializing higher Tc topological superconductors and investigating the stability of Dirac surface states in 3D TIs. In the first part of this thesis, I will discuss our double-pronged objective for topological superconductors: to propose how to enhance the T c of the existing leading candidate Sr2RuO 4 and to propose new material candidates for topological superconductors. First, by carrying out perturbative renormalization group (RG) analysis, we predicted that straining the ruthenate films will maximize the T c for triplet pairing channel when the Fermi surface is close to van Hove singularities without tuning on to the singularity. Then with a similar RG approach and a self-consistent calculation for the gap equations, we investigated the repulsion-mediated intrinsic and proximity-induced superconductivity in a family of lightly hole-doped noncentrosymmetric semiconductors, monolayer transition metal dichalcogenides (TMDs). We found that thanks to the spin-valley locking in lightly hole-doped TMDs, two distinct topological pairing states are favored for the intrinsically superconducting case: an interpocket paired state with Chern number 2 and an intrapocket paired state with finite pair momentum. Moreover, nematic odd-parity pairing with a possibly high Tc can be induced when proximitized by a cuprate. A confirmation of our predictions will open up possibilities for manipulating unconventional and topological superconductivity at a higher temperature on the device-friendly platform of strained ruthenate films and monolayer TMDs. In the second part, I will discuss our studies on the stability of the Dirac surface states in 3D TIs in the presence of bulk states and in TI-ferromagnetic metal heterostructures. We constructed simple microscopic models with Fano-type couplings between localized and extended states for each situation. Then with ab initio calculations we investigated the fate of the Dirac surface states in terms of the spectrum, the spatial profile and the spin-texture. Based on our results, we proposed explanations for existing experimental spectroscopic and spin-torque results.
NASA Astrophysics Data System (ADS)
Wang, Huihui; Bokarev, Sergey I.; Aziz, Saadullah G.; Kühn, Oliver
2017-08-01
Recent developments in attosecond spectroscopy yield access to the correlated motion of electrons on their intrinsic timescales. Spin-flip dynamics is usually considered in the context of valence electronic states, where spin-orbit coupling is weak and processes related to the electron spin are usually driven by nuclear motion. However, for core-excited states, where the core-hole has a nonzero angular momentum, spin-orbit coupling is strong enough to drive spin-flips on a much shorter timescale. Using density matrix-based time-dependent restricted active space configuration interaction including spin-orbit coupling, we address an unprecedentedly short spin-crossover for the example of L-edge (2p→3d) excited states of a prototypical Fe(II) complex. This process occurs on a timescale, which is faster than that of Auger decay (∼4 fs) treated here explicitly. Modest variations of carrier frequency and pulse duration can lead to substantial changes in the spin-state yield, suggesting its control by soft X-ray light.
NASA Astrophysics Data System (ADS)
Farberovich, Oleg V.; Mazalova, Victoria L.; Soldatov, Alexander V.
2015-11-01
We present here the quantum model of a Ni solid-state electron spin qubit on a silicon surface with the use of a density-functional scheme for the calculation of the exchange integrals in the non-collinear spin configurations in the generalized spin Hamiltonian (GSH) with the anisotropic exchange coupling parameters linking the nickel ions with a silicon substrate. In this model the interaction of a spin qubit with substrate is considered in GSH at the calculation of exchange integrals Jij of the nanosystem Ni7-Si in the one-electron approach taking into account chemical bonds of all Si-atoms of a substrate (environment) with atoms of the Ni7-cluster. The energy pattern was found from the effective GSH Hamiltonian acting in the restricted spin space of the Ni ions by the application of the irreducible tensor operators (ITO) technique. In this paper we offer the model of the quantum solid-state N-spin qubit based on the studying of the spin structure and the spin-dynamics simulations of the 3d-metal Ni clusters on the silicon surface. The solution of the problem of the entanglement between spin states in the N-spin systems is becoming more interesting when considering clusters or molecules with a spectral gap in their density of states. For quantifying the distribution of the entanglement between the individual spin eigenvalues (modes) in the spin structure of the N-spin system we use the density of entanglement (DOE). In this study we have developed and used the advanced high-precision numerical techniques to accurately assess the details of the decoherence process governing the dynamics of the N-spin qubits interacting with a silicon surface. We have studied the Rabi oscillations to evaluate the N-spin qubits system as a function of the time and the magnetic field. We have observed the stabilized Rabi oscillations and have stabilized the quantum dynamical qubit state and Rabi driving after a fixed time (0.327 μs). The comparison of the energy pattern with the anisotropic exchange models conventionally used for the analysis of this system and, with the results of the experimental XANES spectra, shows that our complex investigations provide a good description of the pattern of the spin levels and the spin structures of the nanomagnetic Ni7 qubit. The results are discussed in the view of the general problem of the solid-state spin qubits and the spin structure of the Ni cluster.
Topologically massive higher spin gravity
NASA Astrophysics Data System (ADS)
Bagchi, Arjun; Lal, Shailesh; Saha, Arunabha; Sahoo, Bindusar
2011-10-01
We look at the generalisation of topologically massive gravity (TMG) to higher spins, specifically spin-3. We find a special "chiral" point for the spin-three, analogous to the spin-two example, which actually coincides with the usual spin-two chiral point. But in contrast to usual TMG, there is the presence of a non-trivial trace and its logarithmic partner at the chiral point. The trace modes carry energy opposite in sign to the traceless modes. The logarithmic partner of the traceless mode carries negative energy indicating an instability at the chiral point. We make several comments on the asymptotic symmetry and its possible deformations at this chiral point and speculate on the higher spin generalisation of LCFT2 dual to the spin-3 massive gravity at the chiral point.
SU(2) slave-boson formulation of spin nematic states in S=(1)/(2) frustrated ferromagnets
NASA Astrophysics Data System (ADS)
Shindou, Ryuichi; Momoi, Tsutomu
2009-08-01
An SU(2) slave-boson formulation of bond-type spin nematic orders is developed in frustrated ferromagnets, where the spin nematic states are described as the resonating spin-triplet valence bond (RVB) states. The d vectors of spin-triplet pairing ansatzes play the role of the directors in the bond-type spin-quadrupolar states. The low-energy excitations around such spin-triplet RVB ansatzes generally comprise the (potentially massless) gauge bosons, massless Goldstone bosons, and spinon individual excitations. Extending the projective symmetry-group argument to the spin-triplet ansatzes, we show how to identify the number of massless gauge bosons efficiently. Applying this formulation, we next (i) enumerate possible mean-field solutions for the S=(1)/(2) ferromagnetic J1-J2 Heisenberg model on the square lattice, with ferromagnetic nearest neighbor J1 and competing antiferromagnetic next-nearest neighbor J2 and (ii) argue their stability against small gauge fluctuations. As a result, two stable spin-triplet RVB ansatzes are found in the intermediate coupling regime around J1:J2≃1:0.4 . One is the Z2 Balian-Werthamer (BW) state stabilized by the Higgs mechanism and the other is the SU(2) chiral p -wave (Anderson-Brinkman-Morel) state stabilized by the Chern-Simon mechanism. The former Z2 BW state in fact shows the same bond-type spin-quadrupolar order as found in the previous exact diagonalization study [Shannon , Phys. Rev. Lett. 96, 027213 (2006)].
Real-time imaging of spin-to-orbital angular momentum hybrid remote state preparation
NASA Astrophysics Data System (ADS)
Erhard, Manuel; Qassim, Hammam; Mand, Harjaspreet; Karimi, Ebrahim; Boyd, Robert W.
2015-08-01
There exists two prominent methods to transfer information between two spatially separated parties, namely Alice (A) and Bob (B): quantum teleportation and remote state preparation. However, the difference between these methods is, in the teleportation scheme, the state to be transferred is completely unknown, whereas in state preparation it should be known to the sender. In addition, photonic state teleportation is probabilistic due to the impossibility of performing a two-particle complete Bell-state analysis with linear optics, while remote state preparation can be performed deterministically. Here we report the first realization of photonic hybrid remote state preparation from spin to orbital angular momentum degrees of freedom. In our scheme, the polarization state of photon A is transferred to orbital angular momentum of photon B. The prepared states are visualized in real time by means of an intensified CCD camera. The quality of the prepared states is verified by performing quantum state tomography, which confirms an average fidelity higher than 99.4%. We believe that this experiment paves the way towards a novel means of quantum communication in which encryption and decryption are carried out in naturally different Hilbert spaces, and therefore may provide a means for enhancing security.
Detection of single electron spin resonance in a double quantum dota)
NASA Astrophysics Data System (ADS)
Koppens, F. H. L.; Buizert, C.; Vink, I. T.; Nowack, K. C.; Meunier, T.; Kouwenhoven, L. P.; Vandersypen, L. M. K.
2007-04-01
Spin-dependent transport measurements through a double quantum dot are a valuable tool for detecting both the coherent evolution of the spin state of a single electron, as well as the hybridization of two-electron spin states. In this article, we discuss a model that describes the transport cycle in this regime, including the effects of an oscillating magnetic field (causing electron spin resonance) and the effective nuclear fields on the spin states in the two dots. We numerically calculate the current flow due to the induced spin flips via electron spin resonance, and we study the detector efficiency for a range of parameters. The experimental data are compared with the model and we find a reasonable agreement.
Squeezed spin states: Squeezing the spin uncertainty relations
NASA Technical Reports Server (NTRS)
Kitagawa, Masahiro; Ueda, Masahito
1993-01-01
The notion of squeezing in spin systems is clarified, and the principle for spin squeezing is shown. Two twisting schemes are proposed as building blocks for spin squeezing and are shown to reduce the standard quantum noise, s/2, of the coherent S-spin state down to the order of S(sup 1/3) and 1/2. Applications to partition noise suppression are briefly discussed.
Spin correlations in quantum wires
NASA Astrophysics Data System (ADS)
Sun, Chen; Pokrovsky, Valery L.
2015-04-01
We consider theoretically spin correlations in a one-dimensional quantum wire with Rashba-Dresselhaus spin-orbit interaction (RDI). The correlations of noninteracting electrons display electron spin resonance at a frequency proportional to the RDI coupling. Interacting electrons, upon varying the direction of the external magnetic field, transit from the state of Luttinger liquid (LL) to the spin-density wave (SDW) state. We show that the two-time total-spin correlations of these states are significantly different. In the LL, the projection of total spin to the direction of the RDI-induced field is conserved and the corresponding correlator is equal to zero. The correlators of two components perpendicular to the RDI field display a sharp electron-spin resonance driven by the RDI-induced intrinsic field. In contrast, in the SDW state, the longitudinal projection of spin dominates, whereas the transverse components are suppressed. This prediction indicates a simple way for an experimental diagnostic of the SDW in a quantum wire. We point out that the Luttinger model does not respect the spin conservation since it assumes the infinite Fermi sea. We propose a proper cutoff to correct this failure.
Long-time predictability in disordered spin systems following a deep quench
NASA Astrophysics Data System (ADS)
Ye, J.; Gheissari, R.; Machta, J.; Newman, C. M.; Stein, D. L.
2017-04-01
We study the problem of predictability, or "nature vs nurture," in several disordered Ising spin systems evolving at zero temperature from a random initial state: How much does the final state depend on the information contained in the initial state, and how much depends on the detailed history of the system? Our numerical studies of the "dynamical order parameter" in Edwards-Anderson Ising spin glasses and random ferromagnets indicate that the influence of the initial state decays as dimension increases. Similarly, this same order parameter for the Sherrington-Kirkpatrick infinite-range spin glass indicates that this information decays as the number of spins increases. Based on these results, we conjecture that the influence of the initial state on the final state decays to zero in finite-dimensional random-bond spin systems as dimension goes to infinity, regardless of the presence of frustration. We also study the rate at which spins "freeze out" to a final state as a function of dimensionality and number of spins; here the results indicate that the number of "active" spins at long times increases with dimension (for short-range systems) or number of spins (for infinite-range systems). We provide theoretical arguments to support these conjectures, and also study analytically several mean-field models: the random energy model, the uniform Curie-Weiss ferromagnet, and the disordered Curie-Weiss ferromagnet. We find that for these models, the information contained in the initial state does not decay in the thermodynamic limit—in fact, it fully determines the final state. Unlike in short-range models, the presence of frustration in mean-field models dramatically alters the dynamical behavior with respect to the issue of predictability.
Long-time predictability in disordered spin systems following a deep quench.
Ye, J; Gheissari, R; Machta, J; Newman, C M; Stein, D L
2017-04-01
We study the problem of predictability, or "nature vs nurture," in several disordered Ising spin systems evolving at zero temperature from a random initial state: How much does the final state depend on the information contained in the initial state, and how much depends on the detailed history of the system? Our numerical studies of the "dynamical order parameter" in Edwards-Anderson Ising spin glasses and random ferromagnets indicate that the influence of the initial state decays as dimension increases. Similarly, this same order parameter for the Sherrington-Kirkpatrick infinite-range spin glass indicates that this information decays as the number of spins increases. Based on these results, we conjecture that the influence of the initial state on the final state decays to zero in finite-dimensional random-bond spin systems as dimension goes to infinity, regardless of the presence of frustration. We also study the rate at which spins "freeze out" to a final state as a function of dimensionality and number of spins; here the results indicate that the number of "active" spins at long times increases with dimension (for short-range systems) or number of spins (for infinite-range systems). We provide theoretical arguments to support these conjectures, and also study analytically several mean-field models: the random energy model, the uniform Curie-Weiss ferromagnet, and the disordered Curie-Weiss ferromagnet. We find that for these models, the information contained in the initial state does not decay in the thermodynamic limit-in fact, it fully determines the final state. Unlike in short-range models, the presence of frustration in mean-field models dramatically alters the dynamical behavior with respect to the issue of predictability.
Low- and high-spin excited states in 139Pr
NASA Astrophysics Data System (ADS)
Aryaeinejad, R.; McHarris, Wm. C.
1988-05-01
The level structure of the N=80 nucleus 139Pr has been studied in-beam by the 140Ce(p,2nγ)139Pr reaction using a 25-MeV p beam and by the 139La(α,4nγ)139Pr reaction using a 47-MeV α beam. γ-ray singles, γ-γ coincidence (prompt and delayed), and γ-ray angular distribution experiments were performed. We have assigned 41 γ rays deexciting 24 states in 139Pr from the (p,2nγ) reaction and 43 γ rays deexciting 31 (generally higher-spin) states from the (α,4nγ) reaction, for a total of 43 different states. These in-beam experiments, taken together with results from 139Ndm+g decay and the 141Pr(p,t)139Pr reaction, allowed Jπ assignments to be made for most of the states and allowed us to deduce the intrinsic configurations for many of them. These are discussed in terms of single-quasiparticle shell-model states and triaxial weak-coupled collective states and are compared with systematics for this nuclear region.
Toroidal high-spin isomers in the nucleus 304120
NASA Astrophysics Data System (ADS)
Staszczak, A.; Wong, Cheuk-Yin; Kosior, A.
2017-05-01
Background: Strongly deformed oblate superheavy nuclei form an intriguing region where the toroidal nuclear structures may bifurcate from the oblate spheroidal shape. The bifurcation may be facilitated when the nucleus is endowed with a large angular moment about the symmetry axis with I =Iz . The toroidal high-K isomeric states at their local energy minima can be theoretically predicted using the cranked self-consistent Skyrme-Hartree-Fock method. Purpose: We use the cranked Skyrme-Hartree-Fock method to predict the properties of the toroidal high-spin isomers in the superheavy nucleus 120304184. Method: Our method consists of three steps: First, we use the deformation-constrained Skyrme-Hartree-Fock-Bogoliubov approach to search for the nuclear density distributions with toroidal shapes. Next, using these toroidal distributions as starting configurations, we apply an additional cranking constraint of a large angular momentum I =Iz about the symmetry z axis and search for the energy minima of the system as a function of the deformation. In the last step, if a local energy minimum with I =Iz is found, we perform at this point the cranked symmetry- and deformation-unconstrained Skyrme-Hartree-Fock calculations to locate a stable toroidal high-spin isomeric state in free convergence. Results: We have theoretically located two toroidal high-spin isomeric states of 120304184 with an angular momentum I =Iz=81 ℏ (proton 2p-2h, neutron 4p-4h excitation) and I =Iz=208 ℏ (proton 5p-5h, neutron 8p-8h) at the quadrupole moment deformations Q20=-297.7 b and Q20=-300.8 b with energies 79.2 and 101.6 MeV above the spherical ground state, respectively. The nuclear density distributions of the toroidal high-spin isomers 120304184(Iz=81 ℏ and 208 ℏ ) have the maximum density close to the nuclear matter density, 0.16 fm-3, and a torus major to minor radius aspect ratio R /d =3.25 . Conclusions: We demonstrate that aligned angular momenta of Iz=81 ℏ and 208 ℏ arising from multiparticle-multihole excitations in the toroidal system of 120304184 can lead to high-spin isomeric states, even though the toroidal shape of 120304184 without spin is unstable. Toroidal energy minima without spin may be possible for superheavy nuclei with higher atomic numbers, Z ≳122 , as reported previously [7 A. Staszczak and C. Y. Wong, Acta Phys. Pol. B 40, 753 (2008)].
Toroidal high-spin isomers in the nucleus 120 304
Staszczak, A.; Wong, Cheuk-Yin; Kosior, A.
2017-05-22
Strongly deformed oblate superheavy nuclei form an intriguing region where the toroidal nuclear structures may bifurcate from the oblate spheroidal shape. The bifurcation may be facilitated when the nucleus is endowed with a large angular moment about the symmetry axis withmore » $$I=I_{z}$$. The toroidal high-$K$ isomeric states at their local energy minima can be theoretically predicted using the cranked self-consistent Skyrme-Hartree-Fock method. We use the cranked Skyrme-Hartree-Fock method to predict the properties of the toroidal high-spin isomers in the superheavy nucleus $$^{304}{120}_{184}$$. This method consists of three steps: first, we use the deformation-constrained Skyrme-Hartree-Fock-Bogoliubov approach to search for the nuclear density distributions with toroidal shapes. Next, using these toroidal distributions as starting configurations we apply an additional cranking constraint of a large angular momentum $$I=I_{z}$$ about the symmetry $z$-axis and search for the energy minima of the system as a function of the deformation. In the last step, if a local energy minimum with $$I=I_{z}$$ is found, we perform at this point the cranked symmetry- and deformation-unconstrained Skyrme-Hartree-Fock calculations to locate a stable toroidal high-spin isomeric state in free convergence. Furthemore, we have theoretically located two toroidal high-spin isomeric states of $$^{304}{120}_{184}$$ with an angular momentum $I$=$$I_z$$=81$$\\hbar$$ (proton 2p-2h, neutron 4p-4h excitation) and $I$=$$I_z$$=208$$\\hbar$$ (proton 5p-5h, neutron 8p-8h) at the quadrupole moment deformations $$Q_{20}=-297.7$$~b and $$Q_{20}=-300.8$$~b with energies 79.2 MeV and 101.6 MeV above the spherical ground state, respectively. The nuclear density distributions of the toroidal high-spin isomers $$^{304}{120}_{184}(I_z$$=81$$\\hbar$$ and 208$$\\hbar$$) have the maximum density close to the nuclear matter density, 0.16 fm$$^{-3}$$, and a torus major to minor radius aspect ratio $R/d=3.25$. Here, we demonstrate that aligned angular momenta of $$I_z$$=81$$\\hbar$$ and 208$$\\hbar$$ arising from multi-particle-multi-hole excitations in the toroidal system of $$^{304}{120}_{184}$$ can lead to high-spin isomeric states, even though the toroidal shape of $$^{304}120_{184}$$ without spin is unstable. Toroidal energy minima without spin may be possible for superheavy nuclei with higher atomic numbers, $$Z\\gtrsim$$122, as reported previously [A. Staszczak and C. Y. Wong,Acta Phys. Pol. B 40 , 753 (2008)].« less
Spin-state responses to light impurity substitution in low-spin perovskite LaCoO3
NASA Astrophysics Data System (ADS)
Tomiyasu, Keisuke; Kubota, Yuuki; Shimomura, Saya; Onodera, Mitsugi; Koyama, Syun-Ichi; Nojima, Tsutomu; Ishihara, Sumio; Nakao, Hironori; Murakami, Youichi
2013-06-01
We studied the spin-state responses to light impurity substitution in low-spin perovskite LaCoO3 (Co3+: d6) through magnetization, x-ray fluorescence, and electrical resistivity measurements of single-crystal LaCo0.99M0.01O3 (M = Cr, Mn, Fe, Ni). In the magnetization curves measured at 1.8 K, a change in the spin-state was not observed for Cr, Mn, or Fe substitution but was observed for Ni substitution. Strong magnetic anisotropy was also found in the Ni-substituted sample. The fluorescence measurements revealed that the valences were roughly estimated to be Cr3+, Mn(4-δ)+, Fe(3+δ')+, and Ni3+. From the observed chemical trends, we propose that the chemical potential is a key factor in inducing the change of the low-spin state. By expanding a model of the ferromagnetic spin-state heptamer generated by hole doping [Podlesnyak , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.101.247603 101, 247603 (2008)], the emergence of highly anisotropic spin-state molecular ferromagnets induced by low-spin Ni3+ with Jahn-Teller activity is suggested. We also discuss applicability of the present results to other materials with Fe (d6).
Memory-built-in quantum cloning in a hybrid solid-state spin register
NASA Astrophysics Data System (ADS)
Wang, Weibin; Zu, Chong; He, Li; Zhang, Wengang; Duan, Luming
2015-05-01
As a way to circumvent the quantum no-cloning theorem, approximate quantum cloning protocols have received wide attention with remarkable applications. Copying of quantum states to memory qubits provides an important strategy for eavesdropping in quantum cryptography. We report an experiment that realizes cloning of quantum states from an electron spin to a nuclear spin in a hybrid solid-state spin register with near-optimal fidelity. The nuclear spin provides an ideal memory qubit at room temperature, which stores the cloned quantum states for a millisecond under ambient conditions, exceeding the lifetime of the original quantum state carried by the electron spin by orders of magnitude, and making it an ideal memory qubit. Our experiment is based on control of an individual nitrogen vacancy (NV) center in the diamond, which is a diamond defect that attracts strong interest in recent years with great potential for implementation of quantum information protocols.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fachruddin, Imam, E-mail: imam.fachruddin@sci.ui.ac.id; Salam, Agus
2016-03-11
A new momentum-space formulation for scattering of two spin-half particles, both either identical or unidentical, is formulated. As basis states the free linear-momentum states are not expanded into the angular-momentum states, the system’s spin states are described by the product of the spin states of the two particles, and the system’s isospin states by the total isospin states of the two particles. We evaluate the Lippmann-Schwinger equations for the T-matrix elements in these basis states. The azimuthal behavior of the potential and of the T-matrix elements leads to a set of coupled integral equations for the T-matrix elements in twomore » variables only, which are the magnitude of the relative momentum and the scattering angle. Some symmetry relations for the potential and the T-matrix elements reduce the number of the integral equations to be solved. A set of six spin operators to express any interaction of two spin-half particles is introduced. We show the spin-averaged differential cross section as being calculated in terms of the solution of the set of the integral equations.« less
NASA Astrophysics Data System (ADS)
Stevens, Amy E.; Feigerle, C. S.; Lineberger, W. C.
1983-05-01
The laser photoelectron spectra of MnH- and MnD-, and FeH- and FeD- are reported. A qualitative description of the electronic structure of the low-spin and high-spin states of the metal hydrides is developed, and used to interpret the spectra. A diagonal transition in the photodetachment to the known high-spin, 7Σ+, ground state of MnH is observed. An intense off-diagonal transition to a state of MnH, at 1725±50 cm-1 excitation energy, is attributed to loss of an antibonding electron from MnH-, to yield a low-spin quintet state of MnH. For FeH- the photodetachment to the ground state is an off-diagonal transition, attributed to loss of the antibonding electron from FeH-, to yield a low-spin quartet ground state of FeH. A diagonal transition results in an FeH state at 1945±55 cm-1; this state of FeH is assigned as the lowest-lying high-spin sextet state of FeH. An additional excited state of MnH and two other excited states of FeH are observed. Excitation energies for all the states are reported; vibrational frequencies and bond lengths for the ions and several states of the neutrals are also determined from the spectra. The electron affinity of MnH is found to be 0.869±0.010 eV; and the electron affinity of FeH is determined to be 0.934±0.011 eV. Spectroscopic constants for the various deuterides are also reported.
Aspects of Higher Spin Symmetry and its Breaking
NASA Astrophysics Data System (ADS)
Zhiboedov, Alexander
This thesis explores different aspects of higher spin symmetry and its breaking in the context of Quantum Field Theory, AdS/CFT and String Theory. In chapter 2, we study the constraints imposed by the existence of a single higher spin conserved current on a three-dimensional conformal field theory (CFT). A single higher spin conserved current implies the existence of an infinite number of higher spin conserved currents. The correlation functions of the stress tensor and the conserved currents are then shown to be equal to those of a free field theory. Namely a theory of N free bosons or free fermions. This is an extension of the Coleman-Mandula theorem to CFT's, which do not have a conventional S-matrix. In chapter 3, we consider three-dimensional conformal field theories that have a higher spin symmetry that is slightly broken. The theories have a large N limit, in the sense that the operators separate into single-trace and multi-trace and obey the usual large N factorization properties. We assume that the only single trace operators are the higher spin currents plus an additional scalar. Using the slightly broken higher spin symmetry we constrain the three-point functions of the theories to leading order in N. We show that there are two families of solutions. One family can be realized as a theory of N fermions with an O( N) Chern-Simons gauge field, the other as a N bosons plus the Chern-Simons gauge field. In chapter 4, we consider several aspects of unitary higher-dimensional conformal field theories. We investigate the dimensions of spinning operators via the crossing equations in the light-cone limit. We find that, in a sense, CFTs become free at large spin and 1/s is a weak coupling parameter. The spectrum of CFTs enjoys additivity: if two twists tau 1, tau2 appear in the spectrum, there are operators whose twists are arbitrarily close to tau1 + tau2. We characterize how tau1 + tau2 is approached at large spin by solving the crossing equations analytically. Applications include the 3d Ising model, theories with a gravity dual, SCFTs, and patterns of higher spin symmetry breaking. In chapter 5, we consider higher derivative corrections to the graviton three-point coupling within a weakly coupled theory of gravity. We devise a thought experiment involving a high energy scattering process which leads to causality violation if the graviton three-point vertex contains the additional structures. This violation cannot be fixed by adding conventional particles with spins J ≤ 2. But, it can be fixed by adding an infinite tower of extra massive particles with higher spins, J > 2. In AdS theories this implies a constraint on the conformal anomaly coefficients (a-c)/c lesssim 1/Delta gap2 in terms of Deltagap, the dimension of the lightest single particle operator with spin J > 2. For inflation, or de Sitter-like solutions, it indicates the existence of massive higher spin particles if the gravity wave non-gaussianity deviates significantly from the one computed in the Einstein theory.
NASA Astrophysics Data System (ADS)
Majd, Nayereh; Ghasemi, Zahra
2016-10-01
We have investigated a TPTQ state as an input state of a non-ideal ferromagnetic detectors. Minimal spin polarization required to demonstrate spin entanglement according to entanglement witness and CHSH inequality with respect to (w.r.t.) their two free parameters have been found, and we have numerically shown that the entanglement witness is less stringent than the direct tests of Bell's inequality in the form of CHSH in the entangled limits of its free parameters. In addition, the lower limits of spin detection efficiency fulfilling secure cryptographic key against eavesdropping have been derived. Finally, we have considered TPTQ state as an output of spin decoherence channel and the region of ballistic transmission time w.r.t. spin relaxation time and spin dephasing time has been found.
NASA Astrophysics Data System (ADS)
Dias, R. G.; Gouveia, J. D.
2015-11-01
We present a method of construction of exact localized many-body eigenstates of the Hubbard model in decorated lattices, both for U = 0 and U → ∞. These states are localized in what concerns both hole and particle movement. The starting point of the method is the construction of a plaquette or a set of plaquettes with a higher symmetry than that of the whole lattice. Using a simple set of rules, the tight-binding localized state in such a plaquette can be divided, folded and unfolded to new plaquette geometries. This set of rules is also valid for the construction of a localized state for one hole in the U → ∞ limit of the same plaquette, assuming a spin configuration which is a uniform linear combination of all possible permutations of the set of spins in the plaquette.
Unambiguously identifying spin states of transition-metal ions in the Earth (Invited)
NASA Astrophysics Data System (ADS)
Hsu, H.
2010-12-01
The spin state of a transition-metal ion in crystalline solids, defined by the number of unpaired electrons in the ion’s incomplete 3d shell, may vary with many factors, such as temperature, pressure, strain, and the local atomic configuration, to name a few. Such a phenomenon, known as spin-state crossover, plays a crucial role in spintronic materials. Recently, the pressure-induced spin-state crossover in iron-bearing minerals has been recognized to affect the minerals’ structural and elastic properties. However, the detailed mechanism of such crossover in iron-bearing magnesium silicate perovskite, the most abundant mineral in the Earth, remains unclear. A significant part of this confusion arises from the difficulty in reliably extracting the spin state from experiments. For the same reason, the thermally-induced spin-state crossover in lanthanum cobaltite (LaCoO3) has been controversial for more than four decades. In this talk, I will discuss how first-principle calculations can help clarifying these long-standing controversies. In addition to the total energy, equation of state, and elastic properties of each spin state, first-principle calculations also predict the electric field gradient (EFG) at the nucleus of each transition-metal ion. Our calculations showed that the nuclear EFG, a quantity that can be measured via Mössbauer or nuclear magnetic resonance (NMR) spectroscopy, depends primarily on the spin state, irrespective of the concentration or configuration of transition-metal ions. Such robustness makes EFG a unique fingerprint to identify the spin state. The combination of first-principle calculations and Mössbauer/NMR spectroscopy can therefore be a reliable and efficient approach in tackling spin-state crossover problems in the Earth. This work was primarily supported by the MRSEC Program of NSF under Awards Number DMR-0212302 and DMR-0819885, and partially supported by NSF under ATM-0428774 (V-Lab), EAR-1019853, and EAR-0810272. The computations were performed mainly at the Minnesota Supercomputing Institute (MSI).
Magnetoelectric Effect in a Spin-State Transition System
NASA Astrophysics Data System (ADS)
Naka, Makoto; Mizoguchi, Eriko; Nasu, Joji; Ishihara, Sumio
2018-06-01
Magnetic, dielectric, and magnetoelectric properties in a spin-state transition system are examined, motivated by the recent discovery of multiferroic behavior in a cobalt oxide. We construct an effective model Hamiltonian on the basis of the two-orbital Hubbard model, in which the spin-state degrees of freedom in magnetic ions couple with ferroelectric-type lattice distortions. A phase transition occurs from the high-temperature low-spin phase to the low-temperature high-spin ferroelectric phase with an accompanying increase in spin entropy. The calculated results are consistent with the experimental pressure-temperature phase diagram. We predict the magnetic-field induced electric polarization in the low-spin paraelectric phase near the ferroelectric phase boundary.
High spin systems with orbital degeneracy.
Shen, Shun-Qing; Xie, X C; Zhang, F C
2002-01-14
High-spin systems with orbital degeneracy are studied in the large spin limit. In the absence of Hund's coupling, the classical spin model is mapped onto disconnected orbital systems with spins up and down, respectively. The ground state of the isotropic model is an orbital valence bond state where each bond is an orbital singlet with parallel spins, and neighboring bonds interact antiferromagnetically. Possible relevance to the transition metal oxides is discussed.
Analysis of the transient response of nuclear spins in GaAs with/without nuclear magnetic resonance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rasly, Mahmoud; Lin, Zhichao; Yamamoto, Masafumi
As an alternative to studying the steady-state responses of nuclear spins in solid state systems, working within a transient-state framework can reveal interesting phenomena. The response of nuclear spins in GaAs to a changing magnetic field was analyzed based on the time evolution of nuclear spin temperature. Simulation results well reproduced our experimental results for the transient oblique Hanle signals observed in an all-electrical spin injection device. The analysis showed that the so called dynamic nuclear polarization can be treated as a cooling tool for the nuclear spins: It works as a provider to exchange spin angular momentum between polarizedmore » electron spins and nuclear spins through the hyperfine interaction, leading to an increase in the nuclear polarization. In addition, a time-delay of the nuclear spin temperature with a fast sweep of the external magnetic field produces a possible transient state for the nuclear spin polarization. On the other hand, the nuclear magnetic resonance acts as a heating tool for a nuclear spin system. This causes the nuclear spin temperature to jump to infinity: i.e., the average nuclear spins along with the nuclear field vanish at resonant fields of {sup 75}As, {sup 69}Ga and {sup 71}Ga, showing an interesting step-dip structure in the oblique Hanle signals. These analyses provide a quantitative understanding of nuclear spin dynamics in semiconductors for application in future computation processing.« less
Thermodynamic properties of Fermi gases in states with defined many-body spins
NASA Astrophysics Data System (ADS)
Yurovsky, Vladimir
2016-05-01
Zero-range interactions in cold spin- 1 / 2 Fermi gases can be described by single interaction strength, since collisions of atoms in the same spin state are forbidden by the Pauli principle. In a spin-independent trap potential (even in the presence of a homogeneous spin-dependent external field), the gas can persist in a state with the given many-body spin, since the spin operator commutes with the Hamiltonian. Spin and spatial degrees of freedom in such systems are separated, and the spin and spatial wavefunctions form non-Abelian irreducible representations of the symmetric group, unless the total spin is S = N / 2 for N atoms (see). Although the total wavefunction, being a linear combination of products of the spin and spatial functions, is permutation-antisymmetric, the non-Abelian permutation symmetry is disclosed in the matrix elements and, as demonstrated here, in thermodynamic properties. The effects include modification of the specific heat and compressibility of the gas.
Spinning AdS loop diagrams: two point functions
NASA Astrophysics Data System (ADS)
Giombi, Simone; Sleight, Charlotte; Taronna, Massimo
2018-06-01
We develop a systematic approach to evaluating AdS loop amplitudes with spinning legs based on the spectral (or "split") representation of bulk-to-bulk propagators, which re-expresses loop diagrams in terms of spectral integrals and higher-point tree diagrams. In this work we focus on 2pt one-loop Witten diagrams involving totally symmetric fields of arbitrary mass and integer spin. As an application of this framework, we study the contribution to the anomalous dimension of higher-spin currents generated by bubble diagrams in higher-spin gauge theories on AdS.
Dynamic spin injection into a quantum well coupled to a spin-split bound state
NASA Astrophysics Data System (ADS)
Maslova, N. S.; Rozhansky, I. V.; Mantsevich, V. N.; Arseyev, P. I.; Averkiev, N. S.; Lähderanta, E.
2018-05-01
We present a theoretical analysis of dynamic spin injection due to spin-dependent tunneling between a quantum well (QW) and a bound state split in spin projection due to an exchange interaction or external magnetic field. We focus on the impact of Coulomb correlations at the bound state on spin polarization and sheet density kinetics of the charge carriers in the QW. The theoretical approach is based on kinetic equations for the electron occupation numbers taking into account high order correlation functions for the bound state electrons. It is shown that the on-site Coulomb repulsion leads to an enhanced dynamic spin polarization of the electrons in the QW and a delay in the carriers tunneling into the bound state. The interplay of these two effects leads to nontrivial dependence of the spin polarization degree, which can be probed experimentally using time-resolved photoluminescence experiments. It is demonstrated that the influence of the Coulomb interactions can be controlled by adjusting the relaxation rates. These findings open a new way of studying the Hubbard-like electron interactions experimentally.
NASA Astrophysics Data System (ADS)
Čenčariková, Hana; Strečka, Jozef; Gendiar, Andrej; Tomašovičová, Natália
2018-05-01
An exhaustive ground-state analysis of extended two-dimensional (2D) correlated spin-electron model consisting of the Ising spins localized on nodal lattice sites and mobile electrons delocalized over pairs of decorating sites is performed within the framework of rigorous analytical calculations. The investigated model, defined on an arbitrary 2D doubly decorated lattice, takes into account the kinetic energy of mobile electrons, the nearest-neighbor Ising coupling between the localized spins and mobile electrons, the further-neighbor Ising coupling between the localized spins and the Zeeman energy. The ground-state phase diagrams are examined for a wide range of model parameters for both ferromagnetic as well as antiferromagnetic interaction between the nodal Ising spins and non-zero value of external magnetic field. It is found that non-zero values of further-neighbor interaction leads to a formation of new quantum states as a consequence of competition between all considered interaction terms. Moreover, the new quantum states are accompanied with different magnetic features and thus, several kinds of field-driven phase transitions are observed.
NASA Astrophysics Data System (ADS)
Wei, Tzu-Chieh; Raussendorf, Robert; Kwek, Leong Chuan
2011-10-01
Universal quantum computation can be achieved by simply performing single-qubit measurements on a highly entangled resource state, such as cluster states. Cai, Miyake, Dür, and Briegel recently constructed a ground state of a two-dimensional quantum magnet by combining multiple Affleck-Kennedy-Lieb-Tasaki quasichains of mixed spin-3/2 and spin-1/2 entities and by mapping pairs of neighboring spin-1/2 particles to individual spin-3/2 particles [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.82.052309 82, 052309 (2010)]. They showed that this state enables universal quantum computation by single-spin measurements. Here, we give an alternative understanding of how this state gives rise to universal measurement-based quantum computation: by local operations, each quasichain can be converted to a one-dimensional cluster state and entangling gates between two neighboring logical qubits can be implemented by single-spin measurements. We further argue that a two-dimensional cluster state can be distilled from the Cai-Miyake-Dür-Briegel state.
Testing the Binary Black Hole Nature of a Compact Binary Coalescence
NASA Astrophysics Data System (ADS)
Krishnendu, N. V.; Arun, K. G.; Mishra, Chandra Kant
2017-09-01
We propose a novel method to test the binary black hole nature of compact binaries detectable by gravitational wave (GW) interferometers and, hence, constrain the parameter space of other exotic compact objects. The spirit of the test lies in the "no-hair" conjecture for black holes where all properties of a Kerr black hole are characterized by its mass and spin. The method relies on observationally measuring the quadrupole moments of the compact binary constituents induced due to their spins. If the compact object is a Kerr black hole (BH), its quadrupole moment is expressible solely in terms of its mass and spin. Otherwise, the quadrupole moment can depend on additional parameters (such as the equation of state of the object). The higher order spin effects in phase and amplitude of a gravitational waveform, which explicitly contains the spin-induced quadrupole moments of compact objects, hence, uniquely encode the nature of the compact binary. Thus, we argue that an independent measurement of the spin-induced quadrupole moment of the compact binaries from GW observations can provide a unique way to distinguish binary BH systems from binaries consisting of exotic compact objects.
Testing the Binary Black Hole Nature of a Compact Binary Coalescence.
Krishnendu, N V; Arun, K G; Mishra, Chandra Kant
2017-09-01
We propose a novel method to test the binary black hole nature of compact binaries detectable by gravitational wave (GW) interferometers and, hence, constrain the parameter space of other exotic compact objects. The spirit of the test lies in the "no-hair" conjecture for black holes where all properties of a Kerr black hole are characterized by its mass and spin. The method relies on observationally measuring the quadrupole moments of the compact binary constituents induced due to their spins. If the compact object is a Kerr black hole (BH), its quadrupole moment is expressible solely in terms of its mass and spin. Otherwise, the quadrupole moment can depend on additional parameters (such as the equation of state of the object). The higher order spin effects in phase and amplitude of a gravitational waveform, which explicitly contains the spin-induced quadrupole moments of compact objects, hence, uniquely encode the nature of the compact binary. Thus, we argue that an independent measurement of the spin-induced quadrupole moment of the compact binaries from GW observations can provide a unique way to distinguish binary BH systems from binaries consisting of exotic compact objects.
Notes on strings and higher spins
NASA Astrophysics Data System (ADS)
Sagnotti, A.
2013-05-01
This review is devoted to the intriguing and still largely unexplored links between string theory and higher spins, the types of excitations that lie behind their most cherished properties. A closer look at higher spin fields provides some further clues that string theory describes a broken phase of a higher spin gauge theory. Conversely, string amplitudes contain a wealth of information on higher spin interactions that can clarify long-standing issues related to their infrared behavior. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Higher spin theories and holography’. Based on the lectures presented at the International School for Subnuclear Physics Searching for the Unexpected at LHC and Status of Our Knowledge (Erice, June 24-July 3 2011) and on the talks presented at Strings, Branes and Supergravity (Istanbul, 31 July -5 Aug 2011), at QTS’07: Quantum Theory and Symmetries (Prague, 7-13 Aug. 2011) and at FFP’12: Fundamental Fields and Particles (Udine, 21-23 Nov. 2011).
Evidence for a temperature-induced spin-state transition of Co3+ in La2-xSrxCoO4
NASA Astrophysics Data System (ADS)
Hollmann, N.; Haverkort, M. W.; Benomar, M.; Cwik, M.; Braden, M.; Lorenz, T.
2011-05-01
We study the magnetic susceptibility of mixed-valent La2-xSrxCoO4 single crystals in the doping range of 0.5⩽x⩽0.8 for temperatures up to 1000 K. The magnetism below room temperature is described by paramagnetic Co2+ in the high-spin state and by Co3+ in the nonmagnetic low-spin state. At high temperatures, an increase in susceptibility is seen, which we attribute to a temperature-induced spin-state transition of Co3+. The susceptibility is analyzed by comparison to full-multiplet calculations for the thermal population of the high- and intermediate-spin states of Co3+.
Study on the spin-states of cobalt-based double-layer perovskite Sr2Y0.5Ca0.5Co2O7
NASA Astrophysics Data System (ADS)
He, H.; Zhang, W. Y.
2008-02-01
The spin-states of cobalt based perovskite compounds depend sensitively on the valence state and local crystal environment of Co ions and the rich physical properties arise from strong coupling among charge, spin, and orbital degrees of freedom. While extensive studies have been carried out in the past, most of them concentrated on the isotropic compound LaCoO3. In this paper, using the unrestricted Hartree-Fock approximation and the real-space recursion method, we have investigated the competition of various magnetically ordered spin-states of anisotropic double-layered perovskite Sr2Y0.5Ca0.5Co2O7. The energy comparison among these states shows that the nearest-neighbor high-spin-intermediate-spin ferromagnetically ordered state is the relevant magnetic ground state of the compound. The magnetic structure and sizes of magnetic moments are consistent with the recent experimental observation.
Gani, Terry Z H; Kulik, Heather J
2017-11-14
Accurate predictions of spin-state ordering, reaction energetics, and barrier heights are critical for the computational discovery of open-shell transition-metal (TM) catalysts. Semilocal approximations in density functional theory, such as the generalized gradient approximation (GGA), suffer from delocalization error that causes them to overstabilize strongly bonded states. Descriptions of energetics and bonding are often improved by introducing a fraction of exact exchange (e.g., erroneous low-spin GGA ground states are instead correctly predicted as high-spin with a hybrid functional). The degree of spin-splitting sensitivity to exchange can be understood based on the chemical composition of the complex, but the effect of exchange on reaction energetics within a single spin state is less well-established. Across a number of model iron complexes, we observe strong exchange sensitivities of reaction barriers and energies that are of the same magnitude as those for spin splitting energies. We rationalize trends in both reaction and spin energetics by introducing a measure of delocalization, the bond valence of the metal-ligand bonds in each complex. The bond valence thus represents a simple-to-compute property that unifies understanding of exchange sensitivity for catalytic properties and spin-state ordering in TM complexes. Close agreement of the resulting per-metal-organic-bond sensitivity estimates, together with failure of alternative descriptors demonstrates the utility of the bond valence as a robust descriptor of how differences in metal-ligand delocalization produce differing relative energetics with exchange tuning. Our unified description explains the overall effect of exact exchange tuning on the paradigmatic two-state FeO + /CH 4 reaction that combines challenges of spin-state and reactivity predictions. This new descriptor-sensitivity relationship provides a path to quantifying how predictions in transition-metal complex screening are sensitive to the method used.
Towards a bootstrap approach to higher orders of epsilon expansion
NASA Astrophysics Data System (ADS)
Dey, Parijat; Kaviraj, Apratim
2018-02-01
We employ a hybrid approach in determining the anomalous dimension and OPE coefficient of higher spin operators in the Wilson-Fisher theory. First we do a large spin analysis for CFT data where we use results obtained from the usual and the Mellin bootstrap and also from Feynman diagram literature. This gives new predictions at O( ɛ 4) and O( ɛ 5) for anomalous dimensions and OPE coefficients, and also provides a cross-check for the results from Mellin bootstrap. These higher orders get contributions from all higher spin operators in the crossed channel. We also use the bootstrap in Mellin space method for ϕ 3 in d = 6 - ɛ CFT where we calculate general higher spin OPE data. We demonstrate a higher loop order calculation in this approach by summing over contributions from higher spin operators of the crossed channel in the same spirit as before.
Room-temperature cavity quantum electrodynamics with strongly coupled Dicke states
NASA Astrophysics Data System (ADS)
Breeze, Jonathan D.; Salvadori, Enrico; Sathian, Juna; Alford, Neil McN.; Kay, Christopher W. M.
2017-09-01
The strong coupling regime is essential for efficient transfer of excitations between states in different quantum systems on timescales shorter than their lifetimes. The coupling of single spins to microwave photons is very weak but can be enhanced by increasing the local density of states by reducing the magnetic mode volume of the cavity. In practice, it is difficult to achieve both small cavity mode volume and low cavity decay rate, so superconducting metals are often employed at cryogenic temperatures. For an ensembles of N spins, the spin-photon coupling can be enhanced by √{N } through collective spin excitations known as Dicke states. For sufficiently large N the collective spin-photon coupling can exceed both the spin decoherence and cavity decay rates, making the strong-coupling regime accessible. Here we demonstrate strong coupling and cavity quantum electrodynamics in a solid-state system at room-temperature. We generate an inverted spin-ensemble with N 1015 by photo-exciting pentacene molecules into spin-triplet states with spin dephasing time T2* 3 μs. When coupled to a 1.45 GHz TE01δ mode supported by a high Purcell factor strontium titanate dielectric cavity (Vm 0.25 cm3, Q 8,500), we observe Rabi oscillations in the microwave emission from collective Dicke states and a 1.8 MHz normal-mode splitting of the resultant collective spin-photon polariton. We also observe a cavity protection effect at the onset of the strong-coupling regime which decreases the polariton decay rate as the collective coupling increases.
Coexistence of long-range cycloidal order and spin-cluster glass state in the multiferroic BaYFeO4.
Ghara, Somnath; Sundaresan, A
2018-06-20
We report the presence of spin glass state below the cycloidal spin ordering in the multiferroic BaYFeO 4 . This compound is known to crystallize in an orthorhombic structure with a centrosymmetric space group Pnma and exhibits two successive antiferromagnetic phase transitions. Upon cooling, it undergoes a spin density wave (SDW)-like antiferromagnetic ordering at T N1 ~ 48 K and a cycloidal ordering at T N2 ~ 35 K. Using dc magnetic memory effect and magnetization relaxation studies, we have shown that this oxide undergoes a reentrant spin glass transition below T * ~ 17 K. Our analysis suggests the presence of spin clusters in the glassy state. The coexistence of spin-cluster glass and long-range cycloidal ordered states results in an exchange bias effect at 2 K. The origin of the glassy state has been attributed to freezing of some Fe 3+ moments, which do not participate in the long-range ordering.
Tuning Interfacial States Using Organic Molecules as Spin Filters
NASA Astrophysics Data System (ADS)
Deloach, Andrew; Wang, Jingying; Papa, Christopher M.; Myahkostupov, Mykhaylo; Castellano, Felix N.; Dougherty, Daniel B.; Jiang, Wei; Liu, Feng
Organic semiconductors are known to have long spin relaxation times which makes them a good candidate for spintronics. However, an issue with these materials is that at metal-organic interfaces there is a conductivity mismatch problem that suppresses spin injection. To overcome this, orbital mixing at the interface can be tuned with an organic spacer layer to promote the formation of spin polarized interface states. These states act as a ``spin filters'' and have been proposed as an explanation for the large tunneling magnetoresistance seen in devices using tris-(8-hydroxyquinolate)-aluminum(Alq3). Here, we show that the spin polarized interface states can be tuned from metallic to resistive by subtle changes in molecular orbitals. This is done using spin polarized scanning tunneling microscopy with three different tris-(8-hydroxyquinolate) compounds: aluminum, chromium, and iron. Differences in d-orbital mixing results in different mechanisms of interfacial coupling, giving rise to metallic or resistive interface states. Supported by the U.S. DoE award No. DE-SC0010324.
Coexistence of long-range cycloidal order and spin-cluster glass state in the multiferroic BaYFeO4
NASA Astrophysics Data System (ADS)
Ghara, Somnath; Sundaresan, A.
2018-06-01
We report the presence of spin glass state below the cycloidal spin ordering in the multiferroic BaYFeO4. This compound is known to crystallize in an orthorhombic structure with a centrosymmetric space group Pnma and exhibits two successive antiferromagnetic phase transitions. Upon cooling, it undergoes a spin density wave (SDW)-like antiferromagnetic ordering at T N1 ~ 48 K and a cycloidal ordering at T N2 ~ 35 K. Using dc magnetic memory effect and magnetization relaxation studies, we have shown that this oxide undergoes a reentrant spin glass transition below T * ~ 17 K. Our analysis suggests the presence of spin clusters in the glassy state. The coexistence of spin-cluster glass and long-range cycloidal ordered states results in an exchange bias effect at 2 K. The origin of the glassy state has been attributed to freezing of some Fe3+ moments, which do not participate in the long-range ordering.
NASA Astrophysics Data System (ADS)
Alzate-Cardona, J. D.; Sabogal-Suárez, D.; Restrepo-Parra, E.
2017-05-01
We have studied the magnetic properties of the mixed spin σ = ± 3/2, ± 1/2 and spin S = ± 5/2, ± 3/2, ± 1/2 Ising ferrimagnetic system in a graphene layer by means of Monte Carlo simulations. The effects of next-nearest neighbors exchange interactions and crystal field anisotropy on the critical and compensation behavior of the system have been investigated. The results show that, for a system with given values of the crystal field anisotropy and exchange interaction constants, a compensation point only exists if the values of the spins in the ground state are such that | S | > | σ | and Jσ is higher than a certain value Jσmin . It was shown that the relationship between Jσmin and JS is linear for a given value of the crystal field constant. The compensation and the critical temperature are very sensitive to the change of JS and Jσ, respectively, while the crystal field anisotropy affects both temperatures to a large extent.
Thurber, Kent R.; Tycko, Robert
2009-01-01
Accurate determination of sample temperatures in solid state nuclear magnetic resonance (NMR) with magic-angle spinning (MAS) can be problematic, particularly because frictional heating and heating by radio-frequency irradiation can make the internal sample temperature significantly different from the temperature outside the MAS rotor. This paper demonstrates the use of 79Br chemical shifts and spin-lattice relaxation rates in KBr powder as temperature-dependent parameters for the determination of internal sample temperatures. Advantages of this method include high signal-to-noise, proximity of the 79Br NMR frequency to that of 13C, applicability from 20 K to 320 K or higher, and simultaneity with adjustment of the MAS axis direction. We show that spin-lattice relaxation in KBr is driven by a quadrupolar mechanism. We demonstrate a simple approach to including KBr powder in hydrated samples, such as biological membrane samples, hydrated amyloid fibrils, and hydrated microcrystalline proteins, that allows direct assessment of the effects of frictional and radio-frequency heating under experimentally relevant conditions. PMID:18930418
Thurber, Kent R; Tycko, Robert
2009-01-01
Accurate determination of sample temperatures in solid state nuclear magnetic resonance (NMR) with magic-angle spinning (MAS) can be problematic, particularly because frictional heating and heating by radio-frequency irradiation can make the internal sample temperature significantly different from the temperature outside the MAS rotor. This paper demonstrates the use of (79)Br chemical shifts and spin-lattice relaxation rates in KBr powder as temperature-dependent parameters for the determination of internal sample temperatures. Advantages of this method include high signal-to-noise, proximity of the (79)Br NMR frequency to that of (13)C, applicability from 20 K to 320 K or higher, and simultaneity with adjustment of the MAS axis direction. We show that spin-lattice relaxation in KBr is driven by a quadrupolar mechanism. We demonstrate a simple approach to including KBr powder in hydrated samples, such as biological membrane samples, hydrated amyloid fibrils, and hydrated microcrystalline proteins, that allows direct assessment of the effects of frictional and radio-frequency heating under experimentally relevant conditions.
Higher spin gauge theory on fuzzy \\boldsymbol {S^4_N}
NASA Astrophysics Data System (ADS)
Sperling, Marcus; Steinacker, Harold C.
2018-02-01
We examine in detail the higher spin fields which arise on the basic fuzzy sphere S^4N in the semi-classical limit. The space of functions can be identified with functions on classical S 4 taking values in a higher spin algebra associated to \
Conductance of a quantum wire at low electron density
NASA Astrophysics Data System (ADS)
Matveev, Konstantin
2006-03-01
We study the transport of electrons through a long quantum wire connecting two bulk leads. As the electron density in the wire is lowered, the Coulomb interactions lead to short-range crystalline ordering of electrons. In this Wigner crystal state the spins of electrons form an antiferromagnetic Heisenberg spin chain with exponentially small exchange coupling J. Inhomogeneity of the electron density due to the coupling of the wire to the leads results in violation of spin-charge separation in the device. As a result the spins affect the conductance of the wire. At zero temperature the low-energy spin excitations propagate freely through the wire, and its conductance remains 2e^2/h. At finite temperature some of the spin excitations are reflected by the wire and contribute to its resistance. Since the energy of the elementary excitations in the spin chain (spinons) cannot exceed πJ/2, the conductance of the wire acquires an exponentially small negative correction δG - (-πJ/2T) at low temperatures T J. At higher temperatures, T J, most of the spin excitations in the leads are reflected by the wire, and the conductance levels off at a new universal value e^2/h. This result is consistent with experimental observations of a mini-plateau of conductance at e^2/h in quantum wires in the absence of magnetic field.
Theory of disordered Heisenberg ferromagnets
NASA Technical Reports Server (NTRS)
Stubbs, R. M.
1973-01-01
A Green's function technique is used to calculate the magnetic properties of Heisenberg ferromagnets in which the exchange interactions deviate randomly in strength from the mean interaction. Systems of sc, bcc, and fcc topologies and of general spin values are treated. Disorder produces marked effects in the density of spin wave states, in the form of enhancement of the low-energy density and extension of the energy band to higher values. The spontaneous magnetization and the Curie temperature decrease with increasing disorder. The effects of disorder are shown to be more pronounced in the ferromagnetic than in the paramagnetic phase.
Critical anisotropies of a geometrically frustrated triangular-lattice antiferromagnet
NASA Astrophysics Data System (ADS)
Swanson, M.; Haraldsen, J. T.; Fishman, R. S.
2009-05-01
This work examines the critical anisotropy required for the local stability of the collinear ground states of a geometrically frustrated triangular-lattice antiferromagnet (TLA). Using a Holstein-Primakoff expansion, we calculate the spin-wave frequencies for the one-, two-, three-, four-, and eight-sublattice (SL) ground states of a TLA with up to third neighbor interactions. Local stability requires that all spin-wave frequencies are real and positive. The two-, four-, and eight-SL phases break up into several regions where the critical anisotropy is a different function of the exchange parameters. We find that the critical anisotropy is a continuous function everywhere except across the two-SL/three-SL and three-SL/four-SL phase boundaries, where the three-SL phase has the higher critical anisotropy.
Critical Anisotropies of a Geometrically-Frustrated Triangular-Lattice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swanson, Mason R; Haraldsen, Jason T; Fishman, Randy Scott
2009-01-01
This work examines the critical anisotropy required for the local stability of the collinear ground states of a geometrically-frustrated triangular-lattice antiferromagnet (TLA). Using a Holstein-Primakoff expansion, we calculate the spin-wave frequencies for the 1, 2, 3, 4, and 8-sublattice (SL) ground states of a TLA with up to third neighbor interactions. Local stability requires that all spin-wave frequencies are real and positive. The 2, 4, and 8-SL phases break up into several regions where the critical anisotropy is a different function of the exchange parameters. We find that the critical anisotropy is a continuous function everywhere except across the 2-SL/3-SLmore » and 3-SL/4-SL phase boundaries, where the 3-SL phase has the higher critical anisotropy.« less
Long-lived polarization protected by symmetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Yesu; Theis, Thomas; Wu, Tung-Lin
2014-10-07
In this paper we elucidate, theoretically and experimentally, molecular motifs which permit Long-Lived Polarization Protected by Symmetry (LOLIPOPS). The basic assembly principle starts from a pair of chemically equivalent nuclei supporting a long-lived singlet state and is completed by coupling to additional pairs of spins. LOLIPOPS can be created in various sizes; here we review four-spin systems, introduce a group theory analysis of six-spin systems, and explore eight-spin systems by simulation. The focus is on AA′X{sub n}X′{sub n} spin systems, where typically the A spins are {sup 15}N or {sup 13}C and X spins are protons. We describe the symmetrymore » of the accessed states, we detail the pulse sequences used to access these states, we quantify the fraction of polarization that can be stored as LOLIPOPS, we elucidate how to access the protected states from A or from X polarization and we examine the behavior of these spin systems upon introduction of a small chemical shift difference.« less
Long-lived polarization protected by symmetry
NASA Astrophysics Data System (ADS)
Feng, Yesu; Theis, Thomas; Wu, Tung-Lin; Claytor, Kevin; Warren, Warren S.
2014-10-01
In this paper we elucidate, theoretically and experimentally, molecular motifs which permit Long-Lived Polarization Protected by Symmetry (LOLIPOPS). The basic assembly principle starts from a pair of chemically equivalent nuclei supporting a long-lived singlet state and is completed by coupling to additional pairs of spins. LOLIPOPS can be created in various sizes; here we review four-spin systems, introduce a group theory analysis of six-spin systems, and explore eight-spin systems by simulation. The focus is on AA'XnX'n spin systems, where typically the A spins are 15N or 13C and X spins are protons. We describe the symmetry of the accessed states, we detail the pulse sequences used to access these states, we quantify the fraction of polarization that can be stored as LOLIPOPS, we elucidate how to access the protected states from A or from X polarization and we examine the behavior of these spin systems upon introduction of a small chemical shift difference.
NASA Astrophysics Data System (ADS)
He, Pan; Zhang, Steven S.-L.; Zhu, Dapeng; Liu, Yang; Wang, Yi; Yu, Jiawei; Vignale, Giovanni; Yang, Hyunsoo
2018-05-01
Surface states of three-dimensional topological insulators exhibit the phenomenon of spin-momentum locking, whereby the orientation of an electron spin is determined by its momentum. Probing the spin texture of these states is of critical importance for the realization of topological insulator devices, but the main technique currently available is spin- and angle-resolved photoemission spectroscopy. Here we reveal a close link between the spin texture and a new kind of magnetoresistance, which depends on the relative orientation of the current with respect to the magnetic field as well as the crystallographic axes, and scales linearly with both the applied electric and magnetic fields. This bilinear magnetoelectric resistance can be used to map the spin texture of topological surface states by simple transport measurements. For a prototypical Bi2Se3 single layer, we can map both the in-plane and out-of-plane components of the spin texture (the latter arising from hexagonal warping). Theoretical calculations suggest that the bilinear magnetoelectric resistance originates from conversion of a non-equilibrium spin current into a charge current under application of the external magnetic field.
Signatures of spin-orbital states of t2g 2 system in optical conductivity: R VO3 (R =Y and La)
NASA Astrophysics Data System (ADS)
Kim, Minjae
2018-04-01
We investigate signatures of the spin and orbital states of R VO3 (R =Y and La) in optical conductivity using density functional theory plus dynamical mean-field theory (DFT+DMFT). From the assignment of multiplet state configurations to optical transitions, the DFT+DMFT reproduces experimental temperature-dependent evolutions of optical conductivity for both YVO3 and LaVO3. We also show that the optical conductivity is a useful quantity to probe the evolution of the orbital state even in the absence of spin order. The result provides a reference to investigate the spin and orbital states of t2g 2 vanadate systems, which is an important issue for both fundamental physics on spin and orbital states and applications of vanadates by means of orbital state control.
NASA Astrophysics Data System (ADS)
Gali, Adam; Thiering, Gergő
Dopants in solids are promising candidates for implementations of quantum bits for quantum computing. In particular, the high-spin negatively charged nitrogen-vacancy defect (NV) in diamond has become a leading contender in solid-state quantum information processing. The initialization and readout of the spin is based on the spin-selective decay of the photo-excited electron to the ground state which is mediated by spin-orbit coupling between excited states states and phonons. Generally, the spin-orbit coupling plays a crucial role in the optical spinpolarization and readout of NV quantum bit (qubit) and alike. Strong electron-phonon coupling in dynamic Jahn-Teller (DJT) systems can substantially influence the effective strength of spin-orbit coupling. Here we show by ab initio supercell density functional theory (DFT) calculations that the intrinsic spin-orbit coupling is strongly damped by DJT effect in the triplet excited state that has a consequence on the rate of non-radiative decay. This theory is applied to the ground state of silicon-vacancy (SiV) and germanium-vacancy (GeV) centers in their negatively charged state that can also act like qubits. We show that the intrinsic spin-orbit coupling in SiV and GeV centers is in the 100 GHz region, in contrast to the NV center of 10 GHz region. Our results provide deep insight in the nature of SiV and GeV qubits in diamond. EU FP7 DIADEMS project (Contract No. 611143).
Spin imbalance effect on the Larkin-Ovchinnikov-Fulde-Ferrel state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshii, Ryosuke; Tsuchiya, Shunji; Research and Education Center for Natural Sciences, Keio University, 4-1-1 Hiyoshi, Kanagawa 223-8521
2011-07-01
We study spin imbalance effects on the Larkin-Ovchinnikov-Fulde-Ferrel (LOFF) state relevant for superconductors under a strong magnetic field and spin polarized ultracold Fermi gas. We obtain the exact solution for the condensates with arbitrary spin imbalance and the fermion spectrum perturbatively in the presence of small spin imbalance. We also obtain fermion zero mode exactly without perturbation theory.
Spin-flip transitions and departure from the Rashba model in the Au(111) surface
NASA Astrophysics Data System (ADS)
Ibañez-Azpiroz, Julen; Bergara, Aitor; Sherman, E. Ya.; Eiguren, Asier
2013-09-01
We present a detailed analysis of the spin-flip excitations induced by a periodic time-dependent electric field in the Rashba prototype Au(111) noble metal surface. Our calculations incorporate the full spinor structure of the spin-split surface states and employ a Wannier-based scheme for the spin-flip matrix elements. We find that the spin-flip excitations associated with the surface states exhibit an strong dependence on the electron momentum magnitude, a feature that is absent in the standard Rashba model [E. I. Rashba, Sov. Phys. Solid State 2, 1109 (1960)]. Furthermore, we demonstrate that the maximum of the calculated spin-flip absorption rate is about twice the model prediction. These results show that, although the Rashba model accurately describes the spectrum and spin polarization, it does not fully account for the dynamical properties of the surface states.
Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Mingxuan; Imai, Takahashi; Han, Tian -Heng
2015-11-06
Here, the kagome Heisenberg antiferromagnet is a leading candidate in the search for a spin system with a quantum spin-liquid ground state. The nature of its ground state remains a matter of active debate. We conducted oxygen-17 single-crystal nuclear magnetic resonance (NMR) measurements of the spin-1/2 kagome lattice in herbertsmithite [ZnCu 3(OH) 6Cl 2], which is known to exhibit a spinon continuum in the spin excitation spectrum. We demonstrated that the intrinsic local spin susceptibility χkagome, deduced from the oxygen-17 NMR frequency shift, asymptotes to zero below temperatures of 0.03J, where J ~ 200 kelvin is the copper-copper superexchange interaction.more » Combined with the magnetic field dependence of χ kagome that we observed at low temperatures, these results imply that the kagome Heisenberg antiferromagnet has a spin-liquid ground state with a finite gap.« less
The spin-partitioned total position-spread tensor: An application to Heisenberg spin chains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fertitta, Edoardo; Paulus, Beate; El Khatib, Muammar
2015-12-28
The spin partition of the Total Position-Spread (TPS) tensor has been performed for one-dimensional Heisenberg chains with open boundary conditions. Both the cases of a ferromagnetic (high-spin) and an anti-ferromagnetic (low-spin) ground-state have been considered. In the case of a low-spin ground-state, the use of alternating magnetic couplings allowed to investigate the effect of spin-pairing. The behavior of the spin-partitioned TPS (SP-TPS) tensor as a function of the number of sites turned to be closely related to the presence of an energy gap between the ground-state and the first excited-state at the thermodynamic limit. Indeed, a gapped energy spectrum ismore » associated to a linear growth of the SP-TPS tensor with the number of sites. On the other hand, in gapless situations, the spread presents a faster-than-linear growth, resulting in the divergence of its per-site value. Finally, for the case of a high-spin wave function, an analytical expression of the dependence of the SP-TPS on the number of sites n and the total spin-projection S{sub z} has been derived.« less
Entanglement and quantum state geometry of a spin system with all-range Ising-type interaction
NASA Astrophysics Data System (ADS)
Kuzmak, A. R.
2018-04-01
The evolution of an N spin-1/2 system with all-range Ising-type interaction is considered. For this system we study the entanglement of one spin with the rest spins. It is shown that the entanglement depends on the number of spins and the initial state. Also, the geometry of the manifold, which contains entangled states, is obtained. For this case we find the dependence of entanglement on the scalar curvature of the manifold and examine it for different numbers of spins in the system. Finally we show that the transverse magnetic field leads to a change in the manifold topology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Qiang; Zhou, Liping, E-mail: zhoulp@suda.edu.cn; Cheng, Jue-Fei
Electronic structures and coherent quantum transport properties are explored for spin-crossover molecule iron-benzene Fe(Bz){sub 2} using density functional theory combined with non-equilibrium Green’s function. High- and low-spin states are investigated for two different lead-molecule junctions. It is found that the asymmetrical T-shaped contact junction in the high-spin state behaves as an efficient spin filter while it has a smaller conductivity than that in the low-spin state. Large spin Seebeck effect is also observed in asymmetrical T-shaped junction. Spin-polarized properties are absent in the symmetrical H-shaped junction. These findings strongly suggest that both the electronic and contact configurations play significant rolesmore » in molecular devices and metal-benzene complexes are promising materials for spintronics and thermo-spintronics.« less
Higher-order equation-of-motion coupled-cluster methods for ionization processes.
Kamiya, Muneaki; Hirata, So
2006-08-21
Compact algebraic equations defining the equation-of-motion coupled-cluster (EOM-CC) methods for ionization potentials (IP-EOM-CC) have been derived and computer implemented by virtue of a symbolic algebra system largely automating these processes. Models with connected cluster excitation operators truncated after double, triple, or quadruple level and with linear ionization operators truncated after two-hole-one-particle (2h1p), three-hole-two-particle (3h2p), or four-hole-three-particle (4h3p) level (abbreviated as IP-EOM-CCSD, CCSDT, and CCSDTQ, respectively) have been realized into parallel algorithms taking advantage of spin, spatial, and permutation symmetries with optimal size dependence of the computational costs. They are based on spin-orbital formalisms and can describe both alpha and beta ionizations from open-shell (doublet, triplet, etc.) reference states into ionized states with various spin magnetic quantum numbers. The application of these methods to Koopmans and satellite ionizations of N2 and CO (with the ambiguity due to finite basis sets eliminated by extrapolation) has shown that IP-EOM-CCSD frequently accounts for orbital relaxation inadequately and displays errors exceeding a couple of eV. However, these errors can be systematically reduced to tenths or even hundredths of an eV by IP-EOM-CCSDT or CCSDTQ. Comparison of spectroscopic parameters of the FH+ and NH+ radicals between IP-EOM-CC and experiments has also underscored the importance of higher-order IP-EOM-CC treatments. For instance, the harmonic frequencies of the A 2Sigma- state of NH+ are predicted to be 1285, 1723, and 1705 cm(-1) by IP-EOM-CCSD, CCSDT, and CCSDTQ, respectively, as compared to the observed value of 1707 cm(-1). The small adiabatic energy separation (observed 0.04 eV) between the X 2Pi and a 4Sigma- states of NH+ also requires IP-EOM-CCSDTQ for a quantitative prediction (0.06 eV) when the a 4Sigma- state has the low-spin magnetic quantum number (s(z) = 1/2). When the state with s(z) = 3/2 is sought, the energy separations converge much more rapidly with the IP-EOM-CCSD value (0.03 eV) already being close to the observed (0.04 eV).
Quantum Control of Spins in Diamond for Nanoscale Magnetic Sensing and Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dutt, Gurudev
Our research activities during the grant period focused on the challenges of highly accurate and precise magnetometry and magnetic imaging using quantum spins inside diamond. Our work has resulted in 6 papers published in peer-reviewed journals, with two more currently under consideration by referees. We showed that through the use of novel phase estimation algorithms inspired by quantum information science we can carry out accurate and high dynamic range DC magnetometry as well as lock-in detection of oscillating (AC) magnetic fields. We investigated the geometric phase as a route to higher precision quantum information and magnetic sensing applications, and probedmore » the experimental limits to the fidelity of such geometric phase gates. We also demonstrated that there is a spin dependent signal in the charge state flipping of the NV defect center in diamond, which could potentialy be useful for higher fidelity spin readout at room temperature. Some of these projects have now led to further investigation in our lab on multi-photon spectroscopy (manuscript in preparation), and plasmonic guiding of light in metal nanowires (manuscript available on arxiv). In addition, several invited talks were given by the PI, and conference presentations were given by the graduate students and postdocs.« less
Global Dirac bispinor entanglement under Lorentz boosts
NASA Astrophysics Data System (ADS)
Bittencourt, Victor A. S. V.; Bernardini, Alex E.; Blasone, Massimo
2018-03-01
The effects of Lorentz boosts on the quantum entanglement encoded by a pair of massive spin-1/2 particles are described according to the Lorentz covariant structure described by Dirac bispinors. The quantum system considered incorporates four degrees of freedom: two of them related to the bispinor intrinsic parity and the other two related to the bispinor spin projection, i.e., the Dirac particle helicity. Because of the natural multipartite structure involved, the Meyer-Wallach global measure of entanglement is preliminarily used for computing global quantum correlations, while the entanglement separately encoded by spin degrees of freedom is measured through the negativity of the reduced two-particle spin-spin state. A general framework to compute the changes on quantum entanglement induced by a boost is developed and then specialized to describe three particular antisymmetric two-particle states. According to the results obtained, two-particle spin-spin entanglement cannot be created by the action of a Lorentz boost in a spin-spin separable antisymmetric state. On the other hand, the maximal spin-spin entanglement encoded by antisymmetric superpositions is degraded by Lorentz boosts driven by high-speed frame transformations. Finally, the effects of boosts on chiral states are shown to exhibit interesting invariance properties, which can only be obtained through such a Lorentz covariant formulation of the problem.
NASA Astrophysics Data System (ADS)
Go, D.; Takarada, W.; Kikutani, T.
2017-10-01
The aim of this study was to investigate the mechanism for the improvement of mechanical properties of poly(ethylene terephthalate) (PET) fibers based on the concept of controlling the state of molecular entanglement. For this purpose, five different PET fibers were prepared through either the conventional melt spinning and drawing/annealing process or the high-speed melt spinning process. In both cases, the melt spinning process was designed so as to realize different Deborah number conditions. The prepared fibers were subjected to the laser Raman spectroscopy measurement and the characteristics of the scattering peak at around 1616 cm-1, which corresponds to the C-C/C=C stretching mode of the aromatic ring in the main chain, were investigated in detail. It was revealed that the fibers drawn and annealed after the melt spinning process of lower Deborah number showed higher tensile strength as well as lower value of full width at half maximum (FWHM) in the laser Raman spectrum. Narrow FWHM was considered to represent the homogeneous state of entanglement structure, which may lead to the higher strength and toughness of fibers because individual molecular chains tend to bare similar level of tensile stress when the fiber is stretched. In case of high-speed spun fibers prepared with a high Deborah number condition, the FWHM was narrow presumably because much lower tensile stress in comparison with the drawing/annealing process was applied when the fiber structure was developed, however the value increased significantly upon applying tensile load to the fibers during the laser Raman spectrum measurement. From these results, it was concluded that the Laser Raman spectroscopy could differentiate molecular chain entanglement structure of various fiber samples, in that low FWHM, which corresponds to either homogeneous state of molecular entanglement or lower level of mean residual stress, and small increase of FWTH upon applying tensile stress are considered to be the key factors for the improvement of the mechanical properties of PET fibers.
Quantum entanglement and spin control in silicon nanocrystal.
Berec, Vesna
2012-01-01
Selective coherence control and electrically mediated exchange coupling of single electron spin between triplet and singlet states using numerically derived optimal control of proton pulses is demonstrated. We obtained spatial confinement below size of the Bohr radius for proton spin chain FWHM. Precise manipulation of individual spins and polarization of electron spin states are analyzed via proton induced emission and controlled population of energy shells in pure (29)Si nanocrystal. Entangled quantum states of channeled proton trajectories are mapped in transverse and angular phase space of (29)Si <100> axial channel alignment in order to avoid transversal excitations. Proton density and proton energy as impact parameter functions are characterized in single particle density matrix via discretization of diagonal and nearest off-diagonal elements. We combined high field and low densities (1 MeV/92 nm) to create inseparable quantum state by superimposing the hyperpolarizationed proton spin chain with electron spin of (29)Si. Quantum discretization of density of states (DOS) was performed by the Monte Carlo simulation method using numerical solutions of proton equations of motion. Distribution of gaussian coherent states is obtained by continuous modulation of individual spin phase and amplitude. Obtained results allow precise engineering and faithful mapping of spin states. This would provide the effective quantum key distribution (QKD) and transmission of quantum information over remote distances between quantum memory centers for scalable quantum communication network. Furthermore, obtained results give insights in application of channeled protons subatomic microscopy as a complete versatile scanning-probe system capable of both quantum engineering of charged particle states and characterization of quantum states below diffraction limit linear and in-depth resolution.PACS NUMBERS: 03.65.Ud, 03.67.Bg, 61.85.+p, 67.30.hj.
Matsuo, Sadashige; Ueda, Kento; Baba, Shoji; Kamata, Hiroshi; Tateno, Mizuki; Shabani, Javad; Palmstrøm, Christopher J; Tarucha, Seigo
2018-02-22
The recent development of superconducting spintronics has revealed the spin-triplet superconducting proximity effect from a spin-singlet superconductor into a spin-polarized normal metal. In addition recently superconducting junctions using semiconductors are in demand for highly controlled experiments to engineer topological superconductivity. Here we report experimental observation of Andreev reflection in junctions of spin-resolved quantum Hall (QH) states in an InAs quantum well and the spin-singlet superconductor NbTi. The measured conductance indicates a sub-gap feature and two peaks on the outer side of the sub-gap feature in the QH plateau-transition regime increases. The observed structures can be explained by considering transport with Andreev reflection from two channels, one originating from equal-spin Andreev reflection intermediated by spin-flip processes and second arising from normal Andreev reflection. This result indicates the possibility to induce the superconducting proximity gap in the the QH bulk state, and the possibility for the development of superconducting spintronics in semiconductor devices.
Spin-related origin of the magnetotransport feature at filling factor 7/11
NASA Astrophysics Data System (ADS)
Gamez, Gerardo; Muraki, Koji
2010-03-01
Experiments by Pan et al. disclosed quantum Hall (QH) effect-like features at unconventional filling fractions, such as 4/11 and 7/11, not included in the Jain sequence [1]. These features were considered as evidence for a new class of fractional quantum Hall (FQH) states whose origin, unlike ordinary FQH states, is linked to interactions between composite fermions (CFs). However, the exact origin of these features is not well established yet. Here we focus on 7/11, where a minimum in the longitudinal resistance and a plateau-like structure in the Hall resistance are observed at a much higher field, 11.4 T, in a 30-nm quantum well (QW). Our density-dependent studies show that at this field, the FQH states flanking 7/11, viz. the 2/3 and 3/5 states, are both fully spin polarized. Despite of this fact, tilted-field experiments reveal that the 7/11 feature weakens and then disappears upon tilting. Using a CF model, we show that the spin degree of freedom may not be completely frozen in the region between the 2/3 and 3/5 states even when both states are fully polarized. Systematic studies unveil that the exact location of the 7/11 feature depends on the electron density and the QW width, in accordance with the model. Our model can also account for the reported contrasting behavior upon tilting of 7/11 and its electron-hole counterpart 4/11. [1] Pan et al., Phys. Rev. Lett. 90, 016801 (2003).
Role of spin-orbit coupling in the Kugel-Khomskii model on the honeycomb lattice
NASA Astrophysics Data System (ADS)
Koga, Akihisa; Nakauchi, Shiryu; Nasu, Joji
2018-03-01
We study the effective spin-orbital model for honeycomb-layered transition metal compounds, applying the second-order perturbation theory to the three-orbital Hubbard model with the anisotropic hoppings. This model is reduced to the Kitaev model in the strong spin-orbit coupling limit. Combining the cluster mean-field approximations with the exact diagonalization, we treat the Kugel-Khomskii type superexchange interaction and spin-orbit coupling on an equal footing to discuss ground-state properties. We find that a zigzag ordered state is realized in the model within nearest-neighbor interactions. We clarify how the ordered state competes with the nonmagnetic state, which is adiabatically connected to the quantum spin liquid state realized in a strong spin-orbit coupling limit. Thermodynamic properties are also addressed. The present paper should provide another route to account for the Kitaev-based magnetic properties in candidate materials.
Spin-Orbit Coupling Controlled J = 3 / 2 Electronic Ground State in 5 d 3 Oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, A. E.; Calder, S.; Morrow, R.
Entanglement of spin and orbital degrees of freedom drives the formation of novel quantum and topological physical states. Here we report resonant inelastic x-ray scattering measurements of the transition metal oxides Ca3LiOsO6 and Ba2YOsO6, which reveals a dramatic spitting of the t2g manifold. We invoke an intermediate coupling approach that incorporates both spin-orbit coupling and electron-electron interactions on an even footing and reveal that the ground state of 5d3-based compounds, which has remained elusive in previously applied models, is a novel spin-orbit entangled J=3/2 electronic ground state. This work reveals the hidden diversity of spin-orbit controlled ground states in 5dmore » systems and introduces a new arena in the search for spin-orbit controlled phases of matter.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCammon, C.; Dubrovinsky, L.; Narygina, O.
We investigated the spin state of iron in Mg{sub 0.82}Fe{sub 0.18}SiO{sub 3} silicate perovskite using Moessbauer spectroscopy and nuclear forward scattering (NFS) at pressures up to 130 GPa and temperatures up to 1000 K. Majorite starting material was loaded into diamond anvil cells in three separate experiments, and transformed to silicate perovskite through laser heating. We found, in agreement with previous work, the predominance of a component with high isomer shift ({approx}1 mm/s relative to {alpha}-Fe) and high-quadrupole splitting (QS) (>4 mm/s) in Moessbauer and NFS spectra up to 115 GPa at room temperature, and in accordance with previous workmore » this component was assigned to intermediate-spin Fe{sup 2+}. At higher pressures, the intensity of the high QS component in the silicate perovskite spectrum decreased, while the intensity of a new component with low isomer shift ({approx}0 mm/s relative to {alpha}-Fe) and low quadrupole splitting (<0.5 mm/s) increased. This new component was assigned to low-spin Fe{sup 2+}, and its intensity increased with both increasing pressure and increasing temperature: at 120 GPa and 1000 K all Fe{sup 2+} was in the low-spin state. X-ray diffraction data showed well crystallized perovskite in all runs, and although the stable phase above 110 GPa is expected to be post-perovskite, sluggish transition kinetics likely preserved the perovskite phase in a metastable state. Our results combined with data in the literature and thermodynamic and topological considerations suggest that there may be a region where silicate perovskite containing low-spin Fe{sup 2+} is stable, which coincides with predicted pressure-temperature conditions near the D{double_prime} layer.« less
Phase Competition in the Palmer-Chalker X Y Pyrochlore Er2Pt2O7
NASA Astrophysics Data System (ADS)
Hallas, A. M.; Gaudet, J.; Butch, N. P.; Xu, Guangyong; Tachibana, M.; Wiebe, C. R.; Luke, G. M.; Gaulin, B. D.
2017-11-01
We report neutron scattering measurements on Er2Pt2O7 , a new addition to the X Y family of frustrated pyrochlore magnets. Symmetry analysis of our elastic scattering data shows that Er2Pt2O7 orders into the k =0 , Γ7 magnetic structure (the Palmer-Chalker state), at TN=0.38 K . This contrasts with its sister X Y pyrochlore antiferromagnets Er2Ti2O7 and Er2Ge2O7 , both of which order into Γ5 magnetic structures at much higher temperatures, TN=1.2 and 1.4 K, respectively. In this temperature range, the magnetic heat capacity of Er2Pt2O7 contains a broad anomaly centered at T*=1.5 K . Our inelastic neutron scattering measurements reveal that this broad heat capacity anomaly sets the temperature scale for strong short-range spin fluctuations. Below TN=0.38 K , Er2Pt2O7 displays a gapped spin-wave spectrum with an intense, flat band of excitations at lower energy and a weak, diffusive band of excitations at higher energy. The flat band is well described by classical spin-wave calculations, but these calculations also predict sharp dispersive branches at higher energy, a striking discrepancy with the experimental data. This, in concert with the strong suppression of TN, is attributable to enhanced quantum fluctuations due to phase competition between the Γ7 and Γ5 states that border each other within a classically predicted phase diagram.
Order by disorder and gaugelike degeneracy in a quantum pyrochlore antiferromagnet.
Henley, Christopher L
2006-02-03
The (three-dimensional) pyrochlore lattice antiferromagnet with Heisenberg spins of large spin length S is a highly frustrated model with a macroscopic degeneracy of classical ground states. The zero-point energy of (harmonic-order) spin-wave fluctuations distinguishes a subset of these states. I derive an approximate but illuminating effective Hamiltonian, acting within the subspace of Ising spin configurations representing the collinear ground states. It consists of products of Ising spins around loops, i.e., has the form of a Z2 lattice gauge theory. The remaining ground-state entropy is still infinite but not extensive, being O(L) for system size O(L3). All these ground states have unit cells bigger than those considered previously.
Quantum approach of mesoscopic magnet dynamics with spin transfer torque
NASA Astrophysics Data System (ADS)
Wang, Yong; Sham, L. J.
2013-05-01
We present a theory of magnetization dynamics driven by spin-polarized current in terms of the quantum master equation. In the spin coherent state representation, the master equation becomes a Fokker-Planck equation, which naturally includes the spin transfer and quantum fluctuation. The current electron scattering state is correlated to the magnet quantum states, giving rise to quantum correction to the electron transport properties in the usual semiclassical theory. In the large-spin limit, the magnetization dynamics is shown to obey the Hamilton-Jacobi equation or the Hamiltonian canonical equations.
NASA Astrophysics Data System (ADS)
Di Valentin, M.; Salvadori, E.; Barone, V.; Carbonera, D.
2013-10-01
Advanced electron paramagnetic resonance (EPR) techniques, in combination with Density Functional theory (DFT), have been applied to the comparative study of carotenoid triplet states in two major photosynthetic antenna complexes, the Peridinin-chlorophyll a-protein of dinoflagellates and the light-harvesting complex II of higher plants. Carotenoid triplet states are populated by triplet-triplet energy transfer (TTET) from chlorophyll molecules to photoprotect the system from singlet oxygen formation under light-stress conditions. The TTET process is strongly dependent on the relative arrangement and on the electronic properties of the triplet states involved. The proposed spectroscopic approach exploits the concept of spin conservation during TTET, which leads to recognisable spin polarisation effects in the time-resolved and field-swept echo-detected EPR spectra. The electron spin polarisation produced at the carotenoid acceptor site depends on the initial polarisation of the chlorophyll donor and on the relative geometrical arrangement of the donor-acceptor zero-field splitting axes. We have demonstrated that a proper analysis of the spectra in the framework of spin angular momentum conservation allows to derive the pathways of TTET and to gain insight into the structural requirements of this mechanism for those antenna complexes, whose X-ray structure is available. We have further proved that this method, developed for natural antenna complexes of known X-ray structure, can be extended to systems lacking structural information in order to derive the relative arrangement of the partners in the energy transfer process. The structural requirements for efficient TTET, obtained from time-resolved and pulse EPR, have been complemented by a detailed description of the electronic structure of the carotenoid triplet state, provided by pulse Electron-Nuclear DOuble Resonance (ENDOR) experiments. Triplet-state hyperfine couplings of the α- and β-protons of the carotenoid conjugated chain have been assigned with the aid of quantum chemical calculation. DFT predictions of the electronic structure of the carotenoid triplet state, in terms of spin density distribution, frontier orbital description and orbital excitation represent suitable building blocks toward a deeper understanding of electronic requirements for efficient TTET.
In-Beam Studies of High-Spin States in Mercury -183 and MERCURY-181
NASA Astrophysics Data System (ADS)
Shi, Detang
The high-spin states of ^{183 }Hg were studied by using the reaction ^{155}Gd(^{32}S, 4n)^{183}Hg at a beam energy of 160 MeV with the tandem-linac accelerator system and the multi-element gamma-ray detection array at Florida State University. Two new bands, consisting of stretched E2 transitions and connected by M1 inter-band transitions, were identified in ^{183}Hg. Several new levels were added to the previously known bands at higher spin. The spins and parities to the levels in ^{183}Hg were determined from the analysis of their DCO ratios and B(M1)/B(E2) ratios. While the two pairs of previously known bands in ^ {183}Hg were proposed to 7/2^ -[514] and 9/2^+ [624], the two new bands are assigned as the 1/2^-[521] ground state configuration based upon the systematics of Nilsson orbitals in this mass region. The 354-keV transition previously was considered to be an E2 transition and assigned as the only transition from a band which is built on an oblate deformed i_{13/2} isomeric state. However, our DCO ratio analysis indicates that the 354-keV gamma-ray is an M1 transition. This changes the decay pattern of the 9/2^+[624 ] prolate structure in ^ {183}Hg, so it is seen to feed only into the i_{13/2} isomer band head. Our knowledge of the mercury nuclei far from stability was then extended through an in-beam study of the reaction ^{144}Sm(^{40 }Ar, 3n)^{181}Hg by using the Fragment Mass Analyzer (FMA) and the ten-Compton-suppressed -germanium-detector system at Argonne National Laboratory. Band structures to high-spin states are established for the first time in ^{181}Hg in the present experiment. The observed level structure of ^{181}Hg is midway between those in ^{185}Hg and in ^{183}Hg. The experimental results are analyzed in the framework of the cranking shell model (CSM). Alternative theoretical explanations are also presented and discussed. Systematics of neighboring mercury isotopes and N = 103 isotones is analyzed.
Homoepitaxial graphene tunnel barriers for spin transport
NASA Astrophysics Data System (ADS)
Friedman, Adam
Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions (magnetic field, temperature, etc.) usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. We demonstrate successful tunneling, charge, and spin transport with a fluorinated graphene tunnel barrier on a graphene channel. We show that while spin transport stops short of room temperature, spin polarization efficiency values are the highest of any graphene spin devices. We also demonstrate that hydrogenation of graphene can also be used to create a tunnel barrier. We begin with a four-layer stack of graphene and hydrogenate the top few layers to decouple them from the graphene transport channel beneath. We demonstrate successful tunneling by measuring non-linear IV curves and a weakly temperature dependent zero-bias resistance. We demonstrate lateral transport of spin currents in non-local spin-valve structures and determine spin lifetimes with the non-local Hanle effect to be commensurate with previous studies. The measured spin polarization efficiencies for hydrogenated graphene are higher than most oxide tunnel barriers on graphene, but not as high as with fluorinated graphene tunnel barriers. However, here we show that spin transport persists up to room temperature. Our results for the hydrogenated graphene tunnel barriers are compared with fluorinated tunnel barriers and we discuss the possibility that magnetic moments in the graphene tunnel barriers affect the spin transport of our devices.
Energy efficient hybrid computing systems using spin devices
NASA Astrophysics Data System (ADS)
Sharad, Mrigank
Emerging spin-devices like magnetic tunnel junctions (MTJ's), spin-valves and domain wall magnets (DWM) have opened new avenues for spin-based logic design. This work explored potential computing applications which can exploit such devices for higher energy-efficiency and performance. The proposed applications involve hybrid design schemes, where charge-based devices supplement the spin-devices, to gain large benefits at the system level. As an example, lateral spin valves (LSV) involve switching of nanomagnets using spin-polarized current injection through a metallic channel such as Cu. Such spin-torque based devices possess several interesting properties that can be exploited for ultra-low power computation. Analog characteristic of spin current facilitate non-Boolean computation like majority evaluation that can be used to model a neuron. The magneto-metallic neurons can operate at ultra-low terminal voltage of ˜20mV, thereby resulting in small computation power. Moreover, since nano-magnets inherently act as memory elements, these devices can facilitate integration of logic and memory in interesting ways. The spin based neurons can be integrated with CMOS and other emerging devices leading to different classes of neuromorphic/non-Von-Neumann architectures. The spin-based designs involve `mixed-mode' processing and hence can provide very compact and ultra-low energy solutions for complex computation blocks, both digital as well as analog. Such low-power, hybrid designs can be suitable for various data processing applications like cognitive computing, associative memory, and currentmode on-chip global interconnects. Simulation results for these applications based on device-circuit co-simulation framework predict more than ˜100x improvement in computation energy as compared to state of the art CMOS design, for optimal spin-device parameters.
Orbital selective spin-texture in a topological insulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Bahadur, E-mail: bahadursingh24@gmail.com; Prasad, R.
Three-dimensional topological insulators support a metallic non-trivial surface state with unique spin texture, where spin and momentum are locked perpendicular to each other. In this work, we investigate the orbital selective spin-texture associated with the topological surface states in Sb2Te{sub 3}, using the first principles calculations. Sb2Te{sub 3} is a strong topological insulator with a p-p type bulk band inversion at the Γ-point and supports a single topological metallic surface state with upper (lower) Dirac-cone has left (right) handed spin-texture. Here, we show that the topological surface state has an additional locking between the spin and orbitals, leading to anmore » orbital selective spin-texture. The out-of-plane orbitals (p{sub z} orbitals) have an isotropic orbital texture for both the Dirac cones with an associated left and right handed spin-texture for the upper and lower Dirac cones, respectively. In contrast, the in-planar orbital texture (p{sub x} and p{sub y} projections) is tangential for the upper Dirac-cone and is radial for the lower Dirac-cone surface state. The dominant in-planar orbital texture in both the Dirac cones lead to a right handed orbital-selective spin-texture.« less
Helical Spin Order from Topological Dirac and Weyl Semimetals
Sun, Xiao-Qi; Zhang, Shou-Cheng; Wang, Zhong
2015-08-14
In this paper, we study dynamical mass generation and the resultant helical spin orders in topological Dirac and Weyl semimetals, including the edge states of quantum spin Hall insulators, the surface states of weak topological insulators, and the bulk materials of Weyl semimetals. In particular, the helical spin textures of Weyl semimetals manifest the spin-momentum locking of Weyl fermions in a visible manner. Finally, the spin-wave fluctuations of the helical order carry electric charge density; therefore, the spin textures can be electrically controlled in a simple and predictable manner.
Spin-interaction effects for ultralong-range Rydberg molecules in a magnetic field
NASA Astrophysics Data System (ADS)
Hummel, Frederic; Fey, Christian; Schmelcher, Peter
2018-04-01
We investigate the fine and spin structure of ultralong-range Rydberg molecules exposed to a homogeneous magnetic field. Each molecule consists of a 87Rb Rydberg atom the outer electron of which interacts via spin-dependent s - and p -wave scattering with a polarizable 87Rb ground-state atom. Our model includes also the hyperfine structure of the ground-state atom as well as spin-orbit couplings of the Rydberg and ground-state atom. We focus on d -Rydberg states and principal quantum numbers n in the vicinity of 40. The electronic structure and vibrational states are determined in the framework of the Born-Oppenheimer approximation for varying field strengths ranging from a few up to hundred Gauss. The results show that the interplay between the scattering interactions and the spin couplings gives rise to a large variety of molecular states in different spin configurations as well as in different spatial arrangements that can be tuned by the magnetic field. This includes relatively regularly shaped energy surfaces in a regime where the Zeeman splitting is large compared to the scattering interaction but small compared to the Rydberg fine structure, as well as more complex structures for both weaker and stronger fields. We quantify the impact of spin couplings by comparing the extended theory to a spin-independent model.
NASA Astrophysics Data System (ADS)
Fuchs, Gregory
2011-03-01
Nitrogen vacancy (NV) center spins in diamond have emerged as a promising solid-state system for quantum information processing and precision metrology at room temperature. Understanding and developing the built-in resources of this defect center for quantum logic and memory is critical to achieving these goals. In the first case, we use nanosecond duration microwave manipulation to study the electronic spin of single NV centers in their orbital excited-state (ES). We demonstrate ES Rabi oscillations and use multi-pulse resonant control to differentiate between phonon-induced dephasing, orbital relaxation, and coherent electron-nuclear interactions. A second resource, the nuclear spin of the intrinsic nitrogen atom, may be an ideal candidate for a quantum memory due to both the long coherence of nuclear spins and their deterministic presence. We investigate coherent swaps between the NV center electronic spin state and the nuclear spin state of nitrogen using Landau-Zener transitions performed outside the asymptotic regime. The swap gates are generated using lithographically fabricated waveguides that form a high-bandwidth, two-axis vector magnet on the diamond substrate. These experiments provide tools for coherently manipulating and storing quantum information in a scalable solid-state system at room temperature. We gratefully acknowledge support from AFOSR, ARO, and DARPA.
Optical charge state control of spin defects in 4H-SiC
Wolfowicz, Gary; Anderson, Christopher P.; Yeats, Andrew L.; ...
2017-11-30
Defects in silicon carbide (SiC) have emerged as a favorable platform for optically active spin-based quantum technologies. Spin qubits exist in specific charge states of these defects, where the ability to control these states can provide enhanced spin-dependent readout and long-term charge stability. We investigate this charge state control for two major spin qubits in 4H-SiC, the divacancy and silicon vacancy, obtaining bidirectional optical charge conversion between the bright and dark states of these defects. We measure increased photoluminescence from divacancy ensembles by up to three orders of magnitude using near-ultraviolet excitation, depending on the substrate, and without degrading themore » electron spin coherence time. This charge conversion remains stable for hours at cryogenic temperatures, allowing spatial and persistent patterning of the charge state populations. As a result, we develop a comprehensive model of the defects and optical processes involved, offering a strong basis to improve material design and to develop quantum applications in SiC.« less
Optical charge state control of spin defects in 4H-SiC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfowicz, Gary; Anderson, Christopher P.; Yeats, Andrew L.
Defects in silicon carbide (SiC) have emerged as a favorable platform for optically active spin-based quantum technologies. Spin qubits exist in specific charge states of these defects, where the ability to control these states can provide enhanced spin-dependent readout and long-term charge stability. We investigate this charge state control for two major spin qubits in 4H-SiC, the divacancy and silicon vacancy, obtaining bidirectional optical charge conversion between the bright and dark states of these defects. We measure increased photoluminescence from divacancy ensembles by up to three orders of magnitude using near-ultraviolet excitation, depending on the substrate, and without degrading themore » electron spin coherence time. This charge conversion remains stable for hours at cryogenic temperatures, allowing spatial and persistent patterning of the charge state populations. As a result, we develop a comprehensive model of the defects and optical processes involved, offering a strong basis to improve material design and to develop quantum applications in SiC.« less
Tunneling spectroscopy of quasiparticle bound states in a spinful Josephson junction.
Chang, W; Manucharyan, V E; Jespersen, T S; Nygård, J; Marcus, C M
2013-05-24
The spectrum of a segment of InAs nanowire, confined between two superconducting leads, was measured as function of gate voltage and superconducting phase difference using a third normal-metal tunnel probe. Subgap resonances for odd electron occupancy-interpreted as bound states involving a confined electron and a quasiparticle from the superconducting leads, reminiscent of Yu-Shiba-Rusinov states-evolve into Kondo-related resonances at higher magnetic fields. An additional zero-bias peak of unknown origin is observed to coexist with the quasiparticle bound states.
NASA Astrophysics Data System (ADS)
Mitani, Masaki; Mori, Hiroki; Takano, Yu; Yamaki, Daisuke; Yoshioka, Yasunori; Yamaguchi, Kizashi
2000-09-01
Polyradicals comprised of m-phenylene-bridged organic radicals are well known as building blocks of organic ferromagnets, in which radical groups are connected with each other at the meta position in the benzene ring, and the parallel-spin configurations between radical sites are more stabilized than the antiparallel ones. Topological rules for spin alignments enable us to design organic high-spin dendrimers and polymers with the ferromagnetic ground states by linking various radical species through an m-phenylene unit. However, no systematic ab initio treatment of such spin dendrimers and magnetic polymers has been reported until now, though experimental studies on these materials have been performed extensively in the past ten years. As a first step to examine the possibilities of ferromagnetic dendrimers and polymers constructed of m-phenylene units with organic radicals, we report density functional and molecular orbital calculations of six m-phenylene biradical units with radical substituents and polycarbenes linked with an m-phenylene-type network. The relative stability between the spin states and spin density population are estimated by BLYP or B3LYP and Hartree-Fock calculations in order to clarify their utility for constructions of large spin denderimers and periodic magnetic polymers, which are final targets in this series of papers. It is shown that neutral polyradicals with an m-phenylene bridge are predicted as high-spin ground-state molecules by the computations, while m-phenylene-bridged ion-radical species formed by doping may have the low-spin ground states if zwitterionic configurations play significant roles to stabilize low-spin states. Ab initio computations also show an important role of conformations of polyradicals for stabilization of their high-spin states. The computational results are applied to molecular design of high-spin dendrimers and polymers. Implications of them are also discussed in relation to recent experimental results for high-spin organic molecules.
Ultrafast optical control of individual quantum dot spin qubits.
De Greve, Kristiaan; Press, David; McMahon, Peter L; Yamamoto, Yoshihisa
2013-09-01
Single spins in semiconductor quantum dots form a promising platform for solid-state quantum information processing. The spin-up and spin-down states of a single electron or hole, trapped inside a quantum dot, can represent a single qubit with a reasonably long decoherence time. The spin qubit can be optically coupled to excited (charged exciton) states that are also trapped in the quantum dot, which provides a mechanism to quickly initialize, manipulate and measure the spin state with optical pulses, and to interface between a stationary matter qubit and a 'flying' photonic qubit for quantum communication and distributed quantum information processing. The interaction of the spin qubit with light may be enhanced by placing the quantum dot inside a monolithic microcavity. An entire system, consisting of a two-dimensional array of quantum dots and a planar microcavity, may plausibly be constructed by modern semiconductor nano-fabrication technology and could offer a path toward chip-sized scalable quantum repeaters and quantum computers. This article reviews the recent experimental developments in optical control of single quantum dot spins for quantum information processing. We highlight demonstrations of a complete set of all-optical single-qubit operations on a single quantum dot spin: initialization, an arbitrary SU(2) gate, and measurement. We review the decoherence and dephasing mechanisms due to hyperfine interaction with the nuclear-spin bath, and show how the single-qubit operations can be combined to perform spin echo sequences that extend the qubit decoherence from a few nanoseconds to several microseconds, more than 5 orders of magnitude longer than the single-qubit gate time. Two-qubit coupling is discussed, both within a single chip by means of exchange coupling of nearby spins and optically induced geometric phases, as well as over longer-distances. Long-distance spin-spin entanglement can be generated if each spin can emit a photon that is entangled with the spin, and these photons are then interfered. We review recent work demonstrating entanglement between a stationary spin qubit and a flying photonic qubit. These experiments utilize the polarization- and frequency-dependent spontaneous emission from the lowest charged exciton state to single spin Zeeman sublevels.
NuSTAR Observations of the Black Hole GS 1354-645: Evidence of Rapid Black Hole Spin
NASA Astrophysics Data System (ADS)
El-Batal, A. M.; Miller, J. M.; Reynolds, M. T.; Boggs, S. E.; Chistensen, F. E.; Craig, W. W.; Fuerst, F.; Hailey, C. J.; Harrison, F. A.; Stern, D. K.; Tomsick, J.; Walton, D. J.; Zhang, W. W.
2016-07-01
We present the results of a NuSTAR study of the dynamically confirmed stellar-mass black hole GS 1354-645. The source was observed during its 2015 “hard” state outburst; we concentrate on spectra from two relatively bright phases. In the higher-flux observation, the broadband NuSTAR spectra reveal a clear, strong disk reflection spectrum, blurred by a degree that requires a black hole spin of a={cJ}/{{GM}}2≥slant 0.98 (1σ statistical limits only). The fits also require a high inclination: θ ≃ 75{(2)}\\circ . Strong “dips” are sometimes observed in the X-ray light curves of sources viewed at such an angle; these are absent, perhaps indicating that dips correspond to flared disk structures that only manifest at higher accretion rates. In the lower flux observation, there is evidence of radial truncation of the thin accretion disk. We discuss these results in the context of spin in stellar-mass black holes, and inner accretion flow geometries at moderate accretion rates.
NuSTAR Observations of the Black Hole GS 1354-645: Evidence of Rapid Black Hole Spin
NASA Technical Reports Server (NTRS)
El-Batal, A. M.; Miller, J. M.; Reynolds, M. T.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Fuerst, F.; Hailey, C. J.; Harrison, F. A.; Stern, D. K.;
2016-01-01
We present the results of a NuSTAR study of the dynamically confirmed stellar-mass black hole GS 1354-645. The source was observed during its 2015 "hard" state outburst; we concentrate on spectra from two relatively bright phases. In the higher-flux observation, the broadband NuSTAR spectra reveal a clear, strong disk reflection spectrum, blurred by a degree that requires a black hole spin of a = cJ/ GM(sup 2) > or = 0.98 (1(sigma) statistical limits only). The fits also require a high inclination: theta approx. = 75(2)deg. Strong "dips" are sometimes observed in the X-ray light curves of sources viewed at such an angle; these are absent, perhaps indicating that dips correspond to flared disk structures that only manifest at higher accretion rates. In the lower flux observation, there is evidence of radial truncation of the thin accretion disk. We discuss these results in the context of spin in stellar-mass black holes, and inner accretion flow geometries at moderate accretion rates.
Terahertz spin current pulses controlled by magnetic heterostructures
NASA Astrophysics Data System (ADS)
Kampfrath, T.; Battiato, M.; Maldonado, P.; Eilers, G.; Nötzold, J.; Mährlein, S.; Zbarsky, V.; Freimuth, F.; Mokrousov, Y.; Blügel, S.; Wolf, M.; Radu, I.; Oppeneer, P. M.; Münzenberg, M.
2013-04-01
In spin-based electronics, information is encoded by the spin state of electron bunches. Processing this information requires the controlled transport of spin angular momentum through a solid, preferably at frequencies reaching the so far unexplored terahertz regime. Here, we demonstrate, by experiment and theory, that the temporal shape of femtosecond spin current bursts can be manipulated by using specifically designed magnetic heterostructures. A laser pulse is used to drive spins from a ferromagnetic iron thin film into a non-magnetic cap layer that has either low (ruthenium) or high (gold) electron mobility. The resulting transient spin current is detected by means of an ultrafast, contactless amperemeter based on the inverse spin Hall effect, which converts the spin flow into a terahertz electromagnetic pulse. We find that the ruthenium cap layer yields a considerably longer spin current pulse because electrons are injected into ruthenium d states, which have a much lower mobility than gold sp states. Thus, spin current pulses and the resulting terahertz transients can be shaped by tailoring magnetic heterostructures, which opens the door to engineering high-speed spintronic devices and, potentially, broadband terahertz emitters.
NASA Astrophysics Data System (ADS)
Yao, J. M.; Itagaki, N.; Meng, J.
2014-11-01
A study of the 4 α linear-chain structure in high-lying collective excitation states of 16O with covariant density functional theory is presented. The low-spin states are obtained by configuration mixing of particle-number and angular-momentum projected quadrupole deformed mean-field states with the generator coordinate method. The high-spin states are determined by cranking calculations. These two calculations are based on the same energy density functional PC-PK1. We have found a rotational band at low spin with the dominant intrinsic configuration considered to be the one whereby 4 α clusters stay along a common axis. The strongly deformed rod shape also appears in the high-spin region with the angular momentum 13 ℏ to18 ℏ ; however, whether the state is a pure 4 α linear chain is less obvious than for the low-spin states.
Macrorealism from entropic Leggett-Garg inequalities
NASA Astrophysics Data System (ADS)
Devi, A. R. Usha; Karthik, H. S.; Sudha; Rajagopal, A. K.
2013-05-01
We formulate entropic Leggett-Garg inequalities, which place constraints on the statistical outcomes of temporal correlations of observables. The information theoretic inequalities are satisfied if macrorealism holds. We show that the quantum statistics underlying correlations between time-separated spin component of a quantum rotor mimics that of spin correlations in two spatially separated spin-s particles sharing a state of zero total spin. This brings forth the violation of the entropic Leggett-Garg inequality by a rotating quantum spin-s system in a similar manner as does the entropic Bell inequality [S. L. Braunstein and C. M. Caves, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.61.662 61, 662 (1988)] by a pair of spin-s particles forming a composite spin singlet state.
Threshold singularities in a Fermi gas with attractive potential in one dimension
Schlottmann, P.; Zvyagin, A. A.
2015-01-15
We consider the one-dimensional gas of fermions with spin S interacting via an attractive δ-function potential using the Bethe Ansatz solution. In zero magnetic field the atoms form bound states of N=2S + 1 fermions, i.e. generalized Cooper states with each atom having a different spin component. For low energy excitations the system is a Luttinger liquid and is properly described by a conformal field theory with conformal charge c=1. The linear dispersion of a Luttinger liquid is asymptotically exact in the low-energy limit where the band curvature terms in the dispersion are irrelevant. For higher energy excitations, however, themore » spectral function displays deviations in the neighborhood of the single-particle (hole) energy, which can be described by an effective X-ray edge type model. Using the Bethe Ansatz solution we obtain expressions for the critical exponents for the single-particle (hole) Green’s function. This model can be relevant in the context of ultracold atoms with effective total spin S confined to an elongated optical trap.« less
Quantum Computational Universality of the 2D Cai-Miyake-D"ur-Briegel Quantum State
NASA Astrophysics Data System (ADS)
Wei, Tzu-Chieh; Raussendorf, Robert; Kwek, Leong Chuan
2012-02-01
Universal quantum computation can be achieved by simply performing single-qubit measurements on a highly entangled resource state, such as cluster states. Cai, Miyake, D"ur, and Briegel recently constructed a ground state of a two-dimensional quantum magnet by combining multiple Affleck-Kennedy-Lieb-Tasaki quasichains of mixed spin-3/2 and spin-1/2 entities and by mapping pairs of neighboring spin-1/2 particles to individual spin-3/2 particles [Phys. Rev. A 82, 052309 (2010)]. They showed that this state enables universal quantum computation by constructing single- and two-qubit universal gates. Here, we give an alternative understanding of how this state gives rise to universal measurement-based quantum computation: by local operations, each quasichain can be converted to a one-dimensional cluster state and entangling gates between two neighboring logical qubits can be implemented by single-spin measurements. Furthermore, a two-dimensional cluster state can be distilled from the Cai-Miyake-D"ur-Briegel state.
Microscopic observation of magnon bound states and their dynamics.
Fukuhara, Takeshi; Schauß, Peter; Endres, Manuel; Hild, Sebastian; Cheneau, Marc; Bloch, Immanuel; Gross, Christian
2013-10-03
The existence of bound states of elementary spin waves (magnons) in one-dimensional quantum magnets was predicted almost 80 years ago. Identifying signatures of magnon bound states has so far remained the subject of intense theoretical research, and their detection has proved challenging for experiments. Ultracold atoms offer an ideal setting in which to find such bound states by tracking the spin dynamics with single-spin and single-site resolution following a local excitation. Here we use in situ correlation measurements to observe two-magnon bound states directly in a one-dimensional Heisenberg spin chain comprising ultracold bosonic atoms in an optical lattice. We observe the quantum dynamics of free and bound magnon states through time-resolved measurements of two spin impurities. The increased effective mass of the compound magnon state results in slower spin dynamics as compared to single-magnon excitations. We also determine the decay time of bound magnons, which is probably limited by scattering on thermal fluctuations in the system. Our results provide a new way of studying fundamental properties of quantum magnets and, more generally, properties of interacting impurities in quantum many-body systems.
NASA Astrophysics Data System (ADS)
Haines, Donald Noble
1987-09-01
This study is an experimental investigation of the differential magnetic susceptibility of the spin one -half, one-dimensional, Ising-Heisenberg ferromagnet (S = 1over 2,1d,HIF). Recent theoretical work predicts the existence of magnon bound states in this model system, and that these bound spin wave states dominate its thermodynamic properties. Further, the theories indicate that classical linearized spin wave theory fails completely in such systems, and may also be intrinsically incorrect in certain higher dimensional systems. The purpose of this research is to confirm the existence of bound magnons in the S = 1over 2,1d,HIF for the nearly Heisenberg case, and demonstrate the dominance of the bound states over the spin wave states in determining thermodynamic behavior. A preliminary numerical study was performed to determine the ranges of magnetic field and temperature at which bound magnons might be expected to make a significant contribution to the magnetic susceptibility and specific heat of the S = 1over 2,1d,HIF. It was found that bound magnons dominate at low and high fields, and spin waves dominate at intermediate fields. For anisotropies less than 2% bound magnons dominate the low temperature regime for all fields. To test the theoretical predictions cyclohexylammonium trichlorocuprate(II) (CHAC) was chosen as a model S = 1over 2,1d,HIF compound for experimental study. The differential susceptibility of a powder sample of CHAC was measured as a function of temperature in fields of 0, 1, 2, and 3T. The temperature range for these studies was 4.2K to 40K. Susceptibility measurements were performed using an ac mutual inductance bridge which employs a SQUID (Superconducting Quantum Interference Device) as a null detector. The design, calibration, and operation of this instrument are described. Data from the experiments compare favorably with the theoretical predictions, confirming the existence of bound magnons in the nearly Heisenberg S = 1over 2,1d,HIF. Further, the experimental results clearly show that bound magnons are the dominant excitation determining the susceptibility for all fields and temperatures studied. Spin wave theory cannot describe the data for any values of the adjustable parameters.
Collective Yu-Shiba-Rusinov states in magnetic clusters at superconducting surfaces
NASA Astrophysics Data System (ADS)
Körber, Simon; Trauzettel, Björn; Kashuba, Oleksiy
2018-05-01
We study the properties of collective Yu-Shiba-Rusinov (YSR) states generated by multiple magnetic adatoms (clusters) placed on the surface of a superconductor. For magnetic clusters with equal distances between their constituents, we demonstrate the formation of effectively spin-unpolarized YSR states with subgap energies independent of the spin configuration of the magnetic impurities. We solve the problem analytically for arbitrary spin structure and analyze both spin-polarized (dispersive energy levels) and spin-unpolarized (pinned energy levels) solutions. While the energies of the spin-polarized solutions can be characterized solely by the net magnetic moment of the cluster, the wave functions of the spin-unpolarized solutions effectively decouple from it. This decoupling makes them stable against thermal fluctuation and detectable in scanning tunneling microscopy experiments.
Coulomb Correlations Intertwined with Spin and Orbital Excitations in LaCoO_{3}.
Tomiyasu, K; Okamoto, J; Huang, H Y; Chen, Z Y; Sinaga, E P; Wu, W B; Chu, Y Y; Singh, A; Wang, R-P; de Groot, F M F; Chainani, A; Ishihara, S; Chen, C T; Huang, D J
2017-11-10
We carried out temperature-dependent (20-550 K) measurements of resonant inelastic x-ray scattering on LaCoO_{3} to investigate the evolution of its electronic structure across the spin-state crossover. In combination with charge-transfer multiplet calculations, we accurately quantified the renomalized crystal-field excitation energies and spin-state populations. We show that the screening of the effective on-site Coulomb interaction of 3d electrons is orbital selective and coupled to the spin-state crossover in LaCoO_{3}. The results establish that the gradual spin-state crossover is associated with a relative change of Coulomb energy versus bandwidth, leading to a Mott-type insulator-to-metal transition.
Cobalt spin states and hyperfine interactions in LaCoO3 investigated by LDA+U calculations
NASA Astrophysics Data System (ADS)
Hsu, Han; Blaha, Peter; Wentzcovitch, Renata M.; Leighton, C.
2010-09-01
With a series of local-density approximation plus Hubbard U calculations, we have demonstrated that for lanthanum cobaltite (LaCoO3) , the electric field gradient at the cobalt nucleus can be used as a fingerprint to identify the spin state of the cobalt ion. Therefore, in principle, the spin state of the cobalt ion can be unambiguously determined from nuclear magnetic resonance spectra. Our calculations also suggest that a crossover from the low-spin to intermediate-spin state in the temperature range of 0-90 K is unlikely, based on the half-metallic band structure associated with isolated IS Co ions, which is incompatible with the measured conductivity.
Spin-Projected Matrix Product States: Versatile Tool for Strongly Correlated Systems.
Li, Zhendong; Chan, Garnet Kin-Lic
2017-06-13
We present a new wave function ansatz that combines the strengths of spin projection with the language of matrix product states (MPS) and matrix product operators (MPO) as used in the density matrix renormalization group (DMRG). Specifically, spin-projected matrix product states (SP-MPS) are constructed as [Formula: see text], where [Formula: see text] is the spin projector for total spin S and |Ψ MPS (N,M) ⟩ is an MPS wave function with a given particle number N and spin projection M. This new ansatz possesses several attractive features: (1) It provides a much simpler route to achieve spin adaptation (i.e., to create eigenfunctions of Ŝ 2 ) compared to explicitly incorporating the non-Abelian SU(2) symmetry into the MPS. In particular, since the underlying state |Ψ MPS (N,M) ⟩ in the SP-MPS uses only Abelian symmetries, one does not need the singlet embedding scheme for nonsinglet states, as normally employed in spin-adapted DMRG, to achieve a single consistent variationally optimized state. (2) Due to the use of |Ψ MPS (N,M) ⟩ as its underlying state, the SP-MPS can be closely connected to broken-symmetry mean-field states. This allows one to straightforwardly generate the large number of broken-symmetry guesses needed to explore complex electronic landscapes in magnetic systems. Further, this connection can be exploited in the future development of quantum embedding theories for open-shell systems. (3) The sum of MPOs representation for the Hamiltonian and spin projector [Formula: see text] naturally leads to an embarrassingly parallel algorithm for computing expectation values and optimizing SP-MPS. (4) Optimizing SP-MPS belongs to the variation-after-projection (VAP) class of spin-projected theories. Unlike usual spin-projected theories based on determinants, the SP-MPS ansatz can be made essentially exact simply by increasing the bond dimensions in |Ψ MPS (N,M) ⟩. Computing excited states is also simple by imposing orthogonality constraints, which are simple to implement with MPS. To illustrate the versatility of SP-MPS, we formulate algorithms for the optimization of ground and excited states, develop perturbation theory based on SP-MPS, and describe how to evaluate spin-independent and spin-dependent properties such as the reduced density matrices. We demonstrate the numerical performance of SP-MPS with applications to several models typical of strong correlation, including the Hubbard model, and [2Fe-2S] and [4Fe-4S] model complexes.
NASA Astrophysics Data System (ADS)
Puttisong, Y.; Wang, X. J.; Buyanova, I. A.; Chen, W. M.
2013-03-01
The effect of hyperfine interaction (HFI) on the recently discovered room-temperature defect-enabled spin-filtering effect in GaNAs alloys is investigated both experimentally and theoretically based on a spin Hamiltonian analysis. We provide direct experimental evidence that the HFI between the electron and nuclear spin of the central Ga atom of the spin-filtering defect, namely, the Gai interstitials, causes strong mixing of the electron spin states of the defect, thereby degrading the efficiency of the spin-filtering effect. We also show that the HFI-induced spin mixing can be suppressed by an application of a longitudinal magnetic field such that the electronic Zeeman interaction overcomes the HFI, leading to well-defined electron spin states beneficial to the spin-filtering effect. The results provide a guideline for further optimization of the defect-engineered spin-filtering effect.
Coherent Spin Control at the Quantum Level in an Ensemble-Based Optical Memory.
Jobez, Pierre; Laplane, Cyril; Timoney, Nuala; Gisin, Nicolas; Ferrier, Alban; Goldner, Philippe; Afzelius, Mikael
2015-06-12
Long-lived quantum memories are essential components of a long-standing goal of remote distribution of entanglement in quantum networks. These can be realized by storing the quantum states of light as single-spin excitations in atomic ensembles. However, spin states are often subjected to different dephasing processes that limit the storage time, which in principle could be overcome using spin-echo techniques. Theoretical studies suggest this to be challenging due to unavoidable spontaneous emission noise in ensemble-based quantum memories. Here, we demonstrate spin-echo manipulation of a mean spin excitation of 1 in a large solid-state ensemble, generated through storage of a weak optical pulse. After a storage time of about 1 ms we optically read-out the spin excitation with a high signal-to-noise ratio. Our results pave the way for long-duration optical quantum storage using spin-echo techniques for any ensemble-based memory.
NASA Astrophysics Data System (ADS)
Teles, João; Auccaise, Ruben; Rivera-Ascona, Christian; Araujo-Ferreira, Arthur G.; Andreeta, José P.; Bonagamba, Tito J.
2018-07-01
Recently, we reported an experimental implementation of quantum information processing (QIP) by nuclear quadrupole resonance (NQR). In this work, we present the first quantum state tomography (QST) experimental implementation in the NQR QIP context. Two approaches are proposed, employing coherence selection by temporal and spatial averaging. Conditions for reduction in the number of cycling steps are analyzed, which can be helpful for larger spin systems. The QST method was applied to the study of spin coherent states, where the alignment-to-orientation phenomenon and the evolution of squeezed spin states show the effect of the nonlinear quadrupole interaction intrinsic to the NQR system. The quantum operations were implemented using a single-crystal sample of KClO3 and observing ^{35}Cl nuclei, which posses spin 3/2.
Generalized YORP evolution: Onset of tumbling and new asymptotic states
NASA Astrophysics Data System (ADS)
Vokrouhlický, D.; Breiter, S.; Nesvorný, D.; Bottke, W. F.
2007-11-01
Asteroids have a wide range of rotation states. While the majority spin a few times to several times each day in principal axis rotation, a small number spin so slowly that they have somehow managed to enter into a tumbling rotation state. Here we investigate whether the Yarkovsky-Radzievskii-O'Keefe-Paddack (YORP) thermal radiation effect could have produced these unusual spin states. To do this, we developed a Lie-Poisson integrator of the orbital and rotational motion of a model asteroid. Solar torques, YORP, and internal energy dissipation were included in our model. Using this code, we found that YORP can no longer drive the spin rates of bodies toward values infinitely close to zero. Instead, bodies losing too much rotation angular momentum fall into chaotic tumbling rotation states where the spin axis wanders randomly for some interval of time. Eventually, our model asteroids reach rotation states that approach regular motion of the spin axis in the body frame. An analytical model designed to describe this behavior does a good job of predicting how and when the onset of tumbling motion should take place. The question of whether a given asteroid will fall into a tumbling rotation state depends on the efficiency of its internal energy dissipation and on the precise way YORP modifies the spin rates of small bodies.
He, Pan; Zhang, Steven S. -L.; Zhu, Dapeng; ...
2018-02-05
Surface states of three-dimensional topological insulators exhibit the phenomenon of spin-momentum locking, whereby the orientation of an electron spin is determined by its momentum. Probing the spin texture of these states is of critical importance for the realization of topological insulator devices, but the main technique currently available is spin-and angle-resolved photoemission spectroscopy. Here in this paper we reveal a close link between the spin texture and a new kind of magnetoresistance, which depends on the relative orientation of the current with respect to the magnetic field as well as the crystallographic axes, and scales linearly with both the appliedmore » electric and magnetic fields. This bilinear magnetoelectric resistance can be used to map the spin texture of topological surface states by simple transport measurements. For a prototypical Bi 2Se 3 single layer, we can map both the in-plane and out-of-plane components of the spin texture (the latter arising from hexagonal warping). Theoretical calculations suggest that the bilinear magnetoelectric resistance originates from conversion of a non-equilibrium spin current into a charge current under application of the external magnetic field.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Pan; Zhang, Steven S. -L.; Zhu, Dapeng
Surface states of three-dimensional topological insulators exhibit the phenomenon of spin-momentum locking, whereby the orientation of an electron spin is determined by its momentum. Probing the spin texture of these states is of critical importance for the realization of topological insulator devices, but the main technique currently available is spin-and angle-resolved photoemission spectroscopy. Here in this paper we reveal a close link between the spin texture and a new kind of magnetoresistance, which depends on the relative orientation of the current with respect to the magnetic field as well as the crystallographic axes, and scales linearly with both the appliedmore » electric and magnetic fields. This bilinear magnetoelectric resistance can be used to map the spin texture of topological surface states by simple transport measurements. For a prototypical Bi 2Se 3 single layer, we can map both the in-plane and out-of-plane components of the spin texture (the latter arising from hexagonal warping). Theoretical calculations suggest that the bilinear magnetoelectric resistance originates from conversion of a non-equilibrium spin current into a charge current under application of the external magnetic field.« less
Bowman, Amanda C; Milsmann, Carsten; Bill, Eckhard; Turner, Zoë R; Lobkovsky, Emil; DeBeer, Serena; Wieghardt, Karl; Chirik, Paul J
2011-11-02
Three new N-alkyl substituted bis(imino)pyridine iron imide complexes, ((iPr)PDI)FeNR ((iPr)PDI = 2,6-(2,6-(i)Pr(2)-C(6)H(3)-N═CMe)(2)C(5)H(3)N; R = 1-adamantyl ((1)Ad), cyclooctyl ((Cy)Oct), and 2-adamantyl ((2)Ad)) were synthesized by addition of the appropriate alkyl azide to the iron bis(dinitrogen) complex, ((iPr)PDI)Fe(N(2))(2). SQUID magnetic measurements on the isomeric iron imides, ((iPr)PDI)FeN(1)Ad and ((iPr)PDI)FeN(2)Ad, established spin crossover behavior with the latter example having a more complete spin transition in the experimentally accessible temperature range. X-ray diffraction on all three alkyl-substituted bis(imino)pyridine iron imides established essentially planar compounds with relatively short Fe-N(imide) bond lengths and two-electron reduction of the redox-active bis(imino)pyridine chelate. Zero- and applied-field Mössbauer spectroscopic measurements indicate diamagnetic ground states at cryogenic temperatures and established low isomer shifts consistent with highly covalent molecules. For ((iPr)PDI)FeN(2)Ad, Mössbauer spectroscopy also supports spin crossover behavior and allowed extraction of thermodynamic parameters for the S = 0 to S = 1 transition. X-ray absorption spectroscopy and computational studies were also performed to explore the electronic structure of the bis(imino)pyridine alkyl-substituted imides. An electronic structure description with a low spin ferric center (S = 1/2) antiferromagnetically coupled to an imidyl radical (S(imide) = 1/2) and a closed-shell, dianionic bis(imino)pyridine chelate (S(PDI) = 0) is favored for the S = 0 state. An iron-centered spin transition to an intermediate spin ferric ion (S(Fe) = 3/2) accounts for the S = 1 state observed at higher temperatures. Other possibilities based on the computational and experimental data are also evaluated and compared to the electronic structure of the bis(imino)pyridine iron N-aryl imide counterparts.
Spin Foam Models of Quantum Gravity
NASA Astrophysics Data System (ADS)
Miković, A.
2005-03-01
We give a short review of the spin foam models of quantum gravity, with an emphasis on the Barret-Crane model. After explaining the shortcomings of the Barret-Crane model, we briefly discuss two new approaches, one based on the 3d spin foam state sum invariants for the embedded spin networks, and the other based on representing the string scattering amplitudes as 2d spin foam state sum invariants.
Nuclear Spin Locking and Extended Two-Electron Spin Decoherence Time in an InAs Quantum Dot Molecule
NASA Astrophysics Data System (ADS)
Chow, Colin; Ross, Aaron; Steel, Duncan; Sham, L. J.; Bracker, Allan; Gammon, Daniel
2015-03-01
The spin eigenstates for two electrons confined in a self-assembled InAs quantum dot molecule (QDM) consist of the spin singlet state, S, with J = 0 and the triplet states T-, T0 and T+, with J = 1. When a transverse magnetic field (Voigt geometry) is applied, the two-electron system can be initialized to the different states with appropriate laser excitation. Under the excitation of a weak probe laser, non-Lorentzian lineshapes are obtained when the system is initialized to either T- or T+, where T- results in a ``resonance locking'' lineshape while T+ gives a ``resonance avoiding '' lineshape: two different manifestations of hysteresis showing the importance of memory in the system. These observations signify dynamic nuclear spin polarization (DNSP) arising from a feedback mechanism involving hyperfine interaction between lattice nuclei and delocalized electron spins, and Overhauser shift due to nuclear spin polarization. Using pump configurations that generate coherent population trapping, the isolation of the electron spin from the optical excitation shows the stabilization of the nuclear spin ensemble. The dark-state lineshape measures the lengthened electron spin decoherence time, from 1 ns to 1 μs. Our detailed spectra highlight the potential of QDM for realizing a two-qubit gate. This work is supported by NSF, ARO, AFOSR, DARPA, and ONR.
Gaggioli, Carlo Alberto; Belpassi, Leonardo; Tarantelli, Francesco; Harvey, Jeremy N; Belanzoni, Paola
2018-04-06
A spin-forbidden chemical reaction involves a change in the total electronic spin state from reactants to products. The mechanistic study is challenging because such a reaction does not occur on a single diabatic potential energy surface (PES), but rather on two (or multiple) spin diabatic PESs. One possible approach is to calculate the so-called "minimum energy crossing point" (MECP) between the diabatic PESs, which however is not a stationary point. Inclusion of spin-orbit coupling between spin states (SOC approach) allows the reaction to occur on a single adiabatic PES, in which a transition state (TS SOC) as well as activation free energy can be calculated. This Concept article summarizes a previously published application in which, for the first time, the SOC effects, using spin-orbit ZORA Hamiltonian within density functional theory (DFT) framework, are included and account for the mechanism of a spin-forbidden reaction in gold chemistry. The merits of the MECP and TS SOC approaches and the accuracy of the results are compared, considering both our recent calculations on molecular oxygen addition to gold(I)-hydride complexes and new calculations for the prototype spin-forbidden N 2 O and N 2 Se dissociation reactions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mechanism of spin crossover in LaCoO3 resolved by shape magnetostriction in pulsed magnetic fields.
Rotter, M; Wang, Z-S; Boothroyd, A T; Prabhakaran, D; Tanaka, A; Doerr, M
2014-11-11
In the scientific description of unconventional transport properties of oxides (spin-dependent transport, superconductivity etc.), the spin-state degree of freedom plays a fundamental role. Because of this, temperature- or magnetic field-induced spin-state transitions are in the focus of solid-state physics. Cobaltites, e.g. LaCoO3, are prominent examples showing these spin transitions. However, the microscopic nature of the spontaneous spin crossover in LaCoO3 is still controversial. Here we report magnetostriction measurements on LaCoO3 in magnetic fields up to 70 T to study the sharp, field-induced transition at Hc ≈ 60 T. Measurements of both longitudinal and transversal magnetostriction allow us to separate magnetovolume and magnetodistortive changes. We find a large increase in volume, but only a very small increase in tetragonal distortion at Hc. The results, supported by electronic energy calculations by the configuration interaction cluster method, provide compelling evidence that above Hc LaCoO3 adopts a correlated low spin/high spin state.
Mechanism of spin crossover in LaCoO3 resolved by shape magnetostriction in pulsed magnetic fields
Rotter, M.; Wang, Z.-S.; Boothroyd, A. T.; Prabhakaran, D.; Tanaka, A.; Doerr, M.
2014-01-01
In the scientific description of unconventional transport properties of oxides (spin-dependent transport, superconductivity etc.), the spin-state degree of freedom plays a fundamental role. Because of this, temperature- or magnetic field-induced spin-state transitions are in the focus of solid-state physics. Cobaltites, e.g. LaCoO3, are prominent examples showing these spin transitions. However, the microscopic nature of the spontaneous spin crossover in LaCoO3 is still controversial. Here we report magnetostriction measurements on LaCoO3 in magnetic fields up to 70 T to study the sharp, field-induced transition at Hc ≈ 60 T. Measurements of both longitudinal and transversal magnetostriction allow us to separate magnetovolume and magnetodistortive changes. We find a large increase in volume, but only a very small increase in tetragonal distortion at Hc. The results, supported by electronic energy calculations by the configuration interaction cluster method, provide compelling evidence that above Hc LaCoO3 adopts a correlated low spin/high spin state. PMID:25384532
Mechanism of spin crossover in LaCoO3 resolved by shape magnetostriction in pulsed magnetic fields
NASA Astrophysics Data System (ADS)
Rotter, M.; Wang, Z.-S.; Boothroyd, A. T.; Prabhakaran, D.; Tanaka, A.; Doerr, M.
2014-11-01
In the scientific description of unconventional transport properties of oxides (spin-dependent transport, superconductivity etc.), the spin-state degree of freedom plays a fundamental role. Because of this, temperature- or magnetic field-induced spin-state transitions are in the focus of solid-state physics. Cobaltites, e.g. LaCoO3, are prominent examples showing these spin transitions. However, the microscopic nature of the spontaneous spin crossover in LaCoO3 is still controversial. Here we report magnetostriction measurements on LaCoO3 in magnetic fields up to 70 T to study the sharp, field-induced transition at Hc ~ 60 T. Measurements of both longitudinal and transversal magnetostriction allow us to separate magnetovolume and magnetodistortive changes. We find a large increase in volume, but only a very small increase in tetragonal distortion at Hc. The results, supported by electronic energy calculations by the configuration interaction cluster method, provide compelling evidence that above Hc LaCoO3 adopts a correlated low spin/high spin state.
All-optical coherent population trapping with defect spin ensembles in silicon carbide.
Zwier, Olger V; O'Shea, Danny; Onur, Alexander R; van der Wal, Caspar H
2015-06-05
Divacancy defects in silicon carbide have long-lived electronic spin states and sharp optical transitions. Because of the various polytypes of SiC, hundreds of unique divacancies exist, many with spin properties comparable to the nitrogen-vacancy center in diamond. If ensembles of such spins can be all-optically manipulated, they make compelling candidate systems for quantum-enhanced memory, communication, and sensing applications. We report here direct all-optical addressing of basal plane-oriented divacancy spins in 4H-SiC. By means of magneto-spectroscopy, we fully identify the spin triplet structure of both the ground and the excited state, and use this for tuning of transition dipole moments between particular spin levels. We also identify a role for relaxation via intersystem crossing. Building on these results, we demonstrate coherent population trapping -a key effect for quantum state transfer between spins and photons- for divacancy sub-ensembles along particular crystal axes. These results, combined with the flexibility of SiC polytypes and device processing, put SiC at the forefront of quantum information science in the solid state.
Fermionic spin liquid analysis of the paramagnetic state in volborthite
NASA Astrophysics Data System (ADS)
Chern, Li Ern; Schaffer, Robert; Sorn, Sopheak; Kim, Yong Baek
2017-10-01
Recently, thermal Hall effect has been observed in the paramagnetic state of volborthite, which consists of distorted kagome layers with S =1 /2 local moments. Despite the appearance of magnetic order below 1 K , the response to external magnetic field and unusual properties of the paramagnetic state above 1 K suggest possible realization of exotic quantum phases. Motivated by these discoveries, we investigate possible spin liquid phases with fermionic spinon excitations in a nonsymmorphic version of the kagome lattice, which belongs to the two-dimensional crystallographic group p 2 g g . This nonsymmorphic structure is consistent with the spin model obtained in the density functional theory calculation. Using projective symmetry group analysis and fermionic parton mean field theory, we identify twelve distinct Z2 spin liquid states, four of which are found to have correspondence in the eight Schwinger boson spin liquid states we classified earlier. We focus on the four fermionic states with bosonic counterpart and find that the spectrum of their corresponding root U (1 ) states features spinon Fermi surface. The existence of spinon Fermi surface in candidate spin liquid states may offer a possible explanation of the finite thermal Hall conductivity observed in volborthite.
Novoselova, Iuliia P; Petruhins, Andrejs; Wiedwald, Ulf; Ingason, Árni Sigurdur; Hase, Thomas; Magnus, Fridrik; Kapaklis, Vassilios; Palisaitis, Justinas; Spasova, Marina; Farle, Michael; Rosen, Johanna; Salikhov, Ruslan
2018-02-08
In 2013, a new class of inherently nanolaminated magnetic materials, the so called magnetic MAX phases, was discovered. Following predictive material stability calculations, the hexagonal Mn 2 GaC compound was synthesized as hetero-epitaxial films containing Mn as the exclusive M-element. Recent theoretical and experimental studies suggested a high magnetic ordering temperature and non-collinear antiferromagnetic (AFM) spin states as a result of competitive ferromagnetic and antiferromagnetic exchange interactions. In order to assess the potential for practical applications of Mn 2 GaC, we have studied the temperature-dependent magnetization, and the magnetoresistive, magnetostrictive as well as magnetocaloric properties of the compound. The material exhibits two magnetic phase transitions. The Néel temperature is T N ~ 507 K, at which the system changes from a collinear AFM state to the paramagnetic state. At T t = 214 K the material undergoes a first order magnetic phase transition from AFM at higher temperature to a non-collinear AFM spin structure. Both states show large uniaxial c-axis magnetostriction of 450 ppm. Remarkably, the magnetostriction changes sign, being compressive (negative) above T t and tensile (positive) below the T t . The sign change of the magnetostriction is accompanied by a sign change in the magnetoresistance indicating a coupling among the spin, lattice and electrical transport properties.
Spin polarized electronic states and spin textures at the surface of oxygen-deficient SrTiO3
NASA Astrophysics Data System (ADS)
Jeschke, Harald O.; Altmeyer, Michaela; Rozenberg, Marcelo; Gabay, Marc; Valenti, Roser
We investigate the electronic structure and spin texture at the (001) surface of SrTiO3 in the presence of oxygen vacancies by means of ab initio density functional theory (DFT) calculations of slabs. Relativistic non-magnetic DFT calculations exhibit Rashba-like spin winding with a characteristic energy scale ~ 10 meV. However, when surface magnetism on the Ti ions is included, bands become spin-split with an energy difference ~ 100 meV at the Γ point. This energy scale is comparable to the observations in SARPES experiments performed on the two-dimensional electronic states confined near the (001) surface of SrTiO3. We find the spin polarized state to be the ground state of the system, and while magnetism tends to suppress the effects of the relativistic Rashba interaction, signatures of it are still clearly visible in terms of complex spin textures. We gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft through grants SFB/TR 49 and FOR 1346.
Holon Wigner Crystal in a Lightly Doped Kagome Quantum Spin Liquid
Jiang, Hong -Chen; Devereaux, T.; Kivelson, S. A.
2017-08-07
We address the problem of a lightly doped spin liquid through a large-scale density-matrix renormalization group study of the t–J model on a kagome lattice with a small but nonzero concentration δ of doped holes. It is now widely accepted that the undoped (δ = 0) spin-1/2 Heisenberg antiferromagnet has a spin-liquid ground state. Theoretical arguments have been presented that light doping of such a spin liquid could give rise to a high temperature superconductor or an exotic topological Fermi liquid metal. Instead, we infer that the doped holes form an insulating charge-density wave state with one doped hole permore » unit cell, i.e., a Wigner crystal. Spin correlations remain short ranged, as in the spin-liquid parent state, from which we infer that the state is a crystal of spinless holons, rather than of holes. In conclusion, our results may be relevant to kagome lattice herbertsmithite upon doping.« less
Upper Bounds on r-Mode Amplitudes from Observations of Low-Mass X-Ray Binary Neutron Stars
NASA Technical Reports Server (NTRS)
Mahmoodifar, Simin; Strohmayer, Tod
2013-01-01
We present upper limits on the amplitude of r-mode oscillations and gravitational-radiation-induced spin-down rates in low-mass X-ray binary neutron stars, under the assumption that the quiescent neutron star luminosity is powered by dissipation from a steady-state r-mode. For masses <2M solar mass we find dimensionless r-mode amplitudes in the range from about 1×10(exp-8) to 1.5×10(exp-6). For the accreting millisecond X-ray pulsar sources with known quiescent spin-down rates, these limits suggest that approx. less than 1% of the observed rate can be due to an unstable r-mode. Interestingly, the source with the highest amplitude limit, NGC 6440, could have an r-mode spin-down rate comparable to the observed, quiescent rate for SAX J1808-3658. Thus, quiescent spin-down measurements for this source would be particularly interesting. For all sources considered here, our amplitude limits suggest that gravitational wave signals are likely too weak for detection with Advanced LIGO. Our highest mass model (2.21M solar mass) can support enhanced, direct Urca neutrino emission in the core and thus can have higher r-mode amplitudes. Indeed, the inferred r-mode spin-down rates at these higher amplitudes are inconsistent with the observed spin-down rates for some of the sources, such as IGR J00291+5934 and XTE J1751-305. In the absence of other significant sources of internal heat, these results could be used to place an upper limit on the masses of these sources if they were made of hadronic matter, or alternatively it could be used to probe the existence of exotic matter in them if their masses were known.
In-Beam Studies of High Spin States in Mercury -182 and MERCURY-184
NASA Astrophysics Data System (ADS)
Bindra, Kanwarjit Singh
The high spin states in ^{182 }Hg were studied by using the reaction ^{154}Gd(^{32}S, 4n) at the Holifield Heavy Ion Research Facility. In addition, the in-beam gamma-rays in ^{183}Hg were identified for the first time using the reaction ^{155}Gd(^{32}S, 4n) at the Argonne BGO-FMA facility. Five new bands were observed for the first time in ^{182}Hg by studying the gamma-gamma coincidence relationships. The spins and parities of the nuclear levels were assigned on the basis of the measured ratios of directional correlations for oriented nuclei (DCO ratios). Shape co-existence similar to that observed in ^{184{-}186}Hg was established. The well deformed prolate band was extended to a state with tentative spin (20^+). The 2^+ state of the prolate band was identified at an energy of 548.6 keV which is higher in energy than in ^{184}Hg. A two parameter band mixing calculation yielded an interaction strength of 87 keV between the prolate 2^+ and the oblate 2^+ states. Four of the five new bands were found to be similar in behavior to ones seen in ^{184}Hg. An attempt was made to study the behavior of some of these bands at high spins by analyzing their kinematic and dynamic moments of inertia. The gamma-ray transitions in ^{183}Hg were identified from fragment-gamma and gamma-gamma coincidence measurements. A total of five bands of levels were identified and the spins and parities of the levels were assigned by comparing the level scheme of ^{138 }Hg obtained with that of ^ {185}Hg established previously. The interpretation of these bands in terms of associated quasi-particle configurations also relies on noted similarities with the structure of ^{185}Hg. Shape co-existence was established in ^{183}Hg as a result of this study. Two of the bands associated with the (624) 9/2^+ orbital were found to exhibit signature splitting, as expected for i _{13/2} excitations built on the prolate shape with moderate deformation. Two other bands which do not show signature splitting have been associated with the (514) 7/2- orbital and the gamma-ray transition energies in these bands were found to be "identical" to those present in bands with the same configuration in ^{185 }Hg.
Okuma, Nobuyuki
2017-09-08
We generalize the concept of the spin-momentum locking to magnonic systems and derive the formula to calculate the spin expectation value for one-magnon states of general two-body spin Hamiltonians. We give no-go conditions for magnon spin to be independent of momentum. As examples of the magnon spin-momentum locking, we analyze a one-dimensional antiferromagnet with the Néel order and two-dimensional kagome lattice antiferromagnets with the 120° structure. We find that the magnon spin depends on its momentum even when the Hamiltonian has the z-axis spin rotational symmetry, which can be explained in the context of a singular band point or a U(1) symmetry breaking. A spin vortex in momentum space generated in a kagome lattice antiferromagnet has the winding number Q=-2, while the typical one observed in topological insulator surface states is characterized by Q=+1. A magnonic analogue of the surface states, the Dirac magnon with Q=+1, is found in another kagome lattice antiferromagnet. We also derive the sum rule for Q by using the Poincaré-Hopf index theorem.
NASA Astrophysics Data System (ADS)
Okuma, Nobuyuki
2017-09-01
We generalize the concept of the spin-momentum locking to magnonic systems and derive the formula to calculate the spin expectation value for one-magnon states of general two-body spin Hamiltonians. We give no-go conditions for magnon spin to be independent of momentum. As examples of the magnon spin-momentum locking, we analyze a one-dimensional antiferromagnet with the Néel order and two-dimensional kagome lattice antiferromagnets with the 120° structure. We find that the magnon spin depends on its momentum even when the Hamiltonian has the z -axis spin rotational symmetry, which can be explained in the context of a singular band point or a U (1 ) symmetry breaking. A spin vortex in momentum space generated in a kagome lattice antiferromagnet has the winding number Q =-2 , while the typical one observed in topological insulator surface states is characterized by Q =+1 . A magnonic analogue of the surface states, the Dirac magnon with Q =+1 , is found in another kagome lattice antiferromagnet. We also derive the sum rule for Q by using the Poincaré-Hopf index theorem.
Parametric excitation and squeezing in a many-body spinor condensate
Hoang, T. M.; Anquez, M.; Robbins, B. A.; Yang, X. Y.; Land, B. J.; Hamley, C. D.; Chapman, M. S.
2016-01-01
Atomic spins are usually manipulated using radio frequency or microwave fields to excite Rabi oscillations between different spin states. These are single-particle quantum control techniques that perform ideally with individual particles or non-interacting ensembles. In many-body systems, inter-particle interactions are unavoidable; however, interactions can be used to realize new control schemes unique to interacting systems. Here we demonstrate a many-body control scheme to coherently excite and control the quantum spin states of an atomic Bose gas that realizes parametric excitation of many-body collective spin states by time varying the relative strength of the Zeeman and spin-dependent collisional interaction energies at multiples of the natural frequency of the system. Although parametric excitation of a classical system is ineffective from the ground state, we show that in our experiment, parametric excitation from the quantum ground state leads to the generation of quantum squeezed states. PMID:27044675
Direct measurement of nonlocal entanglement of two-qubit spin quantum states.
Cheng, Liu-Yong; Yang, Guo-Hui; Guo, Qi; Wang, Hong-Fu; Zhang, Shou
2016-01-18
We propose efficient schemes of direct concurrence measurement for two-qubit spin and photon-polarization entangled states via the interaction between single-photon pulses and nitrogen-vacancy (NV) centers in diamond embedded in optical microcavities. For different entangled-state types, diversified quantum devices and operations are designed accordingly. The initial unknown entangled states are possessed by two spatially separated participants, and nonlocal spin (polarization) entanglement can be measured with the aid of detection probabilities of photon (NV center) states. This non-demolition entanglement measurement manner makes initial entangled particle-pair avoid complete annihilation but evolve into corresponding maximally entangled states. Moreover, joint inter-qubit operation or global qubit readout is not required for the presented schemes and the final analyses inform favorable performance under the current parameters conditions in laboratory. The unique advantages of spin qubits assure our schemes wide potential applications in spin-based solid quantum information and computation.
Parametric excitation and squeezing in a many-body spinor condensate
NASA Astrophysics Data System (ADS)
Hoang, T. M.; Anquez, M.; Robbins, B. A.; Yang, X. Y.; Land, B. J.; Hamley, C. D.; Chapman, M. S.
2016-04-01
Atomic spins are usually manipulated using radio frequency or microwave fields to excite Rabi oscillations between different spin states. These are single-particle quantum control techniques that perform ideally with individual particles or non-interacting ensembles. In many-body systems, inter-particle interactions are unavoidable; however, interactions can be used to realize new control schemes unique to interacting systems. Here we demonstrate a many-body control scheme to coherently excite and control the quantum spin states of an atomic Bose gas that realizes parametric excitation of many-body collective spin states by time varying the relative strength of the Zeeman and spin-dependent collisional interaction energies at multiples of the natural frequency of the system. Although parametric excitation of a classical system is ineffective from the ground state, we show that in our experiment, parametric excitation from the quantum ground state leads to the generation of quantum squeezed states.
Spin polarization transfer by the radical pair mechanism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zarea, Mehdi, E-mail: m-zarea@northwestern.edu; Ratner, Mark A.; Wasielewski, Michael R.
2015-08-07
In a three-site representation, we study a spin polarization transfer from radical pair spins to a nearby electron or nuclear spin. The quantum dynamics of the radical pair spins is governed by a constant exchange interaction between the radical pair spins which have different Zeeman frequencies. Radical pair spins can recombine to the singlet ground state or to lower energy triplet states. It is then shown that the coherent dynamics of the radical pair induces spin polarization on the nearby third spin in the presence of a magnetic field. The spin polarization transfer depends on the difference between Zeeman frequencies,more » the singlet and triplet recombination rates, and on the exchange and dipole-dipole interactions between the different spins. In particular, the sign of the polarization depends on the exchange coupling between radical pair spins and also on the difference between singlet and triplet recombination rate constants.« less
NASA Astrophysics Data System (ADS)
Wang, Zhifan; Wang, Fan
2018-04-01
The equation-of-motion coupled-cluster method for ionised states at the singles and doubles level (EOM-IP-CCSD) with spin-orbit coupling (SOC) included in post-Hartree-Fock (HF) steps is extended to spatially non-degenerate open-shell systems such as high spin states of s1, p3, σ1 or π2 configuration in this work. Pseudopotentials are employed to treat relativistic effects and spin-unrestricted scalar relativistic HF determinant is adopted as reference in calculations. Symmetry is not exploited in the implementation since both time-reversal and spatial symmetry is broken due to SOC. IPs with the EOM-IP-CCSD approach are those from the 3Σ1- states for high spin state of π2 configuration, while the ground state is the 3Σ0- state. When removing an electron from the high spin state of p3 configuration, only the 3P2 state can be reached. The open-shell EOM-IP-CCSD approach with SOC was employed in calculating IPs of some open-shell atoms with s1 configuration, diatomic molecules with π2 configuration and SOC splitting of the ionised π1 state, as well as IPs of VA atoms with p3 configuration. Our results demonstrate that this approach can be applied to ionised states of spatially non-degenerate open-shell states containing heavy elements with reasonable accuracy.
Iron monocyanide (FeCN): Spin-orbit and vibronic interactions in low-lying electronic states
NASA Astrophysics Data System (ADS)
Jerosimić, Stanka V.; Milovanović, Milan Z.
2018-04-01
The spin-orbit eigenvalues of low-energy quartet and sextet spatially degenerate electronic states of FeCN are reported, together with the combined effect of vibronic and spin-orbit interaction in the lowest-lying 14Δ and 16Δ states of FeCN, by using perturbational and variational method. Spin-orbit constants (ASO) have been calculated in the basis of: (a) two components of each degenerate state, (b) four components of 14Δ and 14Π (16Δ and 16Π) states, and (c) ten components of 16Δ, 16Π, 16Σ+, 14Δ, 14Π, and 14Σ+ states. The present calculations predict the values of ASO= -77 cm-1 for 16Δ and ASO= -108 cm-1 for 14Δ state in the lowest-energy spin-orbit manifolds of each state. The major perturbing state for the 14Δ state is the 14Π state (16Π for the sextet 16Δ). As expected, based on extremely small splitting and shallowness of the bending potential energy curves for the lowest-lying 4,6Δ states, the present study indicate that the vibronic coupling does not create significant splitting of the bending levels, but the influence of anharmonicity in the bending mode is more pronounced. However, the spin-orbit fine structure dominantly influences the spectra of this species.
NASA Astrophysics Data System (ADS)
Nochi, Kazuki; Kawanai, Taichi; Sasaki, Shoichi
2018-03-01
The quark potential models with an energy-independent central potential have been successful for understanding the conventional charmonium states especially below the open charm threshold. As one might consider, however, the interquark potential is in general energy-dependent, and its tendency gets stronger in higher lying states. Confirmation of whether the interquark potential is energy-independent is also important to verify the validity of the quark potential models. In this talk, we examine the energy dependence of the charmonium potential, which can be determined from the Bethe-Salpeter (BS) amplitudes of cc̅ mesons in lattice QCD.We first calculate the BS amplitudes of radially excited charmonium states, the ηc(2S) and ψ(2S) states, using the variational method and then determine both the quark kinetic mass and the charmonium potential within the HAL QCD method. Through a direct comparison of charmonium potentials determined from both the 1S and 2S states, we confirm that neither the central nor spin-spin potential shows visible energy dependence at least up to 2S state.
Habib, K M Masum; Sajjad, Redwan N; Ghosh, Avik W
2015-05-01
We show that the interplay between chiral tunneling and spin-momentum locking of helical surface states leads to spin amplification and filtering in a 3D topological insulator (TI). Our calculations show that the chiral tunneling across a TI pn junction allows normally incident electrons to transmit, while the rest are reflected with their spins flipped due to spin-momentum locking. The net result is that the spin current is enhanced while the dissipative charge current is simultaneously suppressed, leading to an extremely large, gate-tunable spin-to-charge current ratio (∼20) at the reflected end. At the transmitted end, the ratio stays close to 1 and the electrons are completely spin polarized.
Density-matrix description of heteronuclear decoupling in A mX n systems
NASA Astrophysics Data System (ADS)
McClung, R. E. D.; John, Boban K.
A detailed investigation of the effects of ordinary noise decoupling and spherical randomization decoupling on the elements of the density matrix for A mX n spin systems is presented. The elements are shown to reach steady-state values in the rotating frame of the decoupled nuclei when the decoupling field is strong and is applied for a sufficient time interval. The steady-state values are found to be linear combinations of the density-matrix elements at the beginning of the decoupling period, and often involve mixing of populations with multiple-quantum coherences, and mixing of the perpendicular components of the magnetization with higher coherences. This description of decoupling is shown to account for the "illusions" of spin decoupling in 2D gated-decoupler 13C J-resolved spectra reported by Levitt et al.
Insulating and metallic spin glass in Ni-doped K x Fe 2 - y Se 2 single crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, Hyejin; Abeykoon, Milinda; Wang, Kefeng
2015-05-01
Here in this paper, we report electron doping effects by Ni in K xFe 2- δ-y Ni ySe 2 (0.06 ≤ y ≤ 1.44) single-crystal alloys. A rich ground-state phase diagram is observed. A small amount of Ni (~4 %) suppressed superconductivity below 1.8 K, inducing insulating spin-glass magnetic ground state for higher Ni content. With further Ni substitution, metallic resistivity is restored. For high Ni concentration in the lattice the unit cell symmetry is high symmetry I4/mmm with no phase separation whereas both I4 / m + I4/mmm space groups were detected in the phase separated crystals when concentrationmore » of Ni< Fe. The absence of superconductivity coincides with the absence of crystalline Fe vacancy order.« less
Five different types of spontaneous emission simultaneously observed in Tm 2+ doped CsCaBr 3
NASA Astrophysics Data System (ADS)
Grimm, Judith; Güdel, Hans U.
2005-03-01
CsCaBr 3 doped with 1% Tm 2+ exhibits a rich emission spectrum at 10 K. Five emission bands are identified and characterised: a sharp and long-lived 4f-4f emission at 8796 cm -1. Broad 5d-4f emission bands from the lowest energy (5d) 1(4f) 12 configurations to the groundstate at 13 640 cm -1 ('spin-allowed') and 12 240 cm -1 ('spin-forbidden'). Two broad emission bands from a higher-energy f-d state, one centered at 19 115 cm -1 to the 2F 7/2 groundstate and the other one at 10 400 cm -1 to the first excited 2F 5/2 state. The transitions are identified and the competition between radiative and nonradiative processes characterised from lifetime and temperature dependent measurements.
NASA Astrophysics Data System (ADS)
Sakhraoui, T.; Said, M.
2017-12-01
The electronic, magnetic and transport properties of oxygen or magnesium vacancies at the FeRh/MgO/FeRh (0 0 1) magnetic tunnel junction are studied within first principles. Configurations with one O or Mg vacancy per C(2 × 2) surface unit cell, which is located in the MgO interfacial layers, are investigated. We observed that the O and Mg vacancies defect have a very little influence on the magnetic state of the spacer. Very interestingly, the Fe atoms exhibit an enhanced magnetic moment in the case of Mg-vacancy, this latter was found to decrease in the case of O-vacancy. The variations in the spin polarization and magnetic moment values for Fe and Rh atoms at the interface were found to be larger in presence of Mg vacancy. An analysis of the charge densities of our systems was also performed; large variations in the Mg-vacancy system were observed. This affects more the t2g states of the interfacial Fe atom. Moreover, we present an ab initio calculated transmission and I-V characteristics for FeRh/MgO/FeRh (0 0 1) magnetic tunnel junction and we compare results to those of O and Mg-vacancy at the interface using the TRANSIESTA code, which combines the DFT electronic structure calculations with the non-equilibrium Green function formalism (NEGF) for transport properties. The results show that the zero-bias minority spin transmission is much larger than the majority spin transmission for all structures. In all systems and for all magnetic configurations, minority spin currents are higher than majority spin ones, this means that transport properties are, mainly, determined by minority spin channel.
NASA Astrophysics Data System (ADS)
Zhang, Wenyan; Gao, Wei; Zhang, Xuqiang; Li, Zhen; Lu, Gongxuan
2018-03-01
Hydrogen is a green energy carrier with high enthalpy and zero environmental pollution emission characteristics. Photocatalytic hydrogen evolution (HER) is a sustainable and promising way to generate hydrogen. Despite of great achievements in photocatalytic HER research, its efficiency is still limited due to undesirable electron transfer loss, high HER over-potential and low stability of some photocatalysts, which lead to their unsatisfied performance in HER and anti-photocorrosion properties. In recent years, many spintronics works have shown their enhancing effects on photo-catalytic HER. For example, it was reported that spin polarized photo-electrons could result in higher photocurrents and HER turn-over frequency (up to 200%) in photocatalytic system. Two strategies have been developed for electron spin polarizing, which resort to heavy atom effect and magnetic induction respectively. Both theoretical and experimental studies show that controlling spin state of OHrad radicals in photocatalytic reaction can not only decrease OER over-potential (even to 0 eV) of water splitting, but improve stability and charge lifetime of photocatalysts. A convenient strategy have been developed for aligning spin state of OHrad by utilizing chiral molecules to spin filter photo-electrons. By chiral-induced spin filtering, electron polarization can approach to 74%, which is significantly larger than some traditional transition metal devices. Those achievements demonstrate bright future of spintronics in enhancing photocatalytic HER, nevertheless, there is little work systematically reviewing and analysis this topic. This review focuses on recent achievements of spintronics in photocatalytic HER study, and systematically summarizes the related mechanisms and important strategies proposed. Besides, the challenges and developing trends of spintronics enhanced photo-catalytic HER research are discussed, expecting to comprehend and explore such interdisciplinary research in photocatalytic HER.
Tsujimoto, Yoshihiro; Nakano, Satoshi; Ishimatsu, Naoki; Mizumaki, Masaichiro; Kawamura, Naomi; Kawakami, Takateru; Matsushita, Yoshitaka; Yamaura, Kazunari
2016-01-01
We report a novel pressure-driven spin crossover in layered cobalt oxyfluoride Sr2CoO3F with a distorted CoO5 square pyramid loosely bound with a fluoride ion. Upon increasing pressure, the spin state of the Co(III) cation gradually changes from a high spin state (S = 2) to a low spin state (S = 0) accompanied by a anomalously large volume contraction (bulk modulus, 76.8(5) GPa). The spin state change occurs on the CoO5 pyramid in a wide pressure range, but the concomitant gradual shrinkage of the Co–F bond length with pressure gives rise to a polyhedral transformation to the CoO5F octahedron without a structural phase transition, leading to the full conversion to the LS state at 12 GPa. The present results provide new effective strategy to fine-tune electronic properties of mixed anion systems by controlling the covalency in metal-ligand bonds under pressure. PMID:27805031
MacQuarrie, E. R.; Otten, M.; Gray, S. K.; ...
2017-02-06
Cooling a mechanical resonator mode to a sub-thermal state has been a long-standing challenge in physics. This pursuit has recently found traction in the field of optomechanics in which a mechanical mode is coupled to an optical cavity. An alternate method is to couple the resonator to a well-controlled two-level system. Here we propose a protocol to dissipatively cool a room temperature mechanical resonator using a nitrogen-vacancy centre ensemble. The spin ensemble is coupled to the resonator through its orbitally-averaged excited state, which has a spin-strain interaction that has not been previously studied. We experimentally demonstrate that the spin-strain couplingmore » in the excited state is 13.5 ± 0.5 times stronger than the ground state spin-strain coupling. Lastly, we then theoretically show that this interaction, combined with a high-density spin ensemble, enables the cooling of a mechanical resonator from room temperature to a fraction of its thermal phonon occupancy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacQuarrie, E. R.; Otten, M.; Gray, S. K.
Cooling a mechanical resonator mode to a sub-thermal state has been a long-standing challenge in physics. This pursuit has recently found traction in the field of optomechanics in which a mechanical mode is coupled to an optical cavity. An alternate method is to couple the resonator to a well-controlled two-level system. Here we propose a protocol to dissipatively cool a room temperature mechanical resonator using a nitrogen-vacancy centre ensemble. The spin ensemble is coupled to the resonator through its orbitally-averaged excited state, which has a spin-strain interaction that has not been previously studied. We experimentally demonstrate that the spin-strain couplingmore » in the excited state is 13.5 ± 0.5 times stronger than the ground state spin-strain coupling. Lastly, we then theoretically show that this interaction, combined with a high-density spin ensemble, enables the cooling of a mechanical resonator from room temperature to a fraction of its thermal phonon occupancy.« less
Structure of 52 132Te80: The two-particle and two-hole spectrum of 50 132Sn82
NASA Astrophysics Data System (ADS)
Biswas, S.; Palit, R.; Navin, A.; Rejmund, M.; Bisoi, A.; Sarkar, M. Saha; Sarkar, S.; Bhattacharyya, S.; Biswas, D. C.; Caamaño, M.; Carpenter, M. P.; Choudhury, D.; Clément, E.; Danu, L. S.; Delaune, O.; Farget, F.; de France, G.; Hota, S. S.; Jacquot, B.; Lemasson, A.; Mukhopadhyay, S.; Nanal, V.; Pillay, R. G.; Saha, S.; Sethi, J.; Singh, Purnima; Srivastava, P. C.; Tandel, S. K.
2016-03-01
High-spin states in 132Te, an isotope with two proton particles and two neutron holes outside of the 132Sn doubly magic core, have been extended up to an excitation energy of 6.17 MeV. The prompt-delayed coincidence technique has been used to correlate states above the T1 /2=3.70 (9 ) μ s isomer in 132Te to the lower states using 232Th(7Li,f ) at 5.4 MeV/u and the Indian National Gamma Array (INGA). With 9Be(238U,f ) at 6.2 MeV/u and EXOGAM γ -array coupled with the VAMOS++ spectrometer, the level scheme was extended to higher excitation energies. The high-spin positive-parity states, above Jπ=10+ , in 132Te are expected to arise from the alignment of the particles in the high-j orbitals lying close to the Fermi surface, the π g7/2 2 , and the ν h11/2 -2 configurations. The experimental level scheme has been compared with the large scale shell model calculations. A reduction in the p -n interaction strength resulted in an improved agreement with the measurements up to the spin of 15 ℏ . In contrast, the comparison of the differences between the experiment and these calculations for the N =76 ,78 isotones of Te and Sn shows the increasing disagreement as a function of spin, where the magnitude is larger in Te than in Sn. This behavior could possibly be attributed to the deficiencies in the p -n correlations, in addition to the n -n correlations in Sn.
Enhanced spin pumping into superconductors provides evidence for superconducting pure spin currents
NASA Astrophysics Data System (ADS)
Jeon, Kun-Rok; Ciccarelli, Chiara; Ferguson, Andrew J.; Kurebayashi, Hidekazu; Cohen, Lesley F.; Montiel, Xavier; Eschrig, Matthias; Robinson, Jason W. A.; Blamire, Mark G.
2018-06-01
Unlike conventional spin-singlet Cooper pairs, spin-triplet pairs can carry spin1,2. Triplet supercurrents were discovered in Josephson junctions with metallic ferromagnet spacers, where spin transport can occur only within the ferromagnet and in conjunction with a charge current. Ferromagnetic resonance injects a pure spin current from a precessing ferromagnet into adjacent non-magnetic materials3,4. For spin-singlet pairing, the ferromagnetic resonance spin pumping efficiency decreases below the critical temperature (Tc) of a coupled superconductor5,6. Here we present ferromagnetic resonance experiments in which spin sink layers with strong spin-orbit coupling are added to the superconductor. Our results show that the induced spin currents, rather than being suppressed, are substantially larger in the superconducting state compared with the normal state; although further work is required to establish the details of the spin transport process, we show that this cannot be mediated by quasiparticles and is most likely a triplet pure spin supercurrent.
Bending strain engineering in quantum spin hall system for controlling spin currents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Bing; Jin, Kyung-Hwan; Cui, Bin
Quantum spin Hall system can exhibit exotic spin transport phenomena, mediated by its topological edge states. The concept of bending strain engineering to tune the spin transport properties of a quantum spin Hall system is demonstrated. Here, we show that bending strain can be used to control the spin orientation of counter-propagating edge states of a quantum spin system to generate a non-zero spin current. This physics mechanism can be applied to effectively tune the spin current and pure spin current decoupled from charge current in a quantum spin Hall system by control of its bending curvature. Moreover, the curvedmore » quantum spin Hall system can be achieved by the concept of topological nanomechanical architecture in a controllable way, as demonstrated by the material example of Bi/Cl/Si(111) nanofilm. This concept of bending strain engineering of spins via topological nanomechanical architecture affords a promising route towards the realization of topological nano-mechanospintronics.« less
Bending strain engineering in quantum spin hall system for controlling spin currents
Huang, Bing; Jin, Kyung-Hwan; Cui, Bin; ...
2017-06-16
Quantum spin Hall system can exhibit exotic spin transport phenomena, mediated by its topological edge states. The concept of bending strain engineering to tune the spin transport properties of a quantum spin Hall system is demonstrated. Here, we show that bending strain can be used to control the spin orientation of counter-propagating edge states of a quantum spin system to generate a non-zero spin current. This physics mechanism can be applied to effectively tune the spin current and pure spin current decoupled from charge current in a quantum spin Hall system by control of its bending curvature. Moreover, the curvedmore » quantum spin Hall system can be achieved by the concept of topological nanomechanical architecture in a controllable way, as demonstrated by the material example of Bi/Cl/Si(111) nanofilm. This concept of bending strain engineering of spins via topological nanomechanical architecture affords a promising route towards the realization of topological nano-mechanospintronics.« less
Selective Equilibration of Spin-Polarized Quantum Hall Edge States in Graphene
NASA Astrophysics Data System (ADS)
Amet, F.; Williams, J. R.; Watanabe, K.; Taniguchi, T.; Goldhaber-Gordon, D.
2014-05-01
We report on transport measurements of dual-gated, single-layer graphene devices in the quantum Hall regime, allowing for independent control of the filling factors in adjoining regions. Progress in device quality allows us to study scattering between edge states when the fourfold degeneracy of the Landau level is lifted by electron correlations, causing edge states to be spin and/or valley polarized. In this new regime, we observe a dramatic departure from the equilibration seen in more disordered devices: edge states with opposite spins propagate without mixing. As a result, the degree of equilibration inferred from transport can reveal the spin polarization of the ground state at each filling factor. In particular, the first Landau level is shown to be spin polarized at half filling, providing an independent confirmation of a conclusion of Young et al. [Nat. Phys. 8, 550 (2012)]. The conductance in the bipolar regime is strongly suppressed, indicating that copropagating edge states, even with the same spin, do not equilibrate along PN interfaces. We attribute this behavior to the formation of an insulating ν =0 stripe at the PN interface.
Direct measurement of the low temperature spin state transitions in La1-xSrxCoO3 (0.05 < x < 0.3)
NASA Astrophysics Data System (ADS)
Gulec, A.; Klie, R. F.
2014-12-01
Sr-doped LaCoO3 has a complex magnetic phase diagram, which is believed to be directly correlated to changes in the crystal structure and ordering of the Co3+ spin states. In this work, we study the low temperature Co3+-ion spin state transitions in Sr-doped LaCoO3 around the critical doping concentration where a metal to insulator transition has been observed using electron energy-loss spectroscopy of the O K-edge combined with the Co L-edge fine structure. We measure the local spin state of the Co3+-ions and we demonstrate that the Co3+ spin-state transition only occurs in La0.95Sr0.05CoO3 single-crystal materials in the temperature range accessible by LN2 in-situ cooling, while no structural symmetry change is observed. The presence of this low-temperature spin-state transition in La1-xSrxCoO3 (x < 0.17) has been proposed as the origin of the percolative magnetic ordering in doped LaCoO3.
Quantum entanglement at ambient conditions in a macroscopic solid-state spin ensemble.
Klimov, Paul V; Falk, Abram L; Christle, David J; Dobrovitski, Viatcheslav V; Awschalom, David D
2015-11-01
Entanglement is a key resource for quantum computers, quantum-communication networks, and high-precision sensors. Macroscopic spin ensembles have been historically important in the development of quantum algorithms for these prospective technologies and remain strong candidates for implementing them today. This strength derives from their long-lived quantum coherence, strong signal, and ability to couple collectively to external degrees of freedom. Nonetheless, preparing ensembles of genuinely entangled spin states has required high magnetic fields and cryogenic temperatures or photochemical reactions. We demonstrate that entanglement can be realized in solid-state spin ensembles at ambient conditions. We use hybrid registers comprising of electron-nuclear spin pairs that are localized at color-center defects in a commercial SiC wafer. We optically initialize 10(3) identical registers in a 40-μm(3) volume (with [Formula: see text] fidelity) and deterministically prepare them into the maximally entangled Bell states (with 0.88 ± 0.07 fidelity). To verify entanglement, we develop a register-specific quantum-state tomography protocol. The entanglement of a macroscopic solid-state spin ensemble at ambient conditions represents an important step toward practical quantum technology.
Entanglement in a solid-state spin ensemble.
Simmons, Stephanie; Brown, Richard M; Riemann, Helge; Abrosimov, Nikolai V; Becker, Peter; Pohl, Hans-Joachim; Thewalt, Mike L W; Itoh, Kohei M; Morton, John J L
2011-02-03
Entanglement is the quintessential quantum phenomenon. It is a necessary ingredient in most emerging quantum technologies, including quantum repeaters, quantum information processing and the strongest forms of quantum cryptography. Spin ensembles, such as those used in liquid-state nuclear magnetic resonance, have been important for the development of quantum control methods. However, these demonstrations contain no entanglement and ultimately constitute classical simulations of quantum algorithms. Here we report the on-demand generation of entanglement between an ensemble of electron and nuclear spins in isotopically engineered, phosphorus-doped silicon. We combined high-field (3.4 T), low-temperature (2.9 K) electron spin resonance with hyperpolarization of the (31)P nuclear spin to obtain an initial state of sufficient purity to create a non-classical, inseparable state. The state was verified using density matrix tomography based on geometric phase gates, and had a fidelity of 98% relative to the ideal state at this field and temperature. The entanglement operation was performed simultaneously, with high fidelity, on 10(10) spin pairs; this fulfils one of the essential requirements for a silicon-based quantum information processor.
Electrodynamics in cylindrical symmetry in the magnetic plasma state
NASA Astrophysics Data System (ADS)
López-Bara, F. I.; López-Aguilar, F.
2018-05-01
Excited states in magnetic structures of the so-called spin-ices and in some artificial magnetic materials present a behaviour as being a magnetic neutral plasma. In this state the electromagnetic waves in confined systems (waveguides) filled with materials with magnetic charges are able to transmit information and energy. In the natural spin-ices, the difficulty is the very low temperature for which these magnetic entities appear, whose phenomenology under the electromagnetic interaction is that of solids containing magnetic charges. However, similar behaviour may be present in other compounds at higher temperatures, even at room temperature and they are named artificial spin-ice compounds. This analysis is addressed to obtain theoretical results about magnetic responses and frequency-dependent magnetricity. The key physical magnitudes are the plasmon frequency () which is related to the cut-off frequency in a wave guide and the effective inertial masses () of these magnetic charges. All properties of the electromagnetic propagation in these compounds with effective magnetic monopoles depend on and m. This is carried out including the dissipative forces among magnetic charges which give new characteristic features to the electromagnetic propagation. The main goal of this work is the analysis of these electromagnetic properties in order to find possible circuital applications of these materials to be utilized by devices.
Photo-modulation of the spin Hall conductivity of mono-layer transition metal dichalcogenides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, Parijat; Bellotti, Enrico
2016-05-23
We report on a possible optical tuning of the spin Hall conductivity in mono-layer transition metal dichalcogenides. Light beams of frequencies much higher than the energy scale of the system (the off-resonant condition) do not excite electrons but rearrange the band structure. The rearrangement is quantitatively established using the Floquet formalism. For such a system of mono-layer transition metal dichalcogenides, the spin Hall conductivity (calculated with the Kubo expression in presence of disorder) exhibits a drop at higher frequencies and lower intensities. Finally, we compare the spin Hall conductivity of the higher spin-orbit coupled WSe{sub 2} to MoS{sub 2}; themore » spin Hall conductivity of WSe{sub 2} was found to be larger.« less
Competing Spin Liquids and Hidden Spin-Nematic Order in Spin Ice with Frustrated Transverse Exchange
NASA Astrophysics Data System (ADS)
Taillefumier, Mathieu; Benton, Owen; Yan, Han; Jaubert, L. D. C.; Shannon, Nic
2017-10-01
Frustration in magnetic interactions can give rise to disordered ground states with subtle and beautiful properties. The spin ices Ho2 Ti2 O7 and Dy2 Ti2 O7 exemplify this phenomenon, displaying a classical spin-liquid state, with fractionalized magnetic-monopole excitations. Recently, there has been great interest in closely related "quantum spin-ice" materials, following the realization that anisotropic exchange interactions could convert spin ice into a massively entangled, quantum spin liquid, where magnetic monopoles become the charges of an emergent quantum electrodynamics. Here we show that even the simplest model of a quantum spin ice, the XXZ model on the pyrochlore lattice, can realize a still-richer scenario. Using a combination of classical Monte Carlo simulation, semiclassical molecular-dynamics simulation, and analytic field theory, we explore the properties of this model for frustrated transverse exchange. We find not one, but three competing forms of spin liquid, as well as a phase with hidden, spin-nematic order. We explore the experimental signatures of each of these different states, making explicit predictions for inelastic neutron scattering. These results show an intriguing similarity to experiments on a range of pyrochlore oxides.
NASA Astrophysics Data System (ADS)
He, C.; Zheng, H.; Mitchell, J. F.; Foo, M. L.; Cava, R. J.; Leighton, C.
2009-03-01
Measurement of the low temperature specific heat of LaCoO3 single crystals reveals a previously unobserved Schottky anomaly with an energy level splitting, 0.5 meV, that is associated with the first excited spin state of the Co3+ ion. These states persist well below 2 K and have a g-factor around 3.5, consistent with the high-spin spin-orbit triplet, implying the existence of a low density (approximately 0.1% of the sites) of finite-spin Co ions even in the T =0 limit. We propose that these states are trapped at defects and are consistent with the magnetic excitons observed in earlier work.
Marino, A.; Cammarata, M.; Matar, S. F.; Létard, J.-F.; Chastanet, G.; Chollet, M.; Glownia, J. M.; Lemke, H. T.; Collet, E.
2015-01-01
We combine ultrafast optical spectroscopy with femtosecond X-ray absorption to study the photo-switching dynamics of the [Fe(PM-AzA)2(NCS)2] spin-crossover molecular solid. The light-induced excited spin-state trapping process switches the molecules from low spin to high spin (HS) states on the sub-picosecond timescale. The change of the electronic state (<50 fs) induces a structural reorganization of the molecule within 160 fs. This transformation is accompanied by coherent molecular vibrations in the HS potential and especially a rapidly damped Fe-ligand breathing mode. The time-resolved studies evidence a delayed activation of coherent optical phonons of the lattice surrounding the photoexcited molecules. PMID:26798836
NASA Astrophysics Data System (ADS)
Silaev, M. A.
2018-06-01
We develop a theory based on the formalism of quasiclassical Green's functions to study the spin dynamics in superfluid ^3He. First, we derive kinetic equations for the spin-dependent distribution function in the bulk superfluid reproducing the results obtained earlier without quasiclassical approximation. Then, we consider spin dynamics near the surface of fully gapped ^3He-B-phase taking into account spin relaxation due to the transitions in the spectrum of localized fermionic states. The lifetimes of longitudinal and transverse spin waves are calculated taking into account the Fermi-liquid corrections which lead to a crucial modification of fermionic spectrum and spin responses.
NASA Astrophysics Data System (ADS)
Korenev, V. L.
2011-06-01
The periodical modulation of circularly polarized light with a frequency close to the electron spin resonance frequency induces a sharp change of the single electron spin orientation. Hyperfine interaction provides a feedback, thus fixing the precession frequency of the electron spin in the external and the Overhauser field near the modulation frequency. The nuclear polarization is bidirectional and the electron-nuclear spin system (ENSS) possesses a few stable states. The same physics underlie the frequency-locking effect for two-color and mode-locked excitations. However, the pulsed excitation with mode-locked laser brings about the multitudes of stable states in ENSS in a quantum dot. The resulting precession frequencies of the electron spin differ in these states by the multiple of the modulation frequency. Under such conditions ENSS represents a digital frequency converter with more than 100 stable channels.
Protected Pseudohelical Edge States in Z2-Trivial Proximitized Graphene
NASA Astrophysics Data System (ADS)
Frank, Tobias; Högl, Petra; Gmitra, Martin; Kochan, Denis; Fabian, Jaroslav
2018-04-01
We investigate topological properties of models that describe graphene on realistic substrates which induce proximity spin-orbit coupling in graphene. A Z2 phase diagram is calculated for the parameter space of (generally different) intrinsic spin-orbit coupling on the two graphene sublattices, in the presence of Rashba coupling. The most fascinating case is that of staggered intrinsic spin-orbit coupling which, despite being topologically trivial, Z2=0 , does exhibit edge states protected by time-reversal symmetry for zigzag ribbons as wide as micrometers. We call these states pseudohelical as their helicity is locked to the sublattice. The spin character and robustness of the pseudohelical modes is best exhibited on a finite flake, which shows that the edge states have zero g factor, carry a pure spin current in the cross section of the flake, and exhibit spin-flip reflectionless tunneling at the armchair edges.
Energy as a witness of multipartite entanglement in chains of arbitrary spins
NASA Astrophysics Data System (ADS)
Troiani, F.; Siloi, I.
2012-09-01
We develop a general approach for deriving the energy minima of biseparable states in chains of arbitrary spins s, and we report numerical results for spin values s≤5/2 (with N≤8). The minima provide a set of threshold values for exchange energy that allow us to detect different degrees of multipartite entanglement in one-dimensional spin systems. We finally demonstrate that the Heisenberg exchange Hamiltonian of N spins has a nondegenerate N-partite entangled ground state, and it can thus witness such correlations in all finite spin chains.
Inner main belt asteroids in Slivan states?
NASA Astrophysics Data System (ADS)
Vraštil, J.; Vokrouhlický, D.
2015-07-01
Context. The spin state of ten asteroids in the Koronis family has previously been determined. Surprisingly, all four asteroids with prograde rotation were shown to have spin axes nearly parallel in the inertial space. All asteroids with retrograde rotation had large obliquities and rotation periods that were either short or long. The Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect has been demonstrated to be able to explain all these peculiar facts. In particular, the effect causes the spin axes of the prograde rotators to be captured in a secular spin-orbit resonance known as Cassini state 2, a configuration dubbed "Slivan state". Aims: It has been proposed based on an analysis of a sample of asteroids in the Flora family that Slivan states might also exist in this region of the main belt. This is surprising because convergence of the proper frequency s and the planetary frequency s6 was assumed to prevent Slivan states in this zone. We therefore investigated the possibility of a long-term stable capture in the Slivan state in the inner part of the main belt and among the asteroids previously observed. Methods: We used the swift integrator to determine the orbital evolution of selected asteroids in the inner part of the main belt. We also implemented our own secular spin propagator into the swift code to efficiently analyze their spin evolution. Results: Our experiments show that the previously suggested Slivan states of the Flora-region asteroids are marginally stable for only a small range of the flattening parameter Δ. Either the observed spins are close to the Slivan state by chance, or additional dynamical effects that were so far not taken into account change their evolution. We find that only the asteroids with very low-inclination orbits (lower than ≃4°, for instance) could follow a similar evolution path as the Koronis members and be captured in their spin state into the Slivan state. A greater number of asteroids in the inner main-belt Massalia family, which are at a slightly larger heliocentric distance and at lower inclination orbits than in the Flora region, may have their spin in the Slivan state.
NASA Astrophysics Data System (ADS)
Gnutek, P.; Açıkgöz, M.; Rudowicz, C.
2015-01-01
Three approaches are employed to study magnetostructural correlations for the 3d8(3A2 state) ions at orthorhombic sites in crystals: (i) the higher-order perturbation theory (PT) of the microscopic spin Hamiltonian (MSH) parameters, (ii) the crystal field (CF) analysis (CFA) within all 3d8 states combined with the superposition model (SPM) calculations of CF parameters, and (iii) the second-order PT of MSH parameters. A comparative study is carried out to assess the merit of each modeling approach. These approaches enable predictions of the orthorhombic zero-field splitting parameters (ZFSPs) for the 3d8 ions at orthorhombic sites. Hence, correlation of the magnetic and spectroscopic properties with the structural ones may be considered. The approach (i) and (iii) take into account only the spin-orbit coupling (SOC) and a limited set of low lying states. Analysis of the expressions used in the approach (i) reveals discrepancies concerning: the sign of the SOC parameter, the cubic crystal field parameter Dq, the energy levels sequence, and numerical errors, which diminish its reliability. The distinction between the first- and second-kind orthorhombic symmetry is also elucidated. The approaches (i)-(iii) are applied for Ni2+ (S=1) ions in the Haldane gap systems Y2BaNiO5 and Nd2BaNiO5. The contributions to the ZFSPs due to the spin-spin and spin-other-orbit interactions considered using the approach (ii) are found nearly insignificant as compared with the dominant SOC ones. The results indicate that the approach (i)-corrected and (iii) may be employed only as an approximation. The approach (ii) together with the SPM/CFP modeling appear to be preferable and more reliable tools to study magnetostructural correlations and thus spectroscopic and magnetic properties of the 3d8(3A2 state) ions at orthorhombic sites in crystals.
Odd-frequency pairing in superconducting heterostructures .
NASA Astrophysics Data System (ADS)
Golubov, A. A.; Tanaka, Y.; Yokoyama, T.; Asano, Y.
2007-03-01
We present a general theory of the proximity effect in junctions between unconventional superconductors and diffusive normal metals (DN) or ferromagnets (DF). We consider all possible symmetry classes in a superconductor allowed by the Pauli principle: even-frequency spin-singlet even-parity state, even-frequency spin-triplet odd-parity state, odd-frequency spin-triplet even-parity state and odd-frequency spin-singlet odd-parity state. For each of the above states, symmetry and spectral properties of the induced pair amplitude in the DN (DF) are determined. The cases of junctions with spin-singlet s- and d-wave superconductors and spin-triplet p-wave superconductors are adressed in detail. We discuss the interplay between the proximity effect and midgap Andreev bound states arising at interfaces in unconventional (d- or p-wave) junctions. The most striking property is the odd-frequency symmetry of the pairing amplitude induced in DN (DF) in contacts with p-wave superconductors. This leads to zero-energy singularity in the density of states and to anomalous screening of an external magnetic field. Peculiarities of Josephson effect in d- or p-wave junctions are discussed. Experiments are suggested to detect an order parameter symmetry using heterostructures with unconventional superconductors.
Ferromagnetic insulating state in tensile-strained LaCoO3 thin films from LDA + U calculations
NASA Astrophysics Data System (ADS)
Hsu, Han; Blaha, Peter; Wentzcovitch, Renata M.
2012-04-01
With local density approximation+Hubbard U (LDA+U) calculations, we show that the ferromagnetic (FM) insulating state observed in tensile-strained LaCoO3 epitaxial thin films is most likely a mixture of low-spin (LS) and high-spin (HS) Co, namely, a HS/LS mixture state. Compared with other FM states, including the intermediate-spin (IS) state (metallic within LDA+U), which consists of IS Co only, and the insulating IS/LS mixture state, the HS/LS state is the most favorable one. The FM order in the HS/LS state is stabilized via the superexchange interactions between adjacent LS and HS Co. We also show that the Co spin state can be identified by measuring the electric field gradient at the Co nucleus via nuclear magnetic resonance spectroscopy.
2017-12-11
AFRL-RX-WP-JA-2017-0501 pH- DEPENDENT SPIN STATE POPULATION AND 19F NMR CHEMICAL SHIFT VIA REMOTE LIGAND PROTONATION IN AN IRON(II...From - To) 16 November 2017 Interim 24 January 2014 – 16 October 2017 4. TITLE AND SUBTITLE PH- DEPENDENT SPIN STATE POPULATION AND 19F NMR CHEMICAL...dx.doi.org/10.1039/C7CC08099A 14. ABSTRACT (Maximum 200 words) An FeII complex that features a pH- dependent spin state population, by virtue of a
Thermofield duality for higher spin Rindler Gravity
Jevicki, Antal; Suzuki, Kenta
2016-02-15
In this paper, we study the Thermo-field realization of the duality between the Rindler-AdS higher spin theory and O(N) vector theory. The CFT represents a decoupled pair of free O(N) vector field theories. It is shown how this decoupled domain CFT is capable of generating the connected Rindler-AdS background with the full set of Higher Spin fields.
Massless conformal fields, AdS (d+1)/CFT d higher spin algebras and their deformations
Fernando, Sudarshan; Gunaydin, Murat
2016-02-04
Here, we extend our earlier work on the minimal unitary representation of SO(d, 2)and its deformations for d=4, 5and 6to arbitrary dimensions d. We show that there is a one-to-one correspondence between the minrep of SO(d, 2)and its deformations and massless conformal fields in Minkowskian spacetimes in ddimensions. The minrep describes a massless conformal scalar field, and its deformations describe massless conformal fields of higher spin. The generators of Joseph ideal vanish identically as operators for the quasiconformal realization of the minrep, and its enveloping algebra yields directly the standard bosonic AdS (d+1)/CFT d higher spin algebra. For deformed minrepsmore » the generators of certain deformations of Joseph ideal vanish as operators and their enveloping algebras lead to deformations of the standard bosonic higher spin algebra. In odd dimensions there is a unique deformation of the higher spin algebra corresponding to the spinor singleton. In even dimensions one finds infinitely many deformations of the higher spin algebra labelled by the eigenvalues of Casimir operator of the little group SO(d–2)for massless representations.« less
Optimizing Adiabaticity in a Trapped-Ion Quantum Simulator
NASA Astrophysics Data System (ADS)
Richerme, Phil; Senko, Crystal; Korenblit, Simcha; Smith, Jacob; Lee, Aaron; Monroe, Christopher
2013-05-01
Trapped-ion quantum simulators are a leading platform for the study of interacting spin systems, such as fully-connected Ising models with transverse and axial fields. Phonon-mediated spin-dependent optical dipole forces act globally on a linear chain of trapped Yb-171+ ions to generate the spin-spin couplings, with the form and range of such couplings controlled by laser frequencies and trap voltages. The spins are initially prepared along an effective transverse magnetic field, which is large compared to the Ising couplings and slowly ramped down during the quantum simulation. The system remains in the ground state throughout the evolution if the ramp is adiabatic, and the spin ordering is directly measured by state-dependent fluorescence imaging of the ions onto a camera. Two techniques can improve the identification of the ground state at the end of simulations that are unavoidably diabatic. First, we show an optimized ramp protocol that gives a maximal probability of measuring the true ground state given a finite ramp time. Second, we show that no spin ordering is more prevalent than the ground state(s), even for non-adiabatic ramps. This work is supported by grants from the U.S. Army Research Office with funding from the DARPA OLE program, IARPA, and the MURI program; and the NSF Physics Frontier Center at JQI.
Topics in Higher-Derivative Supergravity and N = 2 Yang-Mills Theories
NASA Astrophysics Data System (ADS)
Hindawi, Ahmed Abdel-Ati
1997-09-01
In Part I of the thesis we discuss higher-derivative theories of gravity. We start by discussing the field content of quadratic higher-derivative gravity, together with a new example of a massless spin-two field consistently coupled to gravity. The full quadratic gravity theory is shown to be equivalent to a canonical second-order theory of a massive scalar field, a massive spin-two symmetric tensor field and gravity. It is shown that flat-space is the only stable vacuum, and that the spin-two field around it is always ghost-like. We give a procedure for exhibiting the new propagating degrees of freedom in a generic higher-derivative gravity, at the full non-linear level. We show that around any vacuum the elementary excitations remain the massless graviton, a massive scalar field and a massive ghost-like spin-two field. In Part II of the thesis we extend our investigations to the realm of supergravity. We consider the general form of quadratic (1, 1) supergravity in two dimensions. It is demonstrated that the theory possesses stable vacua with vanishing cosmological constant which spontaneously break supersymmetry. We then consider higher-derivative N=1 supergravity in four dimensions. We construct two classes of higher-derivative supergravity theories. They are found to be equivalent to Einstein supergravity coupled to one or two chiral superfields and have a rich vacuum structure. It is demonstrated that theories of the second class can possess a stable vacuum with vanishing cosmological constant that spontaneously breaks supersymmetry. We then proceed to show how spontaneous supersymmetry breaking in the vacuum state of higher-derivative supergravity is transmitted, as explicit soft supersymmetry-breaking terms, to the effective Lagrangian of the standard electroweak model. In Part III we use central charge superspace to give a geometrical construction of the N=2 Abelian vector-tensor multiplet consisting, under N=1 supersymmetry, of one vector and one linear multiplet. We derive the component field supersymmetry and central charge transformations, and show that there is a super-Lagrangian, the higher components of which are all total derivatives, allowing us to construct superfield and component actions.
Topological spinon bands and vison excitations in spin-orbit coupled quantum spin liquids
NASA Astrophysics Data System (ADS)
Sonnenschein, Jonas; Reuther, Johannes
2017-12-01
Spin liquids are exotic quantum states characterized by the existence of fractional and deconfined quasiparticle excitations, referred to as spinons and visons. Their fractional nature establishes topological properties such as a protected ground-state degeneracy. This work investigates spin-orbit coupled spin liquids where, additionally, topology enters via nontrivial band structures of the spinons. We revisit the Z2 spin-liquid phases that have recently been identified in a projective symmetry-group analysis on the square lattice when spin-rotation symmetry is maximally lifted [J. Reuther et al., Phys. Rev. B 90, 174417 (2014), 10.1103/PhysRevB.90.174417]. We find that in the case of nearest-neighbor couplings only, Z2 spin liquids on the square lattice always exhibit trivial spinon bands. Adding second-neighbor terms, the simplest projective symmetry-group solution closely resembles the Bernevig-Hughes-Zhang model for topological insulators. Assuming that the emergent gauge fields are static, we investigate vison excitations, which we confirm to be deconfined in all investigated spin phases. Particularly, if the spinon bands are topological, the spinons and visons form bound states consisting of several spinon-Majorana zero modes coupling to one vison. The existence of such zero modes follows from an exact mapping between these spin phases and topological p +i p superconductors with vortices. We propose experimental probes to detect such states in real materials.
Ligand Field Strength Mediates Electron Delocalization in Octahedral [((H)L)2Fe6(L')m](n+) Clusters.
Hernández Sánchez, Raúl; Zheng, Shao-Liang; Betley, Theodore A
2015-09-02
To assess the impact of terminal ligand binding on a variety of cluster properties (redox delocalization, ground-state stabilization, and breadth of redox state accessibility), we prepared three electron-transfer series based on the hexanuclear iron cluster [((H)L)2Fe6(L')m](n+) in which the terminal ligand field strength was modulated from weak to strong (L' = DMF, MeCN, CN). The extent of intracore M-M interactions is gauged by M-M distances, spin ground state persistence, and preference for mixed-valence states as determined by electrochemical comproportionation constants. Coordination of DMF to the [((H)L)2Fe6] core leads to weaker Fe-Fe interactions, as manifested by the observation of ground states populated only at lower temperatures (<100 K) and by the greater evidence of valence trapping within the mixed-valence states. Comproportionation constants determined electrochemically (Kc = 10(4)-10(8)) indicate that the redox series exhibits electronic delocalization (class II-III), yet no intervalence charge transfer (IVCT) bands are observable in the near-IR spectra. Ligation of the stronger σ donor acetonitrile results in stabilization of spin ground states to higher temperatures (∼300 K) and a high degree of valence delocalization (Kc = 10(2)-10(8)) with observable IVCT bands. Finally, the anionic cyanide-bound series reveals the highest degree of valence delocalization with the most intense IVCT bands (Kc = 10(12)-10(20)) and spin ground state population beyond room temperature. Across the series, at a given formal oxidation level, the capping ligand on the hexairon cluster dictates the overall properties of the aggregate, modulating the redox delocalization and the persistence of the intracore coupling of the metal sites.
NASA Astrophysics Data System (ADS)
Singh, D.; Linda, Sneha B.; Giri, Pankaj K.; Mahato, Amritraj; Tripathi, R.; Kumar, Harish; Afzal Ansari, M.; Sathik, N. P. M.; Ali, Rahbar; Kumar, Rakesh; Muralithar, S.; Singh, R. P.
2017-11-01
Spin distributions for several evaporation residues populated in the 16O+154Sm system have been measured at projectile energy ≈ 6.2 MeV/A by using the charged particle-γ-coincidence technique. The measured spin distributions of the evaporation residues populated through incomplete fusion associated with 'fast' α and 2α-emission channels are found to be entirely different from fusion-evaporation channels. It is observed that the mean input angular momentum for the evaporation residues formed in incomplete fusion channel is relatively higher than that observed for evaporation residues in complete fusion channels. The feeding intensity profile of evaporation residues populated through complete fusion and incomplete fusion have also been studied. The incomplete fusion channels are found to have narrow range feeding only for high spin states, while complete fusion channels are strongly fed over a broad spin range and widely populated. Comparison of present results with earlier data suggests that the mean input angular momentum values are relatively smaller for spherical target than that of deformed target using the same projectile and incident energy highlighting the role of target deformation in incomplete fusion dynamics.
Stern-Gerlach dynamics with quantum propagators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, Bailey C.; Berrondo, Manuel; Van Huele, Jean-Francois S.
2011-01-15
We study the quantum dynamics of a nonrelativistic neutral particle with spin in inhomogeneous external magnetic fields. We first consider fields with one-dimensional inhomogeneities, both unphysical and physical, and construct the corresponding analytic propagators. We then consider fields with two-dimensional inhomogeneities and develop an appropriate numerical propagation method. We propagate initial states exhibiting different degrees of space localization and various initial spin configurations, including both pure and mixed spin states. We study the evolution of their spin densities and identify characteristic features of spin density dynamics, such as the spatial separation of spin components, and spin localization or accumulation. Wemore » compare our approach and our results with the coverage of the Stern-Gerlach effect in the literature, and we focus on nonstandard Stern-Gerlach outcomes, such as radial separation, spin focusing, spin oscillation, and spin flipping.« less
Quantum simulation of interacting spin models with trapped ions
NASA Astrophysics Data System (ADS)
Islam, Kazi Rajibul
The quantum simulation of complex many body systems holds promise for understanding the origin of emergent properties of strongly correlated systems, such as high-Tc superconductors and spin liquids. Cold atomic systems provide an almost ideal platform for quantum simulation due to their excellent quantum coherence, initialization and readout properties, and their ability to support several forms of interactions. In this thesis, I present experiments on the quantum simulation of long range Ising models in the presence of transverse magnetic fields with a chain of up to sixteen ultracold 171Yb+ ions trapped in a linear radio frequency Paul trap. Two hyperfine levels in each of the 171Yb+ ions serve as the spin-1/2 systems. We detect the spin states of the individual ions by observing state-dependent fluorescence with single site resolution, and can directly measure any possible spin correlation function. The spin-spin interactions are engineered by applying dipole forces from precisely tuned lasers whose beatnotes induce stimulated Raman transitions that couple virtually to collective phonon modes of the ion motion. The Ising couplings are controlled, both in sign and strength with respect to the effective transverse field, and adiabatically manipulated to study various aspects of this spin model, such as the emergence of a quantum phase transition in the ground state and spin frustration due to competing antiferromagnetic interactions. Spin frustration often gives rise to a massive degeneracy in the ground state, which can lead to entanglement in the spin system. We detect and characterize this frustration induced entanglement in a system of three spins, demonstrating the first direct experimental connection between frustration and entanglement. With larger numbers of spins we also vary the range of the antiferromagnetic couplings through appropriate laser tunings and observe that longer range interactions reduce the excitation energy and thereby frustrate the ground state order. This system can potentially be scaled up to study a wide range of fully connected spin networks with a few dozens of spins, where the underlying theory becomes intractable on a classical computer.
Direct Measurement of the Flip-Flop Rate of Electron Spins in the Solid State
NASA Astrophysics Data System (ADS)
Dikarov, Ekaterina; Zgadzai, Oleg; Artzi, Yaron; Blank, Aharon
2016-10-01
Electron spins in solids have a central role in many current and future spin-based devices, ranging from sensitive sensors to quantum computers. Many of these apparatuses rely on the formation of well-defined spin structures (e.g., a 2D array) with controlled and well-characterized spin-spin interactions. While being essential for device operation, these interactions can also result in undesirable effects, such as decoherence. Arguably, the most important pure quantum interaction that causes decoherence is known as the "flip-flop" process, where two interacting spins interchange their quantum state. Currently, for electron spins, the rate of this process can only be estimated theoretically, or measured indirectly, under limiting assumptions and approximations, via spin-relaxation data. This work experimentally demonstrates how the flip-flop rate can be directly and accurately measured by examining spin-diffusion processes in the solid state for physically fixed spins. Under such terms, diffusion can occur only through this flip-flop-mediated quantum-state exchange and not via actual spatial motion. Our approach is implemented on two types of samples, phosphorus-doped 28Si and nitrogen vacancies in diamond, both of which are significantly relevant to quantum sensors and information processing. However, while the results for the former sample are conclusive and reveal a flip-flop rate of approximately 12.3 Hz, for the latter sample only an upper limit of approximately 0.2 Hz for this rate can be estimated.
NASA Astrophysics Data System (ADS)
Zhou, Sen; Jiang, Kun; Chen, Hua; Wang, Ziqiang
2017-10-01
Analogs of the high-Tc cuprates have been long sought after in transition metal oxides. Because of the strong spin-orbit coupling, the 5 d perovskite iridates Sr2 IrO4 exhibit a low-energy electronic structure remarkably similar to the cuprates. Whether a superconducting state exists as in the cuprates requires understanding the correlated spin-orbit entangled electronic states. Recent experiments discovered hidden order in the parent and electron-doped iridates, some with striking analogies to the cuprates, including Fermi surface pockets, Fermi arcs, and pseudogap. Here, we study the correlation and disorder effects in a five-orbital model derived from the band theory. We find that the experimental observations are consistent with a d -wave spin-orbit density wave order that breaks the symmetry of a joint twofold spin-orbital rotation followed by a lattice translation. There is a Berry phase and a plaquette spin flux due to spin procession as electrons hop between Ir atoms, akin to the intersite spin-orbit coupling in quantum spin Hall insulators. The associated staggered circulating Jeff=1 /2 spin current can be probed by advanced techniques of spin-current detection in spintronics. This electronic order can emerge spontaneously from the intersite Coulomb interactions between the spatially extended iridium 5 d orbitals, turning the metallic state into an electron-doped quasi-2D Dirac semimetal with important implications on the possible superconducting state suggested by recent experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Yuhan; Zhu Aidong; Shao Xiaoqiang
We investigate the effect of the Dzyaloshinskii-Moriya (DM) interaction on the fidelity of the 1{yields}M phase-covariant cloning machine (PCCM) in a spin star network. The results of numerical calculation show that the DM interaction can further improve the cloning fidelity to reach the optimal value. Furthermore, the physical mechanism is investigated by analyzing the effect of the DM interaction on the populations of the qubits. It is shown that the DM interaction leads to the populations of states |1>|S(M,k+1)> and |1>|S(M,k)>[or |0>|S(M,k)> and |0>|S(M,k-1)>] simultaneously reaching the maximum or minimum value periodically, where the first ket |i> ( is anmore » element of 0,1) in |i>|S(M,k)> denotes the state of central spin with |0> and |1> representing the spin-up and spin-down states, respectively, while the second ket |S(M,k)> denotes the state of outer spins with M being the total number of outer spins and k the number of up spins. At these extreme overlapping points of two states, the fidelity of quantum cloning can reach optimal value. Finally the forms of these two different 1{yields}M optimal cloning transformations are presented.« less
Calculation of the spin-polarized electronic structure of an interstitial iron impurity in silicon
NASA Astrophysics Data System (ADS)
Katayama-Yoshida, H.; Zunger, Alex
1985-06-01
We apply our self-consistent, all-electron, spin-polarized Green's-function method within an impurity-centered, dynamic basis set to study the interstitial iron impurity in silicon. We use two different formulations of the interelectron interactions: the local-spin-density (LSD) formalism and the self-interaction-corrected (SIC) local-spin-density (SIC-LSD) formalism. We find that the SIC-LSD approach is needed to obtain the correct high-spin ground state of Si:Fe+. We propose a quantitative explanation to the observed donor ionization energy and the high-spin ground states for Si:Fe+ within the SIC-LSD approach. For both Si:Fe0 and Si:Fe+, this approach leads to a hyperfine field, contact spin density, and ionization energy in better agreement with experiments than the simple LSD approach. The apparent dichotomy between the covalently delocalized nature of Si:Fe as suggested on the one hand by its reduced hyperfine field (relative to the free atom) and extended spin density and by the occurrence of two closely spaced, stable charge states (within 0.4 eV) and on the other hand by the atomically localized picture (suggested, for example, by the stability of a high-spin, ground-state configuration) is resolved. We find a large reduction in the hyperfine field and contact spin density due to the covalent hybridization between the impurity 3d orbitals and the tails of the delocalized sp3 hybrid orbitals of the surrounding silicon atoms. Using the calculated results, we discuss (i) the underlying mechanism for the stability and plurality of charged states, (ii) the covalent reduction in the hyperfine field, (iii) the remarkable constancy of the impurity Mössbauer isomer shift for different charged states, (iv) comparison with the multiple charged states in ionic crystals, and (v) some related speculation about the mechanism of (Fe2+/Fe3+) oxidation-reduction ionizations in heme proteins and electron-transporting biological systems.
NASA Astrophysics Data System (ADS)
Wu, Zhenhua; Luo, Kun; Yu, Jiahan; Wu, Xiaobo; Lin, Liangzhong
2018-02-01
Electron tunneling through a single magnetic barrier in a HgTe topological insulator has been theoretically investigated. We find that the perpendicular magnetic field would not lead to spin-flip of the edge states due to the conservation of the angular moment. By tuning the magnetic field and the Fermi energy, the edge channels can be transited from switch-on states to switch-off states and the current from unpolarized states can be filtered to fully spin polarized states. These features offer us an efficient way to control charge/spin transport in a HgTe/CdTe quantum well, and pave a way to construct the nanoelectronic devices utilizing the topological edge states.
Measurement-Based Entanglement of Noninteracting Bosonic Atoms
NASA Astrophysics Data System (ADS)
Lester, Brian J.; Lin, Yiheng; Brown, Mark O.; Kaufman, Adam M.; Ball, Randall J.; Knill, Emanuel; Rey, Ana M.; Regal, Cindy A.
2018-05-01
We demonstrate the ability to extract a spin-entangled state of two neutral atoms via postselection based on a measurement of their spatial configuration. Typically, entangled states of neutral atoms are engineered via atom-atom interactions. In contrast, in our Letter, we use Hong-Ou-Mandel interference to postselect a spin-singlet state after overlapping two atoms in distinct spin states on an effective beam splitter. We verify the presence of entanglement and determine a bound on the postselected fidelity of a spin-singlet state of (0.62 ±0.03 ). The experiment has direct analogy to creating polarization entanglement with single photons and hence demonstrates the potential to use protocols developed for photons to create complex quantum states with noninteracting atoms.
Measurement-Based Entanglement of Noninteracting Bosonic Atoms.
Lester, Brian J; Lin, Yiheng; Brown, Mark O; Kaufman, Adam M; Ball, Randall J; Knill, Emanuel; Rey, Ana M; Regal, Cindy A
2018-05-11
We demonstrate the ability to extract a spin-entangled state of two neutral atoms via postselection based on a measurement of their spatial configuration. Typically, entangled states of neutral atoms are engineered via atom-atom interactions. In contrast, in our Letter, we use Hong-Ou-Mandel interference to postselect a spin-singlet state after overlapping two atoms in distinct spin states on an effective beam splitter. We verify the presence of entanglement and determine a bound on the postselected fidelity of a spin-singlet state of (0.62±0.03). The experiment has direct analogy to creating polarization entanglement with single photons and hence demonstrates the potential to use protocols developed for photons to create complex quantum states with noninteracting atoms.
Quantum spin liquids: a review.
Savary, Lucile; Balents, Leon
2017-01-01
Quantum spin liquids may be considered 'quantum disordered' ground states of spin systems, in which zero-point fluctuations are so strong that they prevent conventional magnetic long-range order. More interestingly, quantum spin liquids are prototypical examples of ground states with massive many-body entanglement, which is of a degree sufficient to render these states distinct phases of matter. Their highly entangled nature imbues quantum spin liquids with unique physical aspects, such as non-local excitations, topological properties, and more. In this review, we discuss the nature of such phases and their properties based on paradigmatic models and general arguments, and introduce theoretical technology such as gauge theory and partons, which are conveniently used in the study of quantum spin liquids. An overview is given of the different types of quantum spin liquids and the models and theories used to describe them. We also provide a guide to the current status of experiments in relation to study quantum spin liquids, and to the diverse probes used therein.
Entangling atomic spins with a Rydberg-dressed spin-flip blockade
Jau, Y. -Y.; Hankin, A. M.; Keating, T.; ...
2015-10-05
Controlling the quantum entanglement between parts of a many-body system is key to unlocking the power of quantum technologies such as quantum computation, high-precision sensing, and the simulation of many-body physics. The spin degrees of freedom of ultracold neutral atoms in their ground electronic state provide a natural platform for such applications thanks to their long coherence times and the ability to control them with magneto-optical fields. However, the creation of strong coherent coupling between spins has been challenging. In this paper, we demonstrate a strong and tunable Rydberg-dressed interaction between spins of individually trapped caesium atoms with energy shiftsmore » of order 1 MHz in units of Planck’s constant. This interaction leads to a ground-state spin-flip blockade, whereby simultaneous hyperfine spin flips of two atoms are inhibited owing to their mutual interaction. Finally, we employ this spin-flip blockade to rapidly produce single-step Bell-state entanglement between two atoms with a fidelity ≥81(2)%.« less
Nonlocally sensing the magnetic states of nanoscale antiferromagnets with an atomic spin sensor
Yan, Shichao; Malavolti, Luigi; Burgess, Jacob A. J.; Droghetti, Andrea; Rubio, Angel; Loth, Sebastian
2017-01-01
The ability to sense the magnetic state of individual magnetic nano-objects is a key capability for powerful applications ranging from readout of ultradense magnetic memory to the measurement of spins in complex structures with nanometer precision. Magnetic nano-objects require extremely sensitive sensors and detection methods. We create an atomic spin sensor consisting of three Fe atoms and show that it can detect nanoscale antiferromagnets through minute, surface-mediated magnetic interaction. Coupling, even to an object with no net spin and having vanishing dipolar stray field, modifies the transition matrix element between two spin states of the Fe atom–based spin sensor that changes the sensor’s spin relaxation time. The sensor can detect nanoscale antiferromagnets at up to a 3-nm distance and achieves an energy resolution of 10 μeV, surpassing the thermal limit of conventional scanning probe spectroscopy. This scheme permits simultaneous sensing of multiple antiferromagnets with a single-spin sensor integrated onto the surface. PMID:28560346
Impact of hole doping on spin transition in perovskite-type cobalt oxides.
Che, Xiangli; Li, Liping; Hu, Wanbiao; Li, Guangshe
2016-06-28
Series of perovskite PrCo1-xNixO3-δ (x = 0-0.4) were prepared and carefully investigated to understand the spin state transition driven by hole doping and further to reveal the effect of spin state transition on electronic conduction. It is shown that with increasing doping level, the transition temperature Ts for Co(3+) ions from low-spin (LS) to intermediate-spin (IS) reduces from 211.9 K for x = 0 to 190.5 K for x = 0.4. XPS and FT-IR spectra demonstrate that hole doping promoted this transition due to a larger Jahn-Teller distortion. Moreover, a thermal activation of spin disorder caused by thermal population of the spin states for Co ions has a great impact on the electrical transport of these perovskite samples. This work may shed light on the comprehension of spin transition in cobalt oxides through hole doping, which is promising for finding new strategies of enhancing electronic conduction, especially for energy and catalysis applications.
Bifurcation analysis and phase diagram of a spin-string model with buckled states.
Ruiz-Garcia, M; Bonilla, L L; Prados, A
2017-12-01
We analyze a one-dimensional spin-string model, in which string oscillators are linearly coupled to their two nearest neighbors and to Ising spins representing internal degrees of freedom. String-spin coupling induces a long-range ferromagnetic interaction among spins that competes with a spin-spin antiferromagnetic coupling. As a consequence, the complex phase diagram of the system exhibits different flat rippled and buckled states, with first or second order transition lines between states. This complexity translates to the two-dimensional version of the model, whose numerical solution has been recently used to explain qualitatively the rippled to buckled transition observed in scanning tunneling microscopy experiments with suspended graphene sheets. Here we describe in detail the phase diagram of the simpler one-dimensional model and phase stability using bifurcation theory. This gives additional insight into the physical mechanisms underlying the different phases and the behavior observed in experiments.
Bifurcation analysis and phase diagram of a spin-string model with buckled states
NASA Astrophysics Data System (ADS)
Ruiz-Garcia, M.; Bonilla, L. L.; Prados, A.
2017-12-01
We analyze a one-dimensional spin-string model, in which string oscillators are linearly coupled to their two nearest neighbors and to Ising spins representing internal degrees of freedom. String-spin coupling induces a long-range ferromagnetic interaction among spins that competes with a spin-spin antiferromagnetic coupling. As a consequence, the complex phase diagram of the system exhibits different flat rippled and buckled states, with first or second order transition lines between states. This complexity translates to the two-dimensional version of the model, whose numerical solution has been recently used to explain qualitatively the rippled to buckled transition observed in scanning tunneling microscopy experiments with suspended graphene sheets. Here we describe in detail the phase diagram of the simpler one-dimensional model and phase stability using bifurcation theory. This gives additional insight into the physical mechanisms underlying the different phases and the behavior observed in experiments.
Spin filter for arbitrary spins by substrate engineering
NASA Astrophysics Data System (ADS)
Pal, Biplab; Römer, Rudolf A.; Chakrabarti, Arunava
2016-08-01
We design spin filters for particles with potentially arbitrary spin S≤ft(=1/2,1,3/2,\\ldots \\right) using a one-dimensional periodic chain of magnetic atoms as a quantum device. Describing the system within a tight-binding formalism we present an analytical method to unravel the analogy between a one-dimensional magnetic chain and a multi-strand ladder network. This analogy is crucial, and is subsequently exploited to engineer gaps in the energy spectrum by an appropriate choice of the magnetic substrate. We obtain an exact correlation between the magnitude of the spin of the incoming beam of particles and the magnetic moment of the substrate atoms in the chain desired for opening up of a spectral gap. Results of spin polarized transport, calculated within a transfer matrix formalism, are presented for particles having half-integer as well as higher spin states. We find that the chain can be made to act as a quantum device which opens a transmission window only for selected spin components over certain ranges of the Fermi energy, blocking them in the remaining part of the spectrum. The results appear to be robust even when the choice of the substrate atoms deviates substantially from the ideal situation, as verified by extending the ideas to the case of a ‘spin spiral’. Interestingly, the spin spiral geometry, apart from exhibiting the filtering effect, is also seen to act as a device flipping spins—an effect that can be monitored by an interplay of the system size and the period of the spiral. Our scheme is applicable to ultracold quantum gases, and might inspire future experiments in this direction.
Allred, J. M.; Taddei, K. M.; Bugaris, D. E.; ...
2014-09-19
We present neutron dffraction analysis of BaFe 2(As 1-xP x) 2 over a wide temperature (10 to 300 K) and compositional (0.11 < x < 0.79) range, including the normal state, the magnetically ordered state, and the superconducting state. The paramagnetic to spin-density wave and orthorhombic to tetragonal transitions are first order and coincident within the sensitivity of our measurements (~ 0:5 K). Extrapolation of the orthorhombic order parameter down to zero suggests that structural quantum criticality cannot exist at compositions higher than x = 0.28, which is much lower than values determined using other methods, but in good agreementmore » with our observations of the actual phase stability range. Lastly, the onset of spin-density wave order shows a stronger structural anomaly than the charge-doped system in the form of an enhancement of the c/a ratio below the transition.« less
Ashbrook, Sharon E; Wimperis, Stephen
2004-02-08
Spin-locking of half-integer quadrupolar nuclei, such as 23Na (I=3/2) and 27Al (I=5/2), is of renewed interest owing to the development of variants of the multiple-quantum and satellite-transition magic angle spinning (MAS) nuclear magnetic resonance experiments that either utilize spin-locking directly or offer the possibility that spin-locked states may arise. However, the large magnitude and, under MAS, the time dependence of the quadrupolar interaction often result in complex spin-locking phenomena that are not widely understood. Here we show that, following the application of a spin-locking pulse, a variety of coherence transfer processes occur on a time scale of approximately 1/omegaQ before the spin system settles down into a spin-locked state which may itself be time dependent if MAS is performed. We show theoretically for both spin I=3/2 and 5/2 nuclei that the spin-locked state created by this initial rapid dephasing typically consists of a variety of single- and multiple-quantum coherences and nonequilibrium population states and we discuss the subsequent evolution of these under MAS. In contrast to previous work, we consider spin-locking using a wide range of radio frequency field strengths, i.e., a range that covers both the "strong-field" (omega1 > omegaQPAS and "weak-field" (omega1 < omegaQPAS limits. Single- and multiple-quantum filtered spin-locking experiments on NaNO2, NaNO3, and Al(acac)3, under both static and MAS conditions, are used to illustrate and confirm the results of the theoretical discussion.
Spin-polarized scanning tunneling microscopy with quantitative insights into magnetic probes
NASA Astrophysics Data System (ADS)
Phark, Soo-hyon; Sander, Dirk
2017-04-01
Spin-polarized scanning tunneling microscopy and spectroscopy (spin-STM/S) have been successfully applied to magnetic characterizations of individual nanostructures. Spin-STM/S is often performed in magnetic fields of up to some Tesla, which may strongly influence the tip state. In spite of the pivotal role of the tip in spin-STM/S, the contribution of the tip to the differential conductance d I/d V signal in an external field has rarely been investigated in detail. In this review, an advanced analysis of spin-STM/S data measured on magnetic nanoislands, which relies on a quantitative magnetic characterization of tips, is discussed. Taking advantage of the uniaxial out-of-plane magnetic anisotropy of Co bilayer nanoisland on Cu(111), in-field spin-STM on this system has enabled a quantitative determination, and thereby, a categorization of the magnetic states of the tips. The resulting in-depth and conclusive analysis of magnetic characterization of the tip opens new venues for a clear-cut sub-nanometer scale spin ordering and spin-dependent electronic structure of the non-collinear magnetic state in bilayer high Fe nanoislands on Cu(111).
Assessment of bilayer silicene to probe as quantum spin and valley Hall effect
NASA Astrophysics Data System (ADS)
Rehman, Majeed Ur; Qiao, Zhenhua
2018-02-01
Silicene takes precedence over graphene due to its buckling type structure and strong spin orbit coupling. Motivated by these properties, we study the silicene bilayer in the presence of applied perpendicular electric field and intrinsic spin orbit coupling to probe as quantum spin/valley Hall effect. Using analytical approach, we calculate the spin Chern-number of bilayer silicene and then compare it with monolayer silicene. We reveal that bilayer silicene hosts double spin Chern-number as compared to single layer silicene and therefore accordingly has twice as many edge states in contrast to single layer silicene. In addition, we investigate the combined effect of intrinsic spin orbit coupling and the external electric field, we find that bilayer silicene, likewise single layer silicene, goes through a phase transitions from a quantum spin Hall state to a quantum valley Hall state when the strength of the applied electric field exceeds the intrinsic spin orbit coupling strength. We believe that the results and outcomes obtained for bilayer silicene are experimentally more accessible as compared to bilayer graphene, because of strong SO coupling in bilayer silicene.
Lafolet, F; Genoud, F; Divisia-Blohorn, B; Aronica, C; Guillerez, S
2005-07-07
In situ electron spin resonance (ESR) and UV-vis spectro-electrochemical studies have been performed on two copolymers consisting of alternating subunits of regioregular head to tail (HT) coupled 3-octylthiophene tetramer and 2,2'-bipyridine subunits (P4) or 3-octylthiophene hexamer subunits of the same regioregularity and 2,2'-bipyridine subunits (P6). Both P4 and P6 have been investigated in their metal-free form as well as in the ruthenium(II) metalated form (P4-Ru and P6-Ru). P4 and P6 in the p-doped state exhibit a clear ESR signal characteristic of the presence of polarons in the oligothienylene subunits. In the case of P4, no recombination of polarons into bipolarons is observed, whereas the recombination process takes place in P6. The formation of bipolarons is well-rationalized in terms of the conjugation length, and it seems clear that the higher length of the oligothiophene subunit in P6( )()stabilizes bipolarons(.)() The same effect, is induced by the coordination of -Ru(bpy)(2)(2+) to the bipyridine unit in the metalated form of both polymers, which results in an increase of the conjugation length. Important information is gained from the analysis of the ESR spectra of both nonmetalated and metalated in the oxidized (p-doped) and reduced (n-doped) forms. In the p-doped state both nonmetalated and metalated polymers reveal the presence of a narrow ESR line characteristic of the mobile spin carriers in the polymer matrix. The oxidation of the metal center occurs at higher potentials and leads to an irreversible destruction of the system. To the contrary, in the reduced (n-doped) state the ESR lines of the nonmetalated and metalated polymers markedly differ. A significant line broadening with simultaneous change of the g-value is caused by spin-orbit coupling phenomenon induced by the presence of the coordinating metal. Finally, the observation of a clear polaronic band in the UV-vis spectrum of p-doped P4 and its strong dependence on the applied potential can be clearly correlated with the potential induced changes in the ESR spin density. The same applies to P4-Ru, where the changes in the polaronic and bipolaronic bands can also be correlated with the ESR spin density changes.
Spin liquid state in the disordered triangular lattice Sc 2Ga 2CuO 7 revealed by NMR
Khuntia, P.; Kumar, R.; Mahajan, A. V.; ...
2016-04-18
We present microscopic magnetic properties of a two-dimensional triangular lattice Sc 2Ga 2CuO 7, consisting of single and double triangular Cu planes. An antiferromagnetic (AFM) exchange interaction J/k B ≈ 35 K between Cu 2+ (S = 1/2) spins in the triangular biplane is obtained from the analysis of intrinsic magnetic susceptibility data. The intrinsic magnetic susceptibility, extracted from 71Ga NMR shift data, displays the presence of AFM short range spin correlations and remains finite down to 50 mK, suggesting a nonsinglet ground state. The nuclear spin-lattice relaxation rate (1/T 1) reveals a slowing down of Cu 2+ spin fluctuationsmore » with decreasing T down to 100 mK. Magnetic specific heat (C m) and 1/T 1 exhibit power law behavior at low temperatures, implying the gapless nature of the spin excitation spectrum. The absence of long range magnetic ordering down to ~J/700, nonzero spin susceptibility at low T, and the power law behavior of C m and 1/T 1 suggest a gapless quantum spin liquid (QSL) state. Our results demonstrate that persistent spin dynamics induced by frustration maintain a quantum-disordered state at T → 0 in this triangular lattice antiferromagnet. Furthermore, this suggests that the low energy modes are dominated by spinon excitations in the QSL state due to randomness engendered by disorder and frustration.« less
NASA Astrophysics Data System (ADS)
Babadi, Mehrtash; Demler, Eugene; Knap, Michael
2015-10-01
We study theoretically the far-from-equilibrium relaxation dynamics of spin spiral states in the three-dimensional isotropic Heisenberg model. The investigated problem serves as an archetype for understanding quantum dynamics of isolated many-body systems in the vicinity of a spontaneously broken continuous symmetry. We present a field-theoretical formalism that systematically improves on the mean field for describing the real-time quantum dynamics of generic spin-1 /2 systems. This is achieved by mapping spins to Majorana fermions followed by a 1 /N expansion of the resulting two-particle-irreducible effective action. Our analysis reveals rich fluctuation-induced relaxation dynamics in the unitary evolution of spin spiral states. In particular, we find the sudden appearance of long-lived prethermalized plateaus with diverging lifetimes as the spiral winding is tuned toward the thermodynamically stable ferro- or antiferromagnetic phases. The emerging prethermalized states are characterized by different bosonic modes being thermally populated at different effective temperatures and by a hierarchical relaxation process reminiscent of glassy systems. Spin-spin correlators found by solving the nonequilibrium Bethe-Salpeter equation provide further insight into the dynamic formation of correlations, the fate of unstable collective modes, and the emergence of fluctuation-dissipation relations. Our predictions can be verified experimentally using recent realizations of spin spiral states with ultracold atoms in a quantum gas microscope [S. Hild et al., Phys. Rev. Lett. 113, 147205 (2014), 10.1103/PhysRevLett.113.147205].
Exchange interactions in two-state systems: rare earth pyrochlores.
Curnoe, S H
2018-06-13
The general form of the nearest neighbour exchange interaction for rare earth pyrochlores is derived based on symmetry. Generally, the rare earth angular momentum degeneracy is lifted by the crystal electric field (CEF) into singlets and doublets. When the CEF ground state is a doublet that is well-separated from the first excited state the CEF ground state doublet can be treated as a pseudo-spin of some kind. The general form of the nearest neighbour exchange interaction for pseudo-spins on the pyrochlore lattice is derived for three different types of pseudo-spins. The methodology presented in this paper can be applied to other two-state spin systems with a high space group symmetry.
Exchange interactions in two-state systems: rare earth pyrochlores
NASA Astrophysics Data System (ADS)
Curnoe, S. H.
2018-06-01
The general form of the nearest neighbour exchange interaction for rare earth pyrochlores is derived based on symmetry. Generally, the rare earth angular momentum degeneracy is lifted by the crystal electric field (CEF) into singlets and doublets. When the CEF ground state is a doublet that is well-separated from the first excited state the CEF ground state doublet can be treated as a pseudo-spin of some kind. The general form of the nearest neighbour exchange interaction for pseudo-spins on the pyrochlore lattice is derived for three different types of pseudo-spins. The methodology presented in this paper can be applied to other two-state spin systems with a high space group symmetry.
Spin switch in iron phthalocyanine on Au(111) surface by hydrogen adsorption
NASA Astrophysics Data System (ADS)
Wang, Yu; Li, Xiaoguang; Zheng, Xiao; Yang, Jinlong
2017-10-01
The manipulation of spin states at the molecular scale is of fundamental importance for the development of molecular spintronic devices. One of the feasible approaches for the modification of a molecular spin state is through the adsorption of certain specific atoms or molecules including H, NO, CO, NH3, and O2. In this paper, we demonstrate that the local spin state of an individual iron phthalocyanine (FePc) molecule adsorbed on an Au(111) surface exhibits controllable switching by hydrogen adsorption, as evidenced by using first-principles calculations based on density functional theory. Our theoretical calculations indicate that different numbers of hydrogen adsorbed at the pyridinic N sites of the FePc molecule largely modify the structural and electronic properties of the FePc/Au(111) composite by forming extra N-H bonds. In particular, the adsorption of one or up to three hydrogen atoms induces a redistribution of charge (spin) density within the FePc molecule, and hence a switching to a low spin state (S = 1/2) from an intermediate spin state (S = 1) is achieved, while the adsorption of four hydrogen atoms distorts the molecular conformation by increasing Fe-N bond lengths in FePc and thus breaks the ligand field exerted on the Fe 3d orbitals via stronger hybridization with the substrate, leading to an opposite switching to a high-spin state (S = 2). These findings obtained from the theoretical simulations could be useful for experimental manipulation or design of single-molecule spintronic devices.
High-fidelity projective read-out of a solid-state spin quantum register.
Robledo, Lucio; Childress, Lilian; Bernien, Hannes; Hensen, Bas; Alkemade, Paul F A; Hanson, Ronald
2011-09-21
Initialization and read-out of coupled quantum systems are essential ingredients for the implementation of quantum algorithms. Single-shot read-out of the state of a multi-quantum-bit (multi-qubit) register would allow direct investigation of quantum correlations (entanglement), and would give access to further key resources such as quantum error correction and deterministic quantum teleportation. Although spins in solids are attractive candidates for scalable quantum information processing, their single-shot detection has been achieved only for isolated qubits. Here we demonstrate the preparation and measurement of a multi-spin quantum register in a low-temperature solid-state system by implementing resonant optical excitation techniques originally developed in atomic physics. We achieve high-fidelity read-out of the electronic spin associated with a single nitrogen-vacancy centre in diamond, and use this read-out to project up to three nearby nuclear spin qubits onto a well-defined state. Conversely, we can distinguish the state of the nuclear spins in a single shot by mapping it onto, and subsequently measuring, the electronic spin. Finally, we show compatibility with qubit control: we demonstrate initialization, coherent manipulation and single-shot read-out in a single experiment on a two-qubit register, using techniques suitable for extension to larger registers. These results pave the way for a test of Bell's inequalities on solid-state spins and the implementation of measurement-based quantum information protocols. © 2011 Macmillan Publishers Limited. All rights reserved
NASA Astrophysics Data System (ADS)
Tavan, Paul; Schulten, Klaus
1980-03-01
A new, efficient algorithm for the evaluation of the matrix elements of the CI Hamiltonian in the basis of spin-coupled ν-fold excitations (over orthonormal orbitals) is developed for even electron systems. For this purpose we construct an orthonormal, spin-adapted CI basis in the framework of second quantization. As a prerequisite, spin and space parts of the fermion operators have to be separated; this makes it possible to introduce the representation theory of the permutation group. The ν-fold excitation operators are Serber spin-coupled products of particle-hole excitations. This construction is also designed for CI calculations from multireference (open-shell) states. The 2N-electron Hamiltonian is expanded in terms of spin-coupled particle-hole operators which map any ν-fold excitation on ν-, and ν±1-, and ν±2-fold excitations. For the calculation of the CI matrix this leaves one with only the evaluation of overlap matrix elements between spin-coupled excitations. This leads to a set of ten general matrix element formulas which contain Serber representation matrices of the permutation group Sν×Sν as parameters. Because of the Serber structure of the CI basis these group-theoretical parameters are kept to a minimum such that they can be stored readily in the central memory of a computer for ν?4 and even for higher excitations. As the computational effort required to obtain the CI matrix elements from the general formulas is very small, the algorithm presented appears to constitute for even electron systems a promising alternative to existing CI methods for multiply excited configurations, e.g., the unitary group approach. Our method makes possible the adaptation of spatial symmetries and the selection of any subset of configurations. The algorithm has been implemented in a computer program and tested extensively for ν?4 and singlet ground and excited states.
NASA Astrophysics Data System (ADS)
Wang, Jingying; Deloach, Andrew; Dougherty, Daniel B.; Dougherty Lab Team
Organic materials attract a lot of attention due to their promising applications in spintronic devices. It is realized that spin-polarized metal/organic interfacial hybridization plays an important role to improve efficiency of organic spintronic devices. Hybridized interfacial states help to increase spin injection at the interface. Here we report spin-resolved STM measurements of single tris(8-hydroxyquinolinato) aluminum molecules adsorbed on the antiferromagnetic Cr(001). Our observations show a spin-polarized interface state between Alq3 and Cr(001). Tris(8-hydroxyquinolinato) chromium has also been studied and compared with Alq3, which exhibits different spin-polarized hybridization with the Cr(001) surface state than Alq3. We attribute the differences to different character of molecular orbitals in the two different quinolates.
Designing Kitaev Spin Liquids in Metal-Organic Frameworks
NASA Astrophysics Data System (ADS)
Yamada, Masahiko G.; Fujita, Hiroyuki; Oshikawa, Masaki
2017-08-01
Kitaev's honeycomb lattice spin model is a remarkable exactly solvable model, which has a particular type of spin liquid (Kitaev spin liquid) as the ground state. Although its possible realization in iridates and α -RuCl3 has been vigorously discussed recently, these materials have substantial non-Kitaev direct exchange interactions and do not have a spin liquid ground state. We propose metal-organic frameworks (MOFs) with Ru3 + (or Os3 + ), forming the honeycomb lattice as promising candidates for a more ideal realization of Kitaev-type spin models, where the direct exchange interaction is strongly suppressed. The great flexibility of MOFs allows generalization to other three-dimensional lattices for the potential realization of a variety of spin liquids, such as a Weyl spin liquid.
NASA Astrophysics Data System (ADS)
Xia, Keyu; Twamley, Jason
2016-11-01
Quantum squeezing and entanglement of spins can be used to improve the sensitivity in quantum metrology. Here we propose a scheme to create collective coupling of an ensemble of spins to a mechanical vibrational mode actuated by an external magnetic field. We find an evolution time where the mechanical motion decouples from the spins, and the accumulated geometric phase yields a squeezing of 5.9 dB for 20 spins. We also show the creation of a Greenberger-Horne-Zeilinger spin state for 20 spins with a fidelity of ˜0.62 at cryogenic temperature. The numerical simulations show that the geometric-phase-based scheme is mostly immune to thermal mechanical noise.
Storing quantum information in spins and high-sensitivity ESR
NASA Astrophysics Data System (ADS)
Morton, John J. L.; Bertet, Patrice
2018-02-01
Quantum information, encoded within the states of quantum systems, represents a novel and rich form of information which has inspired new types of computers and communications systems. Many diverse electron spin systems have been studied with a view to storing quantum information, including molecular radicals, point defects and impurities in inorganic systems, and quantum dots in semiconductor devices. In these systems, spin coherence times can exceed seconds, single spins can be addressed through electrical and optical methods, and new spin systems with advantageous properties continue to be identified. Spin ensembles strongly coupled to microwave resonators can, in principle, be used to store the coherent states of single microwave photons, enabling so-called microwave quantum memories. We discuss key requirements in realising such memories, including considerations for superconducting resonators whose frequency can be tuned onto resonance with the spins. Finally, progress towards microwave quantum memories and other developments in the field of superconducting quantum devices are being used to push the limits of sensitivity of inductively-detected electron spin resonance. The state-of-the-art currently stands at around 65 spins per √{ Hz } , with prospects to scale down to even fewer spins.
Storing quantum information in spins and high-sensitivity ESR.
Morton, John J L; Bertet, Patrice
2018-02-01
Quantum information, encoded within the states of quantum systems, represents a novel and rich form of information which has inspired new types of computers and communications systems. Many diverse electron spin systems have been studied with a view to storing quantum information, including molecular radicals, point defects and impurities in inorganic systems, and quantum dots in semiconductor devices. In these systems, spin coherence times can exceed seconds, single spins can be addressed through electrical and optical methods, and new spin systems with advantageous properties continue to be identified. Spin ensembles strongly coupled to microwave resonators can, in principle, be used to store the coherent states of single microwave photons, enabling so-called microwave quantum memories. We discuss key requirements in realising such memories, including considerations for superconducting resonators whose frequency can be tuned onto resonance with the spins. Finally, progress towards microwave quantum memories and other developments in the field of superconducting quantum devices are being used to push the limits of sensitivity of inductively-detected electron spin resonance. The state-of-the-art currently stands at around 65 spins per Hz, with prospects to scale down to even fewer spins. Copyright © 2017. Published by Elsevier Inc.
Inferences from the dynamical history of Mercury's rotation
NASA Technical Reports Server (NTRS)
Peale, S. J.
1976-01-01
The history of Mercury's spin angular momentum is reviewed. It is shown that the current nonsynchronous but resonant spin and the nearly zero obliquity place almost no restrictions on the primordial spin state. The only exception comes about from a liquid core-solid mantle interaction which excludes a slow primordial spin concurrent with a large obliquity. The current occupancy of a final evolutionary spin state leads to the description of a scheme by which we can determine the extent of a currently liquid Mercurian core.
Optimizing a dynamical decoupling protocol for solid-state electronic spin ensembles in diamond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farfurnik, D.; Jarmola, A.; Pham, L. M.
2015-08-24
In this study, we demonstrate significant improvements of the spin coherence time of a dense ensemble of nitrogen-vacancy (NV) centers in diamond through optimized dynamical decoupling (DD). Cooling the sample down to 77 K suppresses longitudinal spin relaxation T 1 effects and DD microwave pulses are used to increase the transverse coherence time T 2 from ~0.7ms up to ~30ms. Furthermore, we extend previous work of single-axis (Carr-Purcell-Meiboom-Gill) DD towards the preservation of arbitrary spin states. Following a theoretical and experimental characterization of pulse and detuning errors, we compare the performance of various DD protocols. We also identify that themore » optimal control scheme for preserving an arbitrary spin state is a recursive protocol, the concatenated version of the XY8 pulse sequence. The improved spin coherence might have an immediate impact on improvements of the sensitivities of ac magnetometry. Moreover, the protocol can be used on denser diamond samples to increase coherence times up to NV-NV interaction time scales, a major step towards the creation of quantum collective NV spin states.« less
NASA Astrophysics Data System (ADS)
Karľová, Katarína; Strečka, Jozef; Lyra, Marcelo L.
2018-03-01
The spin-1/2 Ising-Heisenberg pentagonal chain is investigated with use of the star-triangle transformation, which establishes a rigorous mapping equivalence with the effective spin-1/2 Ising zigzag ladder. The investigated model has a rich ground-state phase diagram including two spectacular quantum antiferromagnetic ground states with a fourfold broken symmetry. It is demonstrated that these long-period quantum ground states arise due to a competition between the effective next-nearest-neighbor and nearest-neighbor interactions of the corresponding spin-1/2 Ising zigzag ladder. The concurrence is used to quantify the bipartite entanglement between the nearest-neighbor Heisenberg spin pairs, which are quantum-mechanically entangled in two quantum ground states with or without spontaneously broken symmetry. The pair correlation functions between the nearest-neighbor Heisenberg spins as well as the next-nearest-neighbor and nearest-neighbor Ising spins were investigated with the aim to bring insight into how a relevant short-range order manifests itself at low enough temperatures. It is shown that the specific heat displays temperature dependencies with either one or two separate round maxima.
Internal Spin Control, Squeezing and Decoherence in Ensembles of Alkali Atomic Spins
NASA Astrophysics Data System (ADS)
Norris, Leigh Morgan
Large atomic ensembles interacting with light are one of the most promising platforms for quantum information processing. In the past decade, novel applications for these systems have emerged in quantum communication, quantum computing, and metrology. Essential to all of these applications is the controllability of the atomic ensemble, which is facilitated by a strong coupling between the atoms and light. Non-classical spin squeezed states are a crucial step in attaining greater ensemble control. The degree of entanglement present in these states, furthermore, serves as a benchmark for the strength of the atom-light interaction. Outside the broader context of quantum information processing with atomic ensembles, spin squeezed states have applications in metrology, where their quantum correlations can be harnessed to improve the precision of magnetometers and atomic clocks. This dissertation focuses upon the production of spin squeezed states in large ensembles of cold trapped alkali atoms interacting with optical fields. While most treatments of spin squeezing consider only the case in which the ensemble is composed of two level systems or qubits, we utilize the entire ground manifold of an alkali atom with hyperfine spin f greater than or equal to 1/2, a qudit. Spin squeezing requires non-classical correlations between the constituent atomic spins, which are generated through the atoms' collective coupling to the light. Either through measurement or multiple interactions with the atoms, the light mediates an entangling interaction that produces quantum correlations. Because the spin squeezing treated in this dissertation ultimately originates from the coupling between the light and atoms, conventional approaches of improving this squeezing have focused on increasing the optical density of the ensemble. The greater number of internal degrees of freedom and the controllability of the spin-f ground hyperfine manifold enable novel methods of enhancing squeezing. In particular, we find that state preparation using control of the internal hyperfine spin increases the entangling power of squeezing protocols when f>1/2. Post-processing of the ensemble using additional internal spin control converts this entanglement into metrologically useful spin squeezing. By employing a variation of the Holstein-Primakoff approximation, in which the collective spin observables of the atomic ensemble are treated as quadratures of a bosonic mode, we model entanglement generation, spin squeezing and the effects of internal spin control. The Holstein-Primakoff formalism also enables us to take into account the decoherence of the ensemble due to optical pumping. While most works ignore or treat optical pumping phenomenologically, we employ a master equation derived from first principles. Our analysis shows that state preparation and the hyperfine spin size have a substantial impact upon both the generation of spin squeezing and the decoherence of the ensemble. Through a numerical search, we determine state preparations that enhance squeezing protocols while remaining robust to optical pumping. Finally, most work on spin squeezing in atomic ensembles has treated the light as a plane wave that couples identically to all atoms. In the final part of this dissertation, we go beyond the customary plane wave approximation on the light and employ focused paraxial beams, which are more efficiently mode matched to the radiation pattern of the atomic ensemble. The mathematical formalism and the internal spin control techniques that we applied in the plane wave case are generalized to accommodate the non-homogeneous paraxial probe. We find the optimal geometries of the atomic ensemble and the probe for mode matching and generation of spin squeezing.
Internal Spin Control, Squeezing and Decoherence in Ensembles of Alkali Atomic Spins
NASA Astrophysics Data System (ADS)
Norris, Leigh Morgan
Large atomic ensembles interacting with light are one of the most promising platforms for quantum information processing. In the past decade, novel applications for these systems have emerged in quantum communication, quantum computing, and metrology. Essential to all of these applications is the controllability of the atomic ensemble, which is facilitated by a strong coupling between the atoms and light. Non-classical spin squeezed states are a crucial step in attaining greater ensemble control. The degree of entanglement present in these states, furthermore, serves as a benchmark for the strength of the atom-light interaction. Outside the broader context of quantum information processing with atomic ensembles, spin squeezed states have applications in metrology, where their quantum correlations can be harnessed to improve the precision of magnetometers and atomic clocks. This dissertation focuses upon the production of spin squeezed states in large ensembles of cold trapped alkali atoms interacting with optical fields. While most treatments of spin squeezing consider only the case in which the ensemble is composed of two level systems or qubits, we utilize the entire ground manifold of an alkali atom with hyperfine spin f greater or equal to 1/2, a qudit. Spin squeezing requires non-classical correlations between the constituent atomic spins, which are generated through the atoms' collective coupling to the light. Either through measurement or multiple interactions with the atoms, the light mediates an entangling interaction that produces quantum correlations. Because the spin squeezing treated in this dissertation ultimately originates from the coupling between the light and atoms, conventional approaches of improving this squeezing have focused on increasing the optical density of the ensemble. The greater number of internal degrees of freedom and the controllability of the spin-f ground hyperfine manifold enable novel methods of enhancing squeezing. In particular, we find that state preparation using control of the internal hyperfine spin increases the entangling power of squeezing protocols when f >1/2. Post-processing of the ensemble using additional internal spin control converts this entanglement into metrologically useful spin squeezing. By employing a variation of the Holstein-Primakoff approximation, in which the collective spin observables of the atomic ensemble are treated as quadratures of a bosonic mode, we model entanglement generation, spin squeezing and the effects of internal spin control. The Holstein-Primakoff formalism also enables us to take into account the decoherence of the ensemble due to optical pumping. While most works ignore or treat optical pumping phenomenologically, we employ a master equation derived from first principles. Our analysis shows that state preparation and the hyperfine spin size have a substantial impact upon both the generation of spin squeezing and the decoherence of the ensemble. Through a numerical search, we determine state preparations that enhance squeezing protocols while remaining robust to optical pumping. Finally, most work on spin squeezing in atomic ensembles has treated the light as a plane wave that couples identically to all atoms. In the final part of this dissertation, we go beyond the customary plane wave approximation on the light and employ focused paraxial beams, which are more efficiently mode matched to the radiation pattern of the atomic ensemble. The mathematical formalism and the internal spin control techniques that we applied in the plane wave case are generalized to accommodate the non-homogeneous paraxial probe. We find the optimal geometries of the atomic ensemble and the probe for mode matching and generation of spin squeezing.
NMR studies of spin dynamics in cuprates
NASA Astrophysics Data System (ADS)
Takigawa, M.; Mitzi, D. B.
1994-04-01
We report recent NMR results in cuprates. The oxygen Knight shift and the Cu nuclear spin-lattice relaxation rate in Bi2.1Sr1.94Ca0.88Cu2.07O8+δ single crystals revealed a gapless superconducting state, which can be most naturally explained by a d-wave pairing state and the intrinsic disorder in this material. The Cu nuclear spin-spin relaxation rate in underdoped YBa2Cu3O6.63 shows distinct temperature dependence from the spin-lattice relaxation rate, providing direct evidence for a pseudo spin-gap near the antiferromagnetic wave vector.
Chow, Colin M; Ross, Aaron M; Kim, Danny; Gammon, Daniel; Bracker, Allan S; Sham, L J; Steel, Duncan G
2016-08-12
We demonstrate the extension of coherence between all four two-electron spin ground states of an InAs quantum dot molecule (QDM) via nonlocal suppression of nuclear spin fluctuations in two vertically stacked quantum dots (QDs), while optically addressing only the top QD transitions. Long coherence times are revealed through dark-state spectroscopy as resulting from nuclear spin locking mediated by the exchange interaction between the QDs. Line shape analysis provides the first measurement of the quieting of the Overhauser field distribution correlating with reduced nuclear spin fluctuations.
NASA Astrophysics Data System (ADS)
Chow, Colin M.; Ross, Aaron M.; Kim, Danny; Gammon, Daniel; Bracker, Allan S.; Sham, L. J.; Steel, Duncan G.
2016-08-01
We demonstrate the extension of coherence between all four two-electron spin ground states of an InAs quantum dot molecule (QDM) via nonlocal suppression of nuclear spin fluctuations in two vertically stacked quantum dots (QDs), while optically addressing only the top QD transitions. Long coherence times are revealed through dark-state spectroscopy as resulting from nuclear spin locking mediated by the exchange interaction between the QDs. Line shape analysis provides the first measurement of the quieting of the Overhauser field distribution correlating with reduced nuclear spin fluctuations.
Resonant tunneling of spin-wave packets via quantized states in potential wells.
Hansen, Ulf-Hendrik; Gatzen, Marius; Demidov, Vladislav E; Demokritov, Sergej O
2007-09-21
We have studied the tunneling of spin-wave pulses through a system of two closely situated potential barriers. The barriers represent two areas of inhomogeneity of the static magnetic field, where the existence of spin waves is forbidden. We show that for certain values of the spin-wave frequency corresponding to the quantized spin-wave states existing in the well formed between the barriers, the tunneling has a resonant character. As a result, transmission of spin-wave packets through the double-barrier structure is much more efficient than the sequent tunneling through two single barriers.
Measurement Of Molecular Mobilities Of Polymers
NASA Technical Reports Server (NTRS)
Kim, Soon Sam; Tsay, Fun-Dow
1989-01-01
New molecular-probe technique used to measure molecular mobility of polymer. Method based on use of time-resolved electron-spin resonance (ESR) spectroscopy to monitor decay of transient nutation amplitudes from photoexcited triplet states of probe molecules with which polymer is doped. The higher molecular mobility of polymer matrix, the faster nutation amplitudes of the probe molecules decay.
NASA Astrophysics Data System (ADS)
Fathalian, Ali; Jalilian, Jaafar; Shahidi, Sahar
2011-11-01
The electronic and magnetic properties for a single Fe atom chain wrapped in armchair (n,n) boron nitride nanotubes (BNNTs) ( 4≤n≤6) are investigated through the density functional theory. By increasing the nanotube diameter, the magnetic moments, total magnetic moments and spin polarization of Fe@(n,n) systems are increased. We have calculated the majority and minority density of states (DOS) of armchair Fe@(6,6) BNNT. Our results show that the magnetic moment of the system come mostly from the Fe atom chain. The magnetic moment on an Fe atom, the total magnetic moment and spin polarization decrease by increasing the axial separation of the Fe atom chain for the Fe@(6,6) system. The Fe@(6,6) BNNT can be used in the magnetic nanodevices because of higher magnetic moment and spin polarization.
Engineering the Eigenstates of Coupled Spin-1/2 Atoms on a Surface.
Yang, Kai; Bae, Yujeong; Paul, William; Natterer, Fabian D; Willke, Philip; Lado, Jose L; Ferrón, Alejandro; Choi, Taeyoung; Fernández-Rossier, Joaquín; Heinrich, Andreas J; Lutz, Christopher P
2017-12-01
Quantum spin networks having engineered geometries and interactions are eagerly pursued for quantum simulation and access to emergent quantum phenomena such as spin liquids. Spin-1/2 centers are particularly desirable, because they readily manifest coherent quantum fluctuations. Here we introduce a controllable spin-1/2 architecture consisting of titanium atoms on a magnesium oxide surface. We tailor the spin interactions by atomic-precision positioning using a scanning tunneling microscope (STM) and subsequently perform electron spin resonance on individual atoms to drive transitions into and out of quantum eigenstates of the coupled-spin system. Interactions between the atoms are mapped over a range of distances extending from highly anisotropic dipole coupling to strong exchange coupling. The local magnetic field of the magnetic STM tip serves to precisely tune the superposition states of a pair of spins. The precise control of the spin-spin interactions and ability to probe the states of the coupled-spin network by addressing individual spins will enable the exploration of quantum many-body systems based on networks of spin-1/2 atoms on surfaces.
Engineering the Eigenstates of Coupled Spin-1 /2 Atoms on a Surface
NASA Astrophysics Data System (ADS)
Yang, Kai; Bae, Yujeong; Paul, William; Natterer, Fabian D.; Willke, Philip; Lado, Jose L.; Ferrón, Alejandro; Choi, Taeyoung; Fernández-Rossier, Joaquín; Heinrich, Andreas J.; Lutz, Christopher P.
2017-12-01
Quantum spin networks having engineered geometries and interactions are eagerly pursued for quantum simulation and access to emergent quantum phenomena such as spin liquids. Spin-1 /2 centers are particularly desirable, because they readily manifest coherent quantum fluctuations. Here we introduce a controllable spin-1 /2 architecture consisting of titanium atoms on a magnesium oxide surface. We tailor the spin interactions by atomic-precision positioning using a scanning tunneling microscope (STM) and subsequently perform electron spin resonance on individual atoms to drive transitions into and out of quantum eigenstates of the coupled-spin system. Interactions between the atoms are mapped over a range of distances extending from highly anisotropic dipole coupling to strong exchange coupling. The local magnetic field of the magnetic STM tip serves to precisely tune the superposition states of a pair of spins. The precise control of the spin-spin interactions and ability to probe the states of the coupled-spin network by addressing individual spins will enable the exploration of quantum many-body systems based on networks of spin-1 /2 atoms on surfaces.
Driving spin transition at interface: Role of adsorption configurations
NASA Astrophysics Data System (ADS)
Zhang, Yachao
2018-01-01
A clear insight into the electrical manipulation of molecular spins at interface is crucial to the design of molecule-based spintronic devices. Here we report on the electrically driven spin transition in manganocene physisorbed on a metallic surface in two different adsorption configurations predicted by ab initio techniques, including a Hubbard-U correction at the manganese site and accounting for the long-range van der Waals interactions. We show that the application of an electric field at the interface induces a high-spin to low-spin transition in the flat-lying manganocene, while it could hardly alter the high-spin ground state of the standing-up molecule. This phenomenon cannot be explained by either the molecule-metal charge transfer or the local electron correlation effects. We demonstrate a linear dependence of the intra-molecular spin-state splitting on the energy difference between crystal-field splitting and on-site Coulomb repulsion. After considering the molecule-surface binding energy shifts upon spin transition, we reproduce the obtained spin-state energetics. We find that the configuration-dependent responses of the spin-transition originate from the binding energy shifts instead of the variation of the local ligand field. Through these analyses, we obtain an intuitive understanding of the effects of molecule-surface contact on spin-crossover under electrical bias.
Topological quantum phase transitions and edge states in spin-orbital coupled Fermi gases.
Zhou, Tao; Gao, Yi; Wang, Z D
2014-06-11
We study superconducting states in the presence of spin-orbital coupling and Zeeman field. It is found that a phase transition from a Fulde-Ferrell-Larkin-Ovchinnikov state to the topological superconducting state occurs upon increasing the spin-orbital coupling. The nature of this topological phase transition and its critical property are investigated numerically. Physical properties of the topological superconducting phase are also explored. Moreover, the local density of states is calculated, through which the topological feature may be tested experimentally.
Two-nucleon high-spin states, the Bansal-French model and the crude shell model
NASA Astrophysics Data System (ADS)
Chan, Tsan Ung
1987-08-01
Recent data on two-nucleon stretched high-spin states agree well with the crude shell model predictions. For two-neutron high-spin states, the A and T linear dependence of B2n in the Bansal-French model can be deduced from the A and T linear dependence of Bn and the crude shell model. 7-2 states in some Zn and Ge even nuclei might be two-proton states. This hypothesis should be confirmed by two-proton transfer reaction.
Quantum spin transistor with a Heisenberg spin chain
Marchukov, O. V.; Volosniev, A. G.; Valiente, M.; Petrosyan, D.; Zinner, N. T.
2016-01-01
Spin chains are paradigmatic systems for the studies of quantum phases and phase transitions, and for quantum information applications, including quantum computation and short-distance quantum communication. Here we propose and analyse a scheme for conditional state transfer in a Heisenberg XXZ spin chain which realizes a quantum spin transistor. In our scheme, the absence or presence of a control spin excitation in the central gate part of the spin chain results in either perfect transfer of an arbitrary state of a target spin between the weakly coupled input and output ports, or its complete blockade at the input port. We also discuss a possible proof-of-concept realization of the corresponding spin chain with a one-dimensional ensemble of cold atoms with strong contact interactions. Our scheme is generally applicable to various implementations of tunable spin chains, and it paves the way for the realization of integrated quantum logic elements. PMID:27721438
Quantum spin transistor with a Heisenberg spin chain.
Marchukov, O V; Volosniev, A G; Valiente, M; Petrosyan, D; Zinner, N T
2016-10-10
Spin chains are paradigmatic systems for the studies of quantum phases and phase transitions, and for quantum information applications, including quantum computation and short-distance quantum communication. Here we propose and analyse a scheme for conditional state transfer in a Heisenberg XXZ spin chain which realizes a quantum spin transistor. In our scheme, the absence or presence of a control spin excitation in the central gate part of the spin chain results in either perfect transfer of an arbitrary state of a target spin between the weakly coupled input and output ports, or its complete blockade at the input port. We also discuss a possible proof-of-concept realization of the corresponding spin chain with a one-dimensional ensemble of cold atoms with strong contact interactions. Our scheme is generally applicable to various implementations of tunable spin chains, and it paves the way for the realization of integrated quantum logic elements.
Quantum State Transfer from a Single Photon to a Distant Quantum-Dot Electron Spin
NASA Astrophysics Data System (ADS)
He, Yu; He, Yu-Ming; Wei, Yu-Jia; Jiang, Xiao; Chen, Kai; Lu, Chao-Yang; Pan, Jian-Wei; Schneider, Christian; Kamp, Martin; Höfling, Sven
2017-08-01
Quantum state transfer from flying photons to stationary matter qubits is an important element in the realization of quantum networks. Self-assembled semiconductor quantum dots provide a promising solid-state platform hosting both single photon and spin, with an inherent light-matter interface. Here, we develop a method to coherently and actively control the single-photon frequency bins in superposition using electro-optic modulators, and measure the spin-photon entanglement with a fidelity of 0.796 ±0.020 . Further, by Greenberger-Horne-Zeilinger-type state projection on the frequency, path, and polarization degrees of freedom of a single photon, we demonstrate quantum state transfer from a single photon to a single electron spin confined in an InGaAs quantum dot, separated by 5 m. The quantum state mapping from the photon's polarization to the electron's spin is demonstrated along three different axes on the Bloch sphere, with an average fidelity of 78.5%.
Exactly solved mixed spin-(1,1/2) Ising-Heisenberg diamond chain with a single-ion anisotropy
NASA Astrophysics Data System (ADS)
Lisnyi, Bohdan; Strečka, Jozef
2015-03-01
The mixed spin-(1,1/2) Ising-Heisenberg diamond chain with a single-ion anisotropy is exactly solved through the generalized decoration-iteration transformation and the transfer-matrix method. The decoration-iteration transformation is first used for establishing a rigorous mapping equivalence with the corresponding spin-1 Blume-Emery-Griffiths chain, which is subsequently exactly treated within the transfer-matrix technique. Apart from three classical ground states the model exhibits three striking quantum ground states in which a singlet-dimer state of the interstitial Heisenberg spins is accompanied either with a frustrated state or a polarized state or a non-magnetic state of the nodal Ising spins. It is evidenced that two magnetization plateaus at zero and/or one-half of the saturation magnetization may appear in low-temperature magnetization curves. The specific heat may display remarkable temperature dependences with up to three and four distinct round maxima in a zero and non-zero magnetic field, respectively.
Beam-target double-spin asymmetry in quasielastic electron scattering off the deuteron with CLAS
NASA Astrophysics Data System (ADS)
Mayer, M.; Kuhn, S. E.; Adhikari, K. P.; Akbar, Z.; Anefalos Pereira, S.; Asryan, G.; Avakian, H.; Badui, R. A.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Bedlinskiy, I.; Biselli, A. S.; Boiarinov, S.; Bosted, P.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Charles, G.; Chetry, T.; Ciullo, G.; Clark, L.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dupre, R.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fanchini, E.; Fedotov, G.; Fersch, R.; Filippi, A.; Fleming, J. A.; Forest, T. A.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gleason, C.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Hakobyan, H.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jiang, H.; Keith, C.; Keller, D.; Khachatryan, G.; Khachatryan, M.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Kubarovsky, V.; Lanza, L.; Lenisa, P.; Livingston, K.; MacGregor, I. J. D.; McKinnon, B.; Meekins, D.; Mirazita, M.; Mokeev, V.; Movsisyan, A.; Net, L. A.; Niccolai, S.; Niculescu, G.; Osipenko, M.; Ostrovidov, A. I.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pogorelko, O.; Price, J. W.; Prok, Y.; Puckett, A. J. R.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Sabatié, F.; Schumacher, R. A.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stankovic, I.; Stepanyan, S.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tian, Ye; Torayev, B.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zhang, J.; Zonta, I.; CLAS Collaboration
2017-02-01
Background: The deuteron plays a pivotal role in nuclear and hadronic physics, as both the simplest bound multinucleon system and as an effective neutron target. Quasielastic electron scattering on the deuteron is a benchmark reaction to test our understanding of deuteron structure and the properties and interactions of the two nucleons bound in the deuteron. Purpose: The experimental data presented here can be used to test state-of-the-art models of the deuteron and the two-nucleon interaction in the final state after two-body breakup of the deuteron. Focusing on polarization degrees of freedom, we gain information on spin-momentum correlations in the deuteron ground state (due to the D -state admixture) and on the limits of the impulse approximation (IA) picture as it applies to measurements of spin-dependent observables like spin structure functions for bound nucleons. Information on this reaction can also be used to reduce systematic uncertainties on the determination of neutron form factors or deuteron polarization through quasielastic polarized electron scattering. Method: We measured the beam-target double-spin asymmetry (A||) for quasielastic electron scattering off the deuteron at several beam energies (1.6 -1.7 , 2.5, 4.2, and 5.6 -5.8 GeV ), using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. The deuterons were polarized along (or opposite to) the beam direction. The double-spin asymmetries were measured as a function of photon virtuality Q2(0.13 -3.17 (GeV/c ) 2) , missing momentum (pm=0.0 -0.5 GeV /c ), and the angle between the (inferred) spectator neutron and the momentum transfer direction (θn q). Results: The results are compared with a recent model that includes final-state interactions (FSI) using a complete parametrization of nucleon-nucleon scattering, as well as a simplified model using the plane wave impulse approximation (PWIA). We find overall good agreement with both the PWIA and FSI expectations at low to medium missing momenta (pm≤0.25 GeV /c ), including the change of the asymmetry due to the contribution of the deuteron D state at higher momenta. At the highest missing momenta, our data clearly agree better with the calculations including FSI. Conclusions: Final-state interactions seem to play a lesser role for polarization observables in deuteron two-body electrodisintegration than for absolute cross sections. Our data, while limited in statistical power, indicate that PWIA models work reasonably well to understand the asymmetries at lower missing momenta. In turn, this information can be used to extract the product of beam and target polarization (PbPt ) from quasielastic electron-deuteron scattering, which is useful for measurements of spin observables in electron-neutron inelastic scattering. However, at the highest missing (neutron) momenta, FSI effects become important and must be accounted for.
Configuration memory in patchwork dynamics for low-dimensional spin glasses
NASA Astrophysics Data System (ADS)
Yang, Jie; Middleton, A. Alan
2017-12-01
A patchwork method is used to study the dynamics of loss and recovery of an initial configuration in spin glass models in dimensions d =1 and d =2 . The patchwork heuristic is used to accelerate the dynamics to investigate how models might reproduce the remarkable memory effects seen in experiment. Starting from a ground-state configuration computed for one choice of nearest-neighbor spin couplings, the sample is aged up to a given scale under new random couplings, leading to the partial erasure of the original ground state. The couplings are then restored to the original choice and patchwork coarsening is again applied, in order to assess the recovery of the original state. Eventual recovery of the original ground state upon coarsening is seen in two-dimensional Ising spin glasses and one-dimensional clock models, while one-dimensional Ising spin systems neither lose nor gain overlap with the ground state during the recovery stage. The recovery for the two-dimensional Ising spin glasses suggests scaling relations that lead to a recovery length scale that grows as a power of the aging length scale.
Quantum entanglement at ambient conditions in a macroscopic solid-state spin ensemble
Klimov, Paul V.; Falk, Abram L.; Christle, David J.; Dobrovitski, Viatcheslav V.; Awschalom, David D.
2015-01-01
Entanglement is a key resource for quantum computers, quantum-communication networks, and high-precision sensors. Macroscopic spin ensembles have been historically important in the development of quantum algorithms for these prospective technologies and remain strong candidates for implementing them today. This strength derives from their long-lived quantum coherence, strong signal, and ability to couple collectively to external degrees of freedom. Nonetheless, preparing ensembles of genuinely entangled spin states has required high magnetic fields and cryogenic temperatures or photochemical reactions. We demonstrate that entanglement can be realized in solid-state spin ensembles at ambient conditions. We use hybrid registers comprising of electron-nuclear spin pairs that are localized at color-center defects in a commercial SiC wafer. We optically initialize 103 identical registers in a 40-μm3 volume (with 0.95−0.07+0.05 fidelity) and deterministically prepare them into the maximally entangled Bell states (with 0.88 ± 0.07 fidelity). To verify entanglement, we develop a register-specific quantum-state tomography protocol. The entanglement of a macroscopic solid-state spin ensemble at ambient conditions represents an important step toward practical quantum technology. PMID:26702444
Higgs mechanism for gravity. II. Higher spin connections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boulanger, Nicolas; Kirsch, Ingo; Jefferson Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138
We continue the work of [Phys. Rev. D 72, 024001 (2005)] in which gravity is considered as the Goldstone realization of a spontaneously broken diffeomorphism group. We complete the discussion of the coset space Diff (d,R)/SO(1,d-1) formed by the d-dimensional group of analytic diffeomorphisms and the Lorentz group. We find that this coset space is parametrized by coordinates, a metric, and an infinite tower of higher-spin or generalized connections. We then study effective actions for the corresponding symmetry breaking which gives mass to the higher spin connections. Our model predicts that gravity is modified at high energies by the exchangemore » of massive higher spin particles.« less
Locv Calculations for Polarized Liquid 3He with the Spin-Dependent Correlation
NASA Astrophysics Data System (ADS)
Bordbar, G. H.; Karimi, M. J.
We have used the lowest order constrained variational (LOCV) method to calculate some ground-state properties of polarized liquid 3 He at zero temperature with the spin-dependent correlation function employing the Lennard-Jones and Aziz pair potentials. We have seen that the total energy of polarized liquid 3He increases with increasing polarization. For all polarizations, it is shown that the total energy in the spin-dependent case is lower than the spin-independent case. We have seen that the difference between the energies of spin-dependent and spin-independent cases decreases by increasing the polarization. We have shown that the main contribution of the potential energy comes from the spin-triplet state.
Concept for room temperature single-spin tunneling force microscopy with atomic spatial resolution
NASA Astrophysics Data System (ADS)
Payne, Adam
A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy (AFM) system noise. The results show that the approach could provide single-spin measurement of electrically isolated defect states with atomic spatial resolution at room temperature.
NASA Astrophysics Data System (ADS)
Payne, A.; Ambal, K.; Boehme, C.; Williams, C. C.
2015-05-01
A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single-electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy system noise. The results show that the approach could provide single-spin measurement of electrically isolated qubit states with atomic spatial resolution at room temperature.
Toward Quantum Non-demolition of nitrogen-vacancy centers in diamond
NASA Astrophysics Data System (ADS)
Hodges, Jonathan; Jiang, Liang; Maze, Jeronimo; Lukin, Mikhail
2009-05-01
The nitrogen-vacancy color center (NVC) in diamond, which possesses a long-lived electronic spin (S=1) ground state with optical addressability, is a promising platform for quantum networks, single-photon sources, and nanoscale magnetometers. Here, we make use of a nuclear spin based quantum memory to demonstrate quantum non-demolition measurement of a solid-state spin qubit. By entangling the electron spin with a polarized carbon-13 spin (I=1/2) in the lattice, we have repeated optical measurement of the electron spin for the polarization lifetime of the nuclear spin. We show relative improvements in signal-to-noise of greater than 300%. These techniques can be used to improve the sensitivity of NVC magnetometers.
Out-of-equilibrium dynamics of photoexcited spin-state concentration waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marino, Andrea; Buron-Le Cointe, M.; Lorenc, M.
2015-01-28
The spin crossover compound [Fe IIH 2L 2-Me][PF 6]2 presents a two-step phase transition. In the intermediate phase, a spin state concentration wave (SSCW) appears resulting from a symmetry breaking (cell doubling) associated with a long-range order of alternating high and low spin molecular states. Lastly, by combining time-resolved optical and X-ray diffraction measurements on a single crystal, we study how such a system responds to femtosecond laser excitation and we follow in real time the erasing and rewriting of the SSCW
Spin-Glass Ground State in a Triangular-Lattice Compound YbZnGaO4
NASA Astrophysics Data System (ADS)
Ma, Zhen; Wang, Jinghui; Dong, Zhao-Yang; Zhang, Jun; Li, Shichao; Zheng, Shu-Han; Yu, Yunjie; Wang, Wei; Che, Liqiang; Ran, Kejing; Bao, Song; Cai, Zhengwei; Čermák, P.; Schneidewind, A.; Yano, S.; Gardner, J. S.; Lu, Xin; Yu, Shun-Li; Liu, Jun-Ming; Li, Shiyan; Li, Jian-Xin; Wen, Jinsheng
2018-02-01
We report on comprehensive results identifying the ground state of a triangular-lattice structured YbZnGaO4 as a spin glass, including no long-range magnetic order, prominent broad excitation continua, and the absence of magnetic thermal conductivity. More crucially, from the ultralow-temperature ac susceptibility measurements, we unambiguously observe frequency-dependent peaks around 0.1 K, indicating the spin-glass ground state. We suggest this conclusion holds also for its sister compound YbMgGaO4 , which is confirmed by the observation of spin freezing at low temperatures. We consider disorder and frustration to be the main driving force for the spin-glass phase.
Out-of-equilibrium spin transport in mesoscopic superconductors.
Quay, C H L; Aprili, M
2018-08-06
The excitations in conventional superconductors, Bogoliubov quasi-particles, are spin-[Formula: see text] fermions but their charge is energy-dependent and, in fact, zero at the gap edge. Therefore, in superconductors (unlike normal metals) spin and charge degrees of freedom may be separated. In this article, we review spin injection into conventional superconductors and focus on recent experiments on mesoscopic superconductors. We show how quasi-particle spin transport and out-of-equilibrium spin-dependent superconductivity can be triggered using the Zeeman splitting of the quasi-particle density of states in thin-film superconductors with small spin-mixing scattering. Finally, we address the spin dynamics and the feedback of quasi-particle spin imbalances on the amplitude of the superconducting energy gap.This article is part of the theme issue 'Andreev bound states'. © 2018 The Author(s).
Optically controlled locking of the nuclear field via coherent dark-state spectroscopy.
Xu, Xiaodong; Yao, Wang; Sun, Bo; Steel, Duncan G; Bracker, Allan S; Gammon, Daniel; Sham, L J
2009-06-25
A single electron or hole spin trapped inside a semiconductor quantum dot forms the foundation for many proposed quantum logic devices. In group III-V materials, the resonance and coherence between two ground states of the single spin are inevitably affected by the lattice nuclear spins through the hyperfine interaction, while the dynamics of the single spin also influence the nuclear environment. Recent efforts have been made to protect the coherence of spins in quantum dots by suppressing the nuclear spin fluctuations. However, coherent control of a single spin in a single dot with simultaneous suppression of the nuclear fluctuations has yet to be achieved. Here we report the suppression of nuclear field fluctuations in a singly charged quantum dot to well below the thermal value, as shown by an enhancement of the single electron spin dephasing time T(2)*, which we measure using coherent dark-state spectroscopy. The suppression of nuclear fluctuations is found to result from a hole-spin assisted dynamic nuclear spin polarization feedback process, where the stable value of the nuclear field is determined only by the laser frequencies at fixed laser powers. This nuclear field locking is further demonstrated in a three-laser measurement, indicating a possible enhancement of the electron spin T(2)* by a factor of several hundred. This is a simple and powerful method of enhancing the electron spin coherence time without use of 'spin echo'-type techniques. We expect that our results will enable the reproducible preparation of the nuclear spin environment for repetitive control and measurement of a single spin with minimal statistical broadening.
Low-Spin States From Decay Studies in the Mass 80 Region
Döring, J.; Aprahamian, A.; Wiescher, M.
2000-01-01
Neutron-deficient nuclei in the mass 80 region are known to exhibit strongly deformed ground states deduced mainly from yrast-state properties measured in-beam via heavy-ion fusion-evaporation reactions. Vibrational excitations and non-yrast states as well as their interplay with the observed rotational collectivity have been less studied to date within this mass region. Thus, several β-decay experiments have been performed to populate low-spin states in the neutron-deficient 80,84Y and 80,84Sr nuclei. An overview of excited 0+ states in Sr and Kr nuclei is given and conclusions about shape evolution at low-spins are presented. In general, the non-yrast states in even-even Sr nuclei show mainly vibration-like collectivity which evolves to rotational behavior with increasing spin and decreasing neutron number. PMID:27551586
High spin polarization and the origin of unique ferromagnetic ground state in CuFeSb
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sirohi, Anshu; Saha, Preetha; Gayen, Sirshendu
CuFeSb is isostructural to the ferro-pnictide and chalcogenide superconductors and it is one of the few materials in the family that are known to stabilize in a ferromagnetic ground state. Majority of the members of this family are either superconductors or antiferromagnets. Therefore, CuFeSb may be used as an ideal source of spin polarized current in spin-transport devices involving pnictide and the chalcogenide superconductors. However, for that the Fermi surface of CuFeSb needs to be sufficiently spin polarized. In this paper we report direct measurement of transport spin polarization in CuFeSb by spin-resolved Andreev reflection spectroscopy. From a number ofmore » measurements using multiple superconducting tips we found that the intrinsic transport spin polarization in CuFeSb is high (∼47%). In order to understand the unique ground state of CuFeSb and the origin of large spin polarization at the Fermi level, we have evaluated the spin-polarized band structure of CuFeSb through first principles calculations. Apart from supporting the observed 47% transport spin polarization, such calculations also indicate that the Sb-Fe-Sb angles and the height of Sb from the Fe plane are strikingly different for CuFeSb than the equivalent parameters in other members of the same family thereby explaining the origin of the unique ground state of CuFeSb.« less