Sample records for higher substrate affinity

  1. Microbial respiration and kinetics of extracellular enzymes activities through rhizosphere and detritusphere at agricultural site

    NASA Astrophysics Data System (ADS)

    Löppmann, Sebastian; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2014-05-01

    Rhizosphere and detritusphere are soil microsites with very high resource availability for microorganisms affecting their biomass, composition and functions. In the rhizosphere low molecular compounds occur with root exudates and low available polymeric compounds, as belowground plant senescence. In detritusphere the substrate for decomposition is mainly a polymeric material of low availability. We hypothesized that microorganisms adapted to contrasting quality and availability of substrates in the rhizosphere and detritusphere are strongly different in affinity of hydrolytic enzymes responsible for decomposition of organic compounds. According to common ecological principles easily available substrates are quickly consumed by microorganisms with enzymes of low substrate affinity (i.e. r-strategists). The slow-growing K-strategists with enzymes of high substrate affinity are better adapted for growth on substrates of low availability. Estimation of affinity of enzyme systems to the substrate is based on Michaelis-Menten kinetics, reflecting the dependency of decomposition rates on substrate amount. As enzymes-mediated reactions are substrate-dependent, we further hypothesized that the largest differences in hydrolytic activity between the rhizosphere and detritusphere occur at substrate saturation and that these differences are smoothed with increasing limitation of substrate. Affected by substrate limitation, microbial species follow a certain adaptation strategy. To achieve different depth gradients of substrate availability 12 plots on an agricultural field were established in the north-west of Göttingen, Germany: 1) 4 plots planted with maize, reflecting lower substrate availability with depth; 2) 4 unplanted plots with maize litter input (0.8 kg m-2 dry maize residues), corresponding to detritusphere; 3) 4 bare fallow plots as control. Maize litter was grubbed homogenously into the soil at the first 5 cm to ensure comparable conditions for the herbivore and detritivore communities in the soil. The kinetics (Km and Vmax) of four extracellular hydrolytic enzymes responsible for C- and phosphorous-cycle (β-glucosidase, β-xylosidase, β-cellobiohydrolase and acid phosphatase), microbial biomass, basal respiration (BR) and substrate-induced respiration (SIR) were measured in rhizosphere, detritusphere and control from 0 - 10 and 10 - 20 cm. The metabolic quotient (qCO2) was calculated as specific indicator for efficiency of microbial substrate utilization. We observed clear differences in enzymes activities at low and high concentrations of substrate. At substrate saturation enzyme activity rates of were significantly higher in rooted plots compared to litter amended plots, whereas at lower concentration no treatment effect could be found. The BR, SIR and qCO2 values were significantly higher at 0 - 10 cm of the planted treatment compared to litter and control plots, revealing a significantly higher respiration at lower efficiency of microbial substrate utilization in the rhizosphere. The Michaelis-Menten constant (Km) decreased with depth, especially for β-glucosidase, acid phosphatase and β-xylosidase, indicating higher substrate affinity of microorganisms in deeper soil and therefore different enzyme systems functioning. The substrate affinity factor (Vmax/Km) increased 2-fold with depth for various enzymes, reflecting a switch of predominantly occurring microbial strategies. Vmax/Km ratio indicated relative domination of zymogenous microbial communities (r-strategists) in 0 - 10 cm depth as compared with 10 - 20 cm depth where the K-strategists dominated.

  2. AMP-forming acetyl-CoA synthetases in Archaea show unexpected diversity in substrate utilization

    PubMed Central

    Ingram-Smith, Cheryl; Smith, Kerry S.

    2007-01-01

    Adenosine monophosphate (AMP)-forming acetyl-CoA synthetase (ACS; acetate:CoA ligase (AMP-forming), EC 6.2.1.1) is a key enzyme for conversion of acetate to acetyl-CoA, an essential intermediate at the junction of anabolic and catabolic pathways. Phylogenetic analysis of putative short and medium chain acyl-CoA synthetase sequences indicates that the ACSs form a distinct clade from other acyl-CoA synthetases. Within this clade, the archaeal ACSs are not monophyletic and fall into three groups composed of both bacterial and archaeal sequences. Kinetic analysis of two archaeal enzymes, an ACS from Methanothermobacter thermautotrophicus (designated as MT-ACS1) and an ACS from Archaeoglobus fulgidus (designated as AF-ACS2), revealed that these enzymes have very different properties. MT-ACS1 has nearly 11-fold higher affinity and 14-fold higher catalytic efficiency with acetate than with propionate, a property shared by most ACSs. However, AF-ACS2 has only 2.3-fold higher affinity and catalytic efficiency with acetate than with propionate. This enzyme has an affinity for propionate that is almost identical to that of MT-ACS1 for acetate and nearly tenfold higher than the affinity of MT-ACS1 for propionate. Furthermore, MT-ACS1 is limited to acetate and propionate as acyl substrates, whereas AF-ACS2 can also utilize longer straight and branched chain acyl substrates. Phylogenetic analysis, sequence alignment and structural modeling suggest a molecular basis for the altered substrate preference and expanded substrate range of AF-ACS2 versus MT-ACS1. PMID:17350930

  3. Alternating carrier models of asymmetric glucose transport violate the energy conservation laws.

    PubMed

    Naftalin, Richard J

    2008-11-01

    Alternating access transporters with high-affinity externally facing sites and low-affinity internal sites relate substrate transit directly to the unliganded asymmetric "carrier" (Ci) distribution. When both bathing solutions contain equimolar concentrations of ligand, zero net flow of the substrate-carrier complex requires a higher proportion of unliganded low-affinity inside sites (proportional, variant 1/KD(in)) and slower unliganded "free" carrier transit from inside to outside than in the reverse direction. However, asymmetric rates of unliganded carrier movement, kij, imply that an energy source, DeltaGcarrier = RT ln (koi/kio) = RT ln (Cin/Cout) = RT ln (KD(in)/KD(out)), where R is the universal gas constant (8.314 Joules/M/K degrees), and T is the temperature, assumed here to be 300 K degrees , sustains the asymmetry. Without this invalid assumption, the constraints of carrier path cyclicity, combined with asymmetric ligand affinities and equimolarity at equilibrium, are irreconcilable, and any passive asymmetric uniporter or cotransporter model system, e.g., Na-glucose cotransporters, espousing this fundamental error is untenable. With glucose transport via GLUT1, the higher maximal rate and Km of net ligand exit compared to net ligand entry is only properly simulated if ligand transit occurs by serial dissociation-association reactions between external high-affinity and internal low-affinity immobile sites. Faster intersite transit rates occur from lower-affinity sites than from higher-affinity sites and require no other energy source to maintain equilibrium. Similar constraints must apply to cotransport.

  4. Identification and binding mechanism of phage displayed peptides with specific affinity to acid-alkali treated titanium.

    PubMed

    Sun, Yuhua; Tan, Jing; Wu, Baohua; Wang, Jianxin; Qu, Shuxin; Weng, Jie; Feng, Bo

    2016-10-01

    Acid-alkali treatment is one of means widely used for preparing bioactive titanium surfaces. Peptides with specific affinity to titanium surface modified by acid-alkali two-steps treatment were obtained via phage display technology. Out of the eight new unique peptides, titanium-binding peptide 54 displayed by monoclonal M13 phage at its pIII coat protein (TBP54-M13 phage) was proved to have higher binding affinity to the substrate. The binding interaction occurred at the domain from phenylalanine at position 1 to arginine at position 6 in the sequences of TBP54 (FAETHRGFHFSF) mainly via the reaction of these residues with the Ti surface. Together the coordination and electrostatic interactions controlled the specific binding of the phage to the substrate. The binding affinity was dependent on the surface basic hydroxyl group content. In addition, the phage showed a different interaction way with the Ti surface without acid-alkali treatment along with an impaired affinity. This study could provide more understanding of the interaction mechanism between the selected peptide and its specific substrate, and develop a promising method for the biofunctionalization of titanium. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Specific Inhibition of β-Secretase Processing of the Alzheimer Disease Amyloid Precursor Protein.

    PubMed

    Ben Halima, Saoussen; Mishra, Sabyashachi; Raja, K Muruga Poopathi; Willem, Michael; Baici, Antonio; Simons, Kai; Brüstle, Oliver; Koch, Philipp; Haass, Christian; Caflisch, Amedeo; Rajendran, Lawrence

    2016-03-08

    Development of disease-modifying therapeutics is urgently needed for treating Alzheimer disease (AD). AD is characterized by toxic β-amyloid (Aβ) peptides produced by β- and γ-secretase-mediated cleavage of the amyloid precursor protein (APP). β-secretase inhibitors reduce Aβ levels, but mechanism-based side effects arise because they also inhibit β-cleavage of non-amyloid substrates like Neuregulin. We report that β-secretase has a higher affinity for Neuregulin than it does for APP. Kinetic studies demonstrate that the affinities and catalytic efficiencies of β-secretase are higher toward non-amyloid substrates than toward APP. We show that non-amyloid substrates are processed by β-secretase in an endocytosis-independent manner. Exploiting this compartmentalization of substrates, we specifically target the endosomal β-secretase by an endosomally targeted β-secretase inhibitor, which blocked cleavage of APP but not non-amyloid substrates in many cell systems, including induced pluripotent stem cell (iPSC)-derived neurons. β-secretase inhibitors can be designed to specifically inhibit the Alzheimer process, enhancing their potential as AD therapeutics without undesired side effects. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Substrate specificity of the violaxanthin de-epoxidase of the primitive green alga Mantoniella squamata (Prasinophyceae).

    PubMed

    Goss, Reimund

    2003-09-01

    The substrate specificity of the enzyme violaxanthin de-epoxidase (VDE) of the primitive green alga Mantoniella squamata (Prasinophyceae) was tested in in vitro enzyme assays employing the following xanthophyll mono-epoxides: antheraxanthin (Ax), diadinoxanthin (Ddx), lutein-epoxide (LE), cryptoxanthin-epoxide (CxE), 9- cis neoxanthin (cNx), all- trans neoxanthin (Nx), and xanthophyll di-epoxides: 9- cis violaxanthin (cVx), all- trans violaxanthin (Vx), cryptoxanthin-di-epoxide (CxDE). The data presented in this study show that the VDE of M. squamata not only exhibits a low affinity for the mono-epoxide Ax, as has been reported by R. Frommolt et al. (2001, Planta 213:446-456), but has a reduced substrate affinity for the mono-epoxides Ddx, LE, CxE, and Nx as well. On the other hand, xanthophylls with a second epoxy-group (Vx, CxDE) can be de-epoxidized with a higher efficiency. Such a preference for xanthophyll di-epoxides cannot be observed for the higher-plant VDE, where, in general, no marked differences in the pigment de-epoxidation rates between xanthophyll mono- and di-epoxides are visible. Despite this substantial difference between the VDEs of M. squamata and S. oleracea there are also features common to both enzymes. Neither VDE is able to convert xanthophylls with a 9- cis configuration in the acyclic polyene chain and both rely on substrates in the all- trans configuration. Both enzymes furthermore exhibit a dependence of enzyme activity on the polarity of the substrate. Highly polar (Nx) or non-polar (CxE) xanthophylls are de-epoxidized with greatly reduced rates in comparison to substrates with an intermediate polarity (Vx, Ax, LE, Ddx). This dependence on substrate polarity becomes more obvious when the higher-plant VDE is examined, as the substrate affinity of the VDE of M. squamata is more strongly influenced by the existence or absence of a second epoxy-group. In summary, the data presented in this study underline the fact that different VDEs, although in general catalyzing the same reaction sequence, are functionally diverse.

  7. Two amino acid residues confer different binding affinities of Abelson family kinase SRC homology 2 domains for phosphorylated cortactin.

    PubMed

    Gifford, Stacey M; Liu, Weizhi; Mader, Christopher C; Halo, Tiffany L; Machida, Kazuya; Boggon, Titus J; Koleske, Anthony J

    2014-07-11

    The closely related Abl family kinases, Arg and Abl, play important non-redundant roles in the regulation of cell morphogenesis and motility. Despite similar N-terminal sequences, Arg and Abl interact with different substrates and binding partners with varying affinities. This selectivity may be due to slight differences in amino acid sequence leading to differential interactions with target proteins. We report that the Arg Src homology (SH) 2 domain binds two specific phosphotyrosines on cortactin, a known Abl/Arg substrate, with over 10-fold higher affinity than the Abl SH2 domain. We show that this significant affinity difference is due to the substitution of arginine 161 and serine 187 in Abl to leucine 207 and threonine 233 in Arg, respectively. We constructed Abl SH2 domains with R161L and S187T mutations alone and in combination and find that these substitutions are sufficient to convert the low affinity Abl SH2 domain to a higher affinity "Arg-like" SH2 domain in binding to a phospho-cortactin peptide. We crystallized the Arg SH2 domain for structural comparison to existing crystal structures of the Abl SH2 domain. We show that these two residues are important determinants of Arg and Abl SH2 domain binding specificity. Finally, we expressed Arg containing an "Abl-like" low affinity mutant Arg SH2 domain (L207R/T233S) and find that this mutant, although properly localized to the cell periphery, does not support wild type levels of cell edge protrusion. Together, these observations indicate that these two amino acid positions confer different binding affinities and cellular functions on the distinct Abl family kinases. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Structural basis for high substrate-binding affinity and enantioselectivity of 3-quinuclidinone reductase AtQR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Feng; Miyakawa, Takuya; Kataoka, Michihiko

    2014-04-18

    Highlights: • Crystal structure of AtQR has been determined at 1.72 Å. • NADH binding induces the formation of substrate binding site. • AtQR possesses a conserved hydrophobic wall for stereospecific binding of substrate. • Additional Glu197 residue is critical to the high binding affinity. - Abstract: (R)-3-Quinuclidinol, a useful compound for the synthesis of various pharmaceuticals, can be enantioselectively produced from 3-quinuclidinone by 3-quinuclidinone reductase. Recently, a novel NADH-dependent 3-quinuclidionone reductase (AtQR) was isolated from Agrobacterium tumefaciens, and showed much higher substrate-binding affinity (>100 fold) than the reported 3-quinuclidionone reductase (RrQR) from Rhodotorula rubra. Here, we report the crystalmore » structure of AtQR at 1.72 Å. Three NADH-bound protomers and one NADH-free protomer form a tetrameric structure in an asymmetric unit of crystals. NADH not only acts as a proton donor, but also contributes to the stability of the α7 helix. This helix is a unique and functionally significant part of AtQR and is related to form a deep catalytic cavity. AtQR has all three catalytic residues of the short-chain dehydrogenases/reductases family and the hydrophobic wall for the enantioselective reduction of 3-quinuclidinone as well as RrQR. An additional residue on the α7 helix, Glu197, exists near the active site of AtQR. This acidic residue is considered to form a direct interaction with the amine part of 3-quinuclidinone, which contributes to substrate orientation and enhancement of substrate-binding affinity. Mutational analyses also support that Glu197 is an indispensable residue for the activity.« less

  9. Effect of the dilution rate on microbial competition: r-strategist can win over k-strategist at low substrate concentration.

    PubMed

    Winkler, Mari-K H; Boets, Pieter; Hahne, Birk; Goethals, Peter; Volcke, Eveline I P

    2017-01-01

    The conditions present in both in vitro and in vivo ecosystems determine the microbial population harbouring it. One commonly accepted theory is that a species with a high substrate affinity and low growth rate (k-strategist) will win the competition against a second species with a lower substrate affinity and higher growth rate (r-strategist) if both species are subjected to low substrate concentrations. In this study two nitrite oxidizing bacteria (NOB), Nitrospira defluvii (k-strategist) and Nitrobacter vulgaris (r-strategist), were cultivated in a continuous reactor systems. The minimal hydraulic retention time (HRT) required for maintaining the slower growing Nitrospira was first determined. A reactor containing Nitrobacter was set to the same HRT and Nitrospira was injected to evaluate the effect of the dilution rate on the competition between both species. By following the microbial population dynamics with qPCR analysis, it was shown that not only the substrate affinity drives the competition between k- and r-strategists but also the dilution rate. Experimental data and numerical simulations both revealed that the washout of Nitrobacter was significantly delayed at dilution rates close to the μmax of Nitrospira. The competition could be even reverted towards Nitrobacter (r-strategist) despite of low nitrite concentrations and dilution rates lower than the μmax of Nitrospira.

  10. Computational design and experimental study of tighter binding peptides to an inactivated mutant of HIV-1 protease

    PubMed Central

    Altman, Michael D.; Nalivaika, Ellen A.; Prabu-Jeyabalan, Moses; Schiffer, Celia A.; Tidor, Bruce

    2009-01-01

    Drug resistance in HIV-1 protease, a barrier to effective treatment, is generally caused by mutations in the enzyme that disrupt inhibitor binding but still allow for substrate processing. Structural studies with mutant, inactive enzyme, have provided detailed information regarding how the substrates bind to the protease yet avoid resistance mutations; insights obtained inform the development of next generation therapeutics. Although structures have been obtained of complexes between substrate peptide and inactivated (D25N) protease, thermodynamic studies of peptide binding have been challenging due to low affinity. Peptides that bind tighter to the inactivated protease than the natural substrates would be valuable for thermodynamic studies as well as to explore whether the structural envelope observed for substrate peptides is a function of weak binding. Here, two computational methods — namely, charge optimization and protein design — were applied to identify peptide sequences predicted to have higher binding affinity to the inactivated protease, starting from an RT–RH derived substrate peptide. Of the candidate designed peptides, three were tested for binding with isothermal titration calorimetry, with one, containing a single threonine to valine substitution, measured to have more than a ten-fold improvement over the tightest binding natural substrate. Crystal structures were also obtained for the same three designed peptide complexes; they show good agreement with computational prediction. Thermodynamic studies show that binding is entropically driven, more so for designed affinity enhanced variants than for the starting substrate. Structural studies show strong similarities between natural and tighter-binding designed peptide complexes, which may have implications in understanding the molecular mechanisms of drug resistance in HIV-1 protease. PMID:17729291

  11. The high affinity of small-molecule antioxidants for hemoglobin.

    PubMed

    Puscas, Cristina; Radu, Luana; Carrascoza, Francisco; Mot, Augustin C; Amariei, Diana; Lungu, Oana; Scurtu, Florina; Podea, Paula; Septelean, Raluca; Matei, Alina; Mic, Mihaela; Attia, Amr A; Silaghi-Dumitrescu, Radu

    2018-06-18

    Hemoglobin has previously been shown to display ascorbate peroxidase and urate peroxidase activity, with measurable Michaelis-Menten parameters that reveal a particularly low Km for ascorbate as well as for urate - lower than the respective in vivo concentrations of these antioxidants in blood. Also, direct detection of a hemoglobin-ascorbate interaction was possible by monitoring the 1H-NMR spectrum of ascorbate in the presence of hemoglobin. The relative difference in structures between ascorbate and urate may raise the question as to exactly what the defining structural features would be, for a substrate that binds to hemoglobin with high affinity. Reported here are Michaelis-Menten parameters for hemoglobin acting as peroxidase against a number of other substrates of varying structures - gallate, caffeate, rutin, 3-hydroxyflavone, 3,6-dihydroxyflavone, quercetin, epicatechin, luteolin - all with high affinities (some higher than those of physiologically-relevant redox partners of Hb - ascorbate and urate). Moreover, this high affinity appears general to animal hemoglobins. 1 H-NMR and 13 C-NMR spectra reveal a general pattern wherein small hydrophilic antioxidants appear to all have their signals affected, presumably due to binding to hemoglobin. Fluorescence and calorimetry measurements confirm these conclusions. Docking calculations confirm the existence of binding sites on hemoglobin and on myoglobin for ascorbate as well as for other antioxidants. Support is found for involvement of Tyr42 in binding of three out of the four substrates investigated in the case of hemoglobin (including ascorbate and urate, as blood-contained relevant substrates), but also for Tyr145 (with urate and caffeate) and Tyr35 (with gallate). Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Promotion of pro-osteogenic responses by a bioactive ceramic coating.

    PubMed

    Aniket; Young, Amy; Marriott, Ian; El-Ghannam, Ahmed

    2012-12-01

    The objective of this study was to analyze the responses of bone-forming osteoblasts to Ti-6Al-4V implant material coated with silica-calcium phosphate nanocomposite (SCPC50). Osteoblast differentiation at the interface with SCPC50-coated Ti-6Al-4V was correlated to the adsorption of high amount of serum proteins, high surface affinity to fibronectin, Ca uptake from and P and Si release into the medium. SCPC50-coated Ti-6Al-4V adsorbed significantly more serum protein (p < 0.05) than control uncoated substrates. Moreover, Western blot analysis showed that the SCPC50 coating had a high affinity for serum fibronectin. Protein conformation analyses by FTIR showed that the ratio of the area under the peak for amide I/amide II bands was significantly higher (p < 0.05) on the surface of SCPC50-coated substrates than that on the surface of the control uncoated substrates. Moreover, ICP - OES analyses indicated that SCPC50-coated substrates withdrew Ca ions from, and released P and Si ions into, the tissue culture medium, respectively. In conjunction with the favorable protein adsorption and modifications in medium composition, MC3T3-E1 osteoblast-like cells attached to SCPC50-coated substrates expressed 10-fold higher level of mRNA encoding osteocalcin and had significantly higher production of osteopontin and osteocalcin proteins than cells attached to the uncoated Ti-6A1-4V substrates. In addition, osteoblast-like cells attached to the SCPC50-coated substrates produced significantly lower levels of the inflammatory and osteoclastogenic cytokines, IL-6, IL-12p40, and RANKL than those attached to uncoated Ti-6Al-4V substrates. These results suggest that SCPC50 coating could enhance bone integration with orthopedic and maxillofacial implants while minimizing the induction of inflammatory bone cell responses. Copyright © 2012 Wiley Periodicals, Inc.

  13. Properties of Fructan:Fructan 1-Fructosyltransferases from Chicory and Globe Thistle, Two Asteracean Plants Storing Greatly Different Types of Inulin1

    PubMed Central

    Vergauwen, Rudy; Van Laere, André; Van den Ende, Wim

    2003-01-01

    Remarkably, within the Asteraceae, a species-specific fructan pattern can be observed. Some species such as artichoke (Cynara scolymus) and globe thistle (Echinops ritro) store fructans with a considerably higher degree of polymerization than the one observed in chicory (Cichorium intybus) and Jerusalem artichoke (Helianthus tuberosus). Fructan:fructan 1-fructosyltransferase (1-FFT) is the enzyme responsible for chain elongation of inulin-type fructans. 1-FFTs were purified from chicory and globe thistle. A comparison revealed that chicory 1-FFT has a high affinity for sucrose (Suc), fructose (Fru), and 1-kestose as acceptor substrate. This makes redistribution of Fru moieties from large to small fructans very likely during the period of active fructan synthesis in the root when import and concentration of Suc can be expected to be high. In globe thistle, this problem is avoided by the very low affinity of 1-FFT for Suc, Fru, and 1-kestose and the higher affinity for inulin as acceptor substrate. Therefore, the 1-kestose formed by Suc:Suc 1-fructosyltransferase is preferentially used for elongation of inulin molecules, explaining why inulins with a much higher degree of polymerization accumulate in roots of globe thistle. Inulin patterns obtained in vitro from 1-kestose and the purified 1-FFTs from both species closely resemble the in vivo inulin patterns. Therefore, we conclude that the species-specific fructan pattern within the Asteraceae can be explained by the different characteristics of their respective 1-FFTs. Although 1-FFT and bacterial levansucrases clearly differ in their ability to use Suc as a donor substrate, a kinetic analysis suggests that 1-FFT also works via a ping-pong mechanism. PMID:12970504

  14. Substrate binding ability of chemically inactivated pectinase for the substrate pectic acid.

    PubMed

    Chiba, Y; Kobayashi, M

    1995-07-01

    Pectinase (polygalacturonase) was purified from a commercial pectinase preparation from a mold. Substrate binding of pectinase was measured by centrifugal affinity chromatography using an immobilized substrate, pectic acid. Desorption of pectinase from the affinity matrix with the substrate pectin and pectic acid gave Kd values of 5.3 and 8.5 mg/ml, respectively. Chemical modification of pectinase by 1-ethyl-3-(3-dimethyl-aminopropyl)carbodiimide (EDC) and diethyl pyrocarbonate (DEP) caused a loss of most of the enzyme activity, but the substrate binding ability was not impaired. Thus, the pectinase preparation was digested with lysyl endopeptidase and the resulting peptides were treated with pectic acid-affinity gel. Three peptide fragments, which were recovered from the affinity column and sequenced, were identical to sequences in the second pectinase gene from Aspergillus niger. The first peptide contained 17 amino acids, Asp101-Ser117, and the second and third peptides corresponded to 18 amino acids of Asn152-Asp169. These results indicate that the inactivated pectinase retained substrate binding ability and would function as an acidic polysaccharide recognizing protein.

  15. Monitoring the chemical production of citrus-derived bioactive 5-demethylnobiletin using surface enhanced Raman spectroscopy

    PubMed Central

    Zheng, Jinkai; Fang, Xiang; Cao, Yong; Xiao, Hang; He, Lili

    2013-01-01

    To develop an accurate and convenient method for monitoring the production of citrus-derived bioactive 5-demethylnobiletin from demethylation reaction of nobiletin, we compared surface enhanced Raman spectroscopy (SERS) methods with a conventional HPLC method. Our results show that both the substrate-based and solution-based SERS methods correlated with HPLC method very well. The solution method produced lower root mean square error of calibration and higher correlation coefficient than the substrate method. The solution method utilized an ‘affinity chromatography’-like procedure to separate the reactant nobiletin from the product 5-demthylnobiletin based on their different binding affinity to the silver dendrites. The substrate method was found simpler and faster to collect the SERS ‘fingerprint’ spectra of the samples as no incubation between samples and silver was needed and only trace amount of samples were required. Our results demonstrated that the SERS methods were superior to HPLC method in conveniently and rapidly characterizing and quantifying 5-demethylnobiletin production. PMID:23885986

  16. The position of an arginine residue influences substrate affinity and K+ coupling in the human glutamate transporter, EAAT1.

    PubMed

    Ryan, Renae M; Kortt, Nicholas C; Sirivanta, Tan; Vandenberg, Robert J

    2010-07-01

    Glutamate is the predominant excitatory neurotransmitter in the mammalian central nervous system and extracellular glutamate levels are controlled by a family of transporters known as excitatory amino acid transporters (EAATs). The EAATs transport glutamate and aspartate with similar micromolar affinities and this transport is coupled to the movement of Na(+), K(+), and H(+). The crystal structure of a prokaryotic homologue of the EAATs, aspartate transporter from Pyrococcus horokoshii (Glt(Ph)), has yielded important insights into the architecture of this transporter family. Glt(Ph) is a Na(+)-dependent transporter that has significantly higher affinity for aspartate over glutamate and is not coupled to H(+) or K(+). The highly conserved carboxy-terminal domains of the EAATs and Glt(Ph) contain the substrate and ion binding sites, however, there are a couple of striking differences in this region that we have investigated to better understand the transport mechanism. An arginine residue is in close proximity to the substrate binding site of both Glt(Ph) and the EAATs, but is located in transmembrane domain (TM) 8 in the EAATs and hairpin loop 1 (HP1) of Glt(Ph). Here we report that the position of this arginine residue can explain some of the functional differences observed between the EAATs and Glt(Ph). Moving the arginine residue from TM8 to HP1 in EAAT1 results in a transporter that has significantly increased affinity for both glutamate and aspartate and is K(+) independent. Conversely, moving the arginine residue from HP1 to TM8 in Glt(Ph) results in a transporter that has reduced affinity for aspartate.

  17. Functional expression and characterization of the Trypanosoma brucei procyclic glucose transporter, THT2.

    PubMed

    Barrett, M P; Tetaud, E; Seyfang, A; Bringaud, F; Baltz, T

    1995-12-15

    The gene encoding THT2, one of two hexose-transporter isoforms present in Trypanosoma brucei, has been expressed in both Xenopus laevis oocytes and a stably transfected line of Chinese hamster ovary (CHO) cells. The heterologously expressed gene encodes a protein with pharmacological and kinetic parameters similar to those of the hexose transporter measured in procyclic-culture-form trypanosomes. The substrate recognition of the THT2 transporter differed from that of the THT1 isoform, which is expressed only in bloodstream forms, in that: (i) it has a relatively high affinity for substrate with a Km of 59 microM for 2-deoxy-D-glucose (2-DOG) and a similar high affinity for D-glucose (compared with Km of 0.5 mM for 2-DOG in bloodstream forms); (ii) the affinity for 6-deoxy-D-glucose (6-DOG) is two orders of magnitude lower than that for D-glucose, whereas the bloodstream-form transporter recognizes D-glucose and its 6-DOG analogue with similar affinity; (iii) the bloodstream-form transporter, but not THT2, recognizes 3-fluoro-3-deoxy-D-glucose. D-Fructose-transport capacity and insensitivity to D-galactose was also found in THT2-expressing CHO cells and procyclic trypanosomes. We conclude from these cumulative results that the THT2 gene encodes the transporter responsible for hexose transport in procyclic trypanosomes. The transport of 2-DOG in procyclic organisms was inhibited by both the protonophore, carbonyl cyanide 4-trifluoromethoxy phenylhydrazone (FCCP), and KCN, suggesting a requirement for a protonmotive force. However, sensitivity to these reagents depended on the external substrate concentration, with uptake being unaffected at substrate concentrations higher than 2 mM. THT2 expressed in CHO cells behaved as a facilitated transporter, and was unaffected by FCCP or KCN over the whole substrate concentration range tested.

  18. The fast release of sticky protons: Kinetics of substrate binding and proton release in a multidrug transporter

    PubMed Central

    Adam, Yoav; Tayer, Naama; Rotem, Dvir; Schreiber, Gideon; Schuldiner, Shimon

    2007-01-01

    EmrE is an Escherichia coli H+-coupled multidrug transporter that provides a unique experimental paradigm because of its small size and stability, and because its activity can be studied in detergent solution. In this work, we report a study of the transient kinetics of substrate binding and substrate-induced proton release in EmrE. For this purpose, we measured transient changes in the tryptophan fluorescence upon substrate binding and the rates of substrate-induced proton release. The fluorescence of the essential and fully conserved Trp residue at position 63 is sensitive to the occupancy of the binding site with either protons or substrate. The maximal rate of binding to detergent-solubilized EmrE of TPP+, a high-affinity substrate, is 2 × 107 M−1·s−1, a rate typical of diffusion-limited reactions. Rate measurements with medium- and low-affinity substrates imply that the affinity is determined mainly by the koff of the substrate. The rates of substrate binding and substrate-induced release of protons are faster at basic pHs and slower at lower pHs. These findings imply that the substrate-binding rates are determined by the generation of the species capable of binding; this is controlled by the high affinity to protons of the glutamate at position 14, because an Asp replacement with a lower pK is faster at the same pHs. PMID:17984053

  19. Analysis of Structural Features Contributing to Weak Affinities of Ubiquitin/Protein Interactions.

    PubMed

    Cohen, Ariel; Rosenthal, Eran; Shifman, Julia M

    2017-11-10

    Ubiquitin is a small protein that enables one of the most common post-translational modifications, where the whole ubiquitin molecule is attached to various target proteins, forming mono- or polyubiquitin conjugations. As a prototypical multispecific protein, ubiquitin interacts non-covalently with a variety of proteins in the cell, including ubiquitin-modifying enzymes and ubiquitin receptors that recognize signals from ubiquitin-conjugated substrates. To enable recognition of multiple targets and to support fast dissociation from the ubiquitin modifying enzymes, ubiquitin/protein interactions are characterized with low affinities, frequently in the higher μM and lower mM range. To determine how structure encodes low binding affinity of ubiquitin/protein complexes, we analyzed structures of more than a hundred such complexes compiled in the Ubiquitin Structural Relational Database. We calculated various structure-based features of ubiquitin/protein binding interfaces and compared them to the same features of general protein-protein interactions (PPIs) with various functions and generally higher affinities. Our analysis shows that ubiquitin/protein binding interfaces on average do not differ in size and shape complementarity from interfaces of higher-affinity PPIs. However, they contain fewer favorable hydrogen bonds and more unfavorable hydrophobic/charge interactions. We further analyzed how binding interfaces change upon affinity maturation of ubiquitin toward its target proteins. We demonstrate that while different features are improved in different experiments, the majority of the evolved complexes exhibit better shape complementarity and hydrogen bond pattern compared to wild-type complexes. Our analysis helps to understand how low-affinity PPIs have evolved and how they could be converted into high-affinity PPIs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Biphasic Kinetic Behavior of Nitrate Reductase from Heterocystous, Nitrogen-Fixing Cyanobacteria 1

    PubMed Central

    Martin-Nieto, José; Flores, Enrique; Herrero, Antonia

    1992-01-01

    Nitrate reductase activity from filamentous, heterocyst-forming cyanobacteria showed a biphasic kinetic behavior with respect to nitrate as the variable substrate. Two kinetic components were detected, the first showing a higher affinity for nitrate (Km, 0.05-0.25 mm) and a lower catalytic activity and the second showing a lower affinity for nitrate (Km, 5-25 mm) and a higher (3- to 5-fold) catalytic activity. In contrast, among unicellular cyanobacteria, most representatives studied exhibited a monophasic, Michaelis-Menten kinetic pattern for nitrate reductase activity. Biphasic kinetics remained unchanged with the use of different assay conditions (i.e. cell disruption or permeabilization, two different electron donors) or throughout partial purification of the enzyme. PMID:16652939

  1. Kinetic Measurements of Di- and Tripeptide and Peptidomimetic Drug Transport in Different Kidney Regions Using the Fluorescent Membrane Potential-Sensitive Dye, DiS-C3-(3).

    PubMed

    Alghamdi, Othman A; King, Nicola; Jones, Graham L; Moens, Pierre D J

    2017-12-01

    Tri- and dipeptides are transported in the kidney by PEPT1 and PEPT2 isoforms. The aim of this study was to investigate differences in transport kinetics between renal brush border (BBMV) and outer medulla (OMMV) membrane vesicles (where PEPT1 and PEPT2 are sequentially available) for a range of di- and tripeptides and peptidomimetic drugs. This was accomplished through the use of the potential-sensitive fluorescent dye 3,3'-dipropylthiacarbocyanine iodide [DiS-C 3 -(3)]. BBMV and OMMV were prepared from the rat kidney using standard techniques. The presence of PEPT1 in BBMV and PEPT2 in OMMV was confirmed using Western blotting. Fluorescence changes were measured when extravesicular medium at pH 6.6 containing 0-1 mM substrates was added to a cuvette containing vesicles pre-equilibrated at pH 7.4 and 2.71 μM DiS-C 3 -(3). An increase in fluorescence intensity occurred upon substrate addition reflecting the expected positive change in membrane potential difference. Of the range of substrates studied, OMMV manifested the highest affinity to cefadroxil and valacyclovir (K m 4.3 ± 1.2 and 11.7 ± 3.2 µM, respectively) compared to other substrates, whilst the BBMV showed a higher affinity to Gly-His (K m 15.4 ± 3.1 µM) compared to other substrates. In addition, OMMV showed higher affinity and capacity to Gly-Gln (K m 47.1 ± 9.8 µM, 55.5 ± 2.8 ΔF/s/mg protein) than BBMV (K m 78.1 ± 13.3 µM and 35.5 ± 1.7 ΔF/s/mg protein, respectively). In conclusion, this study successfully separated the expression of PEPT1 and PEPT2 into different vesicle preparations inferring their activity in different regions of the renal proximal tubule.

  2. Evidence for an allosteric mechanism of substrate release from membrane-transporter accessory binding proteins.

    PubMed

    Marinelli, Fabrizio; Kuhlmann, Sonja I; Grell, Ernst; Kunte, Hans-Jörg; Ziegler, Christine; Faraldo-Gómez, José D

    2011-12-06

    Numerous membrane importers rely on accessory water-soluble proteins to capture their substrates. These substrate-binding proteins (SBP) have a strong affinity for their ligands; yet, substrate release onto the low-affinity membrane transporter must occur for uptake to proceed. It is generally accepted that release is facilitated by the association of SBP and transporter, upon which the SBP adopts a conformation similar to the unliganded state, whose affinity is sufficiently reduced. Despite the appeal of this mechanism, however, direct supporting evidence is lacking. Here, we use experimental and theoretical methods to demonstrate that an allosteric mechanism of enhanced substrate release is indeed plausible. First, we report the atomic-resolution structure of apo TeaA, the SBP of the Na(+)-coupled ectoine TRAP transporter TeaBC from Halomonas elongata DSM2581(T), and compare it with the substrate-bound structure previously reported. Conformational free-energy landscape calculations based upon molecular dynamics simulations are then used to dissect the mechanism that couples ectoine binding to structural change in TeaA. These insights allow us to design a triple mutation that biases TeaA toward apo-like conformations without directly perturbing the binding cleft, thus mimicking the influence of the membrane transporter. Calorimetric measurements demonstrate that the ectoine affinity of the conformationally biased triple mutant is 100-fold weaker than that of the wild type. By contrast, a control mutant predicted to be conformationally unbiased displays wild-type affinity. This work thus demonstrates that substrate release from SBPs onto their membrane transporters can be facilitated by the latter through a mechanism of allosteric modulation of the former.

  3. Kinetic characteristics of native γ-glutamylcysteine ligase in the aging housefly, Musca domestica L.☆

    PubMed Central

    Toroser, Dikran; Sohal, Rajindar S.

    2010-01-01

    The catalytic activity of γ-glutamylcysteine ligase (γ-GCL; EC 6.3.2.2) was compared between relatively young (4-day-old) and old (19-day-old) houseflies (Musca domestica) in order to understand the mechanism of putative deterioration of glutathione homeostasis during the aging process. Hanes–Woolf analyses ([S]/v vs [S]) indicated that γ-GCL had significantly higher affinities for its substrates in the young than in the old flies. The Km values in the young and old flies were, respectively, for glutamate 0.6 and 5.5 mM; for cysteine 0.3 and 4.6 mM; and for ATP 1.2 and 2.9 mM. Furthermore, young but not old flies exhibited substrate-dependent inhibition of γ-GCL activity at >5 mM cysteine indicating a loss of metabolic regulation during aging. The age-associated differences in the affinity of native γ-GCL towards its substrates suggest that de novo synthesis of glutathione would be relatively less efficient in the old houseflies. PMID:15596139

  4. The actions of some esters of 4-hydroxyquinuclidine on guinea-pig ileum, atria and rat fundus strip.

    PubMed

    Barlow, R B; Kitchen, R

    1982-11-01

    1 The acetyl, phenylacetyl, and diphenylacetyl esters of 4-hydroxyquinuclidine and their methiodides have been prepared.2 4-Diphenylacetoxyquinuclidine methiodide has higher affinity for muscarinic receptors than 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP methiodide) but it is less selective. At 30 degrees C its affinity for receptors in ileum is about 5 times that for receptors in atria, a difference similar to that found with diphenylacetoxytrophine methiodide. With 4-DAMP methiodide affinity for receptors in the ileum is over 10 times that for receptors in atria.3 4-Diphenylacetoxyquinuclidine methiodide has higher affinity for muscarinic receptors than 3-diphenylacetoxyquinuclidine hydrochloride or its methiodide.4 4-Acetoxyquinuclidine hydrochloride has less than one-hundredth of the activity of 3-acetoxyquinuclidine hydrochloride (acecyclidine) on guinea-pig ileum, atria, and rat fundus: however, 4-acetoxyquinuclidine methiodide is consistently more active than its 3-isomer, though it is only about 1/25 times as active as acecyclidine.5 4-Acetoxyquinuclidine hydrochloride is only a poor substrate for electric eel acetylcholinesterase: its affinity is similar to that of acecyclidine but it is greatly reduced by methylation.6 The relations between the structure and activity of the agonists are very different from the relations between the structure and affinity of the antagonists, which supports the view that agonists and antagonists bind to different conformations of the muscarinic receptor.

  5. Identification of the High-affinity Substrate-binding Site of the Multidrug and Toxic Compound Extrusion (MATE) Family Transporter from Pseudomonas stutzeri*

    PubMed Central

    Nie, Laiyin; Grell, Ernst; Malviya, Viveka Nand; Xie, Hao; Wang, Jingkang; Michel, Hartmut

    2016-01-01

    Multidrug and toxic compound extrusion (MATE) transporters exist in all three domains of life. They confer multidrug resistance by utilizing H+ or Na+ electrochemical gradients to extrude various drugs across the cell membranes. The substrate binding and the transport mechanism of MATE transporters is a fundamental process but so far not fully understood. Here we report a detailed substrate binding study of NorM_PS, a representative MATE transporter from Pseudomonas stutzeri. Our results indicate that NorM_PS is a proton-dependent multidrug efflux transporter. Detailed binding studies between NorM_PS and 4′,6-diamidino-2-phenylindole (DAPI) were performed by isothermal titration calorimetry (ITC), differential scanning calorimetry (DSC), and spectrofluorometry. Two exothermic binding events were observed from ITC data, and the high-affinity event was directly correlated with the extrusion of DAPI. The affinities are about 1 μm and 0.1 mm for the high and low affinity binding, respectively. Based on our homology model of NorM_PS, variants with mutations of amino acids that are potentially involved in substrate binding, were constructed. By carrying out the functional characterization of these variants, the critical amino acid residues (Glu-257 and Asp-373) for high-affinity DAPI binding were determined. Taken together, our results suggest a new substrate-binding site for MATE transporters. PMID:27235402

  6. Prolonged Maltose-Limited Cultivation of Saccharomyces cerevisiae Selects for Cells with Improved Maltose Affinity and Hypersensitivity

    PubMed Central

    Jansen, Mickel L. A.; Daran-Lapujade, Pascale; de Winde, Johannes H.; Piper, Matthew D. W.; Pronk, Jack T.

    2004-01-01

    Prolonged cultivation (>25 generations) of Saccharomyces cerevisiae in aerobic, maltose-limited chemostat cultures led to profound physiological changes. Maltose hypersensitivity was observed when cells from prolonged cultivations were suddenly exposed to excess maltose. This substrate hypersensitivity was evident from massive cell lysis and loss of viability. During prolonged cultivation at a fixed specific growth rate, the affinity for the growth-limiting nutrient (i.e., maltose) increased, as evident from a decreasing residual maltose concentration. Furthermore, the capacity of maltose-dependent proton uptake increased up to 2.5-fold during prolonged cultivation. Genome-wide transcriptome analysis showed that the increased maltose transport capacity was not primarily due to increased transcript levels of maltose-permease genes upon prolonged cultivation. We propose that selection for improved substrate affinity (ratio of maximum substrate consumption rate and substrate saturation constant) in maltose-limited cultures leads to selection for cells with an increased capacity for maltose uptake. At the same time, the accumulative nature of maltose-proton symport in S. cerevisiae leads to unrestricted uptake when maltose-adapted cells are exposed to a substrate excess. These changes were retained after isolation of individual cell lines from the chemostat cultures and nonselective cultivation, indicating that mutations were involved. The observed trade-off between substrate affinity and substrate tolerance may be relevant for metabolic engineering and strain selection for utilization of substrates that are taken up by proton symport. PMID:15066785

  7. Na+ Interactions with the Neutral Amino Acid Transporter ASCT1*

    PubMed Central

    Scopelliti, Amanda J.; Heinzelmann, Germano; Kuyucak, Serdar; Ryan, Renae M.; Vandenberg, Robert J.

    2014-01-01

    The alanine, serine, cysteine transporters (ASCTs) belong to the solute carrier family 1A (SLC1A), which also includes the excitatory amino acid transporters (EAATs) and the prokaryotic aspartate transporter GltPh. Acidic amino acid transport by the EAATs is coupled to the co-transport of three Na+ ions and one proton, and the counter-transport of one K+ ion. In contrast, neutral amino acid exchange by the ASCTs does not require protons or the counter-transport of K+ ions and the number of Na+ ions required is not well established. One property common to SLC1A family members is a substrate-activated anion conductance. We have investigated the number and location of Na+ ions required by ASCT1 by mutating residues in ASCT1 that correspond to residues in the EAATs and GltPh that are involved in Na+ binding. Mutations to all three proposed Na+ sites influence the binding of substrate and/or Na+, or the rate of substrate exchange. A G422S mutation near the Na2 site reduced Na+ affinity, without affecting the rate of exchange. D467T and D467A mutations in the Na1 site reduce Na+ and substrate affinity and also the rate of substrate exchange. T124A and D380A mutations in the Na3 site selectively reduce the affinity for Na+ and the rate of substrate exchange without affecting substrate affinity. In many of the mutants that reduce the rate of substrate transport the amplitudes of the substrate-activated anion conductances are not substantially affected indicating altered ion dependence for channel activation compared with substrate exchange. PMID:24808181

  8. Structure-Activity Relationships of Substituted Cathinones, with Transporter Binding, Uptake, and Release

    PubMed Central

    Wolfrum, Katherine M.; Reed, John F.; Kim, Sunyoung O.; Swanson, Tracy; Johnson, Robert A.; Janowsky, Aaron

    2017-01-01

    Synthetic cathinones are components of “bath salts” and have physical and psychologic side effects, including hypertension, paranoia, and hallucinations. Here, we report interactions of 20 “bath salt” components with human dopamine, serotonin, and norepinephrine transporters [human dopamine transporter (hDAT), human serotonin transporter (hSERT), and human norepinephrine transporter (hNET), respectively] heterologously expressed in human embryonic kidney 293 cells. Transporter inhibitors had nanomolar to micromolar affinities (Ki values) at radioligand binding sites, with relative affinities of hDAT>hNET>hSERT for α-pyrrolidinopropiophenone (α-PPP), α-pyrrolidinobutiophenone, α-pyrrolidinohexiophenone, 1-phenyl-2-(1-pyrrolidinyl)-1-heptanone, 3,4-methylenedioxy-α-pyrrolidinopropiophenone, 3,4-methylenedioxy-α-pyrrolidinobutiophenone, 4-methyl-α-pyrrolidinopropiophenone, α-pyrrolidinovalerophenone, 4-methoxy-α-pyrrolidinovalerophenone, α-pyrrolidinopentiothiophenone (alpha-PVT), and α-methylaminovalerophenone, and hDAT>hSERT>hNET for methylenedioxypentedrone. Increasing the α-carbon chain length increased the affinity and potency of the α-pyrrolidinophenones. Uptake inhibitors had relative potencies of hDAT>hNET>hSERT except α-PPP and α-PVT, which had highest potencies at hNET. They did not induce [3H]neurotransmitter release. Substrates can enter presynaptic neurons via transporters, and the substrates methamphetamine and 3,4-methylenedioxymethylamphetamine are neurotoxic. We determined that 3-fluoro-, 4-bromo-, 4-chloro-methcathinone, and 4-fluoroamphetamine were substrates at all three transporters; 5,6-methylenedioxy-2-aminoindane (MDAI) and 4-methylethcathinone (4-MEC) were substrates primarily at hSERT and hNET; and 3,4-methylenedioxy-N-ethylcathinone (ethylone) and 5-methoxy-methylone were substrates only at hSERT and induced [3H]neurotransmitter release. Significant correlations between potencies for inhibition of uptake and for inducing release were observed for these and additional substrates. The excellent correlation of efficacy at stimulating release versus Ki/IC50 ratios suggested thresholds of binding/uptake ratios above which compounds were likely to be substrates. Based on their potencies at hDAT, most of these compounds have potential for abuse and addiction. 4-Bromomethcathinone, 4-MEC, 5-methoxy-methylone, ethylone, and MDAI, which have higher potencies at hSERT than hDAT, may have empathogen psychoactivity. PMID:27799294

  9. High-Affinity Accumulation of Chloroquine by Mouse Erythrocytes Infected with Plasmodium berghei

    PubMed Central

    Fitch, Coy D.; Yunis, Norman G.; Chevli, Rekha; Gonzalez, Yolanda

    1974-01-01

    Washed erythrocytes infected with chloroquine-susceptible (CS) or with chloroquine-resistant (CR) P. berghei were used in model systems in vitro to study the accumulation of chloroquine with high affinity. The CS model could achieve distribution ratios (chloroquine in cells: chloroquine in medium) of 100 in the absence of substrate. 200—300 in the presence of 10 mM pyruvate or lactate, and over 600 in the presence of 1 mM glucose or glycerol. In comparable studies of the CR model, the distribution ratios were 100 in the absence of substrate and 300 or less in the presence of glucose or glycerol. The presence of lactate stimulated chloroquine accumulation in the CR model, whereas the presence of pyruvate did not. Lactate production from glucose and glycerol was undiminished in the CR model, and ATP concentrations were higher than in the CS model. Cold, iodoacetate, 2,4-dinitrophenol, or decreasing pH inhibited chloroquine accumulation in both models. These findings demonstrate substrate involvement in the accumulation of chloroquine with high affinity. In studies of the CS model, certain compounds competitively inhibited chloroquine accumulation, while others did not. This finding is attributable to a specific receptor that imposes structural constraints on the process of accumulation. For chloroquine analogues, the position and length of the side chain, the terminal nitrogen atom of the side chain, and the nitrogen atom in the quinoline ring are important determinants of binding to this receptor. PMID:4600044

  10. Molecular and biochemical characterization of caffeine synthase and purine alkaloid concentration in guarana fruit.

    PubMed

    Schimpl, Flávia Camila; Kiyota, Eduardo; Mayer, Juliana Lischka Sampaio; Gonçalves, José Francisco de Carvalho; da Silva, José Ferreira; Mazzafera, Paulo

    2014-09-01

    Guarana seeds have the highest caffeine concentration among plants accumulating purine alkaloids, but in contrast with coffee and tea, practically nothing is known about caffeine metabolism in this Amazonian plant. In this study, the levels of purine alkaloids in tissues of five guarana cultivars were determined. Theobromine was the main alkaloid that accumulated in leaves, stems, inflorescences and pericarps of fruit, while caffeine accumulated in the seeds and reached levels from 3.3% to 5.8%. In all tissues analysed, the alkaloid concentration, whether theobromine or caffeine, was higher in young/immature tissues, then decreasing with plant development/maturation. Caffeine synthase activity was highest in seeds of immature fruit. A nucleotide sequence (PcCS) was assembled with sequences retrieved from the EST database REALGENE using sequences of caffeine synthase from coffee and tea, whose expression was also highest in seeds from immature fruit. The PcCS has 1083bp and the protein sequence has greater similarity and identity with the caffeine synthase from cocoa (BTS1) and tea (TCS1). A recombinant PcCS allowed functional characterization of the enzyme as a bifunctional CS, able to catalyse the methylation of 7-methylxanthine to theobromine (3,7-dimethylxanthine), and theobromine to caffeine (1,3,7-trimethylxanthine), respectively. Among several substrates tested, PcCS showed higher affinity for theobromine, differing from all other caffeine synthases described so far, which have higher affinity for paraxanthine. When compared to previous knowledge on the protein structure of coffee caffeine synthase, the unique substrate affinity of PcCS is probably explained by the amino acid residues found in the active site of the predicted protein. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Semiconductor light source with electrically tunable emission wavelength

    DOEpatents

    Belenky, Gregory [Port Jefferson, NY; Bruno, John D [Bowie, MD; Kisin, Mikhail V [Centereach, NY; Luryi, Serge [Setauket, NY; Shterengas, Leon [Centereach, NY; Suchalkin, Sergey [Centereach, NY; Tober, Richard L [Elkridge, MD

    2011-01-25

    A semiconductor light source comprises a substrate, lower and upper claddings, a waveguide region with imbedded active area, and electrical contacts to provide voltage necessary for the wavelength tuning. The active region includes single or several heterojunction periods sandwiched between charge accumulation layers. Each of the active region periods comprises higher and lower affinity semiconductor layers with type-II band alignment. The charge carrier accumulation in the charge accumulation layers results in electric field build-up and leads to the formation of generally triangular electron and hole potential wells in the higher and lower affinity layers. Nonequillibrium carriers can be created in the active region by means of electrical injection or optical pumping. The ground state energy in the triangular wells and the radiation wavelength can be tuned by changing the voltage drop across the active region.

  12. Photochemical grafting of methyl groups on a Si(111) surface using a Grignard reagent.

    PubMed

    Herrera, Marvin Ustaris; Ichii, Takashi; Murase, Kuniaki; Sugimura, Hiroyuki

    2013-12-01

    The photochemical grafting of methyl groups onto an n-type Si(111) substrate was successfully achieved using a Grignard reagent. The preparation involved illuminating a hydrogen-terminated Si(111) that was immersed in a CH3MgBr-THF solution. The success was attributed to the ability of the n-type hydrogenated substrate to produce holes on its surface when illuminated. The rate of grafting methyl groups onto the silicon surface was higher when a larger illumination intensity or when a substrate with lower dopant concentration was used. In addition, the methylated layer has an atomically flat structure, has a hydrophobic surface, and has electron affinity that was lower than the bulk Si. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Structure of transmembrane domain of lysosome-associated membrane protein type 2a (LAMP-2A) reveals key features for substrate specificity in chaperone-mediated autophagy.

    PubMed

    Rout, Ashok K; Strub, Marie-Paule; Piszczek, Grzegorz; Tjandra, Nico

    2014-12-19

    Chaperone-mediated autophagy (CMA) is a highly regulated cellular process that mediates the degradation of a selective subset of cytosolic proteins in lysosomes. Increasing CMA activity is one way for a cell to respond to stress, and it leads to enhanced turnover of non-critical cytosolic proteins into sources of energy or clearance of unwanted or damaged proteins from the cytosol. The lysosome-associated membrane protein type 2a (LAMP-2A) together with a complex of chaperones and co-chaperones are key regulators of CMA. LAMP-2A is a transmembrane protein component for protein translocation to the lysosome. Here we present a study of the structure and dynamics of the transmembrane domain of human LAMP-2A in n-dodecylphosphocholine micelles by nuclear magnetic resonance (NMR). We showed that LAMP-2A exists as a homotrimer in which the membrane-spanning helices wrap around each other to form a parallel coiled coil conformation, whereas its cytosolic tail is flexible and exposed to the cytosol. This cytosolic tail of LAMP-2A interacts with chaperone Hsc70 and a CMA substrate RNase A with comparable affinity but not with Hsp40 and RNase S peptide. Because the substrates and the chaperone complex can bind at the same time, thus creating a bimodal interaction, we propose that substrate recognition by chaperones and targeting to the lysosomal membrane by LAMP-2A are coupled. This can increase substrate affinity and specificity as well as prevent substrate aggregation, assist in the unfolding of the substrate, and promote the formation of the higher order complex of LAMP-2A required for translocation. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Structure of Transmembrane Domain of Lysosome-associated Membrane Protein Type 2a (LAMP-2A) Reveals Key Features for Substrate Specificity in Chaperone-mediated Autophagy*

    PubMed Central

    Rout, Ashok K.; Strub, Marie-Paule; Piszczek, Grzegorz; Tjandra, Nico

    2014-01-01

    Chaperone-mediated autophagy (CMA) is a highly regulated cellular process that mediates the degradation of a selective subset of cytosolic proteins in lysosomes. Increasing CMA activity is one way for a cell to respond to stress, and it leads to enhanced turnover of non-critical cytosolic proteins into sources of energy or clearance of unwanted or damaged proteins from the cytosol. The lysosome-associated membrane protein type 2a (LAMP-2A) together with a complex of chaperones and co-chaperones are key regulators of CMA. LAMP-2A is a transmembrane protein component for protein translocation to the lysosome. Here we present a study of the structure and dynamics of the transmembrane domain of human LAMP-2A in n-dodecylphosphocholine micelles by nuclear magnetic resonance (NMR). We showed that LAMP-2A exists as a homotrimer in which the membrane-spanning helices wrap around each other to form a parallel coiled coil conformation, whereas its cytosolic tail is flexible and exposed to the cytosol. This cytosolic tail of LAMP-2A interacts with chaperone Hsc70 and a CMA substrate RNase A with comparable affinity but not with Hsp40 and RNase S peptide. Because the substrates and the chaperone complex can bind at the same time, thus creating a bimodal interaction, we propose that substrate recognition by chaperones and targeting to the lysosomal membrane by LAMP-2A are coupled. This can increase substrate affinity and specificity as well as prevent substrate aggregation, assist in the unfolding of the substrate, and promote the formation of the higher order complex of LAMP-2A required for translocation. PMID:25342746

  15. Tripartite ATP-independent Periplasmic (TRAP) Transporters Use an Arginine-mediated Selectivity Filter for High Affinity Substrate Binding*

    PubMed Central

    Fischer, Marcus; Hopkins, Adam P.; Severi, Emmanuele; Hawkhead, Judith; Bawdon, Daniel; Watts, Andrew G.; Hubbard, Roderick E.; Thomas, Gavin H.

    2015-01-01

    Tripartite ATP-independent periplasmic (TRAP) transporters are secondary transporters that have evolved an obligate dependence on a substrate-binding protein (SBP) to confer unidirectional transport. Different members of the DctP family of TRAP SBPs have binding sites that recognize a diverse range of organic acid ligands but appear to only share a common electrostatic interaction between a conserved arginine and a carboxylate group in the ligand. We investigated the significance of this interaction using the sialic acid-specific SBP, SiaP, from the Haemophilus influenzae virulence-related SiaPQM TRAP transporter. Using in vitro, in vivo, and structural methods applied to SiaP, we demonstrate that the coordination of the acidic ligand moiety of sialic acid by the conserved arginine (Arg-147) is essential for the function of the transporter as a high affinity scavenging system. However, at high substrate concentrations, the transporter can function in the absence of Arg-147 suggesting that this bi-molecular interaction is not involved in further stages of the transport cycle. As well as being required for high affinity binding, we also demonstrate that the Arg-147 is a strong selectivity filter for carboxylate-containing substrates in TRAP transporters by engineering the SBP to recognize a non-carboxylate-containing substrate, sialylamide, through water-mediated interactions. Together, these data provide biochemical and structural support that TRAP transporters function predominantly as high affinity transporters for carboxylate-containing substrates. PMID:26342690

  16. Functional Role of Tyr12 in the Catalytic Activity of Novel Zeta-like Glutathione S-transferase from Acidovorax sp. KKS102.

    PubMed

    Shehu, Dayyabu; Alias, Zazali

    2018-05-19

    Glutathione S-transferases (GSTs) are a family of enzymes that function in the detoxification of variety of electrophilic substrates. In the present work, we report a novel zeta-like GST (designated as KKSG9) from the biphenyl/polychlorobiphenyl degrading organism Acidovorax sp. KKS102. KKSG9 possessed low sequence similarity but similar biochemical properties to zeta class GSTs. Functional analysis showed that the enzyme exhibits wider substrate specificity compared to most zeta class GSTs by reacting with 1-chloro-2,4-dinitrobenzene (CDNB), p-nitrobenzyl chloride (NBC), ethacrynic acid (EA), hydrogen peroxide, and cumene hydroperoxide. The enzyme also displayed dehalogenation function against dichloroacetate, permethrin, and dieldrin. The functional role of Tyr12 was also investigated by site-directed mutagenesis. The mutant (Y12C) displayed low catalytic activity and dehalogenation function against all the substrates when compared with the wild type. Kinetic analysis using NBC and GSH as substrates showed that the mutant (Y12C) displayed a higher affinity for NBC when compared with the wild type, however, no significant change in GSH affinity was observed. These findings suggest that the presence of tyrosine residue in the motif might represent an evolutionary trend toward improving the catalytic activity of the enzyme. The enzyme as well could be useful in the bioremediation of various types of organochlorine pollutants.

  17. Differential niche dynamics among major marine invertebrate clades

    PubMed Central

    Hopkins, Melanie J; Simpson, Carl; Kiessling, Wolfgang

    2014-01-01

    The degree to which organisms retain their environmental preferences is of utmost importance in predicting their fate in a world of rapid climate change. Notably, marine invertebrates frequently show strong affinities for either carbonate or terrigenous clastic environments. This affinity is due to characteristics of the sediments as well as correlated environmental factors. We assessed the conservatism of substrate affinities of marine invertebrates over geological timescales, and found that niche conservatism is prevalent in the oceans, and largely determined by the strength of initial habitat preference. There is substantial variation in niche conservatism among major clades with corals and sponges being among the most conservative. Time-series analysis suggests that niche conservatism is enhanced during times of elevated nutrient flux, whereas niche evolution tends to occur after mass extinctions. Niche evolution is not necessarily elevated in genera exhibiting higher turnover in species composition. PMID:24313951

  18. Kinetics and spatial distribution of enzymes of carbon, nitrogen and phosphorus cycles in earthworm biopores

    NASA Astrophysics Data System (ADS)

    Hoang Thi Thu, Duyen; Razavi, Bahar S.

    2016-04-01

    Earthworms boost microbial activities and consequently form hotspots in soil. The distribution of enzyme activities inside the earthworm biopores is completely unknown. For the first time, we analyzed enzyme kinetics and visualized enzyme distribution inside and outside biopores by in situ soil zymography. Kinetic parameters (Vmax and Km) of 6 enzymes β-glucosidase (GLU), cellobiohydrolase (CBH), xylanase (XYL), chitinase (NAG), leucine aminopeptidase (LAP) and acid phosphatase (APT) were determined in biopores formed by Lumbricus terrestris L.. The spatial distributions of GLU, NAG and APT become visible via zymograms in comparison between earthworm-inhabited and earthworm-free soil. Zymography showed heterogeneous distribution of hotspots in the rhizosphere and biopores. The hotspot areas were 2.4 to 14 times larger in the biopores than in soil without earthworms. The significantly higher Vmax values for GLU, CBH, XYL, NAG and APT in biopores confirmed the stimulation of enzyme activities by earthworms. For CBH, XYL and NAG, the 2- to 3-fold higher Km values in biopores indicated different enzyme systems with lower substrate affinity compared to control soil. The positive effects of earthworms on Vmax were cancelled by the Km increase for CBH, XYL and NAG at a substrate concentration below 20 μmol g-1 soil. The change of enzyme systems reflected a shift in dominant microbial populations toward species with lower affinity to holo-celluloses and to N-acetylglucosamine, and with higher affinity to proteins as compared to the biopores-free soil. We conclude that earthworm biopores are microbial hotspots with much higher and dense distribution of enzyme activities compared to bulk soil. References Spohn M, Kuzyakov Y. (2014) Spatial and temporal dynamics of hotspots of enzyme activity in soil as affected by living and dead roots - a soil zymography analysis, Plant Soil 379: 67-77. Blagodatskaya, E., Kuzyakov, Y., 2013. Review paper: Active microorganisms in soil: Critical review of estimation criteria and approaches. Soil Biology & Biochemistry 67, 192-211.

  19. Harnessing Thermoresponsive Aptamers and Gels To Trap and Release Nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Ya; Kuksenok, Olga; He, Ximin; Aizenberg, Michael; Aizenberg, Joanna; Balazs, Anna

    We use computational modeling to design a device that can controllably trap and release particles in solution in response to variations in temperature. The system exploits the thermoresponsive properties of end-grafted fibers and the underlying gel substrate. The fibers mimic the temperature-dependent behavior of biological aptamers, which form a hairpin structure at low temperatures (T) and unfold at higher T, consequently losing their binding affinity. The gel substrate exhibits a lower critical solution temperature and thus, expands at low tempertures and contracts at higher T. By developing a new dissipative particle dynamics simulation, we examine the behavior of this hybrid system in a flowing fluid that contains buoyant nanoparticles. Our findings provide guidelines for creating fluidic devices that are effective at purifying contaminated solutions or trapping cells for biological assays.

  20. Nanotextured PDMS Substrates for Enhanced Roughness and Aptamer Immobilization for Cancer Cell Capture

    NASA Astrophysics Data System (ADS)

    Islam, Muhymin; Mahmood, Arif; Bellah, Md.; Kim, Young-Tae; Iqbal, Samir

    2014-03-01

    Detection of circulating tumor cells (CTCs) in the early stages of cancer is requires very sensitive approach. Nanotextured polydimethylsiloxane (PDMS) substrates were fabricated by micro reactive ion etching (Micro-RIE) to have better control on surface morphology and to improve the affinity of PDMS surfaces to capture cancer cells using surface immobilized aptamers. The aptamers were specific to epidermal growth factor receptors (EGFR) present in cell membranes, and overexpressed in tumor cells. We also investigated the effect of nano-scale features on cell capturing by implementing various surfaces of different roughnesses. Three different recipes were used to prepare nanotextured PDMS by micro-RIE using oxygen (O2) and carbon tetrafluoride (CF4). The measured average roughness of three nanotextured PDMS surfaces were found to impact average densities of captured cells. In all cases, nanotextured PDMS facilitated cell capturing possibly due to increased effective surface area of roughened substrates at nanoscale. It was also observed that cell capture efficiency was higher for higher surface roughness. The nanotextured PDMS substrates are thus useful for cancer cytology devices.

  1. Substrate-specific modifications on magnetic iron oxide nanoparticles as an artificial peroxidase for improving sensitivity in glucose detection.

    PubMed

    Liu, Yanping; Yu, Faquan

    2011-04-08

    Magnetic iron oxide nanoparticles (MION) were recently found to act as a peroxidase with intrinsic advantages over natural counterparts. Their limited affinity toward catalysis substrates, however, dramatically reduces their utility. In this paper, some effective groups were screened out and conjugated on MION as substrate-specific modifications for improving MION's affinity to substrates and hence utility. Nanoparticles of four different superficial structures were synthesized and characterized by TEM, size, zeta potential and SQUID, and assayed for peroxidase activity. Glucose detection was selected as an application model system to evaluate the bonus thereof. Catalysis was found to follow Michaelis-Menten kinetics. Sulfhydryl groups incorporated on MION (SH-MION) notably improve the affinity toward a substrate (hydrogen peroxide) and so do amino groups (NH₂-MION) toward another substrate, proved by variation in the determined kinetic parameters. A synergistically positive effect was observed and an apparently elevated detection sensitivity and a significantly lowered detection limit of glucose were achieved when integrated with both sulfhydryl and amino groups (SH-NH₂-MION). Our findings suggest that substrate-specific surface modifications are a straightforward and robust strategy to improve MION peroxidase-like activity. The high activity extends magnetic nanoparticles to wide applications other than glucose detection.

  2. Purification and substrate specificities of a fructanase from Kluyveromyces marxianus isolated from the fermentation process of Mezcal.

    PubMed

    Arrizon, Javier; Morel, Sandrine; Gschaedler, Anne; Monsan, Pierre

    2011-02-01

    A fructanase, produced by a Kluyveromyces marxianus strain isolated during the fermentation step of the elaboration process of "Mezcal de Guerrero" was purified and biochemically characterized. The active protein was a glycosylated dimer with a molecular weight of approximately 250 kDa. The specific enzymatic activity of the protein was determined for different substrates: sucrose, inulin, Agave tequilana fructan, levan and Actilight® and compared with the activity of Fructozyme®. The hydrolysis profile of the different substrates analyzed by HPAEC-PAD showed that the enzyme has different affinities over the substrates tested with a sucrose/inulin enzymatic activity ratio (S/I) of 125. For the hydrolysis of Agave tequilana fructans, the enzyme also showed a higher enzymatic activity and specificity than Fructozyme®, which is important for its potential application in the tequila industry. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Effect of pretreatment severity in continuous steam explosion on enzymatic conversion of wheat straw: Evidence from kinetic analysis of hydrolysis time courses.

    PubMed

    Monschein, Mareike; Nidetzky, Bernd

    2016-01-01

    Focusing on continuous steam explosion, the influence of pretreatment severity due to varied acid loading on hydrolysis of wheat straw by Trichoderma reesei cellulases was investigated based on kinetic evaluation of the saccharification of each pretreated substrate. Using semi-empirical descriptors of the hydrolysis time course, key characteristics of saccharification efficiency were captured in a quantifiable fashion. Not only hydrolysis rates per se, but also the transition point of their bi-phasic decline was crucial for high saccharification degree. After 48h the highest saccharification was achieved for substrate pretreated at relatively low severity (1.2% acid). Higher severity increased enzyme binding to wheat straw, but reduced the specific hydrolysis rates. Higher affinity of the lignocellulosic material for cellulases does not necessarily result in increased saccharification, probably because of lignin modifications occurring at high pretreatment severities. At comparable severity, continuous pretreatment produced a substrate more susceptible to enzymatic hydrolysis than the batch process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Nonpeptide-Based Small-Molecule Probe for Fluorogenic and Chromogenic Detection of Chymotrypsin.

    PubMed

    Wu, Lei; Yang, Shu-Hou; Xiong, Hao; Yang, Jia-Qian; Guo, Jun; Yang, Wen-Chao; Yang, Guang-Fu

    2017-03-21

    We report herein a nonpeptide-based small-molecule probe for fluorogenic and chromogenic detection of chymotrypsin, as well as the primary application for this probe. This probe was rationally designed by mimicking the peptide substrate and optimized by adjusting the recognition group. The refined probe 2 exhibits good specificity toward chymotrypsin, producing about 25-fold higher enhancement in both the fluorescence intensity and absorbance upon the catalysis by chymotrypsin. Compared with the most widely used peptide substrate (AMC-FPAA-Suc) of chymotrypsin, probe 2 shows about 5-fold higher binding affinity and comparable catalytical efficiency against chymotrypsin. Furthermore, it was successfully applied for the inhibitor characterization. To the best of our knowledge, probe 2 is the first nonpeptide-based small-molecule probe for chymotrypsin, with the advantages of simple structure and high sensitivity compared to the widely used peptide-based substrates. This small-molecule probe is expected to be a useful molecular tool for drug discovery and chymotrypsin-related disease diagnosis.

  5. Influence of substrate mineralogy on bacterial mineralization of calcium carbonate: implications for stone conservation.

    PubMed

    Rodriguez-Navarro, Carlos; Jroundi, Fadwa; Schiro, Mara; Ruiz-Agudo, Encarnación; González-Muñoz, María Teresa

    2012-06-01

    The influence of mineral substrate composition and structure on bacterial calcium carbonate productivity and polymorph selection was studied. Bacterial calcium carbonate precipitation occurred on calcitic (Iceland spar single crystals, marble, and porous limestone) and silicate (glass coverslips, porous sintered glass, and quartz sandstone) substrates following culturing in liquid medium (M-3P) inoculated with different types of bacteria (Myxococcus xanthus, Brevundimonas diminuta, and a carbonatogenic bacterial community isolated from porous calcarenite stone in a historical building) and direct application of sterile M-3P medium to limestone and sandstone with their own bacterial communities. Field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD), and 2-dimensional XRD (2D-XRD) analyses revealed that abundant highly oriented calcite crystals formed homoepitaxially on the calcitic substrates, irrespective of the bacterial type. Conversely, scattered spheroidal vaterite entombing bacterial cells formed on the silicate substrates. These results show that carbonate phase selection is not strain specific and that under equal culture conditions, the substrate type is the overruling factor for calcium carbonate polymorph selection. Furthermore, carbonate productivity is strongly dependent on the mineralogy of the substrate. Calcitic substrates offer a higher affinity for bacterial attachment than silicate substrates, thereby fostering bacterial growth and metabolic activity, resulting in higher production of calcium carbonate cement. Bacterial calcite grows coherently over the calcitic substrate and is therefore more chemically and mechanically stable than metastable vaterite, which formed incoherently on the silicate substrates. The implications of these results for technological applications of bacterial carbonatogenesis, including building stone conservation, are discussed.

  6. Influence of Substrate Mineralogy on Bacterial Mineralization of Calcium Carbonate: Implications for Stone Conservation

    PubMed Central

    Jroundi, Fadwa; Schiro, Mara; Ruiz-Agudo, Encarnación; González-Muñoz, María Teresa

    2012-01-01

    The influence of mineral substrate composition and structure on bacterial calcium carbonate productivity and polymorph selection was studied. Bacterial calcium carbonate precipitation occurred on calcitic (Iceland spar single crystals, marble, and porous limestone) and silicate (glass coverslips, porous sintered glass, and quartz sandstone) substrates following culturing in liquid medium (M-3P) inoculated with different types of bacteria (Myxococcus xanthus, Brevundimonas diminuta, and a carbonatogenic bacterial community isolated from porous calcarenite stone in a historical building) and direct application of sterile M-3P medium to limestone and sandstone with their own bacterial communities. Field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD), and 2-dimensional XRD (2D-XRD) analyses revealed that abundant highly oriented calcite crystals formed homoepitaxially on the calcitic substrates, irrespective of the bacterial type. Conversely, scattered spheroidal vaterite entombing bacterial cells formed on the silicate substrates. These results show that carbonate phase selection is not strain specific and that under equal culture conditions, the substrate type is the overruling factor for calcium carbonate polymorph selection. Furthermore, carbonate productivity is strongly dependent on the mineralogy of the substrate. Calcitic substrates offer a higher affinity for bacterial attachment than silicate substrates, thereby fostering bacterial growth and metabolic activity, resulting in higher production of calcium carbonate cement. Bacterial calcite grows coherently over the calcitic substrate and is therefore more chemically and mechanically stable than metastable vaterite, which formed incoherently on the silicate substrates. The implications of these results for technological applications of bacterial carbonatogenesis, including building stone conservation, are discussed. PMID:22447589

  7. Active-site copper reduction promotes substrate binding of fungal lytic polysaccharide monooxygenase and reduces stability.

    PubMed

    Kracher, Daniel; Andlar, Martina; Furtmüller, Paul G; Ludwig, Roland

    2018-02-02

    Lytic polysaccharide monooxygenases (LPMOs) are a class of copper-containing enzymes that oxidatively degrade insoluble plant polysaccharides and soluble oligosaccharides. Upon reductive activation, they cleave the substrate and promote biomass degradation by hydrolytic enzymes. In this study, we employed LPMO9C from Neurospora crassa , which is active toward cellulose and soluble β-glucans, to study the enzyme-substrate interaction and thermal stability. Binding studies showed that the reduction of the mononuclear active-site copper by ascorbic acid increased the affinity and the maximum binding capacity of LPMO for cellulose. The reduced redox state of the active-site copper and not the subsequent formation of the activated oxygen species increased the affinity toward cellulose. The lower affinity of oxidized LPMO could support its desorption after catalysis and allow hydrolases to access the cleavage site. It also suggests that the copper reduction is not necessarily performed in the substrate-bound state of LPMO. Differential scanning fluorimetry showed a stabilizing effect of the substrates cellulose and xyloglucan on the apparent transition midpoint temperature of the reduced, catalytically active enzyme. Oxidative auto-inactivation and destabilization were observed in the absence of a suitable substrate. Our data reveal the determinants of LPMO stability under turnover and non-turnover conditions and indicate that the reduction of the active-site copper initiates substrate binding. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Medium-chain versus long-chain triacylglycerol emulsion hydrolysis by lipoprotein lipase and hepatic lipase: Implications for the mechanisms of lipase action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deckelbaum, R.J.; Hamilton, J.A.; Butbul, E.

    1990-02-06

    To explore how enzyme affinities and enzyme activities regulate hydrolysis of water-insoluble substrates, the authors compared hydrolysis of phospholipid-stabilized emulsions of medium-chain (MCT) versus long-chain triacylglycerols (LCT). Because substrate solubility at the emulsion surface might modulate rates of hydrolysis, the ability of egg yolk phosphatidylcholine to solubilize MCT was examined by NMR spectroscopy. Chemical shift measurements showed that 11 mol % of ({sup 13}C)carbonyl enriched trioctanoin was incorporated into phospholipid vesicles as a surface component. Line widths of trioctanoin surface peaks were half that of LCT, and relaxation times, T{sub 1}, were also shorter for trioctanoin, showing greater mobility formore » MCT in phospholipid. In assessing the effects of these differences in solubility on lipolysis, they found that both purified bovine milk lipoprotein lipase and human hepatic lipase hydrolyzed MCT at rates at least 2-fold higher than for LCT. Differences in affinity were also demonstrated in mixed incubations where increasing amounts of LCT emulsion resulted in decreased hydrolysis of MCT emulsions. These results suggest that despite lower enzyme affinity for MCT emulsions, shorter chain triacylglycerols are more readily hydrolyzed by lipoprotein and hepatic lipases than long-chain triacylglycerols because of greater MCT solubility and mobility at the emulsion-water interface.« less

  9. Regulation of Nitrate Transport in Citrus Rootstocks Depending on Nitrogen Availability

    PubMed Central

    Cerezo, Miguel; Camañes, Gemma; Flors, Víctor; Primo-Millo, Eduardo

    2007-01-01

    Previously, we reported that in Citrus plants, nitrate influx through the plasmalemma of roots cells follows a biphasic pattern, suggesting the existence of at least two different uptake systems, a high and low affinity transport system (HATS and LATS, respectively). Here, we describe a novel inducible high affinity transport system (iHATS). This new nitrate transport system has a high capacity to uptake nitrate in two different Citrus rootstocks (Cleopatra mandarin and Troyer citrange). The iHATS was saturable, showing higher affinity than constitutive high affinity transport system (cHATS) to the substrate NO3−. The Vmax for this saturable component iHATS was higher than cHATS, reaching similar values in both rootstocks. Additionally, we studied the regulation of root NO3− uptake mediated by both HATS (iHATS and cHATS) and LATS. In both rootstocks, cHATS is constitutive and independent of N-status. Concerning the regulation of iHATS, this system is upregulated by NO3− and down-regulated by the N status and by NO3− itself when plants are exposed to it for a longer period of time. LATS in Cleopatra mandarin and Troyer citrange rootstocks is repressed by the N-status. The use of various metabolic uncouplers or inhibitors indicated that NO3− net uptake mediated by iHATS and LATS was an active transport system in both rootstocks. PMID:19516998

  10. Inherent variations in CO-H2S-mediated carotid body O2 sensing mediate hypertension and pulmonary edema

    PubMed Central

    Peng, Ying-Jie; Makarenko, Vladislav V.; Nanduri, Jayasri; Vasavda, Chirag; Raghuraman, Gayatri; Yuan, Guoxiang; Gadalla, Moataz M.; Kumar, Ganesh K.; Snyder, Solomon H.; Prabhakar, Nanduri R.

    2014-01-01

    Oxygen (O2) sensing by the carotid body and its chemosensory reflex is critical for homeostatic regulation of breathing and blood pressure. Humans and animals exhibit substantial interindividual variation in this chemosensory reflex response, with profound effects on cardiorespiratory functions. However, the underlying mechanisms are not known. Here, we report that inherent variations in carotid body O2 sensing by carbon monoxide (CO)-sensitive hydrogen sulfide (H2S) signaling contribute to reflex variation in three genetically distinct rat strains. Compared with Sprague-Dawley (SD) rats, Brown-Norway (BN) rats exhibit impaired carotid body O2 sensing and develop pulmonary edema as a consequence of poor ventilatory adaptation to hypobaric hypoxia. Spontaneous Hypertensive (SH) rat carotid bodies display inherent hypersensitivity to hypoxia and develop hypertension. BN rat carotid bodies have naturally higher CO and lower H2S levels than SD rat, whereas SH carotid bodies have reduced CO and greater H2S generation. Higher CO levels in BN rats were associated with higher substrate affinity of the enzyme heme oxygenase 2, whereas SH rats present lower substrate affinity and, thus, reduced CO generation. Reducing CO levels in BN rat carotid bodies increased H2S generation, restoring O2 sensing and preventing hypoxia-induced pulmonary edema. Increasing CO levels in SH carotid bodies reduced H2S generation, preventing hypersensitivity to hypoxia and controlling hypertension in SH rats. PMID:24395806

  11. Effects of TNF-alpha on Endothelial Cell Collective Migration

    NASA Astrophysics Data System (ADS)

    Chen, Desu; Wu, Di; Helim Aranda-Espinoza, Jose; Losert, Wolfgang

    2013-03-01

    Tumor necrosis factor (TNF-alpha) is a small cell-signaling protein usually released by monocytes and macrophages during an inflammatory response. Previous work had shown the effects of TNF-alpha on single cell morphology, migration, and biomechanical properties. However, the effect on collective migrations remains unexplored. In this work, we have created scratches on monolayers of human umbilical endothelial cells (HUVECs) treated with 25ng/mL TNF-alpha on glass substrates. The wound healing like processes were imaged with phase contrast microscopy. Quantitative analysis of the collective migration of cells treated with TNF-alpha indicates that these cells maintain their persistent motion and alignment better than untreated cells. In addition, the collective migration was characterized by measuring the amount of non-affine deformations of the wound healing monolayer. We found a lower mean non-affinity and narrower distribution of non-affinities upon TNF-alpha stimulation. These results suggest that TNF-alpha introduces a higher degree of organized cell collective migration.

  12. Enzymatic properties of separated isozymes of the Na,K-ATPase. Substrate affinities, kinetic cooperativity, and ion transport stoichiometry.

    PubMed

    Sweadner, K J

    1985-09-25

    There are two isozymes of the Na,K-ATPase, which can be purified separately from rat renal medulla and brainstem axolemma. Here the basic kinetic properties of the two Na,K-ATPases have been compared in conditions permitting enzyme turnover. The two isozymes are half-maximally activated at different concentrations of ATP, the axolemma Na,K-ATPase having the higher affinity. They are half-maximally activated by Na+ and K+ at very similar concentrations but show differences in cooperativity toward Na+. The affinities of both isozymes for ATP and Na+ are affected in a qualitatively similar way by variations in the concentration of K+. Both isozymes transport 22Na+ and 42K+ in a ratio close to 3:2 in artificial lipid vesicles. The two isozymes differ most strikingly in the inhibition of ATPase activity by ouabain. The axolemma Na,K-ATPase has a high affinity for ouabain with positive cooperativity, while the renal medulla Na,K-ATPase has a lower affinity with negative cooperativity. It is likely that the cooperativity differences are due to kinetic effects, reflecting different rates of conformation transitions during enzyme turnover. The functional result of the contrasting cooperativities is that the difference in sensitivity to ouabain is amplified.

  13. Functional mapping and implications of substrate specificity of the yeast high-affinity leucine permease Bap2.

    PubMed

    Usami, Yuki; Uemura, Satsohi; Mochizuki, Takahiro; Morita, Asami; Shishido, Fumi; Inokuchi, Jin-ichi; Abe, Fumiyoshi

    2014-07-01

    Leucine is a major amino acid in nutrients and proteins and is also an important precursor of higher alcohols during brewing. In Saccharomyces cerevisiae, leucine uptake is mediated by multiple amino acid permeases, including the high-affinity leucine permease Bap2. Although BAP2 transcription has been extensively analyzed, the mechanisms by which a substrate is recognized and moves through the permease remain unknown. Recently, we determined 15 amino acid residues required for Tat2-mediated tryptophan import. Here we introduced homologous mutations into Bap2 amino acid residues and showed that 7 residues played a role in leucine import. Residues I109/G110/T111 and E305 were located within the putative α-helix break in TMD1 and TMD6, respectively, according to the structurally homologous Escherichia coli arginine/agmatine antiporter AdiC. Upon leucine binding, these α-helix breaks were assumed to mediate a conformational transition in Bap2 from an outward-open to a substrate-binding occluded state. Residues Y336 (TMD7) and Y181 (TMD3) were located near I109 and E305, respectively. Bap2-mediated leucine import was inhibited by some amino acids according to the following order of severity: phenylalanine, leucine>isoleucine>methionine, tyrosine>valine>tryptophan; histidine and asparagine had no effect. Moreover, this order of severity clearly coincided with the logP values (octanol-water partition coefficients) of all amino acids except tryptophan. This result suggests that the substrate partition efficiency to the buried Bap2 binding pocket is the primary determinant of substrate specificity rather than structural amino acid side chain recognition. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Selenoprotein K Binds Multiprotein Complexes and Is Involved in the Regulation of Endoplasmic Reticulum Homeostasis*

    PubMed Central

    Shchedrina, Valentina A.; Everley, Robert A.; Zhang, Yan; Gygi, Steven P.; Hatfield, Dolph L.; Gladyshev, Vadim N.

    2011-01-01

    Selenoprotein K (SelK) is an 11-kDa endoplasmic reticulum (ER) protein of unknown function. Herein, we defined a new eukaryotic protein family that includes SelK, selenoprotein S (SelS), and distantly related proteins. Comparative genomics analyses indicate that this family is the most widespread eukaryotic selenoprotein family. A biochemical search for proteins that interact with SelK revealed ER-associated degradation (ERAD) components (p97 ATPase, Derlins, and SelS). In this complex, SelK showed higher affinity for Derlin-1, whereas SelS had higher affinity for Derlin-2, suggesting that these selenoproteins could determine the nature of the substrate translocated through the Derlin channel. SelK co-precipitated with soluble glycosylated ERAD substrates and was involved in their degradation. Its gene contained a functional ER stress response element, and its expression was up-regulated by conditions that induce the accumulation of misfolded proteins in the ER. Components of the oligosaccharyltransferase complex (ribophorins, OST48, and STT3A) and an ER chaperone, calnexin, were found to bind SelK. A glycosylated form of SelK was also detected, reflecting its association with the oligosaccharyltransferase complex. These data suggest that SelK is involved in the Derlin-dependent ERAD of glycosylated misfolded proteins and that the function defined by the prototypic SelK is the widespread function of selenium in eukaryotes. PMID:22016385

  15. Kinetics of N-Utilization By Natural Phytoplankton Assemblages During Upwelling Events At The NW Iberian Shelf

    NASA Astrophysics Data System (ADS)

    Brion, N.; Elskens, M.; Dehairs, F.; Baeyens, W.

    2003-04-01

    The concentration-dependent uptakes of nitrate, ammonium and the effect of ammo-nium on the f-ratio were surveyed in surface waters of the NW Iberian shelf during June 1997, July 1998 and September 1999. Because relationships between rates and substrate concentrations were quite variable, ranging from linear to convex shaped curves, they were fitted to rational functions. Stepwize regression analysis yielded subsequent model equations with reasonable statistical properties which allowed describing all but all a few cases. Differentiating these equations with respect to the concentration gave the slope of the tangent to the curve, i.e., the variation in rate expected for a given perturbation of the ambient substrate concentration. The initial slope value was then used as an index to gauge the "affinity" of the plankton community for the nitrogen substrate utilization. In June 1997, the situation at the Iberian shelf showed no upwelling except near Cape Finistère. Overall, the phytoplankton community displayed a high "affinity" for both nitrate and ammonium and low f-ratio values, which is indicative of a re-generated production regime. High ammonium regeneration rates supported furthermore these observations. It was also demonstrated that the new production rates is only marginally sensitive to changes of the ambient nitrate and/or ammonium concentrations. This indicates that the production regime is rather stable throughout. Only at Cape Finistère, nitrate concentrations were high reflecting the onset of an upwelling event. In this zone, the phytoplankton community, taking advantage of its high affinity for nitrate enhanced both total N-uptake rate and f-ratio. In July 1998, the situation evolved towards an extension to the south of the upwelling event starting at Cape Finistère. In this southern zone of the upwelling the phytoplankton community displayed generally a lower affinity for nitrate (but not for ammonium) than in 1997. In spite of this lower affinity, nitrate uptake rate was dominant resulting in f-ratio values greater than 0.5, a characteristic of a new production regime. The new production rate is only marginally sensitive to increases of the ambient nitrate, but is drastically inhibited by small increases of the ambient ammonium. The situation of September 1999 was very close to that observed in July 1998, with higher nitrate concentrations in the coastal northern part of the sampling area dominated by upwelling.

  16. Substrate-dependent temperature sensitivity of soil organic matter decomposition

    NASA Astrophysics Data System (ADS)

    Myachina, Olga; Blagodatskaya, Evgenia

    2015-04-01

    Activity of extracellular enzymes responsible for decomposition of organics is substrate dependent. Quantity of the substrate is the main limiting factor for enzymatic or microbial heterotrophic activity in soils. Different mechanisms of enzymes response to temperature suggested for low and high substrate availability were never proved for real soil conditions. We compared the temperature responses of enzymes-catalyzed reactions in soils. Basing on Michaelis-Menten kinetics we determined the enzymes affinity to substrate (Km) and mineralization potential of heterotrophic microorganisms (Vmax) 1) for three hydrolytic enzymes: β-1,4-glucosidase, N-acetyl- β -D-glucosaminidase and phosphatase by the application of fluorogenically labeled substrates and 2) for mineralization of 14C-labeled glucose by substrate-dependent respiratory response. Here we show that the amount of available substrate is responsible for temperature sensitivity of hydrolysis of polymers in soil, whereas monomers oxidation to CO2 does not depend on substrate amount and is mainly temperature governed. We also found that substrate affinity of enzymes (which is usually decreases with the temperature) differently responded to warming for the process of depolymerisation versus monomers oxidation. We suggest the mechanism to temperature acclimation based on different temperature sensitivity of enzymes kinetics for hydrolysis of polymers and for monomers oxidation.

  17. Correlating single-molecule and ensemble-average measurements of peptide adsorption onto different inorganic materials.

    PubMed

    Kim, Seong-Oh; Jackman, Joshua A; Mochizuki, Masahito; Yoon, Bo Kyeong; Hayashi, Tomohiro; Cho, Nam-Joon

    2016-06-07

    The coating of solid-binding peptides (SBPs) on inorganic material surfaces holds significant potential for improved surface functionalization at nano-bio interfaces. In most related studies, the goal has been to engineer peptides with selective and high binding affinity for a target material. The role of the material substrate itself in modulating the adsorption behavior of a peptide molecule remains less explored and there are few studies that compare the interaction of one peptide with different inorganic substrates. Herein, using a combination of two experimental techniques, we investigated the adsorption of a 16 amino acid-long random coil peptide to various inorganic substrates - gold, silicon oxide, titanium oxide and aluminum oxide. Quartz crystal microbalance-dissipation (QCM-D) experiments were performed in order to measure the peptide binding affinity for inorganic solid supports at the ensemble average level, and atomic force microscopy (AFM) experiments were conducted in order to determine the adhesion force of a single peptide molecule. A positive trend was observed between the total mass uptake of attached peptide and the single-molecule adhesion force on each substrate. Peptide affinity for gold was appreciably greater than for the oxide substrates. Collectively, the results obtained in this study offer insight into the ways in which inorganic materials can differentially influence and modulate the adhesion of SBPs.

  18. Amorphous oxides as electron transport layers in Cu(In,Ga)Se 2 superstrate devices: Amorphous oxides in Cu(In,Ga)Se 2 superstrate devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinemann, M. D.; van Hest, M. F. A. M.; Contreras, M.

    Cu(In,Ga)Se2 (CIGS) solar cells in superstrate configuration promise improved light management and higher stability compared to substrate devices, but they have yet to deliver comparable power conversion efficiencies (PCEs). Chemical reactions between the CIGS layer and the front contact were shown in the past to deteriorate the p-n junction in superstrate devices, which led to lower efficiencies compared to the substrate-type devices. This work aims to solve this problem by identifying a buffer layer between the CIGS layer and the front contact, acting as the electron transport layer, with an optimized electron affinity, doping density and chemical stability. Using combinatorialmore » material exploration we identified amorphous gallium oxide (a-GaOx) as a potentially suitable buffer layer material. The best results were obtained for a-GaOx with an electron affinity that was found to be comparable to that of CIGS. Based on the results of device simulations, it is assumed that detrimental interfacial acceptor states are present at the interface between CIGS and a-GaOx. However, these initial experiments indicate the potential of a-GaOx in this application, and how to reach performance parity with substrate devices, by further increase of its n-type doping density.« less

  19. Suitability of cholinesterase of polychaete Diopatra neapolitana as biomarker of exposure to pesticides: In vitro characterization.

    PubMed

    Mennillo, Elvira; Casu, Valentina; Tardelli, Federica; De Marchi, Lucia; Freitas, Rosa; Pretti, Carlo

    2017-01-01

    Cholinesterases of Diopatra neapolitana were characterized for their activity in whole body and different body segments (apical, intermediate, posterior), substrate affinity (acetyl-, butyryl-, propionylthiocholine), kinetic parameters (K m and V max ) and in vitro response to model inhibitors (eserine hemisulfate, isoOMPA, BW284C51) and carbamates (carbofuran, methomyl, aldicarb and carbaryl). Results showed that the rate of hydrolysis for acetyl- and propionylthiocholine was higher in the posterior segment than the apical/intermediate segments and whole body. Cholinesterases of D. neapolitana showed a substrate preference for acetylthiocholine followed by propionylthiocholine; butyrylthioline was poorly hydrolyzed indicating, together with the absence of inhibition by the specific inhibitor and the absence of reactive bands in native electrophoresis, a lack of an active butyrylcholinesterase, differently than that observed in other Annelida species. The degree of inhibition by selected carbamates of cholinesterase activity with propionylthiocholine as substrate was higher than that observed with ATChI-ChE activity; aldicarb showed the highest inhibitory effect. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Information encoded in non-native states drives substrate-chaperone pairing.

    PubMed

    Mapa, Koyeli; Tiwari, Satyam; Kumar, Vignesh; Jayaraj, Gopal Gunanathan; Maiti, Souvik

    2012-09-05

    Many proteins refold in vitro through kinetic folding intermediates that are believed to be by-products of native-state centric evolution. These intermediates are postulated to play only minor roles, if any, in vivo because they lack any information related to translation-associated vectorial folding. We demonstrate that refolding intermediate of a test protein, generated in vitro, is able to find its cognate chaperone, from the whole complement of Escherichia coli soluble chaperones. Cognate chaperone-binding uniquely alters the conformation of non-native substrate. Importantly, precise chaperone targeting of substrates are maintained as long as physiological molar ratios of chaperones remain unaltered. Using a library of different chaperone substrates, we demonstrate that kinetically trapped refolding intermediates contain sufficient structural features for precise targeting to cognate chaperones. We posit that evolution favors sequences that, in addition to coding for a functional native state, encode folding intermediates with higher affinity for cognate chaperones than noncognate ones. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Evolution of substrate specificity for the bile salt transporter ASBT (SLC10A2)[S

    PubMed Central

    Lionarons, Daniël A.; Boyer, James L.; Cai, Shi-Ying

    2012-01-01

    The apical Na+-dependent bile salt transporter (ASBT/SLC10A2) is essential for maintaining the enterohepatic circulation of bile salts. It is not known when Slc10a2 evolved as a bile salt transporter or how it adapted to substantial changes in bile salt structure during evolution. We characterized ASBT orthologs from two primitive vertebrates, the lamprey that utilizes early 5α-bile alcohols and the skate that utilizes structurally different 5β-bile alcohols, and compared substrate specificity with ASBT from humans who utilize modern 5β-bile acids. Everted gut sacs of skate but not the more primitive lamprey transported 3H-taurocholic acid (TCA), a modern 5β-bile acid. However, molecular cloning identified ASBT orthologs from both species. Cell-based assays using recombinant ASBT/Asbt's indicate that lamprey Asbt has high affinity for 5α-bile alcohols, low affinity for 5β-bile alcohols, and lacks affinity for TCA, whereas skate Asbt showed high affinity for 5α- and 5β-bile alcohols but low affinity for TCA. In contrast, human ASBT demonstrated high affinity for all three bile salt types. These findings suggest that ASBT evolved from the earliest vertebrates by gaining affinity for modern bile salts while retaining affinity for older bile salts. Also, our results indicate that the bile salt enterohepatic circulation is conserved throughout vertebrate evolution. PMID:22669917

  2. Catalytic growth of carbon nanofibers on Cr nanoparticles on a carbon substrate: adsorbents for organic dyes in water

    NASA Astrophysics Data System (ADS)

    de Oliveira, Luiz Carlos Alves; da Silva, Adilson Cândido; Machado, Alan Rodrigues Teixeira; Diniz, Renata; Pereira, Márcio César

    2013-05-01

    We have produced carbon nanofibers (CNFs) using leather waste that had been tanned with a chromium bath, and when dried contained Cr2O3. Suitable reduction processing produced a carbon substrate with supported nanoparticles of chromium metal. Powder X-ray diffraction showed that the Cr2O3 is reduced on the carbon surface to produce CrC and metal Cr, which is the effective catalyst for the CNFs growth. The CNF arrays were confirmed by TEM images. Raman data revealed that the synthesized CNFs have a poor-quality graphite structure which favors their use in adsorption processes. These CNFs presented higher affinity to adsorb anionic dyes, whereas the cationic dyes are better adsorbed on the carbon substrate. The low-cost and availability of the carbon precursor makes their potential use to produce CNFs of interest.

  3. Probing Substrate Interactions in the Active Tunnel of a Catalytically Deficient Cellobiohydrolase (Cel7)*

    PubMed Central

    Colussi, Francieli; Sørensen, Trine H.; Alasepp, Kadri; Kari, Jeppe; Cruys-Bagger, Nicolaj; Windahl, Michael S.; Olsen, Johan P.; Borch, Kim; Westh, Peter

    2015-01-01

    Cellobiohydrolases break down cellulose sequentially by sliding along the crystal surface with a single cellulose strand threaded through the catalytic tunnel of the enzyme. This so-called processive mechanism relies on a complex pattern of enzyme-substrate interactions, which need to be addressed in molecular descriptions of processivity and its driving forces. Here, we have used titration calorimetry to study interactions of cellooligosaccharides (COS) and a catalytically deficient variant (E212Q) of the enzyme Cel7A from Trichoderma reesei. This enzyme has ∼10 glucopyranose subsites in the catalytic tunnel, and using COS ligands with a degree of polymerization (DP) from 2 to 8, different regions of the tunnel could be probed. For COS ligands with a DP of 2–3 the binding constants were around 105 m−1, and for longer ligands (DP 5–8) this value was ∼107 m−1. Within each of these groups we did not find increased affinity as the ligands got longer and potentially filled more subsites. On the contrary, we found a small but consistent affinity loss as DP rose from 6 to 8, particularly at the higher investigated temperatures. Other thermodynamic functions (ΔH, ΔS, and ΔCp) decreased monotonously with both temperature and DP. Combined interpretation of these thermodynamic results and previously published structural data allowed assessment of an affinity profile along the length axis of the active tunnel. PMID:25477511

  4. Pineapple stem bromelain immobilized on different supports: catalytic properties in model wine.

    PubMed

    Ilaria, Benucci; Marco, Esti; Katia, Liburdi; Maria Vittoria, Garzillo Anna

    2012-01-01

    Bromelain from pineapple stem has been covalently immobilized on different supports to select the more efficient biocatalyst that should be applied toward unstable proteins in real white wine. In this preliminary study, catalytic properties of different immobilized bromelain forms were compared under wine-like conditions, against a synthetic substrate (Bz-Phe-Val-Arg-pNA).Covalent immobilization affected protease kinetic properties, even if all immobilized forms presented both a better substrate affinity and higher half-life (with the exception of a few procedures) with respect to the free enzyme. Stem bromelain was successfully immobilized on chitosan beads without glutaraldehyde thus yielding a food-safe and promising biocatalyst for unstable real wine future application. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  5. Impact of M36I polymorphism on the interaction of HIV-1 protease with its substrates: insights from molecular dynamics

    PubMed Central

    2014-01-01

    Background Over the last decades, a vast structural knowledge has been gathered on the HIV-1 protease (PR). Noticeably, most of the studies focused the B-subtype, which has the highest prevalence in developed countries. Accordingly, currently available anti-HIV drugs target this subtype, with considerable benefits for the corresponding patients. However, in developing countries, there is a wide variety of HIV-1 subtypes carrying PR polymorphisms related to reduced drug susceptibility. The non-active site mutation, M36I, is the most frequent polymorphism, and is considered as a non-B subtype marker. Yet, the structural impact of this substitution on the PR structure and on the interaction with natural substrates remains poorly documented. Results Herein, we used molecular dynamics simulations to investigate the role of this polymorphism on the interaction of PR with six of its natural cleavage-sites substrates. Free energy analyses by MMPB/SA calculations showed an affinity decrease of M36I-PR for the majority of its substrates. The only exceptions were the RT-RH, with equivalent affinity, and the RH-IN, for which an increased affinity was found. Furthermore, molecular simulations suggest that, unlike other peptides, RH-IN induced larger structural fluctuations in the wild-type enzyme than in the M36I variant. Conclusions With multiple approaches and analyses we identified structural and dynamical determinants associated with the changes found in the binding affinity of the M36I variant. This mutation influences the flexibility of both PR and its complexed substrate. The observed impact of M36I, suggest that combination with other non-B subtype polymorphisms, could lead to major effects on the interaction with the 12 known cleavage sites, which should impact the virion maturation. PMID:25573486

  6. Substrate affinity of photosensitizers derived from chlorophyll-a: The ABCG2 transporter affects the phototoxic response of side population stem cell-like cancer cells to photodynamic therapy

    PubMed Central

    Morgan, Janet; Jackson, Jennifer D.; Zheng, Xiang; Pandey, Suresh K.; Pandey, Ravindra K.

    2010-01-01

    Photosensitizers (PS) synthesized with the aim of optimizing photodynamic therapy (PDT) of tumors do not always fulfill their potential when tested in vitro and in vivo in different tumor models. The ATP-dependent transporter ABCG2 a multi-drug resistant pump expressed at variable levels in cancerous cells, can bind and efflux a wide range of structurally different classes of compounds including several PS used pre-clinically and clinically such as porphyrins and chlorins. ABCG2 may lower intracellular levels of substrate PS below the threshold for cell death in tumors treated by PDT, leaving resistant cells to re-populate the tumor. To determine some of the structural factors that affect substrate affinity of PS for ABCG2, we used an ABCG2 expressing cell line (HEK 293 482R) and its non-expressing counterpart, and tyrosine kinase ABCG2 inhibitors in a simple flow cytometric assay to identify PS effluxed by the ABCG2 pump. We tested a series of conjugates of substrate PS with different groups attached at different positions on the tetrapyrrole macrocycle to examine whether a change in affinity for the pump occurred and whether such changes depended on the position or the structure/type of the attached group. PS without substitutions including pyropheophorbides and purpurinimides were generally substrates for ABCG2, but carbohydrate groups conjugated at positions 8, 12, 13 and 17 but not at position 3 abrogated ABCG2 affinity regardless of structure or linking moiety. At position 3, affinity was retained with the addition of iodobenzene, alkyl chains and monosaccharides, but not with disaccharides. This suggests that structural characteristics at position 3 may offer important contributions to requirements for binding to ABCG2. We examined several tumor cell lines for ABCG2 activity, and found that although some cell lines had negligible ABCG2 activity in bulk, they contained a small ABCG2-expressing side population (SP) thought to contain cells which are responsible for initiating tumor regrowth. We examined the relevance of the SP to PDT resistance with ABCG2 substrates in vitro and in vivo in the murine mammary tumor 4T1. We show for the first time in vivo that the substrate PS HPPH (2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a) but not the non-substrate PS HPPH-Gal (a galactose conjugate of HPPH) selectively preserved the SP which was primarily responsible for regrowth in vitro. The SP could be targeted by addition of imatinib mesylate, a tyrosine kinase inhibitor which inhibits the ATPase activity of ABCG2, and prevents efflux of substrates. A PDT resistant SP may be responsible for recurrences observed both pre-clinically and clinically. To prevent ABCG2 mediated resistance, choosing non-substrate PS or administering an ABCG2 inhibitor alongside a substrate PS might be advantageous when treating ABCG2 expressing tumors with PDT. PMID:20684544

  7. Occupancy of the Zinc-binding Site by Transition Metals Decreases the Substrate Affinity of the Human Dopamine Transporter by an Allosteric Mechanism*

    PubMed Central

    Li, Yang; Mayer, Felix P.; Hasenhuetl, Peter S.; Burtscher, Verena; Schicker, Klaus; Sitte, Harald H.; Freissmuth, Michael; Sandtner, Walter

    2017-01-01

    The human dopamine transporter (DAT) has a tetrahedral Zn2+-binding site. Zn2+-binding sites are also recognized by other first-row transition metals. Excessive accumulation of manganese or of copper can lead to parkinsonism because of dopamine deficiency. Accordingly, we examined the effect of Mn2+, Co2+, Ni2+, and Cu2+ on transport-associated currents through DAT and DAT-H193K, a mutant with a disrupted Zn2+-binding site. All transition metals except Mn2+ modulated the transport cycle of wild-type DAT with affinities in the low micromolar range. In this concentration range, they were devoid of any action on DAT-H193K. The active transition metals reduced the affinity of DAT for dopamine. The affinity shift was most pronounced for Cu2+, followed by Ni2+ and Zn2+ (= Co2+). The extent of the affinity shift and the reciprocal effect of substrate on metal affinity accounted for the different modes of action: Ni2+ and Cu2+ uniformly stimulated and inhibited, respectively, the substrate-induced steady-state currents through DAT. In contrast, Zn2+ elicited biphasic effects on transport, i.e. stimulation at 1 μm and inhibition at 10 μm. A kinetic model that posited preferential binding of transition metal ions to the outward-facing apo state of DAT and a reciprocal interaction of dopamine and transition metals recapitulated all experimental findings. Allosteric activation of DAT via the Zn2+-binding site may be of interest to restore transport in loss-of-function mutants. PMID:28096460

  8. Thermodynamic Bounds on the Ultra- and Infra-affinity of Hsp70 for Its Substrates

    NASA Astrophysics Data System (ADS)

    Nguyen, Basile; Hartich, David; Seifert, Udo; Rios, Paolo De Los

    2017-07-01

    The 70 kDa Heat Shock Proteins Hsp70 have several essential functions in living systems, such as protecting cells against protein aggregation, assisting protein folding, remodeling protein complexes and driving the translocation into organelles. These functions require high affinity for non-specific amino-acid sequences that are ubiquitous in proteins. It has been recently shown that this high affinity, called ultra-affinity, depends on a process driven out of equilibrium by ATP hydrolysis. Here we establish the thermodynamic bounds for ultra-affinity, and further show that the same reaction scheme can in principle be used both to strengthen and to weaken affinities (leading in this case to infra-affinity). We show that cofactors are essential to achieve affinity beyond the equilibrium range. Finally, biological implications are discussed.

  9. The ATP-binding cassette transporter Cbc (choline/betaine/carnitine) recruits multiple substrate-binding proteins with strong specificity for distinct quaternary ammonium compounds

    PubMed Central

    Chen, Chiliang; Malek, Adel A.; Wargo, Matthew J.; Hogan, Deborah A.; Beattie, Gwyn A.

    2017-01-01

    Summary We identified a choline, betaine and carnitine transporter, designated Cbc, from Pseudomonas syringae and Pseudomonas aeruginosa that is unusual among members of the ATP-binding cassette (ABC) transporter family in its use of multiple periplasmic substrate-binding proteins (SBPs) that are highly specific for their substrates. The SBP encoded by the cbcXWV operon, CbcX, binds choline with a high affinity (Km, 2.6 μM) and, although it also binds betaine (Km, 24.2 μM), CbcXWV-mediated betaine uptake did not occur in the presence of choline. The CbcX orthologue ChoX from Sinorhizobium meliloti was similar to CbcX in these binding properties. The core transporter CbcWV also interacts with the carnitine-specific SBP CaiX (Km, 24 μM) and the betaine-specific SBP BetX (Km, 0.6 μM). Unlike most ABC transporter loci, caiX, betX and cbcXWV are separated in the genome. CaiX-mediated carnitine uptake was reduced by CbcX and BetX only when they were bound by their individual ligands, providing the first in vivo evidence for a higher affinity for ligand-bound than ligand-free SBPs by an ABC transporter. These studies demonstrate not only that the Cbc transporter serves as a useful model for exploring ABC transporter component interactions, but also that the orphan SBP genes common to bacterial genomes can encode functional SBPs. PMID:19919675

  10. The ATP-binding cassette transporter Cbc (choline/betaine/carnitine) recruits multiple substrate-binding proteins with strong specificity for distinct quaternary ammonium compounds.

    PubMed

    Chen, Chiliang; Malek, Adel A; Wargo, Matthew J; Hogan, Deborah A; Beattie, Gwyn A

    2010-01-01

    We identified a choline, betaine and carnitine transporter, designated Cbc, from Pseudomonas syringae and Pseudomonas aeruginosa that is unusual among members of the ATP-binding cassette (ABC) transporter family in its use of multiple periplasmic substrate-binding proteins (SBPs) that are highly specific for their substrates. The SBP encoded by the cbcXWV operon, CbcX, binds choline with a high affinity (K(m), 2.6 microM) and, although it also binds betaine (K(m), 24.2 microM), CbcXWV-mediated betaine uptake did not occur in the presence of choline. The CbcX orthologue ChoX from Sinorhizobium meliloti was similar to CbcX in these binding properties. The core transporter CbcWV also interacts with the carnitine-specific SBP CaiX (K(m), 24 microM) and the betaine-specific SBP BetX (K(m), 0.6 microM). Unlike most ABC transporter loci, caiX, betX and cbcXWV are separated in the genome. CaiX-mediated carnitine uptake was reduced by CbcX and BetX only when they were bound by their individual ligands, providing the first in vivo evidence for a higher affinity for ligand-bound than ligand-free SBPs by an ABC transporter. These studies demonstrate not only that the Cbc transporter serves as a useful model for exploring ABC transporter component interactions, but also that the orphan SBP genes common to bacterial genomes can encode functional SBPs.

  11. Plasmin substrate binding site cooperativity guides the design of potent peptide aldehyde inhibitors.

    PubMed

    Swedberg, Joakim E; Harris, Jonathan M

    2011-10-04

    Perioperative bleeding is a cause of major blood loss and is associated with increased rates of postoperative morbidity and mortality. To combat this, antifibrinolytic inhibitors of the serine protease plasmin are commonly used to reduce bleeding during surgery. The most effective and previously widely used of these is the broad range serine protease inhibitor aprotinin. However, adverse clinical outcomes have led to use of alternative serine lysine analogues to inhibit plasmin. These compounds suffer from low selectivity and binding affinity. Consequently, a concerted effort to discover potent and selective plasmin inhibitors has developed. This study used a noncombinatorial peptide library to define plasmin's extended substrate specificity and guide the design of potent transition state analogue inhibitors. The various substrate binding sites of plasmin were found to exhibit a higher degree of cooperativity than had previously been appreciated. Peptide sequences capitalizing on these features produced high-affinity inhibitors of plasmin. The most potent of these, Lys-Met(sulfone)-Tyr-Arg-H [KM(O(2))YR-H], inhibited plasmin with a K(i) of 3.1 nM while maintaining 25-fold selectivity over plasma kallikrein. Furthermore, 125 nM (0.16 μg/mL) KM(O(2))YR-H attenuated fibrinolysis in vitro with an efficacy similar to that of 15 nM (0.20 μg/mL) aprotinin. To date, this is the most potent peptide inhibitor of plasmin that exhibits selectivity against plasma kallikrein, making this compound an attractive candidate for further therapeutic development.

  12. Dynamic Seeding of Perfusing Human Umbilical Vein Endothelial Cells (HUVECs) onto Dual-Function Cell Adhesion Ligands: Arg-Gly-Asp (RGD)-Streptavidin and Biotinylated Fibronectin

    PubMed Central

    Anamelechi, Charles C.; Clermont, Edward C.; Novak, Matthew T.; Reichert, William M.

    2014-01-01

    Surfaces decorated with high affinity ligands can be used to facilitate rapid attachment of endothelial cells; however, standard equilibrium cell detachment studies are poorly suited for assessing these initial adhesion events. Here, a dynamic seeding and cell retention method was used to examine the initial attachment of perfusing human umbilical vein endothelial cells (HUVECs) to bare Teflon-AF substrates, substrates pre-adsorbed with fibronectin alone, or substrates co-pre-adsorbed with two dual-function cell-adhesion ligands: biotinylated fibronectin (bFN) and RGD-streptavidin mutant (RGD-SA). Cell attachment was evaluated as a function of cell trypsinization (integrin digestion), surface protein formulation, and cell perfusion rate. Surfaces co-pre-adsorbed with bFN and RGD-SA showed the highest density of attached cells after 8 min of perfusion and the highest percent retention when subjected to shear flow at 60 dynes/cm2 for 2 min. Surfaces with no ligand treatment showed the lowest cell attachment and retention under flow in all cases. HUVECs trypsinized with mild 0.025% trypsin/ethylenediaminetetraacetic acid (EDTA) showed greater cell adhesion after perfusion and higher percent retention after shear flow than those trypsinized using harsher 0.05% trypsin/EDTA. The preferential affinities of the two dual-function ligands for α5β1 and αvβ3 integrins were also examined by surface plasmon resonance (SPR) spectroscopy. The dynamic cell seeding studies confirmed that the dual-function ligand system promotes HUVEC adhesion and retention at short time points when tested using a perfusion assay. SPR studies showed that the two ligands exhibited equal affinity for both α5β1 and αvβ3 integrins but that the combined ligands bound more total integrins than the two ligands tested separately. PMID:19348476

  13. Protein Allostery and Conformational Dynamics.

    PubMed

    Guo, Jingjing; Zhou, Huan-Xiang

    2016-06-08

    The functions of many proteins are regulated through allostery, whereby effector binding at a distal site changes the functional activity (e.g., substrate binding affinity or catalytic efficiency) at the active site. Most allosteric studies have focused on thermodynamic properties, in particular, substrate binding affinity. Changes in substrate binding affinity by allosteric effectors have generally been thought to be mediated by conformational transitions of the proteins or, alternatively, by changes in the broadness of the free energy basin of the protein conformational state without shifting the basin minimum position. When effector binding changes the free energy landscape of a protein in conformational space, the change affects not only thermodynamic properties but also dynamic properties, including the amplitudes of motions on different time scales and rates of conformational transitions. Here we assess the roles of conformational dynamics in allosteric regulation. Two cases are highlighted where NMR spectroscopy and molecular dynamics simulation have been used as complementary approaches to identify residues possibly involved in allosteric communication. Perspectives on contentious issues, for example, the relationship between picosecond-nanosecond local and microsecond-millisecond conformational exchange dynamics, are presented.

  14. High-affinity DNA-binding Domains of Replication Protein A (RPA) Direct SMARCAL1-dependent Replication Fork Remodeling*

    PubMed Central

    Bhat, Kamakoti P.; Bétous, Rémy; Cortez, David

    2015-01-01

    SMARCAL1 catalyzes replication fork remodeling to maintain genome stability. It is recruited to replication forks via an interaction with replication protein A (RPA), the major ssDNA-binding protein in eukaryotic cells. In addition to directing its localization, RPA also activates SMARCAL1 on some fork substrates but inhibits it on others, thereby conferring substrate specificity to SMARCAL1 fork-remodeling reactions. We investigated the mechanism by which RPA regulates SMARCAL1. Our results indicate that although an interaction between SMARCAL1 and RPA is essential for SMARCAL1 activation, the location of the interacting surface on RPA is not. Counterintuitively, high-affinity DNA binding of RPA DNA-binding domain (DBD) A and DBD-B near the fork junction makes it easier for SMARCAL1 to remodel the fork, which requires removing RPA. We also found that RPA DBD-C and DBD-D are not required for SMARCAL1 regulation. Thus, the orientation of the high-affinity RPA DBDs at forks dictates SMARCAL1 substrate specificity. PMID:25552480

  15. High-affinity DNA-binding domains of replication protein A (RPA) direct SMARCAL1-dependent replication fork remodeling.

    PubMed

    Bhat, Kamakoti P; Bétous, Rémy; Cortez, David

    2015-02-13

    SMARCAL1 catalyzes replication fork remodeling to maintain genome stability. It is recruited to replication forks via an interaction with replication protein A (RPA), the major ssDNA-binding protein in eukaryotic cells. In addition to directing its localization, RPA also activates SMARCAL1 on some fork substrates but inhibits it on others, thereby conferring substrate specificity to SMARCAL1 fork-remodeling reactions. We investigated the mechanism by which RPA regulates SMARCAL1. Our results indicate that although an interaction between SMARCAL1 and RPA is essential for SMARCAL1 activation, the location of the interacting surface on RPA is not. Counterintuitively, high-affinity DNA binding of RPA DNA-binding domain (DBD) A and DBD-B near the fork junction makes it easier for SMARCAL1 to remodel the fork, which requires removing RPA. We also found that RPA DBD-C and DBD-D are not required for SMARCAL1 regulation. Thus, the orientation of the high-affinity RPA DBDs at forks dictates SMARCAL1 substrate specificity. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Competition for electrons between mono-oxygenations of pyridine and 2-hydroxypyridine.

    PubMed

    Yang, Chao; Tang, Yingxia; Xu, Hua; Yan, Ning; Li, Naiyu; Zhang, Yongming; Rittmann, Bruce E

    2018-05-21

    Pyridine and its heterocyclic derivatives are widely encountered in industrial wastewaters, and they are relatively recalcitrant to biodegradation. Pyridine biodegradation is initiated by two mono-oxygenation reactions that compete for intracellular electron donor (2H). In our experiments, UV photolysis of pyridine generated succinate, whose oxidation augmented the intracellular electron donor and accelerated pyridine biodegradation and mineralization. The first mono-oxygenation reaction always was faster than the second one, because electrons provided by intracellular electron donors were preferentially utilized by the first mono-oxygenase; this was true even when the concentration of 2HP was greater than the concentration of pyridine. In addition, the first mono-oxygenation had faster kinetics because it had higher affinity for its substrate (pyridine), along with less substrate self-inhibition.

  17. Probing Allosteric Inhibition Mechanisms of the Hsp70 Chaperone Proteins Using Molecular Dynamics Simulations and Analysis of the Residue Interaction Networks.

    PubMed

    Stetz, Gabrielle; Verkhivker, Gennady M

    2016-08-22

    Although molecular mechanisms of allosteric regulation in the Hsp70 chaperones have been extensively studied at both structural and functional levels, the current understanding of allosteric inhibition of chaperone activities by small molecules is still lacking. In the current study, using a battery of computational approaches, we probed allosteric inhibition mechanisms of E. coli Hsp70 (DnaK) and human Hsp70 proteins by small molecule inhibitors PET-16 and novolactone. Molecular dynamics simulations and binding free energy analysis were combined with network-based modeling of residue interactions and allosteric communications to systematically characterize and compare molecular signatures of the apo form, substrate-bound, and inhibitor-bound chaperone complexes. The results suggested a mechanism by which the allosteric inhibitors may leverage binding energy hotspots in the interaction networks to stabilize a specific conformational state and impair the interdomain allosteric control. Using the network-based centrality analysis and community detection, we demonstrated that substrate binding may strengthen the connectivity of local interaction communities, leading to a dense interaction network that can promote an efficient allosteric communication. In contrast, binding of PET-16 to DnaK may induce significant dynamic changes and lead to a fractured interaction network and impaired allosteric communications in the DnaK complex. By using a mechanistic-based analysis of distance fluctuation maps and allosteric propensities of protein residues, we determined that the allosteric network in the PET-16 complex may be small and localized due to the reduced communication and low cooperativity of the substrate binding loops, which may promote the higher rates of substrate dissociation and the decreased substrate affinity. In comparison with the significant effect of PET-16, binding of novolactone to HSPA1A may cause only moderate network changes and preserve allosteric coupling between the allosteric pocket and the substrate binding region. The impact of novolactone on the conformational dynamics and allosteric communications in the HSPA1A complex was comparable to the substrate effect, which is consistent with the experimental evidence that PET-16, but not novolactone binding, can significantly decrease substrate affinity. We argue that the unique dynamic and network signatures of PET-16 and novolactone may be linked with the experimentally observed functional effects of these inhibitors on allosteric regulation and substrate binding.

  18. DNA/RNA hybrid substrates modulate the catalytic activity of purified AID.

    PubMed

    Abdouni, Hala S; King, Justin J; Ghorbani, Atefeh; Fifield, Heather; Berghuis, Lesley; Larijani, Mani

    2018-01-01

    Activation-induced cytidine deaminase (AID) converts cytidine to uridine at Immunoglobulin (Ig) loci, initiating somatic hypermutation and class switching of antibodies. In vitro, AID acts on single stranded DNA (ssDNA), but neither double-stranded DNA (dsDNA) oligonucleotides nor RNA, and it is believed that transcription is the in vivo generator of ssDNA targeted by AID. It is also known that the Ig loci, particularly the switch (S) regions targeted by AID are rich in transcription-generated DNA/RNA hybrids. Here, we examined the binding and catalytic behavior of purified AID on DNA/RNA hybrid substrates bearing either random sequences or GC-rich sequences simulating Ig S regions. If substrates were made up of a random sequence, AID preferred substrates composed entirely of DNA over DNA/RNA hybrids. In contrast, if substrates were composed of S region sequences, AID preferred to mutate DNA/RNA hybrids over substrates composed entirely of DNA. Accordingly, AID exhibited a significantly higher affinity for binding DNA/RNA hybrid substrates composed specifically of S region sequences, than any other substrates composed of DNA. Thus, in the absence of any other cellular processes or factors, AID itself favors binding and mutating DNA/RNA hybrids composed of S region sequences. AID:DNA/RNA complex formation and supporting mutational analyses suggest that recognition of DNA/RNA hybrids is an inherent structural property of AID. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Molecular Determinants for Substrate Interactions with the Glycine Transporter GlyT2.

    PubMed

    Carland, Jane E; Thomas, Michael; Mostyn, Shannon N; Subramanian, Nandhitha; O'Mara, Megan L; Ryan, Renae M; Vandenberg, Robert J

    2018-03-21

    Transporters in the SLC6 family play key roles in regulating neurotransmission and are the targets for a wide range of therapeutics. Important insights into the transport mechanisms and the specificity of drug interactions of SLC6 transporters have been obtained from the crystal structures of a bacterial homologue of the family, LeuT Aa , and more recently the Drosophila dopamine transporter and the human serotonin transporter. However, there is disputed evidence that the bacterial leucine transporter, LeuT Aa , contains two substrate binding sites that work cooperatively in the mechanism of transport, with the binding of a second substrate being required for the release of the substrate from the primary site. An alternate proposal is that there may be low affinity binding sites that serve to direct the flow of substrates to the primary site. We have used a combination of molecular dynamics simulations of substrate interactions with a homology model of GlyT2, together with radiolabeled amino acid uptake assays and electrophysiological analysis of wild-type and mutant transporters, to provide evidence that substrate selectivity of GlyT2 is determined entirely by the primary substrate binding site and, furthermore, if a secondary site exists then it is a low affinity nonselective amino acid binding site.

  20. Structural and Biochemical Characterization of Cinnamoyl-CoA Reductases1

    PubMed Central

    Walker, Alexander M.

    2017-01-01

    Cinnamoyl-coenzyme A reductase (CCR) catalyzes the reduction of hydroxycinnamoyl-coenzyme A (CoA) esters using NADPH to produce hydroxycinnamyl aldehyde precursors in lignin synthesis. The catalytic mechanism and substrate specificity of cinnamoyl-CoA reductases from sorghum (Sorghum bicolor), a strategic plant for bioenergy production, were deduced from crystal structures, site-directed mutagenesis, and kinetic and thermodynamic analyses. Although SbCCR1 displayed higher affinity for caffeoyl-CoA or p-coumaroyl-CoA than for feruloyl-CoA, the enzyme showed significantly higher activity for the latter substrate. Through molecular docking and comparisons between the crystal structures of the Vitis vinifera dihydroflavonol reductase and SbCCR1, residues threonine-154 and tyrosine-310 were pinpointed as being involved in binding CoA-conjugated phenylpropanoids. Threonine-154 of SbCCR1 and other CCRs likely confers strong substrate specificity for feruloyl-CoA over other cinnamoyl-CoA thioesters, and the T154Y mutation in SbCCR1 led to broader substrate specificity and faster turnover. Through data mining using our structural and biochemical information, four additional putative CCR genes were discovered from sorghum genomic data. One of these, SbCCR2, displayed greater activity toward p-coumaroyl-CoA than did SbCCR1, which could imply a role in the synthesis of defense-related lignin. Taken together, these findings provide knowledge about critical residues and substrate preference among CCRs and provide, to our knowledge, the first three-dimensional structure information for a CCR from a monocot species. PMID:27956488

  1. Trichoderma harzianum Produces a New Thermally Stable Acid Phosphatase, with Potential for Biotechnological Application

    PubMed Central

    Souza, Amanda Araújo; Leitão, Vanessa Oliveira; Ramada, Marcelo Henrique; Mehdad, Azadeh; Georg, Raphaela de Castro; Ulhôa, Cirano José; de Freitas, Sonia Maria

    2016-01-01

    Acid phosphatases (ACPases) are produced by a variety of fungi and have gained attention due their biotechnological potential in industrial, diagnosis and bioremediation processes. These enzymes play a specific role in scavenging, mobilization and acquisition of phosphate, enhancing soil fertility and plant growth. In this study, a new ACPase from Trichoderma harzianum, named ACPase II, was purified and characterized as a glycoprotein belonging to the acid phosphatase family. ACPase II presents an optimum pH and temperature of 3.8 and 65°C, respectively, and is stable at 55°C for 120 min, retaining 60% of its activity. The enzyme did not require metal divalent ions, but was inhibited by inorganic phosphate and tungstate. Affinity for several phosphate substrates was observed, including phytate, which is the major component of phosphorus in plant foods. The inhibition of ACPase II by tungstate and phosphate at different pH values is consistent with the inability of the substrate to occupy its active site due to electrostatic contacts that promote conformational changes, as indicated by fluorescence spectroscopy. A higher affinity for tungstate rather than phosphate at pH 4.0was observed, in accordance with its highest inhibitory effect. Results indicate considerable biotechnological potential of the ACPase II in soil environments. PMID:26938873

  2. Adsorption behavior of methacryloyloxydecyl dihydrogen phosphate on an apatite surface at neutral pH.

    PubMed

    Bista, Baba; Nakashima, Syozi; Nikaido, Toru; Sadr, Alireza; Takagaki, Tomohiro; Romero, Maria J R H; Sato, Takaaki; Tagami, Junji

    2016-04-01

    This study aimed to quantify the adsorption affinity of neutralized 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP-N) toward hydroxyapatite (HA) and dicalcium phosphate dihydrate (DCPD) at pH 7.0 by employing the Langmuir isotherm model. Furthermore, the effects of inorganic phosphate (Pi) and fluoride (F(-) ) ions on the adsorption of 10-MDP-N onto HA and DCPD were examined. Fixed amounts of HA and DCPD powders were suspended in different concentrations of 10-MDP-N solutions and were incubated for 18 h. Equilibrated concentrations of 10-MDP-N were measured by spectrophotometry and the adsorption affinity was estimated using the Langmuir model. Moreover, the adsorption was examined by zeta-potential analysis. The results indicated that significant Langmuir correlation was noted in both substrates, along with an increasing negative zeta-potential; however, in DCPD the correlation was less strong. The addition of 1.0 mM Pi slightly delayed the adsorption of 10-MDP-N onto both substrates, whereas 3.0 mM Pi drastically delayed adsorption onto HA but completely inhibited adsorption onto DCPD. Up to 50 ppm, F(-) enhanced the adsorption onto HA, and the adsorption plateaued at higher concentrations of F(-) , whereas no obvious influence of F(-) on the adsorption onto DCPD was noted. © 2016 Eur J Oral Sci.

  3. Biochemical Regulatory Features of Activation-Induced Cytidine Deaminase Remain Conserved from Lampreys to Humans

    PubMed Central

    King, Justin J.; Amemiya, Chris T.; Hsu, Ellen

    2017-01-01

    ABSTRACT Activation-induced cytidine deaminase (AID) is a genome-mutating enzyme that initiates class switch recombination and somatic hypermutation of antibodies in jawed vertebrates. We previously described the biochemical properties of human AID and found that it is an unusual enzyme in that it exhibits binding affinities for its substrate DNA and catalytic rates several orders of magnitude higher and lower, respectively, than a typical enzyme. Recently, we solved the functional structure of AID and demonstrated that these properties are due to nonspecific DNA binding on its surface, along with a catalytic pocket that predominantly assumes a closed conformation. Here we investigated the biochemical properties of AID from a sea lamprey, nurse shark, tetraodon, and coelacanth: representative species chosen because their lineages diverged at the earliest critical junctures in evolution of adaptive immunity. We found that these earliest-diverged AID orthologs are active cytidine deaminases that exhibit unique substrate specificities and thermosensitivities. Significant amino acid sequence divergence among these AID orthologs is predicted to manifest as notable structural differences. However, despite major differences in sequence specificities, thermosensitivities, and structural features, all orthologs share the unusually high DNA binding affinities and low catalytic rates. This absolute conservation is evidence for biological significance of these unique biochemical properties. PMID:28716949

  4. Trichoderma harzianum Produces a New Thermally Stable Acid Phosphatase, with Potential for Biotechnological Application.

    PubMed

    Souza, Amanda Araújo; Leitão, Vanessa Oliveira; Ramada, Marcelo Henrique; Mehdad, Azadeh; Georg, Raphaela de Castro; Ulhôa, Cirano José; de Freitas, Sonia Maria

    2016-01-01

    Acid phosphatases (ACPases) are produced by a variety of fungi and have gained attention due their biotechnological potential in industrial, diagnosis and bioremediation processes. These enzymes play a specific role in scavenging, mobilization and acquisition of phosphate, enhancing soil fertility and plant growth. In this study, a new ACPase from Trichoderma harzianum, named ACPase II, was purified and characterized as a glycoprotein belonging to the acid phosphatase family. ACPase II presents an optimum pH and temperature of 3.8 and 65 °C, respectively, and is stable at 55 °C for 120 min, retaining 60% of its activity. The enzyme did not require metal divalent ions, but was inhibited by inorganic phosphate and tungstate. Affinity for several phosphate substrates was observed, including phytate, which is the major component of phosphorus in plant foods. The inhibition of ACPase II by tungstate and phosphate at different pH values is consistent with the inability of the substrate to occupy its active site due to electrostatic contacts that promote conformational changes, as indicated by fluorescence spectroscopy. A higher affinity for tungstate rather than phosphate at pH 4.0 was observed, in accordance with its highest inhibitory effect. Results indicate considerable biotechnological potential of the ACPase II in soil environments.

  5. Bivalent phenethylamines as novel dopamine transporter inhibitors: evidence for multiple substrate-binding sites in a single transporter.

    PubMed

    Schmitt, Kyle C; Mamidyala, Sreeman; Biswas, Swati; Dutta, Aloke K; Reith, Maarten E A

    2010-03-01

    Bivalent ligands--compounds incorporating two receptor-interacting moieties linked by a flexible chain--often exhibit profoundly enhanced binding affinity compared with their monovalent components, implying concurrent binding to multiple sites on the target protein. It is generally assumed that neurotransmitter sodium symporter (NSS) proteins, such as the dopamine transporter (DAT), contain a single domain responsible for recognition of substrate molecules. In this report, we show that molecules possessing two substrate-like phenylalkylamine moieties linked by a progressively longer aliphatic spacer act as progressively more potent DAT inhibitors (rather than substrates). One compound bearing two dopamine (DA)-like pharmacophoric 'heads' separated by an 8-carbon linker achieved an 82-fold gain in inhibition of [(3)H] 2beta-carbomethoxy-3beta-(4-fluorophenyl)-tropane (CFT) binding compared with DA itself; bivalent compounds with a 6-carbon linker and heterologous combinations of DA-, amphetamine- and beta-phenethylamine-like heads all resulted in considerable and comparable gains in DAT affinity. A series of short-chain bivalent-like compounds with a single N-linkage was also identified, the most potent of which displayed a 74-fold gain in binding affinity. Computational modelling of the DAT protein and docking of the two most potent bivalent (-like) ligands suggested simultaneous occupancy of two discrete substrate-binding domains. Assays with the DAT mutants W84L and D313N--previously employed by our laboratory to probe conformation-specific binding of different structural classes of DAT inhibitors--indicated a bias of the bivalent ligands for inward-facing transporters. Our results strongly indicate the existence of multiple DAT substrate-interaction sites, implying that it is possible to design novel types of DAT inhibitors based upon the 'multivalent ligand' strategy.

  6. Insulin receptor substrates 1 and 2 but not Shc can activate the insulin receptor independent of insulin and induce proliferation in CHO-IR cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niessen, Markus; Jaschinski, Frank; Item, Flurin

    2007-02-15

    Ligand-activated insulin receptor (IR) attracts and phosphorylates various substrates such as insulin receptor substrates 1-4 (IRS) and Shc. To investigate how binding affinity for substrate affects signalling we generated chimeric receptors with the {beta}-chain of the insulin receptor containing NPXY motives with different affinities for receptor substrates. We found that the extent of receptor tyrosine phosphorylation positively correlates with binding affinity towards IRS1/2 but not towards Shc. Moreover, overexpression of IRS1 or IRS2 but not of Shc increased IR tyrosine phosphorylation in a dose-dependent manner, also independent of insulin. Molecular truncations of IRS1 revealed that neither the isolated PH andmore » PTB domains nor the C-terminus with the tyrosine phosphorylation sites alone are sufficient for substrate-dependent receptor activation. Overexpression of IRS1 and IRS2 impaired insulin-induced internalization of the IR in a dose-dependent manner suggesting that IRS proteins prevent endosome-associated receptor dephosphorylation/inactivation. IRS1 and IRS2 could therefore target the activated IR to different cellular compartments. Overexpression of IRS1 and IRS2 inhibited insulin-stimulated activation of the MAP kinases Erk1/2 while it increased/induced activation of Akt/PKB. Finally, overexpression of IRS1 and IRS2 but not of Shc induced DNA synthesis in starved CHO-IR cells independent of exogenous growth factors. Our results demonstrate that variations in cellular IRS1 and IRS2 concentration affect insulin signalling both upstream and downstream and that IRS proteins could play instructive rather than just permissive roles in signal transmission.« less

  7. Thermally-induced transition of lamellae orientation in block-copolymer films on ‘neutral’ nanoparticle-coated substrates

    DOE PAGES

    Yager, Kevin G.; Forrey, Christopher; Singh, Gurpreet; ...

    2015-06-01

    Block-copolymer orientation in thin films is controlled by the complex balance between interfacial free energies, including the inter-block segregation strength, the surface tensions of the blocks, and the relative substrate interactions. While block-copolymer lamellae orient horizontally when there is any preferential affinity of one block for the substrate, we recently described how nanoparticle-roughened substrates can be used to modify substrate interactions. We demonstrate how such ‘neutral’ substrates can be combined with control of annealing temperature to generate vertical lamellae orientations throughout a sample, at all thicknesses. We observe an orientational transition from vertical to horizontal lamellae upon heating, as confirmedmore » using a combination of atomic force microscopy (AFM), neutron reflectometry (NR) and rotational small-angle neutron scattering (RSANS). Using molecular dynamics (MD) simulations, we identify substrate-localized distortions to the lamellar morphology as the physical basis of the novel behavior. In particular, under strong segregation conditions, bending of horizontal lamellae induce a large energetic cost. At higher temperatures, the energetic cost of conformal deformations of lamellae over the rough substrate is reduced, returning lamellae to the typical horizontal orientation. Thus, we find that both surface interactions and temperature play a crucial role in dictating block-copolymer lamellae orientation. As a result, our combined experimental and simulation findings suggest that controlling substrate roughness should provide a useful and robust platform for controlling block-copolymer orientation in applications of these materials.« less

  8. Analysing the substrate multispecificity of a proton-coupled oligopeptide transporter using a dipeptide library

    PubMed Central

    Ito, Keisuke; Hikida, Aya; Kawai, Shun; Lan, Vu Thi Tuyet; Motoyama, Takayasu; Kitagawa, Sayuri; Yoshikawa, Yuko; Kato, Ryuji; Kawarasaki, Yasuaki

    2013-01-01

    Peptide uptake systems that involve members of the proton-coupled oligopeptide transporter (POT) family are conserved across all organisms. POT proteins have characteristic substrate multispecificity, with which one transporter can recognize as many as 8,400 types of di/tripeptides and certain peptide-like drugs. Here we characterize the substrate multispecificity of Ptr2p, a major peptide transporter of Saccharomyces cerevisiae, using a dipeptide library. The affinities (Ki) of di/tripeptides toward Ptr2p show a wide distribution range from 48 mM to 0.020 mM. This substrate multispecificity indicates that POT family members have an important role in the preferential uptake of vital amino acids. In addition, we successfully establish high performance ligand affinity prediction models (97% accuracy) using our comprehensive dipeptide screening data in conjunction with simple property indices for describing ligand molecules. Our results provide an important clue to the development of highly absorbable peptides and their derivatives including peptide-like drugs. PMID:24060756

  9. Self-Powered Wireless Affinity-Based Biosensor Based on Integration of Paper-Based Microfluidics and Self-Assembled RFID Antennas.

    PubMed

    Yuan, Mingquan; Alocilja, Evangelyn C; Chakrabartty, Shantanu

    2016-08-01

    This paper presents a wireless, self-powered, affinity-based biosensor based on the integration of paper-based microfluidics with our previously reported method for self-assembling radio-frequency (RF) antennas. At the core of the proposed approach is a silver-enhancement technique that grows portions of a RF antenna in regions where target antigens hybridize with target specific affinity probes. The hybridization regions are defined by a network of nitrocellulose based microfluidic channels which implement a self-powered approach to sample the reagent and control its flow and mixing. The integration substrate for the biosensor has been constructed using polyethylene and the patterning of the antenna on the substrate has been achieved using a low-cost ink-jet printing technique. The substrate has been integrated with passive radio-frequency identification (RFID) tags to demonstrate that the resulting sensor-tag can be used for continuous monitoring in a food supply-chain where direct measurement of analytes is typically considered to be impractical. We validate the proof-of-concept operation of the proposed sensor-tag using IgG as a model analyte and using a 915 MHz Ultra-high-frequency (UHF) RFID tagging technology.

  10. Molecular and thermodynamic mechanisms of the chloride-dependent human angiotensin-I-converting enzyme (ACE).

    PubMed

    Yates, Christopher J; Masuyer, Geoffrey; Schwager, Sylva L U; Akif, Mohd; Sturrock, Edward D; Acharya, K Ravi

    2014-01-17

    Somatic angiotensin-converting enzyme (sACE), a key regulator of blood pressure and electrolyte fluid homeostasis, cleaves the vasoactive angiotensin-I, bradykinin, and a number of other physiologically relevant peptides. sACE consists of two homologous and catalytically active N- and C-domains, which display marked differences in substrate specificities and chloride activation. A series of single substitution mutants were generated and evaluated under varying chloride concentrations using isothermal titration calorimetry. The x-ray crystal structures of the mutants provided details on the chloride-dependent interactions with ACE. Chloride binding in the chloride 1 pocket of C-domain ACE was found to affect positioning of residues from the active site. Analysis of the chloride 2 pocket R522Q and R522K mutations revealed the key interactions with the catalytic site that are stabilized via chloride coordination of Arg(522). Substrate interactions in the S2 subsite were shown to affect chloride affinity in the chloride 2 pocket. The Glu(403)-Lys(118) salt bridge in C-domain ACE was shown to stabilize the hinge-bending region and reduce chloride affinity by constraining the chloride 2 pocket. This work demonstrated that substrate composition to the C-terminal side of the scissile bond as well as interactions of larger substrates in the S2 subsite moderate chloride affinity in the chloride 2 pocket of the ACE C-domain, providing a rationale for the substrate-selective nature of chloride dependence in ACE and how this varies between the N- and C-domains.

  11. Molecular and Thermodynamic Mechanisms of the Chloride-dependent Human Angiotensin-I-converting Enzyme (ACE)*

    PubMed Central

    Yates, Christopher J.; Masuyer, Geoffrey; Schwager, Sylva L. U.; Akif, Mohd; Sturrock, Edward D.; Acharya, K. Ravi

    2014-01-01

    Somatic angiotensin-converting enzyme (sACE), a key regulator of blood pressure and electrolyte fluid homeostasis, cleaves the vasoactive angiotensin-I, bradykinin, and a number of other physiologically relevant peptides. sACE consists of two homologous and catalytically active N- and C-domains, which display marked differences in substrate specificities and chloride activation. A series of single substitution mutants were generated and evaluated under varying chloride concentrations using isothermal titration calorimetry. The x-ray crystal structures of the mutants provided details on the chloride-dependent interactions with ACE. Chloride binding in the chloride 1 pocket of C-domain ACE was found to affect positioning of residues from the active site. Analysis of the chloride 2 pocket R522Q and R522K mutations revealed the key interactions with the catalytic site that are stabilized via chloride coordination of Arg522. Substrate interactions in the S2 subsite were shown to affect chloride affinity in the chloride 2 pocket. The Glu403-Lys118 salt bridge in C-domain ACE was shown to stabilize the hinge-bending region and reduce chloride affinity by constraining the chloride 2 pocket. This work demonstrated that substrate composition to the C-terminal side of the scissile bond as well as interactions of larger substrates in the S2 subsite moderate chloride affinity in the chloride 2 pocket of the ACE C-domain, providing a rationale for the substrate-selective nature of chloride dependence in ACE and how this varies between the N- and C-domains. PMID:24297181

  12. RNase One Gene Isolation, Expression, and Affinity Purification Models Research Experimental Progression and Culminates with Guided Inquiry-Based Experiments

    ERIC Educational Resources Information Center

    Bailey, Cheryl P.

    2009-01-01

    This new biochemistry laboratory course moves through a progression of experiments that generates a platform for guided inquiry-based experiments. RNase One gene is isolated from prokaryotic genomic DNA, expressed as a tagged protein, affinity purified, and tested for activity and substrate specificity. Student pairs present detailed explanations…

  13. Characterizing Isozymes of Chlorite Dismutase for Water Treatment

    PubMed Central

    Mobilia, Kellen C.; Hutchison, Justin M.; Zilles, Julie L.

    2017-01-01

    This work investigated the potential for biocatalytic degradation of micropollutants, focusing on chlorine oxyanions as model contaminants, by mining biology to identify promising biocatalysts. Existing isozymes of chlorite dismutase (Cld) were characterized with respect to parameters relevant to this high volume, low-value product application: kinetic parameters, resistance to catalytic inactivation, and stability. Maximum reaction velocities (Vmax) were typically on the order of 104 μmol min-1 (μmol heme)-1. Substrate affinity (Km) values were on the order of 100 μM, except for the Cld from Candidatus Nitrospira defluvii (NdCld), which showed a significantly lower affinity for chlorite. NdCld also had the highest susceptibility to catalytic inactivation. In contrast, the Cld from Ideonella dechloratans was least susceptible to catalytic inactivation, with a maximum turnover number of approximately 150,000, more than sevenfold higher than other tested isozymes. Under non-reactive conditions, Cld was quite stable, retaining over 50% of activity after 30 days, and most samples retained activity even after 90–100 days. Overall, Cld from I. dechloratans was the most promising candidate for environmental applications, having high affinity and activity, a relatively low propensity for catalytic inactivation, and excellent stability. PMID:29312158

  14. An Aromatic Cap Seals the Substrate Binding Site in an ECF-Type S Subunit for Riboflavin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karpowich, Nathan K.; Song, Jinmei; Wang, Da-Neng

    2016-06-13

    ECF transporters are a family of active membrane transporters for essential micronutrients, such as vitamins and trace metals. Found exclusively in archaea and bacteria, these transporters are composed of four subunits: an integral membrane substrate-binding subunit (EcfS), a transmembrane coupling subunit (EcfT), and two ATP-binding cassette ATPases (EcfA and EcfA'). We have characterized the structural basis of substrate binding by the EcfS subunit for riboflavin from Thermotoga maritima, TmRibU. TmRibU binds riboflavin with high affinity, and the protein–substrate complex is exceptionally stable in solution. The crystal structure of riboflavin-bound TmRibU reveals an electronegative binding pocket at the extracellular surface inmore » which the substrate is completely buried. Analysis of the intermolecular contacts indicates that nearly every available substrate hydrogen bond is satisfied. A conserved aromatic residue at the extracellular end of TM5, Tyr130, caps the binding site to generate a substrate-bound, occluded state, and non-conservative mutation of Tyr130 reduces the stability of this conformation. Using a novel fluorescence binding assay, we find that an aromatic residue at this position is essential for high-affinity substrate binding. Comparison with other S subunit structures suggests that TM5 and Loop5-6 contain a dynamic, conserved motif that plays a key role in gating substrate entry and release by S subunits of ECF transporters.« less

  15. Optimality of affine control system of several species in competition on a sequential batch reactor

    NASA Astrophysics Data System (ADS)

    Rodríguez, J. C.; Ramírez, H.; Gajardo, P.; Rapaport, A.

    2014-09-01

    In this paper, we analyse the optimality of affine control system of several species in competition for a single substrate on a sequential batch reactor, with the objective being to reach a given (low) level of the substrate. We allow controls to be bounded measurable functions of time plus possible impulses. A suitable modification of the dynamics leads to a slightly different optimal control problem, without impulsive controls, for which we apply different optimality conditions derived from Pontryagin principle and the Hamilton-Jacobi-Bellman equation. We thus characterise the singular trajectories of our problem as the extremal trajectories keeping the substrate at a constant level. We also establish conditions for which an immediate one impulse (IOI) strategy is optimal. Some numerical experiences are then included in order to illustrate our study and show that those conditions are also necessary to ensure the optimality of the IOI strategy.

  16. Passive bioremediation technology incorporating lignocellulosic spent mushroom compost and limestone for metal- and sulfate-rich acid mine drainage.

    PubMed

    Muhammad, Siti Nurjaliah; Kusin, Faradiella Mohd; Md Zahar, Mohd Syakirin; Mohamat Yusuff, Ferdaus; Halimoon, Normala

    2017-08-01

    Passive bioremediation of metal- and sulfate-containing acid mine drainage (AMD) has been investigated in a batch study. Multiple substrates were used in the AMD remediation using spent mushroom compost (SMC), limestone, activated sludge (AS), and woodchips (WC) under anoxic conditions suitable for bacterial sulfate reduction (BSR). Limestones used were of crushed limestone (CLS) and uncrushed limestone, provided at two different ratios in mixed substrates treatment and varied by the proportion of SMC and limestone. The SMC greatly assisted the removals of sulfate and metals and also acted as an essential carbon source for BSR. The mixed substrate composed of 40% CLS, 30% SMC, 20% AS, and 10% WC was found to be effective for metal removal. Mn, Cu, Pb, and Zn were greatly removed (89-100%) in the mixed substrates treatment, while Fe was only removed at 65%. Mn was found to be removed at a greatly higher rate than Fe, suggesting important Mn adsorption onto organic materials, that is, greater sorption affinity to the SMC. Complementary with multiple treatment media was the main mechanism assisting the AMD treatment through microbial metal reduction reactions.

  17. Preparation by site-directed mutagenesis and characterization of the E211Q mutant of yeast enolase 1.

    PubMed

    Sangadala, V S; Glover, C V; Robson, R L; Holland, M J; Lebioda, L; Brewer, J M

    1995-08-16

    The published 'charge shuttle' mechanism of enolase (Lebioda, L. and Stec, B. (1991) Biochemistry 30, 2817-2822) assigns Glu-211 the task of orienting a water molecule that serves as the catalytic base which removes the proton from carbon-2 of the substrate. We prepared the E211Q mutant of yeast enolase 1 by site-directed mutagenesis. It appears to be folded correctly and to respond similarly to many of the normal ligands of enolase: it is stabilized against thermal denaturation by conformational Mg2+ and by Mg2+ and substrate and binds the chromophoric substrate analogue D-tartronate semialdehyde-2-phosphate (TSP) with affinity comparable to that of the native enzyme. However, it has only 0.01% (10(-4)) of the activity of native enolase under standard assay conditions and does not exhibit significantly more activity at various pH values or higher concentrations of substrate and Mg2+. Its ability to produce the form of enzyme-bound and reacted TSP that absorbs at shorter wavelengths is greatly slowed, while the longer wavelength absorbing form is produced rapidly. Overall, these observations are consistent with the hypothetical mechanism.

  18. Enzymatic mechanisms of soil-carbon response to temperature on Mt. Kilimanjaro

    NASA Astrophysics Data System (ADS)

    Blagodatskaya, Evgenia; Blagodatskiy, Sergey; Kuzyakov, Yakov

    2016-04-01

    Short-term acceleration of soil organic matter (SOM) decomposition by increasing temperature contradicts the acclimation observed in long-term studies. We used the unique altitudinal gradient (from colline tropical zone to subalpine zone) on Mt. Kilimanjaro to demonstrate the mechanisms of short- and long-term acclimation of extra- and intracellular enzymes that decompose polymers (cellulose, chitin, phytate) and oxidize monomers (14C-glucose). Basing on Michaelis-Menten kinetics we determined the enzymes affinity to substrate (Km) and mineralization potential of heterotrophic microorganisms (Vmax) 1) for three hydrolytic enzymes: β-1,4-glucosidase, N-acetyl- β -D-glucosaminidase and phosphatase by the application of fluorogenically labeled substrates and 2) for mineralization of 14C-labeled glucose by substrate-dependent respiratory response. Here we show that the amount of available substrate is responsible for temperature sensitivity of hydrolysis of polymers in soil, whereas monomers oxidation to CO2 does not depend on substrate amount and is mainly temperature governed. We also found that substrate affinity of enzymes (which is usually decreases with the temperature) differently responded to warming for the process of depolymerisation versus monomers oxidation. We suggest the mechanism to temperature acclimation based on different temperature sensitivity of enzymes kinetics for hydrolysis of polymers and for monomers oxidation

  19. Quantitative framework for ordered degradation of APC/C substrates.

    PubMed

    Lu, Dan; Girard, Juliet R; Li, Weihan; Mizrak, Arda; Morgan, David O

    2015-11-16

    During cell-cycle progression, substrates of a single master regulatory enzyme can be modified in a specific order. Here, we used experimental and computational approaches to dissect the quantitative mechanisms underlying the ordered degradation of the substrates of the ubiquitin ligase APC/C(Cdc20), a key regulator of chromosome segregation in mitosis. We show experimentally that the rate of catalysis varies with different substrates of APC/C(Cdc20). Using a computational model based on multi-step ubiquitination, we then show how changes in the interaction between a single substrate and APC/C(Cdc20) can alter the timing of degradation onset relative to APC/C(Cdc20) activation, while ensuring a fast degradation rate. Degradation timing and dynamics depend on substrate affinity for the enzyme as well as the catalytic rate at which the substrate is modified. When two substrates share the same pool of APC/C(Cdc20), their relative enzyme affinities and rates of catalysis influence the partitioning of APC/C(Cdc20) among substrates, resulting in substrate competition. Depending on how APC/C(Cdc20) is partitioned among its substrates, competition can have minor or major effects on the degradation of certain substrates. We show experimentally that increased expression of the early APC/C(Cdc20) substrate Clb5 does not delay the degradation of the later substrate securin, arguing against a role for competition with Clb5 in establishing securin degradation timing. The degradation timing of APC/C(Cdc20) substrates depends on the multi-step nature of ubiquitination, differences in substrate-APC/C(Cdc20) interactions, and competition among substrates. Our studies provide a conceptual framework for understanding how ordered modification can be established among substrates of the same regulatory enzyme, and facilitate our understanding of how precise temporal control is achieved by a small number of master regulators to ensure a successful cell division cycle.

  20. Role of tryptophan 95 in substrate specificity and structural stability of Sulfolobus solfataricus alcohol dehydrogenase.

    PubMed

    Pennacchio, Angela; Esposito, Luciana; Zagari, Adriana; Rossi, Mosè; Raia, Carlo A

    2009-09-01

    A mutant of the thermostable NAD(+)-dependent (S)-stereospecific alcohol dehydrogenase from Sulfolobus solfataricus (SsADH) which has a single substitution, Trp95Leu, located at the substrate binding pocket, was fully characterized to ascertain the role of Trp95 in discriminating between chiral secondary alcohols suggested by the wild-type SsADH crystallographic structure. The Trp95Leu mutant displays no apparent activity with short-chain primary and secondary alcohols and poor activity with aromatic substrates and coenzyme. Moreover, the Trp --> Leu substitution affects the structural stability of the archaeal ADH, decreasing its thermal stability without relevant changes in secondary structure. The double mutant Trp95Leu/Asn249Tyr was also purified to assist in crystallographic analysis. This mutant exhibits higher activity but decreased affinity toward aliphatic alcohols, aldehydes as well as NAD(+) and NADH compared to the wild-type enzyme. The crystal structure of the Trp95Leu/Asn249Tyr mutant apo form, determined at 2.0 A resolution, reveals a large local rearrangement of the substrate site with dramatic consequences. The Leu95 side-chain conformation points away from the catalytic metal center and the widening of the substrate site is partially counteracted by a concomitant change of Trp117 side chain conformation. Structural changes at the active site are consistent with the reduced activity on substrates and decreased coenzyme binding.

  1. Activation of the DnaK-ClpB Complex is Regulated by the Properties of the Bound Substrate.

    PubMed

    Fernández-Higuero, Jose Angel; Aguado, Alejandra; Perales-Calvo, Judit; Moro, Fernando; Muga, Arturo

    2018-04-11

    The chaperone ClpB in bacteria is responsible for the reactivation of aggregated proteins in collaboration with the DnaK system. Association of these chaperones at the aggregate surface stimulates ATP hydrolysis, which mediates substrate remodeling. However, a question that remains unanswered is whether the bichaperone complex can be selectively activated by substrates that require remodeling. We find that large aggregates or bulky, native-like substrates activates the complex, whereas a smaller, permanently unfolded protein or extended, short peptides fail to stimulate it. Our data also indicate that ClpB interacts differently with DnaK in the presence of aggregates or small peptides, displaying a higher affinity for aggregate-bound DnaK, and that DnaK-ClpB collaboration requires the coupled ATPase-dependent remodeling activities of both chaperones. Complex stimulation is mediated by residues at the β subdomain of DnaK substrate binding domain, which become accessible to the disaggregase when the lid is allosterically detached from the β subdomain. Complex activation also requires an active NBD2 and the integrity of the M domain-ring of ClpB. Disruption of the M-domain ring allows the unproductive stimulation of the DnaK-ClpB complex in solution. The ability of the DnaK-ClpB complex to discrimínate different substrate proteins might allow its activation when client proteins require remodeling.

  2. Delineation of xenobiotic substrate sites in rat glutathione S-transferase M1-1

    PubMed Central

    Hearne, Jennifer L.; Colman, Roberta F.

    2005-01-01

    Glutathione S-transferases catalyze the conjugation of glutathione with endogenous and exogenous xenobiotics. Hu and Colman (1995) proposed that there are two distinct substrate sites in rat GST M1-1, a 1-chloro-2,4-dintrobenzene (CDNB) substrate site located in the vicinity of tyrosine-115, and a monobromobimane (mBBr) substrate site. To determine whether the mBBr substrate site is distinguishable from the CDNB substrate site, we tested S-(hydroxyethyl)bimane, a nonreactive derivative of mBBr, for its ability to compete kinetically with the substrates. We find that S-(hydroxyethyl)bimane is a competitive inhibitor (KI = 0.36 μM) when mBBr is used as substrate, but not when CDNB is used as substrate, demonstrating that these two sites are distinct. Using site-directed mutagenesis, we have localized the mBBr substrate site to an area midway through α-helix 4 (residues 90–114) and have identified residues that are important in the enzymatic reaction. Substitution of alanine at positions along α-helix 4 reveals that mutations at positions 103, 104, and 109 exhibit a greater perturbation of the enzymatic reaction with mBBr than with CDNB as substrate. Various other substitutions at positions 103 and 104 reveal that a hydrophobic residue is necessary at each of these positions to maintain optimal affinity of the enzyme for mBBr and preserve the secondary structure of the enzyme. Substitutions at position 109 indicate that this residue is important in the enzyme’s affinity for mBBr but has a minimal effect on Vmax. These results demonstrate that the promiscuity of rat GST M1-1 is in part due to at least two distinct substrate sites. PMID:16195544

  3. Delineation of xenobiotic substrate sites in rat glutathione S-transferase M1-1.

    PubMed

    Hearne, Jennifer L; Colman, Roberta F

    2005-10-01

    Glutathione S-transferases catalyze the conjugation of glutathione with endogenous and exogenous xenobiotics. Hu and Colman (1995) proposed that there are two distinct substrate sites in rat GST M1-1, a 1-chloro-2,4-dintrobenzene (CDNB) substrate site located in the vicinity of tyrosine-115, and a monobromobimane (mBBr) substrate site. To determine whether the mBBr substrate site is distinguishable from the CDNB substrate site, we tested S-(hydroxyethyl)bimane, a nonreactive derivative of mBBr, for its ability to compete kinetically with the substrates. We find that S-(hydroxyethyl)bimane is a competitive inhibitor (K(I) = 0.36 microM) when mBBr is used as substrate, but not when CDNB is used as substrate, demonstrating that these two sites are distinct. Using site-directed mutagenesis, we have localized the mBBr substrate site to an area midway through alpha-helix 4 (residues 90-114) and have identified residues that are important in the enzymatic reaction. Substitution of alanine at positions along alpha-helix 4 reveals that mutations at positions 103, 104, and 109 exhibit a greater perturbation of the enzymatic reaction with mBBr than with CDNB as substrate. Various other substitutions at positions 103 and 104 reveal that a hydrophobic residue is necessary at each of these positions to maintain optimal affinity of the enzyme for mBBr and preserve the secondary structure of the enzyme. Substitutions at position 109 indicate that this residue is important in the enzyme's affinity for mBBr but has a minimal effect on Vmax. These results demonstrate that the promiscuity of rat GST M1-1 is in part due to at least two distinct substrate sites.

  4. Combining affinity proteomics and network context to identify new phosphatase substrates and adapters in growth pathways

    PubMed Central

    Sacco, Francesca; Boldt, Karsten; Calderone, Alberto; Panni, Simona; Paoluzi, Serena; Castagnoli, Luisa; Ueffing, Marius; Cesareni, Gianni

    2014-01-01

    Protein phosphorylation homoeostasis is tightly controlled and pathological conditions are caused by subtle alterations of the cell phosphorylation profile. Altered levels of kinase activities have already been associated to specific diseases. Less is known about the impact of phosphatases, the enzymes that down-regulate phosphorylation by removing the phosphate groups. This is partly due to our poor understanding of the phosphatase-substrate network. Much of phosphatase substrate specificity is not based on intrinsic enzyme specificity with the catalytic pocket recognizing the sequence/structure context of the phosphorylated residue. In addition many phosphatase catalytic subunits do not form a stable complex with their substrates. This makes the inference and validation of phosphatase substrates a non-trivial task. Here, we present a novel approach that builds on the observation that much of phosphatase substrate selection is based on the network of physical interactions linking the phosphatase to the substrate. We first used affinity proteomics coupled to quantitative mass spectrometry to saturate the interactome of eight phosphatases whose down regulations was shown to affect the activation of the RAS-PI3K pathway. By integrating information from functional siRNA with protein interaction information, we develop a strategy that aims at inferring phosphatase physiological substrates. Graph analysis is used to identify protein scaffolds that may link the catalytic subunits to their substrates. By this approach we rediscover several previously described phosphatase substrate interactions and characterize two new protein scaffolds that promote the dephosphorylation of PTPN11 and ERK by DUSP18 and DUSP26, respectively. PMID:24847354

  5. Expression and substrate specificity of betaine/proline transporters suggest a novel choline transport mechanism in sugar beet.

    PubMed

    Yamada, Nana; Sakakibara, Shota; Tsutsumi, Koichi; Waditee, Rungaroon; Tanaka, Yoshito; Takabe, Teruhiro

    2011-09-15

    Proline transporters (ProTs) originally described as highly selective transporters for proline, have been shown to also transport glycinebetaine (betaine). Here we examined and compared the transport properties of Bet/ProTs from betaine accumulating (sugar beet, Amaranthus, and Atriplex,) and non-accumulating (Arabidopsis) plants. Using a yeast mutant deficient for uptake of proline and betaine, it was shown that all these transporters exhibited higher affinity for betaine than proline. The uptake of betaine and proline was pH-dependent and inhibited by the proton uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP). We also investigated choline transport by using a choline transport-deficient yeast mutant. Results revealed that these transporters exhibited a higher affinity for choline uptake rather than betaine. Uptake of choline by sugar beet BvBet/ProT1 was independent of the proton gradient and the inhibition by CCCP was reduced compared with that for uptake of betaine, suggesting different proton binding properties between the transport of choline and betaine. Additionally, in situ hybridization experiments revealed the localization of sugar beet BvBet/ProT1 in phloem and xylem parenchyma cells. Copyright © 2011 Elsevier GmbH. All rights reserved.

  6. Regulation of calreticulin–major histocompatibility complex (MHC) class I interactions by ATP

    PubMed Central

    Wijeyesakere, Sanjeeva Joseph; Gagnon, Jessica K.; Arora, Karunesh; Brooks, Charles L.; Raghavan, Malini

    2015-01-01

    The MHC class I peptide loading complex (PLC) facilitates the assembly of MHC class I molecules with peptides, but factors that regulate the stability and dynamics of the assembly complex are largely uncharacterized. Based on initial findings that ATP, in addition to MHC class I-specific peptide, is able to induce MHC class I dissociation from the PLC, we investigated the interaction of ATP with the chaperone calreticulin, an endoplasmic reticulum (ER) luminal, calcium-binding component of the PLC that is known to bind ATP. We combined computational and experimental measurements to identify residues within the globular domain of calreticulin, in proximity to the high-affinity calcium-binding site, that are important for high-affinity ATP binding and for ATPase activity. High-affinity calcium binding by calreticulin is required for optimal nucleotide binding, but both ATP and ADP destabilize enthalpy-driven high-affinity calcium binding to calreticulin. ATP also selectively destabilizes the interaction of calreticulin with cellular substrates, including MHC class I molecules. Calreticulin mutants that affect ATP or high-affinity calcium binding display prolonged associations with monoglucosylated forms of cellular MHC class I, delaying MHC class I dissociation from the PLC and their transit through the secretory pathway. These studies reveal central roles for ATP and calcium binding as regulators of calreticulin–substrate interactions and as key determinants of PLC dynamics. PMID:26420867

  7. Enzyme Technology of Peroxidases: Immobilization, Chemical and Genetic Modification

    NASA Astrophysics Data System (ADS)

    Longoria, Adriana; Tinoco, Raunel; Torres, Eduardo

    An overview of enzyme technology applied to peroxidases is made. Immobilization on organic, inorganic, and hybrid supports; chemical modification of amino acids and heme group; and genetic modification by site-directed and random mutagenesis are included. Different strategies that were carried out to improve peroxidase performance in terms of stability, selectivity, and catalytic activity are analyzed. Immobilization of peroxidases on inorganic and organic materials enhances the tolerance of peroxidases toward the conditions normally found in many industrial processes, such as the presence of an organic solvent and high temperature. In addition, it is shown that immobilization helps to increase the Total Turnover Number at levels high enough to justify the use of a peroxidase-based biocatalyst in a synthesis process. Chemical modification of peroxidases produces modified enzymes with higher thermostability and wider substrate variability. Finally, through mutagenesis approaches, it is possible to produce modified peroxidases capable of oxidizing nonnatural substrates with high catalytic activity and affinity.

  8. A study of the uptake of chloroquine in malaria-infected erythrocytes. High and low affinity uptake and the influence of glucose and its analogues.

    PubMed

    Diribe, C O; Warhurst, D C

    1985-09-01

    A study of concentration- and substrate-dependence of chloroquine uptake has been carried out on mouse erythrocytes infected with the chloroquine-sensitive NK65 and the chloroquine-resistant RC strains of Plasmodium berghei. The presence of drug binding sites of high and low affinity in such strains of P. berghei was confirmed. High affinity uptake sites in cells parasitized with chloroquine-sensitive and chloroquine-resistant parasites have similar characteristics, but in the sensitive strain the major component of chloroquine-uptake is at high affinity and dependent on the availability of ATP whilst in the resistant strain the major component of uptake is at low affinity and independent of energy. An absolute increase in the quantity of the low affinity site in erythrocytes parasitized with chloroquine-resistant P. berghei was noted, which may be related to an increase in quantity of parasite membrane.

  9. Classification of a Haemophilus influenzae ABC Transporter HI1470/71 through Its Cognate Molybdate Periplasmic Binding Protein, MolA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tirado-Lee, Leidamarie; Lee, Allen; Rees, Douglas C.

    2014-10-02

    molA (HI1472) from H. influenzae encodes a periplasmic binding protein (PBP) that delivers substrate to the ABC transporter MolB{sub 2}C{sub 2} (formerly HI1470/71). The structures of MolA with molybdate and tungstate in the binding pocket were solved to 1.6 and 1.7 {angstrom} resolution, respectively. The MolA-binding protein binds molybdate and tungstate, but not other oxyanions such as sulfate and phosphate, making it the first class III molybdate-binding protein structurally solved. The {approx}100 {mu}M binding affinity for tungstate and molybdate is significantly lower than observed for the class II ModA molybdate-binding proteins that have nanomolar to low micromolar affinity for molybdate.more » The presence of two molybdate loci in H. influenzae suggests multiple transport systems for one substrate, with molABC constituting a low-affinity molybdate locus.« less

  10. Effect of Pentacene-dielectric Affinity on Pentacene Thin Film Growth Morphology in Organic Field-effect Transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S Kim; M Jang; H Yang

    2011-12-31

    Organic field-effect transistors (OFETs) are fabricated by depositing a thin film of semiconductor on the functionalized surface of a SiO{sub 2} dielectric. The chemical and morphological structures of the interface between the semiconductor and the functionalized dielectric are critical for OFET performance. We have characterized the effect of the affinity between semiconductor and functionalized dielectric on the properties of the semiconductor-dielectric interface. The crystalline microstructure/nanostructure of the pentacene semiconductor layers, grown on a dielectric substrate that had been functionalized with either poly(4-vinyl pyridine) or polystyrene (to control hydrophobicity), and grown under a series of substrate temperatures and deposition rates, weremore » characterized by X-ray diffraction, photoemission spectroscopy, and atomic force microscopy. By comparing the morphological features of the semiconductor thin films with the device characteristics (field-effect mobility, threshold voltage, and hysteresis) of the OFET devices, the effect of affinity-driven properties on charge modulation, charge trapping, and charge carrier transport could be described.« less

  11. Flexible Molybdenum Electrodes towards Designing Affinity Based Protein Biosensors.

    PubMed

    Kamakoti, Vikramshankar; Panneer Selvam, Anjan; Radha Shanmugam, Nandhinee; Muthukumar, Sriram; Prasad, Shalini

    2016-07-18

    Molybdenum electrode based flexible biosensor on porous polyamide substrates has been fabricated and tested for its functionality as a protein affinity based biosensor. The biosensor performance was evaluated using a key cardiac biomarker; cardiac Troponin-I (cTnI). Molybdenum is a transition metal and demonstrates electrochemical behavior upon interaction with an electrolyte. We have leveraged this property of molybdenum for designing an affinity based biosensor using electrochemical impedance spectroscopy. We have evaluated the feasibility of detection of cTnI in phosphate-buffered saline (PBS) and human serum (HS) by measuring impedance changes over a frequency window from 100 mHz to 1 MHz. Increasing changes to the measured impedance was correlated to the increased dose of cTnI molecules binding to the cTnI antibody functionalized molybdenum surface. We achieved cTnI detection limit of 10 pg/mL in PBS and 1 ng/mL in HS medium. The use of flexible substrates for designing the biosensor demonstrates promise for integration with a large-scale batch manufacturing process.

  12. Enhanced protein adsorption and patterning on nanostructured latex-coated paper.

    PubMed

    Juvonen, Helka; Määttänen, Anni; Ihalainen, Petri; Viitala, Tapani; Sarfraz, Jawad; Peltonen, Jouko

    2014-06-01

    Specific interactions of extracellular matrix proteins with cells and their adhesion to the substrate are important for cell growth. A nanopatterned latex-coated paper substrate previously shown to be an excellent substrate for cell adhesion and 2D growth was studied for directed immobilization of proteins. The nanostructured latex surface was formed by short-wavelength IR irradiation of a two-component latex coating consisting of a hydrophilic film-forming styrene butadiene acrylonitrile copolymer and hydrophobic polystyrene particles. The hydrophobic regions of the IR-treated latex coating showed strong adhesion of bovine serum albumin (cell repelling protein), fibronectin (cell adhesive protein) and streptavidin. Opposite to the IR-treated surface, fibronectin and streptavidin had a poor affinity toward the untreated pristine latex coating. Detailed characterization of the physicochemical surface properties of the latex-coated substrates revealed that the observed differences in protein affinity were mainly due to the presence or absence of the protein repelling polar and charged surface groups. The protein adsorption was assisted by hydrophobic (dehydration) interactions. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Loop engineering reveals the importance of active-site-decorating loops and gating residue in substrate affinity modulation of arginine deiminase (an anti-tumor enzyme).

    PubMed

    Cheng, Feng; Yang, Jianhua; Bocola, Marco; Schwaneberg, Ulrich; Zhu, Leilei

    2018-05-05

    Protein engineering of enzyme loop regions is an effective strategy to improve enzymatic properties. Previous studies that aimed to boost the activity of PpADI (an arginine deiminase from Pseudomonas plecoglossicida) under physiological conditions yielded several significantly improved variants that harbor substitutions predominantly located in active-site-decorating loops. A multi-site saturation mutagenesis at four positions in loop 1 (37, 38, 42, and 43) and three positions in loop 4 (402, 403, and 404) was performed to elucidate the importance of these loops in modulating the substrate affinity of PpADI. The identified "best" variant (M6-L1-4) showed a decreased S 0.5 ('K M ') of 0.48 mM compared with the parent M6 (0.81 mM). Subsequently, a rational design to recombine beneficial substitutions within loops 1 and 4 yielded variant L6 with a substantially decreased S 0.5 value (0.17 mM). A comprehensive simulation analysis resulted in a conclusion that high loop flexibility (especially the gating residue Arg400) is beneficial for substrate affinity due to less efficient blocking of the active site. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Primacy of cardiac chymase over angiotensin converting enzyme as an angiotensin-(1-12) metabolizing enzyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Sarfaraz; Varagic, Jasmina; Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC

    We showed previously that rat angiotensin-(1-12) [Ang-(1-12)] is metabolized by chymase and angiotensin converting enzyme (ACE) to generate Angiotensin II (Ang II). Here, we investigated the affinity of cardiac chymase and ACE enzymes for Ang-(1-12) and Angiotensin I (Ang I) substrates. Native plasma membranes (PMs) isolated from heart and lung tissues of adult spontaneously hypertensive rats (SHR) were incubated with radiolabeled {sup 125}I-Ang-(1-12) or {sup 125}I-Ang I, in the absence or presence of a chymase or ACE inhibitor (chymostatin and lisinopril, respectively). Products were quantitated by HPLC connected to an in-line flow-through gamma detector. The rate of {sup 125}I-Ang IImore » formation from {sup 125}I-Ang-(1-12) by chymase was significantly higher (heart: 7.0 ± 0.6 fmol/min/mg; lung: 33 ± 1.2 fmol/min/mg, P < 0.001) when compared to {sup 125}I-Ang I substrate (heart: 0.8 ± 0.1 fmol/min/mg; lung: 2.1 ± 0.1 fmol/min/mg). Substrate affinity of {sup 125}I-Ang-(1-12) for rat cardiac chymase was also confirmed using excess unlabeled Ang-(1-12) or Ang I (0–250 μM). The rate of {sup 125}I-Ang II formation was significantly lower using unlabeled Ang-(1-12) compared to unlabeled Ang I substrate. Kinetic data showed that rat chymase has a lower K{sub m} (64 ± 6.3 μM vs 142 ± 17 μM), higher V{sub max} (13.2 ± 1.3 μM/min/mg vs 1.9 ± 0.2 μM/min/mg) and more than 15-fold higher catalytic efficiency (ratio of V{sub max}/K{sub m}) for Ang-(1-12) compared to Ang I substrate, respectively. We also investigated ACE mediated hydrolysis of {sup 125}I-Ang-(1-12) and {sup 125}I-Ang I in solubilized membrane fractions of the SHR heart and lung. Interestingly, no significant difference in {sup 125}I-Ang II formation by ACE was detected using either substrate, {sup 125}I-Ang-(1-12) or {sup 125}I-Ang I, both in the heart (1.8 ± 0.2 fmol/min/mg and 1.8 ± 0.3 fmol/min/mg, respectively) and in the lungs (239 ± 25 fmol/min/mg and 248 ± 34 fmol/min/mg, respectively). Compared to chymase, ACE-mediated Ang-(1-12) metabolism in the heart was several fold lower. Overall our findings suggest that Ang-(1-12), not Ang I, is the better substrate for Ang II formation by chymase in adult rats. In addition, this confirms our previous observation that chymase (rather than ACE) is the main hydrolyzing enzyme responsible for Ang II generation from Ang-(1-12) in the adult rat heart.« less

  15. Enzymatic characterization of a novel bovine liver dihydrodiol dehydrogenase--reaction mechanism and bile acid dehydrogenase activity.

    PubMed

    Nanjo, H; Adachi, H; Morihana, S; Mizoguchi, T; Nishihara, T; Terada, T

    1995-05-11

    Bovine liver cytosolic dihydrodiol dehydrogenase (DD3) has been characterized by its unique dihydrodiol dehydrogenase activity for trans-benzenedihydrodiol (trans-1,2-dihydrobenzene-1,2-diol) with the highest affinity and the greatest velocity among three multiple forms of dihydrodiol dehydrogenases (DD1-DD3). It is the first time that DD3 has shown a significant dehydrogenase activity for (S)-(+)-1-indanol with low Km value (0.33 +/- 0.022 mM) and high K(cat) value (25 +/- 0.79 min-1). The investigation of the product inhibition of (S)-(+)-1-indanol with NADP+ versus 1-indanone and NADPH clearly showed that the enzymatic reaction of DD3 may follow a typical ordered Bi Bi mechanism similar to many aldo/keto reductases. Additionally, DD3 was shown to catalyze the dehydrogenation of bile acids (lithocholic acid, taurolithocholic acid and taurochenodeoxycholic acid) having no 12-hydroxy groups with low Km values (17 +/- 0.65, 33 +/- 1.9 and 890 +/- 73 microM, respectively). In contrast, DD1, 3 alpha-hydroxysteroid dehydrogenase, shows a broad substrate specificity for many bile acids with higher affinity than those of DD3. Competitive inhibition of DD3 with androsterone against dehydrogenase activity for (S)-(+)-1-indanol, trans-benzenedihydrodiol or lithocholic acid suggests that these three substrates bind to the same substrate binding site of DD3, different from the case of human liver bile acid binder/dihydrodiol dehydrogenase (Takikawa, H., Stolz, A., Sugiyama, Y., Yoshida, H., Yamamoto, M. and Kaplowitz, N. (1990) J. Biol. Chem. 265, 2132-2136). Considering the reaction mechanism, DD3 may also play an important role in bile acids metabolism as well as the detoxication of aromatic hydrocarbons.

  16. Structural and kinetic studies of a novel nerol dehydrogenase from Persicaria minor, a nerol-specific enzyme for citral biosynthesis.

    PubMed

    Tan, Cheng Seng; Hassan, Maizom; Mohamed Hussein, Zeti Azura; Ismail, Ismanizan; Ho, Kok Lian; Ng, Chyan Leong; Zainal, Zamri

    2018-02-01

    Geraniol degradation pathway has long been elucidated in microorganisms through bioconversion studies, yet weakly characterised in plants; enzyme with specific nerol-oxidising activity has not been reported. A novel cDNA encodes nerol dehydrogenase (PmNeDH) was isolated from Persicaria minor. The recombinant PmNeDH (rPmNeDH) is a homodimeric enzyme that belongs to MDR (medium-chain dehydrogenases/reductases) superfamily that catalyses the first oxidative step of geraniol degradation pathway in citral biosynthesis. Kinetic analysis revealed that rPmNeDH has a high specificity for allylic primary alcohols with backbone ≤10 carbons. rPmNeDH has ∼3 fold higher affinity towards nerol (cis-3,7-dimethyl-2,6-octadien-1-ol) than its trans-isomer, geraniol. To our knowledge, this is the first alcohol dehydrogenase with higher preference towards nerol, suggesting that nerol can be effective substrate for citral biosynthesis in P. minor. The rPmNeDH crystal structure (1.54 Å) showed high similarity with enzyme structures from MDR superfamily. Structure guided mutation was conducted to describe the relationships between substrate specificity and residue substitutions in the active site. Kinetics analyses of wild-type rPmNeDH and several active site mutants demonstrated that the substrate specificity of rPmNeDH can be altered by changing any selected active site residues (Asp 280 , Leu 294 and Ala 303 ). Interestingly, the L294F, A303F and A303G mutants were able to revamp the substrate preference towards geraniol. Furthermore, mutant that exhibited a broader substrate range was also obtained. This study demonstrates that P. minor may have evolved to contain enzyme that optimally recognise cis-configured nerol as substrate. rPmNeDH structure provides new insights into the substrate specificity and active site plasticity in MDR superfamily. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Method and apparatus for detection of fluorescently labeled materials

    DOEpatents

    Stern, David; Fiekowsky, Peter

    2004-05-25

    Fluorescently marked targets bind to a substrate 230 synthesized with polymer sequences at known locations. The targets are detected by exposing selected regions of the substrate 230 to light from a light source 100 and detecting the photons from the light fluoresced therefrom, and repeating the steps of exposure and detection until the substrate 230 is completely examined. The resulting data can be used to determine binding affinity of the targets to specific polymer sequences.

  18. Na+/substrate Coupling in the Multidrug Antiporter NorM Probed with a Spin-labeled Substrate

    PubMed Central

    Steed, P. Ryan; Stein, Richard A.; Mishra, Smriti; Goodman, Michael C.; Mchaourab, Hassane S.

    2013-01-01

    NorM of the multidrug and toxic compound extrusion (MATE) family of transporters couples the efflux of a broad range of hydrophobic molecules to an inward Na+ gradient across the cell membrane. Several crystal structures of MATE transporters revealed distinct substrate binding sites leading to differing models of the mechanism of ion-coupled substrate extrusion. In the experiments reported here, we observed that a spin-labeled derivative of daunorubicin, Ruboxyl, is transported by NorM from Vibrio cholerae. It is therefore ideal to characterize mechanistically relevant binding interactions with NorM and to directly address the coupling of ion and drug binding. Fluorescence and EPR experiments revealed that Ruboxyl binds to NorM with micromolar affinity and becomes immobilized upon binding, even in the presence of Na+. Using double electron-electron resonance (DEER) spectroscopy, we determined that Ruboxyl binds to a single site on the periplasmic side of the protein. The presence of Na+ did not translocate the substrate to a second site as previously proposed. These experiments surprisingly show that Na+ does not affect the affinity or location of the substrate binding site on detergent-solubilized NorM, thus suggesting that additional factors beyond simple mutual exclusivity of binding, such as the presence of a Na+ gradient across the native membrane, govern Na+/drug coupling during antiport. PMID:23902581

  19. Development of Substrate-Selective Probes for Affinity Pulldown of Histone Demethylases

    PubMed Central

    2015-01-01

    JmjC-domain containing histone demethylases (JHDMs) play critical roles in many key cellular processes and have been implicated in multiple disease conditions. Each enzyme within this family is known to have a strict substrate scope, specifically the position of the lysine within the histone and its degree of methylation. While much progress has been made in determining the substrates of each enzyme, new methods with which to systematically profile each histone mark are greatly needed. Novel chemical tools have the potential to fill this role and, furthermore, can be used as probes to answer fundamental questions about these enzymes and serve as potential therapeutic leads. In this work, we first investigated three small-molecule probes differing in the degree of “methylation state” and their differential bindings to JHDM1A (an H3K36me1/2 demethylase) using a fluorescence polarization-based competition assay. We then applied this specificity toward the “methylation state” and combined it with specificity toward lysine position in the design and synthesis of a peptidic probe targeting H3K36me2 JHDMs. The probe is further functionalized with a benzophenone cross-linking moiety and a biotin for affinity purification. Results showed binding of the peptidic probe to JHDM1A and specific enrichment of this protein in the presence of its native histone substrates. Affinity purification pulldown experiments from nuclear lysate coupled with mass spectrometry revealed the capability of the probe to pull out and enrich JHDMs along with other epigenetic proteins and transcriptional regulators. PMID:25335116

  20. Specificity of hammerhead ribozyme cleavage.

    PubMed Central

    Hertel, K J; Herschlag, D; Uhlenbeck, O C

    1996-01-01

    To be effective in gene inactivation, the hammerhead ribozyme must cleave a complementary RNA target without deleterious effects from cleaving non-target RNAs that contain mismatches and shorter stretches of complementarity. The specificity of hammerhead cleavage was evaluated using HH16, a well-characterized ribozyme designed to cleave a target of 17 residues. Under standard reaction conditions, HH16 is unable to discriminate between its full-length substrate and 3'-truncated substrates, even when six fewer base pairs are formed between HH16 and the substrate. This striking lack of specificity arises because all the substrates bind to the ribozyme with sufficient affinity so that cleavage occurs before their affinity differences are manifested. In contrast, HH16 does exhibit high specificity towards certain 3'-truncated versions of altered substrates that either also contain a single base mismatch or are shortened at the 5' end. In addition, the specificity of HH16 is improved in the presence of p7 nucleocapsid protein from human immunodeficiency virus (HIV)-1, which accelerates the association and dissociation of RNA helices. These results support the view that the hammerhead has an intrinsic ability to discriminate against incorrect bases, but emphasizes that the high specificity is only observed in a certain range of helix lengths. Images PMID:8670879

  1. Facile fabrication of Ag dendrite-integrated anodic aluminum oxide membrane as effective three-dimensional SERS substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Cong-yun; Lu, Ya; Zhao, Bin; Hao, Yao-wu; Liu, Ya-qing

    2016-07-01

    A novel surface enhanced Raman scattering (SERS)-active substrate has been successfully developed, where Ag-dendrites are assembled on the surface and embedded in the channels of anodic aluminum oxide (AAO) membrane, via electrodeposition in AgNO3/PVP aqueous system. Reaction conditions were systematically investigated to attain the best Raman enhancement. The growth mechanism of Ag dendritic nanostructures has been proposed. The Ag dendrite-integrated AAO membrane with unique hierarchical structures exhibits high SERS activity for detecting rhodamine 6G with a detection limit as low as 1 × 10-11 M. Furthermore, the three-dimensional (3D) substrates display a good reproducibility with the average intensity variations at the major Raman peak less than 12%. Most importantly, the 3D SERS substrates without any surface modification show an outstanding SERS response for the molecules with weak affinity for noble metal surfaces. The potential application for the detection of polycyclic aromatic hydrocarbons (PAHs) was evaluated with fluoranthene as Raman target molecule and a sensitive SERS detection with a limit down to 10-8 M was reached. The 3D SERS-active substrate shows promising potential for rapid detection of trace organic pollutants even weak affinity molecules in the environment.

  2. Enhanced stability of monomer fold correlates with extreme drug resistance of HIV-1 protease.

    PubMed

    Louis, John M; Tözsér, József; Roche, Julien; Matúz, Krisztina; Aniana, Annie; Sayer, Jane M

    2013-10-29

    During treatment, mutations in HIV-1 protease (PR) are selected rapidly that confer resistance by decreasing affinity to clinical protease inhibitors (PIs). As these unique drug resistance mutations can compromise the fitness of the virus to replicate, mutations that restore conformational stability and activity while retaining drug resistance are selected on further evolution. Here we identify several compensating mechanisms by which an extreme drug-resistant mutant bearing 20 mutations (PR20) with >5-fold increased Kd and >4000-fold decreased affinity to the PI darunavir functions. (1) PR20 cleaves, albeit poorly, Gag polyprotein substrates essential for viral maturation. (2) PR20 dimer, which exhibits distinctly enhanced thermal stability, has highly attenuated autoproteolysis, thus likely prolonging its lifetime in vivo. (3) The enhanced stability of PR20 results from stabilization of the monomer fold. Both monomeric PR20(T26A) and dimeric PR20 exhibit Tm values 6-7.5 °C higher than those for their PR counterparts. Two specific mutations in PR20, L33F and L63P at sites of autoproteolysis, increase the Tm of monomeric PR(T26A) by ~8 °C, similar to PR20(T26A). However, without other compensatory mutations as seen in PR20, L33F and L63P substitutions, together, neither restrict autoproteolysis nor significantly reduce binding affinity to darunavir. To determine whether dimer stability contributes to binding affinity for inhibitors, we examined single-chain dimers of PR and PR(D25N) in which the corresponding identical monomer units were covalently linked by GGSSG sequence. Linking of the subunits did not appreciably change the ΔTm on inhibitor binding; thus stabilization by tethering appears to have little direct effect on enhancing inhibitor affinity.

  3. Furaldehyde substrate specificity and kinetics of Saccharomyces cerevisiae alcohol dehydrogenase 1 variants.

    PubMed

    Laadan, Boaz; Wallace-Salinas, Valeria; Carlsson, Åsa Janfalk; Almeida, João Rm; Rådström, Peter; Gorwa-Grauslund, Marie F

    2014-08-09

    A previously discovered mutant of Saccharomyces cerevisiae alcohol dehydrogenase 1 (Adh1p) was shown to enable a unique NADH-dependent reduction of 5-hydroxymethylfurfural (HMF), a well-known inhibitor of yeast fermentation. In the present study, site-directed mutagenesis of both native and mutated ADH1 genes was performed in order to identify the key amino acids involved in this substrate shift, resulting in Adh1p-variants with different substrate specificities. In vitro activities of the Adh1p-variants using two furaldehydes, HMF and furfural, revealed that HMF reduction ability could be acquired after a single amino acid substitution (Y295C). The highest activity, however, was reached with the double mutation S110P Y295C. Kinetic characterization with both aldehydes and the in vivo primary substrate acetaldehyde also enabled to correlate the alterations in substrate affinity with the different amino acid substitutions. We demonstrated the key role of Y295C mutation in HMF reduction by Adh1p. We generated and kinetically characterized a group of protein variants using two furaldehyde compounds of industrial relevance. Also, we showed that there is a threshold after which higher in vitro HMF reduction activities do not correlate any more with faster in vivo rates of HMF conversion, indicating other cell limitations in the conversion of HMF.

  4. Structure/Function Analysis of Cotton-Based Peptide-Cellulose Conjugates: Spatiotemporal/Kinetic Assessment of Protease Aerogels Compared to Nanocrystalline and Paper Cellulose

    PubMed Central

    Edwards, J. Vincent; Fontenot, Krystal; Liebner, Falk; Pircher, Nicole Doyle nee; French, Alfred D.; Condon, Brian D.

    2018-01-01

    Nanocellulose has high specific surface area, hydration properties, and ease of derivatization to prepare protease sensors. A Human Neutrophil Elastase sensor designed with a nanocellulose aerogel transducer surface derived from cotton is compared with cotton filter paper, and nanocrystalline cellulose versions of the sensor. X-ray crystallography was employed along with Michaelis–Menten enzyme kinetics, and circular dichroism to contrast the structure/function relations of the peptide-cellulose conjugate conformation to enzyme/substrate binding and turnover rates. The nanocellulosic aerogel was found to have a cellulose II structure. The spatiotemporal relation of crystallite surface to peptide-cellulose conformation is discussed in light of observed enzyme kinetics. A higher substrate binding affinity (Km) of elastase was observed with the nanocellulose aerogel and nanocrystalline peptide-cellulose conjugates than with the solution-based elastase substrate. An increased Km observed for the nanocellulosic aerogel sensor yields a higher enzyme efficiency (kcat/Km), attributable to binding of the serine protease to the negatively charged cellulose surface. The effect of crystallite size and β-turn peptide conformation are related to the peptide-cellulose kinetics. Models demonstrating the orientation of cellulose to peptide O6-hydroxymethyl rotamers of the conjugates at the surface of the cellulose crystal suggest the relative accessibility of the peptide-cellulose conjugates for enzyme active site binding. PMID:29534033

  5. Structure/Function Analysis of Cotton-Based Peptide-Cellulose Conjugates: Spatiotemporal/Kinetic Assessment of Protease Aerogels Compared to Nanocrystalline and Paper Cellulose.

    PubMed

    Edwards, J Vincent; Fontenot, Krystal; Liebner, Falk; Pircher, Nicole Doyle Nee; French, Alfred D; Condon, Brian D

    2018-03-13

    Nanocellulose has high specific surface area, hydration properties, and ease of derivatization to prepare protease sensors. A Human Neutrophil Elastase sensor designed with a nanocellulose aerogel transducer surface derived from cotton is compared with cotton filter paper, and nanocrystalline cellulose versions of the sensor. X-ray crystallography was employed along with Michaelis-Menten enzyme kinetics, and circular dichroism to contrast the structure/function relations of the peptide-cellulose conjugate conformation to enzyme/substrate binding and turnover rates. The nanocellulosic aerogel was found to have a cellulose II structure. The spatiotemporal relation of crystallite surface to peptide-cellulose conformation is discussed in light of observed enzyme kinetics. A higher substrate binding affinity ( K m ) of elastase was observed with the nanocellulose aerogel and nanocrystalline peptide-cellulose conjugates than with the solution-based elastase substrate. An increased K m observed for the nanocellulosic aerogel sensor yields a higher enzyme efficiency ( k cat / K m ), attributable to binding of the serine protease to the negatively charged cellulose surface. The effect of crystallite size and β-turn peptide conformation are related to the peptide-cellulose kinetics. Models demonstrating the orientation of cellulose to peptide O6-hydroxymethyl rotamers of the conjugates at the surface of the cellulose crystal suggest the relative accessibility of the peptide-cellulose conjugates for enzyme active site binding.

  6. Hydrolase and fructosyltransferase activities implicated in the accumulation of different chain size fructans in three Asteraceae species.

    PubMed

    Itaya, Nair M; Asega, Amanda F; Carvalho, Maria Angela M; Figueiredo-Ribeiro, Rita de Cássia L

    2007-09-01

    Fructans are widely distributed in Asteraceae from floras with seasonal growth and are thought to be involved in drought and freezing tolerance, in addition to storage function. Reserve organs of Vernonia herbacea and Viguiera discolor, from the cerrado, and of the perennial herb Smallanthus sonchifolius, endemic to Andean region, store over 80% inulin, with different DP (35, 150, and 15, respectively). The fructan pattern in Asteraceae species could be explained by characteristics of their respective 1-FFTs. Hydrolases and fructosyltransferases from S. sonchifolius, V. herbacea and V. discolor were analyzed in plants at the same environmental conditions. The higher 1-FEH activities found in the species with lower DP, S. sonchifolius and V. herbacea reinforce the hypothesis of the involvement of 1-FEH in fructan profile and suggest that the high DP fructan of V. discolor is a consequence of the low affinity of its 1-FEH to the native long chain inulin. Long term incubation with sucrose suggested that the affinity of 1-FFT of V. discolor for 1-kestose is low when compared to that of V. herbacea. Indeed 1-FFT from V. discolor was shown to be an hDP 1-FFT, preferring longer inulins as acceptors. Conversely, 1-FFT from V. herbacea seems to have a higher affinity for short fructo-oligosaccharides, including 1-kestose, as acceptor substrates. Differences in fructan enzymes of the three Asteraceae provide new information towards the understanding of fructan metabolism and control of carbon flow between low and high DP fructans.

  7. Preparation of molecularly imprinted polymers specific to glycoproteins, glycans and monosaccharides via boronate affinity controllable-oriented surface imprinting.

    PubMed

    Xing, Rongrong; Wang, Shuangshou; Bie, Zijun; He, Hui; Liu, Zhen

    2017-05-01

    Molecularly imprinted polymers (MIPs) are materials that are designed to be receptors for a template molecule (e.g., a protein). They are made by polymerizing the polymerizable reagents in the presence of the template; when the template is removed, the material can be used for many applications that would traditionally use antibodies. Thus, MIPs are biomimetic of antibodies and in this capacity have found wide applications, such as sensing, separation and diagnosis. However, many imprinting approaches are uncontrollable, and facile imprinting approaches widely applicable to a large variety of templates remain limited. We developed an approach called boronate affinity controllable-oriented surface imprinting, which allows for easy and efficient preparation of MIPs specific to glycoproteins, glycans and monosaccharides. This approach relies on immobilization of a template (glycoprotein, glycan or monosaccharide) on a boronic-acid-functionalized substrate through boronate affinity interaction, followed by self-polymerization of biocompatible monomer(s) to form an imprinting layer on the substrate with appropriate thickness. Imprinting in this approach is performed in a controllable manner, permitting the thickness of the imprinting layer to be fine-tuned according to the molecular size of the template by adjusting the imprinting time. This not only simplifies the imprinting procedure but also makes the approach widely applicable to a large range of sugar-containing biomolecules. MIPs prepared by this approach exhibit excellent binding properties and can be applied to complex real samples. The MIPs prepared by this protocol have been used in affinity separation, disease diagnosis and bioimaging. The entire protocol, including preparation, property characterization and performance evaluation, takes ∼3-8 d, depending on the type of substrate and template used.

  8. Methods of making functionalized nanorods

    DOEpatents

    Gur, Ilan [San Francisco, CA; Milliron, Delia [Berkeley, CA; Alivisatos, A Paul [Oakland, CA; Liu, Haitao [Berkeley, CA

    2012-01-10

    A process for forming functionalized nanorods. The process includes providing a substrate, modifying the substrate by depositing a self-assembled monolayer of a bi-functional molecule on the substrate, wherein the monolayer is chosen such that one side of the bi-functional molecule binds to the substrate surface and the other side shows an independent affinity for binding to a nanocrystal surface, so as to form a modified substrate. The process further includes contacting the modified substrate with a solution containing nanocrystal colloids, forming a bound monolayer of nanocrystals on the substrate surface, depositing a polymer layer over the monolayer of nanocrystals to partially cover the monolayer of nanocrystals, so as to leave a layer of exposed nanocrystals, functionalizing the exposed nanocrystals, to form functionalized nanocrystals, and then releasing the functionalized nanocrystals from the substrate.

  9. Substrate-Induced Facilitated Dissociation of the Competitive Inhibitor from the Active Site of O-Acetyl Serine Sulfhydrylase Reveals a Competitive-Allostery Mechanism.

    PubMed

    Singh, Appu Kumar; Ekka, Mary Krishna; Kaushik, Abhishek; Pandya, Vaibhav; Singh, Ravi P; Banerjee, Shrijita; Mittal, Monica; Singh, Vijay; Kumaran, S

    2017-09-19

    By classical competitive antagonism, a substrate and competitive inhibitor must bind mutually exclusively to the active site. The competitive inhibition of O-acetyl serine sulfhydrylase (OASS) by the C-terminus of serine acetyltransferase (SAT) presents a paradox, because the C-terminus of SAT binds to the active site of OASS with an affinity that is 4-6 log-fold (10 4 -10 6 ) greater than that of the substrate. Therefore, we employed multiple approaches to understand how the substrate gains access to the OASS active site under physiological conditions. Single-molecule and ensemble approaches showed that the active site-bound high-affinity competitive inhibitor is actively dissociated by the substrate, which is not consistent with classical views of competitive antagonism. We employed fast-flow kinetic approaches to demonstrate that substrate-mediated dissociation of full length SAT-OASS (cysteine regulatory complex) follows a noncanonical "facilitated dissociation" mechanism. To understand the mechanism by which the substrate induces inhibitor dissociation, we resolved the crystal structures of enzyme·inhibitor·substrate ternary complexes. Crystal structures reveal a competitive allosteric binding mechanism in which the substrate intrudes into the inhibitor-bound active site and disengages the inhibitor before occupying the site vacated by the inhibitor. In summary, here we reveal a new type of competitive allosteric binding mechanism by which one of the competitive antagonists facilitates the dissociation of the other. Together, our results indicate that "competitive allostery" is the general feature of noncanonical "facilitated/accelerated dissociation" mechanisms. Further understanding of the mechanistic framework of "competitive allosteric" mechanism may allow us to design a new family of "competitive allosteric drugs/small molecules" that will have improved selectivity and specificity as compared to their competitive and allosteric counterparts.

  10. Understanding transporter specificity and the discrete appearance of channel-like gating domains in transporters

    PubMed Central

    Diallinas, George

    2014-01-01

    Transporters are ubiquitous proteins mediating the translocation of solutes across cell membranes, a biological process involved in nutrition, signaling, neurotransmission, cell communication and drug uptake or efflux. Similarly to enzymes, most transporters have a single substrate binding-site and thus their activity follows Michaelis-Menten kinetics. Substrate binding elicits a series of structural changes, which produce a transporter conformer open toward the side opposite to the one from where the substrate was originally bound. This mechanism, involving alternate outward- and inward-facing transporter conformers, has gained significant support from structural, genetic, biochemical and biophysical approaches. Most transporters are specific for a given substrate or a group of substrates with similar chemical structure, but substrate specificity and/or affinity can vary dramatically, even among members of a transporter family that show high overall amino acid sequence and structural similarity. The current view is that transporter substrate affinity or specificity is determined by a small number of interactions a given solute can make within a specific binding site. However, genetic, biochemical and in silico modeling studies with the purine transporter UapA of the filamentous ascomycete Aspergillus nidulans have challenged this dogma. This review highlights results leading to a novel concept, stating that substrate specificity, but also transport kinetics and transporter turnover, are determined by subtle intramolecular interactions between a major substrate binding site and independent outward- or cytoplasmically-facing gating domains, analogous to those present in channels. This concept is supported by recent structural evidence from several, phylogenetically and functionally distinct transporter families. The significance of this concept is discussed in relationship to the role and potential exploitation of transporters in drug action. PMID:25309439

  11. Functional paper-based SERS substrate for rapid and sensitive detection of Sudan dyes in herbal medicine

    NASA Astrophysics Data System (ADS)

    Wu, Mianmian; Li, Pan; Zhu, Qingxia; Wu, Meiran; Li, Hao; Lu, Feng

    2018-05-01

    There has been an increasing demand for rapid and sensitive techniques for the identification of Sudan compounds that emerged as the most often illegally added fat-soluble dyes in herbal medicine. In this report, we have designed and fabricated a functionalized filter paper consisting of gold nanorods (GNRs) and mono-6-thio-cyclodextrin (HS-β-CD) as a surface-enhanced Raman spectroscopy (SERS) substrate, in which the GNR provides sufficient SERS enhancement, and the HS-β-CD with strong chemical affinity toward GNR provides the inclusion compound to capture hydrophobic molecules. Moreover, the CD-GNR were uniformly assembled on filter paper cellulose through the electrostatic adsorption and hydrogen bond, so that the CD-GNR paper-based SERS substrate (CD-GNR-paper) demonstrated higher sensitivity for the determination of Sudan III (0.1 μM) and Sudan IV (0.5 μM) than GNRs paper-based SERS substrate (GNR-paper), with high stability after the storage in the open air for 90 days. Importantly, CD-GNR-paper can effectively collect the Sudan dyes from illegally adulterated onto samples of Resina Draconis with a simple operation, further open up new exciting opportunity for SERS detection of more compounds illegally added with high sensitivity and fast signal responses.

  12. Proteolytic crosstalk in multi-protease networks

    NASA Astrophysics Data System (ADS)

    Ogle, Curtis T.; Mather, William H.

    2016-04-01

    Processive proteases, such as ClpXP in E. coli, are conserved enzyme assemblies that can recognize and rapidly degrade proteins. These proteases are used for a number of purposes, including degrading mistranslated proteins and controlling cellular stress response. However, proteolytic machinery within the cell is limited in capacity and can lead to a bottleneck in protein degradation, whereby many proteins compete (‘queue’) for proteolytic resources. Previous work has demonstrated that such queueing can lead to pronounced statistical relationships between different protein counts when proteins compete for a single common protease. However, real cells contain many different proteases, e.g. ClpXP, ClpAP, and Lon in E. coli, and it is not clear how competition between proteins for multiple classes of protease would influence the dynamics of cellular networks. In the present work, we theoretically demonstrate that a multi-protease proteolytic bottleneck can substantially couple the dynamics for both simple and complex (oscillatory) networks, even between substrates with substantially different affinities for protease. For these networks, queueing often leads to strong positive correlations between protein counts, and these correlations are strongest near the queueing theoretic point of balance. Furthermore, we find that the qualitative behavior of these networks depends on the relative size of the absolute affinity of substrate to protease compared to the cross affinity of substrate to protease, leading in certain regimes to priority queue statistics.

  13. Degradation and adsorption of pesticides in compost-based biomixtures as potential substrates for biobeds in southern Europe.

    PubMed

    Karanasios, Evangelos; Tsiropoulos, Nikolaos G; Karpouzas, Dimitrios G; Ehaliotis, Constantinos

    2010-08-25

    Biobeds have been used in northern Europe for minimizing point source contamination of water resources by pesticides. However, little is known regarding their use in southern Europe where edaphoclimatic conditions and agriculture practices significantly differ. A first step toward their adaptation in southern Europe is the use of low-cost and easily available substrates as biomixture components. This study investigated the possibility of replacing peat with agricultural composts in the biomixture. Five composts from local substrates including olive leaves, cotton crop residues, cotton seeds, spent mushroom substrate, and commercial sea wrack were mixed with topsoil and straw (1:1:2). Degradation of a mixture of pesticides (dimethoate, indoxacarb, buprofezin, terbuthylazine, metribuzin, metalaxyl-M, iprodione, azoxystrobin) at two dose rates was tested in the compost biomixtures (BX), in corresponding peat biomixtures (OBX), and in soil. Adsorption-desorption of selected pesticides were also studied. Pesticide residues were determined by gas chromatography with nitrogen-phosphorus detector, except indoxacarb, which was determined with a microelectron capture detector. Overall, BX degraded the studied pesticides at rates markedly higher than those observed in soil and OBX, in which the slowest degradation rates were evident. Overall, the olive leaf compost biomixture showed the highest degradation capacity. Adsorption studies showed that OBX and BX had higher adsorption affinity compared to soil. Desorption experiments revealed that pesticide adsorption in biomixtures was not entirely reversible. The results suggest that substitution of peat with local composts will lead to optimization of the biobed system for use in Mediterranean countries.

  14. Catalytic efficiency is a better predictor of arsenic toxicity to soil alkaline phosphatase.

    PubMed

    Wang, Ziquan; Tian, Haixia; Lu, Guannan; Zhao, Yiming; Yang, Rui; Megharaj, Mallavarapu; He, Wenxiang

    2018-02-01

    Arsenic (As) is an inhibitor of phosphatase, however, in the complex soil system, the substrate concentration effect and the mechanism of As inhibition of soil alkaline phosphatase (ALP) and its kinetics has not been adequately studied. In this work, we investigated soil ALP activity in response to As pollution at different substrate concentrations in various types of soils and explored the inhibition mechanism using the enzyme kinetics. The results showed that As inhibition of soil ALP activity was substrate concentration-dependent. Increasing substrate concentration decreased inhibition rate, suggesting reduced toxicity. This dependency was due to the competitive inhibition mechanism of As to soil ALP. The kinetic parameters, maximum reaction velocity (V max ) and Michaelis constant (K m ) in unpolluted soils were 0.012-0.267mMh -1 and 1.34-3.79mM respectively. The competitive inhibition constant (K ic ) was 0.17-0.70mM, which was lower than K m , suggesting higher enzyme affinity for As than for substrate. The ecological doses, ED 10 and ED 50 (concentration of As that results in 10% and 50% inhibition on enzyme parameter) for inhibition of catalytic efficiency (V max /K m ) were lower than those for inhibition of enzyme activity at different substrate concentrations. This suggests that the integrated kinetic parameter, catalytic efficiency is substrate concentration independent and more sensitive to As than ALP activity. Thus, catalytic efficiency was proposed as a more reliable indicator than ALP activity for risk assessment of As pollution. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Proteomic validation of protease drug targets: pharmacoproteomics of matrix metalloproteinase inhibitor drugs using isotope-coded affinity tag labelling and tandem mass spectrometry.

    PubMed

    Butler, G S; Overall, C M

    2007-01-01

    We illustrate the use of quantitative proteomics, namely isotope-coded affinity tag labelling and tandem mass spectrometry, to assess the targets and effects of the blockade of matrix metalloproteinases by an inhibitor drug in a breast cancer cell culture system. Treatment of MT1-MMP-transfected MDA-MB-231 cells with AG3340 (Prinomastat) directly affected the processing a multitude of matrix metalloproteinase substrates, and indirectly altered the expression of an array of other proteins with diverse functions. Therefore, broad spectrum blockade of MMPs has wide-ranging biological consequences. In this human breast cancer cell line, secreted substrates accumulated uncleaved in the conditioned medium and plasma membrane protein substrates were retained on the cell surface, due to reduced processing and shedding of these proteins (cell surface receptors, growth factors and bioactive molecules) to the medium in the presence of the matrix metalloproteinase inhibitor. Hence, proteomic investigation of drug-perturbed cellular proteomes can identify new protease substrates and at the same time provides valuable information for target validation, drug efficacy and potential side effects prior to commitment to clinical trials.

  16. Differential Uptake Mechanisms of Fluorescent Substrates into Stem-Cell-Derived Serotonergic Neurons.

    PubMed

    Matthaeus, Friederike; Schloss, Patrick; Lau, Thorsten

    2015-12-16

    The actions of the neurotransmitters serotonin, dopamine, and norepinephrine are partly terminated by diffusion and in part by their uptake into neurons via the selective, high-affinity transporters for serotonin (SERT), dopamine (DAT), and norepinephrine (NET), respectively. There is also growing evidence that all three monoamines are taken up into neurons by low-affinity, high-capacity organic cation transporters (OCT) and the plasma membrane monoamine transporter (PMAT). Pharmacological characterization of these low-affinity recombinant transporter proteins in heterologous expression systems has revealed that they are not antagonized by classical inhibitors of SERT, DAT, or NET but that decynium-22 (D22) antagonizes OCT3 and PMAT, whereas corticosterone and progesterone selectively inhibit OCT3. Here, we show that SERT, PMAT, and OCT3, but not OCT1 and OCT2, are coexpressed in murine stem cell-derived serotonergic neurons. Using selective antagonists, we provide evidence that uptake of the fluorescent substrates FFN511, ASP+, and 5-HT into stem cell-derived serotonergic neurons is mediated differentially by these transporters and also involves an as yet unknown transport mechanism.

  17. Flexible Molybdenum Electrodes towards Designing Affinity Based Protein Biosensors

    PubMed Central

    Kamakoti, Vikramshankar; Panneer Selvam, Anjan; Radha Shanmugam, Nandhinee; Muthukumar, Sriram; Prasad, Shalini

    2016-01-01

    Molybdenum electrode based flexible biosensor on porous polyamide substrates has been fabricated and tested for its functionality as a protein affinity based biosensor. The biosensor performance was evaluated using a key cardiac biomarker; cardiac Troponin-I (cTnI). Molybdenum is a transition metal and demonstrates electrochemical behavior upon interaction with an electrolyte. We have leveraged this property of molybdenum for designing an affinity based biosensor using electrochemical impedance spectroscopy. We have evaluated the feasibility of detection of cTnI in phosphate-buffered saline (PBS) and human serum (HS) by measuring impedance changes over a frequency window from 100 mHz to 1 MHz. Increasing changes to the measured impedance was correlated to the increased dose of cTnI molecules binding to the cTnI antibody functionalized molybdenum surface. We achieved cTnI detection limit of 10 pg/mL in PBS and 1 ng/mL in HS medium. The use of flexible substrates for designing the biosensor demonstrates promise for integration with a large-scale batch manufacturing process. PMID:27438863

  18. Molecular glues for manipulating enzymes: trypsin inhibition by benzamidine-conjugated molecular glues† †Electronic supplementary information (ESI) available: Synthesis of TEG–BA, Gluen–BA, mGluen–BA and Gluen–Ph; 1H NMR, 13C NMR, MALDI-TOF MS, electronic absorption, and CD spectra; zeta potential distributions; SLS plots; DLS histograms; and related experimental procedures. See DOI: 10.1039/c5sc00524h Click here for additional data file.

    PubMed Central

    Mogaki, Rina

    2015-01-01

    Water-soluble bioadhesive polymers bearing multiple guanidinium ion (Gu+) pendants at their side-chain termini (Gluen–BA, n = 10 and 29) that were conjugated with benzamidine (BA) as a trypsin inhibitor were developed. The Gluen–BA molecules are supposed to adhere to oxyanionic regions of the trypsin surface, even in buffer, via a multivalent Gu+/oxyanion salt-bridge interaction, such that their BA group properly blocks the substrate-binding site. In fact, Glue10–BA and Glue29–BA exhibited 35- and 200-fold higher affinities for trypsin, respectively, than a BA derivative without the glue moiety (TEG–BA). Most importantly, Glue10–BA inhibited the protease activity of trypsin 13-fold more than TEG–BA. In sharp contrast, mGlue27–BA, which bears 27 Gu+ units along the main chain and has a 5-fold higher affinity than TEG–BA for trypsin, was inferior even to TEG–BA for trypsin inhibition. PMID:28706668

  19. Protein Kinase A Opposes the Phosphorylation-dependent Recruitment of Glycogen Synthase Kinase 3β to A-kinase Anchoring Protein 220.

    PubMed

    Whiting, Jennifer L; Nygren, Patrick J; Tunquist, Brian J; Langeberg, Lorene K; Seternes, Ole-Morten; Scott, John D

    2015-08-07

    The proximity of an enzyme to its substrate can influence rate and magnitude of catalysis. A-kinase anchoring protein 220 (AKAP220) is a multivalent anchoring protein that can sequester a variety of signal transduction enzymes. These include protein kinase A (PKA) and glycogen synthase kinase 3β (GSK3β). Using a combination of molecular and cellular approaches we show that GSK3β phosphorylation of Thr-1132 on AKAP220 initiates recruitment of this kinase into the enzyme scaffold. We also find that AKAP220 anchors GSK3β and its substrate β-catenin in membrane ruffles. Interestingly, GSK3β can be released from the multienzyme complex in response to PKA phosphorylation on serine 9, which suppresses GSK3β activity. The signaling scaffold may enhance this regulatory mechanism, as AKAP220 has the capacity to anchor two PKA holoenzymes. Site 1 on AKAP220 (residues 610-623) preferentially interacts with RII, whereas site 2 (residues 1633-1646) exhibits a dual specificity for RI and RII. In vitro affinity measurements revealed that site 2 on AKAP220 binds RII with ∼10-fold higher affinity than site 1. Occupancy of both R subunit binding sites on AKAP220 could provide a mechanism to amplify local cAMP responses and enable cross-talk between PKA and GSK3β. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Computational study of β-N-acetylhexosaminidase from Talaromyces flavus, a glycosidase with high substrate flexibility.

    PubMed

    Kulik, Natallia; Slámová, Kristýna; Ettrich, Rüdiger; Křen, Vladimír

    2015-01-28

    β-N-Acetylhexosaminidase (GH20) from the filamentous fungus Talaromyces flavus, previously identified as a prominent enzyme in the biosynthesis of modified glycosides, lacks a high resolution three-dimensional structure so far. Despite of high sequence identity to previously reported Aspergillus oryzae and Penicilluim oxalicum β-N-acetylhexosaminidases, this enzyme tolerates significantly better substrate modification. Understanding of key structural features, prediction of effective mutants and potential substrate characteristics prior to their synthesis are of general interest. Computational methods including homology modeling and molecular dynamics simulations were applied to shad light on the structure-activity relationship in the enzyme. Primary sequence analysis revealed some variable regions able to influence difference in substrate affinity of hexosaminidases. Moreover, docking in combination with consequent molecular dynamics simulations of C-6 modified glycosides enabled us to identify the structural features required for accommodation and processing of these bulky substrates in the active site of hexosaminidase from T. flavus. To access the reliability of predictions on basis of the reported model, all results were confronted with available experimental data that demonstrated the principal correctness of the predictions as well as the model. The main variable regions in β-N-acetylhexosaminidases determining difference in modified substrate affinity are located close to the active site entrance and engage two loops. Differences in primary sequence and the spatial arrangement of these loops and their interplay with active site amino acids, reflected by interaction energies and dynamics, account for the different catalytic activity and substrate specificity of the various fungal and bacterial β-N-acetylhexosaminidases.

  1. Substrate sequence selectivity of APOBEC3A implicates intra-DNA interactions.

    PubMed

    Silvas, Tania V; Hou, Shurong; Myint, Wazo; Nalivaika, Ellen; Somasundaran, Mohan; Kelch, Brian A; Matsuo, Hiroshi; Kurt Yilmaz, Nese; Schiffer, Celia A

    2018-05-14

    The APOBEC3 (A3) family of human cytidine deaminases is renowned for providing a first line of defense against many exogenous and endogenous retroviruses. However, the ability of these proteins to deaminate deoxycytidines in ssDNA makes A3s a double-edged sword. When overexpressed, A3s can mutate endogenous genomic DNA resulting in a variety of cancers. Although the sequence context for mutating DNA varies among A3s, the mechanism for substrate sequence specificity is not well understood. To characterize substrate specificity of A3A, a systematic approach was used to quantify the affinity for substrate as a function of sequence context, length, secondary structure, and solution pH. We identified the A3A ssDNA binding motif as (T/C)TC(A/G), which correlated with enzymatic activity. We also validated that A3A binds RNA in a sequence specific manner. A3A bound tighter to substrate binding motif within a hairpin loop compared to linear oligonucleotide, suggesting A3A affinity is modulated by substrate structure. Based on these findings and previously published A3A-ssDNA co-crystal structures, we propose a new model with intra-DNA interactions for the molecular mechanism underlying A3A sequence preference. Overall, the sequence and structural preferences identified for A3A leads to a new paradigm for identifying A3A's involvement in mutation of endogenous or exogenous DNA.

  2. The Interactions of P-Glycoprotein with Antimalarial Drugs, Including Substrate Affinity, Inhibition and Regulation

    PubMed Central

    Senarathna, S M D K Ganga; Page-Sharp, Madhu; Crowe, Andrew

    2016-01-01

    The combination of passive drug permeability, affinity for uptake and efflux transporters as well as gastrointestinal metabolism defines net drug absorption. Efflux mechanisms are often overlooked when examining the absorption phase of drug bioavailability. Knowing the affinity of antimalarials for efflux transporters such as P-glycoprotein (P-gp) may assist in the determination of drug absorption and pharmacokinetic drug interactions during oral absorption in drug combination therapies. Concurrent administration of P-gp inhibitors and P-gp substrate drugs may also result in alterations in the bioavailability of some antimalarials. In-vitro Caco-2 cell monolayers were used here as a model for potential drug absorption related problems and P-gp mediated transport of drugs. Artemisone had the highest permeability at around 50 x 10−6 cm/sec, followed by amodiaquine around 20 x 10−6 cm/sec; both mefloquine and artesunate were around 10 x 10−6 cm/sec. Methylene blue was between 2 and 6 x 10−6 cm/sec depending on the direction of transport. This 3 fold difference was able to be halved by use of P-gp inhibition. MRP inhibition also assisted the consolidation of the methylene blue transport. Mefloquine was shown to be a P-gp inhibitor affecting our P-gp substrate, Rhodamine 123, although none of the other drugs impacted upon rhodamine123 transport rates. In conclusion, mefloquine is a P-gp inhibitor and methylene blue is a partial substrate; methylene blue may have increased absorption if co-administered with such P-gp inhibitors. An upregulation of P-gp was observed when artemisone and dihydroartemisinin were co-incubated with mefloquine and amodiaquine. PMID:27045516

  3. The High-Affinity Binding Site for Tricyclic Antidepressants Resides in the Outer Vestibule of the Serotonin TransporterⓈ

    PubMed Central

    Sarker, Subhodeep; Weissensteiner, René; Steiner, Ilka; Sitte, Harald H.; Ecker, Gerhard F.; Freissmuth, Michael; Sucic, Sonja

    2015-01-01

    The structure of the bacterial leucine transporter from Aquifex aeolicus (LeuTAa) has been used as a model for mammalian Na+/Cl−-dependent transporters, in particular the serotonin transporter (SERT). The crystal structure of LeuTAa liganded to tricyclic antidepressants predicts simultaneous binding of inhibitor and substrate. This is incompatible with the mutually competitive inhibition of substrates and inhibitors of SERT. We explored the binding modes of tricyclic antidepressants by homology modeling and docking studies. Two approaches were used subsequently to differentiate between three clusters of potential docking poses: 1) a diagnostic SERTY95F mutation, which greatly reduced the affinity for [3H]imipramine but did not affect substrate binding; 2) competition binding experiments in the presence and absence of carbamazepine (i.e., a tricyclic imipramine analog with a short side chain that competes with [3H]imipramine binding to SERT). Binding of releasers (para-chloroamphetamine, methylene-dioxy-methamphetamine/ecstasy) and of carbamazepine were mutually exclusive, but Dixon plots generated in the presence of carbamazepine yielded intersecting lines for serotonin, MPP+, paroxetine, and ibogaine. These observations are consistent with a model, in which 1) the tricyclic ring is docked into the outer vestibule and the dimethyl-aminopropyl side chain points to the substrate binding site; 2) binding of amphetamines creates a structural change in the inner and outer vestibule that precludes docking of the tricyclic ring; 3) simultaneous binding of ibogaine (which binds to the inward-facing conformation) and of carbamazepine is indicative of a second binding site in the inner vestibule, consistent with the pseudosymmetric fold of monoamine transporters. This may be the second low-affinity binding site for antidepressants. PMID:20829432

  4. Nonoisotopic Assay for the Presynaptic Choline Transporter Reveals Capacity for Allosteric Modulation of Choline Uptake

    PubMed Central

    2012-01-01

    Current therapies to enhance CNS cholinergic function rely primarily on extracellular acetylcholinesterase (AChE) inhibition, a pharmacotherapeutic strategy that produces dose-limiting side effects. The Na+-dependent, high-affinity choline transporter (CHT) is an unexplored target for cholinergic medication development. Although functional at the plasma membrane, CHT at steady-state is localized to synaptic vesicles such that vesicular fusion can support a biosynthetic response to neuronal excitation. To identify allosteric potentiators of CHT activity, we mapped endocytic sequences in the C-terminus of human CHT, identifying transporter mutants that exhibit significantly increased transport function. A stable HEK-293 cell line was generated from one of these mutants (CHT LV-AA) and used to establish a high-throughput screen (HTS) compatible assay based on the electrogenic nature of the transporter. We established that the addition of choline to these cells, at concentrations appropriate for high-affinity choline transport at presynaptic terminals, generates a hemicholinium-3 (HC-3)-sensitive, membrane depolarization that can be used for the screening of CHT inhibitors and activators. Using this assay, we discovered that staurosporine increased CHT LV-AA choline uptake activity, an effect mediated by a decrease in choline KM with no change in Vmax. As staurosporine did not change surface levels of CHT, nor inhibit HC-3 binding, we propose that its action is directly or indirectly allosteric in nature. Surprisingly, staurosporine reduced choline-induced membrane depolarization, suggesting that increased substrate coupling to ion gradients, arising at the expense of nonstoichiometric ion flow, accompanies a shift of CHT to a higher-affinity state. Our findings provide a new approach for the identification of CHT modulators that is compatible with high-throughput screening approaches and presents a novel model by which small molecules can enhance substrate flux through enhanced gradient coupling. PMID:23077721

  5. Nonoisotopic assay for the presynaptic choline transporter reveals capacity for allosteric modulation of choline uptake.

    PubMed

    Ruggiero, Alicia M; Wright, Jane; Ferguson, Shawn M; Lewis, Michelle; Emerson, Katie S; Iwamoto, Hideki; Ivy, Michael T; Holmstrand, Ericka C; Ennis, Elizabeth A; Weaver, C David; Blakely, Randy D

    2012-10-17

    Current therapies to enhance CNS cholinergic function rely primarily on extracellular acetylcholinesterase (AChE) inhibition, a pharmacotherapeutic strategy that produces dose-limiting side effects. The Na(+)-dependent, high-affinity choline transporter (CHT) is an unexplored target for cholinergic medication development. Although functional at the plasma membrane, CHT at steady-state is localized to synaptic vesicles such that vesicular fusion can support a biosynthetic response to neuronal excitation. To identify allosteric potentiators of CHT activity, we mapped endocytic sequences in the C-terminus of human CHT, identifying transporter mutants that exhibit significantly increased transport function. A stable HEK-293 cell line was generated from one of these mutants (CHT LV-AA) and used to establish a high-throughput screen (HTS) compatible assay based on the electrogenic nature of the transporter. We established that the addition of choline to these cells, at concentrations appropriate for high-affinity choline transport at presynaptic terminals, generates a hemicholinium-3 (HC-3)-sensitive, membrane depolarization that can be used for the screening of CHT inhibitors and activators. Using this assay, we discovered that staurosporine increased CHT LV-AA choline uptake activity, an effect mediated by a decrease in choline K(M) with no change in V(max). As staurosporine did not change surface levels of CHT, nor inhibit HC-3 binding, we propose that its action is directly or indirectly allosteric in nature. Surprisingly, staurosporine reduced choline-induced membrane depolarization, suggesting that increased substrate coupling to ion gradients, arising at the expense of nonstoichiometric ion flow, accompanies a shift of CHT to a higher-affinity state. Our findings provide a new approach for the identification of CHT modulators that is compatible with high-throughput screening approaches and presents a novel model by which small molecules can enhance substrate flux through enhanced gradient coupling.

  6. Molecular recognition of pre-tRNA by Arabidopsis protein-only Ribonuclease P.

    PubMed

    Klemm, Bradley P; Karasik, Agnes; Kaitany, Kipchumba J; Shanmuganathan, Aranganathan; Henley, Matthew J; Thelen, Adam Z; Dewar, Allison J L; Jackson, Nathaniel D; Koutmos, Markos; Fierke, Carol A

    2017-12-01

    Protein-only ribonuclease P (PRORP) is an enzyme responsible for catalyzing the 5' end maturation of precursor transfer ribonucleic acids (pre-tRNAs) encoded by various cellular compartments in many eukaryotes. PRORPs from plants act as single-subunit enzymes and have been used as a model system for analyzing the function of the metazoan PRORP nuclease subunit, which requires two additional proteins for efficient catalysis. There are currently few molecular details known about the PRORP-pre-tRNA complex. Here, we characterize the determinants of substrate recognition by the single subunit Arabidopsis thaliana PRORP1 and PRORP2 using kinetic and thermodynamic experiments. The salt dependence of binding affinity suggests 4-5 contacts with backbone phosphodiester bonds on substrates, including a single phosphodiester contact with the pre-tRNA 5' leader, consistent with prior reports of short leader requirements. PRORPs contain an N-terminal pentatricopeptide repeat (PPR) domain, truncation of which results in a >30-fold decrease in substrate affinity. While most PPR-containing proteins have been implicated in single-stranded sequence-specific RNA recognition, we find that the PPR motifs of PRORPs recognize pre-tRNA substrates differently. Notably, the PPR domain residues most important for substrate binding in PRORPs do not correspond to positions involved in base recognition in other PPR proteins. Several of these residues are highly conserved in PRORPs from algae, plants, and metazoans, suggesting a conserved strategy for substrate recognition by the PRORP PPR domain. Furthermore, there is no evidence for sequence-specific interactions. This work clarifies molecular determinants of PRORP-substrate recognition and provides a new predictive model for the PRORP-substrate complex. © 2017 Klemm et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  7. Endoprotease profiling with double-tagged peptide substrates: a new diagnostic approach in oncology.

    PubMed

    Peccerella, Teresa; Lukan, Nadine; Hofheinz, Ralf; Schadendorf, Dirk; Kostrezewa, Markus; Neumaier, Michael; Findeisen, Peter

    2010-02-01

    The measurement of disease-related proteolytic activity in complex biological matrices like serum is of emerging interest to improve the diagnosis of malignant diseases. We developed a mass spectrometry (MS)-based functional proteomic profiling approach that tracks degradation of artificial endoprotease substrates in serum specimens. The synthetic reporter peptides that are cleaved by tumor-associated endopeptidases were systematically optimized with regard to flanking affinity tags, linkers, and stabilizing elements. Serum specimens were incubated with reporter peptides under standardized conditions and the peptides subsequently extracted with affinity chromatography before MS. In a pilot study an optimized reporter peptide with the cleavage motif WKPYDAADL was added to serum specimens from colorectal tumor patients (n = 50) and healthy controls (n = 50). This reporter peptide comprised a known cleavage site for the cysteine-endopeptidase "cancer procoagulant." Serial affinity chromatography using biotin- and 6xHis tags was superior to the single affinity enrichment using only 6xHis tags. Furthermore, protease-resistant stop elements ensured signal accumulation after prolonged incubation. In contrast, signals from reporter peptides without stop elements vanished completely after prolonged incubation owing to their total degradation. Reporter-peptide spiking showed good reproducibility, and the difference in proteolytic activity between serum specimens from cancer patients and controls was highly significant (P < 0.001). The introduction of a few structural key elements (affinity tags, linkers, d-amino acids) into synthetic reporter peptides increases the diagnostic sensitivity for MS-based protease profiling of serum specimens. This new approach might lead to functional MS-based protease profiling for improved disease classification.

  8. Identification of cellular MMP substrates using quantitative proteomics: isotope-coded affinity tags (ICAT) and isobaric tags for relative and absolute quantification (iTRAQ).

    PubMed

    Butler, Georgina S; Dean, Richard A; Morrison, Charlotte J; Overall, Christopher M

    2010-01-01

    Identification of protease substrates is essential to understand the functional consequences of normal proteolytic processing and dysregulated proteolysis in disease. Quantitative proteomics and mass spectrometry can be used to identify protease substrates in the cellular context. Here we describe the use of two protein labeling techniques, Isotope-Coded Affinity Tags (ICAT and Isobaric Tags for Relative and Absolute Quantification (iTRAQ), which we have used successfully to identify novel matrix metalloproteinase (MMP) substrates in cell culture systems (1-4). ICAT and iTRAQ can label proteins and protease cleavage products of secreted proteins, protein domains shed from the cell membrane or pericellular matrix of protease-transfected cells that have accumulated in conditioned medium, or cell surface proteins in membrane preparations; isotopically distinct labels are used for control cells. Tryptic digestion and tandem mass spectrometry of the generated fragments enable sequencing of differentially labeled but otherwise identical pooled peptides. The isotopic tag, which is unique for each label, identifies the peptides originating from each sample, for instance, protease-transfected or control cells, and comparison of the peak areas enables relative quantification of the peptide in each sample. Thus proteins present in altered amounts between protease-expressing and null cells are implicated as protease substrates and can be further validated as such.

  9. Comparison of 6-mercaptopurine with 6-thioguanine for the analysis of thiopurine S-methyltransferase activity in human erythrocyte by LC-MS/MS.

    PubMed

    Mei, Shenghui; Li, Xindi; Gong, Xiaoqing; Zhang, Xiaoyi; Li, Xingang; Yang, Li; Zhu, Leting; Zhou, Heng; Liu, Yonghong; Zhou, Anna; Zhang, Xinghu; Zhao, Zhigang

    2017-09-01

    Thiopurines (TPDs) are first-line drugs in treating neuromyelitis optica spectrum disorders (NMOSD). Evaluation of thiopurine S-methyltransferase activity (TPMT), a major determinant of TPD toxicity, before TPD treatment using 6-mercaptopurine (6-MP) and 6-thioguanine (6-TG) as substrate was suggested. However, the equivalent of the two substrates in TPMT activity evaluation was unknown, and an alternative substrate was required in TPMT activity evaluation in patients who were already taking 6-MP or 6-TG. Before evaluating the agreement of 6-MP and 6-TG in TPMT activity measurement in patients with NMOSD, the affinity of the two substrates for the active center of TPMT should be established. A computer-based simulation indicated that 6-MP and 6-TG had similar affinities for the two active sites of TPMT. According to the guidelines, an LC-MS/MS method was developed and validated to evaluate the TPMT activity in human erythrocyte hemolysate using 6-MP or 6-TG as substrates via 1 h incubation at 37°C. The method was applied in 81 patients with NMOSD. Evaluated by Bland-Altman plot, 6-methylmercaptopurine and 6-methylthioguanine represented TPMT activities were in agreement with each other. Further studies are warranted to confirm the results. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Activity of Escherichia coli, Aspergillus niger, and Rye Phytase toward Partially Phosphorylated myo-Inositol Phosphates.

    PubMed

    Greiner, Ralf

    2017-11-08

    Kinetic parameters for the dephosphorylation of sodium phytate and a series of partially phosphorylated myo-inositol phosphates were determined at pH 3.0 and pH 5.0 for three phytase preparations (Aspergillus niger, Escherichia coli, rye). The enzymes showed lower affinity and turnover numbers at pH 3 compared to pH 5 toward all myo-inositol phosphates included in the study. The number and distribution of phosphate groups on the myo-inositol ring affected the kinetic parameters. Representatives of the individual phytate dephosphorylation pathways were identified as the best substrates of the phytases. Within the individual phytate dephosphorylation pathways, the pentakisphosphates were better substrates compared to the tetrakisphosphates or phytate itself. E. coli and rye phytase showed comparable activities at both pH values toward the tetrakis- and trisphosphate, whereas A. niger phytase exhibited a higher activity toward the tetrakisphosphate. A myo-inositol phosphate with alternate phosphate groups was shown to be not significantly dephosphorylated by the phytases.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varela, Maria; Scigaj, Mateusz; Gazquez, Jaume

    Interfaces between (110) and (111)SrTiO 3 (STO) single crystalline substrates and amorphous oxide layers, LaAlO 3 (a-LAO), Y:ZrO 2 (a-YSZ), and SrTiO 3 (a-STO) become conducting above a critical thickness t c. Here we show that t c for a-LAO does not depend on the substrate orientation, i.e. t c (a-LAO/(110)STO) ≈ t c(a-LAO/(111)STO) interfaces, whereas it strongly depends on the composition of the amorphous oxide: t c(a-LAO/(110)STO) < t c(a-YSZ/(110)STO) < t c(a-STO/(110)STO). It is concluded that the formation of oxygen vacancies in amorphous-type interfaces is mainly determined by the oxygen affinity of the deposited metal ions, rather thanmore » orientation-dependent enthalpy vacancy formation and diffusion. Furthermore, scanning transmission microscopy characterization of amorphous and crystalline LAO/STO(110) interfaces shows much higher amount of oxygen vacancies in the former, providing experimental evidence of the distinct mechanism of conduction in these interfaces.« less

  12. Silane surface modification for improved bioadhesion of esophageal stents

    NASA Astrophysics Data System (ADS)

    Karakoy, Mert; Gultepe, Evin; Pandey, Shivendra; Khashab, Mouen A.; Gracias, David H.

    2014-08-01

    Stent migration occurs in 10-40% of patients who undergo placement of esophageal stents, with higher migration rates seen in those treated for benign esophageal disorders. This remains a major drawback of esophageal stent therapy. In this paper, we propose a new surface modification method to increase the adhesion between self-expandable metallic stents (SEMS) and tissue while preserving their removability. Taking advantage of the well-known affinity between epoxide and amine terminated silane coupling agents with amine and carboxyl groups that are abundant in proteins and related molecules in the human body; we modified the surfaces of silicone coated esophageal SEMS with these adhesive self-assembled monolayers (SAMs). We utilized vapor phase silanization to modify the surfaces of different substrates including PDMS strips and SEMS, and measured the force required to slide these substrates on a tissue piece. Our results suggest that surface modification of esophageal SEMS via covalent attachment of protein-binding coupling agents improves adhesion to tissue and could offer a solution to reduce SEMS migration while preserving their removability.

  13. Dependence of nitrite oxidation on nitrite and oxygen in low-oxygen seawater

    NASA Astrophysics Data System (ADS)

    Sun, Xin; Ji, Qixing; Jayakumar, Amal; Ward, Bess B.

    2017-08-01

    Nitrite oxidation is an essential step in transformations of fixed nitrogen. The physiology of nitrite oxidizing bacteria (NOB) implies that the rates of nitrite oxidation should be controlled by concentration of their substrate, nitrite, and the terminal electron acceptor, oxygen. The sensitivities of nitrite oxidation to oxygen and nitrite concentrations were investigated using 15N tracer incubations in the Eastern Tropical North Pacific. Nitrite stimulated nitrite oxidation under low in situ nitrite conditions, following Michaelis-Menten kinetics, indicating that nitrite was the limiting substrate. The nitrite half-saturation constant (Ks = 0.254 ± 0.161 μM) was 1-3 orders of magnitude lower than in cultivated NOB, indicating higher affinity of marine NOB for nitrite. The highest rates of nitrite oxidation were measured in the oxygen depleted zone (ODZ), and were partially inhibited by additions of oxygen. This oxygen sensitivity suggests that ODZ specialist NOB, adapted to low-oxygen conditions, are responsible for apparently anaerobic nitrite oxidation.

  14. Choline Uptake in Agrobacterium tumefaciens by the High-Affinity ChoXWV Transporter▿

    PubMed Central

    Aktas, Meriyem; Jost, Kathinka A.; Fritz, Christiane; Narberhaus, Franz

    2011-01-01

    Agrobacterium tumefaciens is a facultative phytopathogen that causes crown gall disease. For successful plant transformation A. tumefaciens requires the membrane lipid phosphatidylcholine (PC), which is produced via the methylation and the PC synthase (Pcs) pathways. The latter route is dependent on choline. Although choline uptake has been demonstrated in A. tumefaciens, the responsible transporter(s) remained elusive. In this study, we identified the first choline transport system in A. tumefaciens. The ABC-type choline transporter is encoded by the chromosomally located choXWV operon (ChoX, binding protein; ChoW, permease; and ChoV, ATPase). The Cho system is not critical for growth and PC synthesis. However, [14C]choline uptake is severely reduced in A. tumefaciens choX mutants. Recombinant ChoX is able to bind choline with high affinity (equilibrium dissociation constant [KD] of ≈2 μM). Since other quaternary amines are bound by ChoX with much lower affinities (acetylcholine, KD of ≈80 μM; betaine, KD of ≈470 μM), the ChoXWV system functions as a high-affinity transporter with a preference for choline. Two tryptophan residues (W40 and W87) located in the predicted ligand-binding pocket are essential for choline binding. The structural model of ChoX built on Sinorhizobium meliloti ChoX resembles the typical structure of substrate binding proteins with a so-called “Venus flytrap mechanism” of substrate binding. PMID:21803998

  15. Selective affinity labeling of a 27-kDa integral membrane protein in rat liver and kidney with N-bromoacetyl derivatives of L-thyroxine and 3,5,3'-triiodo-L-thyronine.

    PubMed

    Köhrle, J; Rasmussen, U B; Rokos, H; Leonard, J L; Hesch, R D

    1990-04-15

    125I-Labeled N-bromoacetyl derivatives of L-thyroxine and L-triiodothyronine were used as alkylating affinity labels to identify rat liver and kidney microsomal membrane proteins which specifically bind thyroid hormones. Affinity label incorporation was analyzed by ethanol precipitation and individual affinity labeled proteins were identified by autoradiography after separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions. Six to eight membrane proteins ranging in size from 17 to 84 kDa were affinity labeled by both bromoacetyl-L-thyroxine (BrAcT4) and bromoacetyl-L-triiodothyronine (BrAcT3). Affinity labeling was time- and temperature-dependent, and both reduced dithiols and detergents increased affinity labeling, predominantly in a 27-kDa protein(s). Up to 80% of the affinity label was associated with a 27-kDa protein (p27) under optimal conditions. Affinity labeling of p27 by 0.4 nM BrAc[125I]L-T4 was blocked by 0.1 microM of the alkylating ligands BrAcT4, BrAcT3, or 100 microM iodoacetate, by 10 microM concentrations of the non-alkylating, reversible ligands N-acetyl-L-thyroxine, 3,3',5'-triiodothyronine, 3,5-diiodosalicylate, and EMD 21388, a T4-antagonistic flavonoid. Neither 10 microM L-T4, nor 10 microM N-acetyltriiodothyronine or 10 microM L-triiodothyronine blocked affinity labeling of p27 or other affinity labeled bands. Affinity labeling of a 17-kDa band was partially inhibited by excess of the alkylating ligands BrAcT4, BrAcT3, and iodoacetate, but labeling of other minor bands was not blocked by excess of the competitors. BrAc[125I]T4 yielded higher affinity label incorporation than BrAc[125I]T3, although similar banding patterns were observed, except that BrAcT3 affinity labeled more intensely a 58,000-Da band in liver and a 53,000-55,000-Da band in kidney. The pattern of other affinity labeled proteins with p27 as the predominant band was similar in liver and kidney. Peptide mapping of affinity labeled p27 and p55 bands by chemical cleavage and protease fragmentation revealed no common bands excluding that p27 is a degradation product of p55. These data indicate that N-bromoacetyl derivatives of T4 and T3 affinity label a limited but similar constellation of membrane proteins with BrAcT4 incorporation greater than that of BrAcT3. One membrane protein (p27) of low abundance (2-5 pmol/mg microsomal protein) with a reactive sulfhydryl group is selectively labeled under conditions identical to those used to measure thyroid hormone 5'-deiodination. Only p27 showed differential affinity labeling in the presence of noncovalently bound inhibitors or substrates on 5'-deiodinase suggesting that p27 is likely to be a component of type I 5'-deiodinase in rat liver and kidney.

  16. Influence of active site location on catalytic activity in de novo-designed zinc metalloenzymes.

    PubMed

    Zastrow, Melissa L; Pecoraro, Vincent L

    2013-04-17

    While metalloprotein design has now yielded a number of successful metal-bound and even catalytically active constructs, the question of where to put a metal site along a linear, repetitive sequence has not been thoroughly addressed. Often several possibilities in a given sequence may exist that would appear equivalent but may in fact differ for metal affinity, substrate access, or protein dynamics. We present a systematic variation of active site location for a hydrolytically active ZnHis3O site contained within a de novo-designed three-stranded coiled coil. We find that the maximal rate, substrate access, and metal-binding affinity are dependent on the selected position, while catalytic efficiency for p-nitrophenyl acetate hydrolysis can be retained regardless of the location of the active site. This achievement demonstrates how efficient, tailor-made enzymes which control rate, pKa, substrate and solvent access (and selectivity), and metal-binding affinity may be realized. These findings may be applied to the more advanced de novo design of constructs containing secondary interactions, such as hydrogen-bonding channels. We are now confident that changes to location for accommodating such channels can be achieved without location-dependent loss of catalytic efficiency. These findings bring us closer to our ultimate goal of incorporating the secondary interactions we believe will be necessary in order to improve both active site properties and the catalytic efficiency to be competitive with the native enzyme, carbonic anhydrase.

  17. Investigation of Classical Organic and Ionic Liquid Cosolvents for Early-Stage Screening in Fragment-Based Inhibitor Design with Unrelated Bacterial and Human Dihydrofolate Reductases.

    PubMed

    Toulouse, Jacynthe L; Abraham, Sarah M J; Kadnikova, Natalia; Bastien, Dominic; Gauchot, Vincent; Schmitzer, Andreea R; Pelletier, Joelle N

    Drug design by methods such as fragment screening requires effective solubilization of millimolar concentrations of small organic compounds while maintaining the properties of the biological target. We investigate four organic solvents and three 1-butyl-3-methylimidazolium (BMIm)-based ionic liquids (ILs) as cosolvents to establish conditions for screening two structurally unrelated dihydrofolate reductases (DHFRs) that are prime drug targets. Moderate concentrations (10%-15%) of cosolvents had little effect on inhibition of the microbial type II R67 DHFR and of human DHFR (hDHFR), while higher concentrations of organic cosolvents generally decreased activity of both DHFRs. In contrast, a specific IL conserved the activity of one DHFR, while severely reducing the activity of the other, and vice versa, illustrating the differing effect of ILs on distinct protein folds. Most of the cosolvents investigated preserved the fold of R67 DHFR and had little effect on binding of the cofactor NADPH, but reduced the productive affinity for its substrate. In contrast, cosolvents resulted in modest structural destabilization of hDHFR with little effect on productive affinity. We conclude that the organic cosolvents, methanol, dimethylformamide, and dimethylsulfoxide, offer the most balanced conditions for early-stage compound screening as they maintain sufficient biological activity of both DHFRs while allowing for compound dissolution in the millimolar range. However, IL cosolvents showed poor capacity to solubilize organic compounds at millimolar concentrations, mitigating their utility in early-stage screening. Nonetheless, ILs could provide an alternative to classical organic cosolvents when low concentrations of inhibitors are used, as when characterizing higher affinity inhibitors.

  18. Evidence for the role of Mycobacterium tuberculosis RecG helicase in DNA repair and recombination.

    PubMed

    Thakur, Roshan S; Basavaraju, Shivakumar; Somyajit, Kumar; Jain, Akshatha; Subramanya, Shreelakshmi; Muniyappa, Kalappa; Nagaraju, Ganesh

    2013-04-01

    In order to survive and replicate in a variety of stressful conditions during its life cycle, Mycobacterium tuberculosis must possess mechanisms to safeguard the integrity of the genome. Although DNA repair and recombination related genes are thought to play key roles in the repair of damaged DNA in all organisms, so far only a few of them have been functionally characterized in the tubercle bacillus. In this study, we show that M. tuberculosis RecG (MtRecG) expression was induced in response to different genotoxic agents. Strikingly, expression of MtRecG in Escherichia coli ∆recG mutant strain provided protection against mitomycin C, methyl methane sulfonate and UV induced cell death. Purified MtRecG exhibited higher binding affinity for the Holliday junction (HJ) compared with a number of canonical recombinational DNA repair intermediates. Notably, although MtRecG binds at the core of the mobile and immobile HJs, and with higher binding affinity for the immobile HJ, branch migration was evident only in the case of the mobile HJ. Furthermore, immobile HJs stimulate MtRecG ATPase activity less efficiently than mobile HJs. In addition to HJ substrates, MtRecG exhibited binding affinity for a variety of branched DNA structures including three-way junctions, replication forks, flap structures, forked duplex and a D-loop structure, but demonstrated strong unwinding activity on replication fork and flap DNA structures. Together, these results support that MtRecG plays an important role in processes related to DNA metabolism under normal as well as stress conditions. © 2013 The Authors Journal compilation © 2013 FEBS.

  19. Mechanism of preferential packaging of negative sense genomic RNA by viral nucleoproteins in Crimean-Congo hemorrhagic Fever virus.

    PubMed

    Dayer, Mohammad Reza; Dayer, Mohammad Saaid; Rezatofighi, Seyedeh Elham

    2015-04-01

    The Crimean-Congo Hemorrhagic Fever (CCHF) is an infectious disease of high virulence and mortality caused by a negative sense RNA nairovirus. The genomic RNA of CCHFV is enwrapped by its nucleoprotein. Positively charged residues on CCHFV nucleoprotein provide multiple binding sites to facilitate genomic RNA encapsidation. In the present work, we investigated the mechanism underlying preferential packaging of the negative sense genomic RNA by CCHFV nucleoprotein in the presence of host cell RNAs during viral assembly. The work included genome sequence analyses for different families of negative and positive sense RNA viruses, using serial docking experiments and molecular dynamic simulations. Our results indicated that the main determinant parameter of the nucleoprotein binding affinity for negative sense RNA is the ratio of purine/pyrimidine in the RNA molecule. A negative sense RNA with a purine/pyrimidine ratio (>1) higher than that of a positive sense RNA (<1) exhibits higher affinity for the nucleoprotein. Our calculations revealed that a negative sense RNA expresses about 0.5 kJ/mol higher binding energy per nucleotide compared to a positive sense RNA. This energy difference produces a binding energy high enough to make the negative sense RNA, the preferred substrate for packaging by CCHFV nucleoprotein in the presence of cellular or complementary positive sense RNAs. The outcome of this study may contribute to ongoing researches on other viral diseases caused by negative sense RNA viruses such as Ebola virus which poses a security threat to all humanity.

  20. Immobilizing affinity proteins to nitrocellulose: a toolbox for paper-based assay developers.

    PubMed

    Holstein, Carly A; Chevalier, Aaron; Bennett, Steven; Anderson, Caitlin E; Keniston, Karen; Olsen, Cathryn; Li, Bing; Bales, Brian; Moore, David R; Fu, Elain; Baker, David; Yager, Paul

    2016-02-01

    To enable enhanced paper-based diagnostics with improved detection capabilities, new methods are needed to immobilize affinity reagents to porous substrates, especially for capture molecules other than IgG. To this end, we have developed and characterized three novel methods for immobilizing protein-based affinity reagents to nitrocellulose membranes. We have demonstrated these methods using recombinant affinity proteins for the influenza surface protein hemagglutinin, leveraging the customizability of these recombinant "flu binders" for the design of features for immobilization. The three approaches shown are: (1) covalent attachment of thiolated affinity protein to an epoxide-functionalized nitrocellulose membrane, (2) attachment of biotinylated affinity protein through a nitrocellulose-binding streptavidin anchor protein, and (3) fusion of affinity protein to a novel nitrocellulose-binding anchor protein for direct coupling and immobilization. We also characterized the use of direct adsorption for the flu binders, as a point of comparison and motivation for these novel methods. Finally, we demonstrated that these novel methods can provide improved performance to an influenza hemagglutinin assay, compared to a traditional antibody-based capture system. Taken together, this work advances the toolkit available for the development of next-generation paper-based diagnostics.

  1. Omega-oxidation impairs oxidizability of polyenoic fatty acids by 15-lipoxygenases: consequences for substrate orientation at the active site.

    PubMed Central

    Ivanov, I; Schwarz, K; Holzhütter, H G; Myagkova, G; Kühn, H

    1998-01-01

    During oxygenation by 15-lipoxygenases, polyenoic fatty acids are bound at the active site in such a way that the omega-terminus of the fatty acids penetrates into the substrate binding pocket. In contrast, for arachidonic acid 5-lipoxygenation, an inverse head to tail orientation has been suggested. However, an inverse orientation may be hindered by the large energy barrier associated with burying the charged carboxylate group in the hydrophobic environment of the substrate binding cleft. We studied the oxygenation kinetics of omega-modified fatty acids by 15-lipoxygenases and found that omega-hydroxylation strongly impaired substrate affinity (higher Km), but only moderately altered Vmax. In contrast, omega-carboxylation completely prevented the lipoxygenase reaction; however, methylation of the additional carboxylate group restored the activity. Arg403 of the human 15-lipoxygenase has been implicated in fatty acid binding by forming a salt bridge with the carboxylate group, and thus mutation of this amino acid to an uncharged residue was supposed to favour an inverse substrate orientation. The prepared Arg403-->Leu mutant of the rabbit 15-lipoxygenase was found to be a less effective catalyst of linoleic acid oxygenation. However, the oxygenation rate of omega-hydroxyarachidonic acid was similar when the wild-type and mutant enzyme were compared, and the patterns of oxygenation products were identical for both enzyme species. These data suggest that introduction of a polar, or even charged residue, at the omega-terminus of substrate fatty acids in connection with mutation of Arg403 may not alter substrate alignment at the active site of 15-lipoxygenases. PMID:9820810

  2. Mechanism of substrate specificity in 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidases

    PubMed Central

    Siu, Karen K.W.; Asmus, Kyle; Zhang, Allison N.; Horvatin, Cathy; Li, Sheng; Liu, Tong; Moffatt, Barbara; Woods, Virgil L.; Howell, P. Lynne

    2010-01-01

    5′-Methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidase (MTAN) plays a key role in the methionine-recycling pathway of bacteria and plants. Despite extensive structural and biochemical studies, the molecular mechanism of substrate specificity for MTAN remains an outstanding question. Bacterial MTANs show comparable efficiency in hydrolyzing MTA and SAH, while the plant enzymes select preferentially for MTA, with either no or significantly reduced activity towards SAH. Bacterial and plant MTANs show significant conservation in the overall structure, and the adenine- and ribose-binding sites. The observation of a more constricted 5′-alkylthio binding site in Arabidopsis thaliana AtM-TAN1 and AtMTAN2, two plant MTAN homologues, led to the hypothesis that steric hindrance may play a role in substrate selection in plant MTANs. We show using isothermal titration calorimetry that SAH binds to both Escherichia coli MTAN (EcMTAN) and AtMTAN1 with comparable micromolar affinity. To understand why AtMTAN1 can bind but not hydrolyze SAH, we determined the structure of the protein–SAH complex at 2.2 Å resolution. The lack of catalytic activity appears to be related to the enzyme’s inability to bind the substrate in a catalytically competent manner. The role of dynamics in substrate selection was also examined by probing the amide proton exchange rates of EcMTAN and AtMTAN1 via deuterium–hydrogen exchange coupled mass spectrometry. These results correlate with the B factors of available structures and the thermodynamic parameters associated with substrate binding, and suggest a higher level of conformational flexibility in the active site of EcMTAN. Our results implicate dynamics as an important factor in substrate selection in MTAN. PMID:20554051

  3. Method of producing catalytic material for fabricating nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seals, Roland D.; Menchhofer, Paul A.; Howe, Jane Y.

    Methods of fabricating nano-catalysts are described. In some embodiments the nano-catalyst is formed from a powder-based substrate material and is some embodiments the nano-catalyst is formed from a solid-based substrate material. In some embodiments the substrate material may include metal, ceramic, or silicon or another metalloid. The nano-catalysts typically have metal nanoparticles disposed adjacent the surface of the substrate material. The methods typically include functionalizing the surface of the substrate material with a chelating agent, such as a chemical having dissociated carboxyl functional groups (--COO), that provides an enhanced affinity for metal ions. The functionalized substrate surface may then bemore » exposed to a chemical solution that contains metal ions. The metal ions are then bound to the substrate material and may then be reduced, such as by a stream of gas that includes hydrogen, to form metal nanoparticles adjacent the surface of the substrate.« less

  4. Method of producing catalytic materials for fabricating nanostructures

    DOEpatents

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2013-02-19

    Methods of fabricating nano-catalysts are described. In some embodiments the nano-catalyst is formed from a powder-based substrate material and is some embodiments the nano-catalyst is formed from a solid-based substrate material. In some embodiments the substrate material may include metal, ceramic, or silicon or another metalloid. The nano-catalysts typically have metal nanoparticles disposed adjacent the surface of the substrate material. The methods typically include functionalizing the surface of the substrate material with a chelating agent, such as a chemical having dissociated carboxyl functional groups (--COO), that provides an enhanced affinity for metal ions. The functionalized substrate surface may then be exposed to a chemical solution that contains metal ions. The metal ions are then bound to the substrate material and may then be reduced, such as by a stream of gas that includes hydrogen, to form metal nanoparticles adjacent the surface of the substrate.

  5. Efficient RNA pseudouridylation by eukaryotic H/ACA ribonucleoproteins requires high affinity binding and correct positioning of guide RNA

    PubMed Central

    Caton, Evan A; Kelly, Erin K; Kamalampeta, Rajashekhar

    2018-01-01

    Abstract H/ACA ribonucleoproteins (H/ACA RNPs) are responsible for introducing many pseudouridines into RNAs, but are also involved in other cellular functions. Utilizing a purified and reconstituted yeast H/ACA RNP system that is active in pseudouridine formation under physiological conditions, we describe here the quantitative characterization of H/ACA RNP formation and function. This analysis reveals a surprisingly tight interaction of H/ACA guide RNA with the Cbf5p–Nop10p–Gar1p trimeric protein complex whereas Nhp2p binds comparably weakly to H/ACA guide RNA. Substrate RNA is bound to H/ACA RNPs with nanomolar affinity which correlates with the GC content in the guide-substrate RNA base pairing. Both Nhp2p and the conserved Box ACA element in guide RNA are required for efficient pseudouridine formation, but not for guide RNA or substrate RNA binding. These results suggest that Nhp2p and the Box ACA motif indirectly facilitate loading of the substrate RNA in the catalytic site of Cbf5p by correctly positioning the upper and lower parts of the H/ACA guide RNA on the H/ACA proteins. In summary, this study provides detailed insight into the molecular mechanism of H/ACA RNPs. PMID:29177505

  6. Thermodynamically based solvent design for enzymatic saccharide acylation with hydroxycinnamic acids in non-conventional media.

    PubMed

    Zeuner, Birgitte; Kontogeorgis, Georgios M; Riisager, Anders; Meyer, Anne S

    2012-02-15

    Enzyme-catalyzed synthesis has been widely studied with lipases (EC 3.1.1.3), but feruloyl esterases (FAEs; EC 3.1.1.73) may provide advantages such as higher substrate affinity and regioselectivity in the synthesis of hydroxycinnamate saccharide esters. These compounds are interesting because of their amphiphilicity and antioxidative potential. Synthetic reactions using mono- or disaccharides as one of the substrates may moreover direct new routes for biomass upgrading in the biorefinery. The paper reviews the available data for enzymatic hydroxycinnamate saccharide ester synthesis in organic solvent systems as well as other enzymatic hydroxycinnamate acylations in ionic liquid systems. The choice of solvent system is highly decisive for enzyme stability, selectivity, and reaction yields in these synthesis reactions. To increase the understanding of the reaction environment and to facilitate solvent screening as a crucial part of the reaction design, the review explores the use of activity coefficient models for describing these systems and - more importantly - the use of group contribution model UNIFAC and quantum chemistry based COSMO-RS for thermodynamic predictions and preliminary solvent screening. Surfactant-free microemulsions of a hydrocarbon, a polar alcohol, and water are interesting solvent systems because they accommodate different substrate and product solubilities and maintain enzyme stability. Ionic liquids may provide advantages as solvents in terms of increased substrate and product solubility, higher reactivity and selectivity, as well as tunable physicochemical properties, but their design should be carefully considered in relation to enzyme stability. The treatise shows that thermodynamic modeling tools for solvent design provide a new toolbox to design enzyme-catalyzed synthetic reactions from biomass sources. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Harnessing the glucosyltransferase activities of Clostridium difficile for functional studies of toxins A and B.

    PubMed

    Darkoh, Charles; Kaplan, Heidi B; Dupont, Herbert L

    2011-08-01

    The incidence of Clostridium difficile infection (CDI) has been increasing within the last decade. Pathogenic strains of C. difficile produce toxin A and/or toxin B, which are important virulence factors in the pathogenesis of this bacterium. Current methods for diagnosing CDI are mostly qualitative tests that detect either the bacterium or the toxins. We have developed an assay (Cdifftox activity assay) to detect C. difficile toxin A and B activities that is quantitative and cost-efficient and utilizes a substrate that is stereochemically similar to the native substrate of the toxins (UDP-glucose). To characterize toxin activity, toxins A and B were purified from culture supernatants by ammonium sulfate precipitation and chromatography through DEAE-Sepharose and gel filtration columns. The activities of the final fractions were quantitated using the Cdifftox activity assay and compared to the results of a toxin A- and B-specific enzyme-linked immunosorbent assay (ELISA). The affinity for the substrate was >4-fold higher for toxin B than for toxin A. Moreover, the rate of cleavage of the substrate was 4.3-fold higher for toxin B than for toxin A. The optimum temperature for both toxins ranged from 35 to 40°C at pH 8. Culture supernatants from clinical isolates obtained from the stools of patients suspected to be suffering from CDI were tested using the Cdifftox activity assay, and the results were compared to those of ELISA and PCR amplification of the toxin genes. Our results demonstrate that this new assay is comparable to the current commercial ELISA for detecting the toxins in the samples tested and has the added advantage of quantitating toxin activity.

  8. Selection of High-Affinity Peptidic Serine Protease Inhibitors with Increased Binding Entropy from a Back-Flip Library of Peptide-Protease Fusions.

    PubMed

    Sørensen, Hans Peter; Xu, Peng; Jiang, Longguang; Kromann-Hansen, Tobias; Jensen, Knud J; Huang, Mingdong; Andreasen, Peter A

    2015-09-25

    We have developed a new concept for designing peptidic protein modulators, by recombinantly fusing the peptidic modulator, with randomized residues, directly to the target protein via a linker and screening for internal modulation of the activity of the protein. We tested the feasibility of the concept by fusing a 10-residue-long, disulfide-bond-constrained inhibitory peptide, randomized in selected positions, to the catalytic domain of the serine protease murine urokinase-type plasminogen activator. High-affinity inhibitory peptide variants were identified as those that conferred to the fusion protease the lowest activity for substrate hydrolysis. The usefulness of the strategy was demonstrated by the selection of peptidic inhibitors of murine urokinase-type plasminogen activator with a low nanomolar affinity. The high affinity could not have been predicted by rational considerations, as the high affinity was associated with a loss of polar interactions and an increased binding entropy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The functional divergence of short-chain dehydrogenases involved in tropinone reduction.

    PubMed

    Brock, Andrea; Brandt, Wolfgang; Dräger, Birgit

    2008-05-01

    Tropane alkaloids typically occur in the Solanaceae and are also found in Cochlearia officinalis, a member of the Brassicaceae. Tropinone reductases are key enzymes of tropane alkaloid metabolism. Two different tropinone reductases form one stereoisomeric product each, either tropine for esterified alkaloids or pseudotropine that is converted to calystegines. A cDNA sequence with similarity to known tropinone reductases (TR) was cloned from C. officinalis. The protein was expressed in Escherichia coli, and found to catalyze the reduction of tropinone. The enzyme is a member of the short-chain dehydrogenase enzyme family and shows broad substrate specificity. Several synthetic ketones were accepted as substrates, with higher affinity and faster enzymatic turnover than observed for tropinone. C. officinalis TR produced both the isomeric alcohols tropine and pseudotropine from tropinone using NADPH + H(+) as co-substrate. Tropinone reductases of the Solanaceae, in contrast, are strictly stereospecific and form one tropane alcohol only. The Arabidopsis thaliana homologue of C. officinalis TR showed high sequence similarity, but did not reduce tropinone. A tyrosine residue was identified in the active site of C. officinalis TR that appeared responsible for binding and orientation of tropinone. Mutagenesis of the tyrosine residue yielded an active reductase, but with complete loss of TR activity. Thus C. officinalis TR presents an example of an enzyme with relaxed substrate specificity, like short-chain dehydrogenases, that provides favorable preconditions for the evolution of novel functions in biosynthetic sequences.

  10. Characterization of a beta-glycosidase highly active on disaccharides and of a beta-galactosidase from Tenebrio molitor midgut lumen.

    PubMed

    Ferreira, Alexandre H P; Terra, Walter R; Ferreira, Clélia

    2003-02-01

    The midgut of the yellow mealworm, Tenebrio molitor L. (Coleoptera: Tenebrionidae) larvae has four beta-glycosidases. The properties of two of these enzymes (betaGly1 and betaGly2) have been described elsewhere. In this paper, the characterization of the other two glycosidases (betaGly3 and betaGly4) is described. BetaGly3 has one active site, hydrolyzes disaccharides, cellodextrins, synthetic substrates and beta-glucosides produced by plants. The enzyme is inhibited by amygdalin, cellotriose, cellotetraose and cellopentaose in high concentrations, probably due to transglycosylation. betaGly3 hydrolyzes beta 1,4-glycosidic linkages with a catalytic rate independent of the substrate polymerization degree (k(int)) of 11.9 s(-1). Its active site is formed by four subsites, where subsites +1 and -1 bind glucose residues with higher affinity than subsite +2. The main role of betaGly3 seems to be disaccharide hydrolysis. BetaGly4 is a beta-galactosidase, since it has highest activity against beta-galactosides. It can also hydrolyze fucosides, but not glucosides, and has Triton X-100 as a non-essential activator (K(a)=15 microM, pH 4.5). betaGly4 has two active sites that can hydrolyze p-nitrophenyl beta-galactoside (NPbetaGal). The one hydrolyzing NPbetaGal with more efficiency is also active against methylumbellipheryl beta-D-galactoside and lactose. The other active site hydrolyzes NPbetaFucoside and binds NPbetaGal weakly. BetaGly4 hydrolyzes hydrophobic substrates with high catalytical efficiency and is able to bind octyl-beta-thiogalactoside in its active site with high affinity. The betaGly4 physiological role is supposed to be the hydrolysis of galactolipids that are found in membranes from vegetal tissues. As the enzyme has a hydrophobic site where Triton X-100 can bind, it might be activated by membrane lipids, thus becoming fully active only at the surface of cell membranes.

  11. Evaluation of affinity and pseudo-affinity adsorption processes for penicillin acylase purification.

    PubMed

    Fonseca, L P; Cabral, J M

    1996-01-01

    Affinity ligand (6-Aminopenicillanic acid, Amoxycillin, Ampicillin, Benzylpenicillin and 4-Phenylbutylanzine) of penicillin acylase (EC 3.5.1.11) were attached to hydrophilic gels like Sepharose 4B-CNBr and Minileak 'medium'. Ampicillin and 4-Phenylbutylamine were the affinity ligands that presented the higher concentrations attached to both gels. Penicillin acylase adsorption on these affinity gels was mainly dependent on the activated group of the gel, the affinity ligand attached and the experimental conditions of enzyme adsorption. Under affinity conditions only the ligands Amoxycillin, Ampicillin and 4-Phenylbutylamine, immobilized on Minileak, adsorbed the enzyme from osmotic shock extracts at different pH values. These affinity ligand systems were characterized by low adsorption capacities of penicillin acylase activity (1.2-2.1 IU mL-1 gel) and specific activity (1.5-2.9 IU mg-1 prot). Under pseudo-affinity conditions all the ligands attached both activated to gels (Sepharose 4B-CNBr and Minileak) adsorbed the enzyme. The affinity gels were characterized by higher values of adsorption capacity (3.7 and 55.6 IU mL-1 gel) and adsorbed specific activity (2.0 and 6.1 IU mg-1 prot) than those observed under affinity conditions. The space arm of Minileak gel, shown to be fundamental to enzyme adsorption under affinity conditions, preferentially adsorbed proteins in relation to the enzyme under pseudo-affinity conditions. However, this effect was partially minimized when the gel was derivatized by the affinity ligands at concentrations higher than 6 mumol mL-1 gel. Ampicillin was the affinity ligand that presented the best results for specific adsorption of penicillin acylase under affinity and pseudo-affinity adsorption processes. The Sepharose 4B-CNBr derivatized gel also presented a good adsorption capacity of enzyme activity (26.8 IU mL-1 gel) under pseudo-affinity adsorption processes.

  12. Sulfated Metabolites of Polychlorinated Biphenyls Are High-Affinity Ligands for the Thyroid Hormone Transport Protein Transthyretin

    PubMed Central

    Grimm, Fabian A.; Lehmler, Hans-Joachim; He, Xianran; Robertson, Larry W.

    2013-01-01

    Background: The displacement of l-thyroxine (T4) from binding sites on transthyretin (TTR) is considered a significant contributing mechanism in polychlorinated biphenyl (PCB)-induced thyroid disruption. Previous research has discovered hydroxylated PCB metabolites (OH-PCBs) as high-affinity ligands for TTR, but the binding potential of conjugated PCB metabolites such as PCB sulfates has not been explored. Objectives: We evaluated the binding of five lower-chlorinated PCB sulfates to human TTR and compared their binding characteristics to those determined for their OH-PCB precursors and for T4. Methods: We used fluorescence probe displacement studies and molecular docking simulations to characterize the binding of PCB sulfates to TTR. The stability of PCB sulfates and the reversibility of these interactions were characterized by HPLC analysis of PCB sulfates after their binding to TTR. The ability of OH-PCBs to serve as substrates for human cytosolic sulfotransferase 1A1 (hSULT1A1) was assessed by OH-PCB–dependent formation of adenosine-3´,5´-diphosphate, an end product of the sulfation reaction. Results: All five PCB sulfates were able to bind to the high-affinity binding site of TTR with equilibrium dissociation constants (Kd values) in the low nanomolar range (4.8–16.8 nM), similar to that observed for T4 (4.7 nM). Docking simulations provided corroborating evidence for these binding interactions and indicated multiple high-affinity modes of binding. All OH-PCB precursors for these sulfates were found to be substrates for hSULT1A1. Conclusions: Our findings show that PCB sulfates are high-affinity ligands for human TTR and therefore indicate, for the first time, a potential relevance for these metabolites in PCB-induced thyroid disruption. PMID:23584369

  13. Toxicological and biochemical characterizations of AChE in phosalone-susceptible and resistant populations of the common pistachio psyllid, Agonoscena pistaciae

    PubMed Central

    Alizadeh, Ali; Talebi-Jahromi, Khalil; Hosseininaveh, Vahid; Ghadamyari, Mohammad

    2014-01-01

    Abstract The toxicological and biochemical characteristics of acetylcholinesterases (AChE) in nine populations of the common pistachio psyllid, Agonoscena pistaciae Burckhardt and Lauterer (Hemiptera: Psyllidae), were investigated in Kerman Province, Iran. Nine A. pistaciae populations were collected from pistachio orchards, Pistacia vera L. (Sapindales: Anacardiaceae), located in Rafsanjan, Anar, Bam, Kerman, Shahrbabak, Herat, Sirjan, Pariz, and Paghaleh regions of Kerman province. The previous bioassay results showed these populations were susceptible or resistant to phosalone, and the Rafsanjan population was most resistant, with a resistance ratio of 11.3. The specific activity of AChE in the Rafsanjan population was significantly higher than in the susceptible population (Bam). The affinity ( KM ) and hydrolyzing efficiency ( Vmax ) of AChE on acetylthiocholine iodide, butyrylthiocholine iodide, and propionylthiocholine odide as artificial substrates were clearly lower in the Bam population than that in the Rafsanjan population. These results indicated that the AChE of the Rafsanjan population had lower affinity to these substrates than that of the susceptible population. The higher Vmax value in the Rafsanjan population compared to the susceptible population suggests a possible over expression of AChE in the Rafsanjan population. The in vitro inhibitory effect of several organophosphates and carbamates on AChE of the Rafsanjan and Bam populations was determined. Based on I50, the results showed that the ratios of AChE insensitivity of the resistant to susceptible populations were 23 and 21.7-fold to monocrotophos and phosphamidon, respectively. Whereas, the insensitivity ratios for Rafsanjan population were 0.86, 0.8, 0.78, 0.46, and 0.43 for carbaryl, eserine, propoxur, m-tolyl methyl carbamate, and carbofuran, respectively, suggesting negatively correlated sensitivity to organophosphate-insensitive AChE. Therefore, AChE from the Rafsanjan population showed negatively correlated sensitivity, being insensitive to phosphamidon and monocrotophos and sensitive to N -methyl carbamates. PMID:25373165

  14. Higher spins and Yangian symmetries

    DOE PAGES

    Gaberdiel, Matthias R.; Gopakumar, Rajesh; Li, Wei; ...

    2017-04-26

    The relation between the bosonic higher spin W∞[λ]W∞[λ] algebra, the affine Yangian of gl 1, and the SH c algebra is established in detail. For generic λ we find explicit expressions for the low-lying W∞[λ] modes in terms of the affine Yangian generators, and deduce from this the precise identification between λ and the parameters of the affine Yangian. Furthermore, for the free field cases corresponding to λ = 0 and λ = 1 we give closed-form expressions for the affine Yangian generators in terms of the free fields. Interestingly, the relation between the W∞ modes and those of themore » affine Yangian is a non-local one, in general. We also establish the explicit dictionary between the affine Yangian and the SH c generators. Lastly, given that Yangian algebras are the hallmark of integrability, these identifications should pave the way towards uncovering the relation between the integrable and the higher spin symmetries.« less

  15. Molecular mechanisms for generating transmembrane proton gradients

    PubMed Central

    Gunner, M.R.; Amin, Muhamed; Zhu, Xuyu; Lu, Jianxun

    2013-01-01

    Membrane proteins use the energy of light or high energy substrates to build a transmembrane proton gradient through a series of reactions leading to proton release into the lower pH compartment (P-side) and proton uptake from the higher pH compartment (N-side). This review considers how the proton affinity of the substrates, cofactors and amino acids are modified in four proteins to drive proton transfers. Bacterial reaction centers (RCs) and photosystem II (PSII) carry out redox chemistry with the species to be oxidized on the P-side while reduction occurs on the N-side of the membrane. Terminal redox cofactors are used which have pKas that are strongly dependent on their redox state, so that protons are lost on oxidation and gained on reduction. Bacteriorhodopsin is a true proton pump. Light activation triggers trans to cis isomerization of a bound retinal. Strong electrostatic interactions within clusters of amino acids are modified by the conformational changes initiated by retinal motion leading to changes in proton affinity, driving transmembrane proton transfer. Cytochrome c oxidase (CcO) catalyzes the reduction of O2 to water. The protons needed for chemistry are bound from the N-side. The reduction chemistry also drives proton pumping from N- to P-side. Overall, in CcO the uptake of 4 electrons to reduce O2 transports 8 charges across the membrane, with each reduction fully coupled to removal of two protons from the N-side, the delivery of one for chemistry and transport of the other to the P-side. PMID:23507617

  16. A green approach to the synthesis of novel ``Desert rose stone''-like nanobiocatalytic system with excellent enzyme activity and stability

    NASA Astrophysics Data System (ADS)

    Wang, Min; Bao, Wen-Jing; Wang, Jiong; Wang, Kang; Xu, Jing-Juan; Chen, Hong-Yuan; Xia, Xing-Hua

    2014-10-01

    3D hierarchical layer double hydroxides (LDHs) have attracted extensive interest due to their unique electronic and catalytic properties. Unfortunately, the existing preparation methods require high temperature or toxic organic compounds, which limits the applications of the 3D hierarchical LDHs in biocatalysis and biomedicine. Herein, we present a green strategy to synthesize ``Desert Rose Stone''-like Mg-Al-CO3 LDH nanoflowers in situ deposited on aluminum substrates via a coprecipitation method using atmospheric carbon dioxide. Using this method, we construct a novel ``Desert Rose Stone''-like nanobiocatalytic system by using HRP as the model enzyme. Compared with the free HRP, the HRP/Mg-Al-LDH nanobiocatalytic system exhibits higher catalytic activity and stability. A smaller apparent Michaelis-Menten constant (0.16 mM) of this system suggests that the encapsulated HRP shows higher affinity towards H2O2.

  17. AFRRI Reports, Second Quarter 1994

    DTIC Science & Technology

    1994-08-01

    the antrum wete immediately placed in sterile 0.9% NaCl, kept on ice, coded, and then prepared for culture, smears, and urease assay by homogeniza...high urease specific activity (>1 |J.mol- min-1 ■ mg protein-1) plus high-affinity substrate binding (Mi- chaelis constant [K^\\ < 1 mmol/L),27 in at...031, respectively), and the characteristic bacterial growth with high-activity product.on of a urease with tight substrate binding " was found in

  18. Multiple Metal Binding Domains Enhance the Zn(II) Selectivity of the Divalent Metal Ion Transporter AztA†

    PubMed Central

    Liu, Tong; Reyes-Caballero, Hermes; Li, Chenxi; Scott, Robert A.; Giedroc, David P.

    2013-01-01

    Transition metal-transporting P1B-type CPx ATPases play crucial roles in mediating metal homeostasis and resistance in all cells. The degree to which N-terminal metal binding domains (MBDs) confer metal specificity to the transporter is unclear. We show that the two MBDs of the Zn/Cd/Pb effluxing pump Anabaena AztA are functionally nonequivalent, but only with respect to zinc resistance. Inactivation of the a-MBD largely abrogates resistance to high intracellular Zn(II) levels, whereas inactivation of the b-MBD is not as deleterious. In contrast, inactivation of either the a- or b-MBD has little measurable impact on Cd(II) and Pb(II) resistance. The membrane proximal b-MBD binds Zn(II) with a higher affinity than the distal N-terminal a-MBD. Facile Zn(II)-specific intermolecular transfer from the a-MBD to the higher-affinity b-MBD is readily observed by 1H–15N HSQC spectroscopy. Unlike Zn(II), Cd(II) and Pb(II) form saturated 1:1 S4 or S3(O/N) complexes with AztAaHbH, where a single metal ion bridges the two MBDs. We propose that the tandem MBDs enhance Zn(II)-specific transport, while stabilizing a non-native inter-MBD Cd/Pb cross-linked structure that is a poor substrate and/or regulator for the transporter. PMID:17824670

  19. Why do receptor–ligand bonds in cell adhesion cluster into discrete focal-adhesion sites?

    DOE PAGES

    Gao, Zhiwen; Gao, Yanfei

    2016-05-14

    We report that cell adhesion often exhibits the clustering of the receptor–ligand bonds into discrete focal-adhesion sites near the contact edge, thus resembling a rosette shape or a contracting membrane anchored by a small number of peripheral forces. The ligands on the extracellular matrix are immobile, and the receptors in the cell plasma membrane consist of two types: high-affinity integrins (that bond to the substrate ligands and are immobile) and low-affinity integrins (that are mobile and not bonded to the ligands). Thus the adhesion energy density is proportional to the high-affinity integrin density. This paper provides a mechanistic explanation formore » the clustering/assembling of the receptor–ligand bonds from two main points: (1) the cellular contractile force leads to the density evolution of these two types of integrins, and results into a large high-affinity integrin density near the contact edge and (2) the front of a propagating crack into a decreasing toughness field will be unstable and wavy. From this fracture mechanics perspective, the chemomechanical equilibrium is reached when a small number of patches with large receptor–ligand bond density are anticipated to form at the cell periphery, as opposed to a uniform distribution of bonds on the entire interface. Finally, cohesive fracture simulations show that the de-adhesion force can be significantly enhanced by this nonuniform bond density field, but the de-adhesion force anisotropy due to the substrate elastic anisotropy is significantly reduced.« less

  20. Why do receptor–ligand bonds in cell adhesion cluster into discrete focal-adhesion sites?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Zhiwen; Gao, Yanfei

    We report that cell adhesion often exhibits the clustering of the receptor–ligand bonds into discrete focal-adhesion sites near the contact edge, thus resembling a rosette shape or a contracting membrane anchored by a small number of peripheral forces. The ligands on the extracellular matrix are immobile, and the receptors in the cell plasma membrane consist of two types: high-affinity integrins (that bond to the substrate ligands and are immobile) and low-affinity integrins (that are mobile and not bonded to the ligands). Thus the adhesion energy density is proportional to the high-affinity integrin density. This paper provides a mechanistic explanation formore » the clustering/assembling of the receptor–ligand bonds from two main points: (1) the cellular contractile force leads to the density evolution of these two types of integrins, and results into a large high-affinity integrin density near the contact edge and (2) the front of a propagating crack into a decreasing toughness field will be unstable and wavy. From this fracture mechanics perspective, the chemomechanical equilibrium is reached when a small number of patches with large receptor–ligand bond density are anticipated to form at the cell periphery, as opposed to a uniform distribution of bonds on the entire interface. Finally, cohesive fracture simulations show that the de-adhesion force can be significantly enhanced by this nonuniform bond density field, but the de-adhesion force anisotropy due to the substrate elastic anisotropy is significantly reduced.« less

  1. A nitrogen-dependent switch in the high affinity ammonium transport in Medicago truncatula.

    PubMed

    Straub, Daniel; Ludewig, Uwe; Neuhäuser, Benjamin

    2014-11-01

    Ammonium transporters (AMTs) are crucial for the high affinity primary uptake and translocation of ammonium in plants. In the model legume Medicago truncatula, the genomic set of AMT-type ammonium transporters comprises eight members. Only four genes were abundantly expressed in young seedlings, both in roots and shoots. While the expression of all AMTs in the shoot was not affected by the nitrogen availability, the dominating MtAMT1;1 gene was repressed by nitrogen in roots, despite that cellular nitrogen concentrations were far above deficiency levels. A contrasting de-repression by nitrogen was observed for MtAMT1;4 and MtAMT2;1, which were both expressed at intermediate level. Weak expression was found for MtAMT1;2 and MtAMT2;3, while the other AMTs were not detected in young seedlings. When expressed from their endogenous promoters, translational fusion proteins of MtAMT1;1 and MtAMT2;1 with green fluorescent protein were co-localized in the plasma membrane of rhizodermal cells, but also detected in cortical root layers. Both transporter proteins similarly functionally complemented a yeast strain that is deficient in high affinity ammonium transport, both at acidic and neutral pH. The uptake into yeast mediated by these transporters saturated with Km AMT1;1 = 89 µM and Km AMT2;1 = 123 µM, respectively. When expressed in oocytes, MtAMT1;1 mediated much larger (15)N-ammonium uptake than MtAMT2;1, but NH4 (+) currents were only recorded for MtAMT1;1. These currents saturated with a voltage-dependent Km = 90 µM at -80 mV. The cellular localization and regulation of the AMTs suggests that MtAMT1;1 encodes the major high affinity ammonium transporter gene in low nitrogen grown young M. truncatula roots and despite the similar localization and substrate affinity, MtAMT2;1 appears functionally distinct and more important at higher nitrogen supply.

  2. Crossing borders to bind proteins--a new concept in protein recognition based on the conjugation of small organic molecules or short peptides to polypeptides from a designed set.

    PubMed

    Baltzer, Lars

    2011-06-01

    A new concept for protein recognition and binding is highlighted. The conjugation of small organic molecules or short peptides to polypeptides from a designed set provides binder molecules that bind proteins with high affinities, and with selectivities that are equal to those of antibodies. The small organic molecules or peptides need to bind the protein targets but only with modest affinities and selectivities, because conjugation to the polypeptides results in molecules with dramatically improved binder performance. The polypeptides are selected from a set of only sixteen sequences designed to bind, in principle, any protein. The small number of polypeptides used to prepare high-affinity binders contrasts sharply with the huge libraries used in binder technologies based on selection or immunization. Also, unlike antibodies and engineered proteins, the polypeptides have unordered three-dimensional structures and adapt to the proteins to which they bind. Binder molecules for the C-reactive protein, human carbonic anhydrase II, acetylcholine esterase, thymidine kinase 1, phosphorylated proteins, the D-dimer, and a number of antibodies are used as examples to demonstrate that affinities are achieved that are higher than those of the small molecules or peptides by as much as four orders of magnitude. Evaluation by pull-down experiments and ELISA-based tests in human serum show selectivities to be equal to those of antibodies. Small organic molecules and peptides are readily available from pools of endogenous ligands, enzyme substrates, inhibitors or products, from screened small molecule libraries, from phage display, and from mRNA display. The technology is an alternative to established binder concepts for applications in drug development, diagnostics, medical imaging, and protein separation.

  3. Elucidation of the factors affecting the oxidative activity of Acremonium sp. HI-25 ascorbate oxidase by an electrochemical approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murata, Kenichi; Nakamura, Nobuhumi; Ohno, Hiroyuki

    Steady-state kinetics of Acremonium sp. HI-25 ascorbate oxidase toward p-hydroquinone derivatives have been examined by using an electrochemical analysis based on the theory of steady-state bioelectrocatalysis. The electrochemical technique has enabled one to examine the influence of electronic and chemical properties of substrates on the activity. It was proven that the oxidative activity of ascorbate oxidase was dominated by the highly selective substrate-binding affinity based on electrostatic interaction beyond the one-electron redox potential difference between ascorbate oxidase's type 1 copper site and substrate.

  4. Inter- and intra-variability of seed germination traits of Carpobrotus edulis N.E.Br. and its hybrid C. affine acinaciformis.

    PubMed

    Podda, Lina; Santo, Andrea; Mattana, Efisio; Mayoral, Olga; Bacchetta, Gianluigi

    2018-06-22

    Invasions by alien Carpobrotus spp. have been recognized as one of the most severe threats to Mediterranean-climate coastal ecosystems and Carpobrotus is considered one of the most widespread invasive alien genera in the Mediterranean Basin. The aims of this study were to characterize seed germination of both C. edulis and its hybrid C. affine acinaciformis, in terms of photoperiod, temperature and salinity. Inter- and intra-specific variability in the responses to photoperiod (12/12 h light and total darkness), constant temperatures (5, 10, 15, 20, 25°C) and an alternating temperature regime (25/10°C), salt stress (0, 125, 250, 500 mM NaCl) and the recovery of seed germination were evaluated for two seed lots of C. edulis and two of its hybrid C. affine acinaciformis. All the tested seed lots achieved higher germination percentages in the light, respect to total darkness. In relation to temperature, the two C. edulis seed lots did not show a preference, while the two C. affine acinaciformis seed lots differed in their germination response, one germinating more at the lowest temperatures (5 and 10°C) and one at the highest (20 and 25°C). For all the seed lots, highest germination occurred without NaCl (0 mM) and germination decreased with increasing salinity. Different germination requirements in saline substrate were not detected for C. edulis, while were observed for C. affine acinaciformis. Marked differences were detected in recovery responses between the two taxa. C. edulis demonstrated to have the ability to germinate in a wide time window during the year. This study identified significant differences in seed production, seed mass, germination requirements (temperature) and salinity tolerance for both C. edulis and C. affine acinaciformis. Our results indicated the extreme versatility of the hybrid forms to germinate in a wide range of natural conditions and habitats. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Unmasking tandem site interaction in human acetylcholinesterase. Substrate activation with a cationic acetanilide substrate.

    PubMed

    Johnson, Joseph L; Cusack, Bernadette; Davies, Matthew P; Fauq, Abdul; Rosenberry, Terrone L

    2003-05-13

    Acetylcholinesterase (AChE) contains a narrow and deep active site gorge with two sites of ligand binding, an acylation site (or A-site) at the base of the gorge, and a peripheral site (or P-site) near the gorge entrance. The P-site contributes to catalytic efficiency by transiently binding substrates on their way to the acylation site, where a short-lived acyl enzyme intermediate is produced. A conformational interaction between the A- and P-sites has recently been found to modulate ligand affinities. We now demonstrate that this interaction is of functional importance by showing that the acetylation rate constant of a substrate bound to the A-site is increased by a factor a when a second molecule of substrate binds to the P-site. This demonstration became feasible through the introduction of a new acetanilide substrate analogue of acetylcholine, 3-(acetamido)-N,N,N-trimethylanilinium (ATMA), for which a = 4. This substrate has a low acetylation rate constant and equilibrates with the catalytic site, allowing a tractable algebraic solution to the rate equation for substrate hydrolysis. ATMA affinities for the A- and P-sites deduced from the kinetic analysis were confirmed by fluorescence titration with thioflavin T as a reporter ligand. Values of a >1 give rise to a hydrolysis profile called substrate activation, and the AChE site-specific mutant W86F, and to a lesser extent wild-type human AChE itself, showed substrate activation with acetylthiocholine as the substrate. Substrate activation was incorporated into a previous catalytic scheme for AChE in which a bound P-site ligand can also block product dissociation from the A-site, and two additional features of the AChE catalytic pathway were revealed. First, the ability of a bound P-site ligand to increase the substrate acetylation rate constant varied with the structure of the ligand: thioflavin T accelerated ATMA acetylation by a factor a(2) of 1.3, while propidium failed to accelerate. Second, catalytic rate constants in the initial intermediate formed during acylation (EAP, where EA is the acyl enzyme and P is the alcohol leaving group cleaved from the ester substrate) may be constrained such that the leaving group P must dissociate before hydrolytic deacylation can occur.

  6. Temperature Dependence of Inorganic Nitrogen Uptake: Reduced Affinity for Nitrate at Suboptimal Temperatures in Both Algae and Bacteria

    PubMed Central

    Reay, David S.; Nedwell, David B.; Priddle, Julian; Ellis-Evans, J. Cynan

    1999-01-01

    Nitrate utilization and ammonium utilization were studied by using three algal isolates, six bacterial isolates, and a range of temperatures in chemostat and batch cultures. We quantified affinities for both substrates by determining specific affinities (specific affinity = maximum growth rate/half-saturation constant) based on estimates of kinetic parameters obtained from chemostat experiments. At suboptimal temperatures, the residual concentrations of nitrate in batch cultures and the steady-state concentrations of nitrate in chemostat cultures both increased. The specific affinity for nitrate was strongly dependent on temperature (Q10 ≈ 3, where Q10 is the proportional change with a 10°C temperature increase) and consistently decreased at temperatures below the optimum temperature. In contrast, the steady-state concentrations of ammonium remained relatively constant over the same temperature range, and the specific affinity for ammonium exhibited no clear temperature dependence. This is the first time that a consistent effect of low temperature on affinity for nitrate has been identified for psychrophilic, mesophilic, and thermophilic bacteria and algae. The different responses of nitrate uptake and ammonium uptake to temperature imply that there is increasing dependence on ammonium as an inorganic nitrogen source at low temperatures. PMID:10347046

  7. Hydrophilic TiO2 porous spheres anchored on hydrophobic polypropylene membrane for wettability induced high photodegrading activities.

    PubMed

    Niu, Fang; Zhang, Le-Sheng; Chen, Chao-Qiu; Li, Wei; Li, Lin; Song, Wei-Guo; Jiang, Lei

    2010-08-01

    TiO(2) porous nanospheres on polypropylene (PP) films (TiO(2)/PP composite) are produced at ambient temperature. Particle/pore size match up is the key anchoring point to overcome the low affinity between hydrophilic materials and hydrophobic materials. With the hydrophilic TiO(2) catalyst evenly dispersed on a hydrophobic surface, the aqueous solution will selectively skip the substrate and wet the catalysts. Such a wettability-induced smart system maximizes the degrading activity of the TiO(2) catalyst. In photodegrading reactions, the resulting TiO(2)/PP composite film exhibits a 10 times higher activity in flow-type setup than the same TiO(2) catalyst in a traditional batch-type setup.

  8. The Effects of Protein-Ligand Associations on the Subunit Interactions of Phosphofructokinase from B. stearothermophilus†

    PubMed Central

    Quinlan, R. Jason; Reinhart, Gregory D.

    2008-01-01

    Differences between the crystal structures of inhibitor-bound and uninihibited forms of phosphofructokinase (PFK) from B. stearothermophilus have led to a structural model for allosteric inhibition by phosphenolpyruvate (PEP) wherein a dimer-dimer interface within the tetrameric enzyme undergoes a quaternary shift. We have developed a labeling and hybridization technique to generate a tetramer with subunits containing two different extrinsic fluorophores simultaneously in known subunit orientations. This construct has been utilized in the examination of the effects of allosteric ligand and substrate binding on the subunit affinities of tetrameric PFK using several biophysical and spectroscopic techniques including 2-photon, dual-channel Fluorescence Correlation Spectroscopy (FCS). We demonstrate that PEP-binding at the allosteric site is sufficient to reduce the affinity of the active site interface from beyond the limits of experimental detection to nanomolar affinity, while conversely strengthening the interface at which it is bound. The reduced interface affinity is specific to inhibitor-binding, as binding the activator ADP at the same allosteric site causes no reduction in subunit affinity. With inhibitor bound, the weakened subunit affinity has allowed the kinetics of dimer association to be elucidated. PMID:16981693

  9. Mutational Insights into the Roles of Amino Acid Residues in Ligand Binding for Two Closely Related Family 16 Carbohydrate Binding Modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Xiaoyun; Agarwal, Vinayak; Dodd, Dylan

    2010-11-22

    Carbohydrate binding modules (CBMs) are specialized proteins that bind to polysaccharides and oligosaccharides. Caldanaerobius polysaccharolyticus Man5ACBM16-1/CBM16-2 bind to glucose-, mannose-, and glucose/mannose-configured substrates. The crystal structures of the two proteins represent the only examples in CBM family 16, and studies that evaluate the roles of amino acid residues in ligand binding in this family are lacking. In this study, we probed the roles of amino acids (selected based on CBM16-1/ligand co-crystal structures) on substrate binding. Two tryptophan (Trp-20 and Trp-125) and two glutamine (Gln-81 and Gln-93) residues are shown to be critical in ligand binding. Additionally, several polar residues thatmore » flank the critical residues also contribute to ligand binding. The CBM16-1 Q121E mutation increased affinity for all substrates tested, whereas the Q21G and N97R mutants exhibited decreased substrate affinity. We solved CBM/substrate co-crystal structures to elucidate the molecular basis of the increased substrate binding by CBM16-1 Q121E. The Gln-121, Gln-21, and Asn-97 residues can be manipulated to fine-tune ligand binding by the Man5A CBMs. Surprisingly, none of the eight residues investigated was absolutely conserved in CBM family 16. Thus, the critical residues in the Man5A CBMs are either not essential for substrate binding in the other members of this family or the two CBMs are evolutionarily distinct from the members available in the current protein database. Man5A is dependent on its CBMs for robust activity, and insights from this study should serve to enhance our understanding of the interdependence of its catalytic and substrate binding modules.« less

  10. Substrate adaptation of Trichophyton rubrum secreted endoproteases.

    PubMed

    Chen, Jian; Yi, Jinling; Liu, Li; Yin, Songchao; Chen, Rongzhang; Li, Meirong; Ye, Congxiu; Zhang, Yu-qing; Lai, Wei

    2010-02-01

    Trichophyton rubrum is the most common pathogen caused the dermatophytosis of nail and skin in human. The secreted proteases were considered to be the most important virulence factors. However, the substrates adaptation of T. rubrum secreted proteases is largely unknown. For the first time, we use the keratins from human nail and skin stratum corneum as the growth medium to investigate the different expression patterns of T. rubrum secreted endoproteases genes. During grow in both keratin-containing media SUB7 and MEP2 were the highest expressed gene in each family. These results indicated that SUB7 and MEP2 may be the dominant endoproteases secreted by T. rubrum during host infection and the other proteases may play a supplementary role. The direct comparison of T. rubrum grown on skin and nail medium showed different substrate favorite of secreted endoproteases. The genes MEP2, SUB5, SUB2 and SUB3 were more active during growth in skin medium, possibly these proteases have a higher affinity for skin original keratins. While the structures of SUB1, SUB4, and MEP4 maybe more suitable for the degradation of nail original keratins. This work presents useful molecular details for further understanding the pathogenesis of secreted proteases and the wide adaptation of T. rubrum.

  11. Identification of Breast Cancer Specific Proteolytic Activities for Targeted Prodrug Activation

    DTIC Science & Technology

    2006-05-01

    volume of fluid that can be obtained from ECF of human breast cancers is to use a phage display approach. To accomplish this, we have designed a...affinity support, followed by a randomized protease substrate sequence and the carboxyl-terminal domain of M13 gene III. Each fusion protein was displayed ...PSMA) (35). Substrate phage can be created either as a monovalent or as pentavalent display (34). Both approaches have their own advantages and

  12. Fluorescent sensors for activity and regulation of the nitrate transceptor CHL1/NRT1.1 and oligopeptide transporters

    PubMed Central

    Ho, Cheng-Hsun; Frommer, Wolf B

    2014-01-01

    To monitor nitrate and peptide transport activity in vivo, we converted the dual-affinity nitrate transceptor CHL1/NRT1.1/NPF6.3 and four related oligopeptide transporters PTR1, 2, 4, and 5 into fluorescence activity sensors (NiTrac1, PepTrac). Substrate addition to yeast expressing transporter fusions with yellow fluorescent protein and mCerulean triggered substrate-dependent donor quenching or resonance energy transfer. Fluorescence changes were nitrate/peptide-specific, respectively. Like CHL1, NiTrac1 had biphasic kinetics. Mutation of T101A eliminated high-affinity transport and blocked the fluorescence response to low nitrate. NiTrac was used for characterizing side chains considered important for substrate interaction, proton coupling, and regulation. We observed a striking correlation between transport activity and sensor output. Coexpression of NiTrac with known calcineurin-like proteins (CBL1, 9; CIPK23) and candidates identified in an interactome screen (CBL1, KT2, WNKinase 8) blocked NiTrac1 responses, demonstrating the suitability for in vivo analysis of activity and regulation. The new technology is applicable in plant and medical research. DOI: http://dx.doi.org/10.7554/eLife.01917.001 PMID:24623305

  13. Substrate growth dynamics and biomineralization of an Ediacaran encrusting poriferan.

    PubMed

    Wood, Rachel; Penny, Amelia

    2018-01-10

    The ability to encrust in order to secure and maintain growth on a substrate is a key competitive innovation in benthic metazoans. Here we describe the substrate growth dynamics, mode of biomineralization and possible affinity of Namapoikia rietoogensis , a large (up to 1 m), robustly skeletal, and modular Ediacaran metazoan which encrusted the walls of synsedimentary fissures within microbial-metazoan reefs. Namapoikia formed laminar or domal morphologies with an internal structure of open tubules and transverse elements, and had a very plastic, non-deterministic growth form which could encrust both fully lithified surfaces as well as living microbial substrates, the latter via modified skeletal holdfasts. Namapoikia shows complex growth interactions and substrate competition with contemporary living microbialites and thrombolites, including the production of plate-like dissepiments in response to microbial overgrowth which served to elevate soft tissue above the microbial surface. Namapoikia could also recover from partial mortality due to microbial fouling. We infer initial skeletal growth to have propagated via the rapid formation of an organic scaffold via a basal pinacoderm prior to calcification. This is likely an ancient mode of biomineralization with similarities to the living calcified demosponge Vaceletia. Namapoikia also shows inferred skeletal growth banding which, combined with its large size, implies notable individual longevity. In sum, Namapoikia was a large, relatively long-lived Ediacaran clonal skeletal metazoan that propagated via an organic scaffold prior to calcification, enabling rapid, effective and dynamic substrate occupation and competition in cryptic reef settings. The open tubular internal structure, highly flexible, non-deterministic skeletal organization, and inferred style of biomineralization of Namapoikia places probable affinity within total-group poriferans. © 2018 The Author(s).

  14. Three cell recognition changes accompany the ingression of sea urchin primary mesenchyme cells.

    PubMed

    Fink, R D; McClay, D R

    1985-01-01

    At gastrulation the primary mesenchyme cells of sea urchin embryos lose contact with the extracellular hyaline layer and with neighboring blastomeres as they pass through the basal lamina and enter the blastocoel. This delamination process was examined using a cell-binding assay to follow changes in affinities between mesenchyme cells and their three substrates: hyalin, early gastrula cells, and basal lamina. Sixteen-cell-stage micromeres (the precursors of primary mesenchyme cells), and mesenchyme cells obtained from mesenchyme-blastula-stage embryos were used in conjunction with micromeres raised in culture to intermediate ages. The micromeres exhibited an affinity for hyalin, but the affinity was lost at the time of mesenchyme ingression in vivo. Similarly, micromeres had an affinity for monolayers of gastrula cells but the older mesenchyme cells lost much of their cell-to-cell affinity. Presumptive ectoderm and endoderm cells tested against the gastrula monolayers showed no decrease in binding over the same time interval. When micromeres and primary mesenchyme cells were tested against basal lamina preparations, there was an increase in affinity that was associated with developmental time. Presumptive ectoderm and endoderm cells showed no change in affinity over the same interval. Binding measurements using isolated basal laminar components identified fibronectin as one molecule for which the wandering primary mesenchyme cells acquired a specific affinity. The data indicate that as the presumptive mesenchyme cells leave the vegetal plate of the embryo they lose affinities for hyalin and for neighboring cells, and gain an affinity for fibronectin associated with the basal lamina and extracellular matrix that lines the blastocoel.

  15. Mutational scanning of the human serotonin transporter reveals fast translocating serotonin transporter mutants.

    PubMed

    Kristensen, Anders S; Larsen, Mads B; Johnsen, Laust B; Wiborg, Ove

    2004-03-01

    The serotonin transporter (SERT) belongs to a family of sodium-chloride-dependent transporters responsible for uptake of amino acids and biogenic amines from the extracellular space. SERT represents a major pharmacological target in the treatment of several clinical conditions, including depression and anxiety. In the present study we have undertaken a mutational scanning of human SERT in order to identify residues that are responsible for individual differences among related monoamine transporters. One mutant, G100A, was inactive in transport. However, ligand binding affinity was similar to wild-type, suggesting that G100A amongst different possible SERT conformations is restrained to a binding conformation. We suggest that the main role of glycine-100 is to confer structural flexibility during substrate translocation. For the two single mutants, T178A and F263C, uptake rates and K(m) values were both several-fold higher than wild-type while binding affinities and inhibitory potencies decreased considerably for several drugs. Ion dependency increased and only at hyperosmotic concentrations were K(m) values partly restored. For the double mutant, T178A/F263C, shifts in uptake kinetics and ligand affinities, as well as ion dependencies, were drastic. Effects were synergistic compared to the corresponding single mutants. In conclusion, we suggest that mutating threonine-178 to an alanine and phenylalanine-263 to a cysteine mainly alter the overall uptake kinetics of SERT by affecting the conformational equilibrium of different transporter conformations.

  16. Searching for DNA Lesions: Structural Evidence for Lower- and Higher-Affinity DNA Binding Conformations of Human Alkyladenine DNA Glycosylase

    PubMed Central

    2011-01-01

    To efficiently repair DNA, human alkyladenine DNA glycosylase (AAG) must search the million-fold excess of unmodified DNA bases to find a handful of DNA lesions. Such a search can be facilitated by the ability of glycosylases, like AAG, to interact with DNA using two affinities: a lower-affinity interaction in a searching process and a higher-affinity interaction for catalytic repair. Here, we present crystal structures of AAG trapped in two DNA-bound states. The lower-affinity depiction allows us to investigate, for the first time, the conformation of this protein in the absence of a tightly bound DNA adduct. We find that active site residues of AAG involved in binding lesion bases are in a disordered state. Furthermore, two loops that contribute significantly to the positive electrostatic surface of AAG are disordered. Additionally, a higher-affinity state of AAG captured here provides a fortuitous snapshot of how this enzyme interacts with a DNA adduct that resembles a one-base loop. PMID:22148158

  17. Energetic, Structural, and Antimicrobial Analyses of [beta]-Lactam Side Chain Recognition by [beta]-Lactamases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caselli, E.; Powers, R.A.; Blaszczak, L.C.

    2010-03-05

    Penicillins and cephalosporins are among the most widely used and successful antibiotics. The emergence of resistance to these {beta}-lactams, most often through bacterial expression of {beta}-lactamases, threatens public health. To understand how {beta}-lactamases recognize their substrates, it would be helpful to know their binding energies. Unfortunately, these have been difficult to measure because {beta}-lactams form covalent adducts with {beta}-lactamases. This has complicated functional analyses and inhibitor design. To investigate the contribution to interaction energy of the key amide (R1) side chain of {beta}-lactam antibiotics, eight acylglycineboronic acids that bear the side chains of characteristic penicillins and cephalosporins, as well asmore » four other analogs, were synthesized. These transition-state analogs form reversible adducts with serine {beta}-lactamases. Therefore, binding energies can be calculated directly from K{sub i} values. The K{sub i} values measured span four orders of magnitude against the Group I {beta}-lactamase AmpC and three orders of magnitude against the Group II {beta}-lactamase TEM-1. The acylglycineboronic acids have K{sub i} values as low as 20 nM against AmpC and as low as 390 nM against TEM-1. The inhibitors showed little activity against serine proteases, such as chymotrypsin. R1 side chains characteristic of {beta}-lactam inhibitors did not have better affinity for AmpC than did side chains characteristic of {beta}-lactam substrates. Two of the inhibitors reversed the resistance of pathogenic bacteria to {beta}-lactams in cell culture. Structures of two inhibitors in their complexes with AmpC were determined by X-ray crystallography to 1.90 {angstrom} and 1.75 {angstrom} resolution; these structures suggest interactions that are important to the affinity of the inhibitors. Acylglycineboronic acids allow us to begin to dissect interaction energies between {beta}-lactam side chains and {beta}-lactamases. Surprisingly, there is little correlation between the affinity contributed by R1 side chains and their occurrence in {beta}-lactam inhibitors or {beta}-lactam substrates of serine {beta}-lactamases. Nevertheless, presented in acylglycineboronic acids, these side chains can lead to inhibitors with high affinities and specificities. The structures of their complexes with AmpC give a molecular context to their affinities and may guide the design of anti-resistance compounds in this series.« less

  18. Mapping the UDP-Glucuronic Acid Binding Site in UDP-Glucuronosyltransferase-1 A10 by Homology-based Modeling: Confirmation with Biochemical Evidence†

    PubMed Central

    Banerjee, Rajat; Pennington, Matthew W.; Garza, Amanda; Owens, Ida S.

    2008-01-01

    The UDP-glucuronosyltransferase (UGT) isozyme system is critical for protecting the body against endogenous and exogenous chemicals by linking glucuronic acid donated by UDP-glucuronic acid to a lipophilic acceptor substrate. UGTs convert metabolites, dietary constituents and environmental toxicants to highly excretable glucuronides. Because of difficulties associated with purifying endoplasmic reticulum-bound UGTs for structural studies, we carried out homology-based computer modeling to aid analysis. The search found structural homology in Escherichia coli UDP-galactose 4-epimerase. Consistent with predicted similarities involving the common UDP-moiety in substrates, UDP-glucose and UDP-hexanol amine caused competitive inhibition by Lineweaver-Burk plots. Among predicted binding sites N292, K314, K315 and K404 in UGT1A10, two informative sets of mutants K314R/Q/A/E /G and K404R/E had null activities or 2.7-fold higher/50% less activity, respectively. Scatchard analysis of binding data of affinity-ligand, 5-azido-uridine-[β-32P]-diphosphoglucuronic acid, to purified UGT1A10-His or UGT1A7-His revealed high and low affinity binding sites. 2-Nitro 5-thiocyanobenzoic acid-digested UGT1A10-His bound with radiolabeled affinity-ligand revealed an 11.3- and 14.3-kDa peptide associated with K314 and K404, respectively, in a discontinuous SDS-PAGE system. Similar treatment of 1A10His-K314A bound with the ligand lacked both peptides; 1A10-HisK404R- and 1A10-HisK404E showed 1.3-fold greater- and 50% less-label in the 14.3-kDa peptide, respectively, compared to 1A10-His without affecting the 11.3-kDa peptide. Scatchard analysis of binding data of affinity-ligand to 1A10His-K404R and -K404E showed a 6-fold reduction and a large increase in Kd, respectively. Our results indicate: K314 and K404 are required UDP-glcA binding sites in 1A10, that K404 controls activity and high affinity sites and that K314 and K404 are strictly conserved in 70 aligned UGTs, except for S321--equivalent to K314-- in UGT2B15 and 2B17 and I321 in the inactive UGT8, which suggests UGT2B15 and 2B17 contain suboptimal activity. Hence our data strongly support UDPglcA binding to K314 and K404 in UGT1A10. PMID:18570380

  19. Protein Engineering and Homologous Expression of Serratia marcescens Lipase for Efficient Synthesis of a Pharmaceutically Relevant Chiral Epoxyester.

    PubMed

    Chen, Ke-Cai; Zheng, Ming-Min; Pan, Jiang; Li, Chun-Xiu; Xu, Jian-He

    2017-10-01

    The lipase isolated from Serratia marcescens (LipA) is a useful biocatalyst for kinetic resolution of a pharmaceutically relevant epoxyester, (±)-3-(4'-methoxyphenyl) glycidic acid methyl ester [(±)-MPGM], to afford optically pure (-)-MPGM, a key intermediate for the synthesis of diltiazem hydrochloride. Two mutants, LipA L315S and LipA S271F , were identified from the combinatorial saturation mutation library of 14 amino acid residues lining the substrate-binding pocket. LipA L315S , LipA S271F , and their combination LipA L315S/S271F showed 2.6-, 2.2-, and 4.6-fold improvements in their specific activities towards para-nitrophenyl butyrate (pNPB), respectively. Among these positive mutants, LipA S271F displayed a 3.5-fold higher specific activity towards the pharmaco substrate (±)-MPGM. Kinetic study showed that the improvement in catalytic efficiency of LipA S271F against (±)-MPGM was mainly resulted from the enhanced affinity between substrate and enzyme, as indicated by the decrease of K m . Furthermore, to address the insoluble expression issue in Escherichia coli, the homologous expression of LipA gene in S. marcescens was achieved by introducing it into an expression vector pUC18, resulting in ca. 20-fold higher lipase production. The significantly improved volumeric production and specific activity of S. marcescens lipase make it very attractive as a new-generation biocatalyst for more efficient and economical manufacturing of (-)-MPGM.

  20. Bacteria-Affinity 3D Macroporous Graphene/MWCNTs/Fe3O4 Foams for High-Performance Microbial Fuel Cells.

    PubMed

    Song, Rong-Bin; Zhao, Cui-E; Jiang, Li-Ping; Abdel-Halim, Essam Sayed; Zhang, Jian-Rong; Zhu, Jun-Jie

    2016-06-29

    Promoting the performance of microbial fuel cells (MFCs) relies heavily on the structure design and composition tailoring of electrode materials. In this work, three-dimensional (3D) macroporous graphene foams incorporated with intercalated spacer of multiwalled carbon nanotubes (MWCNTs) and bacterial anchor of Fe3O4 nanospheres (named as G/MWCNTs/Fe3O4 foams) were first synthesized and used as anodes for Shewanella-inoculated microbial fuel cells (MFCs). Thanks to the macroporous structure of 3D graphene foams, the expanded electrode surface by MWCNTs spacing, as well as the high affinity of Fe3O4 nanospheres toward Shewanella oneidensis MR-1, the anode exhibited high bacterial loading capability. In addition to spacing graphene nanosheets for accommodating bacterial cells, MWCNTs paved a smoother way for electron transport in the electrode substrate of MFCs. Meanwhile, the embedded bioaffinity Fe3O4 nanospheres capable of preserving the bacterial metabolic activity provided guarantee for the long-term durability of the MFCs. With these merits, the constructed MFC possessed significantly higher power output and stronger stability than that with conventional graphite rod anode.

  1. Silane surface modification for improved bioadhesion of esophageal stents

    PubMed Central

    Karakoy, Mert; Gultepe, Evin; Pandey, Shivendra; Khashab, Mouen A.; Gracias, David H.

    2014-01-01

    Stent migration occurs in 10-40% of patients who undergo placement of esophageal stents, with higher migration rates seen in those treated for benign esophageal disorders. This remains a major drawback of esophageal stent therapy. In this paper, we propose a new surface modification method to increase the adhesion between self-expandable metallic stents (SEMS) and tissue while preserving their removability. Taking advantage of the well-known affinity between epoxide and amine terminated silane coupling agents with amine and carboxyl groups that are abundant in proteins and related molecules in the human body; we modified the surfaces of silicone coated esophageal SEMS with these adhesive self-assembled monolayers (SAMs). We utilized vapor phase silanization to modify the surfaces of different substrates including PDMS strips and SEMS, and measured the force required to slide these substrates on a tissue piece. Our results suggest that surface modification of esophageal SEMS via covalent attachment of protein-binding coupling agents improves adhesion to tissue and could offer a solution to reduce SEMS migration while preserving their removability. PMID:25663731

  2. Nanotextured polymer substrates show enhanced cancer cell isolation and cell culture

    NASA Astrophysics Data System (ADS)

    Islam, Muhymin; Sajid, Adeel; Arif Iftakher Mahmood, M.; Motasim Bellah, Mohammad; Allen, Peter B.; Kim, Young-Tae; Iqbal, Samir M.

    2015-06-01

    Detection of circulating tumor cells (CTCs) in the early stages of cancer is a great challenge because of their exceedingly small concentration. There are only a few approaches sensitive enough to differentiate tumor cells from the plethora of other cells in a sample like blood. In order to detect CTCs, several antibodies and aptamers have already shown high affinity. Nanotexture can be used to mimic basement membrane to further enhance this affinity. This article reports an approach to fabricate nanotextured polydimethylsiloxane (PDMS) substrates using micro reactive ion etching (micro-RIE). Three recipes were used to prepare nanotextured PDMS using oxygen and carbon tetrafluoride. Micro-RIE provided better control on surface properties. Nanotexturing improved the affinity of PDMS surfaces to capture cancer cells using surface immobilized aptamers against cell membrane overexpressed with epidermal growth factor receptors. In all cases, nanotexture of PDMS increased the effective surface area by creating nanoscale roughness on the surface. Nanotexture also enhanced the growth rate of cultured cells compared to plain surfaces. A comparison among the three nanotextured surfaces demonstrated an almost linear relationship between the surface roughness and density of captured tumor cells. The nanotextured PDMS mimicked biophysical environments for cells to grow faster. This can have many implications in microfluidic platforms used for cell handling.

  3. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle

    PubMed Central

    Kits, K. Dimitri; Sedlacek, Christopher J.; Lebedeva, Elena V.; Han, Ping; Bulaev, Alexandr; Pjevac, Petra; Daebeler, Anne; Romano, Stefano; Albertsen, Mads; Stein, Lisa Y.; Daims, Holger; Wagner, Michael

    2017-01-01

    Summary paragraph Nitrification, the oxidation of ammonia (NH3) via nitrite (NO2-) to nitrate (NO3-), is a key process of the biogeochemical nitrogen cycle. For decades, ammonia and nitrite oxidation were thought to be separately catalyzed by ammonia-oxidizing bacteria (AOB) and archaea (AOA), and by nitrite-oxidizing bacteria (NOB). The recent discovery of complete ammonia oxidizers (comammox) in the NOB genus Nitrospira1,2, which alone convert ammonia to nitrate, raised questions about the ecological niches where comammox Nitrospira successfully compete with canonical nitrifiers. Here we isolated the first pure culture of a comammox bacterium, Nitrospira inopinata, and show that it is adapted to slow growth in oligotrophic and dynamic habitats based on a high affinity for ammonia, low maximum rate of ammonia oxidation, high growth yield compared to canonical nitrifiers, and genomic potential for alternative metabolisms. The nitrification kinetics of four AOA from soil and hot springs were determined for comparison. Their surprisingly poor substrate affinities and lower growth yields reveal that, in contrast to earlier assumptions, not all AOA are most competitive in strongly oligotrophic environments and that N. inopinata has the highest substrate affinity of all analyzed ammonia oxidizer isolates except the marine AOA Nitrosopumilus maritimus SCM13. These results suggest a role of comammox organisms for nitrification under oligotrophic and dynamic conditions. PMID:28847001

  4. Is There Consistency between the Binding Affinity and Inhibitory Potential of Natural Polyphenols as α-amylase Inhibitors?

    PubMed

    Xu, Wei; Shao, Rong; Xiao, Jianbo

    2016-07-26

    The inhibitory potential of natural polyphenols for α-amylases has attracted great interests among researchers. The structure-affinity properties of natural polyphenols binding to α-amylase and the structure-activity relationship of dietary polyphenols inhibiting α-amylase were deeply investigated. There is a lack of consistency between the structure-affinity relationship and the structure-activity relationship of natural polyphenols as α-amylase inhibitors. Is it consistent between the binding affinity and inhibitory potential of natural polyphenols as with α-amylase inhibitors? It was found that the consistency between the binding affinity and inhibitory potential of natural polyphenols as with α-amylase inhibitors is not equivocal. For example, there is no consistency between the binding affinity and the inhibitory potential of quercetin and its glycosides as α-amylase inhibitors. However, catechins with higher α-amylase inhibitory potential exhibited higher affinity with α-amylase.

  5. Determination of trace alkaline phosphatase by affinity adsorption solid substrate room temperature phosphorimetry based on wheat germ agglutinin labeled with 8-quinolineboronic acid phosphorescent molecular switch and prediction of diseases

    NASA Astrophysics Data System (ADS)

    Liu, Jia-Ming; Gao, Hui; Li, Fei-Ming; Shi, Xiu-Mei; Lin, Chang-Qing; Lin, Li-Ping; Wang, Xin-Xing; Li, Zhi-Ming

    2010-09-01

    The 8-quinolineboronic acid phosphorescent molecular switch (abbreviated as PMS-8-QBA. Thereinto, 8-QBA is 8-quinolineboronic acid, and PMS is phosphorescent molecular switch) was found for the first time. PMS-8-QBA, which was in the "off" state, could only emit weak room temperature phosphorescence (RTP) on the acetyl cellulose membrane (ACM). However, PMS-8-QBA turned "on" automatically for its changed structure, causing that the RTP of 8-QBA in the system increased, after PMS-8-QBA-WGA (WGA is wheat germ agglutinin) was formed by reaction between -OH of PMS-8-QBA and -COOH of WGA. More interesting is that the -NH 2 of PMS-8-QBA-WGA could react with the -COOH of alkaline phosphatase (AP) to form the affinity adsorption (AA) product WGA-AP-WGA-8-QBA-PMS (containing -NH-CO- bond), which caused RTP of the system to greatly increase. Thus, affinity adsorption solid substrate room temperature phosphorimetry using PMS-8-QBA as labelling reagent (PMS-8-QBA-AA-SSRTP) for the determination of trace AP was established. The method had many advantages, such as high sensitivity (the detection limit (LD) was 2.5 zg spot -1. For sample volume of 0.40 μl spot -1, corresponding concentration was 6.2 × 10 -18 g ml -1), good selectivity (the allowed concentration of coexisting material was higher, when the relative error was ±5%), high accuracy (applied to detection of AP content in serum samples, the result was coincided with those obtained by enzyme-linked immunoassay), which was suitable for the detection of trace AP content in serum samples and the forecast of human diseases. Meanwhile, the mechanism of PMS-8-QBA-AASSRTP was discussed. The new field of analytical application and clinic diagnosis technique of molecule switch are exploited, based on the phosphorescence characteristic of PMS-8-QBA, the AA reaction between WGA and AP, as well as the relation between AP content and human diseases. The research results promote the development and interpenetrate among molecule switch technique, lectin science and SSRTP.

  6. Determination of trace alkaline phosphatase by affinity adsorption solid substrate room temperature phosphorimetry based on wheat germ agglutinin labeled with 8-quinolineboronic acid phosphorescent molecular switch and prediction of diseases.

    PubMed

    Liu, Jia-Ming; Gao, Hui; Li, Fei-Ming; Shi, Xiu-Mei; Lin, Chang-Qing; Lin, Li-Ping; Wang, Xin-Xing; Li, Zhi-Ming

    2010-09-01

    The 8-quinolineboronic acid phosphorescent molecular switch (abbreviated as PMS-8-QBA. Thereinto, 8-QBA is 8-quinolineboronic acid, and PMS is phosphorescent molecular switch) was found for the first time. PMS-8-QBA, which was in the "off" state, could only emit weak room temperature phosphorescence (RTP) on the acetyl cellulose membrane (ACM). However, PMS-8-QBA turned "on" automatically for its changed structure, causing that the RTP of 8-QBA in the system increased, after PMS-8-QBA-WGA (WGA is wheat germ agglutinin) was formed by reaction between -OH of PMS-8-QBA and -COOH of WGA. More interesting is that the -NH(2) of PMS-8-QBA-WGA could react with the -COOH of alkaline phosphatase (AP) to form the affinity adsorption (AA) product WGA-AP-WGA-8-QBA-PMS (containing -NH-CO- bond), which caused RTP of the system to greatly increase. Thus, affinity adsorption solid substrate room temperature phosphorimetry using PMS-8-QBA as labelling reagent (PMS-8-QBA-AA-SSRTP) for the determination of trace AP was established. The method had many advantages, such as high sensitivity (the detection limit (LD) was 2.5zgspot(-1). For sample volume of 0.40mulspot(-1), corresponding concentration was 6.2x10(-18)gml(-1)), good selectivity (the allowed concentration of coexisting material was higher, when the relative error was +/-5%), high accuracy (applied to detection of AP content in serum samples, the result was coincided with those obtained by enzyme-linked immunoassay), which was suitable for the detection of trace AP content in serum samples and the forecast of human diseases. Meanwhile, the mechanism of PMS-8-QBA-AASSRTP was discussed. The new field of analytical application and clinic diagnosis technique of molecule switch are exploited, based on the phosphorescence characteristic of PMS-8-QBA, the AA reaction between WGA and AP, as well as the relation between AP content and human diseases. The research results promote the development and interpenetrate among molecule switch technique, lectin science and SSRTP. Copyright 2009 Elsevier B.V. All rights reserved.

  7. Poly(zwitterionic)protein conjugates offer increased stability without sacrificing binding affinity or bioactivity

    NASA Astrophysics Data System (ADS)

    Keefe, Andrew J.; Jiang, Shaoyi

    2012-01-01

    Treatment with therapeutic proteins is an attractive approach to targeting a number of challenging diseases. Unfortunately, the native proteins themselves are often unstable in physiological conditions, reducing bioavailability and therefore increasing the dose that is required. Conjugation with poly(ethylene glycol) (PEG) is often used to increase stability, but this has a detrimental effect on bioactivity. Here, we introduce conjugation with zwitterionic polymers such as poly(carboxybetaine). We show that poly(carboxybetaine) conjugation improves stability in a manner similar to PEGylation, but that the new conjugates retain or even improve the binding affinity as a result of enhanced protein-substrate hydrophobic interactions. This chemistry opens a new avenue for the development of protein therapeutics by avoiding the need to compromise between stability and affinity.

  8. Malathion-induced inhibition of human plasma cholinesterase studied by the fluorescence spectroscopy method

    NASA Astrophysics Data System (ADS)

    Pavelkić, V. M.; Krinulović, K. S.; Savić, J. Z.; Ilić, M. A.

    2008-05-01

    The in vitro effect of technical grade malathion was assessed via the kinetic parameters of human plasma butyrylcholinesterase (BChE) using N-methylindoxyl acetate as a substrate for BChE. An inhibitor kinetics study demonstrated the existence of a biphasic inhibition curve, indicating high-and low-affinity binding sites of malathion. The IC 50 values as calculated from the experimental inhibition curves were 1.33 × 10-9 and 1.48 × 10-5 M for the high-and low-affinity binding sites, respectively; Hill’s analysis gave 1.29 × 10-9 and 1.38 × 10-6 M. The Cornish-Bowden plots and their secondary plots indicated that the nature of inhibition was of mixed type with the predominant competitive character of both affinity binding sites.

  9. Biochemical, Kinetic, and Spectroscopic Characterization of Ruegeria pomeroyi DddW—A Mononuclear Iron-Dependent DMSP Lyase

    PubMed Central

    Brummett, Adam E.; Schnicker, Nicholas J.; Crider, Alexander; Todd, Jonathan D.; Dey, Mishtu

    2015-01-01

    The osmolyte dimethylsulfoniopropionate (DMSP) is a key nutrient in marine environments and its catabolism by bacteria through enzymes known as DMSP lyases generates dimethylsulfide (DMS), a gas of importance in climate regulation, the sulfur cycle, and signaling to higher organisms. Despite the environmental significance of DMSP lyases, little is known about how they function at the mechanistic level. In this study we biochemically characterize DddW, a DMSP lyase from the model roseobacter Ruegeria pomeroyi DSS-3. DddW is a 16.9 kDa enzyme that contains a C-terminal cupin domain and liberates acrylate, a proton, and DMS from the DMSP substrate. Our studies show that as-purified DddW is a metalloenzyme, like the DddQ and DddP DMSP lyases, but contains an iron cofactor. The metal cofactor is essential for DddW DMSP lyase activity since addition of the metal chelator EDTA abolishes its enzymatic activity, as do substitution mutations of key metal-binding residues in the cupin motif (His81, His83, Glu87, and His121). Measurements of metal binding affinity and catalytic activity indicate that Fe(II) is most likely the preferred catalytic metal ion with a nanomolar binding affinity. Stoichiometry studies suggest DddW requires one Fe(II) per monomer. Electronic absorption and electron paramagnetic resonance (EPR) studies show an interaction between NO and Fe(II)-DddW, with NO binding to the EPR silent Fe(II) site giving rise to an EPR active species (g = 4.29, 3.95, 2.00). The change in the rhombicity of the EPR signal is observed in the presence of DMSP, indicating that substrate binds to the iron site without displacing bound NO. This work provides insight into the mechanism of DMSP cleavage catalyzed by DddW. PMID:25993446

  10. Remote Exosites of the Catalytic Domain of Matrix Metalloproteinase-12 Enhance Elastin Degradation┼

    PubMed Central

    Fulcher, Yan G.; Van Doren, Steven R.

    2011-01-01

    How does matrix metalloproteinase-12 (MMP-12 or metalloelastase) degrade elastin with high specific activity? NMR suggested soluble elastin to cover surfaces of MMP-12 far from its active site. Two of these surfaces have been found, by mutagenesis guided by the BINDSIght approach, to affect degradation and affinity for elastin substrates but not a small peptide substrate. Main exosite 1 has been extended out to Asp124 that binds calcium. Novel exosite 2 comprises residues from the II–III loop and β-strand I near the back of the catalytic domain. The high exposure of these distal exosites may make them accessible to elastin made more flexible by partial hydrolysis. Importantly, combination of a lesion at each of exosites 1 and 2 and active site decreased catalytic competence towards soluble elastin by 13- to 18-fold to the level of MMP-3, homologue and poor elastase. Double mutant cycle analysis of conservative mutations of Met156 (exosite 2) and either Asp124 (exosite 1) or Ile180 (active site) had additive effects. Compared to polar substitutions observed in other MMPs, Met156 enhanced affinity and Ile180 kcat for soluble elastin. Both residues detracted from the higher folding stability with polar mutations. This resembles the trend in enzymes of an inverse relationship between folding stability and activity. Restoring Asp124 from combination mutants enhanced kcat for soluble elastin. In elastin degradation, exosites 1 and 2 contributed independently of each other and Ile180 at the active site, but with partial coupling to Ala182 near the active site. The concept of weak, separated interactions coalescing somewhat independently can be extended to this proteolytic digestion of a protein from fibrils. PMID:21967233

  11. Mechanistic insights into PEPT1-mediated transport of a novel antiepileptic, NP-647.

    PubMed

    Khomane, Kailas S; Nandekar, Prajwal P; Wahlang, Banrida; Bagul, Pravin; Shaikh, Naeem; Pawar, Yogesh B; Meena, Chhuttan Lal; Sangamwar, Abhay T; Jain, Rahul; Tikoo, K; Bansal, Arvind K

    2012-09-04

    The present study, in general, is aimed to uncover the properties of the transport mechanism or mechanisms responsible for the uptake of NP-647 into Caco-2 cells and, in particular, to understand whether it is a substrate for the intestinal oligopeptide transporter, PEPT1 (SLC15A1). NP-647 showed a carrier-mediated, saturable transport with Michaelis-Menten parameters K(m) = 1.2 mM and V(max) = 2.2 μM/min. The effect of pH, sodium ion (Na(+)), glycylsarcosine and amoxicillin (substrates of PEPT1), and sodium azide (Na(+)/K(+)-ATPase inhibitor) on the flux rate of NP-647 was determined. Molecular docking and molecular dynamics simulation studies were carried out to investigate molecular interactions of NP-647 with transporter using homology model of human PEPT1. The permeability coefficient (P(appCaco-2)) of NP-647 (32.5 × 10(-6) cm/s) was found to be four times higher than that of TRH. Results indicate that NP-647 is transported into Caco-2 cells by means of a carrier-mediated, proton-dependent mechanism that is inhibited by Gly-Sar and amoxicillin. In turn, NP-647 also inhibits the uptake of Gly-Sar into Caco-2 cells and, together, this evidence suggests that PEPT1 is involved in the process. Docking and molecular dynamics simulation studies indicate high affinity of NP-647 toward PEPT1 binding site as compared to TRH. High permeability of NP-647 over TRH is attributed to its increased hydrophobicity which increases its affinity toward PEPT1 by interacting with the hydrophobic pocket of the transporter through hydrophobic forces.

  12. Species differences in the pharmacokinetics of cefadroxil as determined in wildtype and humanized PepT1 mice.

    PubMed

    Hu, Yongjun; Smith, David E

    2016-05-01

    PepT1 (SLC15A1) is a high-capacity low-affinity transporter that is important in the absorption of digested di/tripeptides from dietary protein in the small intestine. PepT1 is also crucial for the intestinal uptake and absorption of therapeutic agents such as the β-lactam aminocephalosporins and antiviral prodrugs. Species differences, however, have been observed in PepT1-mediated intestinal absorption and pharmacokinetics, thereby, making it more difficult to predict systemic drug exposure. In the present study, we evaluated the in situ intestinal permeability of the PepT1 substrate cefadroxil in wildtype and humanized PepT1 (huPepT1) mice, and the in vivo absorption and disposition of drug after escalating oral doses. The in situ perfusions indicated that cefadroxil had a twofold higher affinity (i.e., twofold lower Km) for jejunal PepT1 in huPepT1 mice, lower but substantial permeability in all regions of the small intestine, and low but measureable permeability in the colon as compared to wildtype animals. The in vivo experiments indicated almost superimposable pharmacokinetic profiles between the two genotypes after intravenous bolus dosing of cefadroxil. In contrast, after oral dose escalation, the systemic exposure of cefadroxil was reduced in huPepT1 mice as compared to wildtype animals. Moreover, the AUC and Cmax versus dose relationships were nonlinear for huPepT1 but not wildtype mice, and similar to that observed from human subjects. In conclusion, our findings indicate that huPepT1 mice may provide a valuable tool in the drug discovery process by better predicting the oral pharmacokinetic profiles of PepT1 substrates in humans. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. A Novel 5-Enolpyruvylshikimate-3-Phosphate Synthase from Rahnella aquatilis with Significantly Reduced Glyphosate Sensitivity

    PubMed Central

    Xiong, Ai-Sheng; Zhao, Wei; Fu, Xiao-Yan; Han, Hong-Juan; Chen, Chen; Jin, Xiao-Fen; Yao, Quan-Hong

    2012-01-01

    The 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS; EC 2.5.1.19) is a key enzyme in the shikimate pathway for the production of aromatic amino acids and chorismate-derived secondary metabolites in plants, fungi, and microorganisms. It is also the target of the broad-spectrum herbicide glyphosate. Natural glyphosate resistance is generally thought to occur within microorganisms in a strong selective pressure condition. Rahnella aquatilis strain GR20, an antagonist against pathogenic agrobacterial strains of grape crown gall, was isolated from the rhizosphere of grape in glyphosate-contaminated vineyards. A novel gene encoding EPSPS was identified from the isolated bacterium by complementation of an Escherichia coli auxotrophic aroA mutant. The EPSPS, named AroAR.aquatilis, was expressed and purified from E. coli, and key kinetic values were determined. The full-length enzyme exhibited higher tolerance to glyphosate than the E. coli EPSPS (AroAE.coli), while retaining high affinity for the substrate phosphoenolpyruvate. Transgenic plants of AroAR.aquatilis were also observed to be more resistant to glyphosate at a concentration of 5 mM than that of AroAE.coli. To probe the sites contributing to increased tolerance to glyphosate, mutant R.aquatilis EPSPS enzymes were produced with the c-strand of subdomain 3 and the f-strand of subdomain 5 (Thr38Lys, Arg40Val, Arg222Gln, Ser224Val, Ile225Val, and Gln226Lys) substituted by the corresponding region of the E. coli EPSPS. The mutant enzyme exhibited greater sensitivity to glyphosate than the wild type R.aquatilis EPSPS with little change of affinity for its first substrate, shikimate-3-phosphate (S3P) and phosphoenolpyruvate (PEP). The effect of the residues on subdomain 5 on glyphosate resistance was more obvious. PMID:22870190

  14. A histone-mimicking interdomain linker in a multidomain protein modulates multivalent histone binding

    PubMed Central

    Kostrhon, Sebastian; Kontaxis, Georg; Kaufmann, Tanja; Schirghuber, Erika; Kubicek, Stefan; Konrat, Robert

    2017-01-01

    N-terminal histone tails are subject to many posttranslational modifications that are recognized by and interact with designated reader domains in histone-binding proteins. BROMO domain adjacent to zinc finger 2B (BAZ2B) is a multidomain histone-binding protein that contains two histone reader modules, a plant homeodomain (PHD) and a bromodomain (BRD), linked by a largely disordered linker. Although previous studies have reported specificity of the PHD domain for the unmodified N terminus of histone H3 and of the BRD domain for H3 acetylated at Lys14 (H3K14ac), the exact mode of H3 binding by BAZ2B and its regulation are underexplored. Here, using isothermal titration calorimetry and NMR spectroscopy, we report that acidic residues in the BAZ2B PHD domain are essential for H3 binding and that BAZ2B PHD–BRD establishes a polyvalent interaction with H3K14ac. Furthermore, we provide evidence that the disordered interdomain linker modulates the histone-binding affinity by interacting with the PHD domain. In particular, lysine-rich stretches in the linker, which resemble the positively charged N terminus of histone H3, reduce the binding affinity of the PHD finger toward the histone substrate. Phosphorylation, acetylation, or poly(ADP-ribosyl)ation of the linker residues may therefore act as a cellular mechanism to transiently tune BAZ2B histone-binding affinity. Our findings further support the concept of interdomain linkers serving a dual role in substrate binding by appropriately positioning the adjacent domains and by electrostatically modulating substrate binding. Moreover, inhibition of histone binding by a histone-mimicking interdomain linker represents another example of regulation of protein–protein interactions by intramolecular mimicry. PMID:28864776

  15. Determination of alkaline phosphatase based on affinity adsorption solid-substrate room temperature phosphorimetry using rhodamine 6G-dibromoluciferin luminescent nanoparticle to label lectin and prediction of diseases.

    PubMed

    Liu, Jia-Ming; Liu, Zhen-Bo; Hu, Li-Xiang; He, Hang-Xia; Yang, Min-Lan; Zhou, Ping; Chen, Xin-Hua; Zheng, Min-Min; Zeng, Xiao-Yi; Xu, Yue-Long

    2006-10-15

    In the presence of heavy atom perturber LiAc, the silicon dioxide nanoparticle containing rhodamine 6G (R) and dibromoluciferin (D) (R-D-SiO(2)) can emit strong and stable solid-substrate room temperature phosphorescence signal of R (lambda(ex)/lambda(em)=481/648 nm) and D (lambda(ex)/lambda(em)=457/622 nm) on the surface of acetyl cellulose membrane (ACM). R-D-SiO(2) is used to label triticum vulgare lectin (WGA). Then two types of affinity adsorption reactions, R-D-SiO(2)-WGA- alkaline phosphatase (ALP) (direct method) and WGA-ALP-WGA-R-D-SiO(2) (sandwich method), are carried out on ACM. The conditions and the analytical characteristics for the determination of ALP using affinity adsorption solid-substrate room temperature phosphorimetry (AA-SS-RTP) were studied. For a 0.40-microl drop of sample, results show that the detection limits of the sandwich method are 0.16 ag spot(-1)(457/622 nm) and 0.17 ag spot(-1)(481/648 nm), and the detection limits of the direct method are 0.41 ag spot(-1) (457/622 nm) and 0.44 ag spot(-1) (481/648 nm). The contents of ALP in human serum correlated well with those obtained by enzyme-linked immunoassay. This study shows that AA-SS-RTP whether by the sandwich method or the direct method, can combine very well the characteristics of both high sensitivity of SS-RTP and specificity of the immunoreaction. Simultaneously, whether the phosphorescence excitation/emission wavelength of either R or D in R-D-SiO(2) is chosen to determine ALP, this can promote the agility and widen the adaptability of AA-SS-RTP.

  16. Nickel(II) Inhibits Tet-Mediated 5-Methylcytosine Oxidation by High Affinity Displacement of the Cofactor Iron(II).

    PubMed

    Yin, Ruichuan; Mo, Jiezhen; Dai, Jiayin; Wang, Hailin

    2017-06-16

    Ten-eleven translocation (Tet) family proteins are Fe(II)- and 2-oxoglutarate-dependent dioxygenases that regulate the dynamics of DNA methylation by catalyzing the oxidation of DNA 5-methylcytosine (5mC). To exert physiologically important functions, redox-active iron chelated in the catalytic center of Tet proteins directly involves the oxidation of the multiple substrates. To understand the function and interaction network of Tet dioxygenases, it is interesting to obtain high affinity and a specific inhibitor. Surprisingly, here we found that natural Ni(II) ion can bind to the Fe(II)-chelating motif (HXD) with an affinity of 7.5-fold as high as Fe(II). Consistently, we further found that Ni(II) ion can displace the cofactor Fe(II) of Tet dioxygenases and inhibit Tet-mediated 5mC oxidation activity with an estimated IC 50 of 1.2 μM. Essentially, Ni(II) can be used as a high affinity and selective inhibitor to explore the function and dynamics of Tet proteins.

  17. Identification and functional characterization of a Na+-independent neutral amino acid transporter with broad substrate selectivity.

    PubMed

    Segawa, H; Fukasawa, Y; Miyamoto, K; Takeda, E; Endou, H; Kanai, Y

    1999-07-09

    We have isolated a cDNA from rat small intestine that encodes a novel Na+-independent neutral amino acid transporter with distinctive characteristics in substrate selectivity and transport property. The encoded protein, designated L-type amino acid transporter-2 (LAT-2), shows amino acid sequence similarity to the system L Na+-independent neutral amino acid transporter LAT-1 (Kanai, Y., Segawa, H., Miyamoto, K., Uchino, H., Takeda, E., and Endou, H. (1998) J. Biol. Chem. 273, 23629-23632) (50% identity) and the system y+L transporters y+LAT-1 (47%) and KIAA0245/y+LAT-2 (45%) (Torrents, D., Estevez, R., Pineda, M., Fernandez, E., Lloberas, J., Shi, Y.-B., Zorzano, A., and Palacin, M. (1998) J. Biol. Chem. 273, 32437-32445). LAT-2 is a nonglycosylated membrane protein. It requires 4F2 heavy chain, a type II membrane glycoprotein, for its functional expression in Xenopus oocytes. LAT-2-mediated transport is not dependent on Na+ or Cl- and is inhibited by a system L-specific inhibitor, 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH), indicating that LAT-2 is a second isoform of the system L transporter. Compared with LAT-1, which prefers large neutral amino acids with branched or aromatic side chains, LAT-2 exhibits remarkably broad substrate selectivity. It transports all of the L-isomers of neutral alpha-amino acids. LAT-2 exhibits higher affinity (Km = 30-50 microM) to Tyr, Phe, Trp, Thr, Asn, Ile, Cys, Ser, Leu, Val, and Gln and relatively lower affinity (Km = 180-300 microM) to His, Ala, Met, and Gly. In addition, LAT-2 mediates facilitated diffusion of substrate amino acids, as distinct from LAT-1, which mediates amino acid exchange. LAT-2-mediated transport is increased by lowering the pH level, with peak activity at pH 6.25, because of the decrease in the Km value without changing the Vmax value. Because of these functional properties and a high level of expression of LAT-2 in the small intestine, kidney, placenta, and brain, it is suggested that the heterodimeric complex of LAT-2 and 4F2 heavy chain is involved in the trans-cellular transport of neutral amino acids in epithelia and blood-tissue barriers.

  18. Dye-ligand affinity systems.

    PubMed

    Denizli, A; Pişkin, E

    2001-10-30

    Dye-ligands have been considered as one of the important alternatives to natural counterparts for specific affinity chromatography. Dye-ligands are able to bind most types of proteins, in some cases in a remarkably specific manner. They are commercially available, inexpensive, and can easily be immobilized, especially on matrices bearing hydroxyl groups. Although dyes are all synthetic in nature, they are still classified as affinity ligands because they interact with the active sites of many proteins mimicking the structure of the substrates, cofactors, or binding agents for those proteins. A number of textile dyes, known as reactive dyes, have been used for protein purification. Most of these reactive dyes consist of a chromophore (either azo dyes, anthraquinone, or phathalocyanine), linked to a reactive group (often a mono- or dichlorotriazine ring). The interaction between the dye ligand and proteins can be by complex combination of electrostatic, hydrophobic, hydrogen bonding. Selection of the supporting matrix is the first important consideration in dye-affinity systems. There are several methods for immobilization of dye molecules onto the support matrix, in which usually several intermediate steps are followed. Both the adsorption and elution steps should carefully be optimized/designed for a successful separation. Dye-affinity systems in the form of spherical sorbents or as affinity membranes have been used in protein separation.

  19. A Peptide/MHCII conformer generated in the presence of exchange peptide is substrate for HLA-DM editing

    PubMed Central

    Ferrante, Andrea; Gorski, Jack

    2012-01-01

    The mechanism of HLA-DM (DM) activity is still unclear. We have shown that DM-mediated peptide release from HLA-DR (DR) is dependent on the presence of exchange peptide. However, DM also promotes a small amount of peptide release in the absence of exchange peptide. Here we show that SDS-PAGE separates purified peptide/DR1 complexes (pDR1) into two conformers whose ratio is peptide Kd-dependent. In the absence of exchange peptide, DM only releases peptide from the slower migrating conformer. Addition of exchange peptide converts the DM-resistant conformer to the slower migrating conformer, which is DM labile. Thus, exchange peptide generates a conformer of pDR1 which constitutes the intermediate for peptide exchange and the substrate for DM activity. The resolution of the intermediate favors the highest affinity peptide. However, once folded into the DM-resistant conformer, even low affinity peptides can be presented in the absence of free peptide, broadening the repertoire available for presentation. PMID:22545194

  20. Active site-directed double mutants of dihydrofolate reductase.

    PubMed

    Ercikan-Abali, E A; Mineishi, S; Tong, Y; Nakahara, S; Waltham, M C; Banerjee, D; Chen, W; Sadelain, M; Bertino, J R

    1996-09-15

    Variants of dihydrofolate reductase (DHFR), which confer resistance to antifolates, are used as dominant selectable markers in vitro and in vivo and may be useful in the context of gene therapy. To identify improved mutant human DHFRs with increased catalytic efficiency and decreased binding to methotrexate, we constructed by site-directed mutagenesis four variants with substitutions at both Leu22 and Phe31 (i.e., Phe22-Ser31, Tyr22-Ser31, Phe22-Gly31, and Tyr22-Gly31). Antifolate resistance has been observed previously when individual changes are made at these active-site residues. Substrate and antifolate binding properties of these "double" mutants revealed that each have greatly diminished affinity for antifolates (> 10,000-fold) yet only slightly reduced substrate affinity. Comparison of in vitro measured properties with those of single-residue variants indicates that double mutants are indeed significantly superior. This was verified for one of the double mutants that provided high-level methotrexate resistance following retrovirus-mediated gene transfer in NIH3T3 cells.

  1. Unnatural substrates reveal the importance of 8-oxoguanine for in vivo mismatch repair by MutY

    PubMed Central

    Livingston, Alison L.; O’Shea, Valerie L.; Kim, Taewoo; Kool, Eric T.; David, Sheila S.

    2009-01-01

    Escherchia coli MutY plays an important role in preventing mutations associated with the oxidative lesion 7,8-dihydro-8-oxo-2′-deoxyguanosine (OG) in DNA by excising adenines from OG:A mismatches as the first step of base excision repair. To determine the importance of specific steps in the base pair recognition and base removal process of MutY, we have evaluated the effects of modifications of the OG:A substrate on the kinetics of base removal, mismatch affinity and repair to G:C in an Escherchia coli-based assay. Surprisingly, adenine modification was tolerated in the cellular assay, while modification of OG results in minimal cellular repair. High affinity for the mismatch and efficient base removal require the presence of OG. Taken together, these results suggest that the presence of OG is a critical feature for MutY to locate OG:A mismatches and select the appropriate adenines for excision to initiate repair in vivo prior to replication. PMID:18026095

  2. Functional expression, production, and biochemical characterization of a laccase using yeast surface display technology.

    PubMed

    Bertrand, Brandt; Trejo-Hernández, María R; Morales-Guzmán, Daniel; Caspeta, Luis; Suárez Rodríguez, Ramón; Martínez-Morales, Fernando

    2016-12-01

    A Trametes versicolor laccase was functionally expressed on the membrane surface of Saccharomyces cerevisiae EBY100. Laccase expression was increased 6.57-fold by medium optimization and surpassed production by the native strain. Maximal laccase and biomass production reached 19 735 ± 1719 Ug -1 and 6.22 ± 0.53 gL -1 respectively, after 2 d of culture. Optimum oxidization of all substrates by laccase was observed at pH 3. Laccase showed high affinity towards substrates used with Km (mM) and Vmax (μmol min -1 ) values of 0.57 ± 0.0047 and 24.55 ± 0.64, 1.52 ± 0.52 and 9.25 ± 1.78, and 2.67 ± 0.12 and 11.26 ± 0.75, were reported for ABTS, 2, 6-DMP and GUA, respectively. EDTA and NaN 3 displayed none competitive inhibition towards laccase activity. The optimum temperature for activity was 50 °C; however, the enzyme was stable over a wide range of temperatures (25-70 °C). The biologically immobilized laccase showed high reusability towards phenolic substrates and low reusability with non-phenolic substrates. High affinity for a diversity phenolic compounds and great ethanol tolerance substantiates this laccase/yeast biocatalyst potential for application in the production of bioethanol. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  3. A cGMP kinase mutant with increased sensitivity to the protein kinase inhibitor peptide PKI(5-24).

    PubMed

    Ruth, P; Kamm, S; Nau, U; Pfeifer, A; Hofmann, F

    1996-01-01

    Synthetic peptides corresponding to the active domain of the heat-stable inhibitor protein PKI are very potent inhibitors of cAMP-dependent protein kinase, but are extremely weak inhibitors of cGMP-dependent protein kinase. In this study, we tried to confer PKI sensitivity to cGMP kinase by site-directed mutagenesis. The molecular requirements for high affinity inhibition by PKI were deduced from the crystal structure of the cAMP kinase/PKI complex. A prominent site of interaction are residues Tyr235 and Phe239 in the catalytic subunit, which from a sandwich-like structure with Phe10 of the PKI(5-24) peptide. To increase the sensitivity for PKI, the cGMP kinase codons at the corresponding sites, Ser555 and Ser559, were changed to Tyr and Phe. The mutant cGMP kinase was stimulated half maximally by cGMP at 3-fold higher concentrations (240 nM) than the wild type (77 nM). Wild type and mutant cGMP kinase did not differ significantly in their Km and Vmax for three different substrate peptides. The PKI(5-24) peptide inhibited phosphotransferase activity of the mutant cGMP kinase with higher potency than that of wild type, with Ki values of 42 +/- .3 microM and 160 +/- .7 microM, respectively. The increased affinity of the mutant cGMP kinase was specific for the PKI(5-24) peptide. Mutation of the essential Phe10 in the PKI(5-24) sequence to an Ala yielded a peptide that inhibited mutant and wild type cGMP kinase with similar potency, with Ki values of 160 +/- 11 and 169 +/- 27 microM, respectively. These results suggest that the mutations Ser555Tyr and Ser559Phe are required, but not sufficient, for high affinity inhibition of cGMP kinase by PKI.

  4. Dissipation, metabolism and sorption of pesticides used in fruit-packaging plants: Towards an optimized depuration of their pesticide-contaminated agro-industrial effluents.

    PubMed

    Karas, Panagiotis; Metsoviti, Aria; Zisis, Vasileios; Ehaliotis, Constantinos; Omirou, Michalis; Papadopoulou, Evangelia S; Menkissoglou-Spiroudi, Urania; Manta, Stella; Komiotis, Dimitri; Karpouzas, Dimitrios G

    2015-10-15

    Wastewaters from the fruit-packaging industry constitute a serious point source contamination with pesticides. In the absence of effective depuration methods, they are discharged in municipal wastewater treatment plants or spread to land. Modified biobeds could be an applicable solution for their treatment. We studied the dissipation of thiabendazole (TBZ), imazalil (IMZ), ortho-phenylphenol (OPP), diphenylamine (DPA) and ethoxyquin (EQ), used by the fruit-packaging industry, in anaerobically digested sewage sludge, liquid aerobic sewage sludge and in various organic substrates (biobeds packing materials) composed of soil, straw and spend mushroom substrate (SMS) in various volumetric ratios. Pesticide sorption was also determined. TBZ and IMZ showed higher persistence especially in the anaerobically digested sewage sludge (DT50=32.3-257.6d), in contrast to OPP and DPA which were rapidly dissipated especially in liquid aerobic sewage sludge (DT50=1.3-9.3d). EQ was rapidly oxidized mainly to quinone imine (QI) which did not persist and dimethyl ethoxyquinoline (EQNL, minor metabolite) which persisted for longer. Sterilization of liquid aerobic sewage sludge inhibited pesticide decay verifying the microbial nature of pesticide dissipation. Organic substrates rich in SMS showed the highest dissipation capacity with TBZ and IMZ DT50s of ca. 28 d compared to DT50s of >50 d in the other substrates. TBZ and IMZ showed the highest sorption affinity, whereas OPP and DPA were weakly sorbed. Our findings suggest that current disposal practices could not guarantee an efficient depuration of effluents from the fruit-packaging industry, whereas SMS-rich biobed organic substrates show efficient depuration of effluents from the fruit-packaging industry via accelerated dissipation even of recalcitrant fungicides. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. D-Amino acid oxidase bio-functionalized platforms: Toward an enhanced enzymatic bio-activity

    NASA Astrophysics Data System (ADS)

    Herrera, Elisa; Valdez Taubas, Javier; Giacomelli, Carla E.

    2015-11-01

    The purpose of this work is to study the adsorption process and surface bio-activity of His-tagged D-amino acid oxidase (DAAO) from Rhodotorula gracilis (His6-RgDAAO) as the first step for the development of an electrochemical bio-functionalized platform. With such a purpose this work comprises: (a) the His6-RgDAAO bio-activity in solution determined by amperometry, (b) the adsorption mechanism of His6-RgDAAO on bare gold and carboxylated modified substrates in the absence (substrate/COO-) and presence of Ni(II) (substrate/COO- + Ni(II)) determined by reflectometry, and (c) the bio-activity of the His6-RgDAAO bio-functionalized platforms determined by amperometry. Comparing the adsorption behavior and bio-activity of His6-RgDAAO on these different solid substrates allows understanding the contribution of the diverse interactions responsible for the platform performance. His6-RgDAAO enzymatic performance in solution is highly improved when compared to the previously used pig kidney (pk) DAAO. His6-RgDAAO exhibits an amperometrically detectable bio-activity at concentrations as low as those expected on a bio-functional platform; hence, it is a viable bio-recognition element of D-amino acids to be coupled to electrochemical platforms. Moreover, His6-RgDAAO bio-functionalized platforms exhibit a higher surface activity than pkDAAO physically adsorbed on gold. The platform built on Ni(II) modified substrates present enhanced bio-activity because the surface complexes histidine-Ni(II) provide with site-oriented, native-like enzymes. The adsorption mechanism responsible of the excellent performance of the bio-functionalized platform takes place in two steps involving electrostatic and bio-affinity interactions whose prevalence depends on the degree of surface coverage.

  6. Metabolism of d-Arabinose: Origin of a d-Ribulokinase Activity in Escherichia coli1

    PubMed Central

    LeBlanc, Donald J.; Mortlock, Robert P.

    1971-01-01

    The kinase responsible for the phosphorylation of d-ribulose was purified 45.5-fold from a strain of Escherichia coli K-12 capable of growth on d-arabinose with no separation of d-ribulo- or l-fuculokinase activities. Throughout the purification, the ratios of activities remained essentially constant. A nonadditive effect of combining both substrates in an assay mixture; identical Km values for adenosine triphosphate with either l-fuculose or d-ribulose as substrate; and, the irreversible loss of activity on both substrates, after removal of magnesium ions from the enzyme preparation, suggest that the dual activity is due to the same enzyme. A fourfold greater affinity of the enzyme for l-fuculose than for d-ribulose, as well as a higher relative activity on l-fuculose, suggest that the natural substrate for this enzyme is l-fuculose. The product of the purified enzyme, with d-ribulose as substrate, was prepared. The ratio of total phosphorous to ribulose phosphate was 1.01:1, indicating that the product was ribulose monophosphate. The behavior of the kinase product in the cysteine-carbazole and orcinol reactions, as well as the results of periodate oxidation assays, provided evidence that it was not d-ribulose-5-phosphate. Reaction of this compound with a cell-free extract of E. coli possessing l-fuculose-l-phosphate aldolase activity resulted in the production of dihydroxyacetone phosphate and glycolaldehyde. The kinase product failed to reduce 2,3,5-triphenyltetrazolium and possessed a half-life of approximately 1.5 min in the presence of 1 n HCl at 100 C. These properties suggested that the phosphate group was attached to carbon atom 1 of d-ribulose. PMID:4323967

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaberdiel, Matthias R.; Gopakumar, Rajesh; Li, Wei

    The relation between the bosonic higher spin W∞[λ]W∞[λ] algebra, the affine Yangian of gl 1, and the SH c algebra is established in detail. For generic λ we find explicit expressions for the low-lying W∞[λ] modes in terms of the affine Yangian generators, and deduce from this the precise identification between λ and the parameters of the affine Yangian. Furthermore, for the free field cases corresponding to λ = 0 and λ = 1 we give closed-form expressions for the affine Yangian generators in terms of the free fields. Interestingly, the relation between the W∞ modes and those of themore » affine Yangian is a non-local one, in general. We also establish the explicit dictionary between the affine Yangian and the SH c generators. Lastly, given that Yangian algebras are the hallmark of integrability, these identifications should pave the way towards uncovering the relation between the integrable and the higher spin symmetries.« less

  8. High Level Expression and Purification of Recombinant Proteins from Escherichia coli with AK-TAG

    PubMed Central

    Luo, Dan; Wen, Caixia; Zhao, Rongchuan; Liu, Xinyu; Liu, Xinxin; Cui, Jingjing; Liang, Joshua G.; Liang, Peng

    2016-01-01

    Adenylate kinase (AK) from Escherichia coli was used as both solubility and affinity tag for recombinant protein production. When fused to the N-terminus of a target protein, an AK fusion protein could be expressed in soluble form and purified to near homogeneity in a single step from Blue-Sepherose via affinity elution with micromolar concentration of P1, P5- di (adenosine—5’) pentaphosphate (Ap5A), a transition-state substrate analog of AK. Unlike any other affinity tags, the level of a recombinant protein expression in soluble form and its yield of recovery during each purification step could be readily assessed by AK enzyme activity in near real time. Coupled to a His-Tag installed at the N-terminus and a thrombin cleavage site at the C terminus of AK, the streamlined method, here we dubbed AK-TAG, could also allow convenient expression and retrieval of a cleaved recombinant protein in high yield and purity via dual affinity purification steps. Thus AK-TAG is a new addition to the arsenal of existing affinity tags for recombinant protein expression and purification, and is particularly useful where soluble expression and high degree of purification are at stake. PMID:27214237

  9. Wetting and adhesion evaluation of cosmetic ingredients and products: correlation of in vitro-in vivo contact angle measurements.

    PubMed

    Capra, P; Musitelli, G; Perugini, P

    2017-08-01

    The aim of this work was to use the contact angle measurement in order to predict the behaviour of ingredients and finished cosmetic products on skin to improve skin feel and product texture. Different classes of cosmetic ingredients and formulations were evaluated. The contact angle measurements were carried out by the sessile drop method using an apparatus, designed and set up in laboratory. Glass, Teflon and human skin were the reference substrates. In a preliminary phase, TEWL parameter, sebum content and hydration of human skin were measured to set up method. Data demonstrated that glass substrate may be used as replacement of the skin:critical surface tension of skin and glass were about of 27 and 31 dyne cm -1 , respectively. Non-ionic surfactant with increasing HLB was evaluated: a correlation between contact angle measured and HLB was not observed because of different and complex molecular structure. In detail, ethylhexyl hydroxystearate (θ glass = 17.1°) showed lower contact angle value with respect to Polysorbate 20 (θ glass = 28.1°). Sodium laureth sulphate and stearalkonium chloride were also evaluated: anionic molecule showed more affinity for glass with respect to Teflon (θ glass = 21.7° and θ Teflon = 52.3°). Lipids and silicones showed different affinity for substrate according to hydrophilic groups and hydrocarbon chain: contact angles of silicones remained unchanged independently from substrate. Finished cosmetic products (O/W, W/O emulsions, cleansing oil, dry skin oil) showed different profiles according to surfactant and its affinity for continuous phase of the formulation. Comparing the values of the contact angle on skin of non-ionic surfactants, as ethylhexyl hydroxystearate and Polysorbate 20, they showed values lower (near to zero) than ones of sodium laureth sulphate and Stearalkonium Chloride (21.7° and 66.8°, respectively). Finally, finished cosmetic products tested on human skin showed different profile: corresponded contact angle values were less than 20°. The product tended to be quickly adsorbed on human skin. Systematic study carried out by evaluating the wettability of single cosmetic ingredients on different substrates allowed to find correlations between the use of certain ingredients and the final performance of a cosmetic product. © 2017 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  10. The “gating” residues Ile199 and Tyr326 in human monoamine oxidase B function in substrate and inhibitor recognition

    PubMed Central

    Milczek, Erika M.; Binda, Claudia; Rovida, Stefano; Mattevi, Andrea; Edmondson, Dale E.

    2011-01-01

    Summary The major structural difference between human monoamine oxidases A (MAO A) and B (MAO B) is that MAO A has a monopartite substrate cavity of ~550 Å3 volume and MAO B contains a dipartite cavity structure with volumes of ~290 Å3 (entrance cavity) and ~400 Å3 (substrate cavity). Ile199 and Tyr326 side chains separate these two cavities in MAO B. To probe the function of these gating residues, Ile199Ala and Ile199Ala Tyr326Ala mutant forms of MAO B were investigated. Structural data on the Ile199Ala MAO B mutant show no alterations in active site geometries compared to WT enzyme while the Ile199Ala-Tyr326Ala MAO B mutant exhibits alterations in residues 100–103 which are part of the loop gating the entrance to the active site. Both mutant enzymes exhibit catalytic properties with increased amine KM but unaltered kcat values. The altered KM values on mutation are attributed to the influence of the cavity structure in the binding and subsequent deprotonation of the amine substrate. Both mutant enzymes exhibit weaker binding affinities relative to WT enzyme for small reversible inhibitors. Ile199Ala MAO B exhibits an increase in binding affinity for reversible MAO B specific inhibitors which bridge both cavities. The Ile199Ala-Tyr326Ala double mutant exhibits inhibitor binding properties more similar to those of MAO A than to MAO B. These results demonstrate the bipartite cavity structure in MAO B plays an important role in substrate and inhibitor recognition to distinguish its specificities from those of MAO A and provides insights into specific reversible inhibitor design for these membrane-bound enzymes. PMID:21978362

  11. [Characterization of a recombinant aminopeptidase Lmo1711 from Listeria monocytogenes].

    PubMed

    He, Zhan; Wang, Hang; Han, Xiao; Ma, Tiantian; Hang, Yi; Yu, Huifei; Wei, Fangfang; Sun, Jing; Yang, Yongchun; Cheng, Changyong; Song, Houhui

    2018-05-25

    We aimed to obtain the recombinant aminopeptidase encoded by Listeria monocytogenes (L. monocytogenes) gene lmo1711, and characterized the enzyme. First, the amino acid sequences of Lmo1711 from L. monocytogenes EGD-e and its homologues in other microbial species were aligned and the putative active sites were analyzed. The putative model of Lmo1711 was constructed through the SWISS-MODEL Workspace. Then, the plasmid pET30a-Lmo1711 was constructed and transformed into E. coli for expression of the recombinant Lmo1711. The his-tagged soluble protein was purified using the nickel-chelated affinity column chromatography. With the amino acid-p-nitroaniline as the substrate, Lmo1711 hydrolyzed the substrate to free p-nitroaniline monomers, whose absorbance measured at 405 nm reflected the aminopeptidase activity. The specificity of Lmo1711 to substrates was then examined by changing various substrates, and the effect of metal ions on the catalytic efficiency of this enzyme was further determined. Based on the bioinformatics data, Lmo1711 is a member of the M29 family aminopeptidases, containing a highly conserved catalytic motif (Glu-Glu-His-Tyr-His-Asp) with typical structure arrangements of the peptidase family. The recombinant Lmo1711 with a size of about 49.3 kDa exhibited aminopeptidase activity and had a selectivity to the substrates, with the highest degree of affinity for leucine-p-nitroaniline. Interestingly, the enzymatic activity of Lmo1711 can be activated by Cd²⁺, Zn²⁺, and is strongly stimulated by Co²⁺. We here, for the first time demonstrate that L. monocytogenes lmo1711 encodes a cobalt-activated aminopeptidase of M29 family.

  12. Analysis of the link between the redox state and enzymatic activity of the HtrA (DegP) protein from Escherichia coli.

    PubMed

    Koper, Tomasz; Polit, Agnieszka; Sobiecka-Szkatula, Anna; Wegrzyn, Katarzyna; Scire, Andrea; Figaj, Donata; Kadzinski, Leszek; Zarzecka, Urszula; Zurawa-Janicka, Dorota; Banecki, Bogdan; Lesner, Adam; Tanfani, Fabio; Lipinska, Barbara; Skorko-Glonek, Joanna

    2015-01-01

    Bacterial HtrAs are proteases engaged in extracytoplasmic activities during stressful conditions and pathogenesis. A model prokaryotic HtrA (HtrA/DegP from Escherichia coli) requires activation to cleave its substrates efficiently. In the inactive state of the enzyme, one of the regulatory loops, termed LA, forms inhibitory contacts in the area of the active center. Reduction of the disulfide bond located in the middle of LA stimulates HtrA activity in vivo suggesting that this S-S bond may play a regulatory role, although the mechanism of this stimulation is not known. Here, we show that HtrA lacking an S-S bridge cleaved a model peptide substrate more efficiently and exhibited a higher affinity for a protein substrate. An LA loop lacking the disulfide was more exposed to the solvent; hence, at least some of the interactions involving this loop must have been disturbed. The protein without S-S bonds demonstrated lower thermal stability and was more easily converted to a dodecameric active oligomeric form. Thus, the lack of the disulfide within LA affected the stability and the overall structure of the HtrA molecule. In this study, we have also demonstrated that in vitro human thioredoxin 1 is able to reduce HtrA; thus, reduction of HtrA can be performed enzymatically.

  13. Cloning and characterization of a galactitol 2-dehydrogenase from Rhizobium legumenosarum and its application in D-tagatose production.

    PubMed

    Jagtap, Sujit Sadashiv; Singh, Ranjitha; Kang, Yun Chan; Zhao, Huimin; Lee, Jung-Kul

    2014-05-10

    Galactitol 2-dehydrogenase (GDH) belongs to the protein subfamily of short-chain dehydrogenases/reductases and can be used to produce optically pure building blocks and for the bioconversion of bioactive compounds. An NAD(+)-dependent GDH from Rhizobium leguminosarum bv. viciae 3841 (RlGDH) was cloned and overexpressed in Escherichia coli. The RlGDH protein was purified as an active soluble form using His-tag affinity chromatography. The molecular mass of the purified enzyme was estimated to be 28kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 114kDa by gel filtration chromatography, suggesting that the enzyme is a homotetramer. The enzyme has an optimal pH and temperature of 9.5 and 35°C, respectively. The purified recombinant RlGDH catalyzed the oxidation of a wide range of substrates, including polyvalent aliphatic alcohols and polyols, to the corresponding ketones and ketoses. Among various polyols, galactitol was the preferred substrate of RlGDH with a Km of 8.8mM, kcat of 835min(-1) and a kcat/Km of 94.9min(-1)mM(-1). Although GDHs have been characterized from a few other sources, RlGDH is distinguished from other GDHs by its higher specific activity for galactitol and broad substrate spectrum, making RlGDH a good choice for practical applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Membrane-bound oxygen reductases of the anaerobic sulfate-reducing Desulfovibrio vulgaris Hildenborough: roles in oxygen defence and electron link with periplasmic hydrogen oxidation.

    PubMed

    Ramel, F; Amrani, A; Pieulle, L; Lamrabet, O; Voordouw, G; Seddiki, N; Brèthes, D; Company, M; Dolla, A; Brasseur, G

    2013-12-01

    Cytoplasmic membranes of the strictly anaerobic sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough contain two terminal oxygen reductases, a bd quinol oxidase and a cc(b/o)o3 cytochrome oxidase (Cox). Viability assays pointed out that single Δbd, Δcox and double ΔbdΔcox deletion mutant strains were more sensitive to oxygen exposure than the WT strain, showing the involvement of these oxygen reductases in the detoxification of oxygen. The Δcox strain was slightly more sensitive than the Δbd strain, pointing to the importance of the cc(b/o)o3 cytochrome oxidase in oxygen protection. Decreased O2 reduction rates were measured in mutant cells and membranes using lactate, NADH, ubiquinol and menadiol as substrates. The affinity for oxygen measured with the bd quinol oxidase (Km, 300 nM) was higher than that of the cc(b/o)o3 cytochrome oxidase (Km, 620 nM). The total membrane activity of the bd quinol oxidase was higher than that of the cytochrome oxidase activity in line with the higher expression of the bd oxidase genes. In addition, analysis of the ΔbdΔcox mutant strain indicated the presence of at least one O2-scavenging membrane-bound system able to reduce O2 with menaquinol as electron donor with an O2 affinity that was two orders of magnitude lower than that of the bd quinol oxidase. The lower O2 reductase activity in mutant cells with hydrogen as electron donor and the use of specific inhibitors indicated an electron transfer link between periplasmic H2 oxidation and membrane-bound oxygen reduction via the menaquinol pool. This linkage is crucial in defence of the strictly anaerobic bacterium Desulfovibrio against oxygen stress.

  15. A binding-site barrier affects imaging efficiency of high affinity amyloid-reactive peptide radiotracers in vivo.

    PubMed

    Wall, Jonathan S; Williams, Angela; Richey, Tina; Stuckey, Alan; Huang, Ying; Wooliver, Craig; Macy, Sallie; Heidel, Eric; Gupta, Neil; Lee, Angela; Rader, Brianna; Martin, Emily B; Kennel, Stephen J

    2013-01-01

    Amyloid is a complex pathology associated with a growing number of diseases including Alzheimer's disease, type 2 diabetes, rheumatoid arthritis, and myeloma. The distribution and extent of amyloid deposition in body organs establishes the prognosis and can define treatment options; therefore, determining the amyloid load by using non-invasive molecular imaging is clinically important. We have identified a heparin-binding peptide designated p5 that, when radioiodinated, was capable of selectively imaging systemic visceral AA amyloidosis in a murine model of the disease. The p5 peptide was posited to bind effectively to amyloid deposits, relative to similarly charged polybasic heparin-reactive peptides, because it adopted a polar α helix secondary structure. We have now synthesized a variant, p5R, in which the 8 lysine amino acids of p5 have been replaced with arginine residues predisposing the peptide toward the α helical conformation in an effort to enhance the reactivity of the peptide with the amyloid substrate. The p5R peptide had higher affinity for amyloid and visualized AA amyloid in mice by using SPECT/CT imaging; however, the microdistribution, as evidenced in micro-autoradiographs, was dramatically altered relative to the p5 peptide due to its increased affinity and a resultant "binding site barrier" effect. These data suggest that radioiodinated peptide p5R may be optimal for the in vivo detection of discreet, perivascular amyloid, as found in the brain and pancreatic vasculature, by using molecular imaging techniques; however, peptide p5, due to its increased penetration, may yield more quantitative imaging of expansive tissue amyloid deposits.

  16. Stoichiometry and pH dependence of the rabbit proton-dependent oligopeptide transporter PepT1.

    PubMed

    Steel, A; Nussberger, S; Romero, M F; Boron, W F; Boyd, C A; Hediger, M A

    1997-02-01

    1. The intestinal H(+)-coupled peptide transporter PepT1, displays a broad substrate specificity and accepts most charged and neutral di- and tripeptides. To study the proton-to-peptide stoichiometry and the dependence of the kinetic parameters on extracellular pH (pHo), rabbit PepT1 was expressed in Xenopus laevis oocytes and used for uptake studies of radiolabelled neutral and charged dipeptides, voltage-clamp analysis and intracellular pH measurements. 2. PepT1 did not display the substrate-gated anion conductances that have been found to be characteristic of members of the Na(+)- and H(+)-coupled high-affinity glutamate transporter family. In conjunction with previous data on the ion dependence of PepT1, it can therefore be concluded that peptide-evoked charge fluxes of PepT1 are entirely due to H+ movement. 3. Neutral, acidic and basic dipeptides induced intracellular acidification. The rate of acidification, the initial rates of the uptake of radiolabelled peptides and the associated charge fluxes gave proton-substrate coupling ratios of 1:1, 2:1 and 1:1 for neutral, acidic and basic dipeptides, respectively. 4. Maximal transport of the neutral and charged dipeptides Gly-Leu, Gly-Glu, Gly-Lys and Ala-Lys occurred at pHo 5.5, 5.2, 6.2 and 5.8, respectively. The Imax values were relatively pHo independent but the apparent affinity (Km(app) values for these peptides were shown to be highly pHo dependent. 5. Our data show that at physiological pH (pHo 5.5-6.0) PepT1 prefers neutral and acidic peptides. The shift in transport maximum for the acidic peptide Gly-Glu to a lower pH value suggests that acidic dipeptides are transported in the protonated form. The shift in the transport maxima of the basic dipeptides to higher pH values may involve titration of a side-chain on the transporter molecule (e.g. protonation of a histidine group). These considerations have led us to propose a model for coupled transport of neutral, acidic and basic dipeptides.

  17. Decreases in activation energy and substrate affinity in cold-adapted A4-lactate dehydrogenase: evidence from the Antarctic notothenioid fish Chaenocephalus aceratus.

    PubMed

    Fields, Peter A; Houseman, Daniel E

    2004-12-01

    Enzyme function is strongly affected by temperature, and orthologs from species adapted to different thermal environments often show temperature compensation in kinetic properties. Antarctic notothenioid fishes live in a habitat of constant, extreme cold (-1.86 +/- 2 degrees C), and orthologs of the enzyme A4-lactate dehydrogenase (A4-LDH) in these species have adapted to this environment through higher catalytic rates, lower Arrhenius activation energies (Ea), and increases in the apparent Michaelis constant for the substrate pyruvate (Km(PYR)). Here, site-directed mutagenesis was used to determine which amino acid substitutions found in A4-LDH of the notothenioid Chaenocephalus aceratus, with respect to orthologs from warm-adapted teleosts, are responsible for these adaptive changes in enzyme function. Km(PYR) was measured in eight single and two double mutants, and Ea was tested in five single and two double mutants in the temperature range 0 degrees C-20 degrees C. Of the four mutants that had an effect on these parameters, two increased Ea but did not affect Km(PYR) (Gly224Ser, Ala310Pro), and two increased both Ea and Km(PYR) (Glu233Met, Gln317Val). The double mutants Glu233Met/Ala310Pro and Glu233Met/Gln317Val increased Km(PYR) and Ea to levels not significantly different from the A4-LDH of a warm temperate fish (Gillichthys mirabilis, habitat temperature 10 degrees C-35 degrees C). The four single mutants are associated with two alpha-helices that move during the catalytic cycle; those that affect Ea but not Km(PYR) are further from the active site than those that affect both parameters. These results provide evidence that (1) cold adaptation in A4-LDH involves changes in mobility of catalytically important molecular structures; (2) these changes may alter activation energy alone or activation energy and substrate affinity together; and (3) the extent to which these parameters are affected may depend on the location of the substitutions within the mobile alpha-helices, perhaps due to differences in proximity to the active site.

  18. Characterization of new recombinant 3-ketosteroid-Δ1-dehydrogenases for the biotransformation of steroids.

    PubMed

    Wang, Xiaojun; Feng, Jinhui; Zhang, Dalong; Wu, Qiaqing; Zhu, Dunming; Ma, Yanhe

    2017-08-01

    3-Ketosteroid-Δ 1 -dehydrogenases (KstDs [EC 1.3.99.4]) catalyze the Δ 1 -dehydrogenation of steroids and are a class of important enzymes for steroid biotransformations. In this study, we cloned 12 putative KstD-encoding (kstd) genes from both fungal and Gram-positive microorganisms and attempted to overproduce the recombinant proteins in E. coli BL21(DE3). Five successful recombinant enzymes catalyzed the Δ 1 -desaturation of a variety of steroidal compounds such as 4-androstene-3,17-dione (AD), 9α-hydroxy-4-androstene-3,17-dione (9-OH-AD), hydrocortisone, cortisone, and cortexolone. However, the substrate specificity and catalytic efficiency of the enzymes differ depending on their sources. The purified KstD from Mycobacterium smegmatis mc 2 155 (MsKstD1) displayed high catalytic efficiency toward hydrocortisone, progesterone, and 9-OH-AD, where it had the highest affinity (K m 36.9 ± 4.6 μM) toward 9-OH-AD. On the other hand, the KstD from Rhodococcus erythropolis WY 1406 (ReKstD) exhibited high catalytic efficiency toward androst-4,9(11)-diene-3,17-dione (Diene), 21-acetoxy-pregna-4,9(11),16-triene-3,20-dione (Triene), and cortexolone, where in all three cases the K m values (12.3 to 17.8 μM) were 2.5-4-fold lower than that toward hydrocortisone (46.3 μM). For both enzymes, AD was a good substrate although ReKstD had a 3-fold higher affinity than MsKstD1. Reaction conditions were optimized for the biotransformation of AD or hydrocortisone in terms of pH, temperature, and effects of hydrogen peroxide, solvent, and electron acceptor. For the biotransformation of hydrocortisone with 20 g/L wet resting E. coli cells harboring MsKstD1 enzyme, the yield of prednisolone was about 90% within 3 h at the substrate concentration of 6 g/L, demonstrating the application potential of the newly cloned KstDs.

  19. Higher Nucleoporin-Importinβ Affinity at the Nuclear Basket Increases Nucleocytoplasmic Import

    PubMed Central

    Azimi, Mohammad; Mofrad, Mohammad R. K.

    2013-01-01

    Several in vitro studies have shown the presence of an affinity gradient in nuclear pore complex proteins for the import receptor Importinβ, at least partially contributing to nucleocytoplasmic transport, while others have historically argued against the presence of such a gradient. Nonetheless, the existence of an affinity gradient has remained an uncharacterized contributing factor. To shed light on the affinity gradient theory and better characterize how the existence of such an affinity gradient between the nuclear pore and the import receptor may influence the nucleocytoplasmic traffic, we have developed a general-purpose agent based modeling (ABM) framework that features a new method for relating rate constants to molecular binding and unbinding probabilities, and used our ABM approach to quantify the effects of a wide range of forward and reverse nucleoporin-Importinβ affinity gradients. Our results indicate that transport through the nuclear pore complex is maximized with an effective macroscopic affinity gradient of 2000 µM, 200 µM and 10 µM in the cytoplasmic, central channel and nuclear basket respectively. The transport rate at this gradient is approximately 10% higher than the transport rate for a comparable pore lacking any affinity gradient, which has a peak transport rate when all nucleoporins have an affinity of 200 µM for Importinβ. Furthermore, this optimal ratio of affinity gradients is representative of the ratio of affinities reported for the yeast nuclear pore complex – suggesting that the affinity gradient seen in vitro is highly optimized. PMID:24282617

  20. The de-epoxidase and epoxidase reactions of Mantoniella squamata (Prasinophyceae) exhibit different substrate-specific reaction kinetics compared to spinach.

    PubMed

    Frommolt, R; Goss, R; Wilhelm, C

    2001-07-01

    In vivo the prasinophyceaen alga Mantoniella squamata Manton et Parke uses an incomplete violaxanthin (Vx) cycle, leading to a strong accumulation of antheraxanthin (Ax) under conditions of high light. Here, we show that this zeaxanthin (Zx)-depleted Vx/Ax cycle is caused by an extremely slow second de-epoxidation step from Ax to Zx, and a fast epoxidation from Ax back to Vx in the light. The rate constant of Ax epoxidation is 5 to 6 times higher than the rate constant of Zx formation, implying that Ax is efficiently converted back to Vx before it can be de-epoxidated to Zx. It is, however, only half the rate constant of the first de-epoxidation step from Vx to Ax, thus explaining the observed net accumulation of Ax during periods of strong illumination. When comparing the rate constant of the second de-epoxidation step in M. squamata with Zx formation in spinach (Spinacia oleracea L.) thylakoids, we find a 20-fold reduction in the reaction kinetics of the former. This extremely slow Ax de-epoxidation, which is also exhibited by the isolated Mantoniella violaxanthin de-epoxidase (VDE), is due to a reduced substrate affinity of M. squamata VDE for Ax compared with the VDE of higher plants. Mantoniella VDE, which has a similar Km value for Vx, shows a substantially increased Km for the substrate Ax in comparison with spinach VDE. Our results furthermore explain why Zx formation in Mantoniella cells can only be found at low pH values that represent the pH optimum of VDE. A pH of 5 blocks the epoxidation reaction and, consequently, leads to a slow but appreciable accumulation of Zx.

  1. Carbon-containing cathodes for enhanced electron emission

    DOEpatents

    Cao, Renyu; Pan, Lawrence; Vergara, German; Fox, Ciaran

    2000-01-01

    A cathode has electropositive atoms directly bonded to a carbon-containing substrate. Preferably, the substrate comprises diamond or diamond-like (sp.sup.3) carbon, and the electropositive atoms are Cs. The cathode displays superior efficiency and durability. In one embodiment, the cathode has a negative electron affinity (NEA). The cathode can be used for field emission, thermionic emission, or photoemission. Upon exposure to air or oxygen, the cathode performance can be restored by annealing or other methods. Applications include detectors, electron multipliers, sensors, imaging systems, and displays, particularly flat panel displays.

  2. Phosphagen kinase in Schistosoma japonicum: characterization of its enzymatic properties and determination of its gene structure.

    PubMed

    Tokuhiro, Shinji; Uda, Kouji; Yano, Hiroko; Nagataki, Mitsuru; Jarilla, Blanca R; Suzuki, Tomohiko; Agatsuma, Takeshi

    2013-04-01

    Phosphagen kinases (PKs) play a major role in the regulation of energy metabolism in animals. Creatine kinase (CK) is the sole PK in vertebrates, whereas several PKs are present in invertebrates. Here, we report the enzymatic properties and gene structure of PK in the trematode Schistosoma japonicum (Sj). SjPK has a unique contiguous dimeric structure comprising domain 1 (D1) and domain 2 (D2). The three states of the recombinant SjPK (D1, D2, and D1D2) show a specific activity for the substrate taurocyamine. The comparison of the two domains of SjPK revealed that D1 had a high turnover rate (kcat=52.91) and D2 exhibited a high affinity for taurocyamine (Km(Tauro) =0.53±0.06). The full-length protein exhibited higher affinity for taurocyamine (Km(Tauro) =0.47±0.03) than the truncated domains (D1=1.30±0.10, D2=0.53±0.06). D1D2 also exhibited higher catalytic efficiency (kcat/Km(Tauro) =82.98) than D1 (40.70) and D2 (29.04). These results demonstrated that both domains of SjTKD1D2 interacted efficiently and remained functional. The three-dimensional structure of SjPKD1 was constructed by the homology modeling based on the transition state analog complex state of Limulus AK. This protein model of SjPKD1 suggests that the overall structure is almost conserve between SjPKD1 and Limulus AK except for the flexible loops, that is, particularly guanidino-specificity (GS) region, which is associated with the recognition of the corresponding guanidino substrate. The constructed NJ tree and the comparison of exon/intron organization suggest that SjTK has evolved from an arginine kinase (AK) gene. SjTK has potential as a novel antihelminthic drug target as it is absent in mammals and its strong activity may imply a significant role for this protein in the energy metabolism of the parasite. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. In vitro metabolism of benzo[a]pyrene-7,8-dihydrodiol and dibenzo[def,p]chrysene-11,12 diol in rodent and human hepatic microsomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Jordan N.; Mehinagic, Denis; Nag, Subhasree

    Polycyclic aromatic hydrocarbons (PAHs) are contaminants that are ubiquitously found in the environment, produced through combustion of organic matter or petrochemicals, and many of which are procarcinogens. The prototypic PAH, benzo[a]pyrene (B[a]P) and the highly carcinogenic dibenzo[def,p]chrysene (DBC) are metabolically activated by isoforms of the P450 enzyme superfamily producing benzo[a]pyrene-7,8-dihydrodiol (B[a]P diol), dibenzo[def,p]chrysene-11,12 diol (DBC diol). Each of these diols can be further metabolized by cytochrome P450 enzymes to highly reactive diol-epoxide metabolites that readily react with DNA or by phase II conjugation facilitating excretion. To complement prior in vitro metabolism studies with parent B[a]P and DBC, both phase Imore » metabolism and phase II glucuronidation of B[a]P diol and DBC diol were measured in hepatic microsomes from female B6129SF1/J mice, male Sprague-Dawley rats, and female humans. Metabolic parameters, including intrinsic clearance and Michaelis-Menten kinetics were calculated from substrate depletion data. Mice and rats demonstrated similar B[a]P diol phase I metabolic rates. Compared to rodents, human phase I metabolism of B[a]P diol demonstrated lower overall metabolic capacity, lower intrinsic clearance at higher substrate concentrations (>0.14 µM), and higher intrinsic clearance at lower substrate concentrations (<0.07 µM). Rates of DBC diol metabolism did not saturate in mice or humans and were highest overall in mice. Higher affinity constants and lower capacities were observed for DBC diol glucuronidation compared to B[a]P diol glucuronidation; however, intrinsic clearance values for these compounds were consistent within each species. Kinetic parameters reported here will be used to extend physiologically based pharmacokinetic (PBPK) models to include the disposition of B[a]P and DBC metabolites in animal models and humans to support future human health risk assessments.« less

  4. Expression and comparative characterization of complete and C-terminally truncated forms of saccharifying α-amylase from Lactobacillus plantarum S21.

    PubMed

    Kanpiengjai, Apinun; Nguyen, Thu-Ha; Haltrich, Dietmar; Khanongnuch, Chartchai

    2017-10-01

    Lactobacillus plantarum S21 α-amylase possesses 475 amino acids at the C-terminal region identified as the starch-binding domain (SBD) and has been previously reported to play a role in raw starch degradation. To understand the specific roles of this SBD, cloning and expression of the complete (AmyL9) and C-terminally truncated (AmyL9Δ SBD ) forms of α-amylase were conducted for enzyme purification and comparative characterization. AmyL9 and AmyL9Δ SBD were overproduced in Escherichia coli at approximately 10- and 20-times increased values of volumetric productivity when compared to α-amylase produced by the wild type, respectively. AmyL9Δ SBD was unable to hydrolyze raw starch and exhibited substrate specificity in a similar manner to that of AmyL9, but it was weakly active toward amylopectin and glycogen. The hydrolysis products obtained from the amylaceous substrates of both enzymes were the same. In addition, AmyL9Δ SBD showed comparatively higher K m values than AmyL9 when it reacted with starch and amylopectin, and lower values for other kinetic constants namely v max , k cat , and k cat /K m . The results indicated that the C-terminal SBDs of L. plantarum S21 α-amylase contribute to not only substrate preference but also substrate affinity and the catalytic efficiency of the α-amylase without any changes in the degradation mechanisms of the enzyme. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Kinetic characterization of Escherichia coli outer membrane phospholipase A using mixed detergent-lipid micelles.

    PubMed

    Horrevoets, A J; Hackeng, T M; Verheij, H M; Dijkman, R; de Haas, G H

    1989-02-07

    The substrate specificity of Escherichia coli outer membrane phospholipase A was analyzed in mixed micelles of lipid with deoxycholate or Triton X-100. Diglycerides, monoglycerides, and Tweens 40 and 85 in Triton X-100 are hydrolyzed at rates comparable to those of phospholipids and lysophospholipids. p-Nitrophenyl esters of fatty acids with different chain lengths and triglycerides are not hydrolyzed. The minimal substrate characteristics consist of a long acyl chain esterified to a more or less hydrophilic headgroup as is the case for the substrate monopalmitoylglycol. Binding occurs via the hydrocarbon chain of the substrate; diacyl compounds are bound three to five times better than monoacyl compounds. When acting on lecithins, phospholipase A1 activity is six times higher than phospholipase A2 activity or 1-acyl lysophospholipase activity. Activity on the 2-acyl lyso compound is about two times less than that on the 1-acyl lysophospholipid. The enzyme therefore has a clear preference for the primary ester bond of phospholipids. In contrast to phospholipase A1 activity, phospholipase A2 activity is stereospecific. Only the L isomer of a lecithin analogue in which the primary acyl chain was replaced by an alkyl ether group is hydrolyzed. The D isomer of this analogue is a competitive inhibitor, bound with the same affinity as the L isomer. On these ether analogues the enzyme shows the same preference for the primary acyl chain as with the natural diester phospholipids. Despite its broad specificity, the enzyme will initially act as a phospholipase A1 in the E. coli envelope where it is embedded in phospholipids.

  6. Ultra-deep desulfurization via reactive adsorption on peroxophosphomolybdate/agarose hybrids.

    PubMed

    Xu, Jian; Li, Huacheng; Wang, Shengtian; Luo, Fang; Liu, Yunyu; Wang, Xiaohong; Jiang, Zijiang

    2014-09-01

    A catalyst system composed of peroxophosphomolybdates as catalytic center and agarose as matrix material had been designed. The [C16H33N(CH3)3]3[PO4{MoO(O2)2}4]/agarose (C16PMo(O2)2/agarose) hybrid was found to be active for oxidation desulfurization (ODS) of dibenzothiophene (DBT) or real fuel into corresponding sulfone by H2O2 as an oxidant, while the sulfur content could be reduced to 5ppm. The higher activity comes from its components including [PO4{MoO(O2)2}4] catalytic sites, the hydrophobic quaternary ammonium cation affinity to low polarity substrates, and agarose matrix affinity to H2O2 and sulfone. During the oxidative reaction, the mass transfer resistance between H2O2 and organic sulfurs could be decreased and the reaction rate could increase by the assistance of agarose and hydrophobic tails of [C16H33N(CH3)3]3[PO4{MoO(O2)2}4]. Meanwhile, the oxidative products could be adsorbed by agarose matrix to give clean fuel avoiding the post-treatment. In addition, the hybrid was easily regenerated to be reused. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Purification and functional characterisation of the pyruvate (monocarboxylate) carrier from baker's yeast mitochondria (Saccharomyces cerevisiae).

    PubMed

    Nałecz, M J; Nałecz, K A; Azzi, A

    1991-08-09

    Isolated yeast mitochondria were subjected to solubilization by Triton X-114 and the detergent extract was subsequently chromatrographed on dry hydroxyapatite. Purification of the yeast monocarboxylate (pyruvate) carrier was achieved by affinity chromatography on immobilized 2-cyano-4-hydroxycinnamate, as described previously for bovine heart mitochondria (Bolli, R., Nałecz K.A. and Azzi, A. (1989) J. Biol. Chem. 264 18024-18030). The final preparation contained two polypeptides of apparent molecular mass 26 and 50 kDa. The yeast carrier appeared to be less abundant, but more active, than the analogous protein from higher eukaryotes. The carrier was able to catalyse the pyruvate / pyruvate and pyruvate / acetoacetate exchange reactions, both reactions being sensitive to cyanocinnamate and its derivatives, to phenylpyruvate and to mersalyl and p-chloromercuribenzoate. In the pyruvate / acetoacetate exchange reaction (200 mM internal acetoacetate, enzymatic assay), the Km value for external pyruvate was found to be 0.8 mM and the Vmax 135 mumol/min per mg protein. Among other substrates of the yeast carrier, all transported with similar affinity and identical maximal velocity against acetoacetate, we identified 2-oxoisocaproate, 2-oxoisovalerate and 2-oxo-3-methylvalerate. Lactate was not translocated by this carrier with a measurable rate, neither were di- or tricarboxylates.

  8. No major role for binding by salivary proteins as a defense against dietary tannins in Mediterranean goats.

    PubMed

    Hanovice-Ziony, Michal; Gollop, Nathan; Landau, Serge Yan; Ungar, Eugene David; Muklada, Hussein; Glasser, Tzach Aharon; Perevolotsky, Avi; Walker, John Withers

    2010-07-01

    We investigated whether Mediterranean goats use salivary tannin-binding proteins to cope with tannin-rich forages by determining the affinity of salivary or parotid gland proteins for tannic acid or quebracho tannin. Mixed saliva, sampled from the oral cavity, or parotid gland contents were compared to the intermediate affinity protein bovine serum albumin with a competitive binding assay. Goats that consume tannin-rich browse (Damascus) and goats that tend to avoid tannins (Mamber) were sequentially fed high (Pistacia lentiscus L.), low (vetch hay), or zero (wheat hay) tannin forages. Affinity of salivary proteins for tannins did not differ between goat breeds and did not respond to presence or absence of tannins in the diet. Proteins in mixed saliva had slightly higher affinity for tannins than those in parotid saliva, but neither source contained proteins with higher affinity for tannins than bovine serum albumin. Similarly, 3 months of browsing in a tannin-rich environment had little effect on the affinity of salivary proteins for tannin in adult goats of either breed. We sampled mixed saliva from young kids before they consumed forage and after 3 months of foraging in a tannin-rich environment. Before foraging, the saliva of Mamber kids had higher affinity for tannic acid (but not quebracho tannin) than the saliva of Damascus kids, but there was no difference after 3 months of exposure to tannin-rich browse, and the affinity of the proteins was always similar to the affinity of bovine serum albumin. Our results suggest there is not a major role for salivary tannin-binding proteins in goats. Different tendencies of goat breeds to consume tannin-rich browse does not appear be related to differences in salivary tannin-binding proteins.

  9. The Penicillium chrysogenum transporter PcAraT enables high-affinity, glucose-insensitive l-arabinose transport in Saccharomyces cerevisiae.

    PubMed

    Bracher, Jasmine M; Verhoeven, Maarten D; Wisselink, H Wouter; Crimi, Barbara; Nijland, Jeroen G; Driessen, Arnold J M; Klaassen, Paul; van Maris, Antonius J A; Daran, Jean-Marc G; Pronk, Jack T

    2018-01-01

    l-Arabinose occurs at economically relevant levels in lignocellulosic hydrolysates. Its low-affinity uptake via the Saccharomyces cerevisiae Gal2 galactose transporter is inhibited by d-glucose. Especially at low concentrations of l-arabinose, uptake is an important rate-controlling step in the complete conversion of these feedstocks by engineered pentose-metabolizing S. cerevisiae strains. Chemostat-based transcriptome analysis yielded 16 putative sugar transporter genes in the filamentous fungus Penicillium chrysogenum whose transcript levels were at least threefold higher in l-arabinose-limited cultures than in d-glucose-limited and ethanol-limited cultures. Of five genes, that encoded putative transport proteins and showed an over 30-fold higher transcript level in l-arabinose-grown cultures compared to d-glucose-grown cultures, only one (Pc20g01790) restored growth on l-arabinose upon expression in an engineered l-arabinose-fermenting S. cerevisiae strain in which the endogenous l-arabinose transporter, GAL2 , had been deleted. Sugar transport assays indicated that this fungal transporter, designated as Pc AraT, is a high-affinity ( K m  = 0.13 mM), high-specificity l-arabinose-proton symporter that does not transport d-xylose or d-glucose. An l-arabinose-metabolizing S. cerevisiae strain in which GAL2 was replaced by PcaraT showed 450-fold lower residual substrate concentrations in l-arabinose-limited chemostat cultures than a congenic strain in which l-arabinose import depended on Gal2 (4.2 × 10 -3 and 1.8 g L -1 , respectively). Inhibition of l-arabinose transport by the most abundant sugars in hydrolysates, d-glucose and d-xylose was far less pronounced than observed with Gal2. Expression of Pc AraT in a hexose-phosphorylation-deficient, l-arabinose-metabolizing S. cerevisiae strain enabled growth in media supplemented with both 20 g L -1 l-arabinose and 20 g L -1 d-glucose, which completely inhibited growth of a congenic strain in the same condition that depended on l-arabinose transport via Gal2. Its high affinity and specificity for l-arabinose, combined with limited sensitivity to inhibition by d-glucose and d-xylose, make Pc AraT a valuable transporter for application in metabolic engineering strategies aimed at engineering S. cerevisiae strains for efficient conversion of lignocellulosic hydrolysates.

  10. Integrated Affinity Biosensing Platforms on Screen-Printed Electrodes Electrografted with Diazonium Salts

    PubMed Central

    Yáñez-Sedeño, Paloma

    2018-01-01

    Adequate selection of the electrode surface and the strategies for its modification to enable subsequent immobilization of biomolecules and/or nanomaterials integration play a major role in the performance of electrochemical affinity biosensors. Because of the simplicity, rapidity and versatility, electrografting using diazonium salt reduction is among the most currently used functionalization methods to provide the attachment of an organic layer to a conductive substrate. This particular chemistry has demonstrated to be a powerful tool to covalently immobilize in a stable and reproducible way a wide range of biomolecules or nanomaterials onto different electrode surfaces. Considering the great progress and interesting features arisen in the last years, this paper outlines the potential of diazonium chemistry to prepare single or multianalyte electrochemical affinity biosensors on screen-printed electrodes (SPEs) and points out the existing challenges and future directions in this field. PMID:29495294

  11. Integrated Affinity Biosensing Platforms on Screen-Printed Electrodes Electrografted with Diazonium Salts.

    PubMed

    Yáñez-Sedeño, Paloma; Campuzano, Susana; Pingarrón, José M

    2018-02-24

    Adequate selection of the electrode surface and the strategies for its modification to enable subsequent immobilization of biomolecules and/or nanomaterials integration play a major role in the performance of electrochemical affinity biosensors. Because of the simplicity, rapidity and versatility, electrografting using diazonium salt reduction is among the most currently used functionalization methods to provide the attachment of an organic layer to a conductive substrate. This particular chemistry has demonstrated to be a powerful tool to covalently immobilize in a stable and reproducible way a wide range of biomolecules or nanomaterials onto different electrode surfaces. Considering the great progress and interesting features arisen in the last years, this paper outlines the potential of diazonium chemistry to prepare single or multianalyte electrochemical affinity biosensors on screen-printed electrodes (SPEs) and points out the existing challenges and future directions in this field.

  12. Enhanced cellulose degradation using cellulase-nanosphere complexes.

    PubMed

    Blanchette, Craig; Lacayo, Catherine I; Fischer, Nicholas O; Hwang, Mona; Thelen, Michael P

    2012-01-01

    Enzyme catalyzed conversion of plant biomass to sugars is an inherently inefficient process, and one of the major factors limiting economical biofuel production. This is due to the physical barrier presented by polymers in plant cell walls, including semi-crystalline cellulose, to soluble enzyme accessibility. In contrast to the enzymes currently used in industry, bacterial cellulosomes organize cellulases and other proteins in a scaffold structure, and are highly efficient in degrading cellulose. To mimic this clustered assembly of enzymes, we conjugated cellulase obtained from Trichoderma viride to polystyrene nanospheres (cellulase:NS) and tested the hydrolytic activity of this complex on cellulose substrates from purified and natural sources. Cellulase:NS and free cellulase were equally active on soluble carboxymethyl cellulose (CMC); however, the complexed enzyme displayed a higher affinity in its action on microcrystalline cellulose. Similarly, we found that the cellulase:NS complex was more efficient in degrading natural cellulose structures in the thickened walls of cultured wood cells. These results suggest that nanoparticle-bound enzymes can improve catalytic efficiency on physically intractable substrates. We discuss the potential for further enhancement of cellulose degradation by physically clustering combinations of different glycosyl hydrolase enzymes, and applications for using cellulase:NS complexes in biofuel production.

  13. Enhanced Cellulose Degradation Using Cellulase-Nanosphere Complexes

    PubMed Central

    Blanchette, Craig; Lacayo, Catherine I.; Fischer, Nicholas O.; Hwang, Mona; Thelen, Michael P.

    2012-01-01

    Enzyme catalyzed conversion of plant biomass to sugars is an inherently inefficient process, and one of the major factors limiting economical biofuel production. This is due to the physical barrier presented by polymers in plant cell walls, including semi-crystalline cellulose, to soluble enzyme accessibility. In contrast to the enzymes currently used in industry, bacterial cellulosomes organize cellulases and other proteins in a scaffold structure, and are highly efficient in degrading cellulose. To mimic this clustered assembly of enzymes, we conjugated cellulase obtained from Trichoderma viride to polystyrene nanospheres (cellulase:NS) and tested the hydrolytic activity of this complex on cellulose substrates from purified and natural sources. Cellulase:NS and free cellulase were equally active on soluble carboxymethyl cellulose (CMC); however, the complexed enzyme displayed a higher affinity in its action on microcrystalline cellulose. Similarly, we found that the cellulase:NS complex was more efficient in degrading natural cellulose structures in the thickened walls of cultured wood cells. These results suggest that nanoparticle-bound enzymes can improve catalytic efficiency on physically intractable substrates. We discuss the potential for further enhancement of cellulose degradation by physically clustering combinations of different glycosyl hydrolase enzymes, and applications for using cellulase:NS complexes in biofuel production. PMID:22870287

  14. Discovery of the ergothioneine transporter

    PubMed Central

    Gründemann, Dirk; Harlfinger, Stephanie; Golz, Stefan; Geerts, Andreas; Lazar, Andreas; Berkels, Reinhard; Jung, Norma; Rubbert, Andrea; Schömig, Edgar

    2005-01-01

    Variants of the SLC22A4 gene are associated with susceptibility to rheumatoid arthritis and Crohn's disease. SLC22A4 codes for an integral membrane protein, OCTN1, that has been presumed to carry organic cations like tetraethylammonium across the plasma membrane. Here, we show that the key substrate of this transporter is in fact ergothioneine (ET). Human OCTN1 was expressed in 293 cells. A substrate lead, stachydrine (alias proline betaine), was identified by liquid chromatography MS difference shading, a new substrate search strategy. Analysis of transport efficiency of stachydrine-related solutes, affinity, and Na+ dependence indicates that the physiological substrate is ET. Efficiency of transport of ET was as high as 195 μl per min per mg of protein. By contrast, the carnitine transporter OCTN2 from rat did not transport ET at all. Because ET is transported >100 times more efficiently than tetraethylammonium and carnitine, we propose the functional name ETT (ET transporter) instead of OCTN1. ET, all of which is absorbed from food, is an intracellular antioxidant with metal ion affinity. Its particular purpose is unresolved. Cells with expression of ETT accumulate ET to high levels and avidly retain it. By contrast, cells lacking ETT do not accumulate ET, because their plasma membrane is virtually impermeable for this compound. The real-time PCR expression profile of human ETT, with strong expression in CD71+ cells, is consistent with a pivotal function of ET in erythrocytes. Moreover, prominent expression of ETT in monocytes and SLC22A4 polymorphism associations suggest a protective role of ET in chronic inflammatory disorders. PMID:15795384

  15. Beta-Lactamases Produced by a Pseudomonas aeruginosa Strain Highly Resistant to Carbenicillin

    PubMed Central

    Labia, Roger; Guionie, Marlène; Masson, Jean-Michel; Philippon, Alain; Barthelemy, Michel

    1977-01-01

    A Pseudomonas aeruginosa strain isolated at Besançon Hospital, France, proved to be highly resistant to carbenicillin and showed a high hydrolytic activity toward this antibiotic. We clearly demonstrated that two β-lactamases were synthetized: one of them, constitutive, has its enzymatic activity directed mainly toward penicillins, and carbenicillin appears to be its best substrate (higher Vmax); thus, this β-lactamase is a “carbenicillinase” that differs from the well-known “TEM-like” enzymes. The isoelectric point of this carbenicillinase is 5.30 ± 0.03. The other one is an inducible cephalosporinase, very similar to the cephalosporinases usually found in these organisms. Its isoelectric point is 8.66 ± 0.04. These two enzymes have been separated by affinity chromatography and isoelectric focusing. The kinetic constants were measured by computerized microacidimetry. Images PMID:406828

  16. Substrates of the Arabidopsis thaliana protein isoaspartyl methyltransferasel identified using phage display and biopanning

    USDA-ARS?s Scientific Manuscript database

    The role of PROTEIN ISOASPARTYL-METHYLTRANSFERASE (PIMT) in repairing a wide assortment of damaged proteins in a host of organisms has been inferred from the affinity of the enzyme for isoaspartyl residues in a plethora of amino acid contexts. The identification of specific PIMT target proteins in p...

  17. Cholinergic Receptor Substrates of Neuronal Plasticity and Learning

    DTIC Science & Technology

    1992-01-29

    cortical binding of 3H- oxotremorine (OXO), a ligand having high affinity for M2 muscarinic receptors, are described in a manuscript by Vogt, Gabriel...of 1H Oxotremorine co-incubated with Pirenzepine (OXO-M/PZ) throughout the course of training in three thalamic nudei. -L As in the case of training

  18. Observation of positive and small electron affinity of Si-doped AlN films grown by metalorganic chemical vapor deposition on n-type 6H-SiC

    NASA Astrophysics Data System (ADS)

    Feng, Liang; Ping, Chen; De-Gang, Zhao; De-Sheng, Jiang; Zhi-Juan, Zhao; Zong-Shun, Liu; Jian-Jun, Zhu; Jing, Yang; Wei, Liu; Xiao-Guang, He; Xiao-Jing, Li; Xiang, Li; Shuang-Tao, Liu; Hui, Yang; Li-Qun, Zhang; Jian-Ping, Liu; Yuan-Tao, Zhang; Guo-Tong, Du

    2016-05-01

    We have investigated the electron affinity of Si-doped AlN films (N Si = 1.0 × 1018-1.0 × 1019 cm-3) with thicknesses of 50, 200, and 400 nm, synthesized by metalorganic chemical vapor deposition (MOCVD) under low pressure on the n-type (001)6H-SiC substrates. The positive and small electron affinity of AlN films was observed through the ultraviolet photoelectron spectroscopy (UPS) analysis, where an increase in electron affinity appears with the thickness of AlN films increasing, i.e., 0.36 eV for the 50-nm-thick one, 0.58 eV for the 200-nm-thick one, and 0.97 eV for the 400-nm-thick one. Accompanying the x-ray photoelectron spectroscopy (XPS) analysis on the surface contaminations, it suggests that the difference of electron affinity between our three samples may result from the discrepancy of surface impurity contaminations. Project supported by the National Natural Science Foundation of China (Grant Nos. 61574135, 61574134, 61474142, 61474110, 61377020, 61376089, 61223005, and 61321063), the One Hundred Person Project of the Chinese Academy of Sciences, and the Basic Research Project of Jiangsu Province, China (Grant No. BK20130362).

  19. Adenosine Monophosphate Binding Stabilizes the KTN Domain of the Shewanella denitrificans Kef Potassium Efflux System.

    PubMed

    Pliotas, Christos; Grayer, Samuel C; Ekkerman, Silvia; Chan, Anthony K N; Healy, Jess; Marius, Phedra; Bartlett, Wendy; Khan, Amjad; Cortopassi, Wilian A; Chandler, Shane A; Rasmussen, Tim; Benesch, Justin L P; Paton, Robert S; Claridge, Timothy D W; Miller, Samantha; Booth, Ian R; Naismith, James H; Conway, Stuart J

    2017-08-15

    Ligand binding is one of the most fundamental properties of proteins. Ligand functions fall into three basic types: substrates, regulatory molecules, and cofactors essential to protein stability, reactivity, or enzyme-substrate complex formation. The regulation of potassium ion movement in bacteria is predominantly under the control of regulatory ligands that gate the relevant channels and transporters, which possess subunits or domains that contain Rossmann folds (RFs). Here we demonstrate that adenosine monophosphate (AMP) is bound to both RFs of the dimeric bacterial Kef potassium efflux system (Kef), where it plays a structural role. We conclude that AMP binds with high affinity, ensuring that the site is fully occupied at all times in the cell. Loss of the ability to bind AMP, we demonstrate, causes protein, and likely dimer, instability and consequent loss of function. Kef system function is regulated via the reversible binding of comparatively low-affinity glutathione-based ligands at the interface between the dimer subunits. We propose this interfacial binding site is itself stabilized, at least in part, by AMP binding.

  20. Mutagenesis of threonine to serine in the active site of Mycobacterium tuberculosis fructose-1,6-bisphosphatase (Class II) retains partial enzyme activity.

    PubMed

    Bondoc, Jasper Marc G; Wolf, Nina M; Ndichuck, Michael; Abad-Zapatero, Celerino; Movahedzadeh, Farahnaz

    2017-09-01

    The glpX gene encodes for the Class II fructose-1,6-bisphosphatase enzyme in Mycobacterium tuberculosis ( Mt ), an essential enzyme for pathogenesis. We have performed site directed mutagenesis to introduce two mutations at residue Thr84, T84A and T84S, to explore the binding affinity of the substrate and the catalytic mechanism. The T84A mutant fully abolishes enzyme activity while retaining substrate binding affinity. In contrast, the T84S mutant retains some activity having a 10 times reduction in V max and exhibited similar sensitivity to lithium when compared to the wildtype. Homology modeling using the Escherichia coli enzyme structure suggests that the replacement of the critical nucleophile OH - in the Thr84 residue of the wildtype of Mt FBPase by Ser84 results in subtle alterations of the position and orientation that reduce the catalytic efficiency. This mutant could be used to trap reaction intermediates, through crystallographic methods, facilitating the design of potent inhibitors via structure-based drug design.

  1. Allosteric Inhibition via R-state Destabilization in ATP Sulfurylase from Penicillium chrysogenum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacRae, I. J.

    2002-01-01

    The structure of the cooperative hexameric enzyme ATP sulfurylase from Penicillium chrysogenum bound to its allosteric inhibitor, 3'-phosphoadenosine-5'-phosphosulfate (PAPS), was determined to 2.6 {angstrom} resolution. This structure represents the low substrate-affinity T-state conformation of the enzyme. Comparison with the high substrate-affinity R-state structure reveals that a large rotational rearrangement of domains occurs as a result of the R-to-T transition. The rearrangement is accompanied by the 17 {angstrom} movement of a 10-residue loop out of the active site region, resulting in an open, product release-like structure of the catalytic domain. Binding of PAPS is proposed to induce the allosteric transition bymore » destabilizing an R-state-specific salt linkage between Asp 111 in an N-terminal domain of one subunit and Arg 515 in the allosteric domain of a trans-triad subunit. Disrupting this salt linkage by site-directed mutagenesis induces cooperative inhibition behavior in the absence of an allosteric effector, confirming the role of these two residues.« less

  2. Adenosine Monophosphate Binding Stabilizes the KTN Domain of the Shewanella denitrificans Kef Potassium Efflux System

    PubMed Central

    2017-01-01

    Ligand binding is one of the most fundamental properties of proteins. Ligand functions fall into three basic types: substrates, regulatory molecules, and cofactors essential to protein stability, reactivity, or enzyme–substrate complex formation. The regulation of potassium ion movement in bacteria is predominantly under the control of regulatory ligands that gate the relevant channels and transporters, which possess subunits or domains that contain Rossmann folds (RFs). Here we demonstrate that adenosine monophosphate (AMP) is bound to both RFs of the dimeric bacterial Kef potassium efflux system (Kef), where it plays a structural role. We conclude that AMP binds with high affinity, ensuring that the site is fully occupied at all times in the cell. Loss of the ability to bind AMP, we demonstrate, causes protein, and likely dimer, instability and consequent loss of function. Kef system function is regulated via the reversible binding of comparatively low-affinity glutathione-based ligands at the interface between the dimer subunits. We propose this interfacial binding site is itself stabilized, at least in part, by AMP binding. PMID:28656748

  3. Enhanced Cycling Stability of Sulfur Electrodes through Effective Binding of Pyridine-Functionalized Polymer

    DOE PAGES

    Tsao, Yuchi; Chen, Zheng; Rondeau-Gagne, Simon; ...

    2017-09-20

    Porous carbons have previously been widely used as host materials for sulfur (S) electrodes because of their high conductivity and high surface area. However, they generally lack strong chemical affinity to stabilize polysulfide species. Therefore, conducting polymers have been employed to stabilize S electrodes. Integrating conducting polymers with high-surface-area carbons can create a new materials platform and synergize their functions. However, the previously used conducting polymers were often insoluble, and coating them uniformly from solution onto a nonpolar carbon substrate is a challenge. Here, we report that solution-processable isoindigo-based polymers incorporating polar substituents provide critical features: the conjugated backbone providesmore » good conductivity; functional pyridine groups provide high affinity to polysulfide species; and they possess high solubility in organic solvents. Here, these lead to effective coating on various carbonaceous substrates to provide highly stable sulfur electrodes. Importantly, the electrodes exhibit good capacity retention (80% over 300 cycles) at sulfur mass loading of 3.2 mg/cm 2, which significantly surpasses the performance of others reported in polymer-enabled sulfur cathodes.« less

  4. Characterization of Affinity-Purified Isoforms of Acinetobacter calcoaceticus Y1 Glutathione Transferases

    PubMed Central

    Chee, Chin-Soon; Tan, Irene Kit-Ping; Alias, Zazali

    2014-01-01

    Glutathione transferases (GST) were purified from locally isolated bacteria, Acinetobacter calcoaceticus Y1, by glutathione-affinity chromatography and anion exchange, and their substrate specificities were investigated. SDS-polyacrylamide gel electrophoresis revealed that the purified GST resolved into a single band with a molecular weight (MW) of 23 kDa. 2-dimensional (2-D) gel electrophoresis showed the presence of two isoforms, GST1 (pI 4.5) and GST2 (pI 6.2) with identical MW. GST1 was reactive towards ethacrynic acid, hydrogen peroxide, 1-chloro-2,4-dinitrobenzene, and trans,trans-hepta-2,4-dienal while GST2 was active towards all substrates except hydrogen peroxide. This demonstrated that GST1 possessed peroxidase activity which was absent in GST2. This study also showed that only GST2 was able to conjugate GSH to isoproturon, a herbicide. GST1 and GST2 were suggested to be similar to F0KLY9 (putative glutathione S-transferase) and F0KKB0 (glutathione S-transferase III) of Acinetobacter calcoaceticus strain PHEA-2, respectively. PMID:24892084

  5. Artificial light-regulation of an allosteric bi-enzyme complex by a photosensitive ligand.

    PubMed

    Kneuttinger, Andrea C; Winter, Martin; Simeth, Nadja A; Heyn, Kristina; Merkl, Rainer; König, Burkhard; Sterner, Reinhard

    2018-05-29

    The artificial regulation of proteins by light is an emerging sub-discipline of synthetic biology. Here, we used this concept in order to photo-control both catalysis and allostery within the heterodimeric enzyme complex imidazole glycerol phosphate synthase (ImGP-S). The ImGP-S consists of the cyclase subunit HisF and the glutaminase subunit HisH, which is allosterically stimulated by substrate binding to HisF. We show that a light-sensitive diarylethene (DTE)-based competitive inhibitor in its ring-open state binds with low micromolar affinity to the cyclase subunit and displaces its substrate from the active site. As a consequence, catalysis by HisF and allosteric stimulation of HisH are impaired. Following UV-light irradiation, the DTE-ligand adopts its ring-closed state and loses affinity for HisF, restoring activity and allostery. Our approach allows for the switching of ImGP-S activity and allostery during catalysis and appears to be generally applicable for the light-regulation of other multi-enzyme complexes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Advancement in Higher Education: The Role of Marketing in Building Philanthropic Giving

    ERIC Educational Resources Information Center

    McAlexander, James H.; Koenig, Harold F.; DuFault, Beth

    2014-01-01

    This paper empirically explores ways in which marketers of higher education can contribute to the important task of cultivating alumni philanthropy. Advancement professionals understand that philanthropy is influenced by wealth and affinity. As marketers, we anticipate that our contribution resides with investments in building affinity. Using…

  7. A Dualistic Conformational Response to Substrate Binding in the Human Serotonin Transporter Reveals a High Affinity State for Serotonin*

    PubMed Central

    Bjerregaard, Henriette; Severinsen, Kasper; Said, Saida; Wiborg, Ove; Sinning, Steffen

    2015-01-01

    Serotonergic neurotransmission is modulated by the membrane-embedded serotonin transporter (SERT). SERT mediates the reuptake of serotonin into the presynaptic neurons. Conformational changes in SERT occur upon binding of ions and substrate and are crucial for translocation of serotonin across the membrane. Our understanding of these conformational changes is mainly based on crystal structures of a bacterial homolog in various conformations, derived homology models of eukaryotic neurotransmitter transporters, and substituted cysteine accessibility method of SERT. However, the dynamic changes that occur in the human SERT upon binding of ions, the translocation of substrate, and the role of cholesterol in this interplay are not fully elucidated. Here we show that serotonin induces a dualistic conformational response in SERT. We exploited the substituted cysteine scanning method under conditions that were sensitized to detect a more outward-facing conformation of SERT. We found a novel high affinity outward-facing conformational state of the human SERT induced by serotonin. The ionic requirements for this new conformational response to serotonin mirror the ionic requirements for translocation. Furthermore, we found that membrane cholesterol plays a role in the dualistic conformational response in SERT induced by serotonin. Our results indicate the existence of a subpopulation of SERT responding differently to serotonin binding than hitherto believed and that membrane cholesterol plays a role in this subpopulation of SERT. PMID:25614630

  8. Anatomy of F1-ATPase powered rotation.

    PubMed

    Martin, James L; Ishmukhametov, Robert; Hornung, Tassilo; Ahmad, Zulfiqar; Frasch, Wayne D

    2014-03-11

    F1-ATPase, the catalytic complex of the ATP synthase, is a molecular motor that can consume ATP to drive rotation of the γ-subunit inside the ring of three αβ-subunit heterodimers in 120° power strokes. To elucidate the mechanism of ATPase-powered rotation, we determined the angular velocity as a function of rotational position from single-molecule data collected at 200,000 frames per second with unprecedented signal-to-noise. Power stroke rotation is more complex than previously understood. This paper reports the unexpected discovery that a series of angular accelerations and decelerations occur during the power stroke. The decreases in angular velocity that occurred with the lower-affinity substrate ITP, which could not be explained by an increase in substrate-binding dwells, provides direct evidence that rotation depends on substrate binding affinity. The presence of elevated ADP concentrations not only increased dwells at 35° from the catalytic dwell consistent with competitive product inhibition but also decreased the angular velocity from 85° to 120°, indicating that ADP can remain bound to the catalytic site where product release occurs for the duration of the power stroke. The angular velocity profile also supports a model in which rotation is powered by Van der Waals repulsive forces during the final 85° of rotation, consistent with a transition from F1 structures 2HLD1 and 1H8E (Protein Data Bank).

  9. Anatomy of F1-ATPase powered rotation

    PubMed Central

    Martin, James L.; Ishmukhametov, Robert; Hornung, Tassilo; Ahmad, Zulfiqar; Frasch, Wayne D.

    2014-01-01

    F1-ATPase, the catalytic complex of the ATP synthase, is a molecular motor that can consume ATP to drive rotation of the γ-subunit inside the ring of three αβ-subunit heterodimers in 120° power strokes. To elucidate the mechanism of ATPase-powered rotation, we determined the angular velocity as a function of rotational position from single-molecule data collected at 200,000 frames per second with unprecedented signal-to-noise. Power stroke rotation is more complex than previously understood. This paper reports the unexpected discovery that a series of angular accelerations and decelerations occur during the power stroke. The decreases in angular velocity that occurred with the lower-affinity substrate ITP, which could not be explained by an increase in substrate-binding dwells, provides direct evidence that rotation depends on substrate binding affinity. The presence of elevated ADP concentrations not only increased dwells at 35° from the catalytic dwell consistent with competitive product inhibition but also decreased the angular velocity from 85° to 120°, indicating that ADP can remain bound to the catalytic site where product release occurs for the duration of the power stroke. The angular velocity profile also supports a model in which rotation is powered by Van der Waals repulsive forces during the final 85° of rotation, consistent with a transition from F1 structures 2HLD1 and 1H8E (Protein Data Bank). PMID:24567403

  10. Unusual dewetting of thin polymer films in liquid media containing a poor solvent and a nonsolvent.

    PubMed

    Xu, Lin; Sharma, Ashutosh; Joo, Sang Woo; Liu, Hui; Shi, Tongfei

    2014-12-16

    We investigate the control of pattern size and kinetics in spontaneous dewetting of thin polymer films (polystyrene) that are stable to thermal annealing by annealing in a poor solvent (acetone)/nonsolvent (ethanol or n-hexane) liquid mixture. Dewetting occurs by the formation and growth of circular holes that coalesce to form droplets. The influence of the nature and the volume fraction of the nonsolvents on the contact angle of polymer droplets, number density of holes, and the kinetics of holes formation and growth is studied. Addition of ethanol greatly increases the hole density and slows down the kinetics substantially, while affecting only a small change in wettability. n-Hexane addition shows an interesting nonmonotonic response in decreasing the hole density and contact angle in the volume fraction range of 0-0.3 but an opposite effect beyond that. Although the two nonsolvents chosen cannot by themselves induce dewetting, their relative affinity for the solid substrate vis-à-vis acetone can strongly influence the observed dewetting scenarios that are not understood by the existing theoretical considerations. n-Hexane, for example, has great affinity for silicon substrate. In addition to the changes in wettability, viscosity, and film interfacial tension engendered by the nonsolvents, the possibility of the formation of adsorbed liquid layers at the substrate-polymer interface, which can modify the interfacial friction and slippage, needs to be considered.

  11. Low-Temperature (10°C) Anaerobic Digestion of Dilute Dairy Wastewater in an EGSB Bioreactor: Microbial Community Structure, Population Dynamics, and Kinetics of Methanogenic Populations

    PubMed Central

    Cysneiros, Denise; O'Flaherty, Vincent

    2013-01-01

    The feasibility of anaerobic digestion of dairy wastewater at 10°C was investigated in a high height : diameter ratio EGSB reactor. Stable performance was observed at an applied organic loading rate (OLR) of 0.5–2 kg COD m−3 d−1 with chemical oxygen demand (COD) removal efficiencies above 85%. When applied OLR increased to values above 2 kg COD m−3 d−1, biotreatment efficiency deteriorated, with methanogenesis being the rate-limiting step. The bioreactor recovered quickly (3 days) after reduction of the OLR. qPCR results showed a reduction in the abundance of hydrogenotrophic methanogenic Methanomicrobiales and Methanobacteriales throughout the steady state period followed by a sharp increase in their numbers (111-fold) after the load shock. Specific methanogenic activity and maximum substrate utilising rate (A max) of the biomass at the end of trial indicated increased activity and preference towards hydrogenotrophic methanogenesis, which correlated well with the increased abundance of hydrogenotrophic methanogens. Acetoclastic Methanosaeta spp. remained at stable levels throughout the trial. However, increased apparent half-saturation constant (K m) at the end of the trial indicated a decrease in the specific substrate affinity for acetate of the sludge, suggesting that Methanosaeta spp., which have high substrate affinity, started to be outcompeted in the reactor. PMID:24089597

  12. Low-temperature (10°C) anaerobic digestion of dilute dairy wastewater in an EGSB bioreactor: microbial community structure, population dynamics, and kinetics of methanogenic populations.

    PubMed

    Bialek, Katarzyna; Cysneiros, Denise; O'Flaherty, Vincent

    2013-01-01

    The feasibility of anaerobic digestion of dairy wastewater at 10°C was investigated in a high height : diameter ratio EGSB reactor. Stable performance was observed at an applied organic loading rate (OLR) of 0.5-2 kg COD m(-3) d(-1) with chemical oxygen demand (COD) removal efficiencies above 85%. When applied OLR increased to values above 2 kg COD m(-3) d(-1), biotreatment efficiency deteriorated, with methanogenesis being the rate-limiting step. The bioreactor recovered quickly (3 days) after reduction of the OLR. qPCR results showed a reduction in the abundance of hydrogenotrophic methanogenic Methanomicrobiales and Methanobacteriales throughout the steady state period followed by a sharp increase in their numbers (111-fold) after the load shock. Specific methanogenic activity and maximum substrate utilising rate (A(max)) of the biomass at the end of trial indicated increased activity and preference towards hydrogenotrophic methanogenesis, which correlated well with the increased abundance of hydrogenotrophic methanogens. Acetoclastic Methanosaeta spp. remained at stable levels throughout the trial. However, increased apparent half-saturation constant (K(m)) at the end of the trial indicated a decrease in the specific substrate affinity for acetate of the sludge, suggesting that Methanosaeta spp., which have high substrate affinity, started to be outcompeted in the reactor.

  13. Characterization of substrate binding of the WW domains in human WWP2 protein.

    PubMed

    Jiang, Jiahong; Wang, Nan; Jiang, Yafei; Tan, Hongwei; Zheng, Jimin; Chen, Guangju; Jia, Zongchao

    2015-07-08

    WW domains harbor substrates containing proline-rich motifs, but the substrate specificity and binding mechanism remain elusive for those WW domains less amenable for structural studies, such as human WWP2 (hWWP2). Herein we have employed multiple techniques to investigate the second WW domain (WW2) in hWWP2. Our results show that hWWP2 is a specialized E3 for PPxY motif-containing substrates only and does not recognize other amino acids and phospho-residues. The strongest binding affinity of WW2, and the incompatibility between each WW domain, imply a novel relationship, and our SPR experiment reveals a dynamic binding mode in Class-I WW domains for the first time. The results from alanine-scanning mutagenesis and modeling further point to functionally conserved residues in WW2. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  14. Label free imaging of cell-substrate contacts by holographic total internal reflection microscopy.

    PubMed

    Mandracchia, Biagio; Gennari, Oriella; Marchesano, Valentina; Paturzo, Melania; Ferraro, Pietro

    2017-09-01

    The study of cell adhesion contacts is pivotal to understand cell mechanics and interaction at substrates or chemical and physical stimuli. We designed and built a HoloTIR microscope for label-free quantitative phase imaging of total internal reflection. Here we show for the first time that HoloTIR is a good choice for label-free study of focal contacts and of cell/substrate interaction as its sensitivity is enhanced in comparison with standard TIR microscopy. Finally, the simplicity of implementation and relative low cost, due to the requirement of less optical components, make HoloTIR a reasonable alternative, or even an addition, to TIRF microscopy for mapping cell/substratum topography. As a proof of concept, we studied the formation of focal contacts of fibroblasts on three substrates with different levels of affinity for cell adhesion. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Purification, Characterization, and Sensitivity to Pesticides of Carboxylesterase From Dendrolimus superans (Lepidoptera: Lasiocampidae)

    PubMed Central

    Zou, Chuan-shan; Cao, Chuan-wang; Zhang, Guo-cai; Wang, Zhi-ying

    2014-01-01

    Abstract Through a combination of steps including centrifugation, ammonium sulfate gradient precipitation, sephadex G-25 gel chromatography, diethylaminoethyl cellulose 52 ion-exchange chromatography and hydroxyapatite affinity chromatography, carboxylesterase (CarE, EC3.1.1.1) from sixth instar larch caterpillar moth, Dendrolimus superans (Lepidoptera: Lasiocampidae) larvae was purified and its biochemical properties were compared between crude homogenate and purified CarE. The final purified CarE after hydroxyapatite chromatography had a specific activity of 52.019 μmol/(min·mg protein), 138.348-fold of crude homogenate, and the yield of 2.782%. The molecular weight of the purified CarE was approximately 84.78 kDa by SDS-PAGE. Three pesticides (dichlorvos, lambda-cyhalothrin, and avermectins) showed different inhibition to crude CarE and purified CarE, respectively. In vitro median inhibitory concentration indicated that the sensitivity of CarE (both crude homogenate and final purified CarE) to pesticides was in decreasing order of dichlorvos > avermectins > lambda-cyhalothrin. By the kinetic analysis, the substrates alpha-naphthyl acetate (α-NA) and beta-naphthyl acetate (β-NA) showed lesser affinity to crude extract than purified CarE. The results also indicated that both crude homogenate and purified CarE had more affinity to α-NA than to β-NA, and the Kcat and Vmax values of crude extract were lower than purified CarE using α-NA or β-NA as substrate. PMID:25525114

  16. Regulation of the HscA ATPase reaction cycle by the co-chaperone HscB and the iron-sulfur cluster assembly protein IscU.

    PubMed

    Silberg, Jonathan J; Tapley, Tim L; Hoff, Kevin G; Vickery, Larry E

    2004-12-24

    The ATPase activity of HscA, a specialized hsp70 molecular chaperone from Escherichia coli, is regulated by the iron-sulfur cluster assembly protein IscU and the J-type co-chaperone HscB. IscU behaves as a substrate for HscA, and HscB enhances the binding of IscU to HscA. To better understand the mechanism by which HscB and IscU regulate HscA, we examined binding of HscB to the different conformational states of HscA and the effects of HscB and IscU on the kinetics of the individual steps of the HscA ATPase reaction cycle. Affinity sensor studies revealed that whereas IscU binds both ADP (R-state) and ATP (T-state) HscA complexes, HscB interacts only with an ATP-bound state. Studies of ATPase activity under single-turnover and rapid mixing conditions showed that both IscU and HscB interact with the low peptide affinity T-state of HscA (HscA++.ATP) and that both modestly accelerate (3-10-fold) the rate-determining steps in the HscA reaction cycle, k(hyd) and k(T-->R). When present together, IscU and HscB synergistically stimulate both k(hyd) (approximately = 500-fold) and k(T-->R) (approximately = 60-fold), leading to enhanced formation of the HscA.ADP-IscU complex (substrate capture). Following ADP/ATP exchange, IscU also stimulates k(R-->T) (approximately = 50-fold) and thereby accelerates the rate at which the low peptide affinity HscA++.ATP T-state is regenerated. Because HscA nucleotide exchange is fast, the overall rate of the chaperone cycle in vivo will be determined by the availability of the IscU-HscB substrate-co-chaperone complex.

  17. Interactions between Cellulolytic Enzymes with Native, Autohydrolysis, and Technical Lignins and the Effect of a Polysorbate Amphiphile in Reducing Nonproductive Binding.

    PubMed

    Fritz, Consuelo; Ferrer, Ana; Salas, Carlos; Jameel, Hasan; Rojas, Orlando J

    2015-12-14

    Understanding enzyme-substrate interactions is critical in designing strategies for bioconversion of lignocellulosic biomass. In this study we monitored molecular events, in situ and in real time, including the adsorption and desorption of cellulolytic enzymes on lignins and cellulose, by using quartz crystal microgravimetry and surface plasmon resonance. The effect of a nonionic surface active molecule was also elucidated. Three lignin substrates relevant to the sugar platform in biorefinery efforts were considered, namely, hardwood autohydrolysis cellulolytic (HWAH), hardwood native cellulolytic (MPCEL), and nonwood native cellulolytic (WSCEL) lignin. In addition, Kraft lignins derived from softwoods (SWK) and hardwoods (HWK) were used as references. The results indicated a high affinity between the lignins with both, monocomponent and multicomponent enzymes. More importantly, the addition of nonionic surfactants at concentrations above their critical micelle concentration reduced remarkably (by over 90%) the nonproductive interactions between the cellulolytic enzymes and the lignins. This effect was hypothesized to be a consequence of the balance of hydrophobic and hydrogen bonding interactions. Moreover, the reduction of surface roughness and increased wettability of lignin surfaces upon surfactant treatment contributed to a lower affinity with the enzymes. Conformational changes of cellulases were observed upon their adsorption on lignin carrying preadsorbed surfactant. Weak electrostatic interactions were determined in aqueous media at pH between 4.8 and 5.5 for the native cellulolytic lignins (MPCEL and WSCEL), whereby a ∼20% reduction in the enzyme affinity was observed. This was mainly explained by electrostatic interactions (osmotic pressure effects) between charged lignins and cellulases. Noteworthy, adsorption of nonionic surfactants onto cellulose, in the form cellulose nanofibrils, did not affect its hydrolytic conversion. Overall, our results highlight the benefit of nonionic surfactant pretreatment to reduce nonproductive enzyme binding while maintaining the reactivity of the cellulosic substrate.

  18. A novel intermembrane space–targeting signal docks cysteines onto Mia40 during mitochondrial oxidative folding

    PubMed Central

    Sideris, Dionisia P.; Petrakis, Nikos; Katrakili, Nitsa; Mikropoulou, Despina; Gallo, Angelo; Ciofi-Baffoni, Simone; Banci, Lucia; Bertini, Ivano

    2009-01-01

    Mia40 imports Cys-containing proteins into the mitochondrial intermembrane space (IMS) by ensuring their Cys-dependent oxidative folding. In this study, we show that the specific Cys of the substrate involved in docking with Mia40 is substrate dependent, the process being guided by an IMS-targeting signal (ITS) present in Mia40 substrates. The ITS is a 9-aa internal peptide that (a) is upstream or downstream of the docking Cys, (b) is sufficient for crossing the outer membrane and for targeting nonmitochondrial proteins, (c) forms an amphipathic helix with crucial hydrophobic residues on the side of the docking Cys and dispensable charged residues on the other side, and (d) fits complementary to the substrate cleft of Mia40 via hydrophobic interactions of micromolar affinity. We rationalize the dual function of Mia40 as a receptor and an oxidase in a two step–specific mechanism: an ITS-guided sliding step orients the substrate noncovalently, followed by docking of the substrate Cys now juxtaposed to pair with the Mia40 active Cys. PMID:20026652

  19. Antibody Epitope of Human α-Galactosidase A Revealed by Affinity Mass Spectrometry: A Basis for Reversing Immunoreactivity in Enzyme Replacement Therapy of Fabry Disease.

    PubMed

    Kukacka, Zdenek; Iurascu, Marius; Lupu, Loredana; Rusche, Hendrik; Murphy, Mary; Altamore, Lorenzo; Borri, Fabio; Maeser, Stefan; Papini, Anna Maria; Hennermann, Julia; Przybylski, Michael

    2018-05-08

    α-Galactosidase (αGal) is a lysosomal enzyme that hydrolyses the terminal α-galactosyl moiety from glycosphingolipids. Mutations in the encoding genes for αGal lead to defective or misfolded enzyme, which results in substrate accumulation and subsequent organ dysfunction. The metabolic disease caused by a deficiency of human α-galactosidase A is known as Fabry disease or Fabry-Anderson disease, and it belongs to a larger group known as lysosomal storage diseases. An effective treatment for Fabry disease has been developed by enzyme replacement therapy (ERT), which involves infusions of purified recombinant enzyme in order to increase enzyme levels and decrease the amounts of accumulated substrate. However, immunoreactivity and IgG antibody formation are major, therapy-limiting, and eventually life-threatening complications of ERT. The present study focused on the epitope determination of human α-galactosidase A against its antibody formed. Here we report the identification of the epitope of human αGal(309-332) recognized by a human monoclonal anti-αGal antibody, using a combination of proteolytic excision of the immobilized immune complex and surface plasmon resonance biosensing mass spectrometry. The epitope peptide, αGal(309-332), was synthesized by solid-phase peptide synthesis. Determination of its affinity by surface plasmon resonance analysis revealed a high binding affinity for the antibody (K D =39×10 -9  m), which is nearly identical to that of the full-length enzyme (K D =16×10 -9  m). The proteolytic excision affinity mass spectrometry method is shown here to be an efficient tool for epitope identification of an immunogenic lysosomal enzyme. Because the full-length αGal and the antibody epitope showed similar binding affinities, this provides a basis for reversing immunogenicity upon ERT by: 1) treatment of patients with the epitope peptide to neutralize antibodies, or 2) removal of antibodies by apheresis, and thus significantly improving the response to ERT. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Enhanced accumulation of starch and total carbohydrates in alginate-immobilized Chlorella spp. induced by Azospirillum brasilense: II. Heterotrophic conditions.

    PubMed

    Choix, Francisco J; de-Bashan, Luz E; Bashan, Yoav

    2012-10-10

    The effect of the bacterium Azospirillum brasilense jointly immobilized with Chlorella vulgaris or C. sorokiniana in alginate beads on total carbohydrates and starch was studied under dark and heterotrophic conditions for 144 h in synthetic growth medium supplemented with either d-glucose or Na-acetate as carbon sources. In all treatments, enhanced total carbohydrates and starch content per culture and per cell was obtained after 24h; only jointly immobilized C. vulgaris growing on d-glucose significantly increased total carbohydrates and starch content after 96 h. Enhanced accumulation of carbohydrate and starch under jointly immobilized conditions was variable with time of sampling and substrate used. Similar results occurred when the microalgae was immobilized alone. In both microalgae growing on either carbon sources, the bacterium promoted accumulation of carbohydrates and starch; when the microalgae were immobilized alone, they used the carbon sources for cell multiplication. In jointly immobilized conditions with Chlorella spp., affinity to carbon source and volumetric productivity and yield were higher than when Chlorella spp. were immobilized alone; however, the growth rate was higher in microalgae immobilized alone. This study demonstrates that under heterotrophic conditions, A. brasilense promotes the accumulation of carbohydrates in two strains Chlorella spp. under certain time-substrate combinations, producing mainly starch. As such, this bacterium is a biological factor that can change the composition of compounds in microalgae in dark, heterotrophic conditions. Copyright © 2012. Published by Elsevier Inc.

  1. Bis-aptazyme sensors for hepatitis C virus replicase and helicase without blank signal

    PubMed Central

    Cho, Suhyung; Kim, Ji-Eun; Lee, Bo-Rahm; Kim, June-Hyung; Kim, Byung-Gee

    2005-01-01

    The fusion molecule (i.e. aptazyme) of aptamer and hammerhead ribozyme was developed as in situ sensor. Previously, the hammerhead ribozyme conjugated with aptamer through its stem II module showed a significant blank signal by self-cleavage. To reduce or remove its self-cleavage activity in the absence of target molecule, rational designs were attempted by reducing the binding affinity of the aptazyme to its RNA substrate, while maintaining the ribonuclease activity of the aptazyme. Interestingly, the bis-aptazymes which comprise the two aptamer-binding sites at both stem I and stem III of the hammerhead ribozyme showed very low blank signals, and their ratios of reaction rate constants, i.e. signal to noise ratios, were several tens to hundred times higher than those of the stem II-conjugated bis-aptazymes. The reduction in the blank signals seems to be caused by a higher dissociation constant between the main strand of the bis-aptazyme and its substrate arising from multi-point base-pairing of the bis-aptazymes. The bis-aptazymes for HCV replicase and helicase showed high selectivity against other proteins, and a linear relationship existed between their ribozyme activities and the target concentrations. In addition, a bis-aptazyme of dual functions was designed by inserting both aptamers for HCV replicase and helicase into the stem I and stem III of hammerhead ribozyme, respectively, and it also showed greater sensitivity and specificity for both proteins without blank signal. PMID:16314308

  2. Supplementation with xylanase and β-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover

    PubMed Central

    2011-01-01

    Background Hemicellulose is often credited with being one of the important physical barriers to enzymatic hydrolysis of cellulose, and acts by blocking enzyme access to the cellulose surface. In addition, our recent research has suggested that hemicelluloses, particularly in the form of xylan and its oligomers, can more strongly inhibit cellulase activity than do glucose and cellobiose. Removal of hemicelluloses or elimination of their negative effects can therefore become especially pivotal to achieving higher cellulose conversion with lower enzyme doses. Results In this study, cellulase was supplemented with xylanase and β-xylosidase to boost conversion of both cellulose and hemicellulose in pretreated biomass through conversion of xylan and xylo-oligomers to the less inhibitory xylose. Although addition of xylanase and β-xylosidase did not necessarily enhance Avicel hydrolysis, glucan conversions increased by 27% and 8% for corn stover pretreated with ammonia fiber expansion (AFEX) and dilute acid, respectively. In addition, adding hemicellulase several hours before adding cellulase was more beneficial than later addition, possibly as a result of a higher adsorption affinity of cellulase and xylanase to xylan than glucan. Conclusions This key finding elucidates a possible mechanism for cellulase inhibition by xylan and xylo-oligomers and emphasizes the need to optimize the enzyme formulation for each pretreated substrate. More research is needed to identify advanced enzyme systems designed to hydrolyze different substrates with maximum overall enzyme efficacy. PMID:21702938

  3. Adsorption of Trametes versicolor laccase to soil iron and aluminum minerals: enzyme activity, kinetics and stability studies.

    PubMed

    Wu, Yue; Jiang, Ying; Jiao, Jiaguo; Liu, Manqiang; Hu, Feng; Griffiths, Bryan S; Li, Huixin

    2014-02-01

    Laccases play an important role in the degradation of soil phenol or phenol-like substance and can be potentially used in soil remediation through immobilization. Iron and aluminum minerals can adsorb extracellular enzymes in soil environment. In the present study, we investigated the adsorptive interaction of laccase, from the white-rot fungus Trametes versicolor, with soil iron and aluminum minerals and characterized the properties of the enzyme after adsorption to minerals. Results showed that both soil iron and aluminum minerals adsorbed great amount of laccase, independent of the mineral specific surface areas. Adsorbed laccases retained 26-64% of the activity of the free enzyme. Compared to the free laccase, all adsorbed laccases showed higher Km values and lower Vmax values, indicating a reduced enzyme-substrate affinity and a lower rate of substrate conversion in reactions catalyzed by the adsorbed laccase. Adsorbed laccases exhibited increased catalytic activities compared to the free laccase at low pH, implying the suitable application of iron and aluminum mineral-adsorbed T. versicolor laccase in soil bioremediation, especially in acid soils. In terms of the thermal profiles, adsorbed laccases showed decreased thermal stability and higher temperature sensitivity relative to the free laccase. Moreover, adsorption improved the resistance of laccase to proteolysis and extended the lifespan of laccase. Our results implied that adsorbed T. versicolor laccase on soil iron and aluminum minerals had promising potential in soil remediation. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  4. Identification of inhibitory scFv antibodies targeting fibroblast activation protein utilizing phage display functional screens

    PubMed Central

    Zhang, Jiping; Valianou, Matthildi; Simmons, Heidi; Robinson, Matthew K.; Lee, Hyung-Ok; Mullins, Stefanie R.; Marasco, Wayne A.; Adams, Gregory P.; Weiner, Louis M.; Cheng, Jonathan D.

    2013-01-01

    Fibroblast activation protein (FAP) is a serine protease selectively expressed on tumor stromal fibroblasts in epithelial carcinomas and is important in cancer growth, adhesion, and metastases. As FAP enzymatic activity is a potent therapeutic target, we aimed to identify inhibitory antibodies. Using a competitive inhibition strategy, we used phage display techniques to identify 53 single-chain variable fragments (scFvs) after three rounds of panning against FAP. These scFvs were expressed and characterized for binding to FAP by surface plasmon resonance and flow cytometry. Functional assessment of these antibodies yielded an inhibitory scFv antibody, named E3, which could attenuate 35% of FAP cleavage of the fluorescent substrate Ala-Pro-7-amido-4-trifluoromethylcoumarin compared with nonfunctional scFv control. Furthermore, a mutant E3 scFv was identified by yeast affinity maturation. It had higher affinity (4-fold) and enhanced inhibitory effect on FAP enzyme activity (3-fold) than E3. The application of both inhibitory anti-FAP scFvs significantly affected the formation of 3-dimensional FAP-positive cell matrix, as demonstrated by reducing the fibronectin fiber orientation from 41.18% (negative antibody control) to 34.06% (E3) and 36.15% (mutant E3), respectively. Thus, we have identified and affinity-maturated the first scFv antibody capable of inhibiting FAP function. This scFv antibody has the potential to disrupt the role of FAP in tumor invasion and metastasis.—Zhang, J., Valianou, M., Simmons, H., Robinson, M. K., Lee, H.-O., Mullins, S. R., Marasco, W. A., Adams, G. P., Weiner, L. M., Cheng, J. D. Identification of inhibitory ScFv antibodies targeting fibroblast activation protein utilizing phage display functional screens. PMID:23104982

  5. Surface Effects and Challenges for Application of Piezoelectric Langasite Substrates in Surface Acoustic Wave Devices Caused by High Temperature Annealing under High Vacuum.

    PubMed

    Seifert, Marietta; Rane, Gayatri K; Kirbus, Benjamin; Menzel, Siegfried B; Gemming, Thomas

    2015-12-19

    Substrate materials that are high-temperature stable are essential for sensor devices which are applied at high temperatures. Although langasite is suggested as such a material, severe O and Ga diffusion into an O-affine deposited film was observed during annealing at high temperatures under vacuum conditions, leading to a damage of the metallization as well as a change of the properties of the substrate and finally to a failure of the device. Therefore, annealing of bare LGS (La 3 Ga 5 SiO 14 ) substrates at 800 ∘ C under high vacuum conditions is performed to analyze whether this pretreatment improves the suitability and stability of this material for high temperature applications in vacuum. To reveal the influence of the pretreatment on the subsequently deposited metallization, RuAl thin films are used as they are known to oxidize on LGS at high temperatures. A local study of the pretreated and metallized substrates using transmission electron microscopy reveals strong modification of the substrate surface. Micro cracks are visible. The composition of the substrate is strongly altered at those regions. Severe challenges for the application of LGS substrates under high-temperature vacuum conditions arise from these substrate damages, revealing that the pretreatment does not improve the applicability.

  6. High density lipoprotein is an inappropriate substrate for hepatic lipase in postmenopausal women.

    PubMed

    Zago, Valeria; Miksztowicz, Verónica; Cacciagiú, Leonardo; Basilio, Francisco; Berg, Gabriela; Schreier, Laura

    2012-12-24

    HDL antiatherogenic effects would not only depend on its concentration but also on its biological quality. Hepatic lipase (HL) action on HDL acts in one of the last steps of reverse cholesterol transport. Cardiovascular risk increases after menopause, however HDL does not decrease even when HL is increased. We evaluated HDL capacity as a substrate of HL in healthy postmenopausal women (PMW). We studied 20 PMW (51-60 y) and 20 premenopausal (PreMW) (26-40 y). In fasting serum, lipid-lipoprotein profile and HDL composition were assessed. Optimal assay conditions for HDL/HL ex vivo incubation were established. Increasing HDL-triglyceride concentrations (0.015 to 0.20 mmol/l) were incubated with post-heparin plasma obtained from a single healthy donor as a source of HL. Free fatty acids were measured and kinetic parameters calculated: K(m)(app), inverse to enzyme affinity, and V(max). HDL composition in PMW exhibits triglyceride enrichment (p<0.001). Kinetic analysis revealed higher K(m)(app) in PMW [130 (40-380) vs 45 (20-91) mmol/l, p<0.0001)] correlating directly with HDL-triglycerides (r=0.7, p=0.0001). Catalytic efficiency, V(max)/K(m)(app) was reduced when compared to controls (p=0.0001). Triglyceride-enriched HDL from PMW constitutes a poor substrate for HL suggesting that this particle may not exert efficiently its antiatherogenic function, regardless of plasma concentration. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Negative electrospray ionization on porous supporting tips for mass spectrometric analysis: electrostatic charging effect on detection sensitivity and its application to explosive detection.

    PubMed

    Wong, Melody Yee-Man; Man, Sin-Heng; Che, Chi-Ming; Lau, Kai-Chung; Ng, Kwan-Ming

    2014-03-21

    The simplicity and easy manipulation of a porous substrate-based ESI-MS technique have been widely applied to the direct analysis of different types of samples in positive ion mode. However, the study and application of this technique in negative ion mode are sparse. A key challenge could be due to the ease of electrical discharge on supporting tips upon the application of negative voltage. The aim of this study is to investigate the effect of supporting materials, including polyester, polyethylene and wood, on the detection sensitivity of a porous substrate-based negative ESI-MS technique. By using nitrobenzene derivatives and nitrophenol derivatives as the target analytes, it was found that the hydrophobic materials (i.e., polyethylene and polyester) with a higher tendency to accumulate negative charge could enhance the detection sensitivity towards nitrobenzene derivatives via electron-capture ionization; whereas, compounds with electron affinities lower than the cut-off value (1.13 eV) were not detected. Nitrophenol derivatives with pKa smaller than 9.0 could be detected in the form of deprotonated ions; whereas polar materials (i.e., wood), which might undergo competitive deprotonation with the analytes, could suppress the detection sensitivity. With the investigation of the material effects on the detection sensitivity, the porous substrate-based negative ESI-MS method was developed and applied to the direct detection of two commonly encountered explosives in complex samples.

  8. Substrate specificity of the high-affinity glucose transport system of Pseudomonas aeruginosa.

    PubMed

    Wylie, J L; Worobec, E A

    1993-07-01

    Specificity of the high-affinity glucose transport system of Pseudomonas aeruginosa was examined. At a concentration of [14C]glucose near the Vmax of the system, inhibition by maltose, galactose, and xylose was detected. This inhibition is similar to that detected in earlier in vivo studies and correlates with the known specificity of OprB, a glucose-specific porin of P. aeruginosa. At a level of [14C]glucose 100 times lower, only unlabelled glucose inhibited uptake to any extent. This matches the known in vitro specificity of the periplasmic glucose binding protein. These findings were used to explain the discrepancy between earlier in vivo and in vitro results reported in the literature.

  9. High-performance, room-temperature, and no-humidity-impact ammonia sensor based on heterogeneous nickel oxide and zinc oxide nanocrystals.

    PubMed

    Wang, Jian; Yang, Pan; Wei, Xiaowei

    2015-02-18

    NiO nanocones decorated with ZnO nanothorns on NiO foil substrates are shown to be an ammonia sensor with excellent comprehensive performance, which could, in real-time, detect and monitor NH3 in the surrounding environment. Gas-sensing measurements indicate that assembling nanocones decorated with nanothorns on NiO foil substrate is an effective strategy for simultaneously promoting the stability, reproducibility, and sensitivity of the sensor, because the NiO foil substrate as a whole can quickly and stably transfer electrons between the gas molecules and the sensing materials and the large specific surface area of both nanocones and nanothorns provide good accessibility of the gas molecules to the sensing materials. Moreover, p-type NiO, with majority charge carriers of holes, has higher binding affinity for the electron-donating ammonia, resulting in a significant increase in selectivity toward NH3 over other organic gases. Compared with the NiO nanowires and pure NiO nanocones, the heterogeneous NiO nanocones/ZnO nanothorns exhibit less dependence on the temperature and humidity in response/recovery speed and sensitivity of sensing NH3. Our investigation indicates that two factors are responsible for reducing the dependence on the gas sensing characteristics under various environmental conditions. One is that the n-type ZnO nanothorns growing on the surface of nanocones, with majority charge carriers of electrons, speed up adsorption and desorption of gas molecules. The other is that the abundant cone-shaped and thornlike superstructures on the substrate are favorable for constructing a hydrophobic surface, which prevents the gas sensing material from being wetted.

  10. Elucidating the Role of Residue 67 in IMP-Type Metallo-β-Lactamase Evolution.

    PubMed

    LaCuran, Alecander E; Pegg, Kevin M; Liu, Eleanor M; Bethel, Christopher R; Ai, Ni; Welsh, William J; Bonomo, Robert A; Oelschlaeger, Peter

    2015-12-01

    Antibiotic resistance in bacteria is ever changing and adapting, as once-novel β-lactam antibiotics are losing their efficacy, primarily due to the production of β-lactamases. Metallo-β-lactamases (MBLs) efficiently inactivate a broad range of β-lactam antibiotics, including carbapenems, and are often coexpressed with other antibacterial resistance factors. The rapid dissemination of MBLs and lack of novel antibacterials pose an imminent threat to global health. In an effort to better counter these resistance-conferring β-lactamases, an investigation of their natural evolution and resulting substrate specificity was employed. In this study, we elucidated the effects of different amino acid substitutions at position 67 in IMP-type MBLs on the ability to hydrolyze and confer resistance to a range of β-lactam antibiotics. Wild-type β-lactamases IMP-1 and IMP-10 and mutants IMP-1-V67A and IMP-1-V67I were characterized biophysically and biochemically, and MICs for Escherichia coli cells expressing these enzymes were determined. We found that all variants exhibited catalytic efficiencies (kcat/Km) equal to or higher than that of IMP-1 against all tested β-lactams except penicillins, against which IMP-1 and IMP-1-V67I showed the highest kcat/Km values. The substrate-specific effects of the different amino acid substitutions at position 67 are discussed in light of their side chain structures and possible interactions with the substrates. Docking calculations were employed to investigate interactions between different side chains and an inhibitor used as a β-lactam surrogate. The differences in binding affinities determined experimentally and computationally seem to be governed by hydrophobic interactions between residue 67 and the inhibitor and, by inference, the β-lactam substrates. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Junction-based field emission structure for field emission display

    DOEpatents

    Dinh, Long N.; Balooch, Mehdi; McLean, II, William; Schildbach, Marcus A.

    2002-01-01

    A junction-based field emission display, wherein the junctions are formed by depositing a semiconducting or dielectric, low work function, negative electron affinity (NEA) silicon-based compound film (SBCF) onto a metal or n-type semiconductor substrate. The SBCF can be doped to become a p-type semiconductor. A small forward bias voltage is applied across the junction so that electron transport is from the substrate into the SBCF region. Upon entering into this NEA region, many electrons are released into the vacuum level above the SBCF surface and accelerated toward a positively biased phosphor screen anode, hence lighting up the phosphor screen for display. To turn off, simply switch off the applied potential across the SBCF/substrate. May be used for field emission flat panel displays.

  12. Properties and substrate specificity of the leucyl-, the threonyl- and the valyl-transfer-ribonucleic acid synthetases from Aesculus species

    PubMed Central

    Anderson, J. W.; Fowden, L.

    1970-01-01

    1. Leucyl- and threonyl-tRNA synthetases were partially purified up to 100-fold and 30-fold respectively from cotyledons of Aesculus hippocastanum and were largely separated from the other aminoacyl-tRNA synthetases. Valyl-tRNA synthetase was purified 25-fold from cotyledons of Aesculus californica. 2. Some properties are reported for the three enzymes when assayed by the [32P]pyrophosphate-ATP exchange technique. 3. β-(Methylenecyclopropyl)alanine, isoleucine, azaleucine, norleucine and γ-hydroxynorvaline acted as alternative substrates for the leucyl-tRNA synthetase; the enzyme's affinity for β-(methylenecyclopropyl)-alanine and for isoleucine was about 80-fold less than that exhibited for leucine. 4. α-Cyclopropylglycine and α-cyclobutylglycine acted as alternative substrates for the valyl-tRNA synthetase. PMID:5493505

  13. Simulation studies of substrate recognition by the exocellulase CelF from Clostridium cellulolyticum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Mo; Himmel, Michael E.; Wilson, David B.

    Molecular dynamics (MD) simulations were used to study substrate recognition by the family 48 exocellulase CelF from Clostridium cellulolyticum. It was hypothesized that residues around the entrance of the active site tunnel of this enzyme might serve to recognize and bind the substrate through an affinity for the cellulose monomer repeat unit, ..beta..-d-glucopyranose. Simulations were conducted of the catalytic domain of this enzyme surrounded by a concentrated solution of ..beta..-d-glucopyranose, and the full three-dimensional probability distribution for finding sugar molecules adjacent to the enzyme was calculated from the trajectory. A significant probability of finding the sugar stacked against the planarmore » faces of Trp 310 and Trp 312 at the entrance of the active site tunnel was observed.« less

  14. Mutational analysis of microbial hydroxycinnamoyl-CoA hydratase-lyase (HCHL) towards enhancement of binding affinity: A computational approach.

    PubMed

    Kumar, Pravin; Ghosh Sachan, Shashwati; Poddar, Raju

    2017-10-01

    Improving the industrial enzyme for better yield of the product is important and a challenging task. One of such important industrial enzymes is microbial Hydroxycinnamoyl-CoA hydratase-lyase (HCHL). It converts feruloyl-CoA to vanillin. We place our efforts towards the improvement of its catalytic activity with comprehensive computational investigation. Catalytic core of the HCHL was explored with molecular modeling and docking approaches. Site-directed mutations were introduced in the catalytic site of HCHL in a sequential manner to generate different mutants of HCHL. Basis of mutation is to increase the interaction between HCHL and substrate feruloyl-CoA through interatomic forces and hydrogen bond formation. A rigorous molecular dynamics (MD) simulation was performed to check the stability of mutant's structure. Root mean square deviation (RMSD), root mean square fluctuation (RMSF), dynamic cross correlation (DCCM) and principal component analysis (PCA) were also performed to analyze flexibility and stability of structures. Docking studies were carried out between different mutants of HCHL and feruloyl-CoA. Investigation of the different binding sites and the interactions with mutant HCHLs and substrate allowed us to highlight the improved performance of mutants than wild type HCHL. This was further validated with MD simulation of complex consisting of different mutants and substrate. It further confirms all the structures are stable. However, mutant-2 showed better affinity towards substrate by forming hydrogen bond between active site and feruloyl-CoA. We propose that increase in hydrogen bond formation might facilitate in dissociation of vanillin from feruloyl-CoA. The current work may be useful for the future development of 'tailor-made' enzymes for better yield of vanillin. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Extracellular enzyme kinetics scale with resource availability

    USGS Publications Warehouse

    Sinsabaugh, Robert L.; Belnap, Jayne; Findlay, Stuart G.; Follstad Shah, Jennifer J.; Hill, Brian H.; Kuehn, Kevin A.; Kuske, Cheryl; Litvak, Marcy E.; Martinez, Noelle G.; Moorhead, Daryl L.; Warnock, Daniel D.

    2014-01-01

    Microbial community metabolism relies on external digestion, mediated by extracellular enzymes that break down complex organic matter into molecules small enough for cells to assimilate. We analyzed the kinetics of 40 extracellular enzymes that mediate the degradation and assimilation of carbon, nitrogen and phosphorus by diverse aquatic and terrestrial microbial communities (1160 cases). Regression analyses were conducted by habitat (aquatic and terrestrial), enzyme class (hydrolases and oxidoreductases) and assay methodology (low affinity and high affinity substrates) to relate potential reaction rates to substrate availability. Across enzyme classes and habitats, the scaling relationships between apparent Vmax and apparent Km followed similar power laws with exponents of 0.44 to 0.67. These exponents, called elasticities, were not statistically distinct from a central value of 0.50, which occurs when the Km of an enzyme equals substrate concentration, a condition optimal for maintenance of steady state. We also conducted an ecosystem scale analysis of ten extracellular hydrolase activities in relation to soil and sediment organic carbon (2,000–5,000 cases/enzyme) that yielded elasticities near 1.0 (0.9 ± 0.2, n = 36). At the metabolomic scale, the elasticity of extracellular enzymatic reactions is the proportionality constant that connects the C:N:P stoichiometries of organic matter and ecoenzymatic activities. At the ecosystem scale, the elasticity of extracellular enzymatic reactions shows that organic matter ultimately limits effective enzyme binding sites. Our findings suggest that one mechanism by which microbial communities maintain homeostasis is regulating extracellular enzyme expression to optimize the short-term responsiveness of substrate acquisition. The analyses also show that, like elemental stoichiometry, the fundamental attributes of enzymatic reactions can be extrapolated from biochemical to community and ecosystem scales.

  16. The Hsp70 interdomain linker is a dynamic switch that enables allosteric communication between two structured domains.

    PubMed

    English, Charles A; Sherman, Woody; Meng, Wenli; Gierasch, Lila M

    2017-09-08

    Hsp70 molecular chaperones play key roles in cellular protein homeostasis by binding to exposed hydrophobic regions of incompletely folded or aggregated proteins. This crucial Hsp70 function relies on allosteric communication between two well-structured domains: an N-terminal nucleotide-binding domain (NBD) and a C-terminal substrate-binding domain (SBD), which are tethered by an interdomain linker. ATP or ADP binding to the NBD alters the substrate-binding affinity of the SBD, triggering functionally essential cycles of substrate binding and release. The interdomain linker is a well-structured participant in the interdomain interface in ATP-bound Hsp70s. By contrast, in the ADP-bound state, exemplified by the Escherichia coli Hsp70 DnaK, the interdomain linker is flexible. Hsp70 interdomain linker sequences are highly conserved; moreover, mutations in this region compromise interdomain allostery. To better understand the role of this region in Hsp70 allostery, we used molecular dynamics simulations to explore the conformational landscape of the interdomain linker in ADP-bound DnaK and supported our simulations by strategic experimental data. We found that while the interdomain linker samples many conformations, it behaves as three relatively ordered segments connected by hinges. As a consequence, the distances and orientations between the NBD and SBD are limited. Additionally, the C-terminal region of the linker forms previously unreported, transient interactions with the SBD, and the predominant linker-docking site is available in only one allosteric state, that with high affinity for substrate. This preferential binding implicates the interdomain linker as a dynamic allosteric switch. The linker-binding site on the SBD is a potential target for small molecule modulators of the Hsp70 allosteric cycle. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Kinetic, mechanistic, and structural modeling studies of truncated wild-type leucine-rich repeat kinase 2 and the G2019S mutant.

    PubMed

    Liu, Min; Kang, Stephanie; Ray, Soumya; Jackson, Justin; Zaitsev, Alexandra D; Gerber, Scott A; Cuny, Gregory D; Glicksman, Marcie A

    2011-11-01

    Leucine-rich repeat kinase 2 (LRRK2), a large and complex protein that possesses two enzymatic properties, kinase and GTPase, is one of the major genetic factors in Parkinson's disease (PD). Here, we characterize the kinetic and catalytic mechanisms of truncated wild-type (t-wt) LRRK2 and its most common mutant, G2019S (t-G2019S), with a structural interpretation of the kinase domain. First, the substitution of threonine with serine in the LRRKtide peptide results in a much less efficient substrate as demonstrated by a 26-fold decrease in k(cat) and a 6-fold decrease in binding affinity. The significant decrease in k(cat) is attributed to a slow chemical transfer step as evidenced by the inverse solvent kinetic isotope effect in the proton inventory and pL (pH or pD)-dependent studies. The shape of the proton inventory and pL profile clearly signals the involvement of a general base (pK(a) = 7.5) in the catalysis with a low fractionation factor in the ground state. We report for the first time that the increased kinase activity of the G2019S mutant is substrate-dependent. Homology modeling of the kinase domain (open and closed forms) and structural analysis of the docked peptide substrates suggest that electrostatic interactions play an important role in substrate recognition, which is affected by G2019S and may directly influence the kinetic properties of the enzyme. Finally, the GTPase activity of the t-G2019S mutant was characterized, and the mutation modestly decreases GTPase activity without significantly affecting GTP binding affinity.

  18. Cysteine Scanning Mutagenesis of Transmembrane Domain 10 in Organic Anion Transporting Polypeptide 1B1

    PubMed Central

    2015-01-01

    Organic anion transporting polypeptide (OATP) 1B1 is an important drug transporter expressed in human hepatocytes. Previous studies have indicated that transmembrane (TM) domain 2, 6, 8, 9, and in particular 10 might be part of the substrate binding site/translocation pathway. To explore which amino acids in TM10 are important for substrate transport, we mutated 34 amino acids individually to cysteines, expressed them in HEK293 cells, and determined their surface expression. Transport activity of the two model substrates estrone-3-sulfate and estradiol-17β-glucuronide as well as of the drug substrate valsartan for selected mutants was measured. Except for F534C and F537C, all mutants were expressed at the plasma membrane of HEK293 cells. Mutants Q541C and A549C did not transport estradiol-17β-glucuronide and showed negligible estrone-3-sulfate transport. However, A549C showed normal valsartan transport. Pretreatment with the anionic and cell impermeable sodium (2-sulfonatoethyl)methanethiosulfonate (MTSES) affected the transport of each substrate differently. Pretreatment of L545C abolished estrone-3-sulfate uptake almost completely, while it stimulated estradiol-17β-glucuronide uptake. Further analyses revealed that mutant L545C in the absence of MTSES showed biphasic kinetics for estrone-3-sulfate that was converted to monophasic kinetics with a decreased apparent affinity, explaining the previously seen inhibition. In contrast, the apparent affinity for estradiol-17β-glucuronide was not changed by MTSES treatment, but the Vmax value was increased about 4-fold, explaining the previously seen stimulation. Maleimide labeling of L545C was affected by preincubation with estrone-3-sulfate but not with estradiol-17β-glucuronide. These results strongly suggest that L545C is part of the estrone-3-sulfate binding site/translocation pathway but is not directly involved in binding/translocation of estradiol-17β-glucuronide. PMID:24673529

  19. ATP-dependent transport of statins by human and rat MRP2/Mrp2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, Lucy C.J., E-mail: Luc_ellis@yahoo.co.uk; Hawksworth, Gabrielle M.; Weaver, Richard J.

    2013-06-01

    Multidrug resistance associated protein-2, MRP2 (human), Mrp2 (rat) are an efflux transporter, responsible for the transport of numerous endogenous and xenobiotic compounds including taurocholate, methotrexate and carboxydichlorofluorescein (CDF). The present study aims to characterise transport of statins by human and rat MRP2/Mrp2 using membrane and vesicle preparations. All statins tested (simvastatin, pravastatin, pitavastatin, fluvastatin, atorvastatin, lovastatin and rosuvastatin) stimulated vanadate-sensitive ATPase activity in membranes expressing human or rat MRP2/Mrp2, suggesting that all statins are substrates of human and rat MRP2/Mrp2. The substrate affinity (Km) of all statins for MRP2/Mrp2 was comparable and no correlation between lipophilicity (logD{sub 7.0}) and Kmmore » was seen. All statins also inhibited uptake of the fluorescent Mrp2 substrate, CDF (1 μM) into vesicles expressing human or rat MRP2/Mrp2 with similar IC{sub 50} values. Fitting of the inhibitory data to the hill slope equation, gave hill coefficients (h) of greater than one, suggesting that transport involved more than one binding site for inhibitors of MPR2 and Mrp2. We conclude that statins were transported by both human and rat MRP2/Mrp2 with similar affinity. Statins were also shown to compete with other substrates for transport by MRP2/Mrp2 and that this transport involved more than one binding site on the Mrp2/MRP2 protein. - Highlights: • We characterised MRP2 (human)/Mrp2 (rat)-mediated transport of statins. • We show statins were transported by human and rat MRP2/Mrp2. • Statins competed with a known substrate for transport by MRP2/Mrp2. • Competition involved more than one binding site on the MRP2/Mrp2 protein.« less

  20. Aromatic amino acids in the cellulose binding domain of Penicillium crustosum endoglucanase EGL1 differentially contribute to the cellulose affinity of the enzyme

    PubMed Central

    Xiong, Wei; Chen, Fang-Yuan; Xu, Li; Han, Zheng-Gang

    2017-01-01

    The cellulose binding domain (CBD) of cellulase binding to cellulosic materials is the initiation of a synergistic action on the enzymatic hydrolysis of the most abundant renewable biomass resources in nature. The binding of the CBD domain to cellulosic substrates generally relies on the interaction between the aromatic amino acids structurally located on the flat face of the CBD domain and the glucose rings of cellulose. In this study, we found the CBD domain of a newly cloned Penicillium crustosum endoglucanase EGL1, which was phylogenetically related to Aspergillus, Fusarium and Rhizopus, and divergent from the well-characterized Trichoderma reeseis cellulase CBD domain, contain two conserved aromatic amino acid-rich regions, Y451-Y452 and Y477-Y478-Y479, among which three amino acids Y451, Y477, and Y478 structurally sited on a flat face of this domain. Cellulose binding assays with green fluorescence protein as the marker, adsorption isotherm assays and an isothermal titration calorimetry assays revealed that although these three amino acids participated in this process, the Y451-Y452 appears to contribute more to the cellulose binding than Y477-Y478-Y479. Further glycine scanning mutagenesis and structural modelling revealed that the binding between CBD domain and cellulosic materials might be multi-amino-acids that participated in this process. The flexible poly-glucose molecule could contact Y451, Y477, and Y478 which form the contacting flat face of CBD domain as the typical model, some other amino acids in or outside the flat face might also participate in the interaction. Thus, it is possible that the conserved Y451-Y452 of CBD might have a higher chance of contacting the cellulosic substrates, contributing more to the affinity of CBD than the other amino acids. PMID:28475645

  1. Enzymology and structure of the GH13_31 glucan 1,6-α-glucosidase that confers isomaltooligosaccharide utilization in the probiotic Lactobacillus acidophilus NCFM.

    PubMed

    Møller, Marie S; Fredslund, Folmer; Majumder, Avishek; Nakai, Hiroyuki; Poulsen, Jens-Christian N; Lo Leggio, Leila; Svensson, Birte; Abou Hachem, Maher

    2012-08-01

    Isomaltooligosaccharides (IMO) have been suggested as promising prebiotics that stimulate the growth of probiotic bacteria. Genomes of probiotic lactobacilli from the acidophilus group, as represented by Lactobacillus acidophilus NCFM, encode α-1,6 glucosidases of the family GH13_31 (glycoside hydrolase family 13 subfamily 31) that confer degradation of IMO. These genes reside frequently within maltooligosaccharide utilization operons, which include an ATP-binding cassette transporter and α-glucan active enzymes, e.g., maltogenic amylases and maltose phosphorylases, and they also occur separated from any carbohydrate transport or catabolism genes on the genomes of some acidophilus complex members, as in L. acidophilus NCFM. Besides the isolated locus encoding a GH13_31 enzyme, the ABC transporter and another GH13 in the maltooligosaccharide operon were induced in response to IMO or maltotetraose, as determined by reverse transcription-PCR (RT-PCR) transcriptional analysis, suggesting coregulation of α-1,6- and α-1,4-glucooligosaccharide utilization loci in L. acidophilus NCFM. The L. acidophilus NCFM GH13_31 (LaGH13_31) was produced recombinantly and shown to be a glucan 1,6-α-glucosidase active on IMO and dextran and product-inhibited by glucose. The catalytic efficiency of LaGH13_31 on dextran and the dextran/panose (trisaccharide) efficiency ratio were the highest reported for this class of enzymes, suggesting higher affinity at distal substrate binding sites. The crystal structure of LaGH13_31 was determined to a resolution of 2.05 Å and revealed additional substrate contacts at the +2 subsite in LaGH13_31 compared to the GH13_31 from Streptococcus mutans (SmGH13_31), providing a possible structural rationale to the relatively high affinity for dextran. A comprehensive phylogenetic and activity motif analysis mapped IMO utilization enzymes from gut microbiota to rationalize preferential utilization of IMO by gut residents.

  2. Enzymology and Structure of the GH13_31 Glucan 1,6-α-Glucosidase That Confers Isomaltooligosaccharide Utilization in the Probiotic Lactobacillus acidophilus NCFM

    PubMed Central

    Møller, Marie S.; Fredslund, Folmer; Majumder, Avishek; Nakai, Hiroyuki; Poulsen, Jens-Christian N.; Lo Leggio, Leila; Svensson, Birte

    2012-01-01

    Isomaltooligosaccharides (IMO) have been suggested as promising prebiotics that stimulate the growth of probiotic bacteria. Genomes of probiotic lactobacilli from the acidophilus group, as represented by Lactobacillus acidophilus NCFM, encode α-1,6 glucosidases of the family GH13_31 (glycoside hydrolase family 13 subfamily 31) that confer degradation of IMO. These genes reside frequently within maltooligosaccharide utilization operons, which include an ATP-binding cassette transporter and α-glucan active enzymes, e.g., maltogenic amylases and maltose phosphorylases, and they also occur separated from any carbohydrate transport or catabolism genes on the genomes of some acidophilus complex members, as in L. acidophilus NCFM. Besides the isolated locus encoding a GH13_31 enzyme, the ABC transporter and another GH13 in the maltooligosaccharide operon were induced in response to IMO or maltotetraose, as determined by reverse transcription-PCR (RT-PCR) transcriptional analysis, suggesting coregulation of α-1,6- and α-1,4-glucooligosaccharide utilization loci in L. acidophilus NCFM. The L. acidophilus NCFM GH13_31 (LaGH13_31) was produced recombinantly and shown to be a glucan 1,6-α-glucosidase active on IMO and dextran and product-inhibited by glucose. The catalytic efficiency of LaGH13_31 on dextran and the dextran/panose (trisaccharide) efficiency ratio were the highest reported for this class of enzymes, suggesting higher affinity at distal substrate binding sites. The crystal structure of LaGH13_31 was determined to a resolution of 2.05 Å and revealed additional substrate contacts at the +2 subsite in LaGH13_31 compared to the GH13_31 from Streptococcus mutans (SmGH13_31), providing a possible structural rationale to the relatively high affinity for dextran. A comprehensive phylogenetic and activity motif analysis mapped IMO utilization enzymes from gut microbiota to rationalize preferential utilization of IMO by gut residents. PMID:22685275

  3. Biphasic association of T7 RNA polymerase and a nucleotide analogue, cibacron blue as a model to understand the role of initiating nucleotide in the mechanism of enzyme action.

    PubMed

    Pai, Sudipta; Das, Mili; Banerjee, Rahul; Dasgupta, Dipak

    2011-08-01

    T7 RNA polymerase (T7 RNAP) is an enzyme that utilizes ribonucleotides to synthesize the nascent RNA chain in a template-dependent manner. Here we have studied the interaction of T7 RNAP with cibacron blue, an anthraquinone monochlorotriazine dye, its effect on the function of the enzyme and the probable mode of binding of the dye. We have used difference absorption spectroscopy and isothermal titration calorimetry to show that the dye binds T7 RNAP in a biphasic manner. The first phase of the binding is characterized by inactivation of the enzyme. The second binding site overlaps with the common substrate-binding site of the enzyme. We have carried out docking experiment to map the binding site of the dye in the promoter bound protein. Competitive displacement of the dye from the high affinity site by labeled GTP and isothermal titration calorimetry of high affinity GTP bound enzyme with the dye suggests a strong correlation between the high affinity dye binding and the high affinity GTP binding in T7 RNAP reported earlier from our laboratory.

  4. Changes in small angle X-ray scattering parameters observed upon ligand binding to rabbit muscle pyruvate kinase are not correlated with allosteric transitions†

    PubMed Central

    Fenton, Aron W.; Williams, Rachel; Trewhella, Jill

    2010-01-01

    Protein fluorescence and small-angle X-ray scattering (SAXS) have been used to monitor effector affinity and conformational changes previously associated with allosteric regulation in rabbit muscle pyruvate kinase (M1-PYK). In the absence of substrate (phosphoenolpyruvate; PEP), SAXS-monitored conformational changes in M1-PYK elicited by the binding of phenylalanine (an allosteric inhibitor that reduces the affinity of M1-PYK for PEP) are similar to those observed upon binding of alanine or 2-aminobutyric acid. Under the current assay conditions, these small amino acids bind to the protein, but elicit a minimal change in the affinity of the protein for PEP. Therefore, if changes in scattering signatures represent cleft closure via domain rotation as previously interpreted, it can be concluded that these motions are not sufficient to elicit allosteric inhibition. Additionally, although PEP has similar affinities for the free enzyme and the M1-PYK/small-amino-acid complexes (i.e. the small amino acids have minimal allosteric effects), PEP binding elicits different changes in the SAXS signature of the free enzyme vs. the M1-PYK/small-amino-acid complexes. PMID:20712377

  5. The pH dependence of the allosteric response of human liver pyruvate kinase to fructose-1,6-bisphosphate, ATP, and alanine

    PubMed Central

    Fenton, Aron W.; Hutchinson, Myra

    2009-01-01

    The allosteric regulation of human liver pyruvate kinase (hL-PYK) by fructose-1,6-bisphosphate (Fru-1,6-BP; activator), ATP (inhibitor) and alanine (Ala; inhibitor) was monitored over a pH range from 6.5 to 8.0 at 37°C. As a function of increasing pH, hL-PYK's affinity for the substrate phosphoenolpyruvate (PEP), and for Fru-1,6-BP decreases, while affinities for ATP and Ala slightly increases. At pH 6.5, Fru-1,6-BP and ATP elicit only small allosteric impacts on PEP affinity. As pH increases, Fru-1,6-BP and ATP elicit greater allosteric responses, but the response to Ala is relatively constant. Since the magnitudes of the allosteric coupling for ATP and for Ala inhibition are different and the pH dependences of these magnitudes are not similar, these inhibitors likely elicit their responses using different molecular mechanisms. In addition, our results fail to support a general correlation between pH dependent changes in effector affinity and pH dependent changes in the corresponding allosteric response. PMID:19467627

  6. THE EFFECTS OF TYPE II BINDING ON METABOLIC STABILITY AND BINDING AFFINITY IN CYTOCHROME P450 CYP3A4

    PubMed Central

    Peng, Chi-Chi; Pearson, Josh T.; Rock, Dan A.; Joswig-Jones, Carolyn A.; Jones, Jeffrey P.

    2010-01-01

    One goal in drug design is to decrease clearance due to metabolism. It has been suggested that a compound’s metabolic stability can be increased by incorporation of a sp2 nitrogen into an aromatic ring. Nitrogen incorporation is hypothesized to increase metabolic stability by coordination of nitrogen to the heme iron (termed type II binding). However, questions regarding binding affinity, metabolic stability, and how metabolism of type II binders occurs remain unanswered. Herein, we use pyridinyl quinoline-4-carboxamide analogs to answer these questions. We show that type II binding can have a profound influence on binding affinity for CYP3A4, and the difference in binding affinity can be as high as 1,200 fold. We also find that type II binding compounds can be extensively metabolized, which is not consistent with the dead-end complex kinetic model assumed for type II binders. Two alternate kinetic mechanisms are presented to explain the results. The first involves a rapid equilibrium between the type II bound substrate and a metabolically oriented binding mode. The second involves direct reduction of the nitrogen-coordinated heme followed by oxygen binding. PMID:20346909

  7. Investigation of molybdenum-crosslinker interfaces for affinity based electrochemical biosensing applications

    NASA Astrophysics Data System (ADS)

    Kamakoti, Vikramshankar; Shanmugam, Nandhinee Radha; Tanak, Ambalika Sanjeev; Jagannath, Badrinath; Prasad, Shalini

    2018-04-01

    Molybdenum (Mo) has been investigated for implementation as an electrode material for affinity based biosensing towards devloping flexibe electronic biosensors. Treatment of the native oxide of molybdenum was investigated through two surface treatment strategies namely thiol and carbodiimide crosslinking methods. The binding interaction between cross-linker molecules and Mo electrode surface has been characterized using Fourier Transform Infrared Spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and optical microscopy. The efficacy of treatment of Mo with its native oxide using carbodiimide cross linking methodology was established. The carbodiimide cross-linking chemistry was found to possess better surface coverage and binding affinity with Molybdenum electrode surface when compared to thiol cross-linking chemistry.Electrochemical characterization of Mo electrode using Electrochemical Impedance Spectroscopy (EIS) and Cyclic Voltametry (CV) techniques was performed to evaluate the effect of ionic properties of solution buffer on the Mo electrode's performance. Affinity based biosensing of C-Reactive Protein (CRP) has been demonstrated on a flexible nanoporous polymeric substrate with detection threshold of 100 pg/ml in synthetic urine buffer medium. The biosensor has been evaluated to be developed as a dipstick based point of care device for detection of biomarkers in urine.

  8. Pharmacophore, QSAR, and binding mode studies of substrates of human cytochrome P450 2D6 (CYP2D6) using molecular docking and virtual mutations and an application to chinese herbal medicine screening.

    PubMed

    Mo, Sui-Lin; Liu, Wei-Feng; Li, Chun-Guang; Zhou, Zhi-Wei; Luo, Hai-Bin; Chew, Helen; Liang, Jun; Zhou, Shu-Feng

    2012-07-01

    The highly polymorphic human cytochrome P450 2D6 (CYP2D6) metabolizes about 25% of currently used drugs. In this study, we have explored the interaction of a large number of substrates (n = 120) with wild-type and mutated CYP2D6 by molecular docking using the CDOCKER module. Before we conducted the molecular docking and virtual mutations, the pharmacophore and QSAR models of CYP2D6 substrates were developed and validated. Finally, we explored the interaction of a traditional Chinese herbal formula, Fangjifuling decoction, with CYP2D6 by virtual screening. The optimized pharmacophore model derived from 20 substrates of CYP2D6 contained two hydrophobic features and one hydrogen bond acceptor feature, giving a relevance ratio of 76% when a validation set of substrates were tested. However, our QSAR models gave poor prediction of the binding affinity of substrates. Our docking study demonstrated that 117 out of 120 substrates could be docked into the active site of CYP2D6. Forty one out of 117 substrates (35.04%) formed hydrogen bonds with various active site residues of CYP2D6 and 53 (45.30%) substrates formed a strong π-π interaction with Phe120 (53/54), with only carvedilol showing π-π interaction with Phe483. The active site residues involving hydrogen bond formation with substrates included Leu213, Lys214, Glu216, Ser217, Gln244, Asp301, Ser304, Ala305, Phe483, and Phe484. Furthermore, the CDOCKER algorithm was further applied to study the impact of mutations of 28 active site residues (mostly non-conserved) of CYP2D6 on substrate binding modes using five probe substrates including bufuralol, debrisoquine, dextromethorphan, sparteine, and tramadol. All mutations of the residues examined altered the hydrogen bond formation and/or aromatic interactions, depending on the probe used in molecular docking. Apparent changes of the binding modes have been observed with the Glu216Asp and Asp301Glu mutants. Overall, 60 compounds out of 130 from Fangjifuling decoction matched our pharmacophore model for CYP2D6 substrates. Fifty four out of these 60 compounds could be docked into the active site of CYP2D6 and 24 of 54 compounds formed hydrogen bonds with Glu216, Asp301, Ser304, and Ala305 in CYP2D6. These results have provided further insights into the factors that determining the binding modes of substrates to CYP2D6. Screening of high-affinity ligands for CYP2D6 from herbal formula using computational models is a useful approach to identify potential herb-drug interactions.

  9. Kinetics of sulfate and hydrogen uptake by the thermophilic sulfate-reducing bacteria Thermodesulfobacterium sp. strain JSP and Thermodesulfovibrio sp. strain R1Ha3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonne-Hansen, J.; Ahring, B.K.; Westermann, P.

    1999-03-01

    Dissimilatory sulfate reduction and methanogenesis are the main terminal processes in the anaerobic food chain. Both the sulfate-reducing bacteria (SRB) and the methane-producing archaea (MPA) use acetate and hydrogen as substrates and, therefore, compete for common electron donors in sulfate-containing natural environments. Due to a higher affinity for the electron donors acetate and hydrogen, SRB outcompete MPA for these compounds whenever sulfate is present in sufficient concentrations. Half-saturation constants (K{sub m}), maximum uptake rates (V{sub max}), and threshold concentrations for sulfate and hydrogen were determined for two thermophilic sulfate-reducing bacteria (SRB) in an incubation system without headspace. K{sub m} valuesmore » determined for the thermophilic SRB were similar to the constants described for mesophilic SRB isolated from environments with low sulfate concentrations.« less

  10. Long-term effects of the transient COD concentration on the performance of microbial fuel cells.

    PubMed

    Mateo, S; Gonzalez Del Campo, A; Lobato, J; Rodrigo, M; Cañizares, P; Fernandez-Morales, F J

    2016-07-08

    In this work, the long-term effects of transient chemical oxygen demands (COD) concentrations over the performance of a microbial fuel cell were studied. From the obtained results, it was observed that the repetitive change in the COD loading rate during 12 h conditioned the behavior of the system during periods of up to 7 days. The main modifications were the enhancement of the COD consumption rate and the exerted current. These enhancements yielded increasing Coulombic efficiencies (CEs) when working with COD concentrations of 300 mg/L, but constant CEs when working with COD concentrations from 900 to 1800 mg/L. This effect could be explained by the higher affinity for the substrate of Geobacter than that of the nonelectrogenic organisms such as Clostridia. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:883-890, 2016. © 2016 American Institute of Chemical Engineers.

  11. Steam assisted oxide growth on aluminium alloys using oxidative chemistries: Part I Microstructural investigation

    NASA Astrophysics Data System (ADS)

    Din, Rameez Ud; Piotrowska, Kamila; Gudla, Visweswara Chakravarthy; Jellesen, Morten Stendahl; Ambat, Rajan

    2015-11-01

    The surface treatment of aluminium alloys under steam containing KMnO4 and HNO3 resulted in the formation of an oxide layer having a thickness of up to 825 nm. The use of KMnO4 and HNO3 in the steam resulted in incorporation of the respective chemical species into the oxide layer. Steam treatment with solution containing HNO3 caused dissolution of Cu and Si from the intermetallic particles in the aluminium substrate. The growth rate of oxide layer was observed to be a function of MnO4- and NO3- ions present in the aqueous solution. The NO3- ions exhibit higher affinity towards the intermetallic particles resulting in poor coverage by the steam generated oxide layer compared to the coating formed using MnO4- ions. Further, increase in the concentration of NO3- ions in the solution retards precipitation of the steam generated aluminium hydroxide layer.

  12. Preparation and characterization of tannase immobilized onto carboxyl-functionalized superparamagnetic ferroferric oxide nanoparticles.

    PubMed

    Wu, Changzheng; Xu, Caiyun; Ni, Hui; Yang, Qiuming; Cai, Huinong; Xiao, Anfeng

    2016-04-01

    Tannase from Aspergillus tubingensis was immobilized onto carboxyl-functionalized Fe3O4 nanoparticles (CMNPs), and conditions affecting tannase immobilization were investigated. Successful binding between CMNPs and tannase was confirmed by Fourier transform infrared spectroscopy and thermogravimetric analysis. Vibrating sample magnetometry and X-ray diffraction showed that the CMNPs and immobilized tannase exhibit distinct magnetic responses and superparamagnetic properties. Free and immobilized tannase exhibited identical optimal temperatures of 50°C and differing pH optima at 6 and 7, respectively. The thermal, pH, and storage stabilities of the immobilized tannase were superior to those of free tannase. After six cycles of catalytic hydrolysis of propyl gallate, the immobilized tannase maintained over 60% of its initial activity. The Michaelis constant (Km) of the immobilized enzyme indicated its higher affinity for substrate binding than the free enzyme. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Granulosain I, a cysteine protease isolated from ripe fruits of Solanum granuloso-leprosum (Solanaceae).

    PubMed

    Vallés, Diego; Bruno, Mariela; López, Laura M I; Caffini, Néstor O; Cantera, Ana María B

    2008-08-01

    A new cysteine peptidase (Granulosain I) was isolated from ripe fruits of Solanum granuloso-leprosum Dunal (Solanaceae) by means of precipitation with organic solvent and cation exchange chromatography. The enzyme showed a single band by SDS-PAGE, its molecular mass was 24,746 Da (MALDI-TOF/MS) and its isoelectric point was higher than 9.3. It showed maximum activity (more than 90%) in the pH range 7-8.6. Granulosain I was completely inhibited by E-64 and activated by the addition of cysteine or 2-mercaptoethanol, confirming its cysteinic nature. The kinetic studies carried out with PFLNA as substrate, showed an affinity (Km 0.6 mM) slightly lower than those of other known plant cysteine proteases (papain and bromelain). The N-terminal sequence of granulosain I (DRLPASVDWRGKGVLVLVKNQGQC) exhibited a close homology with other cysteine proteases belonging to the C1A family.

  14. Immobilization of halophilic Bacillus sp. EMB9 protease on functionalized silica nanoparticles and application in whey protein hydrolysis.

    PubMed

    Sinha, Rajeshwari; Khare, S K

    2015-04-01

    The present work targets the fabrication of an active, stable, reusable enzyme preparation using functionalized silica nanoparticles as an effective enzyme support for crude halophilic Bacillus sp. EMB9 protease. The immobilization efficiency under optimized conditions was 60%. Characterization of the immobilized preparation revealed marked increase in pH and thermal stability. It retained 80% of its original activity at 70 °C while t 1/2 at 50 °C showed a five-fold enhancement over that for the free protease. Kinetic constants K m and V max were indicative of a higher reaction velocity along with decreased affinity for substrate. The preparation could be efficiently reused up to 6 times and successfully hydrolysed whey proteins with high degree of hydrolysis. Immobilization of a crude halophilic protease on a nanobased scaffold makes the process cost effective and simple.

  15. Macromolecular cross-linked enzyme aggregates (M-CLEAs) of α-amylase.

    PubMed

    Nadar, Shamraja S; Muley, Abhijeet B; Ladole, Mayur R; Joshi, Pranoti U

    2016-03-01

    Macromolecular cross-linked enzyme aggregates (M-CLEAs) of α-amylase were prepared by precipitation and subsequent cross-linking. The non-toxic, biodegradable, biocompatible, renewable polysaccharide based macromolecular cross-linkers viz. agar, chitosan, dextran, and gum arabic were used as a substitute for traditional glutaraldehyde to augment activity recovery toward macromolecular substrate. Macromolecular cross-linkers were prepared by periodate mediated controlled oxidation of polysaccharides. The effects of precipitating agent, concentration and different cross-linkers on activity recovery of α-amylase CLEAs were investigated. α-Amylase aggregated with ammonium sulphate and cross-linked by dextran showed 91% activity recovery, whereas glutaraldehyde CLEAs (G-CLEAs) exhibited 42% activity recovery. M-CLEAs exhibited higher thermal stability in correlation with α-amylase and G-CLEAs. Moreover, dextran and chitosan M-CLEAs showed same affinity for starch hydrolysis as of free α-amylase. The changes in secondary structures revealed the enhancements in structural and conformational rigidity attributed by cross-linkers. Finally, after five consecutive cycles dextran M-CLEAs retained 1.25 times higher initial activity than G-CLEAs. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Functional and Structural Characterization of a Thermostable Phospholipase A2 from a Sparidae Fish (Diplodus annularis).

    PubMed

    Smichi, Nabil; Othman, Houcemeddine; Achouri, Neila; Noiriel, Alexandre; Arondel, Vincent; Srairi-Abid, Najet; Abousalham, Abdelkarim; Gargouri, Youssef; Miled, Nabil; Fendri, Ahmed

    2017-03-22

    Novel phospholipase (PLA 2 ) genes from the Sparidae family were cloned. The sequenced PLA 2 revealed an identity with pancreatic PLA 2 group IB. To better understand the structure/function relationships of these enzymes and their evolution, the Diplodus annularis PLA 2 (DaPLA 2 ) was overexpressed in E. coli. The refolded enzyme was purified by Ni-affinity chromatography and has a molecular mass of 15 kDa as determined by MALDI-TOF spectrometry. Interestingly, unlike the pancreatic type, the DaPLA 2 was active and stable at higher temperatures, which suggests its great potential in biotechnological applications. The 3D structure of DaPLA 2 was constructed to gain insights into the functional properties of sparidae PLA 2 . Molecular docking and dynamic simulations were performed to explain the higher thermal stability and the substrate specificity of DaPLA 2 . Using the monolayer technique, the purified DaPLA 2 was found to be active on various phospholipids ranging from 10 to 20 mN·m -1 , which explained the absence of the hemolytic activity for DaPLA 2 .

  17. Carrier-mediated γ-aminobutyric acid transport across the basolateral membrane of human intestinal Caco-2 cell monolayers.

    PubMed

    Nielsen, Carsten Uhd; Carstensen, Mette; Brodin, Birger

    2012-06-01

    The aim of the present study was to investigate the transport of γ-aminobutyric acid (GABA) across the basolateral membrane of intestinal cells. The proton-coupled amino acid transporter, hPAT1, mediates the influx of GABA and GABA mimetic drug substances such as vigabatrin and gaboxadol and the anticancer prodrug δ-aminolevulinic acid across the apical membrane of small intestinal enterocytes. Little is however known about the basolateral transport of these substances. We investigated basolateral transport of GABA in mature Caco-2 cell monolayers using isotope studies. Here we report that, at least two transporters seem to be involved in the basolateral transport of GABA. The basolateral uptake consisted of a high-affinity system with a K(m) of 290 μM and V(max) of 75 pmol cm(-2) min(-1) and a low affinity system with a K(m) of approximately 64 mM and V(max) of 1.6 nmol cm(-2) min(-1). The high-affinity transporter is Na(+) and Cl(-) dependent. The substrate specificity of the high-affinity transporter was further studied and Gly-Sar, Leucine, gaboxadol, sarcosine, lysine, betaine, 5-hydroxythryptophan, proline and glycine reduced the GABA uptake to approximately 44-70% of the GABA uptake in the absence of inhibitor. Other substances such as β-alanine, GABA, 5-aminovaleric acid, taurine and δ-aminolevulinic acid reduced the basolateral GABA uptake to 6-25% of the uptake in the absence of inhibitor. Our results indicate that the distance between the charged amino- and acid-groups is particular important for inhibition of basolateral GABA uptake. Thus, there seems to be a partial substrate overlap between the basolateral GABA transporter and hPAT1, which may prove important for understanding drug interactions at the level of intestinal transport. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Increased Antibody Affinity Confers Broad In Vitro Protection against Escape Mutants of Severe Acute Respiratory Syndrome Coronavirus

    PubMed Central

    Rani, Mridula; Bolles, Meagan; Donaldson, Eric F.; Van Blarcom, Thomas; Baric, Ralph; Iverson, Brent

    2012-01-01

    Even though the effect of antibody affinity on neutralization potency is well documented, surprisingly, its impact on neutralization breadth and escape has not been systematically determined. Here, random mutagenesis and DNA shuffling of the single-chain variable fragment of the neutralizing antibody 80R followed by bacterial display screening using anchored periplasmic expression (APEx) were used to generate a number of higher-affinity variants of the severe acute respiratory syndrome coronavirus (SARS-CoV)-neutralizing antibody 80R with equilibrium dissociation constants (KD) as low as 37 pM, a >270-fold improvement relative to that of the parental 80R single-chain variable fragment (scFv). As expected, antigen affinity was shown to correlate directly with neutralization potency toward the icUrbani strain of SARS-CoV. Additionally, the highest-affinity antibody fragment displayed 10-fold-increased broad neutralization in vitro and completely protected against several SARS-CoV strains containing substitutions associated with antibody escape. Importantly, higher affinity also led to the suppression of viral escape mutants in vitro. Escape from the highest-affinity variant required reduced selective pressure and multiple substitutions in the binding epitope. Collectively, these results support the hypothesis that engineered antibodies with picomolar dissociation constants for a neutralizing epitope can confer escape-resistant protection. PMID:22696652

  19. Biochemical properties of Na+/K(+)-ATPase in axonal growth cone particles isolated from fetal rat brain.

    PubMed

    Mercado, R; Hernández, J

    1994-08-01

    Axonal growth cones (AGC) isolated from fetal rat brain have an important specific activity of N+/K(+)-ATPase. Kinetic assays of the enzyme in AGC showed that Km values for ATP or K+ are similar to those reported for the adult brain enzyme. For Na+ the affinity (Km) was lower. Vmax for the three substrates was several times lower in AGC as compared to the adult value. We also observed two apparent inhibition constants of Na+/K(+)-ATPase by ouabain, one of low affinity, possibly corresponding to the alpha 1 isoform and another of high affinity which is different to that described for the alpha 2 isoform of the enzyme. These results support an important role for the sodium pump in the maintainance of volume and cationic balance in neuronal differentiating structures. The functional differences observed also suggest that the enzymatic complex of Na+/K(+)-ATPase in AGC is in a transitional state towards the adult configuration.

  20. The substrate specificity of Metarhizium anisopliae and Bos taurus carboxypeptidases A: Insights into their use as tools for the removal of affinity tags

    PubMed Central

    Austin, Brian P.; Tözsér, József; Bagossi, Péter; Tropea, Joseph E.; Waugh, David S.

    2012-01-01

    Carboxypeptidases may serve as tools for removal for C-terminal affinity tags. In the present study, we describe the expression and purification of an A-type carboxypeptidase from the fungal pathogen Metarhizium anisopliae (MeCPA) that has been genetically engineered to facilitate the removal of polyhistidine tags from the C-termini of recombinant proteins. A complete, systematic analysis of the specificity of MeCPA in comparison with that of bovine carboxypeptidase A (BoCPA) was carried out. Our results indicate that the specificity of the two enzymes is similar but not identical. Histidine residues are removed more efficiently by MeCPA. The very inefficient digestion of peptides with C-terminal lysine or arginine residues, along with the complete inability of the enzyme to remove a C-terminal proline suggests a strategy for designing C-terminal affinity tags that can be trimmed by MeCPA (or BoCPA) to produce a digestion product with a homogeneous endpoint. PMID:21073956

  1. Asymmetric ring structure of Vps4 required for ESCRT-III disassembly

    NASA Astrophysics Data System (ADS)

    Caillat, Christophe; Macheboeuf, Pauline; Wu, Yuanfei; McCarthy, Andrew A.; Boeri-Erba, Elisabetta; Effantin, Gregory; Göttlinger, Heinrich G.; Weissenhorn, Winfried; Renesto, Patricia

    2015-12-01

    The vacuolar protein sorting 4 AAA-ATPase (Vps4) recycles endosomal sorting complexes required for transport (ESCRT-III) polymers from cellular membranes. Here we present a 3.6-Å X-ray structure of ring-shaped Vps4 from Metallosphera sedula (MsVps4), seen as an asymmetric pseudohexamer. Conserved key interface residues are shown to be important for MsVps4 assembly, ATPase activity in vitro, ESCRT-III disassembly in vitro and HIV-1 budding. ADP binding leads to conformational changes within the protomer, which might propagate within the ring structure. All ATP-binding sites are accessible and the pseudohexamer binds six ATP with micromolar affinity in vitro. In contrast, ADP occupies one high-affinity and five low-affinity binding sites in vitro, consistent with conformational asymmetry induced on ATP hydrolysis. The structure represents a snapshot of an assembled Vps4 conformation and provides insight into the molecular motions the ring structure undergoes in a concerted action to couple ATP hydrolysis to ESCRT-III substrate disassembly.

  2. Coexistence of two distinct Sulfurospirillum populations respiring tetrachloroethene-genomic and kinetic considerations.

    PubMed

    Buttet, Géraldine Florence; Murray, Alexandra Marie; Goris, Tobias; Burion, Mélissa; Jin, Biao; Rolle, Massimo; Holliger, Christof; Maillard, Julien

    2018-05-01

    Two anaerobic bacterial consortia, each harboring a distinct Sulfurospirillum population, were derived from a 10 year old consortium, SL2, previously characterized for the stepwise dechlorination of tetrachloroethene (PCE) to cis-dichloroethene (cis-DCE) via accumulation of trichloroethene (TCE). Population SL2-1 dechlorinated PCE to TCE exclusively, while SL2-2 produced cis-DCE from PCE without substantial TCE accumulation. The reasons explaining the long-term coexistence of the populations were investigated. Genome sequencing revealed a novel Sulfurospirillum species, designated 'Candidatus Sulfurospirillum diekertiae', whose genome differed significantly from other Sulfurospirillum spp. (78%-83% ANI). Genome-wise, SL2-1 and SL2-2 populations are almost identical, but differences in their tetrachloroethene reductive dehalogenase sequences explain the distinct dechlorination patterns. An extended series of batch cultures were performed at PCE concentrations of 2-200 μM. A model was developed to determine their dechlorination kinetic parameters. The affinity constant and maximal growth rate differ between the populations: the affinity is 6- to 8-fold higher and the growth rate 5-fold lower for SL2-1 than SL2-2. Mixed cultivation of the enriched populations at 6 and 30 μM PCE showed that a low PCE concentration could be the driving force for both functional diversity of reductive dehalogenases and niche specialization of organohalide-respiring bacteria with overlapping substrate ranges.

  3. Disruption of Chemoreceptor Signaling Arrays by High Levels of CheW, the Receptor-Kinase Coupling Protein

    PubMed Central

    Cardozo, Marcos J.; Massazza, Diego A.; Parkinson, John S.; Studdert, Claudia A.

    2017-01-01

    Summary During chemotactic signaling by Escherichia coli, the small cytoplasmic CheW protein couples the histidine kinase CheA to chemoreceptor control. Although essential for assembly and operation of receptor signaling complexes, CheW in stoichiometric excess disrupts chemotactic behavior. To explore the mechanism of the CheW excess effect, we measured the physiological consequences of high cellular levels of wild-type CheW and of several CheW variants with reduced or enhanced binding affinities for receptor molecules. We found that high levels of CheW interfered with trimer assembly, prevented CheA activation, blocked cluster formation, disrupted chemotactic ability, and elevated receptor methylation levels. The severity of these effects paralleled the receptor binding affinities of the CheW variants. Because trimer formation may be an obligate step in the assembly of ternary signaling complexes and higher-order receptor arrays, we suggest that all CheW excess effects stem from disruption of trimer assembly. We propose that the CheW-binding sites in receptor dimers overlap their trimer contact sites and that high levels of CheW saturate the receptor binding sites, preventing trimer assembly. The CheW-trapped receptor dimers seem to be improved substrates for methyltransferase reactions, but cannot activate CheA or assemble into clusters, processes that are essential for chemotactic signaling. PMID:20487303

  4. Uptake Kinetics of Arsenic Species in Rice Plants

    PubMed Central

    Abedin, Mohammed Joinal; Feldmann, Jörg; Meharg, Andy A.

    2002-01-01

    Arsenic (As) finds its way into soils used for rice (Oryza sativa) cultivation through polluted irrigation water, and through historic contamination with As-based pesticides. As is known to be present as a number of chemical species in such soils, so we wished to investigate how these species were accumulated by rice. As species found in soil solution from a greenhouse experiment where rice was irrigated with arsenate contaminated water were arsenite, arsenate, dimethylarsinic acid, and monomethylarsonic acid. The short-term uptake kinetics for these four As species were determined in 7-d-old excised rice roots. High-affinity uptake (0–0.0532 mm) for arsenite and arsenate with eight rice varieties, covering two growing seasons, rice var. Boro (dry season) and rice var. Aman (wet season), showed that uptake of both arsenite and arsenate by Boro varieties was less than that of Aman varieties. Arsenite uptake was active, and was taken up at approximately the same rate as arsenate. Greater uptake of arsenite, compared with arsenate, was found at higher substrate concentration (low-affinity uptake system). Competitive inhibition of uptake with phosphate showed that arsenite and arsenate were taken up by different uptake systems because arsenate uptake was strongly suppressed in the presence of phosphate, whereas arsenite transport was not affected by phosphate. At a slow rate, there was a hyperbolic uptake of monomethylarsonic acid, and limited uptake of dimethylarsinic acid. PMID:11891266

  5. Isolation and characterization of Dehalobacter sp. strain UNSWDHB capable of chloroform and chlorinated ethane respiration.

    PubMed

    Wong, Yie K; Holland, Sophie I; Ertan, Haluk; Manefield, Mike; Lee, Matthew

    2016-09-01

    Dehalobacter sp. strain UNSWDHB can dechlorinate up to 4 mM trichloromethane at a rate of 0.1 mM per day to dichloromethane and 1,1,2-trichloroethane (1 mM, 0.1 mM per day) with the unprecedented product profile of 1,2-dichloroethane and vinyl chloride. 1,1,1-trichloroethane and 1,1-dichloroethane were slowly utilized by strain UNSWDHB and were not completely removed, with minimum threshold concentrations of 0.12 mM and 0.07 mM respectively under growth conditions. Enzyme kinetic experiments confirmed strong substrate affinity for trichloromethane and 1,1,2-trichloroethane (Km  = 30 and 62 µM respectively) and poor substrate affinity for 1,1,1-trichloroethane and 1,1-dichloroethane (Km  = 238 and 837 µM respectively). Comparison of enzyme kinetic and growth data with other trichloromethane respiring organisms (Dehalobacter sp. strain CF and Desulfitobacterium sp. strain PR) suggests an adaptation of strain UNSWDHB to trichloromethane. The trichloromethane RDase (TmrA) expressed by strain UNSWDHB was identified by BN-PAGE and functionally characterized. Amino acid comparison of homologous RDases from all three organisms revealed only six significant amino acid substitutions/deletions, which are likely to be crucial for substrate specificity. Furthermore, strain UNSWDHB was shown to grow without exogenous supply of cobalamin confirming genomic-based predictions of a fully functional cobalamin synthetic pathway. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Purification of a thermostable alkaline laccase from papaya (Carica papaya) using affinity chromatography.

    PubMed

    Jaiswal, Nivedita; Pandey, Veda P; Dwivedi, Upendra N

    2015-01-01

    A laccase from papaya leaves was purified to homogeneity by a two step procedure namely, heat treatment (at 70 °C) and Con-A affinity chromatography. The procedure resulted in 1386.7-fold purification of laccase with a specific activity of 41.3 units mg(-1) and an overall yield of 61.5%. The native purified laccase was found to be a hexameric protein of ∼ 260 kDa. The purified enzyme exhibited acidic and alkaline pH optima of 6.0 and 8.0 with the non-phenolic substrate (ABTS) and phenolic substrate (catechol), respectively. The purified laccase was found to be thermostable up to 70 °C such that it retained ∼ 80% activity upon 30 min incubation at 70 °C. The Arrhenius energy of activation for purified laccase was found to be 7.7 kJ mol(-1). The enzyme oxidized various phenolic and non-phenolic substrates having catalytic efficiency (K(cat)/K(m)) in the order of 7.25>0.67>0.27 mM(-1) min(-1) for ABTS, catechol and hydroquinone, respectively. The purified laccase was found to be activated by Mn(2+), Cd(2+), Ca(2+), Na(+), Fe(2+), Co(2+) and Cu(2+) while weakly inhibited by Hg(2+). The properties such as thermostability, alkaline pH optima and metal tolerance exhibited by the papaya laccase make it a promising candidate enzyme for industrial exploitation. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Proteomic Interaction Patterns between Human Cyclins, the Cyclin-Dependent Kinase Ortholog pUL97 and Additional Cytomegalovirus Proteins

    PubMed Central

    Steingruber, Mirjam; Kraut, Alexandra; Socher, Eileen; Sticht, Heinrich; Reichel, Anna; Stamminger, Thomas; Amin, Bushra; Couté, Yohann; Hutterer, Corina; Marschall, Manfred

    2016-01-01

    The human cytomegalovirus (HCMV)-encoded cyclin-dependent kinase (CDK) ortholog pUL97 associates with human cyclin B1 and other types of cyclins. Here, the question was addressed whether cyclin interaction of pUL97 and additional viral proteins is detectable by mass spectrometry-based approaches. Proteomic data were validated by coimmunoprecipitation (CoIP), Western blot, in vitro kinase and bioinformatic analyses. Our findings suggest that: (i) pUL97 shows differential affinities to human cyclins; (ii) pUL97 inhibitor maribavir (MBV) disrupts the interaction with cyclin B1, but not with other cyclin types; (iii) cyclin H is identified as a new high-affinity interactor of pUL97 in HCMV-infected cells; (iv) even more viral phosphoproteins, including all known substrates of pUL97, are detectable in the cyclin-associated complexes; and (v) a first functional validation of pUL97-cyclin B1 interaction, analyzed by in vitro kinase assay, points to a cyclin-mediated modulation of pUL97 substrate preference. In addition, our bioinformatic analyses suggest individual, cyclin-specific binding interfaces for pUL97-cyclin interaction, which could explain the different strengths of interactions and the selective inhibitory effect of MBV on pUL97-cyclin B1 interaction. Combined, the detection of cyclin-associated proteins in HCMV-infected cells suggests a complex pattern of substrate phosphorylation and a role of cyclins in the fine-modulation of pUL97 activities. PMID:27548200

  8. A single amino acid change (Y318F) in the L-arabitol dehydrogenase (LadA) from Aspergillus niger results in a significant increase in affinity for D-sorbitol

    PubMed Central

    2009-01-01

    Background L-arabitol dehydrogenase (LAD) and xylitol dehydrogenase (XDH) are involved in the degradation of L-arabinose and D-xylose, which are among the most abundant monosaccharides on earth. Previous data demonstrated that LAD and XDH not only differ in the activity on their biological substrate, but also that only XDH has significant activity on D-sorbitol and may therefore be more closely related to D-sorbitol dehydrogenases (SDH). In this study we aimed to identify residues involved in the difference in substrate specificity. Results Phylogenetic analysis demonstrated that LAD, XDH and SDH form 3 distinct groups of the family of dehydrogenases containing an Alcohol dehydrogenase GroES-like domain (pfam08240) and likely have evolved from a common ancestor. Modelling of LadA and XdhA of the saprobic fungus Aspergillus niger on human SDH identified two residues in LadA (M70 and Y318), that may explain the absence of activity on D-sorbitol. While introduction of the mutation M70F in LadA of A. niger resulted in a nearly complete enzyme inactivation, the Y318F resulted in increased activity for L-arabitol and xylitol. Moreover, the affinity for D-sorbitol was increased in this mutant. Conclusion These data demonstrates that Y318 of LadA contributes significantly to the substrate specificity difference between LAD and XDH/SDH. PMID:19674460

  9. Anion exchange pathways for Cl sup minus transport in rabbit renal microvillus membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karniski, L.P.; Aronson, P.S.

    1987-09-01

    The authors evaluated the mechanisms of chloride transport in microvillus membrane vesicles isolated from the rabbit renal cortex. The presence of Cl-formate exchange was confirmed. Outward gradients of oxaloacetate, HCO{sub 3}, acetate, lactate, succinate, sulfate, and p-aminohippurate (PAH) stimulated the rate of Cl uptake minimally or not at all. However, an outward gradient of oxalate stimulated Cl uptake by 70%, and an outward Cl gradient induced uphill oxalate uptake, indicting Cl-oxalate exchange. Moreover, an outward formate gradient induced uphill oxalate uptake, indicating formate-oxalate exchange. Studies of inhibitor and substrate specificity indicated the probably operation of at least two separate anionmore » exchangers in mediating Cl transport. The Cl-formate exchanger accepted Cl and formate as substrates, had little or no affinity for oxalate, was sensitive to inhibition by furosemide, and was less sensitive to inhibition by 4,4{prime}-diisothiocyanostilbene-2,2{prime}-disulfonic acid (DIDS). The Cl (formate)-oxalate exchanger also accepted Cl and formate as substrates but had high affinity for oxalate, was highly sensitive to inhibition by DIDS, and was less sensitive to inhibition by furosemide. The Cl-formate exchanger was electroneutral, whereas the Cl (formate)-oxalate exchanger was electrogenic. They conclude that at least separate anion exchangers mediating Cl transport are present on the luminal membrane of the rabbit proximal tubule cell. These exchangers may play important roles in mediating transtubular Cl and oxalate transport in this nephron segment.« less

  10. Responses of soil hydrolase kinetics to nitrogen and phosphorus additions in Chinese fir plantations of subtropical China

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zhang, C.; Yang, Y.; Wang, H.; Chen, F.; Fu, X.; Fang, X.; Sun, X.

    2016-12-01

    Nitrogen (N) deposition and low soil phosphorus (P) content aggravate the P limitation in subtropical forest soils. However, the responses of soil organic matter related hydrolyase kinetics to N and P additions in subtropical plantations are still not clear. We tested the hypothesis that P application can improve the potential maximum activities of soil carbon (C) and N related hydrolayase but substrate demand (Km) may tradeoff the catalytic efficiency of the enzymes. Thirty 20m×20m plots were established in November 2011 and six different treatments were randomly distributed with five replicates in the Chinese fir plantations in subtropical China. The ongoing treatments are control (CK, no N and P application), low N addition (N1:50 kg N ha-1 yr-1), high N addition (N2: 100 kg N ha-1 yr-1), P addition (P: 50 kg P ha-1 yr-1), low N andP addition (N1P: 50 kg N ha-1 yr-1 and 50 kg P ha-1 yr-1) and high N and P addition (N2P: 100 kg N ha-1yr-1and 50 kg P ha-1 yr-1). Soil enzyme kinetic parameters for b-1,4-glucosidase (βG), β-1,4-N-acetylglucosaminidase (NAG), and acid phosphatase (aP) were measured in November 2015. The substrate affinities (Km) of βG and NAG were not affected by N or /and P additions. However, the substrate affinities of aP were decreased by N additions (N1, N2) with higher Km values than the other treatments. N additions (N1, N2) or higher N combined P additions (N2P) increased Vmax and catalytic efficiencies for βG, while with P addition treatments (N1P, N2P, and P) decreased Vmax and catalytic efficiencies for aP. The effects of N combined P treatments (N1P and N2P) on kinetic parameters (Vmax, Km) and catalytic efficiencies for AP were similar to P treatment, indicating that P had stronger effects on organic phosphorus hydrolysis than N in the research site. The N additions (N1 and N2) did not affect the catalytic efficiencies for NAG despite of their positive responses to Vmax for NAG compared with CK. The catalytic efficiencies of aP and NAG were negatively correlated with soil TP and available P contents, and both the enzyme kinetics for aP exhibited strong negative correlations with TP and available P contents. However, the Vmax for BG and NAG were positively correlated with SOC contents, but were negatively correlated with soil pH.

  11. Mobile Technology Affinity in Renal Transplant Recipients.

    PubMed

    Reber, S; Scheel, J; Stoessel, L; Schieber, K; Jank, S; Lüker, C; Vitinius, F; Grundmann, F; Eckardt, K-U; Prokosch, H-U; Erim, Y

    Medication nonadherence is a common problem in renal transplant recipients (RTRs). Mobile health approaches to improve medication adherence are a current trend, and several medication adherence apps are available. However, it is unknown whether RTRs use these technologies and to what extent. In the present study, the mobile technology affinity of RTRs was analyzed. We hypothesized significant age differences in mobile technology affinity and that mobile technology affinity is associated with better cognitive functioning as well as higher educational level. A total of 109 RTRs (63% male) participated in the cross-sectional study, with an overall mean age of 51.8 ± 14.2 years. The study included the Technology Experience Questionnaire (TEQ) for the assessment of mobile technology affinity, a cognitive test battery, and sociodemographic data. Overall, 57.4% of the patients used a smartphone or tablet and almost 45% used apps. The TEQ sum score was 20.9 in a possible range from 6 (no affinity to technology) to 30 (very high affinity). Younger patients had significantly higher scores in mobile technology affinity. The only significant gender difference was found in having fun with using electronic devices: Men enjoyed technology more than women did. Mobile technology affinity was positively associated with cognitive functioning and educational level. Young adult patients might profit most from mobile health approaches. Furthermore, high educational level and normal cognitive functioning promote mobile technology affinity. This should be kept in mind when designing mobile technology health (mHealth) interventions for RTRs. For beneficial mHealth interventions, further research on potential barriers and desired technologic features is necessary to adapt apps to patients' needs. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Cytomegalovirus-Specific CD8+ T-Cells With Different T-Cell Receptor Affinities Segregate T-Cell Phenotypes and Correlate With Chronic Graft-Versus-Host Disease in Patients Post-Hematopoietic Stem Cell Transplantation

    PubMed Central

    Poiret, Thomas; Axelsson-Robertson, Rebecca; Remberger, Mats; Luo, Xiao-Hua; Rao, Martin; Nagchowdhury, Anurupa; Von Landenberg, Anna; Ernberg, Ingemar; Ringden, Olle; Maeurer, Markus

    2018-01-01

    Virus-specific T-cell responses are crucial to control cytomegalovirus (CMV) infections/reactivation in immunocompromised individuals. Adoptive cellular therapy with CMV-specific T-cells has become a viable treatment option. High-affinity anti-viral cellular immune responses are associated with improved long-term immune protection against CMV infection. To date, the characterization of high-affinity T-cell responses against CMV has not been achieved in blood from patients after allogeneic hematopoietic stem cell transplantation (HSCT). Therefore, the purpose of this study was to describe and analyze the phenotype and clinical impact of different CMV-specific CD8+ cytotoxic T-lymphocytes (CMV-CTL) classes based on their T-cell receptor (TCR) affinity. T-cells isolated from 23 patients during the first year following HSCT were tested for the expression of memory markers, programmed cell death 1 (PD-1), as well as TCR affinity, using three different HLA-A*02:01 CMVNLVPMVATV-Pp65 tetramers (wild-type, a245v and q226a mutants). High-affinity CMV-CTL defined by q226a tetramer binding, exhibited a higher frequency in CD8+ T-cells in the first month post-HSCT and exhibited an effector memory phenotype associated with strong PD-1 expression as compared to the medium- and low-affinity CMV-CTLs. High-affinity CMV-CTL was found at higher proportion in patients with chronic graft-versus-host disease (p < 0.001). This study provides a first insight into the detailed TCR affinities of CMV-CTL. This may be useful in order to improve current immunotherapy protocols using isolation of viral-specific T-cell populations based on their TCR affinity. PMID:29692783

  13. Systematic Localization and Identification of SUMOylation Substrates in Knock-In Mice Expressing Affinity-Tagged SUMO1.

    PubMed

    Tirard, Marilyn; Brose, Nils

    2016-01-01

    Protein SUMOylation is a posttranslational protein modification that is emerging as a key regulatory process in neurobiology. To date, however, SUMOylation in vivo has only been studied cursorily. Knock-in mice expressing His6-HA-SUMO1 from the Sumo1 locus allow for the highly specific localization and identification of endogenous SUMO1 substrates under physiological and pathophysiological conditions. By making use of the HA-tag and using wild-type mice for highly stringent negative control samples, SUMO1 targets can be specifically localized in and purified from cultured mouse nerve cells and mouse tissues.

  14. Application of a coupled enzyme assay to characterize nicotinamide riboside kinases.

    PubMed

    Dölle, Christian; Ziegler, Mathias

    2009-02-15

    The recently identified nicotinamide riboside kinases (Nrks) constitute a distinct pathway of nicotinamide adenine dinucleotide (NAD) biosynthesis. Here we present the combination of an established optical adenosine triphosphatase (ATPase) test, the pyruvate kinase/lactate dehydrogenase system, with the Nrk-catalyzed reaction to determine kinetic properties of these enzymes, in particular affinities for ATP. The assay allows variation of both nucleoside and phosphate donor substrates, thereby providing major advantages for the characterization of these enzymes. We confirm previously established kinetic parameters and identify differences in substrate selectivity between the two human Nrk isoforms. The proposed assay is inexpensive and may be applied for high-throughput screening.

  15. Identification of candidate angiogenic inhibitors processed by matrix metalloproteinase 2 (MMP-2) in cell-based proteomic screens: disruption of vascular endothelial growth factor (VEGF)/heparin affin regulatory peptide (pleiotrophin) and VEGF/Connective tissue growth factor angiogenic inhibitory complexes by MMP-2 proteolysis.

    PubMed

    Dean, Richard A; Butler, Georgina S; Hamma-Kourbali, Yamina; Delbé, Jean; Brigstock, David R; Courty, José; Overall, Christopher M

    2007-12-01

    Matrix metalloproteinases (MMPs) exert both pro- and antiangiogenic functions by the release of cytokines or proteolytically generated angiogenic inhibitors from extracellular matrix and basement membrane remodeling. In the Mmp2-/- mouse neovascularization is greatly reduced, but the mechanistic aspects of this remain unclear. Using isotope-coded affinity tag labeling of proteins analyzed by multidimensional liquid chromatography and tandem mass spectrometry we explored proteome differences between Mmp2-/- cells and those rescued by MMP-2 transfection. Proteome signatures that are hallmarks of proteolysis revealed cleavage of many known MMP-2 substrates in the cellular context. Proteomic evidence of MMP-2 processing of novel substrates was found. Insulin-like growth factor binding protein 6, follistatin-like 1, and cystatin C protein cleavage by MMP-2 was biochemically confirmed, and the cleavage sites in heparin affin regulatory peptide (HARP; pleiotrophin) and connective tissue growth factor (CTGF) were sequenced by matrix-assisted laser desorption ionization-time of flight mass spectrometry. MMP-2 processing of HARP and CTGF released vascular endothelial growth factor (VEGF) from angiogenic inhibitory complexes. The cleaved HARP N-terminal domain increased HARP-induced cell proliferation, whereas the HARP C-terminal domain was antagonistic and decreased cell proliferation and migration. Hence the unmasking of cytokines, such as VEGF, by metalloproteinase processing of their binding proteins is a new mechanism in the control of cytokine activation and angiogenesis.

  16. SKF 525-A and cytochrome P-450 ligands inhibit with high affinity the binding of ( sup 3 H)dextromethorphan and. sigma. ligands to guinea pig brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, M.; Canoll, P.D.; Musacchio, J.M.

    1991-01-01

    The DM{sub 1}/{sigma}{sub 1} site binds dextromethorphan (DM) and {sigma} receptor ligands. The broad binding specificity of this site and its peculiar subcellular distribution prompted us to explore the possibility that this site is a member of the cytochrome P-450 superfamily of enzymes. We tested the effects of the liver microsomal monooxygenase inhibitor SKF 525-A (Proadifen), and other P-450 substrates on the binding of ({sup 3}H)dextromethorphan, ({sup 3}H)3- (3-Hydroxyphenyl) -N- (1-propyl) piperidine and (+)-({sup 3}H)1,3-Di-o-tolyl-guanidine (({sup 3}H)DTG) to the guinea pig brain. SKF 525-A, l-lobeline and GBR-12909 inhibited the binding of the three labeled ligands with nM affinity. Each drugmore » has identical nM K{sub i} values for the high-affinity site labeled by the three ligands. This indicated that they displaced the labeled ligands from the common DM{sub 1}{sigma}{sub 1} site. Debrisoquine and sparteine, prototypical substrates for liver debrisoquine 4-hydroxylase, displayed K{sub i} values of 9-13 and 3-4 {mu}M respectively against the three labeled ligands. These results, the broad specificity of the DM{sub 1}/{sigma}{sub 1} binding site, and its peculiar subcellular distribution, raises the possibility that this binding site is a member of the cytochrome P-450 superfamily of isozymes, rather than a neurotransmitter receptor.« less

  17. Determination of trace glucose and forecast of human diseases by affinity adsorption solid substrate room temperature phosphorimetry based on Triticum valgaris lectin labeled with 4.0-generation dendrimers

    NASA Astrophysics Data System (ADS)

    Li, Zhiming; Zhu, Guohui; Liu, Jiaming; Lu, Qiaomei; Yang, Minlan; Wu, Hong; Shi, Xiumei; Chen, Xinhua

    2007-08-01

    A new phosphorescence labeling reagent Triton-100X-4.0G-D (4.0G-D refers to 4.0-generation dendrimers) was found. Quantitative specific affinity adsorption (AA) reaction between Triton-100X-4.0G-D-WGA and glucose (G) was carried out on the surface of nitrocellulose membrane (NCM), and the Δ Ip of the product of AA reaction was linear correlation to the content of G. Based on the facts above, a new method for the determination of trace G was established by WGA labeled with Triton-100X-4.0G-D affinity adsorption solid substrate room temperature phosphorimetry (Triton-100X-4.0G-D-WGA-AA-SS-RTP). This research showed that AA-SS-RTP for either direct method or sandwich method could combine very well the characteristics of both the high sensitivity of SS-RTP and the specificity of the AA reaction. Detection limits (LD) were 0.24 fg spot -1 for direct method and 0.18 fg spot -1 for sandwich method, indicating both of them were of high sensitivity. The method has been applied to the determination of the content of G in human serum, and the results were coincided with those obtained by glucose oxidize enzyme method. It can also be applied to forecast accurately some human diseases, such as primary hepatic carcinoma, cirrhosis, acute and chronic hepatitis, transfer hepatocellular, etc. Meanwhile, the mechanism for the determination of G with AA-SS-RTP was discussed.

  18. Isolation and characterization of mutated alcohol oxidases from the yeast Hansenula polymorpha with decreased affinity toward substrates and their use as selective elements of an amperometric biosensor

    PubMed Central

    Dmytruk, Kostyantyn V; Smutok, Oleh V; Ryabova, Olena B; Gayda, Galyna Z; Sibirny, Volodymyr A; Schuhmann, Wolfgang; Gonchar, Mykhailo V; Sibirny, Andriy A

    2007-01-01

    Background Accurate, rapid, and economic on-line analysis of ethanol is very desirable. However, available biosensors achieve saturation at very low ethanol concentrations and thus demand the time and labour consuming procedure of sample dilution. Results Hansenula polymorpha (Pichia angusta) mutant strains resistant to allyl alcohol in methanol medium were selected. Such strains possessed decreased affinity of alcohol oxidase (AOX) towards methanol: the KM values for AOX of wild type and mutant strains CA2 and CA4 are shown to be 0.62, 2.48 and 1.10 mM, respectively, whereas Vmax values are increased or remain unaffected. The mutant AOX alleles from H. polymorpha mutants CA2 and CA4 were isolated and sequenced. Several point mutations in the AOX gene, mostly different between the two mutant alleles, have been identified. Mutant AOX forms were isolated and purified, and some of their biochemical properties were studied. An amperometric biosensor based on the mutated form of AOX from the strain CA2 was constructed and revealed an extended linear response to the target analytes, ethanol and formaldehyde, as compared to the sensor based on the native AOX. Conclusion The described selection methodology opens up the possibility of isolating modified forms of AOX with further decreased affinity toward substrates without reduction of the maximal velocity of reaction. It can help in creation of improved ethanol biosensors with a prolonged linear response towards ethanol in real samples of wines, beers or fermentation liquids. PMID:17567895

  19. Identification of Candidate Angiogenic Inhibitors Processed by Matrix Metalloproteinase 2 (MMP-2) in Cell-Based Proteomic Screens: Disruption of Vascular Endothelial Growth Factor (VEGF)/Heparin Affin Regulatory Peptide (Pleiotrophin) and VEGF/Connective Tissue Growth Factor Angiogenic Inhibitory Complexes by MMP-2 Proteolysis▿ †

    PubMed Central

    Dean, Richard A.; Butler, Georgina S.; Hamma-Kourbali, Yamina; Delbé, Jean; Brigstock, David R.; Courty, José; Overall, Christopher M.

    2007-01-01

    Matrix metalloproteinases (MMPs) exert both pro- and antiangiogenic functions by the release of cytokines or proteolytically generated angiogenic inhibitors from extracellular matrix and basement membrane remodeling. In the Mmp2−/− mouse neovascularization is greatly reduced, but the mechanistic aspects of this remain unclear. Using isotope-coded affinity tag labeling of proteins analyzed by multidimensional liquid chromatography and tandem mass spectrometry we explored proteome differences between Mmp2−/− cells and those rescued by MMP-2 transfection. Proteome signatures that are hallmarks of proteolysis revealed cleavage of many known MMP-2 substrates in the cellular context. Proteomic evidence of MMP-2 processing of novel substrates was found. Insulin-like growth factor binding protein 6, follistatin-like 1, and cystatin C protein cleavage by MMP-2 was biochemically confirmed, and the cleavage sites in heparin affin regulatory peptide (HARP; pleiotrophin) and connective tissue growth factor (CTGF) were sequenced by matrix-assisted laser desorption ionization-time of flight mass spectrometry. MMP-2 processing of HARP and CTGF released vascular endothelial growth factor (VEGF) from angiogenic inhibitory complexes. The cleaved HARP N-terminal domain increased HARP-induced cell proliferation, whereas the HARP C-terminal domain was antagonistic and decreased cell proliferation and migration. Hence the unmasking of cytokines, such as VEGF, by metalloproteinase processing of their binding proteins is a new mechanism in the control of cytokine activation and angiogenesis. PMID:17908800

  20. Interaction of flavan-3-ol derivatives and different caseins is determined by more than proline content and number of proline repeats.

    PubMed

    Bohin, Maxime C; Vincken, Jean-Paul; Westphal, Adrie H; Tripp, Annelise M; Dekker, Peter; van der Hijden, Harry T W M; Gruppen, Harry

    2014-09-01

    Interactions of Type A and B flavan-3-ol dimers (procyanidins) and several monomeric flavan-3-ols, with α-casein and β-casein, were investigated. Binding affinities measured were related to the ligands structure, including several properties (e.g. intrinsic flexibility (number of rotatable bonds) and hydrophobicity), and to the amino-acid composition of the caseins. A monomeric flavan-3-ol esterified with gallic acid (EGCG) had a five to ten times higher affinity to caseins compared to the non-galloylated dimeric flavan-3-ols. In this case, the larger number of rotatable bonds in EGCG might be accountable for this difference. Comparing flavan-3-ol dimers, intrinsic flexibility did not consistently promote interactions, as procyanidin A1 displayed a higher affinity to α-casein than the supposedly more flexible B-type dimers investigated. Despite its higher content of proline, compared to α-casein, β-casein did not always have a higher affinity for the ligands investigated (e.g. no interaction with procyanidin A1 detected). These results suggest that more factors than proline content and the number of proline repeats govern phenolic-casein interactions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Substrate-induced stable enzyme-inhibitor complex formation allows tight binding of novel 2-aminopyrimidin-4(3H)-ones to drug-resistant HIV-1 reverse transcriptase mutants.

    PubMed

    Samuele, Alberta; Facchini, Marcella; Rotili, Dante; Mai, Antonello; Artico, Marino; Armand-Ugón, Mercedes; Esté, José A; Maga, Giovanni

    2008-09-01

    We recently reported the synthesis and biological evaluation of a novel series of 5-alkyl-2-(N,N-disubstituted)amino-6-(2,6-difluorophenylalkyl)-3,4-dihydropyrimidin-4(3H)-ones (F(2)-N,N-DABOs). These compounds are highly active against both wild-type HIV-1 and the K103N, Y181C, and Y188L mutant strains. Herein we present novel 6-(2-chloro-6-fluorophenylalkyl)-N,N-DABO (2-Cl-6-F-N,N-DABO) derivatives and investigate the molecular basis for their high-affinity binding to HIV-1 reverse transcriptase (RT). Our results show that the new compounds display higher association rates than the difluoro derivatives toward wild-type HIV-1 RT or drug-resistant RT mutant forms. We also show that they preferentially associate to either the free enzyme or the enzyme-nucleic acid binary complex, and that this binding is stabilized upon formation of the ternary complex between HIV-1 RT and both the nucleic acid and nucleotide substrates. Interestingly, one compound showed dissociation rates from the ternary complex with RT mutants K103N and Y181I 10-20-fold slower than from the corresponding complex with wild-type RT.

  2. Characterization of transgenic tobacco plants containing bacterial bphC gene and study of their phytoremediation ability.

    PubMed

    Viktorovtá, Jitka; Novakova, Martina; Trbolova, Ladislava; Vrchotova, Blanka; Lovecka, Petra; Mackova, Martina; Macek, Tomas

    2014-01-01

    Genetically modified plants can serve as an efficient tool for remediation of diverse dangerous pollutants of the environment such as pesticides, heavy metals, explosives and persistent organic compounds. Transgenic lines of Nicotiana tabacum containing bacterial bphC gene from the degradation pathway of polychlorinated biphenyls (PCBs) were tested. The product of the bphC gene - enzyme 2,3-dihydroxybiphenyl-1,2-dioxygenase is responsible for cleaving of the biphenyl ring. The presence of bphC gene in transgenic plants was detected on DNA, RNA and protein level. The expression of the bphC/His gene was verified afterpurification of the enzyme from plants by affinity chromatography followed by a Western blot and immunochemical assay. The enzyme activity of isolated protein was detected. Efficient transformation of 2,3-DHB by transgenic plants was achieved and the lines also exhibited high production of biomass. The transgenic plants were more tolerant to the commercial PCBs mixture Delor 103 than non-transgenic tobacco. And finally, the higher decrease of total PCB content and especially congener 28 in real contaminated soil from a dumpsite was determined after cultivation of transgenic plant in comparison with nontransgenic tobacco. The substrate specificity of transgenic plants was the same as substrate specificity of BphC enzyme.

  3. Kinetics of MDR Transport in Tumor-Initiating Cells

    PubMed Central

    Koshkin, Vasilij; Yang, Burton B.; Krylov, Sergey N.

    2013-01-01

    Multidrug resistance (MDR) driven by ABC (ATP binding cassette) membrane transporters is one of the major causes of treatment failure in human malignancy. MDR capacity is thought to be unevenly distributed among tumor cells, with higher capacity residing in tumor-initiating cells (TIC) (though opposite finding are occasionally reported). Functional evidence for enhanced MDR of TICs was previously provided using a “side population” assay. This assay estimates MDR capacity by a single parameter - cell’s ability to retain fluorescent MDR substrate, so that cells with high MDR capacity (“side population”) demonstrate low substrate retention. In the present work MDR in TICs was investigated in greater detail using a kinetic approach, which monitors MDR efflux from single cells. Analysis of kinetic traces obtained allowed for the estimation of both the velocity (V max) and affinity (K M) of MDR transport in single cells. In this way it was shown that activation of MDR in TICs occurs in two ways: through the increase of V max in one fraction of cells, and through decrease of K M in another fraction. In addition, kinetic data showed that heterogeneity of MDR parameters in TICs significantly exceeds that of bulk cells. Potential consequences of these findings for chemotherapy are discussed. PMID:24223908

  4. Cloning and expression of a novel prolyl endopeptidase from Aspergillus oryzae and its application in beer stabilization.

    PubMed

    Kang, Chao; Yu, Xiao-Wei; Xu, Yan

    2015-02-01

    A novel prolyl endopeptidase gene from Aspergillus oryzae was cloned and expressed in Pichia pastoris. Amino acid sequence analysis of the prolyl endopeptidase from Aspergillus oryzae (AO-PEP) showed that this enzyme belongs to a class serine peptide S28 family. Expression, purification and characterization of AO-PEP were analyzed. The optimum pH and temperature were pH 5.0 and 40 °C, respectively. The enzyme was activated and stabilized by metal ion Ca(2+) and inhibited by Zn(2+), Mn(2+), Al(3+), and Cu(2+). The K m and k cat values of the purified enzyme for different substrates were evaluated. The results implied that the recombinant AO-PEP possessed higher affinity for the larger substrate. A fed-batch strategy was developed for the high-cell-density fermentation and the enzyme activity reached 1,130 U/l after cultivation in 7 l fermentor. After addition of AO-PEP during the fermentation phase of beer brewing, demonstrated the potential application of AO-PEP in the non-biological stability of beer, which favor further industrial development of this new enzyme in beer stabilization, due to its reducing operational costs, as well as no beer losses unlike regeneration process and beer lost with regenerated polyvinylpolypyrrolidone system.

  5. Structural prediction and comparative docking studies of psychrophilic β- Galactosidase with lactose, ONPG and PNPG against its counter parts of mesophilic and thermophilic enzymes.

    PubMed

    Kumar, Ponnada Suresh; Pulicherla, Kk; Ghosh, Mrinmoy; Kumar, Anmol; Rao, Krs Sambasiva

    2011-01-01

    Enzymes from psychrophiles catalyze the reactions at low temperatures with higher specific activity. Among all the psychrophilic enzymes produced, cold active β-galactosidase from marine psychrophiles revalorizes a new arena in numerous areas at industrial level. The hydrolysis of lactose in to glucose and galactose by cold active β-galactosidase offers a new promising approach in removal of lactose from milk to overcome the problem of lactose intolerance. Herein we propose, a 3D structure of cold active β-galactosidase enzyme sourced from Pseudoalteromonas haloplanktis by using Modeler 9v8 and best model was developed having 88% of favourable region in ramachandran plot. Modelling was followed by docking studies with the help of Auto dock 4.0 against the three substrates lactose, ONPG and PNPG. In addition, comparative docking studies were also performed for the 3D model of psychrophilic β-galactosidase with mesophilic and thermophilic enzymes. Docking studies revealed that binding affinity of enzyme towards the three different substrates is more for psychrophilic enzyme when compared with mesophilic and thermophilic enzymes. It indicates that the enzyme has high specific activity at low temperature when compared with mesophilic and thermophilic enzymes.

  6. Mechanically robust silver coatings prepared by electroless plating on thermoplastic polyurethane

    NASA Astrophysics Data System (ADS)

    Vasconcelos, B.; Vediappan, K.; Oliveira, J. C.; Fonseca, C.

    2018-06-01

    A simple and low-cost surface functionalization method is proposed to activate a thermoplastic polyurethane (TPU) for the electroless deposition of a silver coating with excellent adhesion and low resistivity. The TPU surface functionalization was performed in solution and consisted in forming a physical interpenetrating network at the TPU surface, involving TPU and polyvinylpyrrolidone (PVP), a polymer displaying a strong affinity for metals. The presence of PVP on the TPU surface and its stability in aqueous solution were assessed by ATR-FTIR and contact angle measurements as a function of the PVP concentration and treatment time. A modified Tollens solution was used to grow a silver film on the TPU substrate, by using the electroless plating method. Compact silver films with an average thickness of 12.5 μm and a resistivity of 8.57 mΩ·cm were obtained for a 24 h plating time. The adhesion strength of the silver film proved to be higher than 8.5 N/cm. The resistance to fatigue of the silver films was studied by performing series of compression/stretching tests (150 cycles). It was concluded that the films kept low resistance values, although displaying a higher sensitivity to compression than to stretching. Furthermore, the films keep a good conductivity for strains up to 400%. The excellent electrical and mechanical properties of the films make them suitable candidates for the coating of multipin dry bioelectrodes. Owing to the high affinity of many metals for PVP, this activation technique has the potential to be extended to the deposition of other metals and other polymers as well, provided a suitable solvent is used.

  7. Effects of rhodomyrtone on Gram-positive bacterial tubulin homologue FtsZ

    PubMed Central

    Saeloh, Dennapa; Wenzel, Michaela; Rungrotmongkol, Thanyada; Hamoen, Leendert Willem

    2017-01-01

    Rhodomyrtone, a natural antimicrobial compound, displays potent activity against many Gram-positive pathogenic bacteria, comparable to last-defence antibiotics including vancomycin and daptomycin. Our previous studies pointed towards effects of rhodomyrtone on the bacterial membrane and cell wall. In addition, a recent molecular docking study suggested that the compound could competitively bind to the main bacterial cell division protein FtsZ. In this study, we applied a computational approach (in silico), in vitro, and in vivo experiments to investigate molecular interactions of rhodomyrtone with FtsZ. Using molecular simulation, FtsZ conformational changes were observed in both (S)- and (R)-rhodomyrtone binding states, compared with the three natural states of FtsZ (ligand-free, GDP-, and GTP-binding states). Calculations of free binding energy showed a higher affinity of FtsZ to (S)-rhodomyrtone (−35.92 ± 0.36 kcal mol−1) than the GDP substrate (−23.47 ± 0.25 kcal mol−1) while less affinity was observed in the case of (R)-rhodomyrtone (−18.11 ± 0.11 kcal mol−1). In vitro experiments further revealed that rhodomyrtone reduced FtsZ polymerization by 36% and inhibited GTPase activity by up to 45%. However, the compound had no effect on FtsZ localization in Bacillus subtilis at inhibitory concentrations and cells also did not elongate after treatment. Higher concentrations of rhodomyrtone did affect localization of FtsZ and also affected localization of its membrane anchor proteins FtsA and SepF, showing that the compound did not specifically inhibit FtsZ but rather impaired multiple divisome proteins. Furthermore, a number of cells adopted a bean-like shape suggesting that rhodomyrtone possibly possesses further targets involved in cell envelope synthesis and/or maintenance. PMID:28168121

  8. Effects of rhodomyrtone on Gram-positive bacterial tubulin homologue FtsZ.

    PubMed

    Saeloh, Dennapa; Wenzel, Michaela; Rungrotmongkol, Thanyada; Hamoen, Leendert Willem; Tipmanee, Varomyalin; Voravuthikunchai, Supayang Piyawan

    2017-01-01

    Rhodomyrtone, a natural antimicrobial compound, displays potent activity against many Gram-positive pathogenic bacteria, comparable to last-defence antibiotics including vancomycin and daptomycin. Our previous studies pointed towards effects of rhodomyrtone on the bacterial membrane and cell wall. In addition, a recent molecular docking study suggested that the compound could competitively bind to the main bacterial cell division protein FtsZ. In this study, we applied a computational approach ( in silico ), in vitro , and in vivo experiments to investigate molecular interactions of rhodomyrtone with FtsZ. Using molecular simulation, FtsZ conformational changes were observed in both (S)- and (R)-rhodomyrtone binding states, compared with the three natural states of FtsZ (ligand-free, GDP-, and GTP-binding states). Calculations of free binding energy showed a higher affinity of FtsZ to (S)-rhodomyrtone (-35.92 ± 0.36 kcal mol -1 ) than the GDP substrate (-23.47 ± 0.25 kcal mol -1 ) while less affinity was observed in the case of (R)-rhodomyrtone (-18.11 ± 0.11 kcal mol -1 ). In vitro experiments further revealed that rhodomyrtone reduced FtsZ polymerization by 36% and inhibited GTPase activity by up to 45%. However, the compound had no effect on FtsZ localization in Bacillus subtilis at inhibitory concentrations and cells also did not elongate after treatment. Higher concentrations of rhodomyrtone did affect localization of FtsZ and also affected localization of its membrane anchor proteins FtsA and SepF, showing that the compound did not specifically inhibit FtsZ but rather impaired multiple divisome proteins. Furthermore, a number of cells adopted a bean-like shape suggesting that rhodomyrtone possibly possesses further targets involved in cell envelope synthesis and/or maintenance.

  9. Effect of Preferential Orientation of Lamellae in the Interfacial Region between a Block Copolymer-based Pressure-Sensitive Adhesive and a Solid Substrate on the Peel Strength.

    PubMed

    Shimokita, Keisuke; Saito, Itsuki; Yamamoto, Katsuhiro; Takenaka, Mikihito; Yamada, Norifumi L; Miyazaki, Tsukasa

    2018-02-27

    We have investigated the relationship between the peel strength of a block copolymer-based pressure-sensitive adhesive comprising of poly(methyl methacrylate) (PMMA) and poly(n-butyl acrylate) (PnBA) components from the substrate and the microdomain orientations in the interfacial region between the adhesive and the substrate. For the PMMA substrate, the PMMA component in the adhesive with a strong affinity for the substrate is attached to the surface of the substrate during an aging process of the sample at 140 °C. Next, the PMMA layer adjacent to the substrate surface is overlaid with a PnBA layer, which gets covalently connected, resulting in the horizontal alignment of the lamellae in the interfacial region. The peel strength of the adhesive substantially increases during aging at 140 °C, which takes the same time as the completion of the horizontally oriented lamellar structure. However, in the case of the polystyrene (PS) substrate, both the components in the adhesive repel the substrate, leading to the formation of the vertically oriented lamellar structure. As a result, the peel strength of the adhesive with respect to its PS substrate does not entirely increase on aging. It is suggested that the peel strength of the adhesive is highly correlated with the interfacial energy between the adhesive and substrate, which can be estimated from the microdomain orientation in the interfacial region.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dedic, Emil; Seweryn, Paulina; Jonstrup, Anette Thyssen

    Highlights: • We show that S. cerevisiae Rrp6p and Rrp47p stabilise each other in vitro. • We determine molecular envelopes of the Rrp6p–Rrp47p complex by SAXS. • Rrp47p binds at the top of the Rrp6p exonuclease domain. • Rrp47p modulates the activity of Rrp6p on a variety of RNA substrates. • Rrp47p does not affect RNA affinity by Rrp6p. - Abstract: The RNase D-type 3′–5′ exonuclease Rrp6p from Saccharomyces cerevisiae is a nuclear-specific cofactor of the RNA exosome and associates in vivo with Rrp47p (Lrp1p). Here, we show using biochemistry and small-angle X-ray scattering (SAXS) that Rrp6p and Rrp47p associatemore » into a stable, heterodimeric complex with an elongated shape consistent with binding of Rrp47p to the nuclease domain and opposite of the HRDC domain of Rrp6p. Rrp47p reduces the exonucleolytic activity of Rrp6p on both single-stranded and structured RNA substrates without significantly altering the affinity towards RNA or the ability of Rrp6p to degrade RNA secondary structure.« less

  11. A Cyclic Peptidic Serine Protease Inhibitor: Increasing Affinity by Increasing Peptide Flexibility

    PubMed Central

    Jiang, Longguang; Paaske, Berit; Kromann-Hansen, Tobias; Jensen, Jan K.; Sørensen, Hans Peter; Liu, Zhuo; Nielsen, Jakob T.; Christensen, Anni; Hosseini, Masood; Sørensen, Kasper K.; Nielsen, Niels Christian; Jensen, Knud J.; Huang, Mingdong; Andreasen, Peter A.

    2014-01-01

    Peptides are attracting increasing interest as protease inhibitors. Here, we demonstrate a new inhibitory mechanism and a new type of exosite interactions for a phage-displayed peptide library-derived competitive inhibitor, mupain-1 (CPAYSRYLDC), of the serine protease murine urokinase-type plasminogen activator (uPA). We used X-ray crystal structure analysis, site-directed mutagenesis, liquid state NMR, surface plasmon resonance analysis, and isothermal titration calorimetry and wild type and engineered variants of murine and human uPA. We demonstrate that Arg6 inserts into the S1 specificity pocket, its carbonyl group aligning improperly relative to Ser195 and the oxyanion hole, explaining why the peptide is an inhibitor rather than a substrate. Substitution of the P1 Arg with novel unnatural Arg analogues with aliphatic or aromatic ring structures led to an increased affinity, depending on changes in both P1 - S1 and exosite interactions. Site-directed mutagenesis showed that exosite interactions, while still supporting high affinity binding, differed substantially between different uPA variants. Surprisingly, high affinity binding was facilitated by Ala-substitution of Asp9 of the peptide, in spite of a less favorable binding entropy and loss of a polar interaction. We conclude that increased flexibility of the peptide allows more favorable exosite interactions, which, in combination with the use of novel Arg analogues as P1 residues, can be used to manipulate the affinity and specificity of this peptidic inhibitor, a concept different from conventional attempts at improving inhibitor affinity by reducing the entropic burden. PMID:25545505

  12. Dextran as a Generally Applicable Multivalent Scaffold for Improving Immunoglobulin-Binding Affinities of Peptide and Peptidomimetic Ligands

    PubMed Central

    2015-01-01

    Molecules able to bind the antigen-binding sites of antibodies are of interest in medicine and immunology. Since most antibodies are bivalent, higher affinity recognition can be achieved through avidity effects in which a construct containing two or more copies of the ligand engages both arms of the immunoglobulin simultaneously. This can be achieved routinely by immobilizing antibody ligands at high density on solid surfaces, such as ELISA plates, but there is surprisingly little literature on scaffolds that routinely support bivalent binding of antibody ligands in solution, particularly for the important case of human IgG antibodies. Here we show that the simple strategy of linking two antigens with a polyethylene glycol (PEG) spacer long enough to span the two arms of an antibody results in higher affinity binding in some, but not all, cases. However, we found that the creation of multimeric constructs in which several antibody ligands are displayed on a dextran polymer reliably provides much higher affinity binding than is observed with the monomer in all cases tested. Since these dextran conjugates are simple to construct, they provide a general and convenient strategy to transform modest affinity antibody ligands into high affinity probes. An additional advantage is that the antibody ligands occupy only a small number of the reactive sites on the dextran, so that molecular cargo can be attached easily, creating molecules capable of delivering this cargo to cells displaying antigen-specific receptors. PMID:25073654

  13. Membrane protease degradomics: proteomic identification and quantification of cell surface protease substrates.

    PubMed

    Butler, Georgina S; Dean, Richard A; Smith, Derek; Overall, Christopher M

    2009-01-01

    The modification of cell surface proteins by plasma membrane and soluble proteases is important for physiological and pathological processes. Methods to identify shed and soluble substrates are crucial to further define the substrate repertoire, termed the substrate degradome, of individual proteases. Identifying protease substrates is essential to elucidate protease function and involvement in different homeostatic and disease pathways. This characterisation is also crucial for drug target identification and validation, which would then allow the rational design of specific targeted inhibitors for therapeutic intervention. We describe two methods for identifying and quantifying shed cell surface protease targets in cultured cells utilising Isotope-Coded Affinity Tags (ICAT) and Isobaric Tags for Relative and Absolute Quantification (iTRAQ). As a model system to develop these techniques, we chose a cell-membrane expressed matrix metalloproteinase, MMP-14, but the concepts can be applied to proteases of other classes. By over-expression, or conversely inhibition, of a particular protease with careful selection of control conditions (e.g. vector or inactive protease) and differential labelling, shed proteins can be identified and quantified by mass spectrometry (MS), MS/MS fragmentation and database searching.

  14. The use of nanomaterials for mass spectrometry can be uplifting for analyte detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J.; Lipson, R. H.

    2014-03-31

    Surface-Assisted Laser Desorption Ionization (SALDI) involves desorbing and ionizing analyte molecules from a nanoporous substrate by laser irradiation for detection in a mass spectrometer. In this work experiments were designed to better understand the mechanisms governing desorption and ionization for Desorption Ionization On Silicon (DIOS), a variant of SALDI which uses porous silicon (pSi) as a substrate. Experiments are also reported for other nanoporous semiconducting materials (WO{sub 3}, TiO{sub 2}) which exhibit very similar behaviors; specifically, that both protonated analyte ions and analyte radical cations can be generated with relative intensities that depend on the position of the incident lasermore » focus relative to substrate surface. While thermal desorption appears to be important, preliminary evidence suggests that the ionization mechanism leading to protonated analytes involves in part electrons and holes formed when photoexciting the substrate above its electronic band gap, and the presence of defect states within the band gap. Radical cation formation appears to be driven in part by electron transfer due to the large electron affinity of each substrate used in this work.« less

  15. In vitro metabolism of benzo[a]pyrene-7,8-dihydrodiol and dibenzo[def,p]chrysene-11,12 diol in rodent and human hepatic microsomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Jordan N.; Mehinagic, Denis; Nag, Subhasree

    Polycyclic aromatic hydrocarbons (PAHs) are contaminants that are ubiquitously found in the environment, produced through combustion of organic matter or petrochemicals, and many of which are procarcinogens. The prototypic PAH, benzo[a]pyrene (B[a]P) and the highly carcinogenic dibenzo[def,p]chrysene (DBC) are metabolically activated by isoforms of the P450 enzyme superfamily producing benzo[a]pyrene-7,8-dihydrodiol (B[a]P diol), dibenzo[def,p]chrysene-11,12 diol (DBC diol). Each of these diols can be further metabolized by cytochrome P450 enzymes to highly reactive diol-epoxide metabolites that readily react with DNA or by phase II conjugation facilitating excretion. To complement prior in vitro metabolism studies with parent B[a]P and DBC, both phase Imore » metabolism and phase II glucuronidation of B[a]P diol and DBC diol were measured in this paper in hepatic microsomes from female B6129SF1/J mice, male Sprague-Dawley rats, and female humans. Metabolic parameters, including intrinsic clearance and Michaelis-Menten kinetics were calculated from substrate depletion data. Mice and rats demonstrated similar B[a]P diol phase I metabolic rates. Compared to rodents, human phase I metabolism of B[a]P diol demonstrated lower overall metabolic capacity, lower intrinsic clearance at higher substrate concentrations (>0.14 μM), and higher intrinsic clearance at lower substrate concentrations (<0.07 μM). Rates of DBC diol metabolism did not saturate in mice or humans and were highest overall in mice. Higher affinity constants and lower capacities were observed for DBC diol glucuronidation compared to B[a]P diol glucuronidation; however, intrinsic clearance values for these compounds were consistent within each species. Finally, kinetic parameters reported here will be used to extend physiologically based pharmacokinetic (PBPK) models to include the disposition of B[a]P and DBC metabolites in animal models and humans to support future human health risk assessments.« less

  16. In vitro metabolism of benzo[a]pyrene-7,8-dihydrodiol and dibenzo[def,p]chrysene-11,12 diol in rodent and human hepatic microsomes

    DOE PAGES

    Smith, Jordan N.; Mehinagic, Denis; Nag, Subhasree; ...

    2017-01-21

    Polycyclic aromatic hydrocarbons (PAHs) are contaminants that are ubiquitously found in the environment, produced through combustion of organic matter or petrochemicals, and many of which are procarcinogens. The prototypic PAH, benzo[a]pyrene (B[a]P) and the highly carcinogenic dibenzo[def,p]chrysene (DBC) are metabolically activated by isoforms of the P450 enzyme superfamily producing benzo[a]pyrene-7,8-dihydrodiol (B[a]P diol), dibenzo[def,p]chrysene-11,12 diol (DBC diol). Each of these diols can be further metabolized by cytochrome P450 enzymes to highly reactive diol-epoxide metabolites that readily react with DNA or by phase II conjugation facilitating excretion. To complement prior in vitro metabolism studies with parent B[a]P and DBC, both phase Imore » metabolism and phase II glucuronidation of B[a]P diol and DBC diol were measured in this paper in hepatic microsomes from female B6129SF1/J mice, male Sprague-Dawley rats, and female humans. Metabolic parameters, including intrinsic clearance and Michaelis-Menten kinetics were calculated from substrate depletion data. Mice and rats demonstrated similar B[a]P diol phase I metabolic rates. Compared to rodents, human phase I metabolism of B[a]P diol demonstrated lower overall metabolic capacity, lower intrinsic clearance at higher substrate concentrations (>0.14 μM), and higher intrinsic clearance at lower substrate concentrations (<0.07 μM). Rates of DBC diol metabolism did not saturate in mice or humans and were highest overall in mice. Higher affinity constants and lower capacities were observed for DBC diol glucuronidation compared to B[a]P diol glucuronidation; however, intrinsic clearance values for these compounds were consistent within each species. Finally, kinetic parameters reported here will be used to extend physiologically based pharmacokinetic (PBPK) models to include the disposition of B[a]P and DBC metabolites in animal models and humans to support future human health risk assessments.« less

  17. Peptides derived from transcription factor EB bind to calcineurin at a similar region as the NFAT-type motif

    PubMed Central

    Song, Ruiwen; Li, Jing; Zhang, Jin; Wang, Lu; Tong, Li; Wang, Ping; Yang, Huan; Wei, Qun; Cai, Huaibin; Luo, Jing

    2018-01-01

    Calcineurin (CN) is involved in many physiological processes and interacts with multiple substrates. Most of the substrates contain similar motifs recognized by CN. Recent studies revealed a new CN substrate, transcription factor EB (TFEB), which is involved in autophagy. We showed that a 15-mer QSYLENPTSYHLQQS peptide from TFEB (TFEB-YLENP) bound to CN. When the TFEB-YLENP peptide was changed to YLAVP, its affinity for CN increased and it had stronger CN inhibitory activity. Molecular dynamics simulations revealed that the TFEB-YLENP peptide has the same docking sites in CN as the 15-mer DQYLAVPQHPYQWAK motif of the nuclear factor of activated T cells, cytoplasmic 1 (NFATc1-YLAVP). Moreover expression of the NFATc1-YLAVP peptide suppressed the TFEB activation in starved Hela cells. Our studies first identified a CN binding site in TFEB and compared the inhibitory capability of various peptides derived from CN substrates. The data uncovered a diversity in recognition sequences that underlies the CN signaling within the cell. Studies of CN-substrate interactions should lay the groundwork for developing selective CN peptide inhibitors that target CN-substrate interaction in vitro experiments. PMID:28890387

  18. Structure-Based Rational Design of a Toll-like Receptor 4 (TLR4) Decoy Receptor with High Binding Affinity for a Target Protein

    PubMed Central

    Lee, Sang-Chul; Hong, Seungpyo; Park, Keunwan; Jeon, Young Ho; Kim, Dongsup; Cheong, Hae-Kap; Kim, Hak-Sung

    2012-01-01

    Repeat proteins are increasingly attracting much attention as alternative scaffolds to immunoglobulin antibodies due to their unique structural features. Nonetheless, engineering interaction interface and understanding molecular basis for affinity maturation of repeat proteins still remain a challenge. Here, we present a structure-based rational design of a repeat protein with high binding affinity for a target protein. As a model repeat protein, a Toll-like receptor4 (TLR4) decoy receptor composed of leucine-rich repeat (LRR) modules was used, and its interaction interface was rationally engineered to increase the binding affinity for myeloid differentiation protein 2 (MD2). Based on the complex crystal structure of the decoy receptor with MD2, we first designed single amino acid substitutions in the decoy receptor, and obtained three variants showing a binding affinity (KD) one-order of magnitude higher than the wild-type decoy receptor. The interacting modes and contributions of individual residues were elucidated by analyzing the crystal structures of the single variants. To further increase the binding affinity, single positive mutations were combined, and two double mutants were shown to have about 3000- and 565-fold higher binding affinities than the wild-type decoy receptor. Molecular dynamics simulations and energetic analysis indicate that an additive effect by two mutations occurring at nearby modules was the major contributor to the remarkable increase in the binding affinities. PMID:22363519

  19. A chemical proteomics approach for global analysis of lysine monomethylome profiling.

    PubMed

    Wu, Zhixiang; Cheng, Zhongyi; Sun, Mingwei; Wan, Xuelian; Liu, Ping; He, Tieming; Tan, Minjia; Zhao, Yingming

    2015-02-01

    Methylation of lysine residues on histone proteins is known to play an important role in chromatin structure and function. However, non-histone protein substrates of this modification remain largely unknown. An effective approach for system-wide analysis of protein lysine methylation, particularly lysine monomethylation, is lacking. Here we describe a chemical proteomics approach for global screening for monomethyllysine substrates, involving chemical propionylation of monomethylated lysine, affinity enrichment of the modified monomethylated peptides, and HPLC/MS/MS analysis. Using this approach, we identified with high confidence 446 lysine monomethylation sites in 398 proteins, including three previously unknown histone monomethylation marks, representing the largest data set of protein lysine monomethylation described to date. Our data not only confirms previously discovered lysine methylation substrates in the nucleus and spliceosome, but also reveals new substrates associated with diverse biological processes. This method hence offers a powerful approach for dynamic study of protein lysine monomethylation under diverse cellular conditions and in human diseases. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. An allosteric conduit facilitates dynamic multisite substrate recognition by the SCFCdc4 ubiquitin ligase

    NASA Astrophysics Data System (ADS)

    Csizmok, Veronika; Orlicky, Stephen; Cheng, Jing; Song, Jianhui; Bah, Alaji; Delgoshaie, Neda; Lin, Hong; Mittag, Tanja; Sicheri, Frank; Chan, Hue Sun; Tyers, Mike; Forman-Kay, Julie D.

    2017-01-01

    The ubiquitin ligase SCFCdc4 mediates phosphorylation-dependent elimination of numerous substrates by binding one or more Cdc4 phosphodegrons (CPDs). Methyl-based NMR analysis of the Cdc4 WD40 domain demonstrates that Cyclin E, Sic1 and Ash1 degrons have variable effects on the primary Cdc4WD40 binding pocket. Unexpectedly, a Sic1-derived multi-CPD substrate (pSic1) perturbs methyls around a previously documented allosteric binding site for the chemical inhibitor SCF-I2. NMR cross-saturation experiments confirm direct contact between pSic1 and the allosteric pocket. Phosphopeptide affinity measurements reveal negative allosteric communication between the primary CPD and allosteric pockets. Mathematical modelling indicates that the allosteric pocket may enhance ultrasensitivity by tethering pSic1 to Cdc4. These results suggest negative allosteric interaction between two distinct binding pockets on the Cdc4WD40 domain may facilitate dynamic exchange of multiple CPD sites to confer ultrasensitive dependence on substrate phosphorylation.

  1. Long-range electrostatic complementarity governs substrate recognition by human chymotrypsin C, a key regulator of digestive enzyme activation.

    PubMed

    Batra, Jyotica; Szabó, András; Caulfield, Thomas R; Soares, Alexei S; Sahin-Tóth, Miklós; Radisky, Evette S

    2013-04-05

    Human chymotrypsin C (CTRC) is a pancreatic serine protease that regulates activation and degradation of trypsinogens and procarboxypeptidases by targeting specific cleavage sites within their zymogen precursors. In cleaving these regulatory sites, which are characterized by multiple flanking acidic residues, CTRC shows substrate specificity that is distinct from that of other isoforms of chymotrypsin and elastase. Here, we report the first crystal structure of active CTRC, determined at 1.9-Å resolution, revealing the structural basis for binding specificity. The structure shows human CTRC bound to the small protein protease inhibitor eglin c, which binds in a substrate-like manner filling the S6-S5' subsites of the substrate binding cleft. Significant binding affinity derives from burial of preferred hydrophobic residues at the P1, P4, and P2' positions of CTRC, although acidic P2' residues can also be accommodated by formation of an interfacial salt bridge. Acidic residues may also be specifically accommodated in the P6 position. The most unique structural feature of CTRC is a ring of intense positive electrostatic surface potential surrounding the primarily hydrophobic substrate binding site. Our results indicate that long-range electrostatic attraction toward substrates of concentrated negative charge governs substrate discrimination, which explains CTRC selectivity in regulating active digestive enzyme levels.

  2. An additional role for the Brønsted acid-base catalysts of mandelate racemase in transition state stabilization.

    PubMed

    Nagar, Mitesh; Bearne, Stephen L

    2015-11-10

    Mandelate racemase (MR) catalyzes the interconversion of the enantiomers of mandelate and serves as a paradigm for understanding the enzyme-catalyzed abstraction of an α-proton from a carbon acid substrate with a high pKa. The enzyme utilizes a two-base mechanism with Lys 166 and His 297 acting as Brønsted acid and base catalysts, respectively, in the R → S reaction direction. In the S → R reaction direction, their roles are reversed. Using isothermal titration calorimetry (ITC), MR is shown to bind the intermediate/transition state (TS) analogue inhibitor benzohydroxamate (BzH) in an entropy-driven process with a value of ΔCp equal to -358 ± 3 cal mol(-1) K(-1), consistent with an increased number of hydrophobic interactions. However, MR binds BzH with an affinity that is ∼2 orders of magnitude greater than that predicted solely on the basis of hydrophobic interactions [St. Maurice, M., and Bearne, S. L. (2004) Biochemistry 43, 2524], suggesting that additional specific interactions contribute to binding. To test the hypothesis that cation-π/NH-π interactions between the side chains of Lys 166 and His 297 and the aromatic ring and/or the hydroxamate/hydroximate moiety of BzH contribute to the binding of BzH, site-directed mutagenesis was used to generate the MR variants K166M, K166C, H297N, and K166M/H297N and their binding affinity for various ligands determined using ITC. Comparison of the binding affinities of these MR variants with the intermediate/TS analogues BzH and cyclohexanecarbohydroxamate revealed that cation-π/NH-π interactions between His 297 and the hydroxamate/hydroximate moiety and the phenyl ring of BzH contribute approximately 0.26 and 0.91 kcal/mol to binding, respectively, while interactions with Lys 166 contribute approximately 1.74 and 1.74 kcal/mol, respectively. Similarly, comparison of the binding affinities of these mutants with substrate analogues revealed that Lys 166 contributes >2.93 kcal/mol to the binding of (R)-atrolactate, and His 297 contributes 2.46 kcal/mol to the binding of (S)-atrolactate. These results are consistent with Lys 166 and His 297 playing dual roles in catalysis: they act as Brønsted acid-base catalysts, and they stabilize both the enolate moiety and phenyl ring of the altered substrate in the TS.

  3. Ether modifications to 1-[2-(3,4-dimethoxyphenyl)ethyl]-4-(3-phenylpropyl)piperazine (SA4503): effects on binding affinity and selectivity for sigma receptors and monoamine transporters.

    PubMed

    Xu, Rong; Lord, Sarah A; Peterson, Ryan M; Fergason-Cantrell, Emily A; Lever, John R; Lever, Susan Z

    2015-01-01

    Two series of novel ether analogs of the sigma (σ) receptor ligand 1-[2-(3,4-dimethoxyphenyl)ethyl]-4-(3-phenylpropyl)piperazine (SA4503) have been prepared. In one series, the alkyl portion of the 4-methoxy group was replaced with allyl, propyl, bromoethyl, benzyl, phenethyl, and phenylpropyl moieties. In the second series, the 3,4-dimethoxy was replaced with cyclic methylenedioxy, ethylenedioxy and propylenedioxy groups. These ligands, along with 4-O-des-methyl SA4503, were evaluated for σ1 and σ2 receptor affinity, and compared to SA4503 and several known ether analogs. SA4503 and a subset of ether analogs were also evaluated for dopamine transporter (DAT) and serotonin transporter (SERT) affinity. The highest σ1 receptor affinities, Ki values of 1.75-4.63 nM, were observed for 4-O-des-methyl SA4503, SA4503 and the methylenedioxy analog. As steric bulk increased, σ1 receptor affinity decreased, but only to a point. Allyl, propyl and bromoethyl substitutions gave σ1 receptor Ki values in the 20-30 nM range, while bulkier analogs having phenylalkyl, and Z- and E-iodoallyl, ether substitutions showed higher σ1 affinities, with Ki values in the 13-21 nM range. Most ligands studied exhibited comparable σ1 and σ2 affinities, resulting in little to no subtype selectivity. SA4503, the fluoroethyl analog and the methylenedioxy congener showed modest six- to fourteen-fold selectivity for σ1 sites. DAT and SERT interactions proved much more sensitive than σ receptor interactions to these structural modifications. For example, the benzyl congener (σ1Ki=20.8 nM; σ2Ki=16.4 nM) showed over 100-fold higher DAT affinity (Ki=121 nM) and 6-fold higher SERT affinity (Ki=128nM) than the parent SA4503 (DAT Ki=12650 nM; SERT Ki=760 nM). Thus, ether modifications to the SA4503 scaffold can provide polyfunctional ligands having a broader spectrum of possible pharmacological actions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Influence of substrate diffusion on degradation of dibenzofuran and 3-chlorodibenzofuran by attached and suspended bacteria.

    PubMed Central

    Harms, H; Zehnder, A J

    1994-01-01

    Dibenzofuran uptake-associated kinetic parameters of suspended and attached Sphingomonas sp. strain HH19k cells were compared. The suspended cells were studied in a batch system, whereas glass beads in percolated columns were used as the solid support for attached cells. The maximum specific activities of cells in the two systems were the same. The apparent half-maximum uptake rate-associated concentrations (Kt') of attached cells, however, were considerably greater than those of suspended cells and depended on cell density and on percolation velocity. A mathematical model was developed to explain the observed differences in terms of substrate transport to the cells. This model was based on the assumptions that the intrinsic half-maximum uptake rate-associated concentration (Kt) was unchanged and that deviations of Kt' from Kt resulted from the stereometry and the hydrodynamics around the cells. Our calculations showed that (i) diffusion to suspended cells and to single attached cells is efficient and therefore only slightly affects Kt'; (ii) diffusion to cells located on crowded surfaces is considerably lower than that to single attached cells and greatly increases Kt', which depends on the cell density; (iii) the convective-diffusive transport to attached cells that occurs in a percolated column is influenced by the liquid flow and results in dependency of Kt' on the flow rate; and (iv) higher specific affinity of cells correlates with higher susceptibility to diffusion limitation. Properties of the experimental system which limited quantitative proof of exclusively transport-controlled variations of Kt' are discussed. PMID:8085817

  5. Temporal and spatial variations in kinetics of alkaline phosphatase in sediments of a shallow Chinese eutrophic lake (Lake Donghu).

    PubMed

    Yiyong, Zhou; Jianqiu, Li; Min, Zhang

    2002-04-01

    Monthly sediment and interstitial water samples were collected in a shallow Chinese freshwater lake (Lake Donghu) from three areas to determine if alkaline phosphatase activity (APA) plays an important role, in phosphorus cycling in sediment. The seasonal variability in the kinetics of APA and other relevant parameters were investigated from 1995-1996. The phosphatase hydrolyzable phosphorus (PHP) fluctuated seasonally in interstitial water, peaking in the spring. A synchronous pattern was observed in chlorophyll a contents in surface water in general. The orthophosphate (o-P) concentrations in the interstitial water increased during the spring. An expected negative relationship between PHP and Vmax of APA is not evident in interstitial water. The most striking feature of the two variables is their co-occurring, which can be explained in terms of an induction mechanism. It is argued that phosphatase activity mainly contributes to the driving force of o-P regeneration from PHP in interstitial water, supporting the development of phytoplankton biomass in spring. The Vmax values in sediment increased during the summer, in conjunction with lower Km values in interstitial water that suggest a higher affinity for the substrate. The accumulation of organic matter in the sediment could be traced back to the breakdown of the algal spring bloom, which may stimulate APA with higher kinetic efficiency, by a combination of the higher Vmax in sediments plus lower Km values in interstitial water, in summer. In summary, a focus on phosphatase and its substrate in annual scale may provide a useful framework for the development of novel P cycling, possible explanations for the absence of a clear relationship between PHP and APA were PHP released from the sediment which induced APA, and the presence of kinetically higher APA both in sediment and interstitial water which permitted summer mineralization of organic matter derived from the spring bloom to occur. The study highlighted the need for distinguishing functionally distinct extracellular enzymes between the sediment and interstitial water of lakes.

  6. Interactions between dodecyl phosphates and hydroxyapatite or tooth enamel: relevance to inhibition of dental erosion.

    PubMed

    Jones, Siân B; Barbour, Michele E; Shellis, R Peter; Rees, Gareth D

    2014-05-01

    Tooth surface modification is a potential method of preventing dental erosion, a form of excessive tooth wear facilitated by softening of tooth surfaces through the direct action of acids, mainly of dietary origin. We have previously shown that dodecyl phosphates (DPs) effectively inhibit dissolution of native surfaces of hydroxyapatite (the type mineral for dental enamel) and show good substantivity. However, adsorbed saliva also inhibits dissolution and DPs did not augment this effect, which suggests that DPs and saliva interact at the hydroxyapatite surface. In the present study the adsorption and desorption of potassium and sodium dodecyl phosphates or sodium dodecyl sulphate (SDS) to hydroxyapatite and human tooth enamel powder, both native and pre-treated with saliva, were studied by high performance liquid chromatography-mass Spectrometry. Thermo gravimetric analysis was used to analyse residual saliva and surfactant on the substrates. Both DPs showed a higher affinity than SDS for both hydroxyapatite and enamel, and little DP was desorbed by washing with water. SDS was readily desorbed from hydroxyapatite, suggesting that the phosphate head group is essential for strong binding to this substrate. However, SDS was not desorbed from enamel, so that this substrate has surface properties different from those of hydroxyapatite. The presence of a salivary coating had little or no effect on adsorption of the DPs, but treatment with DPs partly desorbed saliva; this could account for the failure of DPs to increase the dissolution inhibition due to adsorbed saliva. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Involvement of LAT1 and LAT2 in the high- and low-affinity transport of L-leucine in human retinal pigment epithelial cells (ARPE-19 cells).

    PubMed

    Yamamoto, Atsushi; Akanuma, Shin-Ichi; Tachikawa, Masanori; Hosoya, Ken-Ichi

    2010-05-01

    System L, which is encoded by LAT1 and LAT2, is an amino acid transport system that transports neutral amino acids, including several essential amino acids in an Na+-independent manner. Due to its broad substrate selectivity, system L has been proposed to mediate the transport of amino-acid-related drugs across the blood-tissue barriers. We characterized L-leucine transport and its corresponding transporter in a human retinal pigment epithelial cell line (ARPE-19 cells) as an in vitro model of the outer blood-retinal barrier. [3H]L-leucine uptake by ARPE-19 cells took place in an Na+-, Cl(-)-independent and saturable manner with K(m) values of 8.71 and 220 microM. This process was more potently cis-inhibited by substrates of LAT1 than those of LAT2. [3H]L-leucine efflux from ARPE-19 cells was trans-stimulated by substrates of LAT1 and LAT2 through the obligatory exchange mechanism of system L. Although RT-PCR analysis demonstrated that LAT1 and LAT2 mRNA are expressed in ARPE-19 cells, the LAT1 mRNA concentration is 42-fold higher than that of LAT2. Moreover, immunoblot analysis demonstrated that LAT1 is expressed in ARPE-19 cells. In conclusion, although the transport function of LAT1 is greater than that of LAT2, LAT1 and LAT2 are involved in L-leucine transport in ARPE-19 cells.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maruyama, Yoko; Department of Pediatrics, School of Medicine, Keio University, Tokyo 160-8582; Sou, Yu-Shin

    Highlights: • Knockdown of LC3 or GABARAP families did not affect the basal autophagy. • LC3B has a higher affinity for the autophagy-specific substrate, p62, than GABARAPs. • siRNA-mediated knockdown of LC3B, but not that of GABARAPs, resulted in significant accumulation of p62. - Abstract: Autophagy is a unique intracellular protein degradation system accompanied by autophagosome formation. Besides its important role through bulk degradation in supplying nutrients, this system has an ability to degrade certain proteins, organelles, and invading bacteria selectively to maintain cellular homeostasis. In yeasts, Atg8p plays key roles in both autophagosome formation and selective autophagy based onmore » its membrane fusion property and interaction with autophagy adaptors/specific substrates. In contrast to the single Atg8p in yeast, mammals have 6 homologs of Atg8p comprising LC3 and GABARAP families. However, it is not clear these two families have different or similar functions. The aim of this study was to determine the separate roles of LC3 and GABARAP families in basal/constitutive and/or selective autophagy. While the combined knockdown of LC3 and GABARAP families caused a defect in long-lived protein degradation through lysosomes, knockdown of each had no effect on the degradation. Meanwhile, knockdown of LC3B but not GABARAPs resulted in significant accumulation of p62/Sqstm1, one of the selective substrate for autophagy. Our results suggest that while mammalian Atg8 homologs are functionally redundant with regard to autophagosome formation, selective autophagy is regulated by specific Atg8 homologs.« less

  9. Biochemical characterisation of an allantoate-degrading enzyme from French bean (Phaseolus vulgaris): the requirement of phenylhydrazine.

    PubMed

    Raso, María José; Muñoz, Alfonso; Pineda, Manuel; Piedras, Pedro

    2007-10-01

    In tropical legumes like French bean (Phaseolus vulgaris) or soybean (Glycine max), most of the atmospheric nitrogen fixed in nodules is used for synthesis of the ureides allantoin and allantoic acid, the major long distance transport forms of organic nitrogen in these species. The purpose of this investigation was to characterise the allantoate degradation step in Phaseolus vulgaris. The degradation of allantoin, allantoate and ureidoglycolate was determined "in vivo" using small pieces of chopped seedlings. With allantoate and ureidoglycolate as substrates, the determination of the reaction products required the addition of phenylhydrazine to the assay mixture. The protein associated with the allantoate degradation has been partially purified 22-fold by ultracentrifugation and batch separation with DEAE-Sephacel. This enzyme was specific for allantoate and could not use ureidoglycolate as substrate. The activity was completely dependent on phenylhydrazine, which acts as an activator at low concentrations and decreases the affinity of the enzyme for the substrate at higher concentrations. The optimal pH for the activity of the purified protein was 7.0 and the optimal temperature was 37 degrees C. The activity was completely inhibited by EDTA and only manganese partially restored the activity. The level of activity was lower in extracts obtained from leaves and fruits of French bean grown with nitrate than in plants actively fixing nitrogen and, therefore, relying on ureides as nitrogen supply. This is the first time that an allantoate-degrading activity has been partially purified and characterised from a plant extract. The allosteric regulation of the enzyme suggests a critical role in the regulation of ureide degradation.

  10. The neonatal Fc receptor (FcRn) binds independently to both sites of the IgG homodimer with identical affinity.

    PubMed

    Abdiche, Yasmina Noubia; Yeung, Yik Andy; Chaparro-Riggers, Javier; Barman, Ishita; Strop, Pavel; Chin, Sherman Michael; Pham, Amber; Bolton, Gary; McDonough, Dan; Lindquist, Kevin; Pons, Jaume; Rajpal, Arvind

    2015-01-01

    The neonatal Fc receptor (FcRn) is expressed by cells of epithelial, endothelial and myeloid lineages and performs multiple roles in adaptive immunity. Characterizing the FcRn/IgG interaction is fundamental to designing therapeutic antibodies because IgGs with moderately increased binding affinities for FcRn exhibit superior serum half-lives and efficacy. It has been hypothesized that 2 FcRn molecules bind an IgG homodimer with disparate affinities, yet their affinity constants are inconsistent across the literature. Using surface plasmon resonance biosensor assays that eliminated confounding experimental artifacts, we present data supporting an alternate hypothesis: 2 FcRn molecules saturate an IgG homodimer with identical affinities at independent sites, consistent with the symmetrical arrangement of the FcRn/Fc complex observed in the crystal structure published by Burmeister et al. in 1994. We find that human FcRn binds human IgG1 with an equilibrium dissociation constant (KD) of 760 ± 60 nM (N = 14) at 25°C and pH 5.8, and shows less than 25% variation across the other human subtypes. Human IgG1 binds cynomolgus monkey FcRn with a 2-fold higher affinity than human FcRn, and binds both mouse and rat FcRn with a 10-fold higher affinity than human FcRn. FcRn/IgG interactions from multiple species show less than a 2-fold weaker affinity at 37°C than at 25°C and appear independent of an IgG's variable region. Our in vivo data in mouse and rat models demonstrate that both affinity and avidity influence an IgG's serum half-life, which should be considered when choosing animals, especially transgenic systems, as surrogates.

  11. T Cell Receptor-Major Histocompatibility Complex Interaction Strength Defines Trafficking and CD103+ Memory Status of CD8 T Cells in the Brain.

    PubMed

    Sanecka, Anna; Yoshida, Nagisa; Kolawole, Elizabeth Motunrayo; Patel, Harshil; Evavold, Brian D; Frickel, Eva-Maria

    2018-01-01

    T cell receptor-major histocompatibility complex (TCR-MHC) affinities span a wide range in a polyclonal T cell response, yet it is undefined how affinity shapes long-term properties of CD8 T cells during chronic infection with persistent antigen. Here, we investigate how the affinity of the TCR-MHC interaction shapes the phenotype of memory CD8 T cells in the chronically Toxoplasma gondii- infected brain. We employed CD8 T cells from three lines of transnuclear (TN) mice that harbor in their endogenous loci different T cell receptors specific for the same Toxoplasma antigenic epitope ROP7. The three TN CD8 T cell clones span a wide range of affinities to MHCI-ROP7. These three CD8 T cell clones have a distinct and fixed hierarchy in terms of effector function in response to the antigen measured as proliferation capacity, trafficking, T cell maintenance, and memory formation. In particular, the T cell clone of lowest affinity does not home to the brain. The two higher affinity T cell clones show differences in establishing resident-like memory populations (CD103 + ) in the brain with the higher affinity clone persisting longer in the host during chronic infection. Transcriptional profiling of naïve and activated ROP7-specific CD8 T cells revealed that Klf2 encoding a transcription factor that is known to be a negative marker for T cell trafficking is upregulated in the activated lowest affinity ROP7 clone. Our data thus suggest that TCR-MHC affinity dictates memory CD8 T cell fate at the site of infection.

  12. Rhodamine Inhibitors of P-glycoprotein: An Amide/Thioamide “Switch” for ATPase Activity

    PubMed Central

    Gannon, Michael K.; Holt, Jason J.; Bennett, Stephanie M.; Wetzel, Bryan R.; Loo, Tip W.; Bartlett, M. Claire; Clarke, David M.; Sawada, Geri A.; Higgins, J. William; Tombline, Gregory; Raub, Thomas J.; Detty, Michael R.

    2012-01-01

    We have examined 46 tetramethylrosamine/rhodamine derivatives with structural diversity in the heteroatom of the xanthylium core, the amino substituents of the 3- and 6-positions, and the alkyl, aryl, or heteroaryl group at the 9-substituent. These compounds were examined for affinity and ATPase stimulation in isolated MDR3 CL P-gp and human P-gp-His10, for their ability to promote uptake of calcein AM and vinblastine in multidrug-resistant MDCKII-MDR1 cells, and for transport in monolayers of MDCKII-MDR1 cells. Thioamide 31-S gave KM of 0.087 μM in human P-gp. Small changes in structure among this set of compounds affected affinity as well as transport rate (or flux) even though all derivatives examined were substrates for P-gp. With isolated protein, tertiary amide groups dictate high affinity and high stimulation while tertiary thioamide groups give high affinity and inhibition of ATPase activity. In MDCKII-MDR1 cells, the tertiary thioamide-containing derivatives promote uptake of calcein AM and have very slow passive, absorptive, and secretory rates of transport relative to transport rates for tertiary amide-containing derivatives. Thioamide 31-S promoted uptake of calcein AM and inhibited efflux of vinblastine with IC50’s of ~2 μM in MDCKII-MDR1 cells. PMID:19402665

  13. Discovery of a Kelch-like ECH-associated protein 1-inhibitory tetrapeptide and its structural characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sogabe, Satoshi; Sakamoto, Kotaro; Kamada, Yusuke

    Keap1 constitutively binds to the transcription factor Nrf2 to promote its degradation, resulting in negative modulation of genes involved in cellular protection against oxidative stress. Keap1 is increasingly recognized as an attractive target for treating diseases involving oxidative stress, including cancer, atherosclerosis, diabetes, arthritis, and neurodegeneration. We used phage-display peptide screening to identify a tetrapeptide showing moderate binding affinity, which inhibits the interaction between Nrf2 and Keap1. The tetrapeptide does not include an ETGE motif, which is a commonly found consensus sequence in known peptidic inhibitors. In addition to affinity parameters, IC{sub 50}, K{sub D}, and thermodynamic parameters, the crystalmore » structure of the complex was determined to elucidate the binding conformation. The binding interactions resemble those of known small-molecule inhibitors as opposed to those of substrates and peptidic inhibitors. Although the tetrapeptide's affinity is not very high, our results may help facilitate the designing of small-molecule inhibitors during lead generation in drug discovery. - Highlights: • Keap1 inhibitory tetrapeptide with moderate affinity was discovered. • Crystal structure of the complex showed the unique binding mode. • Structural information gives a valuable insight for design of therapeutic compounds.« less

  14. Comparative study of substrate and product binding to the human ABO(H) blood group glycosyltransferases.

    PubMed

    Soya, Naoto; Shoemaker, Glen K; Palcic, Monica M; Klassen, John S

    2009-11-01

    The first comparative thermodynamic study of the human blood group glycosyltransferases, alpha-(1-->3)-N-acetylgalactosaminyltransferase (GTA) and alpha-(1-->3)-galactosyltransferase (GTB), interacting with donor substrates, donor and acceptor analogs, and trisaccharide products in vitro is reported. The binding constants, measured at 24 degrees C with the direct electrospray ionization mass spectrometry (ES-MS) assay, provide new insights into these model GTs and their interactions with substrate and product. Notably, the recombinant forms of GTA and GTB used in this study are shown to exist as homodimers, stabilized by noncovalent interactions at neutral pH. In the absence of divalent metal ion, neither GTA nor GTB exhibits any appreciable affinity for its native donors (UDP-GalNAc, UDP-Gal). Upon introduction of Mn(2+), both donors undergo enzyme-catalyzed hydrolysis in the presence of either GTA or GTB. Hydrolysis of UDP-GalNAc in the presence of GTA proceeds very rapidly under the solution conditions investigated and a binding constant could not be directly measured. In contrast, the rate of hydrolysis of UDP-Gal in the presence of GTB is significantly slower and, utilizing a modified approach to analyze the ES-MS data, a binding constant of 2 x 10(4) M(-1) was established. GTA and GTB bind the donor analogs UDP-GlcNAc, UDP-Glc with affinities similar to those measured for UDP-Gal and UDP-GalNAc (GTB only), suggesting that the native donors and donor analogs bind to the GTA and GTB through similar interactions. The binding constant determined for GTA and UDP-GlcNAc (approximately 1 x 10(4) M(-1)), therefore, provides an estimate for the binding constant for GTA and UDP-GalNAc. Binding of GTA and GTB with the A and B trisaccharide products was also investigated for the first time. In the absence of UDP and Mn(2+), both GTA and GTB recognize their respective trisaccharide products but with a low affinity approximately 10(3) M(-1); the presence of UDP and Mn(2+) has no effect on A trisaccharide binding but precludes B-trisaccharide binding.

  15. Enhanced Requirement for TNFR2 in Graft Rejection Mediated by Low Affinity Memory CD8+ T Cells During Heterologous Immunity

    PubMed Central

    Krummey, Scott M.; Chen, Ching-Wen; Guasch, Sara A.; Liu, Danya; Wagener, Maylene; Larsen, Christian P; Ford, Mandy L.

    2016-01-01

    The affinity of a T cell receptor (TCR) binding to peptide:MHC profoundly impacts the phenotype and function of effector and memory cell differentiation. Little is known about the effect of low affinity priming on memory cell generation and function, which is particularly important in heterologous immunity, when microbe-specific T cells cross-react with allogeneic antigen and mediate graft rejection. We found that low affinity primed memory CD8+ T cells produced high levels of TNF ex vivo in response to heterologous rechallenge compared to high affinity primed memory T cells. Low affinity secondary effectors significantly upregulated TNFR2 on the cell surface and contained a higher frequency of TNFR2hi proliferating cells. Low affinity primed secondary effectors concurrently downregulated TNF production. Importantly, blockade of TNFR2 attenuated graft rejection in low but not high affinity primed animals. These data establish a functional connection between TNF signaling and TCR priming affinity and have implications for the immunomodulation of pathogenic T cell responses during transplantation. PMID:27481849

  16. Bioactive ceramic coating on orthopedic implants for enhanced bone tissue integration

    NASA Astrophysics Data System (ADS)

    Aniket

    Tissue integration between bone and orthopedic implant is essential for implant fixation and longevity. An immunological response leads to fibrous encapsulation of metallic implants leading to implant instability and failure. Bioactive ceramics have the ability to directly bond to bone; however, they have limited mechanical strength for load bearing applications. Coating bioactive ceramics on metallic implant offers the exciting opportunity to enhance bone formation without compromising the mechanical strength of the implant. In the present study, we have developed a novel bioactive silica-calcium phosphate nanocomposite (SCPC) coating on medical grade Ti-6Al-4V orthopedic implant using electrophoretic deposition (EPD) and evaluated bone tissue response to the coated implant at the cellular level. The effect of SCPC composition and suspending medium pH on the zeta potential of three different SCPC formulations; SCPC25, SCPC50 and SCPC75 were analyzed. The average zeta potential of SCPC50 in pure ethanol was more negative than that of SCPC25 or SCPC75; however the difference was not statistically significant. Ti-6Al-4V discs were passivated, coated with SCPC50 (200 nm - 10 mum) and thermally treated at 600 - 800 ºC to produce a coating thickness in the range of 43.1 +/- 5.7 to 30.1 +/- 4.6 μm. After treatment at 600, 700 and 800 ºC, the adhesion strength at the SCPC50/Ti-6Al-4V interface was 42.6 +/- 3.6, 44.7 +/- 8.7 and 47.2 +/- 4.3 MPa, respectively. XRD analyses of SCPC50 before and after EPD coating indicated no change in the crystallinity of the material. Fracture surface analyses showed that failure occurred within the ceramic layer or at the ceramic/polymer interface; however, the ceramic/metal interface was intact in all samples. The adhesion strength of SCPC50-coated substrates after immersion in PBS for 2 days (11.7 +/- 3.9 MPa) was higher than that measured on commercially available hydroxyapatite (HA) coated substrates (5.5 +/- 2.7 MPa), although the difference was not statistically significant. SEM - EDX analyses of SCPC50-coated Ti-6Al-4V pre-immersed in PBS for 7 days showed the formation of a Ca-deficient HA surface layer. Bone cells attached to the SCPC50-coated implants expressed significantly higher (p < 0.05) alkaline phosphatase activity (82.4 +/- 25.6 nmoles p-NP/mg protein/min) than that expressed by cells attached to HA-coated or uncoated implants. Protein adsorption analyses showed that SCPC50-coated substrates adsorbed significantly more (p < 0.05) serum protein (14.9 +/- 1.2 mug) than control uncoated substrates (8.9 +/- 0.7 mug). Moreover, Western blot analysis showed that the SCPC50 coating has a high affinity for serum fibronectin. Protein conformation analyses by FTIR showed that the ratio of the area under the peak for amide I/amide II bands was significantly higher (p < 0.05) on the surface of SCPC50-coated substrate (5.0 +/- 0.6) than that on the surface of the control uncoated substrates (2.2 +/- 0.3). Moreover, ICP-OES analyses indicated that SCPC50-coated substrates withdrew Ca ions from, and released P and Si ions into, the tissue culture medium, respectively. In conjunction with the favorable protein adsorption and modifications in medium composition, MC3T3-E1 osteoblast-like cells attached to SCPC50-coated substrates expressed 10-fold higher level of mRNA encoding osteocalcin and had significantly higher production of osteopontin and osteocalcin proteins than cells attached to the uncoated Ti-6Al-4V substrate. In addition, osteoblast-like cells attached to the SCPC50-coated substrates produced significantly lower levels of the inflammatory and osteoclastogenic cytokines, IL-6, IL-12p40 and RANKL than those attached to uncoated Ti-6Al-4V. Surface topography analyses using AFM suggested that the SCPC50 particles deposit onto the metal surface in a manner that preferentially fills the grooves on the substrate created during substrate preparation. An increase in the surface roughness of the SCPC50-coated substrate from 217.8 +/- 54.6 nm to 284.3 +/- 37.3 nm was accompanied by enhanced material dissolution, reduced cell proliferation and poor actin cytoskeleton organization, which are characteristics typical of differentiating bone cells on bioactive ceramic surfaces. Results of the study demonstrate that bioactive SCPC50 can efficiently be coated on Ti-6Al-4V using EPD. Moreover, the in vitro bone cell response suggests that SCPC50-coating has the potential to enhance bone integration with orthopedic and maxillofacial implants while minimizing the induction of inflammatory bone cell responses.

  17. Differential Temperature Dependence of Tobacco Etch Virus and Rhinovirus 3C Proteases

    PubMed Central

    Raran-Kurussi, Sreejith; Tözsér, József; Cherry, Scott; Tropea, Joseph E.; Waugh, David S.

    2014-01-01

    Because of their stringent sequence specificity, the 3C-like proteases from tobacco etch virus (TEV3) and human rhinovirus are often used for the removal of affinity tags. The latter enzyme is rumored to have greater catalytic activity at 4°C, the temperature at which fusion protein substrates are usually digested. Here, we report that experiments with fusion protein and peptide substrates confirm this conjecture. Whereas the catalytic efficiency of rhinovirus 3C protease is approximately the same at its optimum temperature (30°C) and at 4°C, TEV protease is 10-fold less active at the latter temperature, due primarily to a reduction in kcat. PMID:23395976

  18. Rifampin phosphotransferase is an unusual antibiotic resistance kinase

    PubMed Central

    Stogios, Peter J.; Cox, Georgina; Spanogiannopoulos, Peter; Pillon, Monica C.; Waglechner, Nicholas; Skarina, Tatiana; Koteva, Kalinka; Guarné, Alba; Savchenko, Alexei; Wright, Gerard D.

    2016-01-01

    Rifampin (RIF) phosphotransferase (RPH) confers antibiotic resistance by conversion of RIF and ATP, to inactive phospho-RIF, AMP and Pi. Here we present the crystal structure of RPH from Listeria monocytogenes (RPH-Lm), which reveals that the enzyme is comprised of three domains: two substrate-binding domains (ATP-grasp and RIF-binding domains); and a smaller phosphate-carrying His swivel domain. Using solution small-angle X-ray scattering and mutagenesis, we reveal a mechanism where the swivel domain transits between the spatially distinct substrate-binding sites during catalysis. RPHs are previously uncharacterized dikinases that are widespread in environmental and pathogenic bacteria. These enzymes are members of a large unexplored group of bacterial enzymes with substrate affinities that have yet to be fully explored. Such an enzymatically complex mechanism of antibiotic resistance augments the spectrum of strategies used by bacteria to evade antimicrobial compounds. PMID:27103605

  19. Mechanistic Insight from Calorimetric Measurements of the Assembly of the Binuclear Metal Active Site of Glycerophosphodiesterase (GpdQ) from Enterobacter aerogenes.

    PubMed

    Pedroso, Marcelo M; Ely, Fernanda; Carpenter, Margaret C; Mitić, Nataša; Gahan, Lawrence R; Ollis, David L; Wilcox, Dean E; Schenk, Gerhard

    2017-07-05

    Glycerophosphodiesterase (GpdQ) from Enterobacter aerogenes is a binuclear metallohydrolase with a high affinity for metal ions at its α site but a lower affinity at its β site in the absence of a substrate. Isothermal titration calorimetry (ITC) has been used to quantify the Co(II) and Mn(II) binding affinities and thermodynamics of the two sites in wild-type GpdQ and two mutants, both in the absence and in the presence of phosphate. Metal ions bind to the six-coordinate α site in an entropically driven process with loss of a proton, while binding at the β site is not detected by ITC. Phosphate enhances the metal affinity of the α site by increasing the binding entropy and the metal affinity of the β site by enthalpic (Co) or entropic (Mn) contributions, but no additional loss of protons. Mutations of first- and second-coordination sphere residues at the β site increase the metal affinity of both sites by enhancing the binding enthalpy. In particular, loss of the hydrogen bond from second-sphere Ser127 to the metal-coordinating Asn80 has a significant effect on the metal binding thermodynamics that result in a resting binuclear active site with high catalytic activity. While structural and spectroscopic data with excess metal ions have indicated a bridging hydroxide in the binuclear GpdQ site, analysis of ITC data here reveals the loss of a single proton in the assembly of this site, indicating that the metal-bound hydroxide nucleophile is formed in the resting inactive mononuclear form, which becomes catalytically competent upon binding the second metal ion.

  20. Hsc66 substrate specificity is directed toward a discrete region of the iron-sulfur cluster template protein IscU.

    PubMed

    Hoff, Kevin G; Ta, Dennis T; Tapley, Tim L; Silberg, Jonathan J; Vickery, Larry E

    2002-07-26

    Hsc66 and Hsc20 comprise a specialized chaperone system important for the assembly of iron-sulfur clusters in Escherchia coli. Only a single substrate, the Fe/S template protein IscU, has been identified for the Hsc66/Hsc20 system, but the mechanism by which Hsc66 selectively binds IscU is unknown. We have investigated Hsc66 substrate specificity using phage display and a peptide array of IscU. Screening of a heptameric peptide phage display library revealed that Hsc66 prefers peptides with a centrally located Pro-Pro motif. Using a cellulose-bound peptide array of IscU we determined that Hsc66 interacts specifically with a region (residues 99-103, LPPVK) that is invariant among all IscU family members. A synthetic peptide (ELPPVKIHC) corresponding to IscU residues 98-106 behaves in a similar manner to native IscU, stimulating the ATPase activity of Hsc66 with similar affinity as IscU, preventing Hsc66 suppression of bovine rhodanese aggregation, and interacting with the peptide-binding domain of Hsc66. Unlike native IscU, however, the synthetic peptide is not bound by Hsc20 and does not synergistically stimulate Hsc66 ATPase activity with Hsc20. Our results indicate that Hsc66 and Hsc20 recognize distinct regions of IscU and further suggest that Hsc66 will not bind LPPVK motifs with high affinity in vivo unless they are in the context of native IscU and can be directed to Hsc66 by Hsc20.

  1. The chitin-binding domain of a GH-18 chitinase from Vibrio harveyi is crucial for chitin-chitinase interactions.

    PubMed

    Suginta, Wipa; Sirimontree, Paknisa; Sritho, Natchanok; Ohnuma, Takayuki; Fukamizo, Tamo

    2016-12-01

    Vibrio harveyi chitinase A (VhChiA) is a GH-18 glycosyl hydrolase with a structure containing three distinct domains: i) the N-terminal chitin-binding domain; ii) the (α/β) 8 TIM barrel catalytic domain; and iii) the α+β insertion domain. In this study, we cloned the gene fragment encoding the chitin-binding domain of VhChiA, termed ChBD Vh ChiA . The recombinant ChBD Vh ChiA was heterologously expressed in E. coli BL21 strain Tuner(DE3)pLacI host cells, and purified to homogeneity. CD measurements suggested that ChBD Vh ChiA contained β-sheets as major structural components and fluorescence spectroscopy showed that the protein domain was folded correctly, and suitable for functional characterization. Chitin binding assays showed that ChBD Vh ChiA bound to both α- and β-chitins, with the greatest affinity for β-colloidal chitin, but barely bound to polymeric chitosan. These results identified the tandem N-acetamido functionality on chitin chains as the specific sites of enzyme-substrate interactions. The binding affinity of the isolated domain was significantly lower than that of intact VhChiA, suggesting that the catalytic domain works synergistically with the chitin-binding domain to guide the polymeric substrate into the substrate binding cleft. These data confirm the physiological role of the chitin-binding domain of the marine bacterial GH-18 chitinase A in chitin-chitinase interactions. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. A Chlorogenic Acid Esterase with a Unique Substrate Specificity from Ustilago maydis

    PubMed Central

    Haase-Aschoff, Paul; Kelle, Sebastian; Linke, Diana; Krings, Ulrich; Popper, Lutz; Berger, Ralf G.

    2014-01-01

    An extracellular chlorogenic acid esterase from Ustilago maydis (UmChlE) was purified to homogeneity by using three separation steps, including anion-exchange chromatography on a Q Sepharose FF column, preparative isoelectric focusing (IEF), and, finally, a combination of affinity chromatography and hydrophobic interaction chromatography on polyamide. SDS-PAGE analysis suggested a monomeric protein of ∼71 kDa. The purified enzyme showed maximal activity at pH 7.5 and at 37°C and was active over a wide pH range (3.5 to 9.5). Previously described chlorogenic acid esterases exhibited a comparable affinity for chlorogenic acid, but the enzyme from Ustilago was also active on typical feruloyl esterase substrates. Kinetic constants for chlorogenic acid, methyl p-coumarate, methyl caffeate, and methyl ferulate were as follows: Km values of 19.6 μM, 64.1 μM, 72.5 μM, and 101.8 μM, respectively, and kcat/Km values of 25.83 mM−1 s−1, 7.63 mM−1 s−1, 3.83 mM−1 s−1 and 3.75 mM−1 s−1, respectively. UmChlE released ferulic, p-coumaric, and caffeic acids from natural substrates such as destarched wheat bran (DSWB) and coffee pulp (CP), confirming activity on complex plant biomass. The full-length gene encoding UmChlE consisted of 1,758 bp, corresponding to a protein of 585 amino acids, and was functionally produced in Pichia pastoris GS115. Sequence alignments with annotated chlorogenic acid and feruloyl esterases underlined the uniqueness of this enzyme. PMID:25548041

  3. GAD autoantibody affinity in adult patients with latent autoimmune diabetes, the study participants of a GAD65 vaccination trial.

    PubMed

    Krause, Stephanie; Landherr, Ulrike; Agardh, Carl-David; Hausmann, Simone; Link, Katarina; Hansen, Jesse M; Lynch, Kristian F; Powell, Michael; Furmaniak, Jadwiga; Rees-Smith, Bernard; Bonifacio, Ezio; Ziegler, Anette G; Lernmark, Ake; Achenbach, Peter

    2014-06-01

    Patients with latent autoimmune diabetes in adults (LADA) express autoantibodies against the 65-kDa isoform of GAD (GADA). Intervention with recombinant human GAD65 formulated with aluminium hydroxide (GAD-alum) given twice subcutaneously to LADA patients at intervals of 4 weeks was safe and did not compromise β-cell function in a Phase II clinical trial. GADA affinity has been shown to predict progression to type 1 diabetes. Here, we asked whether GADA affinity was affected by the GAD65 antigen-specific vaccination and/or associated with β-cell function in participants of this trial. GADA affinity was measured in sera of 46 LADA patients obtained prior to the first week and 20 weeks after the second injection with GAD-alum or placebo using competitive binding experiments with [125I]-labeled and unlabeled human GAD65. At baseline, GADA affinities ranged from 1.9 × 10(7) to 5.0 × 10(12) L/mol (median 2.8 × 10(10) L/mol) and were correlated with GADA titers (r = 0.47; P = 0.0009), fasting (r = -0.37; P = 0.01) and stimulated (r = -0.40; P = 0.006) C-peptide concentrations, and HbA1c (r = 0.39; P = 0.007). No significant changes in affinity were observed from baseline to week 24. Patients with GADA affinities in the lower first quartile (<4 × 10(9) L/mol) had better preserved fasting C-peptide concentrations at baseline than those with higher affinities (mean 1.02 vs. 0.66 nmol/L; P = 0.004) and retained higher concentrations over 30 months of follow-up (mean 1.26 vs. 0.62 nmol/L; P = 0.01). Intervention with GAD-alum in LADA patients had no effect on GADA affinity. Our data suggest that patients with low GADA affinity have a prolonged preservation of residual β-cell function. © 2014 by the American Diabetes Association.

  4. Uncoupling metallonuclease metal ion binding sites via nudge mutagenesis.

    PubMed

    Papadakos, Grigorios A; Nastri, Horacio; Riggs, Paul; Dupureur, Cynthia M

    2007-05-01

    The hydrolysis of phosphodiester bonds by nucleases is critical to nucleic acid processing. Many nucleases utilize metal ion cofactors, and for a number of these enzymes two active-site metal ions have been detected. Testing proposed mechanistic roles for individual bound metal ions has been hampered by the similarity between the sites and cooperative behavior. In the homodimeric PvuII restriction endonuclease, the metal ion dependence of DNA binding is sigmoidal and consistent with two classes of coupled metal ion binding sites. We reasoned that a conservative active-site mutation would perturb the ligand field sufficiently to observe the titration of individual metal ion binding sites without significantly disturbing enzyme function. Indeed, mutation of a Tyr residue 5.5 A from both metal ions in the enzyme-substrate crystal structure (Y94F) renders the metal ion dependence of DNA binding biphasic: two classes of metal ion binding sites become distinct in the presence of DNA. The perturbation in metal ion coordination is supported by 1H-15N heteronuclear single quantum coherence spectra of enzyme-Ca(II) and enzyme-Ca(II)-DNA complexes. Metal ion binding by free Y94F is basically unperturbed: through multiple experiments with different metal ions, the data are consistent with two alkaline earth metal ion binding sites per subunit of low millimolar affinity, behavior which is very similar to that of the wild type. The results presented here indicate a role for the hydroxyl group of Tyr94 in the coupling of metal ion binding sites in the presence of DNA. Its removal causes the affinities for the two metal ion binding sites to be resolved in the presence of substrate. Such tuning of metal ion affinities will be invaluable to efforts to ascertain the contributions of individual bound metal ions to metallonuclease function.

  5. Differential affinities of molindone, metoclopramide and domperidone for classes of [3H]spiroperidol binding sites in rat striatum: evidence for pharmacologically distinct classes of receptors.

    PubMed

    Rosenfeld, M R; Dvorkin, B; Klein, P N; Makman, M H

    1982-03-04

    Rat striatum contains two populations of dopaminergic [3H]spiroperidol binding sites. The two populations are similar in their affinities for chlorpromazine and dopamine. Only one population, that with a somewhat higher affinity for spiroperidol itself, exhibits high affinity for the selective D2 antagonists molindone, metoclopramide and domperidone. Hence, this population may represent D2 receptor sites. The other larger population may represent either a separate class of receptor sites or a different form of D2 receptor sites.

  6. The alpha3(betaMet222Ser/Tyr345Trp)3gamma subcomplex of the TF1-ATPase does not hydolyze ATP at a significant rate until the substrate binds to the catalytic site of the lowest affinity.

    PubMed

    Ren, Huimiao; Bandyopadhyay, Sanjay; Allison, William S

    2006-05-16

    The alpha(3)(betaM(222)S/Y(345)W)(3)gamma double-mutant subcomplex of the F(1)-ATPase from the thermophilic Bacillus PS3 (TF(1)), free of endogenous nucleotides, does not entrap inhibitory MgADP in a catalytic site during turnover. It hydrolyzes 100 nM-2 mM ATP with a K(m) of 31 microM and a k(cat) of 220 s(-)(1). Fluorescence titrations of the introduced tryptophans with MgADP or MgATP revealed that both Mg-nucleotide complexes bind to the catalytic site of the highest affinity with K(d)()1 values of less than 1 nM and bind to the site of intermediate affinity with a common K(d)2 value of about 12 nM. The K(d)3 values obtained for the catalytic site of the lowest affinity from titrations with MgADP and MgATP are 25 and 37 microM, respectively. The double mutant hydrolyzes 200 nM ATP with a first-order rate of 1.5 s(-)(1), which is 0.7% of k(cat). Hence, it does not hydrolyze ATP at a significant rate when the catalytic site of intermediate affinity is saturated and the catalytic site of the lowest affinity is minimally occupied. After the addition of stoichiometric MgATP to the alpha(3)(betaM(222)S/Y(345)W)(3)gamma subcomplex, one-third of the tryptophan fluorescence remains quenched after 10 min. The product [(3)H]ADP remains bound when the wild-type and double-mutant subcomplexes hydrolyze substoichiometric [(3)H]ATP. In contrast, (32)P(i) is not retained when the wild-type subcomplex hydrolyzes substoichiometric [gamma-(32)P]ATP. This precludes assessment of the equilibrium at the high-affinity catalytic site when the wild-type TF(1) subcomplex hydrolyzes substoichiometric ATP.

  7. Regulated release of ERdj3 from unfolded proteins by BiP

    PubMed Central

    Jin, Yi; Awad, Walid; Petrova, Kseniya; Hendershot, Linda M

    2008-01-01

    DnaJ proteins often bind to unfolded substrates and recruit their Hsp70 partners. This induces a conformational change in the Hsp70 that stabilizes its binding to substrate. By some unknown mechanism, the DnaJ protein is released. We examined the requirements for the release of ERdj3, a mammalian ER DnaJ, from substrates and found that BiP promoted the release of ERdj3 only in the presence of ATP. Mutations in ERdj3 or BiP that disrupted their interaction interrupted the release of ERdj3. BiP mutants that were defective in any step of the ATPase cycle were also unable to release ERdj3. These results demonstrate that a functional interaction between ERdj3 and BiP, including both a direct interaction and the ability to stimulate BiP's ATPase activity are required to release ERdj3 from substrate and support a model where ERdj3 must recruit BiP and stimulate its high-affinity association with the substrate through activation of ATP hydrolysis to trigger its own release from substrates. On the basis of similarities among DnaJs and Hsp70s, this is likely to be applicable to other Hsp70–DnaJ pairs. PMID:18923428

  8. Structure of the G225P/G226P mutant of mouse 3(17)alpha-hydroxysteroid dehydrogenase (AKR1C21) ternary complex: implications for the binding of inhibitor and substrate.

    PubMed

    Dhagat, Urmi; Endo, Satoshi; Mamiya, Hiroaki; Hara, Akira; El-Kabbani, Ossama

    2009-03-01

    3(17)alpha-Hydroxysteroid dehydrogenase (AKR1C21) is a unique member of the aldo-keto reductase (AKR) superfamily owing to its ability to reduce 17-ketosteroids to 17alpha-hydroxysteroids, as opposed to other members of the AKR family, which can only produce 17beta-hydroxysteroids. In this paper, the crystal structure of a double mutant (G225P/G226P) of AKR1C21 in complex with the coenzyme NADP(+) and the inhibitor hexoestrol refined at 2.1 A resolution is presented. Kinetic analysis and molecular-modelling studies of 17alpha- and 17beta-hydroxysteroid substrates in the active site of AKR1C21 suggested that Gly225 and Gly226 play an important role in determining the substrate stereospecificity of the enzyme. Additionally, the G225P/G226P mutation of the enzyme reduced the affinity (K(m)) for both 3alpha- and 17alpha-hydroxysteroid substrates by up to 160-fold, indicating that these residues are critical for the binding of substrates.

  9. Multifunctional Fe3O4@SiO2-Au Satellite Structured SERS Probe for Charge Selective Detection of Food Dyes.

    PubMed

    Sun, Zhenli; Du, Jingjing; Yan, Li; Chen, Shu; Yang, Zhilin; Jing, Chuanyong

    2016-02-10

    Nanofabrication of multifunctional surface-enhanced Raman scattering (SERS) substrates is strongly desirable but currently remains a challenge. The motivation of this study was to design such a substrate, a versatile core-satellite Fe3O4@SiO2-Au (FA) hetero-nanostructure, and demonstrate its use for charge-selective detection of food dye molecules as an exemplary application. Our experimental results and three-dimensional finite difference time domain (FDTD) simulation suggest that tuning the Au nanoparticle (NP) gap to sub-10 nm, which could be readily accomplished, substantially enhanced the Raman signals. Further layer-by-layer deposition of a charged polyelectrolyte on this magnetic SERS substrate induced active adsorption and selective detection of food dye molecules of opposite charge on the substrates. Molecular dynamics (MD) simulations suggest that the selective SERS enhancement could be attributed to the high affinity and close contact (within a 20 Å range) between the substrate and molecules. Density function theory (DFT) calculations confirm the charge transfer from food dye molecules to Au NPs via the polyelectrolytes. This multifunctional SERS platform provides easy separation and selective detection of charged molecules from complex chemical mixtures.

  10. Influence of substrate modification and C-terminal truncation on the active site structure of substrate-bound heme oxygenase from Neisseriae meningitidis; A 1H NMR study†

    PubMed Central

    Peng, Dungeng; Satterlee, James D.; Ma, Li-Hua; Dallas, Jerry L.; Smith, Kevin M.; Zhang, Xuhong; Sato, Michihiko; La Mar, Gerd N.

    2011-01-01

    Heme oxygenase, HO, from the pathogenic bacterium N. meningitidis, NmHO, which secures host iron, shares many properties with mammalian HOs, but also exhibits some key differences. The crystal structure appears more compact and the crystal-undetected C-terminus interacts with substrate in solution. The unique nature of substrate-protein, specifically pyrrole-I/II-helix-2, peripheral interactions in NmHO are probed by 2D 1H NMR to reveal unique structural features controlling substrate orientation. The thermodynamics of substrate orientational isomerism are mapped for substrates with individual vinyl → methyl → hydrogen substitutions and with enzyme C-terminal deletions. NmHO exhibits significantly stronger orientational preference, reflecting much stronger and selective pyrrole-I/II interactions with the protein matrix, than in mammalian HOs. Thus, replacing bulky vinyls with hydrogens results in a 180° rotation of substrate about the α,γ-meso axis in the active site. A "collapse" of the substrate pocket as substrate size decreases is reflected in movement of helix-2 toward the substrate as indicated by significant and selective increased NOESY cross peak intensity, increase in steric Fe-CN tilt reflected in the orientation of the major magnetic axis, and decrease in steric constraints controlling the rate of aromatic ring reorientation. The active site of NmHO appears "stressed" for native protohemin and its "collapse" upon replacing vinyls by hydrogen leads to a factor ~102 increase in substrate affinity. Interaction of the C-terminus with the active site destabilizes the crystallographic protohemin orientation by ~0.7 kcal/mol, which is consistent with optimizing the His207-Asp27 H-bond. Implications of the active site "stress" for product release are discussed. PMID:21870860

  11. The Evolution of Olfactory Gene Families in Drosophila and the Genomic Basis of chemical-Ecological Adaptation in Drosophila suzukii

    PubMed Central

    Ramasamy, Sukanya; Ometto, Lino; Crava, Cristina M.; Revadi, Santosh; Kaur, Rupinder; Horner, David S.; Pisani, Davide; Dekker, Teun; Anfora, Gianfranco; Rota-Stabelli, Omar

    2016-01-01

    How the evolution of olfactory genes correlates with adaption to new ecological niches is still a debated topic. We explored this issue in Drosophila suzukii, an emerging model that reproduces on fresh fruit rather than in fermenting substrates like most other Drosophila. We first annotated the repertoire of odorant receptors (ORs), odorant binding proteins (OBPs), and antennal ionotropic receptors (aIRs) in the genomes of two strains of D. suzukii and of its close relative Drosophila biarmipes. We then analyzed these genes on the phylogeny of 14 Drosophila species: whereas ORs and OBPs are characterized by higher turnover rates in some lineages including D. suzukii, aIRs are conserved throughout the genus. Drosophila suzukii is further characterized by a non-random distribution of OR turnover on the gene phylogeny, consistent with a change in selective pressures. In D. suzukii, we found duplications and signs of positive selection in ORs with affinity for short-chain esters, and loss of function of ORs with affinity for volatiles produced during fermentation. These receptors—Or85a and Or22a—are characterized by divergent alleles in the European and American genomes, and we hypothesize that they may have been replaced by some of the duplicated ORs in corresponding neurons, a hypothesis reciprocally confirmed by electrophysiological recordings. Our study quantifies the evolution of olfactory genes in Drosophila and reveals an array of genomic events that can be associated with the ecological adaptations of D. suzukii. PMID:27435796

  12. Molecular mechanism and species specificity of TAP inhibition by herpes simplex virus ICP47.

    PubMed Central

    Ahn, K; Meyer, T H; Uebel, S; Sempé, P; Djaballah, H; Yang, Y; Peterson, P A; Früh, K; Tampé, R

    1996-01-01

    The immediate early protein ICP47 of herpes simplex virus (HSV) inhibits the transporter for antigen processing (TAP)-mediated translocation of antigen-derived peptides across the endoplasmic reticulum (ER) membrane. This interference prevents assembly of peptides with class I MHC molecules in the ER and ultimately recognition of HSV-infected cells by cytotoxic T-lymphocytes, potentially leading to immune evasion of the virus. Here, we demonstrate that recombinant, purified ICP47 containing a hexahistidine tag inhibits peptide import into microsomes of insect cells expressing human TAP, whereas inhibition of peptide transport by murine TAP was much less effective. This finding indicates an intrinsic species-specificity of ICP47 and suggests that no additional proteins interacting specifically with either ICP47 or TAP are required for inhibition of peptide transport. Since neither purified nor induced ICP47 inhibited photocrosslinking of 8-azido-ATP to TAP1 and TAP2 it seems that ICP47 does not prevent ATP from binding to TAP. By contrast, peptide binding was completely blocked by ICP47 as shown both by photoaffinity crosslinking of peptides to TAP and peptide binding to microsomes from TAP-transfected insect cells. Competition experiments indicated that ICP47 binds to human TAP with a higher affinity (50 nM) than peptides whereas the affinity to murine TAP was 100-fold lower. Our data suggest that ICP47 prevents peptides from being translocated by blocking their binding to the substrate-binding site of TAP. Images PMID:8670825

  13. A soluble inorganic pyrophosphatase from the cattle tick Rhipicephalus microplus capable of hydrolysing polyphosphates.

    PubMed

    Cruz, C S; Costa, E P; Machado, J A; Silva, J N; Romeiro, N C; Moraes, J; Silva, J R; Fonseca, R N; Vaz, I S; Logullo, C; Campos, E

    2018-04-01

    Polyphosphates have been found in all cell types examined to date and play diverse roles depending on the cell type. In eukaryotic organisms, polyphosphates have been investigated mainly in mammalian cells, and only a few studies have addressed arthropods. Pyrophosphatases have been shown to regulate polyphosphate metabolism. However, these studies were restricted to trypanosomatids. Here we focus on the tick Rhipicephalus microplus, a haematophagous ectoparasite that is highly harmful to cattle. We produced a recombinant R. microplus pyrophosphatase (rRmPPase) with the aim of investigating its kinetic parameters using polyphosphates as substrate. Molecular docking assays of RmPPase with polyphosphates were also carried out. The kinetic and Hill coefficient parameters indicated that rRmPPase has a greater affinity, higher catalytic efficiency and increased cooperativity for sodium phosphate glass type 15 (polyP 15 ) than for sodium tripolyphosphate (polyP 3 ). Through molecular docking, we found that polyP 3 binds close to the Mg 2+ atoms in the catalytic region of the protein, participating in their coordination network, whereas polyP 15 interactions involve negatively charged phosphate groups and basic amino acid residues, such as Lys56, Arg58 and Lys193; polyP 15 has a more favourable theoretical binding affinity than polyP 3 , thus supporting the kinetic data. This study shows, for the first time in arthropods, a pyrophosphatase with polyphosphatase activity, suggesting its participation in polyphosphate metabolism. © 2017 The Royal Entomological Society.

  14. Genomic Instability and Breast Cancer

    DTIC Science & Technology

    2011-01-01

    interaction between CCDC98 and BRCA1 (Kim et al., 2007; Liu et al., 2007; Wang et al., 2007). BRCC36 expressed and purified from insect cells was...Figure 7. (A) An in vitro DUB assay was conducted using K63 ubiquitin chains as substrate and insect cell-expressed BRCC36, the BRCC36/KIAA0157...Tandom Affinity Purification (TAP), Irradiation , Immuno- staining, and Immunoprecipitation—All of these procedures were performed as described

  15. Mass spectrometry-based methods for detection and differentiation of botulinum neurotoxins

    DOEpatents

    Schmidt, Jurgen G [Los Alamos, NM; Boyer, Anne E [Atlanta, GA; Kalb, Suzanne R [Atlanta, GA; Moura, Hercules [Tucker, GA; Barr, John R [Suwannee, GA; Woolfitt, Adrian R [Atlanta, GA

    2009-11-03

    The present invention is directed to a method for detecting the presence of clostridial neurotoxins in a sample by mixing a sample with a peptide that can serve as a substrate for proteolytic activity of a clostridial neurotoxin; and measuring for proteolytic activity of a clostridial neurotoxin by a mass spectroscopy technique. In one embodiment, the peptide can have an affinity tag attached at two or more sites.

  16. Affinity purification of the Arabidopsis 26 S proteasome reveals a diverse array of plant proteolytic complexes.

    PubMed

    Book, Adam J; Gladman, Nicholas P; Lee, Sang-Sook; Scalf, Mark; Smith, Lloyd M; Vierstra, Richard D

    2010-08-13

    Selective proteolysis in plants is largely mediated by the ubiquitin (Ub)/proteasome system in which substrates, marked by the covalent attachment of Ub, are degraded by the 26 S proteasome. The 26 S proteasome is composed of two subparticles, the 20 S core protease (CP) that compartmentalizes the protease active sites and the 19 S regulatory particle that recognizes and translocates appropriate substrates into the CP lumen for breakdown. Here, we describe an affinity method to rapidly purify epitope-tagged 26 S proteasomes intact from Arabidopsis thaliana. In-depth mass spectrometric analyses of preparations generated from young seedlings confirmed that the 2.5-MDa CP-regulatory particle complex is actually a heterogeneous set of particles assembled with paralogous pairs for most subunits. A number of these subunits are modified post-translationally by proteolytic processing, acetylation, and/or ubiquitylation. Several proteasome-associated proteins were also identified that likely assist in complex assembly and regulation. In addition, we detected a particle consisting of the CP capped by the single subunit PA200 activator that may be involved in Ub-independent protein breakdown. Taken together, it appears that a diverse and highly dynamic population of proteasomes is assembled in plants, which may expand the target specificity and functions of intracellular proteolysis.

  17. Affinity Purification of the Arabidopsis 26 S Proteasome Reveals a Diverse Array of Plant Proteolytic Complexes*

    PubMed Central

    Book, Adam J.; Gladman, Nicholas P.; Lee, Sang-Sook; Scalf, Mark; Smith, Lloyd M.; Vierstra, Richard D.

    2010-01-01

    Selective proteolysis in plants is largely mediated by the ubiquitin (Ub)/proteasome system in which substrates, marked by the covalent attachment of Ub, are degraded by the 26 S proteasome. The 26 S proteasome is composed of two subparticles, the 20 S core protease (CP) that compartmentalizes the protease active sites and the 19 S regulatory particle that recognizes and translocates appropriate substrates into the CP lumen for breakdown. Here, we describe an affinity method to rapidly purify epitope-tagged 26 S proteasomes intact from Arabidopsis thaliana. In-depth mass spectrometric analyses of preparations generated from young seedlings confirmed that the 2.5-MDa CP-regulatory particle complex is actually a heterogeneous set of particles assembled with paralogous pairs for most subunits. A number of these subunits are modified post-translationally by proteolytic processing, acetylation, and/or ubiquitylation. Several proteasome-associated proteins were also identified that likely assist in complex assembly and regulation. In addition, we detected a particle consisting of the CP capped by the single subunit PA200 activator that may be involved in Ub-independent protein breakdown. Taken together, it appears that a diverse and highly dynamic population of proteasomes is assembled in plants, which may expand the target specificity and functions of intracellular proteolysis. PMID:20516081

  18. Xeroderma pigmentosum complementation group C protein (XPC) serves as a general sensor of damaged DNA

    PubMed Central

    Shell, Steven M.; Hawkins, Edward K.; Tsai, Miaw-Sheue; Hlaing, Aye Su; Rizzo, Carmelo J.; Chazin, Walter J.

    2013-01-01

    The xeroderma pigmentosum complementation group C protein (XPC) serves as the primary initiating factor in the global genome nucleotide excision repair pathway (GG-NER). Recent reports suggest XPC also stimulates repair of oxidative lesions by base excision repair. However, whether XPC distinguishes among various types of DNA lesions remains unclear. Although the DNA binding properties of XPC have been studied by several groups, there is a lack of consensus over whether XPC discriminates between DNA damaged by lesions associated with NER activity versus those that are not. In this study we report a high-throughput fluorescence anisotropy assay used to measure the DNA binding affinity of XPC for a panel of DNA substrates containing a range of chemical lesions in a common sequence. Our results demonstrate that while XPC displays a preference for binding damaged DNA, the identity of the lesion has little effect on the binding affinity of XPC. Moreover, XPC was equally capable of binding to DNA substrates containing lesions not repaired by GG-NER. Our results support an indirect read-out model for sensing the presence of lesions by human XPC and suggest XPC may act as a general sensor of damaged DNA capable of recognizing DNA containing lesions not repaired by NER. PMID:24051049

  19. Isolation and characterization of a dual function protein from Allium sativum bulbs which exhibits proteolytic and hemagglutinating activities.

    PubMed

    Parisi, Mónica G; Moreno, Silvia; Fernández, Graciela

    2008-04-01

    A dual function protein was isolated from Allium sativum bulbs and was characterized. The protein had a molecular mass of 25-26 kDa under non-reducing conditions, whereas two polypeptide chains of 12.5+/-0.5 kDa were observed under reducing conditions. E-64 and leupeptin inhibited the proteolytic activity of the protein, which exhibited characteristics similar to cysteine peptidase. The enzyme exhibited substrate specificity and hydrolyzed natural substrates such as alpha-casein (K(m): 23.0 microM), azocasein, haemoglobin and gelatin. It also showed a high affinity for synthetic peptides such as Cbz-Ala-Arg-Arg-OMe-beta-Nam (K(m): 55.24 microM, k(cat): 0.92 s(-1)). The cysteine peptidase activity showed a remarkable stability after incubation at moderate temperatures (40-50 degrees C) over a pH range of 5.5-6.5. The N-terminus of the protein displayed a 100% sequence similarity to the sequences of a mannose-binding lectin isolated from garlic bulbs. Moreover, the purified protein was retained in the chromatographic column when Con-A Sepharose affinity chromatography was performed and the protein was able to agglutinate trypsin-treated rabbit red cells. Therefore, our results indicate the presence of an additional cysteine peptidase activity on a lectin previously described.

  20. Apolar Distal Pocket Mutants of Yeast Cytochrome c Peroxidase: Hydrogen Peroxide Reactivity and Cyanide Binding of the TriAla, TriVal, and TriLeu Variants

    PubMed Central

    Bidwai, Anil K.; Meyen, Cassandra; Kilheeney, Heather; Wroblewski, Damian; Vitello, Lidia B.; Erman, James E.

    2012-01-01

    Three yeast cytochrome c peroxidase (CcP) variants with apolar distal heme pockets have been constructed. The CcP variants have Arg48, Trp51, and His52 mutated to either all alanines, CcP(triAla), all valines, CcP(triVal), or all leucines, CcP(triLeu). The triple mutants have detectable enzymatic activity at pH 6 but the activity is less than 0.02% that of wild-type CcP. The activity loss is primarily due to the decreased rate of reaction between the triple mutants and H2O2 compared to wild-type CcP. Spectroscopic properties and cyanide binding characteristics of the triple mutants have been investigated over the pH stability region of CcP, pH 4 to 8. The absorption spectra indicate that the CcP triple mutants have hemes that are predominantly five-coordinate, high-spin at pH 5 and six-coordinate, low-spin at pH 8. Cyanide binding to the triple mutants is biphasic indicating that the triple mutants have two slowly-exchanging conformational states with different cyanide affinities. The binding affinity for cyanide is reduced at least two orders of magnitude in the triple mutants compared to wild-type CcP and the rate of cyanide binding is reduced by four to five orders of magnitude. Correlation of the reaction rates of CcP and 12 distal pocket mutants with H2O2 and HCN suggests that both reactions require ionization of the reactants within the distal heme pocket allowing the anion to bind the heme iron. Distal pocket features that promote substrate ionization (basic residues involved in base-catalyzed substrate ionization or polar residues that can stabilize substrate anions) increase the overall rate of reaction with H2O2 and HCN while features that inhibit substrate ionization slow the reactions. PMID:23022490

  1. Affinity alkylation of the active site of C/sub 21/ steroid side-chain cleavage cytochrome P-450 from neonatal porcine testis: a unique cysteine residue alkylated by 17-(bromoacetoxy)progesterone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onoda, M.; Haniu, M.; Yanagibashi, K.

    1987-01-27

    The affinity alkylating progesterone analogue 17-(bromoacetoxy)progesterone has been used to label the active site of a microsomal cytochrome P-450 enzyme from neonatal pig testis. The enzyme causes removal of the C/sub 20/ and C/sub 21/ side chains from the substrates progesterone and pregnenolone by catalyzing both 17-hydroxylase and C/sub 17,20/-lyase reactions, which produce the corresponding C/sub 1//sup 9/ steroidal precursors of testosterone. The progesterone analogue causes simultaneous inactivation of the two catalytic activities of the enzyme by a first-order kinetic process that obeys saturation kinetics. Progesterone and 17-hydroxyprogesterone each protect the enzyme against inactivation. The progesterone analogue is a competitivemore » inhibitor of the enzyme with K/sub i/ values of 8.4 ..mu..M and 7.8 ..mu..M for progesterone and 17-hydroxyprogesterone, respectively. The enzyme inactivation and kinetic data are consistent with a theory proposing that the analogue and the two substrates compete for the same active site. The radioactive analogue 17-((/sup 14/C)bromoacetoxy)progesterone causes inactivation of the enzyme with incorporation of 1.5-2.2 mol of the analogue per mole of inactivated enzyme. When this experiment is carried out in the presence of a substrate, then 0.9-1.2 mol of radioactive analogue is incorporated per mole of inactivated enzyme. The data suggest that the analogue can bind to two different sites, one of which is related to the catalytic site. Radiolabeled enzyme samples, from reactions of the /sup 14/C-labeled analogue with the enzyme alone or with enzyme in the presence of a substrate, were subjected to amino acid analysis and also in tryptic digestion and peptide mapping.« less

  2. Long-range Electrostatic Complementarity Governs Substrate Recognition by Human Chymotrypsin C, a Key Regulator of Digestive Enzyme Activation*

    PubMed Central

    Batra, Jyotica; Szabó, András; Caulfield, Thomas R.; Soares, Alexei S.; Sahin-Tóth, Miklós; Radisky, Evette S.

    2013-01-01

    Human chymotrypsin C (CTRC) is a pancreatic serine protease that regulates activation and degradation of trypsinogens and procarboxypeptidases by targeting specific cleavage sites within their zymogen precursors. In cleaving these regulatory sites, which are characterized by multiple flanking acidic residues, CTRC shows substrate specificity that is distinct from that of other isoforms of chymotrypsin and elastase. Here, we report the first crystal structure of active CTRC, determined at 1.9-Å resolution, revealing the structural basis for binding specificity. The structure shows human CTRC bound to the small protein protease inhibitor eglin c, which binds in a substrate-like manner filling the S6-S5′ subsites of the substrate binding cleft. Significant binding affinity derives from burial of preferred hydrophobic residues at the P1, P4, and P2′ positions of CTRC, although acidic P2′ residues can also be accommodated by formation of an interfacial salt bridge. Acidic residues may also be specifically accommodated in the P6 position. The most unique structural feature of CTRC is a ring of intense positive electrostatic surface potential surrounding the primarily hydrophobic substrate binding site. Our results indicate that long-range electrostatic attraction toward substrates of concentrated negative charge governs substrate discrimination, which explains CTRC selectivity in regulating active digestive enzyme levels. PMID:23430245

  3. Conformational state interactions provide clues to the pharmacochaperone potential of serotonin transporter partial substrates

    PubMed Central

    Bhat, Shreyas; Hasenhuetl, Peter S.; Kasture, Ameya; El-Kasaby, Ali; Baumann, Michael H.; Blough, Bruce E.; Sucic, Sonja; Sandtner, Walter; Freissmuth, Michael

    2017-01-01

    Point mutations in SLC6 transporters cause misfolding, which can be remedied by pharmacochaperones. The serotonin transporter (SERT/SLC6A4) has a rich pharmacology including inhibitors, releasers (amphetamines, which promote the exchange mode), and more recently, discovered partial substrates. We hypothesized that partial substrates trapped the transporter in one or several states of the transport cycle. This conformational trapping may also be conducive to folding. We selected naphthylpropane-2-amines of the phenethylamine library (PAL) including the partial substrate PAL1045 and its congeners PAL287 and PAL1046. We analyzed their impact on the transport cycle of SERT by biochemical approaches and by electrophysiological recordings; substrate-induced peak currents and steady-state currents monitored the translocation of substrate and co-substrate Na+ across the lipid bilayer and the transport cycle, respectively. These experiments showed that PAL1045 and its congeners bound with different affinities (ranging from nm to μm) to various conformational intermediates of SERT during the transport cycle. Consistent with the working hypothesis, PAL1045 was the most efficacious compound in restoring surface expression and transport activity to the folding-deficient mutant SERT-601PG602-AA. These experiments provide a proof-of-principle for a rational search for pharmacochaperones, which may be useful to restore function to clinically relevant folding-deficient transporter mutants. PMID:28842491

  4. Myoglobin oxygen affinity in aquatic and terrestrial birds and mammals.

    PubMed

    Wright, Traver J; Davis, Randall W

    2015-07-01

    Myoglobin (Mb) is an oxygen binding protein found in vertebrate skeletal muscle, where it facilitates intracellular transport and storage of oxygen. This protein has evolved to suit unique physiological needs in the muscle of diving vertebrates that express Mb at much greater concentrations than their terrestrial counterparts. In this study, we characterized Mb oxygen affinity (P50) from 25 species of aquatic and terrestrial birds and mammals. Among diving species, we tested for correlations between Mb P50 and routine dive duration. Across all species examined, Mb P50 ranged from 2.40 to 4.85 mmHg. The mean P50 of Mb from terrestrial ungulates was 3.72±0.15 mmHg (range 3.70-3.74 mmHg). The P50 of cetaceans was similar to terrestrial ungulates ranging from 3.54 to 3.82 mmHg, with the exception of the melon-headed whale, which had a significantly higher P50 of 4.85 mmHg. Among pinnipeds, the P50 ranged from 3.23 to 3.81 mmHg and showed a trend for higher oxygen affinity in species with longer dive durations. Among diving birds, the P50 ranged from 2.40 to 3.36 mmHg and also showed a trend of higher affinities in species with longer dive durations. In pinnipeds and birds, low Mb P50 was associated with species whose muscles are metabolically active under hypoxic conditions associated with aerobic dives. Given the broad range of potential globin oxygen affinities, Mb P50 from diverse vertebrate species appears constrained within a relatively narrow range. High Mb oxygen affinity within this range may be adaptive for some vertebrates that make prolonged dives. © 2015. Published by The Company of Biologists Ltd.

  5. Temporal Hierarchy of Gene Expression Mediated by Transcription Factor Binding Affinity and Activation Dynamics

    PubMed Central

    Gao, Rong

    2015-01-01

    ABSTRACT Understanding cellular responses to environmental stimuli requires not only the knowledge of specific regulatory components but also the quantitative characterization of the magnitude and timing of regulatory events. The two-component system is one of the major prokaryotic signaling schemes and is the focus of extensive interest in quantitative modeling and investigation of signaling dynamics. Here we report how the binding affinity of the PhoB two-component response regulator (RR) to target promoters impacts the level and timing of expression of PhoB-regulated genes. Information content has often been used to assess the degree of conservation for transcription factor (TF)-binding sites. We show that increasing the information content of PhoB-binding sites in designed phoA promoters increased the binding affinity and that the binding affinity and concentration of phosphorylated PhoB (PhoB~P) together dictate the level and timing of expression of phoA promoter variants. For various PhoB-regulated promoters with distinct promoter architectures, expression levels appear not to be correlated with TF-binding affinities, in contrast to the intuitive and oversimplified assumption that promoters with higher affinity for a TF tend to have higher expression levels. However, the expression timing of the core set of PhoB-regulated genes correlates well with the binding affinity of PhoB~P to individual promoters and the temporal hierarchy of gene expression appears to be related to the function of gene products during the phosphate starvation response. Modulation of the information content and binding affinity of TF-binding sites may be a common strategy for temporal programming of the expression profile of RR-regulated genes. PMID:26015501

  6. Evaluation of chemical fluorescent dyes as a protein conjugation partner for live cell imaging.

    PubMed

    Hayashi-Takanaka, Yoko; Stasevich, Timothy J; Kurumizaka, Hitoshi; Nozaki, Naohito; Kimura, Hiroshi

    2014-01-01

    To optimize live cell fluorescence imaging, the choice of fluorescent substrate is a critical factor. Although genetically encoded fluorescent proteins have been used widely, chemical fluorescent dyes are still useful when conjugated to proteins or ligands. However, little information is available for the suitability of different fluorescent dyes for live imaging. We here systematically analyzed the property of a number of commercial fluorescent dyes when conjugated with antigen-binding (Fab) fragments directed against specific histone modifications, in particular, phosphorylated H3S28 (H3S28ph) and acetylated H3K9 (H3K9ac). These Fab fragments were conjugated with a fluorescent dye and loaded into living HeLa cells. H3S28ph-specific Fab fragments were expected to be enriched in condensed chromosomes, as H3S28 is phosphorylated during mitosis. However, the degree of Fab fragment enrichment on mitotic chromosomes varied depending on the conjugated dye. In general, green fluorescent dyes showed higher enrichment, compared to red and far-red fluorescent dyes, even when dye:protein conjugation ratios were similar. These differences are partly explained by an altered affinity of Fab fragment after dye-conjugation; some dyes have less effect on the affinity, while others can affect it more. Moreover, red and far-red fluorescent dyes tended to form aggregates in the cytoplasm. Similar results were observed when H3K9ac-specific Fab fragments were used, suggesting that the properties of each dye affect different Fab fragments similarly. According to our analysis, conjugation with green fluorescent dyes, like Alexa Fluor 488 and Dylight 488, has the least effect on Fab affinity and is the best for live cell imaging, although these dyes are less photostable than red fluorescent dyes. When multicolor imaging is required, we recommend the following dye combinations for optimal results: Alexa Fluor 488 (green), Cy3 (red), and Cy5 or CF640 (far-red).

  7. The Role of Human Cytochrome P450 Enzymes in the Formation of 2-Hydroxymetronidazole: CYP2A6 is the High Affinity (Low Km) Catalyst

    PubMed Central

    Cohen-Wolkowiez, Michael; Sampson, Mario R.; Kearns, Gregory L.

    2013-01-01

    Despite metronidazole’s widespread clinical use since the 1960s, the specific enzymes involved in its biotransformation have not been previously identified. Hence, in vitro studies were conducted to identify and characterize the cytochrome P450 enzymes involved in the formation of the major metabolite, 2-hydroxymetronidazole. Formation of 2-hydroxymetronidazole in human liver microsomes was consistent with biphasic, Michaelis-Menten kinetics. Although several cDNA-expressed P450 enzymes catalyzed 2-hydroxymetronidazole formation at a supratherapeutic concentration of metronidazole (2000 μM), at a “therapeutic concentration” of 100 μM only CYPs 2A6, 3A4, 3A5, and 3A7 catalyzed metronidazole 2-hydroxylation at rates substantially greater than control vector, and CYP2A6 catalyzed 2-hydroxymetronidazole formation at rates 6-fold higher than the next most active enzyme. Kinetic studies with these recombinant enzymes revealed that CYP2A6 has a Km = 289 μM which is comparable to the Km for the high-affinity (low-Km) enzyme in human liver microsomes, whereas the Km values for the CYP3A enzymes corresponded with the low-affinity (high-Km) component. The sample-to-sample variation in 2-hydroxymetronidazole formation correlated significantly with CYP2A6 activity (r ≥ 0.970, P < 0.001) at substrate concentrations of 100 and 300 μM. Selective chemical inhibitors of CYP2A6 inhibited metronidazole 2-hydroxylation in a concentration-dependent manner and inhibitory antibodies against CYP2A6 virtually eliminated metronidazole 2-hydroxylation (>99%). Chemical and antibody inhibitors of other P450 enzymes had little or no effect on metronidazole 2-hydroxylation. These results suggest that CYP2A6 is the primary catalyst responsible for the 2-hydroxylation of metronidazole, a reaction that may function as a marker of CYP2A6 activity both in vitro and in vivo. PMID:23813797

  8. Fanconi Anemia Complementation Group A (FANCA) Protein Has Intrinsic Affinity for Nucleic Acids with Preference for Single-stranded Forms*

    PubMed Central

    Yuan, Fenghua; Qian, Liangyue; Zhao, Xinliang; Liu, Jesse Y.; Song, Limin; D'Urso, Gennaro; Jain, Chaitanya; Zhang, Yanbin

    2012-01-01

    The Fanconi anemia complementation group A (FANCA) gene is one of 15 disease-causing genes and has been found to be mutated in ∼60% of Fanconi anemia patients. Using purified protein, we report that human FANCA has intrinsic affinity for nucleic acids. FANCA binds to both single-stranded (ssDNA) and double-stranded (dsDNA) DNAs; however, its affinity for ssDNA is significantly higher than for dsDNA in an electrophoretic mobility shift assay. FANCA also binds to RNA with an intriguingly higher affinity than its DNA counterpart. FANCA requires a certain length of nucleic acids for optimal binding. Using DNA and RNA ladders, we determined that the minimum number of nucleotides required for FANCA recognition is ∼30 for both DNA and RNA. By testing the affinity between FANCA and a variety of DNA structures, we found that a 5′-flap or 5′-tail on DNA facilitates its interaction with FANCA. A patient-derived FANCA truncation mutant (Q772X) has diminished affinity for both DNA and RNA. In contrast, the complementing C-terminal fragment of Q772X, C772–1455, retains the differentiated nucleic acid-binding activity (RNA > ssDNA > dsDNA), indicating that the nucleic acid-binding domain of FANCA is located primarily at its C terminus, where most disease-causing mutations are found. PMID:22194614

  9. Fanconi anemia complementation group A (FANCA) protein has intrinsic affinity for nucleic acids with preference for single-stranded forms.

    PubMed

    Yuan, Fenghua; Qian, Liangyue; Zhao, Xinliang; Liu, Jesse Y; Song, Limin; D'Urso, Gennaro; Jain, Chaitanya; Zhang, Yanbin

    2012-02-10

    The Fanconi anemia complementation group A (FANCA) gene is one of 15 disease-causing genes and has been found to be mutated in ∼60% of Fanconi anemia patients. Using purified protein, we report that human FANCA has intrinsic affinity for nucleic acids. FANCA binds to both single-stranded (ssDNA) and double-stranded (dsDNA) DNAs; however, its affinity for ssDNA is significantly higher than for dsDNA in an electrophoretic mobility shift assay. FANCA also binds to RNA with an intriguingly higher affinity than its DNA counterpart. FANCA requires a certain length of nucleic acids for optimal binding. Using DNA and RNA ladders, we determined that the minimum number of nucleotides required for FANCA recognition is ∼30 for both DNA and RNA. By testing the affinity between FANCA and a variety of DNA structures, we found that a 5'-flap or 5'-tail on DNA facilitates its interaction with FANCA. A patient-derived FANCA truncation mutant (Q772X) has diminished affinity for both DNA and RNA. In contrast, the complementing C-terminal fragment of Q772X, C772-1455, retains the differentiated nucleic acid-binding activity (RNA > ssDNA > dsDNA), indicating that the nucleic acid-binding domain of FANCA is located primarily at its C terminus, where most disease-causing mutations are found.

  10. Dopamine receptor contribution to the action of PCP, LSD and ketamine psychotomimetics.

    PubMed

    Seeman, P; Ko, F; Tallerico, T

    2005-09-01

    Although phencyclidine and ketamine are used to model a hypoglutamate theory of schizophrenia, their selectivity for NMDA receptors has been questioned. To determine the affinities of phencyclidine, ketamine, dizocilpine and LSD for the functional high-affinity state of the dopamine D2 receptor, D2High, their dissociation constants (Ki) were obtained on [3H]domperidone binding to human cloned dopamine D2 receptors. Phencyclidine had a high affinity for D2High with a Ki of 2.7 nM, in contrast to its low affinity for the NMDA receptor, with a Ki of 313 nM, as labeled by [3H]dizocilpine on rat striatal tissue. Ketamine also had a high affinity for D2High with a Ki of 55 nM, an affinity higher than its 3100 nM Ki for the NMDA sites. Dizocilpine had a Ki of 0.3 nM at D2High, but a Kd of 1.8 nM at the NMDA receptor. LSD had a Ki of 2 nM at D2High. Because the psychotomimetics had higher potency at D2High than at the NMDA site, the psychotomimetic action of these drugs must have a major contribution from D2 agonism. Because these drugs have a combined action on both dopamine receptors and NMDA receptors, these drugs, when given in vivo, test a combined hyperdopamine and hypoglutamate theory of psychosis.

  11. Membrane Modulates Affinity for Calcium Ion to Create an Apparent Cooperative Binding Response by Annexin a5

    PubMed Central

    Gauer, Jacob W.; Knutson, Kristofer J.; Jaworski, Samantha R.; Rice, Anne M.; Rannikko, Anika M.; Lentz, Barry R.; Hinderliter, Anne

    2013-01-01

    Isothermal titration calorimetry was used to characterize the binding of calcium ion (Ca2+) and phospholipid to the peripheral membrane-binding protein annexin a5. The phospholipid was a binary mixture of a neutral and an acidic phospholipid, specifically phosphatidylcholine and phosphatidylserine in the form of large unilamellar vesicles. To stringently define the mode of binding, a global fit of data collected in the presence and absence of membrane concentrations exceeding protein saturation was performed. A partition function defined the contribution of all heat-evolving or heat-absorbing binding states. We find that annexin a5 binds Ca2+ in solution according to a simple independent-site model (solution-state affinity). In the presence of phosphatidylserine-containing liposomes, binding of Ca2+ differentiates into two classes of sites, both of which have higher affinity compared with the solution-state affinity. As in the solution-state scenario, the sites within each class were described with an independent-site model. Transitioning from a solution state with lower Ca2+ affinity to a membrane-associated, higher Ca2+ affinity state, results in cooperative binding. We discuss how weak membrane association of annexin a5 prior to Ca2+ influx is the basis for the cooperative response of annexin a5 toward Ca2+, and the role of membrane organization in this response. PMID:23746516

  12. Exploring high-affinity binding properties of octamer peptides by principal component analysis of tetramer peptides.

    PubMed

    Kume, Akiko; Kawai, Shun; Kato, Ryuji; Iwata, Shinmei; Shimizu, Kazunori; Honda, Hiroyuki

    2017-02-01

    To investigate the binding properties of a peptide sequence, we conducted principal component analysis (PCA) of the physicochemical features of a tetramer peptide library comprised of 512 peptides, and the variables were reduced to two principal components. We selected IL-2 and IgG as model proteins and the binding affinity to these proteins was assayed using the 512 peptides mentioned above. PCA of binding affinity data showed that 16 and 18 variables were suitable for localizing IL-2 and IgG high-affinity binding peptides, respectively, into a restricted region of the PCA plot. We then investigated whether the binding affinity of octamer peptide libraries could be predicted using the identified region in the tetramer PCA. The results show that octamer high-affinity binding peptides were also concentrated in the tetramer high-affinity binding region of both IL-2 and IgG. The average fluorescence intensity of high-affinity binding peptides was 3.3- and 2.1-fold higher than that of low-affinity binding peptides for IL-2 and IgG, respectively. We conclude that PCA may be used to identify octamer peptides with high- or low-affinity binding properties from data from a tetramer peptide library. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Inhibition of ferric ion to oxalate oxidase shed light on the substrate binding site.

    PubMed

    Pang, Yu; Lan, Wanjun; Huang, Xuelei; Zuo, Guanke; Liu, Hui; Zhang, Jingyan

    2015-10-01

    Oxalate oxidase (OxOx), a well known enzyme catalyzes the cleavage of oxalate to carbon dioxide with reduction of dioxygen to hydrogen peroxide, however its catalytic process is not well understood. To define the substrate binding site, interaction of Fe(3+) ions with OxOx was systemically investigated using biochemical method, circular dichrosim spectroscopy, microscale thermophoresis, and computer modeling. We demonstrated that Fe(3+) is a non-competitive inhibitor with a milder binding affinity to OxOx, and the secondary structure of the OxOx was slightly altered upon its binding. On the basis of the structural properties of the OxOx and its interaction with Fe(3+) ions, two residue clusters of OxOx were assigned as potential Fe(3+) binding sites, the mechanism of the inhibition of Fe(3+) was delineated. Importantly, the residues that interact with Fe(3+) ions are involved in the substrate orienting based on computer docking. Consequently, the interaction of OxOx with Fe(3+) highlights insight into substrate binding site in OxOx.

  14. Classical Swine Fever Virus Glycoprotein Erns Is an Endoribonuclease with an Unusual Base Specificity

    PubMed Central

    Hausmann, Yvonne; Roman-Sosa, Gleyder; Thiel, Heinz-Jürgen; Rümenapf, Till

    2004-01-01

    The glycoprotein Erns of pestiviruses is a virion-associated and -secreted RNase that is involved in virulence. The requirements at the cleavage site in heteropolymeric RNA substrates were studied for Erns. Limited digestion of heteropolymeric RNA substrates indicated a cleavage 5′ of uridine residues irrespective of the preceding nucleotide (Np/U). To further study specificity radiolabeled RNA, molecules of 45 to 56 nucleotides in length were synthesized that contained no or a single Np/U cleavage site. Cleavage was only observed in substrates containing an ApU, CpU, GpU, or UpU dinucleotide and occurred in two steps, an initial NpU-specific and a consecutive unspecific degradation. The NpU-specific cleavage was resistant to 7 M urea while the second-order cleavage was sensitive to denaturation. Kinetic analyses revealed that Erns is a highly active endoribonuclease (kcat/Km = 2 × 106 to 10 × 106 M−1 s−1) with a strong affinity to NpU containing single-stranded RNA substrates (Km = 85 to 260 nM). PMID:15113930

  15. Novel Substrate-Based Inhibitors of Human Glutamate Carboxypeptidase II with Enhanced Lipophilicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plechanovová, Anna; Byun, Youngjoo; Alquicer, Glenda

    2012-10-09

    Virtually all low molecular weight inhibitors of human glutamate carboxypeptidase II (GCPII) are highly polar compounds that have limited use in settings where more lipophilic molecules are desired. Here we report the identification and characterization of GCPII inhibitors with enhanced liphophilicity that are derived from a series of newly identified dipeptidic GCPII substrates featuring nonpolar aliphatic side chains at the C-terminus. To analyze the interactions governing the substrate recognition by GCPII, we determined crystal structures of the inactive GCPII(E424A) mutant in complex with selected dipeptides and complemented the structural data with quantum mechanics/molecular mechanics calculations. Results reveal the importance ofmore » nonpolar interactions governing GCPII affinity toward novel substrates as well as formerly unnoticed plasticity of the S1' specificity pocket. On the basis of those data, we designed, synthesized, and evaluated a series of novel GCPII inhibitors with enhanced lipophilicity, with the best candidates having low nanomolar inhibition constants and clogD > -0.3. Our findings offer new insights into the design of more lipophilic inhibitors targeting GCPII.« less

  16. SERS as analytical tool for detection of bacteria

    NASA Astrophysics Data System (ADS)

    Cialla, Dana; Rösch, Petra; Möller, Robert; Popp, Jürgen

    2007-07-01

    The detection of single bacteria should be improved by lowering the acquisition time via the application of SERS (surface enhanced Raman spectroscopy). Nano structured colloids or surfaces consisting of gold or silver can be used as SERS active substrates. However, for biological applications mostly gold is used as SERS active substrate since silver is toxic for bacterial cells. Furthermore, the application of gold as a SERS-active substrate allows the usage of Raman excitation wavelengths in the red part of the electromagnetic spectrum. For the SERS investigations on bacteria different colloids (purchased and self prepared, preaggregated and non-aggregated) are chosen as SERS active substrates. The application of different gold colloids under gently mixing conditions to prevent the bacterial damage allowed the recording of reproducible SERS spectra of bacteria. The SERS spectra of B. pumilus are dominated by contributions of ingredients of the outer cell wall, e.g. the peptidoglycan layer. SEM images of the coated bacteria demonstrate the incomplete adsorption most probably due to variations within the binding affinities between different outer cell components and the gold colloids.

  17. Fixation of Oligosaccharides to a Surface May Increase the Susceptibility to Human Parainfluenza Virus 1, 2, or 3 Hemagglutinin-Neuraminidase▿†

    PubMed Central

    Tappert, Mary M.; Smith, David F.; Air, Gillian M.

    2011-01-01

    The hemagglutinin-neuraminidase (HN) protein of human parainfluenza viruses (hPIVs) both binds (H) and cleaves (N) oligosaccharides that contain N-acetylneuraminic acid (Neu5Ac). H is thought to correspond to receptor binding and N to receptor-destroying activity. At present, N′s role in infection remains unclear: does it destroy only receptors, or are there other targets? We previously demonstrated that hPIV1 and 3 HNs bind to oligosaccharides containing the motif Neu5Acα2-3Galβ1-4GlcNAc (M. Amonsen, D. F. Smith, R. D. Cummings, and G. M. Air, J. Virol. 81:8341–8345, 2007). In the present study, we tested the binding specificity of hPIV2 on the Consortium for Functional Glycomics' glycan array and found that hPIV2 binds to oligosaccharides containing the same motif. We determined the specificities of N on red blood cells, soluble small-molecule and glycoprotein substrates, and the glycan array and compared them to the specificities of H. hPIV2 and -3, but not hPIV1, cleaved their ligands on red blood cells. hPIV1, -2, and -3 cleaved their NeuAcα2-3 ligands on the glycan array; hPIV2 and -3 also cleaved NeuAcα2-6 ligands bound by influenza A virus. While all three HNs exhibited similar affinities for all cleavable soluble substrates, their activities were 5- to 10-fold higher on small molecules than on glycoproteins. In addition, some soluble glycoproteins were not cleaved, despite containing oligosaccharides that were cleaved on the glycan array. We conclude that the susceptibility of an oligosaccharide substrate to N increases when the substrate is fixed to a surface. These findings suggest that HN may undergo a conformational change that activates N upon receptor binding at a cell surface. PMID:21917945

  18. Does Nature and Persistence of Substrate at a Mesohabitat Scale Matter for Chironomidae Assemblages? a Study of Two Perennial Mountain Streams in Patagonia, Argentina

    PubMed Central

    Epele, Luis Beltrán; Miserendino, María Laura; Brand, Cecilia

    2012-01-01

    Chironomid substrate—specific associations regarding the nature (organic—inorganic) and stability (stable—unstable) of different habitats were investigated at two low order Patagonian streams, during high and low water periods. Nant y Fall and Glyn rivers were visited twice (October 2007 and March 2008) and seven different habitat types were identified. A total of 60 samples were collected using a Surber sampler (0.09 m -2 and 250 µm) and a set of 23 environmental descriptors including physicochemical parameters and different fractions of particulate organic matter were assessed. 35 Chironomidae taxa were recorded with Orthocladiinae (20), Chironominae (7), and Podonominae (4) being the most well—represented subfamilies. Paratrichocladius sp. 1, Parapsectrocladius sp. 2, Parametriocnemus sp. 1, Pseudochironomus sp., and Rheotanytarsus sp. were the most abundant taxa. According to the relative preference index, at least 14 taxa showed strong affinity for a particular substrate. The structurally complex macrophyte Myriophyllum quitense supported 11 taxa compared with only five taxa found on the less complex Isoetes savatieri. Generally, stable substrates (boulders, cobbles, and rooted plants) supported significantly higher chironomids richness, abundance, and diversity than unstable ones (gravel—sand). Canonical correspondence analysis revealed that detritus (leaves, seeds, and biomass), macrophyte biomass, and secondarily hydraulic variables had high explanatory power on chironomids species composition and structure. This work suggests that more complex substrates showing persistence in the temporal dimension supported a diverse array of chironomids, meaning that the maintenance of natural habitat heterogeneity is essential for the community. Land—use practices having significant effects on ecological stream attributes such as increased turbidity, sediment deposition, and runoff patterns will alter assemblages. Understanding environmental associations of the Chironomidae assemblage at the habitat scale is significant for conservation purposes and for the management of low order streams in Patagonia. PMID:22947060

  19. Partially reduced graphene oxide-gold nanorods composite based bioelectrode of improved sensing performance.

    PubMed

    Nirala, Narsingh R; Abraham, Shiju; Kumar, Vinod; Pandey, Shobhit A; Yadav, Umakant; Srivastava, Monika; Srivastava, S K; Singh, Vidya Nand; Kayastha, Arvind M; Srivastava, Anchal; Saxena, Preeti S

    2015-11-01

    The present work proposes partially reduced graphene oxide-gold nanorods supported by chitosan (CH-prGO-AuNRs) as a potential bioelectrode material for enhanced glucose sensing. Developed on ITO substrate by immobilizing glucose oxidase on CH-prGO-AuNRs composite, these CH-prGO-AuNRs/ITO bioelectrodes demonstrate high sensitivity of 3.2 µA/(mg/dL)/cm(2) and linear range of 25-200 mg/dL with an ability to detect as low as 14.5 mg/dL. Further, these CH-prGO-AuNRs/ITO based electrodes attest synergistiacally enhanced sensing properties when compared to simple graphene oxide based CH-GO/ITO electrode. This is evident from one order higher electron transfer rate constant (Ks) value in case of CH-prGO-AuNRs modified electrode (12.4×10(-2) cm/s), in contrast to CH-GO/ITO electrode (6×10(-3) cm/s). Additionally, very low Km value [15.4 mg/dL(0.85 mM)] ensures better binding affinity of enzyme to substrate which is desirable for good biosensor stability and resistance to environmental interferences. Hence, with better loading capacity, kinetics and stability, the proposed CH-prGO-AuNRs composite shows tremendous potential to detect several bio-analytes in the coming future. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. A young root-specific gene (ArMY2) from horseradish encoding a MYR II myrosinase with kinetic preference for the root-specific glucosinolate gluconasturtiin.

    PubMed

    Loebers, Andreas; Müller-Uri, Frieder; Kreis, Wolfgang

    2014-03-01

    The pungent taste of horseradish is caused by isothiocyanates which are released from glucosinolates by myrosinases. These enzymes are encoded by genes belonging to one of two subfamilies, termed MYR I and MYR II, respectively. A MYR II-type myrosinase gene was identified for the first time in horseradish. The gene termed ArMY2 was only expressed in young roots. A full-length cDNA encoding a myrosinase termed ArMy2 was isolated and heterologously expressed in Pichia pastoris. The recombinant His-tagged enzyme was characterized biochemically. Substrate affinity was 5 times higher towards gluconasturtiin than towards sinigrin. Gluconasturtiin was found to be the most abundant glucosinolate in young horseradish roots while sinigrin dominated in storage roots and leaves. This indicates that a specialized glucosinolate-myrosinase defense system might be active in young roots. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Fabrication of optically transparent chitin nanocomposites

    NASA Astrophysics Data System (ADS)

    Shams, M. Iftekhar; Ifuku, Shinsuke; Nogi, Masaya; Oku, Takeshi; Yano, Hiroyuki

    2011-02-01

    This paper demonstrates the preparation of chitin nanofibers from crab shells using a simple mechanical treatment. The nanofibers are small enough to retain the transparency of neat acrylic resin. Possessing hydroxyl and amine/ N-acetyl functionalities, water suspension of chitin nanofibers was vacuum-filtered 9 times faster than cellulose nanofibers to prepare a nanofiber sheet of 90 mm in diameter. This is a prominent advantage of chitin nanofibers over cellulose nanofibers in terms of commercial application. Interestingly, chitin acrylic resin films exhibited much higher transparency than cellulose acrylic resin films owing to the close affinity between less hydrophilic chitin and hydrophobic resin. Furthermore, the incorporation of chitin nanofibers contributes to the significant improvement of the thermal expansion and mechanical properties of the neat acrylic resin. The properties of high light transmittance and low thermal expansion make chitin nanocomposites promising candidates for the substrate in a continuous roll-to-roll process in the manufacturing of various optoelectronic devices such as flat panel displays, bendable displays, and solar cells.

  2. Purification and characterization of cinnamyl alcohol-NADPH-dehydrogenase from the leaf tissues of a basin mangrove Lumnitzera racemosa Willd.

    PubMed

    Murugan, K; Arunkumar, N S; Mohankumar, C

    2004-01-01

    Cinnamyl alcohol-NADPH-dehydrogenase (CAD), the marker enzyme of lignin biosynthesis was purified from the leaf tissues of a basin mangrove Lumnitzera racemosa by ammonium sulphate precipitation, followed by anion-exchange, gel filtration and affinity chromatography. The molecular mass of the CAD enzyme was determined as 89 kDa, by size elution chromatography. SDS-PAGE of CAD revealed two closely associated bands of 45 kDa and 42 kDa as heterogenous subunits. The optimum pH of CAD was found to be 4.0. Km for the substrates cinnamaldehyde, coniferaldehyde and sinapaldehyde was determined. Cinnamaldehyde showed higher Km value than sinapaldehyde and coniferaldehyde. The correlation of activity of CAD with the amount of lignin was found less significant in L. racemosa, compared to plant species of other habitats viz., mesophytes, xerophytes and hydrophytes, suggesting that CAD possibly exhibits physiological suppression due to the saline habitat of the plant.

  3. Discovery of PF-06928215 as a high affinity inhibitor of cGAS enabled by a novel fluorescence polarization assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Justin; Brault, Amy; Vincent, Fabien

    Cyclic GMP-AMP synthase (cGAS) initiates the innate immune system in response to cytosolic dsDNA. After binding and activation from dsDNA, cGAS uses ATP and GTP to synthesize 2', 3' -cGAMP (cGAMP), a cyclic dinucleotide second messenger with mixed 2'-5' and 3'-5' phosphodiester bonds. Inappropriate stimulation of cGAS has been implicated in autoimmune disease such as systemic lupus erythematosus, thus inhibition of cGAS may be of therapeutic benefit in some diseases; however, the size and polarity of the cGAS active site makes it a challenging target for the development of conventional substrate-competitive inhibitors. We report here the development of a highmore » affinity (K D = 200 nM) inhibitor from a low affinity fragment hit with supporting biochemical and structural data showing these molecules bind to the cGAS active site. We also report a new high throughput cGAS fluorescence polarization (FP)-based assay to enable the rapid identification and optimization of cGAS inhibitors. This FP assay uses Cy5-labelled cGAMP in combination with a novel high affinity monoclonal antibody that specifically recognizes cGAMP with no cross reactivity to cAMP, cGMP, ATP, or GTP. Given its role in the innate immune response, cGAS is a promising therapeutic target for autoinflammatory disease. Our results demonstrate its druggability, provide a high affinity tool compound, and establish a high throughput assay for the identification of next generation cGAS inhibitors.« less

  4. Impaired binding affinity of electronegative low-density lipoprotein (LDL) to the LDL receptor is related to nonesterified fatty acids and lysophosphatidylcholine content.

    PubMed

    Benítez, Sonia; Villegas, Virtudes; Bancells, Cristina; Jorba, Oscar; González-Sastre, Francesc; Ordóñez-Llanos, Jordi; Sánchez-Quesada, José Luis

    2004-12-21

    The binding characteristics of electropositive [LDL(+)] and electronegative LDL [LDL(-)] subfractions to the LDL receptor (LDLr) were studied. Saturation kinetic studies in cultured human fibroblasts demonstrated that LDL(-) from normolipemic (NL) and familial hypercholesterolemic (FH) subjects had lower binding affinity than their respective LDL(+) fractions (P < 0.05), as indicated by higher dissociation constant (K(D)) values. FH-LDL(+) also showed lower binding affinity (P < 0.05) than NL-LDL(+) (K(D), sorted from lower to higher affinity: NL-LDL(-), 33.0 +/- 24.4 nM; FH-LDL(-), 24.4 +/- 7.1 nM; FH-LDL(+), 16.6 +/- 7.0 nM; NL-LDL(+), 10.9 +/- 5.7 nM). These results were confirmed by binding displacement studies. The impaired affinity binding of LDL(-) could be attributed to altered secondary and tertiary structure of apolipoprotein B, but circular dichroism (CD) and tryptophan fluorescence (TrpF) studies revealed no structural differences between LDL(+) and LDL(-). To ascertain the role of increased nonesterified fatty acids (NEFA) and lysophosphatidylcholine (LPC) content in LDL(-), LDL(+) was enriched in NEFA or hydrolyzed with secretory phospholipase A(2). Modification of LDL gradually decreased the affinity to LDLr in parallel to the increasing content of NEFA and/or LPC. Modified LDLs with a NEFA content similar to that of LDL(-) displayed similar affinity. ApoB structure studies of modified LDLs by CD and TrpF showed no difference compared to LDL(+) or LDL(-). Our results indicate that NEFA loading or phospholipase A(2) lipolysis of LDL leads to changes that affect the affinity of LDL to LDLr with no major effect on apoB structure. Impaired affinity to the LDLr shown by LDL(-) is related to NEFA and/or LPC content rather than to structural differences in apolipoprotein B.

  5. Bean peptides have higher in silico binding affinities than ezetimibe for the N-terminal domain of cholesterol receptor Niemann-Pick C1 Like-1.

    PubMed

    Real Hernandez, Luis M; Gonzalez de Mejia, Elvira

    2017-04-01

    Niemann-Pick C1 like-1 (NPC1L1) mediates cholesterol absorption at the apical membrane of enterocytes through a yet unknown mechanism. Bean, pea, and lentil proteins are naturally hydrolyzed during digestion to produce peptides. The potential for pulse peptides to have high binding affinities for NPC1L1 has not been determined. In this study , in silico binding affinities and interactions were determined between the N-terminal domain of NPC1L1 and 14 pulse peptides (5≥ amino acids) derived through pepsin-pancreatin digestion. Peptides were docked in triplicate to the N-terminal domain using docking program AutoDock Vina, and results were compared to those of ezetimibe, a prescribed NPC1L1 inhibitor. Three black bean peptides (-7.2 to -7.0kcal/mol) and the cowpea bean dipeptide Lys-Asp (-7.0kcal/mol) had higher binding affinities than ezetimibe (-6.6kcal/mol) for the N-terminal domain of NPC1L1. Lentil and pea peptides studied did not have high binding affinities. The common bean peptide Tyr-Ala-Ala-Ala-Thr (-7.2kcal/mol), which can be produced from black or navy bean proteins, had the highest binding affinity. Ezetimibe and peptides with high binding affinities for the N-terminal domain are expected to interact at different locations of the N-terminal domain. All high affinity black bean peptides are expected to have van der Waals interactions with SER130, PHE136, and LEU236 and a conventional hydrogen bond with GLU238 of NPC1L1. Due to their high affinity for the N-terminal domain of NPC1L1, black and cowpea bean peptides produced in the digestive track have the potential to disrupt interactions between NPC1L1 and membrane proteins that lead to cholesterol absorption. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Characterization of a uronate dehydrogenase from Thermobispora bispora for production of glucaric acid from hemicellulose substrate.

    PubMed

    Li, Yaxian; Xue, Yemin; Cao, Zhigang; Zhou, Tao; Alnadari, Fawze

    2018-06-23

    A thermostable uronate dehydrogenase Tb-UDH from Thermobispora bispora was over-expressed in Escherichia coli using the T7 polymerase expression system. The Tb-UDH was purified by metal affinity chromatography, and gave a single band on SDS-PAGE. The maximum activity on glucuronic acid was found at 60 °C and pH 7.0. The purified enzyme retained over 58% of its activity after holding a pH ranging from 7.0 to 7.5 for 1 h at 60 °C. The K m and V max values of the purified Tb-UDH for Glucuronic acid (GluUA) were 0.165 mM and 117.7 U mg -1 , respectively, those for galacturonic acid (GalUA) were 0.115 mM and 104.2 U mg -1 , respectively, and those for NAD + were 0.120 mM and 133.3 U mg -1 , respectively; the turnover number (k cat ) with GluUA as a substrate was higher than that with GalUA; however, the Michaelis constant (K m ) for GalUA was lower than that for GluUA. After 60 min of incubation at 50 °C, Tb-UDH exhibited a conversion ratio for glucuronic acid to the glucaric acid of 84% on chemical reagent and 81.3% on hydrolysates from breech xylans formed by xylanase and α-glucuronidase. This work shows that biocatalytic routes have great potential for the conversion of hemicellulose substrate into value-added products derived from renewable biomass. TOC GRAPHIC: (A) The structure of the xylan is described and the site of action of the xylan degrading enzyme is indicated. (B) The effect of substrate concentration on recombinant Tb-UDH activity when galacturonic acid was used as substrate. (C) SDS-PAGE analysis of E. coli BL21 (DE3) harboring pET-20b(+) and pET-20b-Tb-UDH. (D) Oxidative conversion of glucuronic acid from a beechwood xylan to glucaric acid.

  7. Competitive binding effects on surface-enhanced Raman scattering of peptide molecules

    NASA Astrophysics Data System (ADS)

    Seballos, Leo; Richards, Nicole; Stevens, Daniel J.; Patel, Mira; Kapitzky, Laura; Lokey, Scott; Millhauser, Glenn; Zhang, Jin Z.

    2007-10-01

    Surface enhanced Raman scattering (SERS) has been conducted on tryptophan (W), proline (P) and tyrosine (Y) containing peptides that include W-P-Y, Y-P-W, W-P-P-P-Y, Y-P-P-P-W, W-P-P-P-P-P-Y, and Y-P-P-P-P-P-W to gain insight into molecular binding behavior on a metal substrate to eventually apply in protein SERS detection. The peptides are shown to bind through the molecule's carboxylic end, but the strong affinity of the tryptophan residue to the substrate surface, in conjunction with its large polarizability, dominates each molecule's SERS signal with the strong presence of its ring modes in all samples. These results are important for understanding SERS of protein molecules.

  8. Friction and universal contact area law for randomly rough viscoelastic contacts.

    PubMed

    Scaraggi, M; Persson, B N J

    2015-03-18

    We present accurate numerical results for the friction force and the contact area for a viscoelastic solid (rubber) in sliding contact with hard, randomly rough substrates. The rough surfaces are self-affine fractal with roughness over several decades in length scales. We calculate the contribution to the friction from the pulsating deformations induced by the substrate asperities. We also calculate how the area of real contact, A(v, p), depends on the sliding speed v and on the nominal contact pressure p, and we show how the contact area for any sliding speed can be obtained from a universal master curve A(p). The numerical results are found to be in good agreement with the predictions of an analytical contact mechanics theory.

  9. Identification, purification and characterization of furfural transforming enzymes from Clostridium beijerinckii NCIMB 8052.

    PubMed

    Zhang, Yan; Ujor, Victor; Wick, Macdonald; Ezeji, Thaddeus Chukwuemeka

    2015-06-01

    Generation of microbial inhibitory compounds such as furfural and 5-hydroxymethylfurfural (HMF) is a formidable roadblock to fermentation of lignocellulose-derived sugars to butanol. Bioabatement offers a cost effective strategy to circumvent this challenge. Although Clostridium beijerinckii NCIMB 8052 can transform 2-3 g/L of furfural and HMF to their less toxic alcohols, higher concentrations present in biomass hydrolysates are intractable to microbial transformation. To delineate the mechanism by which C. beijerinckii detoxifies furfural and HMF, an aldo/keto reductase (AKR) and a short-chain dehydrogenase/reductase (SDR) found to be over-expressed in furfural-challenged cultures of C. beijerinckii were cloned and over-expressed in Escherichia coli Rosetta-gami™ B(DE3)pLysS, and purified by histidine tag-assisted immobilized metal affinity chromatography. Protein gel analysis showed that the molecular weights of purified AKR and SDR are close to the predicted values of 37 kDa and 27 kDa, respectively. While AKR has apparent Km and Vmax values of 32.4 mM and 254.2 mM s(-1) respectively, using furfural as substrate, SDR showed lower Km (26.4 mM) and Vmax (22.6 mM s(-1)) values on the same substrate. However, AKR showed 7.1-fold higher specific activity on furfural than SDR. Further, both AKR and SDR were found to be active on HMF, benzaldehyde, and butyraldehyde. Both enzymes require NADPH as a cofactor for aldehydes reduction. Based on these results, it is proposed that AKR and SDR are involved in the biotransformation of furfural and HMF by C. beijerinckii. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Recolonization by heterotrophic bacteria after UV irradiation or ozonation of seawater; a simulation of ballast water treatment.

    PubMed

    Hess-Erga, Ole-Kristian; Blomvågnes-Bakke, Bente; Vadstein, Olav

    2010-10-01

    Transport of ballast water with ships represents a risk for introduction of foreign species. If ballast water is treated during uptake, there will be a recolonization of the ballast water by heterotrophic bacteria during transport. We investigated survival and succession of heterotrophic bacteria after disinfection of seawater in the laboratory, representing a model system of ballast water treatment and transport. The seawater was exposed to ultraviolet (UV) irradiation, ozone (2 doses) or no treatment, incubated for 16 days and examined with culture-dependent and -independent methods. The number of colony-forming units (CFU) was reduced below the detection level after disinfection with UV and high ozone dose (700 mV), and 1% of the initial level for the low ozone dose (400 mV). After less than 3 days, the CFU was back or above the starting point for the control, UV and low ozone treatment, whereas it took slightly more than 6 days for the high ozone treatment. Disinfection increased substrate availability and reduced cell densities. Lack of competition and predation induced the recolonization by opportunistic bacteria (r-strategists), with significant increase in bacterial numbers and a low diversity (based on DGGE band pattern). All cultures stabilized after the initial recolonization phase (except Oz700) where competition due to crowding and nutrient limitation favoured bacteria with high substrate affinity (K-strategists), resulting in higher species richness and diversity (based on DGGE band pattern). The bacterial community was significantly altered qualitatively and quantitatively and may have a higher potential as invaders in the recipient depending on disinfection method and the time of release. These results have implications for the treatment strategy used for ballast water. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Cooperative effects for CYP2E1 differ between styrene and its metabolites

    PubMed Central

    Hartman, Jessica H.; Boysen, Gunnar; Miller, Grover P.

    2014-01-01

    Cooperative interactions are frequently observed in the metabolism of drugs and pollutants by cytochrome P450s; nevertheless, the molecular determinants for cooperativity remain elusive. Previously, we demonstrated that steady-state styrene metabolism by CYP2E1 exhibits positive cooperativity.We hypothesized that styrene metabolites have lower affinity than styrene toward CYP2E1 and limited ability to induce cooperative effects during metabolism. To test the hypothesis, we determined the potency and mechanism of inhibition for styrene and its metabolites toward oxidation of 4-nitrophenol using CYP2E1 Supersomes® and human liver microsomes.Styrene inhibited the reaction through a mixed cooperative mechanism with high affinity for the catalytic site (67 μM) and lower affinity for the cooperative site (1100 μM), while increasing substrate turnover at high concentrations. Styrene oxide and 4-vinylphenol possessed similar affinity for CYP2E1. Styrene oxide behaved cooperatively like styrene, but 4-vinylphenol decreased turnover at high concentrations. Styrene glycol was a very poor competitive inhibitor. Among all compounds, there was a positive correlation with binding and hydrophobicity.Taken together, these findings for CYP2E1 further validate contributions of cooperative mechanisms to metabolic processes, demonstrate the role of molecular structure on those mechanisms and underscore the potential for heterotropic cooperative effects between different compounds. PMID:23327532

  12. Affinity labeling of a cysteine at or near the catalytic center of Escherichia coli B DNA-dependent RNA polymerase.

    PubMed

    Miller, J A; Serio, G F; Bear, J L; Howard, R A; Kimball, A P

    1980-03-14

    9-beta-D-Arabinofuranosyl-6-thiopurine was used to affinity label DNA-dependent RNA polymerase isolated from Escherichia coli B. This substrate analogue displayed competitive type inhibition which could be reversed by addition of a thiol reagent, such as dithiothreitol, while exposure to hydrogen peroxide, a mild oxidizing agent, caused an increase in both the inhibitory and enzyme binding capability of arabinofuranosyl thiopurine. Chromatographic analysis of the products obtained by pronase digestion of the 9-beta-D-arabinofuranosyl-6-[35S]thiopurine-enzyme complex suggests that disulfide bond formation occurs between the inhibitor and a cysteine residue located in or near the active center of the enzyme. In addition, polyacrylamide gel electrophoresis indicated that the arabinofuranosyl thiopurine moeity was bound to the beta' subunit of the enzyme.

  13. p68 Sam is a substrate of the insulin receptor and associates with the SH2 domains of p85 PI3K.

    PubMed

    Sánchez-Margalet, V; Najib, S

    1999-07-23

    The 68 kDa Src substrate associated during mitosis is an RNA binding protein with Src homology 2 and 3 domain binding sites. A role for Src associated in mitosis 68 as an adaptor protein in signaling transduction has been proposed in different systems such as T-cell receptors. In the present work, we have sought to assess the possible role of Src associated in mitosis 68 in insulin receptor signaling. We performed in vivo studies in HTC-IR cells and in vitro studies using recombinant Src associated in mitosis 68, purified insulin receptor and fusion proteins containing either the N-terminal or the C-terminal Src homology 2 domain of p85 phosphatidylinositol-3-kinase. We have found that Src associated in mitosis 68 is a substrate of the insulin receptor both in vivo and in vitro. Moreover, tyrosine-phosphorylated Src associated in mitosis 68 was found to associate with p85 phosphatidylinositol-3-kinase in response to insulin, as assessed by co-immunoprecipitation studies. Therefore, Src associated in mitosis 68 may be part of the signaling complexes of insulin receptor along with p85. In vitro studies demonstrate that Src associated in mitosis 68 associates with the Src homology 2 domains of p85 after tyrosine phosphorylation by the activated insulin receptor. Moreover, tyr-phosphorylated Src associated in mitosis 68 binds with a higher affinity to the N-terminal Src homology 2 domain of p85 compared to the C-terminal Src homology 2 domain of p85, suggesting a preferential association of Src associated in mitosis 68 with the N-terminal Src homology 2 domain of p85. This association may be important for the link of the signaling with RNA metabolism.

  14. Crystal Structure of an Activated Variant of Small Heat Shock Protein Hsp16.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mchaourab, Hassane S.; Lin, Yi-Lun; Spiller, Benjamin W.

    How does the sequence of a single small heat shock protein (sHSP) assemble into oligomers of different sizes? To gain insight into the underlying structural mechanism, we determined the crystal structure of an engineered variant of Methanocaldococcus jannaschii Hsp16.5 wherein a 14 amino acid peptide from human heat shock protein 27 (Hsp27) was inserted at the junction of the N-terminal region and the {alpha}-crystallin domain. In response to this insertion, the oligomer shell expands from 24 to 48 subunits while maintaining octahedral symmetry. Oligomer rearrangement does not alter the fold of the conserved {alpha}-crystallin domain nor does it disturb themore » interface holding the dimeric building block together. Rather, the flexible C-terminal tail of Hsp16.5 changes its orientation relative to the {alpha}-crystallin domain which enables alternative packing of dimers. This change in orientation preserves a peptide-in-groove interaction of the C-terminal tail with an adjacent {beta}-sandwich, thereby holding the assembly together. The interior of the expanded oligomer, where substrates presumably bind, retains its predominantly nonpolar character relative to the outside surface. New large windows in the outer shell provide increased access to these substrate-binding regions, thus accounting for the higher affinity of this variant to substrates. Oligomer polydispersity regulates sHSPs chaperone activity in vitro and has been implicated in their physiological roles. The structural mechanism of Hsp16.5 oligomer flexibility revealed here, which is likely to be highly conserved across the sHSP superfamily, explains the relationship between oligomer expansion observed in disease-linked mutants and changes in chaperone activity.« less

  15. Adsorption of GST-PI3Kgamma at the air-buffer interface and at substrate and nonsubstrate phospholipid monolayers.

    PubMed

    Hermelink, Antje; Kirsch, Cornelia; Klinger, Reinhard; Reiter, Gerald; Brezesinski, Gerald

    2009-02-01

    The recruitment of phosphoinositide 3-kinase gamma (PI3Kgamma) to the cell membrane is a crucial requirement for the initiation of inflammation cascades by second-messenger production. In addition to identifying other regulation pathways, it has been found that PI3Kgamma is able to bind phospholipids directly. In this study, the adsorption behavior of glutathione S-transferase (GST)-PI3Kgamma to nonsubstrate model phospholipids, as well as to commercially available substrate inositol phospholipids (phosphoinositides), was investigated by use of infrared reflection-absorption spectroscopy (IRRAS). The nonsubstrate phospholipid monolayers also yielded important information about structural requirements for protein adsorption. The enzyme did not interact with condensed zwitterionic or anionic monolayers; however, it could penetrate into uncompressed fluid monolayers. Compression to values above its equilibrium pressure led to a squeezing out and desorption of the protein. Protein affinity for the monolayer surface increased considerably when the lipid had an anionic headgroup and contained an arachidonoyl fatty acyl chain in sn-2 position. Similar results on a much higher level were observed with substrate phosphoinositides. No structural response of GST-PI3Kgamma to lipid interaction was detected by IRRAS. On the other hand, protein adsorption caused a condensing effect in phosphoinositide monolayers. In addition, the protein reduced the charge density at the interface probably by shifting the pK values of the phosphate groups attached to the inositol headgroups. Because of their strongly polar headgroups, an interaction of the inositides with the water molecules of the subphase can be expected. This interaction is disturbed by protein adsorption, causing the ionization state of the phosphates to change.

  16. Adsorption of GST-PI3Kγ at the Air-Buffer Interface and at Substrate and Nonsubstrate Phospholipid Monolayers

    PubMed Central

    Hermelink, Antje; Kirsch, Cornelia; Klinger, Reinhard; Reiter, Gerald; Brezesinski, Gerald

    2009-01-01

    The recruitment of phosphoinositide 3-kinase γ (PI3Kγ) to the cell membrane is a crucial requirement for the initiation of inflammation cascades by second-messenger production. In addition to identifying other regulation pathways, it has been found that PI3Kγ is able to bind phospholipids directly. In this study, the adsorption behavior of glutathione S-transferase (GST)-PI3Kγ to nonsubstrate model phospholipids, as well as to commercially available substrate inositol phospholipids (phosphoinositides), was investigated by use of infrared reflection-absorption spectroscopy (IRRAS). The nonsubstrate phospholipid monolayers also yielded important information about structural requirements for protein adsorption. The enzyme did not interact with condensed zwitterionic or anionic monolayers; however, it could penetrate into uncompressed fluid monolayers. Compression to values above its equilibrium pressure led to a squeezing out and desorption of the protein. Protein affinity for the monolayer surface increased considerably when the lipid had an anionic headgroup and contained an arachidonoyl fatty acyl chain in sn-2 position. Similar results on a much higher level were observed with substrate phosphoinositides. No structural response of GST-PI3Kγ to lipid interaction was detected by IRRAS. On the other hand, protein adsorption caused a condensing effect in phosphoinositide monolayers. In addition, the protein reduced the charge density at the interface probably by shifting the pK values of the phosphate groups attached to the inositol headgroups. Because of their strongly polar headgroups, an interaction of the inositides with the water molecules of the subphase can be expected. This interaction is disturbed by protein adsorption, causing the ionization state of the phosphates to change. PMID:19186139

  17. Different Fatty Acids Compete with Arachidonic Acid for Binding to the Allosteric or Catalytic Subunits of Cyclooxygenases to Regulate Prostanoid Synthesis*

    PubMed Central

    Dong, Liang; Zou, Hechang; Yuan, Chong; Hong, Yu H.; Kuklev, Dmitry V.; Smith, William L.

    2016-01-01

    Prostaglandin endoperoxide H synthases (PGHSs), also called cyclooxygenases (COXs), convert arachidonic acid (AA) to PGH2. PGHS-1 and PGHS-2 are conformational heterodimers, each composed of an (Eallo) and a catalytic (Ecat) monomer. Previous studies suggested that the binding to Eallo of saturated or monounsaturated fatty acids (FAs) that are not COX substrates differentially regulate PGHS-1 versus PGHS-2. Here, we substantiate and expand this concept to include polyunsaturated FAs known to modulate COX activities. Non-substrate FAs like palmitic acid bind Eallo of PGHSs stimulating human (hu) PGHS-2 but inhibiting huPGHS-1. We find the maximal effects of non-substrate FAs on both huPGHSs occurring at the same physiologically relevant FA/AA ratio of ∼20. This inverse allosteric regulation likely underlies the ability of PGHS-2 to operate at low AA concentrations, when PGHS-1 is effectively latent. Unlike FAs tested previously, we observe that C-22 FAs, including ω-3 fish oil FAs, have higher affinities for Ecat than Eallo subunits of PGHSs. Curiously, C-20 ω-3 eicosapentaenoate preferentially binds Ecat of huPGHS-1 but Eallo of huPGHS-2. PGE2 production decreases 50% when fish oil consumption produces tissue EPA/AA ratios of ≥0.2. However, 50% inhibition of huPGHS-1 itself is only seen with ω-3 FA/AA ratios of ≥5.0. This suggests that fish oil-enriched diets disfavor AA oxygenation by altering the composition of the FA pool in which PGHS-1 functions. The distinctive binding specificities of PGHS subunits permit different combinations of non-esterified FAs, which can be manipulated dietarily, to regulate AA binding to Eallo and/or Ecat thereby controlling COX activities. PMID:26703471

  18. Construction of Engineered Bifunctional Enzymes and Their Overproduction in Aspergillus niger for Improved Enzymatic Tools To Degrade Agricultural By-Products

    PubMed Central

    Levasseur, Anthony; Navarro, David; Punt, Peter J.; Belaïch, Jean-Pierre; Asther, Marcel; Record, Eric

    2005-01-01

    Two chimeric enzymes, FLX and FLXLC, were designed and successfully overproduced in Aspergillus niger. FLX construct is composed of the sequences encoding the feruloyl esterase A (FAEA) fused to the endoxylanase B (XYNB) of A. niger. A C-terminal carbohydrate-binding module (CBM family 1) was grafted to FLX, generating the second hybrid enzyme, FLXLC. Between each partner, a hyperglycosylated linker was included to stabilize the constructs. Hybrid proteins were purified to homogeneity, and molecular masses were estimated to be 72 and 97 kDa for FLX and FLXLC, respectively. Integrity of hybrid enzymes was checked by immunodetection that showed a single form by using antibodies raised against FAEA and polyhistidine tag. Physicochemical properties of each catalytic module of the bifunctional enzymes corresponded to those of the free enzymes. In addition, we verified that FLXLC exhibited an affinity for microcrystalline cellulose (Avicel) with binding parameters corresponding to a Kd of 9.9 × 10−8 M for the dissociation constant and 0.98 μmol/g Avicel for the binding capacity. Both bifunctional enzymes were investigated for their capacity to release ferulic acid from natural substrates: corn and wheat brans. Compared to free enzymes FAEA and XYNB, a higher synergistic effect was obtained by using FLX and FLXLC for both substrates. Moreover, the release of ferulic acid from corn bran was increased by using FLXLC rather than FLX. This result confirms a positive role of the CBM. In conclusion, these results demonstrated that the fusion of naturally free cell wall hydrolases and an A. niger-derived CBM onto bifunctional enzymes enables the increase of the synergistic effect on the degradation of complex substrates. PMID:16332795

  19. Isolation and functional characterization of a methyl jasmonate-responsive 3-carene synthase from Lavandula x intermedia.

    PubMed

    Adal, Ayelign M; Sarker, Lukman S; Lemke, Ashley D; Mahmoud, Soheil S

    2017-04-01

    A methyl jasmonate responsive 3-carene synthase (Li3CARS) gene was isolated from Lavandula x intermedia and functionally characterized in vitro. Lavenders produce essential oils consisting mainly of monoterpenes, including the potent antimicrobial and insecticidal monoterpene 3-carene. In this study we isolated and functionally characterized a leaf-specific, methyl jasmonate (MeJA)-responsive monoterpene synthase (Li3CARS) from Lavandula x intermedia. The ORF excluding transit peptides encoded a 64.9 kDa protein that was expressed in E. coli, and purified with Ni-NTA agarose affinity chromatography. The recombinant Li3CARS converted GPP into 3-carene as the major product, with K m and k cat of 3.69 ± 1.17 µM and 2.01 s -1 respectively. Li3CARS also accepted NPP as a substrate to produce multiple products including a small amount of 3-carene. The catalytic efficiency of Li3CARS to produce 3-carene was over ten fold higher for GPP (k cat /K m = 0.56 µM -1 s -1 ) than NPP (k cat /K m = 0.044 µM -1 s -1 ). Production of distinct end product profiles from different substrates (GPP versus NPP) by Li3CARS indicates that monoterpene metabolism may be controlled in part through substrate availability. Li3CARS transcripts were found to be highly abundant in leaves (16-fold) as compared to flower tissues. The transcriptional activity of Li3CARS correlated with 3-carene production, and was up-regulated (1.18- to 3.8-fold) with MeJA 8-72 h post-treatment. The results suggest that Li3CARS may have a defensive role in Lavandula.

  20. Crystal structure of an activated variant of small heat shock protein Hsp16.5.

    PubMed

    McHaourab, Hassane S; Lin, Yi-Lun; Spiller, Benjamin W

    2012-06-26

    How does the sequence of a single small heat shock protein (sHSP) assemble into oligomers of different sizes? To gain insight into the underlying structural mechanism, we determined the crystal structure of an engineered variant of Methanocaldococcus jannaschii Hsp16.5 wherein a 14 amino acid peptide from human heat shock protein 27 (Hsp27) was inserted at the junction of the N-terminal region and the α-crystallin domain. In response to this insertion, the oligomer shell expands from 24 to 48 subunits while maintaining octahedral symmetry. Oligomer rearrangement does not alter the fold of the conserved α-crystallin domain nor does it disturb the interface holding the dimeric building block together. Rather, the flexible C-terminal tail of Hsp16.5 changes its orientation relative to the α-crystallin domain which enables alternative packing of dimers. This change in orientation preserves a peptide-in-groove interaction of the C-terminal tail with an adjacent β-sandwich, thereby holding the assembly together. The interior of the expanded oligomer, where substrates presumably bind, retains its predominantly nonpolar character relative to the outside surface. New large windows in the outer shell provide increased access to these substrate-binding regions, thus accounting for the higher affinity of this variant to substrates. Oligomer polydispersity regulates sHSPs chaperone activity in vitro and has been implicated in their physiological roles. The structural mechanism of Hsp16.5 oligomer flexibility revealed here, which is likely to be highly conserved across the sHSP superfamily, explains the relationship between oligomer expansion observed in disease-linked mutants and changes in chaperone activity.

  1. Biochemical profiling in silico--predicting substrate specificities of large enzyme families.

    PubMed

    Tyagi, Sadhna; Pleiss, Juergen

    2006-06-25

    A general high-throughput method for in silico biochemical profiling of enzyme families has been developed based on covalent docking of potential substrates into the binding sites of target enzymes. The method has been tested by systematically docking transition state--analogous intermediates of 12 substrates into the binding sites of 20 alpha/beta hydrolases from 15 homologous families. To evaluate the effect of side chain orientations to the docking results, 137 crystal structures were included in the analysis. A good substrate must fulfil two criteria: it must bind in a productive geometry with four hydrogen bonds between the substrate and the catalytic histidine and the oxyanion hole, and a high affinity of the enzyme-substrate complex as predicted by a high docking score. The modelling results in general reproduce experimental data on substrate specificity and stereoselectivity: the differences in substrate specificity of cholinesterases toward acetyl- and butyrylcholine, the changes of activity of lipases and esterases upon the size of the acid moieties, activity of lipases and esterases toward tertiary alcohols, and the stereopreference of lipases and esterases toward chiral secondary alcohols. Rigidity of the docking procedure was the major reason for false positive and false negative predictions, as the geometry of the complex and docking score may sensitively depend on the orientation of individual side chains. Therefore, appropriate structures have to be identified. In silico biochemical profiling provides a time efficient and cost saving protocol for virtual screening to identify the potential substrates of the members of large enzyme family from a library of molecules.

  2. A Family of Finite-Dimensional Representations of Generalized Double Affine Hecke Algebras of Higher Rank

    NASA Astrophysics Data System (ADS)

    Fu, Yuchen; Shelley-Abrahamson, Seth

    2016-06-01

    We give explicit constructions of some finite-dimensional representations of generalized double affine Hecke algebras (GDAHA) of higher rank using R-matrices for U_q(sl_N). Our construction is motivated by an analogous construction of Silvia Montarani in the rational case. Using the Drinfeld-Kohno theorem for Knizhnik-Zamolodchikov differential equations, we prove that the explicit representations we produce correspond to Montarani's representations under a monodromy functor introduced by Etingof, Gan, and Oblomkov.

  3. BiPPred: Combined sequence- and structure-based prediction of peptide binding to the Hsp70 chaperone BiP.

    PubMed

    Schneider, Markus; Rosam, Mathias; Glaser, Manuel; Patronov, Atanas; Shah, Harpreet; Back, Katrin Christiane; Daake, Marina Angelika; Buchner, Johannes; Antes, Iris

    2016-10-01

    Substrate binding to Hsp70 chaperones is involved in many biological processes, and the identification of potential substrates is important for a comprehensive understanding of these events. We present a multi-scale pipeline for an accurate, yet efficient prediction of peptides binding to the Hsp70 chaperone BiP by combining sequence-based prediction with molecular docking and MMPBSA calculations. First, we measured the binding of 15mer peptides from known substrate proteins of BiP by peptide array (PA) experiments and performed an accuracy assessment of the PA data by fluorescence anisotropy studies. Several sequence-based prediction models were fitted using this and other peptide binding data. A structure-based position-specific scoring matrix (SB-PSSM) derived solely from structural modeling data forms the core of all models. The matrix elements are based on a combination of binding energy estimations, molecular dynamics simulations, and analysis of the BiP binding site, which led to new insights into the peptide binding specificities of the chaperone. Using this SB-PSSM, peptide binders could be predicted with high selectivity even without training of the model on experimental data. Additional training further increased the prediction accuracies. Subsequent molecular docking (DynaDock) and MMGBSA/MMPBSA-based binding affinity estimations for predicted binders allowed the identification of the correct binding mode of the peptides as well as the calculation of nearly quantitative binding affinities. The general concept behind the developed multi-scale pipeline can readily be applied to other protein-peptide complexes with linearly bound peptides, for which sufficient experimental binding data for the training of classical sequence-based prediction models is not available. Proteins 2016; 84:1390-1407. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Substrate and Substrate-Mimetic Chaperone Binding Sites in Human α-Galactosidase A Revealed by Affinity-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Moise, Adrian; Maeser, Stefan; Rawer, Stephan; Eggers, Frederike; Murphy, Mary; Bornheim, Jeff; Przybylski, Michael

    2016-06-01

    Fabry disease (FD) is a rare metabolic disorder of a group of lysosomal storage diseases, caused by deficiency or reduced activity of the enzyme α-galactosidase. Human α-galactosidase A (hαGAL) hydrolyses the terminal α-galactosyl moiety from glycosphingolipids, predominantly globotriaosylceramide (Gb3). Enzyme deficiency leads to incomplete or blocked breakdown and progressive accumulation of Gb3, with detrimental effects on normal organ functions. FD is successfully treated by enzyme replacement therapy (ERT) with purified recombinant hαGAL. An emerging treatment strategy, pharmacologic chaperone therapy (PCT), employs small molecules that can increase and/or reconstitute the activity of lysosomal enzyme trafficking by stabilizing misfolded isoforms. One such chaperone, 1-deoxygalactonojirimycin (DGJ), is a structural galactose analogue currently validated in clinical trials. DGJ is an active-site-chaperone that binds at the same or similar location as galactose; however, the molecular determination of chaperone binding sites in lysosomal enzymes represents a considerable challenge. Here we report the identification of the galactose and DGJ binding sites in recombinant α-galactosidase through a new affinity-mass spectrometry-based approach that employs selective proteolytic digestion of the enzyme-galactose or -inhibitor complex. Binding site peptides identified by mass spectrometry, [39-49], [83-100], and [141-168], contain the essential ligand-contacting amino acids, in agreement with the known X-ray crystal structures. The inhibitory effect of DGJ on galactose recognition was directly characterized through competitive binding experiments and mass spectrometry. The methods successfully employed in this study should have high potential for the characterization of (mutated) enzyme-substrate and -chaperone interactions, and for identifying chaperones without inhibitory effects.

  5. Evidence of Distinct Channel Conformations and Substrate Binding Affinities for the Mitochondrial Outer Membrane Protein Translocase Pore Tom40*

    PubMed Central

    Kuszak, Adam J.; Jacobs, Daniel; Gurnev, Philip A.; Shiota, Takuya; Louis, John M.; Lithgow, Trevor; Bezrukov, Sergey M.; Rostovtseva, Tatiana K.; Buchanan, Susan K.

    2015-01-01

    Nearly all mitochondrial proteins are coded by the nuclear genome and must be transported into mitochondria by the translocase of the outer membrane complex. Tom40 is the central subunit of the translocase complex and forms a pore in the mitochondrial outer membrane. To date, the mechanism it utilizes for protein transport remains unclear. Tom40 is predicted to comprise a membrane-spanning β-barrel domain with conserved α-helical domains at both the N and C termini. To investigate Tom40 function, including the role of the N- and C-terminal domains, recombinant forms of the Tom40 protein from the yeast Candida glabrata, and truncated constructs lacking the N- and/or C-terminal domains, were functionally characterized in planar lipid membranes. Our results demonstrate that each of these Tom40 constructs exhibits at least four distinct conductive levels and that full-length and truncated Tom40 constructs specifically interact with a presequence peptide in a concentration- and voltage-dependent manner. Therefore, neither the first 51 amino acids of the N terminus nor the last 13 amino acids of the C terminus are required for Tom40 channel formation or for the interaction with a presequence peptide. Unexpectedly, substrate binding affinity was dependent upon the Tom40 state corresponding to a particular conductive level. A model where two Tom40 pores act in concert as a dimeric protein complex best accounts for the observed biochemical and electrophysiological data. These results provide the first evidence for structurally distinct Tom40 conformations playing a role in substrate recognition and therefore in transport function. PMID:26336107

  6. Antidepressant Binding Site in a Bacterial Homologue of Neurotransmitter Transporters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh,S.; Yamashita, A.; Gouaux, E.

    Sodium-coupled transporters are ubiquitous pumps that harness pre-existing sodium gradients to catalyse the thermodynamically unfavourable uptake of essential nutrients, neurotransmitters and inorganic ions across the lipid bilayer. Dysfunction of these integral membrane proteins has been implicated in glucose/galactose malabsorption, congenital hypothyroidism, Bartter's syndrome, epilepsy, depression, autism and obsessive-compulsive disorder. Sodium-coupled transporters are blocked by a number of therapeutically important compounds, including diuretics, anticonvulsants and antidepressants, many of which have also become indispensable tools in biochemical experiments designed to probe antagonist binding sites and to elucidate transport mechanisms. Steady-state kinetic data have revealed that both competitive and noncompetitive modes of inhibitionmore » exist. Antagonist dissociation experiments on the serotonin transporter (SERT) have also unveiled the existence of a low-affinity allosteric site that slows the dissociation of inhibitors from a separate high-affinity site. Despite these strides, atomic-level insights into inhibitor action have remained elusive. Here we screen a panel of molecules for their ability to inhibit LeuT, a prokaryotic homologue of mammalian neurotransmitter sodium symporters, and show that the tricyclic antidepressant (TCA) clomipramine noncompetitively inhibits substrate uptake. Cocrystal structures show that clomipramine, along with two other TCAs, binds in an extracellular-facing vestibule about 11 {angstrom} above the substrate and two sodium ions, apparently stabilizing the extracellular gate in a closed conformation. Off-rate assays establish that clomipramine reduces the rate at which leucine dissociates from LeuT and reinforce our contention that this TCA inhibits LeuT by slowing substrate release. Our results represent a molecular view into noncompetitive inhibition of a sodium-coupled transporter and define principles for the rational design of new inhibitors.« less

  7. A chlorogenic acid esterase with a unique substrate specificity from Ustilago maydis.

    PubMed

    Nieter, Annabel; Haase-Aschoff, Paul; Kelle, Sebastian; Linke, Diana; Krings, Ulrich; Popper, Lutz; Berger, Ralf G

    2015-03-01

    An extracellular chlorogenic acid esterase from Ustilago maydis (UmChlE) was purified to homogeneity by using three separation steps, including anion-exchange chromatography on a Q Sepharose FF column, preparative isoelectric focusing (IEF), and, finally, a combination of affinity chromatography and hydrophobic interaction chromatography on polyamide. SDS-PAGE analysis suggested a monomeric protein of ∼71 kDa. The purified enzyme showed maximal activity at pH 7.5 and at 37°C and was active over a wide pH range (3.5 to 9.5). Previously described chlorogenic acid esterases exhibited a comparable affinity for chlorogenic acid, but the enzyme from Ustilago was also active on typical feruloyl esterase substrates. Kinetic constants for chlorogenic acid, methyl p-coumarate, methyl caffeate, and methyl ferulate were as follows: Km values of 19.6 μM, 64.1 μM, 72.5 μM, and 101.8 μM, respectively, and kcat/Km values of 25.83 mM(-1) s(-1), 7.63 mM(-1) s(-1), 3.83 mM(-1) s(-1) and 3.75 mM(-1) s(-1), respectively. UmChlE released ferulic, p-coumaric, and caffeic acids from natural substrates such as destarched wheat bran (DSWB) and coffee pulp (CP), confirming activity on complex plant biomass. The full-length gene encoding UmChlE consisted of 1,758 bp, corresponding to a protein of 585 amino acids, and was functionally produced in Pichia pastoris GS115. Sequence alignments with annotated chlorogenic acid and feruloyl esterases underlined the uniqueness of this enzyme. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Interactions of acylated methylglucoside derivatives with CO2: simulation and calculations.

    PubMed

    Chang, H H; Cao, R X; Yang, C C; Wei, W L; Pang, X Y; Qiao, Y

    2016-01-01

    Carbohydrates have drawn considerable interest from researchers recently due to their affinity for CO2. However, most of the research in this field has focused on peracetylated derivatives. Compared with acetylated carbohydrates, which have already been studied in depth, methyl D-glucopyranoside derivatives are more stable and could have additional applications. Thus, in the present work, ab initio calculations were performed to elucidate the characteristics of the interactions of methylglucoside derivatives with CO2, and to investigate how the binding energy (ΔE) is affected by isomerization or the introduction of various acyl groups. Four methyl D-glucopyranosides (each with two anomers) bearing acetyl, propionyl, butyryl, and isobutyryl moieties, respectively, were designed as substrates, and the 1:1 complexes of a CO2 molecule with each of these sugar substrates were modeled. The results indicate that ΔE is mainly influenced by interaction distance and the number of negatively charged donors or interacting pairs in the complex; the structure of the acyl group present in the substrate is a secondary influence. Except in the case of methyl 2-O-acetyl-D-glucopyranose, the ΔE values of the α- and β-anomers of each methylglucoside were found to be almost the same. Therefore, we would expect the CO2 affinities of the four derivatives studied here to be as strong as or even stronger than that of peracetylated D-glucopyranose. Graphical Abstract The binding energy between methyl D-glucopyranoside derivatives with various substituted acyl groups and CO2 are evaluated by ab initio calculations. The strong interaction between these methyl dglucopyranoside derivatives and CO2 showed the potential of their application for CO2 capture.

  9. Kinetics and thiol requirements of iodothyronine 5'-deiodination are tissue-specific in common carp (Cyprinus carpio L.).

    PubMed

    Klaren, Peter H M; Geven, Edwin J W; Nagelkerke, Anika; Flik, Gert

    2012-03-01

    Iodothyronine deiodinases determine the biological activity of thyroid hormones. Despite the homology of the catalytic sites of mammalian and teleostean deiodinases, in-vitro requirements for the putative thiol co-substrate dithiothreitol (DTT) vary considerably between vertebrate species. To further our insights in the interactions between the deiodinase protein and its substrates: thyroid hormone and DTT, we measured enzymatic iodothyronine 5'-deiodination, Dio1 and Dio2 mRNA expression, and Dio1 affinity probe binding in liver and kidney preparations from a freshwater teleost, the common carp (Cyprinus carpio L.). Deiodination rates, using reverse T3 (rT3, 3,3',5'-triiodothyronine) as the substrate, were analysed as a function of the iodothyronine and DTT concentrations. In kidney rT3 5'-deiodinase activity measured at rT3 concentrations up to 10 μM and in the absence of DTT does not saturate appreciably. In the presence of 1mM DTT, renal rT3 deiodination rates are 20-fold lower. In contrast, rT3 5'-deiodination in liver is potently stimulated by 1mM DTT. The marked biochemical differences between 5'-deiodination in liver and kidney are not associated with the expression of either Dio1 or Dio2 mRNA since both organs express both deiodinase types. In liver and kidney, DTT stimulates the incorporation of N-bromoacetylated affinity labels in proteins with estimated molecular masses of 57 and 55, and 31 and 28 kDa, respectively. Although primary structures are highly homologous, the biochemistry of carp deiodinases differs markedly from their mammalian counterparts. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Structure and Ligand Binding Properties of the Epoxidase Component of Styrene Monooxygenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ukaegbu, Uchechi E.; Kantz, Auric; Beaton, Michelle

    2010-07-23

    Styrene monooxygenase (SMO) is a two-component flavoprotein monooxygenase that transforms styrene to styrene oxide in the first step of the styrene catabolic and detoxification pathway of Pseudomonas putida S12. The crystal structure of the N-terminally histidine-tagged epoxidase component of this system, NSMOA, determined to 2.3 {angstrom} resolution, indicates the enzyme exists as a homodimer in which each monomer forms two distinct domains. The overall architecture is most similar to that of p-hydroxybenzoate hydroxylase (PHBH), although there are some significant differences in secondary structure. Structural comparisons suggest that a large cavity open to the surface forms the FAD binding site. Atmore » the base of this pocket is another cavity that likely represents the styrene binding site. Flavin binding and redox equilibria are tightly coupled such that reduced FAD binds apo NSMOA {approx}8000 times more tightly than the oxidized coenzyme. Equilibrium fluorescence and isothermal titration calorimetry data using benzene as a substrate analogue indicate that the oxidized flavin and substrate analogue binding equilibria of NSMOA are linked such that the binding affinity of each is increased by 60-fold when the enzyme is saturated with the other. A much weaker {approx}2-fold positive cooperative interaction is observed for the linked binding equilibria of benzene and reduced FAD. The low affinity of the substrate analogue for the reduced FAD complex of NSMOA is consistent with a preferred reaction order in which flavin reduction and reaction with oxygen precede the binding of styrene, identifying the apoenzyme structure as the key catalytic resting state of NSMOA poised to bind reduced FAD and initiate the oxygen reaction.« less

  11. Physical interaction between bacterial heat shock protein (Hsp) 90 and Hsp70 chaperones mediates their cooperative action to refold denatured proteins.

    PubMed

    Nakamoto, Hitoshi; Fujita, Kensaku; Ohtaki, Aguru; Watanabe, Satoru; Narumi, Shoichi; Maruyama, Takahiro; Suenaga, Emi; Misono, Tomoko S; Kumar, Penmetcha K R; Goloubinoff, Pierre; Yoshikawa, Hirofumi

    2014-02-28

    In eukaryotes, heat shock protein 90 (Hsp90) is an essential ATP-dependent molecular chaperone that associates with numerous client proteins. HtpG, a prokaryotic homolog of Hsp90, is essential for thermotolerance in cyanobacteria, and in vitro it suppresses the aggregation of denatured proteins efficiently. Understanding how the non-native client proteins bound to HtpG refold is of central importance to comprehend the essential role of HtpG under stress. Here, we demonstrate by yeast two-hybrid method, immunoprecipitation assays, and surface plasmon resonance techniques that HtpG physically interacts with DnaJ2 and DnaK2. DnaJ2, which belongs to the type II J-protein family, bound DnaK2 or HtpG with submicromolar affinity, and HtpG bound DnaK2 with micromolar affinity. Not only DnaJ2 but also HtpG enhanced the ATP hydrolysis by DnaK2. Although assisted by the DnaK2 chaperone system, HtpG enhanced native refolding of urea-denatured lactate dehydrogenase and heat-denatured glucose-6-phosphate dehydrogenase. HtpG did not substitute for DnaJ2 or GrpE in the DnaK2-assisted refolding of the denatured substrates. The heat-denatured malate dehydrogenase that did not refold by the assistance of the DnaK2 chaperone system alone was trapped by HtpG first and then transferred to DnaK2 where it refolded. Dissociation of substrates from HtpG was either ATP-dependent or -independent depending on the substrate, indicating the presence of two mechanisms of cooperative action between the HtpG and the DnaK2 chaperone system.

  12. Investigation of the binding properties of a multi-modular GH45 cellulase using bioinspired model assemblies.

    PubMed

    Fong, Monica; Berrin, Jean-Guy; Paës, Gabriel

    2016-01-01

    Enzymes degrading plant biomass polymers are widely used in biotechnological applications. Their efficiency can be limited by non-specific interactions occurring with some chemical motifs. In particular, the lignin component is known to bind enzymes irreversibly. In order to determine interactions of enzymes with their substrates, experiments are usually performed on isolated simple polymers which are not representative of plant cell wall complexity. But when using natural plant substrates, the role of individual chemical and structural features affecting enzyme-binding properties is also difficult to decipher. We have designed and used lignified model assemblies of plant cell walls as templates to characterize binding properties of multi-modular cellulases. These three-dimensional assemblies are modulated in their composition using the three principal polymers found in secondary plant cell walls (cellulose, hemicellulose, and lignin). Binding properties of enzymes are obtained from the measurement of their mobility that depends on their interactions with the polymers and chemical motifs of the assemblies. The affinity of the multi-modular GH45 cellulase was characterized using a statistical analysis to determine the role played by each assembly polymer. Presence of hemicellulose had much less impact on affinity than cellulose and model lignin. Depending on the number of CBMs appended to the cellulase catalytic core, binding properties toward cellulose and lignin were highly contrasted. Model assemblies bring new insights into the molecular determinants that are responsible for interactions between enzymes and substrate without the need of complex analysis. Consequently, we believe that model bioinspired assemblies will provide relevant information for the design and optimization of enzyme cocktails in the context of biorefineries.

  13. Re-engineering specificity in 1,3-1, 4-β-glucanase to accept branched xyloglucan substrates.

    PubMed

    Addington, Trevor; Calisto, Barbara; Alfonso-Prieto, Mercedes; Rovira, Carme; Fita, Ignasi; Planas, Antoni

    2011-02-01

    Family 16 carbohydrate active enzyme members Bacillus licheniformis 1,3-1,4-β-glucanase and Populus tremula x tremuloides xyloglucan endotransglycosylase (XET16-34) are highly structurally related but display different substrate specificities. Although the first binds linear gluco-oligosaccharides, the second binds branched xylogluco-oligosaccharides. Prior engineered nucleophile mutants of both enzymes are glycosynthases that catalyze the condensation between a glycosyl fluoride donor and a glycoside acceptor. With the aim of expanding the glycosynthase technology to produce designer oligosaccharides consisting of hybrids between branched xylogluco- and linear gluco-oligosaccharides, enzyme engineering on the negative subsites of 1,3-1,4-β-glucanase to accept branched substrates has been undertaken. Removal of the 1,3-1,4-β-glucanase major loop and replacement with that of XET16-34 to open the binding cleft resulted in a folded protein, which still maintained some β-glucan hydrolase activity, but the corresponding nucleophile mutant did not display glycosynthase activity with either linear or branched glycosyl donors. Next, point mutations of the 1,3-1,4-β-glucanase β-sheets forming the binding site cleft were mutated to resemble XET16-34 residues. The final chimeric protein acquired binding affinity for xyloglucan and did not bind β-glucan. Therefore, binding specificity has been re-engineered, but affinity was low and the nucleophile mutant of the chimeric enzyme did not show glycosynthase activity to produce the target hybrid oligosaccharides. Structural analysis by X-ray crystallography explains these results in terms of changes in the protein structure and highlights further engineering approaches toward introducing the desired activity. © 2010 Wiley-Liss, Inc.

  14. Involvement of arginine 878 together with Ca2+ in mouse aminopeptidase A substrate specificity for N-terminal acidic amino-acid residues

    PubMed Central

    Couvineau, Pierre; de Almeida, Hugo; Maigret, Bernard; Llorens-Cortes, Catherine

    2017-01-01

    Aminopeptidase A (APA) is a membrane-bound zinc metalloprotease cleaving, in the brain, the N-terminal aspartyl residue of angiotensin II to generate angiotensin III, which exerts a tonic stimulatory effect on the control of blood pressure in hypertensive animals. Using a refined APA structure derived from the human APA crystal structure, we docked the specific and selective APA inhibitor, EC33 in the presence of Ca2+. We report the presence in the S1 subsite of Arg-887 (Arg-878 in mouse APA), the guanidinium moiety of which established an interaction with the electronegative sulfonate group of EC33. Mutagenic replacement of Arg-878 with an alanine or a lysine residue decreased the affinity of the recombinant enzymes for the acidic substrate, α-L-glutamyl-β-naphthylamide, with a slight decrease in substrate hydrolysis velocity either with or without Ca2+. In the absence of Ca2+, the mutations modified the substrate specificity of APA for the acidic substrate, the mutated enzymes hydrolyzing more efficiently basic and neutral substrates, although the addition of Ca2+ partially restored the acidic substrate specificity. The analysis of the 3D models of the Arg-878 mutated APAs revealed a change in the volume of the S1 subsite, which may impair the binding and/or the optimal positioning of the substrate in the active site as well as its hydrolysis. These findings demonstrate the key role of Arg-878 together with Ca2 + in APA substrate specificity for N-terminal acidic amino acid residues by ensuring the optimal positioning of acidic substrates during catalysis. PMID:28877217

  15. Using the lentiviral vector system to stably express chicken P-gp and BCRP in MDCK cells for screening the substrates and studying the interplay of both transporters.

    PubMed

    Zhang, Yujuan; Huang, Jinhu; Liu, Yang; Guo, Tingting; Wang, Liping

    2018-06-01

    Transporters P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) are known to influence the pharmacokinetics and toxicity of substrate drugs. However, no detailed information is as yet available about functional activity and substrate spectra of chicken P-gp and BCRP. In this study, BCRP single and BCRP/P-gp double-transfected MDCK cell lines (named MDCK-chAbcg2 and MDCK-chAbcg2/Abcb1, respectively) were generated using lentiviral vector system to develop reliable systems for screening the substrates for these two transporters and study the interplay between them. The constructed cell lines significantly expressed functional exogenous proteins and expression persisted for at least 50 generations with no decrease. Enrofloxacin, ciprofloxacin, tilmicosin, sulfadiazine, ampicillin and clindamycin were classified as the substrates of chicken P-gp according to the rules suggested by FDA, as their net efflux ratios were greater than two. Similarly, enrofloxacin, ciprofloxacin, tilmicosin, florfenicol, ampicillin and clindamycin were classified as the substrates of BCRP. Among these drugs, enrofloxacin, ciprofloxacin, tilmicosin, ampicillin, and clindamycin were the cosubstrates of P-gp and BCRP, however, chicken BCRP and P-gp exhibit different affinities to the shared substrates at different concentrations by blocking either one or both transport with specific inhibitors in the coexpression system. It was also found that ceftiofur, amoxicillin and doxycycline were not substrates of either chicken BCRP or the substrates of chicken P-gp. These constructed cell models provide useful systems for high-throughput screening of the potential substrates of chicken BCRP and P-gp as well as the drug-drug interaction mediated via chicken BCRP and P-gp.

  16. Regulation of mitochondrial energy production in cardiac cells of rainbow trout (Oncorhynchus mykiss).

    PubMed

    Birkedal, R; Gesser, H

    2004-04-01

    In skinned rat cardiac fibres, mitochondrial affinity for endogenous ADP generated by creatine kinase and Ca2+-activated ATPases is higher than for exogenous ADP added to the surrounding medium, suggesting that mitochondria are functionally coupled to creatine kinase and ATPases. Such a coupling may be weaker or absent in ectothermic vertebrate cardiac cells, because they typically have less elaborate intracellular membrane structures, higher glycolytic capacity and lower working temperature. Therefore, we examined skinned cardiac fibres from rainbow trout at 10 degrees C. The apparent mitochondrial affinity for endogenous ADP was obtained by stimulation with ATP and recording of the release of ADP into the surrounding medium. The apparent affinity for endogenous ADP was much higher than for exogenous ADP suggesting a functional coupling between mitochondria and ATPases. The apparent affinity for exogenous ADP and ATP was increased by creatine or an increase in Ca2+-activity, which should increase intrafibrillar turnover of ATP to ADP. In conclusion, ADP seems to be channelled from creatine kinase and ATPases to mitochondria without being released to the surrounding medium. Thus, despite difference in structure, temperature and metabolic capacity, trout myocardium resembles that of rat with regard to the regulation of mitochondrial respiration. Copyright 2004 Springer-Verlag

  17. Genetic identification of a gene involved in constitutive, high-affinity nitrate transport in higher plants.

    PubMed Central

    Wang, R; Crawford, N M

    1996-01-01

    Two mutations have been found in a gene (NRT2) of Arabidopsis thaliana that specifically impair constitutive, high-affinity nitrate uptake. These mutants were selected for resistance to 0.1 mM chlorate in the absence of nitrate. Progency from one of the backcrossed mutants showed no constitutive uptake of nitrate below 0.5 mM at pH 7.0 in liquid culture (that is, within 30 min of initial exposure to nitrate). All other uptake activities measured (high-affinity phosphate and sulfate uptake, inducible high-affinity nitrate uptake, and constitutive low-affinity nitrate uptake) were present or nearly normal in the backcrossed mutant. Electrophysiological analysis of individual root cells showed that the nrt2 mutant showed little response to 0.25 mM of nitrate, whereas NRT2 wild-type cells showed an initial depolarization followed by recovery. At 10 mM of nitrate both the mutant and wild-type cells displayed similar, strong electrical responses. These results indicate that NRT2 is a critical and perhaps necessary gene for constitutive, high-affinity nitrate uptake in Arabidopsis, but not for inducible, high-affinity nor constitutive, low-affinity nitrate uptake. Thus, these systems are genetically distinct. PMID:8799195

  18. Inhibition of thiopurine S-methyltransferase activity by impurities in commercially available substrates: a factor for differing results of TPMT measurements.

    PubMed

    Kröplin, T; Fischer, C; Iven, H

    1999-06-01

    Thiopurine S-methyltransferase (TPMT) activity, when measured in red blood cells (RBC) with a recently published TPMT activity assay using 6-thioguanine (6-TG) as substrate, could not be reproduced in another laboratory. We investigated factors which could influence the results of the TPMT activity measurement. We tested twelve 6-TG and four 6-mercaptopurine (6-MP) compounds from different suppliers as substrates and determined the enzyme kinetic parameters Km and Vmax. Furthermore, we studied the influence of different 6-TG compounds on the affinity of the methyl donor S-adenosyl-L-methionine (SAM) to the TPMT enzyme. All 6-TG products were of equal purity (declared >98% by the supplier): this was ascertained by HPLC. However, the rate of methylation obtained following incubation with 6-TG from different suppliers ranged from 10% to 100% when incubated with the same RBC lysate. The lowest apparent Km value for a 6-TG was 22.3 micromol x l(-1), while the product with the highest methylation rate showed a Km of 156 micromol x l(-1). From these results we assume that there is a contaminant in some 6-TG products, which acts as a strong inhibitor of TPMT activity. Compounds possibly used for the synthesis of 6-TG (guanine, pyridine, 6-chloroguanine) did not affect the methylation rate. Thioxanthine, which is known to be a strong inhibitor of TPMT when added to the assay system to give a 2% contamination, reduced TPMT activity from 100% to 72%. Using 6-MP from different suppliers as substrate resulted in Km values ranging from 110 to 162 micromol x l(-1) and Vmox values ranging from 54 to 68 nmol 6-MMP x g(-1)Hb x h(-1). The Km value for the methyl donor SAM was similar to and independent from the thiopurine substrates tested (range 4.9-11 micromol-l(-1) SAM). In contrast to other investigators, we found non-enzymatic S-methylation, which was negligible under our assay conditions (3% with 128 micromol x l(-1) SAM), but could become relevant in experiments using higher SAM concentrations. TPMT enzyme activity determined with 6-TG as substrate may be strongly inhibited by a contaminant in some of the 6-TG lots distributed.

  19. The evolutionary and integrative roles of transthyretin in thyroid hormone homeostasis.

    PubMed

    Schreiber, G

    2002-10-01

    In larger mammals, thyroid hormone-binding plasma proteins are albumin, transthyretin (TTR) and thyroxine (T4)-binding globulin. They differ characteristically in affinities and release rates for T4 and triiodothyronine (T3). Together, they form a 'buffering' system counteracting thyroid hormone permeation from aqueous to lipid phases. Evolution led to important differences in the expression pattern of these three proteins in tissues. In adult liver, TTR is only made in eutherians and herbivorous marsupials. During development, it is also made in tadpole and fish liver. More intense TTR synthesis than in liver is found in the choroid plexus of reptilians, birds and mammals, but none in the choroid plexus of amphibians and fish, i.e. species without a neocortex. All brain-made TTR is secreted into the cerebrospinal fluid, where it becomes the major thyroid hormone-binding protein. During ontogeny, the maximum TTR synthesis in the choroid plexus precedes that of the growth rate of the brain and occurs during the period of maximum neuroblast replication. TTR is only one component in a network of factors determining thyroid hormone distribution. This explains why, under laboratory conditions, TTR-knockout mice show no major abnormalities. The ratio of TTR affinity for T4 over affinity for T3 is higher in eutherians than in reptiles and birds. This favors T4 transport from blood to brain providing more substrate for conversion of the biologically less active T4 into the biologically more active T3 by the tissue-specific brain deiodinases. The change in affinity of TTR during evolution involves a shortening and an increase in the hydrophilicity of the N-terminal regions of the TTR subunits. The molecular mechanism for this change is a stepwise shift of the splice site at the intron 1/exon 2 border of the TTR gene. The shift probably results from a sequence of single base mutations. Thus, TTR evolution provides an example for a molecular mechanism of positive Darwinian evolution. The amino acid sequences of fish and amphibian TTRs are very similar to those in mammals, suggesting that substantial TTR evolution occurred before the vertebrate stage. Open reading frames for TTR-like sequences already exist in Caenorhabditis elegans, yeast and Escherichia coli genomes.

  20. CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake.

    PubMed Central

    Liu, K H; Huang, C Y; Tsay, Y F

    1999-01-01

    Higher plants have both high- and low-affinity nitrate uptake systems. These systems are generally thought to be genetically distinct. Here, we demonstrate that a well-known low-affinity nitrate uptake mutant of Arabidopsis, chl1, is also defective in high-affinity nitrate uptake. Two to 3 hr after nitrate induction, uptake activities of various chl1 mutants at 250 microM nitrate (a high-affinity concentration) were only 18 to 30% of those of wild-type plants. In these mutants, both the inducible phase and the constitutive phase of high-affinity nitrate uptake activities were reduced, with the inducible phase being severely reduced. Expressing a CHL1 cDNA driven by the cauliflower mosaic virus 35S promoter in a transgenic chl1 plant effectively recovered the defect in high-affinity uptake for the constitutive phase but not for the induced phase, which is consistent with the constitutive level of CHL1 expression in the transgenic plant. Kinetic analysis of nitrate uptake by CHL1-injected Xenopus oocytes displayed a biphasic pattern with a Michaelis-Menten Km value of approximately 50 microM for the high-affinity phase and approximately 4 mM for the low-affinity phase. These results indicate that in addition to being a low-affinity nitrate transporter, as previously recognized, CHL1 is also involved in both the inducible and constitutive phases of high-affinity nitrate uptake in Arabidopsis. PMID:10330471

  1. The oligomeric architecture of the archaeal exosome is important for processive and efficient RNA degradation.

    PubMed

    Audin, Maxime J C; Wurm, Jan Philip; Cvetkovic, Milos A; Sprangers, Remco

    2016-04-07

    The exosome plays an important role in RNA degradation and processing. In archaea, three Rrp41:Rrp42 heterodimers assemble into a barrel like structure that contains a narrow RNA entrance pore and a lumen that contains three active sites. Here, we demonstrate that this quaternary structure of the exosome is important for efficient RNA degradation. We find that the entrance pore of the barrel is required for nM substrate affinity. This strong interaction is crucial for processive substrate degradation and prevents premature release of the RNA from the enzyme. Using methyl TROSY NMR techniques, we establish that the 3' end of the substrate remains highly flexible inside the lumen. As a result, the RNA jumps between the three active sites that all equally participate in substrate degradation. The RNA jumping rate is, however, much faster than the cleavage rate, indicating that not all active site:substrate encounters result in catalysis. Enzymatic turnover therefore benefits from the confinement of the active sites and substrate in the lumen, which ensures that the RNA is at all times bound to one of the active sites. The evolution of the exosome into a hexameric complex and the optimization of its catalytic efficiency were thus likely co-occurring events. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Multiple allosteric sites are involved in the modulation of insulin-degrading-enzyme activity by somatostatin.

    PubMed

    Tundo, Grazia R; Di Muzio, Elena; Ciaccio, Chiara; Sbardella, Diego; Di Pierro, Donato; Polticelli, Fabio; Coletta, Massimo; Marini, Stefano

    2016-10-01

    Somatostatin is a cyclic peptide, released in the gastrointestinal system and the central nervous system, where it is involved in the regulation of cognitive and sensory functions, motor activity and sleep. It is a substrate of insulin-degrading enzyme (IDE), as well as a modulator of its activity and expression. In the present study, we have investigated the modulatory role of somatostatin on IDE activity at 37 °C and pH 7.3 for various substrates [i.e. insulin, β-amyloid (Aβ) 1-40 and bradykinin], aiming to quantitatively characterize the correlation between the specific features of the substrates and the regulatory mechanism. Functional data indicate that somatostatin, in addition to the catalytic site of IDE (being a substrate), is also able to bind to two additional exosites, which play different roles according to the size of the substrate and its binding mode to the IDE catalytic cleft. In particular, one exosite, which displays high affinity for somatostatin, regulates only the interaction of IDE with larger substrates (such as insulin and Aβ 1-40 ) in a differing fashion according to their various modes of binding to the enzyme. A second exosite, which is involved in the regulation of enzymatic processing by IDE of all substrates investigated (including a 10-25 amino acid long amyloid-like peptide, bradykinin and somatostatin itself, which had been studied previously), probably acts through the alteration of an 'open-closed' equilibrium. © 2016 Federation of European Biochemical Societies.

  3. A Water‐Soluble Tetraazaperopyrene Dye as Strong G‐Quadruplex DNA Binder

    PubMed Central

    Hahn, Lena

    2016-01-01

    Abstract The interactions of the water‐soluble tetraazaperopyrene dye 1 with ct‐DNA, duplex‐[(dAdT)12 ⋅(dAdT)12], duplex‐[(dGdC)12 ⋅(dGdC)12] as well as with two G‐quadruplex‐forming sequences, namely the human telomeric 22AG and the promotor sequence c‐myc, were investigated by means of UV/visible and fluorescence spectroscopy, isothermal titration calorimetry (ITC) and molecular docking studies. Dye 1 exhibits a high affinity for G‐quadruplex structures over duplex DNA structures. Furthermore, the ligand shows promising G‐quadruplex discrimination, with an affinity towards c‐myc of 2×107  m −1 (i.e., K d=50 nm), which is higher than for 22AG (4×106  m −1). The ITC data reveal that compound 1 interacts with c‐myc in a stoichiometric ratio of 1:1 but also indicate the presence of two identical lower affinity secondary binding sites per quadruplex. In 22AG, there are two high affinity binding sites per quadruplex, that is, one on each side, with a further four weaker binding sites. For both quadruplex structures, the high affinity interactions between compound 1 and the quadruplex‐forming nucleic acid structures are weakly endothermic. Molecular docking studies suggest an end‐stacking binding mode for compound 1 interacting with quadruplex structures, and a higher affinity for the parallel conformation of c‐myc than for the mixed‐hybrid conformation of 22AG. In addition, docking studies also suggest that the reduced affinity for duplex DNA structures is due to the non‐viability of an intercalative binding mode. PMID:26997208

  4. Interaction of Ochratoxin A and Its Thermal Degradation Product 2'R-Ochratoxin A with Human Serum Albumin.

    PubMed

    Sueck, Franziska; Poór, Miklós; Faisal, Zelma; Gertzen, Christoph G W; Cramer, Benedikt; Lemli, Beáta; Kunsági-Máté, Sándor; Gohlke, Holger; Humpf, Hans-Ulrich

    2018-06-22

    Ochratoxin A (OTA) is a toxic secondary metabolite produced by several fungal species of the genus Penicillium and Aspergillus . 2′ R -Ochratoxin A (2′ R -OTA) is a thermal isomerization product of OTA formed during food processing at high temperatures. Both compounds are detectable in human blood in concentrations between 0.02 and 0.41 µg/L with 2′ R -OTA being only detectable in the blood of coffee drinkers. Humans have approximately a fifty-fold higher exposure through food consumption to OTA than to 2′ R -OTA. In human blood, however, the differences between the concentrations of the two compounds is, on average, only a factor of two. To understand these unexpectedly high 2′ R -OTA concentrations found in human blood, the affinity of this compound to the most abundant protein in human blood the human serum albumin (HSA) was studied and compared to that of OTA, which has a well-known high binding affinity. Using fluorescence spectroscopy, equilibrium dialysis, circular dichroism (CD), high performance affinity chromatography (HPAC), and molecular modelling experiments, the affinities of OTA and 2′ R -OTA to HSA were determined and compared with each other. For the affinity of HSA towards OTA, a log K of 7.0⁻7.6 was calculated, while for its thermally produced isomer 2′ R -OTA, a lower, but still high, log K of 6.2⁻6.4 was determined. The data of all experiments showed consistently that OTA has a higher affinity to HSA than 2′ R -OTA. Thus, differences in the affinity to HSA cannot explain the relatively high levels of 2′ R -OTA found in human blood samples.

  5. Hooking horseradish peroxidase by using the affinity Langmuir-Blodgett technique for an oriented immobilization

    NASA Astrophysics Data System (ADS)

    Peng, Ye; Ling-Ling, Hu; Yu-Zhi, Du; Yong-Juan, Xu; Hua-Gang, Ni; Cong, Chen; Xiao-Lin, Lu; Xiao-Jun, Huang

    2017-05-01

    A novel method of oriented immobilization was presented: affinity Langmuir-Blodgett (LB) technique. Firstly, a long carbon chain was bond to a ligand of Horseradish Peroxidase (HRP). The ligand derivative appears surface activity with the hydrophobic carbon chain oriented to air and the hydrophilic ligand faced to water. Then, this derivative was put onto the water/air surface to assemble a LB film and formed the affinity interaction with the active site of HRP. After that, the affinity LB film with the enzyme was transferred onto the support to obtain the oriented immobilized HRP. The specific activity of HRP immobilized by affinity LB (182.1 ± 14 U/mg) was higher than that by adsorption (40.5 ± 5 U/mg). HRP immobilized by affinity LB could maintain a more native conformation, compared to that by adsorption. This method could be effectively used to immobilize protein with orientation and show widely promising applications in many fields including biosensor and bioreactor.

  6. Kinetic models for nitrogen inhibition in ANAMMOX and nitrification process on deammonification system at room temperature.

    PubMed

    De Prá, Marina C; Kunz, Airton; Bortoli, Marcelo; Scussiato, Lucas A; Coldebella, Arlei; Vanotti, Matias; Soares, Hugo M

    2016-02-01

    In this study were fitted the best kinetic model for nitrogen removal inhibition by ammonium and/or nitrite in three different nitrogen removal systems operated at 25 °C: a nitrifying system (NF) containing only ammonia oxidizing bacteria (AOB), an ANAMMOX system (AMX) containing only ANAMMOX bacteria, and a deammonification system (DMX) containing both AOB and ANAMMOX bacteria. NF system showed inhibition by ammonium and was best described by Andrews model. The AMX system showed a strong inhibition by nitrite and Edwards model presented a best system representation. For DMX system, the increased substrate concentration (until 1060 mg NH3-N/L) tested was not limiting for the ammonia consumption rate and the Monod model was the best model to describe this process. The AOB and ANAMMOX sludges combined in the DMX system displayed a better activity, substrate affinity and excellent substrate tolerance than in nitrifying and ANAMMOX process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Redirection of pyruvate flux toward desired metabolic pathways through substrate channeling between pyruvate kinase and pyruvate-converting enzymes in Saccharomyces cerevisiae.

    PubMed

    Kim, Sujin; Bae, Sang-Jeong; Hahn, Ji-Sook

    2016-04-07

    Spatial organization of metabolic enzymes allows substrate channeling, which accelerates processing of intermediates. Here, we investigated the effect of substrate channeling on the flux partitioning at a metabolic branch point, focusing on pyruvate metabolism in Saccharomyces cerevisiae. As a platform strain for the channeling of pyruvate flux, PYK1-Coh-Myc strain was constructed in which PYK1 gene encoding pyruvate kinase is tagged with cohesin domain. By using high-affinity cohesin-dockerin interaction, the pyruvate-forming enzyme Pyk1 was tethered to heterologous pyruvate-converting enzymes, lactate dehydrogenase and α-acetolactate synthase, to produce lactic acid and 2,3-butanediol, respectively. Pyruvate flux was successfully redirected toward desired pathways, with a concomitant decrease in ethanol production even without genetic attenuation of the ethanol-producing pathway. This pyruvate channeling strategy led to an improvement of 2,3-butanediol production by 38%, while showing a limitation in improving lactic acid production due to a reduced activity of lactate dehydrogenase by dockerin tagging.

  8. Non-Invasive Assessment of Liver Function

    PubMed Central

    Helmke, Steve; Colmenero, Jordi; Everson, Gregory T.

    2015-01-01

    Purpose of review It is our opinion that there is an unmet need in Hepatology for a minimally- or noninvasive test of liver function and physiology. Quantitative liver function tests (QLFTs) define the severity and prognosis of liver disease by measuring the clearance of substrates whose uptake or metabolism is dependent upon liver perfusion or hepatocyte function. Substrates with high affinity hepatic transporters exhibit high “first-pass” hepatic extraction and their clearance measures hepatic perfusion. In contrast, substrates metabolized by the liver have low first-pass extraction and their clearance measures specific drug metabolizing pathways. Recent Findings We highlight one QLFT, the dual cholate test, and introduce the concept of a disease severity index (DSI) linked to clinical outcome that quantifies the simultaneous processes of hepatocyte uptake, clearance from the systemic circulation, clearance from the portal circulation, and portal-systemic shunting. Summary It is our opinion that dual cholate is a relevant test for defining disease severity, monitoring the natural course of disease progression, and quantifying the response to therapy. PMID:25714706

  9. Extracellular fluid proteins of goldfish brain: evidence for the presence of proteases and esterases.

    PubMed

    Shashoua, V E; Holmquist, B

    1986-09-01

    Preparations of enriched fractions of extracellular fluid (ECF) proteins from goldfish brain were found to contain protease(s) and esterase(s). The N-substituted furanacryloyl (FA) peptides FA-Phe-Gly-Gly and FA-Phe-OMe were used as model substrates for determining protease and esterase activity, respectively, in a spectrophotometric assay. Studies of the profile of substrate specificity and identification of the types of compounds that were effective as inhibitors showed that these ECF enzymes have some distinctive properties. GSH, but not GSSG, and EDTA inhibited the protease(s) without influencing the esterase(s), whereas L-1-tosylamide-2-phenylethylchloromethyl ketone blocked both protease and esterase activities of ECF. Most of the protease and esterase properties of ECF could be bound to concanavalin A-Sepharose affinity chromatographic columns in association with ependymin--a brain extracellular protein. These observations indicate that ECF may contain a metalloprotease(s) and raise the possibility that the ependymins might be a substrate for these ECF enzymes.

  10. Impact of x-Linkable Polymer Blends on Phase Morphology and Adhesion

    NASA Astrophysics Data System (ADS)

    Liu, Chun; Wan, Grace; Keene, Ellen; Harris, Joseph; Zhang, Sipei; Anderson, Stephanie; Li Pi Shan, Colin

    Adhesion to dissimilar substrate is highly important to multiple industrial applications such as automotive adhesives, food packaging, transportation etc. Adhesive design has to include components that are affinity to both substrates, e.g. high surface energy polar and low surface non-polar substrates. Typically, these adhesive components are thermodynamically incompatible with each other, leading to macrophase separation and thus adhesive failure. By using functional adhesive components plus some additives, the adhesive can be in-situ cross-linked to prevent the macrophase separation with controlled phase morphology. Herein, we present the study on a cross-linkable adhesive formulation consisting of acrylic emulsion and polyolefin aqueous dispersion with additives for enhancing cross-linking and controlled phase morphologies. Contact angle measurement and ATR-IR spectroscopy are used to characterize the properties of adhesive surface. DMA is used to study the mechanical property of adhesive before and after cross-linking. The detailed phase morphologies are revealed by AFM, SEM and TEM. The resulting adhesive morphologies are correlated with the adhesive performance to establish structure-property relationship.

  11. The “Gate Keeper” Role of Trp222 Determines the Enantiopreference of Diketoreductase toward 2-Chloro-1-Phenylethanone

    PubMed Central

    Lu, Zhuo; Liu, Nan; Chen, Yijun

    2014-01-01

    Trp222 of diketoreductase (DKR), an enzyme responsible for reducing a variety of ketones to chiral alcohols, is located at the hydrophobic dimeric interface of the C-terminus. Single substitutions at DKR Trp222 with either canonical (Val, Leu, Met, Phe and Tyr) or unnatural amino acids (UAAs) (4-cyano-L-phenylalanine, 4-methoxy-L-phenylalanine, 4-phenyl-L-phenyalanine, O-tert-butyl-L-tyrosine) inverts the enantiotope preference of the enzyme toward 2-chloro-1-phenylethanone with close side chain correlation. Analyses of enzyme activity, substrate affinity and ternary structure of the mutants revealed that substitution at Trp222 causes a notable change in the overall enzyme structure, and specifically in the entrance tunnel to the active center. The size of residue 222 in DKR is vital to its enantiotope preference. Trp222 serves as a “gate keeper” to control the direction of substrate entry into the active center. Consequently, opposite substrate-binding orientations produce respective alcohol enantiomers. PMID:25072248

  12. Binding constant of cell adhesion receptors and substrate-immobilized ligands depends on the distribution of ligands

    NASA Astrophysics Data System (ADS)

    Li, Long; Hu, Jinglei; Xu, Guangkui; Song, Fan

    2018-01-01

    Cell-cell adhesion and the adhesion of cells to tissues and extracellular matrix, which are pivotal for immune response, tissue development, and cell locomotion, depend sensitively on the binding constant of receptor and ligand molecules anchored on the apposing surfaces. An important question remains of whether the immobilization of ligands affects the affinity of binding with cell adhesion receptors. We have investigated the adhesion of multicomponent membranes to a flat substrate coated with immobile ligands using Monte Carlo simulations of a statistical mesoscopic model with biologically relevant parameters. We find that the binding of the adhesion receptors to ligands immobilized on the substrate is strongly affected by the ligand distribution. In the case of ligand clusters, the receptor-ligand binding constant can be significantly enhanced due to the less translational entropy loss of lipid-raft domains in the model cell membranes upon the formation of additional complexes. For ligands randomly or uniformly immobilized on the substrate, the binding constant is rather decreased since the receptors localized in lipid-raft domains have to pay an energetic penalty in order to bind ligands. Our findings help to understand why cell-substrate adhesion experiments for measuring the impact of lipid rafts on the receptor-ligand interactions led to contradictory results.

  13. Use of an uncertainty analysis for genome-scale models as a prediction tool for microbial growth processes in subsurface environments.

    PubMed

    Klier, Christine

    2012-03-06

    The integration of genome-scale, constraint-based models of microbial cell function into simulations of contaminant transport and fate in complex groundwater systems is a promising approach to help characterize the metabolic activities of microorganisms in natural environments. In constraint-based modeling, the specific uptake flux rates of external metabolites are usually determined by Michaelis-Menten kinetic theory. However, extensive data sets based on experimentally measured values are not always available. In this study, a genome-scale model of Pseudomonas putida was used to study the key issue of uncertainty arising from the parametrization of the influx of two growth-limiting substrates: oxygen and toluene. The results showed that simulated growth rates are highly sensitive to substrate affinity constants and that uncertainties in specific substrate uptake rates have a significant influence on the variability of simulated microbial growth. Michaelis-Menten kinetic theory does not, therefore, seem to be appropriate for descriptions of substrate uptake processes in the genome-scale model of P. putida. Microbial growth rates of P. putida in subsurface environments can only be accurately predicted if the processes of complex substrate transport and microbial uptake regulation are sufficiently understood in natural environments and if data-driven uptake flux constraints can be applied.

  14. Effect of the F610A mutation on substrate extrusion in the AcrB transporter: explanation and rationale by molecular dynamics simulations.

    PubMed

    Vargiu, Attilio V; Collu, Francesca; Schulz, Robert; Pos, Klaas M; Zacharias, Martin; Kleinekathöfer, Ulrich; Ruggerone, Paolo

    2011-07-20

    The tripartite efflux pump AcrAB-TolC is responsible for the intrinsic and acquired multidrug resistance in Escherichia coli. Its active part, the homotrimeric transporter AcrB, is in charge of the selective binding of substrates and energy transduction. The mutation F610A has been shown to significantly reduce the minimum inhibitory concentration of doxorubicin and many other substrates, although F610 does not appear to interact strongly with them. Biochemical study of transport kinetics in AcrB is not yet possible, except for some β-lactams, and other techniques should supply this important information. Therefore, in this work, we assess the impact of the F610A mutation on the functionality of AcrB by means of computational techniques, using doxorubicin as substrate. We found that the compound slides deeply inside the binding pocket after mutation, increasing the strength of the interaction. During subsequent conformational alterations of the transporter, doxorubicin was either not extruded from the binding site or displaced along a direction other than the one associated with extrusion. Our study indicates how subtle interactions determine the functionality of multidrug transporters, since decreased transport might not be simplistically correlated to decreased substrate binding affinity.

  15. Enhanced catalysis of L-asparaginase from Bacillus licheniformis by a rational redesign.

    PubMed

    Sudhir, Ankit P; Agarwaal, Viplove V; Dave, Bhaumik R; Patel, Darshan H; Subramanian, R B

    2016-05-01

    L-Asparaginase (3.5.1.1) being antineoplastic in nature are used in the treatment of acute lymphoblastic leukemia (ALL). However glutaminase activity is the cause of various side effects when used as a drug against acute lymphoblastic leukemia (ALL). Therefore, there is a need of a novel L-asparaginase (L-ASNase) with low or no glutaminase activity. Such a property has been observed with L-ASNase from B. licheniformis (BliA). The enzyme being glutaminase free in nature paved the way for its improvement to achieve properties similar to or near to the commercially available L-ASNases. Rational enzyme engineering approach resulted in four mutants: G238N, E232A, D103V and Q112H. Among these the mutant enzyme, D103V, had a specific activity of 597.7IU/mg, which is higher than native (rBliA) (407.65IU/mg). Moreover, when the optimum temperature and in vitro half life were studied and compared with native BliA, D103V mutant BliA was better, showing tolerance to higher temperatures and a 3 fold higher half life. Kinetic studies revealed that the mutant D103V L-ASNase has increased substrate affinity, with Km value of 0.42mM and Vmax of 2778.9μmolmin(-1). Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Community structure and biogeography of shore fishes in the Gulf of Aqaba, Red Sea

    NASA Astrophysics Data System (ADS)

    Khalaf, Maroof A.; Kochzius, Marc

    2002-02-01

    Shore fish community structure off the Jordanian Red Sea coast was determined on fringing coral reefs and in a seagrass-dominated bay at 6 m and 12 m depths. A total of 198 fish species belonging to 121 genera and 43 families was recorded. Labridae and Pomacentridae dominated the ichthyofauna in terms of species richness and Pomacentridae were most abundant. Neither diversity nor species richness was correlated to depth. The abundance of fishes was higher at the deep reef slope, due to schooling planktivorous fishes. At 12 m depth abundance of fishes at the seagrass-dominated site was higher than on the coral reefs. Multivariate analysis demonstrated a strong influence on the fish assemblages by depth and benthic habitat. Fish species richness was positively correlated with hard substrate cover and habitat diversity. Abundance of corallivores was positively linked with live hard coral cover. The assemblages of fishes were different on the shallow reef slope, deep reef slope and seagrass meadows. An analysis of the fish fauna showed that the Gulf of Aqaba harbours a higher species richness than previously reported. The comparison with fish communities on other reefs around the Arabian Peninsula and Indian Ocean supported the recognition of an Arabian subprovince within the Indian Ocean. The affinity of the Arabian Gulf ichthyofauna to the Red Sea is not clear.

  17. Knock-Down of a Tonoplast Localized Low-Affinity Nitrate Transporter OsNPF7.2 Affects Rice Growth under High Nitrate Supply

    PubMed Central

    Hu, Rui; Qiu, Diyang; Chen, Yi; Miller, Anthony J.; Fan, Xiaorong; Pan, Xiaoping; Zhang, Mingyong

    2016-01-01

    The large nitrate transporter 1/peptide transporter family (NPF) has been shown to transport diverse substrates, including nitrate, amino acids, peptides, phytohormones, and glucosinolates. However, the rice (Oryza sativa) root-specific family member OsNPF7.2 has not been functionally characterized. Here, our data show that OsNPF7.2 is a tonoplast localized low-affinity nitrate transporter, that affects rice growth under high nitrate supply. Expression analysis showed that OsNPF7.2 was mainly expressed in the elongation and maturation zones of roots, especially in the root sclerenchyma, cortex and stele. It was also induced by high concentrations of nitrate. Subcellular localization analysis showed that OsNPF7.2 was localized on the tonoplast of large and small vacuoles. Heterologous expression in Xenopus laevis oocytes suggested that OsNPF7.2 was a low-affinity nitrate transporter. Knock-down of OsNPF7.2 retarded rice growth under high concentrations of nitrate. Therefore, we deduce that OsNPF7.2 plays a role in intracellular allocation of nitrate in roots, and thus influences rice growth under high nitrate supply. PMID:27826301

  18. Engineering an antibody with picomolar affinity to DOTA chelates of multiple radionuclides for pretargeted radioimmunotherapy and imaging

    PubMed Central

    Orcutt, Kelly Davis; Slusarczyk, Adrian L; Cieslewicz, Maryelise; Ruiz-Yi, Benjamin; Bhushan, Kumar R; Frangioni, John V; Wittrup, K Dane

    2014-01-01

    Introduction In pretargeted radioimmunotherapy (PRIT), a bifunctional antibody is administered and allowed to pre-localize to tumor cells. Subsequently, a chelated radionuclide is administered and captured by cell-bound antibody while unbound hapten clears rapidly from the body. We aim to engineer high-affinity binders to DOTA chelates for use in PRIT applications. Methods We mathematically modeled antibody and hapten pharmacokinetics to analyze hapten tumor retention as a function of hapten binding affinity. Motivated by model predictions, we used directed evolution and yeast surface display to affinity mature the 2D12.5 antibody to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), reformatted as a single chain variable fragment (scFv). Results Modeling predicts that for high antigen density and saturating bsAb dose, a hapten binding affinity of 100 picomolar (pM) is needed for near-maximal hapten retention. We affinity matured 2D12.5 with an initial binding constant of about 10 nanomolar (nM) to DOTA-yttrium chelates. Affinity maturation resulted in a 1000-fold affinity improvement to biotinylated DOTA-yttrium, yielding an 8.2 ± 1.9 picomolar binder. The high-affinity scFv binds DOTA complexes of lutetium and gadolinium with similar picomolar affinity and indium chelates with low nanomolar affinity. When engineered into a bispecific antibody construct targeting carcinoembryonic antigen (CEA), pretargeted high-affinity scFv results in significantly higher tumor retention of a 111In-DOTA hapten compared to pretargeted wild-type scFv in a xenograft mouse model. Conclusions We have engineered a versatile, high-affinity DOTA-chelate-binding scFv. We anticipate it will prove useful in developing pretargeted imaging and therapy protocols to exploit the potential of a variety of radiometals. PMID:21315278

  19. Affinity learning with diffusion on tensor product graph.

    PubMed

    Yang, Xingwei; Prasad, Lakshman; Latecki, Longin Jan

    2013-01-01

    In many applications, we are given a finite set of data points sampled from a data manifold and represented as a graph with edge weights determined by pairwise similarities of the samples. Often the pairwise similarities (which are also called affinities) are unreliable due to noise or due to intrinsic difficulties in estimating similarity values of the samples. As observed in several recent approaches, more reliable similarities can be obtained if the original similarities are diffused in the context of other data points, where the context of each point is a set of points most similar to it. Compared to the existing methods, our approach differs in two main aspects. First, instead of diffusing the similarity information on the original graph, we propose to utilize the tensor product graph (TPG) obtained by the tensor product of the original graph with itself. Since TPG takes into account higher order information, it is not a surprise that we obtain more reliable similarities. However, it comes at the price of higher order computational complexity and storage requirement. The key contribution of the proposed approach is that the information propagation on TPG can be computed with the same computational complexity and the same amount of storage as the propagation on the original graph. We prove that a graph diffusion process on TPG is equivalent to a novel iterative algorithm on the original graph, which is guaranteed to converge. After its convergence we obtain new edge weights that can be interpreted as new, learned affinities. We stress that the affinities are learned in an unsupervised setting. We illustrate the benefits of the proposed approach for data manifolds composed of shapes, images, and image patches on two very different tasks of image retrieval and image segmentation. With learned affinities, we achieve the bull's eye retrieval score of 99.99 percent on the MPEG-7 shape dataset, which is much higher than the state-of-the-art algorithms. When the data- points are image patches, the NCut with the learned affinities not only significantly outperforms the NCut with the original affinities, but it also outperforms state-of-the-art image segmentation methods.

  20. Student Engagement and Neoliberalism: Mapping an Elective Affinity

    ERIC Educational Resources Information Center

    Zepke, Nick

    2015-01-01

    The purpose of this article is to argue that student engagement, an important area for research about learning and teaching in formal higher education, has an elective affinity with neoliberalism, a hegemonic ideology in many countries of the developed world. The paper first surveys an extensive research literature examining student engagement and…

  1. Expanding RNA binding specificity and affinity of engineered PUF domains.

    PubMed

    Zhao, Yang-Yang; Mao, Miao-Wei; Zhang, Wen-Jing; Wang, Jue; Li, Hai-Tao; Yang, Yi; Wang, Zefeng; Wu, Jia-Wei

    2018-05-18

    Specific manipulation of RNA is necessary for the research in biotechnology and medicine. The RNA-binding domains of Pumilio/fem-3 mRNA binding factors (PUF domains) are programmable RNA binding scaffolds used to engineer artificial proteins that specifically modulate RNAs. However, the native PUF domains generally recognize 8-nt RNAs, limiting their applications. Here, we modify the PUF domain of human Pumilio1 to engineer PUFs that recognize RNA targets of different length. The engineered PUFs bind to their RNA targets specifically and PUFs with more repeats have higher binding affinity than the canonical eight-repeat domains; however, the binding affinity reaches the peak at those with 9 and 10 repeats. Structural analysis on PUF with nine repeats reveals a higher degree of curvature, and the RNA binding unexpectedly and dramatically opens the curved structure. Investigation of the residues positioned in between two RNA bases demonstrates that tyrosine and arginine have favored stacking interactions. Further tests on the availability of the engineered PUFs in vitro and in splicing function assays indicate that our engineered PUFs bind RNA targets with high affinity in a programmable way.

  2. Expanding RNA binding specificity and affinity of engineered PUF domains

    PubMed Central

    Zhao, Yang-Yang; Zhang, Wen-Jing; Wang, Jue; Li, Hai-Tao; Yang, Yi; Wang, Zefeng; Wu, Jia-Wei

    2018-01-01

    Abstract Specific manipulation of RNA is necessary for the research in biotechnology and medicine. The RNA-binding domains of Pumilio/fem-3 mRNA binding factors (PUF domains) are programmable RNA binding scaffolds used to engineer artificial proteins that specifically modulate RNAs. However, the native PUF domains generally recognize 8-nt RNAs, limiting their applications. Here, we modify the PUF domain of human Pumilio1 to engineer PUFs that recognize RNA targets of different length. The engineered PUFs bind to their RNA targets specifically and PUFs with more repeats have higher binding affinity than the canonical eight-repeat domains; however, the binding affinity reaches the peak at those with 9 and 10 repeats. Structural analysis on PUF with nine repeats reveals a higher degree of curvature, and the RNA binding unexpectedly and dramatically opens the curved structure. Investigation of the residues positioned in between two RNA bases demonstrates that tyrosine and arginine have favored stacking interactions. Further tests on the availability of the engineered PUFs in vitro and in splicing function assays indicate that our engineered PUFs bind RNA targets with high affinity in a programmable way. PMID:29490074

  3. Two strictly polyphosphate-dependent gluco(manno)kinases from diazotrophic Cyanobacteria with potential to phosphorylate hexoses from polyphosphates.

    PubMed

    Albi, Tomás; Serrano, Aurelio

    2015-05-01

    The single-copy genes encoding putative polyphosphate-glucose phosphotransferases (PPGK, EC 2.7.1.63) from two nitrogen-fixing Cyanobacteria, Nostoc sp. PCC7120 and Nostoc punctiforme PCC73102, were cloned and functionally characterized. In contrast to their actinobacterial counterparts, the cyanobacterial PPGKs have shown the ability to phosphorylate glucose using strictly inorganic polyphosphates (polyP) as phosphoryl donors. This has proven to be an economically attractive reagent in contrast to the more costly ATP. Cyanobacterial PPGKs had a higher affinity for medium-long-sized polyP (greater than ten phosphoryl residues). Thus, longer polyP resulted in higher catalytic efficiency. Also in contrast to most their homologs in Actinobacteria, both cyanobacterial PPGKs exhibited a modest but significant polyP-mannokinase activity as well. Specific activities were in the range of 180-230 and 2-3 μmol min(-1) mg(-1) with glucose and mannose as substrates, respectively. No polyP-fructokinase activity was detected. Cyanobacterial PPGKs required a divalent metal cofactor and exhibited alkaline pH optima (approx. 9.0) and a remarkable thermostability (optimum temperature, 45 °C). The preference for Mg(2+) was noted with an affinity constant of 1.3 mM. Both recombinant PPGKs are homodimers with a subunit molecular mass of ca. 27 kDa. Based on database searches and experimental data from Southern blots and activity assays, closely related PPGK homologs appear to be widespread among unicellular and filamentous mostly nitrogen-fixing Cyanobacteria. Overall, these findings indicate that polyP may be metabolized in these photosynthetic prokaryotes to yield glucose (or mannose) 6-phosphate. They also provide evidence for a novel group-specific subfamily of strictly polyP-dependent gluco(manno)kinases with ancestral features and high biotechnological potential, capable of efficiently using polyP as an alternative and cheap source of energy-rich phosphate instead of costly ATP. Finally, these results could shed new light on the evolutionary origin of sugar kinases.

  4. Processing, Fabrication and Characterization of Advanced Target Sensors Using Mercury Cadmium Telluride (MCT)

    DTIC Science & Technology

    2010-09-01

    doped with Au, Hg, Cd, Be, or Ga); or (3) photoemissive such as metal silicides and negative electron affinity materials. Photoconductive and...plasma (ICP) etching and metallization as required by the design of the sensors at different levels of processing were carried out using either AZ...Second, after all the processing and metallization is completed, the sensor material (Hg1–xCdxTe) and the substrate (silicon) must be dry etched

  5. Purification and characterization of a rice class I chitinase, OsChia1b, produced in Esherichia coli.

    PubMed

    Mizuno, Ryoji; Itoh, Yoshikane; Nishizawa, Yoko; Kezuka, Yuichiro; Suzuki, Kazushi; Nonaka, Takamasa; Watanabe, Takeshi

    2008-03-01

    To determine the properties and structure of OsChia1b, a family 19 chitinase from Oryza sativa L. cv. Nipponbare (japonica ssp.), recombinant OsChia1b was produced in Esherichia coli cells and purified to homogeneity by chitin affinity column chromatography. OsChia1b was highly active against soluble chitinous substrate, but not against crystalline chitin, and clearly inhibited hyphal extension of Trichoderma reesei.

  6. Coupling ligand recognition to protein folding in an engineered variant of rabbit ileal lipid binding protein.

    PubMed

    Kouvatsos, Nikolaos; Meldrum, Jill K; Searle, Mark S; Thomas, Neil R

    2006-11-28

    We have engineered a variant of the beta-clam shell protein ILBP which lacks the alpha-helical motif that caps the central binding cavity; the mutant protein is sufficiently destabilised that it is unfolded under physiological conditions, however, it unexpectedly binds its natural bile acid substrates with high affinity forming a native-like beta-sheet rich structure and demonstrating strong thermodynamic coupling between ligand binding and protein folding.

  7. Increased hemoglobin O2 affinity protects during acute hypoxia

    PubMed Central

    Yalcin, Ozlem

    2012-01-01

    Acclimatization to hypoxia requires time to complete the adaptation mechanisms that influence oxygen (O2) transport and O2 utilization. Although decreasing hemoglobin (Hb) O2 affinity would favor the release of O2 to the tissues, increasing Hb O2 affinity would augment arterial O2 saturation during hypoxia. This study was designed to test the hypothesis that pharmacologically increasing the Hb O2 affinity will augment O2 transport during severe hypoxia (10 and 5% inspired O2) compared with normal Hb O2 affinity. RBC Hb O2 affinity was increased by infusion of 20 mg/kg of 5-hydroxymethyl-2-furfural (5HMF). Control animals received only the vehicle. The effects of increasing Hb O2 affinity were studied in the hamster window chamber model, in terms of systemic and microvascular hemodynamics and partial pressures of O2 (Po2). Pimonidazole binding to hypoxic areas of mice heart and brain was also studied. 5HMF decreased the Po2 at which the Hb is 50% saturated with O2 by 12.6 mmHg. During 10 and 5% O2 hypoxia, 5HMF increased arterial blood O2 saturation by 35 and 48% from the vehicle group, respectively. During 5% O2 hypoxia, blood pressure and heart rate were 58 and 30% higher for 5HMF compared with the vehicle. In addition, 5HMF preserved microvascular blood flow, whereas blood flow decreased to 40% of baseline in the vehicle group. Consequently, perivascular Po2 was three times higher in the 5HMF group compared with the control group at 5% O2 hypoxia. 5HMF also reduced heart and brain hypoxic areas in mice. Therefore, increased Hb O2 affinity resulted in hemodynamics and oxygenation benefits during severe hypoxia. This acute acclimatization process may have implications in survival during severe environmental hypoxia when logistic constraints prevent chronic acclimatization. PMID:22636677

  8. Ultraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana.

    PubMed Central

    Rao, M V; Paliyath, G; Ormrod, D P

    1996-01-01

    Earlier studies with Arabidopsis thaliana exposed to ultraviolet B (UV-B) and ozone (O3) have indicated the differential responses of superoxide dismutase and glutathione reductase. In this study, we have investigated whether A. thaliana genotype Landsberg erecta and its flavonoid-deficient mutant transparent testa (tt5) is capable of metabolizing UV-B- and O3-induced activated oxygen species by invoking similar antioxidant enzymes. UV-B exposure preferentially enhanced guaiacol-peroxidases, ascorbate peroxidase, and peroxidases specific to coniferyl alcohol and modified the substrate affinity of ascorbate peroxidase. O3 exposure enhanced superoxide dismutase, peroxidases, glutathione reductase, and ascorbate peroxidase to a similar degree and modified the substrate affinity of both glutathione reductase and ascorbate peroxidase. Both UV-B and O3 exposure enhanced similar Cu,Zn-superoxide dismutase isoforms. New isoforms of peroxidases and ascorbate peroxidase were synthesized in tt5 plants irradiated with UV-B. UV-B radiation, in contrast to O3, enhanced the activated oxygen species by increasing membrane-localized NADPH-oxidase activity and decreasing catalase activities. These results collectively suggest that (a) UV-B exposure preferentially induces peroxidase-related enzymes, whereas O3 exposure invokes the enzymes of superoxide dismutase/ascorbate-glutathione cycle, and (b) in contrast to O3, UV-B exposure generated activated oxygen species by increasing NADPH-oxidase activity. PMID:8587977

  9. Functional analysis of iodotyrosine deiodinase from drosophila melanogaster

    PubMed Central

    Phatarphekar, Abhishek

    2016-01-01

    Abstract The flavoprotein iodotyrosine deiodinase (IYD) was first discovered in mammals through its ability to salvage iodide from mono‐ and diiodotyrosine, the by‐products of thyroid hormone synthesis. Genomic information indicates that invertebrates contain homologous enzymes although their iodide requirements are unknown. The catalytic domain of IYD from Drosophila melanogaster has now been cloned, expressed and characterized to determine the scope of its potential catalytic function as a model for organisms that are not associated with thyroid hormone production. Little discrimination between iodo‐, bromo‐, and chlorotyrosine was detected. Their affinity for IYD ranges from 0.46 to 0.62 μM (K d) and their efficiency of dehalogenation ranges from 2.4 – 9 x 103 M−1 s−1 (k cat/K m). These values fall within the variations described for IYDs from other organisms for which a physiological function has been confirmed. The relative contribution of three active site residues that coordinate to the amino acid substrates was subsequently determined by mutagenesis of IYD from Drosophila to refine future annotations of genomic and meta‐genomic data for dehalogenation of halotyrosines. Substitution of the active site glutamate to glutamine was most detrimental to catalysis. Alternative substitution of an active site lysine to glutamine affected substrate affinity to the greatest extent but only moderately affected catalytic turnover. Substitution of phenylalanine for an active site tyrosine was least perturbing for binding and catalysis. PMID:27643701

  10. Fluorescence and NMR investigations in the ligand binding properties of adenylate kinases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinstein, J.; Vetter, I.R.; Schlichting, I.

    A new system for measurement of affinities of adenylate kinases (AK) for substrates and inhibitors is presented. This system is based on the use of the fluorescent ligand {alpha},{omega}-di((3{prime} or 2{prime})-O-(N-methyl-anthraniloyl)adenosine-5{prime}) pentaphosphate (MAP5Am), which is an analogue of the bisubstrate inhibitor diadenosine pentaphosphate (AP5A). It allows the determination of dissociation constants for any ligand in the range of 1 {times} 10{sup {minus}9} to 5 {times} 10{sup {minus}2} M. Affinities for different bisubstrate inhibitors (AP4A, AP5A, AP6A) and substrates (AMP, ADP, ATP, GTP) were determined in the presence and absence of magnesium. An analysis of the binding of bisubstrate inhibitors ismore » proposed and applied to these data. Temperature denaturation experiments indicate that the mutant enzyme has the same thermal stability as the wild-type enzyme and, as NMR studies indicate, also a very similar structure. Together with the results obtained by Tian et al on the effect of replacement of the conserved His-36 in the cytosolic AK (AK1) from chicken by glutamine and asparagine, this shows that residues 28 of AK from E. coli (AKec) and 36 of AK1 are situated in a comparable environment and are not essential for catalytic activity.« less

  11. Effects of metal ions on the catalytic degradation of dicofol by cellulase.

    PubMed

    Zhai, Zihan; Yang, Ting; Zhang, Boya; Zhang, Jianbo

    2015-07-01

    A new technique whereby cellulase immobilized on aminated silica was applied to catalyze the degradation of dicofol, an organochlorine pesticide. In order to evaluate the performance of free and immobilized cellulase, experiments were carried out to measure the degradation efficiency. The Michaelis constant, Km, of the reaction catalyzed by immobilized cellulase was 9.16 mg/L, and the maximum reaction rate, Vmax, was 0.40 mg/L/min, while that of free cellulase was Km=8.18 mg/L, and Vmax=0.79 mg/L/min, respectively. The kinetic constants of catalytic degradation were calculated to estimate substrate affinity. Considering that metal ions may affect enzyme activity, the effects of different metal ions on the catalytic degradation efficiency were explored. The results showed that the substrate affinity decreased after immobilization. Monovalent metal ions had no effect on the reaction, while divalent metal ions had either positive or inhibitory effects, including activation by Mn2+, reversible competition with Cd2+, and irreversible inhibition by Pb2+. Ca2+ promoted the catalytic degradation of dicofol at low concentrations, but inhibited it at high concentrations. Compared with free cellulase, immobilized cellulase was affected less by metal ions. This work provided a basis for further studies on the co-occurrence of endocrine-disrupting chemicals and heavy metal ions in the environment. Copyright © 2015. Published by Elsevier B.V.

  12. Determination of trace alkaline phosphatase by solid-substrate room-temperature phosphorimetry based on Triticum vulgare lectin labeled with fullerenol.

    PubMed

    Liu, Jia-Ming; Gao, Fei; Huang, Hong-Hua; Zeng, Li-Qing; Huang, Xiao-Mei; Zhu, Guo-Hui; Li, Zhi-Ming

    2008-04-01

    Fullerenol (F) shows a strong and stable room-temperature phosphorescence (RTP) signal on the surface of nitrocellulose membrane (NCM) at lambda ex max/ lambda em max =542.0/709.4 nm. When modified by dodecylbenzenesulfonic acid sodium salt (DBS), fullerenol emits a stronger signal. It was also found that quantitative specific affinity-adsorption reaction can be carried out between Triticum vulgare lectin (WGA) labeled with DBS-F and alkaline phosphatase (ALP) on the surface of NCM, and the product obtained (WGA-ALP-WGA-F-DBS) emits a strong and stable RTP signal. Furthermore, the content of ALP was proportional to the DeltaI(p) value. Based on the facts above, a new method for the determination of trace amounts of ALP by affinity-adsorption solid-substrate room-temperature phosphorimetry (AA-SS-RTP) was established, using fullerenol modified with DBS to label WGA. The detection limit was 0.011 fg spot(-1) (corresponding concentration: 2.8x10(-14) g ml(-1), namely 2.8x10(-16) mol l(-1)). This method with high sensitivity, accuracy, and precision has been successfully applied to the determination of the content of ALP in human serum survey and forecast human disease, and the results are tallied with those using alkaline phosphatase kits. The mechanism for the determination of ALP using AA-SS-RTP was also discussed.

  13. Ubiquitinated Proteome: Ready for Global?*

    PubMed Central

    Shi, Yi; Xu, Ping; Qin, Jun

    2011-01-01

    Ubiquitin (Ub) is a small and highly conserved protein that can covalently modify protein substrates. Ubiquitination is one of the major post-translational modifications that regulate a broad spectrum of cellular functions. The advancement of mass spectrometers as well as the development of new affinity purification tools has greatly expedited proteome-wide analysis of several post-translational modifications (e.g. phosphorylation, glycosylation, and acetylation). In contrast, large-scale profiling of lysine ubiquitination remains a challenge. Most recently, new Ub affinity reagents such as Ub remnant antibody and tandem Ub binding domains have been developed, allowing for relatively large-scale detection of several hundreds of lysine ubiquitination events in human cells. Here we review different strategies for the identification of ubiquitination site and discuss several issues associated with data analysis. We suggest that careful interpretation and orthogonal confirmation of MS spectra is necessary to minimize false positive assignments by automatic searching algorithms. PMID:21339389

  14. Purification and properties of beta-galactosidase from Aspergillus nidulans.

    PubMed

    Díaz, M; Pedregosa, A M; de Lucas, J R; Torralba, S; Monistrol, I F; Laborda, F

    1996-12-01

    Beta-Galactosidase from mycelial extract of Aspergillus nidulans has been purified by substrate affinity chromatography and used to obtain anti-beta-galactosidase polyclonal antibodies. A. nidulans growing in lactose as carbon source synthesizes one active form of beta-galactosidase which seems to be a multimeric enzyme of 450 kDa composed of monomers with 120 and 97 kDa. Although the enzyme was not released to the culture medium, some enzymatic activity was detected in a cell-wall extract, thus suggesting that it can be an extracellular enzyme. Beta-Galactosidase of A. nidulans is a very unstable enzyme with an optimum pH value of 7.5 and an optimum temperature of 30 degrees C. It was only active against beta-galactoside substrates like lactose and p-nitrophenyl-beta-D-galactoside (PNPG).

  15. The activity of pyruvate carrier in a reconstituted system: substrate specificity and inhibitor sensitivity.

    PubMed

    Nałecz, K A; Kamińska, J; Nałecz, M J; Azzi, A

    1992-08-15

    The pyruvate carrier, of molecular mass 34 kDa, was purified from mitochondria isolated from rat liver, rat brain, and bovine heart, by affinity chromatography on immobilized 2-cyano-4-hydroxycinnamate. Its activity after reconstitution in phosphatidylcholine vesicles was measured either as uptake of [1-14C]pyruvate or as exchange with different 2-oxoacids. All preparations exhibited similar apparent Km values for pyruvate, but somewhat different V(max) values. The ability to exchange different anions of physiological significance, including branched-chain 2-oxoacids, confirmed the known substrate specificity described for the pyruvate carrier in mitochondria. The sensitivity of pyruvate transport toward phenylglyoxal suggested an important role of arginyl residues in the transport activity, while a role of lysyl and histidyl residues was not confirmed.

  16. Identification of Interactions between Abscisic Acid and Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase

    PubMed Central

    Galka, Marek M.; Rajagopalan, Nandhakishore; Buhrow, Leann M.; Nelson, Ken M.; Switala, Jacek; Cutler, Adrian J.; Palmer, David R. J.; Loewen, Peter C.; Abrams, Suzanne R.; Loewen, Michele C.

    2015-01-01

    Abscisic acid ((+)-ABA) is a phytohormone involved in the modulation of developmental processes and stress responses in plants. A chemical proteomics approach using an ABA mimetic probe was combined with in vitro assays, isothermal titration calorimetry (ITC), x-ray crystallography and in silico modelling to identify putative (+)-ABA binding-proteins in crude extracts of Arabidopsis thaliana. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) was identified as a putative ABA-binding protein. Radiolabelled-binding assays yielded a Kd of 47 nM for (+)-ABA binding to spinach Rubisco, which was validated by ITC, and found to be similar to reported and experimentally derived values for the native ribulose-1,5-bisphosphate (RuBP) substrate. Functionally, (+)-ABA caused only weak inhibition of Rubisco catalytic activity (Ki of 2.1 mM), but more potent inhibition of Rubisco activation (Ki of ~ 130 μM). Comparative structural analysis of Rubisco in the presence of (+)-ABA with RuBP in the active site revealed only a putative low occupancy (+)-ABA binding site on the surface of the large subunit at a location distal from the active site. However, subtle distortions in electron density in the binding pocket and in silico docking support the possibility of a higher affinity (+)-ABA binding site in the RuBP binding pocket. Overall we conclude that (+)-ABA interacts with Rubisco. While the low occupancy (+)-ABA binding site and weak non-competitive inhibition of catalysis may not be relevant, the high affinity site may allow ABA to act as a negative effector of Rubisco activation. PMID:26197050

  17. Identification of Interactions between Abscisic Acid and Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase.

    PubMed

    Galka, Marek M; Rajagopalan, Nandhakishore; Buhrow, Leann M; Nelson, Ken M; Switala, Jacek; Cutler, Adrian J; Palmer, David R J; Loewen, Peter C; Abrams, Suzanne R; Loewen, Michele C

    2015-01-01

    Abscisic acid ((+)-ABA) is a phytohormone involved in the modulation of developmental processes and stress responses in plants. A chemical proteomics approach using an ABA mimetic probe was combined with in vitro assays, isothermal titration calorimetry (ITC), x-ray crystallography and in silico modelling to identify putative (+)-ABA binding-proteins in crude extracts of Arabidopsis thaliana. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) was identified as a putative ABA-binding protein. Radiolabelled-binding assays yielded a Kd of 47 nM for (+)-ABA binding to spinach Rubisco, which was validated by ITC, and found to be similar to reported and experimentally derived values for the native ribulose-1,5-bisphosphate (RuBP) substrate. Functionally, (+)-ABA caused only weak inhibition of Rubisco catalytic activity (Ki of 2.1 mM), but more potent inhibition of Rubisco activation (Ki of ~ 130 μM). Comparative structural analysis of Rubisco in the presence of (+)-ABA with RuBP in the active site revealed only a putative low occupancy (+)-ABA binding site on the surface of the large subunit at a location distal from the active site. However, subtle distortions in electron density in the binding pocket and in silico docking support the possibility of a higher affinity (+)-ABA binding site in the RuBP binding pocket. Overall we conclude that (+)-ABA interacts with Rubisco. While the low occupancy (+)-ABA binding site and weak non-competitive inhibition of catalysis may not be relevant, the high affinity site may allow ABA to act as a negative effector of Rubisco activation.

  18. Overexpression of biotin synthase and biotin ligase is required for efficient generation of sulfur-35 labeled biotin in E. coli.

    PubMed

    Delli-Bovi, Teegan A; Spalding, Maroya D; Prigge, Sean T

    2010-10-11

    Biotin is an essential enzyme cofactor that acts as a CO2 carrier in carboxylation and decarboxylation reactions. The E. coli genome encodes a biosynthetic pathway that produces biotin from pimeloyl-CoA in four enzymatic steps. The final step, insertion of sulfur into desthiobiotin to form biotin, is catalyzed by the biotin synthase, BioB. A dedicated biotin ligase (BirA) catalyzes the covalent attachment of biotin to biotin-dependent enzymes. Isotopic labeling has been a valuable tool for probing the details of the biosynthetic process and assaying the activity of biotin-dependent enzymes, however there is currently no established method for 35S labeling of biotin. In this study, we produced [35S]-biotin from Na35SO4 and desthiobiotin with a specific activity of 30.7 Ci/mmol, two orders of magnitude higher than previously published methods. The biotinylation domain (PfBCCP-79) from the Plasmodium falciparum acetyl-CoA carboxylase (ACC) was expressed in E. coli as a biotinylation substrate. We found that overexpression of the E. coli biotin synthase, BioB, and biotin ligase, BirA, increased PfBCCP-79 biotinylation 160-fold over basal levels. Biotinylated PfBCCP-79 was purified by affinity chromatography, and free biotin was liberated using acid hydrolysis. We verified that we had produced radiolabeled biologically active [D]-biotin that specifically labels biotinylated proteins through reuptake in E. coli. The strategy described in our report provides a simple and effective method for the production of [35S]-biotin in E. coli based on affinity chromatography.

  19. Specific phosphopeptide binding regulates a conformational change in the PI 3-kinase SH2 domain associated with enzyme activation.

    PubMed Central

    Shoelson, S E; Sivaraja, M; Williams, K P; Hu, P; Schlessinger, J; Weiss, M A

    1993-01-01

    SH2 (src-homology 2) domains define a newly recognized binding motif that mediates the physical association of target phosphotyrosyl proteins with downstream effector enzymes. An example of such phosphoprotein-effector coupling is provided by the association of phosphatidylinositol 3-kinase (PI 3-kinase) with specific phosphorylation sites within the PDGF receptor, the c-Src/polyoma virus middle T antigen complex and the insulin receptor substrate IRS-1. Notably, phosphoprotein association with the SH2 domains of p85 also stimulates an increase in catalytic activity of the PI 3-kinase p110 subunit, which can be mimicked by phosphopeptides corresponding to targeted phosphoprotein phosphorylation sites. To investigate how phosphoprotein binding to the p85 SH2 domain stimulates p110 catalytic activation, we have examined the differential effects of phosphotyrosine and PDGF receptor-, IRS-1- and c-Src-derived phosphopeptides on the conformation of an isolated SH2 domain of PI 3-kinase. Although phosphotyrosine and both activating and non-activating phosphopeptides bind to the SH2 domain, activating phosphopeptides bind with higher affinity and induce a qualitatively distinct conformational change as monitored by CD and NMR spectroscopy. Amide proton exchange and protease protection assays further show that high affinity, specific phosphopeptide binding induces non-local dynamic SH2 domain stabilization. Based on these findings we propose that specific phosphoprotein binding to the p85 subunit induces a change in SH2 domain structure which is transmitted to the p110 subunit and regulates enzymatic activity by an allosteric mechanism. Images PMID:8382612

  20. LHRH-pituitary plasma membrane binding: the presence of specific binding sites in other tissues.

    PubMed

    Marshall, J C; Shakespear, R A; Odell, W D

    1976-11-01

    Two specific binding sites for LHRH are present on plasma membranes prepared from rat and bovine anterior pituitary glands. One site is of high affinity (K = 2X108 1/MOL) and the second is of lower affinity (8-5X105 1/mol) and much greater capacity. Studies on membrane fractions prepared from other tissues showed the presence of a single specific site for LHRH. The kinetics and specificity of this site were similar to those of the lower affinity pituitary receptor. These results indicate that only pituitary membranes possess the higher affinity binding site and suggest that the low affinity site is not of physiological importance in the regulation of gonadotrophin secretion. After dissociation from membranes of non-pituitary tissues 125I-LHRH rebound to pituitary membrane preparations. Thus receptor binding per se does not result in degradation of LHRH and the function of these peripheral receptors remains obscure.

Top