NASA Astrophysics Data System (ADS)
Hunter, Deidre A.; Adamo, Angela; Elmegreen, Bruce G.; Gallardo, Samavarti; Lee, Janice C.; Cook, David O.; Thilker, David; Kayitesi, Bridget; Kim, Hwihyun; Kahre, Lauren; Ubeda, Leonardo; Bright, Stacey N.; Ryon, Jenna E.; Calzetti, Daniela; Tosi, Monica; Grasha, Kathryn; Messa, Matteo; Fumagalli, Michele; Dale, Daniel A.; Sabbi, Elena; Cignoni, Michele; Smith, Linda J.; Gouliermis, Dimitrios M.; Grebel, Eva K.; Aloisi, Alessandra; Whitmore, Bradley C.; Chandar, Rupali; Johnson, Kelsey E.
2018-07-01
We have explored the role environmental factors play in determining characteristics of young stellar objects in nearby dwarf irregular and blue compact dwarf galaxies. Star clusters are characterized by concentrations, masses, and formation rates; OB associations by mass and mass surface density; O stars by their numbers and near-ultraviolet absolute magnitudes; and H II regions by Hα surface brightnesses. These characteristics are compared to surrounding galactic pressure, stellar mass density, H I surface density, and star formation rate (SFR) surface density. We find no trend of cluster characteristics with environmental properties, implying that larger-scale effects are more important in determining cluster characteristics or that rapid dynamical evolution erases any memory of the initial conditions. On the other hand, the most massive OB associations are found at higher pressure and H I surface density, and there is a trend of higher H II region Hα surface brightness with higher pressure, suggesting that a higher concentration of massive stars and gas is found preferentially in regions of higher pressure. At low pressures we find massive stars but not bound clusters and OB associations. We do not find evidence for an increase of cluster formation efficiency as a function of SFR density. However, there is an increase in the ratio of the number of clusters to the number of O stars with increasing pressure, perhaps reflecting an increase in clustering properties with SFR.
Surface Integrity of Inconel 718 by Ball Burnishing
NASA Astrophysics Data System (ADS)
Sequera, A.; Fu, C. H.; Guo, Y. B.; Wei, X. T.
2014-09-01
Inconel 718 has wide applications in manufacturing mechanical components such as turbine blades, turbocharger rotors, and nuclear reactors. Since these components are subject to harsh environments such as high temperature, pressure, and corrosion, it is critical to improve the functionality to prevent catastrophic failure due to fatigue or corrosion. Ball burnishing as a low plastic deformation process is a promising technique to enhance surface integrity for increasing component fatigue and corrosion resistance in service. This study focuses on the experimental study on surface integrity of burnished Inconel 718. The effects of burnishing ball size and pressure on surface integrity factors such as surface topography, roughness, and hardness are investigated. The burnished surfaces are smoother than the as-machined ones. Surface hardness after burnishing is higher than the as-machined surfaces, but become stable over a certain burnishing pressure. There exists an optimal process space of ball sized and burnishing pressure for surface finish. In addition, surface hardness after burnishing is higher than the as-machined surfaces, which is confirmed by statistical analysis.
NASA Astrophysics Data System (ADS)
Cai, J.; Yan, E.; Yeh, T. C. J.
2015-12-01
Pore-water pressure in a hillslope is a critical control of its stability. The main objective of this paper is to introduce a first-order moment analysis to investigate the pressure head variability within a hypothetical hillslope, induced by steady rainfall infiltration. This approach accounts for the uncertainties and spatial variation of the hydraulic conductivity, and is based on a first-order Taylor approximation of pressure perturbations calculated by a variably saturated, finite element flow model. Using this approach, the effects of variance (σ2lnKs) and spatial structure anisotropy (λh/λv) of natural logarithm of saturated hydraulic conductivity, and normalized vertical infiltration flux (q/ks) on the hillslope pore-water pressure are evaluated. We found that the responses of pressure head variability (σ2p) are quite different between unsaturated region and saturated region divided by the phreatic surface. Above the phreatic surface, a higher variability in pressure head is obtained from a higher σ2lnKs, a higher λh/λv and a smaller q/ks; while below the phreatic surface, a higher σ2lnKs, a lower λh/λv or a larger q/ks would lead to a higher variability in pressure head, and greater range of fluctuation of the phreatic surface within the hillslope. σ2lnKs has greatest impact on σ2p within the slope and λh/λv has smallest impact. All three variables have greater influence on maximum σ2p within the saturated region below the phreatic surface than that within the unsaturated region above the phreatic surface. The results obtained from this study are useful to understand the influence of hydraulic conductivity variations on slope seepage and stability under different slope conditions and material spatial distributions.
Ion specific 2D to 3D structural modification of Langmuir monolayer at lower surface pressure
NASA Astrophysics Data System (ADS)
Das, Kaushik; Kundu, Sarathi
2017-05-01
2D to 3D structural transformation of stearic acid Langmuir monolayer in presence of Ca2+ and Zn2+ ions at lower surface pressure (≈25 mN/m) has been studied at lower (pH ≈ 6.8) and higher (pH ≈ 9.5) subphase pH. Generally, 2D to 3D structural transformation of monolayer occurs at higher surface pressure (>50 mN/m) after collapse point which can be identified from surface pressure (π) vs. specific molecular area (A) isotherms. In presence of Ca2+ ions and for both lower and higher subphase pH, stearic acid monolayer remains as 2D monolayer at that lower surface pressure as confirmed from the Atomic Force Microscopy (AFM) studies on the films deposited at π ≈ 25mN/m. However, in presence of Zn2+ at higher subphase pH, stearic acid monolayer shows 2D to 3D structural transformation where less covered bilayer-like structure forms on top of the monolayer as obtained from the AFM studies. Fourier transform infrared (FTIR) spectroscopy results reveal that formation of relatively more amount of bidentate bridging coordination of metal carboxylate headgroup may be the key reason of such 2D to 3D structural transformation for Zn2+.
Modeling the pyrolysis study of non-charring polymers under reduced pressure environments
NASA Astrophysics Data System (ADS)
Zong, Ruowen; Kang, Ruxue; Hu, Yanghui; Zhi, Youran
2018-04-01
In order to study the pyrolysis of non-charring polymers under reduced pressure environments, a series of experiments based on black acrylonitrile butadiene styrene (ABS) was conducted in a reduced pressure chamber under different external heat fluxes. The temperatures of the top surface and the bottom of the sample and the mass loss during the whole process were measured in real time. A one-dimensional numerical model was developed to predict the top surface and the bottom surface temperatures of ABS during the pyrolysis at different reduced pressures and external heat fluxes, and the model was validated by the experimental data. The results of the study indicate that the profiles of the top surface and the bottom surface temperatures are different at different pressures and heat fluxes. The temperature and the mass loss rate of the sample under a lower heat flux decreased significantly as the pressure was increased. However, under a higher heat flux, the temperature and the mass loss rate showed little sensitivity to the pressure. The simulated results fitted the experimental results better at the higher heat flux than at the lower heat flux.
[Effect of compaction pressure on the properties of dental machinable zirconia ceramic].
Huang, Hui; Wei, Bin; Zhang, Fu-qiang; Sun, Jing; Gao, Lian
2010-10-01
To investigate the effect of compaction pressure on the linear shrinkage, sintering property and machinability of the dental zirconia ceramic. The nano-size zirconia powder was compacted at different isostatic pressure and sintered at different temperature. The linear shrinkage of sintered body was measured and the relative density was tested using the Archimedes method. The cylindrical surface of pre-sintering blanks was traversed using a hard metal tool. Surface and edge quality were checked visually using light stereo microscopy. The sintering behaviour depended on the compaction pressure. Increasing compaction pressure led to higher sintering rate and lower sintering temperature. Increasing compaction pressure also led to decreasing linear shrinkage of the sintered bodies, from 24.54% of 50 MPa to 20.9% of 400 MPa. Compaction pressure showed only a weak influence on machinability of zirconia blanks, but the higher compaction pressure resulted in the poor surface quality. The better sintering property and machinability of dental zirconia ceramic is found for 200-300 MPa compaction pressure.
Knox, D M
1999-06-01
To ascertain the effects of 1-, 1 1/2-, and 2-hour turning intervals on nursing home residents' skin over the sacrum and trochanters. (1) the higher the core body temperature, the higher the skin surface temperature; (2) the 2-hour turning interval would have significantly higher skin surface temperature; (3) there would be no relationship between skin surface temperature and interface pressure; and (4) the sacrum would have the lowest skin surface temperature. Modified Latin-square. For-profit nursing home. Convenience sample of 26 residents who scored < 3 on the Short Portable Mini-Mental Status Questionnaire and did not have (1) open wounds; (2) albumin levels < 3.3 mg/dL; (3) severe arthritis; (4) cortisone, anticoagulation, insulin therapy or 3 medications for hypertension; and/or (5) were totally bedridden. First Temp measured core temperature; a disposable thermistor temperature probe, skin temperature; and a digital interface pressure evaluator, the interface pressure. Negative correlation (r = -.33, P = .003) occurred between core body temperature and skin surface temperature. Skin surface temperature rose at the end of the 2-hour turning interval but was not significant (F = (2.68) = .73, P = .49). Weak negative relationship (r = -12, P = .29) occurred between skin surface temperature and interface pressure, and sacral skin surface temperature was significantly lower for the left trochanter only (F = (8.68) = 7.05, P = .002). Although hypotheses were not supported, more research is needed to understand how time in position and multiple chronic illnesses interact to affect skin pressure tolerance.
Fujita, Masashi; Onami, Shuichi
2012-01-01
In the two-cell stage embryos of Caenorhabditis elegans, the contact surface of the two blastomeres forms a curve that bulges from the AB blastomere to the P1 blastomere. This curve is a consequence of the high intracellular hydrostatic pressure of AB compared with that of P1. However, the higher pressure in AB is intriguing because AB has a larger volume than P1. In soap bubbles, which are a widely used model of cell shape, a larger bubble has lower pressure than a smaller bubble. Here, we reveal that the higher pressure in AB is mediated by its higher cortical tension. The cell fusion experiments confirmed that the curvature of the contact surface is related to the pressure difference between the cells. Chemical and genetic interferences showed that the pressure difference is mediated by actomyosin. Fluorescence imaging indicated that non-muscle myosin is enriched in the AB cortex. The cell killing experiments provided evidence that AB but not P1 is responsible for the pressure difference. Computer simulation clarified that the cell-to-cell heterogeneity of cortical tensions is indispensable for explaining the pressure difference. This study demonstrates that heterogeneity in surface tension results in significant deviations of cell behavior compared to simple soap bubble models, and thus must be taken into consideration in understanding cell shape within embryos. PMID:22253922
Pluto's atmosphere - Models based on refraction, inversion, and vapor-pressure equilibrium
NASA Technical Reports Server (NTRS)
Eshleman, Von R.
1989-01-01
Viking spacecraft radio-occultation measurements indicate that, irrespective of substantial differences, the polar ice cap regions on Mars have inversions similar to those of Pluto, and may also share vapor pressure equilibrium characteristics at the surface. This temperature-inversion phenomenon occurs in a near-surface boundary layer; surface pressure-temperature may correspond to the vapor-pressure equilibrium with CH4 ice, or the temperature may be slightly higher to match the value derived from IRAS data.
Martinez, María J; Sánchez, Cecilio Carrera; Patino, Juan M Rodríguez; Pilosof, Ana M R
2009-01-01
The aim of this work was to study the interactions and adsorption of caseinoglycomacropeptide (GMP) and GMP:beta-lactoglobulin (beta-lg) mixed system in the aqueous phase and at the air-water interface. The existence of associative interactions between GMP and beta-lg in the aqueous phase was investigated by dynamic light scattering, differential scanning calorimetry (DSC), fluorometry and native PAGE-electrophoresis. The surface pressure isotherm and the static and dynamic surface pressure were determined by tensiometry and surface dilatational properties. The results showed that GMP presented higher surface activity than beta-lg at a concentration of 4%wt but beta-lg showed higher film forming ability. In the mixed systems beta-lg dominated the static and dynamic surface pressure and the rheological properties of interfacial films suggesting that beta-lg hinders GMP adsorption because, in simple competition, GMP should dominate because of its higher surface activity. The surface predominance of beta-lg can be attributed to binding of GMP to beta-lg in the aqueous phase that prevents GMP adsorption on its own.
Adsorption of apo- and holo-tear lipocalin to a bovine Meibomian lipid film.
Mudgil, Poonam; Millar, Thomas J
2008-04-01
Adsorption of apo- and holo-tear lipocalin (Tlc) to bovine Meibomian lipid film was studied. A Langmuir trough was used for these studies and the adsorption of protein was observed by recording changes in the pressure with time (pi-T profile). The films were photographed at different stages of adsorption by doping Meibomian lipids with a fluorescently tagged lipid. The results indicated that apo-Tlc adsorbed much more quickly than holo-Tlc to the Meibomian lipid film. Contrary to the expectation that holo-Tlc would release lipids to the surface and surface pressure would be higher, it was found that the surface pressure was higher with the adsorption of apo-Tlc to the surface. Photography of the films showed that apo- and holo-Tlc interacted differently with the Meibomian lipid layer. Adsorption of holo-Tlc resulted in big bright patches and adsorption of apo-Tlc resulted in many small patches along with the big patches. Both forms of Tlc produced a more stable film as indicated by decreased movement of the protein adsorbed films, and a higher maximum surface pressure upon compression of these films compared with Meibomian lipid films alone. Isocyles of apo-Tlc adsorbed films gave a higher surface pressure than that of holo-Tlc. From these results, it is concluded that both apo- and holo-Tlc adsorbed to the Meibomian lipid layer and the delivery of the lipids from Tlc to the outer lipid layer could not be detected by our techniques. Its scavenging role to remove lipids from the corneal surface and bind with them might be beneficial for increasing tear viscosity but whether those lipids are delivered to the outermost lipid layer still remains unclear.
2014-01-01
pressure of 325 kPa (40 psi) at the peak of the temperature ramp of the cure schedule (13). The higher hold pressure requires the use of a high -pressure...Henkel Corporation Aerospace Group. Hysol EA 9896 Peel Ply; Preliminary Technical Datasheet, Bay Point, CA, February 2010. 11. Airtech Advanced ...using FM 94K epoxy film adhesive by mechanical testing, elemental surface analysis, and high -resolution imaging of failure surfaces. Woven S2
Io meteorology - How atmospheric pressure is controlled locally by volcanos and surface frosts
NASA Technical Reports Server (NTRS)
Ingersoll, Andrew P.
1989-01-01
The present modification of the Ingersoll et al. (1985) hydrodynamic model of the SO2 gas sublimation-driven flow from the day to the night side of Io includes the effects of nonuniform surface properties noted in observational studies. Calculations are conducted for atmospheric pressures, horizontal winds, sublimation rates, and condensation rates for such surface conditions as patchy and continuous frost cover, volcanic venting, surface temperature discontinuities, subsurface cold trapping, and the propagation of insolation into the frost. While pressure is found to follow local vapor pressure away from the plumes, it becomes higher inside them.
Bonding of Resin Cement to Zirconia with High Pressure Primer Coating
Wang, Ying-jie; Jiao, Kai; Liu, Yan; Zhou, Wei; Shen, Li-juan; Fang, Ming; Li, Meng; Zhang, Xiang; Tay, Franklin R.; Chen, Ji-hua
2014-01-01
Objectives To investigate the effect of air-drying pressure during ceramic primer coating on zirconia/resin bonding and the surface characteristics of the primed zirconia. Methods Two ceramic primers (Clearfil Ceramic Primer, CCP, Kuraray Medical Inc. and Z-Prime Plus, ZPP, Bisco Inc.) were applied on the surface of air-abraded zirconia (Katana zirconia, Noritake) and dried at 4 different air pressures (0.1–0.4 MPa). The primed zirconia ceramic specimens were bonded with a resin-based luting agent (SA Luting Cement, Kuraray). Micro-shear bond strengths of the bonded specimens were tested after 3 days of water storage or 5,000× thermocycling (n = 12). Failure modes of the fractured specimens were examined with scanning electron miscopy. The effects of air pressure on the thickness of the primer layers and the surface roughness (Sa) of primed zirconia were evaluated using spectroscopic ellipsometry (n = 6), optical profilometry and environmental scanning electron microscopy (ESEM) (n = 6), respectively. Results Clearfil Ceramic Primer air-dried at 0.3 and 0.4 MPa, yielding significantly higher µSBS than gentle air-drying subgroups (p<0.05). Compared to vigorous drying conditions, Z-Prime Plus air-dried at 0.2 MPa exhibited significantly higher µSBS (p<0.05). Increasing air-drying pressure reduced the film thickness for both primers. Profilometry measurements and ESEM showed rougher surfaces in the high pressure subgroups of CCP and intermediate pressure subgroup of ZPP. Conclusion Air-drying pressure influences resin/zirconia bond strength and durability significantly. Higher air-drying pressure (0.3-0.4 MPa) for CCP and intermediate pressure (0.2 MPa) for ZPP are recommended to produce strong, durable bonds between resin cement and zirconia ceramics. PMID:24992678
Li, Yi; Wu, Ji; Zheng, Chao; Huang, Rong Rong; Na, Yuhong; Yang, Fan; Wang, Zengshun; Wu, Di
2013-01-01
The objective of the study was to determine the effect of landing surface on plantar kinetics during a half-squat landing. Twenty male elite paratroopers with formal parachute landing training and over 2 years of parachute jumping experience were recruited. The subjects wore parachuting boots in which pressure sensing insoles were placed. Each subject was instructed to jump off a platform with a height of 60 cm, and land on either a hard or soft surface in a half-squat posture. Outcome measures were maximal plantar pressure, time to maximal plantar pressure (T-MPP), and pressure-time integral (PTI) upon landing on 10 plantar regions. Compared to a soft surface, hard surface produced higher maximal plantar pressure in the 1st to 4th metatarsal and mid-foot regions, but lower maximal plantar pressure in the 5th metatarsal region. Shorter T- MPP was found during hard surface landing in the 1st and 2nd metatarsal and medial rear foot. Landing on a hard surface landing resulted in a lower PTI than a soft surface in the 1stphalangeal region. For Chinese paratroopers, specific foot prosthesis should be designed to protect the1st to 4thmetatarsal region for hard surface landing, and the 1stphalangeal and 5thmetatarsal region for soft surface landing. Key Points Understanding plantar kinetics during the half-squat landing used by Chinese paratroopers can assist in the design of protective footwear. Compared to landing on a soft surface, a hard surface produced higher maximal plantar pressure in the 1st to 4th metatarsal and mid-foot regions, but lower maximal plantar pressure in the 5th metatarsal region. A shorter time to maximal plantar pressure was found during a hard surface landing in the 1st and 2nd metatarsals and medial rear foot. Landing on a hard surface resulted in a lower pressure-time integral than landing on a soft surface in the 1st phalangeal region. For Chinese paratroopers, specific foot prosthesis should be designed to protect the 1st to 4th metatarsal region for a hard surface landing, and the 1st phalangeal and 5th metatarsal region for a soft surface landing. PMID:24149145
ERIC Educational Resources Information Center
Baumgarten, Mona; Margolis, David; Orwig, Denise; Hawkes, William; Rich, Shayna; Langenberg, Patricia; Shardell, Michelle; Palmer, Mary H.; McArdle, Patrick; Sterling, Robert; Jones, Patricia S.; Magaziner, Jay
2010-01-01
Purpose: To estimate the frequency of use of pressure-redistributing support surfaces (PRSS) among hip fracture patients and to determine whether higher pressure ulcer risk is associated with greater PRSS use. Design and Methods: Patients (n = 658) aged [greater than or equal] 65 years who had surgery for hip fracture were examined by research…
Surface modification of Monel K-500 as a means of reducing friction and wear in high-pressure oxygen
NASA Technical Reports Server (NTRS)
Gunaji, Mohan; Stoltzfus, Joel M.; Schoenman, Leonard; Kazaroff, John
1989-01-01
A study is conducted of the tribological characteristics of Monel K-500 during rubbing in a high pressure oxygen atmosphere, upon surface treatment by ion-implanted oxygen, chromium, lead, and silver, as well as electrolyzed chromium and an electroless nickel/SiC composite. The electrolyzed chromium dramatically increased total sample wear, while other surface treatments affected sample wear only moderately. Although the ion-implant treatments reduced the average coefficient of friction at low contact pressure, higher contact pressures eliminated this improvement.
NASA Astrophysics Data System (ADS)
Buren, Mandula; Jian, Yongjun; Zhao, Yingchun; Chang, Long
2018-05-01
In this paper we analytically investigate the electroviscous effect and electrokinetic energy conversion in the time periodic pressure-driven flow of an incompressible viscous Newtonian liquid through a parallel-plate nanochannel with surface charge-dependent slip. Analytical and semi-analytical solutions for electric potential, velocity and streaming electric field are obtained and are utilized to compute electrokinetic energy conversion efficiency. The results show that velocity amplitude and energy conversion efficiency are reduced when the effect of surface charge on slip length is considered. The surface charge effect increases with zeta potential and ionic concentration. In addition, the energy conversion efficiency is large when the ratio of channel half-height to the electric double layer thickness is small. The boundary slip results in a large increase in energy conversion. Higher values of the frequency of pressure pulsation lead to higher values of the energy conversion efficiency. We also obtain the energy conversion efficiency in constant pressure-driven flow and find that the energy conversion efficiency in periodical pressure-driven flow becomes larger than that in constant pressure-driven flow when the frequency is large enough.
Shah, Dignesh; Alderson, Andrew; Corden, James; Satyadas, Thomas; Augustine, Titus
2018-02-01
This study undertook the in vivo measurement of surface pressures applied by the fingers of the surgeon during typical representative retraction movements of key human abdominal organs during both open and hand-assisted laparoscopic surgery. Surface pressures were measured using a flexible thin-film pressure sensor for 35 typical liver retractions to access the gall bladder, 36 bowel retractions, 9 kidney retractions, 8 stomach retractions, and 5 spleen retractions across 12 patients undergoing open and laparoscopic abdominal surgery. The maximum and root mean square surface pressures were calculated for each organ retraction. The maximum surface pressures applied to these key abdominal organs are in the range 1 to 41 kPa, and the average maximum surface pressure for all organs and procedures was 14 ± 3 kPa. Surface pressure relaxation during the retraction hold period was observed. Generally, the surface pressures are higher, and the rate of surface pressure relaxation is lower, in the more confined hand-assisted laparoscopic procedures than in open surgery. Combined video footage and pressure sensor data for retraction of the liver in open surgery enabled correlation of organ retraction distance with surface pressure application. The data provide a platform to design strategies for the prevention of retraction injuries. They also form a basis for the design of next-generation organ retraction and space creation surgical devices with embedded sensors that can further quantify intraoperative retraction forces to reduce injury or trauma to organs and surrounding tissues.
Past epochs of significantly higher pressure atmospheres on Pluto
NASA Astrophysics Data System (ADS)
Stern, S. A.; Binzel, R. P.; Earle, A. M.; Singer, K. N.; Young, L. A.; Weaver, H. A.; Olkin, C. B.; Ennico, K.; Moore, J. M.; McKinnon, W. B.; Spencer, J. R.; New Horizons Geology; Geophysics; Atmospheres Teams
2017-05-01
Pluto is known to have undergone thousands of cycles of obliquity change and polar precession. These variations have a large and corresponding impact on the total average solar insolation reaching various places on Pluto's surface as a function of time. Such changes could produce dramatic increases in surface pressure and may explain certain features observed by New Horizons on Pluto's surface, including some that indicate the possibility of surface paleo-liquids. This paper is the first to discuss multiple lines of geomorphological evidence consistent with higher pressure epochs in Pluto's geologic past, and it also the first to provide a mechanism for potentially producing the requisite high pressure conditions needed for an environment that could support liquids on Pluto. The presence of such liquids and such conditions, if borne out by future work, would fundamentally affect our view of Pluto's past climate, volatile transport, and geological evolution. This paper motivates future, more detailed climate modeling and geologic interpretation efforts in this area.
Feedback Regulation of Intracellular Hydrostatic Pressure in Surface Cells of the Lens
Gao, Junyuan; Sun, Xiurong; White, Thomas W.; Delamere, Nicholas A.; Mathias, Richard T.
2015-01-01
In wild-type lenses from various species, an intracellular hydrostatic pressure gradient goes from ∼340 mmHg in central fiber cells to 0 mmHg in surface cells. This gradient drives a center-to-surface flow of intracellular fluid. In lenses in which gap-junction coupling is increased, the central pressure is lower, whereas if gap-junction coupling is reduced, the central pressure is higher but surface pressure is always zero. Recently, we found that surface cell pressure was elevated in PTEN null lenses. This suggested disruption of a feedback control system that normally maintained zero surface cell pressure. Our purpose in this study was to investigate and characterize this feedback control system. We measured intracellular hydrostatic pressures in mouse lenses using a microelectrode/manometer-based system. We found that all feedback went through transport by the Na/K ATPase, which adjusted surface cell osmolarity such that pressure was maintained at zero. We traced the regulation of Na/K ATPase activity back to either TRPV4, which sensed positive pressure and stimulated activity, or TRPV1, which sensed negative pressure and inhibited activity. The inhibitory effect of TRPV1 on Na/K pumps was shown to signal through activation of the PI3K/AKT axis. The stimulatory effect of TRPV4 was shown in previous studies to go through a different signal transduction path. Thus, there is a local two-legged feedback control system for pressure in lens surface cells. The surface pressure provides a pedestal on which the pressure gradient sits, so surface pressure determines the absolute value of pressure at each radial location. We speculate that the absolute value of intracellular pressure may set the radial gradient in the refractive index, which is essential for visual acuity. PMID:26536260
O 1s core levels in Bi2Sr2CaCu2O8+δ single crystals
NASA Astrophysics Data System (ADS)
Parmigiani, F.; Shen, Z. X.; Mitzi, D. B.; Lindau, I.; Spicer, W. E.; Kapitulnik, A.
1991-02-01
High-quality Bi2Sr2CaCu2O8+δ superconducting single crystals, annealed at different oxygen partial pressures, have been studied using angular-resolved x-ray photoelectron spectroscopy with a resolution higher than that used in any previous study. Two states of the oxygen, separated by ~=0.7 eV, are unambiguously observed. Examining these components at different angles makes it possible to distinguish bulk from surface components. Using this capability we discover that annealing under lower oxygen partial pressure (1 atm) results in oxygen intercalation beneath the Bi-O surface layer of the crystal, whereas for higher-pressure anneals (12 atm) additional oxygen is found on the Bi-O surfaces. This steplike intercalation mechanism is also confirmed by the changes observed in the Cu and Bi core lines as a function of the annealing oxygen partial pressure.
The effect of condensation pressure on selected physical properties of mineral trioxide aggregate.
Nekoofar, M H; Adusei, G; Sheykhrezae, M S; Hayes, S J; Bryant, S T; Dummer, P M H
2007-06-01
To examine the effect of condensation pressure on surface hardness, microstructure and compressive strength of mineral trioxide aggregate (MTA). White ProRoot MTA (Dentsply Tulsa Dental, Johnson City, TN, USA) was mixed and packed into cylindrical polycarbonate tubes. Six groups each of 10 specimens were subjected to pressures of 0.06, 0.44, 1.68, 3.22, 4.46 and 8.88 MPa respectively. The surface hardness of each specimen was measured using Vickers microhardness. Cylindrical specimens of 4 mm in diameter and 6 mm in height were prepared in polycarbonate cylindrical moulds for testing the compressive strength. Five groups of 10 specimens were prepared using pressures of 0.06, 0.44, 1.68, 3.22 or 4.46 MPa. Data were subjected to one-way anova. The microstructure was analysed using a scanning electron microscope (SEM) after sectioning specimens with a scalpel. A trend was observed for higher condensation pressures to produce lower surface hardness values. A condensation pressure of 8.88 MPa produced specimens with significantly lower values in terms of surface hardness than other groups (P<0.001). A condensation pressure of 1.68 MPa conferred the maximum compressive strength; however, it was not statistically different. Higher condensation pressures resulted in fewer voids and microchannels when analysed with SEM. In specimens prepared with lower condensation pressures distinctive crystalline structures were observed. They tended to appear around microchannels. Condensation pressure may affect the strength and hardness of MTA. Use of controlled condensation pressure in sample preparation for future studies is suggested.
Impurity incorporation, deposition kinetics, and microstructural evolution in sputtered Ta films
NASA Astrophysics Data System (ADS)
Whitacre, Jay Fredric
There is an increasing need to control the microstructure in thin sputtered Ta films for application as high-temperature coatings or diffusion barriers in microelectronic interconnect structures. To this end, the relationship between impurity incorporation, deposition kinetics, and microstructural evolution was examined for room-temperature low growth rate DC magnetron sputtered Ta films. Impurity levels present during deposition were controlled by pumping the chamber to various base pressures before growth. Ar pressures ranging from 2 to 20 mTorr were used to create contrasting kinetic environments in the sputter gas. This affected both the distribution of adatom kinetic energies at the substrate as well as the rate of impurity desorption from the chamber walls: at higher Ar pressures adatoms has lower kinetic energies, and there was an increase in impurity concentration. X-ray diffraction, high-resolution transmission electron microscopy (HREM), transmission electron diffraction (TED), scanning electron microscopy (SEM), secondary ion mass spectrometry (SIMS), and x-ray photoelectron. spectroscopy (XPS) were used to examine film crystallography, microstructure, and composition. A novel laboratory-based in-situ x-ray diffractometer was constructed. This new set-up allowed for the direct observation of microstructural evolution during growth. Films deposited at increasingly higher Ar pressures displayed a systematic decrease in grain size and degree of texturing, while surface morphology was found to vary from a nearly flat surface to a rough surface with several length scales of organization. In-situ x-ray results showed that the rate of texture evolution was found to be much higher in films grown using lower Ar pressures. These effects were studied in films less than 200 A thick using high resolution x-ray diffraction in conjunction with a synchrotron light source (SSRL B.L. 7-2). Films grown using higher Ar pressures (above 10 mTorr) with a pre-growth base pressure of 1 x 10--6 Torr had grains less than 10 nm in diameter and significant amorphous content Calculated radial distribution functions show a significant increase in average inter-atomic spacing in films grown using higher base pressures and Ar pressures. The amorphous content in the films was determined via comparison between ideal crystalline diffraction patterns and actual data. Thinner films grown at higher Ar pressures had relatively greater amorphous content. Real-time process control using the in-situ diffractometer was also demonstrated. The effects observed are discussed in the context of previous theories and experiments that document room-temperature sputter film growth. The changes in film microstructure observed were impurity mediated. Specifically, oxygen desorbed from the chamber walls during growth were incorporated into the film and subsequently limited grain development and texturing. A second phase consisting of amorphous Ta2O5 formed between the grain nuclei. Adatom kinetics played a role in determining surface morphology: at low Ar pressures (2 mTorr) significant adatom kinetic energies served to flattened the film surface, though impurity levels dominated grain development even in these conditions.
A program to evaluate a control system based on feedback of aerodynamic pressure differentials
NASA Technical Reports Server (NTRS)
Levy, D. W.; Finn, P.; Roskam, J.
1981-01-01
The use of aerodynamic pressure differentials to position a control surface is evaluated. The system is a differential pressure command loop, analogous to a position command loop, where the surface is commanded to move until a desired differential pressure across the surface is achieved. This type of control is more direct and accurate because it is the differential pressure which causes the control forces and moments. A frequency response test was performed in a low speed wind tunnel to measure the performance of the system. Both pressure and position feedback were tested. The pressure feedback performed as well as position feedback implying that the actuator, with a break frequency on the order of 10 Rad/sec, was the limiting component. Theoretical considerations indicate that aerodynamic lags will not appear below frequencies of 50 Rad/sec, or higher.
Local Mass and Heat Transfer on a Turbine Blade Tip
Jin, P.; Goldstein, R. J.
2003-01-01
Locmore » al mass and heat transfer measurements on a simulated high-pressure turbine blade-tip surface are conducted in a linear cascade with a nonmoving tip endwall, using a naphthalene sublimation technique. The effects of tip clearance (0.86–6.90% of chord) are investigated at various exit Reynolds numbers (4–7 × 10 5 ) and turbulence intensities (0.2 and 12.0%). The mass transfer on the tip surface is significant along its pressure edge at the smallest tip clearance. At the two largest tip clearances, the separation bubble on the tip surface can cover the whole width of the tip on the second half of the tip surface. The average mass-transfer rate is highest at a tip clearance of 1.72% of chord. The average mass-transfer rate on the tip surface is four and six times as high as on the suction and the pressure surface, respectively. A high mainstream turbulence level of 12.0% reduces average mass-transfer rates on the tip surface, while the higher mainstream Reynolds number generates higher local and average mass-transfer rates on the tip surface.« less
Pressure gradient effects on heat transfer to reusable surface insulation tile-array gaps
NASA Technical Reports Server (NTRS)
Throckmorton, D. A.
1975-01-01
An experimental investigation was performed to determine the effect of pressure gradient on the heat transfer within space shuttle reusable surface insulation (RSI) tile-array gaps under thick, turbulent boundary-layer conditions. Heat-transfer and pressure measurements were obtained on a curved array of full-scale simulated RSI tiles in a tunnel-wall boundary layer at a nominal free-stream Mach number and free-stream Reynolds numbers. Transverse pressure gradients of varying degree were induced over the model surface by rotating the curved array with respect to the flow. Definition of the tunnel-wall boundary-layer flow was obtained by measurement of boundary-layer pitot pressure profiles, wall pressure, and heat transfer. Flat-plate heat-transfer data were correlated and a method was derived for prediction of heat transfer to a smooth curved surface in the highly three-dimensional tunnel-wall boundary-layer flow. Pressure on the floor of the RSI tile-array gap followed the trends of the external surface pressure. Heat transfer to the surface immediately downstream of a transverse gap is higher than that for a smooth surface at the same location. Heating to the wall of a transverse gap, and immediately downstream of it, at its intersection with a longitudinal gap is significantly greater than that for the simple transverse gap.
Support surfaces for pressure ulcer prevention.
McInnes, Elizabeth; Jammali-Blasi, Asmara; Bell-Syer, Sally E M; Dumville, Jo C; Middleton, Victoria; Cullum, Nicky
2015-09-03
Pressure ulcers (i.e. bedsores, pressure sores, pressure injuries, decubitus ulcers) are areas of localised damage to the skin and underlying tissue. They are common in the elderly and immobile, and costly in financial and human terms. Pressure-relieving support surfaces (i.e. beds, mattresses, seat cushions etc) are used to help prevent ulcer development. This systematic review seeks to establish:(1) the extent to which pressure-relieving support surfaces reduce the incidence of pressure ulcers compared with standard support surfaces, and,(2) their comparative effectiveness in ulcer prevention. In April 2015, for this fourth update we searched The Cochrane Wounds Group Specialised Register (searched 15 April 2015) which includes the results of regular searches of MEDLINE, EMBASE and CINAHL and The Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2015, Issue 3). Randomised controlled trials (RCTs) and quasi-randomised trials, published or unpublished, that assessed the effects of any support surface for prevention of pressure ulcers, in any patient group or setting which measured pressure ulcer incidence. Trials reporting only proxy outcomes (e.g. interface pressure) were excluded. Two review authors independently selected trials. Data were extracted by one review author and checked by another. Where appropriate, estimates from similar trials were pooled for meta-analysis. For this fourth update six new trials were included, bringing the total of included trials to 59.Foam alternatives to standard hospital foam mattresses reduce the incidence of pressure ulcers in people at risk (RR 0.40 95% CI 0.21 to 0.74). The relative merits of alternating- and constant low-pressure devices are unclear. One high-quality trial suggested that alternating-pressure mattresses may be more cost effective than alternating-pressure overlays in a UK context.Pressure-relieving overlays on the operating table reduce postoperative pressure ulcer incidence, although two trials indicated that foam overlays caused adverse skin changes. Meta-analysis of three trials suggest that Australian standard medical sheepskins prevent pressure ulcers (RR 0.56 95% CI 0.32 to 0.97). People at high risk of developing pressure ulcers should use higher-specification foam mattresses rather than standard hospital foam mattresses. The relative merits of higher-specification constant low-pressure and alternating-pressure support surfaces for preventing pressure ulcers are unclear, but alternating-pressure mattresses may be more cost effective than alternating-pressure overlays in a UK context. Medical grade sheepskins are associated with a decrease in pressure ulcer development. Organisations might consider the use of some forms of pressure relief for high risk patients in the operating theatre.
Apparatus for incinerating hazardous waste
Chang, Robert C. W.
1994-01-01
An apparatus for incinerating wastes, including an incinerator having a combustion chamber, a fluidtight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC (about 1" WC) higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes.
Apparatus for incinerating hazardous waste
Chang, R.C.W.
1994-12-20
An apparatus is described for incinerating wastes, including an incinerator having a combustion chamber, a fluid-tight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes. 1 figure.
Rodríguez Patino, Juan M; Cejudo Fernández, Marta; Carrera Sánchez, Cecilio; Rodríguez Niño, Ma Rosario
2007-09-01
The structural and shear characteristics of mixed monolayers formed by an adsorbed Na-caseinate film and a spread monoglyceride (monopalmitin or monoolein) on the previously adsorbed protein film have been analyzed. Measurements of the surface pressure (pi)-area (A) isotherm and surface shear viscosity (eta(s)) were obtained at 20 degrees C and at pH 7 in a modified Wilhelmy-type film balance. The structural and shear characteristics of the mixed films depend on the surface pressure and on the composition of the mixed film. At surface pressures lower than the equilibrium surface pressure of Na-caseinate (at pi
Atmospheric pressure atomic layer deposition of Al₂O₃ using trimethyl aluminum and ozone.
Mousa, Moataz Bellah M; Oldham, Christopher J; Parsons, Gregory N
2014-04-08
High throughput spatial atomic layer deposition (ALD) often uses higher reactor pressure than typical batch processes, but the specific effects of pressure on species transport and reaction rates are not fully understood. For aluminum oxide (Al2O3) ALD, water or ozone can be used as oxygen sources, but how reaction pressure influences deposition using ozone has not previously been reported. This work describes the effect of deposition pressure, between ∼2 and 760 Torr, on ALD Al2O3 using TMA and ozone. Similar to reports for pressure dependence during TMA/water ALD, surface reaction saturation studies show self-limiting growth at low and high pressure across a reasonable temperature range. Higher pressure tends to increase the growth per cycle, especially at lower gas velocities and temperatures. However, growth saturation at high pressure requires longer O3 dose times per cycle. Results are consistent with a model of ozone decomposition kinetics versus pressure and temperature. Quartz crystal microbalance (QCM) results confirm the trends in growth rate and indicate that the surface reaction mechanisms for Al2O3 growth using ozone are similar under low and high total pressure, including expected trends in the reaction mechanism at different temperatures.
NASA Astrophysics Data System (ADS)
Cho, K. H.; Chang, E. C.
2017-12-01
In this study, we performed sensitivity experiments by utilizing the Global/Regional Integrated Model system with different conditions of the sea ice concentration over the Kara-Barents (KB) Sea in autumn, which can affect winter temperature variability over East Asia. Prescribed sea ice conditions are 1) climatological autumn sea ice concentration obtained from 1982 to 2016, 2) reduced autumn sea ice concentration by 50% of the climatology, and 3) increased autumn sea ice concentration by 50% of climatology. Differently prescribed sea ice concentration changes surface albedo, which affects surface heat fluxes and near-surface air temperature. The reduced (increased) sea ice concentration over the KB sea increases (decreases) near-surface air temperature that leads the lower (higher) sea level pressure in autumn. These patterns are maintained from autumn to winter season. Furthermore, it is shown that the different sea ice concentration over the KB sea has remote effects on the sea level pressure patterns over the East Asian region. The lower (higher) sea level pressure over the KB sea by the locally decreased (increased) ice concentration is related to the higher (lower) pressure pattern over the Siberian region, which induces strengthened (weakened) cold advection over the East Asian region. From these sensitivity experiments it is clarified that the decreased (increased) sea ice concentration over the KB sea in autumn can lead the colder (warmer) surface air temperature over East Asia in winter.
Study on hot melt pressure sensitive coil material for removing surface nuclear pollution dust
NASA Astrophysics Data System (ADS)
Wang, Jing; Li, Jiao; Wang, Jianhui; Zheng, Li; Li, Jian; Lv, Linmei
2018-02-01
A new method for removing surface nuclear pollution by using hot melt pressure sensitive membrane was presented. The hot melt pressure sensitive membrane was designed and prepared by screening hot melt pressure sensitive adhesive and substrate. The simulated decontamination test of the hot melt pressure sensitive membrane was performed by using 100 mesh and 20 mesh standard sieve dust for simulation of nuclear explosion fall ash and radioactive contaminated particles, respectively. It was found that the single decontamination rate of simulated fall ash and contaminated particles were both above 80% under pressure conditions of 25kPa or more at 140°C. And the maximum single decontamination rate was 92.5%. The influence of heating temperature and pressure on the decontamination rate of the membrane was investigated at the same time. The results showed that higher heating temperature could increase the decontamination rate by increasing the viscosity of the adhesive. When the adhesive amount of the adhesive layer reached saturation, a higher pressure could increase the single decontamination rate also.
Facy, Olivier; Combier, Christophe; Poussier, Matthieu; Magnin, Guy; Ladoire, Sylvain; Ghiringhelli, François; Chauffert, B; Rat, Patrick; Ortega-Deballon, Pablo
2015-01-01
Heated intraperitoneal chemotherapy (HIPEC) treats residual microscopic disease after cytoreductive surgery. In experimental models, the open HIPEC technique has shown a higher and more homogenous concentration of platinum in the peritoneum than achieved using the closed technique. A 25-cm H2O pressure enhances the penetration of oxaliplatin. Because pressure is easier to set up with the closed technique, high pressure may counterbalance the drawbacks of this technique versus open HIPEC, and a higher pressure may induce a higher penetration. Because higher concentration does not mean deeper penetration, a study of tissues beneath the peritoneum is required. Finally, achieving a deeper penetration (and a higher concentration) raises the question of the passage of drugs through the surgical glove and the surgeon's safety. Four groups of pigs underwent HIPEC with oxaliplatin (150 mg/L) for 30 minutes in open isobaric pressure and pressure at 25 cm H2O, and closed pressure at 25 and 40 cm H2O. Systemic absorption and peritoneal mapping of the concentration of platinum were analyzed, as well as in the retroperitoneal tissue and the surgical gloves. Blood concentrations were higher in open groups. In the parietal surfaces, the concentrations were not different between the isobaric and the closed groups (47.08, 56.39, and 48.57 mg/kg, respectively), but were higher in the open high-pressure group (85.93 mg/kg). In the visceral surfaces, they were lower in the closed groups (3.2 and 3.05 mg/kg) than in the open groups (7.03 and 9.56 mg/kg). Platinum concentrations were similar in the deep retroperitoneal tissue when compared between isobaric and high-pressure procedures. No platin was detected in the internal aspect of the gloves. The use of high pressure during HIPEC does not counterbalance the drawbacks of closed techniques. The tissue concentration of oxaliplatin achieved with the open techniques is higher, even if high pressure is applied during a closed technique. Open 25 cm H2O HIPEC achieved the highest tissue penetration of oxaliplatin, but did not enhance the depth of oxaliplatin penetration. High pressure did not enhance the risk of HIPEC. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Ting, Paul C.; Rochelle, William C.; Curry, Donald M.
1988-01-01
Results are presented from predictions of aerothermodynamic heating rates, temperatures, and pressures on the surface of the Shuttle Entry Air Data System (SEADS) nosecap during Orbiter reentry. These results are compared with data obtained by the first actual flight of the SEADS system aboard STS-61C. The data also used to predict heating rates and surface temperatures for a hypothetical Transatlantic Abort Landing entry trajectory, whose analysis involved ascertaining the increases in heating rate as the airstream flowed across regions of the lower surface catalycity carbon/carbon composite to the higher surface catalycity columbium pressure ports.
Hybrid surface design for robust superhydrophobicity.
Dash, Susmita; Alt, Marie T; Garimella, Suresh V
2012-06-26
Surfaces may be rendered superhydrophobic by engineering the surface morphology to control the extent of the liquid-air interface and by the use of low-surface-energy coatings. The droplet state on a superhydrophobic surface under static and dynamic conditions may be explained in terms of the relative magnitudes of the wetting and antiwetting pressures acting at the liquid-air interface on the substrate. In this paper, we discuss the design and fabrication of hollow hybrid superhydrophobic surfaces which incorporate both communicating and noncommunicating air gaps. The surface design is analytically shown to exhibit higher capillary (or nonwetting) pressure compared to solid pillars with only communicating air gaps. Six hybrid surfaces are fabricated with different surface parameters selected such that the Cassie state of a droplet is energetically favorable. The robustness of the surfaces is tested under dynamic impingement conditions, and droplet dynamics are explained using pressure-based transitions between Cassie and Wenzel states. During droplet impingement, the effective water hammer pressure acting due to the sudden change in the velocity of the droplet is determined experimentally and is found to be at least 2 orders of magnitude less than values reported in the literature. The experiments show that the water hammer pressure depends on the surface morphology and capillary pressure of the surface. We propose that the observed reduction in shock pressure may be attributed to the presence of air gaps in the substrate. This feature allows liquid deformation and hence avoids the sudden stoppage of the droplet motion as opposed to droplet behavior on smooth surfaces.
Huang, Huil; Li, Jing; Zhang, Fuqiang; Sun, Jing; Gao, Lian
2011-10-01
In order to make certain the compaction pressure as well as pre-sintering temperature on the machinability of the zirconia ceramic. 3 mol nano-size 3 mol yttria partially stabilized zirconia (3Y-TZP) powder were compacted at different isostatic pressure and sintered at different temperature. The cylindrical surface was traversed using a hard metal tool. Surface and edge quality were checked visually using light stereo microscopy. Pre-sintering temperature had the obviously influence on the machinability of 3Y-TZP. The cutting surface was smooth, and the integrality of edge was better when the pre-sintering temperature was chosen between 800 degrees C to 900 degrees C. Compaction pressure showed only a weak influence on machinability of 3Y-TZP blanks, but the higher compaction pressure result in the poor surface quality. The best machinability of pre-sintered zirconia body was found for 800-900 degrees C pre-sintering temperature, and 200-300 MPa compaction pressure.
Large-Eddy Simulation of Crashback in a Ducted Propulsor
NASA Astrophysics Data System (ADS)
Jang, Hyunchul; Mahesh, Krishnan
2011-11-01
Crashback is an operating condition to quickly stop a propelled vehicle, where the propeller is rotated in the reverse direction to yield negative thrust. The crashback condition is dominated by the interaction of free stream flow with strong reverse flow. Crashback causes highly unsteady loads and flow separation on blade surface. This study uses Large-Eddy Simulation to predict the highly unsteady flow field in crashback for a ducted propulsor. Thrust mostly arises from the blade surface, but most of side-force is generated from the duct surface. Both mean and RMS of pressure are much higher on inner surface of duct, especially near blade tips. This implies that side-force on the ducted propulsor is caused by the blade-duct interaction. Strong tip leakage flow is observed behind the suction side at the tip gap. The physical source of the tip leakage flow is seen to be the large pressure difference between pressure and suction sides. The conditional average during high amplitude event shows that the tip leakage flow and pressure difference are significantly higher. This work is supported by the United States Office of Naval Research under ONR Grant N00014-05-1-0003.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Zhu; Kronawitter, Coleman X.; Waluyo, Iradwikanari
Water adsorption and reaction on pure and Ni-modified CoOOH nanowires were investigated using ambient pressure photoemission spectroscopy (APPES). The unique capabilities of APPES enable us to observe water dissociation and monitor formation of surface species on pure and Ni-modified CoOOH under elevated pressures and temperatures for the first time. Over a large range of pressures (UHV to 1 Torr), water dissociates readily on the pure and Ni-modified CoOOH surfaces at 27 °C. With an increase in H 2O pressure, a greater degree of surface hydroxylation was observed for all samples. At 1 Torr H 2O, ratios of different oxygen speciesmore » indicate a transformation of CoOOH to CoO xH y in pure and Ni-modified CoOOH. In temperature dependent studies, desorption of weakly bound water and surface dehydroxylation were observed with increasing temperature. In conclusion, larger percentages of surface hydroxyl groups at higher temperatures were observed on Ni-modified CoOOH compared to pure CoOOH, which indicates an increased stability of surface hydroxyl groups on these Ni-modified surfaces.« less
Chen, Zhu; Kronawitter, Coleman X.; Waluyo, Iradwikanari; ...
2017-09-07
Water adsorption and reaction on pure and Ni-modified CoOOH nanowires were investigated using ambient pressure photoemission spectroscopy (APPES). The unique capabilities of APPES enable us to observe water dissociation and monitor formation of surface species on pure and Ni-modified CoOOH under elevated pressures and temperatures for the first time. Over a large range of pressures (UHV to 1 Torr), water dissociates readily on the pure and Ni-modified CoOOH surfaces at 27 °C. With an increase in H 2O pressure, a greater degree of surface hydroxylation was observed for all samples. At 1 Torr H 2O, ratios of different oxygen speciesmore » indicate a transformation of CoOOH to CoO xH y in pure and Ni-modified CoOOH. In temperature dependent studies, desorption of weakly bound water and surface dehydroxylation were observed with increasing temperature. In conclusion, larger percentages of surface hydroxyl groups at higher temperatures were observed on Ni-modified CoOOH compared to pure CoOOH, which indicates an increased stability of surface hydroxyl groups on these Ni-modified surfaces.« less
Exergy analysis of large-scale helium liquefiers: Evaluating design trade-offs
NASA Astrophysics Data System (ADS)
Thomas, Rijo Jacob; Ghosh, Parthasarathi; Chowdhury, Kanchan
2014-01-01
It is known that higher heat exchanger area, more number of expanders with higher efficiency and more involved configuration with multi-pressure compression system increase the plant efficiency of a helium liquefier. However, they involve higher capital investment and larger size. Using simulation software Aspen Hysys v 7.0 and exergy analysis as the tool of analysis, authors have attempted to identify various trade-offs while selecting the number of stages, the pressure levels in compressor, the cold-end configuration, the heat exchanger surface area, the maximum allowable pressure drop in heat exchangers, the efficiency of expanders, the parallel/series connection of expanders etc. Use of more efficient cold ends reduces the number of refrigeration stages and the size of the plant. For achieving reliability along with performance, a configuration with a combination of expander and Joule-Thomson valve is found to be a better choice for cold end. Use of multi-pressure system is relevant only when the number of refrigeration stages is more than 5. Arrangement of expanders in series reduces the number of expanders as well as the heat exchanger size with slight expense of plant efficiency. Superior heat exchanger (having less pressure drop per unit heat transfer area) results in only 5% increase of plant performance even when it has 100% higher heat exchanger surface area.
Fortescue, P.; Nicoll, D.
1962-04-24
A control system employed with a high pressure gas cooled reactor in which a control rod is positioned for upward and downward movement into the neutron field from a position beneath the reactor is described. The control rod is positioned by a coupled piston cylinder releasably coupled to a power drive means and the pressurized coolant is directed against the lower side of the piston. The coolant pressure is offset by a higher fiuid pressure applied to the upper surface of the piston and means are provided for releasing the higher pressure on the upper side of the piston so that the pressure of the coolant drives the piston upwardly, forcing the coupled control rod into the ncutron field of the reactor. (AEC)
Millar, Thomas J; Tragoulias, Sophia T; Anderton, Philip J; Ball, Malcolm S; Miano, Fausto; Dennis, Gary R; Mudgil, Poonam
2006-01-01
Ocular mucins are thought to contribute to the stability of the tear film by reducing surface tension. The purpose of this study was to compare the effect of different mucins and hyaluronic acid (HA) alone and mixed with meibomian lipids on the surface pressure at an air-liquid interface. A Langmuir trough and Wilhelmy balance were used to measure and compare the surface activity of bovine submaxillary gland mucin (BSM), purified BSM, purified bovine ocular mucin and HA, and mixtures of these with meibomian lipids, phosphatidylcholine, and phosphatidylglycerol. Their appearance at the surface of an air-buffer interface was examined using epifluorescence microscopy. Purified ocular mucin had no surface activity even at concentrations that were 100 times more than normally occur in tears. By contrast, commercial BSM caused changes to surface pressure that were concentration dependent. The surface pressure-area profiles showed surface activity with maximum surface pressures of 12.3-22.5 mN/m depending on the concentration. Purified BSM showed no surface activity at low concentrations, whereas higher concentrations reached a maximum surface pressure of 25 mN/m. HA showed no surface activity, at low or high concentrations. Epifluorescence showed that the mucins were located at the air-buffer interface and changed the appearance of lipid films. Purified bovine ocular mucin and HA have no surface activity. However, despite having no surface activity in their own right, ocular mucins are likely to be present at the surface of the tear film, where they cause an increase in surface pressure by causing a compression of the lipids (a reorganization of the lipids) and alter the viscoelastic properties at the surface.
Masaoka, Satoshi
2007-06-01
A pulsed power supply was used to generate a corona discharge on a polyethylene terephthalate bottle, to conduct plasma sterilization at atmospheric pressure. Before generating such a discharge, minute quantities of water were attached to the inner surface of the bottle and to the surface of a high voltage (HV) electrode inserted into the bottle. Next, high-voltage pulses of electricity were discharged between electrodes for 6.0s, while rotating the bottle. The resulting spore log reduction values of Bacillus subtilis and Aspergillus niger on the inner surface of the bottle were 5.5 and 6 or higher, respectively, and those on the HV electrode surface were each 6 or higher for both strains. The presence of the by-products gaseous ozone, hydrogen peroxide, and nitric ions resulting from the electrical discharge was confirmed.
Heat transfer and pressure drop for air flow through enhanced passages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Obot, N.T.; Esen, E.B.
1992-06-01
An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effectmore » depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.« less
Heat transfer and pressure drop for air flow through enhanced passages. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Obot, N.T.; Esen, E.B.
1992-06-01
An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effectmore » depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.« less
Performance analysis of cutting graphite-epoxy composite using a 90,000psi abrasive waterjet
NASA Astrophysics Data System (ADS)
Choppali, Aiswarya
Graphite-epoxy composites are being widely used in many aerospace and structural applications because of their properties: which include lighter weight, higher strength to weight ratio and a greater flexibility in design. However, the inherent anisotropy of these composites makes it difficult to machine them using conventional methods. To overcome the major issues that develop with conventional machining such as fiber pull out, delamination, heat generation and high tooling costs, an effort is herein made to study abrasive waterjet machining of composites. An abrasive waterjet is used to cut 1" thick graphite epoxy composites based on baseline data obtained from the cutting of ¼" thick material. The objective of this project is to study the surface roughness of the cut surface with a focus on demonstrating the benefits of using higher pressures for cutting composites. The effects of major cutting parameters: jet pressure, traverse speed, abrasive feed rate and cutting head size are studied at different levels. Statistical analysis of the experimental data provides an understanding of the effect of the process parameters on surface roughness. Additionally, the effect of these parameters on the taper angle of the cut is studied. The data is analyzed to obtain a set of process parameters that optimize the cutting of 1" thick graphite-epoxy composite. The statistical analysis is used to validate the experimental data. Costs involved in the cutting process are investigated in term of abrasive consumed to better understand and illustrate the practical benefits of using higher pressures. It is demonstrated that, as pressure increased, ultra-high pressure waterjets produced a better surface quality at a faster traverse rate with lower costs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Kaushik, E-mail: kaushikdas2089@gmail.com; Kundu, Sarathi
Long chain fatty acid molecules (e.g., stearic and behenic acids) form a monolayer on water surface in the presence of Ba{sup 2+} ions at low subphase pH (≈ 5.5) and remain as a monolayer before collapse generally occurs at higher surface pressure (π{sub c} > 50 mN/m). Monolayer formation is verified from the surface pressure vs. area per molecule (π-A) isotherms and also from the atomic force microscopy (AFM) analysis of the films deposited by single upstroke of hydrophilic Si (001) substrate through the monolayer covered water surface. At high subphase pH (≈ 9.5), barium stearate molecules form multilayer structuremore » at lower surface pressure which is verified from the π-A isotherms and AFM analysis of the film deposited at 25 mN/m. Such monolayer to multilayer structure formation or monolayer collapse at lower surface pressure is unusual as at this surface pressure generally fatty acid salt molecules form a monolayer on the water surface. Formation of bidentate chelate coordination in the metal containing headgroups is the reason for such monolayer to multilayer transition. However, for longer chain barium behenate molecules only monolayer structure is maintained at that high subphase pH (≈ 9.5) due to the presence of relatively more tail-tail hydrophobic interaction.« less
Active cooling-based surface confinement system for thermal soil treatment
Aines, R.D.; Newmark, R.L.
1997-10-28
A thermal barrier is disclosed for surface confinement with active cooling to control subsurface pressures during thermal remediation of shallow (5-20 feet) underground contaminants. If steam injection is used for underground heating, the actively cooled thermal barrier allows the steam to be injected into soil at pressures much higher (20-60 psi) than the confining strength of the soil, while preventing steam breakthrough. The rising steam is condensed to liquid water at the thermal barrier-ground surface interface. The rapid temperature drop forced by the thermal barrier drops the subsurface pressure to below atmospheric pressure. The steam and contaminant vapors are contained by the thermal blanket, which can be made of a variety of materials such as steel plates, concrete slabs, membranes, fabric bags, or rubber bladders. 1 fig.
Active cooling-based surface confinement system for thermal soil treatment
Aines, Roger D.; Newmark, Robin L.
1997-01-01
A thermal barrier is disclosed for surface confinement with active cooling to control subsurface pressures during thermal remediation of shallow (5-20 feet) underground contaminants. If steam injection is used for underground heating, the actively cooled thermal barrier allows the steam to be injected into soil at pressures much higher (20-60 psi) than the confining strength of the soil, while preventing steam breakthrough. The rising steam is condensed to liquid water at the thermal barrier-ground surface interface. The rapid temperature drop forced by the thermal barrier drops the subsurface pressure to below atmospheric pressure. The steam and contaminant vapors are contained by the thermal blanket, which can be made of a variety of materials such as steel plates, concrete slabs, membranes, fabric bags, or rubber bladders.
POLLUTION PREVENTION METHODS IN THE SURFACE COATING INDUSTRY
The surface coating industry is rapidly changing to meet environmental and economic pressures. Some of the changes include new formulations which meet environmental regulations, higher performance finishes with improved properties, continued development of solventless technologie...
Rapid compression transforms interfacial monolayers of pulmonary surfactant.
Crane, J M; Hall, S B
2001-04-01
Films of pulmonary surfactant in the lung are metastable at surface pressures well above the equilibrium spreading pressure of 45 mN/m but commonly collapse at that pressure when compressed in vitro. The studies reported here determined the effect of compression rate on the ability of monolayers containing extracted calf surfactant at 37 degrees C to maintain very high surface pressures on the continuous interface of a captive bubble. Increasing the rate from 2 A(2)/phospholipid/min (i.e., 3% of (initial area at 40 mN/m)/min) to 23%/s produced only transient increases to 48 mN/m. Above a threshold rate of 32%/s, however, surface pressures reached > 68 mN/m. After the rapid compression, static films maintained surface pressures within +/- 1 mN/m both at these maximum values and at lower pressures following expansion at < 5%/min to > or = 45 mN/m. Experiments with dimyristoyl phosphatidylcholine at 37 degrees C produced similar results. These findings indicate that compression at rates comparable to values in the lungs can transform at least some phospholipid monolayers from a form that collapses readily at the equilibrium spreading pressure to one that is metastable for prolonged periods at higher pressures. Our results also suggest that transformation of surfactant films can occur without refinement of their composition.
NASA Astrophysics Data System (ADS)
Tabassum, Aasma; Zhou, Jie; Han, Bing; Ni, Xiao-wu; Sardar, Maryam
2017-07-01
The interaction of continuous wave (CW) fiber laser with Ti-6Al-4V alloy is investigated numerically and experimentally at different laser fluence values and ambient pressures of N2 atmosphere to determine the melting time threshold of Ti-6Al-4V alloy. A 2D-axisymmetric numerical model considering heat transfer and laminar flow is established to describe the melting process. The simulation results indicate that material melts earlier at lower pressure (8.0 Pa) than at higher pressure (8.8×104 Pa) in several milliseconds with the same laser fluence. The experimental results demonstrate that the melting time threshold at high laser fluence (above 1.89×108 W/m2) is shorter for lower pressure (vacuum), which is consistent with the simulation. While the melting time threshold at low laser fluence (below 1.89×108 W/m2) is shorter for higher pressure. The possible aspects which can affect the melting process include the increased heat loss induced by the heat conduction between the metal surface and the ambient gas with the increased pressure, and the absorption variation of the coarse surface resulted from the chemical reaction.
A systematic experimental investigation of significant parameters affecting model tire hydroplaning
NASA Technical Reports Server (NTRS)
Wray, G. A.; Ehrlich, I. R.
1973-01-01
The results of a comprehensive parametric study of model and small pneumatic tires operating on a wet surface are presented. Hydroplaning inception (spin down) and rolling restoration (spin up) are discussed. Conclusions indicate that hydroplaning inception occurs at a speed significantly higher than the rolling restoration speed. Hydroplaning speed increases considerably with tread depth, surface roughness and tire inflation pressure of footprint pressure, and only moderately with increased load. Water film thickness affects spin down speed only slightly. Spin down speed varies inversely as approximately the one-sixth power of film thickness. Empirical equations relating tire inflation pressure, normal load, tire diameter and water film thickness have been generated for various tire tread and surface configurations.
Heat Transfer and Flow on the Squealer Tip of a Gas Turbine Blade
NASA Technical Reports Server (NTRS)
Azad, Gm S.; Han, Je-Chin; Boyle, Robert J.
2000-01-01
Experimental investigations are performed to measure the detailed heat transfer coefficient and static pressure distributions on the squealer tip of a gas turbine blade in a five-bladed stationary linear cascade. The blade is a 2-dimensional model of a modem first stage gas turbine rotor blade with a blade tip profile of a GE-E(sup 3) aircraft gas turbine engine rotor blade. A squealer (recessed) tip with a 3.77% recess is considered here. The data on the squealer tip are also compared with a flat tip case. All measurements are made at three different tip gap clearances of about 1%, 1.5%, and 2.5% of the blade span. Two different turbulence intensities of 6.1% and 9.7% at the cascade inlet are also considered for heat transfer measurements. Static pressure measurements are made in the mid-span and near-tip regions, as well as on the shroud surface opposite to the blade tip surface. The flow condition in the test cascade corresponds to an overall pressure ratio of 1.32 and an exit Reynolds number based on the axial chord of 1.1 x 10(exp 6). A transient liquid crystal technique is used to measure the heat transfer coefficients. Results show that the heat transfer coefficient on the cavity surface and rim increases with an increase in tip clearance. 'Me heat transfer coefficient on the rim is higher than the cavity surface. The cavity surface has a higher heat transfer coefficient near the leading edge region than the trailing edge region. The heat transfer coefficient on the pressure side rim and trailing edge region is higher at a higher turbulence intensity level of 9.7% over 6.1 % case. However, no significant difference in local heat transfer coefficient is observed inside the cavity and the suction side rim for the two turbulence intensities. The squealer tip blade provides a lower overall heat transfer coefficient when compared to the flat tip blade.
Iglauer, S; Mathew, M S; Bresme, F
2012-11-15
In the context of carbon geo-sequestration projects, brine-CO(2) interfacial tension γ and brine-CO(2)-rock surface water contact angles θ directly impact structural and residual trapping capacities. While γ is fairly well understood there is still large uncertainty associated with θ. We present here an investigation of γ and θ using a molecular approach based on molecular dynamics computer simulations. We consider a system consisting of CO(2)/water/NaCl and an α-quartz surface, covering a brine salinity range between 0 and 4 molal. The simulation models accurately reproduce the dependence of γ on pressure below the CO(2) saturation pressure at 300 K, and over predict γ by ~20% at higher pressures. In addition, in agreement with experimental observations, the simulations predict that γ increases slightly with temperature or salinity. We also demonstrate that for non-hydroxylated quartz surfaces, θ strongly increases with pressure at subcritical and supercritical conditions. An increase in temperature significantly reduces the contact angle, especially at low-intermediate pressures (1-10 MPa), this effect is mitigated at higher pressures, 20 MPa. We also found that θ only weakly depends on salinity for the systems investigated in this work. Copyright © 2012 Elsevier Inc. All rights reserved.
Tourah, Anita; Moshaverinia, Alireza; Chee, Winston W
2014-02-01
Surface roughness and irregularities are important properties of dental investment materials that can affect the fit of a restoration. Whether setting under air pressure affects the surface irregularities of gypsum-bonded and phosphate-bonded investment materials is unknown. The purpose of this study was to investigate the effect of air pressure on the pore size and surface irregularities of investment materials immediately after pouring. Three dental investments, 1 gypsum-bonded investment and 2 phosphate-bonded investments, were investigated. They were vacuum mixed according to the manufacturers' recommendations, then poured into a ringless casting system. The prepared specimens were divided into 2 groups: 1 bench setting and the other placed in a pressure pot at 172 kPa. After 45 minutes of setting, the rings were removed and the investments were cut at a right angle to the long axis with a diamond disk. The surfaces of the investments were steam cleaned, dried with an air spray, and observed with a stereomicroscope. A profilometer was used to evaluate the surface roughness (μm) of the castings. The number of surface pores was counted for 8 specimens from each group and the means and standard deviations were reported. Two-way ANOVA was used to compare the data. Specimens that set under atmospheric air pressure had a significantly higher number of pores than specimens that set under increased pressure (P<.05). No statistically significant differences for surface roughness were found (P=.078). Also, no significant difference was observed among the 3 different types of materials tested (P>.05). Specimens set under positive pressure in a pressure chamber presented fewer surface bubbles than specimens set under atmospheric pressure. Positive pressure is effective and, therefore, is recommended for both gypsum-bonded and phosphate-bonded investment materials. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
The Application of the NFW Design Philosophy to the HSR Arrow Wing Configuration
NASA Technical Reports Server (NTRS)
Bauer, Steven X. S.; Krist, Steven E.
1999-01-01
The Natural Flow Wing design philosophy was developed for improving performance characteristics of highly-swept fighter aircraft at cruise and maneuvering conditions across the Mach number range (from Subsonic through Supersonic). The basic philosophy recognizes the flow characteristics that develop on highly swept wings and contours the surface to take advantage of those flow characteristics (e.g., forward facing surfaces in low pressure regions and aft facing surfaces in higher pressure regions for low drag). Because the wing leading edge and trailing edge have multiple sweep angles and because of shocks generated on nacelles and diverters, a viscous code was required to accurately define the surface pressure distributions on the wing. A method of generating the surface geometry to take advantage of those surface pressures (as well as not violating any structural constraints) was developed and the resulting geometries were analyzed and compared to a baseline configuration. This paper will include discussions of the basic Natural Flow Wing design philosophy, the application of the philosophy to an HSCT vehicle, and preliminary wind-tunnel assessment of the NFW HSCT vehicle.
Effects of Transducer Installation on Unsteady Pressure Measurements on Oscillating Blades
NASA Technical Reports Server (NTRS)
Lepicovsky, Jan
2006-01-01
Unsteady pressures were measured above the suction side of a blade that was oscillated to simulate blade stall flutter. Measurements were made at blade oscillation frequencies up to 500 Hz. Two types of miniature pressure transducers were used: surface-mounted flat custom-made, and conventional miniature, body-mounted transducers. The signals of the surface-mounted transducers are significantly affected by blade acceleration, whereas the signals of body-mounted transducers are practically free of this distortion. A procedure was introduced to correct the signals of surface-mounted transducers to rectify the signal distortion due to blade acceleration. The signals from body-mounted transducers, and corrected signals from surface-mounted transducers represent true unsteady pressure signals on the surface of a blade subjected to forced oscillations. However, the use of body-mounted conventional transducers is preferred for the following reasons: no signal corrections are needed for blade acceleration, the conventional transducers are noticeably less expensive than custom-made flat transducers, the survival rate of body-mounted transducers is much higher, and finally installation of body-mounted transducers does not disturb the blade surface of interest.
Winterhalter, M; Bürner, H; Marzinka, S; Benz, R; Kasianowicz, J J
1995-01-01
We have characterized the surface activity of different-sized poly(ethylene-glycols) (PEG; M(r) 200-100,000 Da) in the presence or absence of lipid monolayers and over a wide range of bulk PEG concentrations (10(-8)-10% w/v). Measurements of the surface potential and surface pressure demonstrate that PEGs interact with the air-water and lipid-water interfaces. Without lipid, PEG added either to the subphase or to the air-water interface forms relatively stable monolayers. Except for very low molecular weight polymers (PEGs < 1000 Da), low concentrations of PEG in the subphase (between 10(-5) and 10(-4)% w/v) increase the surface potential from zero (with respect to the potential of a pure air-water interface) to a plateau value of approximately 440 mV. At much higher polymer concentrations, > 10(-1)% (w/v), depending on the molecular weight of the PEG and corresponding to the concentration at which the polymers in solution are likely to overlap, the surface potential decreases. High concentrations of PEG in the subphase cause a similar decrease in the surface potential of densely packed lipid monolayers spread from either diphytanoyl phosphatidylcholine (DPhPC), dipalmitoyl phosphatidylcholine (DPPC), or dioleoyl phosphatidylserine (DOPS). Adding PEG as a monolayer at the air-water interface also affects the surface activity of DPhPC or DPPC monolayers. At low lipid concentration, the surface pressure and potential are determined by the polymer. For intermediate lipid concentrations, the surface pressure-area and surface potential-area isotherms show that the effects due to lipid and PEG are not always additive and that the polymer's effect is distinct for the two lipids. When PEG-lipid-mixed monolayers are compressed to surface pressures greater than the collapse pressure for a PEG monolayer, the surface pressure-area and surface potential-area isotherms approach that of the lipid alone, suggesting that for this experimental condition PEG is expelled from the interface. PMID:8534807
Alexandrov, Nikola A; Marinova, Krastanka G; Gurkov, Theodor D; Danov, Krassimir D; Kralchevsky, Peter A; Stoyanov, Simeon D; Blijdenstein, Theodorus B J; Arnaudov, Luben N; Pelan, Eddie G; Lips, Alex
2012-06-15
The pendant-drop method (with drop-shape analysis) and Langmuir trough are applied to investigate the characteristic relaxation times and elasticity of interfacial layers from the protein HFBII hydrophobin. Such layers undergo a transition from fluid to elastic solid films. The transition is detected as an increase in the error of the fit of the pendant-drop profile by means of the Laplace equation of capillarity. The relaxation of surface tension after interfacial expansion follows an exponential-decay law, which indicates adsorption kinetics under barrier control. The experimental data for the relaxation time suggest that the adsorption rate is determined by the balance of two opposing factors: (i) the barrier to detachment of protein molecules from bulk aggregates and (ii) the attraction of the detached molecules by the adsorption layer due to the hydrophobic surface force. The hydrophobic attraction can explain why a greater surface coverage leads to a faster adsorption. The relaxation of surface tension after interfacial compression follows a different, square-root law. Such behavior can be attributed to surface diffusion of adsorbed protein molecules that are condensing at the periphery of interfacial protein aggregates. The surface dilatational elasticity, E, is determined in experiments on quick expansion or compression of the interfacial protein layers. At lower surface pressures (<11 mN/m) the experiments on expansion, compression and oscillations give close values of E that are increasing with the rise of surface pressure. At higher surface pressures, E exhibits the opposite tendency and the data are scattered. The latter behavior can be explained with a two-dimensional condensation of adsorbed protein molecules at the higher surface pressures. The results could be important for the understanding and control of dynamic processes in foams and emulsions stabilized by hydrophobins, as well as for the modification of solid surfaces by adsorption of such proteins. Copyright © 2012 Elsevier Inc. All rights reserved.
Pressure ulcer risk assessment and prevention: a systematic comparative effectiveness review.
Chou, Roger; Dana, Tracy; Bougatsos, Christina; Blazina, Ian; Starmer, Amy J; Reitel, Katie; Buckley, David I
2013-07-02
Pressure ulcers are associated with substantial health burdens but may be preventable. To review the clinical utility of pressure ulcer risk assessment instruments and the comparative effectiveness of preventive interventions in persons at higher risk. MEDLINE (1946 through November 2012), CINAHL, the Cochrane Library, grant databases, clinical trial registries, and reference lists. Randomized trials and observational studies on effects of using risk assessment on clinical outcomes and randomized trials of preventive interventions on clinical outcomes. Multiple investigators abstracted and checked study details and quality using predefined criteria. One good-quality trial found no evidence that use of a pressure ulcer risk assessment instrument, with or without a protocolized intervention strategy based on assessed risk, reduces risk for incident pressure ulcers compared with less standardized risk assessment based on nurses' clinical judgment. In higher-risk populations, 1 good-quality and 4 fair-quality randomized trials found that more advanced static support surfaces were associated with lower risk for pressure ulcers compared with standard mattresses (relative risk range, 0.20 to 0.60). Evidence on the effectiveness of low-air-loss and alternating-air mattresses was limited, with some trials showing no clear differences from advanced static support surfaces. Evidence on the effectiveness of nutritional supplementation, repositioning, and skin care interventions versus usual care was limited and had methodological shortcomings, precluding strong conclusions. Only English-language articles were included, publication bias could not be formally assessed, and most studies had methodological shortcomings. More advanced static support surfaces are more effective than standard mattresses for preventing ulcers in higher-risk populations. The effectiveness of formal risk assessment instruments and associated intervention protocols compared with less standardized assessment methods and the effectiveness of other preventive interventions compared with usual care have not been clearly established.
NASA Astrophysics Data System (ADS)
Nishikawa, Hiroaki; Hasegawa, Tsukasa; Miyake, Akiko; Tashiro, Yuichiro; Komasa, Satoshi; Hashimoto, Yoshiya
2018-01-01
The dependence of the surface morphology and chemical composition of hydroxyapatite (HA) thin films on the laser fluence and ambient gas pressure during their formation by pulsed laser deposition was studied as the first step to investigate the effect of physical and chemical interactions between the ablated chemical species and ambient gas molecules on HA film formation. It was found that a higher fluence could decrease the number of large protrusions on the surface of HA thin films. However, too high a fluence caused a phosphorus deficiency from the stoichiometric value, particularly in the case of lower ambient gas pressure. It was also found that for lower fluences, the atomic species among the ablated chemical species were easily scattered by collision processes with ambient gas molecules. This was caused by the lower velocity of the ablated chemical species and higher ambient gas pressure, which induced a shorter mean free path. In addition, these collision processes played an important role in the adsorption, migration, and re-evaporation of the ablated chemical species on the substrate via chemical reactions.
Protection of lithographic components from particle contamination
Klebanoff, Leonard E.; Rader, Daniel J.
2000-01-01
A system that employs thermophoresis to protect lithographic surfaces from particle deposition and operates in an environment where the pressure is substantially constant and can be sub-atmospheric. The system (thermophoretic pellicle) comprises an enclosure that surrounds a lithographic component whose surface is being protected from particle deposition. The enclosure is provided with means for introducing a flow of gas into the chamber and at least one aperture that provides for access to the lithographic surface for the entry and exit of a beam of radiation, for example, and further controls gas flow into a surrounding low pressure environment such that a higher pressure is maintained within the enclosure and over the surface being protected. The lithographic component can be heated or, alternatively the walls of the enclosure can be cooled to establish a temperature gradient between the surface of the lithographic component and the walls of the enclosure, thereby enabling the thermophoretic force that resists particle deposition.
Method for protection of lithographic components from particle contamination
Klebanoff, Leonard E.; Rader, Daniel J.
2001-07-03
A system that employs thermophoresis to protect lithographic surfaces from particle deposition and operates in an environment where the pressure is substantially constant and can be sub-atmospheric. The system (thermophoretic pellicle) comprises an enclosure that surrounds a lithographic component whose surface is being protected from particle deposition. The enclosure is provided with means for introducing a flow of gas into the chamber and at least one aperture that provides for access to the lithographic surface for the entry and exit of a beam of radiation, for example, and further controls gas flow into a surrounding low pressure environment such that a higher pressure is maintained within the enclosure and over the surface being protected. The lithographic component can be heated or, alternatively the walls of the enclosure can be cooled to establish a temperature gradient between the surface of the lithographic component and the walls of the enclosure, thereby enabling the thermophoretic force that resists particle deposition.
Aeroacoustic Study of a High-Fidelity Aircraft Model. Part 2; Unsteady Surface Pressures
NASA Technical Reports Server (NTRS)
Khorrami, Mehdi R.; Neuhart, Danny H.
2012-01-01
In this paper, we present unsteady surface pressure measurements for an 18%-scale, semi-span Gulfstream aircraft model. This high-fidelity model is being used to perform detailed studies of airframe noise associated with main landing gear, flap components, and gear-flap interaction noise, as well as to evaluate novel noise reduction concepts. The aerodynamic segment of the tests, conducted in the NASA Langley Research Center 14- by 22-Foot Subsonic Tunnel, was completed in November 2010. To discern the characteristics of the surface pressure fluctuations in the vicinity of the prominent noise sources, unsteady sensors were installed on the inboard and outboard flap edges, and on the main gear wheels, struts, and door. Various configurations were tested, including flap deflections of 0?, 20?, and 39?, with and without the main landing gear. The majority of unsteady surface pressure measurements were acquired for the nominal landing configuration where the main gear was deployed and the flap was deflected 39?. To assess the Mach number variation of the surface pressure amplitudes, measurements were obtained at Mach numbers of 0.16, 0.20, and 0.24. Comparison of the unsteady surface pressures with the main gear on and off shows significant interaction between the gear wake and the inboard flap edge, resulting in higher amplitude fluctuations when the gear is present.
Iuchi, Terumi; Nakajima, Yukari; Fukuda, Moriyoshi; Matsuo, Junko; Okamoto, Hiroyuki; Sanada, Hiromi; Sugama, Junko
2014-05-01
Bed sheets generate high surface tension across the support surface and increase pressure to the body through a process known as the hammock effect. Using an anatomical model and a loading device characterized by extreme bony prominences, the present study compared pressure distributions on support surfaces across different bed making methods and bed sheet materials to determine the factors that influence pressure distribution. The model was placed on a pressure mapping system (CONFORMat; NITTA Corp., Osaka, Japan), and interface pressure was measured. Bed sheet elasticity and friction between the support surface and the bed sheets were also measured. For maximum interface pressure, the relative values of the following methods were higher than those of the control method, which did not use any bed sheets: cotton sheets with hospital corners (1.28, p = 0.02), polyester with no corners (1.29, p = 0.01), cotton with no corners (1.31, p = 0.003), and fitted polyester sheets (1.35, p = 0.002). Stepwise multiple regression analysis indicated that maximum interface pressure was negatively correlated with bed sheet elasticity (R(2) = 0.74). A statistically significant negative correlation was observed between maximum interface pressure and immersion depth, which was measured using the loading device (r = -0.40 and p = 0.04). We found that several combinations of bed making methods and bed sheet materials induced maximum interface pressures greater than those observed for the control method. Bed sheet materials influenced maximum interface pressure, and bed sheet elasticity was particularly important in reducing maximum interface pressure. Copyright © 2014 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.
Effect of Favorable Pressure Gradients on Turbine Blade Pressure Surface Heat Transfer
NASA Technical Reports Server (NTRS)
Boyle, Robert J.; Giel, P. W.
2002-01-01
Recent measurements on a turbine rotor showed significant relaminarization effects. These effects were evident on the pressure surface heat transfer measurements. The character of the heat transfer varied with Reynolds number. Data were obtained for exit Reynolds numbers between 500,000 and 880,000. Tests were done with a high level of inlet turbulence, 7.5%. At lower Reynolds numbers the heat transfer was similar to that for laminar flow, but at a level higher than for laminar flow. At higher Reynolds numbers the heat transfer was similar to turbulent flow, when the acceleration parameter, K, was sufficiently small. The proposed paper discusses the experimental results, and also discusses approaches to calculating the surface heat transfer for the blade surface. Calculations were done using a three-dimensional Navier-Stokes CFD analysis. The results of these tests, when compared with previous blade tests in the same facility, illustrate modeling difficulties that were encountered in CFD predictions. The two blades were in many ways similar. However, the degree of agreement between the same analysis and the experimental data was significantly different. These differences are highlighted to illustrate where improvements in modeling approaches are needed for transitional flows.
Focused Ion Beam Fabrication of Microelectronic Structures
1990-12-01
a simple function generator and allows fast ing, the pressure measured by the capacitance manometer is equal to the pressure at the sample surface...height above the sample ties. In practice this restricts features to simple rectangles or surface. J. Vac. . Tedhnol. B, VOL 7, No. 4, Jul/Aug IM...the sample up to 300 keV are available.(2) -3- This higher energy is often needed for implantation and for lithography in thick resist. Be++ ions at
NASA Technical Reports Server (NTRS)
Prince, D. C., Jr.; Wisler, D. C.; Hilvers, D. E.
1974-01-01
The results of a program of experimental and analytical research in casing treatments over axial compressor rotor blade tips are presented. Circumferential groove, axial-skewed slot, and blade angle slot treatments were tested. These yielded, for reduction in stalling flow and loss in peak efficiency, 5.8% and 0 points, 15.3% and 2.0 points, and 15.0% and 1.2 points, respectively. These values are consistent with other experience. The favorable stalling flow situations correlated well with observations of higher-then-normal surface pressures on the rotor blade pressure surfaces in the tip region, and with increased maximum diffusions on the suction surfaces. Annular wall pressure gradients, especially in the 50-75% chord region, are also increased and blade surface pressure loadings are shifted toward the trailing edge for treated configurations. Rotor blade wakes may be somewhat thinner in the presence of good treatments, particularly under operating conditions close to the baseline stall.
The Relationship of the MOLA Topography of Mars to the Mean Atmospheric Pressure
NASA Technical Reports Server (NTRS)
Smith, David E.; Zuber, Maria T.
1999-01-01
The MOLA topography of Mars is based on a new mean radius of the planet and new equipotential surface for the areoid. The mean atmospheric pressure surface of 6.1mbars that has been used in the past as a reference level for topography does not apply to the zero level of MOLA elevations. The MOLA mean radius of the planet is 3389508 meters and the mean equatorial radius is 339600 meters. The areoid of the zero level of the MOLA altimetry is defined to be the potential surface with the same potential as the mean equatorial radius. The MOLA topography differs from the USGS digital elevation data by approximately 1.6 km, with MOLA higher. The average pressure on the MOLA reference surface for Ls =0 is approximately 5.1 mbars and has been derived from occultation data obtained from the tracking of Viking, Mariner, and MGS spacecraft and interpolated with the aid of the Ames Mars GCM. The new topography and the new occultation data are providing a more reliable relationship between elevation and surface pressure.
NASA Astrophysics Data System (ADS)
Ashtekar, Koustubh; Diehl, Gregory; Hamer, John
2012-10-01
The hafnium cathode is widely used in DC plasma arc cutting (PAC) under an oxygen gas environment to cut iron and iron alloys. The hafnium erosion is always a concern which is controlled by the surface temperature. In this study, the effect of cathode cooling efficiency and oxygen gas pressure on the hafnium surface temperature are quantified. The two layer cathode sheath model is applied on the refractive hafnium surface while oxygen species (O2, O, O+, O++, e-) are considered within the thermal dis-equilibrium regime. The system of non-linear equations comprising of current density balance, heat flux balance at both the cathode surface and the sheath-ionization layer is coupled with the plasma gas composition solver. Using cooling heat flux, gas pressure and current density as inputs; the cathode wall temperature, electron temperature, and sheath voltage drop are calculated. Additionally, contribution of emitted electron current (Je) and ions current (Ji) to the total current flux are estimated. Higher gas pressure usually reduces Ji and increases Je that reduces the surface temperature by thermionic cooling.
Flight and wind-tunnel correlation of boundary-layer transition on the AEDC transition cone
NASA Technical Reports Server (NTRS)
Fisher, D. L.; Dougherty, N. S., Jr.
1982-01-01
Transition and fluctuating surface pressure data were acquired on a 10 deg included angle cone, using the same instrumentation and technique over a wide range of Mach and Reynolds numbers in 23 wind tunnels and in flight. Transition was detected with a traversing pitot-pressure probe in contact with the surface. The surface pressure fluctuations were measured with microphones set flush in the cone surface. Good correlation of end of transition Reynolds number RE(T) was obtained between data from the lower disturbance wind tunnels and flight up to a boundary layer edge Mach number, M(e) = 1.2. Above M(e) = 1.2, however, this correlation deteriorates, with the flight Re(T) being 25 to 30% higher than the wind tunnel Re(T) at M(e) = 1.6. The end of transition Reynolds number correlated within + or - 20% with the surface pressure fluctuations, according to the equation used. Broad peaks in the power spectral density distributions indicated that Tollmien-Schlichting waves were the probable cause of transition in flight and in some of the wind tunnels.
NASA Technical Reports Server (NTRS)
Tanner, J. A.; Stubbs, S. M.; Smith, E. G.
1981-01-01
The investigation utilized one main gear wheel, brake, and tire assembly of a McDonnell Douglas DC-9 series 10 airplane. The landing-gear strut was replaced by a dynamometer. During maximum braking, average braking behavior indexes based upon brake pressure, brake torque, and drag-force friction coefficient developed by the antiskid system were generally higher on dry surfaces than on wet surfaces. The three braking behavior indexes gave similar results but should not be used interchangeably as a measure of the braking of this antiskid sytem. During the transition from a dry to a flooded surface under heavy braking, the wheel entered into a deep skid but the antiskid system reacted quickly by reducing brake pressure and performed normally during the remainder of the run on the flooded surface. The brake-pressure recovery following transition from a flooded to a dry surface was shown to be a function of the antiskid modulating orifice.
Contributions to Crustal Mechanics on Europa from Subterranean Ocean Vibrations
NASA Astrophysics Data System (ADS)
Hayes, Robert
2016-03-01
The recent discovery of subduction zones on Europa demonstrated a significant step forward in understanding the moon's surface mechanics. This work promotes the additional consideration that the surface mechanics have contributions from small relative pressure differentials in the subsurface ocean that create cracks in the surface which are then filled, sealed and healed. Crack formation can be small, as interior pressure can relatively easily breach the surface crust, generating cracks followed by common fracture formation backfilled with frozen liquid. This process will slowly increase the overall surface area of the moon with each sealed crack and fracture increasing the total surface area. This creeping growth of surface area monotonically decreases subsurface pressure which can eventually catastrophically subduct large areas of surface and so is consistent with current knowledge of observational topology on Europa. This tendency is attributed to a relatively lower energy threshold to crack the surface from interior overpressures, but a higher energy threshold to crush the spherical surface due to subsurface underpressures. Proposed mechanisms for pressure differentials include tidal forces whose Fourier components build up the resonant oscillatory modes of the subsurface ocean creating periodic under and overpressure events below the crust. This mechanism provides a means to continually reform the surface of the moon over short geological time scales. This work supported in part by federal Grant NRC-HQ-84-14-G-0059.
NASA Astrophysics Data System (ADS)
Forsberg, B. R.; Amaral, J. H.; Barbosa, P.; Kasper, D.; MacIntyre, S.; Cortes, A.; Sarmento, H.; Borges, A. V.; Melack, J. M.; Farjalla, V.
2015-12-01
The Amazon floodplain contains a variety of wetland environments which contribute CO2 and CH4 to the regional and global atmospheres. The partial pressure and emission of these greenhouse gases (GHGs) varies: 1) between habitats, 2) seasonally, as the characteristics these habitats changes and 3) diurnally, in response to diurnal stratification. In this study, we investigated the combined influence of these factors on the partial pressure and emission of GHGs in Lago Janauacá, a central Amazon floodplain lake (3o23' S; 60o18' O). All measurements were made between August of 2014 and April of 2015 at two different sites and in three distinct habitats: open water, flooded forest, flooded macrophytes. Concentrations of CO2 and CH4 in air were measured continuously with a cavity enhanced absorption spectrometer, Los Gatos Research´s Ultraportable Greenhouse Gas Analyzer (UGGA). Vertical profiles o pCO2 and pCH4 were measured using the UGGA connected to an electric pump and equilibrator. Diffusive surface emissions were estimated with the UGGA connected to a static floating chamber. To investigate the influence of vertical stratification and mixing on GHG partial pressure and emissions, a meteorological station and submersible sensor chain were deployed at each site. Meteorological sensors included wind speed and direction. The submersible chains included thermistors and oxygen sensors. Depth profiles of partial pressure and diffusive emissions for both CO2 and CH4 varied diurnally, seasonally and between habitats. Both pCO2 and pCH4 were consistently higher in bottom than surface waters with the largest differences occurring at high water when thermal stratification was most stable. Methane emissions and partial pressures were highest at low water while pCO2 and CO2 fluxes were highest during high water periods, with 35% of CO2 fluxes at low water being negative. The highest average surface value of pCO2 (5491 μatm), encountered during rising water, was ~3 times higher than that encountered at low water (1708 μatm). Partial pressures and emissions of both CO2 and CH4 were greatest in open water habitats and consistently higher at night. These patterns reflected the higher levels of wind driven mixing and turbulence in open water environments and higher convective mixing at night which promoted diffusive emission.
NASA Astrophysics Data System (ADS)
Adams, Thomas E.
State-of-the-art hydrogen loading system onto thin metallic films based on differential pressure in calibrated chambers has been developed for conditions pressures and temperatures up to 69 bar and 500°C, respectively. Experiments on hydrogen loading on to palladium films of thickness 50 and 250 nm were conducted at pressure ranging from 0.2 bar to 10 bar at temperature 310°C. For first time film hydrogen loading was carried out at 1 bar and at room temperature which temperature. Beta flux exiting surface of metal tritide films has been modeled with MC-SET (Monte Carlo Simulation of Electron Trajectories in solids). Surface beta flux simulations have been improved to account for density changes from tritium loading and decay. Simulation results indicate a 300 nm slab of MgT2 has a surface flux three times higher than in ScT2, and six times higher than in TiT2. Commercial betavoltaic cells were tested at different temperature environment for their evaluation and characterization.
Comparison of two ways of altering carpal tunnel pressure with ultrasound surface wave elastography.
Cheng, Yu-Shiuan; Zhou, Boran; Kubo, Kazutoshi; An, Kai-Nan; Moran, Steven L; Amadio, Peter C; Zhang, Xiaoming; Zhao, Chunfeng
2018-06-06
Higher carpal tunnel pressure is related to the development of carpal tunnel syndrome. Currently, the measurement of carpal tunnel pressure is invasive and therefore, a noninvasive technique is needed. We previously demonstrated that speed of wave propagation through a tendon in the carpal tunnel measured by ultrasound elastography could be used as an indicator of carpal tunnel pressure in a cadaveric model, in which a balloon had to be inserted into the carpal tunnel to adjust the carpal tunnel pressure. However, the method for adjusting the carpal tunnel pressure in the cadaveric model is not applicable for the in vivo model. The objective of this study was to utilize a different technique to adjust carpal tunnel pressure via pressing the palm and to validate it with ultrasound surface wave elastography in a human cadaveric model. The outcome was also compared with a previous balloon insertion technique. Results showed that wave speed of intra-carpal tunnel tendon and the ratio of wave speed of intra-and outer-carpal tunnel tendons increased linearly with carpal tunnel pressure. Moreover, wave speed of intra carpal tunnel tendon via both ways of altering carpal tunnel pressure showed similar results with high correlation. Therefore, it was concluded that the technique of pressing the palm can be used to adjust carpal tunnel pressure, and pressure changes can be detected via ultrasound surface wave elastography in an ex vivo model. Future studies will utilize this technique in vivo to validate the usefulness of ultrasound surface wave elastography for measuring carpal tunnel pressure. Copyright © 2018 Elsevier Ltd. All rights reserved.
Tan, Y M; Flynn, M R
2000-10-01
The transfer efficiency of a spray-painting gun is defined as the amount of coating applied to the workpiece divided by the amount sprayed. Characterizing this transfer process allows for accurate estimation of the overspray generation rate, which is important for determining a spray painter's exposure to airborne contaminants. This study presents an experimental evaluation of a mathematical model for predicting the transfer efficiency of a high volume-low pressure spray gun. The effects of gun-to-surface distance and nozzle pressure on the agreement between the transfer efficiency measurement and prediction were examined. Wind tunnel studies and non-volatile vacuum pump oil in place of commercial paint were used to determine transfer efficiency at nine gun-to-surface distances and four nozzle pressure levels. The mathematical model successfully predicts transfer efficiency within the uncertainty limits. The least squares regression between measured and predicted transfer efficiency has a slope of 0.83 and an intercept of 0.12 (R2 = 0.98). Two correction factors were determined to improve the mathematical model. At higher nozzle pressure settings, 6.5 psig and 5.5 psig, the correction factor is a function of both gun-to-surface distance and nozzle pressure level. At lower nozzle pressures, 4 psig and 2.75 psig, gun-to-surface distance slightly influences the correction factor, while nozzle pressure has no discernible effect.
An experimental study of high-pressure droplet combustion
NASA Technical Reports Server (NTRS)
Norton, Chris M.; Litchford, Ron J.; Jeng, San-Mou
1990-01-01
The results are presented of an experimental study on suspended n-heptane droplet combustion in air for reduced pressures up to P(r) = 2.305. Transition to fully transient heat-up through the critical state is demonstrated above a threshold pressure corresponding to P(r) of roughly 1.4. A silhouette imaging technique resolves the droplet surface for reduced pressures up to about P(r) roughly 0.63, but soot formation conceals the surface at higher pressures. Images of the soot plumes do not show any sudden change in behavior indicative of critical transition. Mean burning rate constants are computed from the d-squared variation law using measured effective droplet diameters at ignition and measured burn times, and corrected burning times are computed for an effective initial droplet diameter. The results show that the burning rates increase as the fuel critical pressure is approached and decrease as the pressure exceeds the fuel critical pressure. Corrected burning times show inverse behavior.
Damping, amplitude, aging tests of stacked transducers for shock wave generation.
Sferruzza, Jean-Pierre; Birer, Alain; Chavrier, Françoise; Cathignol, Dominique
2002-10-01
New clinical concepts in lithotripsy demand small shock heads. Reducing the size of piezoelectric shock heads will be possible only if the pressure generated at the surface of each transducer can be increased so that the total pressure at the focus remains the same. To solve this problem, different solutions were proposed. For example, it has been demonstrated that piezocomposite material, as opposed to piezoceramic material, allows the generation of a higher surface pressure before breaking, mainly because radial modes are dramatically reduced. In addition, in a previous paper, we showed the feasibility of generating high-pressure pulse waves without increasing the transducer voltage by using sandwiched transducers, which are a stack of two or more transducers. Some discrepancies appeared, however, between the pressure measured at the surface of the front transducer and the arithmetic sum of the pressures generated by each transducer constituting the stack. In fact, development of such stacked transducers capable of generating surface pressures in the range of 2 to 5 MPa is very complex, which may explain why no aging tests have been reported in the literature thus far. In the first part of this paper, we theoretically determine the importance of the electroacoustical coupling between the two transducers on the generated surface pressure. We show that pressure losses due to these electroacoustical couplings are less than 5%. Experimental measurements done on a stacked transducer assembled and tightened in a castor oil-filled tank are in excellent accordance with the theoretical measurements. Using this assembly technique, it was possible to obtain, on average, out of four elements, a pressure of 7.5 MPa for the duration of 4 million shocks, which would allow the treatment of approximately 1000 patients.
The Role of Atmospheric Pressure on Surface Thermal Inertia for Early Mars Climate Modeling
NASA Astrophysics Data System (ADS)
Mischna, M.; Piqueux, S.
2017-12-01
On rocky bodies such as Mars, diurnal surface temperatures are controlled by the surface thermal inertia, which is a measure of the ability of the surface to store heat during the day and re-radiate it at night. Thermal inertia is a compound function of the near-surface regolith thermal conductivity, density and specific heat, with the regolith thermal conductivity being strongly controlled by the atmospheric pressure. For Mars, current best maps of global thermal inertia are derived from the Thermal Emission Spectrometer (TES) instrument on the Mars Global Surveyor (MGS) spacecraft using bolometric brightness temperatures of the surface. Thermal inertia is widely used in the atmospheric modeling community to determine surface temperatures and to establish lower boundary conditions for the atmosphere. Infrared radiation emitted from the surface is key in regulating lower atmospheric temperatures and driving overall global circulation. An accurate map of surface thermal inertia is thus required to produce reasonable results of the present-day atmosphere using numerical Mars climate models. Not surprisingly, thermal inertia is also a necessary input into climate models of early Mars, which assume a thicker atmosphere, by as much as one to two orders of magnitude above the present-day 6 mb mean value. Early Mars climate models broadly, but incorrectly, assume the present day thermal inertia surface distribution. Here, we demonstrate that, on early Mars, when pressures were larger than today's, the surface layer thermal inertia was globally higher because of the increased thermal conductivity driven by the higher gas pressure in interstitial pore spaces within the soil. Larger thermal inertia reduces the diurnal range of surface temperature and will affect the size and timing of the modeled seasonal polar ice caps. Additionally, it will globally alter the frequency of when surface temperatures are modeled to exceed the liquid water melting point, and so results may need to be reassessed in light of lower `peak' global temperatures. We shall demonstrate the consequences of using properly calibrated thermal inertia maps for early Mars climate simulations, and propose simplified thermal inertia maps for use in such climate models.
On the Stability of Liquid Water on Present Day Mars
NASA Technical Reports Server (NTRS)
Haberle, Robert M.; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
The mean annual surface pressure and temperature on present day Mars do not allow for the long term stability of liquid water on the surface. However, theoretical arguments have been advanced that suggest liquid water could form in transient events even though it would not be in equilibrium with the environment. Using a Mars General Circulation Model, we calculate where and for how long the surface pressure and surface temperature meet the minimum requirements for this metastability of liquid water. These requirements are that the pressure and temperature must be above the triple point of water, but below its boiling point. We find that there are five regions on Mars where these requirements are periodically satisfied: in the near equatorial regions of Amazonis, Arabia, and Elysium, and in the Hellas and Argyre impact basins. Whether liquid water ever forms in these regions depends on the availability of ice and heat, and on the evaporation rate. The latter is poorly understood for low pressure CO2 environments, but is likely to be so high that melting occurs rarely, if at all. However, in the relatively recent past, surface pressures may have been higher than they are today perhaps by as much as a factor of 2 or 3. Under these circumstances melting would have been easier to achieve. We plan to undertake laboratory experiments to better understand the potential for melting in low pressure environments.
Woodward, N C; Gunning, A P; Mackie, A R; Wilde, P J; Morris, V J
2009-06-16
Displacement of sodium caseinate from the air-water interface by nonionic surfactants Tween 20 and Tween 60 was observed by atomic force microscopy (AFM). The interfacial structure was sampled by Langmuir-Blodgett deposition onto freshly cleaved mica substrates. Protein displacement occurred through an orogenic mechanism: it involved the nucleation and growth of surfactant domains within the protein network, followed by failure of the protein network. The surface pressure at which failure of the protein network occurred was essentially independent of the type of surfactant. The major component of sodium caseinate is beta-casein, and previous studies at the air-water interface have shown that beta-casein networks are weak, failing at surface pressures below that observed for sodium caseinate. The other components of sodium caseinate are alpha(s)- and kappa-caseins. Studies of the displacement of alpha(s)-caseins from air-water interfaces show that these proteins also form weak networks that fail at surface pressures below that observed for sodium caseinate. However, kappa-casein was found to form strong networks that resisted displacement and failed at surface pressures comparable to those observed for sodium caseinate. The AFM images of the displacement suggest that, despite kappa-casein being a minor component, it dominates the failure of sodium caseinate networks: alpha(s)-casein and beta-casein are preferentially desorbed at lower surface pressures, allowing the residual kappa-casein to control the breakdown of the sodium caseinate network at higher surface pressures.
The initiation of boiling during pressure transients. [water boiling on metal surfaces
NASA Technical Reports Server (NTRS)
Weisman, J.; Bussell, G.; Jashnani, I. L.; Hsieh, T.
1973-01-01
The initiation of boiling of water on metal surfaces during pressure transients has been investigated. The data were obtained by a new technique in which light beam fluctuations and a pressure signal were simultaneously recorded on a dual beam oscilloscope. The results obtained agreed with those obtained using high speed photography. It was found that, for water temperatures between 90-150 C, the wall superheat required to initiate boiling during a rapid pressure transient was significantly higher than required when the pressure was slowly reduced. This result is explained by assuming that a finite time is necessary for vapor to fill the cavity at which the bubble originates. Experimental measurements of this time are in reasonably good agreement with calculations based on the proposed theory. The theory includes a new procedure for estimating the coefficient of vaporization.
NASA Astrophysics Data System (ADS)
Jurns, J. M.; Hartwig, J. W.
2012-04-01
When transferring propellant in space, it is most efficient to transfer single phase liquid from a propellant tank to an engine. In earth's gravity field or under acceleration, propellant transfer is fairly simple. However, in low gravity, withdrawing single-phase fluid becomes a challenge. A variety of propellant management devices (PMDs) are used to ensure single-phase flow. One type of PMD, a liquid acquisition device (LAD) takes advantage of capillary flow and surface tension to acquire liquid. The present work reports on testing with liquid oxygen (LOX) at elevated pressures (and thus temperatures) (maximum pressure 1724 kPa and maximum temperature 122 K) as part of NASA's continuing cryogenic LAD development program. These tests evaluate LAD performance for LOX stored in higher pressure vessels that may be used in propellant systems using pressure fed engines. Test data shows a significant drop in LAD bubble point values at higher liquid temperatures, consistent with lower liquid surface tension at those temperatures. Test data also indicates that there are no first order effects of helium solubility in LOX on LAD bubble point prediction. Test results here extend the range of data for LOX fluid conditions, and provide insight into factors affecting predicting LAD bubble point pressures.
NASA Technical Reports Server (NTRS)
Jurns, John M.; Hartwig, Jason W.
2011-01-01
When transferring propellant in space, it is most efficient to transfer single phase liquid from a propellant tank to an engine. In earth s gravity field or under acceleration, propellant transfer is fairly simple. However, in low gravity, withdrawing single-phase fluid becomes a challenge. A variety of propellant management devices (PMD) are used to ensure single-phase flow. One type of PMD, a liquid acquisition device (LAD) takes advantage of capillary flow and surface tension to acquire liquid. The present work reports on testing with liquid oxygen (LOX) at elevated pressures (and thus temperatures) (maximum pressure 1724 kPa and maximum temperature 122K) as part of NASA s continuing cryogenic LAD development program. These tests evaluate LAD performance for LOX stored in higher pressure vessels that may be used in propellant systems using pressure fed engines. Test data shows a significant drop in LAD bubble point values at higher liquid temperatures, consistent with lower liquid surface tension at those temperatures. Test data also indicates that there are no first order effects of helium solubility in LOX on LAD bubble point prediction. Test results here extend the range of data for LOX fluid conditions, and provide insight into factors affecting predicting LAD bubble point pressures.
The Breath of Planet Earth: Atmospheric Circulation. Assimilation of Surface Wind Observations
NASA Technical Reports Server (NTRS)
Atlas, Robert; Bloom, Stephen; Otterman, Joseph
2000-01-01
Differences in air pressure are a major cause of atmospheric circulation. Because heat excites the movement of atoms, warm temperatures cause, air molecules to expand. Because those molecules now occupy a larger space, the pressure that their weight exerts is decreased. Air from surrounding high-pressure areas is pushed toward the low-pressure areas, creating circulation. This process causes a major pattern of global atmosphere movement known as meridional circulation. In this form of convection, or vertical air movement, heated equatorial air rises and travels through the upper atmosphere toward higher latitudes. Air just above the equator heads toward the North Pole, and air just below the equator moves southward. This air movement fills the gap created where increased air pressure pushes down cold air. The ,cold air moves along the surface back toward the equator, replacing the air masses that rise there. Another influence on atmospheric. circulation is the Coriolis force. Because of the Earth's rotation, large-scale wind currents move in the direction of this axial spin around low-pressure areas. Wind rotates counterclockwise in the Northern Hemisphere and clockwise in the Southern Hemisphere. just as the Earth's rotation affects airflow, so too does its surface. In the phenomenon of orographic lifting, elevated topographic features such as mountain ranges lift air as it moves up their surface.
Influence of water on clumped-isotope bond reordering kinetics in calcite
NASA Astrophysics Data System (ADS)
Brenner, Dana C.; Passey, Benjamin H.; Stolper, Daniel A.
2018-03-01
Oxygen self-diffusion in calcite and many other minerals is considerably faster under wet conditions relative to dry conditions. Here we investigate whether this "water effect" also holds true for solid-state isotope exchange reactions that alter the abundance of carbonate groups with multiple rare isotopes ('clumped' isotope groups) via the process of solid-state bond reordering. We present clumped-isotope reordering rates for optical calcite heated under wet, high-pressure (100 MPa) conditions. We observe only modest increases in reordering rates under such conditions compared with rates for the same material reacted in dry CO2 under low-pressure conditions. Activation energies under wet, high-pressure conditions are indistinguishable from those for dry, low-pressure conditions, while rate constants are resolvably higher (up to ∼3 times) for wet, high-pressure relative to dry, low-pressure conditions in most of our interpretations of experimental results. This contrasts with the water effect for oxygen self-diffusion in calcite, which is associated with lower activation energies, and diffusion coefficients that are ≥103 times higher compared with dry (pure CO2) conditions in the temperature range of this study (385-450 °C). The water effect for clumped-isotopes leads to calculated apparent equilibrium temperatures ("blocking temperatures") for typical geological cooling rates that are only a few degrees higher than those for dry conditions, while O self-diffusion blocking temperatures in calcite grains are ∼150-200 °C lower in wet conditions compared with dry conditions. Since clumped-isotope reordering is a distributed process that occurs throughout the mineral volume, our clumped-isotope results support the suggestion of Labotka et al. (2011) that the water effect in calcite does not involve major changes in bulk (volume) diffusivity, but rather is primarily a surface phenomenon that facilitates oxygen exchange between the calcite surface and external fluids. We explore the mechanism(s) by which clumped isotope reordering rates may be modestly increased under wet, high-pressure conditions, including changes in defect concentrations in the near surface environment due to reactions at the water-mineral interface, and lattice deformation resulting from pressurization of samples.
Krausko, Ján; Runštuk, Jiří; Neděla, Vilém; Klán, Petr; Heger, Dominik
2014-05-20
Observation of a uranyl-salt brine layer on an ice surface using backscattered electron detection and ice surface morphology using secondary-electron detection under equilibrium conditions was facilitated using an environmental scanning electron microscope (ESEM) at temperatures above 250 K and pressures of hundreds of Pa. The micrographs of a brine layer over ice grains prepared by either slow or shock freezing provided a complementary picture of the contaminated ice grain boundaries. Fluorescence spectroscopy of the uranyl ions in the brine layer confirmed that the species exists predominately in the solvated state under experimental conditions of ESEM.
NASA Astrophysics Data System (ADS)
Zhu, D. C.; Su, C. Q.; Deng, Y. D.; Wang, Y. P.; Liu, X.
2017-11-01
Automotive exhaust-based thermoelectric generators are currently a hot topic in energy recovery. The waste heat of automotive exhaust gas can be converted into electricity by means of thermoelectric modules. Generally, inserting fins into the cooling unit contributes to enhancing the heat transfer for a higher power output. However, the introduction of fins will result in a pressure drop in the cooling system. In current research, in order to enhance the heat transfer and avoid a large pressure drop, a cooling unit with cylindrical grooves on the interior surface was proposed. To evaluate the performance of the cylindrical grooves, different inner topologies, including a smooth interior surface,a smooth interior surface with inserted fins and an interior surface with cylindrical grooves, were compared. The results revealed that compared with the smooth interior surface, the smooth interior surface with inserted fins and the interior surface with cylindrical grooves both enhanced the heat transfer, but the interior surface with cylindrical grooves obtained a lower pressure drop. To improve the performance of the cylindrical grooves, different groove-depth ratios were tried, and the results showed that a groove-depth ratio of 0.081 could provide the best overall performance.
NASA Astrophysics Data System (ADS)
Zhu, D. C.; Su, C. Q.; Deng, Y. D.; Wang, Y. P.; Liu, X.
2018-06-01
Automotive exhaust-based thermoelectric generators are currently a hot topic in energy recovery. The waste heat of automotive exhaust gas can be converted into electricity by means of thermoelectric modules. Generally, inserting fins into the cooling unit contributes to enhancing the heat transfer for a higher power output. However, the introduction of fins will result in a pressure drop in the cooling system. In current research, in order to enhance the heat transfer and avoid a large pressure drop, a cooling unit with cylindrical grooves on the interior surface was proposed. To evaluate the performance of the cylindrical grooves, different inner topologies, including a smooth interior surface,a smooth interior surface with inserted fins and an interior surface with cylindrical grooves, were compared. The results revealed that compared with the smooth interior surface, the smooth interior surface with inserted fins and the interior surface with cylindrical grooves both enhanced the heat transfer, but the interior surface with cylindrical grooves obtained a lower pressure drop. To improve the performance of the cylindrical grooves, different groove-depth ratios were tried, and the results showed that a groove-depth ratio of 0.081 could provide the best overall performance.
Unsteady Loss in the Stator Due to the Incoming Rotor Wake in a Highly-Loaded Transonic Compressor
NASA Technical Reports Server (NTRS)
Hah, Chunill
2015-01-01
The present paper reports an investigation of unsteady loss generation in the stator due to the incoming rotor wake in an advanced GE transonic compressor design with a high-fidelity numerical method. This advanced compressor with high reaction and high stage loading has been investigated both experimentally and analytically in the past. The measured efficiency in this advanced compressor is significantly lower than the design intention/goal. The general understanding is that the current generation of compressor design/analysis tools miss some important flow physics in this modern compressor design. To pinpoint the source of the efficiency miss, an advanced test with a detailed flow traverse was performed for the front one and a half stage at the NASA Glenn Research Center. Detailed data-match analysis by GE identified an unexpected high loss generation in the pressure side of the stator passage. Higher total temperature and lower total pressure are measured near the pressure side of the stator. Various analyses based on the RANS and URANS of the compressor stage do not calculate the measured higher total temperature and lower total pressure on the pressure side of the stator. In the present paper, a Large Eddy Simulation (LES) is applied to find the fundamental mechanism of this unsteady loss generation in the stator due to the incoming rotor wake. The results from the LES were first compared with the NASA test results and the GE interpretation of the test data. LES calculates lower total pressure and higher total temperature on the pressure side of the stator, as the measured data showed, resulting in large loss generation on the pressure side of the stator. Detailed examination of the unsteady flow field from LES shows that the rotor wake, which has higher total temperature and higher total pressure relative to the free stream, interacts quite differently with the pressure side of the blade compared to the suction side of the blade. The higher temperature in the wake remains high as the wake passes through the pressure side of the blade. On the other hand, the total temperature diffuses as it passes through near the suction surface. For the presently investigated compressor, the classical intra-stator wake transport to the pressure side of the blade by the slip velocity in the wake seems to be minor. The main causes of this phenomenon are three-dimensional unsteady vortex interactions near the blade surface. The stabilizing effect of the concave curvature on the suction side keeps the rotor wake thin. On the other hand, the destabilizing effect of the convex curvature of the pressure side makes the rotor wake thicker, which results in a higher total temperature measurement at the stator exit. Additionally, wake stretching through the stator seems to contribute to the redistribution of the total temperature and the loss generation.
Hydrostatic Microextrusion of Steel and Copper
NASA Astrophysics Data System (ADS)
Berti, Guido; Monti, Manuel; D'Angelo, Luciano
2011-05-01
The paper presents an experimental investigation based on hydrostatic micro extrusion of billets in low carbon steel and commercially pure copper, and the relevant results. The starting billets have a diameter of 0.3 mm and are 5 mm long; a high pressure generator consisting of a manually operated piston screw pump is used to pressurize the fluid up to 4200 bar, the screw pump is connected through a 3-way distribution block to the extrusion die and to a strain gauge high pressure sensor. The sensor has a full scale of 5000 bar and the extrusion pressure is acquired at a sampling rate of 2 kHz by means of an acquisition program written in the LabVIEW environment. Tests have been conducted at room temperature and a lubricant for wire drawing (Chemetall Gardolube DO 338) acts both as the pressurizing fluid and lubricant too. In addition, billets were graphite coated. Different fluid pressures and process durations have been adopted, resulting in different extrusion lengths. The required extrusion pressure is much higher than in non-micro forming operations (this effect is more evident for steel). On the cross section of the extruded parts, hardness and grain size distribution have been measured, the former through Vickers micro hardness (10 g load) tests. In the case of the extrusion of copper, the material behaves as in microdrawing process. In the case of the extrusion of steel, the hardness increases from the core to the surface as in the drawing process, but with lower values. The analysis evidenced the presence of the external layer, but its thickness is about 1/3 of the external layer in the drawn wire and the grains appear smaller than in the layer of the drawn wire. The extruding force required along the extruding direction is higher (22-24 N) than the drawing force along the same direction (12 N): being the material, the reduction ratio, the die sliding length the same in both cases, the higher extrusion force should be caused by a higher tangential friction force and/or a higher redundant work of deformation and/or a different material behaviour. Which is the real mechanism is not clear at present, but surface layer grains in extrusion are more deformed than in wire drawing. For this reason the deformation inhomogeneity increases in extrusion and the material under the highly deformed surface layer should be subjected to lower strains, strain hardening and finally resulting in lower hardness.
Hydrostatic Microextrusion of Steel and Copper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berti, Guido; Monti, Manuel; D'Angelo, Luciano
2011-05-04
The paper presents an experimental investigation based on hydrostatic micro extrusion of billets in low carbon steel and commercially pure copper, and the relevant results. The starting billets have a diameter of 0.3 mm and are 5 mm long; a high pressure generator consisting of a manually operated piston screw pump is used to pressurize the fluid up to 4200 bar, the screw pump is connected through a 3-way distribution block to the extrusion die and to a strain gauge high pressure sensor. The sensor has a full scale of 5000 bar and the extrusion pressure is acquired at amore » sampling rate of 2 kHz by means of an acquisition program written in the LabVIEW environment. Tests have been conducted at room temperature and a lubricant for wire drawing (Chemetall Gardolube DO 338) acts both as the pressurizing fluid and lubricant too. In addition, billets were graphite coated. Different fluid pressures and process durations have been adopted, resulting in different extrusion lengths. The required extrusion pressure is much higher than in non-micro forming operations (this effect is more evident for steel). On the cross section of the extruded parts, hardness and grain size distribution have been measured, the former through Vickers micro hardness (10 g load) tests. In the case of the extrusion of copper, the material behaves as in microdrawing process. In the case of the extrusion of steel, the hardness increases from the core to the surface as in the drawing process, but with lower values. The analysis evidenced the presence of the external layer, but its thickness is about 1/3 of the external layer in the drawn wire and the grains appear smaller than in the layer of the drawn wire. The extruding force required along the extruding direction is higher (22-24 N) than the drawing force along the same direction (12 N): being the material, the reduction ratio, the die sliding length the same in both cases, the higher extrusion force should be caused by a higher tangential friction force and/or a higher redundant work of deformation and/or a different material behaviour. Which is the real mechanism is not clear at present, but surface layer grains in extrusion are more deformed than in wire drawing. For this reason the deformation inhomogeneity increases in extrusion and the material under the highly deformed surface layer should be subjected to lower strains, strain hardening and finally resulting in lower hardness.« less
NASA Technical Reports Server (NTRS)
Weber, L. A.
1975-01-01
Compressibility measurements and thermodynamic properties data for parahydrogen were extended to higher temperatures and pressures. Results of an experimental program are presented in the form of new pressure, volume and temperature data in the temperature range 23 to 300 K at pressures up to 800 bar. Also given are tables of thermodynamic properties on isobars to 1000 bar including density, internal energy, enthalpy, entropy, specific heats at constant volume and constant pressure, velocity of sound, and surface derivatives. The accuracy of the data is discussed and comparisons are made with previous data.
Germination and growth of wheat in simulated Martian atmospheres
NASA Technical Reports Server (NTRS)
Schwartzkopf, Steven H.; Mancinelli, Rocco L.
1991-01-01
One design for a manned Mars base incorporates a bioregenerative life support system based upon growing higher plants at a low atmospheric pressure in a greenhouse on the Martian surface. To determine the concept's feasibility, the germination and initial growth of wheat (Triticum aestivum) was evaluated at low atmospheric pressures in simulated Martian atmosphere (SMA) and in SMA supplemented with oxygen. Total atmospheric pressures ranged from 10 to 1013 mb. No seeds germinated in pure SMA, regardless of atmospheric pressure. In SMA plus oxygen at 60 mb total pressure, germination and growth occurred but were lower than in the earth atmosphere controls.
Origin of the pressure-dependent Tc valley in superconducting simple cubic phosphorus
NASA Astrophysics Data System (ADS)
Wu, Xianxin; Jeschke, Harald O.; Di Sante, Domenico; von Rohr, Fabian O.; Cava, Robert J.; Thomale, Ronny
2018-03-01
Motivated by recent experiments, we investigate the pressure-dependent electronic structure and electron-phonon (e-ph) coupling for simple cubic phosphorus by performing first-principles calculations within the full potential linearized augmented plane-wave method. As a function of increasing pressure, our calculations show a valley feature in Tc, followed by an eventual decrease for higher pressures. We demonstrate that this Tc valley at low pressures is due to two nearby Lifshitz transitions, as we analyze the band-resolved contributions to the e-ph coupling. Below the first Lifshitz transition, the phonon hardening and shrinking of the γ Fermi surface with s -orbital character results in a decreased Tc with increasing pressure. After the second Lifshitz transition, the appearance of δ Fermi surfaces with 3 d -orbital character generate strong e-ph interband couplings in α δ and β δ channels, and hence lead to an increase of Tc. For higher pressures, the phonon hardening finally dominates, and Tc decreases again. Our study reveals that the intriguing Tc valley discovered in experiment can be attributed to Lifshitz transitions, while the plateau of Tc detected at intermediate pressures appears to be beyond the scope of our analysis. This strongly suggests that aside from e-ph coupling, electronic correlations along with plasmonic contributions may be relevant for simple cubic phosphorus. Our findings hint at the notion that increasing pressure can shift the low-energy orbital weight towards d character, and as such even trigger an enhanced importance of orbital-selective electronic correlations despite an increase of the overall bandwidth.
NASA Astrophysics Data System (ADS)
Bera, Subrata; Bhattacharyya, S.
2017-12-01
A numerical investigation is performed on the electroosmotic flow (EOF) in a surface-modulated microchannel to induce enhanced solute mixing. The channel wall is modulated by placing surface-mounted obstacles of trigonometric shape along which the surface potential is considered to be different from the surface potential of the homogeneous part of the wall. The characteristics of the electrokinetic flow are governed by the Laplace equation for the distribution of external electric potential; the Poisson equation for the distribution of induced electric potential; the Nernst-Planck equations for the distribution of ions; and the Navier-Stokes equations for fluid flow simultaneously. These nonlinear coupled set of governing equations are solved numerically by a control volume method over the staggered system. The influence of the geometric modulation of the surface, surface potential heterogeneity and the bulk ionic concentration on the EOF is analyzed. Vortical flow develops near a surface modulation, and it becomes stronger when the surface potential of the modulated region is in opposite sign to the surface potential of the homogeneous part of the channel walls. Vortical flow also depends on the Debye length when the Debye length is in the order of the channel height. Pressure drop along the channel length is higher for a ribbed wall channel compared to the grooved wall case. The pressure drop decreases with the increase in the amplitude for a grooved channel, but increases for a ribbed channel. The mixing index is quantified through the standard deviation of the solute distribution. Our results show that mixing index is higher for the ribbed channel compared to the grooved channel with heterogeneous surface potential. The increase in potential heterogeneity in the modulated region also increases the mixing index in both grooved and ribbed channels. However, the mixing performance, which is the ratio of the mixing index to pressure drop, reduces with the rise in the surface potential heterogeneity.
NASA Astrophysics Data System (ADS)
Bera, Subrata; Bhattacharyya, S.
2018-04-01
A numerical investigation is performed on the electroosmotic flow (EOF) in a surface-modulated microchannel to induce enhanced solute mixing. The channel wall is modulated by placing surface-mounted obstacles of trigonometric shape along which the surface potential is considered to be different from the surface potential of the homogeneous part of the wall. The characteristics of the electrokinetic flow are governed by the Laplace equation for the distribution of external electric potential; the Poisson equation for the distribution of induced electric potential; the Nernst-Planck equations for the distribution of ions; and the Navier-Stokes equations for fluid flow simultaneously. These nonlinear coupled set of governing equations are solved numerically by a control volume method over the staggered system. The influence of the geometric modulation of the surface, surface potential heterogeneity and the bulk ionic concentration on the EOF is analyzed. Vortical flow develops near a surface modulation, and it becomes stronger when the surface potential of the modulated region is in opposite sign to the surface potential of the homogeneous part of the channel walls. Vortical flow also depends on the Debye length when the Debye length is in the order of the channel height. Pressure drop along the channel length is higher for a ribbed wall channel compared to the grooved wall case. The pressure drop decreases with the increase in the amplitude for a grooved channel, but increases for a ribbed channel. The mixing index is quantified through the standard deviation of the solute distribution. Our results show that mixing index is higher for the ribbed channel compared to the grooved channel with heterogeneous surface potential. The increase in potential heterogeneity in the modulated region also increases the mixing index in both grooved and ribbed channels. However, the mixing performance, which is the ratio of the mixing index to pressure drop, reduces with the rise in the surface potential heterogeneity.
NASA Technical Reports Server (NTRS)
Dicus, D. L.
1981-01-01
Compact specimens of 25 mm thick aluminum alloy plate were subjected to constant amplitude fatigue testing at a load ratio of 0.2. Crack growth rates were determined at frequencies of 1 Hz and 10 Hz in hard vacuum and laboratory air, and in mixtures of water vapor and nitrogen at water vapor partial pressures ranging from 94 Pa to 3.8 kPa. A significant effect of water vapor on fatigue crack growth rates was observed at the lowest water vapor pressure tested. Crack rates changed little for pressures up to 1.03 kPa, but abruptly accelerated at higher pressures. At low stress intensity factor ranges, cracking rates at the lowest and highest water vapor pressure tested were, respectively, two and five times higher than rates in vacuum. Although a frequency was observed in laboratory air, cracking rates in water vapor and vacuum are insensitive to a ten-fold change in frequency. Surfaces of specimens tested in water vapor and vacuum exhibited different amounts of residual deformation. Reduced deformation on the fracture surfaces of the specimens tested in water vapor suggests embrittlement of the plastic zone ahead of the crack tip as a result of environmental interaction.
NASA Astrophysics Data System (ADS)
Guitouni, Ahmed; Chaieb, Iheb; Rhouma, Amir Ben; Fredj, Nabil Ben
2016-11-01
Fluid application in grinding is getting attention as higher stock removal rates, higher surface integrity and longer wheel life are required. It is necessary to define proper conditions of application for meeting high productivity goals by lowering the specific grinding energy and reducing the temperature of the contact zone. The present study investigated the capacity of the jet pressure of a spot nozzle to improve the wear of a CBN wheel when grinding the AISI 690 superalloy. Grinding experiments were conducted with an emulsion-type cooling fluid delivered at pressure ranging from 0.1 to 4 MPa. Results show that the maximum stock removal, reached at 4 MPa, is 5 times the stock removal obtained at 0.1 MPa, while the grinding ratio at 4 MPa is 8 times that at 0.1 MPa, and there is a critical pressure ( P c) around 1.5 MPa corresponding to the minimum specific grinding energy. Scanning electron microscopy of the grain tips showed that the wear mechanism shifts from breaking and dislodgment at low jet pressure to micro-fracture resulting in continuous self-sharpening of the abrasive grains. By lubricating at jet pressure close to P c, there is less thermal damage due to plowing and sliding and the resulting lower loading of the abrasive grains favors the micro-fracture of grains and thus a longer wheel life.
Sebum/Meibum Surface Film Interactions and Phase Transitional Differences.
Mudgil, Poonam; Borchman, Douglas; Gerlach, Dylan; Yappert, Marta C
2016-05-01
Sebum may contribute to the composition of the tear film lipid layer naturally or as a contaminant artifact from collection. The aims of this study were to determine: if sebum changes the rheology of meibum surface films; if the resonance near 5.2 ppm in the 1H-NMR spectra of sebum is due to squalene (SQ); and if sebum or SQ, a major component of sebum, interacts with human meibum. Human meibum was collected from the lid margin with a platinum spatula. Human sebum was collected using lipid absorbent tape. Langmuir trough technology was used to measure the rheology of surface films. Infrared spectroscopy was used to measure lipid conformation and phase transitions. We used 1H-NMR to measure composition and confirm the primary structure of SQ. The NMR resonance near 5.2 ppm in the spectra of human sebum was from SQ which composed 28 mole percent of sebum. Both sebum and SQ lowered the lipid order of meibum. Sebum expanded meibum films at lower concentrations and condensed meibum films at higher concentrations. Sebum caused meibum to be more stable at higher pressures (greater maximum surface pressure). Physiological levels of sebum would be expected to expand or fluidize meibum making it spread better and be more surface active (qualities beneficial for tear film stability). Sebum would also be expected to stabilize the tear film lipid layer, which may allow it to withstand the high shear pressure of a blink.
Sebum/Meibum Surface Film Interactions and Phase Transitional Differences
Mudgil, Poonam; Borchman, Douglas; Gerlach, Dylan; Yappert, Marta C.
2016-01-01
Purpose Sebum may contribute to the composition of the tear film lipid layer naturally or as a contaminant artifact from collection. The aims of this study were to determine: if sebum changes the rheology of meibum surface films; if the resonance near 5.2 ppm in the 1H-NMR spectra of sebum is due to squalene (SQ); and if sebum or SQ, a major component of sebum, interacts with human meibum. Methods Human meibum was collected from the lid margin with a platinum spatula. Human sebum was collected using lipid absorbent tape. Langmuir trough technology was used to measure the rheology of surface films. Infrared spectroscopy was used to measure lipid conformation and phase transitions. We used 1H-NMR to measure composition and confirm the primary structure of SQ. Results The NMR resonance near 5.2 ppm in the spectra of human sebum was from SQ which composed 28 mole percent of sebum. Both sebum and SQ lowered the lipid order of meibum. Sebum expanded meibum films at lower concentrations and condensed meibum films at higher concentrations. Sebum caused meibum to be more stable at higher pressures (greater maximum surface pressure). Conclusions Physiological levels of sebum would be expected to expand or fluidize meibum making it spread better and be more surface active (qualities beneficial for tear film stability). Sebum would also be expected to stabilize the tear film lipid layer, which may allow it to withstand the high shear pressure of a blink. PMID:27145473
NASA Technical Reports Server (NTRS)
Nicol, M.; Johnson, M.; Koumvakalis, A. S.
1985-01-01
The behavior of gas-ice mixtures in major planets at very high pressures was studied. Some relevant pressure-temperature-composition (P-T-X) regions of the hydrogen (H2)-helium (He)-water (H2O-ammonia (NH3)-methane (CH4) phase diagram were determined. The studies, and theoretical model, of the relevant phases, are needed to interpret the compositions of ice-gas systems at conditions of planetary interest. The compositions and structures of a multiphase, multicomponent system at very high pressures care characterized, and the goal is to characterize this system over a wide range of low and high temperatures. The NH3-H2O compositions that are relevant to planetary problems yet are easy to prepare were applied. The P-T surface of water was examined and the corresponding surface for NH3 was determined. The T-X diagram of ammonia-water at atmospheric pressure was studied and two water-rich phases were found, NH3-2H2O (ammonia dihydrate), which melts incongruently, and NH3.H2O (ammonia monohydrate), which is nonstoichiometric and melts at a higher temperature than the dihydrate. It is suggested that a P-T surface at approximately the monohydrate composition and the P-X surface at room temperature is determined.
Apparatus and method for rapid cooling of large area substrates in vacuum
Barth, Kurt L.; Enzenroth, Robert A.; Sampath, Walajabad S.
2012-11-06
The present invention is directed to an apparatus and method for rapid cooling of a large substrate in a vacuum environment. A first cooled plate is brought into close proximity with one surface of a flat substrate. The spatial volume between the first cooling plate and the substrate is sealed and brought to a higher pressure than the surrounding vacuum level to increase the cooling efficiency. A second cooled plate is brought into close proximity with the opposite surface of the flat substrate. A second spatial volume between the second cooling plate and the substrate is sealed and the gas pressure is equalized to the gas pressure in the first spatial volume. The equalization of the gas pressure on both sides of the flat substrate eliminates deflection of the substrate and bending stress in the substrate.
Effects of surface tension and intraluminal fluid on mechanics of small airways.
Hill, M J; Wilson, T A; Lambert, R K
1997-01-01
Airway constriction is accompanied by folding of the mucosa to form ridges that run axially along the inner surface of the airways. The mucosa has been modeled (R. K. Lambert. J. Appl. Physiol. 71:666-673, 1991) as a thin elastic layer with a finite bending stiffness, and the contribution of its bending stiffness to airway elastance has been computed. In this study, we extend that work by including surface tension and intraluminal fluid in the model. With surface tension, the pressure on the inner surface of the elastic mucosa is modified by the pressure difference across the air-liquid interface. As folds form in the mucosa, intraluminal fluid collects in pools in the depressions formed by the folds, and the curvature of the air-liquid interface becomes nonuniform. If the amount of intraluminal fluid is small, < 2% of luminal volume, the pools of intraluminal fluid are small, the air-liquid interface nearly coincides with the surface of the mucosa, and the area of the air-liquid interface remains constant as airway cross-sectional area decreases. In that case, surface energy is independent of airway area, and surface tension has no effect on airway mechanics. If the amount of intraluminal fluid is > 2%, the area of the air-liquid interface decreases as airway cross-sectional area decreases. and surface tension contributes to airway compression. The model predicts that surface tension plus intraluminal fluid can cause an instability in the area-pressure curve of small airways. This instability provides a mechanism for abrupt airway closure and abrupt reopening at a higher opening pressure.
NASA Astrophysics Data System (ADS)
Sugano, Koji; Matsumoto, Ryu; Tsutsui, Ryota; Kishihara, Hiroyuki; Matsuzuka, Naoki; Yamashita, Ichiro; Uraoka, Yukiharu; Isono, Yoshitada
2016-07-01
This study focuses on the development of a multi-walled carbon nanotube (MWCNT) forest integrated micromechanical resonator working as a rarefied gas analyzer for nitrogen (N2) and hydrogen (H2) gases in a medium vacuum atmosphere. The resonant response is detected in the form of changes in the resonant frequency or damping effects, depending on the rarefied gas species. The carbon nanotube (CNT) forest on the resonator enhances the effective specific surface area of the resonator, such that the variation of the resonant frequency and the damping effect based on the gas species increase significantly. We developed the fabrication process for the proposed resonator, which consists of standard micro-electro-mechanical systems (MEMS) processes and high-density CNT synthesis on the resonator mass. The high-density CNT synthesis was realized using multistep alternate coating of two types of ferritin proteins that act as catalytic iron particles. Two devices with different CNT densities were fabricated and characterized to evaluate the effect of the surface area of the CNT forest on the resonant response as a function of gas pressures ranging from 0.011 to 1 Pa for N2 and H2. Considering the damping effect, we found that the device with higher density was able to distinguish N2 and H2 clearly, whereas the device with lower density showed no difference between N2 and H2. We confirmed that a larger surface area showed a higher damping effect. These results were explained based on the kinetic theory of gases. In the case of resonant frequency, the relative resonant frequency shift increased with gas pressure and surface area because of the adsorption of gas molecules on the resonator surfaces. Higher density CNT forest adsorbed more gas molecules on the surfaces. The developed CNT forest integrated micromechanical resonator could successfully detect N2 and H2 gases and distinguish between them under pressures of 1 Pa.
Surface instabilities in shock loaded granular media
NASA Astrophysics Data System (ADS)
Kandan, K.; Khaderi, S. N.; Wadley, H. N. G.; Deshpande, V. S.
2017-12-01
The initiation and growth of instabilities in granular materials loaded by air shock waves are investigated via shock-tube experiments and numerical calculations. Three types of granular media, dry sand, water-saturated sand and a granular solid comprising PTFE spheres were experimentally investigated by air shock loading slugs of these materials in a transparent shock tube. Under all shock pressures considered here, the free-standing dry sand slugs remained stable while the shock loaded surface of the water-saturated sand slug became unstable resulting in mixing of the shocked air and the granular material. By contrast, the PTFE slugs were stable at low pressures but displayed instabilities similar to the water-saturated sand slugs at higher shock pressures. The distal surfaces of the slugs remained stable under all conditions considered here. Eulerian fluid/solid interaction calculations, with the granular material modelled as a Drucker-Prager solid, reproduced the onset of the instabilities as seen in the experiments to a high level of accuracy. These calculations showed that the shock pressures to initiate instabilities increased with increasing material friction and decreasing yield strain. Moreover, the high Atwood number for this problem implied that fluid/solid interaction effects were small, and the initiation of the instability is adequately captured by directly applying a pressure on the slug surface. Lagrangian calculations with the directly applied pressures demonstrated that the instability was caused by spatial pressure gradients created by initial surface perturbations. Surface instabilities are also shown to exist in shock loaded rear-supported granular slugs: these experiments and calculations are used to infer the velocity that free-standing slugs need to acquire to initiate instabilities on their front surfaces. The results presented here, while in an idealised one-dimensional setting, provide physical understanding of the conditions required to initiate instabilities in a range of situations involving the explosive dispersion of particles.
NASA Astrophysics Data System (ADS)
Sakiyama, Y.; Graves, D. B.; Stoffels, E.
2008-05-01
We present a comparison of a finite element analysis of the atmospheric pressure RF-excited plasma needle interacting with different surfaces with corresponding experimental observations of light emission spatial profiles. The gas used is helium with 1 ppm nitrogen as an impurity. The needle has a point-to-plane geometry with a radius of 30 µm at the tip and an inter-electrode gap of 1 mm. We employ a fluid model in two-dimensional axisymmetric coordinates. Our simulation results indicate that the plasma structure strongly depends on the electrical properties of the treated surface as well as the discharge mode. In the lower power corona mode with a dielectric surface, the plasma is confined near the needle tip. As a result, particle fluxes to the dielectric surface are relatively low and follow a Gaussian-like radial profile. In the higher power glow mode with a dielectric surface, the particle fluxes to the surface are orders of magnitude higher and the spatial distribution of the particle fluxes becomes radially more uniform due to a uniform ionization layer just above the treated surface. When a conductive plate replaces the dielectric surface in the glow mode, a quite intense ionization spot appears near the surface closest to the needle tip. Consequently, the particle fluxes to the surface peak near the symmetry axis under these conditions. These simulation results are validated by experimental observation of light emission spatial profiles.
Use of pressure manifestations following the water plasma expansion for phytomass disintegration.
Maroušek, Josef; Kwan, Jason Tai Hong
2013-01-01
A prototype capable of generating underwater high-voltage discharges (3.5 kV) coupled with water plasma expansion was constructed. The level of phytomass disintegration caused by transmission of the pressure shockwaves (50-60 MPa) followed by this expansion was analyzed using gas adsorption techniques. The dynamics of the external surface area and the micropore volume on multiple pretreatment stages of maize silage and sunflower seeds was approximated with robust analytical techniques. The multiple increases on the reaction surface were manifest in up to a 15% increase in cumulative methane production, which was itself manifest in the overall acceleration of the anaerobic fermentation process. Disintegration of the sunflower seeds allowed up to 45% higher oil yields using the same operating pressure.
Hydrogen Storage in metal-modified single-walled carbon nanotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Ahn
2004-04-30
It has been known for over thirty years that potassium-intercalated graphites can readily adsorb and desorb hydrogen at {approx}1 wt% at 77 K. These levels are much higher than can be attained in pure graphite, owing to a larger thermodynamic enthalpy of adsorption. This increased enthalpy may allow hydrogen sorption at higher temperatures. Potassium has other beneficial effects that enable the design of a new material: (a) Increased adsorption enthalpy in potassium-intercalated graphite compared to pure graphite reduces the pressure and increases the temperature required for a given fractional coverage of hydrogen adsorption. We expect the same effects in potassium-intercalatedmore » SWNTs. (b) As an intercalant, potassium separates c-axis planes in graphite. Potassium also separates the individual tubes of SWNTs ropes producing swelling and increased surface area. Increased surface area provides more adsorption sites, giving a proportionately higher capacity. The temperature of adsorption depends on the enthalpy of adsorption. The characteristic temperature is roughly the adsorption enthalpy divided by Boltzmann's constant, k{sub B}. For the high hydrogen storage capacity of SWNTs to be achieved at room temperature, it is necessary to increase the enthalpy of adsorption. Our goal for this project was to use metal modifications to the carbon surface of SWNTs in order to address both enhanced adsorption and surface area. For instance, the enthalpy of sorption of hydrogen on KC8 is 450 meV/H{sub 2}, whereas it is 38 meV/H{sub 2} for unmodified SWNTs. By adsorption thermodynamics we expect approximately that the same performance of SWNTs at 77 K will be achieved at a temperature of [450/38] 77 K = 900 K. This is a high temperature, so we expect that adsorption on nearly all the available sites for hydrogen will occur at room temperature under a much lower pressure. This pressure can be estimated conveniently, since the chemical potential of hydrogen is approximately proportional to the logarithm of the pressure. Using 300 K for room temperature, the 100 bar pressure requirement is reduced to exp(-900/300) 100 bar = 5 bar at room temperature. This is in the pressure range used for prior experimental work such as that of Colin and Herold in the late 1960's and early 1970's.« less
The Finite-Surface Method for incompressible flow: a step beyond staggered grid
NASA Astrophysics Data System (ADS)
Hokpunna, Arpiruk; Misaka, Takashi; Obayashi, Shigeru
2017-11-01
We present a newly developed higher-order finite surface method for the incompressible Navier-Stokes equations (NSE). This method defines the velocities as a surface-averaged value on the surfaces of the pressure cells. Consequently, the mass conservation on the pressure cells becomes an exact equation. The only things left to approximate is the momentum equation and the pressure at the new time step. At certain conditions, the exact mass conservation enables the explicit n-th order accurate NSE solver to be used with the pressure treatment that is two or four order less accurate without loosing the apparent convergence rate. This feature was not possible with finite volume of finite difference methods. We use Fourier analysis with a model spectrum to determine the condition and found that the range covers standard boundary layer flows. The formal convergence and the performance of the proposed scheme is compared with a sixth-order finite volume method. Finally, the accuracy and performance of the method is evaluated in turbulent channel flows. This work is partially funded by a research colloaboration from IFS, Tohoku university and ASEAN+3 funding scheme from CMUIC, Chiang Mai University.
NASA Technical Reports Server (NTRS)
Sawyer, J. W.
1977-01-01
Drag and heating rates on wavy surfaces typical of current corrugated plate designs for thermal protection systems were determined experimentally. Pressure-distribution, heating-rate, and oil-flow tests were conducted in the Langley Unitary Plan wind tunnel at Mach numbers of 2.4 and 4.5 with the corrugated surface exposed to both thick and thin turbulent boundary layers. Tests were conducted with the corrugations at cross-flow angles from 0 deg to 90 deg to the flow. Results show that for cross-flow angles of 30 deg or less, the pressure drag coefficients are less than the local flat-plate skin-friction coefficients and are not significantly affected by Mach number, Reynolds number, or boundary-layer thickness over the ranges investigated. For cross-flow angles greater than 30 deg, the drag coefficients increase significantly with cross-flow angle and moderately with Reynolds number. Increasing the Mach number causes a significant reduction in the pressure drag. The average and peak heating penalties due to the corrugated surface are small for cross-flow angles of 10 deg or less but are significantly higher for the larger cross-flow angles.
Finite element analysis and experiment on high pressure apparatus with split cylinder
NASA Astrophysics Data System (ADS)
Zhao, Liang; Li, Mingzhe; Yang, Yunfei; Wang, Bolong; Li, Yi
2017-07-01
Ultra-high pressure belt-type die was designed with a large sample volume prism cavity and a split cylinder which was divided into eight segments to eliminate circumferential stress. The cylinder of this type die has no cambered surface on inner wall, and the inner hole is a hexagonal prism-type cavity. The divided bodies squeeze with each other, providing the massive support and lateral support effect of the cylinder. Simulation results indicate that the split cylinder with the prism cavity possesses much smaller stress and more uniform stress distribution. The split cylinder with the prism cavity has been shown to bear larger compressive stresses in radial, circumferential and axial directions due to its structure, and tungsten carbide is most effective in pure compression so this type cylinder could bear higher pressure. Experimental results prove that the high pressure apparatus with a prism-type cavity could bear higher pressure. The apparatus with a prism cavity could bear 52.2% more pressure than the belt-type die.
Stenger, Patrick C; Wu, Guohui; Miller, Chad E; Chi, Eva Y; Frey, Shelli L; Lee, Ka Yee C; Majewski, Jaroslaw; Kjaer, Kristian; Zasadzinski, Joseph A
2009-08-05
Lung surfactant (LS) and albumin compete for the air-water interface when both are present in solution. Equilibrium favors LS because it has a lower equilibrium surface pressure, but the smaller albumin is kinetically favored by faster diffusion. Albumin at the interface creates an energy barrier to subsequent LS adsorption that can be overcome by the depletion attraction induced by polyethylene glycol (PEG) in solution. A combination of grazing incidence x-ray diffraction (GIXD), x-ray reflectivity (XR), and pressure-area isotherms provides molecular-resolution information on the location and configuration of LS, albumin, and polymer. XR shows an average electron density similar to that of albumin at low surface pressures, whereas GIXD shows a heterogeneous interface with coexisting LS and albumin domains at higher surface pressures. Albumin induces a slightly larger lattice spacing and greater molecular tilt, similar in effect to a small decrease in the surface pressure. XR shows that adding PEG to the LS-albumin subphase restores the characteristic LS electron density profile at the interface, and confirms that PEG is depleted near the interface. GIXD shows the same LS Bragg peaks and Bragg rods as on a pristine interface, but with a more compact lattice corresponding to a small increase in the surface pressure. These results confirm that albumin adsorption creates a physical barrier that inhibits LS adsorption, and that PEG in the subphase generates a depletion attraction between the LS aggregates and the interface that enhances LS adsorption without substantially altering the structure or properties of the LS monolayer.
NASA Astrophysics Data System (ADS)
Qi, Wenjie; Ran, Jingyu; Zhang, Zhien; Niu, Juntian; Zhang, Peng; Fu, Lijuan; Hu, Bo; Li, Qilai
2018-03-01
Density functional theory combined with kinetic models were used to probe different kinetics consequences by which methane activation on different oxygen chemical potential surfaces as oxygen pressure increased. The metallic oxide → metal transformation temperature of Pd-Pt catalysts increased with the increase of the Pd content or/and O2 pressure. The methane conversion rate on Pt catalyst increased and then decreased to a constant value when increasing the O2 pressure, and Pd catalyst showed a poor activity performance in the case of low O2 pressure. Moreover, its activity increased as the oxygen chemical potential for O2 pressure increased in the range of 2.5-10 KPa. For metal clusters, the Csbnd H bond and Odbnd O bond activation steps occurred predominantly on *-* site pairs. The methane conversion rate was determined by O2 pressure because the adsorbed O atoms were rapidly consumed by other adsorbed species in this kinetic regime. As the O2 pressure increased, the metallic active sites for methane activation were decreased and there was no longer lack of adsorbed O atoms, resulting in the decrease of the methane conversion rate. Furthermore, when the metallic surfaces were completely covered by adsorbed oxygen atoms at higher oxygen chemical potentials, Pt catalyst showed a poor activity due to a high Csbnd H bond activation barrier on O*sbnd O*. In the case of high O2 pressure, Pd atoms preferred to segregate to the active surface of Pd-Pt catalysts, leading to the formation of PdO surfaces. The increase of Pd segregation promoted a subsequent increase in active sites and methane conversion rate. The PdO was much more active than metallic and O* saturated surfaces for methane activation, inferred from the theory and experimental study. Pd-rich bimetallic catalyst (75% molar Pd) showed a dual high methane combustion activity on O2-poor and O2-rich conditions.
Energy evolution mechanism in process of Sandstone failure and energy strength criterion
NASA Astrophysics Data System (ADS)
Wang, Yunfei; Cui, Fang
2018-07-01
To reveal the inherent relation between energy change and confining pressure during the process of sandstone damage, and its characteristics of energy storage and energy dissipation in different deformation stage. Obtaining the mechanical parameters by testing the Sandstone of two1 coal seam roof under uniaxial compression in Zhaogu coalmine, using Particle Flow Code (PFC) and fish program to get the meso-mechanical parameters, studying Sandstone energy evolution mechanism under different confining pressures, and deducing energy strength criterion based on energy principle of rock failure, some main researching results are reached as follows: with the increasing of confining pressure, the Sandstone yield stage and ductility increases, but brittleness decreases; Under higher confining pressure, the elastic strain energy of Sandstone before peak approximately keeps constant in a certain strain range, and rock absorbs all the energy which converts into surface energy required for internal damage development; Under lower confining pressure, Sandstone no longer absorbs energy with increasing strain after peak under lower confining pressure, while it sequentially absorbs energy under higher confining pressure; Under lower confining pressure, the energy Sandstone before peak absorbed mainly converts into elastic strain energy, while under higher confining pressure, dissipation energy significantly increases before peak, which indicates that the degree rock strength loss is higher under higher confining pressure; with the increasing of confining pressure, the limit of elastic strain energy increases and there exists a favourable linear variation relationship; At the peak point, the ratio of elastic strain energy to total energy of Sandstone nonlinearly decreases, while the ratio of dissipation energy to total energy nonlinearly increases with the increasing of confining pressure; According to energy evolution mechanism of rock failure, an energy strength criterion is derived. The criterion equation includes lithology constants and three principal stresses, and its physical meaning is clear. This criterion has an evident advantage than Hoek-Brown and Drucker-Prager criterion in calculation accuracy and can commendably describe rock failure characteristics.
NASA Technical Reports Server (NTRS)
Van Dam, T. M.; Wahr, J. M.
1987-01-01
Atmospheric mass loads and deforms the earth's crust. By performing a convolution sum between daily, global barometric pressure data and mass loading Green's functions, the time dependent effects of atmospheric loading, including those associated with short-term synoptic storms, on surface point positioning measurements and surface gravity observations are estimated. The response for both an oceanless earth and an earth with an inverted barometer ocean is calculated. Load responses for near-coastal stations are significantly affected by the inclusion of an inverted barometer ocean. Peak-to-peak vertical displacements are frequently 15-20 mm with accompanying gravity perturbations of 3-6 micro Gal. Baseline changes can be as large as 20 mm or more. The perturbations are largest at higher latitudes and during winter months. These amplitudes are consistent with the results of Rabbel and Zschau (1985), who modeled synoptic pressure disturbances as Gaussian functions of radius around a central point. Deformation can be adequately computed using real pressure data from points within about 1000 km of the station. Knowledge of local pressure, alone, is not sufficient. Rabbel and Zschau's hypothesized corrections for these displacements, which use local pressure and the regionally averaged pressure, prove accurate at points well inland but are, in general, inadequate within a few hundred kilometers of the coast.
The effects of ultrasonic agitation on supercritical CO2 copper electroplating.
Chuang, Ho-Chiao; Yang, Hsi-Min; Wu, Guan-Lin; Sánchez, Jorge; Shyu, Jenq-Huey
2018-01-01
Applying ultrasound to the electroplating process can improve mechanical properties and surface roughness of the coating. Supercritical electroplating process can refine grain to improve the surface roughness and hardness. However, so far there is no research combining the above two processes to explore its effect on the coating. This study aims to use ultrasound (42kHz) in supercritical CO 2 (SC-CO 2 ) electroplating process to investigate the effect of ultrasonic powers and supercritical pressures on the properties of copper films. From the results it was clear that higher ultrasonic irradiation resulted in higher current efficiency, grain refinement, higher hardness, better surface roughness and higher internal stress. SEM was also presented to verify the correctness of the measured data. The optimal parameters were set to obtain the deposit at pressure of 2000psi and ultrasonic irradiation of 0.157W/cm 3 . Compared with SC-CO 2 electroplating process, the current efficiency can be increased from 77.57% to 93.4%, the grain size decreases from 24.34nm to 22.45nm, the hardness increases from 92.87Hv to 174.18Hv, and the surface roughness decreases from 0.83μm to 0.28μm. Therefore, this study has successfully integrated advantages of ultrasound and SC-CO 2 electroplating, and proved that applied ultrasound to SC-CO 2 electroplating process can significantly improve the mechanical properties of the coating. Copyright © 2017 Elsevier B.V. All rights reserved.
Koldenhoven, Rachel M; Feger, Mark A; Fraser, John J; Saliba, Susan; Hertel, Jay
2016-04-01
Lateral ankle sprains are common and can manifest into chronic ankle instability (CAI) resulting in altered gait mechanics that may lead to subsequent ankle sprains. Our purpose was to simultaneously analyse muscle activation patterns and plantar pressure distribution during walking in young adults with and without CAI. Seventeen CAI and 17 healthy subjects walked on a treadmill at 4.8 km/h. Plantar pressure measures (pressure-time integral, peak pressure, time to peak pressure, contact area, contact time) of the entire foot and nine specific foot regions and medial-lateral location of centre of pressure (COP) were measured. Surface electromyography (EMG) root mean square (RMS) amplitudes throughout the entire stride cycle and area under RMS curve for 100 ms pre-initial contact (IC) and 200 ms post-IC for anterior tibialis, peroneus longus, medial gastrocnemius, and gluteus medius were collected. The CAI group demonstrated a more lateral COP throughout the stance phase (P < 0.001 and Cohen's d > 0.9 for all 10 comparisons) and significantly increased peak pressure (P = 0.025) and pressure-time integral (P = 0.049) under the lateral forefoot. The CAI group had lower anterior tibialis RMS areas (P < 0.001) and significantly higher peroneus longus, medial gastrocnemius, and gluteus medius RMS areas during 100 ms pre-IC (P < 0.003). The CAI group had higher gluteus medius sEMG amplitudes during the final 50 % of stance and first 25% of swing (P < 0.05). The CAI group had large lateral deviations of their COP location throughout the entire stance phase and increased gluteus medius muscle activation amplitude during late stance through early swing phase. III.
Acoustic Effects in Classical Nucleation Theory
NASA Technical Reports Server (NTRS)
Baird, J. K.; Su, C.-H.
2017-01-01
The effect of sound wave oscillations on the rate of nucleation in a parent phase can be calculated by expanding the free energy of formation of a nucleus of the second phase in powers of the acoustic pressure. Since the period of sound wave oscillation is much shorter than the time scale for nucleation, the acoustic effect can be calculated as a time average of the free energy of formation of the nucleus. The leading non-zero term in the time average of the free energy is proportional to the square of the acoustic pressure. The Young-Laplace equation for the surface tension of the nucleus can be used to link the time average of the square of the pressure in the parent phase to its time average in the nucleus of the second phase. Due to the surface tension, the pressure in the nuclear phase is higher than the pressure in the parent phase. The effect is to lower the free energy of formation of the nucleus and increase the rate of nucleation.
Glass Coats For Hot Isostatic Pressing
NASA Technical Reports Server (NTRS)
Ecer, Gunes M.
1989-01-01
Surface voids sealed from pressurizing gas. Coating technique enables healing of surface defects by hot isostatic pressing (HIP). Internal pores readily closed by HIP, but surface voids like cracks and pores in contact with pressurizing gas not healed. Applied to casting or weldment as thick slurry of two glass powders: one melts at temperature slightly lower than used for HIP, and another melts at higher temperature. For example, powder is glass of 75 percent SiO2 and 25 percent Na2O, while other powder SiO2. Liquid component of slurry fugitive organic binder; for example, mixture of cellulose acetate and acetone. Easy to apply, separates voids from surrounding gas, would not react with metal part under treatment, and easy to remove after pressing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tewari, Somesh Vinayak, E-mail: somesh-vinayak@yahoo.com, E-mail: svtewari@barc.gov.in; Sharma, Archana; Mittal, K. C.
An experimental investigation of surface flashover characteristics of PMMA and POM is studied in compressed nitrogen gas environment with nitrogen as the background gas. The operating pressure range is from 1kg/cm{sup 2} to 4kg/cm{sup 2}. It is observed that the breakdown voltage of PMMA is higher than POM owing to a higher permittivity mismatch between POM- nitrogen interface as compared to the PMMA- nitrogen interface. The reduction in spacer efficiency with pressure for PMMA is 11% as compared to POM which shows a higher reduction of 18%. This paper further emphasizes on the role of energy level and density ofmore » charge carrier trapping centers for a reduced breakdown voltage in POM as compared to PMMA.« less
Falda-Buscaiot, Thomas; Hintzy, Frédérique; Rougier, Patrice; Lacouture, Patrick; Coulmy, Nicolas
2017-01-01
The purpose of this study was to investigate the evolution of ground reaction force during alpine skiing turns. Specifically, this study investigated how turn phases and slope steepness affected the whole foot normal GRF pattern while performing giant slalom turns in a race-like setting. Moreover, the outside foot was divided into different plantar regions to see whether those parameters affected the plantar pressure distribution. Eleven skiers performed one giant slalom course at race intensity. Runs were recorded synchronously using a video camera in the frontal plane and pressure insoles under both feet’s plantar surface. Turns were divided according to kinematic criteria into four consecutive phases: initiation, steering1, steering2 and completion; both steering phases being separated by the gate passage. Component of the averaged Ground Reaction Force normal to the ski’s surface(nGRF¯, /BW), and Pressure Time Integral relative to the entire foot surface (relPTI, %) parameters were calculated for each turn phases based on plantar pressure data. Results indicated that nGRF¯ under the total foot surface differed significantly depending on the slope (higher in steep sections vs. flat sections), and the turn phase (higher during steering2 vs. three other phases), although such modifications were observable only on the outside foot. Moreover, nGRF¯ under the outside foot was significantly greater than under the inside foot.RelPTI under different foot regions of the outside foot revealed a global shift from forefoot loading during initiation phase, toward heel loading during steering2 phase, but this was dependent on the slope studied. These results suggest a differentiated role played by each foot in alpine skiing turns: the outside foot has an active role in the turning process, while the inside foot may only play a role in stability. PMID:28472092
Falda-Buscaiot, Thomas; Hintzy, Frédérique; Rougier, Patrice; Lacouture, Patrick; Coulmy, Nicolas
2017-01-01
The purpose of this study was to investigate the evolution of ground reaction force during alpine skiing turns. Specifically, this study investigated how turn phases and slope steepness affected the whole foot normal GRF pattern while performing giant slalom turns in a race-like setting. Moreover, the outside foot was divided into different plantar regions to see whether those parameters affected the plantar pressure distribution. Eleven skiers performed one giant slalom course at race intensity. Runs were recorded synchronously using a video camera in the frontal plane and pressure insoles under both feet's plantar surface. Turns were divided according to kinematic criteria into four consecutive phases: initiation, steering1, steering2 and completion; both steering phases being separated by the gate passage. Component of the averaged Ground Reaction Force normal to the ski's surface([Formula: see text], /BW), and Pressure Time Integral relative to the entire foot surface (relPTI, %) parameters were calculated for each turn phases based on plantar pressure data. Results indicated that [Formula: see text] under the total foot surface differed significantly depending on the slope (higher in steep sections vs. flat sections), and the turn phase (higher during steering2 vs. three other phases), although such modifications were observable only on the outside foot. Moreover, [Formula: see text] under the outside foot was significantly greater than under the inside foot.RelPTI under different foot regions of the outside foot revealed a global shift from forefoot loading during initiation phase, toward heel loading during steering2 phase, but this was dependent on the slope studied. These results suggest a differentiated role played by each foot in alpine skiing turns: the outside foot has an active role in the turning process, while the inside foot may only play a role in stability.
A novel tool for the prediction of tablet sticking during high speed compaction.
Abdel-Hamid, Sameh; Betz, Gabriele
2012-01-01
During tableting, capping is a problem of cohesion while sticking is a problem of adhesion. Sticking is a multi-composite problem; causes are either material or machine related. Nowadays, detecting such a problem is a pre-requisite in the early stages of development. The aim of our study was to investigate sticking by radial die-wall pressure monitoring guided by compaction simulation. This was done by using the highly sticking drug; Mefenamic acid (MA) at different drug loadings with different fillers compacted at different pressures and speeds. By increasing MA loading, we found that viscoelastic fillers showed high residual radial pressure after compaction while plastic/brittle fillers showed high radial pressure during compaction, p < 0.05. Visually, plastic/brittle fillers showed greater tendencies for adhesion to punches than viscoelastic fillers while the later showed higher tendencies for adhesion to the die-wall. This was confirmed by higher values of axial stress transmission for plastic/brittle than viscoelastic fillers (higher punch surface/powder interaction), and higher residual die-wall and ejection forces for viscoelastic than plastic/brittle fillers, p < 0.05. Take-off force was not a useful tool to estimate sticking due to cohesive failure of the compacts. Radial die-wall pressure monitoring is suggested as a robust tool to predict sticking.
Water hammer reduces fouling during natural water ultrafiltration.
Broens, F; Menne, D; Pothof, I; Blankert, B; Roesink, H D W; Futselaar, H; Lammertink, R G H; Wessling, M
2012-03-15
Today's ultrafiltration processes use permeate flow reversal to remove fouling deposits on the feed side of ultrafiltration membranes. We report an as effective method: the opening and rapid closing of a valve on the permeate side of an ultrafiltration module. The sudden valve closure generates pressure fluctuations due to fluid inertia and is commonly known as "water hammer". Surface water was filtrated in hollow fiber ultrafiltration membranes with a small (5%) crossflow. Filtration experiments above sustainable flux levels (>125 l (m2h)(-1)) show that a periodic closure of a valve on the permeate side improves filtration performance as a consequence of reduced fouling. It was shown that this effect depends on flux and actuation frequency of the valve. The time period that the valve was closed proved to have no effect on filtration performance. The pressure fluctuations generated by the sudden stop in fluid motion due to the valve closure are responsible for the effect of fouling reduction. High frequency recording of the dynamic pressure evolution shows water hammer related pressure fluctuations to occur in the order of 0.1 bar. The pressure fluctuations were higher at higher fluxes (higher velocities) which is in agreement with the theory. They were also more effective at higher fluxes with respect to fouling mitigation. Copyright © 2011 Elsevier Ltd. All rights reserved.
Multiply Surface-Functionalized Nanoporous Carbon for Vehicular Hydrogen Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pfeifer, Peter; Gillespie, Andrew; Stalla, David
The purpose of the project “Multiply Surface-Functionalized Nanoporous Carbon for Vehicular Hydrogen Storage” is the development of materials that store hydrogen (H 2) by adsorption in quantities and at conditions that outperform current compressed-gas H 2 storage systems for electric power generation from hydrogen fuel cells (HFCs). Prominent areas of interest for HFCs are light-duty vehicles (“hydrogen cars”) and replacement of batteries with HFC systems in a wide spectrum of applications, ranging from forklifts to unmanned areal vehicles to portable power sources. State-of-the-art compressed H 2 tanks operate at pressures between 350 and 700 bar at ambient temperature and storemore » 3-4 percent of H 2 by weight (wt%) and less than 25 grams of H 2 per liter (g/L) of tank volume. Thus, the purpose of the project is to engineer adsorbents that achieve storage capacities better than compressed H 2 at pressures less than 350 bar. Adsorption holds H 2 molecules as a high-density film on the surface of a solid at low pressure, by virtue of attractive surface-gas interactions. At a given pressure, the density of the adsorbed film is the higher the stronger the binding of the molecules to the surface is (high binding energies). Thus, critical for high storage capacities are high surface areas, high binding energies, and low void fractions (high void fractions, such as in interstitial space between adsorbent particles, “waste” storage volume by holding hydrogen as non-adsorbed gas). Coexistence of high surface area and low void fraction makes the ideal adsorbent a nanoporous monolith, with pores wide enough to hold high-density hydrogen films, narrow enough to minimize storage as non-adsorbed gas, and thin walls between pores to minimize the volume occupied by solid instead of hydrogen. A monolith can be machined to fit into a rectangular tank (low pressure, conformable tank), cylindrical tank (high pressure), or other tank shape without any waste of volume.« less
Collisions of ideal gas molecules with a rough/fractal surface. A computational study.
Panczyk, Tomasz
2007-02-01
The frequency of collisions of ideal gas molecules (argon) with a rough surface has been studied. The rough/fractal surface was created using random deposition technique. By applying various depositions, the roughness of the surface was controlled and, as a measure of the irregularity, the fractal dimensions of the surfaces were determined. The surfaces were next immersed in argon (under pressures 2 x 10(3) to 2 x 10(5) Pa) and the numbers of collisions with these surfaces were counted. The calculations were carried out using a simplified molecular dynamics simulation technique (only hard core repulsions were assumed). As a result, it was stated that the frequency of collisions is a linear function of pressure for all fractal dimensions studied (D = 2, ..., 2.5). The frequency per unit pressure is quite complex function of the fractal dimension; however, the changes of that frequency with the fractal dimension are not strong. It was found that the frequency of collisions is controlled by the number of weakly folded sites on the surfaces and there is some mapping between the shape of adsorption energy distribution functions and this number of weakly folded sites. The results for the rough/fractal surfaces were compared with the prediction given by the Langmuir-Hertz equation (valid for smooth surface), generally the departure from the Langmuir-Hertz equation is not higher than 48% for the studied systems (i.e. for the surfaces created using the random deposition technique).
NASA Astrophysics Data System (ADS)
Ren, Yu; Wang, Chunxia; Qiu, Yiping
2007-09-01
One of the main differences between a low-pressure plasma treatment and an atmospheric pressure plasma treatment is that in atmosphere, the substrate material may absorb significant amount of water which may potentially influence the plasma treatment effects. This paper investigates how the moisture absorbed by aramid fibers during the atmospheric pressure plasma treatment influences the aging behavior of the modified surfaces. Kevlar 49 fibers with different moisture regains (MR) (0.5, 3.5 and 5.5%, respectively) are treated with atmospheric pressure plasma jet (APPJ) with helium as the carrier gas and oxygen as the treatment gas. Surface wettability and chemical compositions, and interfacial shear strengths (IFSS) to epoxy for the aramid fibers in all groups are determined using water contact angle measurements, X-ray photoelectron spectroscopy (XPS), and micro-bond pull out tests, respectively. Immediately after the plasma treatment, the treated fibers have substantially lower water contact angles, higher surface oxygen and nitrogen contents, and larger IFSS to epoxy than those of the control group. At the end of 30 day aging period, the fibers treated with 5.5% moisture regain had a lower water contact angle and more polar groups on the fiber surface, leading to 75% improvement of IFSS over the control fibers, while those for the 0.5 and 3.5% moisture regain groups were only 30%.
Three Dimensional Aerodynamic Analysis of a High-Lift Transport Configuration
NASA Technical Reports Server (NTRS)
Dodbele, Simha S.
1993-01-01
Two computational methods, a surface panel method and an Euler method employing unstructured grid methodology, were used to analyze a subsonic transport aircraft in cruise and high-lift conditions. The computational results were compared with two separate sets of flight data obtained for the cruise and high-lift configurations. For the cruise configuration, the surface pressures obtained by the panel method and the Euler method agreed fairly well with results from flight test. However, for the high-lift configuration considerable differences were observed when the computational surface pressures were compared with the results from high-lift flight test. On the lower surface of all the elements with the exception of the slat, both the panel and Euler methods predicted pressures which were in good agreement with flight data. On the upper surface of all the elements the panel method predicted slightly higher suction compared to the Euler method. On the upper surface of the slat, pressure coefficients obtained by both the Euler and panel methods did not agree with the results of the flight tests. A sensitivity study of the upward deflection of the slat from the 40 deg. flap setting suggested that the differences in the slat deflection between the computational model and the flight configuration could be one of the sources of this discrepancy. The computation time for the implicit version of the Euler code was about 1/3 the time taken by the explicit version though the implicit code required 3 times the memory taken by the explicit version.
Wang, Ke-Hsuan; Syu, Mei-Jywan; Chang, Chien-Hsiang; Lee, Yuh-Lang
2011-06-21
Stearic acid (SA) and octadecylamine (ODA) monolayers at the air/liquid interface were used as template layers to adsorb glucose oxidase (GOx) from aqueous solution. The effect of the template monolayers on the adsorption behavior of GOx was studied in terms of the variation of surface pressure, the evolution of surface morphology observed by BAM and AFM, and the conformation of adsorbed GOx. The results show that the presence of a template monolayer can enhance the adsorption rate of GOx; furthermore, ODA has a higher ability, compared to SA, to adsorb GOx, which is attributed to the electrostatic attractive interaction between ODA and GOx. For adsorption performed on a bare surface or on an SA monolayer, the surface pressure approaches an equilibrium value (ca. 8 mN/m) after 2 to 3 h of adsorption and remains nearly constant in the following adsorption process. For the adsorption on an ODA monolayer, the surface pressure will increase further 1 to 2 h after approaching the first equilibrium pressure, which is termed the second adsorption stage. The measurement of circular dichroism (CD) spectroscopy indicates that the Langmuir-Blodgett films of adsorbed GOx transferred at the first equilibrium state (π = 8 mN/m) have mainly a β-sheet conformation, which is independent of the type of template monolayers. However, the ODA/GOx LB film transferred at the second adsorption stage has mainly an α-helix conformation. It is concluded that the specific interaction between ODA and GOx not only leads to a higher adsorption rate and adsorbed amount of GOx but also induces a conformation change in adsorbed GOx from β-sheet to α-helix. The present results indicate that is possible to control the conformation of adsorbed protein by selecting the appropriate template monolayer. © 2011 American Chemical Society
NASA Technical Reports Server (NTRS)
Romanski, Joy; Hameed, Sultan
2015-01-01
Interannual variations of latent heat fluxes (LHF) and sensible heat fluxes (SHF) over the Mediterranean for the boreal winter season (DJF) show positive trends during 1958-2011. Comparison of correlations between the heat fluxes and the intensity and location of the Azores High (AH), and the NAO and East Atlantic-West Russia (EAWR) teleconnections, along with analysis of composites of surface temperature, humidity and wind fields for different teleconnection states, demonstrates that variations of the AH are found to explain the heat flux changes more successfully than the NAO and the EAWR. Trends in sea level pressure and longitude of the Azores High during DJF show a strengthening, and an eastward shift. DJF Azores High pressure and longitude are shown to co-vary such that variability of the Azores High occurs along an axis defined by lower pressure and westward location at one extreme, and higher pressure and eastward location at the other extreme. The shift of the Azores High from predominance of the low/west state to the high/east state induces trends in Mediterranean Sea surface winds, temperature and moisture. These, combined with sea surface warming trends, produce trends in wintertime Mediterranean Sea sensible and latent heat fluxes.
NASA Technical Reports Server (NTRS)
Romanski, Joy; Hameed, Sultan
2015-01-01
Interannual variations of latent heat fluxes (LHF) and sensible heat fluxes (SHF) over the Mediterranean for the boreal winter season (DJF) show positive trends during 1958-2011. Using reanalysis and satellite-based products, the variability and trends in the heat fluxes are compared with variations in three atmospheric teleconnection patterns: the North Atlantic Oscillation (NAO), the pressure and position of the Azores High (AH), and the East Atlantic-West Russia teleconnection pattern (EAWR). Comparison of correlations between the heat fluxes and teleconnections, along with analysis of composites of surface temperature, humidity, and wind fields for different teleconnection states, demonstrates that the AH explains the heat flux changes more successfully than NAO and EAWR. Trends in pressure and longitude of the Azores High show a strengthening and an eastward shift. Variations of the Azores High occur along an axis defined by lower pressure and westward location at one extreme and higher pressure and eastward location at the other extreme. The shift of the AH from predominance of the low/west state to the high/east state induces trends in Mediterranean Sea surface winds, temperature, and moisture. These, combined with sea surface warming trends, produce trends in wintertime sensible and latent heat fluxes.
Divalent cations in tears, and their influence on tear film stability in humans and rabbits.
Wei, Xiaojia Eric; Markoulli, Maria; Millar, Thomas J; Willcox, Mark D P; Zhao, Zhenjun
2012-06-05
Reduced tear film stability is reported to contribute to dry eye. Rabbits are known to have a more stable tear film than humans. Thus, we sought to examine the tears of rabbits and humans for metal cations, and to test how they influence tear film stability. Tears were collected from 10 healthy humans and 6 rabbits. Tear osmolality was measured by vapor pressure osmometer, and metals analyzed using inductively coupled plasma (ICP) mass spectrometry or ICP atomic emission spectroscopy. The influence of divalent cations on tears was analyzed by measuring surface tension using the Langmuir trough in vitro, using different concentrations of cations in the subphase, and grading the tear break-up in rabbits in vivo after instillation of chelating agents. Rabbit tears had a higher osmolality compared to humans. Major metals did not differ between species; however, rabbits had higher levels of Mg(2+) (1.13 vs. 0.39 mM) and Ca(2+) (0.75 vs. 0.36 mM). In rabbit tears in vitro, diminishing divalent cations resulted in a decrease in the maximum surface pressure from 37 to 30 mN/m. In vivo, an increase in the amount of tear film that was broken-up was found. In contrast, when changing divalent cation concentrations in human tears, the maximum surface pressure remained at 26 mN/m. The normal osmolality of rabbit tears is significantly higher than that in humans. While divalent cations had little influence on human tears, they appear to have an important role in maintaining tear film stability in rabbits.
NASA Astrophysics Data System (ADS)
Guo, Wei; Zhang, Qin; Xiao, Haibo; Xu, Jie; Li, Qintao; Pan, Xiaohui; Huang, Zhiyong
2014-09-01
The super-hydrophobic and super-oleophilic properties of various materials have been utilized to separate oil from water. These properties induce both oil penetration and water slide off. This research demonstrates that the mesh with both super-hydrophobic and oleophobic properties, with a water contact angle (WCA) higher than 150° and oil contact angle (OCA) near 140°, can also be used to separate oil from. Oil has a higher probability than water of entering into the interstice of the Cu mesh surface and passing through it due to the capillarity effect, van der Waals attractions and the effects of gravitational pressure. The modified mesh surface can easily adsorb the oil, which then forms a film, due to the very strong adhesion properties of the oil molecules. The oil film then contributes to the water sliding off. These properties can be used to separate oil from water with separation efficiencies reaching 99.3%. Additionally, the separation of an oil/water mixture using sand permeated with oil yielded separation efficiencies exceeding 90%.
Choi, Jungil; Xue, Yeguang; Xia, Wei; Ray, Tyler R; Reeder, Jonathan T; Bandodkar, Amay J; Kang, Daeshik; Xu, Shuai; Huang, Yonggang; Rogers, John A
2017-07-25
During periods of activity, sweat glands produce pressures associated with osmotic effects to drive liquid to the surface of the skin. The magnitudes of these pressures may provide insights into physiological health, the intensity of physical exertion, psychological stress factors and/other information of interest, yet they are currently unknown due to absence of means for non-invasive measurement. This paper introduces a thin, soft wearable microfluidic system that mounts onto the surface of the skin to enable precise and routine measurements of secretory fluidic pressures generated at the surface of the skin by eccrine sweat glands (surface SPSG, or s-SPSG) at nearly any location on the body. These platforms incorporate an arrayed collection of unit cells each of which includes an opening to the skin, an inlet through which sweat can flow, a capillary bursting valve (CBV) with a unique bursting pressure (BP), a corresponding microreservoir to receive sweat and an outlet to the surrounding ambient to allow release of backpressure. The BPs systematically span the physiologically relevant range, to enable a measurement precision approximately defined by the ratio of the range to the number of unit cells. Human studies demonstrate measurements of s-SPSG under different conditions, from various regions of the body. Average values in healthy young adults lie between 2.4 and 2.9 kPa. Sweat associated with vigorous exercise have s-SPSGs that are somewhat higher than those associated with sedentary activity. For all conditions, the forearm and lower back tend to yield the highest and lowest s-SPSGs, respectively.
Heat Transfer Measurement and Modeling in Rigid High-Temperature Reusable Surface Insulation Tiles
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran; Knutson, Jeffrey R.; Cunnington, George R.
2011-01-01
Heat transfer in rigid reusable surface insulations was investigated. Steady-state thermal conductivity measurements in a vacuum were used to determine the combined contribution of radiation and solid conduction components of heat transfer. Thermal conductivity measurements at higher pressures were then used to estimate the effective insulation characteristic length for gas conduction modeling. The thermal conductivity of the insulation can then be estimated at any temperature and pressure in any gaseous media. The methodology was validated by comparing estimated thermal conductivities with published data on a rigid high-temperature silica reusable surface insulation tile. The methodology was also applied to the alumina enhanced thermal barrier tiles. Thermal contact resistance for thermal conductivity measurements on rigid tiles was also investigated. A technique was developed to effectively eliminate thermal contact resistance on the rigid tile s cold-side surface for the thermal conductivity measurements.
Investigation of passive shock wave-boundary layer control for transonic airfoil drag reduction
NASA Technical Reports Server (NTRS)
Nagamatsu, H. T.; Brower, W. B., Jr.; Bahi, L.; Ross, J.
1982-01-01
The passive drag control concept, consisting of a porous surface with a cavity beneath it, was investigated with a 12-percent-thick circular arc and a 14-percent-thick supercritical airfoil mounted on the test section bottom wall. The porous surface was positioned in the shock wave/boundary layer interaction region. The flow circulating through the porous surface, from the downstream to the upstream of the terminating shock wave location, produced a lambda shock wave system and a pressure decrease in the downstream region minimizing the flow separation. The wake impact pressure data show an appreciably drag reduction with the porous surface at transonic speeds. To determine the optimum size of porosity and cavity, tunnel tests were conducted with different airfoil porosities, cavities and flow Mach numbers. A higher drag reduction was obtained by the 2.5 percent porosity and the 1/4-inch deep cavity.
NASA Astrophysics Data System (ADS)
Gonor, Alexander; Hooton, Irene
2006-07-01
Impact of a rigid projectile (impactor), against a metal target and a condensed explosive surface considered as the important process accompanying the normal entry of a rigid projectile into a target, was overlooked in the preceding studies. Within the framework of accurate shock wave theory, the flow-field, behind the shock wave attached to the perimeter of the adjoined surface, was defined. An important result is the peak pressure rises at points along the target surface away from the stagnation point. The maximum values of the peak pressure are 2.2 to 3.2 times higher for the metallic and soft targets (nitromethane, PBX 9502), than peak pressure values at the stagnation point. This effect changes the commonly held notion that the maximum peak pressure is reached at the projectile stagnation point. In the present study the interaction of a spherical decaying blast wave, caused by an underwater explosion, with a piece-wise plane target, having corner configurations, is investigated. The numerical calculation results in the determination of the vulnerable spots on the target, where the maximum peak overpressure surpassed that for the head-on shock wave reflection by a factor of 4.
Improving the efficiency of an Er:YAG laser on enamel and dentin.
Rizcalla, Nicolas; Bader, Carl; Bortolotto, Tissiana; Krejci, Ivo
2012-02-01
To evaluate the influence of air pressure, water flow rate, and pulse frequency on the removal speed of enamel and dentin as well as on their surface morphology. Twenty-four bovine incisors were horizontally cut in slices. Each sample was mounted on an experimental assembly, allowing precise orientation. Eighteen cavities were prepared, nine in enamel and nine in dentin. Specific parameters for frequency, water flow rate, and air pressure were applied for each experimental group. Three groups were randomly formed according to the air pressure settings. Cavity depth was measured using a digital micrometer gauge, and surface morphology was checked by means of scanning electron microscopy. Data was analyzed with ANOVA and Duncan post hoc test. Irradiation at 25 Hz for enamel and 30 Hz for dentin provided the best ablation rates within this study, but efficiency decreased if the frequency was raised further. Greater tissue ablation was found with water flow rate set to low and dropped with higher values. Air pressure was found to have an interaction with the other settings, since ablation rates varied with different air pressure values. Fine-tuning of all parameters to get a good ablation rate with minimum surface damage seems to be key in achieving optimal efficiency for cavity preparation with an Er:YAG laser.
Dancing droplets: Chemical space, substrates, and control
NASA Astrophysics Data System (ADS)
Cira, Nate; Benusiglio, Adrien; Prakash, Manu
2015-11-01
Previously we showed that droplets of propylene glycol and water display remarkable properties when placed on clean glass due to an interplay between surface tension and evaporation. (Cira, Benusiglio, Prakash: Nature, 2015). We showed that these mechanisms apply to a range of two-component mixtures of miscible liquids where one component has both higher surface tension and higher vapor pressure on a variety of high energy surfaces. We now show how this rule can be cheated using a simple trick. We go on to demonstrate applications for cleaning, and show how this system works on substrates prepared only with sunlight. We finish by demonstrating active control of droplets, allowing access to a host of new possibilities.
Growth kinetics of white graphene (h-BN) on a planarised Ni foil surface
Cho, Hyunjin; Park, Sungchan; Won, Dong-Il; Kang, Sang Ook; Pyo, Seong-Soo; Kim, Dong-Ik; Kim, Soo Min; Kim, Hwan Chul; Kim, Myung Jong
2015-01-01
The morphology of the surface and the grain orientation of metal catalysts have been considered to be two important factors for the growth of white graphene (h-BN) by chemical vapour deposition (CVD). We report a correlation between the growth rate of h-BN and the orientation of the nickel grains. The surface of the nickel (Ni) foil was first polished by electrochemical polishing (ECP) and subsequently annealed in hydrogen at atmospheric pressure to suppress the effect of the surface morphology. Atmospheric annealing with hydrogen reduced the nucleation sites of h-BN, which induced a large crystal size mainly grown from the grain boundary with few other nucleation sites in the Ni foil. A higher growth rate was observed from the Ni grains that had the {110} or {100} orientation due to their higher surface energy. PMID:26156068
Fouling resilient perforated feed spacers for membrane filtration.
Kerdi, Sarah; Qamar, Adnan; Vrouwenvelder, Johannes S; Ghaffour, Noreddine
2018-04-24
The improvement of feed spacers with optimal geometry remains a key challenge for spiral-wound membrane systems in water treatment due to their impact on the hydrodynamic performance and fouling development. In this work, novel spacer designs are proposed by intrinsically modifying cylindrical filaments through perforations. Three symmetric perforated spacers (1-Hole, 2-Hole, and 3-Hole) were in-house 3D-printed and experimentally evaluated in terms of permeate flux, feed channel pressure drop and membrane fouling. Spacer performance is characterized and compared with standard no perforated (0-Hole) design under constant feed pressure and constant feed flow rate. Perforations in the spacer filaments resulted in significantly lowering the net pressure drop across the spacer filled channel. The 3-Hole spacer was found to have the lowest pressure drop (50%-61%) compared to 0-Hole spacer for various average flow velocities. Regarding permeate flux production, the 0-Hole spacer produced 5.7 L m -2 .h -1 and 6.6 L m -2 .h -1 steady state flux for constant pressure and constant feed flow rate, respectively. The 1-Hole spacer was found to be the most efficient among the perforated spacers with 75% and 23% increase in permeate production at constant pressure and constant feed flow, respectively. Furthermore, membrane surface of 1-Hole spacer was found to be cleanest in terms of fouling, contributing to maintain higher permeate flux production. Hydrodynamic understanding of these perforated spacers is also quantified by performing Direct Numerical Simulation (DNS). The performance enhancement of these perforated spacers is attributed to the formation of micro-jets in the spacer cell that aided in producing enough unsteadiness/turbulence to clean the membrane surface and mitigate fouling phenomena. In the case of 1-Hole spacer, the unsteadiness intensity at the outlet of micro-jets and the shear stress fluctuations created inside the cells are higher than those observed with other perforated spacers, resulting in the cleanest membrane surface. Copyright © 2018 Elsevier Ltd. All rights reserved.
High Pressure Compression-Molding of α-Cellulose and Effects of Operating Conditions.
Pintiaux, Thibaud; Viet, David; Vandenbossche, Virginie; Rigal, Luc; Rouilly, Antoine
2013-05-30
Commercial α-cellulose was compression-molded to produce 1A dog-bone specimens under various operating conditions without any additive. The resulting agromaterials exhibited a smooth, plastic-like surface, and constituted a suitable target as replacement for plastic materials. Tensile and three-points bending tests were conducted according to ISO standards related to the evaluation of plastic materials. The specimens had strengths comparable to classical petroleum-based thermoplastics. They also exhibited high moduli, which is characteristic of brittle materials. A higher temperature and higher pressure rate produced specimens with higher mechanical properties while low moisture content produced weaker specimens. Generally, the strong specimen had higher specific gravity and lower moisture content. However, some parameters did not follow the general trend e.g., thinner specimen showed much higher Young's Modulus, although their specific gravity and moisture content remained similar to control, revealing a marked skin-effect which was confirmed by SEM observations.
High Pressure Compression-Molding of α-Cellulose and Effects of Operating Conditions
Pintiaux, Thibaud; Viet, David; Vandenbossche, Virginie; Rigal, Luc; Rouilly, Antoine
2013-01-01
Commercial α-cellulose was compression-molded to produce 1A dog-bone specimens under various operating conditions without any additive. The resulting agromaterials exhibited a smooth, plastic-like surface, and constituted a suitable target as replacement for plastic materials. Tensile and three-points bending tests were conducted according to ISO standards related to the evaluation of plastic materials. The specimens had strengths comparable to classical petroleum-based thermoplastics. They also exhibited high moduli, which is characteristic of brittle materials. A higher temperature and higher pressure rate produced specimens with higher mechanical properties while low moisture content produced weaker specimens. Generally, the strong specimen had higher specific gravity and lower moisture content. However, some parameters did not follow the general trend e.g., thinner specimen showed much higher Young’s Modulus, although their specific gravity and moisture content remained similar to control, revealing a marked skin-effect which was confirmed by SEM observations. PMID:28809271
Higher modulus compositions incorporating particulate rubber
Bauman, Bernard D.; Williams, Mark A.
1999-01-01
A plastic article having a number of surfaces with at least one surface being modified by contacting that surface with a reactive gas atmosphere containing F.sub.2, Cl.sub.2, O.sub.2, Ozone, SO.sub.3, oxidative acids, or mixtures thereof, at a temperature and gas partial pressure sufficient to increase the surface energy of the at least one surface being modified to at least 40 dynes/cm at a temperature of 20.degree. C., to enhance bonding of non-slip polymer coatings to the modified surface, to which coatings elastomeric or rigid particles may be admixed for imparting a surface profile and increasing the coefficient of friction between the coated surface and the counter-surface.
Scaling behavior of columnar structure during physical vapor deposition
NASA Astrophysics Data System (ADS)
Meese, W. J.; Lu, T.-M.
2018-02-01
The statistical effects of different conditions in physical vapor deposition, such as sputter deposition, have on thin film morphology has long been the subject of interest. One notable effect is that of column development due to differential chamber pressure in the well-known empirical model called the Thornton's Structure Zone Model. The model is qualitative in nature and theoretical understanding with quantitative predictions of the morphology is still lacking due, in part, to the absence of a quantitative description of the incident flux distribution on the growth front. In this work, we propose an incident Gaussian flux model developed from a series of binary hard-sphere collisions and simulate its effects using Monte Carlo methods and a solid-on-solid growth scheme. We also propose an approximate cosine-power distribution for faster Monte Carlo sampling. With this model, it is observed that higher chamber pressures widen the average deposition angle, and similarly increase the growth of column diameters (or lateral correlation length) and the column-to-column separation (film surface wavelength). We treat both the column diameter and the surface wavelength as power laws. It is seen that both the column diameter exponent and the wavelength exponent are very sensitive to changes in pressure for low pressures (0.13 Pa to 0.80 Pa); meanwhile, both exponents saturate for higher pressures (0.80 Pa to 6.7 Pa) around a value of 0.6. These predictions will serve as guides to future experiments for quantitative description of the film morphology under a wide range of vapor pressure.
Fernando, Malindu E; Crowther, Robert G; Lazzarini, Peter A; Sangla, Kunwarjit S; Wearing, Scott; Buttner, Petra; Golledge, Jonathan
2016-09-15
Current international guidelines advocate achieving at least a 30 % reduction in maximum plantar pressure to reduce the risk of foot ulcers in people with diabetes. However, whether plantar pressures differ in cases with foot ulcers to controls without ulcers is not clear. The aim of this study was to assess if plantar pressures were higher in patients with active plantar diabetic foot ulcers (cases) compared to patients with diabetes without a foot ulcer history (diabetes controls) and people without diabetes or a foot ulcer history (healthy controls). Twenty-one cases with diabetic foot ulcers, 69 diabetes controls and 56 healthy controls were recruited for this case-control study. Plantar pressures at ten sites on both feet and stance phase duration were measured using a pre-established protocol. Primary outcomes were mean peak plantar pressure, pressure-time integral and stance phase duration. Non-parametric analyses were used with Holm's correction to correct for multiple testing. Binary logistic regression models were used to adjust outcomes for age, sex and body mass index. Median differences with 95 % confidence intervals and Cohen's d values (standardised mean difference) were reported for all significant outcomes. The majority of ulcers were located on the plantar surface of the hallux and toes. When adjusted for age, sex and body mass index, the mean peak plantar pressure and pressure-time integral of toes and the mid-foot were significantly higher in cases compared to diabetes and healthy controls (p < 0.05). The stance phase duration was also significantly higher in cases compared to both control groups (p < 0.05). The main limitations of the study were the small number of cases studied and the inability to adjust analyses for multiple factors. This study shows that plantar pressures are higher in cases with active diabetic foot ulcers despite having a longer stance phase duration which would be expected to lower plantar pressure. Whether plantar pressure changes can predict ulcer healing should be the focus of future research. These results highlight the importance of offloading feet during active ulceration in addition to before ulceration.
NASA Astrophysics Data System (ADS)
Straub, M.; Schüle, M.; Afshar, M.; Feili, D.; Seidel, H.; König, K.
2014-04-01
Nanoscale periodic rifts and subwavelength ripples as well as randomly nanoporous surface structures were generated on Si(100) surfaces immersed in water by tightly focused high-repetition rate sub-15 femtosecond sub-nanojoule pulsed Ti:sapphire laser light. Subsequent to laser processing, silicon oxide nanoparticles, which originated from a reaction of ablated silicon with water and aggregated on the exposed areas, were etched off by hydrofluoric acid. The structural phases of the three types of silicon nanostructures were investigated by transmission electron microscopy diffraction images recorded on focused ion beam sections. On nanorift patterns, which were produced at radiant exposure extremely close to the ablation threshold, only the ideal Si-I phase at its original bulk orientation was observed. Electron diffraction micrographs of periodic ripples, which were generated at slightly higher radiant exposure, revealed a compression of Si-I in the vertical direction by 6 %, which is attributed to recoil pressure acting during ablation. However, transitions to the high-pressure phase Si-II, which implies compression in the same direction at pressures in excess of 10 GPa, to the metastable phases Si-III or Si-IV that arise from Si-II on pressure relief or to other high-pressure phases (Si-V-Si-XII) were not observed. The nanoporous surfaces featured Si-I material with grains of resolidified silicon occurring at lattice orientations different from the bulk. Characteristic orientational relationships as well as small-angle grain boundaries reflected the rapid crystal growth on the substrate.
Zhang, Zhaoyan
2016-01-01
The goal of this study is to better understand the cause-effect relation between vocal fold physiology and the resulting vibration pattern and voice acoustics. Using a three-dimensional continuum model of phonation, the effects of changes in vocal fold stiffness, medial surface thickness in the vertical direction, resting glottal opening, and subglottal pressure on vocal fold vibration and different acoustic measures are investigated. The results show that the medial surface thickness has dominant effects on the vertical phase difference between the upper and lower margins of the medial surface, closed quotient, H1-H2, and higher-order harmonics excitation. The main effects of vocal fold approximation or decreasing resting glottal opening are to lower the phonation threshold pressure, reduce noise production, and increase the fundamental frequency. Increasing subglottal pressure is primarily responsible for vocal intensity increase but also leads to significant increase in noise production and an increased fundamental frequency. Increasing AP stiffness significantly increases the fundamental frequency and slightly reduces noise production. The interaction among vocal fold thickness, stiffness, approximation, and subglottal pressure in the control of F0, vocal intensity, and voice quality is discussed. PMID:27106298
NASA Astrophysics Data System (ADS)
Liao, Fuyuan; O'Brien, William D.; Jan, Yih-Kuen
2013-10-01
The objective of this study was to investigate the effects of local heating on the complexity of skin blood flow oscillations (BFO) under prolonged surface pressure in rats. Eleven Sprague-Dawley rats were studied: 7 rats underwent surface pressure with local heating (△t=10 °C) and 4 rats underwent pressure without heating. A pressure of 700 mmHg was applied to the right trochanter area of rats for 3 h. Skin blood flow was measured using laser Doppler flowmetry. The loading period was divided into nonoverlapping 30 min epochs. For each epoch, multifractal detrended fluctuation analysis (MDFA) was utilized to compute DFA coefficients and complexity of endothelial related metabolic, neurogenic, and myogenic frequencies of BFO. The results showed that under surface pressure, local heating led to a significant decrease in DFA coefficients of myogenic frequency during the initial epoch of loading period, a sustained decrease in complexity of myogenic frequency, and a significantly higher degree of complexity of metabolic frequency during the later phase of loading period. Surrogate tests showed that the reduction in complexity of myogenic frequency was associated with a loss of nonlinearity whereas increased complexity of metabolic frequency was associated with enhanced nonlinearity. Our results indicate that increased metabolic activity and decreased myogenic response due to local heating manifest themselves not only in magnitudes of metabolic and myogenic frequencies but also in their structural complexity. This study demonstrates the feasibility of using complexity analysis of BFO to monitor the ischemic status of weight-bearing skin and risk of pressure ulcers.
Fjelsted, L; Christensen, A G; Larsen, J E; Kjeldsen, P; Scheutz, C
2018-05-28
An unmanned aerial vehicle (UAV)-mounted thermal infrared (TIR) camera's ability to delineate landfill gas (LFG) emission hotspots was evaluated in a field test at two Danish landfills (Hedeland landfill and Audebo landfill). At both sites, a test area of 100 m 2 was established and divided into about 100 measuring points. The relationship between LFG emissions and soil surface temperatures were investigated through four to five measuring campaigns, in order to cover different atmospheric conditions along with increasing, decreasing and stable barometric pressure. For each measuring campaign, a TIR image of the test area was obtained followed by the measurement of methane (CH 4 ) and carbon dioxide (CO 2 ) emissions at each measuring point, using a static flux chamber. At the same time, soil temperatures measured on the surface, at 5 cm and 10 cm depths, were registered. At the Hedeland landfill, no relationship was found between LFG emissions and surface temperatures. In addition, CH 4 emissions were very limited, on average 0.92-4.52 g CH 4 m -2 d -1 , and only measureable on the two days with decreasing barometric pressure. TIR images from Hedeland did not show any significant temperature differences in the test area. At the Audebo landfill, an area with slightly higher surface temperatures was found in the TIR images, and the same pattern with slightly higher temperatures was found at a depth of 10 cm. The main LFG emissions were found in the area with the higher surface temperatures. LFG emissions at Audebo were influenced significantly by changes in barometric pressure, and the average CH 4 emissions varied between 111 g m -2 d -1 and 314 g m -2 d -1 , depending on whether the barometric pressure gradient had increased or decreased, respectively. The temperature differences observed in the TIR images from both landfills were limited to between 0.7 °C and 1.2 °C. The minimum observable CH 4 emission for the TIR camera to identify an emission hotspot was 150 g CH 4 m -2 d -1 from an area of more than 1 m 2 . Copyright © 2018 Elsevier Ltd. All rights reserved.
The potential of organic polymer-based hydrogen storage materials.
Budd, Peter M; Butler, Anna; Selbie, James; Mahmood, Khalid; McKeown, Neil B; Ghanem, Bader; Msayib, Kadhum; Book, David; Walton, Allan
2007-04-21
The challenge of storing hydrogen at high volumetric and gravimetric density for automotive applications has prompted investigations into the potential of cryo-adsorption on the internal surface area of microporous organic polymers. A range of Polymers of Intrinsic Microporosity (PIMs) has been studied, the best PIM to date (a network-PIM incorporating a triptycene subunit) taking up 2.7% H(2) by mass at 10 bar/77 K. HyperCrosslinked Polymers (HCPs) also show promising performance as H(2) storage materials, particularly at pressures >10 bar. The N(2) and H(2) adsorption behaviour at 77 K of six PIMs and a HCP are compared. Surface areas based on Langmuir plots of H(2) adsorption at high pressure are shown to provide a useful guide to hydrogen capacity, but Langmuir plots based on low pressure data underestimate the potential H(2) uptake. The micropore distribution influences the form of the H(2) isotherm, a higher concentration of ultramicropores (pore size <0.7 nm) being associated with enhanced low pressure adsorption.
NASA Technical Reports Server (NTRS)
Morduchow, Morris
1955-01-01
A survey of integral methods in laminar-boundary-layer analysis is first given. A simple and sufficiently accurate method for practical purposes of calculating the properties (including stability) of the laminar compressible boundary layer in an axial pressure gradient with heat transfer at the wall is presented. For flow over a flat plate, the method is applicable for an arbitrarily prescribed distribution of temperature along the surface and for any given constant Prandtl number close to unity. For flow in a pressure gradient, the method is based on a Prandtl number of unity and a uniform wall temperature. A simple and accurate method of determining the separation point in a compressible flow with an adverse pressure gradient over a surface at a given uniform wall temperature is developed. The analysis is based on an extension of the Karman-Pohlhausen method to the momentum and the thermal energy equations in conjunction with fourth- and especially higher degree velocity and stagnation-enthalpy profiles.
Ozone formation in pulsed SDBD in a wide pressure range
NASA Astrophysics Data System (ADS)
Starikovskiy, Andrey; Nudnova, Maryia; mipt Team
2011-10-01
Ozone concentration in surface anode-directed DBD for wide pressure range (150 - 1300 torr) was experimentally measured. Voltage and pressure effect were investigated. Reduced electric field was measured for anode-directed and cathode-directed SDBD. E/n values in cathode-directed SDBD is higher than in cathode-directed on 50 percent at atmospheric pressure. E/n value increase leads to decrease the rate of oxygen dissociation and Ozone formation at lower pressures. Radiating region thickness of sliding discharge was measured. Typical thickness of radiating zone is 0.4-1.0 mm within pressure range 220-740 torr. It was shown that high-voltage pulsed nanosecond discharge due to high E/n value produces less Ozone with compare to other discharges. Kinetic model was proposed to describe Ozone formation in the pulsed nanosecond SDBD.
NASA Technical Reports Server (NTRS)
Watkins, Anthony Neal; Leighty, Bradley D.; Lipford, William E.; Wong, Oliver D.; Goodman, Kyle Z.; Crafton, James; Forlines, Alan; Goss, Larry; Gregory, James W.; Juliano, Thomas J.
2011-01-01
This report will present details of a Pressure Sensitive Paint (PSP) system for measuring global surface pressures on the tips of rotorcraft blades in simulated forward flight at the 14- x 22-Foot Subsonic Tunnel. The system was designed to use a pulsed laser as an excitation source and PSP data was collected using the lifetime-based approach. With the higher intensity of the laser, this allowed PSP images to be acquired during a single laser pulse, resulting in the collection of crisp images that can be used to determine blade pressure at a specific instant in time. This is extremely important in rotorcraft applications as the blades experience dramatically different flow fields depending on their position in the rotor disk. Testing of the system was performed using the U.S. Army General Rotor Model System equipped with four identical blades. Two of the blades were instrumented with pressure transducers to allow for comparison of the results obtained from the PSP. This report will also detail possible improvements to the system.
NASA Astrophysics Data System (ADS)
Lee, Chan-Jae; Jun, Sungwoo; Ju, Byeong-Kwon; Kim, Jong-Woong
2017-06-01
This paper presents the fabrication of an elastomer-free, transparent, pressure-sensitive strain sensor consisting of a specially designed silver nanowire (AgNW) pattern and colorless polyimide (cPI). A percolated AgNW network was patterned with a simple tandem compound circuit, which was then embedded in the surface of the cPI via inverted layer processing. The resulting film-type sensor was highly transparent ( 93.5% transmittance at 550 nm) and mechanically stable (capable of resisting 10000 cycles of bending to a 500 μm radius of curvature). We demonstrated that a thin, transparent, and mechanically stable electrode can be produced using a combination of AgNWs and cPI, and used to produce a system sensitive to pressure-induced bending. The capacitance of the AgNW tandem compound electrode pattern grew via fringing, which increased with the pressure-induced bending applied to the surface of the sensor. The sensitivity was four times higher than that of an elastomeric pressure sensor made with the same design. Finally, we demonstrated a skin-like pressure sensor attached to the inside wrist of a human arm.
Hagedorn, Sarah; Drolle, Elizabeth; Lorentz, Holly; Srinivasan, Sruthi; Leonenko, Zoya; Jones, Lyndon
2015-01-01
Purpose The purpose of this exploratory study was to investigate the differences in meibomian gland secretions, contact lens (CL) lipid extracts, and CL surface topography between participants with and without meibomian gland dysfunction (MGD). Methods Meibum study: Meibum was collected from all participants and studied via Langmuir–Blodgett (LB) deposition with subsequent Atomic Force Microscopy (AFM) visualization and surface roughness analysis. CL Study: Participants with and without MGD wore both etafilcon A and balafilcon A CLs in two different phases. CL lipid deposits were extracted and analyzed using pressure-area isotherms with the LB trough and CL surface topographies and roughness values were visualized using AFM. Results Meibum study: Non-MGD participant meibum samples showed larger, circular aggregates with lower surface roughness, whereas meibum samples from participants with MGD showed more lipid aggregates, greater size variability and higher surface roughness. CL Study: Worn CLs from participants with MGD had a few large tear film deposits with lower surface roughness, whereas non-MGD participant-worn lenses had many small lens deposits with higher surface roughness. Balafilcon A pore depths were shallower in MGD participant worn lenses when compared to non-MGD participant lenses. Isotherms of CL lipid extracts from MGD and non-MGD participants showed a seamless rise in surface pressure as area decreased; however, extracts from the two different lens materials produced different isotherms. Conclusions MGD and non-MGD participant-worn CL deposition were found to differ in type, amount, and pattern of lens deposits. Lipids from MGD participants deposited irregularly whereas lipids from non-MGD participants showed more uniformity. PMID:25620317
NASA Astrophysics Data System (ADS)
Zheng, B. C.; Wu, Z. L.; Wu, B.; Li, Y. G.; Lei, M. K.
2017-05-01
A spatially averaged, time-dependent global plasma model has been developed to describe the reactive deposition of a TiAlSiN thin film by modulated pulsed power magnetron sputtering (MPPMS) discharges in Ar/N2 mixture gas, based on the particle balance and the energy balance in the ionization region, and considering the formation and erosion of the compound at the target surface. The modeling results show that, with increasing the N2 partial pressure from 0% to 40% at a constant working pressure of 0.3 Pa, the electron temperature during the strongly ionized period increases from 4 to 7 eV and the effective power transfer coefficient, which represents the power fraction that effectively heats the electrons and maintains the discharge, increases from about 4% to 7%; with increasing the working pressure from 0.1 to 0.7 Pa at a constant N2 partial pressure of 25%, the electron temperature decreases from 10 to 4 eV and the effective power transfer coefficient decreases from 8% to 5%. Using the modeled plasma parameters to evaluate the kinetic energy of arriving ions, the ion-to-neutral flux ratio of deposited species, and the substrate heating, the variations of process parameters that increase these values lead to an enhanced adatom mobility at the target surface and an increased input energy to the substrate, corresponding to the experimental observation of surface roughness reduction, the microstructure transition from the columnar structure to the dense featureless structure, and the enhancement of phase separation. At higher N2 partial pressure or lower working pressure, the modeling results demonstrate an increase in electron temperature, which shifts the discharge balance of Ti species from Ti+ to Ti2+ and results in a higher return fraction of Ti species, corresponding to the higher Al/Ti ratio of deposited films at these conditions. The modeling results are well correlated with the experimental observation of the composition variation and the microstructure transition of deposited TiAlSiN compound films, demonstrating the applicability of this approach in understanding the characteristics of reactive MPPMS discharges as well as the composition and microstructure of deposited compound films. The model for reactive MPPMS discharges has no special limitations and is applicable to high power impulse magnetron sputtering discharges as well.
Cooling of in-situ propellant rocket engines for Mars mission. M.S. Thesis - Cleveland State Univ.
NASA Technical Reports Server (NTRS)
Armstrong, Elizabeth S.
1991-01-01
One propulsion option of a Mars ascent/descent vehicle is multiple high-pressure, pump-fed rocket engines using in-situ propellants, which have been derived from substances available on the Martian surface. The chosen in-situ propellant combination for this analysis is carbon monoxide as the fuel and oxygen as the oxidizer. Both could be extracted from carbon dioxide, which makes up 96 percent of the Martian atmosphere. A pump-fed rocket engine allows for higher chamber pressure than a pressure-fed engine, which in turn results in higher thrust and in higher heat flux in the combustion chamber. The heat flowing through the wall cannot be sufficiently dissipated by radiation cooling and, therefore, a regenerative coolant may be necessary to avoid melting the rocket engine. The two possible fluids for this coolant scheme, carbon monoxide and oxygen, are compared analytically. To determine their heat transfer capability, they are evaluated based upon their heat transfer and fluid flow characteristics.
Solid spherical glass particle impingement studies of plastic materials
NASA Technical Reports Server (NTRS)
Rao, P. V.; Young, S. G.; Buckley, D. H.
1983-01-01
Erosion experiments on polymethyl methacrylate (PMMA), polycarbonate, and polytetrafluoroethylene (PTFE) were conducted with spherical glass beads impacting at normal incidence. Optical and scanning electron microscopic studies and surface profile measurements were made on specimens at predetermined test intervals. During the initial stage of damage to PMMA and polycarbonate, material expands or builds up above the original surface. However, this buildup disappears as testing progresses. Little or no buildup was observed on PTFE. PTFE is observed to be the most resistant material to erosion and PMMA the least. At low impact pressures, material removal mechanisms are believed to be similar to those for metallic materials. However, at higher pressures, surface melting is indicated at the center of impact. Deformation and fatigue appear to play major roles in the material removal process with possible melting or softening.
Iizaka, Shinji; Kaitani, Toshiko; Sugama, Junko; Nakagami, Gojiro; Naito, Ayumi; Koyanagi, Hiroe; Konya, Chizuko; Sanada, Hiromi
2013-01-01
This multicenter prospective cohort study examined the predictive validity of granulation tissue color evaluated by digital image analysis for deep pressure ulcer healing. Ninety-one patients with deep pressure ulcers were followed for 3 weeks. From a wound photograph taken at baseline, an image representing the granulation red index (GRI) was processed in which a redder color represented higher values. We calculated the average GRI over granulation tissue and the proportion of pixels exceeding the threshold intensity of 80 for the granulation tissue surface (%GRI80) and wound surface (%wound red index 80). In the receiver operating characteristics curve analysis, most GRI parameters had adequate discriminative values for both improvement of the DESIGN-R total score and wound closure. Ulcers were categorized by the obtained cutoff points of the average GRI (≤80, >80), %GRI80 (≤55, >55-80, >80%), and %wound red index 80 (≤25, >25-50, >50%). In the linear mixed model, higher classes for all GRI parameters showed significantly greater relative improvement in overall wound severity during the 3 weeks after adjustment for patient characteristics and wound locations. Assessment of granulation tissue color by digital image analysis will be useful as an objective monitoring tool for granulation tissue quality or surrogate outcomes of pressure ulcer healing. © 2012 by the Wound Healing Society.
Aerated drilling cutting transport analysis in geothermal well
NASA Astrophysics Data System (ADS)
Wakhyudin, Aris; Setiawan, Deni; Dwi Marjuan, Oscar
2017-12-01
Aeratad drilling widely used for geothermal drilling especially when drilled into predicted production zone. Aerated drilling give better performance on preventing lost circulation problem, improving rate of penetration, and avoiding drilling fluid invasion to productive zone. While well is drilled, cutting is produced and should be carried to surface by drilling fluid. Hole problem, especially pipe sticking will occur while the cutting is not lifted properly to surface. The problem will effect on drilling schedule; non-productive time finally result more cost to be spent. Geothermal formation has different characteristic comparing oil and gas formation. Geothermal mainly has igneous rock while oil and gas mostly sedimentary rock. In same depth, formation pressure in geothermal well commonly lower than oil and gas well while formation temperature geothermal well is higher. While aerated drilling is applied in geothermal well, Igneous rock density has higher density than sedimentary rock and aerated drilling fluid is lighter than water based mud hence minimum velocity requirement to transport cutting is larger than in oil/gas well drilling. Temperature and pressure also has impact on drilling fluid (aerated) density. High temperature in geothermal well decrease drilling fluid density hence the effect of pressure and temperature also considered. In this paper, Aerated drilling cutting transport performance on geothermal well will be analysed due to different rock and drilling fluid density. Additionally, temperature and pressure effect on drilling fluid density also presented to merge.
Effects of hypobaric pressure on human skin: implications for cryogen spray cooling (part II).
Aguilar, Guillermo; Franco, Walfre; Liu, Jie; Svaasand, Lars O; Nelson, J Stuart
2005-02-01
Clinical results have demonstrated that dark purple port wine stain (PWS) birthmarks respond favorably to laser induced photothermolysis after the first three to five treatments. Nevertheless, complete blanching is rarely achieved and the lesions stabilize at a red-pink color. In a feasibility study (Part I), we showed that local hypobaric pressure on PWS human skin prior to laser irradiation induced significant lesion blanching. The objective of the present study (Part II) is to investigate the effects of hypobaric pressures on the efficiency of cryogen spray cooling (CSC), a technique that assists laser therapy of PWS and other dermatoses. Experiments were carried out within a suction cup and vacuum chamber to study the effect of hypobaric pressure on the: (1) interaction of cryogen sprays with human skin; (2) spray atomization; and (3) thermal response of a model skin phantom. A high-speed camera was used to acquire digital images of spray impingement on in vivo human skin and spray cones generated at different hypobaric pressures. Subsequently, liquid cryogen was sprayed onto a skin phantom at atmospheric and 17, 34, 51, and 68 kPa (5, 10, 15, and 20 in Hg) hypobaric pressures. A fast-response temperature sensor measured sub-surface phantom temperature as a function of time. Measurements were used to solve an inverse heat conduction problem to calculate surface temperatures, heat flux, and overall heat extraction at the skin phantom surface. Under hypobaric pressures, cryogen spurts did not produce skin indentation and only minimal frost formation. Sprays also showed shorter jet lengths and better atomization. Lower minimum surface temperatures and higher overall heat extraction from skin phantoms were reached. The combined effects of hypobaric pressure result in more efficient cryogen evaporation that enhances heat extraction and, therefore, improves the epidermal protection provided by CSC. (c) 2005 Wiley-Liss, Inc.
NASA Technical Reports Server (NTRS)
Watkins, A. Neal; Leighty, Bradley; Lipford, William E.; Wong, Oliver D.; Goodman, Kyle Z.; Crafton, Jim; Forlines, Alan; Goss, Larry P.; Gregory, James W.; Juliano, Thomas J.
2012-01-01
This paper will present details of a Pressure Sensitive Paint (PSP) system for measuring global surface pressures on the tips of rotorcraft blades in simulated forward flight at the 14- x 22-Foot Subsonic Tunnel at the NASA Langley Research Center. The system was designed to use a pulsed laser as an excitation source and PSP data was collected using the lifetime-based approach. With the higher intensity of the laser, this allowed PSP images to be acquired during a single laser pulse, resulting in the collection of crisp images that can be used to determine blade pressure at a specific instant in time. This is extremely important in rotorcraft applications as the blades experience dramatically different flow fields depending on their position in the rotor disk. Testing of the system was performed using the U.S. Army General Rotor Model System equipped with four identical blades. Two of the blades were instrumented with pressure transducers to allow for comparison of the results obtained from the PSP. Preliminary results show that the PSP agrees both qualitatively and quantitatively with both the expected results as well as with the pressure taps. Several areas of improvement have been indentified and are currently being developed.
Racial variations in interfacial behavior of lipids extracted from worn soft contact lenses.
Svitova, Tatyana F; Lin, Meng C
2013-12-01
To explore interfacial behaviors and effects of temperature and dilatation on dynamic properties of multilayered human tear lipids extracted from silicone hydrogel (SiH) lenses worn by asymptomatic Asian and white subjects. Interfacial properties of lipids extracted from Focus N&D lenses worn by 14 subjects continuously for 1 month were studied. The lipids were deposited on an air bubble immersed in a model tear electrolyte (MTE) solution to form 100 ± 20-nm-thick films. Surface pressure was recorded during slow expansion/contraction cycles to evaluate compressibility and hysteresis of lipid films. Films were also subjected to fast step-strain dilatations at temperatures of 22 to 45°C for their viscoelastic property assessment. Isocycles for Asian and white lipids were similar at low surface pressures but had distinctly different compressibility and hysteresis at dynamic pressures exceeding 30 mN/m. Rheological parameters of reconstituted lipids were also dissimilar between Asian and white. The elastic modulus E∞ for white lipids was 1.5 times higher than that for Asian lipids, whereas relaxation time (t) was on average 1.3 times higher for Asian. No significant changes were observed in rheological properties of both Asian and white lipids when temperature increased from 22.0 to 36.5°C. However, for white lipids, E∞ reduced considerably at temperatures higher than 42.0°C, whereas t remained unchanged. For Asian lipids, both E∞ and t started to decline as temperature increased to 38°C and higher. Higher elastic modulus of white lipids and elasticity threshold at certain deformations indicate stronger structure and intermolecular interactions as compared with more viscous Asian lipids. The differences in interfacial behaviors between Asian and white lipids may be associated with the differences in their chemical compositions.
NASA Astrophysics Data System (ADS)
Hyman, David; Bursik, Marcus
2018-03-01
The pressurization of pore fluids plays a significant role in deforming volcanic materials; however, understanding of this process remains incomplete, especially scenarios accompanying phreatic eruptions. Analog experiments presented here use a simple geometry to study the mechanics of this type of deformation. Syrup was injected into the base of a sand medium, simulating the permeable flow of fluids through shallow volcanic systems. The experiments examined surface deformation over many source depths and pressures. Surface deformation was recorded using a Microsoft® Kinect™ sensor, generating high-spatiotemporal resolution lab-scale digital elevation models (DEMs). The behavior of the system is controlled by the ratio of pore pressure to lithostatic loading (λ =p/ρ g D). For λ <10, deformation was accommodated by high-angle, reversed-mechanism shearing along which fluid preferentially flowed, leading to a continuous feedback between deformation and pressurization wherein higher pressure ratios yielded larger deformations. For λ >10, fluid expulsion from the layer was much faster, vertically fracturing to the surface with larger pressure ratios yielding less deformation. The temporal behavior of deformation followed a characteristic evolution that produced an approximately exponential increase in deformation with time until complete layer penetration. This process is distinguished from magmatic sources in continuous geodetic data by its rapidity and characteristic time evolution. The time evolution of the experiments compares well with tilt records from Mt. Ontake, Japan, in the lead-up to the deadly 2014 phreatic eruption. Improved understanding of this process may guide the evolution of magmatic intrusions such as dikes, cone sheets, and cryptodomes and contribute to caldera resurgence or deformation that destabilizes volcanic flanks.
Lipid order, saturation and surface property relationships: a study of human meibum saturation.
Mudgil, Poonam; Borchman, Douglas; Yappert, Marta C; Duran, Diana; Cox, Gregory W; Smith, Ryan J; Bhola, Rahul; Dennis, Gary R; Whitehall, John S
2013-11-01
Tear film stability decreases with age however the cause(s) of the instability are speculative. Perhaps the more saturated meibum from infants may contribute to tear film stability. The meibum lipid phase transition temperature and lipid hydrocarbon chain order at physiological temperature (33 °C) decrease with increasing age. It is reasonable that stronger lipid-lipid interactions could stabilize the tear film since these interactions must be broken for tear break up to occur. In this study, meibum from a pool of adult donors was saturated catalytically. The influence of saturation on meibum hydrocarbon chain order was determined by infrared spectroscopy. Meibum is in an anhydrous state in the meibomian glands and on the surface of the eyelid. The influence of saturation on the surface properties of meibum was determined using Langmuir trough technology. Saturation of native human meibum did not change the minimum or maximum values of hydrocarbon chain order so at temperatures far above or below the phase transition of human meibum, saturation does not play a role in ordering or disordering the lipid hydrocarbon chains. Saturation did increase the phase transition temperature in human meibum by over 20 °C, a relatively high amount. Surface pressure-area studies showing the late take off and higher maximum surface pressure of saturated meibum compared to native meibum suggest that the saturated meibum film is quite molecularly ordered (stiff molecular arrangement) and elastic (molecules are able to rearrange during compression and expansion) compared with native meibum films which are more fluid agreeing with the infrared spectroscopic results of this study. In saturated meibum, the formation of compacted ordered islands of lipids above the surfactant layer would be expected to decrease the rate of evaporation compared to fluid and more loosely packed native meibum. Higher surface pressure observed with films of saturated meibum compared to native meibum suggests greater film stability especially under the high shear stress of a blink. Copyright © 2013 Elsevier Ltd. All rights reserved.
Computational wave dynamics for innovative design of coastal structures
GOTOH, Hitoshi; OKAYASU, Akio
2017-01-01
For innovative designs of coastal structures, Numerical Wave Flumes (NWFs), which are solvers of Navier-Stokes equation for free-surface flows, are key tools. In this article, various methods and techniques for NWFs are overviewed. In the former half, key techniques of NWFs, namely the interface capturing (MAC, VOF, C-CUP) and significance of NWFs in comparison with the conventional wave models are described. In the latter part of this article, recent improvements of the particle method are shown as one of cores of NWFs. Methods for attenuating unphysical pressure fluctuation and improving accuracy, such as CMPS method for momentum conservation, Higher-order Source of Poisson Pressure Equation (PPE), Higher-order Laplacian, Error-Compensating Source in PPE, and Gradient Correction for ensuring Taylor-series consistency, are reviewed briefly. Finally, the latest new frontier of the accurate particle method, including Dynamic Stabilization for providing minimum-required artificial repulsive force to improve stability of computation, and Space Potential Particle for describing the exact free-surface boundary condition, is described. PMID:29021506
Influence of the atmospheric opacity cycle on the near surface environment of Gale Crater on Mars
NASA Astrophysics Data System (ADS)
de la Torre Juarez, Manuel; Gomez-Elvira, Javier; Guzewich, Scott David; Lemmon, Mark T.; Martinez, German; Mason, Emily; Navarro, Sara; Newman, Claire E.; Smith, Michael D.; Retortillo, Alvaro de Vicente
2016-10-01
The Mars atmospheric dust changes the capacity of the atmosphere to absorb solar radiation or release outgoing thermal infrared radiation. This alters the atmospheric heat exchange fluxes and can interfere with the global circulation. The response of near surface pressure, temperature and winds has been characterized at the higher northern latitudes of 45 degree N at the Viking landing sites. The Rover Environmental Monitoring Station (REMS) on Curiosity allows a similar characterization at near-equatorial latitudes of 4.5 degree S. Using MCAM-880 nm opacities as a measure of local atmospheric dust load, we analyze the response of changes in surface variables measured by REMS and compare to those observed by Viking. As on Viking, diurnal and semidiurnal pressure tide amplitudes track very closely the atmospheric opacity and the mean daily pressure shows the increased wave activity. Temperature tides show a more complex response that combines its sensitivity to changes in dust and cloud opacities. Differences in UV opacities for the REMS set of finite spectral windows are explored during the dust and clear seasons.
Determination of Etch Rate Behavior of 4H-SiC Using Chlorine Trifluoride Gas
NASA Astrophysics Data System (ADS)
Miura, Yutaka; Habuka, Hitoshi; Katsumi, Yusuke; Oda, Satoko; Fukai, Yasushi; Fukae, Katsuya; Kato, Tomohisa; Okumura, Hajime; Arai, Kazuo
2007-12-01
The etch rate of single-crystalline 4H-SiC is studied using chlorine trifluoride gas at 673-973 K and atmospheric pressure in a cold wall horizontal reactor. The 4H-SiC etch rate can be higher than 10 μm/min at substrate temperatures higher than 723 K. The etch rate increases with the chlorine trifluoride gas flow rate. The etch rate is calculated by taking into account the transport phenomena in the reactor including the chemical reaction at the substrate surface. The flat etch rate at the higher substrate temperatures is caused mainly by the relationship between the transport rate and the surface chemical reaction rate of chlorine trifluoride gas.
Enhanced alveolar growth and remodeling in Guinea pigs raised at high altitude.
Hsia, Connie C W; Carbayo, Juan J Polo; Yan, Xiao; Bellotto, Dennis J
2005-05-12
To examine the effects of chronic high altitude (HA) exposure on lung structure during somatic maturation, we raised male weanling guinea pigs at HA (3800m) for 1, 3, or 6 months, while their respective male littermates were simultaneously raised at low altitude (LA, 1200m). Under anaesthesia, airway pressure was measured at different lung volumes. The right lung was fixed at a constant airway pressure for morphometric analysis under light and electron microscopy. In animals raised at HA for 1 month, lung volume, alveolar surface area and alveolar-capillary blood volume (V(c)) were elevated above LA control values. Following 3-6 months of HA exposure, increases in lung volume and alveolar surface area persisted while the initial increase in V(c) normalized. Additional adaptation occurred, including a higher epithelial cell volume, septal tissue volume and capillary surface area, a lower alveolar duct volume and lower harmonic mean diffusion barrier resulting in higher membrane and lung diffusing capacities. These data demonstrate enhanced alveolar septal growth and progressive acinar remodeling during chronic HA exposure with long-term augmentation of alveolar dimensions as well as functional compensation in lung compliance and diffusive gas transport.
The Origin of Mercury's Surface Composition, an Experimental Investigation
NASA Technical Reports Server (NTRS)
Boujibar, A.; Righter, K.; Rapp, J. F.; Ross, D. K.; Pando, K. M.; Danielson, L. R.; Fontaine, E.
2016-01-01
Introduction: Results from MESSENGER spacecraft have confirmed the reduced nature of Mercury, based on its high core/mantle ratio and its FeO-poor and S-rich surface. Moreover, high resolution images revealed large volcanic plains and abundant pyroclastic deposits, suggesting major melting stages of the Mercurian mantle. In addition, MESSENGER has provided the most precise data to date on major elemental compositions of Mercury's surface. These results revealed considerable chemical heterogeneities that suggested several stages of differentiation and re-melting processes. This interpretation was challenged by our experimental previous study, which showed a similar compositional variation in the melting products of enstatite chondrites, which are a possible Mercury analogue. However, these experimental melts were obtained over a limited range of pressure (1 bar to 1 gigapascal) and were not compared to the most recent elemental maps. Therefore, here we extend the experimental dataset to higher pressures and perform a more quantitative comparison with Mercury's surface compositions measured by MESSENGER. In particular, we test whether these chemical heterogeneities result from mixing between polybaric melts. Our experiments and models show that the majority of chemical diversity of Mercury's surface can result from melting of a primitive mantle compositionally similar to enstatite chondrites in composition at various depths and degrees of melting. The high-Mg region's composition is reproduced by melting at high pressure (3 gigapascals) (Tab. 1), which is consistent with previous interpretation as being a large degraded impact basin based on its low elevation and thin average crust. While low-Mg NVP (North Volcanic Plains) are the result of melting at low pressure (1 bar), intermediate-Mg NVP, Caloris Basin and Rachmaninoff result from mixing of a high-pressure (3 gigapascals) and low-pressure components (1 bar for Rachmaninoff and 1 gigapascal for the other regions) (Tab. 1). Moreover, all compositions suggest mixing between low and high degree melts that indicate important differentiation processes.
Method of fabricating an article with cavities. [with thin bottom walls
NASA Technical Reports Server (NTRS)
Dale, W. J.; Jurscaga, G. M. (Inventor)
1974-01-01
An article having a cavity with a thin bottom wall is provided by assembling a thin sheet, for example, a metal sheet, adjacent to the surface of a member having one or more apertures. A bonding adhesive is interposed between the thin sheet and the subadjacent member, and the thin sheet is subjected to a high fluid pressure. In order to prevent the differential pressure from being exerted against the thin sheet, the aperture is filled with a plug of solid material having a linear coefficient of thermal expansion higher than that of the member. When the assembly is subjected to pressure, the material is heated to a temperature such that its expansion exerts a pressure against the thin sheet thus reducing the differential pressure.
Maliutina, Kristina; Tahmasebi, Arash; Yu, Jianglong
2018-06-01
The present dataset describes the entrained-flow pyrolysis of Microalgae Chlorella vulgaris and the results obtained during bio-char characterization. The dataset includes a brief explanation of the experimental procedure, experimental conditions and the influence of pyrolysis conditions on bio-chars morphology and carbon structure. The data show an increase in sphericity and surface smoothness of bio-chars at higher pressures and temperatures. Data confirmed that the swelling ratio of bio-chars increased with pressure up to 2.0 MPa. Consequently, changes in carbon structure of bio-chars were investigated using Raman spectroscopy. The data showed the increase in carbon order of chars at elevated pressures. Changes in the chemical structure of bio-char as a function of pyrolysis conditions were investigated using FTIR analysis.
Study of stator-vane fluctuating pressures in a turbofan engine for static and flight tests
NASA Technical Reports Server (NTRS)
Mueller, A. W.
1984-01-01
As part of a program to study the fan noise generated from turbofan engines, fluctuating surface pressures induced by fan-rotor wakes were measured on core- and bypass-stator outlet guide vanes of a modified JT15D-1 engine. Tests were conducted with the engine operating on an outdoor test stand and in flight. The amplitudes of pressures measured at fan-rotor blade-passage fundamental frequencies were generally higher and appeared less stable for the static tests than for the flight tests. Fluctuating pressures measured at the blade-passage frequency of the high-speed core compressor were interpreted to be acoustic; however, disturbance trace velocities for either the convected rotor wakes or acoustic pressures were difficult to interpret because of the complex environment.
NASA Astrophysics Data System (ADS)
Nakamura, Y.; Aoki, A.
Effects of sub-atmospheric ambient pressure and oxygen content on irradiated ignition characteristics of solid combustibles were examined experimentally in order to elucidate the flammability and chance of fire in depressurized systems and give ideas for the fire safety and fire fighting strategies for such environments. Thin cellulosic paper was used as the solid combustible since cellulose is one of major organic compounds and flammables in the nature. Applied atmospheres consisted of inert gases (either CO 2 or N 2) and oxygen at various mixture ratios. Total ambient pressure ( P) was varied from 101 kPa (standard atmospheric pressure, P0) to 20 kPa. Ignition was initiated by external thermal radiation with CO 2 laser (10 W total; 21.3 W/cm 2 of the corresponding peak flux) onto the solid surface. Thermal degradation of the solid produced combustible gaseous products (e.g. CO, H 2, or other low weight of HCs) and these products mixed with ambient oxygen to form the combustible mixture over the solid. Heat transfer from the irradiated surface into the mixture accelerated the exothermic reaction in the gas phase and finally thermal runaway (ignition) was achieved. A digital video camera was used to analyze the ignition characteristics. Flammability maps in partial pressure of oxygen (ppO 2) and normalized ambient pressure ( P/ P0) plane were made to reveal the fire hazard in depressurized environments. Results showed that a wider flammable range was obtained in sub-atmospherics conditions. In middle pressure range (101-40 kPa), the required ppO 2 for ignition decreased almost linearly as the total pressure decreased, indicating that higher fire risk is expected. In lower pressure range (<40 kPa), the required partial pressure of oxygen increased dramatically, then ignition was eventually not achieved at pressures less than 20 kPa under the conditions studied here. The findings suggest that it might be difficult to satisfy safety in space agriculture since it has been reported that higher oxygen concentrations are preferable for plant growth in depressurized environments. Our results imply that there is an optimum pressure level to achieve less fire chance with acceptable plant growth. An increase of the flammable range in middle pressure level might be explained by following two effects: one is a physical effect, such as a weak convective thermal removal from ignitable domain (near the hot surface) to the ambient of atmosphere, and the other is chemical effect which causes so-called "explosion peninsula" as a result of depleting radical consumption due to third-body recombination reaction. Further studies are necessary to determine the controlling factor on the observed flammable trend in depressurized conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Ina T.; Zhou Jie; Fisher, Ellen R.
2006-07-01
Ion energy distribution (IED) measurements are reported for ions in the plasma molecular beam source of the imaging of radicals interacting with surfaces (IRIS) apparatus. The IEDs and relative intensities of nascent ions in C{sub 3}F{sub 8} and C{sub 4}F{sub 8} plasma molecular beams were measured using a Hiden PSM003 mass spectrometer mounted on the IRIS main chamber. The IEDs are complex and multimodal, with mean ion energies ranging from 29 to 92 eV. Integrated IEDs provided relative ion intensities as a function of applied rf power and source pressure. Generally, higher applied rf powers and lower source pressures resultedmore » in increased ion intensities and mean ion energies. Most significantly, a comparison to CF{sub 2} surface interaction measurements previously made in our laboratories reveals that mean ion energies are directly and linearly correlated to CF{sub 2} surface production in these systems.« less
Investigation of molten pool oscillation during GMAW-P process based on a 3D model
NASA Astrophysics Data System (ADS)
Wang, L. L.; Lu, F. G.; Cui, H. C.; Tang, X. H.
2014-11-01
In order to better reveal the oscillation mechanism of the pulsed gas metal arc welding (GMAW-P) process due to an alternately varied welding current, arc plasma and molten pool oscillation were simulated through a self-consistent three-dimensional model. Based on an experimental analysis of the dynamic variation of the arc plasma and molten pool captured by a high-speed camera, the model was validated by comparison of the measured and predicted results. The calculated results showed that arc pressure was the key factor causing the molten pool to oscillate. The variation in arc size and temperature from peak time to base time resulted in a great difference in the heat input and arc pressure acting on the molten pool. The surface deformation of the molten pool due to the varying degrees of arc pressure induced alternate displacement and backflow in the molten metal. The periodic iteration of deeper and shallower surface deformation, drain and backflow of molten metal caused the molten pool to oscillate at a certain frequency. In this condition, the arc pressure at the peak time is more than six times higher than that at the base time, and the maximum surface depression is 1.4 mm and 0.6 mm, respectively, for peak time and base time.
Beschorner, Kurt E.; Albert, Devon L.; Chambers, April J.; Redfern, Mark S.
2018-01-01
Previous research on slip and fall accidents has suggested that pressurized fluid between the shoe and floor is responsible for initiating slips yet this effect has not been verified experimentally. This study aimed to 1) measure hydrodynamic pressures during slipping for treaded and untreaded conditions; 2) determine the effects of fluid pressure on slip severity; and 3) quantify how fluid pressures vary with instantaneous resultant slipping speed, position on the shoe surface, and throughout the progression of the slip. Eighteen subjects walked on known dry and unexpected slippery floors, while wearing treaded and untreaded shoes. Fluid pressure sensors, embedded in the floor, recorded hydrodynamic pressures during slipping. The maximum fluid pressures (mean+/−standard deviation) were significantly higher for the untreaded conditions (124 +/−75 kPa) than the treaded conditions (1.1 +/−0.29 kPa). Maximum fluid pressures were positively correlated with peak slipping speed (r = 0.87), suggesting that higher fluid pressures, which are associated with untreaded conditions, resulted in more severe slips. Instantaneous resultant slipping speed and position of sensor relative to the shoe sole and walking direction explained 41% of the fluid pressure variability. Fluid pressures were primarily observed for untreaded conditions. This study confirms that fluid pressures are relevant to slipping events, consistent with fluid dynamics theory (i.e. the Reynolds equation), and can be modified with shoe tread design. The results suggest that the occurrence and severity of unexpected slips can be reduced by designing shoes/floors that reduce underfoot fluid pressures. PMID:24267270
Craciun, D.; Socol, G.; Lambers, E.; ...
2015-01-17
Thin ZrC films (<500 nm) were grown on (100) Si substrates at a substrate temperature of 500 °C by the pulsed laser deposition (PLD) technique using a KrF excimer laser under different CH 4 pressures. Glancing incidence X-ray diffraction showed that films were nanocrystalline, while X-ray reflectivity studies found out films were very dense and exhibited a smooth surface morphology. Optical spectroscopy data shows that the films have high reflectivity (>90%) in the infrared region, characteristic of metallic behavior. Nanoindentation results indicated that films deposited under lower CH 4 pressures exhibited slightly higher nanohardness and Young modulus values than filmsmore » deposited under higher pressures. As a result, tribological characterization revealed that these films exhibited relatively high wear resistance and steady-state friction coefficients on the order of μ = 0.4.« less
2016-01-01
Clean and stable surface modifications of an iridium (100) single crystal, i.e., the (1 × 1) phase, the (5 × 1) reconstruction, and the oxygen-terminated (2 × 1)-O surface, were prepared and characterized by low energy electron diffraction (LEED), temperature-programmed desorption (TPD), infrared reflection absorption spectroscopy (IRAS) and polarization modulation IRAS (PM-IRAS). The adsorption of CO in UHV and at elevated (mbar) pressure/temperature was followed both ex situ and in situ on all three surface modifications, with a focus on mbar pressures of CO. The Ir(1 × 1) surface exhibited c(4 × 2)/c(2 × 2) and c(6 × 2) CO structures under low pressure conditions, and remained stable up to 100 mbar and 700 K. For the (2 × 1)-O reconstruction CO adsorption induced a structural change from (2 × 1)-O to (1 × 1), as confirmed by LEED, TPD, and IR. For Ir (2 × 1)-O TPD indicated that CO reacted with surface oxygen forming CO2. The (5 × 1) reconstruction featured a reversible and dynamic behavior upon CO adsorption, with a local lifting of the reconstruction to (1 × 1). After CO desorption, the (5 × 1) structure was restored. All three reconstructions exhibited CO adsorption with on-top geometry, as evidenced by IR. With increasing CO exposure the resonances shifted to higher wavenumber, due to adsorbate–adsorbate and adsorbate–substrate interactions. The largest wavenumber shift (from 2057 to 2100 cm–1) was observed for Ir(5 × 1) upon CO dosing from 1 L to 100 mbar. PMID:27257467
Unsteady jet flow computation towards noise prediction
NASA Technical Reports Server (NTRS)
Soh, Woo-Yung
1994-01-01
An attempt has been made to combine a wave solution method and an unsteady flow computation to produce an integrated aeroacoustic code to predict far-field jet noise. An axisymmetric subsonic jet is considered for this purpose. A fourth order space accurate Pade compact scheme is used for the unsteady Navier-Stokes solution. A Kirchhoff surface integral for the wave equation is employed through the use of an imaginary surface which is a circular cylinder enclosing the jet at a distance. Information such as pressure and its time and normal derivatives is provided on the surface. The sound prediction is performed side by side with the jet flow computation. Retarded time is also taken into consideration since the cylinder body is not acoustically compact. The far-field sound pressure has the directivity and spectra show that low frequency peaks shift toward higher frequency region as the observation angle increases from the jet flow axis.
Surface layer motion in planetary atmosphere containing fog of condensed gases
NASA Astrophysics Data System (ADS)
Datsenko, E. N.; Vasiliev, N. I.; Orlova, I. O.; Avakimyan, N. N.
2017-11-01
The article contains a simplified model of a wave motion of the atmospheric surface of planets containing finely dispersed particles of condensed gases, it is assumed that the surface of planets is heated above the saturation temperature of gas condensate, and the surface layers of the foggy atmosphere are strongly cooled. The mechanism of formation and growth of such waves is proposed and justified. It was found that the existence of growing waves on the surface of such an atmosphere is possible, as well as, in the course of time, the formation of a vortex in the atmosphere around the planet. Perturbations of the atmosphere thickness lead to the formation of gravitational waves propagating along its surface. The thickness of the atmosphere at the crest of the wave is greater than that in the trough. While the temperature of the atmosphere under the ridge increases, it decreases under the trough due to shielding of the thermal radiation of the planet. When the crest of a gravitational wave moves, the atmosphere under the trailing edge of the crest has a temperature higher than that under the front edge, since the trailing edge of the crest is heated more intensively by radiation from the surface of the planet. The partial pressure of the vapor of the condensed gases at the rear edge of the ridge is higher than that at the front edge; the work of the pressure difference during the motion of the ridge increases its energy and height. The authors demonstrate the analogy between the mechanisms of wave growth in a foggy atmosphere of planets and the mechanism of wave growth in a thin vapor layer between a strongly heated solid surface or a metal melt and a volatile liquid.
Hagedorn, Sarah; Drolle, Elizabeth; Lorentz, Holly; Srinivasan, Sruthi; Leonenko, Zoya; Jones, Lyndon
2015-01-01
The purpose of this exploratory study was to investigate the differences in meibomian gland secretions, contact lens (CL) lipid extracts, and CL surface topography between participants with and without meibomian gland dysfunction (MGD). Meibum study: Meibum was collected from all participants and studied via Langmuir-Blodgett (LB) deposition with subsequent Atomic Force Microscopy (AFM) visualization and surface roughness analysis. CL Study: Participants with and without MGD wore both etafilcon A and balafilcon A CLs in two different phases. CL lipid deposits were extracted and analyzed using pressure-area isotherms with the LB trough and CL surface topographies and roughness values were visualized using AFM. Meibum study: Non-MGD participant meibum samples showed larger, circular aggregates with lower surface roughness, whereas meibum samples from participants with MGD showed more lipid aggregates, greater size variability and higher surface roughness. CL Study: Worn CLs from participants with MGD had a few large tear film deposits with lower surface roughness, whereas non-MGD participant-worn lenses had many small lens deposits with higher surface roughness. Balafilcon A pore depths were shallower in MGD participant worn lenses when compared to non-MGD participant lenses. Isotherms of CL lipid extracts from MGD and non-MGD participants showed a seamless rise in surface pressure as area decreased; however, extracts from the two different lens materials produced different isotherms. MGD and non-MGD participant-worn CL deposition were found to differ in type, amount, and pattern of lens deposits. Lipids from MGD participants deposited irregularly whereas lipids from non-MGD participants showed more uniformity. Copyright © 2014 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.
An experimental study of a supercritical trailing-edge flow
NASA Technical Reports Server (NTRS)
Brown, J. L.; Viswanath, P. R.
1984-01-01
An experimental study has been conducted of a transonic, turbulent, high-Reynolds-number blunt trailing-edge flow. The model shape and the surface pressure distribution are characteristics of a modern supercritical airfoil under shock-free conditions. Reynolds number and pressure gradient scaling of the boundary layer are relevant to airfoil applications. The data set is exceptionally accurate and consistent, with the momentum balance accounting for the flux of momentum to within 1 percent, except in the immediate vicinity of the blunt trailing edge. The experimental flow exhibits strong viscous-inviscid interaction and higher-order boundary-layer effects including strong adverse streamwise pressure gradient, significant normal pressure gradients associated with surface and streamline curvature, and significant wake curvature. Navier-Stokes calculations with a two-equation K-epsilon turbulence model predict the correct pressure distribution which demonstrates the utility of these engineering tools. The experiment approaches separation at the strailing edge. However, in comparison to the experiment, the calculations predict too high skin friction and insufficient displacement thickness growth. An analysis of the turbulent and mean flow fields reveals the turbulence model defects are likely in modeling the dissipation source and sink terms, and in the eddy viscosity relation.
Epitaxial structure and transport in LaTiO3+x films on (001) SrTiO3
NASA Astrophysics Data System (ADS)
Kim, K. H.; Norton, D. P.; Budai, J. D.; Chisholm, M. F.; Sales, B. C.; Christen, D. K.; Cantoni, C.
2003-12-01
The structure and transport properties of LaTiO3+x epitaxial thin films grown on (001) SrTiO3 by pulsed-laser deposition is examined. Four-circle X-ray diffraction indicates that the films possess the defect perovskite LaTiO3 structure when deposited in vacuum, with the higher X compounds forming at moderate oxygen pressures. The crystal structure of the LaTiO3 films is tetragonal in the epitaxial films, in contrast to the orthorhombic structure observed in bulk materials. A domain structure is observed in the films, consisting of LaTiO3 oriented either with the [110] or [001] directions perpendicular to the substrate surface. Z-contrast scanning transmission electron microscopy reveals that this domain structure is not present in the first few unit cells of the film, but emerges approximately 2-3 nm from the SrTiO3/LaTiO3 interface. Upon increasing the oxygen pressure during growth, a shift in the lattice d-spacing parallel to the substrate surface is observed, and is consistent with the growth of the La2Ti2O7 phase. However, van der Pauw measurements show that the films with the larger d-spacing remain conductive, albeit with a resistivity that is significantly higher than that for the perovskite LaTiO3 films. The transport behavior suggests that the films grown at higher oxygen pressures are LaTiO3+x with 0.4 < x < 0.5. (
Controllable load sharing for soft adhesive interfaces on three-dimensional surfaces.
Song, Sukho; Drotlef, Dirk-Michael; Majidi, Carmel; Sitti, Metin
2017-05-30
For adhering to three-dimensional (3D) surfaces or objects, current adhesion systems are limited by a fundamental trade-off between 3D surface conformability and high adhesion strength. This limitation arises from the need for a soft, mechanically compliant interface, which enables conformability to nonflat and irregularly shaped surfaces but significantly reduces the interfacial fracture strength. In this work, we overcome this trade-off with an adhesion-based soft-gripping system that exhibits enhanced fracture strength without sacrificing conformability to nonplanar 3D surfaces. Composed of a gecko-inspired elastomeric microfibrillar adhesive membrane supported by a pressure-controlled deformable gripper body, the proposed soft-gripping system controls the bonding strength by changing its internal pressure and exploiting the mechanics of interfacial equal load sharing. The soft adhesion system can use up to ∼26% of the maximum adhesion of the fibrillar membrane, which is 14× higher than the adhering membrane without load sharing. Our proposed load-sharing method suggests a paradigm for soft adhesion-based gripping and transfer-printing systems that achieves area scaling similar to that of a natural gecko footpad.
Controllable load sharing for soft adhesive interfaces on three-dimensional surfaces
NASA Astrophysics Data System (ADS)
Song, Sukho; Drotlef, Dirk-Michael; Majidi, Carmel; Sitti, Metin
2017-05-01
For adhering to three-dimensional (3D) surfaces or objects, current adhesion systems are limited by a fundamental trade-off between 3D surface conformability and high adhesion strength. This limitation arises from the need for a soft, mechanically compliant interface, which enables conformability to nonflat and irregularly shaped surfaces but significantly reduces the interfacial fracture strength. In this work, we overcome this trade-off with an adhesion-based soft-gripping system that exhibits enhanced fracture strength without sacrificing conformability to nonplanar 3D surfaces. Composed of a gecko-inspired elastomeric microfibrillar adhesive membrane supported by a pressure-controlled deformable gripper body, the proposed soft-gripping system controls the bonding strength by changing its internal pressure and exploiting the mechanics of interfacial equal load sharing. The soft adhesion system can use up to ˜26% of the maximum adhesion of the fibrillar membrane, which is 14× higher than the adhering membrane without load sharing. Our proposed load-sharing method suggests a paradigm for soft adhesion-based gripping and transfer-printing systems that achieves area scaling similar to that of a natural gecko footpad.
Controllable load sharing for soft adhesive interfaces on three-dimensional surfaces
Song, Sukho; Drotlef, Dirk-Michael; Majidi, Carmel; Sitti, Metin
2017-01-01
For adhering to three-dimensional (3D) surfaces or objects, current adhesion systems are limited by a fundamental trade-off between 3D surface conformability and high adhesion strength. This limitation arises from the need for a soft, mechanically compliant interface, which enables conformability to nonflat and irregularly shaped surfaces but significantly reduces the interfacial fracture strength. In this work, we overcome this trade-off with an adhesion-based soft-gripping system that exhibits enhanced fracture strength without sacrificing conformability to nonplanar 3D surfaces. Composed of a gecko-inspired elastomeric microfibrillar adhesive membrane supported by a pressure-controlled deformable gripper body, the proposed soft-gripping system controls the bonding strength by changing its internal pressure and exploiting the mechanics of interfacial equal load sharing. The soft adhesion system can use up to ∼26% of the maximum adhesion of the fibrillar membrane, which is 14× higher than the adhering membrane without load sharing. Our proposed load-sharing method suggests a paradigm for soft adhesion-based gripping and transfer-printing systems that achieves area scaling similar to that of a natural gecko footpad. PMID:28507143
The dissolution of calcite in CO2-saturated solutions at 25°C and 1 atmosphere total pressure
Plummer, Niel; Wigley, T.M.L.
1976-01-01
The dissolution of Iceland spar in CO2-saturated solutions at 25°C and 1 atm total pressure has been followed by measurement of pH as a function of time. Surface concentrations of reactant and product species have been calculated from bulk fluid data using mass transport theory and a model that accounts for homogeneous reactions in the bulk fluid. The surface concentrations are found to be close to bulk solution values. This indicates that calcite dissolution under the experimental conditions is controlled by the kinetics of surface reaction. The rate of calcite dissolution follows an empirical second order relation with respect to calcium and hydrogen ion from near the initial condition (pH 3.91) to approximately pH 5.9. Beyond pH 5.9 the rate of surface reaction is greatly reduced and higher reaction orders are observed. Calculations show that the rate of calcite dissolution in natural environments may be influenced by both transport and surface-reaction processes. In the absence of inhibition, relatively short times should be sufficient to establish equilibrium.
NASA Technical Reports Server (NTRS)
Stubbs, S. M.; Tanner, J. A.
1976-01-01
During maximum braking the average ratio of drag-force friction coefficient developed by the antiskid system to maximum drag-force friction coefficient available at the tire/runway interface was higher on dry surfaces than on wet surfaces. The gross stopping power generated by the brake system on the dry surface was more than twice that obtained on the wet surfaces. With maximum braking applied, the average ratio of side-force friction coefficient developed by the tire under antiskid control to maximum side-force friction available at the tire/runway interface of a free-rolling yawed tire was shown to decrease with increasing yaw angle. Braking reduced the side-force friction coefficient on a dry surface by 75 percent as the wheel slip ratio was increased to 0.3; on a flooded surface the coefficient dropped to near zero for the same slip ratio. Locked wheel skids were observed when the tire encountered a runway surface transition from dry to flooded, due in part to the response time required for the system to sense abrupt changes in the runway friction; however, the antiskid system quickly responded by reducing brake pressure and cycling normally during the remainder of the run on the flooded surface.
NASA Astrophysics Data System (ADS)
Seadawy, Aly R.
2017-12-01
In this study, we presented the problem formulations of models for internal solitary waves in a stratified shear flow with a free surface. The nonlinear higher order of extended KdV equations for the free surface displacement is generated. We derived the coefficients of the nonlinear higher-order extended KdV equation in terms of integrals of the modal function for the linear long-wave theory. The wave amplitude potential and the fluid pressure of the extended KdV equation in the form of solitary-wave solutions are deduced. We discussed and analyzed the stability of the obtained solutions and the movement role of the waves by making graphs of the exact solutions.
NASA Technical Reports Server (NTRS)
Panda, Jayanta; James, George H.; Burnside, Nathan J.; Fong, Robert; Fogt, Vincent A.
2011-01-01
The solid-rocket plumes from the Abort motor of the Multi-Purpose Crew Vehicle (MPCV, also know as Orion) were simulated using hot, high pressure, Helium gas to determine the surface pressure fluctuations on the vehicle in the event of an abort. About 80 different abort situations over a wide Mach number range, (0.3< or =M< or =1.2) and vehicle attitudes (+/-15deg) were simulated inside the NASA Ames Unitary Plan, 11-Foot Transonic Wind Tunnel. For each abort case, typically two different Helium plume and wind tunnel conditions were used to bracket different flow matching critera. This unique, yet cost-effective test used a custom-built hot Helium delivery system, and a 6% scale model of a part of the MPCV, known as the Launch Abort Vehicle. The test confirmed the very high level of pressure fluctuations on the surface of the vehicle expected during an abort. In general, the fluctuations were found to be dominated by the very near-field hydrodynamic fluctuations present in the plume shear-layer. The plumes were found to grow in size for aborts occurring at higher flight Mach number and altitude conditions. This led to an increase in the extent of impingement on the vehicle surfaces; however, unlike some initial expectations, the general trend was a decrease in the level of pressure fluctuations with increasing impingement. In general, the highest levels of fluctuations were found when the outer edges of the plume shear layers grazed the vehicle surface. At non-zero vehicle attitudes the surface pressure distributions were found to become very asymmetric. The data from these wind-tunnel simulations were compared against data collected from the recent Pad Abort 1 flight test. In spite of various differences between the transient flight situation and the steady-state wind tunnel simulations, the hot-Helium data were found to replicate the PA1 data fairly reasonably. The data gathered from this one-of-a-kind wind-tunnel test fills a gap in the manned-space programs, and will be used to establish the acoustic environment for vibro-acoustic qualification testing of the MPCV.
Phase behavior of Langmuir monolayers with ionic molecular heads: Molecular simulations
NASA Astrophysics Data System (ADS)
González-Castro, Carlos A.; Ramírez-Santiago, Guillermo
2015-03-01
We carried out Monte Carlo simulations in the N ,Π,T ensemble of a Langmuir monolayer coarse-grained molecular model. Considering that the hydrophilic groups can be ionized by modulating acid-base interactions, here we study the phase behavior of a model that incorporates the short-range steric and long-range ionic interactions. The simulations were carried out in the reduced temperature range 0.1 ≤T*<4.0 , where there is a competition of these interactions. Different order parameters were calculated and analyzed for several values of the reduced surface pressure in the interval, 1 ≤Π*≤40. For most of the surface pressures two directions of molecular tilt were found: (i) towards the nearest neighbor (NN) at low temperatures, T*<0.7, and most of the values of Π* and (ii) towards next-nearest neighbors (NNN) in the temperature interval 0.7 ≤T*<1.1 for Π*<25. We also found the coexistence of the NN and NNN at intermediate temperatures and Π*>25 . A low-temperature reentrant disorder-order-disorder transition in the positions of the molecular heads and in the collective tilt of the tails was found for all the surface pressure values. It was also found that the molecular tails arranged forming "rotating patterns" in the temperature interval, 0.5
Applying a uniform layer of disinfectant by wiping.
Cooper, D W
2000-01-01
Disinfection or sterilization often requires applying a film of liquid to a surface, frequently done by using a wiper as the applicator. The wiper must not only hold a convenient amount of liquid, it must deposit it readily and uniformly. Contact time is critical to disinfection efficacy. Evaporation can limit the contact time. To lengthen the contact time, thickly applied layers are generally preferred. The thickness of such layers can be determined by using dyes or other tracers, as long as the tracers do not significantly affect the liquid's surface tension and viscosity and thus do not affect the thickness of the applied layer. Alternatively, as done here, the thickness of the layer can be inferred from the weight loss of the wiper. Results are reported of experiments on thickness of the layers applied under various conditions. Near saturation, hydrophilic polyurethane foam wipers gave layers roughly 10 microns thick, somewhat less than expected from hydrodynamic theory, but more than knitted polyester or woven cotton. Wipers with large liquid holding capacity, refilled often, should produce more nearly uniform layers. Higher pressures increase saturation in the wiper, tending to thicken the layer, but higher pressures also force liquid from the interface, tending to thin the layer, so the net result could be thicker or thinner layers, and there is likely to be an optimal pressure.
Clouds Aerosols Internal Affaires: Increasing Cloud Fraction and Enhancing the Convection
NASA Technical Reports Server (NTRS)
Koren, Ilan; Kaufman, Yoram; Remer, Lorraine; Rosenfeld, Danny; Rudich, Yinon
2004-01-01
Clouds developing in a polluted environment have more numerous, smaller cloud droplets that can increase the cloud lifetime and liquid water content. Such changes in the cloud droplet properties may suppress low precipitation allowing development of a stronger convection and higher freezing level. Delaying the washout of the cloud water (and aerosol), and the stronger convection will result in higher clouds with longer life time and larger anvils. We show these effects by using large statistics of the new, 1km resolution data from MODIS on the Terra satellite. We isolate the aerosol effects from meteorology by regression and showing that aerosol microphysical effects increases cloud fraction by average of 30 presents for all cloud types and increases convective cloud top pressure by average of 35mb. We analyze the aerosol cloud interaction separately for high pressure trade wind cloud systems and separately for deep convective cloud systems. The resultant aerosol radiative effect on climate for the high pressure cloud system is: -10 to -13 W/sq m at the top of the atmosphere (TOA) and -11 to -14 W/sq m at the surface. For deeper convective clouds the forcing is: -4 to -5 W/sq m at the TOA and -6 to -7 W/sq m at the surface.
Purifying Aluminum by Vacuum Distillation
NASA Technical Reports Server (NTRS)
Du Fresne, E. R.
1985-01-01
Proposed method for purifying aluminum employs one-step vacuum distillation. Raw material for process impure aluminum produced in electrolysis of aluminum ore. Impure metal melted in vacuum. Since aluminum has much higher vapor pressure than other constituents, boils off and condenses on nearby cold surfaces in proportions much greater than those of other constituents.
Xu, Miao; Li, Haolong; Zhang, Liying; Wang, Yizhan; Yuan, Yuan; Zhang, Jianming; Wu, Lixin
2012-10-16
In this paper, four organic-inorganic hybrid complexes were prepared using a cationic surfactant dimethyldioctadecylammonium (DODA) to replace the counter cations of four Keggin-type polyoxometalate (POM) clusters with gradually increased negative charges, PW(12)O(40)(3-), SiW(12)O(40)(4-), BW(12)O(40)(5-), and CoW(12)O(40)(6-). The formed surfactant-encapsulated POM (SEP) complexes showed typical amphiphilic properties and can be spread onto the air-water interface to form Langmuir monolayers. The interfacial behavior of the SEP monolayer films was systemically studied by multiple in situ and ex situ characterization methods including Brewster angle microscopy (BAM), atomic force microscopy (AFM), reflection-absorption infrared (RAIR), and X-ray photoelectron spectroscopy (XPS). We found that the increasing alkyl chain density of SEPs leads to an enhanced stability and a higher collapse pressure of SEP Langmuir monolayers. Moreover, a second layer evolved as patterns from the initial monolayers of all the SEPs, when the surface pressures approached the collapse values. The rational combination of alkyl chain density and surface pressure can precisely control the size and the morphology of SEP patterns transforming from disk-like to leaf-like structures on a micrometer scale. The pattern formation was demonstrated to be driven by the self-optimized surface energy of SEP monolayers. This finding can direct a new strategy for the fabrication of POM-hybrid films with controllable patterns, which should be instructive for designing POM-based thin film devices.
Increasing Accuracy in Computed Inviscid Boundary Conditions
NASA Technical Reports Server (NTRS)
Dyson, Roger
2004-01-01
A technique has been devised to increase the accuracy of computational simulations of flows of inviscid fluids by increasing the accuracy with which surface boundary conditions are represented. This technique is expected to be especially beneficial for computational aeroacoustics, wherein it enables proper accounting, not only for acoustic waves, but also for vorticity and entropy waves, at surfaces. Heretofore, inviscid nonlinear surface boundary conditions have been limited to third-order accuracy in time for stationary surfaces and to first-order accuracy in time for moving surfaces. For steady-state calculations, it may be possible to achieve higher accuracy in space, but high accuracy in time is needed for efficient simulation of multiscale unsteady flow phenomena. The present technique is the first surface treatment that provides the needed high accuracy through proper accounting of higher-order time derivatives. The present technique is founded on a method known in art as the Hermitian modified solution approximation (MESA) scheme. This is because high time accuracy at a surface depends upon, among other things, correction of the spatial cross-derivatives of flow variables, and many of these cross-derivatives are included explicitly on the computational grid in the MESA scheme. (Alternatively, a related method other than the MESA scheme could be used, as long as the method involves consistent application of the effects of the cross-derivatives.) While the mathematical derivation of the present technique is too lengthy and complex to fit within the space available for this article, the technique itself can be characterized in relatively simple terms: The technique involves correction of surface-normal spatial pressure derivatives at a boundary surface to satisfy the governing equations and the boundary conditions and thereby achieve arbitrarily high orders of time accuracy in special cases. The boundary conditions can now include a potentially infinite number of time derivatives of surface-normal velocity (consistent with no flow through the boundary) up to arbitrarily high order. The corrections for the first-order spatial derivatives of pressure are calculated by use of the first-order time derivative velocity. The corrected first-order spatial derivatives are used to calculate the second- order time derivatives of velocity, which, in turn, are used to calculate the corrections for the second-order pressure derivatives. The process as described is repeated, progressing through increasing orders of derivatives, until the desired accuracy is attained.
Sloshing response of a reactor tank with internals
NASA Astrophysics Data System (ADS)
Ma, D. C.; Gvildys, J.; Chang, Y. W.
The sloshing response of a large reactor tank with in tank components is presented. It is indicated that the presence of the internal components can significantly change the dynamic characteristics of the sloshing motion. The sloshing frequency of a tank with internals is considerably higher than that of a tank without internal. The higher sloshing frequency reduces the sloshing wave height on the free surface but increases the dynamic pressure in the fluid.
Chung, Kyu Sung; Choi, Choong Hyeok; Bae, Tae Soo; Ha, Jeong Ku; Jun, Dal Jae; Wang, Joon Ho; Kim, Jin Goo
2018-04-01
To compare tibiofemoral contact mechanics after fixation for medial meniscus posterior root radial tears (MMPRTs). Seven fresh knees from mature pigs were used. Each knee was tested under 5 conditions: normal knee, MMPRT, pullout fixation with simple sutures, fixation with modified Mason-Allen sutures, and all-inside fixation using Fastfix 360. The peak contact pressure and contact surface area were evaluated using a capacitive sensor positioned between the meniscus and tibial plateau, under a 1,000-N compression force, at different flexion angles (0°, 30°, 60°, and 90°). The peak contact pressure was significantly higher in MMPRTs than in normal knees (P = .018). Although the peak contact pressure decreased significantly after fixation at all flexion angles (P = .031), it never recovered to the values noted in the normal meniscus. No difference was observed among fixation groups (P = .054). The contact surface area was significantly lower in MMPRTs than in the normal meniscus (P = .018) and increased significantly after fixation at all flexion angles (P = .018) but did not recover to within normal limits. For all flexion angles except 60°, the contact surface area was significantly higher for fixation with Mason-Allen sutures than for fixation with simple sutures or all-inside fixation (P = .027). At 90° of flexion, the contact surface area was significantly better for fixation with simple sutures than for all-inside fixation (P = .031). The peak contact pressure and contact surface area improved significantly after fixation, regardless of the fixation method, but did not recover to the levels noted in the normal meniscus after any type of fixation. Among the fixation methods evaluated in this time 0 study, fixation using modified Mason-Allen sutures provided a superior contact surface area compared with that noted after fixation using simple sutures or all-inside fixation, except at 60° of flexion. However, this study had insufficient power to accurately detect the differences between the outcomes of various fixation methods. Our results in a porcine model suggest that fixation can restore tibiofemoral contact mechanics in MMPRT and that fixation with a locking mechanism leads to superior biomechanical properties. Copyright © 2017 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Webb, Alexander J.; Szablewski, Marek; Bloor, David; Atkinson, Del; Graham, Adam; Laughlin, Paul; Lussey, David
2013-04-01
Printable electronics is an innovative area of technology with great commercial potential. Here, a screen-printed functional ink, comprising a combination of semiconducting acicular particles, electrically insulating nanoparticles and a base polymer ink, is described that exhibits pronounced pressure sensitive electrical properties for applications in sensing and touch sensitive surfaces. The combination of these components in the as-printed ink yield a complex structure and a large and reproducible touch pressure sensitive resistance range. In contrast to the case for some composite systems, the resistance changes occur down to applied pressures of 13 Pa. Current-voltage measurements at fixed pressures show monotonic non-linear behaviour, which becomes more Ohmic at higher pressures and in all cases shows some hysteresis. The physical basis for conduction, particularly in the low pressure regime, can be described in terms of field assisted quantum mechanical tunnelling.
One-dimensional hybrid model of plasma-solid interaction in argon plasma at higher pressures
NASA Astrophysics Data System (ADS)
Jelínek, P.; Hrach, R.
2007-04-01
One of problems important in the present plasma science is the surface treatment of materials at higher pressures, including the atmospheric pressure plasma. The theoretical analysis of processes in such plasmas is difficult, because the theories derived for collisionless or slightly collisional plasma lose their validity at medium and high pressures, therefore the methods of computational physics are being widely used. There are two basic ways, how to model the physical processes taking place during the interaction of plasma with immersed solids. The first technique is the particle approach, the second one is called the fluid modelling. Both these approaches have their limitations-small efficiency of particle modelling and limited accuracy of fluid models. In computer modelling is endeavoured to use advantages by combination of these two approaches, this combination is named hybrid modelling. In our work one-dimensional hybrid model of plasma-solid interaction has been developed for an electropositive plasma at higher pressures. We have used hybrid model for this problem only as the test for our next applications, e.g. pulsed discharge, RF discharge, etc. The hybrid model consists of a combined molecular dynamics-Monte Carlo model for fast electrons and fluid model for slow electrons and positive argon ions. The latter model also contains Poisson's equation, to obtain a self-consistent electric field distribution. The derived results include the spatial distributions of electric potential, concentrations and fluxes of individual charged species near the substrate for various pressures and for various probe voltage bias.
NASA Technical Reports Server (NTRS)
Korth, Haje; Anderson, Brian J.; Gershman, Daniel J.; Raines, Jim M.; Slavin, James A.; Zurbuchen, Thomas H.; Solomon, Sean C.; McNutt, Ralph L.
2014-01-01
We assess the statistical spatial distribution of plasma in Mercury's magnetosphere from observations of magnetic pressure deficits and plasma characteristics by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. The statistical distributions of proton flux and pressure were derived from 10months of Fast Imaging Plasma Spectrometer (FIPS) observations obtained during the orbital phase of the MESSENGER mission. The Magnetometer-derived pressure distributions compare favorably with those deduced from the FIPS observations at locations where depressions in the magnetic field associated with the presence of enhanced plasma pressures are discernible in the Magnetometer data. The magnitudes of the magnetic pressure deficit and the plasma pressure agree on average, although the two measures of plasma pressure may deviate for individual events by as much as a factor of approximately 3. The FIPS distributions provide better statistics in regions where the plasma is more tenuous and reveal an enhanced plasma population near the magnetopause flanks resulting from direct entry of magnetosheath plasma into the low-latitude boundary layer of the magnetosphere. The plasma observations also exhibit a pronounced north-south asymmetry on the nightside, with markedly lower fluxes at low altitudes in the northern hemisphere than at higher altitudes in the south on the same field line. This asymmetry is consistent with particle loss to the southern hemisphere surface during bounce motion in Mercury's offset dipole magnetic field.
NASA Astrophysics Data System (ADS)
Kundu, Asish K.; Barman, Sukanta; Menon, Krishnakumar S. R.
2017-10-01
Stabilization processes of polar surfaces are often very complex and interesting. Understanding of these processes is crucial as it ultimately determines the properties of the film. Here, by the combined study of Low Energy Electron Diffraction (LEED), X-ray Photoelectron Spectroscopy (XPS) and Ultraviolet Photoemission Spectroscopy (UPS) techniques we show that, although there can be many processes involved in the stabilization of the polar surfaces, in case of Mn3O4(001)/Ag(001), it goes through different reconstructions of the Mn2O4 terminated surface which is in good agreements with the theoretical predictions. The complex surface phase diagram has been probed by LEED as a function of film thickness, oxygen partial pressure and substrate temperature during growth, while their chemical compositions have been probed by XPS. Below a critical film thickness of ∼ 1 unit cell height (8 sublayers or 3 ML) of Mn3O4 and oxygen partial pressure range of 2 × 10-8 mbar < P(O2) ≤ 5 × 10-7 mbar, different surface structures are detected and beyond this thickness a constant evolution of apparent p(2 × 2) structure have been observed due to the coexistence of p(2 × 1) and c(2 × 2) structures. Similar apparent p(2 × 2) structure has also observed by the oxidation of Ag(001)-supported MnO(001) surface. Our study also shows that the substrate temperature during growth plays a crucial role in determining the final structure of the polar Mn3O4 film and as a consequence of that a strong interplay between structural and kinetic stability in the Mn3O4 film has been observed. Further, stripe-like LEED pattern has been observed from the Mn3O4(001) surface, for the film grown at higher oxygen partial pressure (> 5 × 10-7 mbar) and higher temperature UHV annealing. The origin of these stripes has been explained with the help of UPS results.
Improved Mg-based alloys for hydrogen storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sapru, K.; Ming, L.; Stetson, N.T.
1998-08-01
The overall objective of this on-going work is to develop low temperature alloys capable of reversibly storing at least 3 wt.% hydrogen, allowing greater than for 2 wt.% at the system level which is required by most applications. Surface modification of Mg can be used to improve its H-sorption kinetics. The authors show here that the same Mg-transition metal-based multi-component alloy when prepared by melt-spinning results in a more homogeneous materials with a higher plateau pressure as compared to preparing the material by mechanical grinding. They have also shown that mechanically alloyed Mg{sub 50}Al{sub 45}Zn{sub 5} results in a samplemore » having a higher plateau pressure.« less
Zhang, Yong-ling; Yang, Xiao-lin; Zhang, Dong
2015-01-01
According to periodic sampling analysis per month in Xiaolangdi station and Huayuankou station from November 2011 to October 2012, combined with continuous sampling analysis of Xiaolangdi Reservoir during runoff and sediment control period in 2012, partial pressure of CO2 (pCO2) in surface water were calculated based on Henry's Law, pCO2 features and air-water CO2 degassing fluxes of Huayuankou station and Xiaolangdi station affected by Xiaolangdi Reservoir were studied. The results were listed as follows, when Xiaolangdi Reservoir operated normally, pCO2 in surface water of Xiaolangdi station and Huayuankou station varied from 82 to 195 Pa and from 99 to 228 Pa, moreover, pCO2 in surface water from July to September were distinctly higher than those in other months; meanwhile, pCO, in surface water from Huayuankou station were higher than that from Xiaolangdi station. During runoff and sediment control period of Xiaolangdi Reservoir, two hydrological stations commonly indicated that pCO2 in surface water during water draining were obviously lower than those during sediment releasing. Whether in the period of normal operation or runoff and sediment control, pCO2 in surface water had positive relations to DIC content in two hydrological stations. Since the EpCO,/AOU value was higher than the theoretical value of 0. 62, the biological aerobic respiration effect had distinct contribution to pCO2. Throughout the whole year, air-water CO2 degassing fluxes from Xiaolangdi station and Huayuankou station were 0.486 p.mol (m2 s) -l and 0.588 pmol (m2 x s)(-1) respectively; When Xiaolangdi Reservoir operated normally, air-water CO, degassing fluxes in Huayuankou station were higher than that in Xiaolangdi station; during runoff and sediment control from Xiaolangdi Reservoir, two hydrological stations had one observation result in common, namely, air-water CO2 degassing fluxes in the period of water draining were obviously lower than that in the period of sediment releasing.
Dan, Abhijit; Gochev, Georgi; Miller, Reinhard
2015-07-01
Oscillating drop tensiometry was applied to study adsorbed interfacial layers at water/air and water/hexane interfaces formed from mixed solutions of β-lactoglobulin (BLG, 1 μM in 10 mM buffer, pH 7 - negative net charge) and the anionic surfactant SDS or the cationic DoTAB. The interfacial pressure Π and the dilational viscoelasticity modulus |E| of the mixed layers were measured for mixtures of varying surfactant concentrations. The double capillary technique was employed which enables exchange of the protein solution in the drop bulk by surfactant solution (sequential adsorption) or by pure buffer (washing out). The first protocol allows probing the influence of the surfactant on a pre-adsorbed protein layer thus studying the protein/surfactant interactions at the interface. The second protocol gives access to the residual values of Π and |E| measured after the washing out procedure thus bringing information about the process of protein desorption. The DoTAB/BLG complexes exhibit higher surface activity and higher resistance to desorption in comparison with those for the SDS/BLG complexes due to hydrophobization via electrostatic binding of surfactant molecules. The neutral DoTAB/BLG complexes achieve maximum elastic response of the mixed layer. Mixed BLG/surfactant layers at the water/oil interface are found to reach higher surface pressure and lower maximum dilational elasticity than those at the water/air surface. The sequential adsorption mode experiments and the desorption study reveal that binding of DoTAB to pre-adsorbed BLG globules is somehow restricted at the water/air surface in comparison with the case of complex formation in the solution bulk and subsequently adsorbed at the water/air surface. Maximum elasticity is achieved with washed out layers obtained after simultaneous adsorption, i.e. isolation of the most surface active DoTAB/BLG complex. These specific effects are much less pronounced at the W/H interface. Copyright © 2015 Elsevier Inc. All rights reserved.
Navier-Stokes, flight, and wind tunnel flow analysis for the F/A-18 aircraft
NASA Technical Reports Server (NTRS)
Ghaffari, Farhad
1994-01-01
Computational analysis of flow over the F/A-18 aircraft is presented along with complementary data from both flight and wind tunnel experiments. The computational results are based on the three-dimensional thin-layer Navier-Stokes formulation and are obtained from an accurate surface representation of the fuselage, leading-edge extension (LEX), and the wing geometry. However, the constraints imposed by either the flow solver and/or the complexity associated with the flow-field grid generation required certain geometrical approximations to be implemented in the present numerical model. In particular, such constraints inspired the removal of the empennage and the blocking (fairing) of the inlet face. The results are computed for three different free-stream flow conditions and compared with flight test data of surface pressure coefficients, surface tuft flow, and off-surface vortical flow characteristics that included breakdown phenomena. Excellent surface pressure coefficient correlations, both in terms of magnitude and overall trend, are obtained on the forebody throughout the range of flow conditions. Reasonable pressure agreement was obtained over the LEX; the general correlation tends to improve at higher angles of attack. The surface tuft flow and the off-surface vortex flow structures compared qualitatively well with the flight test results. To evaluate the computational results, a wind tunnel investigation was conducted to determine the effects of existing configurational differences between the flight vehicle and the numerical model on aerodynamic characteristics. In most cases, the geometrical approximations made to the numerical model had very little effect on overall aerodynamic characteristics.
Mara, Leo M.
1998-01-01
Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find an the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was was heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past.
Mara, L.M.
1998-05-05
Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find at the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was not heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past. 2 figs.
NASA Astrophysics Data System (ADS)
Kestell, John D.; Mudiyanselage, Kumudu; Ye, Xinyi; Nam, Chang-Yong; Stacchiola, Dario; Sadowski, Jerzy; Boscoboinik, J. Anibal
2017-10-01
This paper describes the design and construction of a compact, "user-friendly" polarization-modulation infrared reflection absorption spectroscopy (PM-IRRAS) instrument at the Center for Functional Nanomaterials (CFN) of Brookhaven National Laboratory, which allows studying surfaces at pressures ranging from ultra-high vacuum to 100 Torr. Surface infrared spectroscopy is ideally suited for studying these processes as the vibrational frequencies of the IR chromophores are sensitive to the nature of the bonding environment on the surface. Relying on the surface selection rules, by modulating the polarization of incident light, it is possible to separate the contributions from the isotropic gas or solution phase, from the surface bound species. A spectral frequency range between 1000 cm-1 and 4000 cm-1 can be acquired. While typical spectra with a good signal to noise ratio can be obtained at elevated pressures of gases in ˜2 min at 4 cm-1 resolution, we have also acquired higher resolution spectra at 0.25 cm-1 with longer acquisition times. By way of verification, CO uptake on a heavily oxidized Ru(0001) sample was studied. As part of this test study, the presence of CO adsorbed on Ru bridge sites was confirmed, in agreement with previous ambient pressure X ray photoelectron spectroscopy studies. In terms of instrument performance, it was also determined that the gas phase contribution from CO could be completely removed even up to pressures close to 100 Torr. A second test study demonstrated the use of the technique for studying morphological properties of a spin coated polymer on a conductive surface. Note that this is a novel application of this technique. In this experiment, the polarization of incident light was modulated manually (vs. through a photoelastic modulator). It was demonstrated, in good agreement with the literature, that the polymer chains preferentially lie parallel with the surface. This PM-IRRAS system is small, modular, and easily reconfigurable. It also features a "vacuum suitcase" that allows for the integration of the PM-IRRAS system with the rest of the suite of instrumentation at our laboratory available to external users through the CFN user proposal system.
Facy, Olivier; Al Samman, Sophie; Magnin, Guy; Ghiringhelli, Francois; Ladoire, Sylvain; Chauffert, Bruno; Rat, Patrick; Ortega-Deballon, Pablo
2012-12-01
Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (HIPEC) achieve good results in selected patients with peritoneal carcinomatosis. High intra-abdominal pressure could enhance the penetration of chemotherapy drugs. The aim of this study was to compare the effects of high pressure and hyperthermia when used separately and when combined in terms of blood and tissue absorption of oxaliplatin in a swine model of intraperitoneal chemotherapy. Four groups of 5 pigs each underwent laparotomy and open intraperitoneal chemotherapy with oxaliplatin at a constant concentration (150 mg/L) for 30 minutes in normothermia and atmospheric pressure (group 1), or hyperthermia (42°C) and atmospheric pressure (group 2), or normothermia and high pressure (25 cm H2O) (group 3), or hyperthermia and high pressure (group 4). High pressure was achieved thorough a water column over the abdomen. Systemic absorption and abdominal tissue mapping of the penetration of oxaliplatin in each group were studied. Blood concentrations of oxaliplatin were similar in the different groups. Hyperthermia achieved higher concentrations in visceral surfaces (P = 0.0014), but not in parietal surfaces. High pressure enhanced diffusion of the drug in both the visceral and parietal peritoneum (P = 0.0058 and P = 0.0044, respectively). The combination of hyperthermia and high pressure significantly increased the penetration of oxaliplatin and achieved the highest tissue concentrations (10.39 mg/kg vs 5.48 mg/kg; P = 0.00001 in the visceral peritoneum, and 66.16 mg/kg vs 35.62 mg/kg; P = 0.0003 in the parietal peritoneum). Open high-pressure HIPEC with oxaliplatin is feasible in the pig. Hyperthermia enhances diffusion in the visceral peritoneum, whereas high pressure is effective in the visceral and parietal peritoneum. The combination of the two achieves the highest tissue concentrations of oxaliplatin.
Abd Razak, Nasrul A; Abu Osman, Noor A; Ali, Sadeeq A; Gholizadeh, Hossein
2016-01-15
While considering how important the interface between the amputees with the prostheses socket, we have carried out research to compare the gradient pressure occur at the interface socket that may lead to the discomforting effects to the user using common ICRC polypropylene socket and air splint socket. Not Applicable SETTING: Not Applicable POPULATION: The subject was a 23 year old who suffered a traumatic defect on the right arm caused by higher electrical volt. F-Socket sensors have been used to measure dynamic socket interface pressure for the transradial amputee wearer during static and dynamic movements. The printed circuit with a thickness of 0.18 mm is equipped between the socket and the surface of the residual limb. Two F-Socket sensor is required to cover the entire socket surface attached to the residual limb. The average of 10 trials made on prosthetic user using both type of sockets for static and dynamic movements was recorded. The pressure gradient shows that the circumference of the socket interface for the ICRC polypropylene socket gives the most pressure distributions to the amputees compared to the pressure gradient for the air splint socket. The pressure gradient for ICRC socket increased consistently when the user makes movements while for the air splint socket remain constantly. The specific interface pressure occur at the socket interface help in determine the comfort and pain of the socket design and improve the correlation between the user and the prosthesis.
NASA Astrophysics Data System (ADS)
Salvador, Israel Irone
The present research campaign centered on static and hypersonic experiments performed with a two-dimensional, repetitively-pulsed (RP) laser Lightcraft model. The future application of interest for this basic research endeavor is the laser launch of nano- and micro-satellites (i.e., 1-100 kg payloads) into Low Earth Orbit (LEO), at low-cost and "on-demand". This research began with an international collaboration on Beamed Energy Propulsion between the United States Air Force and Brazilian Air Force to conduct experiments at the Henry T. Nagamatsu Laboratory of Aerothermodynamics and Hypersonics (HTN-LAH). The laser propulsion (LP) experiments employed the T3 Hypersonic Shock Tunnel (HST), integrated with twin gigawatt pulsed Lumonics 620-TEA CO2 lasers to produce the required test conditions. Following an introduction of the pulsed laser thermal propulsion concept and a state-of-the-art review of the topic, the principal physical processes are outlined starting from the onset of the laser pulse and subsequent laser-induced air-breakdown, to the expansion and exhaust of the resulting blast wave. After installation of the 254 mm wide, 2D Lightcraft model into the T3 tunnel, static LP tests were performed under quiescent (no-flow) conditions at ambient pressures of 0.06, 0.15, 0.3 and 1 bar, using the T3 test-section/dump-tank as a vacuum chamber. Time-dependent surface pressure distributions were measured over the engine thrust-generating surfaces following laser energy deposition; the delivered impulse and momentum coupling coefficients (Cm) were calculated from that pressure data. A Schlieren visualization system (using a high-speed Cordin digital camera) captured the laser breakdown and blast wave expansion process. The 2D model's Cm performance of 600 to 3000 N/MW was 2.5-5x higher than theoretical projections available in the literature, but indeed in the realm of feasibility for static conditions. Also, these Cm values exceed that for smaller Lightcraft models (98 to 161 mm in diameter), probably due to the more efficient delivery of laser-induced blast wave energy across the 2D model's larger impulse surface area. Next, the hypersonic campaign was carried out, subjecting the 2D model to nominal Mach numbers ranging from 6 to 10. Again, time-dependent surface pressure distributions were recorded together with Schlieren movies of the flow field structure resulting from laser energy deposition. These visualizations of inlet and absorption chamber flowfields, enabled the qualitative analysis of important phenomena impacting laser-propelled hypersonic airbreathing flight. The laser-induced breakdown took an elongated vertically-oriented geometry, occurring off-surface and across the inlet's mid-channel---quite different from the static case in which the energy was deposited very near the shroud under-surface. The shroud under-surface pressure data indicated laser-induced increases of 0.7-0.9 bar with laser pulse energies of ˜170 J, off-shroud induced breakdown condition, and Mach number of 7. The results of this research corroborate the feasibility of laser powered, airbreathing flight with infinite specific impulse (Isp=infinity): i.e., without the need for propellant injection at the laser focus. Additionally, it is shown that further reductions in inlet air working fluid velocity---with attendant increases in static pressure and density---is necessary to generate higher absorption chamber pressure and engine impulse. Finally, building on lessons learned from the present work, the future research plan is laid out for: a) the present 2D model with full inlet forebody, exploring higher laser pulse energies and multi-pulse phenomena; b) a smaller, redesigned 2D model; c) a 254 mm diameter axisymmetric Lightcraft model; and, d) a laser-electromagnetic accelerator model, designed around a 2-Tesla pulsed electromagnet contracted under the present program.
The Total-Pressure Recovery and Drag Characteristics of Several Auxiliary Inlets at Transonic Speeds
NASA Technical Reports Server (NTRS)
Dennard, John S.
1959-01-01
Several flush and scoop-type auxiliary inlets have been tested for a range of Mach numbers from 0.55 to 1.3 to determine their transonic total-pressure recovery and drag characteristics. The inlet dimensions were comparable with the thickness of the boundary layer in which they were tested. Results indicate that flush inlets should be inclined at very shallow angles with respect to the surface for optimum total-pressure recovery and drag characteristics. Deep, narrow inlets have lower drag than wide shallow ones at Mach numbers greater than 0.9 but at lower Mach numbers the wider inlets proved superior. Inlets with a shallow approach ramp, 7 deg, and diverging ramp walls which incorporated boundary-layer bypass had lower drag than any other inlet tested for Mach numbers up to 1.2 and had the highest pressure recovery of all of the flush inlets. The scoop inlets, which operated in a higher velocity flow than the flush inlets, had higher drag coefficients. Several of these auxiliary inlets projected multiple, periodic shock waves into the stream when they were operated at low mass-flow ratios.
Thermal desorption of dimethyl methylphosphonate from MoO 3
Head, Ashley R.; Tang, Xin; Hicks, Zachary; ...
2017-03-03
Organophosphonates are used as chemical warfare agents, pesticides, and corrosion inhibitors. New materials for the sorption, detection, and decomposition of these compounds are urgently needed. To facilitate materials and application innovation, a better understanding of the interactions between organophosphonates and surfaces is required. To this end, we have used diffuse reflectance infrared Fourier transform spectroscopy to investigate the adsorption geometry of dimethyl methylphosphonate (DMMP) on MoO 3, a material used in chemical warfare agent filtration devices. We further applied ambient pressure X-ray photoelectron spectroscopy and temperature programmed desorption to study the adsorption and desorption of DMMP. While DMMP adsorbs intactmore » on MoO 3, desorption depends on coverage and partial pressure. At low coverages under UHV conditions, the intact adsorption is reversible. Decomposition occurs with higher coverages, as evidenced by PCH x and PO x decomposition products on the MoO 3 surface. Heating under mTorr partial pressures of DMMP results in product accumulation.« less
Surface pressure fluctuations due to an impinging underexpanded supersonic jet
NASA Astrophysics Data System (ADS)
Pundir, Binu
The impingement of supersonic jets on surfaces is of interest because of its important application to jet blast deflectors (JBD), and short takeoff and vertical landing aircraft (STOVL) during hover. Typically, on an aircraft carrier deck, the impingement of the jet blast on the deflector generates impingement tones, and structural vibrations, not only on the JBD but also on the ship deck. Therefore, apart from direct transmission of jet noise to the gallery level, there is a component of noise transmitted due to the impingement of the jet on the JBD. The objectives of this work are to study the pressure spectra (i) on a flat plate, and separately on a cone due to axisymmetric impingement of a supersonic underexpanded cold jet issuing from a convergent-divergent nozzle and (ii) on a plane jet impinging on a finite plate and an adjoining ground plane due to the impingement of a planar jet on the plate. The characteristics of the surface pressure fluctuations are numerically investigated using WIND-US 2.0. The time-dependent, compressible Euler equations for perfect gas are employed for the present computations. The impingement distance between the jet nozzle and the deflector plate, and the plate inclination with respect to the incident jet are varied. The impingement zone stagnation bubble and a high-speed radial jet with several embedded structures (shocklets) were identified on the perpendicular plate. Flows involving cones reveal the presence of detached cone shocks, enclosing a recirculation zone. The location and magnitude of the peak pressure on the cone surface are a strong function of the cone apex angle. For the two-dimensional jet impingement on angled plate the peak value of pressure occurs at normal jet impingement. The pressure at the intersection point of the plate and the ground plane is sometimes higher than the peak pressure on the plate. Beyond this point there is a sharp decrease in pressure. As the flow accelerates, an oblique shock is sometimes formed in this grazing flow region. A recirculation region at the lower lip of the nozzle was observed for all the separation distances and plate inclinations.
Jaques, Peter A; Gao, Pengfei; Kilinc-Balci, Selcen; Portnoff, Lee; Weible, Robyn; Horvatin, Matthew; Strauch, Amanda; Shaffer, Ronald
2016-11-01
Gowns and coveralls are important components of protective ensembles used during the management of known or suspected Ebola patients. In this study, an Elbow Lean Test was used to obtain a visual semi-quantitative measure of the resistance of medical protective garments to the penetration of two bodily fluid simulants. Tests were done on swatches of continuous and discontinuous regions of fabrics cut from five gowns and four coveralls at multiple elbow pressure levels (2-44 PSI). Swatches cut from the continuous regions of one gown and two coveralls did not have any strike-through. For discontinuous regions, only the same gown consistently resisted fluid strike-through. As hypothesized, with the exception of one garment, fluid strike-through increased with higher applied elbow pressure, was higher for lower fluid surface tension, and was higher for the discontinuous regions of the protective garments.
Dynamic Asphaltene-Stearic Acid Competition at the Oil-Water Interface.
Sauerer, Bastian; Stukan, Mikhail; Buiting, Jan; Abdallah, Wael; Andersen, Simon
2018-05-15
Interfacial tension (IFT) is one of the major parameters which govern the fluid flow in oil production and recovery. This paper investigates the interfacial activity of different natural surfactants found in crude oil. The main objective was to better understand the competition between carboxylic acids and asphaltenes on toluene/water interfaces. Dynamic IFT was measured for water-in-oil pendant drops contrary to most studies using oil-in-water drops. Stearic acid (SA) was used as model compound for surface-active carboxylic acids in crude. The influence of concentration of these species on dynamic IFT between model oil and deionized water was examined. The acid concentrations were of realistic values (total acid number 0.1 to 2 mg KOH/g oil) while asphaltene concentrations were low and set between 10 and 100 ppm. In mixtures, the initial surface pressure was entirely determined by the SA content while asphaltenes showed a slow initial diffusion to the interface followed by increased adsorption at longer times. The final surface pressure was higher for asphaltenes compared to SA, but for binaries, the final surface pressure was always lower than the sum of the individuals. At high SA concentration, surface pressures of mixtures were dominated entirely by the SA, although, Langmuir isotherm analysis shows that asphaltenes bind to the interface 200-250 times stronger than SA. The surface area/molecule for both SA and asphaltenes were found to be larger than the values reported in recent literature. Various approaches to dynamic surface adsorption were tested, showing that apparent diffusivity of asphaltenes is very low, in agreement with other works. Hence, the adsorption is apparently under barrier control. A possible hypothesis is that at the initial phase of the experiment and at lower concentration of asphaltenes, the interface is occupied by stearic acid molecules forming a dense layer of hydrocarbon chains that may repel the asphaltenes.
Allesø, Morten; Holm, Per; Carstensen, Jens Michael; Holm, René
2016-05-25
Surface topography, in the context of surface smoothness/roughness, was investigated by the use of an image analysis technique, MultiRay™, related to photometric stereo, on different tablet batches manufactured either by direct compression or roller compaction. In the present study, oblique illumination of the tablet (darkfield) was considered and the area of cracks and pores in the surface was used as a measure of tablet surface topography; the higher a value, the rougher the surface. The investigations demonstrated a high precision of the proposed technique, which was able to rapidly (within milliseconds) and quantitatively measure the obtained surface topography of the produced tablets. Compaction history, in the form of applied roll force and tablet punch pressure, was also reflected in the measured smoothness of the tablet surfaces. Generally it was found that a higher degree of plastic deformation of the microcrystalline cellulose resulted in a smoother tablet surface. This altogether demonstrated that the technique provides the pharmaceutical developer with a reliable, quantitative response parameter for visual appearance of solid dosage forms, which may be used for process and ultimately product optimization. Copyright © 2015 Elsevier B.V. All rights reserved.
Jones, S E; Ditner, S A; Freeman, C; Whitaker, C J; Lock, M A
1989-01-01
Bacterial counts obtained by using a new Anopore inorganic membrane filter were 21 to 33% higher than those obtained by using a Nuclepore polycarbonate membrane filter. In addition, the inorganic filter had higher flow rates, permitting lower vacuum pressures to be used, while the intrinsically flat, rigid surface resulted in easier focusing and sharp definition of bacteria across the whole field of view. Images PMID:2655539
Stress relaxation in quasi-two-dimensional self-assembled nanoparticle monolayers
NASA Astrophysics Data System (ADS)
Boucheron, Leandra S.; Stanley, Jacob T.; Dai, Yeling; You, Siheng Sean; Parzyck, Christopher T.; Narayanan, Suresh; Sandy, Alec R.; Jiang, Zhang; Meron, Mati; Lin, Binhua; Shpyrko, Oleg G.
2018-05-01
We experimentally probed the stress relaxation of a monolayer of iron oxide nanoparticles at the water-air interface. Upon drop-casting onto a water surface, the nanoparticles self-assembled into islands of two-dimensional hexagonally close packed crystalline domains surrounded by large voids. When compressed laterally, the voids gradually disappeared as the surface pressure increased. After the compression was stopped, the surface pressure (as measured by a Wilhelmy plate) evolved as a function of the film aging time with three distinct timescales. These aging dynamics were intrinsic to the stressed state built up during the non-equilibrium compression of the film. Utilizing x-ray photon correlation spectroscopy, we measured the characteristic relaxation time (τ ) of in-plane nanoparticle motion as a function of the aging time through both second-order and two-time autocorrelation analysis. Compressed and stretched exponential fitting of the intermediate scattering function yielded exponents (β ) indicating different relaxation mechanisms of the films under different compression stresses. For a monolayer compressed to a lower surface pressure (between 20 mN/m and 30 mN/m), the relaxation time (τ ) decreased continuously as a function of the aging time, as did the fitted exponent, which transitioned from being compressed (>1 ) to stretched (<1 ), indicating that the monolayer underwent a stress release through crystalline domain reorganization. However, for a monolayer compressed to a higher surface pressure (around 40 mN/m), the relaxation time increased continuously and the compressed exponent varied very little from a value of 1.6, suggesting that the system may have been highly stressed and jammed. Despite the interesting stress relaxation signatures seen in these samples, the structural ordering of the monolayer remained the same over the sample lifetime, as revealed by grazing incidence x-ray diffraction.
NASA Astrophysics Data System (ADS)
Mahdavi, Amirhossein; McDonald, André
2018-02-01
The final quality of cold-sprayed coatings can be significantly influenced by gas-substrate heat exchange, due to the dependence of the deposition efficiency of the particles on the substrate temperature distribution. In this study, the effect of the air temperature and pressure, as process parameters, and surface roughness and thickness, as substrate parameters, on the convective heat transfer coefficient of the impinging air jet was investigated. A low-pressure cold spraying unit was used to generate a compressed air jet that impinged on a flat substrate. A comprehensive mathematical model was developed and coupled with experimental data to estimate the heat transfer coefficient and the surface temperature of the substrate. The effect of the air total temperature and pressure on the heat transfer coefficient was studied. It was found that increasing the total pressure would increase the Nusselt number of the impinging air jet, while total temperature of the air jet had negligible effect on the Nusslet number. It was further found that increasing the roughness of the substrate enhanced the heat exchange between the impinging air jet and the substrate. As a result, higher surface temperatures on the rough substrate were measured. The study of the effect of the substrate thickness on the heat transfer coefficient showed that the Nusselt number that was predicted by the model was independent of the thickness of the substrate. The surface temperature profile, however, decreased in increasing radial distances from the stagnation point of the impinging jet as the thickness of the substrate increased. The results of the current study were aimed to inform on the influence and effect of substrate and process parameters on the gas-substrate heat exchange and the surface temperature of the substrate on the final quality of cold-sprayed coatings.
Atmospheric effects on the underground muon intensity
NASA Technical Reports Server (NTRS)
Fenton, A. G.; Fenton, K. B.; Humble, J. E.; Hyland, G. B.
1985-01-01
It has previously been reported that the barometric pressure coefficient observed for muons at Poatina (vertical absorber depth 357 hg/sq cm) appears to be appreciably higher than would be expected from atmospheric absorption alone. There is a possibility that the effect is due to an upper atmospheric temperature effect arising from an inverse correlation of surface pressure with stratospheric temperature. A new proportional telescope is discussed which has been operating at Poatina since about the beginning of 83 and which has a long term stability suitable for studying variations of atmospheric origin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, H. L.; Hirschmann, M. M.; Cottrell, E.
Experiments establishing the effect of pressure on the Fe 3+/ΣFe ratio of andesitic silicate melts buffered by coexisting Ru and RuO 2 were performed from 100 kPa to 7 GPa and 1400–1750 °C. Fe 3+/ΣFe ratios were determined by room temperature Mössbauer spectroscopy, but corrected for the effects of recoilless fraction. Fe 3+/ΣFe ratios in quenched glasses decrease with increasing pressure consistent with previous results between 100 kPa and 3 GPa (O’Neill et al., 2006), but show only small pressure effects above 5 GPa. Ratios also decrease with increasing temperature. Mössbauer hyperfine parameters indicate mean coordination of Fe 3+ ionsmore » of ~5 in glasses, with no dependence on the pressure from which the glasses were quenched, but show an increase with pressure in mean coordination of Fe 2+ ions, from ~5 to ~6. XANES spectra on these glasses show variations in pre-edge intensities and centroid positions that are systematic with Fe 3+/ΣFe, but are displaced from those established from otherwise identical andesitic glasses quenched at 100 kPa (Zhang et al., 2016). These systematics permit construction of a new XANES calibration curve relating pre-edge sub-peak intensities to Fe 3+/ΣFe applicable to high pressure glasses. Consistent with interpretations of the Mössbauer hyperfine parameters, XANES pre-edge peak features in high pressure glasses are owing chiefly to the effects of pressure on the coordination of Fe 2+ ions from ~5.5 to ~6, with negligible effects evident for Fe 3+ ions. We use the new data to construct a thermodynamic model relating the effects of oxygen fugacity and pressure on Fe 3+/ΣFe. We apply this model to calculate variations in oxygen fugacity in isochemical (constant Fe 3+/ΣFe) columns of magma representative of magma oceans, in which fO2 is fixed at the base by equilibration with molten Fe. These calculations indicate that oxygen fugacities at the surface of shallow magma oceans are more reduced than at depth. For magma oceans in which the pressure at the base is near 5 GPa, as may be appropriate for Mercury and the Moon, conditions at the surface are ~1.5 log unit more reduced at the surface than at their base. If the results calibrated up to pressures of 7 GPa can be extrapolated to higher pressures appropriate for magma oceans on larger terrestrial planets such as Mars or Earth, then conditions at the surface are ~2 or 2.5 log units more reduced at the surface than at the base, respectively. Thus, atmospheres overlying shallow magma oceans should be highly reduced and rich in H 2 and CO.« less
NASA Technical Reports Server (NTRS)
Boesch, Hartmut; Toon, G.; Sen, B; Li, Q. B.; Salawitch, R.; Miller, C.; Crisp, D.; Washenfelder, R.; Wennberg, P.; Natraj, V.;
2006-01-01
Global, space-based observations of atmospheric CO2 with precision, resolution, and coverage needed to monitor sources and sinks: a) Spectra of reflected/scattered sunlight in NIR CO2 and O2 bands used to estimate X(sub CO2) with large sensitivity to surface; b) A-train orbit (1:15 PM polar sun sync); c) 16 day repeat cycle samples seasonal cycle on semi-monthly intervals; and d) NASA ESSP (Earth Space System Pathfinder) scheduled for Sept 2008 launch; 2 yrs lifetime. Initial comparison of SCIAMACHY and FTS retrievals for Park Falls: a) Positive bias in X(sub CO2) of approx. 10 ppm; and b) Negative bias in surface pressure After correction of spectral artifacts in O2A band: a) Largely improved agreement between SCIAMACHY and FTS X(sub CO2) (without clear bias) and in surface pressure; and b) Standard deviation of SCIAMACHY X(sub CO2 approx. 6 ppm. Good qualitative agreement with GEOS-CHEM, with GEOS-CHEM underestimating seasonal cycle. OCO is a dedicated CO2 instrument and will achieve much higher accuracy and precision: a) much higher spectral resolution (by factor of 20); and b) smaller ground pixels (by factor of 600).
On heat transfer in squish gaps
NASA Astrophysics Data System (ADS)
Spurk, J. H.
1986-06-01
Attention is given to the heat transfer characteristics of a squish gap in an internal combustion engine cylinder, when the piston is nearing top dead center (TDC) on the compression stroke. If the lateral extent of the gap is much larger than its height, the inviscid flow is similar to the stagnation point flow. Surface temperature and pressure histories during compression and expansion are studied. Surface temperature has a maximum near TDC, then drops and rises again during expansion; higher values are actually achieved during expansion than during compression.
Rhenium/Oxygen Interactions at Elevated Temperatures
NASA Technical Reports Server (NTRS)
Jacobson, Nathan; Myers, Dwight; Zhu, Dong-Ming; Humphrey, Donald
2000-01-01
The oxidation of pure rhenium is examined from 600-1400 C in oxygen/argon mixtures. Linear weight loss kinetics are observed. Gas pressures, flow rates, and temperatures are methodically varied to determine the rate controlling steps. The reaction at 600 and 800 C appears to be controlled by a chemical reaction step at the surface; whereas the higher temperature reactions appear to be controlled by gas phase diffusion of oxygen to the rhenium surface. Attack of the rhenium appears to be along grain boundaries and crystallographic planes.
Controlling Structure and Properties of High Surface Area Nonwoven Materials via Hydroentangling
NASA Astrophysics Data System (ADS)
Luzius, Dennis
Hydroentangling describes a technique using a series of high-velocity water jets to mechanically interlock and entangle fibers. Over the last decades researchers worked on a fundamental understanding of the process and the factors influencing the properties of the final nonwoven material. Recent studies discovered hydroentangling to be capable to create unique, knot-like structures characterized by high- and low density regions, which are believed to have interesting properties for filtration applications. However, just little is known about the impact of hydroentangling parameters on the properties of filtration media to this day. In this study we report on the effect of various hydroentangling parameters, such as jet spacing, manifold pressure, number of manifolds but also specific energy on the structure and properties of high surface area nonwoven materials. Latter was achieved by different bicomponent fiber technologies and subsequent treatments removing the sacrificial compound from the structure. The highest BET surface area was measured to be 3.5 m2 g-1 and the smallest mean fiber size about 0.5 mum. Hydroentangling with large jet spacing was found to be a parameter significantly enhancing the filtration properties of caustic-treated island-in-the-sea nonwoven materials. Moreover, improved capture efficiencies and reduced pressure drops were achieved by reducing the manifold pressure and therefore specific energy during hydroentangling. Jet spacing but not island count was found to be the dominant factor influencing the structure and properties of island-in-the-sea nonwovens. Contrary to our initial expectations increasing the island count and thus decreasing the fiber size did not result in better filtration properties. Mixed media nonwoven structures made from homocomponent and island-in-the-sea fibers were found to have lower densities, higher air permeabilities and better quality factors compared to island-in-the-sea structures hydroentangled under the exact same conditions. Study showed the specific energy to not be an adequate measure for describing the process-structure relationship in hydroentangling. Hydroentangling with same specific energy but different manifold pressures revealed the structure and properties to be different and the peak manifold pressure to be the dominant parameter. It was further shown that hydroentangling with multiple manifolds but same water pressure influences the structure and properties of mono- and bicomponent nonwoven materials. Hydroentangling with three manifolds having the same water pressure resulted in stronger, less permeable fabrics compared to two manifolds or one manifold with the same water pressure. Necessary hydroentangling intensity for winged and island-in-the-sea nonwoven materials was found to be different. Winged fiber nonwovens required higher manifold pressures and a different energy ratio than island-in-in-the-sea nonwovens. Hydroentangling winged fiber webs with jet spacing larger than 600 mum resulted in materials too weak to withstand the caustic-treatment. Study indicated the charging potential of winged fiber nonwovens to be superior compared to island-in-the-sea-structures. In contrast to winged fiber nonwovens, island-in-the-sea structures showed higher pressure drops after corona discharge. Loading winged fiber nonwovens with potassium chloride revealed caustic-treated, IPA discharged materials to show the highest loading capacity.
Assessment of Different Biofilter Media Particle Sizes for Ammonia Removal Optimization
USDA-ARS?s Scientific Manuscript database
The main objective of this study is to determine a range of particle sizes that provides low resistance to the air flow but also sufficient surface area for microbial attachment, which is needed for higher biofiltration efficiency. This will be done by assessing ammonia removal and pressure drop in ...
Recovery of steroidal alkaloids from potato peels using pressurized liquid extraction.
Hossain, Mohammad B; Rawson, Ashish; Aguiló-Aguayo, Ingrid; Brunton, Nigel P; Rai, Dilip K
2015-05-13
A higher yield of glycoalkaloids was recovered from potato peels using pressurized liquid extraction (1.92 mg/g dried potato peels) compared to conventional solid-liquid extraction (0.981 mg/g dried potato peels). Response surface methodology deduced the optimal temperature and extracting solvent (methanol) for the pressurized liquid extraction (PLE) of glycoalkaloids as 80 °C in 89% methanol. Using these two optimum PLE conditions, levels of individual steroidal alkaloids obtained were of 597, 873, 374 and 75 µg/g dried potato peel for α-solanine, α-chaconine, solanidine and demissidine respectively. Corresponding values for solid liquid extraction were 59%, 46%, 40% and 52% lower for α-solanine, α-chaconine, solanidine and demissidine respectively.
Accelerated deflation promotes homogeneous airspace liquid distribution in the edematous lung.
Wu, You; Nguyen, Tam L; Perlman, Carrie E
2017-04-01
Edematous lungs contain regions with heterogeneous alveolar flooding. Liquid is trapped in flooded alveoli by a pressure barrier-higher liquid pressure at the border than in the center of flooded alveoli-that is proportional to surface tension, T Stress is concentrated between aerated and flooded alveoli, to a degree proportional to T Mechanical ventilation, by cyclically increasing T , injuriously exacerbates stress concentrations. Overcoming the pressure barrier to redistribute liquid more homogeneously between alveoli should reduce stress concentration prevalence and ventilation injury. In isolated rat lungs, we test whether accelerated deflation can overcome the pressure barrier and catapult liquid out of flooded alveoli. We generate a local edema model with normal T by microinfusing liquid into surface alveoli. We generate a global edema model with high T by establishing hydrostatic edema, which does not alter T , and then gently ventilating the edematous lungs, which increases T at 15 cmH 2 O transpulmonary pressure by 52%. Thus ventilation of globally edematous lungs increases T , which should increase stress concentrations and, with positive feedback, cause escalating ventilation injury. In the local model, when the pressure barrier is moderate, accelerated deflation causes liquid to escape from flooded alveoli and redistribute more equitably. Flooding heterogeneity tends to decrease. In the global model, accelerated deflation causes liquid escape, but-because of elevated T -the liquid jumps to nearby, aerated alveoli. Flooding heterogeneity is unaltered. In pulmonary edema with normal T , early ventilation with accelerated deflation might reduce the positive feedback mechanism through which ventilation injury increases over time. NEW & NOTEWORTHY We introduce, in the isolated rat lung, a new model of pulmonary edema with elevated surface tension. We first generate hydrostatic edema and then ventilate gently to increase surface tension. We investigate the mechanical mechanisms through which 1 ) ventilation injures edematous lungs and 2 ) ventilation with accelerated deflation might lessen ventilation injury. Copyright © 2017 the American Physiological Society.
Accelerated deflation promotes homogeneous airspace liquid distribution in the edematous lung
Wu, You; Nguyen, Tam L.
2017-01-01
Edematous lungs contain regions with heterogeneous alveolar flooding. Liquid is trapped in flooded alveoli by a pressure barrier—higher liquid pressure at the border than in the center of flooded alveoli—that is proportional to surface tension, T. Stress is concentrated between aerated and flooded alveoli, to a degree proportional to T. Mechanical ventilation, by cyclically increasing T, injuriously exacerbates stress concentrations. Overcoming the pressure barrier to redistribute liquid more homogeneously between alveoli should reduce stress concentration prevalence and ventilation injury. In isolated rat lungs, we test whether accelerated deflation can overcome the pressure barrier and catapult liquid out of flooded alveoli. We generate a local edema model with normal T by microinfusing liquid into surface alveoli. We generate a global edema model with high T by establishing hydrostatic edema, which does not alter T, and then gently ventilating the edematous lungs, which increases T at 15 cmH2O transpulmonary pressure by 52%. Thus ventilation of globally edematous lungs increases T, which should increase stress concentrations and, with positive feedback, cause escalating ventilation injury. In the local model, when the pressure barrier is moderate, accelerated deflation causes liquid to escape from flooded alveoli and redistribute more equitably. Flooding heterogeneity tends to decrease. In the global model, accelerated deflation causes liquid escape, but—because of elevated T—the liquid jumps to nearby, aerated alveoli. Flooding heterogeneity is unaltered. In pulmonary edema with normal T, early ventilation with accelerated deflation might reduce the positive feedback mechanism through which ventilation injury increases over time. NEW & NOTEWORTHY We introduce, in the isolated rat lung, a new model of pulmonary edema with elevated surface tension. We first generate hydrostatic edema and then ventilate gently to increase surface tension. We investigate the mechanical mechanisms through which 1) ventilation injures edematous lungs and 2) ventilation with accelerated deflation might lessen ventilation injury. PMID:27979983
NASA Astrophysics Data System (ADS)
Tseng, Yu-Chien; Li, Hsiao-Ling; Huang, Chun
2017-01-01
The surface hydrophilic activation of a polyethylene membrane separator was achieved using an atmospheric-pressure plasma jet. The surface of the atmospheric-pressure-plasma-treated membrane separator was found to be highly hydrophilic realized by adjusting the plasma power input. The variations in membrane separator chemical structure were confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Chemical analysis showed newly formed carbonyl-containing groups and high surface concentrations of oxygen-containing species on the atmospheric-pressure-plasma-treated polymeric separator surface. It also showed that surface hydrophilicity primarily increased from the polar component after atmospheric-pressure plasma treatment. The surface and pore structures of the polyethylene membrane separator were examined by scanning electron microscopy, revealing a slight alteration in the pore structure. As a result of the incorporation of polar functionalities by atmospheric-pressure plasma activation, the electrolyte uptake and electrochemical impedance of the atmospheric-pressure-plasma-treated membrane separator improved. The investigational results show that the separator surface can be controlled by atmospheric-pressure plasma surface treatment to tailor the hydrophilicity and enhance the electrochemical performance of lithium ion batteries.
NASA Astrophysics Data System (ADS)
Manikantan, Harishankar; Squires, Todd
2017-11-01
The surface viscosity of many insoluble surfactants depends strongly on the surface pressure (or surface tension) of that surfactant. Surface pressure gradients naturally arise in interfacial flows, and surface-pressure-dependent surface rheology alters 2D suspension dynamics in significant ways. We use the Lorentz reciprocal theorem to asymptotically quantify the irreversible dynamics that break Newtonian symmetries. We first show that a particle embedded in a surfactant-laden interface and translating parallel to or rotating near an interfacial boundary experiences a force in the direction perpendicular to the boundary. Building on this, we extend the theory to compute the first effects of pressure-dependent surface viscosity on 2D particle pairs in suspension. The fore-aft symmetry of pair trajectories in a Newtonian interface is lost, leading to well-separated (when pressure-thickening) or aggregated (when pressure-thinning) particles. Notably, the relative motion is kinematically irreversible, and pairs steadily evolve toward a particular displacement. Based on these irreversible pair interactions, we hypothesize that pressure-thickening (or -thinning) leads to shear-thinning (or -thickening) in 2D suspensions.
Pressure mapping and performance of the compression bandage/garment for venous leg ulcer treatment.
Ghosh, S; Mukhopadhyay, A; Sikka, M; Nagla, K S
2008-08-01
A study has been conducted on the commercially available compression bandages as regards their performance with time. Pressure mapping of these bandages has been done using a fabricated pressure-measuring device on a mannequin leg to see the effect on pressure due to creep, fabric friction and angle of bandaging. The results show that the creep behavior, frictional behavior and the angle of bandaging have a significant effect on the pressure profile generated by the bandages during application. The regression analysis shows that the surface friction restricts the slippage in a multilayer system. Also the diameters of the limb and the amount of stretch given to the bandage during application have definite impact on the bandage pressure. In case of compression garments, washing improves the pressure generated but not to the extent of the pressure of a virgin garment. Comparing the two compression materials i.e. bandage and garment, it is found that the presence of higher percentage of elastomeric material and a highly close construction in case of garment provides better holding power and a more homogeneous pressure distribution.
Precipitation Climatology on Titan-like Exomoons.
Tokano, Tetsuya
2015-06-01
The availability of liquid water on the surface on Earth's continents in part relies on the precipitation of water. This implies that the habitability of exomoons has to consider not only the surface temperature and atmospheric pressure for the presence of liquid water, but also the global precipitation climatology. This study explores the sensitivity of the precipitation climatology of Titan-like exomoons to these moons' orbital configuration using a global climate model. The precipitation rate primarily depends on latitude and is sensitive to the planet's obliquity and the moon's rotation rate. On slowly rotating moons the precipitation shifts to higher latitudes as obliquity is increased, whereas on quickly rotating moons the latitudinal distribution does not strongly depend on obliquity. Stellar eclipse can cause a longitudinal variation in the mean surface temperature and surface pressure between the subplanetary and antiplanetary side if the planet's obliquity and the moon's orbital distance are small. In this particular condition the antiplanetary side generally receives more precipitation than the subplanetary side. However, precipitation on exomoons with dense atmospheres generally occurs at any longitude in contrast to tidally locked exoplanets.
NASA Astrophysics Data System (ADS)
Ma, C. Y.; Lapostolle, F.; Briois, P.; Zhang, Q. Y.
2007-08-01
Amorphous and polycrystalline zirconium oxide thin films have been deposited by reactive rf magnetron sputtering in a mixed argon/oxygen or pure oxygen atmosphere with no intentional heating of the substrate. The films were characterized by high-resolution transmission electron microscopy (HR-TEM), atomic force microscopy (AFM), spectroscopic ellipsometry (SE), and capacitance versus voltage ( C- V) measurements to investigate the variation of structure, surface morphology, thickness of SiO 2-like interfacial layer as well as dielectric characteristics with different oxygen partial pressures. The films deposited at low oxygen partial pressures (less than 15%) are amorphous and dense with a smooth surface. In contrast, the films prepared at an oxygen partial pressure higher than 73% are crystallized with the microstructure changing from the mixture of monoclinic and tetragonal phases to a single monoclinic structure. The film structural transition is believed to be consequences of decrease in the oxygen vacancy concentration in the film and of increase of the energetically neutral particles in the plasma due to an increased oxygen partial pressure. SE measurements showed that significant interfacial SiO 2 growth has taken place above approximately 51%. The best C- V results in terms of relative dielectric constant values are obtained for thin films prepared at an oxygen partial pressure of 15%.
NASA Technical Reports Server (NTRS)
Jeanloz, R.; Ahrens, T. J.
1979-01-01
The shock wave (Hugoniot) data on single crystal and porous anorthite (CaAl2Si208) to pressures of 120 GPa are presented. These data are inverted to yield high pressure values of the Grueneisen parameter, adiabatic bulk modulus, and coefficient of thermal expansion over a broad range of pressures and temperatures which in turn are used to reduce the raw Hugoniot data and construct an experimentally based, high pressure thermal equation of state for anorthite. The hypothesis that higher order anharmonic contributions to the thermal properties decrease more rapidly upon compression than the lowest order anharmonicities is supported. The properties of anorthite corrected to lower mantle conditions show that although the density of anorthite is comparable to that of the lower most mantle, its bulk modulus is considerably less, hence making enrichment in the mantle implausible except perhaps near its base.
Xie, Bo; Xing, Yonghao; Wang, Yanshuang; Chen, Jian; Chen, Deyong; Wang, Junbo
2015-09-21
This paper presents the fabrication and characterization of a resonant pressure microsensor based on SOI-glass wafer-level vacuum packaging. The SOI-based pressure microsensor consists of a pressure-sensitive diaphragm at the handle layer and two lateral resonators (electrostatic excitation and capacitive detection) on the device layer as a differential setup. The resonators were vacuum packaged with a glass cap using anodic bonding and the wire interconnection was realized using a mask-free electrochemical etching approach by selectively patterning an Au film on highly topographic surfaces. The fabricated resonant pressure microsensor with dual resonators was characterized in a systematic manner, producing a quality factor higher than 10,000 (~6 months), a sensitivity of about 166 Hz/kPa and a reduced nonlinear error of 0.033% F.S. Based on the differential output, the sensitivity was increased to two times and the temperature-caused frequency drift was decreased to 25%.
A Lateral Differential Resonant Pressure Microsensor Based on SOI-Glass Wafer-Level Vacuum Packaging
Xie, Bo; Xing, Yonghao; Wang, Yanshuang; Chen, Jian; Chen, Deyong; Wang, Junbo
2015-01-01
This paper presents the fabrication and characterization of a resonant pressure microsensor based on SOI-glass wafer-level vacuum packaging. The SOI-based pressure microsensor consists of a pressure-sensitive diaphragm at the handle layer and two lateral resonators (electrostatic excitation and capacitive detection) on the device layer as a differential setup. The resonators were vacuum packaged with a glass cap using anodic bonding and the wire interconnection was realized using a mask-free electrochemical etching approach by selectively patterning an Au film on highly topographic surfaces. The fabricated resonant pressure microsensor with dual resonators was characterized in a systematic manner, producing a quality factor higher than 10,000 (~6 months), a sensitivity of about 166 Hz/kPa and a reduced nonlinear error of 0.033% F.S. Based on the differential output, the sensitivity was increased to two times and the temperature-caused frequency drift was decreased to 25%. PMID:26402679
Sound field inside acoustically levitated spherical drop
NASA Astrophysics Data System (ADS)
Xie, W. J.; Wei, B.
2007-05-01
The sound field inside an acoustically levitated small spherical water drop (radius of 1mm) is studied under different incident sound pressures (amplitude p0=2735-5643Pa). The transmitted pressure ptr in the drop shows a plane standing wave, which varies mainly in the vertical direction, and distributes almost uniformly in the horizontal direction. The maximum of ptr is always located at the lowermost point of the levitated drop. Whereas the secondary maximum appears at the uppermost point if the incident pressure amplitude p0 is higher than an intermediate value (3044Pa), in which there exists a pressure nodal surface in the drop interior. The value of the maximum ptr lies in a narrow range of 2489-3173Pa, which has a lower limit of 2489Pa when p0=3044Pa. The secondary maximum of ptr is rather small and only remarkable at high incident pressures.
Multistep building of a soft plant protein film at the air-water interface.
Poirier, Alexandre; Banc, Amélie; Stocco, Antonio; In, Martin; Ramos, Laurence
2018-09-15
Gliadins are edible wheat storage proteins well known for their surface active properties. In this paper, we present experimental results on the interfacial properties of acidic solutions of gliadin studied over 5 decades of concentrations, from 0.001 to 110 g/L. Dynamic pendant drop tensiometry reveals that the surface pressure Π of gliadin solutions builds up in a multistep process. The series of curves of the time evolution of Π collected at different bulk protein concentrations C can be merged onto a single master curve when Π is plotted as a function of αt where t is the time elapsed since the formation of the air/water interface and α is a shift parameter that varies with C as a power law with an exponent 2. The existence of such time-concentration superposition, which we evidence for the first time, indicates that the same mechanisms govern the surface tension evolution at all concentrations and are accelerated by an increase of the bulk concentration. The scaling of α with C is consistent with a kinetic of adsorption controlled by the diffusion of the proteins in the bulk. Moreover, we show that the proteins adsorption at the air/water interface is kinetically irreversible. Correlated evolutions of the optical and elastic properties of the interfaces, as probed by ellipsometry and surface dilatational rheology respectively, provide a consistent physical picture of the building up of the protein interfacial layer. A progressive coverage of the interface by the proteins occurs at low Π. This stage is followed, at higher Π, by conformational rearrangements of the protein film, which are identified by a strong increase of the dissipative viscoelastic properties of the film concomitantly with a peculiar evolution of its optical profile that we have rationalized. In the last stage, at even higher surface pressure, the adsorption is arrested; the optical profile is not modified while the elasticity of the interfacial layer dramatically increases with the surface pressure, presumably due to the film ageing. Copyright © 2018 Elsevier Inc. All rights reserved.
Thermodynamic constrains for life based on non-aqueous polar solvents on free-floating planets.
Badescu, Viorel
2011-02-01
Free-floating planets (FFPs) might originate either around a star or in solitary fashion. These bodies can retain molecular gases atmospheres which, upon cooling, have basal pressures of tens of bars or more. Pressure-induced opacity of these gases prevents such a body from eliminating its internal radioactive heat and its surface temperature can exceed for a long term the melting temperature of a life-supporting solvent. In this paper two non-aqueous but still polar solvents are considered: hydrogen sulfide and ammonia. Thermodynamic requirements to be fulfilled by a hypothetic gas constituent of a life-supporting FFP's atmosphere are studied. The three gases analyzed here (nitrogen, methane and ethane) are candidates. We show that bodies with ammonia oceans are possible in interstellar space. This may happen on FFPs of (significantly) smaller or larger mass than the Earth. Generally, in case of FFP smaller in size than the Earth, the atmosphere exhibits a convective layer near the surface and a radiative layer at higher altitudes while the atmosphere of FFPs larger in size than Earth does not exhibit a convective layer. The atmosphere mass of a life-hosting FFP of Earth size is two or three orders of magnitude larger than the mass of Earth atmosphere. For FFPs larger than the Earth and specific values of surface pressure and temperature, there are conditions for condensation (in the ethane atmosphere). Some arguments induce the conclusion than the associated surface pressures and temperatures should be treated with caution as appropriate life conditions.
Ultra-high pressure water jetting for coating removal and surface preparation
NASA Technical Reports Server (NTRS)
Johnson, Spencer T.
1995-01-01
This paper shall examine the basics of water technology with particular attention paid to systems currently in use and some select new applications. By providing an overview of commercially available water jet systems in the context of recent case histories, potential users may evaluate the process for future applications. With the on going introduction of regulations prohibiting the use of chemical paint strippers, manual scrapping and dry abrasive media blasting, the need for an environmentally compliant coating removal process has been mandated. Water jet cleaning has been a traditional part of many industrial processed for year, although it has only been in the last few years that reliable pumping equipment capable of ultra-high pressure operation have become available. With the advent of water jet pumping equipment capable of sustaining pressures in excess of 36,000 psi. there has been shift away from lower pressure, high water volume systems. One of the major factors in driving industry to seek higher pressures is the ability to offer higher productivity rates while lowering the quantity of water used and subsequently reprocessed. Among benefits of the trend toward higher pressure/lower volume systems is the corresponding reduction in water jet reaction forces making hand held water jetting practical and safe. Other unique applications made possible by these new generation pumping systems include the use of alternative fluids including liquid ammonia for specialized and hazardous material removal applications. A review of the equipment used and the required modifications will be presented along with the conclusions reached reached during this test program.
Survey of Tsunamis Formed by Atmospheric Forcing on the East Coast of the United States
NASA Astrophysics Data System (ADS)
Lodise, J.; Shen, Y.; Wertman, C. A.
2014-12-01
High-frequency sea level oscillations along the United States East Coast have been linked to atmospheric pressure disturbances observed during large storm events. These oscillations have periods similar to tsunami events generated by earthquakes and submarine landslides, but are created by moving surface pressure anomalies within storm systems such as mesoscale convective systems or mid-latitude cyclones. Meteotsunamis form as in-situ waves, directly underneath a moving surface pressure anomaly. As the pressure disturbances move off the east coast of North America and over the continental shelf in the Atlantic Ocean, Proudman resonance, which is known to enhance the amplitude of the meteotsunami, may occur when the propagation speed of the pressure disturbance is equal to that of the shallow water wave speed. At the continental shelf break, some of the meteotsunami waves are reflected back towards the coast. The events we studied date from 2007 to 2014, most of which were identified using an atmospheric pressure anomaly detection method applied to atmospheric data from two National Data Buoy Center stations: Cape May, New Jersey and Newport, Rhode Island. The coastal tidal records used to observe the meteotsunami amplitudes include Montauk, New York; Atlantic City, New Jersey; and Duck, North Carolina. On average, meteotsunamis ranging from 0.1m to 1m in amplitude occurred roughly twice per month, with meteotsunamis larger than 0.4m occurring approximately 4 times per year, a rate much higher than previously reported. For each event, the amplitude of the recorded pressure disturbance was compared to the meteotsunami amplitude, while radar and bathymetry data were analyzed to observe the influence of Proudman resonance on the reflected meteotsunami waves. In-situ meteotsunami amplitudes showed a direct correlation with the amplitude of pressure disturbances. Meteotsunamis reflected off the continental shelf break were generally higher in amplitude when the average storm speed was closer to that of the shallow water wave speed, which suggests that Proudman resonance has a significant influence on meteotsunami amplitude over the continental shelf. Through the application of these findings the frequency and severity of future meteotsunamis can be better predicted along the east coast of the United States.
Probing softness of the parietal pleural surface at the micron scale
Kim, Jae Hun; Butler, James P.; Loring, Stephen H.
2011-01-01
The pleural surfaces of the chest wall and lung slide against each other, lubricated by pleural fluid. During sliding motion of soft tissues, shear induced hydrodynamic pressure deforms the surfaces, promoting uniformity of the fluid layer thickness, thereby reducing friction. To assess pleural deformability at length scales comparable to pleural fluid thickness, we measured the modulus of the parietal pleura of rat chest wall using atomic force microscopy (AFM) to indent the pleural surface with spheres (radius 2.5 µm and 5 µm). The pleura exhibited two distinct indentation responses depending on location, reflecting either homogeneous or significantly heterogeneous tissue properties. We found an elastic modulus of 0.38–0.95 kPa, lower than the values measured using flat-ended cylinders > 100 µm radii (Gouldstone et al., 2003, Journal of Applied Physiology 95, 2345–2349). Interestingly, the pleura exhibited a three-fold higher modulus when probed using 2.5 µm vs. 5 µm spherical tips at the same normalized depth, confirming depth dependent inhomogeneous elastic properties. The observed softness of the pleura supports the hypothesis that unevenness of the pleural surface on this scale is smoothed by local hydrodynamic pressure. PMID:21820660
Experimental Investigation of Transition to Turbulence as Affected By Passing Wakes
NASA Technical Reports Server (NTRS)
Kaszeta, Richard W.; Ashpis, David E.; Simon, Terrence W.
2001-01-01
This paper presents experimental results from a study of the effects of periodically passing wakes upon laminar-to-turbulent transition and separation in a low-pressure turbine passage. The test section geometry is designed to simulate unsteady wakes in turbine engines for studying their effects on boundary layers and separated flow regions over the suction surface by using a single suction surface and a single pressure surface to simulate a single turbine blade passage. Single-wire, thermal anemometry techniques are used to measure time-resolved and phase averaged, wall-normal profiles of velocity, turbulence intensity and intermittency at multiple streamwise locations over the turbine airfoil suction surface. These data are compared to steady-state wake-free data collected in the same geometry to identify the effects of wakes upon laminar-to-turbulent transition. Results are presented for flows with a Reynolds number based on suction surface length and stage exit velocity of 50,000 and an approach flow turbulence intensity of 2.5%. While both existing design and experimental data are primarily concerned with higher Reynolds number flows (Re greater than 100,000), recent advances in gas turbine engines, and the accompanying increase in laminar and transitional flow effects, have made low-Re research increasingly important. From the presented data, the effects of passing wakes on transition and separation in the boundary layer, due to both increased turbulence levels and varying streamwise pressure gradients are presented. The results show how the wakes affect transition. The wakes affect the flow by virtue of their difference in turbulence levels and scales from those of the free-stream and by virtue of their ensemble- averaged velocity deficits, relative to the free-stream velocity, and the concomitant changes in angle of attack and temporal pressure gradients. The relationships between the velocity oscillations in the freestream and the unsteady velocity profile shapes in the near-wall flow are described. In this discussion is support for the theory that bypass transition is a response of the near-wall viscous layer to pressure fluctuations imposed upon it from the free-stream flow. Recent transition models are based on that premise. The data also show a significant lag between when the wake is present over the surface and when transition begins.cous layer to pressure fluctuations imposed upon it from the free-stream flow. Recent transition models are based on that premise. The data also show a significant lag between when the wake is present over the surface and when transition begins.cous layer to pressure fluctuations imposed upon it from the free-stream flow. Recent transition models are based on that premise. The data also show a significant lag between when the wake is present over the surface and when transition begins.
Acoustical properties of individual liposome-loaded microbubbles.
Luan, Ying; Faez, Telli; Gelderblom, Erik; Skachkov, Ilya; Geers, Bart; Lentacker, Ine; van der Steen, Ton; Versluis, Michel; de Jong, Nico
2012-12-01
A comparison between phospholipid-coated microbubbles with and without liposomes attached to the microbubble surface was performed using the ultra-high-speed imaging camera (Brandaris 128). We investigated 73 liposome-loaded microbubbles (loaded microbubbles) and 41 microbubbles without liposome loading (unloaded microbubbles) with a diameter ranging from 3-10 μm at frequencies ranging from 0.6-3.8 MHz and acoustic pressures ranging from 5-100 kPa. The experimental data showed nearly the same shell elasticity for the loaded and unloaded bubbles, but the shell viscosity was higher for loaded bubbles compared with unloaded bubbles. For loaded bubbles, a higher pressure threshold for the bubble vibrations was noticed. In addition, an "expansion-only" behavior was observed for up to 69% of the investigated loaded bubbles, which mostly occurred at low acoustic pressures (≤30 kPa). Finally, fluorescence imaging showed heterogeneity of liposome distributions of the loaded bubbles. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Activation of respiratory muscles during respiratory muscle training.
Walterspacher, Stephan; Pietsch, Fabian; Walker, David Johannes; Röcker, Kai; Kabitz, Hans-Joachim
2018-01-01
It is unknown which respiratory muscles are mainly activated by respiratory muscle training. This study evaluated Inspiratory Pressure Threshold Loading (IPTL), Inspiratory Flow Resistive Loading (IFRL) and Voluntary Isocapnic Hyperpnea (VIH) with regard to electromyographic (EMG) activation of the sternocleidomastoid muscle (SCM), parasternal muscles (PARA) and the diaphragm (DIA) in randomized order. Surface EMG were analyzed at the end of each training session and normalized using the peak EMG recorded during maximum inspiratory maneuvers (Sniff nasal pressure: SnPna, maximal inspiratory mouth occlusion pressure: PImax). 41 healthy participants were included. Maximal activation was achieved for SCM by SnPna; the PImax activated predominantly PARA and DIA. Activations of SCM and PARA were higher in IPTL and VIH than for IFRL (p<0.05). DIA was higher applying IPTL compared to IFRL or VIH (p<0.05). IPTL, IFRL and VIH differ in activation of inspiratory respiratory muscles. Whereas all methods mainly stimulate accessory respiratory muscles, diaphragm activation was predominant in IPTL. Copyright © 2017 Elsevier B.V. All rights reserved.
Application of photon Doppler velocimetry to direct impact Hopkinson pressure bars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lea, Lewis J., E-mail: ll379@cam.ac.uk; Jardine, Andrew P.
2016-02-15
Direct impact Hopkinson pressure bar systems offer many potential advantages over split Hopkinson pressure bars, including access to higher strain rates, higher strains for equivalent striker velocity and system length, lower dispersion, and faster achievement of force equilibrium. Currently, these advantages are gained at the expense of all information about the striker impacted specimen face, preventing the experimental determination of force equilibrium, and requiring approximations to be made on the sample deformation history. In this paper, we discuss an experimental method and complementary data analysis for using photon Doppler velocimetry to measure surface velocities of the striker and output barsmore » in a direct impact bar experiment, allowing similar data to be recorded as in a split bar system. We discuss extracting velocity and force measurements, and the precision of measurements. Results obtained using the technique are compared to equivalent split bar tests, showing improved stress measurements for the lowest and highest strains in fully dense metals, and improvement for all strains in slow and non-equilibrating materials.« less
Extraction of essential oil from Bunium Persicum (Boiss.) by instant controlled pressure drop (DIC).
Feyzi, Elnaz; Eikani, Mohammad H; Golmohammad, Fereshteh; Tafaghodinia, Bahram
2017-12-29
Essential oils extraction from Bunium Persicum (Boiss) was performed using instant controlled pressure drop (in French: Détente Instantanée Contrôlée or DIC) thechnology and optimum extraction conditions were obtained. Response surface methodology (RSM) was used to determine the optimal conditions and the results were 20s heating time, 3.5bar pressure, 0.44mm particle diameter and 9 cycles. Essential oils extraction was also compared with Hydrodistillation (HD), ultrasound-assisted extraction (UAE) and Soxhlet (SOX) extraction. Results show higher efficiency of the DIC than other methods and more oxygenated components were observed. Impact of DIC, HD, UAE and SOX on the morphological structure of the plant was studied by SEM. Antioxidant activity and total phenolic content (TPC) of the extract were determined and comapred by HD. Results show that DIC facilitates achieving to higher TPC and more antioxidant activity. Copyright © 2017 Elsevier B.V. All rights reserved.
Evaluation of Filtration and UV Disinfection for Inactivation of ...
This study evaluated filtration and disinfection processes for removal and inactivation of pathogens in non-community water systems (NCWS) in two surface water supplies. Pretreatment systems included 1) pressure sand filtration, and 2) granular activated carbon adsorption, and 3) cartridge filtration. Two types of low-pressure UV systems were evaluated with and without pretreatment systems. The presentation will provide results for removal of particles and inactivation of MS2 bacteriophage (a viral surrogate) on two surface waters in northeastern Minnesota. Several studies, including a recent study conducted by Minnesota Department of Health (MDH), show that viruses occur in groundwater at a higher rate than expected. Based on preliminary results in Minnesota, virus occurrence appears to be correlated with recharge events such as heavy rainfall and snowmelt. These recharge events are predicted to become more extreme due to climate change impacts. Filtration, ultraviolet (UV) disinfection, and chlorination, can provide a multi-barrier approach for removal or inactivation of pathogens and DBP precursors in both groundwater and surface water systems.
Atmospheric pressure plasma-assisted femtosecond laser engraving of aluminium
NASA Astrophysics Data System (ADS)
Gerhard, Christoph; Gimpel, Thomas; Tasche, Daniel; Koch née Hoffmeister, Jennifer; Brückner, Stephan; Flachenecker, Günter; Wieneke, Stephan; Schade, Wolfgang; Viöl, Wolfgang
2018-05-01
In this contribution, we report on the impact of direct dielectric barrier discharge argon plasma at atmospheric pressure on femtosecond laser engraving of aluminium. It is shown that the assisting plasma strongly affects the surface geometry and formation of spikes of both laser-engraved single lines and patterns of adjacent lines with an appropriate overlap. Further, it was observed that the overall ablation depth is significantly increased in case of large-scale patterning whereas no notable differences in ablation depth are found for single lines. Several possible mechanisms and underlying effects of this behaviour are suggested. The increase in ablation depth is supposed to be due to a plasma-induced removal of debris particles from the cutting point via charging and oxidation as supported by EDX analysis of the re-solidified debris. Furthermore, the impact of a higher degree of surface wrinkling as well as direct interactions of plasma species with the aluminium surface on the ablation process are discussed.
Gugliotti, M; Chaimovich, H; Politi, M J
2000-02-15
Fusion of vesicles with the air-water interface and consequent monolayer formation has been studied as a function of temperature. Unilamellar vesicles of DMPC, DPPC, and DODAX (X=Cl(-), Br(-)) were injected into a subphase containing NaCl, and the surface pressure (tension) was recorded on a Langmuir Balance (Tensiometer) using the Wilhelmy plate (Ring) method. For the zwitterionic vesicles, plots of the initial surface pressure increase rate (surface tension decrease rate) as a function of temperature show a peak at the phase transition temperature (T(m)) of the vesicles, whereas for ionic ones they show a sharp rise. At high concentrations of NaCl, ionic DODA(Cl) vesicles seem to behave like zwitterionic ones, and the rate of fusion is higher at the T(m). The influence of size was studied comparing large DODA(Cl) vesicles with small sonicated ones, and no significant changes were found regarding the rate of fusion with the air-water interface.
NASA Astrophysics Data System (ADS)
Hong, Seokmin; Song, Jaemin; Kim, Min-Chul; Choi, Kwon-Jae; Lee, Bong-Sang
2016-03-01
The effects of microstructural changes in heavy-section Mn-Mo-Ni low alloy steel on Charpy impact properties were investigated using a 210 mm thick reactor pressure vessel. Specimens were sampled from 5 different positions at intervals of 1/4 thickness from the inner surface to the outer surface. A detailed microstructural analysis of impact-fractured specimens showed that coarse carbides along the lath boundaries acted as fracture initiation sites, and cleavage cracks deviated at prior-austenite grain boundaries and bainite lath boundaries. Upper shelf energy was higher and energy transition temperature was lower at the surface positon, where fine bainitic microstructure with homogeneously distributed fine carbides were present. Toward the center, coarse upper bainite and precipitation of coarse inter-lath carbides were observed, which deteriorated impact properties. At the 1/4T position, the Charpy impact properties were worse than those at other positions owing to the combination of elongated-coarse inter-lath carbides and large effective grain size.
Performance of LI-1542 reusable surface insulation system in a hypersonic stream
NASA Technical Reports Server (NTRS)
Hunt, L. R.; Bohon, H. L.
1974-01-01
The thermal and structural performance of a large panel of LI-1542 reusable surface insulation tiles was determined by a series of cyclic heating tests using radiant lamps and aerothemal tests in the Langley 8-foot high-temperature structures tunnel. Aerothermal tests were conducted at a free-stream Mach number of 6.6, a total temperature of 1830 K, Reynolds numbers of 2.0 and 4,900,000 per meter, and dynamic pressures of 29 and 65 kPa. The results suggest that pressure gradients in gaps and flow impingement on the header walls at the end of longitudinal gaps are sources for increased gap heating. Temperatures higher than surface radiation equilibrium temperature were measured deep in gaps and at the header walls. Also, the damage tolerance of the LI-1542 tiles appears to be very high. Tile edge erosion rate was slow; could not be tolerated in a shuttle application. Tiles soaked with water and subjected to rapid depressurization and aerodynamic heating showed no visible evidence of damage.
NASA Technical Reports Server (NTRS)
Poe, Clarence C., Jr.
1991-01-01
A study was made to determine the relevance of impacter shape to nonvisible damage and tensile residual strength of a 36 mm thick graphite/epoxy motor case. The shapes of the impacters were as follows: 12.7 mm and 25.4 mm diameter hemispheres, a sharp corner, and a 6.3 mm diameter bolt-like rod. The investigation revealed that damage initiated when the contact pressure exceeded a critical level. However, the damage was not visible on the surface until an even higher pressure was exceeded. The impact energy to initiate damage or cause visible damage on the surface increased approximately with impacter diameter to the third power. The reduction in strength for nonvisible damage increased with increasing diameter, 9 and 30 percent for the 12.7 mm and 25.4 mm diameter hemispheres, respectively. The corner impacter made visible damage on the surface for even the smallest impact energy. The rod impacter acted like a punch and sliced through the composite. Even so, the critical level of pressure to initiate damage was the same for the rod and hemispherical impacters. Factors of safety for nonvisible damage increased with increasing kinetic energy of impact. The effects of impacter shape on impact force, damage size, damage visibility, and residual tensile strength were predicted quite well assuming Hertzian contact and using maximum stress criteria and a surface crack analysis.
Water adsorbate phases on ZnO and impact of vapor pressure on the equilibrium shape of nanoparticles
NASA Astrophysics Data System (ADS)
Kenmoe, Stephane; Biedermann, P. Ulrich
2018-02-01
ZnO nanoparticles are used as catalysts and have potential applications in gas-sensing and solar energy conversion. A fundamental understanding of the exposed crystal facets, their surface chemistry, and stability as a function of environmental conditions is essential for rational design and improvement of synthesis and properties. We study the stability of water adsorbate phases on the non-polar low-index (10 1 ¯ 0 ) and (11 2 ¯ 0 ) surfaces from low coverage to multilayers using ab initio thermodynamics. We show that phonon contributions and the entropies due to a 2D lattice gas at low coverage and multiple adsorbate configurations at higher coverage have an important impact on the stability range of water adsorbate phases in the (T,p) phase diagram. Based on this insight, we compute and analyze the possible growth mode of water films for pressures ranging from UHV via ambient conditions to high pressures and the impact of water adsorption on the equilibrium shape of nanoparticles in a humid environment. A 2D variant of the Wulff construction shows that the (10 1 ¯ 0 ) and (11 2 ¯ 0 ) surfaces coexist on 12-faceted prismatic ZnO nanoparticles in dry conditions, while in humid environment, the (10 1 ¯ 0 ) surface is selectively stabilized by water adsorption resulting in hexagonal prisms.
NASA Astrophysics Data System (ADS)
Parlak, Zekeriya
2018-05-01
Design concept of microchannel heat exchangers is going to plan with new flow microchannel configuration to reduce the pressure drop and improve heat transfer performance. The study aims to find optimum microchannel design providing the best performance of flow and heat transfer characterization in a heat sink. Therefore, three different types of microchannels in which water is used, straight, wavy and zigzag have been studied. The optimization operation has been performed to find optimum geometry with ANSYS's Response Surface Optimization Tool. Primarily, CFD analysis has been performed by parameterizing a wavy microchannel geometry. Optimum wavy microchannel design has been obtained by the response surface created for the range of velocity from 0.5 to 5, the range of amplitude from 0.06 to 0.3, the range of microchannel height from 0.1 to 0.2, the range of microchannel width from 0.1 to 0.2 and range of sinusoidal wave length from 0.25 to 2.0. All simulations have been performed in the laminar regime for Reynolds number ranging from 100 to 900. Results showed that the Reynolds number range corresponding to the industrial pressure drop limits is between 100 and 400. Nu values obtained in this range for optimum wavy geometry were found at a rate of 10% higher than those of the zigzag channel and 40% higher than those of the straight channels. In addition, when the pressure values of the straight channel did not exceed 10 kPa, the inlet pressure data calculated for zigzag and wavy channel data almost coincided with each other.
Pressure estimation from single-snapshot tomographic PIV in a turbulent boundary layer
NASA Astrophysics Data System (ADS)
Schneiders, Jan F. G.; Pröbsting, Stefan; Dwight, Richard P.; van Oudheusden, Bas W.; Scarano, Fulvio
2016-04-01
A method is proposed to determine the instantaneous pressure field from a single tomographic PIV velocity snapshot and is applied to a flat-plate turbulent boundary layer. The main concept behind the single-snapshot pressure evaluation method is to approximate the flow acceleration using the vorticity transport equation. The vorticity field calculated from the measured instantaneous velocity is advanced over a single integration time step using the vortex-in-cell (VIC) technique to update the vorticity field, after which the temporal derivative and material derivative of velocity are evaluated. The pressure in the measurement volume is subsequently evaluated by solving a Poisson equation. The procedure is validated considering data from a turbulent boundary layer experiment, obtained with time-resolved tomographic PIV at 10 kHz, where an independent surface pressure fluctuation measurement is made by a microphone. The cross-correlation coefficient of the surface pressure fluctuations calculated by the single-snapshot pressure method with respect to the microphone measurements is calculated and compared to that obtained using time-resolved pressure-from-PIV, which is regarded as benchmark. The single-snapshot procedure returns a cross-correlation comparable to the best result obtained by time-resolved PIV, which uses a nine-point time kernel. When the kernel of the time-resolved approach is reduced to three measurements, the single-snapshot method yields approximately 30 % higher correlation. Use of the method should be cautioned when the contributions to fluctuating pressure from outside the measurement volume are significant. The study illustrates the potential for simplifying the hardware configurations (e.g. high-speed PIV or dual PIV) required to determine instantaneous pressure from tomographic PIV.
Ultrasound pressure distributions generated by high frequency transducers in large reactors.
Leong, Thomas; Coventry, Michael; Swiergon, Piotr; Knoerzer, Kai; Juliano, Pablo
2015-11-01
The performance of an ultrasound reactor chamber relies on the sound pressure level achieved throughout the system. The active volume of a high frequency ultrasound chamber can be determined by the sound pressure penetration and distribution provided by the transducers. This work evaluated the sound pressure levels and uniformity achieved in water by selected commercial scale high frequency plate transducers without and with reflector plates. Sound pressure produced by ultrasonic plate transducers vertically operating at frequencies of 400 kHz (120 W) and 2 MHz (128 W) was characterized with hydrophones in a 2 m long chamber and their effective operating distance across the chamber's vertical cross section was determined. The 2 MHz transducer produced the highest pressure amplitude near the transducer surface, with a sharp decline of approximately 40% of the sound pressure occurring in the range between 55 and 155 mm from the transducer. The placement of a reflector plate 500 mm from the surface of the transducer was shown to improve the sound pressure uniformity of 2 MHz ultrasound. Ultrasound at 400 kHz was found to penetrate the fluid up to 2 m without significant losses. Furthermore, 400 kHz ultrasound generated a more uniform sound pressure distribution regardless of the presence or absence of a reflector plate. The choice of the transducer distance to the opposite reactor wall therefore depends on the transducer plate frequency selected. Based on pressure measurements in water, large scale 400 kHz reactor designs can consider larger transducer distance to opposite wall and larger active cross-section, and therefore can reach higher volumes than when using 2 MHz transducer plates. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.
Development of low-stress Iridium coatings for astronomical x-ray mirrors
NASA Astrophysics Data System (ADS)
Döhring, Thorsten; Probst, Anne-Catherine; Stollenwerk, Manfred; Wen, Mingwu; Proserpio, Laura
2016-07-01
Previously used mirror technologies are not suitable for the challenging needs of future X-ray telescopes. This is why the required high precision mirror manufacturing triggers new technical developments around the world. Some aspects of X-ray mirrors production are studied within the interdisciplinary project INTRAAST, a German acronym for "industry transfer of astronomical mirror technologies". The project is embedded in a cooperation of Aschaffenburg University of Applied Sciences and the Max-Planck-Institute for extraterrestrial Physics. One important task is the development of low-stress Iridium coatings for X-ray mirrors based on slumped thin glass substrates. The surface figure of the glass substrates is measured before and after the coating process by optical methods. Correlating the surface shape deformation to the parameters of coating deposition, here especially to the Argon sputtering pressure, allows for an optimization of the process. The sputtering parameters also have an influence on the coating layer density and on the micro-roughness of the coatings, influencing their X-ray reflection properties. Unfortunately the optimum coating process parameters seem to be contrarious: low Argon pressure resulted in better micro-roughness and higher density, whereas higher pressure leads to lower coating stress. Therefore additional measures like intermediate coating layers and temperature treatment will be considered for further optimization. The technical approach for the low-stress Iridium coating development, the experimental equipment, and the obtained first experimental results are presented within this paper.
Bidirectional Brush Seals: Post-Test Analysis
NASA Technical Reports Server (NTRS)
Hendricks, Robert C.; Wilson, Jack; Wu, Tom Y.; Flower, Ralph; Mullen, Robert L.
1997-01-01
A post-test analysis of a set of inside-diameter/outside-diameter (ID/OD) bidirectional brush seals used in three-port wave rotor tests was undertaken to determine brush bristle and configuration wear, pullout, and rotor coating wear. The results suggest that sharp changes in the pressure profiles were not well reflected in bristle tip configuration patterns or wear. Also, positive-to-negative changes in axial pressure gradients appeared to have little effect on the backing plates. Although the brushes had similar porosities, they had very different unpacked arrays. This difference could explain the departure of experimental data from computational fluid dynamics flow predictions for well-packed arrays at higher pressure drops. The rotor wear led to "car-track" scars (upper and lower wear bands) with a whipped surface between the bands. Those bands may have resulted from bristle stiffening at the fence and gap plates during alternate portions of the rotor cycle. Within the bristle response range the wear surface reflected the pressure distribution effect on bristle motion. No sacrificial metallurgical data were taken. The bristles did wear, with correspondingly more wear on the ID brush configurations than on the OD configurations; the complexity in constructing the ID brush was a factor.
Kinetic Modeling of RF Breakdown in High-Pressure Gas-filled Cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tollestrup, A. V.; Yonehara, K.; Byrd, J. M.
2012-05-01
Recent studies have shown that high gradients can be achieved quickly in high-pressure gas-filled cavities without the need for long conditioning times, because the dense gas can dramatically reduce dark currents and multipacting. In this proj ect we use this high pressure technique to suppress effects of residual vacuum and geometry found in evacuated cavities to isolate and study the role of the metallic surfaces in RF cavity breakdown as a function of radiofrequency and surface preparation. A series of experiments at 805 MHz using hydrogen fill pressures up to 0.01 g/cm3 of H2 have demonstrated high electric field gradientsmore » and scaling with the DC Paschen law limit, up to ~30 MV/m, depending on the choice of electrode material. For higher fi eld stresses, the breakdown characteristics deviate from the Paschen law scaling. Fully-kinetic 0D collisional particle-in-cell (PIC) simulations give breakdown characteristics in H2 and H2/SF6 mixtures in good agreement with the 805 MHz experimental resu lts below this field stress threshold. The impact of these results on gas-filled RF accelerating cavity design will be discussed.« less
Comparing Numerical Spall Simulations with a Nonlinear Spall Formation Model
NASA Astrophysics Data System (ADS)
Ong, L.; Melosh, H. J.
2012-12-01
Spallation accelerates lightly shocked ejecta fragments to speeds that can exceed the escape velocity of the parent body. We present high-resolution simulations of nonlinear shock interactions in the near surface. Initial results show the acceleration of near-surface material to velocities up to 1.8 times greater than the peak particle velocity in the detached shock, while experiencing little to no shock pressure. These simulations suggest a possible nonlinear spallation mechanism to produce the high-velocity, low show pressure meteorites from other planets. Here we pre-sent the numerical simulations that test the production of spall through nonlinear shock interactions in the near sur-face, and compare the results with a model proposed by Kamegai (1986 Lawrence Livermore National Laboratory Report). We simulate near-surface shock interactions using the SALES_2 hydrocode and the Murnaghan equation of state. We model the shock interactions in two geometries: rectangular and spherical. In the rectangular case, we model a planar shock approaching the surface at a constant angle phi. In the spherical case, the shock originates at a point below the surface of the domain and radiates spherically from that point. The angle of the shock front with the surface is dependent on the radial distance of the surface point from the shock origin. We model the target as a solid with a nonlinear Murnaghan equation of state. This idealized equation of state supports nonlinear shocks but is tem-perature independent. We track the maximum pressure and maximum velocity attained in every cell in our simula-tions and compare them to the Hugoniot equations that describe the material conditions in front of and behind the shock. Our simulations demonstrate that nonlinear shock interactions in the near surface produce lightly shocked high-velocity material for both planar and cylindrical shocks. The spall is the result of the free surface boundary condi-tion, which forces a pressure gradient from the peak shock pressure to the zero pressure boundary. The nonlinear shock interactions occur where the pressure contours curve to accommodate the free surface. The material within this spall zone is ejected at speeds up to 1.8 km s-1 for an imposed pulse of 1 km s-1. Where the ejection velocities are highest, the maximum pressure attained in each cell is effectively zero. We compare our simulation results with a model for nonlinear shock interactions proposed by Kamegai (1986). This model recognizes that the material behind the shock is compressed and has a higher soundspeed than the mate-rial in front of the shock. As the rarefaction wave moves behind the shock, its increased velocity through the com-pressed material combines with the residual particle velocity behind the shock to "catch up" with the shock. This occurs in the near surface where the sum of the compressed sound speed and the residual particle velocity is greater than or equal to the shock velocity. Initial results for the spherical shocks qualitatively match the volume described by this model, but differ significantly in the quantitative slope of the curve defining the region of interaction. We continue to test the Kamegai model with high-resolution numerical simulations of shock interactions to determine its potential application to planetary spallation.
Impact of Exposure to Pressure of 50 MPa on the Specific Surface Area of Clay
NASA Astrophysics Data System (ADS)
Koszela-Marek, Ewa
2017-12-01
The paper presents results of laboratory tests conducted to determine the impact of pressure of 50 MPa on specific surface area of clay. These tests were carried out in an original, high-pressure test stand. The specific surface area of clay extracted directly from an open pit mine was compared with the specific surface area of the same clay subjected to the pressure of 50 MPa in a high-pressure chamber. The study found that the specific surface area of the clay subjected to the pressure of 50 MPa increased distinctly by over 35 %. The increase in specific surface can be a result of changes in the microstructure of clay particles and microstructural alteration in the soil skeleton, caused by the pressure.
NASA Astrophysics Data System (ADS)
Nolan, D. S.; Klotz, B.
2016-12-01
Obtaining the best estimate of tropical cyclone (TC) intensity is vital for operational forecasting centers to produce accurate forecasts and to issue appropriate warnings. Aircraft data traditionally provide the most reliable information about the TC inner core and surrounding environment, but sampling strategies and observing platforms associated with reconnaissance aircraft have inherent deficiencies that contribute to the uncertainty of the intensity estimate. One such instrument, the stepped frequency microwave radiometer (SFMR) on the NOAA WP-3D aircraft, provides surface wind speeds along the aircraft flight track. However, the standard "figure-4" flight pattern substantially limits the azimuthal coverage of the eyewall, such that the chance of observing the true peak wind speeds is actually quite small. By simulating flights through a high-resolution simulation of Hurricane Isabel (2003), a previous study found that the 1-minute mean (maximum) SFMR winds underestimate a 6-hour running mean maximum wind (i.e. best track) by 7.5-10%. This project applies the same methodology to a suite of hurricane simulations with even higher resolution and more sophisticated physical parameterizations. These include the hurricane nature run of Nolan et al. (2013), the second hurricane nature run, a simulation of Hurricane Bill (2009), and additional idealized simulations. For the nature run cases, we find that the mean underestimate of the best-track estimate is 12-15%, considerably higher than determined from the Isabel simulation, while the other cases are similar to the previous result. Comparisons of the various cases indicates that the primary factors that lead to greater undersampling rates are storm size and storm asymmetry. Minimum surface pressure is also frequently estimated from pressures reported by dropsondes released into the eye, with a standard correction of 1 hPa per 10 knots of wind at the time of "splash." Statistics from thousands of simulated splash points show that this rule is quite good for large wind speeds, but for low wind speeds there is still a positive bias to the pressure estimate, because the chance of hitting the true pressure minimum is quite small.
Measurements of the Flowfield Interaction Between Tandem Cylinders
NASA Technical Reports Server (NTRS)
Neuhart, Dan H.; Jenkins, Luther N.; Choudhari, Meelan M.; Khorrami, Mehdi R.
2009-01-01
This paper presents the most recent measurements from an ongoing investigation of the unsteady wake interference between a pair of circular cylinders in tandem. The purpose of this investigation is to help build an in-depth experimental database for this canonical flow configuration that embodies the effects of component interaction in landing gear noise. This new set of measurements augments the previous database at the primary Reynolds number (based on tunnel speed and cylinder diameter) of 1.66 105 in four important respects. First, better circumferential resolution of surface pressure fluctuations is obtained via cylinder "clocking". Second, higher resolution particle image velocimetry measurements of the shear layer separating from the cylinders are achieved. Third, the effects of simultaneous boundary layer trips along both the front and rear cylinders, versus front cylinder alone in the previous measurements, are studied. Lastly, on-surface and off-surface characteristics of unsteady flow near the "critical" cylinder spacing, wherein the flow switches intermittently between two states that are characteristic of lower and higher spacings, are examined. This critical spacing occurs in the middle of a relatively sudden change in the drag of either cylinder and is characterized by a loud intermittent noise and a flow behavior that randomly transitions between shear layer attachment to the rear cylinder and constant shedding and rollup in front of it. Analysis of this bistable flow state reveals much larger spanwise correlation lengths of surface pressure fluctuations than those at larger and smaller values of the cylinder spacing.
An alternative to reduction of surface pressure to sea level
NASA Technical Reports Server (NTRS)
Deardorff, J. W.
1982-01-01
The pitfalls of the present method of reducing surface pressure to sea level are reviewed, and an alternative, adjusted pressure, P, is proposed. P is obtained from solution of a Poisson equation over a continental region, using the simplest boundary condition along the perimeter or coastline where P equals the sea level pressure. The use of P would avoid the empiricisms and disadvantages of pressure reduction to sea level, and would produce surface pressure charts which depict the true geostrophic wind at the surface.
Surface-initiated phase transition in solid hydrogen under the high-pressure compression
NASA Astrophysics Data System (ADS)
Lei, Haile; Lin, Wei; Wang, Kai; Li, Xibo
2018-03-01
The large-scale molecular dynamics simulations have been performed to understand the microscopic mechanism governing the phase transition of solid hydrogen under the high-pressure compression. These results demonstrate that the face-centered-cubic-to-hexagonal close-packed phase transition is initiated first at the surfaces at a much lower pressure than in the volume and then extends gradually from the surface to volume in the solid hydrogen. The infrared spectra from the surface are revealed to exhibit a different pressure-dependent feature from those of the volume during the high-pressure compression. It is thus deduced that the weakening intramolecular H-H bonds are always accompanied by hardening surface phonons through strengthening the intermolecular H2-H2 coupling at the surfaces with respect to the counterparts in the volume at high pressures. This is just opposite to the conventional atomic crystals, in which the surface phonons are softening. The high-pressure compression has further been predicted to force the atoms or molecules to spray out of surface to degrade the pressure. These results provide a glimpse of structural properties of solid hydrogen at the early stage during the high-pressure compression.
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1980-01-01
Friction studies were conducted with a silicon carbide (0001) surface contacting polycrystalline iron. The surface of silicon carbide was pretreated: (1) by bombarding it with argon ions for 30 minutes at a pressure of 1.3 pascals; (2) by heating it at 800 C for 3 hours in vacuum at a pressure of 10 to the minus eighth power pascal; or (3) by heating it at 1500 C for 3 hours in a vacuum of 10 to the minus eighth power pascal. Auger emission spectroscopy was used to determine the presence of silicon and carbon and the form of the carbon. The surfaces of silicon carbide bombarded with argon ions or preheated to 800 C revealed the main Si peak and a carbide type of C peak in the Auger spectra. The surfaces preheated to 1500 C revealed only a graphite type of C peak in the Auger spectra, and the Si peak had diminished to a barely perceptible amount. The surfaces of silicon carbide preheated to 800 C gave a 1.5 to 3 times higher coefficient of friction than did the surfaces of silicon carbide preheated to 1500 C. The coefficient of friction was lower in the 11(-2)0 direction than in the 10(-1)0 direction; that is, it was lower in the preferred crystallographic slip direction.
Wang, F C; Jin, Z M; McEwen, H M J; Fisher, J
2003-01-01
The effect of the roughness and topography of ultrahigh molecular weight polyethylene (UHMWPE) bearing surfaces on the microscopic contact mechanics with a metallic counterface was investigated in the present study. Both simple sinusoidal roughness forms, with a wide range of amplitudes and wavelengths, and real surface topographies, measured before and after wear testing in a simple pin-on-plate machine, were considered in the theoretical analysis. The finite difference method was used to solve the microscopic contact between the rough UHMWPE bearing surface and a smooth hard counterface. The fast Fourier transform (FFT) was used to cope with the large number of mesh points required to represent the surface topography of the UHMWPE bearing surface. It was found that only isolated asperity contacts occurred under physiological loading, and the real contact area was only a small fraction of the nominal contact area. Consequently, the average contact pressure experienced at the articulating surfaces was significantly higher than the nominal contact pressure. Furthermore, it was shown that the majority of asperities on the worn UHMWPE pin were deformed in the elastic region, and consideration of the plastic deformation only resulted in a negligible increase in the predicted asperity contact area. Microscopic asperity contact and deformation mechanisms may play an important role in the understanding of the wear mechanisms of UHMWPE bearing surfaces.
Surface pressure field mapping using luminescent coatings
NASA Technical Reports Server (NTRS)
Mclachlan, B. G.; Kavandi, J. L.; Callis, J. B.; Gouterman, M.; Green, E.; Khalil, G.; Burns, D.
1993-01-01
In recent experiments we demonstrated the feasibility of using the oxygen dependence of luminescent molecules for surface pressure measurement in aerodynamic testing. This technique is based on the observation that for many luminescent molecules the light emitted increases as the oxygen partial pressure, and thus the air pressure, the molecules see decreases. In practice the surface to be observed is coated with an oxygen permeable polymer containing a luminescent molecule and illuminated with ultraviolet radiation. The airflow induced surface pressure field is seen as a luminescence intensity distribution which can be measured using quantitative video techniques. Computer processing converts the video data into a map of the surface pressure field. The experiments consisted of evaluating a trial luminescent coating in measuring the static surface pressure field over a two-dimensional NACA-0012 section model airfoil for Mach numbers ranging from 0.3 and 0.66. Comparison of the luminescent coating derived pressures were made to those obtained from conventional pressure taps. The method along with the experiment and its results will be described.
Williamson, Rachel; Lachenbruch, Charlie; Vangilder, Catherine
2013-06-01
Underpads and layers of linens are frequently placed under patients who are incontinent, have other moisture-related issues, and/or are immobile and cannot reposition independently. Many of these patients are also at risk for pressure ulcers and placed on pressure-redistribution surfaces. The purpose of this study was to measure the effects of linens and incontinence pads on interface pressure. Interface sacral pressures were measured (mm Hg) using a mannequinlike pelvic indenter that has pressure transducers integrated into the unit and is covered with a soft flesh-like elastomer. The indenter was loaded to simulate a median-weight male (80 kg/176 lb), and the testing was performed at head-of bed (HOB) angles of 0°, 30°, and 45°. Two different surfaces, a high performance low-air-loss support (LAL) surface and a standard foam support surface, were used and covered with a fitted sheet (FS) only or a combination of the FS and various incontinence pads and transfer sheets. Linen combinations typically used for relatively immobile patients (n = 4), moisture management (n = 4), and moisture management and immobility (n = 1) were tested, as was the heavy use of linens/pads (nine layers, n = 1). All combinations were tested 10 times at HOB angles of 0°, 30°, and 45°. The highest pressure observed was recorded (peak pressure). Ninety five percent (95%) confidence interval (CI) surrounding the mean of the 10 trials for each combination was calculated using the t-distribution; differences between means for all surface combinations were determined using one-way ANOVA with follow-up Fisher Hayter test. Results indicated that each incontinence pad, transfer sheet, or combination of linens significantly increased the mean peak sacral pressure when compared to a single FS on both the low-air-loss surface and the foam surface, regardless of the head-of-bed angle. The magnitude of peak sacral interface pressure increase for the LAL surface at 30° head-of-bed angle was 20% to 64% depending on the linen combination. At 30°, the foam surface showed increases 6% to 29% (P <0.0001) compared with a FS baseline. If linens were wet, peak interface sacral pressures were equivalent to or less than pressures measured on the same pads when measured dry. The presence of linens on both surface types adversely affected the pressure redistribution capabilities of the surfaces; added layers increased pressure proportionally. The effect on interface pressure from the linen layers was more pronounced on the LAL than the foam surface. The study results illustrate that significant increases in peak interface pressure occur in a laboratory setting when linen layers are added to pressure redistribution surfaces. Results also indicated wetting incontinence pads on a support surface did not significantly increase interface pressure. Although additional preclinical and clinical studies are needed to guide practice, excessive linen usage for patients on therapeutic support surfaces should be discouraged.
Studies of Gas Turbine Heat Transfer Airfoil Surface and End-Wall.
1987-04-01
The nonuniformity 8 of the convex side mainly results from the higher pressure at X/S - 0.43 which might cause the suction side horseshoe vortex to...the toots are available model was chosen. to the authors. Six eses otf lair wed Merle (1961,1962) we also eseeon to Investigate the effects of free
Effect of purity on adsorption capacities of a Mars-like clay mineral at different pressures
NASA Technical Reports Server (NTRS)
Jenkins, Traci; Mcdoniel, Bridgett; Bustin, Roberta; Allton, Judith H.
1992-01-01
There has been considerable interest in adsorption of carbon dioxide on Marslike clay minerals. Some estimates of the carbon dioxide reservoir capacity of the martian regolith were calculated from the amount of carbon dioxide adsorbed on the ironrich smectite nontronite under martian conditions. The adsorption capacity of pure nontronite could place upper limits on the regolith carbon dioxide reservoir, both at present martian atmospheric pressure and at the postulated higher pressures required to permit liquid water on the surface. Adsorption of carbon dioxide on a Clay Mineral Society standard containing nontronite was studied over a wide range of pressures in the absence of water. Similar experiments were conducted on the pure nontronite extracted from the natural sample. Heating curves were obtained to help characterize and determine the purity of the clay sample.
Multivariate optimum interpolation of surface pressure and winds over oceans
NASA Technical Reports Server (NTRS)
Bloom, S. C.
1984-01-01
The observations of surface pressure are quite sparse over oceanic areas. An effort to improve the analysis of surface pressure over oceans through the development of a multivariate surface analysis scheme which makes use of surface pressure and wind data is discussed. Although the present research used ship winds, future versions of this analysis scheme could utilize winds from additional sources, such as satellite scatterometer data.
Potential Repercussions Associated with Halanaerobium Colonization of Hydraulically Fractured Shales
NASA Astrophysics Data System (ADS)
Booker, A. E.; Borton, M.; Daly, R. A.; Nicora, C.; Welch, S.; Dusane, D.; Johnston, M.; Sharma, S.; Mouser, P. J.; Cole, D. R.; Lipton, M. S.; Wrighton, K. C.; Wilkins, M.
2017-12-01
Hydraulic fracturing of black shale formations has greatly increased U.S. oil and natural gas recovery. Bacterial Halanaerobium strains become the dominant microbial community member in produced fluids from many fractured shales, regardless of their geographic location. Halanaerobium is not native to the subsurface, but is inadvertently introduced during the drilling and fracturing process. The accumulation of biomass in pipelines and reservoirs is detrimental due to possible well souring, microbially-induced corrosion, and pore clogging. Here, we used Halanaerobium strains isolated from a hydraulically fractured well in the Utica Shale, proteogenomics, isotopic and geochemical field observations, and laboratory growth experiments to identify detrimental effects associated with Halanaerobium growth. Analysis of Halanaerobium isolate genomes and reconstructed genomes from metagenomic datasets revealed the conserved presence of rhodanese-like proteins and anaerobic sulfite reductase complexes that can convert thiosulfate to sulfide. Furthermore, laboratory growth curves confirmed the capability of Halanaerobium to grow across a wide range of pressures (14-7000 PSI). Shotgun proteomic measurements were used to track the higher abundance of rhodanese and anaerobic sulfite reductase enzymes present when thiosulfate was available in the growth media. This technique also identified a higher abundance of proteins associated with the production of extracellular polymeric substances when Halanaerobium was grown under increasing pressures. Halanaerobium culture based assays identified thiosulfate-dependent sulfide production, while pressure incubations revealed higher cellular attachment to quartz surfaces. Increased production of sulfide and organic acids during stationary growth phase suggests that fermentative Halanaerobium use thiosulfate to remove excess reductant, aiding in NAD+ recovery. Additionally, the increased cellular attachment to surfaces under pressure indicates Halanaerobium has the capability of forming cellular clusters that could clog the shale fracture network and limit natural gas recovery. These findings bring awareness to the detrimental effects that could arise from Halanaerobium growth in hydraulically fractured shales throughout the U.S.
Latent heat exchange in the boreal and arctic biomes.
Kasurinen, Ville; Alfredsen, Knut; Kolari, Pasi; Mammarella, Ivan; Alekseychik, Pavel; Rinne, Janne; Vesala, Timo; Bernier, Pierre; Boike, Julia; Langer, Moritz; Belelli Marchesini, Luca; van Huissteden, Ko; Dolman, Han; Sachs, Torsten; Ohta, Takeshi; Varlagin, Andrej; Rocha, Adrian; Arain, Altaf; Oechel, Walter; Lund, Magnus; Grelle, Achim; Lindroth, Anders; Black, Andy; Aurela, Mika; Laurila, Tuomas; Lohila, Annalea; Berninger, Frank
2014-11-01
In this study latent heat flux (λE) measurements made at 65 boreal and arctic eddy-covariance (EC) sites were analyses by using the Penman-Monteith equation. Sites were stratified into nine different ecosystem types: harvested and burnt forest areas, pine forests, spruce or fir forests, Douglas-fir forests, broadleaf deciduous forests, larch forests, wetlands, tundra and natural grasslands. The Penman-Monteith equation was calibrated with variable surface resistances against half-hourly eddy-covariance data and clear differences between ecosystem types were observed. Based on the modeled behavior of surface and aerodynamic resistances, surface resistance tightly control λE in most mature forests, while it had less importance in ecosystems having shorter vegetation like young or recently harvested forests, grasslands, wetlands and tundra. The parameters of the Penman-Monteith equation were clearly different for winter and summer conditions, indicating that phenological effects on surface resistance are important. We also compared the simulated λE of different ecosystem types under meteorological conditions at one site. Values of λE varied between 15% and 38% of the net radiation in the simulations with mean ecosystem parameters. In general, the simulations suggest that λE is higher from forested ecosystems than from grasslands, wetlands or tundra-type ecosystems. Forests showed usually a tighter stomatal control of λE as indicated by a pronounced sensitivity of surface resistance to atmospheric vapor pressure deficit. Nevertheless, the surface resistance of forests was lower than for open vegetation types including wetlands. Tundra and wetlands had higher surface resistances, which were less sensitive to vapor pressure deficits. The results indicate that the variation in surface resistance within and between different vegetation types might play a significant role in energy exchange between terrestrial ecosystems and atmosphere. These results suggest the need to take into account vegetation type and phenology in energy exchange modeling. © 2014 John Wiley & Sons Ltd.
Formation of model polar stratospheric cloud films
NASA Technical Reports Server (NTRS)
Middlebrook, Ann M.; Koehler, Birgit G.; Mcneill, Laurie S.; Tolbert, Margaret A.
1992-01-01
Fourier transform infrared spectroscopy was used to examine the competitive growth of films representative of polar stratospheric clouds. These experiments show that either crystalline nitric acid trihydrate (beta-NAT) or amorphous films with H2O:HNO3 ratios close to 3:1 formed at temperatures 3-7 K warmer than the ice frost point under stratospheric pressure conditions. In addition, with higher HNO3 pressure, we observed nitric acid dihydrate (NAD) formation at temperatures warmer than ice formation. However, our experiments also show that NAD surfaces converted to beta-NAT upon exposure to stratospheric water pressures. Finally, we determined that the net uptake coefficient for HNO3 on beta-NAT is close to unity, whereas the net uptake coefficient for H2O is much less.
Computational Analysis of an effect of aerodynamic pressure on the side view mirror geometry
NASA Astrophysics Data System (ADS)
Murukesavan, P.; Mu'tasim, M. A. N.; Sahat, I. M.
2013-12-01
This paper describes the evaluation of aerodynamic flow effects on side mirror geometry for a passenger car using ANSYS Fluent CFD simulation software. Results from analysis of pressure coefficient on side view mirror designs is evaluated to analyse the unsteady forces that cause fluctuations to mirror surface and image blurring. The fluctuation also causes drag forces that increase the overall drag coefficient, with an assumption resulting in higher fuel consumption and emission. Three features of side view mirror design were investigated with two input velocity parameters of 17 m/s and 33 m/s. Results indicate that the half-sphere design shows the most effective design with less pressure coefficient fluctuation and drag coefficient.
The ammonia-water system and the chemical differentiation of icy satellites
Hogenboom, D.L.; Kargel, J.S.; Consolmagno, G.J.; Holden, T.C.; Lee, L.; Buyyounouski, M.
1997-01-01
We report the discovery of the first high-pressure polymorphs of ammonia hydrates: ammonia monohydrate II and ammonia dihydrate II. The subsolidus transitions and melting curves of these substances are shown by their volume-temperature functions; uncalibrated calorimetry corroborates these phase changes. From 20 to 300 MPa ammonia dihydrate and ice melt at a eutectic to form water-rich liquids; at lower and higher pressures, ammonia dihydrate melts incongruently to ammonia-rich liquids. The new data are consistent with independently known thermodynamic parameters of the ammonia-water system. These results fill in an important region of pressure-temperature space not previously studied; a body of previous data reported by other investigators covers a complementary region (higher pressures), but in the light of the new data those earlier results now appear to have been misinterpreted. We show that a suitable reinterpretation of the previous data supports the identification of at least one high-pressure polymorph of each compound. The behavior of the system H2O-NH3in many ways follows that of MgO-SiO2, and the roles of ammonia-water in icy satellite evolution may parallel those of magnesium silicates in Earth's structure, volcanism, and deep mantle tectonism. Pressure-related effects, including a pressure influence on the ammonia content of cryomagmas, might be significant in determining some potentially observable aspects of cryovolcanic morphologies, surface compositions, and interior structures of icy satellites. ?? 1997 Academic Press.
NASA Astrophysics Data System (ADS)
M, Adimurthy; Katti, Vadiraj V.
2017-02-01
Local distribution of wall static pressure and heat transfer on a smooth flat plate impinged by a normal slot air jet is experimental investigated. Present study focuses on the influence of jet-to-plate spacing ( Z/D h ) (0.5-10) and Reynolds number (2500-20,000) on the fluid flow and heat transfer distribution. A single slot jet with an aspect ratio ( l/b) of about 22 is chosen for the current study. Infrared Thermal Imaging technique is used to capture the temperature data on the target surface. Local heat transfer coefficients are estimated from the thermal images using `SMART VIEW' software. Wall static pressure measurement is carried out for the specified range of Re and Z/D h . Wall static pressure coefficients are seen to be independent of Re in the range between 5000 and 15,000 for a given Z/D h . Nu values are higher at the stagnation point for all Z/D h and Re investigated. For lower Z/D h and higher Re, secondary peaks are observed in the heat transfer distributions. This may be attributed to fluid translating from laminar to turbulent flow on the target plate. Heat transfer characteristics are explained based on the simplified flow assumptions and the pressure data obtained using Differential pressure transducer and static pressure probe. Semi-empirical correlation for the Nusselt number in the stagnation region is proposed.
Selective Oxidation and Reactive Wetting during Galvanizing of a CMnAl TRIP-Assisted Steel
NASA Astrophysics Data System (ADS)
Bellhouse, E. M.; McDermid, J. R.
2011-09-01
A transformation induced plasticity (TRIP)-assisted steel with 0.2 pct C, 1.5 pct Mn, and 1.5 pct Al was successfully galvanized using a thermal cycle previously shown to produce an excellent combination of strength and ductility. The steel surface chemistry and oxide morphology were determined as a function of process atmosphere oxygen partial pressure. For the 220 K (-53 °C) dew point (dp) + 20 pct H2 atmosphere, the oxide morphology was a mixture of films and nodules. For the 243 K (-30 °C) dp + 5 pct H2 atmosphere, nodules of MnO were found primarily at grain boundaries. For the 278 K (+5 °C) dp + 5 pct H2 atmosphere, nodules of metallic Fe were found on the surface as a result of alloy element internal oxidation. The steel surface chemistry and oxide morphology were then related to the reactive wetting behavior during continuous hot dip galvanizing. Good wetting was obtained using the two lower oxygen partial pressure process atmospheres [220 K dp and 243 K dp (-53 °C dp and -30 °C dp)]. An increase in the number of bare spots was observed when using the higher oxygen partial pressure process atmosphere (+5 °C dp) due to the increased thickness of localized oxide films.
Phosphorus atomic layer doping in Ge using RPCVD
NASA Astrophysics Data System (ADS)
Yamamoto, Yuji; Kurps, Rainer; Mai, Christian; Costina, Ioan; Murota, Junichi; Tillack, Bernd
2013-05-01
Phosphorus atomic layer doping (P-ALD) in Ge is investigated at temperatures between 100 °C and 400 °C using a single wafer reduced pressure chemical vapor deposition (RPCVD) system. Hydrogen-terminated and hydrogen-free Ge (1 0 0) surfaces are exposed to PH3 at different PH3 partial pressures after interrupting Ge growth. The adsorption and reaction of PH3 proceed on a hydrogen-free Ge surface. For all temperatures and PH3 partial pressures used for the P-ALD, the P dose increased with increasing PH3 exposure time and saturated. The saturation value of the incorporated P dose at 300 °C is ˜1.5 × 1014 cm-3, which is close to a quarter of a monolayer of the Ge (1 0 0) surface. The P dose could be simulated assuming a Langmuir-type kinetics model with a saturation value of Nt = 1.55 × 1014 cm-2 (a quarter of a monolayer), reaction rate constant kr = 77 s-1 and thermal equilibrium constant K = 3.0 × 10-2 Pa-1. An electrically active P concentration of 5-6 × 1019 cm-3, which is a 5-6 times higher thermal solubility of P in Ge, is obtained by multiple P spike fabrication using the P-ALD process.
Secular Climate Change on Mars: An Update Using One Mars Year of MSL Pressure Data
NASA Astrophysics Data System (ADS)
Haberle, R. M.; Gómez-Elvira, J.; De La Torre Juarez, M.; Harri, A. M.; Hollingsworth, J. L.; Kahanpää, H.; Kahre, M. A.; Lemmon, M. T.; Martín-Torres, J.; Mischna, M. A.; Moores, J.; Newman, C. E.; Rafkin, S. C.; Renno, N. O.; Richardson, M. I.; Rodriguez-Manfredi, J. A.; Thomas, P. C.; Vasavada, A. R.; Wong, M. H.; Zorzano, M. P.
2014-12-01
The South Polar Residual Cap (SPRC) on Mars is an icy reservoir of CO2. If all the CO2 trapped in the SPRC were released to the atmosphere the mean annual global surface pressure would rise by ~20 Pa. Repeated MOC and HiRISE imaging of scarp retreat within the SPRC led to suggestions that the SPRC is losing mass. Estimates for the loss rate vary between 0. 5 Pa per Mars Decade to 13 Pa per Mars Decade. Assuming 80% of this loss goes directly into the atmosphere, an estimate based on some modeling (Haberle and Kahre, 2010), and that the loss is monotonic, the global annual mean surface pressure should have increased between ~1-20 Pa since the Viking mission (~20 Mars years ago). Surface pressure measurements by the Phoenix Lander only 2.5 Mars years ago were found to be consistent with these loss rates. Last year at this meeting we compared surface pressure data from the MSL mission through sol 360 with that from Viking Lander 2 (VL-2) for the same period to determine if the trend continues. The results were ambiguous. This year we have a full Mars year of MSL data to work with. Using the Ames GCM to compensate for dynamics and environmental differences, our analysis suggests that the mean annual pressure has decreased by ~ 8 Pa since Viking. This result implies that the SPRC has gained (not lost) mass since Viking. However, the estimated uncertainties in our analysis are easily at the 10 Pa level and possibly higher. Chief among these are the hydrostatic adjustment of surface pressure from grid point elevations to actual elevations and the simulated regional environmental conditions at the lander sites. For these reasons, the most reasonable conclusion is that there is no significant difference in the size of the atmosphere between now and Viking. This implies, but does not demand, that the mass of the SPRC has not changed since Viking. Of course, year-to-year variations are possible as implied by the Phoenix data. Given that there has been no unusual behavior in the climate system as observed by a variety of spacecraft at Mars since Phoenix, its seems more likely that the Phoenix data simply did not have a long enough record to accurately determine annual mean pressure changes as Haberle and Kahre (2010) cautioned. In the absence of a strong signal in the MSL data, we conclude that if the SPRC is loosing mass it is not going into the atmosphere reservoir.
Secular Climate Change on Mars: An Update Using One Mars Year of MSL Pressure Data
NASA Technical Reports Server (NTRS)
Haberle, R. M.; Gomez-Elvira, J.; de la Torre Juarez, M.; Harri, A-M.; Hollingsworth, J. L.; Kahanpaa, H.; Kahre, M. A.; Lemmon, M.; Martin-Torres, F. J.; Mischna, M.;
2014-01-01
The South Polar Residual Cap (SPRC) on Mars is an icy reservoir of CO2. If all the CO2 trapped in the SPRC were released to the atmosphere the mean annual global surface pressure would rise by approximately 20 Pa. Repeated MOC and HiRISE imaging of scarp retreat within the SPRC led to suggestions that the SPRC is losing mass. Estimates for the loss rate vary between 0. 5 Pa per Mars Decade to 13 Pa per Mars Decade. Assuming 80% of this loss goes directly into the atmosphere, an estimate based on some modeling (Haberle and Kahre, 2010), and that the loss is monotonic, the global annual mean surface pressure should have increased between approximately 1-20 Pa since the Viking mission (approximately 20 Mars years ago). Surface pressure measurements by the Phoenix Lander only 2.5 Mars years ago were found to be consistent with these loss rates. Last year at this meeting we compared surface pressure data from the MSL mission through sol 360 with that from Viking Lander 2 (VL-2) for the same period to determine if the trend continues. The results were ambiguous. This year we have a full Mars year of MSL data to work with. Using the Ames GCM to compensate for dynamics and environmental differences, our analysis suggests that the mean annual pressure has decreased by approximately 8 Pa since Viking. This result implies that the SPRC has gained (not lost) mass since Viking. However, the estimated uncertainties in our analysis are easily at the 10 Pa level and possibly higher. Chief among these are the hydrostatic adjustment of surface pressure from grid point elevations to actual elevations and the simulated regional environmental conditions at the lander sites. For these reasons, the most reasonable conclusion is that there is no significant difference in the size of the atmosphere between now and Viking. This implies, but does not demand, that the mass of the SPRC has not changed since Viking. Of course, year-to-year variations are possible as implied by the Phoenix data. Given that there has been no unusual behavior in the climate system as observed by a variety of spacecraft at Mars since Phoenix, its seems more likely that the Phoenix data simply did not have a long enough record to accurately determine annual mean pressure changes as Haberle and Kahre (2010) cautioned. In the absence of a strong signal in the MSL data, we conclude that if the SPRC is loosing mass it is not going into the atmosphere reservoir.
NASA Technical Reports Server (NTRS)
Allison, Dennis O.; Sewall, William G.
1995-01-01
Longitudinal characteristics and wing-section pressure distributions are compared for the EA-6B airplane with and without airfoil modifications. The airfoil modifications were designed to increase low-speed maximum lift for maneuvering, while having a minimal effect on transonic performance. Section contour changes were confined to the leading-edge slat and trailing-edge flap regions of the wing. Experimental data are analyzed from tests in the Langley 16-Foot Transonic Tunnel on the baseline and two modified wing-fuselage configurations with the slats and flaps in their retracted positions. Wing modification effects on subsonic and transonic performance are seen in wing-section pressure distributions of the various configurations at similar lift coefficients. The modified-wing configurations produced maximum lift coefficients which exceeded those of the baseline configuration at low-speed Mach numbers (0.300 and 0.400). This benefit was related to the behavior of the wing upper surface leading-edge suction peak and the behavior of the trailing-edge pressure. At transonic Mach numbers (0.725 to 0.900), the wing modifications produced a somewhat stronger nose-down pitching moment, a slightly higher drag at low-lift levels, and a lower drag at higher lift levels.
Kestell, John D.; Mudiyanselage, Kumudu; Ye, Xinyi; ...
2017-10-01
This article describes the design and construction of a compact, “user-friendly” polarization-modulation infrared reflection absorption spectroscopy (PM-IRRAS) instrument at the Center for Functional Nanomaterials (CFN) of Brookhaven National Laboratory, which allows studying surfaces at pressures ranging from ultra-high vacuum to 100 Torr. Surface infrared spectroscopy is ideally suited for studying these processes as the vibrational frequencies of the IR chromophores are sensitive to the nature of the bonding environment on the surface. Relying on the surface selection rules, by modulating the polarization of incident light, it is possible to separate the contributions from the isotropic gas or solution phase, frommore » the surface bound species. A spectral frequency range between 1000 cm -1 and 4000 cm -1 can be acquired. While typical spectra with a good signal to noise ratio can be obtained at elevated pressures of gases in ~2 min at 4 cm -1 resolution, we have also acquired higher resolution spectra at 0.25 cm -1 with longer acquisition times. By way of verification, CO uptake on a heavily oxidized Ru(0001) sample was studied. As part of this test study, the presence of CO adsorbed on Ru bridge sites was confirmed, in agreement with previous ambient pressure X ray photoelectron spectroscopy studies. In terms of instrument performance, it was also determined that the gas phase contribution from CO could be completely removed even up to pressures close to 100 Torr. A second test study demonstrated the use of the technique for studying morphological properties of a spin coated polymer on a conductive surface. Note that this is a novel application of this technique. In this experiment, the polarization of incident light was modulated manually (vs. through a photoelastic modulator). It was demonstrated, in good agreement with the literature, that the polymer chains preferentially lie parallel with the surface. This PM-IRRAS system is small, modular, and easily reconfigurable. It also features a “vacuum suitcase” that allows for the integration of the PM-IRRAS system with the rest of the suite of instrumentation at our laboratory available to external users through the CFN user proposal system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kestell, John D.; Mudiyanselage, Kumudu; Ye, Xinyi
This article describes the design and construction of a compact, “user-friendly” polarization-modulation infrared reflection absorption spectroscopy (PM-IRRAS) instrument at the Center for Functional Nanomaterials (CFN) of Brookhaven National Laboratory, which allows studying surfaces at pressures ranging from ultra-high vacuum to 100 Torr. Surface infrared spectroscopy is ideally suited for studying these processes as the vibrational frequencies of the IR chromophores are sensitive to the nature of the bonding environment on the surface. Relying on the surface selection rules, by modulating the polarization of incident light, it is possible to separate the contributions from the isotropic gas or solution phase, frommore » the surface bound species. A spectral frequency range between 1000 cm -1 and 4000 cm -1 can be acquired. While typical spectra with a good signal to noise ratio can be obtained at elevated pressures of gases in ~2 min at 4 cm -1 resolution, we have also acquired higher resolution spectra at 0.25 cm -1 with longer acquisition times. By way of verification, CO uptake on a heavily oxidized Ru(0001) sample was studied. As part of this test study, the presence of CO adsorbed on Ru bridge sites was confirmed, in agreement with previous ambient pressure X ray photoelectron spectroscopy studies. In terms of instrument performance, it was also determined that the gas phase contribution from CO could be completely removed even up to pressures close to 100 Torr. A second test study demonstrated the use of the technique for studying morphological properties of a spin coated polymer on a conductive surface. Note that this is a novel application of this technique. In this experiment, the polarization of incident light was modulated manually (vs. through a photoelastic modulator). It was demonstrated, in good agreement with the literature, that the polymer chains preferentially lie parallel with the surface. This PM-IRRAS system is small, modular, and easily reconfigurable. It also features a “vacuum suitcase” that allows for the integration of the PM-IRRAS system with the rest of the suite of instrumentation at our laboratory available to external users through the CFN user proposal system.« less
The Pluto system: Initial results from its exploration by New Horizons
NASA Astrophysics Data System (ADS)
Stern, S. A.; Bagenal, F.; Ennico, K.; Gladstone, G. R.; Grundy, W. M.; McKinnon, W. B.; Moore, J. M.; Olkin, C. B.; Spencer, J. R.; Weaver, H. A.; Young, L. A.; Andert, T.; Andrews, J.; Banks, M.; Bauer, B.; Bauman, J.; Barnouin, O. S.; Bedini, P.; Beisser, K.; Beyer, R. A.; Bhaskaran, S.; Binzel, R. P.; Birath, E.; Bird, M.; Bogan, D. J.; Bowman, A.; Bray, V. J.; Brozovic, M.; Bryan, C.; Buckley, M. R.; Buie, M. W.; Buratti, B. J.; Bushman, S. S.; Calloway, A.; Carcich, B.; Cheng, A. F.; Conard, S.; Conrad, C. A.; Cook, J. C.; Cruikshank, D. P.; Custodio, O. S.; Dalle Ore, C. M.; Deboy, C.; Dischner, Z. J. B.; Dumont, P.; Earle, A. M.; Elliott, H. A.; Ercol, J.; Ernst, C. M.; Finley, T.; Flanigan, S. H.; Fountain, G.; Freeze, M. J.; Greathouse, T.; Green, J. L.; Guo, Y.; Hahn, M.; Hamilton, D. P.; Hamilton, S. A.; Hanley, J.; Harch, A.; Hart, H. M.; Hersman, C. B.; Hill, A.; Hill, M. E.; Hinson, D. P.; Holdridge, M. E.; Horanyi, M.; Howard, A. D.; Howett, C. J. A.; Jackman, C.; Jacobson, R. A.; Jennings, D. E.; Kammer, J. A.; Kang, H. K.; Kaufmann, D. E.; Kollmann, P.; Krimigis, S. M.; Kusnierkiewicz, D.; Lauer, T. R.; Lee, J. E.; Lindstrom, K. L.; Linscott, I. R.; Lisse, C. M.; Lunsford, A. W.; Mallder, V. A.; Martin, N.; McComas, D. J.; McNutt, R. L.; Mehoke, D.; Mehoke, T.; Melin, E. D.; Mutchler, M.; Nelson, D.; Nimmo, F.; Nunez, J. I.; Ocampo, A.; Owen, W. M.; Paetzold, M.; Page, B.; Parker, A. H.; Parker, J. W.; Pelletier, F.; Peterson, J.; Pinkine, N.; Piquette, M.; Porter, S. B.; Protopapa, S.; Redfern, J.; Reitsema, H. J.; Reuter, D. C.; Roberts, J. H.; Robbins, S. J.; Rogers, G.; Rose, D.; Runyon, K.; Retherford, K. D.; Ryschkewitsch, M. G.; Schenk, P.; Schindhelm, E.; Sepan, B.; Showalter, M. R.; Singer, K. N.; Soluri, M.; Stanbridge, D.; Steffl, A. J.; Strobel, D. F.; Stryk, T.; Summers, M. E.; Szalay, J. R.; Tapley, M.; Taylor, A.; Taylor, H.; Throop, H. B.; Tsang, C. C. C.; Tyler, G. L.; Umurhan, O. M.; Verbiscer, A. J.; Versteeg, M. H.; Vincent, M.; Webbert, R.; Weidner, S.; Weigle, G. E.; White, O. L.; Whittenburg, K.; Williams, B. G.; Williams, K.; Williams, S.; Woods, W. W.; Zangari, A. M.; Zirnstein, E.
2015-10-01
The Pluto system was recently explored by NASA’s New Horizons spacecraft, making closest approach on 14 July 2015. Pluto’s surface displays diverse landforms, terrain ages, albedos, colors, and composition gradients. Evidence is found for a water-ice crust, geologically young surface units, surface ice convection, wind streaks, volatile transport, and glacial flow. Pluto’s atmosphere is highly extended, with trace hydrocarbons, a global haze layer, and a surface pressure near 10 microbars. Pluto’s diverse surface geology and long-term activity raise fundamental questions about how small planets remain active many billions of years after formation. Pluto’s large moon Charon displays tectonics and evidence for a heterogeneous crustal composition; its north pole displays puzzling dark terrain. Small satellites Hydra and Nix have higher albedos than expected.
Chemistry of acetylene on platinum (111) and (100) surfaces
Muetterties, E. L.; Tasi, M.-C.; Kelemen, S. R.
1981-01-01
An ultra-high vacuum experimental study of acetylene chemisorption on Pt(111) and Pt(100) and of the reaction of hydrogen with the acetylene adsorbate has established distinguishing features of carbon-hydrogen bond breaking and making processes as a function of pressure, temperature, and surface crystallography. The rates for both processes are substantially higher on the Pt(100) surface. Net acetylene-hydrogen processes, in the temperature range of 20°C to ≈130°C, are distinctly different on the two surfaces: on Pt(100) the net reaction is hydrogen exchange (1H-2H exchange) and on Pt(111) the only detectable reaction is hydrogenation. Stereochemical differences in the acetylene adsorbate structure are considered to be a contributing factor to the differences in acetylene chemistry on these two surfaces. Images PMID:16593110
Interaction of acoustic levitation field with liquid reflecting surface
NASA Astrophysics Data System (ADS)
Hong, Z. Y.; Xie, W. J.; Wei, B.
2010-01-01
Single-axis acoustic levitation of substances, such as foam, water, polymer, and aluminum, is achieved by employing various liquids as the sound reflectors. The interaction of acoustic levitation field with liquid reflecting surface is investigated theoretically by considering the deformation of the liquid surface under acoustic radiation pressure. Numerical calculations indicate that the deformation degree of the reflecting surface shows a direct proportion to the acoustic radiation power. Appropriate deformation is beneficial whereas excessive deformation is unfavorable to enhance the levitation capability. Typically, the levitation capability with water reflector is smaller than that with the concave rigid reflector but slightly larger than that with the planar rigid reflector at low emitter vibration intensity. Liquid reflectors with larger surface tension and higher density behave more closely to the planar rigid reflector.
Triboelectric, Corona, and Induction Charging of Insulators as a Function of Pressure
NASA Technical Reports Server (NTRS)
Hogue, Michael D.; Mucciolo, Eduardo R.; Calle, Carlos I.
2006-01-01
Theoretical and experimental research has been performed that shows that the surface charge on an insulator after triboelectric charging with another insulator is rapidly dissipated with lowered atmospheric pressure. This pressure discharge is consistent with surface ions being evaporated off the surface once their vapor pressure is attained. In this paper we will report on the results of three different charging techniques (triboelectric, corona, and induction) performed on selected polymers with varying atmospheric pressure. This data will show that ion exchange between the polymer samples is the mechanism responsible for most of the surface charge on the polymer surfaces.
Friction coefficient and effective interference at the implant-bone interface.
Damm, Niklas B; Morlock, Michael M; Bishop, Nicholas E
2015-09-18
Although the contact pressure increases during implantation of a wedge-shaped implant, friction coefficients tend to be measured under constant contact pressure, as endorsed in standard procedures. Abrasion and plastic deformation of the bone during implantation are rarely reported, although they define the effective interference, by reducing the nominal interference between implant and bone cavity. In this study radial forces were analysed during simulated implantation and explantation of angled porous and polished implant surfaces against trabecular bone specimens, to determine the corresponding friction coefficients. Permanent deformation was also analysed to determine the effective interference after implantation. For the most porous surface tested, the friction coefficient initially increased with increasing normal contact stress during implantation and then decreased at higher contact stresses. For a less porous surface, the friction coefficient increased continually with normal contact stress during implantation but did not reach the peak magnitude measured for the rougher surface. Friction coefficients for the polished surface were independent of normal contact stress and much lower than for the porous surfaces. Friction coefficients were slightly lower for pull-out than for push-in for the porous surfaces but not for the polished surface. The effective interference was as little as 30% of the nominal interference for the porous surfaces. The determined variation in friction coefficient with radial contact force, as well as the loss of interference during implantation will enable a more accurate representation of implant press-fitting for simulations. Copyright © 2015 Elsevier Ltd. All rights reserved.
3-D analysis of a containment equipment hatch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greimann, L.; Fanous, F.
1985-01-01
There are at least two models used to characterize the possible leakage of a containment during a severe accident: (1) the threshold model in which the containment is assumed to be leak-tight until certain pressure/temperature conditions are reached and a very large rupture occurs; and (2) the leak-before-break model in which small leak paths are hypothesized to develop at levels below the threshold. The objective of this work is to investigate the leak-before-break potential of a typical equipment hatch seal. The relative deformations of the sealing surfaces during pressurization are of interest, especially if any buckling of the hatch occurs.more » A three-dimensional finite element model of the equipment hatch assembly was developed. The model included: shell elements for the containment shell, containment stiffeners, penetration sleeve and hatch shell; prestressed bar elements for the swing bolts which hold the hatch closed; and interface elements for the sliding or opening which can occur at the seal surfaces. The nonlinear material properties were approximated by a piecewise linear curve with a proportional limit equal to one-half the yield strength. Geometric nonlinearities were also included in the model. As pressure increments were added to the finite element model, the seal surfaces tended to move together initially. The dominate observable behavior in this range was ''ovaling'' of the penetration sleeve relative to the hatch cover. Since the hatch itself tended to remain circular, there was a mismatch at the sealing surface. Friction reduces but does not eliminate this relative motion. As the containment reached a higher pressure level, the hatch began to buckle at the idealized imperfection. The finite element solution was incremented through the snapthrough. As this postbuckling occurred, additional seal interface distortion was observed.« less
Experimental Investigation of Transition to Turbulence as Affected by Passing Wakes
NASA Technical Reports Server (NTRS)
Kaszeta, Richard W.; Simon, Terrence W.; Ashpis, David (Technical Monitor)
2002-01-01
Experimental results from a study of the effects of passing wakes upon laminar-to-turbulent transition in a low-pressure turbine passage are presented. The test section geometry is designed to simulate the effects of unsteady wakes resulting from rotor-stator interaction upon laminar-to-turbulent transition in turbine blade boundary layers and separated flow regions over suction surfaces. Single-wire, thermal anemometry techniques were used to measure time-resolved and phase-averaged, wall-normal profiles of velocity, turbulence intensity, and intermittency at multiple streamwise locations over the turbine airfoil suction surface. These data are compared to steady state, wake-free data collected in the same geometry to identify the effects of wakes upon laminar-to-turbulent transition. Results are presented for flows with a Reynolds number based on suction surface length and exit velocity of 50,000 and an approach flow turbulence intensity of 2.5 percent. From these data, the effects of passing wakes and associated increased turbulence levels and varying pressure gradients on transition and separation in the near-wall flow are presented. The results show that the wakes affect transition both by virtue of their difference in turbulence level from that of the free-stream but also by virtue of their velocity deficit relative to the freestream velocity, and the concomitant change in angle of attack and temporal pressure gradients. The results of this study seem to support the theory that bypass transition is a response of the near-wall viscous layer to pressure fluctuations imposed upon it from the free-stream flow. The data also show a significant lag between when the wake is present over the surface and when transition begins. The accompanying CD-ROM includes tabulated data, animations, higher resolution plots, and an electronic copy of this report.
NASA Astrophysics Data System (ADS)
Cole, Ryan Kenneth; Schroeder, Paul James; Diego Draper, Anthony; Rieker, Gregory Brian
2018-06-01
Modelling absorption spectra in high pressure, high temperature environments is complicated by the increased relevance of higher order collisional phenomena (e.g. line mixing, collision-induced absorption, finite duration of collisions) that alter the spectral lineshape. Accurate reference spectroscopy in these conditions is of interest for mineralogy and radiative transfer studies of Venus as well as other dense planetary atmospheres. We present a new, high pressure, high temperature absorption spectroscopy facility at the University of Colorado Boulder. This facility employs a dual frequency comb absorption spectrometer to record broadband (500nm), high resolution (~0.002nm) spectra in conditions comparable to the Venus surface (730K, 90bar). Measurements of the near-infrared spectrum of carbon dioxide at high pressure and temperature will be compared to modeled spectra extrapolated from the HITRAN 2016 database as well as other published models that include additional collisional physics. This comparison gives insight into the effectiveness of existing absorption databases for modeling the lower Venus atmosphere as well as the need to expand absorption models to suit these conditions.
Pressure Distribution Over Airfoils at High Speeds
NASA Technical Reports Server (NTRS)
Briggs, L J; Dryden, H L
1927-01-01
This report deals with the pressure distribution over airfoils at high speeds, and describes an extension of an investigation of the aerodynamic characteristics of certain airfoils which was presented in NACA Technical Report no. 207. The results presented in report no. 207 have been confirmed and extended to higher speeds through a more extensive and systematic series of tests. Observations were also made of the air flow near the surface of the airfoils, and the large changes in lift coefficients were shown to be associated with a sudden breaking away of the flow from the upper surface. The tests were made on models of 1-inch chord and comparison with the earlier measurements on models of 3-inch chord shows that the sudden change in the lift coefficient is due to compressibility and not to a change in the Reynolds number. The Reynolds number still has a large effect, however, on the drag coefficient. The pressure distribution observations furnish the propeller designer with data on the load distribution at high speeds, and also give a better picture of the air-flow changes.
Mitchell, Gary F; Lacourcière, Yves; Ouellet, Jean-Pascal; Izzo, Joseph L; Neutel, Joel; Kerwin, Linda J; Block, Alan J; Pfeffer, Marc A
2003-09-30
Elevated pulse pressure (PP) is associated with increased cardiovascular risk and is thought to be secondary to elastin fragmentation with secondary collagen deposition and stiffening of the aortic wall, leading to a dilated, noncompliant vasculature. By use of calibrated tonometry and pulsed Doppler, arterial stiffness and pulsatile hemodynamics were assessed in 128 subjects with uncomplicated systolic hypertension (supine systolic pressure > or =140 mm Hg off medication) and 30 normotensive control subjects of comparable age and gender. Pulse-wave velocity was assessed from tonometry and body surface measurements. Characteristic impedance (Zc) was calculated from the ratio of change in carotid pressure and aortic flow in early systole. Effective aortic diameter was assessed by use of the water hammer equation. Hypertensives were heavier (P<0.001) and had higher PP (P<0.001), which was attributable primarily to higher Zc (P<0.001), especially in women. Pulse-wave velocity was higher in hypertensives (P=0.001); however, this difference was not significant after adjustment for differences in mean arterial pressure (MAP) (P>0.153), whereas increased Zc remained highly significant (P<0.001). Increased Zc in women and in hypertensive men was attributable to decreased effective aortic diameter, with no difference in wall stiffness at comparable MAP and body weight. Elevated PP in systolic hypertension was independent of MAP and was attributable primarily to elevated Zc and reduced effective diameter of the proximal aorta. These findings are not consistent with the hypothesis of secondary aortic degeneration, dilation, and wall stiffening but rather suggest that aortic function may play an active role in the pathophysiology of systolic hypertension.
Serrano, J; Velazquez, G; Lopetcharat, K; Ramírez, J A; Torres, J A
2004-10-01
A moderate high-pressure processing (HPP) treatment is proposed to accelerate the shredability of Cheddar cheese. High pressure processing (345 and 483 MPa for 3 and 7 min) applied to unripened (1 d old) stirred-curd Cheddar cheese yielded microstructure changes that differed with pressure level and processing time. Untreated and pressure-treated cheese shredded at d 27 and 1, respectively, shared similar visual and tactile sensory properties. The moderate (345 MPa) and the higher (483 MPa) pressure treatments reduced the presence of crumbles, increased mean shred particle length, improved length uniformity, and enhanced surface smoothness in shreds produced from unripened cheese. High-pressure processing treatments did not affect the mechanical properties of ripened cheese or the proteolytic susceptibility of milk protein. It was concluded that a moderate HPP treatment could allow processors to shred Cheddar cheese immediately after block cooling, reducing refrigerated storage costs, with expected savings of over 15 US dollars/1000 lb cheese, and allowing fewer steps in the handling of cheese blocks produced for shredding.
Song, Xuefen; Sun, Tai; Yang, Jun; Yu, Leyong; Wei, Dacheng; Fang, Liang; Lu, Bin; Du, Chunlei; Wei, Dapeng
2016-07-06
Conformal graphene films have directly been synthesized on the surface of grating microstructured quartz substrates by a simple chemical vapor deposition process. The wonderful conformality and relatively high quality of the as-prepared graphene on the three-dimensional substrate have been verified by scanning electron microscopy and Raman spectra. This conformal graphene film possesses excellent electrical and optical properties with a sheet resistance of <2000 Ω·sq(-1) and a transmittance of >80% (at 550 nm), which can be attached with a flat graphene film on a poly(dimethylsiloxane) substrate, and then could work as a pressure-sensitive sensor. This device possesses a high-pressure sensitivity of -6.524 kPa(-1) in a low-pressure range of 0-200 Pa. Meanwhile, this pressure-sensitive sensor exhibits super-reliability (≥5000 cycles) and an ultrafast response time (≤4 ms). Owing to these features, this pressure-sensitive sensor based on 3D conformal graphene is adequately introduced to test wind pressure, expressing higher accuracy and a lower background noise level than a market anemometer.
Pressure ulcer prevention in patients with advanced illness.
White-Chu, E Foy; Reddy, Madhuri
2013-03-01
Pressure ulcers can be challenging to prevent, particularly in patients with advanced illnesses. This review summarizes the relevant literature since 2011. Through a MEDLINE and CINAHL database search from January 1, 2011 to June 1, 2012, a total of 14 abstracts were found addressing the prevention of pressure ulcers in persons with advanced illness. Search terms included pressure ulcer, prevention, and control. Advanced illness was defined as patients transitioning from curative to supportive and palliative care. Ten original studies and four review articles specifically addressed pressure ulcer prevention. There were four articles that specifically addressed patients with advanced illness. The studies varied in quality. One systematic review, one randomized controlled trial, three prospective trials, two retrospective trials, one cost-effectiveness analysis, one quality improvement project, one comparative descriptive design, and four review articles were found. The interventions for pressure ulcer prevention were risk assessment, repositioning, surface selection, nutritional support and maintenance of skin integrity with or without incontinence. The quality of pressure ulcer prevention studies in persons with advanced illness is poor. Increased number and higher quality studies are needed to further investigate this important topic for these fragile patients.
Method for forming a layer of synthetic corrosion products on tubing surfaces
Lane, Michael H.; Salamon, Eugene J. M.
1996-01-01
A method is provided for forming a synthetic corrosion product layer on tube surfaces. The method utilizes two dissimilar materials with different coefficients of thermal expansion. An object tube and sacrificial tube are positioned one inside the other such that an annular region is created between the two tubes' surfaces. A slurry of synthetic corrosion products is injected into this annular region and the assembly is heat treated. This heat causes the tubes to expand, the inner tube with the higher coefficient of expansion expanding more than the outer tube, thereby creating internal pressures which consolidate the corrosion products and adhere the corrosion products to the tubing surfaces. The sacrificial tube may then be removed by conventional chemical etching or mechanical methods.
NASA Technical Reports Server (NTRS)
Nagamatsu, H. T.; Duffy, R. E.
1984-01-01
Low and high pressure shock tubes were designed and constructed for the purpose of obtaining heat transfer data over a temperature range of 390 to 2500 K, pressures of 0.3 to 42 atm, and Mach numbers of 0.15 to 1.5 with and without pressure gradient. A square test section with adjustable top and bottom walls was constructed to produce the favorable and adverse pressure gradient over the flat plate with heat gages. A water cooled gas turbine nozzle cascade which is attached to the high pressure shock tube was obtained to measuse the heat flux over pressure and suction surfaces. Thin-film platinum heat gages with a response time of a few microseconds were developed and used to measure the heat flux for laminar, transition, and turbulent boundary layers. The laminar boundary heat flux on the shock tube wall agreed with Mirel's flat plate theory. Stagnation point heat transfer for circular cylinders at low temperature compared with the theoretical prediction, but for a gas temperature of 922 K the heat fluxes were higher than the predicted values. Preliminary flat plate heat transfer data were measured for laminar, transition, and turbulent boundary layers with and without pressure gradients for free-stream temperatures of 350 to 2575 K and flow Mach numbers of 0.11 to 1.9. The experimental heat flux data were correlated with the laminar and turbulent theories and the agreement was good at low temperatures which was not the case for higher temperatures.
High-frequency pressure variations in the vicinity of a surface CO2 flux chamber
Eugene S. Takle; James R. Brandle; R. A. Schmidt; Rick Garcia; Irina V. Litvina; William J. Massman; Xinhua Zhou; Geoffrey Doyle; Charles W. Rice
2003-01-01
We report measurements of 2Hz pressure fluctuations at and below the soil surface in the vicinity of a surface-based CO2 flux chamber. These measurements were part of a field experiment to examine the possible role of pressure pumping due to atmospheric pressure fluctuations on measurements of surface fluxes of CO2. Under the moderate wind speeds, warm temperatures,...
NASA Technical Reports Server (NTRS)
Poe, C. C., Jr.
1990-01-01
A study was made to determine the relevance of impacter shape to nonvisible damage and tensile residual strength of a 36 mm (1.4 in.) thick graphite/epoxy motor case. The shapes of the impacters were as follows: 12.7 mm (0.5 in.) and 25.4 mm (1.0 in.) diameter hemispheres, a sharp corner, and a 6.3 mm (0.25 in.) diameter bolt-like rod. The investigation revealed that damage initiated when the contact pressure exceeded a critical level. However, the damage was not visible on the surface until an even higher pressure was exceeded. The damage on the surface consisted of a crater shaped like the impacter, and the damage below the surface consisted of broken fibers. The impact energy to initiate damage or cause visible damage on the surface increased approximately with impacter diameter to the third power. The reduction in strength for nonvisible damage increased with increasing diameter, 9 and 30 percent for the 12.7 mm (0.5 in.) and 25.4 mm (1.0 in.) diameter hemispheres, respectively. The corner impacter made visible damage on the surface for even the smallest impact energy. The rod impacter acted like a punch and sliced through the composite. Even so, the critical level of pressure to initiate damage was the same for the rod and hemispherical impacters. Factors of safety for nonvisible damage increased with increasing kinetic energy of impact. The effects of impacter shape on impact force, damage size, damage visibility, and residual tensile strength were predicted quite well assuming Hertzian contact and using maximum stress criteria and a surface crack analysis.
Tessutti, Vitor; Trombini-Souza, Francis; Ribeiro, Ana Paula; Nunes, Ana Luiza; Sacco, Isabel de Camargo Neves
2010-01-01
The type of surface used for running can influence the load that the locomotor apparatus will absorb and the load distribution could be related to the incidence of chronic injuries. As there is no consensus on how the locomotor apparatus adapts to loads originating from running surfaces with different compliance, the objective of this study was to investigate how loads are distributed over the plantar surface while running on natural grass and on a rigid surface--asphalt. Forty-four adult runners with 4+/-3 years of running experience were evaluated while running at 12 km/h for 40 m wearing standardised running shoes and Pedar insoles (Novel). Peak pressure, contact time and contact area were measured in six regions: lateral, central and medial rearfoot, midfoot, lateral and medial forefoot. The surfaces and regions were compared by three ANOVAS (2 x 6). Asphalt and natural grass were statistically different in all variables. Higher peak pressures were observed on asphalt at the central (p<0.001) [grass: 303.8(66.7)kPa; asphalt: 342.3(76.3)kPa] and lateral rearfoot (p<0.001) [grass: 312.7(75.8)kPa; asphalt: 350.9(98.3)kPa] and lateral forefoot (p<0.001) [grass: 221.5(42.9)kPa; asphalt: 245.3(55.5)kPa]. For natural grass, contact time and contact area were significantly greater at the central rearfoot (p<0.001). These results suggest that natural grass may be a surface that provokes lighter loads on the rearfoot and forefoot in recreational runners. Copyright (c) 2008 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Moritzer, E.; Leister, C.
2014-05-01
The industrial use of atmospheric pressure plasmas in the plastics processing industry has increased significantly in recent years. Users of this treatment process have the possibility to influence the target values (e.g. bond strength or surface energy) with the help of kinematic and electrical parameters. Until now, systematic procedures have been used with which the parameters can be adapted to the process or product requirements but only by very time-consuming methods. For this reason, the relationship between influencing values and target values will be examined based on the example of a pretreatment in the bonding process with the help of statistical experimental design. Because of the large number of parameters involved, the analysis is restricted to the kinematic and electrical parameters. In the experimental tests, the following factors are taken as parameters: gap between nozzle and substrate, treatment velocity (kinematic data), voltage and duty cycle (electrical data). The statistical evaluation shows significant relationships between the parameters and surface energy in the case of polypropylene. An increase in the voltage and duty cycle increases the polar proportion of the surface energy, while a larger gap and higher velocity leads to lower energy levels. The bond strength of the overlapping bond is also significantly influenced by the voltage, velocity and gap. The direction of their effects is identical with those of the surface energy. In addition to the kinematic influences of the motion of an atmospheric pressure plasma jet, it is therefore especially important that the parameters for the plasma production are taken into account when designing the pretreatment processes.
NASA Astrophysics Data System (ADS)
Dill, Robert; Bergmann-Wolf, Inga; Thomas, Maik; Dobslaw, Henryk
2016-04-01
The global numerical weather prediction model routinely operated at the European Centre for Medium-Range Weather Forecasts (ECMWF) is typically updated about two times a year to incorporate the most recent improvements in the numerical scheme, the physical model or the data assimilation procedures into the system for steadily improving daily weather forecasting quality. Even though such changes frequently affect the long-term stability of meteorological quantities, data from the ECMWF deterministic model is often preferred over alternatively available atmospheric re-analyses due to both the availability of the data in near real-time and the substantially higher spatial resolution. However, global surface pressure time-series, which are crucial for the interpretation of geodetic observables, such as Earth rotation, surface deformation, and the Earth's gravity field, are in particular affected by changes in the surface orography of the model associated with every major change in horizontal resolution happened, e.g., in February 2006, January 2010, and May 2015 in case of the ECMWF operational model. In this contribution, we present an algorithm to harmonize surface pressure time-series from the operational ECMWF model by projecting them onto a time-invariant reference topography under consideration of the time-variable atmospheric density structure. The effectiveness of the method will be assessed globally in terms of pressure anomalies. In addition, we will discuss the impact of the method on predictions of crustal deformations based on ECMWF input, which have been recently made available by GFZ Potsdam.
On the mechanical interaction between a fluid-filled fracture and the earth's surface
Pollard, D.D.; Holzhausen, G.
1979-01-01
The mechanical interaction between a fluid-filled fracture (e.g., hydraulic fracture joint, or igneous dike) and the earth's surface is analyzed using a two-dimensional elastic solution for a slit of arbitrary inclination buried beneath a horizontal free surface and subjected to an arbitrary pressure distribution. The solution is obtained by iteratively superimposing two fundamental sets of analytical solutions. For uniform internal pressure the slit behaves essentially as if it were in an infinite region if the depth-to-center is three times greater than the half-length. For shallower slits interaction with the free surface is pronounced: stresses and displacements near the slit differ by more than 10% from values for the deeply buried slit. The following changes are noted as the depth-to-center decreases: 1. (1) the mode I stress intensity factor increases for both ends of the slit, but more rapidly at the upper end; 2. (2) the mode II stress-intensity factor is significantly different from zero (except for vertical slits) suggesting propagation out of the original plane of the slit; 3. (3) displacements of the slit wall are asymmetric such that the slit gaps open more widely near the upper end. Similar changes are noted if fluid density creates a linear pressure gradient that is smaller than the lithostatic gradient. Under such conditions natural fractures should propagate preferentially upward toward the earth's surface requiring less pressure as they grow in length. If deformation near the surface is of interest, the model should account explicitly for the free surface. Stresses and displacements at the free surface are not approximated very well by values calculated along a line in an infinite region, even when the slit is far from the line. As depth-to-center of a shallow pressurized slit decreases, the following changes are noted: 1. (1) displacements of the free surface increase to the same order of magnitude as the displacements of the slit walls, 2. (2) tensile stresses of magnitude greater than the pressure in the slit are concentrated along the free surface. The relative surface displacements over a shallow vertical slit are downward over the slit and upward to both sides of this area. The tensile stress acting parallel to the free surface over a shallow vertical slit is concentrated in two maxima adjacent to a point of very low stress immediately over the slit. The solution is used to estimate the length-to-depth ratio at which igneous sills have gained sufficient leverage on overlying strata to bend these strata upward and form a laccolith. The pronounced mode II stress intensity associated with shallow horizontal slits explains the tendency for some sills to climb to higher stratigraphie horizons as they grow in length. The bimodal tensile stress concentration over shallow vertical slits correlates qualitatively with the distribution of cracks and normal faults which flank fissure eruptions on volcanoes. The solution may be used to analyze surface displacements and tilts over massive hydraulic fractures in oil fields and to understand the behavior of hydraulic fractures in granite quarries. ?? 1979.
NASA Technical Reports Server (NTRS)
Koehler, Birgit G.; Mcneill, Laurie S.; Middlebrook, Ann M.; Tolbert, Margaret A.
1993-01-01
Heterogeneous reactions involving hydrochloric acid adsorbed on the surfaces of polar stratospheric clouds (PSCs) are postulated to contribute to polar ozone loss. Using FTIR spectroscopy to probe the condensed phase, we have examined the interaction of HCl with ice and nitric acid trihydrate (NAT) films representative of types II and I PSCs, respectively. For HCl pressures in the range of 10 exp -7 to 10 exp -5 Torr, our FTIR studies show that a small amount of crystalline HCl-6H2O formed on or in ice at 155 K. However, for higher HCl pressures, we observed that the entire film of ice rapidly converted into an amorphous 4:1 H2O:HCl mixture. From HCl-uptake experiments with P(HCl) = 8 x 10 exp -7 Torr, we estimate roughly that the diffusion coefficient of HCl in ice is around 2 x 10 exp -12 sq cm/s at 158 K. For higher temperatures more closely approximating those found in the stratosphere, we were unable to detect bulk HCl uptake by ice. Indirect evidence suggests that HCl adsorption onto the surface of model PSC films inhibited the evaporation of both ice and NAT by 3-5 K.
Thunder-induced ground motions: 2. Site characterization
NASA Astrophysics Data System (ADS)
Lin, Ting-L.; Langston, Charles A.
2009-04-01
Thunder-induced ground motion, near-surface refraction, and Rayleigh wave dispersion measurements were used to constrain near-surface velocity structure at an unconsolidated sediment site. We employed near-surface seismic refraction measurements to first define ranges for site structure parameters. Air-coupled and hammer-generated Rayleigh wave dispersion curves were used to further constrain the site structure by a grid search technique. The acoustic-to-seismic coupling is modeled as an incident plane P wave in a fluid half-space impinging into a solid layered half-space. We found that the infrasound-induced ground motions constrained substrate velocities and the average thickness and velocities of the near-surface layer. The addition of higher-frequency near-surface Rayleigh waves produced tighter constraints on the near-surface velocities. This suggests that natural or controlled airborne pressure sources can be used to investigate the near-surface site structures for earthquake shaking hazard studies.
Surface energy fluxes on four slope sites during FIFE 1988
NASA Technical Reports Server (NTRS)
Nie, D.; Demetriades-Shah, T.; Kanemasu, E. T.
1992-01-01
Four slopes (facing north, south, east, and west) in the Konza Prairie Research Natural Area were selected to study the effect of topography on surface energy balance and other micrometeorological variables. Energy fluxes, air temperature, and vapor pressure were measured on the slopes throughout the 1988 growing season. Net radiation was highest on the south facing slope and lowest on the north facing slope, and the difference was more than 150 W/sq m (20-30 percent) at solar noon. For daily averages the difference was about 25 W/sq m (15 percent) early in the season and increased to about 60 W/sq m (30-50 percent) in September. Soil heat fluxes were similar for all the slopes. The absolute values of sensible heat flux were consistently lower on the north facing slope compared with other slopes. The south facing slope had the greatest day-to-day fluctuation in latent heat flux as a result of the interaction of net radiation, soil moisture, and green leaf area. Differences were found in the partitioning of the available energy among the slopes, and the north facing slope had a higher percentage of energy dissipated into latent heat flux. The north facing slope had higher air temperatures during the day and higher vapor pressures both during the day and at night when the wind was from the south.
Support surfaces for pressure ulcer prevention: A network meta-analysis
Dumville, Jo C.; Cullum, Nicky
2018-01-01
Background Pressure ulcers are a prevalent and global issue and support surfaces are widely used for preventing ulceration. However, the diversity of available support surfaces and the lack of direct comparisons in RCTs make decision-making difficult. Objectives To determine, using network meta-analysis, the relative effects of different support surfaces in reducing pressure ulcer incidence and comfort and to rank these support surfaces in order of their effectiveness. Methods We conducted a systematic review, using a literature search up to November 2016, to identify randomised trials comparing support surfaces for pressure ulcer prevention. Two reviewers independently performed study selection, risk of bias assessment and data extraction. We grouped the support surfaces according to their characteristics and formed evidence networks using these groups. We used network meta-analysis to estimate the relative effects and effectiveness ranking of the groups for the outcomes of pressure ulcer incidence and participant comfort. GRADE was used to assess the certainty of evidence. Main results We included 65 studies in the review. The network for assessing pressure ulcer incidence comprised evidence of low or very low certainty for most network contrasts. There was moderate-certainty evidence that powered active air surfaces and powered hybrid air surfaces probably reduce pressure ulcer incidence compared with standard hospital surfaces (risk ratios (RR) 0.42, 95% confidence intervals (CI) 0.29 to 0.63; 0.22, 0.07 to 0.66, respectively). The network for comfort suggested that powered active air-surfaces are probably slightly less comfortable than standard hospital mattresses (RR 0.80, 95% CI 0.69 to 0.94; moderate-certainty evidence). Conclusions This is the first network meta-analysis of the effects of support surfaces for pressure ulcer prevention. Powered active air-surfaces probably reduce pressure ulcer incidence, but are probably less comfortable than standard hospital surfaces. Most prevention evidence was of low or very low certainty, and more research is required to reduce these uncertainties. PMID:29474359
Support surfaces for pressure ulcer prevention: A network meta-analysis.
Shi, Chunhu; Dumville, Jo C; Cullum, Nicky
2018-01-01
Pressure ulcers are a prevalent and global issue and support surfaces are widely used for preventing ulceration. However, the diversity of available support surfaces and the lack of direct comparisons in RCTs make decision-making difficult. To determine, using network meta-analysis, the relative effects of different support surfaces in reducing pressure ulcer incidence and comfort and to rank these support surfaces in order of their effectiveness. We conducted a systematic review, using a literature search up to November 2016, to identify randomised trials comparing support surfaces for pressure ulcer prevention. Two reviewers independently performed study selection, risk of bias assessment and data extraction. We grouped the support surfaces according to their characteristics and formed evidence networks using these groups. We used network meta-analysis to estimate the relative effects and effectiveness ranking of the groups for the outcomes of pressure ulcer incidence and participant comfort. GRADE was used to assess the certainty of evidence. We included 65 studies in the review. The network for assessing pressure ulcer incidence comprised evidence of low or very low certainty for most network contrasts. There was moderate-certainty evidence that powered active air surfaces and powered hybrid air surfaces probably reduce pressure ulcer incidence compared with standard hospital surfaces (risk ratios (RR) 0.42, 95% confidence intervals (CI) 0.29 to 0.63; 0.22, 0.07 to 0.66, respectively). The network for comfort suggested that powered active air-surfaces are probably slightly less comfortable than standard hospital mattresses (RR 0.80, 95% CI 0.69 to 0.94; moderate-certainty evidence). This is the first network meta-analysis of the effects of support surfaces for pressure ulcer prevention. Powered active air-surfaces probably reduce pressure ulcer incidence, but are probably less comfortable than standard hospital surfaces. Most prevention evidence was of low or very low certainty, and more research is required to reduce these uncertainties.
Fernandez-Avila, C; Trujillo, A J
2016-10-15
Ultra-High Pressure Homogenization (100-300MPa) has great potential for technological, microbiological and nutritional aspects of fluid processing. Its effect on the oxidative stability and interfacial properties of oil-in-water emulsions prepared with 4% (w/v) of soy protein isolate and soybean oil (10 and 20%, v/v) were studied and compared to emulsions treated by conventional homogenization (15MPa). Emulsions were characterized by particle size, emulsifying activity index, surface protein concentration at the interface and by transmission electron microscopy. Primary and secondary lipid oxidation products were evaluated in emulsions upon storage. Emulsions with 20% oil treated at 100 and 200MPa exhibited the most oxidative stability due to higher amount of oil and protein surface load at the interface. This manuscript addresses the improvement in oxidative stability in emulsions treated by UHPH when compared to conventional emulsions. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kourakata, Itaru; Moriyama, Kozo; Hara, Toshiaki
For the technical improvement for brass instrument players it is important to obtain the detailed control parameters for embouchure building. While many investigators have reported the preliminary data on the muscle behavior, the precise aspects are unrevealed so far. The purpose of the present paper is to study dynamic perioral muscle behavior of French horn players and to investigate their lip valve function by measuring the contact pressure on teeth buccal surface during playing. It was shown from the experimental results that the advanced players contracted depressor angulioris and levator angulioris especially for high tone playing. It is considered that the combined contraction by these muscles contributes to forming smaller lip aperture being suitable to produce higher tones. Inversely a strong contraction of m. buccinator, which is widely believed to work to give hard tension to player’s lip, was observed insignificantly in the advanced players.
Racial Variations in Interfacial Behavior of Lipids Extracted from Worn Soft Contact Lenses
Svitova, Tatyana F.; Lin, Meng C.
2014-01-01
Purpose To explore interfacial behaviors and effect of temperature and dilatation on dynamic properties of multilayered human tear lipids extracted from silicone hydrogel (SiH) lenses worn by asymptomatic Asian and Caucasian subjects. Methods Interfacial properties of lipids extracted from Focus® N&D lenses worn by 14 subjects continuously for 1 month were studied. The lipids were deposited on an air bubble immersed in a model tear electrolytes (MTE) solution to form 100 ± 20 nm-thick films. Surface pressure was recorded during slow expansion/contraction cycles to evaluate compressibility and hysteresis of lipid films. Films were also subjected to fast step-strain dilatations at temperatures 22°–45° C for their visco-elastic properties assessment. Results Iso-cycles for Asian and Caucasian lipids were similar at low surface pressures, but had distinctly different compressibility and hysteresis at dynamic pressures exceeding 30 mN/m. Rheological parameters of reconstituted lipids were also dissimilar between Asian and Caucasian. The elastic modulusE∞ for Caucasian lipids was 1.5 times higher than that for Asian lipids, whereas relaxation time (t) was on average 1.3 times higher for Asian. No significant changes were observed in rheological properties of both Asian and Caucasian lipids when temperature increased from 22.0° to 36.5° C. However, for Caucasian lipids, E∞ reduced considerably at temperatures above 42.0° C, while t remained unchanged. For Asian lipids, both E∞ and t started to decline as temperature increased to 38° C and higher. Conclusions Higher elastic modulus of Caucasian lipids and elasticity threshold at certain deformations indicate stronger structure and intermolecular interactions as compared with more viscous Asian lipids. The differences in interfacial behaviors between Asian and Caucasian lipids may be associated with the differences in their chemical compositions. PMID:24270592
Effects of Reynolds number on orifice induced pressure error
NASA Technical Reports Server (NTRS)
Plentovich, E. B.; Gloss, B. B.
1982-01-01
Data previously reported for orifice induced pressure errors are extended to the case of higher Reynolds number flows, and a remedy is presented in the form of a porous metal plug for the orifice. Test orifices with apertures 0.330, 0.660, and 1.321 cm in diam. were fabricated on a flat plate for trials in the NASA Langley wind tunnel at Mach numbers 0.40-0.72. A boundary layer survey rake was also mounted on the flat plate to allow measurement of the total boundary layer pressures at the orifices. At the high Reynolds number flows studied, the orifice induced pressure error was found to be a function of the ratio of the orifice diameter to the boundary layer thickness. The error was effectively eliminated by the insertion of a porous metal disc set flush with the orifice outside surface.
NASA Astrophysics Data System (ADS)
Wang, Y. C.; Shi, M.; Cao, S. L.; Li, Z. H.
2013-12-01
The pressure fluctuations in a centrifugal compressor with different inlet guide vanes (IGV) pre-whirl angles were investigated numerically, as well as the pre-stress model and static structural of blade. The natural frequency was evaluated by pre-stress model analysis. The results show that, the aero-dynamic pressure acting on blade surface is smaller than rotation pre-stress, which wouldn't result in large deformation of blade. The natural frequencies with rotation pre-stress are slightly higher than without rotation pre-stress. The leading mechanism of pressure fluctuations for normal conditions is the rotor-stator (IGVs) interaction, while is serious flow separations for conditions that are close to surge line. A few frequency components in spectra are close to natural frequency, which possibly result in resonant vibration if amplitude is large enough, which is dangerous for compressor working, and should be avoided.
Surface uplift and time-dependent seismic hazard due to fluid injection in eastern Texas.
Shirzaei, Manoochehr; Ellsworth, William L; Tiampo, Kristy F; González, Pablo J; Manga, Michael
2016-09-23
Observations that unequivocally link seismicity and wastewater injection are scarce. Here we show that wastewater injection in eastern Texas causes uplift, detectable in radar interferometric data up to >8 kilometers from the wells. Using measurements of uplift, reported injection data, and a poroelastic model, we computed the crustal strain and pore pressure. We infer that an increase of >1 megapascal in pore pressure in rocks with low compressibility triggers earthquakes, including the 4.8-moment magnitude event that occurred on 17 May 2012, the largest earthquake recorded in eastern Texas. Seismic activity increased even while injection rates declined, owing to diffusion of pore pressure from earlier periods with higher injection rates. Induced seismicity potential is suppressed where tight confining formations prevent pore pressure from propagating into crystalline basement rocks. Copyright © 2016, American Association for the Advancement of Science.
Physical and chemical behavior of flowing endothermic jet fuels
NASA Astrophysics Data System (ADS)
Ward, Thomas Arthur
Hydrocarbon fuels have been used as cooling media for aircraft jet engines for decades. However, modern aircraft engines are reaching a practical heat transfer limit beyond which the convective heat transfer provided by fuels is no longer adequate. One solution is to use an endothermic fuel that absorbs heat through a series of pyrolytic chemical reactions. However, many of the physical and chemical processes involved in endothermic fuel degradation are not well understood. The purpose of this dissertation is to study different characteristics of endothermic fuels using experiments and computational models. In the first section, data from three flow experiments using heated Jet-A fuel and additives were analyzed (with the aid of CFD calculations) to study the effects of treated surfaces on surface deposition. Surface deposition is the primary impediment in creating an operational endothermic fuel heat exchanger system, because deposits can obstruct fuel pathways causing a catastrophic system failure. As heated fuel flows through a fuel system, trace species within the fuel react with dissolved O2 to form surface deposits. At relatively higher fuel temperatures, the dissolved O2 is depleted, and pyrolytic chemistry becomes dominant (at temperatures greater than ˜500 °C). In the first experiment, the dissolved O2 consumption of heated fuel was measured on different surface types over a range of temperatures. It is found that use of treated tubes significantly delays oxidation of the fuel. In the second experiment, the treated length of tubing was progressively increased, which varied the characteristics of the thermal-oxidative deposits formed. In the third experiment, pyrolytic surface deposition in either fully treated or untreated tubes is studied. It is found that the treated surface significantly reduced the formation of surface deposits for both thermal oxidative and pyrolytic degradation mechanisms. Moreover, it is found that the chemical reactions resulting in pyrolytic deposition on the untreated surface are more sensitive to pressure level than those causing pyrolytic deposition on the treated surface. The second section describes the development of a two-dimensional computational model of the heat and mass transport associated with a flowing fuel using a unique global chemical kinetics model. This model calculates the changing flow properties of a supercritical reacting fuel by use of experimentally derived proportional product distributions. The third section studies the effects of pressure on flowing; mildly-cracked, supercritical n-decane. The experimental results are studied with the aid of the computational model described in section 2, expanded to deal with variable pressures. The experiments indicate that increasing pressure enhances the processes in which n-decane converts to (C5--C9) n-alkane products instead of decomposing into lower molecular weight products (C1--C4): Increasing pressure also increases the overall conversion rate of supercritical n-decane flowing through a reactor. Computational modeling of the experiment shows how the flow properties are influenced by pressure. (Abstract shortened by UMI.)
Kinetic analysis of the interaction between poly(amidoamine) dendrimers and model lipid membranes.
Tiriveedhi, Venkataswarup; Kitchens, Kelly M; Nevels, Kerrick J; Ghandehari, Hamidreza; Butko, Peter
2011-01-01
We used fluorescence spectroscopy and surface tensiometry to study the interaction between low-generation (G1 and G4) poly(amidoamine) (PAMAM) dendrimers, potential vehicles for intracellular drug delivery, and model lipid bilayers. Membrane association of fluorescently labeled dendrimers, measured by fluorescence anisotropy, increased with increasing size of the dendrimer and with increasing negative charge density in the membrane, indicating the electrostatic nature of the interaction. When the membrane was doped with pyrene-labeled phosphatidyl glycerol (pyrene-PG), pyrene excimer fluorescence demonstrated a dendrimer-induced selective aggregation of negatively charged lipids when the membrane was in the liquid crystalline state. A nonlinear Stern-Volmer quenching of dendrimer fluorescence with cobalt bromide suggested a dendrimer-induced aggregation of lipid vesicles, which increased with the dendrimer's generation number. Surface tensiometry measurements showed that dendrimers penetrated into the lipid monolayer only at subphysiologic surface pressures (<30mN/m). We conclude that the low-generation PAMAM dendrimers associate with lipid membranes predominantly electrostatically, without significantly compromising the bilayer integrity. They bind stronger to membranes with higher fluidity and lower surface pressure, which are characteristic of rapidly dividing cells. Copyright © 2010 Elsevier B.V. All rights reserved.
Interdependency of Subsurface Carbon Distribution and Graphene–Catalyst Interaction
2014-01-01
The dynamics of the graphene–catalyst interaction during chemical vapor deposition are investigated using in situ, time- and depth-resolved X-ray photoelectron spectroscopy, and complementary grand canonical Monte Carlo simulations coupled to a tight-binding model. We thereby reveal the interdependency of the distribution of carbon close to the catalyst surface and the strength of the graphene–catalyst interaction. The strong interaction of epitaxial graphene with Ni(111) causes a depletion of dissolved carbon close to the catalyst surface, which prevents additional layer formation leading to a self-limiting graphene growth behavior for low exposure pressures (10–6–10–3 mbar). A further hydrocarbon pressure increase (to ∼10–1 mbar) leads to weakening of the graphene–Ni(111) interaction accompanied by additional graphene layer formation, mediated by an increased concentration of near-surface dissolved carbon. We show that growth of more weakly adhered, rotated graphene on Ni(111) is linked to an initially higher level of near-surface carbon compared to the case of epitaxial graphene growth. The key implications of these results for graphene growth control and their relevance to carbon nanotube growth are highlighted in the context of existing literature. PMID:25188018
NASA Astrophysics Data System (ADS)
Liu, Lin; Wang, Xin-da; Li, Xiang; Qi, Xiao-tong; Qu, Xuan-hui
2017-09-01
The fabrication of 17-4PH micro spool mandrils by micro metal injection molding was described here. The effects of size reduction on deformation, microstructure and surface roughness were studied by comparing a ϕ500 μm micro post and a ϕ1.7 mm cylinder after debinding and sintering. Experimental results show that slumping of the micro posts occurred due to a dramatic increase in outlet vapor pressure initiated at the thermal degradation onset temperature and the moment of gravity. Asymmetrical stress distribution within the micro component formed during the cooling stage may cause warping. Prior solvent debinding and adjustment in a thermal debinding scheme were useful for preventing the deformation of the micro components. Smaller grain size and higher micro hardness due to impeded grain growth were observed for the micro posts compared with the ϕ1.7 mm cylinder. Surface roughness increased with distance from the gate of the micro spool mandril due to melt front advancement during mold filling and the ensuing pressure distribution. At each position, surface roughness was dictated by injection molding and increased slightly after sintering.
Superior long-term activity for a Pt-Re alloy compared to Pt in methanol oxidation reactions
NASA Astrophysics Data System (ADS)
Duke, Audrey S.; Xie, Kangmin; Monnier, John R.; Chen, Donna A.
2017-03-01
Pt-Re bimetallic catalysts have shown enhanced activity compared to pure Pt for reactions involving oxidation, but the origins of this improved activity are not fully understood. Methanol oxidation on a Pt-Re alloy surface and pure Pt foil was studied in a microreactor coupled to an ultrahigh vacuum chamber. For reaction at 60 °C, the Pt-Re alloy surface exhibits superior long-term activity over a 24 h reaction period compared to pure Pt. The initial activity of Pt is 10-15% higher than on Pt-Re; however, the Pt surface gradually loses activity after 10 h online, whereas the activity of Pt-Re does not diminish. Post-reaction XPS shows that more carbon accumulates on the Pt than on Pt-Re, and the improved long-term activity is attributed to a greater ability of Pt-Re to oxidize the carbonaceous intermediates that eventually poison active sites. Both Pt and Pt-Re surfaces have almost no activity for methanol oxidation until a minimum coverage of oxygen is achieved from O2 dissociation. A comparison with methanol oxidation studies on Pt and Pt-Re in a pressure regime that is 150 times lower than in this work demonstrates that more carbon and less oxygen accumulate on the surfaces during reaction at the lower pressures.
Ollila, O. H. Samuli; Lamberg, Antti; Lehtivaara, Maria; Koivuniemi, Artturi; Vattulainen, Ilpo
2012-01-01
Lipid droplets play a central role in energy storage and metabolism on a cellular scale. Their core is comprised of hydrophobic lipids covered by a surface region consisting of amphiphilic lipids and proteins. For example, high and low density lipoproteins (HDL and LDL, respectively) are essentially lipid droplets surrounded by specific proteins, their main function being to transport cholesterol. Interfacial tension and surface pressure of these particles are of great interest because they are related to the shape and the stability of the droplets and to protein adsorption at the interface. Here we use coarse-grained molecular-dynamics simulations to consider a number of related issues by calculating the interfacial tension in protein-free lipid droplets, and in HDL and LDL particles mimicking physiological conditions. First, our results suggest that the curvature dependence of interfacial tension becomes significant for particles with a radius of ∼5 nm, when the area per molecule in the surface region is <1.4 nm2. Further, interfacial tensions in the used HDL and LDL models are essentially unaffected by single apo-proteins at the surface. Finally, interfacial tensions of lipoproteins are higher than in thermodynamically stable droplets, suggesting that HDL and LDL are kinetically trapped into a metastable state. PMID:22995496
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suriyawong, Adirek; Wongwises, Somchai
2010-11-15
A study of nucleate pool boiling heat transfer of TiO{sub 2}-water nanofluids is experimentally conducted. Nanofluids with various concentrations of 0.00005, 0.0001, 0.0005, 0.005, and 0.01 vol.% are employed. Horizontal circular plates made from copper and aluminium with different roughness values of 0.2 and 4 {mu}m are used as heating surfaces. The experiments are performed to explore the effects of nanofluids concentration as well as heating surface material and roughness on nucleate pool boiling characteristics and the heat transfer coefficient under ambient pressure. The results show that based on the copper heated surface which is tested with a concentration ofmore » 0.0001 vol.%, higher nucleate pool boiling heat transfer coefficient is obtained when compared with the base fluid. A 15% increase is obtained for the surface roughness of 0.2 {mu}m and a 4% increase is obtained for roughness of 4 {mu}m. For concentrations higher than 0.0001 vol.%, however, the higher the concentration, the lower the heat transfer coefficient. In the case of aluminium heated surface, the corresponding heat transfer coefficients are larger than for the copper surface by around 30% with a roughness of 0.2 {mu}m and around 27% with a roughness of 4 {mu}m. Moreover, the results also indicate that the heat transfer coefficient obtained based on a roughness of 4 {mu}m is higher than that for a roughness of 0.2 {mu}m by around 12% for aluminium and by around 13% for copper. (author)« less
Impact of two different saponins on the organization of model lipid membranes.
Korchowiec, Beata; Gorczyca, Marcelina; Wojszko, Kamila; Janikowska, Maria; Henry, Max; Rogalska, Ewa
2015-10-01
Saponins, naturally occurring plant compounds are known for their biological and pharmacological activity. This activity is strongly related to the amphiphilic character of saponins that allows them to aggregate in aqueous solution and interact with membrane components. In this work, Langmuir monolayer techniques combined with polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS) and Brewster angle microscopy were used to study the interaction of selected saponins with lipid model membranes. Two structurally different saponins were used: digitonin and a commercial Merck Saponin. Membranes of different composition, namely, cholesterol, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine or 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1-glycerol) were formed at the air/water and air/saponin solution interfaces. The saponin-lipid interaction was characterized by changes in surface pressure, surface potential, surface morphology and PM-IRRAS signal. Both saponins interact with model membranes and change the physical state of membranes by perturbing the lipid acyl chain orientation. The changes in membrane fluidity were more significant upon the interaction with Merck Saponin. A higher affinity of saponins for cholesterol than phosphatidylglycerols was observed. Moreover, our results indicate that digitonin interacts strongly with cholesterol and solubilize the cholesterol monolayer at higher surface pressures. It was shown, that digitonin easily penetrate to the cholesterol monolayer and forms a hydrogen bond with the hydroxyl groups. These findings might be useful in further understanding of the saponin action at the membrane interface and of the mechanism of membrane lysis. Copyright © 2015 Elsevier B.V. All rights reserved.
Dimethyl ether production from methanol and/or syngas
Dagle, Robert A; Wang, Yong; Baker, Eddie G; Hu, Jianli
2015-02-17
Disclosed are methods for producing dimethyl ether (DME) from methanol and for producing DME directly from syngas, such as syngas from biomass. Also disclosed are apparatus for DME production. The disclosed processes generally function at higher temperatures with lower contact times and at lower pressures than conventional processes so as to produce higher DME yields than do conventional processes. Certain embodiments of the processes are carried out in reactors providing greater surface to volume ratios than the presently used DME reactors. Certain embodiments of the processes are carried out in systems comprising multiple microchannel reactors.
NASA Technical Reports Server (NTRS)
Lee, Meemong; Weidner, Richard
2016-01-01
In the GEOS-Chem Adjoint (GCA) system, the total (wet) surface pressure of the GEOS meteorology is employed as dry surface pressure, ignoring the presence of water vapor. The Jet Propulsion Laboratory (JPL) Carbon Monitoring System (CMS) research team has been evaluating the impact of the above discrepancy on the CO2 model forecast and the CO2 flux inversion. The JPL CMS research utilizes a multi-mission assimilation framework developed by the Multi-Mission Observation Operator (M2O2) research team at JPL extending the GCA system. The GCA-M2O2 framework facilitates mission-generic 3D and 4D-variational assimilations streamlining the interfaces to the satellite data products and prior emission inventories. The GCA-M2O2 framework currently integrates the GCA system version 35h and provides a dry surface pressure setup to allow the CO2 model forecast to be performed with the GEOS-5 surface pressure directly or after converting it to dry surface pressure.
NASA Technical Reports Server (NTRS)
Lee, Meemong; Weidner, Richard
2016-01-01
In the GEOS-Chem Adjoint (GCA) system, the total (wet) surface pressure of the GEOS meteorology is employed as dry surface pressure, ignoring the presence of water vapor. The Jet Propulsion Laboratory (JPL) Carbon Monitoring System (CMS) research team has been evaluating the impact of the above discrepancy on the CO2 model forecast and the CO2 flux inversion. The JPL CMS research utilizes a multi-mission assimilation framework developed by the Multi-Mission Observation Operator (M2O2) research team at JPL extending the GCA system. The GCA-M2O2 framework facilitates mission-generic 3D and 4D-variational assimilations streamlining the interfaces to the satellite data products and prior emission inventories. The GCA-M2O2 framework currently integrates the GCA system version 35h and provides a dry surface pressure setup to allow the CO2 model forecast to be performed with the GEOS-5 surface pressure directly or after converting it to dry surface pressure.
Surface pressure maps from scatterometer data
NASA Technical Reports Server (NTRS)
Brown, R. A.; Levy, Gad
1991-01-01
The ability to determine surface pressure fields from satellite scatterometer data was shown by Brown and Levy (1986). The surface winds are used to calculate the gradient winds above the planetary boundary layer, and these are directly related to the pressure gradients. There are corrections for variable stratification, variable surface roughness, horizontal inhomogeneity, humidity and baroclinity. The Seasat-A Satellite Scatterometer (SASS) data have been used in a systematic study of 50 synoptic weather events (regions of approximately 1000 X 1000 km). The preliminary statistics of agreement with national weather service surface pressure maps are calculated. The resulting surface pressure maps can be used together with SASS winds and Scanning Multichannel Microwave Radiometer (SMMR) water vapor and liquid water analyses to provide good front and storm system analyses.
Determination of tropical cyclone surface pressure and winds from satellite microwave data
NASA Technical Reports Server (NTRS)
Kidder, S. Q.
1979-01-01
An approach to the problem of deducing wind speed and pressure around tropical cyclones is presented. The technique, called the Surface Wind Inference from Microwave data (SWIM technique, uses satellites microwave sounder data to measure upper tropospheric temperature anomalies which may then be related to surface pressure anomalies through the hydrostatic and radiative transfer equations. Surface pressure gradients outside of the radius of maximum wind are estimated for the first time. Future instruments may be able to estimate central pressure with + or - 0/1 kPa accuracy.
High-pressure liquid-monopropellant strand combustion.
NASA Technical Reports Server (NTRS)
Faeth, G. M.
1972-01-01
Examination of the influence of dissolved gases on the state of the liquid surface during high-pressure liquid-monopropellant combustion through the use of a strand burning experiment. Liquid surface temperatures were measured, using fine-wire thermocouples, during the strand combustion of ethyl nitrate, normal propyl nitrate, and propylene glycol dinitrate at pressures up to 81 atm. These measurements were compared with the predictions of a variable-property gas-phase analysis assuming an infinite activation energy for the decomposition reaction. The state of the liquid surface was estimated using a conventional low-pressure phase equilibrium model, as well as a high-pressure version that considered the presence of dissolved combustion-product gases in the liquid phase. The high-pressure model was found to give a superior prediction of measured liquid surface temperatures. Computed total pressures required for the surface to reach its critical mixing point during strand combustion were found to be in the range from 2.15 to 4.62 times the critical pressure of the pure propellant. Computed dissolved gas concentrations at the liquid surface were in the range from 35 to 50% near the critical combustion condition.
High pressure intensification of cassava resistant starch (RS3) yields.
Lertwanawatana, Proyphon; Frazier, Richard A; Niranjan, Keshavan
2015-08-15
Cassava starch, typically, has resistant starch type 3 (RS3) content of 2.4%. This paper shows that the RS3 yields can be substantially enhanced by debranching cassava starch using pullulanase followed by high pressure or cyclic high-pressure annealing. RS3 yield of 41.3% was obtained when annealing was carried out at 400MPa/60°C for 15 min, whereas it took nearly 8h to obtain the same yield under conventional atmospheric annealing at 60°C. The yield of RS3 could be further significantly increased by annealing under 400 MPa/60°C pressure for 15 min followed by resting at atmospheric pressure for 3h 45 min, and repeating this cycle for up to six times. Microstructural surface analysis of the product under a scanning electron microscope showed an increasingly rigid density of the crystalline structure formed, confirming higher RS3 content. Copyright © 2015 Elsevier Ltd. All rights reserved.
Diffuse interfacelets in transcritical flows of propellants into high-pressure combustors
NASA Astrophysics Data System (ADS)
Urzay, Javier; Jofre, Lluis
2017-11-01
Rocket engines and new generations of high-power jet engines and diesel engines oftentimes involve the injection of one or more reactants at subcritical temperatures into combustor environments at high pressures, and more particularly, at pressures higher than those corresponding to the critical points of the individual components of the mixture, which typically range from 13 to 50 bars for most propellants. This class of trajectories in the thermodynamic space has been traditionally referred to as transcritical. Under particular conditions often found in hydrocarbon-fueled chemical propulsion systems, and despite the prevailing high pressures, the flow in the combustor may contain regions close to the injector where a diffuse interface is formed in between the fuel and oxidizer streams that is sustained by surface-tension forces as a result of the elevation of the critical pressure of the mixture. This talk describes progress towards modeling these effects in the conservation equations. Funded by the US Department of Energy.
Touyz, Louis Z G; Afrashtehfar, Kelvin I
2017-09-01
Osteoporosis (OP) is a global bone disease prevalent in aging in humans, especially in older women. Bisphosphonates (BPs) are commonly used as therapy for OP as it influences hard and soft tissues calcium metabolism. Mucosal and dermal ulceration with exposure of underlying bone arises from incomplete epithelial recovery due to reduced desmosome formation deriving from lack of available calcium. Pathological situations such as bisphosphonate-related osteonecrosis of the jaw have been described. This hypothesis states other situations which demand intact functional desmosomes such as healing skin over chronic pressure points leading to pressure ulcers (as well-known as bedsores, pressure sores, pressure injuries, decubitus ulcers), and hemidesmosomes such as epithelial seals in contact with titanium surfaces will have a higher prevalence of breakdown among patients being treated with BPs. This may be proven through the diminished modulation of calcium ions due to BPs, and its effect on the formation of intercellular gap junctions. Copyright © 2017. Published by Elsevier Ltd.
Calculation and Correlation of the Unsteady Flowfield in a High Pressure Turbine
NASA Technical Reports Server (NTRS)
Bakhle, Milind A.; Liu, Jong S.; Panovsky, Josef; Keith, Theo G., Jr.; Mehmed, Oral
2002-01-01
Forced vibrations in turbomachinery components can cause blades to crack or fail due to high-cycle fatigue. Such forced response problems will become more pronounced in newer engines with higher pressure ratios and smaller axial gap between blade rows. An accurate numerical prediction of the unsteady aerodynamics phenomena that cause resonant forced vibrations is increasingly important to designers. Validation of the computational fluid dynamics (CFD) codes used to model the unsteady aerodynamic excitations is necessary before these codes can be used with confidence. Recently published benchmark data, including unsteady pressures and vibratory strains, for a high-pressure turbine stage makes such code validation possible. In the present work, a three dimensional, unsteady, multi blade-row, Reynolds-Averaged Navier Stokes code is applied to a turbine stage that was recently tested in a short duration test facility. Two configurations with three operating conditions corresponding to modes 2, 3, and 4 crossings on the Campbell diagram are analyzed. Unsteady pressures on the rotor surface are compared with data.
NASA Astrophysics Data System (ADS)
Manikantan, Harishankar; Squires, Todd M.
2017-02-01
The surface shear rheology of many insoluble surfactants depends strongly on the surface pressure (or concentration) of that surfactant. Here we highlight the dramatic consequences that surface-pressure-dependent surface viscosities have on interfacially dominant flows, by considering lubrication-style geometries within high Boussinesq (Bo) number flows. As with three-dimensional lubrication, high-Bo surfactant flows through thin gaps give high surface pressures, which in turn increase the local surface viscosity, further amplifying lubrication stresses and surface pressures. Despite their strong nonlinearity, the governing equations are separable, so that results from two-dimensional Newtonian lubrication analyses may be immediately adapted to treat surfactant monolayers with a general functional form of ηs(Π ) . Three paradigmatic systems are analyzed to reveal qualitatively new features: a maximum, self-limiting value for surfactant fluxes and particle migration velocities appears for Π -thickening surfactants, and kinematic reversibility is broken for the journal bearing and for suspensions more generally.
Contact lines are unstable even under non-splashing droplets
NASA Astrophysics Data System (ADS)
Pack, Min; Kaneelil, Paul; Sun, Ying
2017-11-01
Drop impact is fundamental to natural and industrial processes such as rain-induced soil erosion and spray coating technologies. In this study, we elucidate the interfacial instabilities formed by air entrainment at the wetting front of impacting droplets on atomically smooth, viscous silicone oil films of constant thickness with varying droplet velocity, viscosity, surface tension, and ambient pressures. A high-speed total internal reflection microscopy technique accounting for the Fresnel relations at the droplet interface allowed for in-situ measurements of an entrained air rim at the wetting front. The growth of the air rim is a prerequisite to the instability which is formed when the gas pressure balances the capillary pressure near the wetting front. A critical capillary number, which inversely scales as the ambient pressure, is predicted and the result agrees well with the experiments. The wavenumber in the instability is shown to increase with viscosity and velocity but decrease with surface tension of the impacting drop. We thus conclude that the instability mechanism is in qualitative agreement with the Saffman-Taylor instability - where the low viscosity air is displacing the higher viscosity droplet. The low We contact line instabilities observed in this study provide a paradigm shift in the conventional understanding of hydrodynamic instabilities under drop impact which usually require We >>10.
NASA Technical Reports Server (NTRS)
Byrdsong, T. A.; Brooks, C. W., Jr.
1983-01-01
Wind-tunnel measurements were made of the wing-surface static-pressure distributions on a 0.237 scale model of a remotely piloted research vehicle equipped with a thick, high-aspect-ratio supercritical wing. Data are presented for two model configurations (with and without a ventral pod) at Mach numbers from 0.70 to 0.92 at angles of attack from -4 deg to 8 deg. Large variations of wing-surface local pressure distributions were developed; however, the characteristic supercritical-wing pressure distribution occurred near the design condition of 0.80 Mach number and 2 deg angle of attack. The significant variations of the local pressure distributions indicated pronounced shock-wave movements that were highly sensitive to angle of attack and Mach number. The effect of the vertical pod varied with test conditions; however at the higher Mach numbers, the effects on wing flow characteristics were significant at semispan stations as far outboard as 0.815. There were large variations of the wing loading in the range of test conditions, both model configurations exhibited a well-defined peak value of normal-force coefficient at the cruise angle of attack (2 deg) and Mach number (0.80).
Stirling Cooler Designed for Venus Exploration
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Mellott, Kenneth D.
2004-01-01
Venus having an average surface temperature of 460 degrees Celsius (about 860 degrees Fahrenheit) and an atmosphere 150 times denser than the Earth's atmosphere, designing a robot to merely survive on the surface to do planetary exploration is an extremely difficult task. This temperature is hundreds of degrees higher than the maximum operating temperature of currently existing microcontrollers, electronic devices, and circuit boards. To meet the challenge of Venus exploration, researchers at the NASA Glenn Research Center studied methods to keep a pressurized electronics package cooled, so that the operating temperature within the electronics enclosure would be cool enough for electronics to run, to allow a mission to operate on the surface of Venus for extended periods.
Free-to-roll tests of X-31 and F-18 subscale models with correlation to flight test results
NASA Technical Reports Server (NTRS)
Williams, David L., II; Nelson, Robert C.; Fisher, David F.
1994-01-01
This presentation will concentrate on a series of low-speed wind tunnel tests conducted on a 2.5 percent subscale F-18 model and a 2 percent subscale X-31 model. The model's control surfaces were unaugmented; and for the most part, were deflected at a constant angle throughout the tests. The tests consisted mostly of free-to-roll experiments conducted with the use of an air-bearing, surface pressure measurements, off-surface flow visualization, and force-balance tests. Where possible the results of the subscale tests have been compared to flight test data, or to other wind tunnel data taken at higher Reynolds numbers.
Study on thickness distribution of thermoformed medical PVC blister
NASA Astrophysics Data System (ADS)
Li, Yiping
2017-08-01
Vacuum forming has many advantages over other plastic forming processes due to its cost effectiveness, time efficiency, higher product precision, and more design flexibility. Nevertheless, when pressures greater than the atmospheric value are required to force the thermo-plastic into more intimate contact with the mold surface, pressure forming is a better choice. This paper studies the process of air-pressure thermoforming of plastic sheet, and focuses on medical blister PVC products. ANSYS POLYFLOW tool is used to simulate the process and analyze the wall thickness distribution of the blister. The influence of mold parameters on the wall thickness distribution of thermoformed part is thus obtained through simulation. Increasing radius between mold and side wall at the bottom of blister and draft prove to improve the wall thickness distribution.
Methane heat transfer investigation
NASA Technical Reports Server (NTRS)
1984-01-01
Future high chamber pressure LOX/hydrocarbon booster engines require copper base alloy main combustion chamber coolant channels similar to the SSME to provide adequate cooling and reusable engine life. Therefore, it is of vital importance to evaluate the heat transfer characteristics and coking thresholds for LNG (94% methane) cooling, with a copper base alloy material adjacent to he fuel coolant. High pressure methane cooling and coking characteristics recently evaluated at Rocketdyne using stainless steel heated tubes at methane bulk temperatures and coolant wall temperatures typical of advanced engine operation except at lower heat fluxes as limited by the tube material. As expected, there was no coking observed. However, coking evaluations need be conducted with a copper base surface exposed to the methane coolant at higher heat fluxes approaching those of future high chamber pressure engines.
NASA Astrophysics Data System (ADS)
Imkhovik, Nikolay A.
2010-10-01
Results of experimental and theoretical studies of the unusual detonation properties of mixtures of high explosives (HEs) with high-density inert additives W and Pb were analyzed and systematized. Typical examples of the nonideal detonation of composite explosives for which the measured detonation pressure is substantially lower and the detonation velocity is higher than the values calculated within the framework of the hydrodynamic model, with the specific heat ratio for the detonation products of ∼6-8, are presented. Mechanisms of formation of anomalous pressure and mass velocity profiles, which explain the correlation between the Chapman-Jouguet pressure for HE-W and HE-Pb mixtures, the velocity of the free surface of duralumin target, and the depth of the dent imprinted in steel witness plates, are described.
Survival of Shewanella Oneidensis MR-1 to GPa pressures
NASA Astrophysics Data System (ADS)
Hazael, Rachael; Foglia, Fabrizia; Leighs, James; Appleby-Thomas, Gareth; Daniel, Isabelle; Eakins, Daniel; Meersman, Filip; McMillian, Paul
2013-06-01
Most life on Earth is thought to occupy near-surface environments under relatively mild conditions of temperature, pressure, pH, salinity etc. That view is changing following discovery of extremophile organisms that prefer environments based on high or low T, extreme chemistries, or very high pressures. Over the past three decades, geomicrobiologists have discovered an extensive subsurface biosphere, that may account for between 1/10 to 1/3 of Earth's living biomass. We subjected samples of Shewanella oneidensis to several pressure cycles to examine its survival to static high pressures to above 1.5 GPa. Shewanella forms part of a genus that contains several piezophile species like S. violacea and S. benthica. We have obtained growth curves for populations recovered from high P conditions and cultured in the laboratory, before being subjected to even higher pressures. We have also carried out dynamic shock experiments using a specially designed cell to maintain high-P, low-T conditions during shock-recovery experiments and observe colony formation among the survivors. Colony counts, shape and growth curves allow us to compare the static vs dynamic pressure resistance of wild type vs pressure-adapted strains. Leverhulme
30 CFR 250.616 - Blowout prevention equipment.
Code of Federal Regulations, 2014 CFR
2014-07-01
... pressure rating of the BOP system and system components shall exceed the expected surface pressure to which they may be subjected. If the expected surface pressure exceeds the rated working pressure of the... pressure limitations that will be applied during each mode of pressure control. (b) The minimum BOP system...
30 CFR 250.616 - Blowout prevention equipment.
Code of Federal Regulations, 2013 CFR
2013-07-01
... pressure rating of the BOP system and system components shall exceed the expected surface pressure to which they may be subjected. If the expected surface pressure exceeds the rated working pressure of the... pressure limitations that will be applied during each mode of pressure control. (b) The minimum BOP system...
30 CFR 250.615 - Blowout prevention equipment.
Code of Federal Regulations, 2012 CFR
2012-07-01
... pressure rating of the BOP system and system components shall exceed the expected surface pressure to which they may be subjected. If the expected surface pressure exceeds the rated working pressure of the... pressure limitations that will be applied during each mode of pressure control. (b) The minimum BOP system...
Combining slope stability and groundwater flow models to assess stratovolcano collapse hazard
NASA Astrophysics Data System (ADS)
Ball, J. L.; Taron, J.; Reid, M. E.; Hurwitz, S.; Finn, C.; Bedrosian, P.
2016-12-01
Flank collapses are a well-documented hazard at volcanoes. Elevated pore-fluid pressures and hydrothermal alteration are invoked as potential causes for the instability in many of these collapses. Because pore pressure is linked to water saturation and permeability of volcanic deposits, hydrothermal alteration is often suggested as a means of creating low-permeability zones in volcanoes. Here, we seek to address the question: What alteration geometries will produce elevated pore pressures in a stratovolcano, and what are the effects of these elevated pressures on slope stability? We initially use a finite element groundwater flow model (a modified version of OpenGeoSys) to simulate `generic' stratovolcano geometries that produce elevated pore pressures. We then input these results into the USGS slope-stability code Scoops3D to investigate the effects of alteration and magmatic intrusion on potential flank failure. This approach integrates geophysical data about subsurface alteration, water saturation and rock mechanical properties with data about precipitation and heat influx at Cascade stratovolcanoes. Our simulations show that it is possible to maintain high-elevation water tables in stratovolcanoes given specific ranges of edifice permeability (ideally between 10-15 and 10-16 m2). Low-permeability layers (10-17 m2, representing altered pyroclastic deposits or altered breccias) in the volcanoes can localize saturated regions close to the surface, but they may actually reduce saturation, pore pressures, and water table levels in the core of the volcano. These conditions produce universally lower factor-of-safety (F) values than at an equivalent dry edifice with the same material properties (lower values of F indicate a higher likelihood of collapse). When magmatic intrusions into the base of the cone are added, near-surface pore pressures increase and F decreases exponentially with time ( 7-8% in the first year). However, while near-surface impermeable layers create elevated water tables and pore pressures, they do not necessarily produce the largest or deepest collapses. This suggests that mechanical properties of both the edifice and layers still exert a significant control, and collapse volumes depend on a complex interplay of mechanical factors and layering.
Interaction of Highly Underexpanded Jets with Simulated Lunar Surfaces
NASA Technical Reports Server (NTRS)
Stitt, Leonard E.
1961-01-01
Pressure distributions and erosion patterns on simulated lunar surfaces (hard and soft) and interference effects between the surface and two representative lunar vehicles (cylindrical and spherical) were obtained with cold-air jets at various descent heights and nozzle total-pressure ratios up to 288,000. Surface pressure distributions were dependent on both nozzle area ratio and, nozzle contour. Peak pressures obtained with a sonic nozzle agreed closely with those predicted theoretically for a near-sonic jet expanding into a vacuum. Short bell-shaped nozzles gave annular pressure distributions; the low center pressure resulted from the coalescence of shocks that originated within the nozzle. The high surface pressures were contained within a circle whose diameter was about 16 throat diameters, regardless of nozzle area ratio or contour. The peak pressure increased rapidly as the vehicle approached the surface; for example, at a descent height of 40 throat diameters the peak pressure was 0.4 percent of the chamber pressure, but increased to 6 percent at 13 throat diameters. The exhaust jet eroded a circular concave hole in white sand at descent heights from about 200 to 600 throat diameters. The hole diameter was about 225 throat diameters, while the depth was approximately 60 throat diameters. The sand particles, which formed a conical sheet at a semivertex angle of 50 deg, appeared to follow a ballistic trajectory and at no time struck the vehicle. An increase in pressure was measured on the base of the cylindrical lunar vehicle when it approached to within 14 throat diameters of the hard, flat surface. No interference effects were noted between the spherical model and the surface to descent heights as low as 8 throat diameters.
Fluorescence Imaging Study of Impinging Underexpanded Jets
NASA Technical Reports Server (NTRS)
Inman, Jennifer A.; Danehy, Paul M.; Nowak, Robert J.; Alderfer, David W.
2008-01-01
An experiment was designed to create a simplified simulation of the flow through a hole in the surface of a hypersonic aerospace vehicle and the subsequent impingement of the flow on internal structures. In addition to planar laser-induced fluorescence (PLIF) flow visualization, pressure measurements were recorded on the surface of an impingement target. The PLIF images themselves provide quantitative spatial information about structure of the impinging jets. The images also help in the interpretation of impingement surface pressure profiles by highlighting the flow structures corresponding to distinctive features of these pressure profiles. The shape of the pressure distribution along the impingement surface was found to be double-peaked in cases with a sufficiently high jet-exit-to-ambient pressure ratio so as to have a Mach disk, as well as in cases where a flow feature called a recirculation bubble formed at the impingement surface. The formation of a recirculation bubble was in turn found to depend very sensitively upon the jet-exit-to-ambient pressure ratio. The pressure measured at the surface was typically less than half the nozzle plenum pressure at low jet pressure ratios and decreased with increasing jet pressure ratios. Angled impingement cases showed that impingement at a 60deg angle resulted in up to a factor of three increase in maximum pressure at the plate compared to normal incidence.
The behaviour of arcs in carbon mixed-mode high-power impulse magnetron sputtering
NASA Astrophysics Data System (ADS)
Tucker, M. D.; Putman, K. J.; Ganesan, R.; Lattemann, M.; Stueber, M.; Ulrich, S.; Bilek, M. M. M.; McKenzie, D. R.; Marks, N. A.
2017-04-01
Mixed-mode deposition of carbon is an extension of high-power impulse magnetron sputtering in which a short-lived arc is deliberately allowed to ignite on the target surface to increase the ionised fraction of carbon in the deposition flux. Here we investigate the ignition and evolution of these arcs and examine their behaviour for different conditions of argon pressure, power supply voltage, and current. We find that mixed-mode deposition is sensitive to the condition of the target surface, and changing the operating parameters causes changes in the target surface condition which themselves affect the discharge in a process of negative feedback. Initially the arcs are evenly distributed on the target racetrack, but after a long period of operation the mode of erosion changes and arcs become localised in a small region, resulting in a pronounced nodular structure. We also quantify macroparticle generation and observe a power-law size distribution typical of arc discharges. Fewer particles are generated for operation at lower Ar pressure when the arc spot velocity is higher.
Effect of laser beam on temperature distribution on artificial cylindrical shaped hard tissue bones
NASA Astrophysics Data System (ADS)
Al-Akhras, M.-Ali H.; Qaseer, Mohammad-Khair; Albiss, B. A.; Gezawa, Umar S.
2018-02-01
Samples from fresh lamb chest bones were made in cylindrical shapes to study the time variation of temperature T as functions of the cylindrical radius and depth when its front surface exposed to a laser beam of 110Mw power and 642nm wavelength. The laser beam was directed at the center of the front surface of the horizontal cylinder. The measurements were done in vacuum and at atmospheric pressure. Our data reveal the linear variation of T with time, followed by a gradual increase before it reaches a plateau value at higher time. This sort of behavior independent of the radius or the depth where the temperature was measured. Moreover, the maximum variation occurs on the front surface where the laser beam was hitting and diminishes gradually with depth deep inside the cylinder. Data at atmospheric pressure showed less changes in temperature. The temperature distribution in bone due to laser irradiation is very important for a rational use of laser therapy as well as in the surgery to minimizes the thermal tissue damage.
Characterization of structural response to hypersonic boundary-layer transition
Riley, Zachary B.; Deshmukh, Rohit; Miller, Brent A.; ...
2016-05-24
The inherent relationship between boundary-layer stability, aerodynamic heating, and surface conditions makes the potential for interaction between the structural response and boundary-layer transition an important and challenging area of study in high-speed flows. This paper phenomenologically explores this interaction using a fundamental two-dimensional aerothermoelastic model under the assumption of an aluminum panel with simple supports. Specifically, an existing model is extended to examine the impact of transition onset location, transition length, and transitional overshoot in heat flux and fluctuating pressure on the structural response of surface panels. Transitional flow conditions are found to yield significantly increased thermal gradients, and theymore » can result in higher maximum panel temperatures compared to turbulent flow. Results indicate that overshoot in heat flux and fluctuating pressure reduces the flutter onset time and increases the strain energy accumulated in the panel. Furthermore, overshoot occurring near the midchord can yield average temperatures and peak displacements exceeding those experienced by the panel subject to turbulent flow. Lastly, these results suggest that fully turbulent flow does not always conservatively predict the thermo-structural response of surface panels.« less
The Pluto system: Initial results from its exploration by New Horizons.
Stern, S A; Bagenal, F; Ennico, K; Gladstone, G R; Grundy, W M; McKinnon, W B; Moore, J M; Olkin, C B; Spencer, J R; Weaver, H A; Young, L A; Andert, T; Andrews, J; Banks, M; Bauer, B; Bauman, J; Barnouin, O S; Bedini, P; Beisser, K; Beyer, R A; Bhaskaran, S; Binzel, R P; Birath, E; Bird, M; Bogan, D J; Bowman, A; Bray, V J; Brozovic, M; Bryan, C; Buckley, M R; Buie, M W; Buratti, B J; Bushman, S S; Calloway, A; Carcich, B; Cheng, A F; Conard, S; Conrad, C A; Cook, J C; Cruikshank, D P; Custodio, O S; Dalle Ore, C M; Deboy, C; Dischner, Z J B; Dumont, P; Earle, A M; Elliott, H A; Ercol, J; Ernst, C M; Finley, T; Flanigan, S H; Fountain, G; Freeze, M J; Greathouse, T; Green, J L; Guo, Y; Hahn, M; Hamilton, D P; Hamilton, S A; Hanley, J; Harch, A; Hart, H M; Hersman, C B; Hill, A; Hill, M E; Hinson, D P; Holdridge, M E; Horanyi, M; Howard, A D; Howett, C J A; Jackman, C; Jacobson, R A; Jennings, D E; Kammer, J A; Kang, H K; Kaufmann, D E; Kollmann, P; Krimigis, S M; Kusnierkiewicz, D; Lauer, T R; Lee, J E; Lindstrom, K L; Linscott, I R; Lisse, C M; Lunsford, A W; Mallder, V A; Martin, N; McComas, D J; McNutt, R L; Mehoke, D; Mehoke, T; Melin, E D; Mutchler, M; Nelson, D; Nimmo, F; Nunez, J I; Ocampo, A; Owen, W M; Paetzold, M; Page, B; Parker, A H; Parker, J W; Pelletier, F; Peterson, J; Pinkine, N; Piquette, M; Porter, S B; Protopapa, S; Redfern, J; Reitsema, H J; Reuter, D C; Roberts, J H; Robbins, S J; Rogers, G; Rose, D; Runyon, K; Retherford, K D; Ryschkewitsch, M G; Schenk, P; Schindhelm, E; Sepan, B; Showalter, M R; Singer, K N; Soluri, M; Stanbridge, D; Steffl, A J; Strobel, D F; Stryk, T; Summers, M E; Szalay, J R; Tapley, M; Taylor, A; Taylor, H; Throop, H B; Tsang, C C C; Tyler, G L; Umurhan, O M; Verbiscer, A J; Versteeg, M H; Vincent, M; Webbert, R; Weidner, S; Weigle, G E; White, O L; Whittenburg, K; Williams, B G; Williams, K; Williams, S; Woods, W W; Zangari, A M; Zirnstein, E
2015-10-16
The Pluto system was recently explored by NASA's New Horizons spacecraft, making closest approach on 14 July 2015. Pluto's surface displays diverse landforms, terrain ages, albedos, colors, and composition gradients. Evidence is found for a water-ice crust, geologically young surface units, surface ice convection, wind streaks, volatile transport, and glacial flow. Pluto's atmosphere is highly extended, with trace hydrocarbons, a global haze layer, and a surface pressure near 10 microbars. Pluto's diverse surface geology and long-term activity raise fundamental questions about how small planets remain active many billions of years after formation. Pluto's large moon Charon displays tectonics and evidence for a heterogeneous crustal composition; its north pole displays puzzling dark terrain. Small satellites Hydra and Nix have higher albedos than expected. Copyright © 2015, American Association for the Advancement of Science.
Schulze-Zachau, Felix; Nagel, Eva; Engelhardt, Kathrin; Stoyanov, Stefan; Gochev, Georgi; Khristov, Khr.; Mileva, Elena; Exerowa, Dotchi; Miller, Reinhard; Peukert, Wolfgang
2016-01-01
β-Lactoglobulin (BLG) adsorption layers at air–water interfaces were studied in situ with vibrational sum-frequency generation (SFG), tensiometry, surface dilatational rheology and ellipsometry as a function of bulk Ca2+ concentration. The relation between the interfacial molecular structure of adsorbed BLG and the interactions with the supporting electrolyte is additionally addressed on higher length scales along the foam hierarchy – from the ubiquitous air–water interface through thin foam films to macroscopic foam. For concentrations <1 mM, a strong decrease in SFG intensity from O–H stretching bands and a slight increase in layer thickness and surface pressure are observed. A further increase in Ca2+ concentrations above 1 mM causes an apparent change in the polarity of aromatic C–H stretching vibrations from interfacial BLG which we associate to a charge reversal at the interface. Foam film measurements show formation of common black films at Ca2+ concentrations above 1 mM due to considerable decrease of the stabilizing electrostatic disjoining pressure. These observations also correlate with a minimum in macroscopic foam stability. For concentrations >30 mM Ca2+, micrographs of foam films show clear signatures of aggregates which tend to increase the stability of foam films. Here, the interfacial layers have a higher surface dilatational elasticity. In fact, macroscopic foams formed from BLG dilutions with high Ca2+ concentrations where aggregates and interfacial layers with higher elasticity are found, showed the highest stability with much smaller bubble sizes. PMID:27337699
NASA Astrophysics Data System (ADS)
Sun, Jie; Qiu, Yiping
2015-05-01
Polyethylene (PE) films are treated using an atmospheric pressure plasma jet (APPJ) with He or He/O2 gas for different periods of time. The influence of gas type on the plasma-polymer interactions is studied. The surface contact angle of the PE film can be effectively lowered to 58° after 20 s of He/O2 plasma treatment and then remains almost unchanged for longer treatment durations, while, for He plasma treatment, the film surface contact angle drops gradually to 47° when the time reaches 120 s. Atomic force microscopy (AFM) results show that the root mean square (RMS) roughness was significantly higher for the He/O2 plasma treated samples than for the He plasma treated counterparts, and the surface topography of the He/O2 plasma treated PE films displays evenly distributed dome-shaped small protuberances. Chemical composition analysis reveals that the He plasma treated samples have a higher oxygen content but a clearly lower percentage of -COO than the comparable He/O2 treated samples, suggesting that differences exist in the mode of incorporating oxygen between the two gas condition plasma treatments. Electron spin resonance (ESR) results show that the free radical concentrations of the He plasma treated samples were clearly higher than those of the He/O2 plasma treated ones with other conditions unchanged. supported by the Fundamental Research Funds for the Central Universities of China (Nos. JUSRP1044 and JUSRP1045), National Natural Science Foundation of China (Nos. 51203062 and 51302110), and the Cooperative Innovation Fund, Project of Jiangsu Province, China (Nos. BY2012064, BY2013015-31 and BY2013015-32)
Pressure and temperature interactions on aerobic metabolism of migrating European silver eel.
Scaion, D; Belhomme, M; Sébert, P
2008-12-31
During their migration for reproduction, European eels have to cope with many environmental factors changes. The main changes concern hydrostatic pressure and temperature that are important environmental and physiological factors when considering life in the deep sea. We focus on the consequences of pressure (from 0.1 to 12.1MPa by 1MPa steps) and temperature (9, 15, 22 degrees C) shifts on the oxygen consumption (MO(2)) at the whole animal level. Because of their morphological differences, we are also interested in males and females to evaluate the best conditions for migration. Firstly, whatever temperature, males present higher aerobic capacities than females at atmospheric pressure. Secondly, an increase in temperature increases the pressure effects in males (synergy) but decreases them in females (opposite effects). We raise the hypothesis that two different migration strategies could be used in the water column in order to reach the breeding area: males could tend to privilege pressure and cold waters (deep water) and females, on the other hand, could opt for warmer temperature surface waters.
Wall Pressure Unsteadiness and Side Loads in Overexpanded Rocket Nozzles
NASA Technical Reports Server (NTRS)
Baars, Woutijn J.; Tinney, Charles E.; Ruf, Joseph H.; Brown, Andrew M.; McDaniels, David M.
2012-01-01
Surveys of both the static and dynamic wall pressure signatures on the interior surface of a sub-scale, cold-flow and thrust optimized parabolic nozzle are conducted during fixed nozzle pressure ratios corresponding to FSS and RSS states. The motive is to develop a better understanding for the sources of off-axis loads during the transient start-up of overexpanded rocket nozzles. During FSS state, pressure spectra reveal frequency content resembling SWTBLI. Presumably, when the internal flow is in RSS state, separation bubbles are trapped by shocks and expansion waves; interactions between the separated flow regions and the waves produce asymmetric pressure distributions. An analysis of the azimuthal modes reveals how the breathing mode encompasses most of the resolved energy and that the side load inducing mode is coherent with the response moment measured by strain gauges mounted upstream of the nozzle on a flexible tube. Finally, the unsteady pressure is locally more energetic during RSS, albeit direct measurements of the response moments indicate higher side load activity when in FSS state. It is postulated that these discrepancies are attributed to cancellation effects between annular separation bubbles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sen, D.; Weaver, R.W.
1987-04-01
Size and anatomical features of nodules influence the rate of O/sub 2/ diffusion into nodules. Availability of oxygen can be a limiting factor in nitrogen fixation. Larger nodules have thicker cortices and low surface to volume ratio leading to lower rates of gaseous diffusion. Increased oxygen pressure in the environment alters the rate of nitrogen fixation but the rate of change may depend on the nodule size. This was investigated by measuring /sup 15/N/sub 2/ incorporation into nodules. Root nodules from 38 day old cowpea and peanut plants were collected and sorted into size groups having diameters of >3 mm,more » 2-3 mm, and just below 2 mm. Samples of each size group were enclosed in tubes and exposed to various combination of oxygen (8-28%) and /sup 15/N/sub 2/. With higher O/sub 2/ pressure all nodules showed increased N/sub 2/ fixation but the largest nodules showed the maximum increase. Specific activity of larger nodules was higher for N/sub 2/ fixation. For the sizes of nodules examined the largest nodules did not reflect any of the disadvantages of the large size but the benefits of higher rates of O/sub 2/ entry was evident.« less
The effect of homogenization pressure on the flavor and flavor stability of whole milk powder.
Park, Curtis W; Drake, MaryAnne
2017-07-01
Flavor is one of the key factors that can limit the application and shelf life of dried dairy ingredients. Many off-flavors are caused during ingredient manufacture that carry through into ingredient applications and decrease consumer acceptance. The objective of this research was to investigate the effect of homogenization pressure on the flavor and flavor stability of whole milk powder (WMP). Whole milk powder was produced from standardized pasteurized whole milk that was evaporated to 50% solids (wt/wt), homogenized in 2 stages with varying pressures (0/0, 5.5/1.4, 11.0/2.8, or 16.5/4.3 MPa), and spray dried. Whole milk powder was evaluated at 0, 3, and 6 mo of storage at 21°C. Sensory properties were evaluated by descriptive analysis. Volatile compounds were analyzed by sorptive stir bar extraction with gas chromatography-mass spectrometry. Fat globule size in condensed whole milk and particle size of powders were measured by laser diffraction. Surface free fat, inner free fat, and encapsulated fat of WMP were measured by solvent extractions. Phospholipid content was measured by ultra-high-performance liquid chromatography-evaporative light scattering. Furosine in WMP was analyzed by ultra-high-performance liquid chromatography-mass spectrometry. Increased homogenization pressure decreased cardboard and painty flavors, volatile lipid oxidation compound concentrations, fat globule size in condensed milk, surface free fat, and inner free fat in WMP. Encapsulated fat increased and phospholipid-to-encapsulated fat ratio decreased with higher homogenization pressure. Surface free fat in powders increased cardboard flavor and lipid oxidation. These results indicate that off-flavors were decreased with increased homogenization pressures in WMP due to the decrease in free fat. To decrease off-flavor intensities in WMP, manufacturers should carefully evaluate these parameters during ingredient manufacture. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Photosynthetic responses to altitude: an explanation based on optimality principles
Wang, Han; Prentice, I. Colin; Davis, Tyler W.; ...
2016-11-18
Ecophysiologists have long been fascinated by the photosynthetic behaviour of alpine plants, which often have to withstand extreme environmental pressures (Gale, 1972; Friend&Woodward, 1990; Korner, 2003, 2007; Shi et al., 2006). About 8%of the world’s land surface is above 1500 maltitude (Korner, 2007). High altitudes can be climatically unusual, often with (for example) low temperatures, strong winds, and now high rates of warming (Korner, 2003; Pepin &Lundquist, 2008; Rangwala&Miller, 2012). Moreover, the low atmospheric pressure provides a set of environmental conditions unique on Earth (Table 1). There has been extensive speculation about altitudinal effects on photosynthesis and, in particular, howmore » to account for the puzzling – but consistently observed – tendencies towards higher carbon dioxide (CO 2) drawdown (low ratio of leafinternal to ambient CO 2 partial pressures (c i:c a; hereafter, v), resulting in low carbon isotope discrimination) and higher carboxylation capacity (V cmax) with increasing altitude (Gale, 1972; Korner & Diemer, 1987; Friend et al., 1989; Terashima et al., 1995; Bresson et al., 2009; Zhu et al., 2010). At first glance, it might be expected that CO 2 assimilation rates would be reduced at high altitudes due to the low partial pressure of CO 2 (Friend & Woodward, 1990). But, actual measured photosynthetic rates are usually as high as, or even higher than, those at low altitudes (Machler & Nosberger, 1977; Korner & Diemer, 1987; Cordell et al., 1999; Shi et al., 2006).« less
Photosynthetic responses to altitude: an explanation based on optimality principles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Han; Prentice, I. Colin; Davis, Tyler W.
Ecophysiologists have long been fascinated by the photosynthetic behaviour of alpine plants, which often have to withstand extreme environmental pressures (Gale, 1972; Friend&Woodward, 1990; Korner, 2003, 2007; Shi et al., 2006). About 8%of the world’s land surface is above 1500 maltitude (Korner, 2007). High altitudes can be climatically unusual, often with (for example) low temperatures, strong winds, and now high rates of warming (Korner, 2003; Pepin &Lundquist, 2008; Rangwala&Miller, 2012). Moreover, the low atmospheric pressure provides a set of environmental conditions unique on Earth (Table 1). There has been extensive speculation about altitudinal effects on photosynthesis and, in particular, howmore » to account for the puzzling – but consistently observed – tendencies towards higher carbon dioxide (CO 2) drawdown (low ratio of leafinternal to ambient CO 2 partial pressures (c i:c a; hereafter, v), resulting in low carbon isotope discrimination) and higher carboxylation capacity (V cmax) with increasing altitude (Gale, 1972; Korner & Diemer, 1987; Friend et al., 1989; Terashima et al., 1995; Bresson et al., 2009; Zhu et al., 2010). At first glance, it might be expected that CO 2 assimilation rates would be reduced at high altitudes due to the low partial pressure of CO 2 (Friend & Woodward, 1990). But, actual measured photosynthetic rates are usually as high as, or even higher than, those at low altitudes (Machler & Nosberger, 1977; Korner & Diemer, 1987; Cordell et al., 1999; Shi et al., 2006).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Youngmoo; Agency for Defense Development, Yuseong, P.O. Box 35, Yuseong-gu, Daejeon 34186, Republic of Korea.; Lee, Dongju
2016-04-15
The present study has investigated the consolidation behaviors of tantalum powders during compaction and sintering, and the characteristics of sintered components. For die compaction, the densification behaviors of the powders are simulated by finite element analyses based on the yield function proposed by Shima and Oyane. Accordingly, the green density distribution for coarser particles is predicted to be more uniform because they exhibits higher initial relative tap density owing to lower interparticle friction. It is also found that cold isostatic pressing is capable of producing higher dense compacts compared to the die pressing. However, unlike the compaction behavior, the sinteredmore » density of smaller particles is found to be higher than those of coarser ones owing to their higher specific surface area. The maximum sintered density was found to be 0.96 of theoretical density where smaller particles were pressed isostatically at 400 MPa followed by sintering at 2000 °C. Moreover, the effects of processing conditions on grain size and texture were also investigated. The average grain size of the sintered specimen is 30.29 μm and its texture is less than 2 times random intensity. Consequently, it is concluded that the higher pressure compaction technique is beneficial to produce high dense and texture-free tantalum components compared to hot pressing and spark plasma sintering. - Highlights: • Higher Ta density is obtained from higher pressure and sintering temperature. • High compaction method enables P/M Ta to achieve the density of 16.00 g·cm{sup −3}. • A P/M Ta component with fine microstructure and random orientation is developed.« less
Method of identifying defective particle coatings
Cohen, Mark E.; Whiting, Carlton D.
1986-01-01
A method for identifying coated particles having defective coatings desig to retain therewithin a build-up of gaseous materials including: (a) Pulling a vacuum on the particles; (b) Backfilling the particles at atmospheric pressure with a liquid capable of wetting the exterior surface of the coated particles, said liquid being a compound which includes an element having an atomic number higher than the highest atomic number of any element in the composition which forms the exterior surface of the particle coating; (c) Drying the particles; and (d) Radiographing the particles. By television monitoring, examination of the radiographs is substantially enhanced.
Microbial population and functional dynamics associated with surface potential and carbon metabolism
Ishii, Shun'ichi; Suzuki, Shino; Norden-Krichmar, Trina M; Phan, Tony; Wanger, Greg; Nealson, Kenneth H; Sekiguchi, Yuji; Gorby, Yuri A; Bretschger, Orianna
2014-01-01
Microbial extracellular electron transfer (EET) to solid surfaces is an important reaction for metal reduction occurring in various anoxic environments. However, it is challenging to accurately characterize EET-active microbial communities and each member's contribution to EET reactions because of changes in composition and concentrations of electron donors and solid-phase acceptors. Here, we used bioelectrochemical systems to systematically evaluate the synergistic effects of carbon source and surface redox potential on EET-active microbial community development, metabolic networks and overall electron transfer rates. The results indicate that faster biocatalytic rates were observed under electropositive electrode surface potential conditions, and under fatty acid-fed conditions. Temporal 16S rRNA-based microbial community analyses showed that Geobacter phylotypes were highly diverse and apparently dependent on surface potentials. The well-known electrogenic microbes affiliated with the Geobacter metallireducens clade were associated with lower surface potentials and less current generation, whereas Geobacter subsurface clades 1 and 2 were associated with higher surface potentials and greater current generation. An association was also observed between specific fermentative phylotypes and Geobacter phylotypes at specific surface potentials. When sugars were present, Tolumonas and Aeromonas phylotypes were preferentially associated with lower surface potentials, whereas Lactococcus phylotypes were found to be closely associated with Geobacter subsurface clades 1 and 2 phylotypes under higher surface potential conditions. Collectively, these results suggest that surface potentials provide a strong selective pressure, at the species and strain level, for both solid surface respirators and fermentative microbes throughout the EET-active community development. PMID:24351938
Mu, Jian-Jun; Liu, Zhi-Quan; Yang, Jun; Ren, Jie; Liu, Wei-Min; Xu, Xiang-Lin; Xiong, Su-E
2008-03-01
Essential hypertension may begin at childhood. The aim of this study is to identify the risk factors of hypertension and detect the evolvement tracking of blood pressure in childhood. In this study, we followed up blood pressure changes in 4623 school children (6 - 15 years-old) from 1987 to 2005 in Hanzhong rural area. A total of 152 children were grouped to higher blood pressure group [systolic blood pressure (P(SBP)) >or= 75(th) (P(75))] and 140 children grouped to normal blood pressure group [P(SBP) < 50(th) (P(50))] and their blood pressure were re-measure 18-years later. The total follow-up rate was 70.2%. Follow-up blood pressure was significantly higher in higher blood pressure group at baseline than that in normal blood pressure group at baseline (P < 0.05). The hypertension rate at follow up was significantly higher in higher blood pressure group at baseline than that in normal blood pressure group at baseline (28.0% vs. 4.1%, P < 0.01). The risk for hypertension was 6.88 greater in higher blood pressure group at baseline than that in normal blood pressure group at baseline. Higher blood pressure at childhood is a risk of developing hypertension at adulthood.
Bates-Jensen, Barbara M; McCreath, Heather E; Patlan, Anabel
2017-05-01
We examined the relationship between subepidermal moisture measured using surface electrical capacitance and visual skin assessment of pressure ulcers at the trunk location (sacral, ischial tuberosities) in 417 nursing home residents residing in 19 facilities. Participants were on average older (mean age of 77 years), 58% were female, over half were ethnic minorities (29% African American, 12% Asian American, and 21% Hispanic), and at risk for pressure ulcers (mean score for Braden Scale for Predicting Pressure Ulcer Risk of 15.6). Concurrent visual assessments and subepidermal moisture were obtained at the sacrum and right and left ischium weekly for 16 weeks. Visual assessment was categorized as normal, erythema, stage 1 pressure ulcer, Deep Tissue Injury or stage 2+ pressure ulcer using the National Pressure Ulcer Advisory Panel 2009 classification system. Incidence of any skin damage was 52%. Subepidermal moisture was measured with a dermal phase meter where higher readings indicate greater moisture (range: 0-70 tissue dielectric constant), with values increasing significantly with the presence of skin damage. Elevated subepidermal moisture values co-occurred with concurrent skin damage in generalized multinomial logistic models (to control for repeated observations) at the sacrum, adjusting for age and risk. Higher subepidermal moisture values were associated with visual damage 1 week later using similar models. Threshold values for subepidermal moisture were compared to visual ratings to predict skin damage 1 week later. Subepidermal moisture of 39 tissue dielectric constant units predicted 41% of future skin damage while visual ratings predicted 27%. Thus, this method of detecting early skin damage holds promise for clinicians, especially as it is objective and equally valid for all groups of patients. © 2017 by the Wound Healing Society.
NASA Astrophysics Data System (ADS)
Kang, Can; Liu, Haixia; Zhang, Tao; Li, Qing
2017-12-01
To illuminate primary factors influencing the morphology of the surface impinged by submerged waterjet, experiments were performed at high jet pressures from 200 to 320 MPa. The cavitation phenomenon involved in the submerged waterjet was emphasized. Copper specimens were used as the targets enduring the impingement of high-pressure waterjets. The microhardness of the specimen was measured. Surface morphology was observed using an optical profiling microscope. Pressure fluctuations near the jet stream were acquired with miniature pressure transducers. The results show that microhardness increases with jet pressure and impingement time, and the hardening effect is restricted within a thin layer underneath the target surface. A synthetic effect is testified with the plastic deformation and cavities on the specimen surfaces. Characteristics of different cavitation erosion stages are illustrated by surface morphology. At the same jet pressure, the smallest standoff distance is not corresponding to the highest mass removal rate. Instead, there is an optimal standoff distance. With the increase of jet pressure, overall mass removal rate rises as well. Low-frequency components are predominant in the pressure spectra and the dual-peak pattern is typical. As the streamwise distance from the nozzle is enlarged, pressure amplitudes associated with cavitation bubble collapse are improved.
NASA Technical Reports Server (NTRS)
Erickson, Gary E.
2004-01-01
A pressure-sensitive paint (PSP) technique was applied in a wind tunnel experiment in the NASA Langley Research Center 8-Foot Transonic Pressure Tunnel to quantify the vortex-induced surface static pressures on a slender, faceted missile model at subsonic and transonic speeds. Global PSP calibrations were obtained using an in-situ method featuring the simultaneous electronically-scanned pressures (ESP) measurements. Both techniques revealed the significant influence leading-edge vortices on the surface pressure distributions. The mean error in the PSP measurements relative to the ESP data was approximately 0.6 percent at M(sub infinity)=0.70 and 2.6 percent at M(sub infinity)=0.90 and 1.20. The vortex surface pressure signatures obtained from the PSP and ESP techniques were correlated with the off-surface vortex cross-flow structures obtained using a laser vapor screen (LVS) flow visualization technique. The on-surface and off-surface techniques were complementary, since each provided details of the vortex-dominated flow that were not clear or apparent in the other.
Noise Simulations of the High-Lift Common Research Model
NASA Technical Reports Server (NTRS)
Lockard, David P.; Choudhari, Meelan M.; Vatsa, Veer N.; O'Connell, Matthew D.; Duda, Benjamin; Fares, Ehab
2017-01-01
The PowerFLOW(TradeMark) code has been used to perform numerical simulations of the high-lift version of the Common Research Model (HL-CRM) that will be used for experimental testing of airframe noise. Time-averaged surface pressure results from PowerFLOW(TradeMark) are found to be in reasonable agreement with those from steady-state computations using FUN3D. Surface pressure fluctuations are highest around the slat break and nacelle/pylon region, and synthetic array beamforming results also indicate that this region is the dominant noise source on the model. The gap between the slat and pylon on the HL-CRM is not realistic for modern aircraft, and most nacelles include a chine that is absent in the baseline model. To account for those effects, additional simulations were completed with a chine and with the slat extended into the pylon. The case with the chine was nearly identical to the baseline, and the slat extension resulted in higher surface pressure fluctuations but slightly reduced radiated noise. The full-span slat geometry without the nacelle/pylon was also simulated and found to be around 10 dB quieter than the baseline over almost the entire frequency range. The current simulations are still considered preliminary as changes in the radiated acoustics are still being observed with grid refinement, and additional simulations with finer grids are planned.
Inducer Hydrodynamic Load Measurement Devices
NASA Technical Reports Server (NTRS)
Skelley, Stephen E.; Zoladz, Thomas F.
2002-01-01
Marshall Space Flight Center (MSFC) has demonstrated two measurement devices for sensing and resolving the hydrodynamic loads on fluid machinery. The first - a derivative of the six component wind tunnel balance - senses the forces and moments on the rotating device through a weakened shaft section instrumented with a series of strain gauges. This "rotating balance" was designed to directly measure the steady and unsteady hydrodynamic loads on an inducer, thereby defining both the amplitude and frequency content associated with operating in various cavitation modes. The second device - a high frequency response pressure transducer surface mounted on a rotating component - was merely an extension of existing technology for application in water. MSFC has recently completed experimental evaluations of both the rotating balance and surface-mount transducers in a water test loop. The measurement bandwidth of the rotating balance was severely limited by the relative flexibility of the device itself, resulting in an unexpectedly low structural bending mode and invalidating the higher frequency response data. Despite these limitations, measurements confirmed that the integrated loads on the four-bladed inducer respond to both cavitation intensity and cavitation phenomena. Likewise, the surface-mount pressure transducers were subjected to a range of temperatures and flow conditions in a non-rotating environment to record bias shifts and transfer functions between the transducers and a reference device. The pressure transducer static performance was within manufacturer's specifications and dynamic response accurately followed that of the reference.
Inducer Hydrodynamic Load Measurement Devices
NASA Technical Reports Server (NTRS)
Skelley, Stephen E.; Zoladz, Thomas F.; Turner, Jim (Technical Monitor)
2002-01-01
Marshall Space Flight Center (MSFC) has demonstrated two measurement devices for sensing and resolving the hydrodynamic loads on fluid machinery. The first - a derivative of the six-component wind tunnel balance - senses the forces and moments on the rotating device through a weakened shaft section instrumented with a series of strain gauges. This rotating balance was designed to directly measure the steady and unsteady hydrodynamic loads on an inducer, thereby defining both the amplitude and frequency content associated with operating in various cavitation modes. The second device - a high frequency response pressure transducer surface mounted on a rotating component - was merely an extension of existing technology for application in water. MSFC has recently completed experimental evaluations of both the rotating balance and surface-mount transducers in a water test loop. The measurement bandwidth of the rotating balance was severely limited by the relative flexibility of the device itself, resulting in an unexpectedly low structural bending mode and invalidating the higher-frequency response data. Despite these limitations, measurements confirmed that the integrated loads on the four-bladed inducer respond to both cavitation intensity and cavitation phenomena. Likewise, the surface-mount pressure transducers were subjected to a range of temperatures and flow conditions in a non-rotating environment to record bias shifts and transfer functions between the transducers and a reference device. The pressure transducer static performance was within manufacturer's specifications and dynamic response accurately followed that of the reference.
Volcanism and an Ancient Atmosphere on the Moon
NASA Astrophysics Data System (ADS)
Taylor, G. J.
2017-11-01
One of the distinguishing features of the Moon is its flimsy atmosphere, which has a pressure 300 trillion times smaller than Earth's pressure at sea level. The density is so low that gas molecules rarely collide and readily escape into space. Micrometeorites hit the surface at their full cosmic velocities and the solar wind implants hydrogen, helium, carbon, and other elements into the dusty lunar surface. This airless body has been like this for billions of years. However, Debra Needham (NASA Marshall Space Flight Center) and David Kring (Center for Lunar Science and Exploration at the Lunar and Planetary Institute, Houston) show that the Moon probably had a significant atmosphere for about 70 million years during the peak production rate of the lunar maria 3.5 billion years ago. The maria (dark regions that decorate the lunar nearside) are composed of overlapping lava flows. Needham and Kring show that the lavas would have transported sufficient volatiles such as carbon monoxide, sulfur gases, and H2O to the surface to create an atmosphere. The volcanism would have released about 20 quadrillion kilograms of gases, creating an atmosphere with a pressure 50% higher than in the current Martian atmosphere. Calculations show that the loss rate to space from this atmosphere would have been 10 kilograms per second, implying that it would take about 70 million years to remove this volcanically produced atmosphere.
Effects of City Expansion on Heat Stress under Climate Change Conditions
Argüeso, Daniel; Evans, Jason P.; Pitman, Andrew J.; Di Luca, Alejandro
2015-01-01
We examine the joint contribution of urban expansion and climate change on heat stress over the Sydney region. A Regional Climate Model was used to downscale present (1990–2009) and future (2040–2059) simulations from a Global Climate Model. The effects of urban surfaces on local temperature and vapor pressure were included. The role of urban expansion in modulating the climate change signal at local scales was investigated using a human heat-stress index combining temperature and vapor pressure. Urban expansion and climate change leads to increased risk of heat-stress conditions in the Sydney region, with substantially more frequent adverse conditions in urban areas. Impacts are particularly obvious in extreme values; daytime heat-stress impacts are more noticeable in the higher percentiles than in the mean values and the impact at night is more obvious in the lower percentiles than in the mean. Urban expansion enhances heat-stress increases due to climate change at night, but partly compensates its effects during the day. These differences are due to a stronger contribution from vapor pressure deficit during the day and from temperature increases during the night induced by urban surfaces. Our results highlight the inappropriateness of assessing human comfort determined using temperature changes alone and point to the likelihood that impacts of climate change assessed using models that lack urban surfaces probably underestimate future changes in terms of human comfort. PMID:25668390
Surface phase behavior and microstructure of lipid/PEG-emulsifier monolayer-coated microbubbles.
Borden, Mark A; Pu, Gang; Runner, Gabriel J; Longo, Marjorie L
2004-06-01
Langmuir trough methods and fluorescence microscopy were combined to investigate the phase behavior and microstructure of monolayer shells coating micron-scale bubbles (microbubbles) typically used in biomedical applications. The monolayer shell consisted of a homologous series of saturated acyl chain phospholipids and an emulsifier containing a single hydrophobic stearate chain and polyethylene glycol (PEG) head group. PEG-emulsifier was fully miscible with expanded phase lipids and phase separated from condensed phase lipids. Phase coexistence was observed in the form of dark condensed phase lipid domains surrounded by a sea of bright, emulsifier-rich expanded phase. A rich assortment of condensed phase area fractions and domain morphologies, including networks and other novel structures, were observed in each batch of microbubbles. Network domains were reproduced in Langmuir monolayers under conditions of heating-cooling followed by compression-expansion, as well as in microbubble shells that underwent surface flow with slight compression. Domain size decreased with increased cooling rate through the phase transition temperature, and domain branching increased with lipid acyl chain length at high cooling rates. Squeeze-out of the emulsifier at a surface pressure near 35 mN/m was indicated by a plateau in Langmuir isotherms and directly visualized with fluorescence microscopy, although collapse of the solid lipid domains occurred at much higher surface pressures. Compression of the monolayer past the PEG-emulsifier squeeze-out surface pressure resulted in a dark shell composed entirely of lipid. Under certain conditions, the PEG-emulsifier was reincorporated upon subsequent expansion. Factors that affect shell formation and evolution, as well as implications for the rational design of microbubbles in medical applications, are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brounce, Maryjo; Stolper, Edward; Eiler, John
The behavior of C, H, and S in the solid Earth depends on their oxidation states, which are related to oxygen fugacity (fO2). Volcanic degassing is a source of these elements to Earth’s surface; therefore, variations in mantle fO2 may influence the fO2 at Earth’s surface. However, degassing can impact magmatic fO2 before or during eruption, potentially obscuring relationships between the fO2 of the solid Earth and of emitted gases and their impact on surface fO2. We show that low-pressure degassing resulted in reduction of the fO2 of Mauna Kea magmas by more than an order of magnitude. The leastmore » degassed magmas from Mauna Kea are more oxidized than midocean ridge basalt (MORB) magmas, suggesting that the upper mantle sources of Hawaiian magmas have higher fO2 than MORB sources. One explanation for this difference is recycling of material from the oxidized surface to the deep mantle, which is then returned to the surface as a component of buoyant plumes. It has been proposed that a decreasing pressure of volcanic eruptions led to the oxygenation of the atmosphere. Extension of our findings via modeling of degassing trends suggests that a decrease in eruption pressure would not produce this effect. If degassing of basalts were responsible for the rise in oxygen, it requires that Archean magmas had at least two orders of magnitude lower fO2 than modern magmas. Estimates of fO2 of Archean magmas are not this low, arguing for alternative explanations for the oxygenation of the atmosphere.« less
Brounce, Maryjo; Stolper, Edward; Eiler, John
2017-08-22
The behavior of C, H, and S in the solid Earth depends on their oxidation states, which are related to oxygen fugacity ( f O 2 ). Volcanic degassing is a source of these elements to Earth's surface; therefore, variations in mantle f O 2 may influence the f O 2 at Earth's surface. However, degassing can impact magmatic f O 2 before or during eruption, potentially obscuring relationships between the f O 2 of the solid Earth and of emitted gases and their impact on surface f O 2 We show that low-pressure degassing resulted in reduction of the f O 2 of Mauna Kea magmas by more than an order of magnitude. The least degassed magmas from Mauna Kea are more oxidized than midocean ridge basalt (MORB) magmas, suggesting that the upper mantle sources of Hawaiian magmas have higher f O 2 than MORB sources. One explanation for this difference is recycling of material from the oxidized surface to the deep mantle, which is then returned to the surface as a component of buoyant plumes. It has been proposed that a decreasing pressure of volcanic eruptions led to the oxygenation of the atmosphere. Extension of our findings via modeling of degassing trends suggests that a decrease in eruption pressure would not produce this effect. If degassing of basalts were responsible for the rise in oxygen, it requires that Archean magmas had at least two orders of magnitude lower f O 2 than modern magmas. Estimates of f O 2 of Archean magmas are not this low, arguing for alternative explanations for the oxygenation of the atmosphere.
Stolper, Edward; Eiler, John
2017-01-01
The behavior of C, H, and S in the solid Earth depends on their oxidation states, which are related to oxygen fugacity (fO2). Volcanic degassing is a source of these elements to Earth’s surface; therefore, variations in mantle fO2 may influence the fO2 at Earth’s surface. However, degassing can impact magmatic fO2 before or during eruption, potentially obscuring relationships between the fO2 of the solid Earth and of emitted gases and their impact on surface fO2. We show that low-pressure degassing resulted in reduction of the fO2 of Mauna Kea magmas by more than an order of magnitude. The least degassed magmas from Mauna Kea are more oxidized than midocean ridge basalt (MORB) magmas, suggesting that the upper mantle sources of Hawaiian magmas have higher fO2 than MORB sources. One explanation for this difference is recycling of material from the oxidized surface to the deep mantle, which is then returned to the surface as a component of buoyant plumes. It has been proposed that a decreasing pressure of volcanic eruptions led to the oxygenation of the atmosphere. Extension of our findings via modeling of degassing trends suggests that a decrease in eruption pressure would not produce this effect. If degassing of basalts were responsible for the rise in oxygen, it requires that Archean magmas had at least two orders of magnitude lower fO2 than modern magmas. Estimates of fO2 of Archean magmas are not this low, arguing for alternative explanations for the oxygenation of the atmosphere. PMID:28784788
NASA Astrophysics Data System (ADS)
Brounce, Maryjo; Stolper, Edward; Eiler, John
2017-08-01
The behavior of C, H, and S in the solid Earth depends on their oxidation states, which are related to oxygen fugacity (fO2). Volcanic degassing is a source of these elements to Earth’s surface; therefore, variations in mantle fO2 may influence the fO2 at Earth’s surface. However, degassing can impact magmatic fO2 before or during eruption, potentially obscuring relationships between the fO2 of the solid Earth and of emitted gases and their impact on surface fO2. We show that low-pressure degassing resulted in reduction of the fO2 of Mauna Kea magmas by more than an order of magnitude. The least degassed magmas from Mauna Kea are more oxidized than midocean ridge basalt (MORB) magmas, suggesting that the upper mantle sources of Hawaiian magmas have higher fO2 than MORB sources. One explanation for this difference is recycling of material from the oxidized surface to the deep mantle, which is then returned to the surface as a component of buoyant plumes. It has been proposed that a decreasing pressure of volcanic eruptions led to the oxygenation of the atmosphere. Extension of our findings via modeling of degassing trends suggests that a decrease in eruption pressure would not produce this effect. If degassing of basalts were responsible for the rise in oxygen, it requires that Archean magmas had at least two orders of magnitude lower fO2 than modern magmas. Estimates of fO2 of Archean magmas are not this low, arguing for alternative explanations for the oxygenation of the atmosphere.
NASA Astrophysics Data System (ADS)
de Fleurian, Basile; Morlighem, Mathieu; Seroussi, Helene; Rignot, Eric
2016-04-01
Basal sliding is the main control on outlet glaciers velocity. This sliding is mainly driven by the water pressure at the base of the glaciers. The ongoing increase in surface melt of the Greenland Ice Sheet warrants an examination of its impact on basal water pressure and in turn on basal sliding. Here, we examine the case of Russell glacier, West Greenland, where a remarkably extensive set of observations have been gathered. These observations suggest that the increase in runoff has no impact on the annual velocity on the lower part of the drainage basin, but yield an acceleration of ice flow above the Equilibrium Line Altitude (ELA). It is believed that this two distinct behaviours are due to different evolutions of the subglacial draining system during and after the melt season. We use here a high-resolution new generation subglacial hydrological model forced by reconstructed surface runoff for the period 2008 to 2012 to investigate the possible causes of these distinct behaviours. The model results confirm the existence of two distinct behaviours of the subglacial water pressure, an increase in the mean annual water pressure at high elevation and a stagnation of these same mean annual pressures below the ELA. The increase in meltwater at the lower elevation leads to a more developed efficient drainage system and the overall steadiness of the annual velocities, but, at higher elevation the drainage system remains mainly inefficient and is therefore strongly sensitive to the increase in meltwater availability.
NASA Astrophysics Data System (ADS)
Hasan, Mohammad Nasim; Shavik, Sheikh Mohammad; Rabbi, Kazi Fazle; Haque, Mominul
2016-07-01
Molecular dynamics (MD) simulations have been carried out to investigate evaporation and explosive boiling phenomena of thin film liquid argon on nanostructured solid surface with emphasis on the effect of solid-liquid interfacial wettability. The nanostructured surface considered herein consists of trapezoidal internal recesses of the solid platinum wall. The wetting conditions of the solid surface were assumed such that it covers both the hydrophilic and hydrophobic conditions and hence effect of interfacial wettability on resulting evaporation and boiling phenomena was the main focus of this study. The initial configuration of the simulation domain comprised of a three phase system (solid platinum, liquid argon and vapor argon) on which equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. After equilibrium of the three-phase system was established, the wall was set to different temperatures (130 K and 250 K for the case of evaporation and explosive boiling respectively) to perform non-equilibrium molecular dynamics (NEMD). The variation of temperature and density as well as the variation of system pressure with respect to time were closely monitored for each case. The heat flux normal to the solid surface was also calculated to illustrate the effectiveness of heat transfer for hydrophilic and hydrophobic surfaces in cases of both nanostructured surface and flat surface. The results obtained show that both the wetting condition of the surface and the presence of internal recesses have significant effect on normal evaporation and explosive boiling of the thin liquid film. The heat transfer from solid to liquid in cases of surface with recesses are higher compared to flat surface without recesses. Also the surface with higher wettability (hydrophilic) provides more favorable conditions for boiling than the low-wetting surface (hydrophobic) and therefore, liquid argon responds quickly and shifts from liquid to vapor phase faster in case of hydrophilic surface. The heat transfer rate is also much higher in case of hydrophilic surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, Mohammad Nasim, E-mail: nasim@me.buet.ac.bd.com; Shavik, Sheikh Mohammad, E-mail: shavik@me.buet.ac.bd.com; Rabbi, Kazi Fazle, E-mail: rabbi35.me10@gmail.com
2016-07-12
Molecular dynamics (MD) simulations have been carried out to investigate evaporation and explosive boiling phenomena of thin film liquid argon on nanostructured solid surface with emphasis on the effect of solid-liquid interfacial wettability. The nanostructured surface considered herein consists of trapezoidal internal recesses of the solid platinum wall. The wetting conditions of the solid surface were assumed such that it covers both the hydrophilic and hydrophobic conditions and hence effect of interfacial wettability on resulting evaporation and boiling phenomena was the main focus of this study. The initial configuration of the simulation domain comprised of a three phase system (solidmore » platinum, liquid argon and vapor argon) on which equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. After equilibrium of the three-phase system was established, the wall was set to different temperatures (130 K and 250 K for the case of evaporation and explosive boiling respectively) to perform non-equilibrium molecular dynamics (NEMD). The variation of temperature and density as well as the variation of system pressure with respect to time were closely monitored for each case. The heat flux normal to the solid surface was also calculated to illustrate the effectiveness of heat transfer for hydrophilic and hydrophobic surfaces in cases of both nanostructured surface and flat surface. The results obtained show that both the wetting condition of the surface and the presence of internal recesses have significant effect on normal evaporation and explosive boiling of the thin liquid film. The heat transfer from solid to liquid in cases of surface with recesses are higher compared to flat surface without recesses. Also the surface with higher wettability (hydrophilic) provides more favorable conditions for boiling than the low-wetting surface (hydrophobic) and therefore, liquid argon responds quickly and shifts from liquid to vapor phase faster in case of hydrophilic surface. The heat transfer rate is also much higher in case of hydrophilic surface.« less
On the probability distribution function of the mass surface density of molecular clouds. II.
NASA Astrophysics Data System (ADS)
Fischera, Jörg
2014-11-01
The probability distribution function (PDF) of the mass surface density of molecular clouds provides essential information about the structure of molecular cloud gas and condensed structures out of which stars may form. In general, the PDF shows two basic components: a broad distribution around the maximum with resemblance to a log-normal function, and a tail at high mass surface densities attributed to turbulence and self-gravity. In a previous paper, the PDF of condensed structures has been analyzed and an analytical formula presented based on a truncated radial density profile, ρ(r) = ρc/ (1 + (r/r0)2)n/ 2 with central density ρc and inner radius r0, widely used in astrophysics as a generalization of physical density profiles. In this paper, the results are applied to analyze the PDF of self-gravitating, isothermal, pressurized, spherical (Bonnor-Ebert spheres) and cylindrical condensed structures with emphasis on the dependence of the PDF on the external pressure pext and on the overpressure q-1 = pc/pext, where pc is the central pressure. Apart from individual clouds, we also consider ensembles of spheres or cylinders, where effects caused by a variation of pressure ratio, a distribution of condensed cores within a turbulent gas, and (in case of cylinders) a distribution of inclination angles on the mean PDF are analyzed. The probability distribution of pressure ratios q-1 is assumed to be given by P(q-1) ∝ q-k1/ (1 + (q0/q)γ)(k1 + k2) /γ, where k1, γ, k2, and q0 are fixed parameters. The PDF of individual spheres with overpressures below ~100 is well represented by the PDF of a sphere with an analytical density profile with n = 3. At higher pressure ratios, the PDF at mass surface densities Σ ≪ Σ(0), where Σ(0) is the central mass surface density, asymptotically approaches the PDF of a sphere with n = 2. Consequently, the power-law asymptote at mass surface densities above the peak steepens from Psph(Σ) ∝ Σ-2 to Psph(Σ) ∝ Σ-3. The corresponding asymptote of the PDF of cylinders for the large q-1 is approximately given by Pcyl(Σ) ∝ Σ-4/3(1 - (Σ/Σ(0))2/3)-1/2. The distribution of overpressures q-1 produces a power-law asymptote at high mass surface densities given by
Vehicle tire-pavement interfacial surface pressure measurements and assessments.
DOT National Transportation Integrated Search
2009-05-01
This report examines a method of using Piezoelectric Pressure-Sensitive Ink (Tekscan) Pressure Measurement System to evaluate vehicle tire pressures that are exerted on the surface of pavements. Upgrades to the Tekscan system facilitated refinements ...
Aliano, Kristen A; Stavrides, Steve; Davenport, Thomas
2013-09-01
The heel is a common site of pressure ulcers. The amount of pressure and time needed to develop these wounds is dependent on various factors including pressure surface, the patient's anatomy, and co-morbidities. We studied the use of the hemoglobin saturation ratio as a means of assessing heel perfusion in various pressure settings. The mixed perfusion ratio in the heels of 5 volunteers was assessed on 3 pressure surfaces and at the time of off-load. The surfaces studied included: stretcher pad, plastic backboard without padding, and pressure reduction gel. Each surface was measured for 5 minutes with a real-time reading. On the stretcher, the average StO2% decrease for each pressure surface was 26.2 ± 10 (range 18-43). The average StO2% decrease on the backboard was 22.8 ± 12.3 (range 8-37), and 24.0 ± 4.8 (range 19-30) on the gel pad. The StO2% drop plateaued with the stretcher and gel pad, but with the backboard there was a continued slow drop at 5 minutes. This study demonstrates that hemoglobin oxygenation ratio may be effective in assessing a tissue's direct perfusion in the setting of tissue pressure and may also be beneficial to better assess the effects of pressure-reduction surfaces. Further studies will be needed to determine time to skin breakdown as it pertains to pressure and tissue oxygenation.
NASA Astrophysics Data System (ADS)
Han, Inho; Vagaska, Barbora; Joo Park, Bong; Lee, Mi Hee; Jin Lee, Seung; Park, Jong-Chul
2011-06-01
Successful tissue integration of implanted medical devices depends on appropriate initial cellular response. In this study, the effect of helium atmospheric pressure glow discharge (He-APGD) treatment of titanium on selective protein adsorption and the initial attachment processes and focal adhesion formation of osteoprogenitor cells and stem cells were examined. Titanium disks were treated in a self-designed He-APGD system. Initial attachment of MC3T3-E1 mouse pre-osteoblasts and human mesenchymal stem cells (MSCs) was evaluated by MTT assay and plasma membrane staining followed by morphometric analysis. Fibronectin adsorption was investigated by Enzyme-Linked ImmunoSorbant Assay. MSCs cell attachment to treated and non-treated titanium disks coated with different proteins was verified also in serum-free culture. Organization of actin cytoskeleton and focal adhesions was evaluated microscopically. He-APGD treatment effectively modified the titanium surfaces by creating a super-hydrophilic surface, which promoted selectively higher adsorption of fibronectin, a protein of critical importance for cell/biomaterial interaction. In two different types of cells, the He-APGD treatment enhanced the number of attaching cells as well as their attachment area. Moreover, cells had higher organization of actin cytoskeleton and focal adhesions. Faster acceptance of the material by the progenitor cells in the early phases of tissue integration after the implantation may significantly reduce the overall healing time; therefore, titanium treatment with He-APGD seems to be an effective method of surface modification of titanium for improving its tissue inductive properties.
Mars Entry Atmospheric Data System Modeling, Calibration, and Error Analysis
NASA Technical Reports Server (NTRS)
Karlgaard, Christopher D.; VanNorman, John; Siemers, Paul M.; Schoenenberger, Mark; Munk, Michelle M.
2014-01-01
The Mars Science Laboratory (MSL) Entry, Descent, and Landing Instrumentation (MEDLI)/Mars Entry Atmospheric Data System (MEADS) project installed seven pressure ports through the MSL Phenolic Impregnated Carbon Ablator (PICA) heatshield to measure heatshield surface pressures during entry. These measured surface pressures are used to generate estimates of atmospheric quantities based on modeled surface pressure distributions. In particular, the quantities to be estimated from the MEADS pressure measurements include the dynamic pressure, angle of attack, and angle of sideslip. This report describes the calibration of the pressure transducers utilized to reconstruct the atmospheric data and associated uncertainty models, pressure modeling and uncertainty analysis, and system performance results. The results indicate that the MEADS pressure measurement system hardware meets the project requirements.
Restraint of Liquid Jets by Surface Tension in Microgravity Modeled
NASA Technical Reports Server (NTRS)
Chato, David J.
2001-01-01
Tension in Microgravity Modeled Microgravity poses many challenges to the designer of spacecraft tanks. Chief among these are the lack of phase separation and the need to supply vapor-free liquid or liquidfree vapor to the spacecraft processes that require fluid. One of the principal problems of phase separation is the creation of liquid jets. A jet can be created by liquid filling, settling of the fluid to one end of the tank, or even closing a valve to stop the liquid flow. Anyone who has seen a fountain knows that jets occur in normal gravity also. However, in normal gravity, the gravity controls and restricts the jet flow. In microgravity, with gravity largely absent, jets must be contained by surface tension forces. Recent NASA experiments in microgravity (Tank Pressure Control Experiment, TPCE, and Vented Tank Pressure Experiment, VTRE) resulted in a wealth of data about jet behavior in microgravity. VTRE was surprising in that, although it contained a complex geometry of baffles and vanes, the limit on liquid inflow was the emergence of a liquid jet from the top of the vane structure. Clearly understanding the restraint of liquid jets by surface tension is key to managing fluids in low gravity. To model this phenomenon, we need a numerical method that can track the fluid motion and the surface tension forces. The fluid motion is modeled with the Navier-Stokes equation formulated for low-speed incompressible flows. The quantities of velocity and pressure are placed on a staggered grid, with velocity being tracked at cell faces and pressure at cell centers. The free surface is tracked via the introduction of a color function that tracks liquid as 1/2 and gas as -1/2. A phase model developed by Jacqmin is used. This model converts the discrete surface tension force into a barrier function that peaks at the free surface and decays rapidly. Previous attempts at this formulation have been criticized for smearing the interface. However, by sharpening the phase function, double gridding the fluid function, and using a higher order solution for the fluid function, interface smearing is avoided. These equations can be rewritten as two coupled Poisson equations that also include the velocity. The method of solution is as follows: first, the phase equations are solved from this solution, a velocity field is generated, then a successive overrelaxation scheme is used to solve for a pressure field consistent with the velocity solution. After the code was implemented in axisymmetric form and verified by several test cases, the drop tower runs of Aydelott were modeled. The model handed the free-surface deformation quite nicely, even to the point of modeling geyser growth in the regime where the free surface was no longer restrained. A representative run is shown.
NASA Technical Reports Server (NTRS)
Atlas, Robert (Technical Monitor); Joiner, Joanna; Vasikov, Alexander; Flittner, David; Gleason, James; Bhartia, P. K.
2002-01-01
Reliable cloud pressure estimates are needed for accurate retrieval of ozone and other trace gases using satellite-borne backscatter ultraviolet (buv) instruments such as the global ozone monitoring experiment (GOME). Cloud pressure can be derived from buv instruments by utilizing the properties of rotational-Raman scattering (RRS) and absorption by O2-O2. In this paper we estimate cloud pressure from GOME observations in the 355-400 nm spectral range using the concept of a Lambertian-equivalent reflectivity (LER) surface. GOME has full spectral coverage in this range at relatively high spectral resolution with a very high signal-to-noise ratio. This allows for much more accurate estimates of cloud pressure than were possible with its predecessors SBUV and TOMS. We also demonstrate the potential capability to retrieve chlorophyll content with full-spectral buv instruments. We compare our retrieved LER cloud pressure with cloud top pressures derived from the infrared ATSR instrument on the same satellite. The findings confirm results from previous studies that showed retrieved LER cloud pressures from buv observations are systematically higher than IR-derived cloud-top pressure. Simulations using Mie-scattering radiative transfer algorithms that include O2-O2 absorption and RRS show that these differences can be explained by increased photon path length within and below cloud.
Schietroma, Mario; Carlei, Francesco; Cecilia, Emanuela M; Piccione, Federica; Sista, Federico; De Vita, Fabiola; Amicucci, Gianfranco
2013-04-01
The aim of this study was to compare changes in the systemic inflammation and immune response in the early postoperative (p.o.) period after laparoscopic Nissen fundoplication (LNF) was performed with standard-pressure and low-pressure carbon dioxide pneumoperitoneum. We studied 68 patients with documented gastroesophageal reflux disease and who underwent a LNF: 35 using standard-pressure (12 to 14 mmHg) and 33 low-pressure (6 to 8 mmHg) pneumoperitoneum. White blood cells, peripheral lymphocytes subpopulation, human leukocyte antigen-DR, neutrophil elastase, interleukin (IL)-6 and IL-1, and C-reactive protein were investigated. A significantly higher concentration of neutrophil elastase, IL-6 and IL-1, and C-reactive protein was detected postoperatively in the standard-pressure group of patients in comparison with the low-pressure group (P<0.05). A statistically significant change in human leukocyte antigen-DR expression was recorded p.o. at 24 hours, as a reduction of this antigen expressed on monocyte surface in patients from standard group; no changes were noted in low-pressure group patients (P<0.05). This study demonstrated that reducing the pressure of the pneumoperitoneum to 6 to 8 mm Hg during LNF is reduced p.o. inflammatory response and avoided p.o. immunosuppression.
30 CFR 250.516 - Blowout prevention equipment.
Code of Federal Regulations, 2014 CFR
2014-07-01
... pressure rating of the BOP system and BOP system components shall exceed the expected surface pressure to which they may be subjected. If the expected surface pressure exceeds the rated working pressure of the...-control procedure that indicates how the annular preventer will be utilized, and the pressure limitations...
30 CFR 250.516 - Blowout prevention equipment.
Code of Federal Regulations, 2013 CFR
2013-07-01
... pressure rating of the BOP system and BOP system components shall exceed the expected surface pressure to which they may be subjected. If the expected surface pressure exceeds the rated working pressure of the...-control procedure that indicates how the annular preventer will be utilized, and the pressure limitations...
30 CFR 250.515 - Blowout prevention equipment.
Code of Federal Regulations, 2012 CFR
2012-07-01
... pressure rating of the BOP system and BOP system components shall exceed the expected surface pressure to which they may be subjected. If the expected surface pressure exceeds the rated working pressure of the...-control procedure that indicates how the annular preventer will be utilized, and the pressure limitations...
Numerical investigation of spontaneous flame propagation under RCCI conditions
Bhagatwala, Ankit V; Sankaran, Ramanan; Kokjohn, Sage; ...
2015-06-30
This paper presents results from one and two-dimensional direct numerical simulations under Reactivity Controlled Compression Ignition (RCCI) conditions of a primary reference fuel (PRF) mixture consisting of n-heptane and iso-octane. RCCI uses in-cylinder blending of two fuels with different autoignition characteristics to control combustion phasing and the rate of heat release. These simulations employ an improved model of compression heating through mass source/sink terms developed in a previous work by Bhagatwala et al. (2014), which incorporates feedback from the flow to follow a predetermined experimental pressure trace. Two-dimensional simulations explored parametric variations with respect to temperature stratification, pressure profiles andmore » n-heptane concentration. Furthermore, statistics derived from analysis of diffusion/reaction balances locally normal to the flame surface were used to elucidate combustion characteristics for the different cases. Both deflagration and spontaneous ignition fronts were observed to co-exist, however it was found that higher n-heptane concentration provided a greater degree of flame propagation, whereas lower n-heptane concentration (higher fraction of iso-octane) resulted in more spontaneous ignition fronts. A significant finding was that simulations initialized with a uniform initial temperature and a stratified n-heptane concentration field, resulted in a large fraction of combustion occurring through flame propagation. The proportion of spontaneous ignition fronts increased at higher pressures due to shorter ignition delay when other factors were held constant. For the same pressure and fuel concentration, the contribution of flame propagation to the overall combustion was found to depend on the level of thermal stratification, with higher initial temperature gradients resulting in more deflagration and lower gradients generating more ignition fronts. Statistics of ignition delay are computed to assess the Zel’dovich (1980) theory for the mode of combustion propagation based on ignition delay gradients.« less
Stable Algorithm For Estimating Airdata From Flush Surface Pressure Measurements
NASA Technical Reports Server (NTRS)
Whitmore, Stephen, A. (Inventor); Cobleigh, Brent R. (Inventor); Haering, Edward A., Jr. (Inventor)
2001-01-01
An airdata estimation and evaluation system and method, including a stable algorithm for estimating airdata from nonintrusive surface pressure measurements. The airdata estimation and evaluation system is preferably implemented in a flush airdata sensing (FADS) system. The system and method of the present invention take a flow model equation and transform it into a triples formulation equation. The triples formulation equation eliminates the pressure related states from the flow model equation by strategically taking the differences of three surface pressures, known as triples. This triples formulation equation is then used to accurately estimate and compute vital airdata from nonintrusive surface pressure measurements.
Improving Weather Research and Forecasting Model Initial Conditions via Surface Pressure Analysis
2015-09-01
Obsgrid) that creates input data for the Advanced Research version of the Weather Research and Forecasting model ( WRF -ARW) is modified to perform a...surface pressure objective analysis to allow surface analyses of other fields to be more fully utilized in the WRF -ARW initial conditions. Nested 27-, 9...of surface pressure unnecessarily limits the application of other surface analyses into the WRF initial conditions and contributes to the creation of
NASA Astrophysics Data System (ADS)
Gunning, Brendan P.; Clinton, Evan A.; Merola, Joseph J.; Doolittle, W. Alan; Bresnahan, Rich C.
2015-10-01
Utilizing a modified nitrogen plasma source, plasma assisted molecular beam epitaxy (PAMBE) has been used to achieve higher growth rates in GaN. A higher conductance aperture plate, combined with higher nitrogen flow and added pumping capacity, resulted in dramatically increased growth rates up to 8.4 μm/h using 34 sccm of N2 while still maintaining acceptably low operating pressure. It was further discovered that argon could be added to the plasma gas to enhance growth rates up to 9.8 μm/h, which was achieved using 20 sccm of N2 and 7.7 sccm Ar flows at 600 W radio frequency power, for which the standard deviation of thickness was just 2% over a full 2 in. diameter wafer. A remote Langmuir style probe employing the flux gauge was used to indirectly measure the relative ion content in the plasma. The use of argon dilution at low plasma pressures resulted in a dramatic reduction of the plasma ion current by more than half, while high plasma pressures suppressed ion content regardless of plasma gas chemistry. Moreover, different trends are apparent for the molecular and atomic nitrogen species generated by varying pressure and nitrogen composition in the plasma. Argon dilution resulted in nearly an order of magnitude achievable growth rate range from 1 μm/h to nearly 10 μm/h. Even for films grown at more than 6 μm/h, the surface morphology remained smooth showing clear atomic steps with root mean square roughness less than 1 nm. Due to the low vapor pressure of Si, Ge was explored as an alternative n-type dopant for high growth rate applications. Electron concentrations from 2.2 × 1016 to 3.8 × 1019 cm-3 were achieved in GaN using Ge doping, and unintentionally doped GaN films exhibited low background electron concentrations of just 1-2 × 1015 cm-3. The highest growth rates resulted in macroscopic surface features due to Ga cell spitting, which is an engineering challenge still to be addressed. Nonetheless, the dramatically enhanced growth rates demonstrate great promise for the future of III-nitride devices grown by PAMBE.
NASA Astrophysics Data System (ADS)
Igra, Dan; Igra, Ozer
2018-05-01
The interaction between a planar shock wave and square and triangular bubbles containing either SF6, He, Ar, or CO2 is studied numerically. It is shown that, due to the existing large differences in the molecular weight, the specific heat ratio, and the acoustic impedance between these gases, different wave patterns and pressure distribution inside the bubbles are developed during the interaction process. In the case of heavy gases, the velocity of the shock wave propagating along the bubble inner surface is always less than that of the incident shock wave and higher than that of the transmitted shock wave. However, in the case of the light gas (He), the fastest one is the transmitted shock wave and the slowest one is the incident shock wave. The largest pressure jump is witnessed in the SF6 case, while the smallest pressure jump is seen in the helium case. There are also pronounced differences in the deformation of the investigated bubbles; while triangular bubbles filled with either Ar, CO2, or SF6 were deformed to a crescent shape, the helium bubble is deformed to a trapezoidal shape with three pairs of vortices emanating from its surface.
High pressure capillary connector
Renzi, Ronald F.
2005-08-09
A high pressure connector capable of operating at pressures of 40,000 psi or higher is provided. This connector can be employed to position a first fluid-bearing conduit that has a proximal end and a distal end to a second fluid-bearing conduit thereby providing fluid communication between the first and second fluid-bearing conduits. The connector includes (a) an internal fitting assembly having a body cavity with (i) a lower segment that defines a lower segment aperture and (ii) an interiorly threaded upper segment, (b) a first member having a first member aperture that traverses its length wherein the first member aperture is configured to accommodate the first fluid-bearing conduit and wherein the first member is positioned in the lower segment of the internal fitting assembly, and (c) a second member having a second member aperture that traverses its length wherein the second member is positioned in the upper segment of the fitting assembly and wherein a lower surface of the second member is in contact with an upper surface of the first member to assert a compressive force onto the first member and wherein the first member aperture and the second member aperture are coaxial.
NASA Astrophysics Data System (ADS)
Ramirez, A. L.; Foxall, W.
2011-12-01
Surface displacements caused by reservoir pressure perturbations resulting from CO2 injection can often be measured by geodetic methods such as InSAR, tilt and GPS. We have developed a Markov Chain Monte Carlo (MCMC) approach to invert surface displacements measured by InSAR to map the pressure distribution associated with CO2 injection at the In Salah Krechba field, Algeria. The MCMC inversion entails sampling the solution space by proposing a series of trial 3D pressure-plume models. In the case of In Salah, the range of allowable models is constrained by prior information provided by well and geophysical data for the reservoir and possible fluid pathways in the overburden, and injection pressures and volumes. Each trial pressure distribution source is run through a (mathematical) forward model to calculate a set of synthetic surface deformation data. The likelihood that a particular proposal represents the true source is determined from the fit of the calculated data to the InSAR measurements, and those having higher likelihoods are passed to the posterior distribution. This procedure is repeated over typically ~104 - 105 trials until the posterior distribution converges to a stable solution. The solution to each stochastic inversion is in the form of Bayesian posterior probability density function (pdf) over the range of the alternative models that are consistent with the measured data and prior information. Therefore, the solution provides not only the highest likelihood model but also a realistic estimate of the solution uncertainty. Our InSalah work considered three flow model alternatives: 1) The first model assumed that the CO2 saturation and fluid pressure changes were confined to the reservoir; 2) the second model allowed the perturbations to occur also in a damage zone inferred in the lower caprock from 3D seismic surveys; and 3) the third model allowed fluid pressure changes anywhere within the reservoir and overburden. Alternative (2) yielded optimal fits to the data in inversions of InSAR data collected in 2007. The results indicate that pressure changes developed near the injection well and then penetrated into the lower caprock along the postulated damage zone. As in many geophysical inverse problems, inversion of surface displacement data for subsurface sources of deformation is inherently uncertain and non-unique. We will also discuss the approach used to characterize solution uncertainty. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Numerical Study of Pressure Fluctuations due to High-Speed Turbulent Boundary Layers
NASA Technical Reports Server (NTRS)
Duan, Lian; Choudhari, Meelan M.; Wu, Minwei
2012-01-01
Direct numerical simulations (DNS) are used to examine the pressure fluctuations generated by fully developed turbulence in supersonic turbulent boundary layers with an emphasis on both pressure fluctuations at the wall and the acoustic fluctuations radiated into the freestream. The wall and freestream pressure fields are first analyzed for a zero pressure gradient boundary layer with Mach 2.5 and Reynolds number based on momentum thickness of approximately 2835. The single and multi-point statistics reported include the wall pressure fluctuation intensities, frequency spectra, space-time correlations, and convection velocities. Single and multi-point statistics of surface pressure fluctuations show good agreement with measured data and previously published simulations of turbulent boundary layers under similar flow conditions. Spectral analysis shows that the acoustic fluctuations outside the boundary layer region have much lower energy content within the high-frequency region. The space-time correlations reflect the convective nature of the pressure field both at the wall and in the freestream, which is characterized by the downstream propagation of pressure-carrying eddies. Relative to those at the wall, the pressure-carrying eddies associated with the freestream signal are larger and convect at a significantly lower speed. The preliminary DNS results of a Mach 6 boundary layer show that the pressure rms in the freestream region is significantly higher than that of the lower Mach number case.
The Measurement of Pressure Through Tubes in Pressure Distribution Tests
NASA Technical Reports Server (NTRS)
Hemke, Paul E
1928-01-01
The tests described in this report were made to determine the error caused by using small tubes to connect orifices on the surface of aircraft to central pressure capsules in making pressure distribution tests. Aluminum tubes of 3/16-inch inside diameter were used to determine this error. Lengths from 20 feet to 226 feet and pressures whose maxima varied from 2 inches to 140 inches of water were used. Single-pressure impulses for which the time of rise of pressure from zero to a maximum varied from 0.25 second to 3 seconds were investigated. The results show that the pressure recorded at the capsule on the far end of the tube lags behind the pressure at the orifice end and experiences also a change in magnitude. For the values used in these tests the time lag and pressure change vary principally with the time of rise of pressure from zero to a maximum and the tube length. Curves are constructed showing the time lag and pressure change. Empirical formulas are also given for computing the time lag. Analysis of pressure distribution tests made on airplanes in flight shows that the recorded pressures are slightly higher than the pressures at the orifice and that the time lag is negligible. The apparent increase in pressure is usually within the experimental error, but in the case of the modern pursuit type of airplane the pressure increase may be 5 per cent. For pressure-distribution tests on airships the analysis shows that the time lag and pressure change may be neglected.
Video luminescent barometry - The induction period
NASA Technical Reports Server (NTRS)
Uibel, Rory H.; Khalil, Gamal; Gouterman, Martin; Gallery, Jean; Callis, James B.
1993-01-01
Video monitoring of oxygen quenching of the photoluminescence of platinum octaethylporphyrin (PtOEP) in silicone polymer resin may be used to measure pressure distribution over an airfoil. A continuous increase of the luminescence intensity of PtOEP on exposure to the exciting light is known as the induction effect. The effect of several factors on PtOEP photoluminescence and the induction effect was investigated. The experimental apparatus is described and results are presented. It was observed that the relative induction amplitude and induction time increase at higher oxygen pressure and with thicker films. These observations may be explained if the singlet oxygen produced by oxygen quenching is consumed by the polymer and is therefore unavailable for further quenching. Researchers using this method for measuring pressure distribution on airfoil surfaces should be aware of the induction effect and its implications.
Fluctuating surface pressure measurements on USB wing using two types of transducers
NASA Technical Reports Server (NTRS)
Reed, J. B.
1975-01-01
Measurements of the fluctuating pressures on the wing surface of an upper-surface-blown powered-lift model and a JT15 engine were obtained using two types of pressure transducers. The pressures were measured using overall-fluctuating pressures and power spectral density analyses for various thrust settings and two jet impingement angles. Comparison of the data from the two transducers indicate that similar results are obtained in the lower frequency ranges for both transducers. The data also indicate that for this configuration, the highest pressure levels occur at frequencies below 2000 Hz.
Impact of nanocrystal spray deposition on inorganic solar cells.
Townsend, Troy K; Yoon, Woojun; Foos, Edward E; Tischler, Joseph G
2014-05-28
Solution-synthesized inorganic cadmium telluride nanocrystals (∼4 nm; 1.45 eV band gap) are attractive elements for the fabrication of thin-film-based low-cost photovoltaic (PV) devices. Their encapsulating organic ligand shell enables them to be easily dissolved in organic solvents, and the resulting solutions can be spray-cast onto indium-tin oxide (ITO)-coated glass under ambient conditions to produce photoactive thin films of CdTe. Following annealing at 380 °C in the presence of CdCl2(s) and evaporation of metal electrode contacts (glass/ITO/CdTe/Ca/Al), Schottky-junction PV devices were tested under simulated 1 sun conditions. An improved PV performance was found to be directly tied to control over the film morphology obtained by the adjustment of spray parameters such as the solution concentration, delivery pressure, substrate distance, and surface temperature. Higher spray pressures produced thinner layers (<60 nm) with lower surface roughness (<200 nm), leading to devices with improved open-circuit voltages (Voc) due to decreased surface roughness and higher short-circuit current (Jsc) as a result of enhanced annealing conditions. After process optimization, spray-cast Schottky devices rivaled those prepared by conventional spin-coating, showing Jsc = 14.6 ± 2.7 mA cm(-2), Voc = 428 ± 11 mV, FF = 42.8 ± 1.4%, and Eff. = 2.7 ± 0.5% under 1 sun illumination. This optimized condition of CdTe spray deposition was then applied to heterojunction devices (ITO/CdTe/ZnO/Al) to reach 3.0% efficiency after light soaking under forward bias. The film thickness, surface morphology, and light absorption were examined with scanning electron microscopy, optical profilometry, and UV/vis spectroscopy.
NASA Astrophysics Data System (ADS)
Awe, Thomas
2017-10-01
Implosions on the Z Facility assemble high-energy-density plasmas for radiation effects and ICF experiments, but achievable stagnation pressures and temperatures are degraded by the Magneto-Rayleigh-Taylor (MRT) instability. While the beryllium liners (tubes) used in Magnetized Liner Inertial Fusion (MagLIF) experiments are astonishingly smooth (10 to 50 nm RMS roughness), they also contain distributed micron-scale resistive inclusions, and large MRT amplitudes are observed. Early in the implosion, an electrothermal instability (ETI) may provide a perturbation which greatly exceeds the initial surface roughness of the liner. Resistive inhomogeneities drive nonuniform current density and Joule heating, resulting in locally higher temperature, and thus still higher resistivity. Such unstable temperature and pressure growth produce density perturbations which seed MRT. For MagLIF liners, ETI seeding of MRT has been inferred by evaluating late-time MRT, but a direct observation of ETI is not made. ETI is directly observed on the surface of 1.0-mm-diameter solid Al rods pulsed to 1 MA in 100 ns via high resolution gated optical imaging (2 ns temporal and 3 micron spatial resolution). Aluminum 6061 alloy rods, with micron-scale resistive inclusions, consistently first demonstrate overheating from distinct, 10-micron-scale, sub-eV spots, which 5-10 ns later merge into azimuthally stretched elliptical spots and discrete strata (40-100 microns wide by 10 microns tall). Axial plasma filaments form shortly thereafter. Surface plasma can be suppressed for rods coated with dielectric, enabling extended study of the evolution of stratified ETI structures, and experimental inference of ETI growth rates. This fundamentally new and highly 3-dimensional dataset informs ETI physics, including when the ETI seed of MRT may be initiated.
Pressure-actuated joint system
NASA Technical Reports Server (NTRS)
McGuire, John R. (Inventor)
2004-01-01
A pressure vessel is provided that includes first and second case segments mated with one another. First and second annular rubber layers are disposed inboard of the first and second case segments, respectively. The second annular rubber layer has a slot extending from the radial inner surface across a portion of its thickness to define a main body portion and a flexible portion. The flexible portion has an interfacing surface portion abutting against an interfacing surface portion of the first annular rubber layer to follow movement of the first annular rubber layer during operation of the pressure vessel. The slot receives pressurized gas and establishes a pressure-actuated joint between the interfacing surface portions. At least one of the interfacing surface portions has a plurality of enclosed and sealed recesses formed therein.
NASA Astrophysics Data System (ADS)
Mindivan, H.
2018-01-01
In this study, surface modification of aluminum alloy using High-Velocity Oxygen Fuel (HVOF) thermal spray and pulsed plasma nitriding processes was investigated. AISI 316 stainless steel coating on 1050 aluminum alloy substrate by HVOF process was pulsed plasma nitrided at 793 K under 0.00025 MPa pressure for 43200 s in a gas mixture of 75 % N2 and 25 % H2. The results showed that the pulse plasma nitriding process produced a surface layer with CrN, iron nitrides (Fe3N, Fe4N) and expanded austenite (γN). The pulsed plasma nitrided HVOF-sprayed coating showed higher surface hardness, lower wear rate and coefficient of friction than the untreated HVOF-sprayed one.
Zhong, Lieshuang; Zhu, Hai; Wu, Yang; Guo, Zhiguang
2018-09-01
The Namib Desert beetle-Stenocara can adapt to the arid environment by its fog harvesting ability. A series of samples with different topography and wettability that mimicked the elytra of the beetle were fabricated to study the effect of these factors on fog harvesting. The superhydrophobic bulgy sample harvested 1.5 times the amount of water than the sample with combinational pattern of hydrophilic bulgy/superhydrophobic surrounding and 2.83 times than the superhydrophobic surface without bulge. These bulges focused the droplets around them which endowed droplets with higher velocity and induced the highest dynamic pressure atop them. Superhydrophobicity was beneficial for the departure of harvested water on the surface of sample. The bulgy topography, together with surface wettability, dominated the process of water supply and water removal. Copyright © 2018 Elsevier Inc. All rights reserved.
Estimating Subglottal Pressure from Neck-Surface Acceleration during Normal Voice Production
ERIC Educational Resources Information Center
Fryd, Amanda S.; Van Stan, Jarrad H.; Hillman, Robert E.; Mehta, Daryush D.
2016-01-01
Purpose: The purpose of this study was to evaluate the potential for estimating subglottal air pressure using a neck-surface accelerometer and to compare the accuracy of predicting subglottal air pressure relative to predicting acoustic sound pressure level (SPL). Method: Indirect estimates of subglottal pressure (P[subscript sg]') were obtained…
Flight testing of a luminescent surface pressure sensor
NASA Technical Reports Server (NTRS)
Mclachlan, B. G.; Bell, J. H.; Espina, J.; Gallery, J.; Gouterman, M.; Demandante, C. G. N.; Bjarke, L.
1992-01-01
NASA ARC has conducted flight tests of a new type of aerodynamic pressure sensor based on a luminescent surface coating. Flights were conducted at the NASA ARC-Dryden Flight Research Facility. The luminescent pressure sensor is based on a surface coating which, when illuminated with ultraviolet light, emits visible light with an intensity dependent on the local air pressure on the surface. This technique makes it possible to obtain pressure data over the entire surface of an aircraft, as opposed to conventional instrumentation, which can only make measurements at pre-selected points. The objective of the flight tests was to evaluate the effectiveness and practicality of a luminescent pressure sensor in the actual flight environment. A luminescent pressure sensor was installed on a fin, the Flight Test Fixture (FTF), that is attached to the underside of an F-104 aircraft. The response of one particular surface coating was evaluated at low supersonic Mach numbers (M = 1.0-1.6) in order to provide an initial estimate of the sensor's capabilities. This memo describes the test approach, the techniques used, and the pressure sensor's behavior under flight conditions. A direct comparison between data provided by the luminescent pressure sensor and that produced by conventional pressure instrumentation shows that the luminescent sensor can provide quantitative data under flight conditions. However, the test results also show that the sensor has a number of limitations which must be addressed if this technique is to prove useful in the flight environment.
Ab Initio Surface Phase Diagrams for Coadsorption of Aromatics and Hydrogen on the Pt(111) Surface
Ferguson, Glen Allen; Vorotnikov, Vassili; Wunder, Nicholas; ...
2016-11-02
Supported metal catalysts are commonly used for the hydrogenation and deoxygenation of biomass-derived aromatic compounds in catalytic fast pyrolysis. To date, the substrate-adsorbate interactions under reaction conditions crucial to these processes remain poorly understood, yet understanding this is critical to constructing detailed mechanistic models of the reactions important to catalytic fast pyrolysis. Density functional theory (DFT) has been used in identifying mechanistic details, but many of these works assume surface models that are not representative of realistic conditions, for example, under which the surface is covered with some concentration of hydrogen and aromatic compounds. In this study, we investigate hydrogen-guaiacolmore » coadsorption on Pt(111) using van der Waals-corrected DFT and ab initio thermodynamics over a range of temperatures and pressures relevant to bio-oil upgrading. We find that relative coverage of hydrogen and guaiacol is strongly dependent on the temperature and pressure of the system. Under conditions relevant to ex situ catalytic fast pyrolysis (CFP; 620-730 K, 1-10 bar), guaiacol and hydrogen chemisorb to the surface with a submonolayer hydrogen (~0.44 ML H), while under conditions relevant to hydrotreating (470-580 K, 10-200 bar), the surface exhibits a full-monolayer hydrogen coverage with guaiacol physisorbed to the surface. These results correlate with experimentally observed selectivities, which show ring saturation to methoxycyclohexanol at hydrotreating conditions and deoxygenation to phenol at CFP-relevant conditions. Additionally, the vibrational energy of the adsorbates on the surface significantly contributes to surface energy at higher coverage. Ignoring this contribution results in not only quantitatively, but also qualitatively incorrect interpretation of coadsorption, shifting the phase boundaries by more than 200 K and ~10-20 bar and predicting no guaiacol adsorption under CFP and hydrotreating conditions. We discuss the implications of this work in the context of modeling hydrogenation and deoxygenation reactions on Pt(111), and we find that only the models representative of equilibrium surface coverage can capture the hydrogenation kinetics correctly. Lastly, as a major outcome of this work, we introduce a freely available web-based tool, dubbed the Surface Phase Explorer (SPE), which allows researchers to conveniently determine surface composition for any one- or two-component system at thermodynamic equilibrium over a wide range of temperatures and pressures on any crystalline surface using standard DFT output.« less
Competitive Adsorption between Nanoparticles and Surface Active Ions for the Oil-Water Interface.
Hua, Xiaoqing; Bevan, Michael A; Frechette, Joelle
2018-04-24
Nanoparticles (NPs) can add functionality (e.g., catalytic, optical, rheological) to an oil-water interface. Adsorption of ∼10 nm NPs can be reversible; however, the mechanisms for adsorption and its effects on surface pressure remain poorly understood. Here we demonstrate how the competitive reversible adsorption of NPs and surfactants at fluid interfaces can lead to independent control of both the adsorbed amount and surface pressure. In contrast to prior work, both species investigated (NPs and surfactants) interact reversibly with the interface and without the surface active species binding to NPs. Independent measurements of the adsorption and surface pressure isotherms allow determination of the equation of state (EOS) of the interface under conditions where the NPs and surfactants are both in dynamic equilibrium with the bulk phase. The adsorption and surface pressure measurements are performed with gold NPs of two different sizes (5 and 10 nm), at two pH values, and across a wide concentration range of surfactant (tetrapentylammonium, TPeA + ) and NPs. We show that free surface active ions compete with NPs for the interface and give rise to larger surface pressures upon the adsorption of NPs. Through a competitive adsorption model, we decouple the contributions of NPs wetting at the interface and their surface activity on the measured surface pressure. We also demonstrate reversible control of adsorbed amount via changes in the surfactant concentration or the aqueous phase pH.
Hard tissue ablation with a spray-assisted mid-IR laser
NASA Astrophysics Data System (ADS)
Kang, H. W.; Rizoiu, I.; Welch, A. J.
2007-12-01
The objective of this study was to understand the dominant mechanism(s) for dental enamel ablation with the application of water spray. A free-running Er,Cr:YSGG (yttrium, scandium, gallium, garnet) laser was used to ablate human enamel tissue at various radiant exposures. During dental ablation, distilled water was sprayed on the sample surface, and these results were compared to ablation without a spray (dry ablation). In order to identify dominant ablation mechanisms, transient acoustic waves were compared to ablation thresholds and the volume of material removed. The ablation profile and depth were measured using optical coherence tomography (OCT). Irregular surface modification, charring and peripheral cracks were associated with dry ablation, whereas craters for spray samples were relatively clean without thermal damage. In spite of a 60% higher ablation threshold for spray associated irradiations owing to water absorption, acoustic peak pressures were six times higher and ablation volume was up to a factor of 2 larger compared to dry ablation. The enhanced pressure and ablation performance of the spray-assisted process was the result of rapid water vaporization, material ejection with recoil stress, interstitial water explosion and possibly liquid-jet formation. With water cooling and abrasive/disruptive mechanical effects, the spray ablation can be a safe and efficient modality for dental treatment.
Lustemberg, Pablo G.; Palomino, Robert M.; Gutierrez, Ramon A.; ...
2018-05-28
The transformation of methane into methanol or higher alcohols at moderate temperature and pressure conditions is of great environmental interest and remains a challenge despite many efforts. Extended surfaces of metallic nickel are inactive for a direct CH 4 → CH 3OH conversion. This experimental and computational study provides clear evidence that low Ni loadings on a CeO 2(111) support can perform a direct catalytic cycle for the generation of methanol at low temperature using oxygen and water as reactants, with a higher selectivity than ever reported for ceria-based catalysts. On the basis of ambient pressure X-ray photoemission spectroscopy andmore » density functional theory calculations, we demonstrate that water plays a crucial role in blocking catalyst sites where methyl species could fully decompose, an essential factor for diminishing the production of CO and CO 2, and in generating sites on which methoxy species and ultimately methanol can form. In addition to water-site blocking, one needs the effects of metal-support interactions to bind and activate methane and water. Lastly, these findings should be considered when designing metal/oxide catalysts for converting methane to value-added chemicals and fuels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lustemberg, Pablo G.; Palomino, Robert M.; Gutierrez, Ramon A.
The transformation of methane into methanol or higher alcohols at moderate temperature and pressure conditions is of great environmental interest and remains a challenge despite many efforts. Extended surfaces of metallic nickel are inactive for a direct CH 4 → CH 3OH conversion. This experimental and computational study provides clear evidence that low Ni loadings on a CeO 2(111) support can perform a direct catalytic cycle for the generation of methanol at low temperature using oxygen and water as reactants, with a higher selectivity than ever reported for ceria-based catalysts. On the basis of ambient pressure X-ray photoemission spectroscopy andmore » density functional theory calculations, we demonstrate that water plays a crucial role in blocking catalyst sites where methyl species could fully decompose, an essential factor for diminishing the production of CO and CO 2, and in generating sites on which methoxy species and ultimately methanol can form. In addition to water-site blocking, one needs the effects of metal-support interactions to bind and activate methane and water. Lastly, these findings should be considered when designing metal/oxide catalysts for converting methane to value-added chemicals and fuels.« less
Strategies to improve the adhesion of rubbers to adhesives by means of plasma surface modification
NASA Astrophysics Data System (ADS)
Martín-Martínez, J. M.; Romero-Sánchez, M. D.
2006-05-01
The surface modifications produced by treatment of a synthetic sulfur vulcanized styrene-butadiene rubber with oxidizing (oxygen, air, carbon dioxide) and non oxidizing (nitrogen, argon) RF low pressure plasmas, and by treatment with atmospheric plasma torch have been assessed by ATR-IR and XPS spectroscopy, SEM, and contact angle measurements. The effectiveness of the low pressure plasma treatment depended on the gas atmosphere used to generate the plasma. A lack of relationship between surface polarity and wettability, and peel strength values was obtained, likely due to the cohesive failure in the rubber obtained in the adhesive joints. In general, acceptable adhesion values of plasma treated rubber were obtained for all plasmas, except for nitrogen plasma treatment during 15 minutes due to the creation of low molecular weight moieties on the outermost rubber layer. A toluene wiping of the N{2 } plasma treated rubber surface for 15 min removed those moieties and increased adhesion was obtained. On the other hand, the treatment of the rubber with atmospheric pressure by means of a plasma torch was proposed. The wettability of the rubber was improved by decreasing the rubber-plasma torch distance and by increasing the duration because a partial removal of paraffin wax from the rubber surface was produced. The rubber surface was oxidized by the plasma torch treatment, and the longer the duration of the plasma torch treatment, the higher the degree of surface oxidation (mainly creation of C O moieties). However, although the rubber surface was effectively modified by the plasma torch treatment, the adhesion was not greatly improved, due to the migration of paraffin wax to the treated rubber-polyurethane adhesive interface once the adhesive joint was produced. On the other hand, the extended treatment with plasma torch facilitated the migration of zinc stearate to the rubber-adhesive interface, also contributing to deteriorate the adhesion in greater extent. Finally, it has been found that cleaning of SBS rubber in an ultrasonic bath prior to plasma torch treatment produced a partial removal of paraffin waxes from the surface, and thus improved adhesion was obtained.
NASA Technical Reports Server (NTRS)
Chow, L. S. H.; Cheng, H. S.
1976-01-01
The Christensen theory of a stochastic model for hydrodynamic lubrication of rough surfaces was extended to elastohydrodynamic lubrication between two rollers. Solutions for the reduced pressure at the entrance as a function of the ratio of the average nominal film thickness to the rms surface roughness, were obtained numerically. Results were obtained for purely transverse as well as purely longitudinal surface roughness for cases with or without slip. The reduced pressure was shown to decrease slightly by considering longitudinal surface roughness. The same approach was used to study the effect of surface roughness on lubrication between rigid rollers and lubrication of an infinitely wide slider bearing. Using the flow balance concept, the perturbed Reynolds equation, was derived and solved for the perturbed pressure distribution. In addition, Cheng's numerical scheme was modified to incorporate a single two-dimensional elastic asperity on the stationary surface. The perturbed pressures obtained by these three different models were compared.
Jeong, Won-Seok; Kwon, Jae-Sung; Lee, Jung-Hwan; Uhm, Soo-Hyuk; Ha Choi, Eun; Kim, Kwang-Mahn
2017-07-26
Here, we investigated the antibacterial effects of chemical changes induced by nonthermal atmospheric pressure plasma (NTAPP) on smooth and rough Ti. The morphologies of smooth and rough surfaces of Ti were examined using scanning electron microscopy (SEM). Both Ti specimens were then treated for 10 min by NTAPP with nitrogen gas. The surface roughness, chemistry, and wettability were examined by optical profilometry, x-ray photoelectron spectroscopy, and water contact angle analysis, respectively. Bacterial attachment was measured by determining the number of colony forming units and by SEM analysis. The rough Ti showed irregular micropits, whereas smooth Ti had a relatively regular pattern on the surface. There were no differences in morphology between samples before and after NTAPP treatment. NTAPP treatment resulted in changes from hydrophobic to hydrophilic properties on rough and smooth Ti; rough Ti showed relatively higher hydrophilicity. Before NTAPP treatment, Streptococcus sanguinis (S. sanguinis) showed greater attachment on rough Ti, and after NTAPP treatment, there was a significant reduction in bacterial attachment. Moreover, the bacterial attachment rate was significantly lower on rough Ti, and the structure of S. sanguinis colonies were significantly changed on NTAPP-treated Ti. NTAPP treatment inhibited bacterial attachment surrounding titanium implants, regardless of surface topography. Therefore, NTAPP treatment on Ti is a next-generation tool for antibacterial applications in the orthopaedic and dental fields.
NASA Technical Reports Server (NTRS)
Brankovic, Andreja; Ryder, Robert C., Jr.; Hendricks, Robert C.; Liu, Nan-Suey; Gallagher, John R.; Shouse, Dale T.; Roquemore, W. Melvyn; Cooper, Clayton S.; Burrus, David L.; Hendricks, John A.
2002-01-01
The trapped vortex combustor (TVC) pioneered by Air Force Research Laboratories (AFRL) is under consideration as an alternative to conventional gas turbine combustors. The TVC has demonstrated excellent operational characteristics such as high combustion efficiency, low NO(x) emissions, effective flame stabilization, excellent high-altitude relight capability, and operation in the lean-burn or rich burn-quick quench-lean burn (RQL) modes of combustion. It also has excellent potential for lowering the engine combustor weight. This performance at low to moderate combustor mach numbers has stimulated interest in its ability to operate at higher combustion mach number, and for aerospace, this implies potentially higher flight mach numbers. To this end, a lobed diffuser-mixer that enhances the fuel-air mixing in the TVC combustor core was designed and evaluated, with special attention paid to the potential shock system entering the combustor core. For the present investigation, the lobed diffuser-mixer combustor rig is in a full annular configuration featuring sixfold symmetry among the lobes, symmetry within each lobe, and plain parallel, symmetric incident flow. During hardware cold-flow testing, significant discrepancies were found between computed and measured values for the pitot-probe-averaged static pressure profiles at the lobe exit plane. Computational fluid dynamics (CFD) simulations were initiated to determine whether the static pressure probe was causing high local flow-field disturbances in the supersonic flow exiting the diffuser-mixer and whether shock wave impingement on the pitot probe tip, pressure ports, or surface was the cause of the discrepancies. Simulations were performed with and without the pitot probe present in the modeling. A comparison of static pressure profiles without the probe showed that static pressure was off by nearly a factor of 2 over much of the radial profile, even when taking into account potential axial displacement of the probe by up to 0.25 in. (0.64 cm). Including the pitot probe in the CFD modeling and data interpretation lead to good agreement between measurement and prediction. Graphical inspection of the results showed that the shock waves impinging on the probe surface were highly nonuniform, with static pressure varying circumferentially among the pressure ports by over 10 percent in some cases. As part of the measurement methodology, such measurements should be routinely supplemented with CFD analyses that include the pitot probe as part of the flow-path geometry.
Park, Kyung Hee
2014-09-01
Stage II pressure ulcers (PUs) should be managed promptly and appropriately in order to prevent complications. To identify the factors affecting Stage II PU healing and optimize care, the electronic medical records of patients with a Stage II PU in an acute care hospital were examined. Patient and ulcer characteristics as well as nutritional assessment variables were retrieved, and ulcer variables were used to calculate Pressure Ulcer Scale for Healing (PUSH) scores. The effect of all variables on healing status (healed versus nonhealed) and change in PUSH score for healing rate were compared. Records of 309 Stage II PUs from 155 patients (mean age 61.2 ± 15.2 [range 5-89] years, 182 [58.9%] male) were retrieved and analyzed. Of those, 221 healed and 88 were documented as not healed at the end of the study. The variables that were significantly different between patients with PUs that did and did not heal were: major diagnosis (P = 0.001), peripheral arterial disease (P = 0.007), smoking (P = 0.048), serum albumin ( <2.5 g/dL) (P = 0.002), antidepressant use (P = 0.035), vitamin use (P = 0.006), history of surgery (P <0.001), PU size (P = 0.003), Malnutrition Universal Screening Tool (MUST) score (P = 0.020), Braden scale score (P = 0.003), and mean arterial pressure (MAP, mm Hg) (P = 0.026). The Cox proportional hazard model showed a significant positive difference in PUSH score change -indicative of healing - when pressure-redistribution surfaces were used (P <0.001, HR = 2.317), PU size was small (≤3.0 cm2, P = 0.006, HR = 1.670), MAP (within a range of 52-112 mm Hg) was higher P = 0.010, HR = 1.016), and patients were provided multivitamins (P = 0.037, HR=1.431). The results of this study suggest strategies for healing Stage II PUs in the acute care setting should include early recognition of lower-stage PUs, the provision of static pressure-redistribution surfaces and multivitamins, and maintaining higher MAP may facilitate healing and prevent deterioration. Further prospective research is warranted to verify the effect of these interventions.
Janicki, Damian
2018-01-05
TiC-reinforced composite surface layers (TRLs) on a ductile cast iron EN-GJS-700-2 grade (DCI) substrate were synthesized using a diode laser surface alloying with a direct injection of titanium powder into the molten pool. The experimental results were compared with thermodynamic calculations. The TRLs having a uniform distribution of the TiC particles and their fraction up to 15.4 vol % were achieved. With increasing titanium concentration in the molten pool, fractions of TiC and retained austenite increase and the shape of TiC particles changes from cubic to dendritic form. At the same time, the cementite fraction decreases, lowering the overall hardness of the TRL. A good agreement between experimental and calculated results was achieved. Comparative dry sliding wear tests between the as-received DCI, the TRLs and also laser surface melted layers (SMLs) have been performed following the ASTM G 99 standard test method under contact pressures of 2.12 and 4.25 MPa. For both the as-received DCI and the SMLs, the wear rates increased with increasing contact pressure. The TRLs exhibited a significantly higher wear resistance than the others, which was found to be load independent.
NASA Astrophysics Data System (ADS)
Duh, Jenq-Gong; Chuang, Shang-I.; Lan, Chun-Kai; Yang, Hao; Chen, Hsien-Wei
2015-09-01
A new processing technique by atmospheric pressure plasma (APP) jet treatment of LIBs was introduced. Ar/N2 plasma enhanced the high-rate anode performance of Li4Ti5O12. Oxygen vacancies were discovered and nitrogen doping were achieved by the surface reaction between pristine Li4Ti5O12 and plasma reactive species (N* and N2+). Electrochemical impedance spectra confirm that plasma modification increases Li ions diffusivity and reduces internal charge-transfer resistance, leading to a superior capacity (132 mAh/g) and excellent stability with negligible capacity decay over 100 cycles under 10C rate. Besides 2D material surface treatment, a specially designed APP generator that are feasible to modify 3D TiO2 powders is proposed. The rate capacity of 20 min plasma treated TiO2 exhibited 20% increment. Plasma diagnosis revealed that excited Ar and N2 was contributed to TiO2 surface reduction as companied by formation of oxygen vacancy. A higher amount of oxygen vacancy increased the chance for excited nitrogen doped onto surface of TiO2 particle. These findings promote the understanding of APP on processing anode materials in high performance LIBs.
Janicki, Damian
2018-01-01
TiC-reinforced composite surface layers (TRLs) on a ductile cast iron EN-GJS-700-2 grade (DCI) substrate were synthesized using a diode laser surface alloying with a direct injection of titanium powder into the molten pool. The experimental results were compared with thermodynamic calculations. The TRLs having a uniform distribution of the TiC particles and their fraction up to 15.4 vol % were achieved. With increasing titanium concentration in the molten pool, fractions of TiC and retained austenite increase and the shape of TiC particles changes from cubic to dendritic form. At the same time, the cementite fraction decreases, lowering the overall hardness of the TRL. A good agreement between experimental and calculated results was achieved. Comparative dry sliding wear tests between the as-received DCI, the TRLs and also laser surface melted layers (SMLs) have been performed following the ASTM G 99 standard test method under contact pressures of 2.12 and 4.25 MPa. For both the as-received DCI and the SMLs, the wear rates increased with increasing contact pressure. The TRLs exhibited a significantly higher wear resistance than the others, which was found to be load independent. PMID:29304001
Numerical Simulation of a High-Lift Configuration Embedded with High Momentum Fluidic Actuators
NASA Technical Reports Server (NTRS)
Vatsa, Veer N.; Duda, Benjamin; Fares, Ehab; Lin, John C.
2016-01-01
Numerical simulations have been performed for a vertical tail configuration with deflected rudder. The suction surface of the main element of this configuration, just upstream of the hinge line, is embedded with an array of 32 fluidic actuators that produce oscillating sweeping jets. Such oscillating jets have been found to be very effective for flow control applications in the past. In the current paper, a high-fidelity computational fluid dynamics (CFD) code known as the PowerFLOW R code is used to simulate the entire flow field associated with this configuration, including the flow inside the actuators. A fully compressible version of the PowerFLOW R code valid for high speed flows is used for the present simulations to accurately represent the transonic flow regimes encountered in the flow field due to the actuators operating at higher mass flow (momentum) rates required to mitigate reverse flow regions on a highly-deflected rudder surface. The computed results for the surface pressure and integrated forces compare favorably with measured data. In addition, numerical solutions predict the correct trends in forces with active flow control compared to the no control case. The effect of varying the rudder deflection angle on integrated forces and surface pressures is also presented.
Pressure-Sensitive Paints Advance Rotorcraft Design Testing
NASA Technical Reports Server (NTRS)
2013-01-01
The rotors of certain helicopters can spin at speeds as high as 500 revolutions per minute. As the blades slice through the air, they flex, moving into the wind and back out, experiencing pressure changes on the order of thousands of times a second and even higher. All of this makes acquiring a true understanding of rotorcraft aerodynamics a difficult task. A traditional means of acquiring aerodynamic data is to conduct wind tunnel tests using a vehicle model outfitted with pressure taps and other sensors. These sensors add significant costs to wind tunnel testing while only providing measurements at discrete locations on the model's surface. In addition, standard sensor solutions do not work for pulling data from a rotor in motion. "Typical static pressure instrumentation can't handle that," explains Neal Watkins, electronics engineer in Langley Research Center s Advanced Sensing and Optical Measurement Branch. "There are dynamic pressure taps, but your costs go up by a factor of five to ten if you use those. In addition, recovery of the pressure tap readings is accomplished through slip rings, which allow only a limited amount of sensors and can require significant maintenance throughout a typical rotor test." One alternative to sensor-based wind tunnel testing is pressure sensitive paint (PSP). A coating of a specialized paint containing luminescent material is applied to the model. When exposed to an LED or laser light source, the material glows. The glowing material tends to be reactive to oxygen, explains Watkins, which causes the glow to diminish. The more oxygen that is present (or the more air present, since oxygen exists in a fixed proportion in air), the less the painted surface glows. Imaged with a camera, the areas experiencing greater air pressure show up darker than areas of less pressure. "The paint allows for a global pressure map as opposed to specific points," says Watkins. With PSP, each pixel recorded by the camera becomes an optical pressure tap. "Instead of having 100 or 200 pressure taps, you can have in theory several million, up to whatever the resolution of your camera is." Watkins explains that typical wind tunnel testing requires two models: one with very little instrumentation, and a pressure model with a significant amount of sensors applied. "If you can make all of your measurements on one model with PSP, you've decreased your model costs by at least a factor of two and preferably your testing costs by about that much," he says. PSP technology has been around for almost 20 years, but a PSP solution for gathering instantaneous dynamic pressure data from surfaces moving at high speeds, such as rotor blades, was not available until a NASA partnership led to a game-changing innovation.
Matsuo, Junko; Sugama, Junko; Sanada, Hiromi; Okuwa, Mayumi; Nakatani, Toshio; Konya, Chizuko; Sakamoto, Jirou
2011-05-01
Pressure ulcers are a common problem, especially in older patients. In Japan, most institutionalized older people are malnourished and show extreme bony prominence (EBP). EBP is a significant factor in the development of pressure ulcers due to increased interface pressure concentrated at the skin surface over the EBP. The use of support surfaces is recommended for the prophylaxis of pressure ulcers. However, the present equivocal criteria for evaluating the pressure redistribution of support surfaces are inadequate. Since pressure redistribution is influenced by physique and posture, evaluations using human subjects are limited. For this reason, models that can substitute for humans are necessary. We developed a new EBP model based on the anthropometric measurements, including pelvic inclination, of 100 bedridden elderly people. A comparison between the pressure distribution charts of our model and bedridden elderly subjects demonstrated that maximum contact pressure values, buttock contact pressure values, and bone prominence rates corresponded closely. This indicates that the model provides a good approximation of the features of elderly people with EBP. We subsequently examined the validity of the model through quantitative assessment of pressure redistribution functions consisting of immersion, envelopment, and contact area change. The model was able to detect differences in the hardness of urethane foam, differences in the internal pressure of an air mattress, and sequential changes during the pressure switching mode. These results demonstrate the validity of our new buttock model in evaluating pressure redistribution for a variety of surfaces. Copyright © 2010 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.
Development of a Pressure Sensitive Paint System with Correction for Temperature Variation
NASA Technical Reports Server (NTRS)
Simmons, Kantis A.
1995-01-01
Pressure Sensitive Paint (PSP) is known to provide a global image of pressure over a model surface. However, improvements in its accuracy and reliability are needed. Several factors contribute to the inaccuracy of PSP. One major factor is that luminescence is temperature dependent. To correct the luminescence of the pressure sensing component for changes in temperature, a temperature sensitive luminophore incorporated in the paint allows the user to measure both pressure and temperature simultaneously on the surface of a model. Magnesium Octaethylporphine (MgOEP) was used as a temperature sensing luminophore, with the pressure sensing luminophore, Platinum Octaethylporphine (PtOEP), to correct for temperature variations in model surface pressure measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clausing, R.E.
Equations based on kinetic theory relate the contamination of refractory metals in vacuum to the appropriate variables. Several examples are given for which the allowable system pressures are calculated. The examples illustrate the effect of varying several parameters. The importance of the sticking factor for active gases on hot refractory metals and its effect on the system design are discussed. The data for estimating the sticking factor for O/sub 2/ on Nb are given, along with some estimated values. Experimental data on the composition and rates of outgassing of ultrahigh-vacuum systems and their importance in system design are discussed. Severalmore » methods of reducing contamination rates and the relative ease and effectiveness of these methods are presented. It was concluded that tests of 1000 hr or longer will probably require system pressures of between 10/sup -9/ and 10/sup -6/ torr, the particular pressure depending upon the residual gas composition, test duration, allowable contamination level, and the other variables discussed. Since the most important source of contamination in a properly designed ultrahigh-vacuum system is the outgassing process, bakeable systems should be designed to operate with walls as cool as practical, and to have a minimum of surface area and outgassing materials inside. Considerable added protection may be obtained by incorporating sacrificial getter surfaces in the system, or, alternatively, higher pressures may be tolerated if proper getter design is used. (auth)« less
Occurrence of turbulent flow conditions in supercritical fluid chromatography.
De Pauw, Ruben; Choikhet, Konstantin; Desmet, Gert; Broeckhoven, Ken
2014-09-26
Having similar densities as liquids but with viscosities up to 20 times lower (higher diffusion coefficients), supercritical CO2 is the ideal (co-)solvent for fast and/or highly efficient separations without mass-transfer limitations or excessive column pressure drops. Whereas in liquid chromatography the flow remains laminar in both the packed bed and tubing, except in extreme cases (e.g. in a 75 μm tubing, pure acetonitrile at 5 ml/min), a supercritical fluid can experience a transition from laminar to turbulent flow in more typical operation modes. Due to the significant lower viscosity, this transition for example already occurs at 1.3 ml/min for neat CO2 when using connection tubing with an ID of 127 μm. By calculating the Darcy friction factor, which can be plotted versus the Reynolds number in a so-called Moody chart, typically used in fluid dynamics, higher values are found for stainless steel than PEEK tubing, in agreement with their expected higher surface roughness. As a result turbulent effects are more pronounced when using stainless steel tubing. The higher than expected extra-column pressure drop limits the kinetic performance of supercritical fluid chromatography and complicates the optimization of tubing ID, which is based on a trade-off between extra-column band broadening and pressure drop. One of the most important practical consequences is the non-linear increase in extra-column pressure drop over the tubing downstream of the column which leads to an unexpected increase in average column pressure and mobile phase density, and thus decrease in retention. For close eluting components with a significantly different dependence of retention on density, the selectivity can significantly be affected by this increase in average pressure. In addition, the occurrence of turbulent flow is also observed in the detector cell and connection tubing. This results in a noise-increase by a factor of four when going from laminar to turbulent flow (e.g. going from 0.5 to 2.5 ml/min for neat CO2). Copyright © 2014 Elsevier B.V. All rights reserved.
Coelho-Souza, Sérgio A.; Pereira, Gilberto C.; Coutinho, Ricardo; Guimarães, Jean R.D.
2013-01-01
Arraial do Cabo is where upwelling occurs more intensively on the Brazilian coast. Although it is a protection area it suffers anthropogenic pressure such as harbor activities and sporadic sewage emissions. Short-time studies showed a high variability of bacterial production (BP) in this region but none of them evaluated BP during long periods in a large spatial scale including stations under different natural (upwelling and cold fronts) and anthropogenic pressures. During 2006, we sampled surface waters 10 times (5 in upwelling and 5 in subsidence periods) in 8 stations and we measured BP, temperature as well as the concentrations of inorganic nutrients, pigments and particulate organic matter (POM). BP was up to 400 times higher when sewage emissions were observed visually and it had a positive correlation with ammonia concentrations. Therefore, in 2007, we did two samples (each during upwelling and subsidence periods) during sewage emissions in five stations under different anthropogenic pressure and we also measured particles abundance by flow cytometry. The 12 samples in the most impacted area confirmed that BP was highest when ammonia was higher than 2 μM, also reporting the highest concentrations of chlorophyll a and suspended particles. However, considering all measured variables, upwelling was the main disturbing factor but the pressure of fronts should not be neglected since it had consequences in the auto-heterotrophic coupling, increasing the concentrations of non fluorescent particles and POM. Stations clustered in function of natural and anthropogenic pressures degrees and both determined the temporal-spatial variability. PMID:24688533
Coelho-Souza, Sérgio A; Pereira, Gilberto C; Coutinho, Ricardo; Guimarães, Jean R D
2013-12-01
Arraial do Cabo is where upwelling occurs more intensively on the Brazilian coast. Although it is a protection area it suffers anthropogenic pressure such as harbor activities and sporadic sewage emissions. Short-time studies showed a high variability of bacterial production (BP) in this region but none of them evaluated BP during long periods in a large spatial scale including stations under different natural (upwelling and cold fronts) and anthropogenic pressures. During 2006, we sampled surface waters 10 times (5 in upwelling and 5 in subsidence periods) in 8 stations and we measured BP, temperature as well as the concentrations of inorganic nutrients, pigments and particulate organic matter (POM). BP was up to 400 times higher when sewage emissions were observed visually and it had a positive correlation with ammonia concentrations. Therefore, in 2007, we did two samples (each during upwelling and subsidence periods) during sewage emissions in five stations under different anthropogenic pressure and we also measured particles abundance by flow cytometry. The 12 samples in the most impacted area confirmed that BP was highest when ammonia was higher than 2 μM, also reporting the highest concentrations of chlorophyll a and suspended particles. However, considering all measured variables, upwelling was the main disturbing factor but the pressure of fronts should not be neglected since it had consequences in the auto-heterotrophic coupling, increasing the concentrations of non fluorescent particles and POM. Stations clustered in function of natural and anthropogenic pressures degrees and both determined the temporal-spatial variability.
Dwivedi, M K; Srivastava, R N; Bhagat, A K; Agarwal, R; Baghel, K; Jain, A; Raj, S
2016-04-01
A randomised controlled trial to compare negative pressure wound therapy (NPWT) using our innovative negative pressure device (NPD) and the standard pressure ulcer (PU) wound dressing of in traumatic paraplegia patients. This study was conducted in the Department of Orthopaedic Surgery at King George's Medical University, Lucknow, India. Traumatic paraplegia patients with sacral pressure ulcers of stage 3 and 4 were randomised into two groups, receiving either standard wound dressings or NPWT with NPD. The outcomes monitored were length, width (surface area), depth of PU, exudates, discharge, tissue type (necrotic, slough and red granulating tissue), and cost-effectiveness during 0 to 9 weeks follow-up. Length and width were significantly (p<0.01) decreased in NPWT group as compared with standard care group at week 9. At weeks 1, 2 and 3, depth was significantly (p<0.05) higher in NPWT group, whereas at week 9 a significant reduction (p=0.01) was observed. Exudates were significantly (p=0.001) lower in NPWT group at weeks 4 and 9. Conversion of slough into red granulation tissue was significantly higher in NPWT group (p=0.001). Discharge became significantly (p=0.001) lower in NPWT at week 2 and no discharge was observed after week 6. In all parameters, decrease was larger in NPWT group compared with standard care, which was significant for exudates type (p=0.03) and tissue type (p=0.004). Our NPD is better than standard wound care procedures and cost-effective for management of PU.
NASA Astrophysics Data System (ADS)
Dhanasekaran, A.; Kumaraswamy, S.
2018-01-01
Pressure pulsation causes vibration in the Electric Submersible Pump (ESP) and affects the life and performance of its system. ESP systems are installed at depths ranging from a few meters to several hundred meters. Unlike pumps used on the surface, once they are installed they become inaccessible for maintenance or for any kind of diagnostic measurement that might be taken directly on them. Therefore a detailed knowledge of mean and fluctuating pressures is required to achieve an optimal pressure distribution inside the ESP. This paper presents the results of an experimental investigation of the stage-wise pulsating pressure in ESP at shut-off condition at different speeds. Experiments were conducted on a pump having five stages. A variable frequency drive was used to operate the pump at five different speeds. Piezoresistive transducers were mounted at each stage of ESP to capture the unsteady pressure signals. Fast Fourier Transformation was carried out on the pressure signals to convert into frequency domain and the spectra of pressure pulsation signals were analyzed. The obtained results indicated the existence of fundamental frequency corresponding to the speed of rotation times the number of impeller blades and of the whole series of harmonics of higher frequencies.
Borgquist, Ola; Ingemansson, Richard; Malmsjö, Malin
2011-02-01
Negative-pressure wound therapy promotes healing by drainage of excessive fluid and debris and by mechanical deformation of the wound. The most commonly used negative pressure, -125 mmHg, may cause pain and ischemia, and the pressure often needs to be reduced. The aim of the present study was to examine wound contraction and fluid removal at different levels of negative pressure. Peripheral wounds were created in 70-kg pigs. The immediate effects of negative-pressure wound therapy (-10 to -175 mmHg) on wound contraction and fluid removal were studied in eight pigs. The long-term effects on wound contraction were studied in eight additional pigs during 72 hours of negative-pressure wound therapy at -75 mmHg. Wound contraction and fluid removal increased gradually with increasing levels of negative pressure until reaching a steady state. Maximum wound contraction was observed at -75 mmHg. When negative-pressure wound therapy was discontinued, after 72 hours of therapy, the wound surface area was smaller than before therapy. Maximum wound fluid removal was observed at -125 mmHg. Negative-pressure wound therapy facilitates drainage of wound fluid and exudates and results in mechanical deformation of the wound edge tissue, which is known to stimulate granulation tissue formation. Maximum wound contraction is achieved already at -75 mmHg, and this may be a suitable pressure for most wounds. In wounds with large volumes of exudate, higher pressure levels may be needed for the initial treatment period.
Yoo, Jin Suk; Kwon, Kung-Rock; Noh, Kwantae; Lee, Hyeonjong; Paek, Janghyun
2017-06-01
The design of the attachment must provide an optimum stress distribution around the implant. In this study, for implant overdentures with a bar/clip attachment or a locator attachment, the stress transmitted to the implant in accordance with the change in the denture base length and the vertical pressure was measured and analyzed. Test model was created with epoxy resin. The strain gauges made a tight contact with implant surfaces. A universal testing machine was used to exert a vertical pressure on the mandibular implant overdenture and the strain rate of the implants was measured. Means and standard deviations of the maximum micro-deformation rates were determined. 1) Locator attachment: The implants on the working side generally showed higher strain than those on the non-working side. Tensile force was observed on the mesial surface of the implant on the working side, and the compressive force was applied to the buccal surface and on the surfaces of the implant on the non-working side. 2) Bar/clip attachment: The implants on the both non-working and working sides showed high strain; all surfaces except the mesial surface of the implant on the non-working side showed a compressive force. To minimize the strain on implants in mandibular implant overdentures, the attachment of the implant should be carefully selected and the denture base should be extended as much as possible.
30 CFR 250.515 - Blowout prevention equipment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... foreseeable conditions and circumstances, including subfreezing conditions. The working pressure rating of the BOP system and BOP system components shall exceed the expected surface pressure to which they may be subjected. If the expected surface pressure exceeds the rated working pressure of the annular preventer, the...
Surface modification of polylactic acid films by atmospheric pressure plasma treatment
NASA Astrophysics Data System (ADS)
Kudryavtseva, V. L.; Zhuravlev, M. V.; Tverdokhlebov, S. I.
2017-09-01
A new approach for the modification of polylactic acid (PLA) materials using atmospheric pressure plasma (APP) is described. PLA films plasma exposure time was 20, 60, 120 s. The surface morphology and wettability of the obtained PLA films were investigated by atomic force microscopy (AFM) and the sitting drop method. The atmospheric pressure plasma increased the roughness and surface energy of PLA film. The wettability of PLA has been improved with the application of an atmospheric plasma surface treatment. It was shown that it is possible to obtain PLA films with various surface relief and tunable wettability. Additionally, we demonstrated that the use of cold atmospheric pressure plasma for surface activation allows for the immobilization of bioactive compounds like hyaluronic acid (HA) on the surface of obtained films. It was shown that composite PLA-HA films have an increased long-term hydrophilicity of the films surface.
NASA Astrophysics Data System (ADS)
Sun, Yimin; Verschuur, Eric; van Borselen, Roald
2018-03-01
The Rayleigh integral solution of the acoustic Helmholtz equation in a homogeneous medium can only be applied when the integral surface is a planar surface, while in reality almost all surfaces where pressure waves are measured exhibit some curvature. In this paper we derive a theoretically rigorous way of building propagation operators for pressure waves on an arbitrarily curved surface. Our theory is still based upon the Rayleigh integral, but it resorts to matrix inversion to overcome the limitations faced by the Rayleigh integral. Three examples are used to demonstrate the correctness of our theory - propagation of pressure waves acquired on an arbitrarily curved surface to a planar surface, on an arbitrarily curved surface to another arbitrarily curved surface, and on a spherical cap to a planar surface, and results agree well with the analytical solutions. The generalization of our method for particle velocities and the calculation cost of our method are also discussed.
Rao, Fang; Yang, Ren-Qiang; Chen, Xiao-Shu; Xu, Jin-Song; Fu, Hui-Min; Su, Hai; Wang, Ling
2014-01-01
Hypertension is known to be associated with platelet overactivity, but the direct effects of hydrostatic pressure on platelet function remain unclear. The present study sought to investigate whether elevated hydrostatic pressure is responsible for platelet activation and to address the potential role of peroxisome proliferator-activated receptor-γ (PPARγ). We observed that hypertensive patients had significantly higher platelet volume and rate of ADP-induced platelets aggregation compared to the controls. In vitro, Primary human platelets were cultured under standard (0 mmHg) or increased (120, 180, 240 mmHg) hydrostatic pressure for 18 h. Exposure to elevated pressure was associated with morphological changes in platelets. Platelet aggregation and PAC-1 (the active confirmation of GPIIb/IIIa) binding were increased, CD40L was translocated from cytoplasm to the surface of platelet and soluble CD40L (sCD40L) was released into the medium in response to elevated hydrostatic pressure (180 and 240 mmHg). The PPARγ activity was up-regulated as the pressure was increased from 120 mmHg to 180 mmHg. Pressure-induced platelet aggregation, PAC-1 binding, and translocation and release of CD40L were all attenuated by the PPARγ agonist Thiazolidinediones (TZDs). These results demonstrate that platelet activation and aggregation are increased by exposure to elevated pressure and that PPARγ may modulate platelet activation induced by high hydrostatic pressure.
Chen, Xiao-Shu; Xu, Jin-Song; Fu, Hui-Min; Su, Hai; Wang, Ling
2014-01-01
Hypertension is known to be associated with platelet overactivity, but the direct effects of hydrostatic pressure on platelet function remain unclear. The present study sought to investigate whether elevated hydrostatic pressure is responsible for platelet activation and to address the potential role of peroxisome proliferator-activated receptor-γ (PPARγ). We observed that hypertensive patients had significantly higher platelet volume and rate of ADP-induced platelets aggregation compared to the controls. In vitro, Primary human platelets were cultured under standard (0 mmHg) or increased (120, 180, 240 mmHg) hydrostatic pressure for 18 h. Exposure to elevated pressure was associated with morphological changes in platelets. Platelet aggregation and PAC-1 (the active confirmation of GPIIb/IIIa) binding were increased, CD40L was translocated from cytoplasm to the surface of platelet and soluble CD40L (sCD40L) was released into the medium in response to elevated hydrostatic pressure (180 and 240 mmHg). The PPARγ activity was up-regulated as the pressure was increased from 120 mmHg to 180 mmHg. Pressure-induced platelet aggregation, PAC-1 binding, and translocation and release of CD40L were all attenuated by the PPARγ agonist Thiazolidinediones (TZDs). These results demonstrate that platelet activation and aggregation are increased by exposure to elevated pressure and that PPARγ may modulate platelet activation induced by high hydrostatic pressure. PMID:24586940
Yin, Tingting; Fang, Yanan; Chong, Wee Kiang; Ming, Koh Teck; Jiang, Shaojie; Li, Xianglin; Kuo, Jer-Lai; Fang, Jiye; Sum, Tze Chien; White, Timothy J; Yan, Jiaxu; Shen, Ze Xiang
2018-01-01
High pressure (HP) can drive the direct sintering of nanoparticle assemblies for Ag/Au, CdSe/PbS nanocrystals (NCs). Instead of direct sintering for the conventional nanocrystals, this study experimentally observes for the first time high-pressure-induced comminution and recrystallization of organic-inorganic hybrid perovskite nanocrystals into highly luminescent nanoplates with a shorter carrier lifetime. Such novel pressure response is attributed to the unique structural nature of hybrid perovskites under high pressure: during the drastic cubic-orthorhombic structural transformation at ≈2 GPa, (301) the crystal plane fully occupied by organic molecules possesses a higher surface energy, triggering the comminution of nanocrystals into nanoslices along such crystal plane. Beyond bulk perovskites, in which pressure-induced modifications on crystal structures and functional properties will disappear after pressure release, the pressure-formed variants, i.e., large (≈100 nm) and thin (<10 nm) perovskite nanoplates, are retained and these exhibit simultaneous photoluminescence emission enhancing (a 15-fold enhancement in the photoluminescence) and carrier lifetime shortening (from ≈18.3 ± 0.8 to ≈7.6 ± 0.5 ns) after releasing of pressure from 11 GPa. This pressure-induced comminution of hybrid perovskite NCs and a subsequent amorphization-recrystallization treatment offer the possibilities of engineering the advanced hybrid perovskites with specific properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yamakoshi, Yoshiki
2016-01-01
Blood circulation function of peripheral blood vessels in skin dermis was evaluated employing an optical sensor with a pressurization mechanism using the blood outflow and reflow characteristics. The device contains a light source and an optical sensor. When applied to the skin surface, it first exerts the primary pressure (higher than the systolic blood pressure), causing an outflow of blood from the dermal peripheral blood vessels. After two heartbeats, the pressure is lowered (secondary pressure) and blood reflows into the peripheral blood vessels. Hemoglobin concentration, which changes during blood outflow and reflow, is derived from the received light intensity using the Beer–Lambert law. This method was evaluated in 26 healthy female volunteers and 26 female scleroderma patients. In order to evaluate the blood circulation function of the peripheral blood vessels of scleroderma patients, pressurization sequence which consists of primary pressure followed by secondary pressure was adopted. Blood reflow during the first heartbeat period after applying the secondary pressure of 40mmHg was (mean±SD) 0.059±0.05%mm for scleroderma patients and 0.173±0.104%mm for healthy volunteers. Blood reflow was significantly lower in scleroderma patients than in healthy volunteers (p<0.05). This result indicates that the information necessary for assessing blood circulation disorder of peripheral blood vessels in scleroderma patients is objectively obtained by the proposed method. PMID:27479094
Yamakoshi, Yoshiki; Motegi, Sei-Ichiro; Ishikawa, Osamu
2016-01-01
Blood circulation function of peripheral blood vessels in skin dermis was evaluated employing an optical sensor with a pressurization mechanism using the blood outflow and reflow characteristics. The device contains a light source and an optical sensor. When applied to the skin surface, it first exerts the primary pressure (higher than the systolic blood pressure), causing an outflow of blood from the dermal peripheral blood vessels. After two heartbeats, the pressure is lowered (secondary pressure) and blood reflows into the peripheral blood vessels. Hemoglobin concentration, which changes during blood outflow and reflow, is derived from the received light intensity using the Beer-Lambert law. This method was evaluated in 26 healthy female volunteers and 26 female scleroderma patients. In order to evaluate the blood circulation function of the peripheral blood vessels of scleroderma patients, pressurization sequence which consists of primary pressure followed by secondary pressure was adopted. Blood reflow during the first heartbeat period after applying the secondary pressure of 40mmHg was (mean±SD) 0.059±0.05%mm for scleroderma patients and 0.173±0.104%mm for healthy volunteers. Blood reflow was significantly lower in scleroderma patients than in healthy volunteers (p<0.05). This result indicates that the information necessary for assessing blood circulation disorder of peripheral blood vessels in scleroderma patients is objectively obtained by the proposed method.
Interactive Mechanisms of Sliding-Surface Bearings.
1983-08-01
lower, upper) bearing surface V Three-dimensional gradient operator ix Two-dimensional surface gradient operator ( ),. Pertaining to the bearing surface...thermal gradients . The tilt-pad feature required the pad inclination to be determined by the condition of moment equilibrium about the pivot point. This...into the computation of pressure and shear in a fluid film. Incipience Point of Film Rupture On page 93 of Appendix A, pressure gradient and pressure of
The pressure sensitivity of wrinkled B-doped nanocrystalline diamond membranes
Drijkoningen, S.; Janssens, S. D.; Pobedinskas, P.; Koizumi, S.; Van Bael, M. K.; Haenen, K.
2016-01-01
Nanocrystalline diamond (NCD) membranes are promising candidates for use as sensitive pressure sensors. NCD membranes are able to withstand harsh conditions and are easily fabricated on glass. In this study the sensitivity of heavily boron doped NCD (B:NCD) pressure sensors is evaluated with respect to different types of supporting glass substrates, doping levels and membrane sizes. Higher pressure sensing sensitivities are obtained for membranes on Corning Eagle 2000 glass, which have a better match in thermal expansion coefficient with diamond compared to those on Schott AF45 glass. In addition, it is shown that larger and more heavily doped membranes are more sensitive. After fabrication of the membranes, the stress in the B:NCD films is released by the emergence of wrinkles. A better match between the thermal expansion coefficient of the NCD layer and the underlying substrate results in less stress and a smaller amount of wrinkles as confirmed by Raman spectroscopy and 3D surface imaging. PMID:27767048
Chen, José Enrique; Nurbakhsh, Babak; Layton, Gillian; Bussmann, Markus; Kishen, Anil
2014-08-01
Complexities in root canal anatomy and surface adherent biofilm structures remain as challenges in endodontic disinfection. The ability of an irrigant to penetrate into the apical region of a canal, along with its interaction with the root canal walls, will aid in endodontic disinfection. The aim of this study was to qualitatively examine the irrigation dynamics of syringe irrigation with different needle tip designs (open-ended and closed-ended), apical negative pressure irrigation with the EndoVac® system, and passive ultrasonic-assisted irrigation, using a computational fluid dynamics model. Syringe-based irrigation with a side-vented needle showed a higher wall shear stress than the open-ended but was localised to a small region of the canal wall. The apical negative pressure mode of irrigation generated the lowest wall shear stress, while the passive-ultrasonic irrigation group showed the highest wall shear stress along with the greatest magnitude of velocity. © 2013 The Authors. Australian Endodontic Journal © 2013 Australian Society of Endodontology.
Cooling of the Earth in the Archaean: Consequences of pressure-release melting in a hotter mantle
NASA Astrophysics Data System (ADS)
Vlaar, N. J.; van Keken, P. E.; van den Berg, A. P.
1994-01-01
A model is presented to describe the cooling of the Earth in the Archaean. At the higher Archaean mantle temperatures pressure-release melting starts deeper and generates a thicker basaltic or komatiitic crust and depleted harzburgite layer compared with the present-day situation. Intrinsic compositional stability and lack of mechanical coherency renders the mechanism of plate tectonics ineffective. It is proposed that the Archaean continents stabilised early on top of a compositionally stratified root. In the Archaean oceanic lithosphere, hydrated upper crust can founder and recycle through its high-pressure phase eclogite. Eclogite remelting and new pressure-release melting generates new crustal material. Migration of magma and latent heat release by solidification at the surface provides an efficient mechanism to cool the mantle by several hundreds of degrees during the Archaean. This can satisfactorily explain the occurrence of high extrusion temperature komatiites and lower extrusion temperature basalts in greenstone belts as being derived from the same source by different mechanisms.
Guan, Haining; Diao, Xiaoqin; Jiang, Fan; Han, Jianchun; Kong, Baohua
2018-04-15
Enzymatic hydrolysis of soy protein isolate by Corolase PP under high hydrostatic pressure conditions was studied and the effects of hydrolysis on antioxidant and antihypertensive activities were investigated. As observed, high hydrostatic pressure (80-300MPa) enhanced the hydrolytic efficiency of Corolase PP and decreased the surface hydrophobicity of the hydrolysates. Hydrolysates obtained at 200MPa for 4h had higher bioactivities (reducing power, ABTS radical-scavenging and ACE inhibitory activities). The molecular weight (MW) determination indicated that hydrolysis at high hydrostatic pressure could increase the production of small peptides (<3kDa) and the amino acid sequences of these peptides with different inhibitory abilities, less than 3kDa, in hydrolysates were identified using matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI TOF MS). These results indicated that high hydrostatic pressure combined with Corolase PP treatments could be used as a potential technology to produce bioactive peptides from soy protein isolate. Copyright © 2017 Elsevier Ltd. All rights reserved.
MESOSCALE MODELING OF DEFLAGRATION-INDUCED DECONSOLIDATION IN POLYMER-BONDED EXPLOSIVES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Springer, H K; Glascoe, E A; Reaugh, J E
Initially undamaged polymer-bonded explosives can transition from conductive burning to more violent convective burning via rapid deconsolidation at higher pressures. The pressure-dependent infiltration of cracks and pores, i.e., damage, by product gases at the burn-front is a key step in the transition to convective burning. However, the relative influence of pre-existing damage and the evolution of deflagration-induced damage during the transition to convective burning is not well understood. The objective of this study is to investigate the role of microstructure and initial pressurization on deconsolidation. We performed simulations using the multi-physics hydrocode, ALE3D. HMX-Viton A served as our model explosive.more » A Prout-Tompkins chemical kinetic model, Vielle's Law pressure-dependent burning, Gruneisen equation-of-state, and simplified strength model were used for the HMX. The propensity for deconsolidation increased with increasing defect size and decreasing initial pressurization, as measured by the increase in burning surface area. These studies are important because they enable the development of continuum-scale damage models and the design of inherently safer explosives.« less
Experimental Study of Vane Heat Transfer and Aerodynamics at Elevated Levels of Turbulence
NASA Technical Reports Server (NTRS)
Ames, Forrest E.
1994-01-01
A four vane subsonic cascade was used to investigate how free stream turbulence influences pressure surface heat transfer. A simulated combustor turbulence generator was built to generate high level (13 percent) large scale (Lu approximately 44 percent inlet span) turbulence. The mock combustor was also moved upstream to generate a moderate level (8.3 percent) of turbulence for comparison to smaller scale grid generated turbulence (7.8 percent). The high level combustor turbulence caused an average pressure surface heat transfer augmentation of 56 percent above the low turbulence baseline. The smaller scale grid turbulence produced the next greatest effect on heat transfer and demonstrated the importance of scale on heat transfer augmentation. In general, the heat transfer scaling parameter U(sub infinity) TU(sub infinity) LU(sub infinity)(exp -1/3) was found to hold for the turbulence. Heat transfer augmentation was also found to scale approximately on Re(sub ex)(exp 1/3) at constant turbulence conditions. Some evidence of turbulence intensification in terms of elevated dissipation rates was found along the pressure surface outside the boundary layer. However, based on the level of dissipation and the resulting heat transfer augmentation, the amplification of turbulence has only a moderate effect on pressure surface heat transfer. The flow field turbulence does drive turbulent production within the boundary layer which in turn causes the high levels of heat transfer augmentation. Unlike heat transfer, the flow field straining was found to have a significant effect on turbulence isotropy. On examination of the one dimensional spectra for u' and v', the effect to isotropy was largely limited to lower wavenumber spectra. The higher wavenumber spectra showed little or no change. The high level large scale turbulence was found to have a strong influence on wake development. The free stream turbulence significantly enhanced mixing resulting in broader and shallower wakes than the baseline case. High levels of flow field turbulence were found to correlate with a significant increase in total pressure loss in the core of the flow. Documenting the wake growth and characteristics provides boundary conditions for the downstream rotor.
Kotwinski, Paul; Smith, Gillian; Cooper, Jackie; Sanders, Julie; Ma, Louise; Teis, Albert; Kotwinski, David; Mythen, Michael; Pennell, Dudley J; Jones, Alison; Montgomery, Hugh
2016-01-01
Anthracyclines are highly effective chemotherapeutic agents which may cause long-term cardiac damage (chronic anthracycline cardiotoxicity) and heart failure. The pathogenesis of anthracycline cardiotoxicity remains incompletely understood and individual susceptibility difficult to predict. We sought clinical features which might contribute to improved risk assessment. Subjects were women with early breast cancer, free of pre-existing cardiac disease. Left ventricular ejection fraction was measured using cardiovascular magnetic resonance before and >12 months after anthracycline-based chemotherapy (>3 months post-Trastuzumab). Variables associated with subclinical cardiotoxicity (defined as a fall in left ventricular ejection fraction of ≥5%) were identified by logistic regression. One hundred and sixty-five women (mean age 48.3 years at enrollment) completed the study 21.7 months [IQR 18.0-26.8] after starting chemotherapy. All received anthracyclines (98.8% epirubicin, cumulative dose 400 [300-450] mg/m2); 18% Trastuzumab. Baseline blood pressure was elevated (≥140/90mmHg, mean 147.3/86.1mmHg) in 18 subjects. Thirty-four subjects (20.7%) were identified with subclinical cardiotoxicity, independent predictors of which were the number of anthracycline cycles (odds ratio, OR 1.64 [1.17-2.30] per cycle), blood pressure ≥140/90mmHg (OR 5.36 [1.73-17.61]), body surface area (OR 2.08 [1.36-3.20] per standard deviation (0.16m2) increase), and Trastuzumab therapy (OR 3.35 [1.18-9.51]). The resultant predictive-model had an area under the receiver operating characteristics curve of 0.78 [0.70-0.86]. We found subclinical cardiotoxicity to be common even within this low risk cohort. Risk of cardiotoxicity was associated with modestly elevated baseline blood pressure-indicating that close attention should be paid to blood pressure in patients considered for anthracycline based chemotherapy. The association with higher body surface area suggests that indexing of anthracycline doses to surface area may not be appropriate for all, and points to the need for additional research in this area.
Pressure-Sensitive Paint Measurements on Surfaces with Non-Uniform Temperature
NASA Technical Reports Server (NTRS)
Bencic, Timothy J.
1999-01-01
Pressure-sensitive paint (PSP) has become a useful tool to augment conventional pressure taps in measuring the surface pressure distribution of aerodynamic components in wind tunnel testing. While the PSP offers the advantage of a non-intrusive global mapping of the surface pressure, one prominent drawback to the accuracy of this technique is the inherent temperature sensitivity of the coating's luminescent intensity. A typical aerodynamic surface PSP test has relied on the coated surface to be both spatially and temporally isothermal, along with conventional instrumentation for an in situ calibration to generate the highest accuracy pressure mappings. In some tests however, spatial and temporal thermal gradients are generated by the nature of the test as in a blowing jet impinging on a surface. In these cases, the temperature variations on the painted surface must be accounted for in order to yield high accuracy and reliable data. A new temperature correction technique was developed at NASA Lewis to collapse a "family" of PSP calibration curves to a single intensity ratio versus pressure curve. This correction allows a streamlined procedure to be followed whether or not temperature information is used in the data reduction of the PSP. This paper explores the use of conventional instrumentation such as thermocouples and pressure taps along with temperature-sensitive paint (TSP) to correct for the thermal gradients that exist in aeropropulsion PSP tests. Temperature corrected PSP measurements for both a supersonic mixer ejector and jet cavity interaction tests are presented.
Formation Mechanism of Surface Crack in Low Pressure Casting of A360 Alloy
NASA Astrophysics Data System (ADS)
Liu, Shan-Guang; Cao, Fu-Yang; Ying, Tao; Zhao, Xin-Yi; Liu, Jing-Shun; Shen, Hong-Xian; Guo, Shu; Sun, Jian-Fei
2017-12-01
A surface crack defect is normally found in low pressure castings of Al alloy with a sudden contraction structure. To further understand the formation mechanism of the defect, the mold filling process is simulated by a two-phase flow model. The experimental results indicate that the main reason for the defect deformation is the mismatching between the height of liquid surface in the mold and pressure in the crucible. In the case of filling, a sudden contraction structure with an area ratio smaller than 0.5 is obtained, and the velocity of the liquid front increases dramatically with the influence of inertia. Meanwhile, the pressurizing speed in the crucible remains unchanged, resulting in the pressure not being able to support the height of the liquid level. Then the liquid metal flows back to the crucible and forms a relatively thin layer solidification shell on the mold wall. With the increasing pressure in the crucible, the liquid level rises again, engulfing the shell and leading to a surface crack. As the filling velocity is characterized by the damping oscillations, surface cracks will form at different heights. The results shed light on designing a suitable pressurizing speed for the low pressure casting process.
Detrimental effect of hypothermia during acute normovolaemic haemodilution in anaesthetized cats
NASA Astrophysics Data System (ADS)
Talwar, A.; Fahim, Mohammad
Haemodynamic responses to hypothermia were studied at normal haematocrit and following the induction of acute normovolaemic haemodilution. Experiments were performed on 20 cats anaesthetized with a mixture of chloralose and urethane in two groups. In one group (n=10) the effects of hypothermia on various haemodynamic variables were studied at normal haematocrit (41.0+/-1.7%) and in the second group of cats (n=10) the effects of hypothermia on various haemodynamic variables were studied after the induction of acute normovolaemic haemodilution (14.0+/-1.0%). The haemodynamic variables left ventricular pressure, left ventricular contractility, arterial blood pressure, heart rate and right atrial pressure were recorded on a polygraph. Cardiac output was measured using a cardiac output computer. In both groups hypothermia was induced by surface cooling with the help of ice. Cardiovascular variables were recorded at each 1° C fall in body temperature. Hypothermia produced a significant (P<0.05) drop in heart rate, cardiac output, arterial blood pressure and left ventricular contractility in both groups. However, the percentage decrease in these variables in response to hypothermia was significantly (P<0.05) higher in cats with low haematocrit than in those with normal haematocrit. The severity of hypothermia - induced cardiovascular effects is evident from the drastic decrease in heart rate, cardiac output, arterial blood pressure and myocardial contractility in cats with low haematocrit, indicating a higher risk of circulatory failure under anaemic conditions at low temperatures.
Method and Apparatus for Characterizing Pressure Sensors using Modulated Light Beam Pressure
NASA Technical Reports Server (NTRS)
Youngquist, Robert C. (Inventor)
2003-01-01
Embodiments of apparatuses and methods are provided that use light sources instead of sound sources for characterizing and calibrating sensors for measuring small pressures to mitigate many of the problems with using sound sources. In one embodiment an apparatus has a light source for directing a beam of light on a sensing surface of a pressure sensor for exerting a force on the sensing surface. The pressure sensor generates an electrical signal indicative of the force exerted on the sensing surface. A modulator modulates the beam of light. A signal processor is electrically coupled to the pressure sensor for receiving the electrical signal.
Aamir, Muhammad; Liao, Qiang; Zhu, Xun; Aqeel-ur-Rehman; Wang, Hong
2014-01-01
An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27 mm and thickness (mm) 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2 MPa to 1.8 MPa, while sample initial temperature varied from 600°C to 900°C. Beck's sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF) within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024 MW/m2 was estimated for a thickness of 8.5 mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900°C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8 MPa. PMID:24977219
CFD Computations for a Generic High-Lift Configuration Using TetrUSS
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Abdol-Hamid, Khaled S.; Parlette, Edward B.
2011-01-01
Assessment of the accuracy of computational results for a generic high-lift trapezoidal wing with a single slotted flap and slat is presented. The paper is closely aligned with the focus of the 1st AIAA CFD High Lift Prediction Workshop (HiLiftPW-1) which was to assess the accuracy of CFD methods for multi-element high-lift configurations. The unstructured grid Reynolds-Averaged Navier-Stokes solver TetrUSS/USM3D is used for the computational results. USM3D results are obtained assuming fully turbulent flow using the Spalart-Allmaras (SA) and Shear Stress Transport (SST) turbulence models. Computed solutions have been obtained at seven different angles-of-attack ranging from 6 -37 . Three grids providing progressively higher grid resolution are used to quantify the effect of grid resolution on the lift, drag, pitching moment, surface pressure and stall angle. SA results, as compared to SST results, exhibit better agreement with the measured data. However, both turbulence models under-predict upper surface pressures near the wing tip region.
NASA Astrophysics Data System (ADS)
Gugliada, V. R.; Austin, M. E.; Brookman, M. W.
2017-10-01
Electron cyclotron emission (ECE) provides high resolution measurements of electron temperature profiles (Te(R , t)) in tokamaks. Calibration accuracy of this data can be improved using a sawtooth averaging technique. This improved calibration will then be utilized to determine the symmetry of Te profiles by comparing low field side (LFS) and high field side (HFS) measurements. Although Te is considered constant on flux surfaces, cases have been observed in which there are pronounced asymmetries about the magnetic axis, particularly with increased pressure. Trends in LFS/HFS overlap are examined as functions of plasma pressure, MHD mode presence, heating techniques, and other discharge conditions. This research will provide information on the accuracy of the current two-dimensional mapping of flux surfaces in the tokamak. Findings can be used to generate higher quality EFITs and inform ECE calibration. Work supported in part by US DoE under the Science Undergraduate Laboratory Internship (SULI) program and under DE-FC02-04ER549698.
Sulfur, ultraviolet radiation, and the early evolution of life
NASA Technical Reports Server (NTRS)
Kasting, J. F.; Zahnle, K. J.; Pinto, J. P.; Young, A. T.
1989-01-01
The present biosphere is shielded from harmful solar near ultraviolet (UV) radiation by atmospheric ozone. It is suggested that elemental sulfur vapor could have played a similar role in an anoxic, ozone-free, primitive atmosphere. Sulfur vapor would have been produced photochemically from volcanogenic SO2 and H2S. It is composed of ring molecules, primarily S8, that absorb strongly throughout the near UV, yet are expected to be relatively stable against photolysis and chemical attack. It is also insoluble in water and would thus have been immune to rainout or surface deposition over the oceans. Since the concentration of S8 in the primitive atmosphere would have been limited by its saturation vapor pressure, surface temperatures of 45 C or higher, corresponding to carbon dioxide partial pressures exceeding 2 bars, are required to sustain an effective UV screen. A warm, sulfur-rich, primitive atmosphere is consistent with inferences drawn from molecular phylogeny, which suggest that some of the earliest organisms were thermophilic bacteria that metabolized elemental sulfur.
Cai, Bingqing; Saito, Anna; Ikeda, Shinya
2018-01-24
Whey protein adsorbed to an interface forms a viscoelastic interfacial film but is displaced competitively from the interface by a small-molecule surfactant added afterward. The present study evaluated the impact of the covalent conjugation of high- or low-molecular-weight sodium alginate (HA or LA) to whey protein isolate (WPI) via the Maillard reaction on the ability of whey protein to resist surfactant-induced competitive displacement from the air-water interface. Surfactant added after the pre-adsorption of conjugate to the interface increased surface pressure. At a given surface pressure, the WPI-LA conjugate showed a significantly higher interfacial area coverage and lower interfacial film thickness compared to those of the WPI-HA conjugate or unconjugated WPI. The addition of LA to the aqueous phase had little effect on the interfacial area and thickness of pre-adsorbed WPI. These results suggest the importance of the molecular weight of the polysaccharide moiety in determining interfacial properties of whey protein-alginate conjugates.
Flight measurements of surface pressures on a flexible supercritical research wing
NASA Technical Reports Server (NTRS)
Eckstrom, C. V.
1985-01-01
A flexible supercritical research wing, designated as ARW-1, was flight-tested as part of the NASA Drones for Aerodynamic and Structural Testing Program. Aerodynamic loads, in the form of wing surface pressure measurements, were obtained during flights at altitudes of 15,000, 20,000, and 25,000 feet at Mach numbers from 0.70 to 0.91. Surface pressure coefficients determined from pressure measurements at 80 orifice locations are presented individually as nearly continuous functions of angle of attack for constant values of Mach number. The surface pressure coefficients are also presented individually as a function of Mach number for an angle of attack of 2.0 deg. The nearly continuous values of the pressure coefficient clearly show details of the pressure gradient, which occurred in a rather narrow Mach number range. The effects of changes in angle of attack, Mach number, and dynamic pressure are also shown by chordwise pressure distributions for the range of test conditions experienced. Reynolds numbers for the tests ranged from 5.7 to 8.4 x 1,000,000.
NASA Astrophysics Data System (ADS)
Guo, Jinghui; Lin, Guiping; Bu, Xueqin; Fu, Shiming; Chao, Yanmeng
2017-07-01
The inflatable aerodynamic decelerator (IAD), which allows heavier and larger payloads and offers flexibility in landing site selection at higher altitudes, possesses potential superiority in next generation space transport system. However, due to the flexibilities of material and structure assembly, IAD inevitably experiences surface deformation during atmospheric entry, which in turn alters the flowfield around the vehicle and leads to the variations of aerodynamics and aerothermodynamics. In the current study, the effect of the static shape deformation on the hypersonic aerodynamics and aerothermodynamics of a stacked tori Hypersonic Inflatable Aerodynamic Decelerator (HIAD) is demonstrated and analyzed in detail by solving compressible Navier-Stokes equations with Menter's shear stress transport (SST) turbulence model. The deformed shape is obtained by structural modeling in the presence of maximum aerodynamic pressure during entry. The numerical results show that the undulating shape deformation makes significant difference to flow structure. In particular, the more curved outboard forebody surface results in local flow separations and reattachments in valleys, which consequently yields remarkable fluctuations of surface conditions with pressure rising in valleys yet dropping on crests while shear stress and heat flux falling in valleys yet rising on crests. Accordingly, compared with the initial (undeformed) shape, the corresponding differences of surface conditions get more striking outboard, with maximum augmentations of 379 pa, 2224 pa, and 19.0 W/cm2, i.e., 9.8%, 305.9%, and 101.6% for the pressure, shear stress and heat flux respectively. Moreover, it is found that, with the increase of angle of attack, the aerodynamic characters and surface heating vary and the aeroheating disparities are evident between the deformed and initial shape. For the deformable HIAD model investigated in this study, the more intense surface conditions and changed flight aerodynamics are revealed, which is critical for the selection of structure material and design of flight control system.
Using high pressure processing (HPP) to pretreat sugarcane bagasse.
Castañón-Rodríguez, J F; Torrestiana-Sánchez, B; Montero-Lagunes, M; Portilla-Arias, J; Ramírez de León, J A; Aguilar-Uscanga, M G
2013-10-15
High pressure processing (HPP) technology was used to modify the structural composition of sugarcane bagasse. The effect of pressure (0, 150 and 250 MPa), time (5 and 10 min) and temperature (25 and 50 °C) as well as the addition of phosphoric acid, sulfuric acid and NaOH during the HPP treatment were assessed in terms of compositional analysis of the lignocellulosic fraction, structural changes and crystallinity of the bagasse. The effect of HPP pretreatment on the bagasse structure was also evaluated on the efficiency of the enzymatic hydrolysis of bagasse. Results showed that 68.62 and 45.84% of the hemicellulose fraction was degraded by pretreating at 250 MPa with sulfuric and phosphoric acids, respectively. The removal of lignin (54.10%) was higher with the HPP-NaOH treatment. The compacted lignocellulosic structure of the raw bagasse was modified by the HPP treatments and showed few cracks, tiny holes and some fragments flaked off from the surface. Structural changes were higher at 250 MPa and 50 °C. The X ray diffraction (XRD) patterns of the raw bagasse showed a major diffraction peak of the cellulose crystallographic 2θ planes ranging between 22 and 23°. The distribution of the crystalline structure of cellulose was affected by increasing the pressure level. The HPP treatment combined with NaOH 2% led to the higher glucose yield (25 g/L) compared to the combination of HPP with water and acids (>5 g/L). Results from this work suggest that HPP technology may be used to pretreat sugarcane bagasse. Copyright © 2013 Elsevier Ltd. All rights reserved.
F-16XL Hybrid Reynolds-Averaged Navier-Stokes/Large Eddy Simulation on Unstructured Grids
NASA Technical Reports Server (NTRS)
Park, Michael A.; Abdol-Hamid, Khaled S.; Elmiligui, Alaa
2015-01-01
This study continues the Cranked Arrow Wing Aerodynamics Program, International (CAWAPI) investigation with the FUN3D and USM3D flow solvers. CAWAPI was established to study the F-16XL, because it provides a unique opportunity to fuse fight test, wind tunnel test, and simulation to understand the aerodynamic features of swept wings. The high-lift performance of the cranked-arrow wing planform is critical for recent and past supersonic transport design concepts. Simulations of the low speed high angle of attack Flight Condition 25 are compared: Detached Eddy Simulation (DES), Modi ed Delayed Detached Eddy Simulation (MDDES), and the Spalart-Allmaras (SA) RANS model. Iso- surfaces of Q criterion show the development of coherent primary and secondary vortices on the upper surface of the wing that spiral, burst, and commingle. SA produces higher pressure peaks nearer to the leading-edge of the wing than flight test measurements. Mean DES and MDDES pressures better predict the flight test measurements, especially on the outer wing section. Vorticies and vortex-vortex interaction impact unsteady surface pressures. USM3D showed many sharp tones in volume points spectra near the wing apex with low broadband noise and FUN3D showed more broadband noise with weaker tones. Spectra of the volume points near the outer wing leading-edge was primarily broadband for both codes. Without unsteady flight measurements, the flight pressure environment can not be used to validate the simulations containing tonal or broadband spectra. Mean forces and moment are very similar between FUN3D models and between USM3D models. Spectra of the unsteady forces and moment are broadband with a few sharp peaks for USM3D.
Modelling Cryovolcanism Due to Subsurface Ocean Freezing on Pluto and Charon
NASA Astrophysics Data System (ADS)
Conrad, J. W.; Nimmo, F.; Singer, K. N.
2016-12-01
The New Horizons spacecraft identified various possible cryovolcanic features on the surfaces of both Pluto and Charon [1]. However, there are major differences between the cryovolcanism on Pluto and Charon. Pluto has two mound-flanked depressions which are possibly cryovolcanic [2], while Charon's putative cryovolcanism is more widespread within its smooth southern plains. If Pluto or Charon have (or had) subsurface oceans, slow refreezing of these oceans would lead to extensional surface tectonics [3,4] and pressurization of the ocean [5]. Sufficiently large pressurization can overcome the overburden pressure and cause an eruption. We applied thermal evolution models based on [3] to determine likely freezing scenarios. Eruptions on Charon are possible under most conditions, and occur after tens of kilometers of freezing of an ice shell initially 100 km thick. This would produce an areal extensional strain of 1%. The implied globally-averaged thickness of erupted material is a few hundred meters and the critical crack width for propagation through the entire ice shell [6] is about half a meter for all eruption scenarios. Eruptions on Pluto require probably unrealistic freezing scenarios, because of the larger body size and higher overburden pressure. We conclude that ocean freezing is a possible source of cryovolcanism on Charon and may explain the smooth plains in its southern hemisphere [1]. Pluto, on the other hand, requires more complex models to explain the putative cryovolcanic features on its surface. [1] Moore et al., Science 351 (2016): 1284-1293. [2] Singer et al., LPSC 47 (2016): 2276 [3] Robuchon and Nimmo, Icarus 216 (2011): 426-439. [4] Hammond et al., GRL 43 (2016). [5] Manga and Wang, GRL 34 (2007). [6] Porco et al., The Astronomical Journal 148 (2014): 45.
Peralta, P.; Loomis, E.; Chen, Y.; ...
2015-04-09
Variability in local dynamic plasticity due to material anisotropy in polycrystalline metals is likely to be important on damage nucleation and growth at low pressures. Hydrodynamic instabilities could be used to study these plasticity effects by correlating measured changes in perturbation amplitudes at free surfaces to local plastic behaviour and grain orientation, but amplitude changes are typically too small to be measured reliably at low pressures using conventional diagnostics. Correlations between strength at low shock pressures and grain orientation were studied in copper (grain size ≈ 800 μm) using the Richtmyer–Meshkov instability with a square-wave surface perturbation (wavelength = 150 μm, amplitude = 5 μm), shocked at 2.7 GPa using symmetric plate impacts. A Plexiglas window was pressed against the peaks of the perturbation, keeping valleys as free surfaces. This produced perturbation amplitude changes much larger than those predicted without the window. Amplitude reductions from 64 to 88% were measured in recovered samples and grains oriented close tomore » $$\\langle$$0 0 1$$\\rangle$$ parallel to the shock had the largest final amplitude, whereas grains with shocks directions close to $$\\langle$$1 0 1$$\\rangle$$ had the lowest. Finite element simulations were performed with elastic-perfectly plastic models to estimate yield strengths leading lead to those final amplitudes. Anisotropic elasticity and these yield strengths were used to calculate the resolved shear stresses at yielding for the two orientations. In conclusion, results are compared with reports on orientation dependence of dynamic yielding in Cu single crystals and the higher values obtained suggest that strength estimations via hydrodynamic instabilities are sensitive to strain hardening and strain rate effects.« less
Influence of the softness of the parietal pleura on respiratory sliding mechanisms
Kim, Jae Hun; Butler, James P.; Loring, Stephen H.
2011-01-01
The pleural surfaces of the lung and chest wall slide against each other with low friction. Normal load support can be effected either by a combination of quasi-static fluid pressure and solid-solid contacts of relatively stiff asperities, or by shear-induced hydrodynamic pressures in the pleural fluid layer. To distinguish between these mechanisms, we measured surface topography and spatial distribution of stiffness of rat parietal pleura using atomic force microscopy. The topography of the pleural surface has unevenness at length scales smaller than the thickness of pleural fluid, similar to mesothelial cell diameters. The estimated maximum normal contact pressure that could be borne by asperities of the soft pleura is much less than that required to support a substantial difference between pleural fluid pressure and the pleural surface pressure. These results suggest that during sliding motion, unevenness of the pleural surface is smoothed by local hydrodynamic pressure, preventing any significant contribution of solid-solid contacts. PMID:21473935
Hosking, J
2017-08-01
Custom contouring techniques are effective for reducing pressure ulcer risk in wheelchair seating. These techniques may assist the management of pressure ulcer risk during sleep for night time postural management. To investigate the effectiveness of custom contoured night time postural management components against planar support surfaces for pressure ulcer risk measures over the heels. Supine posture was captured from five healthy participants using vacuum consolidation and 3-dimensional laser scanning. Custom contoured abduction wedges were carved from polyurethane and chipped foams. Pressure mapping and the visual analog scale were used to evaluate the effectiveness of the contoured foams in reducing pressure and discomfort under the posterior heel against standard planar support surfaces. Custom contoured shapes significantly reduced interface pressures (p < 0.05) and discomfort scores (p < 0.05) when compared to planar support surfaces. Polyurethane foam was the most effective material but it did not differ significantly from chipped foam. Linear regression revealed a significant relationship between the Peak Pressure Index and discomfort scores (r = 0.997, p = 0.003). The findings of this pilot study suggested that custom contoured shapes were more effective than planar surfaces at reducing pressure ulcer risk surrogate measures over the posterior heels with polyurethane foam being the most effective material investigated. It is recommended that Evazote foam should not be used as a support surface material for night time postural management. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Flight Investigation of the Effects of Pressure-Belt Tubing Size on Measured Pressure Distributions
NASA Technical Reports Server (NTRS)
Rivers, Natale A.; vanDam, Cornielious P.; Brown, Phillip W.; Rivers, Robert A.
2001-01-01
The pressure-belt technique is commonly used to measure pressure distributions on lifting and nonlifting surfaces where flush, through-the-surface measurements are not possible. The belts, made from strips of small-bore, flexible plastic tubing, are surface-mounted by a simple, nondestructive method. Additionally, the belts require minimal installation time, thus making them much less costly to install than flush-mounted pressure ports. Although pressure belts have been used in flight research since the early 1950s, only recently have manufacturers begun to produce thinner, more flexible tubing, and thin, strong adhesive tapes that minimize the installation-induced errors on the measurement of surface pressures. The objective of this investigation was to determine the effects of pressure-belt tubing size on the measurement of pressure distributions. For that purpose, two pressure belts were mounted on the right wing of a single-engine, propeller-driven research airplane. The outboard pressure belt served as a baseline for the measurement and the comparison of effects. Each tube had an outer diameter (OD) of 0.0625 in. The inboard belt was used to evaluate three different tube sizes: 0.0625-, 0.1250-, and 0.1875-in. OD. A computational investigation of tube size on pressure distribution also was conducted using the two-dimensional Multielement Streamtube Euler Solver (MSES) code.
Laser Scanning System for Pressure and Temperature Paints
NASA Technical Reports Server (NTRS)
Sullivan, John
1997-01-01
Acquiring pressure maps of aerodynamic surfaces is very important for improving and validating the performance of aerospace vehicles. Traditional pressure measurements are taken with pressure taps embedded in the model surface that are connected to transducers. While pressure taps allow highly accurate measurements to be acquired, they do have several drawbacks. Pressure taps do not give good spatial resolution due to the need for individual pressure tubes, compounded by limited space available inside models. Also, building a model proves very costly if taps are needed because of the large amount of labor necessary to drill, connect and test each one. The typical cost to install one tap is about $200. Recently, a new method for measuring pressure on aerodynamic surfaces has been developed utilizing a technology known as pressure sensitive paints (PSP). Using PSP, pressure distributions can be acquired optically with high spatial resolution and simple model preparation. Flow structures can be easily visualized using PSP, but are missed using low spatial resolution arrays of pressure taps. PSP even allows pressure distributions to be found on rotating machinery where previously this has been extremely difficult or even impossible. The goal of this research is to develop a laser scanning system for use with pressure sensitive paints that allows accurate pressure measurements to be obtained on various aerodynamic surfaces ranging from wind tunnel models to high speed jet engine compressor blades.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abernethy, Cary S.; Amidan, Brett G.; Cada, G F.
Migratory and resident fish in the Columbia River Basin are exposed to stresses associated with hydroelectric power production, including pressure changes during turbine passage. The responses of fall chinook salmon and bluegill sunfish to rapid pressure change was investigated at the Pacific Northwest National Laboratory. Previous test series evaluated the effects of passage through a vertical Kaplan turbine under the"worst case" pressure conditions and under less severe conditions where pressure changes were minimized. For this series of tests, pressure changes were modified to simulate passage through a horizontal bulb turbine, commonly installed at low head dams. The results were comparedmore » to results from previous test series. Migratory and resident fish in the Columbia River Basin are exposed to stresses associated with hydroelectric power production, including pressure changes during turbine passage. The responses of fall chinook salmon and bluegill sunfish to rapid pressure change was investigated at the Pacific Northwest National Laboratory. Previous test series evaluated the effects of passage through a vertical Kaplan turbine under the"worst case" pressure conditions and under less severe conditions where pressure changes were minimized. For this series of tests, pressure changes were modified to simulate passage through a horizontal bulb turbine, commonly installed at low head dams. The results were compared to results from previous test series. Both fish species were acclimated for 16-22 hours at either surface (101 kPa; 1 atm) or 30 ft (191 kPa; 1.9 atm) of pressure in a hyperbaric chamber before exposure to a pressure scenario simulating passage through a horizontal bulb turbine. The simulation was as follows: gradual pressure increase to about 2 atm of pressure, followed by a sudden (0.4 second) decrease in pressure to either 0.7 or 0.95 atm, followed by gradual return to 1 atm (surface water pressure). Following the exposure, fish were held at surface pressure for a 48-hour post exposure observation period. No fall chinook salmon died during or after exposure to the horizontal bulb turbine passage pressures, and no injuries were observed during the 48-hour post exposure observation period. As with the previous test series, it cannot be determined whether fall chinook salmon acclimated to the greater water pressure during the pretest holding period. For bluegill sunfish exposed to the horizontal bulb turbine turbine-passage pressures, only one fish died and injuries were less severe and less common than for bluegills subjected to either the"worst case" pressure or modified Kaplan turbine pressure conditions in previous tests. Injury rates for bluegills were higher at 0.7 atm nadir than for the 0.95 atm nadir. However, injuries were limited to minor internal hemorrhaging. Bluegills did not suffer swim bladder rupture in any tested scenarios. Tests indicated that for most of the cross-sectional area of a horizontal bulb turbine, pressure changes occurring during turbine passage are not harmful to fall chinook salmon and only minimally harmful to bluegill. However, some areas within a horizontal bulb turbine may have extreme pressure conditions that would be harmful to fish. These scenarios were not tested because they represent a small cross-sectional area of the turbine compared to the centerline pressures scenarios used in these tests.« less
Two-wave photon Doppler velocimetry measurements in direct impact Hopkinson pressure bar experiments
NASA Astrophysics Data System (ADS)
Lea, Lewis J.; Jardine, Andrew P.
2015-09-01
Direct impact Hopkinson pressure bar systems offer many potential advantages over split Hopkinson pressure bars, including access to higher strain rates, higher strains for equivalent striker velocity and system length, lower dispersion and faster achievement of force equilibrium. Currently advantages are gained at a significant cost: the fact that input bar data is unavailable removes all information about the striker impacted specimen face, preventing the determination of force equilibrium, and requiring approximations to be made on the sample deformation history. Recently photon Doppler velocimetry methods have been developed, which can replace strain gauges on Hopkinson bars. In this paper we discuss an experimental method and complementary data analysis for using Doppler velocimetry to measure surface velocities of the striker and output bars in a direct impact bar experiment, allowing similar data to be recorded as in a split bar system, with the same level of convenience. We discuss extracting velocity and force measurements, and improving the accuracy and convenience of Doppler velocimetry on Hopkinson bars. Results obtained using the technique are compared to equivalent split bar tests, showing improved stress measurements for the lowest and highest strains.
Comparing Sliding-Wear Characteristics of the Electro-Pressure Sintered and Wrought Cobalt
NASA Astrophysics Data System (ADS)
Lee, J. E.; Kim, Y. S.; Kim, T. W.
Dry sliding wear tests of hot-pressure sintered and wrought cobalt were carried out to compare their wear characteristics. Cobalt powders with average size of 1.5µm were electro-pressure sintered to make sintered-cobalt disk wear specimens. A vacuum-induction melted cobalt ingot was hot-rolled at 800°C to a plate, from which wrought-cobalt disk specimens were machined. The specimens were heat treated at various temperatures to vary grain size and phase fraction. Wear tests of the cobalt specimens were carried out using a pin-on-disk wear tester against a glass (83% SiO2) bead at 100N with the constant sliding speed and distance of 0.36m/s and 600m, respectively. Worn surfaces, their cross sections, and wear debris were examined by an SEM. The wear of the cobalt was found to be strongly influenced by the strain-induced phase transformation of ɛ-Co (hcp) to α-Co (fcc). The sintered cobalt had smaller uniform grain size and showed higher wear rate than the wrought cobalt. The higher wear rate of the sintered cobalt was explained by the more active deformation-induced phase transformation than in the wrought cobalt with larger irregular grains.
Inductively-coupled plasmas in pure chlorine: comparison experiments/HPEM
NASA Astrophysics Data System (ADS)
Booth, Jean-Paul; Sirse, Nishant; Azamoum, Yasmina; Chabert, Pascal
2012-10-01
Inductively-coupled plasmas in chlorine-based gas mixtures are widely used for etching of nanometric features in silicon for CMOS device manufacture. This system is also of considerable fundamental interest as an archetype of strongly electronegative plasmas in a simple gas, for which reliable techniques exist to measure the densities of all key species. As such, it is an ideal test-bed for comparison of simulations to experiment. We have developed a technique based on two-photon Laser-Induced Fluorescence to determine the absolute Cl atom density. The Cl surface recombination coefficient was determined from time-resolved measurements in the afterglow. Electron densities were determined by microwave hairpin resonator and EEDF's were measured by Langmuir probe. Whereas the HPEM results were in good agreement at lower pressures (below 10mTorr), electron densities are increasingly underestimated at higher pressures. The gas temperature was measured by Doppler-resolved Infra-red Laser Absorption spectroscopy of Ar metastable atoms (with a small fraction Ar added). At higher pressures the gas temperature was considerably underestimated by the model. The concomitant overestimation of the gas density is a major reason for the disagreement between model and experiment.
Stamler, Jeremiah; Brown, Ian J; Yap, Ivan K S; Chan, Queenie; Wijeyesekera, Anisha; Garcia-Perez, Isabel; Chadeau-Hyam, Marc; Ebbels, Timothy M D; De Iorio, Maria; Posma, Joram; Daviglus, Martha L; Carnethon, Mercedes; Holmes, Elaine; Nicholson, Jeremy K; Elliott, Paul
2013-12-01
Black compared with non-Hispanic white Americans have higher systolic and diastolic blood pressure and rates of prehypertension/hypertension. Reasons for these adverse findings remain obscure. Analyses here focused on relations of foods/nutrients/urinary metabolites and higher black blood pressure for 369 black compared with 1190 non-Hispanic white Americans aged 40 to 59 years from 8 population samples. Multiple linear regression, standardized data from four 24-hour dietary recalls per person, two 24-hour urine collections, and 8 blood pressure measurements were used to quantitate the role of foods, nutrients, and metabolites in higher black blood pressure. Compared with non-Hispanic white Americans, blacks' average systolic/diastolic pressure was higher by 4.7/3.4 mm Hg (men) and 9.0/4.8 mm Hg (women). Control for higher body mass index of black women reduced excess black systolic/diastolic pressure to 6.8/3.8 mm Hg. Lesser intake of vegetables, fruits, grains, vegetable protein, glutamic acid, starch, fiber, minerals, and potassium, and higher intake of processed meats, pork, eggs, and sugar-sweetened beverages, along with higher cholesterol and higher Na/K ratio, related to in higher black blood pressure. Control for 11 nutrient and 10 non-nutrient correlates reduced higher black systolic/diastolic pressure to 2.3/2.3 mm Hg (52% and 33% reduction in men) and to 5.3/2.8 mm Hg (21% and 27% reduction in women). Control for foods/urinary metabolites had little further influence on higher black blood pressure. Less favorable multiple nutrient intake by blacks than non-Hispanic white Americans accounted, at least in part, for higher black blood pressure. Improved dietary patterns can contribute to prevention/control of more adverse black blood pressure levels.
Adsorption of lysozyme to phospholipid and meibomian lipid monolayer films.
Mudgil, Poonam; Torres, Margaux; Millar, Thomas J
2006-03-15
It is believed that a lipid layer forms the outer layer of the pre-ocular tear film and this layer helps maintain tear film stability by lowering its surface tension. Proteins of the aqueous layer of the tear film (beneath the lipid layer) may also contribute to reducing surface tension by adsorbing to, or penetrating the lipid layer. The purpose of this study was to compare the penetration of lysozyme, a tear protein, into films of meibomian lipids and phospholipids held at different surface pressures to determine if lysozyme were part of the surface layer of the tear film. Films of meibomian lipids or phospholipids were spread onto the surface of a buffered aqueous subphase. Films were compressed to particular pressures and lysozyme was injected into the subphase. Changes in surface pressure were monitored to determine adsorption or penetration of lysozyme into the surface film. Lysozyme penetrated a meibomian lipid film at all pressures tested (max=20 mN/m). It also penetrated phosphatidylglycerol, phosphatidylserine or phosphatidylethanolamine lipid films up to a pressure of 20 mN/m. It was not able to penetrate a phosphatidylcholine film at pressures >or=10 mN/m irrespective of the temperature being at 20 or 37 degrees C. However, it was able to penetrate it at very low pressures (<10 mN/m). Epifluorescence microscopy showed that the protein either adsorbs to or penetrates the lipid layer and the pattern of mixing depended upon the lipid at the surface. These results indicate that lysozyme is present at the surface of the tear film where it contributes to decreasing the surface tension by adsorbing and penetrating the meibomian lipids. Thus it helps to stabilize the tear film.
Slamming pressures on the bottom of a free-falling vertical wedge
NASA Astrophysics Data System (ADS)
Ikeda, C. M.; Judge, C. Q.
2013-11-01
High-speed planing boats are subjected to repeat impacts due to slamming, which can cause structural damage and injury to passengers. A first step in understanding and predicting the physics of a craft re-entering the water after becoming partially airborne is an experimental vertical drop test of a prismastic wedge (deadrise angle, β =20° beam, B = 300 mm; and length, L = 600 mm). The acrylic wedge was mounted to a rig allowing it to free-fall into a deep-water tank (5.2m × 5.2m × 4.2m deep) from heights 0 <= H <= 635 mm, measured from the keel to the free surface. The wedge was instrumented to record vertical position, acceleration, and pressure on the bottom surface. A pressure mapping system, capable of measuring several points over the area of the thin (0.1 mm) film sensor at sampling rates up to 20 kHz, is used and compared to surface-mounted pressure transducers (sampled at 10 kHz). A high speed camera (1000 fps, resolution of 1920 × 1200 pixels) is mounted above the wedge model to record the wetted surface as the wedge descended below the free surface. The pressure measurements taken with both conventional surface pressure transducers and the pressure mapping system agree within 10% of the peak pressure values (0.7 bar, typical). Supported by the Office of Naval Research.
Study on the Pressure Pulsation inside Runner with Splitter Blades in Ultra-High Head Turbine
NASA Astrophysics Data System (ADS)
Meng, L.; Zhang, S. P.; Zhou, L. J.; Wang, Z. W.
2014-03-01
Runners with splitter blades were used widely for the high efficiency and stability. In this paper, the unsteady simulation of an ultra-high head turbine at the best efficiency point, 50% and 75% discharge points were established, to analyze the pressure pulsation in the vaneless space, rotating domain and the draft tube. First of all, runners with different length splitter blades and without splitter blades were compared to learn the efficiency and the pressure distribution on the blade surface. And then the amplitude of the pressure pulsation was analysed. The peak efficiency of the runner with splitter blades is remarkably higher than that of the corresponding impeller without splitter blades. And the efficiency of the turbine is the highest when the length ratio of the splitter blades is 0.75 times the main blades. The pressure pulsation characteristics were also influenced, because the amplitudes of the pulsation induced by the RSI phenomenon were changed as a result of more blades. At last, the best design plan of the length of the splitter blades (length ratio=0.825) was obtained, which improved the pressure pulsation characteristics without significant prejudice to the efficiency.
Effects of Gas Pressure on the Failure Characteristics of Coal
NASA Astrophysics Data System (ADS)
Xie, Guangxiang; Yin, Zhiqiang; Wang, Lei; Hu, Zuxiang; Zhu, Chuanqi
2017-07-01
Several experiments were conducted using self-developed equipment for visual gas-solid coupling mechanics. The raw coal specimens were stored in a container filled with gas (99% CH4) under different initial gas pressure conditions (0.0, 0.5, 1.0, and 1.5 MPa) for 24 h prior to testing. Then, the specimens were tested in a rock-testing machine, and the mechanical properties, surface deformation and failure modes were recorded using strain gauges, an acoustic emission (AE) system and a camera. An analysis of the fractals of fragments and dissipated energy was performed to understand the changes observed in the stress-strain and crack propagation behaviour of the gas-containing coal specimens. The results demonstrate that increased gas pressure leads to a reduction in the uniaxial compression strength (UCS) of gas-containing coal and the critical dilatancy stress. The AE, surface deformation and fractal analysis results show that the failure mode changes during the gas state. Interestingly, a higher initial gas pressure will cause the damaged cracks and failure of the gas-containing coal samples to become severe. The dissipated energy characteristic in the failure process of a gas-containing coal sample is analysed using a combination of fractal theory and energy principles. Using the theory of fracture mechanics, based on theoretical analyses and calculations, the stress intensity factor of crack tips increases as the gas pressure increases, which is the main cause of the reduction in the UCS and critical dilatancy stress and explains the influence of gas in coal failure. More serious failure is created in gas-containing coal under a high gas pressure and low exterior load.
NASA Technical Reports Server (NTRS)
Dietz, Nikolaus; Woods, Vincent; McCall, Sonya D.; Bachmann, Klaus J.
2003-01-01
Understanding the kinetics of nucleation and coalescence of heteroepitaxial thin films is a crucial step in controlling a chemical vapor deposition process, since it defines the perfection of the heteroepitaxial film both in terms of extended defect formation and chemical integrity of the interface. The initial nucleation process also defines the film quality during the later stages of film growth. The growth of emerging new materials heterostructures such as InN or In-rich Ga(x)In(1-x)N require deposition methods operating at higher vapor densities due to the high thermal decomposition pressure in these materials. High nitrogen pressure has been demonstrated to suppress thermal decomposition of InN, but has not been applied yet in chemical vapor deposition or etching experiments. Because of the difficulty with maintaining stochiometry at elevated temperature, current knowledge regarding thermodynamic data for InN, e.g., its melting point, temperature-dependent heat capacity, heat and entropy of formation are known with far less accuracy than for InP, InAs and InSb. Also, no information exists regarding the partial pressures of nitrogen and phosphorus along the liquidus surfaces of mixed-anion alloys of InN, of which the InN(x)P(1-x) system is the most interesting option. A miscibility gap is expected for InN(x)P(1-x) pseudobinary solidus compositions, but its extent is not established at this point by experimental studies under near equilibrium conditions. The extension of chemical vapor deposition to elevated pressure is also necessary for retaining stoichiometric single phase surface composition for materials that are characterized by large thermal decomposition pressures at optimum processing temperatures.
Heat Transfar Properties of Flat-Panel Evacuated Porous Insrlators
NASA Astrophysics Data System (ADS)
Yoneno, Hirosyi; Yamamoto, Ryoichi
Flat Panel evacuated porous insulators have been produced by filling powder or fiber (such as perlite powder, diatomaceous earth powder, silica aerogel powder, g lass fiber and ceramic fiber) in film-like laminated plastic container and by evacuating to form vacuum in it is interior. Heat transfer properties of these evacuated insulators have been studied under various conditions (such as particle diameter, surface area, packing density, solid volume fraction and void dimension). The apparent mean thermal conductivity has been measured for the boundary surface temperature at cold face temperature 13°C and hot face temperature 35°. The effect of air pressure ranging from 1 Pa to one atomosphere (105 Pa) was examined. The results were as follows. (1) For each powder the apparent mean thermal conductivity decreases with decreasing residual air pressure, and at very low pressure bellow 1 -103 Pa the conductivity becomes indeqendent of pressure. The thermal conductivity at 1.3Pa is 0.0053 W/mK for perlite powder, 0.0048W/mK for diatomaceous earth powder, 0.0043 W/mK for silica aerogel powder and 0.0029W/mK for glass fiber. (2) With decreasing particle size, the apparent mean thermal conductivity is constant independent of residual air pressure in higher pressure region. It is that void dimension continues to decrease with particle size and the mean free path of air becomes comparable with void dimension. (3) In the range of minor solid volume fraction, the apparent mean thermal conductivity at very low precreases with decreasing particle size. This shows the thermal contact resistance of the solid particle increases with decreasing particle size.
Modelling of Electrical Conductivity of a Silver Plasma at Low Temperature
NASA Astrophysics Data System (ADS)
Pascal, Andre; William, Bussiere; Alain, Coulbois; Jean-Louis, Gelet; David, Rochette
2016-08-01
During the working of electrical fuses, inside the fuse element the silver ribbon first begins to melt, to vaporize and then a fuse arc appears between the two separated parts of the element. Second, the electrodes are struck and the burn-back phenomenon takes place. Usually, the silver ribbon is enclosed inside a cavity filled with silica sand. During the vaporization of the fuse element, one can consider that the volume is fixed so that the pressure increase appears to reach pressures higher than atmospheric pressure. Thus, in this paper two pressures, 1 atm and 10 atm, are considered. The electrical field inside the plasma can reach high values since the distance between the cathode surface and the anode surface varies with time. That is to say from zero cm to one cm order. So we consider various electrical fields: 102 V/m, 103 V/m, 5×103 V/m, 104 V/m at atmospheric pressure and 105 V/m at a pressure of 10 atm. This study is made in heavy species temperature range from 2,400 K to 10,000 K. To study the plasma created inside the electric fuse, we first need to determine some characteristics in order to justify some hypotheses. That is to say: are the classical approximations of the thermal plasmas physics justified? In other words: plasma frequency, the ideality of the plasma, the Debye-Hückel approximation and the drift velocity versus thermal velocity. These characteristics and assumptions are discussed and commented on in this paper. Then, an evaluation of non-thermal equilibrium versus considered electrical fields is given. Finally, considering the high mobility of electrons, we evaluate the electrical conductivities.
Stress Related Fracturing in Dimension Stone Quarries
NASA Astrophysics Data System (ADS)
Hamdi Deliormanli, Ahmet; Maerz, Norbert H.
2016-10-01
In Missouri, the horizontal stresses (pressures) in the near surface rock are uncommonly high. While the vertical stresses in rock are simply a function of the weight of the overlying rock, near surface stresses can be many times higher. The near surface horizontal stresses can be in excess of 5 times greater than the vertical stresses. In this research, Flatjack method was used to measure horizontal stress in Red Granite Quarry in Missouri. The flat jack method is an approved method of measuring ground stresses. A saw cut is used to “relax” the stress in the ground by allowing the rock to deform inwards the cut. A hydraulic flat jack is used to inflate the slot; to push the rock back to its stressed position, as measured by a strain gauge on either side of the slot. The pressure in the jack, when the rock is exactly back to its original position, is equal to the ground stress before the saw cut was made. According to the results, present production direction for each pit is not good because the maximum stress direction is perpendicular with production direction. This case causes unintentional breakage results in the loss rock. The results show that production direction should be changed.
NASA Astrophysics Data System (ADS)
Lucarini, Valerio; Russell, Gary L.
2002-08-01
Results are presented for two greenhouse gas experiments of the Goddard Institute for Space Studies atmosphere-ocean model (AOM). The computed trends of surface pressure; surface temperature; 850, 500, and 200 mbar geopotential heights; and related temperatures of the model for the time frame 1960-2000 are compared with those obtained from the National Centers for Enviromental Prediction (NCEP) observations. The domain of interest is the Northern Hemisphere because of the higher reliability of both the model results and the observations. A spatial correlation analysis and a mean value comparison are performed, showing good agreement in terms of statistical significance for most of the variables considered in the winter and annual means. However, the 850 mbar temperature trends do not show significant positive correlation, and the surface pressure and 850 mbar geopotential height mean trends confidence intervals do not overlap. A brief general discussion about the statistics of trend detection is presented. The accuracy that this AOM has in describing the regional and NH mean climate trends inferred from NCEP through the atmosphere suggests that it may be reliable in forecasting future climate changes.
Making Activated Carbon for Storing Gas
NASA Technical Reports Server (NTRS)
Wojtowicz, Marek A.; Serio, Michael A.; Suuberg, Eric M.
2005-01-01
Solid disks of microporous activated carbon, produced by a method that enables optimization of pore structure, have been investigated as means of storing gas (especially hydrogen for use as a fuel) at relatively low pressure through adsorption on pore surfaces. For hydrogen and other gases of practical interest, a narrow distribution of pore sizes <2 nm is preferable. The present method is a variant of a previously patented method of cyclic chemisorption and desorption in which a piece of carbon is alternately (1) heated to the lower of two elevated temperatures in air or other oxidizing gas, causing the formation of stable carbon/oxygen surface complexes; then (2) heated to the higher of the two elevated temperatures in flowing helium or other inert gas, causing the desorption of the surface complexes in the form of carbon monoxide. In the present method, pore structure is optimized partly by heating to a temperature of 1,100 C during carbonization. Another aspect of the method exploits the finding that for each gas-storage pressure, gas-storage capacity can be maximized by burning off a specific proportion (typically between 10 and 20 weight percent) of the carbon during the cyclic chemisorption/desorption process.
Global Emissions of Refrigerants HCFC-22 and HFC-134a: Unforeseen Seasonal Contributions
NASA Astrophysics Data System (ADS)
Xiang, B.; Patra, P. K.; Montzka, S. A.; Miller, S. M.; Elkins, J. W.; Moore, F.; Atlas, E. L.; Miller, B. R.; Prinn, R. G.; Wofsy, S. C.
2014-12-01
HCFC-22 (CHClF2) and HFC-134a (CH2FCF3) are two major gases currently used worldwide in domestic and commercial refrigeration and air conditioning. HCFC-22 contributes to stratospheric ozone depletion and both species are potent greenhouse gases, and their global emissions continue to rise at the present. In this work, we study aircraft based in-situ observations of HCFC-22 and HFC-134a over the Pacific Ocean in a three-year span (HIaper Pole-to-Pole Observation of carbon cycle and greenhouse gases study, HIPPO 2009-2011) and combine these data with long-term observations from global surface sites (NOAA and AGAGE networks). We find a steady increase in global annual emissions of HCFC-22 and HFC-134a for the past two decades (on average 3% and 4% per year, respectively). Emissions of HFC-134a since 2000 are consistently higher, with 60% more in recent years (2009-2011), compared to the United Nations Framework Convention on Climate Change (UNFCCC) inventory. Using both HIPPO and surface data, we quantify and verify enhanced summertime emissions of HFC-134a and HCFC-22 that are about three times those in the wintertime. This unforeseen large seasonal contribution indicates unaccounted mechanisms controlling refrigerant gas emissions, missing in the existing inventory estimates. Possible mechanisms for greater refrigerant leakages in the summer are: 1) higher vapor pressure in the sealed compartment of the system at summer high temperatures (saturated vapor pressure is ~ 3 times at 303 K compared to that at 273 K for both species), and 2) more frequent use of refrigeration and air conditioners in the summer (vapor pressure in the compressor line is higher when in use than not in use). Our results suggest that the engineering of the refrigeration and air conditioning systems can greatly influence the release of these two species to the atmosphere.
CFD and Thermo Mechanical Analysis on Effect of Curved vs Step Surface in IC Engine Cylinder Head
NASA Astrophysics Data System (ADS)
Balaji, S.; Ganesh, N.; Kumarasamy, A.
2017-05-01
Current research in IC engines mainly focus on various methods to achieve higher efficiency and high specific power. As a single design parameter, combustion chamber peak spring pressure has increased more than before. Apart from the structural aspects of withstanding these loads, designer faces challenges of resolving thermal aspects of cylinder head. Methods to enhance the heat transfer without compromising load withstanding capability are being constantly explored. Conventional cylinder heads have got sat inner surface. In this paper we have suggested a modification in inner surface to enhance the heat transfer capability. To increase the heat transfer rate, inner same deck surface is configured as a curved and stepped surface instead of sat. We have reported the effectiveness of extend of curvature in the inner same deck surface in a different technical paper. Here, we are making a direct comparison between stepped and curved surface only. From this analysis it has been observed that curved surface reduces the ame deck temperature considerably without compromising the structural strength factors compared to step and sat surface.
Atmospheric pressure loading effects on Global Positioning System coordinate determinations
NASA Technical Reports Server (NTRS)
Vandam, Tonie M.; Blewitt, Geoffrey; Heflin, Michael B.
1994-01-01
Earth deformation signals caused by atmospheric pressure loading are detected in vertical position estimates at Global Positioning System (GPS) stations. Surface displacements due to changes in atmospheric pressure account for up to 24% of the total variance in the GPS height estimates. The detected loading signals are larger at higher latitudes where pressure variations are greatest; the largest effect is observed at Fairbanks, Alaska (latitude 65 deg), with a signal root mean square (RMS) of 5 mm. Out of 19 continuously operating GPS sites (with a mean of 281 daily solutions per site), 18 show a positive correlation between the GPS vertical estimates and the modeled loading displacements. Accounting for loading reduces the variance of the vertical station positions on 12 of the 19 sites investigated. Removing the modeled pressure loading from GPS determinations of baseline length for baselines longer than 6000 km reduces the variance on 73 of the 117 baselines investigated. The slight increase in variance for some of the sites and baselines is consistent with expected statistical fluctuations. The results from most stations are consistent with approximately 65% of the modeled pressure load being found in the GPS vertical position measurements. Removing an annual signal from both the measured heights and the modeled load time series leaves this value unchanged. The source of the remaining discrepancy between the modeled and observed loading signal may be the result of (1) anisotropic effects in the Earth's loading response, (2) errors in GPS estimates of tropospheric delay, (3) errors in the surface pressure data, or (4) annual signals in the time series of loading and station heights. In addition, we find that using site dependent coefficients, determined by fitting local pressure to the modeled radial displacements, reduces the variance of the measured station heights as well as or better than using the global convolution sum.