Sample records for higher temperature program

  1. Evaluation of biochars by temperature programmed oxidation/mass spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Biochar from the thermochemical conversion of biomass was evaluated by Temperature Programmed Oxidation (TPO) coupled with mass spectroscopy. This technique can be used to assess the oxidative reactivity of carbonaceous solids where higher temperature reactivity indicates greater structural order. ...

  2. Aerothermal modeling. Executive summary

    NASA Technical Reports Server (NTRS)

    Kenworthy, M. K.; Correa, S. M.; Burrus, D. L.

    1983-01-01

    One of the significant ways in which the performance level of aircraft turbine engines has been improved is by the use of advanced materials and cooling concepts that allow a significant increase in turbine inlet temperature level, with attendant thermodynamic cycle benefits. Further cycle improvements have been achieved with higher pressure ratio compressors. The higher turbine inlet temperatures and compressor pressure ratios with corresponding higher temperature cooling air has created a very hostile environment for the hot section components. To provide the technology needed to reduce the hot section maintenance costs, NASA has initiated the Hot Section Technology (HOST) program. One key element of this overall program is the Aerothermal Modeling Program. The overall objective of his program is to evolve and validate improved analysis methods for use in the design of aircraft turbine engine combustors. The use of such combustor analysis capabilities can be expected to provide significant improvement in the life and durability characteristics of both combustor and turbine components.

  3. Evaluation of biochars by temperature programmed oxidation/mass spectrometry

    Treesearch

    Michael Jackson; Thomas Eberhardt; Akwasi Boateng; Charles Mullen; Les Groom

    2013-01-01

    Biochars produced from thermochemical conversions of biomass were evaluated by temperature programmed oxidation (TPO). This technique, used to characterize carbon deposits on petroleum cracking catalysts, provides information on the oxidative stability of carbonaceous solids, where higher temperature reactivity indicates greater structural order, an important property...

  4. Pyrolysis and hydrolysis of mixed polymer waste comprising polyethylene-terephthalate and polyethylene to sequentially recover [monomers

    DOEpatents

    Evans, R.J.; Chum, H.L.

    1998-10-13

    A process is described for using fast pyrolysis in a carrier gas to convert a plastic waste feed stream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feed stream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent. 83 figs.

  5. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products

    DOEpatents

    Evans, Robert J.; Chum, Helena L.

    1994-01-01

    A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents, selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.

  6. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products

    DOEpatents

    Evans, Robert J.; Chum, Helena L.

    1994-01-01

    A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.

  7. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products

    DOEpatents

    Evans, Robert J.; Chum, Helena L.

    1993-01-01

    A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.

  8. Pyrolysis and hydrolysis of mixed polymer waste comprising polyethyleneterephthalate and polyethylene to sequentially recover

    DOEpatents

    Evans, Robert J.; Chum, Helena L.

    1998-01-01

    A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.

  9. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of phenolic resin containing waste streams to sequentially recover monomers and chemicals

    DOEpatents

    Chum, H.L.; Evans, R.J.

    1992-08-04

    A process is described for using fast pyrolysis in a carrier gas to convert a waste phenolic resin containing feedstreams in a manner such that pyrolysis of said resins and a given high value monomeric constituent occurs prior to pyrolyses of the resins in other monomeric components therein comprising: selecting a first temperature program range to cause pyrolysis of said resin and a given high value monomeric constituent prior to a temperature range that causes pyrolysis of other monomeric components; selecting, if desired, a catalyst and a support and treating said feedstreams with said catalyst to effect acid or basic catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said first temperature program range to utilize reactive gases such as oxygen and steam in the pyrolysis process to drive the production of specific products; differentially heating said feedstreams at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantity of said high value monomeric constituent prior to pyrolysis of other monomeric components therein; separating said high value monomeric constituent; selecting a second higher temperature program range to cause pyrolysis of a different high value monomeric constituent of said phenolic resins waste and differentially heating said feedstreams at said higher temperature program range to cause pyrolysis of said different high value monomeric constituent; and separating said different high value monomeric constituent. 11 figs.

  10. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of phenolic resin containing waste streams to sequentially recover monomers and chemicals

    DOEpatents

    Chum, Helena L.; Evans, Robert J.

    1992-01-01

    A process of using fast pyrolysis in a carrier gas to convert a waste phenolic resin containing feedstreams in a manner such that pyrolysis of said resins and a given high value monomeric constituent occurs prior to pyrolyses of the resins in other monomeric components therein comprising: selecting a first temperature program range to cause pyrolysis of said resin and a given high value monomeric constituent prior to a temperature range that causes pyrolysis of other monomeric components; selecting, if desired, a catalyst and a support and treating said feedstreams with said catalyst to effect acid or basic catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said first temperature program range to utilize reactive gases such as oxygen and steam in the pyrolysis process to drive the production of specific products; differentially heating said feedstreams at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantity of said high value monomeric constituent prior to pyrolysis of other monomeric components therein; separating said high value monomeric constituent; selecting a second higher temperature program range to cause pyrolysis of a different high value monomeric constituent of said phenolic resins waste and differentially heating said feedstreams at said higher temperature program range to cause pyrolysis of said different high value monomeric constituent; and separating said different high value monomeric constituent.

  11. Development of Thin Solar Cells for Space Applications at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dickman, John E.; Hepp, Aloysius; Banger, Kulbinder K.; Harris, Jerry D.; Jin, Michael H.

    2003-01-01

    NASA GRC Thin Film Solar Cell program is developing solar cell technologies for space applications which address two critical metrics: higher specific power (power per unit mass) and lower launch stowed volume. To be considered for space applications, an array using thin film solar cells must offer significantly higher specific power while reducing stowed volume compared to the present technologies being flown on space missions, namely crystalline solar cells. The NASA GRC program is developing single-source precursors and the requisite deposition hardware to grow high-efficiency, thin-film solar cells on polymer substrates at low deposition temperatures. Using low deposition temperatures enables the thin film solar cells to be grown on a variety of polymer substrates, many of which would not survive the high temperature processing currently used to fabricate thin film solar cells. The talk will present the latest results of this research program.

  12. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products

    DOEpatents

    Evans, R.J.; Chum, H.L.

    1994-10-25

    A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent. 83 figs.

  13. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of polymer waste comprising nylon 6 and a polyolefin or mixtures of polyolefins to sequentially recover monomers or other high value products

    DOEpatents

    Evans, Robert J.; Chum, Helena L.

    1994-01-01

    A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.

  14. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products

    DOEpatents

    Evans, R.J.; Chum, H.L.

    1994-04-05

    A process is described for using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents, selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent. 87 figures.

  15. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of polymer waste comprising nylon 6 and a polyolefin or mixtures of polyolefins to sequentially recover monomers or other high value products

    DOEpatents

    Evans, R.J.; Chum, H.L.

    1994-10-25

    A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent. 83 figs.

  16. Achieving ultra-high temperatures with a resistive emitter array

    NASA Astrophysics Data System (ADS)

    Danielson, Tom; Franks, Greg; Holmes, Nicholas; LaVeigne, Joe; Matis, Greg; McHugh, Steve; Norton, Dennis; Vengel, Tony; Lannon, John; Goodwin, Scott

    2016-05-01

    The rapid development of very-large format infrared detector arrays has challenged the IR scene projector community to also develop larger-format infrared emitter arrays to support the testing of systems incorporating these detectors. In addition to larger formats, many scene projector users require much higher simulated temperatures than can be generated with current technology in order to fully evaluate the performance of their systems and associated processing algorithms. Under the Ultra High Temperature (UHT) development program, Santa Barbara Infrared Inc. (SBIR) is developing a new infrared scene projector architecture capable of producing both very large format (>1024 x 1024) resistive emitter arrays and improved emitter pixel technology capable of simulating very high apparent temperatures. During earlier phases of the program, SBIR demonstrated materials with MWIR apparent temperatures in excess of 1400 K. New emitter materials have subsequently been selected to produce pixels that achieve even higher apparent temperatures. Test results from pixels fabricated using the new material set will be presented and discussed. A 'scalable' Read In Integrated Circuit (RIIC) is also being developed under the same UHT program to drive the high temperature pixels. This RIIC will utilize through-silicon via (TSV) and Quilt Packaging (QP) technologies to allow seamless tiling of multiple chips to fabricate very large arrays, and thus overcome the yield limitations inherent in large-scale integrated circuits. Results of design verification testing of the completed RIIC will be presented and discussed.

  17. Program Processes Thermocouple Readings

    NASA Technical Reports Server (NTRS)

    Quave, Christine A.; Nail, William, III

    1995-01-01

    Digital Signal Processor for Thermocouples (DART) computer program implements precise and fast method of converting voltage to temperature for large-temperature-range thermocouple applications. Written using LabVIEW software. DART available only as object code for use on Macintosh II FX or higher-series computers running System 7.0 or later and IBM PC-series and compatible computers running Microsoft Windows 3.1. Macintosh version of DART (SSC-00032) requires LabVIEW 2.2.1 or 3.0 for execution. IBM PC version (SSC-00031) requires LabVIEW 3.0 for Windows 3.1. LabVIEW software product of National Instruments and not included with program.

  18. MAGMIX: a basic program to calculate viscosities of interacting magmas of differing composition, temperature, and water content

    USGS Publications Warehouse

    Frost, T.P.; Lindsay, J.R.

    1988-01-01

    MAGMIX is a BASIC program designed to predict viscosities at thermal equilibrium of interacting magmas of differing compositions, initial temperatures, crystallinities, crystal sizes, and water content for any mixing proportion between end members. From the viscosities of the end members at thermal equilibrium, it is possible to predict the styles of magma interaction expected for different initial conditions. The program is designed for modeling the type of magma interaction between hypersthenenormative magmas at upper crustal conditions. Utilization of the program to model magma interaction at pressures higher than 200 MPa would require modification of the program to account for the effects of pressure on heat of fusion and magma density. ?? 1988.

  19. Electric utility acid fuel cell stack technology advancement

    NASA Astrophysics Data System (ADS)

    Congdon, J. V.; Goller, G. J.; Greising, G. J.; Obrien, J. J.; Randall, S. A.; Sandelli, G. J.; Breault, R. D.; Austin, G. W.; Bopse, S.; Coykendall, R. D.

    1984-11-01

    The principal effort under this program was directed at the fuel cell stack technology required to accomplish the initial feasibility demonstrations of increased cell stack operating pressures and temperatures, increased cell active area, incorporation of the ribbed substrate cell configuration at the bove conditions, and the introduction of higher performance electrocatalysts. The program results were successful with the primary accomplishments being: (1) fabrication of 10 sq ft ribbed substrate, cell components including higher performing electrocatalysts; (2) assembly of a 10 sq ft, 30-cell short stack; and (3) initial test of this stack at 120 psia and 405 F. These accomplishments demonstrate the feasibility of fabricating and handling large area cells using materials and processes that are oriented to low cost manufacture. An additional accomplishment under the program was the testing of two 3.7 sq ft short stacks at 12 psia/405 F to 5400 and 4500 hours respectively. These tests demonstrate the durability of the components and the cell stack configuration to a nominal 5000 hours at the higher pressure and temperature condition planned for the next electric utility power plant.

  20. Electric utility acid fuel cell stack technology advancement

    NASA Technical Reports Server (NTRS)

    Congdon, J. V.; Goller, G. J.; Greising, G. J.; Obrien, J. J.; Randall, S. A.; Sandelli, G. J.; Breault, R. D.; Austin, G. W.; Bopse, S.; Coykendall, R. D.

    1984-01-01

    The principal effort under this program was directed at the fuel cell stack technology required to accomplish the initial feasibility demonstrations of increased cell stack operating pressures and temperatures, increased cell active area, incorporation of the ribbed substrate cell configuration at the bove conditions, and the introduction of higher performance electrocatalysts. The program results were successful with the primary accomplishments being: (1) fabrication of 10 sq ft ribbed substrate, cell components including higher performing electrocatalysts; (2) assembly of a 10 sq ft, 30-cell short stack; and (3) initial test of this stack at 120 psia and 405 F. These accomplishments demonstrate the feasibility of fabricating and handling large area cells using materials and processes that are oriented to low cost manufacture. An additional accomplishment under the program was the testing of two 3.7 sq ft short stacks at 12 psia/405 F to 5400 and 4500 hours respectively. These tests demonstrate the durability of the components and the cell stack configuration to a nominal 5000 hours at the higher pressure and temperature condition planned for the next electric utility power plant.

  1. Faecal glucocorticoid metabolites and body temperature in Australian merino ewes (Ovis aries) during summer artificial insemination (AI) program

    PubMed Central

    Sawyer, Gregory; Parisella, Simone

    2018-01-01

    Reproductive wastage is a key issue for sheep producers, both regionally and globally. The reproductive output of farm animals can be influenced by physiological and environmental factors. Rapid and reliable quantification of physiological stress can provide a useful tool for designing and testing on-farm management interventions to improve farm animal welfare and productivity. In this study, we quantified physiological stress non-invasively using faecal glucocorticoid metabolites-FGMs analysis and body temperature measurements of 15 superovulated donor merino ewes (Ovis aries) during participation in artificial insemination (AI) program conducted during 2015/2016 Australian summer. We hypothesized that low percentage transferable embryos in donor merino ewes will be associated positively with higher body temperature and/or higher FGMs in these ewes. Temperature humidity index (THI) was calculated and found within high thermal stress range during the two AI trials. Overall, results showed none of the factors (ewe ID, AI trial no., THI or FGMs) were significant for reduced percentage transferrable embryos, except ewe body temperature was highly significant (p = 0.014). Within AI trial comparisons showed significant positive associations between higher FGMs and body temperature with reduced transferrable embryos. These results suggest that Australian merino ewes participating in summer AI trials can experience physiological stress. Prolonged activation of the stress endocrine response and high body temperature (e.g. ensued from heat stress) could impact on ewe reproductive output. Therefore, future research should apply minimally invasive physiological tools to gather baseline information on physiological stress in merino sheep to enable the development of new farm-friendly methods of managing stress. PMID:29381759

  2. Faecal glucocorticoid metabolites and body temperature in Australian merino ewes (Ovis aries) during summer artificial insemination (AI) program.

    PubMed

    Narayan, Edward; Sawyer, Gregory; Parisella, Simone

    2018-01-01

    Reproductive wastage is a key issue for sheep producers, both regionally and globally. The reproductive output of farm animals can be influenced by physiological and environmental factors. Rapid and reliable quantification of physiological stress can provide a useful tool for designing and testing on-farm management interventions to improve farm animal welfare and productivity. In this study, we quantified physiological stress non-invasively using faecal glucocorticoid metabolites-FGMs analysis and body temperature measurements of 15 superovulated donor merino ewes (Ovis aries) during participation in artificial insemination (AI) program conducted during 2015/2016 Australian summer. We hypothesized that low percentage transferable embryos in donor merino ewes will be associated positively with higher body temperature and/or higher FGMs in these ewes. Temperature humidity index (THI) was calculated and found within high thermal stress range during the two AI trials. Overall, results showed none of the factors (ewe ID, AI trial no., THI or FGMs) were significant for reduced percentage transferrable embryos, except ewe body temperature was highly significant (p = 0.014). Within AI trial comparisons showed significant positive associations between higher FGMs and body temperature with reduced transferrable embryos. These results suggest that Australian merino ewes participating in summer AI trials can experience physiological stress. Prolonged activation of the stress endocrine response and high body temperature (e.g. ensued from heat stress) could impact on ewe reproductive output. Therefore, future research should apply minimally invasive physiological tools to gather baseline information on physiological stress in merino sheep to enable the development of new farm-friendly methods of managing stress.

  3. High-Temperature Polymer Composites Tested for Hypersonic Rocket Combustor Backup Structure

    NASA Technical Reports Server (NTRS)

    Sutter, James K.; Shin, E. Eugene; Thesken, John C.; Fink, Jeffrey E.

    2005-01-01

    Significant component weight reductions are required to achieve the aggressive thrust-toweight goals for the Rocket Based Combined Cycle (RBCC) third-generation, reusable liquid propellant rocket engine, which is one possible engine for a future single-stage-toorbit vehicle. A collaboration between the NASA Glenn Research Center and Boeing Rocketdyne was formed under the Higher Operating Temperature Propulsion Components (HOTPC) program and, currently, the Ultra-Efficient Engine Technology (UEET) Project to develop carbon-fiber-reinforced high-temperature polymer matrix composites (HTPMCs). This program focused primarily on the combustor backup structure to replace all metallic support components with a much lighter polymer-matrixcomposite- (PMC-) titanium honeycomb sandwich structure.

  4. Radial turbine cooling

    NASA Technical Reports Server (NTRS)

    Roelke, Richard J.

    1992-01-01

    Radial turbines have been used extensively in many applications including small ground based electrical power generators, automotive engine turbochargers and aircraft auxiliary power units. In all of these applications the turbine inlet temperature is limited to a value commensurate with the material strength limitations and life requirements of uncooled metal rotors. To take advantage of all the benefits that higher temperatures offer, such as increased turbine specific power output or higher cycle thermal efficiency, requires improved high temperature materials and/or blade cooling. Extensive research is on-going to advance the material properties of high temperature superalloys as well as composite materials including ceramics. The use of ceramics with their high temperature potential and low cost is particularly appealing for radial turbines. However until these programs reach fruition the only way to make significant step increases beyond the present material temperature barriers is to cool the radial blading.

  5. Disk Alloy Development

    NASA Technical Reports Server (NTRS)

    Gabb, Tim; Gayda, John; Telesman, Jack

    2001-01-01

    The advanced powder metallurgy disk alloy ME3 was designed using statistical screening and optimization of composition and processing variables in the NASA HSR/EPM disk program to have extended durability at 1150 to 1250 "Fin large disks. Scaled-up disks of this alloy were produced at the conclusion of this program to demonstrate these properties in realistic disk shapes. The objective of the UEET disk program was to assess the mechanical properties of these ME3 disks as functions of temperature, in order to estimate the maximum temperature capabilities of this advanced alloy. Scaled-up disks processed in the HSR/EPM Compressor / Turbine Disk program were sectioned, machined into specimens, and tested in tensile, creep, fatigue, and fatigue crack growth tests by NASA Glenn Research Center, in cooperation with General Electric Engine Company and Pratt & Whitney Aircraft Engines. Additional sub-scale disks and blanks were processed and tested to explore the effects of several processing variations on mechanical properties. Scaled-up disks of an advanced regional disk alloy, Alloy 10, were used to evaluate dual microstructure heat treatments. This allowed demonstration of an improved balance of properties in disks with higher strength and fatigue resistance in the bores and higher creep and dwell fatigue crack growth resistance in the rims. Results indicate the baseline ME3 alloy and process has 1300 to 1350 O F temperature capabilities, dependent on detailed disk and engine design property requirements. Chemistry and process enhancements show promise for further increasing temperature capabilities.

  6. Development of an ultra-high temperature infrared scene projector at Santa Barbara Infrared Inc.

    NASA Astrophysics Data System (ADS)

    Franks, Greg; Laveigne, Joe; Danielson, Tom; McHugh, Steve; Lannon, John; Goodwin, Scott

    2015-05-01

    The rapid development of very-large format infrared detector arrays has challenged the IR scene projector community to develop correspondingly larger-format infrared emitter arrays to support the testing needs of systems incorporating these detectors. As with most integrated circuits, fabrication yields for the read-in integrated circuit (RIIC) that drives the emitter pixel array are expected to drop dramatically with increasing size, making monolithic RIICs larger than the current 1024x1024 format impractical and unaffordable. Additionally, many scene projector users require much higher simulated temperatures than current technology can generate to fully evaluate the performance of their systems and associated processing algorithms. Under the Ultra High Temperature (UHT) development program, Santa Barbara Infrared Inc. (SBIR) is developing a new infrared scene projector architecture capable of producing both very large format (>1024x1024) resistive emitter arrays and improved emitter pixel technology capable of simulating very high apparent temperatures. During an earlier phase of the program, SBIR demonstrated materials with MWIR apparent temperatures in excess of 1000K. New emitter materials have subsequently been selected to produce pixels that achieve even higher apparent temperatures. Test results from pixels fabricated using the new material set will be presented and discussed. Also in development under the same UHT program is a 'scalable' RIIC that will be used to drive the high temperature pixels. This RIIC will utilize through-silicon vias (TSVs) and quilt packaging (QP) technologies to allow seamless tiling of multiple chips to fabricate very large arrays, and thus overcome the inherent yield limitations of very-large-scale integrated circuits. Current status of the RIIC development effort will also be presented.

  7. High temperature thruster technology for spacecraft propulsion

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.

    1991-01-01

    A technology program intended to develop high-temperature oxidation-resistant thrusters for spacecraft applications is considered. The program will provide the requisite material characterizations and fabrication to incorporate iridium coated rhenium material into small rockets for spacecraft propulsion. This material increases the operating temperature of thrusters to 2200 C, a significant increase over the 1400 C of the silicide-coated niobium chambers currently used. Stationkeeping class 22 N engines fabricated from iridium-coated rhenium have demonstrated steady state specific impulses 20-25 seconds higher than niobium chambers. These improved performances are obtained by reducing or eliminating the fuel film cooling requirements in the combustion chamber while operating at the same overall mixture ratio as conventional engines.

  8. Application Specific Electronic Module Program (ASEM), Final Technical Report.

    DTIC Science & Technology

    1994-12-14

    relatively high temperatures , may induce a metal break or other continuity problems. Secondly, the improved electrical environment at the module level vs...wafer probe can permit higher speed tests to be applied, isolating marginal die. Thirdly, high reliability screens, such as temperature cycling, bum-in...The high temperature aging is done at 150’ C for 500 hours. The thermal cycle treatments are from 0- 100 0 C and 3 cycles per hour are done. The

  9. Determination of sulfonamides and trimethoprim using high temperature HPLC with simultaneous temperature and solvent gradient.

    PubMed

    Giegold, Sascha; Teutenberg, Thorsten; Tuerk, Jochen; Kiffmeyer, Thekla; Wenclawiak, Bernd

    2008-10-01

    A fast HPLC method for the analysis of eight selected sulfonamides (SA) and trimethoprim has been developed with the use of high temperature HPLC. The separation could be achieved in less than 1.5 min on a 50 mm sub 2 microm column with simultaneous solvent and temperature gradient programming. Due to the lower viscosity of the mobile phase and the increased mass transfer at higher temperatures, the separation could be performed on a conventional HPLC system obtaining peak widths at half height between 0.6 and 1.3 s.

  10. Computer program for pulsed thermocouples with corrections for radiation effects

    NASA Technical Reports Server (NTRS)

    Will, H. A.

    1981-01-01

    A pulsed thermocouple was used for measuring gas temperatures above the melting point of common thermocouples. This was done by allowing the thermocouple to heat until it approaches its melting point and then turning on the protective cooling gas. This method required a computer to extrapolate the thermocouple data to the higher gas temperatures. A method that includes the effect of radiation in the extrapolation is described. Computations of gas temperature are provided, along with the estimate of the final thermocouple wire temperature. Results from tests on high temperature combustor research rigs are presented.

  11. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of polycarbonate and plastic waste to recover monomers

    DOEpatents

    Evans, R.J.; Chum, H.L.

    1994-06-14

    A process is described using fast pyrolysis to convert a plastic waste feed stream containing polycarbonate and ABS to high value monomeric constituents prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of a given polymer to its high value monomeric constituents prior to a temperature range that causes pyrolysis of other plastic components; selecting an acid or base catalysts and an oxide or carbonate support for treating the feed stream to affect acid or base catalyzed reaction pathways to maximize yield or enhance separation of the high value monomeric constituents of polycarbonate and ABS in the first temperature program range; differentially heating the feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituents prior to pyrolysis or other plastic components; separating the high value monomeric constituents from the polycarbonate to cause pyrolysis to a different high value monomeric constituent of the plastic waste and differentially heating the feed stream at the second higher temperature program range to cause pyrolysis of different high value monomeric constituents; and separating the different high value monomeric constituents. 68 figs.

  12. Controlled catalystic and thermal sequential pyrolysis and hydrolysis of polycarbonate and plastic waste to recover monomers

    DOEpatents

    Evans, Robert J.; Chum, Helena L.

    1994-01-01

    A process of using fast pyrolysis to convert a plastic waste feed stream containing polycarbonate and ABS to high value monomeric constituents prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of a given polymer to its high value monomeric constituents prior to a temperature range that causes pyrolysis of other plastic components; selecting an acid or base catalysts and an oxide or carbonate support for treating the feed stream to affect acid or base catalyzed reaction pathways to maximize yield or enhance separation of the high value monomeric constituents of polycarbonate and ABS in the first temperature program range; differentially heating the feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituents prior to pyrolysis or other plastic components; separating the high value monomeric constituents from the polycarbonate to cause pyrolysis to a different high value monomeric constituent of the plastic waste and differentially heating the feed stream at the second higher temperature program range to cause pyrolysis of different high value monomeric constituents; and separating the different high value monomeric constituents.

  13. Structural and surface properties of CuO-ZnO-Cr{sub 2}O{sub 3} catalysts and their relationship with selectivity to higher alcohol synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campos-Martin, J.M.; Fierro, J.L.G.; Guerrero-Ruiz, A.

    1995-10-01

    A series of copper-zinc-chromium catalysts of different compositions and calcination temperatures has been prepared, characterized by several techniques (BET specific surface area, XRD, gravimetric TPR, TPD-CO, and XPS), and tested under high alcohol synthesis (HAS) conditions. CO hydrogenation was carried out at reaction temperatures of 523-598 K and 50 bar total pressure. The influence of catalyst composition, calcination temperature, and surface characteristics on the HAS selectivity was studied. The optimum HAS yields were found in the low Cr content region, but chromium was needed. Although chromium oxide does not seem to be involved in the catalytic site, its presence inmore » the catalyst composition is essential, owing to the larger specific surfaces and catalyst stability obtained at the highest reaction temperatures. For low Cr content composition, the temperature-programmed reduction (TPR) profiles were shifted to higher temperatures and simultaneously larger CO{sub 2} amounts were found in the temperature-programmed desorption profiles of adsorbed CO (TPD-CO). Photoelectron spectra (XPS) revealed that the oxidation state of copper is Cu{sup 2+} in the calcined catalysts and Cu{sup O} in the reduced ones; Cu{sup +} was only stabilized in a CuCr{sub 2}O{sub 4} spinel in the Cr-rich catalysts. These features derived from catalyst characterization are discussed in the framework of the catalytic behaviour for HAS synthesis. 53 refs., 7 figs., 4 tabs.« less

  14. NASA-EPA automotive thermal reactor technology program

    NASA Technical Reports Server (NTRS)

    Blankenship, C. P.; Hibbard, R. R.

    1972-01-01

    The status of the NASA-EPA automotive thermal reactor technology program is summarized. This program is concerned primarily with materials evaluation, reactor design, and combustion kinetics. From engine dynamometer tests of candidate metals and coatings, two ferritic iron alloys (GE 1541 and Armco 18-SR) and a nickel-base alloy (Inconel 601) offer promise for reactor use. None of the coatings evaluated warrant further consideration. Development studies on a ceramic thermal reactor appear promising based on initial vehicle road tests. A chemical kinetic study has shown that gas temperatures of at least 900 K to 1000 K are required for the effective cleanup of carbon monoxide and hydrocarbons, but that higher temperatures require shorter combustion times and thus may permit smaller reactors.

  15. In situ supported MnOx-CeOx on carbon nanotubes for the low-temperature selective catalytic reduction of NO with NH3

    NASA Astrophysics Data System (ADS)

    Zhang, Dengsong; Zhang, Lei; Shi, Liyi; Fang, Cheng; Li, Hongrui; Gao, Ruihua; Huang, Lei; Zhang, Jianping

    2013-01-01

    The MnOx and CeOx were in situ supported on carbon nanotubes (CNTs) by a poly(sodium 4-styrenesulfonate) assisted reflux route for the low-temperature selective catalytic reduction (SCR) of NO with NH3. X-Ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction (H2-TPR) and NH3 temperature-programmed desorption (NH3-TPD) have been used to elucidate the structure and surface properties of the obtained catalysts. It was found that the in situ prepared catalyst exhibited the highest activity and the most extensive operating-temperature window, compared to the catalysts prepared by impregnation or mechanically mixed methods. The XRD and TEM results indicated that the manganese oxide and cerium oxide species had a good dispersion on the CNT surface. The XPS results demonstrated that the higher atomic concentration of Mn existed on the surface of CNTs and the more chemisorbed oxygen species exist. The H2-TPR results suggested that there was a strong interaction between the manganese oxide and cerium oxide on the surface of CNTs. The NH3-TPD results demonstrated that the catalysts presented a larger acid amount and stronger acid strength. In addition, the obtained catalysts exhibited much higher SO2-tolerance and improved the water-resistance as compared to that prepared by impregnation or mechanically mixed methods.The MnOx and CeOx were in situ supported on carbon nanotubes (CNTs) by a poly(sodium 4-styrenesulfonate) assisted reflux route for the low-temperature selective catalytic reduction (SCR) of NO with NH3. X-Ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction (H2-TPR) and NH3 temperature-programmed desorption (NH3-TPD) have been used to elucidate the structure and surface properties of the obtained catalysts. It was found that the in situ prepared catalyst exhibited the highest activity and the most extensive operating-temperature window, compared to the catalysts prepared by impregnation or mechanically mixed methods. The XRD and TEM results indicated that the manganese oxide and cerium oxide species had a good dispersion on the CNT surface. The XPS results demonstrated that the higher atomic concentration of Mn existed on the surface of CNTs and the more chemisorbed oxygen species exist. The H2-TPR results suggested that there was a strong interaction between the manganese oxide and cerium oxide on the surface of CNTs. The NH3-TPD results demonstrated that the catalysts presented a larger acid amount and stronger acid strength. In addition, the obtained catalysts exhibited much higher SO2-tolerance and improved the water-resistance as compared to that prepared by impregnation or mechanically mixed methods. Electronic supplementary information (ESI) available: SEM images and EDS analysis, TEM images, and XPS spectrum of samples. See DOI: 10.1039/c2nr33006g

  16. Nuclear Electric Magnetohydrodynamic Propulsion for Submarine

    DTIC Science & Technology

    1989-05-01

    develop - ment strategies for the future. The base program includes the development of the LMFBR, and HTGR to...events. Oxide fuel is -134- being retained as a backup, pending the outcome of the metal fuel development program . The design allows for a quick fuel ... HTGR plants can be developed with much higher source temperature and core power density. High efficiency and low power den- sity characteristics

  17. Inadvertently programmed bits in Samsung 128 Mbit flash devices: a flaky investigation

    NASA Technical Reports Server (NTRS)

    Swift, G.

    2002-01-01

    JPL's X2000 avionics design pioneers new territory by specifying a non-volatile memory (NVM) board based on flash memories. The Samsung 128Mb device chosen was found to demonstrate bit errors (mostly program disturbs) and block-erase failures that increase with cycling. Low temperature, certain pseudo- random patterns, and, probably, higher bias increase the observable bit errors. An experiment was conducted to determine the wearout dependence of the bit errors to 100k cycles at cold temperature using flight-lot devices (some pre-irradiated). The results show an exponential growth rate, a wide part-to-part variation, and some annealing behavior.

  18. Development of magnetostrictive active members for control of space structures

    NASA Technical Reports Server (NTRS)

    Johnson, Bruce G.; Avakian, Kevin M.; Fenn, Ralph C.; Gaffney, Monique S.; Gerver, Michael J.; Hawkey, Timothy J.; Boudreau, Donald J.

    1992-01-01

    The goal of this Phase 2 Small Business Innovative Research (SBIR) project was to determine the technical feasibility of developing magnetostrictive active members for use as truss elements in space structures. Active members control elastic vibrations of truss-based space structures and integrate the functions of truss structure element, actively controlled actuator, and sensor. The active members must control structural motion to the sub-micron level and, for many proposed space applications, work at cryogenic temperatures. Under this program both room temperature and cryogenic temperature magnetostrictive active members were designed, fabricated, and tested. The results of these performance tests indicated that room temperature magnetostrictive actuators feature higher strain, stiffness, and force capability with lower amplifier requirements than similarly sized piezoelectric or electrostrictive active members, at the cost of higher mass. Two different cryogenic temperature magnetostrictive materials were tested at liquid nitrogen temperatures, both with larger strain capability than the room temperature magnetostrictive materials. The cryogenic active member development included the design and fabrication of a cryostat that allows operation of the cryogenic active member in a space structure testbed.

  19. Development of magnetostrictive active members for control of space structures

    NASA Astrophysics Data System (ADS)

    Johnson, Bruce G.; Avakian, Kevin M.; Fenn, Ralph C.; Gaffney, Monique S.; Gerver, Michael J.; Hawkey, Timothy J.; Boudreau, Donald J.

    1992-08-01

    The goal of this Phase 2 Small Business Innovative Research (SBIR) project was to determine the technical feasibility of developing magnetostrictive active members for use as truss elements in space structures. Active members control elastic vibrations of truss-based space structures and integrate the functions of truss structure element, actively controlled actuator, and sensor. The active members must control structural motion to the sub-micron level and, for many proposed space applications, work at cryogenic temperatures. Under this program both room temperature and cryogenic temperature magnetostrictive active members were designed, fabricated, and tested. The results of these performance tests indicated that room temperature magnetostrictive actuators feature higher strain, stiffness, and force capability with lower amplifier requirements than similarly sized piezoelectric or electrostrictive active members, at the cost of higher mass. Two different cryogenic temperature magnetostrictive materials were tested at liquid nitrogen temperatures, both with larger strain capability than the room temperature magnetostrictive materials. The cryogenic active member development included the design and fabrication of a cryostat that allows operation of the cryogenic active member in a space structure testbed.

  20. Particle size effect of redox reactions for Co species supported on silica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chotiwan, Siwaruk; Tomiga, Hiroki; Katagiri, Masaki

    Conversions of chemical states during redox reactions of two silica-supported Co catalysts, which were prepared by the impregnation method, were evaluated by using an in situ XAFS technique. The addition of citric acid into the precursor solution led to the formation on silica of more homogeneous and smaller Co particles, with an average diameter of 4 nm. The supported Co{sub 3}O{sub 4} species were reduced to metallic Co via the divalent CoO species during a temperature-programmed reduction process. The reduced Co species were quantitatively oxidized with a temperature-programmed oxidation process. The higher observed reduction temperature of the smaller CoO particlesmore » and the lower observed oxidation temperature of the smaller metallic Co particles were induced by the higher dispersion of the Co oxide species, which apparently led to a stronger interaction with supporting silica. The redox temperature between CoO and Co{sub 3}O{sub 4} was found to be independent of the particle size. - Graphical abstract: Chemical state conversions of SiO{sub 2}-supported Co species and the particle size effect have been analyzed by means of in situ XAFS technique. The small CoO particles have endurance against the reduction and exist in a wide temperature range. Display Omitted - Highlights: • The conversions of the chemical state of supported Co species during redox reaction are evaluated. • In operando XAFS technique were applied to measure redox properties of small Co particles. • A small particle size affects to the redox temperatures of cobalt catalysts.« less

  1. Evaluation of Additive Manufacturing for Stainless Steel Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter, William H.; Lou, Xiaoyuan; List, III, Frederick Alyious

    This collaboration between Oak Ridge National Laboratory and General Electric Company aimed to evaluate the mechanical properties, microstructure, and porosity of the additively manufactured 316L stainless steel by ORNL’s Renishaw AM250 machine for nuclear application. The program also evaluated the stress corrosion cracking and corrosion fatigue crack growth rate of the same material in high temperature water environments. Results show the properties of this material to be similar to the properties of 316L stainless steel fabricated additively with equipment from other manufacturers with slightly higher porosity. The stress corrosion crack growth rate is similar to that for wrought 316L stainlessmore » steel for an oxygenated high temperature water environment and slightly higher for a hydrogenated high temperature water environment. Optimized heat treatment of this material is expected to improve performance in high temperature water environments.« less

  2. Multiyear Program Plan for the High Temperature Materials Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arvid E. Pasto

    2000-03-17

    Recently, the U.S. Department of Energy's (DOE) Office of Heavy Vehicle Technologies (OHVT) prepared a Technology Roadmap describing the challenges facing development of higher fuel efficiency, less polluting sport utility vehicles, vans, and commercial trucks. Based on this roadmap, a multiyear program plan (MYPP) was also developed, in which approaches to solving the numerous challenges are enumerated. Additional planning has been performed by DOE and national laboratory staff, on approaches to solving the numerous challenges faced by heavy vehicle system improvements. Workshops and planning documents have been developed concerning advanced aerodynamics, frictional and other parasitic losses, and thermal management. Similarly,more » the Heavy Vehicle Propulsion Materials Program has developed its own multiyear program plan. The High Temperature Materials Laboratory, a major user facility sponsored by OHVT, has now developed its program plan, described herein. Information was gathered via participation in the development of OHVT's overall Technology Roadmap and MYPP, through personal contacts within the materials-user community, and from attendance at conferences and expositions. Major materials issues for the heavy vehicle industry currently center on trying to increase efficiency of (diesel) engines while at the same time reducing emissions (particularly NO{sub x} and particulates). These requirements dictate the use of increasingly stronger, higher-temperature capable and more corrosion-resistant materials of construction, as well as advanced catalysts, particulate traps, and other pollution-control devices. Exhaust gas recirculation (EGR) is a technique which will certainly be applied to diesel engines in the near future, and its use represents a formidable challenge, as will be described later. Energy-efficient, low cost materials processing methods and surface treatments to improve wear, fracture, and corrosion resistance are also required.« less

  3. Temperature and seeding effects on the precipitation of scorodite from sulfate solutions under atmospheric-pressure conditions

    NASA Astrophysics Data System (ADS)

    Singhania, Shalabh; Wang, Qiankun; Filippou, Dimitrios; Demopoulos, George P.

    2005-06-01

    Arsenic is a major contaminant in the nonferrous extractive metallurgy. In the past 20 years, many studies have shown that it can be precipitated as relatively stable crystalline scorodite (FeAsO4·2H2O) by precipitation under ambient or elevated pressures. In the present study, an extensive program of scorodite precipitation tests under ambient pressure has shown that the rate of scorodite formation increases dramatically by a small increase in temperature from 85 °C to 100 °C. The beneficial effects of temperature are attributed to the higher thermodynamic stability of scorodite at elevated temperatures, but also to higher rates of secondary nuclei formation and crystal growth. In any case, irrespective of the precipitation temperature, the leachability of all scorodite precipitates observed in toxicity characterization leaching procedure (TCLP) tests is below 5 mg/L As. Another parameter examined in this study was seeding. It was observed that the higher the initial concentration of seed, the faster the precipitation. Precipitation of well-crystallized scorodite can be effected equally well on heterogeneous seed such as hematite (Fe2O3) or gypsum (CaSO4·2H2O) added externally or formed in situ.

  4. United States Air Force Research Initiation Program for 1987. Volume 2

    DTIC Science & Technology

    1989-04-01

    is partly in darkness and partly sunlit with a low angle sun. Solar absorption was added as an additional excitation mechanism in the calculation of...34-7 Also, the sun was assumed to be above the horizon ( solar zenith angle = 880) in the calculation of sunlit vibrational temperature profiles, when...time conditions. This will involve modifying the kinetic equations to include solar pumping at higher sun angles, determining vibrational temperature

  5. Status of Post Irradiation Examination of FCAB and FCAT Irradiation Capsules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Yamamoto, Yukinori; Howard, Richard H.

    A series of irradiation programs are ongoing to address the need for determining the radiation tolerance of FeCrAl alloys. These irradiation programs, deemed the FCAT and FCAB irradiation programs, use the High Flux Isotope Reactor (HFIR) to irradiate second generation wrought FeCrAl alloys and early-generation powder-metallurgy (PM) oxide dispersion-strengthened (ODS) FeCrAl alloys. Irradiations have been or are being performed at temperatures of 200°C, 330°C, and 550°C from doses of 1.8 dpa up to 16 dpa. Preliminary post-irradiation examination (PIE) on low dose (<2 dpa) irradiation capsules of tensile specimens has been performed. Analysis of co-irradiated SiC thermometry have shown reasonablemore » matching between the nominal irradiation temperatures and the target irradiation temperatures. Room temperature tensile tests have shown typical radiation-induced hardening and embrittlement at irradiations of 200°C and 330°C, but a propensity for softening when irradiated to 550°C for the wrought alloys. The PM-ODS FeCrAl specimens showed less hardening compared to the wrought alloys. Future PIE includes high temperature tensile tests on the low dose irradiation capsules as well as the determination of reference fracture toughness transition temperature, T o, in alloys irradiated to 7 dpa and higher.« less

  6. Goals of thermionic program for space power

    NASA Technical Reports Server (NTRS)

    English, R. E.

    1981-01-01

    The thermionic and Brayton reactor concepts were compared for application to space power. For a turbine inlet temperature of 15000 K the Brayton powerplant weighted 5 to 40% less than the thermionic concept. The out of core concept separates the thermionic converters from their reactor. Technical risks are diminished by: (1) moving the insolator out of the reactor; (2) allowing a higher thermal flux for the thermionic converters than is required of the reactor fuel; and (3) eliminating fuel swelling's threat against lifetime of the thermionic converters. Overall performance can be improved by including power processing in system optimization for design and technology on more efficient, higher temperature power processors. The thermionic reactors will be larger than those for competitive systems with higher conversion efficiency and lower reactor operating temperatures. It is concluded that although the effect of reactor size on shield weight will be modest for unmanned spacecraft, the penalty in shield weight will be large for manned or man-tended spacecraft.

  7. Nondestructive evaluation techniques for high-temperature ceramic components. Quarterly report, October--December 1977. [Silicon carbide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-02-01

    The overall objective of this program is to assess and develop nondestructive evaluation procedures for high-temperature ceramics. The program is currently evaluating ceramic heat-exchanger tubing. Ceramic heat exchangers would be useful, for example, in coal-fired Brayton conversion or waste heat-recovery systems. The use of ceramic heat exchangers will allow working fluids to reach temperatures up to 1230/sup 0/C, and, with further materials development, possibly 1650/sup 0/C. If superalloys were employed, working fluids would be limited to approximately 800/sup 0/C. The use of working fluids at higher temperatures would result in more efficient systems. Furthermore, ceramic components are lighter than metallicmore » ones and are made from less costly and more abundant elements. In addition, ceramic heat exchangers would be more resistant to corrosion. In the current NDE effort, several acoustic, optical, and radiographic techniques are being examined for their effectiveness in testing silicon carbide tubing. Some results employing dye-enhanced radiography are discussed.« less

  8. Airway humidification during high-frequency percussive ventilation.

    PubMed

    Allan, Patrick F; Hollingsworth, Michael J; Maniere, Gordon C; Rakofsky, Anthony K; Chung, Kevin K; Naworol, Gregory A; Ward, John A; Perello, Michelle; Morris, Michael J

    2009-03-01

    We were concerned about the risk of inadequate humidification during high-frequency percussive ventilation (HFPV). We studied 5 humidifiers during HFPV with a lung model, at bias gas flows of 10 L/min, 30 L/min, and 50 L/min, and compared the results to those from a comparator ventilator/humidifier setup and to the minimum temperature (30 degrees C) and humidity (30 mg/L) [corrected] recommended by the American Association for Respiratory Care, at both regular room temperature and a high ambient temperature. Temperature was measured at the humidifier outflow point and at the artificial carina. Humidity was measured at the artificial carina. Of the 7 HFPV/humidifier combinations, 2 (the MR850 at a bias flow of 50 L/min, and the ConchaTherm Hi-Flow with VDR nebulizer) provided a carinal temperature equivalent to the comparator setup at room temperature, whereas one HFPV/humidifier combination (the ConchaTherm Hi-Flow with modified programming, at bias flows of 30 L/min and 50 L/min) provided a higher carinal temperature. At high ambient temperature, all of the setups delivered lower carinal temperature than the comparator setup. Only 2 setups (the ConchaTherm with modified programming at a bias flow of 50 L/min, and the ConchaTherm Hi-Flow with VDR nebulizer) provided carinal humidification equivalent to the comparator setup, without regard to ambient temperature; the other humidifiers were less effective. The ConchaTherm with modified programming, and the ConchaTherm with the VDR nebulizer provided the most consistent humidification. HFPV's distinctive gas-flow mechanism may impair gas heating and humidification, so all humidification systems should be tested with HFPV prior to clinical use.

  9. Thermodynamic and related properties of parahydrogen from the triple point to 300 K at pressures to 1000 bar

    NASA Technical Reports Server (NTRS)

    Weber, L. A.

    1975-01-01

    Compressibility measurements and thermodynamic properties data for parahydrogen were extended to higher temperatures and pressures. Results of an experimental program are presented in the form of new pressure, volume and temperature data in the temperature range 23 to 300 K at pressures up to 800 bar. Also given are tables of thermodynamic properties on isobars to 1000 bar including density, internal energy, enthalpy, entropy, specific heats at constant volume and constant pressure, velocity of sound, and surface derivatives. The accuracy of the data is discussed and comparisons are made with previous data.

  10. Superconducting transition detectors for low-energy gamma-ray astrophysics

    NASA Astrophysics Data System (ADS)

    Kurfess, J. D.; Johnson, W. N.; Fritz, G. G.; Strickman, M. S.; Kinzer, R. L.; Jung, G.; Drukier, A. K.; Chmielowski, M.

    1990-08-01

    A program to investigate superconducting devices such as STDs for use in high-resolution Compton telescopes and coded-aperture detectors is presented. For higher energy applications, techniques are investigated with potential for scaling to large detectors, while also providing excellent energy and positional resolution. STDs are discussed, utilizing a uniform array of spherical granules tens of microns in diameter. The typical temperature-magnetic field phase for a low-temperature superconductor, the signal produced by the superconducting-normal transition in the 32-m diameter Sn granule, and the temperature history of an STD granule following heating by an ionizing particle are illustrated.

  11. Industrial food processing and space heating with geothermal heat. Final report, February 16, 1979-August 31, 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunze, J.F.; Marlor, J.K.

    1982-08-01

    A competitive aware for a cost sharing program was made to Madison County, Idaho to share in a program to develop moderate-to-low temperature geothermal energy for the heating of a large junior college, business building, public shcools and other large buildings in Rexburg, Idaho. A 3943 ft deep well was drilled at the edge of Rexburg in a region that had been probed by some shallower test holes. Temperatures measured near the 4000 ft depth were far below what was expected or needed, and drilling was abandoned at that depth. In 1981 attempts were made to restrict downward circulation intomore » the well, but the results of this effort yielded no higher temperatures. The well is a prolific producer of 70/sup 0/F water, and could be used as a domestic water well.« less

  12. Hierarchically porous LaFeO3 perovskite prepared from the pomelo peel bio-template for catalytic oxidation of NO

    NASA Astrophysics Data System (ADS)

    Zhao, Shaojun; Wang, Li; Wang, Ying; Li, Xing

    2018-05-01

    In this paper, pomelo peel was used as biological template to obtain hierarchically porous LaFeO3 perovskite for the catalytic oxidation of NO to NO2. In addition, X-ray diffraction (XRD), scanning electron microscopy (SEM), N2 adsorption-desorption analyses, X-ray photoelectron spectra (XPS), NO temperature-programmed desorption (NO-TPD), oxygen temperature-programmed desorption (O2-TPD) and hydrogen temperature-programmed reduction (H2-TPR) were used to investigate the micro-structure and the redox properties of the hierarchically porous LaFeO3 perovskite prepared from pomelo peel biological template and the LaFeO3 perovskite without the biological template. The results indicated that the hierarchically porous LaFeO3 perovskite successfully replicated the porous structure of pomelo peel with high specific surface area. Compared to the LaFeO3 perovskite prepared without the pomelo peel template, the hierarchically porous LaFeO3 perovskite showed better catalytic oxidization of NO to NO2 under the same conditions. The maximum NO conversions for LaFeO3 prepared with and without template were 90% at 305 °C and 76% at 313 °C, respectively. This is mainly attributed to the higher ratio of Fe4+/Fe3+, the hierarchically porous structure with more adsorbed oxygen species and higher surface area for the hierarchically porous LaFeO3 perovskite compared with the sample prepared without the pomelo peel template.

  13. Hot gas ingestion test results of a two-poster vectored thrust concept with flow visualization in the NASA Lewis 9- by 15-foot low speed wind tunnel

    NASA Technical Reports Server (NTRS)

    Johns, Albert L.; Neiner, George; Bencic, Timothy J.; Flood, Joseph D.; Amuedo, Kurt C.

    1990-01-01

    A 9.2 percent scale STOVL hot gas ingestion model was tested in the NASA Lewis 9 x 15-foot Low-Speed Wind Tunnel. Flow visualization from the Phase 1 test program, which evaluated the hot ingestion phenomena and control techniques, is covered. The Phase 2 test program evaluated the hot gas ingestion phenomena at higher temperatures and used a laser sheet to investigate the flow field. Hot gas ingestion levels were measured for the several forward nozzle splay configurations and with flow control/life improvement devices (LIDs) which reduced the hot gas ingestion. The test was conducted at full scale nozzle pressure ratios and inlet Mach numbers. Results are presented over a range of nozzle pressure ratios at a 10 kn headwind velocity. The Phase 2 program was conducted at exhaust nozzle temperatures up to 1460 R and utilized a sheet laser system for flow visualization of the model flow field in and out of ground effects. The results reported are for nozzle exhaust temperatures up to 1160 R and contain the compressor face pressure and temperature distortions, the total pressure recovery, the inlet temperature rise, and the environmental effects of the hot gas. The environmental effects include the ground plane contours, the model airframe heating, and the location of the ground flow separation.

  14. Development of advanced high temperature in-cylinder components and tribological systems for low heat rejection diesel engines, phase 1

    NASA Astrophysics Data System (ADS)

    Kroeger, C. A.; Larson, H. J.

    1992-03-01

    Analysis and concept design work completed in Phase 1 have identified a low heat rejection engine configuration with the potential to meet the Heavy Duty Transport Technology program specific fuel consumption goal of 152 g/kW-hr. The proposed engine configuration incorporates low heat rejection, in-cylinder components designed for operation at 24 MPa peak cylinder pressure. Water cooling is eliminated by selective oil cooling of the components. A high temperature lubricant will be required due to increased in-cylinder operating temperatures. A two-stage turbocharger air system with intercooling and aftercooling was selected to meet engine boost and BMEP requirements. A turbocompound turbine stage is incorporated for exhaust energy recovery. The concept engine cost was estimated to be 43 percent higher compared to a Caterpillar 3176 engine. The higher initial engine cost is predicted to be offset by reduced operating costs due the lower fuel consumption.

  15. Analytical fuel property effects: Small combustors, phase 2

    NASA Technical Reports Server (NTRS)

    Hill, T. G.; Monty, J. D.; Morton, H. L.

    1985-01-01

    The effects of non-standard aviation fuels on a typical small gas turbine combustor were studied and the effectiveness of design changes intended to counter the effects of these fuels was evaluated. The T700/CT7 turboprop engine family was chosen as being representative of the class of aircraft power plants desired for this study. Fuel properties, as specified by NASA, are characterized by low hydrogen content and high aromatics levels. No. 2 diesel fuel was also evaluated in this program. Results demonstrated the anticipated higher than normal smoke output and flame radiation intensity with resulting increased metal temperatures on the baseline T700 combustor. Three new designs were evaluated using the non standard fuels. The three designs incorporated enhanced cooling features and smoke reduction features. All three designs, when burning the broad specification fuels, exhibited metal temperatures at or below the baseline combustor temperatures on JP-5. Smoke levels were acceptable but higher than predicted.

  16. Development of advanced high temperature in-cylinder components and tribological systems for low heat rejection diesel engines, phase 1

    NASA Technical Reports Server (NTRS)

    Kroeger, C. A.; Larson, H. J.

    1992-01-01

    Analysis and concept design work completed in Phase 1 have identified a low heat rejection engine configuration with the potential to meet the Heavy Duty Transport Technology program specific fuel consumption goal of 152 g/kW-hr. The proposed engine configuration incorporates low heat rejection, in-cylinder components designed for operation at 24 MPa peak cylinder pressure. Water cooling is eliminated by selective oil cooling of the components. A high temperature lubricant will be required due to increased in-cylinder operating temperatures. A two-stage turbocharger air system with intercooling and aftercooling was selected to meet engine boost and BMEP requirements. A turbocompound turbine stage is incorporated for exhaust energy recovery. The concept engine cost was estimated to be 43 percent higher compared to a Caterpillar 3176 engine. The higher initial engine cost is predicted to be offset by reduced operating costs due the lower fuel consumption.

  17. A biomarker record of temperature and phytoplankton community in Okinawa Trough since the last glacial maximum

    NASA Astrophysics Data System (ADS)

    Ruan, Jiaping

    2017-04-01

    A variety of biomarkers were examined from Ocean Drilling Program (ODP) core 1202B to reconstruct temperature and phytoplankton community structures in the southern Okinawa Trough for the past ca. 20000 years. Two molecular temperature proxies (Uk37 and TEX86) show 5-6 ℃ warming during the glacial/interglacial transition. Prior to the Holocene, the Uk37-derived temperature was generally 1-4 ℃ higher than TEX86-derived temperature. This difference, however, was reduced to <1 ℃ in the Holocene when the Kuroshio Current was intensified. Correspondingly, the phytoplankton biomarkers (e.g., C37:2 alkenone, brassicasterol, C30 1,15-diols and dinosterol) suggest a shift of planktonic community assemblages with coccolithophorids becoming more abundant in the Holocene at the expense of diatoms/dinoflagellates. Such a shift is related to the variability of nutrient, temperature and salinity in the Okinawa Trough, controlled by the sea level and the intensity of Kuroshio Current. The phytoplankton community change may have profound implications on atmospheric CO2 fluctuations during glacial/interglacial cycles since diatoms and dinoflagellates have a higher efficiency of biological pump than coccolithophorids.

  18. An Alternative to NOx Cap-and-Trade Programs: An Exploratory Analysis of Charging NOx Emitters for Health Damages

    NASA Astrophysics Data System (ADS)

    Mauzerall, D. L.; Sultan, B.; Kim, N.; Bradford, D.

    2003-12-01

    To address the problem of elevated O3 concentrations throughout the northeastern United States in summer, a NOx cap-and-trade program was implemented that reduced NOx emissions from large point sources by nearly 50%. To determine whether this program has been successful, we examine O3, NO and temperature measurements collected in the EPA-AIRS network prior to and after the cap-and-trade program went into effect in 1999. Ambient NO concentrations as measured in the EPA-AIRS network are lower in the post-cap period in all months except July. We find that the upper half of the distribution of O3 concentrations within the region is essentially unchanged (or slightly higher) in May and June, modestly reduced in July and August (except the highest concentrations which are larger in August), and significantly lower in September (ranging from 0-20 ppb lower between the mean and highest concentrations) in the 1999-2001 post-cap period relative to the 1995-1998 pre-cap period. Except for September, the frequency with which the 80ppb 8-hour NAAQS standard for O3 is exceeded has not decreased. Temperatures during the post-cap period were slightly higher in June, July and August, and slightly lower in September - likely contributing to reduced O3 levels during September in the post-cap period. To explore the possibility that trading, or selective emissions over the course of the summer, could influence regional O3 concentrations, we conduct chemical transport modeling experiments using the CAMx regional model. Even within May-September for a single year, demands for electrical power and hence NOx emissions are greater during hot than cool periods. We demonstrate that substantially more O3 is produced from identical NOx emissions from a single power plant on high temperature than on low temperature days in July 1995. Thus a lack of temporal restrictions on when in a single summer month NOx emissions may occur can result in higher O3 levels. We also demonstrate that identical NOx emissions in regions of high (low) isoprene emission result in greater (lesser) O3 production. This indicates that NOx trades from locations with low to high isoprene emissions likely result in increases in O3 production. Since the objective of reducing O3 concentrations is to reduce the impact elevated O3 has on human health and welfare, we examine the mortalities that result from the O3 produced from a fixed NOx emission in the two cases described above as well as in regions of high and low population. We estimate substantially higher mortality rates from a unit NOx emission as a result of elevated O3 concentrations for high temperature days, in regions of high isoprene emissions, and for emissions occurring upwind of large populations. We attempt to assign a monetary value to the loss of life resulting from the enhanced O3 concentrations that result from these NOx emissions. We propose, as an alternative to NOx emissions cap and trade programs, a system by which NOx emitters are charged for the marginal damage they cause as a result of the O3 produced from the NOx they emit. Rather than resulting in a reduction in total NOx emissions without necessarily reducing O3 concentrations (as a cap-and-trade program does), this alternative system provides a direct incentive to reduce NOx emissions at times and places where they cause the most harm.

  19. Temperature-programmed desorption study of NO reactions on rutile TiO2(110)-1×1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Boseong; Dohnálek, Zdenek; Szanyi, János

    2016-10-01

    Systematic temperature-programmed desorption (TPD) studies of NO adsorption and reactions on rutile TiO2(110)-1×1 surface reveal several distinct reaction channels in a temperature range of 50 – 500 K. NO readily reacts on TiO2(110) to form N2O which desorbs between 50 and 200 K (LT N2O channels), which leaves the TiO2 surface populated with adsorbed oxygen atoms (Oa) as a byproduct of N2O formation. In addition, we observe simultaneous desorption peaks of NO and N2O at 270 K (HT1 N2O) and 400 K (HT2 N2O), respectively, both of which are attributed to reaction-limited processes. No N-derived reaction product desorbs from TiO2(110)more » surface above 500 K or higher, while the surface may be populated with Oa’s and oxidized products such as NO2 and NO3. The adsorbate-free TiO2 surface with oxygen vacancies can be regenerated by prolonged annealing at 850 K or higher. Detailed analysis of the three N2O desorption yields reveals that the surface species for the HT channels are likely to be various forms of NO dimers.« less

  20. Temperature-programmed desorption study of NO reactions on rutile TiO 2(110)-1×1

    DOE PAGES

    Kim, Boseong; Dohnalek, Zdenek; Szanyi, Janos; ...

    2016-02-24

    In this study, systematic temperature-programmed desorption (TPD) studies of NO adsorption and reactions on rutile TiO 2(110)-1 × 1 surface reveal several distinct reaction channels in a temperature range of 50–500 K. NO readily reacts on TiO 2(110) to form N 2O, which desorbs between 50 and 200 K (LT N 2O channels), which leaves the TiO 2 surface populated with adsorbed oxygen atoms (O a) as a by-product of N 2O formation. In addition, we observe simultaneous desorption peaks of NO and N 2O at 270 K (HT1 N 2O) and 400 K (HT2 N 2O), respectively, both ofmore » which are attributed to reaction-limited processes. No N-derived reaction product desorbs from TiO 2(110) surface above 500 K or higher, while the surface may be populated with Oa's and oxidized products such as NO 2 and NO 3. The adsorbate-free TiO 2 surface with oxygen vacancies can be regenerated by prolonged annealing at 850 K or higher. Detailed analysis of the three N 2O desorption yields reveals that the surface species for the HT channels are likely to be various forms of NO dimers.« less

  1. Enhanced superconductivity at the interface of W/Sr2RuO4 point contact

    NASA Astrophysics Data System (ADS)

    Wei, Jian; Wang, He; Lou, Weijian; Luo, Jiawei; Liu, Ying; Ortmann, J. E.; Mao, Z. Q.

    Differential resistance measurements are conducted for point contacts (PCs) between the Sr2RuO4 (SRO) single crystal and the tungsten tip. Since the tungsten tip is hard enough to penetrate through the surface layer, consistent superconducting features are observed. Firstly, with the tip pushed towards the crystal, the zero bias conductance peak (ZBCP) due to Andreev reflection at the normal-superconducting interface increases from 3% to more than 20%, much larger than previously reported, and extends to temperature higher than the bulk transition temperature. Reproducible ZBCP within 0.2 mV may also help determine the gap value of SRO, on which no consensus has been reached. Secondly, the logarithmic background can be fitted with the Altshuler-Aronov theory of electron-electron interaction for tunneling into quasi two dimensional electron system. Feasibility of such fitting confirms that spectroscopic information like density of states is probed, and electronic temperature retrieved from such fitting can be important to analyse the PC spectra. Third, at bias much higher than 0.2 mV there are conductance dips due to the critical current effect and these dips persist up to 6.2 K. For more details see. National Basic Research Program of China (973 Program) through Grant No. 2011CBA00106 and No. 2012CB927400.

  2. An Equipment to Measure the Freezing Point of Soils under Higher Pressure

    NASA Astrophysics Data System (ADS)

    Wang, Dayan; Guan, Hui; Wen, Zhi; Ma, Wei

    2014-05-01

    Soil freezing point is the highest temperature at which ice can be presented in the system and soil can be referred to as frozen. The freezing temperature of soil is an important parameter for solving many practical problems in civil engineering, such as evaluation of soil freezing depth, prediction of soil heaving, force of soil suction, etc. However, as the freezing temperature is always affected by many factors like soil particle size, mineral composition, water content and the external pressure endured by soils, to measure soil freezing point is a rather difficult task until now, not to mention the soil suffering higher pressure. But recently, with the artificial freezing technology widely used in the excavation of deep underground space, the frozen wall thickness is a key factor to impact the security and stability of deep frozen wall. To determine the freeze wall thickness, the location of the freezing front must be determined firstly, which will deal with the determination of the soil freezing temperature. So how to measure the freezing temperature of soil suffering higher pressure is an important problem to be solved. This paper will introduce an equipment which was developed lately by State Key Laboratory of Frozen Soil Engineering to measure the freezing-point of soils under higher pressure. The equipment is consisted of cooling and keeping temperature system, temperature sensor and data collection system. By cooling and keeping temperature system, not only can we make the higher pressure soil sample's temperature drop to a discretionary minus temperature, but also keep it and reduce the heat exchange of soil sample with the outside. The temperature sensor is the key part to our measurement, which is featured by high precision and high sensitivity, what is more important is that the temperature sensor can work in a higher pressure condition. Moreover, the major benefit of this equipment is that the soil specimen's loads can be loaded by any microcomputer control electron universal testing machines. All of above mentioned advantages of this equipment ensures one to catch up the moment soil turns from the thawed state into ice and enable one to determine the freezing point experimentally by recording the temperature-time history (cooling curve) at particular points within the sample used for analysis. Therefore, this equipment has excellent characteristics such as compact construction, convenient operation, high reliability and the measuring accuracy. The authors would like to thank the following agents for their financial supports: the National Natural Science Foundation (No.41071048),Hundred Talent Young Scientists program of the Chinese Academy of Sciences granted to Dr. Zhi Wen.

  3. High-temperature MIRAGE XL (LFRA) IRSP system development

    NASA Astrophysics Data System (ADS)

    McHugh, Steve; Franks, Greg; LaVeigne, Joe

    2017-05-01

    The development of very-large format infrared detector arrays has challenged the IR scene projector community to develop larger-format infrared emitter arrays. Many scene projector applications also require much higher simulated temperatures than can be generated with current technology. This paper will present an overview of resistive emitterbased (broadband) IR scene projector system development, as well as describe recent progress in emitter materials and pixel designs applicable for legacy MIRAGE XL Systems to achieve apparent temperatures >1000K in the MWIR. These new high temperature MIRAGE XL (LFRA) Digital Emitter Engines (DEE) will be "plug and play" equivalent with legacy MIRAGE XL DEEs, the rest of the system is reusable. Under the High Temperature Dynamic Resistive Array (HDRA) development program, Santa Barbara Infrared Inc. (SBIR) is developing a new infrared scene projector architecture capable of producing both very large format (>2k x 2k) resistive emitter arrays and improved emitter pixel technology capable of simulating very high apparent temperatures. During earlier phases of the program, SBIR demonstrated materials with MWIR apparent temperatures in excess of 1500 K. These new emitter materials can be utilized with legacy RIICs to produce pixels that can achieve 7X the radiance of the legacy systems with low cost and low risk. A 'scalable' Read-In Integrated Circuit (RIIC) is also being developed under the same HDRA program to drive the high temperature pixels. This RIIC will utilize through-silicon via (TSV) and Quilt Packaging (QP) technologies to allow seamless tiling of multiple chips to fabricate very large arrays, and thus overcome the yield limitations inherent in large-scale integrated circuits. These quilted arrays can be fabricated in any N x M size in 512 steps.

  4. The Programming Optimization of Capacitorless 1T DRAM Based on the Dual-Gate TFET

    NASA Astrophysics Data System (ADS)

    Li, Wei; Liu, Hongxia; Wang, Shulong; Chen, Shupeng; Wang, Qianqiong

    2017-09-01

    The larger volume of capacitor and higher leakage current of transistor have become the inherent disadvantages for the traditional one transistor (1T)-one capacitor (1C) dynamic random access memory (DRAM). Recently, the tunneling FET (TFET) is applied in DRAM cell due to the low off-state current and high switching ratio. The dual-gate TFET (DG-TFET) DRAM cell with the capacitorless structure has the superior performance-higher retention time (RT) and weak temperature dependence. But the performance of TFET DRAM cell is sensitive to programming condition. In this paper, the guideline of programming optimization is discussed in detail by using simulation tool—Silvaco Atlas. Both the writing and reading operations of DG-TFET DRAM depend on the band-to-band tunneling (BTBT). During the writing operation, the holes coming from BTBT governed by Gate2 are stored in potential well under Gate2. A small negative voltage is applied at Gate2 to retain holes for a long time during holding "1". The BTBT governed by Gate1 mainly influences the reading current. Using the optimized programming condition, the DG-TFET DRAM obtains the higher current ratio of reading "1" to reading "0" (107) and RT of more than 2 s. The higher RT reduces the refresh rate and dynamic power consumption of DRAM.

  5. Development of HIDEC adaptive engine control systems

    NASA Technical Reports Server (NTRS)

    Landy, R. J.; Yonke, W. A.; Stewart, J. F.

    1986-01-01

    The purpose of NASA's Highly Integrated Digital Electronic Control (HIDEC) flight research program is the development of integrated flight propulsion control modes, and the evaluation of their benefits aboard an F-15 test aircraft. HIDEC program phases are discussed, with attention to the Adaptive Engine Control System (ADECS I); this involves the upgrading of PW1128 engines for operation at higher engine pressure ratios and the production of greater thrust. ADECS II will involve the development of a constant thrust mode which will significantly reduce turbine operating temperatures.

  6. Solid Polymer Electrolyte (SPE) fuel cell technology program

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The overall objectives of the Phase IV Solid Polymer Electrolyte Fuel Cell Technology Program were to: (1) establish fuel cell life and performance at temperatures, pressures and current densities significantly higher than those previously demonstrated; (2) provide the ground work for a space energy storage system based on the solid polymer electrolyte technology (i.e., regenerative H2/O2 fuel cell); (3) design, fabricate and test evaluate a full-scale single cell unit. During this phase, significant progress was made toward the accomplishment of these objectives.

  7. Spatial-temporal analysis of building surface temperatures in Hung Hom

    NASA Astrophysics Data System (ADS)

    Zeng, Ying; Shen, Yueqian

    2015-12-01

    This thesis presents a study on spatial-temporal analysis of building surface temperatures in Hung Hom. Observations were collected from Aug 2013 to Oct 2013 at a 30-min interval, using iButton sensors (N=20) covering twelve locations in Hung Hom. And thermal images were captured in PolyU from 05 Aug 2013 to 06 Aug 2013. A linear regression model of iButton and thermal records is established to calibrate temperature data. A 3D modeling system is developed based on Visual Studio 2010 development platform, using ArcEngine10.0 component, Microsoft Access 2010 database and C# programming language. The system realizes processing data, spatial analysis, compound query and 3D face temperature rendering and so on. After statistical analyses, building face azimuths are found to have a statistically significant relationship with sun azimuths at peak time. And seasonal building temperature changing also corresponds to the sun angle and sun azimuth variations. Building materials are found to have a significant effect on building surface temperatures. Buildings with lower albedo materials tend to have higher temperatures and larger thermal conductivity material have significant diurnal variations. For the geographical locations, the peripheral faces of campus have higher temperatures than the inner faces during day time and buildings located at the southeast are cooler than the western. Furthermore, human activity is found to have a strong relationship with building surface temperatures through weekday and weekend comparison.

  8. High temperature-ultra performance liquid chromatography-mass spectrometry for the metabonomic analysis of Zucker rat urine.

    PubMed

    Gika, Helen G; Theodoridis, Georgios; Extance, Jon; Edge, Anthony M; Wilson, Ian D

    2008-08-15

    The applicability and potential of using elevated temperatures and sub 2-microm porous particles in chromatography for metabonomics/metabolomics was investigated using, for the first time, solvent temperatures higher than the boiling point of water (up to 180 degrees C) and thermal gradients to reduce the use of organic solvents. Ultra performance liquid chromatography, combined with mass spectrometry, was investigated for the global metabolite profiling of the plasma and urine of normal and Zucker (fa/fa) obese rats (a well established disease animal model). "Isobaric" high temperature chromatography, where the temperature and flow rate follow a gradient program, was developed and evaluated against a conventional organic solvent gradient. LC-MS data were first examined by established chromatographic criteria in order to evaluate the chromatographic performance and next were treated by special peak picking algorithms to allow the application of multivariate statistics. These studies showed that, for urine (but not plasma), chromatography at elevated temperatures provided better results than conventional reversed-phase LC with higher peak capacity and better peak asymmetry. From a systems biology point of view, better group clustering and separation was obtained with a larger number of variables of high importance when using high temperature-ultra performance liquid chromatography (HT-UPLC) compared to conventional solvent gradients.

  9. Investigation of test methods, material properties, and processes for solar cell encapsulants

    NASA Technical Reports Server (NTRS)

    Willis, P. B.

    1982-01-01

    Technical investigations concerned the development of advanced cure chemistries for lamination type pottants; the continued evaluation of soil resistant surface treatments, and the results of an accelerated aging test program for the comparison of material stabilities. New compounds were evaluated for efficiency in curing both ethylene/vinyl acetate and ethylene/methyl acrylate pottants intended for vacuum bag lamination of solar cells. One compound in particular, designated Lupersol - TBEC (Lucidol Division of Pennwalt Corp.) was found to be unusually effective in promoting the rapid cure of both these materials. Formulation of these resins with TBEC resulted in compositions of very high gel content, lower temperatures of activation, and much lower cure times, even in the ethylene/methyl acrylate polymer that is more difficult to cure. It is expected that TBEC modified pottant formulations may permit the lamination/encapsulation step to be operated at lower temperatures, higher speed, higher throughput and a much wider tolerance for intentional or accidental variations in the cure schedule. An experimental program continued to determine the effectiveness of soil resistant coatings.

  10. Integrated analysis of engine structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1981-01-01

    The need for light, durable, fuel efficient, cost effective aircraft requires the development of engine structures which are flexible, made from advaced materials (including composites), resist higher temperatures, maintain tighter clearances and have lower maintenance costs. The formal quantification of any or several of these requires integrated computer programs (multilevel and/or interdisciplinary analysis programs interconnected) for engine structural analysis/design. Several integrated analysis computer prorams are under development at Lewis Reseach Center. These programs include: (1) COBSTRAN-Composite Blade Structural Analysis, (2) CODSTRAN-Composite Durability Structural Analysis, (3) CISTRAN-Composite Impact Structural Analysis, (4) STAEBL-StruTailoring of Engine Blades, and (5) ESMOSS-Engine Structures Modeling Software System. Three other related programs, developed under Lewis sponsorship, are described.

  11. Locally Motivated GLOBE Investigations - A Key to Success

    NASA Astrophysics Data System (ADS)

    Washburne, J. C.; Geery, W.

    2003-12-01

    The GLOBE program was set up to help students make a core set of environmental observations at or near their schools, report their data through the internet to share with other students and scientists, analyze their data both locally and globally, and use this knowledge to form a better understanding of their environment. While the GLOBE program has been successful promoting more meaningful data collection, many of the tools and much of the infrastructure available to schools to synthesize their observations are underused. Schools that integrate GLOBE protocols with locally motivated investigations are more likely to implement the higher-order analysis and synthesis components of the program. Indicators of a successful observational program are things like measurement persistence, high data quality, and regular data. Participation in community forums and student-based research projects are evidence of a successful integrated program. A locally motivated issue allows a school to mold their GLOBE investigations around a multi-faceted question that they have first-hand knowledge of, that is both relevant and engaging to their students, and that can be supported by local expertise. In contrast, many GLOBE investigations are designed around abstract, non-site specific, narrowly focused and externally analyzed questions that limit local involvement and motivation. The main focus of this presentation is a few case histories of successful local investigations that incorporated GLOBE soil and air temperature data-logger measurements. The main example is drawn from Mr. Geery's fifth grade class investigation of why temperature differences exist between a local river bottom area and the school, which is located several kilometers away and 100 meters higher.

  12. Pyrolytic graphite collector development program

    NASA Technical Reports Server (NTRS)

    Wilkins, W. J.

    1982-01-01

    Pyrolytic graphite promises to have significant advantages as a material for multistage depressed collector electrodes. Among these advantages are lighter weight, improved mechanical stiffness under shock and vibration, reduced secondary electron back-streaming for higher efficiency, and reduced outgassing at higher operating temperatures. The essential properties of pyrolytic graphite and the necessary design criteria are discussed. This includes the study of suitable electrode geometries and methods of attachment to other metal and ceramic collector components consistent with typical electrical, thermal, and mechanical requirements.

  13. Solid polymer electrolyte (SPE) fuel cell technology program, phase 2/2A. [testing and evaluations

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Test evaluations were performed on a fabricated single solid polymer electrolyte cell unit. The cell operated at increased current density and at higher performance levels. This improved performance was obtained through a combination of increased temperature, increased reactant pressures, improved activation techniques and improved thermal control over the baseline cell configuration. The cell demonstrated a higher acid content membrane which resulted in increased performance. Reduced catalyst loading and low cost membrane development showed encouraging results.

  14. Microstructure and Mechanical Properties of Nano-Size Zirconium Carbide Dispersion Strengthened Tungsten Alloys Fabricated by Spark Plasma Sintering Method

    NASA Astrophysics Data System (ADS)

    Xie, Zhuoming; Liu, Rui; Fang, Qianfeng; Zhang, Tao; Jiang, Yan; Wang, Xianping; Liu, Changsong

    2015-12-01

    W-(0.2, 0.5, 1.0)wt% ZrC alloys with a relative density above 97.5% were fabricated through the spark plasma sintering (SPS) method. The grain size of W-1.0wt% ZrC is about 2.7 μm, smaller than that of pure W and W-(0.2, 0.5)wt% ZrC. The results indicated that the W-ZrC alloys exhibit higher hardness at room temperature, higher tensile strength at high temperature, and a lower ductile to brittle transition temperature (DBTT) than pure W. The tensile strength and total elongation of W-0.5wt% ZrC alloy at 700 °C is 535 MPa and 24.8%, which are respectively 59% and 114% higher than those of pure W (337 MPa, 11.6%). The DBTT of W-(0.2, 0.5, 1.0)wt% ZrC materials is in the range of 500°C-600°C, which is about 100 °C lower than that of pure W. Based on microstructure analysis, the improved mechanical properties of the W-ZrC alloys were suggested to originate from the enhanced grain boundary cohesion by ZrC capturing the impurity oxygen in tungsten and nano-size ZrC dispersion strengthening. supported by the Innovation Program of Chinese Academy of Sciences (No. KJCX2-YW-N35), the National Magnetic Confinement Fusion Science Program of China (No. 2011GB108004), National Natural Science Foundation of China (Nos. 51301164, 11075177, 11274305), and Anhui Provincial Natural Science Foundation of China (No. 1408085QE77)

  15. Fuel freeze-point investigations. Final report, September 1982-March 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desmarais, L.A.; Tolle, F.F.

    1984-07-01

    The objective of this program was to conduct a detailed assessment of the low-temperature environment to which USAF aircraft are exposed for the purpose of defining a maximum acceptable fuel freeze-point and also to define any operational changes required with the use of a high freeze-point fuel. A previous study of B-52, C-141, and KC-135 operational missions indicated that the -58 C freeze point specification was too conservative. Based on recommendations resulting from the previous program, several improvements in the method of analysis were made, such as: expansion of the atmospheric temperature data base, the addition of ground temperature analysis,more » the addition of fuel-freezing analysis to the one-dimensional fuel-temperature computer program, and the examination of heat transfer in external fuel tanks, such as pylon or tip tanks. The B-52, C-141, and KC-135 mission were analyzed again, along with the operational missions of two tactical airplanes, the A-10 and F-15; -50C was determined to be the maximum allowable freeze point for a general-purpose USAF aviation turbine fuel. Higher freeze points can be tolerated if the probability of operational interference is acceptably low or if operational changes can be made. Study of atmospheric temperatures encountered for the missions of the five-study aircraft indicates that a maximum freeze point of -48 C would not likely create any operational difficulties in Northern Europe.« less

  16. Modeling the glass transition of amorphous networks for shape-memory behavior

    NASA Astrophysics Data System (ADS)

    Xiao, Rui; Choi, Jinwoo; Lakhera, Nishant; Yakacki, Christopher M.; Frick, Carl P.; Nguyen, Thao D.

    2013-07-01

    In this paper, a thermomechanical constitutive model was developed for the time-dependent behaviors of the glass transition of amorphous networks. The model used multiple discrete relaxation processes to describe the distribution of relaxation times for stress relaxation, structural relaxation, and stress-activated viscous flow. A non-equilibrium thermodynamic framework based on the fictive temperature was introduced to demonstrate the thermodynamic consistency of the constitutive theory. Experimental and theoretical methods were developed to determine the parameters describing the distribution of stress and structural relaxation times and the dependence of the relaxation times on temperature, structure, and driving stress. The model was applied to study the effects of deformation temperatures and physical aging on the shape-memory behavior of amorphous networks. The model was able to reproduce important features of the partially constrained recovery response observed in experiments. Specifically, the model demonstrated a strain-recovery overshoot for cases programmed below Tg and subjected to a constant mechanical load. This phenomenon was not observed for materials programmed above Tg. Physical aging, in which the material was annealed for an extended period of time below Tg, shifted the activation of strain recovery to higher temperatures and increased significantly the initial recovery rate. For fixed-strain recovery, the model showed a larger overshoot in the stress response for cases programmed below Tg, which was consistent with previous experimental observations. Altogether, this work demonstrates how an understanding of the time-dependent behaviors of the glass transition can be used to tailor the temperature and deformation history of the shape-memory programming process to achieve more complex shape recovery pathways, faster recovery responses, and larger activation stresses.

  17. Coadsorbed species explain the mechanism of methanol temperature-desorption on CeO 2(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutton, Jonathan E.; Steven H. Overbury; Beste, Ariana

    2016-03-24

    Here, we have used density functional theory calculations to investigate the temperature-programmed desorption (TPD) of methanol from CeO 2(111). For the first time, low-temperature water formation and high-temperature methanol desorption are explained by our calculations. High coverages of methanol, which correspond to experimental conditions, are required to properly describe these features of the TPD spectrum. We identify a mechanism for the low-temperature formation of water involving the dissociation of two methanol molecules on the same surface O atom and filling of the resulting surface vacancy with one of the methoxy products. After water desorption, methoxy groups are stabilized on themore » surface and react at higher temperatures to form methanol and formaldehyde by a disproportionation mechanism. Alternatively, the stabilized methoxy groups undergo sequential C–H scission reactions to produce formaldehyde. Calculated energy requirements and methanol/formaldehyde selectivity agree with the experimental data.« less

  18. Peak capacity, peak-capacity production rate, and boiling point resolution for temperature-programmed GC with very high programming rates

    PubMed

    Grall; Leonard; Sacks

    2000-02-01

    Recent advances in column heating technology have made possible very fast linear temperature programming for high-speed gas chromatography. A fused-silica capillary column is contained in a tubular metal jacket, which is resistively heated by a precision power supply. With very rapid column heating, the rate of peak-capacity production is significantly enhanced, but the total peak capacity and the boiling-point resolution (minimum boiling-point difference required for the separation of two nonpolar compounds on a nonpolar column) are reduced relative to more conventional heating rates used with convection-oven instruments. As temperature-programming rates increase, elution temperatures also increase with the result that retention may become insignificant prior to elution. This results in inefficient utilization of the down-stream end of the column and causes a loss in the rate of peak-capacity production. The rate of peak-capacity production is increased by the use of shorter columns and higher carrier gas velocities. With high programming rates (100-600 degrees C/min), column lengths of 6-12 m and average linear carrier gas velocities in the 100-150 cm/s range are satisfactory. In this study, the rate of peak-capacity production, the total peak capacity, and the boiling point resolution are determined for C10-C28 n-alkanes using 6-18 m long columns, 50-200 cm/s average carrier gas velocities, and 60-600 degrees C/min programming rates. It was found that with a 6-meter-long, 0.25-mm i.d. column programmed at a rate of 600 degrees C/min, a maximum peak-capacity production rate of 6.1 peaks/s was obtained. A total peak capacity of about 75 peaks was produced in a 37-s long separation spanning a boiling-point range from n-C10 (174 degrees C) to n-C28 (432 degrees C).

  19. Study of the temperature rise induced by a focusing transducer with a wide aperture angle on biological tissue containing ribs

    NASA Astrophysics Data System (ADS)

    Xin, Wang; Jiexing, Lin; Xiaozhou, Liu; Jiehui, Liu; Xiufen, Gong

    2016-04-01

    We used the spheroidal beam equation to calculate the sound field created by focusing a transducer with a wide aperture angle to obtain the heat deposition, and then we used the Pennes bioheat equation to calculate the temperature field in biological tissue with ribs and to ascertain the effects of rib parameters on the temperature field. The results show that the location and the gap width between the ribs have a great influence on the axial and radial temperature rise of multilayer biological tissue. With a decreasing gap width, the location of the maximum temperature rise moves forward; as the ribs are closer to the transducer surface, the sound energy that passes through the gap between the ribs at the focus decreases, the maximum temperature rise decreases, and the location of the maximum temperature rise moves forward with the ribs. Project supported by the National Basic Research Program of China (Grant Nos. 2012CB921504 and 2011CB707902), the National Natural Science Foundation of China (Grant No. 11274166), the Fundamental Research Funds for the Central Universities, China (Grant No. 020414380001), the Fund from State Key Laboratory of Acoustics, Chinese Academy of Sciences (Grant No. SKLA201401), China Postdoctoral Science Foundation (Grant No. 2013M531313), and the Priority Academic Program Development of Jiangsu Higher Education Institutions and SRF for ROCS, SEM.

  20. Packing and Postirradiation Handling of the Anastrepha ludens (Diptera: Tephritidae) Tapachula-7 Genetic Sexing Strain: Combined Effects of Hypoxia, Pupal Size, and Temperature on Adult Quality.

    PubMed

    Arredondo, José; Ruiz, Lia; Montoya, Pablo; Díaz-Fleischer, Francisco

    2018-04-02

    The production of genetic sexing strains (GSS) of tephritid flies for sterile insect technique (SIT) programs convey the need to determine new conditions for packing and shipment since these flies are more susceptible to stressors than standard bisexual strains. We studied the effect of hypoxia, pupae size, and temperature on the new GSS Tapachula-7 of Anastrepha ludens flies (Diptera: Tephritidae). In one experiment, we tested the interaction size hypoxia using three pupae sizes, 6 (11.6 ± 1.1 mg), 7 (15.3 ± 1.5 mg), and 8 (17.9 ± 1.3 mg) (95% of produced pupae exhibit these categories of size), and four hypoxia periods, 12, 24, 36, 48 h and a control. In a second experiment, we tested two periods of hypoxia (24 and 48 h) and four temperatures: 15, 20, 25, and 30°C and a control (without hypoxia at laboratory temperature). Our results showed that the emergence and percent of fliers from the pupae exposed to hypoxia were adversely affected; however, emergence was higher in pupae of size 7. Treatment for 12 and 24 h hypoxia led to a higher number of fliers. In the case of the interaction of hypoxia and temperature, it was observed that those flies that emerged from the pupae exposed to hypoxia at 15 and 20°C exhibited quality control parameters similar to those that were not exposed to hypoxia. We discuss our results on the basis of the metabolic response to these factors and its application in the SIT programs.

  1. Gastrointestinal temperature trends in football linemen during physical exertion under heat stress.

    PubMed

    Coris, Eric E; Mehra, Shabnam; Walz, Stephen M; Duncanson, Robert; Jennings, Jason; Nugent, Dylan; Zwygart, Kira; Pescasio, Michele

    2009-06-01

    Exertional heat stroke is the third leading cause of death in US athletes. Elevations in core temperature in the digestive tract (TGI) have correlated with core temperature and are possible indicators of those at increased risk of heat stroke. The primary objective was to compare a.m. vs. p.m. TGI variation in collegiate football linemen during intense "two-a-day" preseason practice. A secondary objective was to compare longitudinal TGI in offensive and defensive linemen. Cross-sectional observational study. Division I Intercollegiate Athletics Football Program. TGI was monitored during consecutive preseason sessions. TGI, heat illness, weight changes, environmental stress, and subjective symptoms. Mean TGI were 37.8°C and 38.3°C during a.m. and p.m. practices, respectively. The a.m. practices revealed higher TGI gain (1.8°C) compared to p.m. (1.4°C). The p.m. practices had higher maximum TGI than a.m. practices (39.1°C versus 38.8, P=0.0001). Mean time to maximum temperature (Tmax) was 1 hr and 30 min for a.m. and 1 hr and 22 min for p.m. practices. Offensive linemen trended toward higher mean TGI than defensive players (38.0°C vs. 36.7°C, P = 0.069). The rate of rise in TGI was significantly greater in a.m. practices. A decrease in rate of TGI rise was seen from the first to last a.m. practices of the week (P = 0.004). Significant TGI elevations in asymptomatic athletes are common in extreme heat during football practice. Intense a.m. practices in full gear result in higher net temperature gain and rate of temperature gain than p.m. practices. Offensive linemen trended toward higher TGI than defensive linemen. As players acclimatized, a decrease in the rate of TGI increase was appreciable, particularly in a.m. practices. Appreciating cumulative heat stress and variations in heat stress related to scheduling of practice is critical.

  2. Johnson Noise Thermometry for Advanced Small Modular Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britton, C.L.,Jr.; Roberts, M.; Bull, N.D.

    Temperature is a key process variable at any nuclear power plant (NPP). The harsh reactor environment causes all sensor properties to drift over time. At the higher temperatures of advanced NPPs the drift occurs more rapidly. The allowable reactor operating temperature must be reduced by the amount of the potential measurement error to assure adequate margin to material damage. Johnson noise is a fundamental expression of temperature and as such is immune to drift in a sensor’s physical condition. In and near the core, only Johnson noise thermometry (JNT) and radiation pyrometry offer the possibility for long-term, high-accuracy temperature measurementmore » due to their fundamental natures. Small Modular Reactors (SMRs) place a higher value on long-term stability in their temperature measurements in that they produce less power per reactor core and thus cannot afford as much instrument recalibration labor as their larger brethren. The purpose of the current ORNL-led project, conducted under the Instrumentation, Controls, and Human-Machine Interface (ICHMI) research pathway of the U.S. Department of Energy (DOE) Advanced SMR Research and Development (R&D) program, is to develop and demonstrate a drift free Johnson noise-based thermometer suitable for deployment near core in advanced SMR plants.« less

  3. Engine Seal Technology Requirements to Meet NASA's Advanced Subsonic Technology Program Goals

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Hendricks, Robert C.

    1994-01-01

    Cycle studies have shown the benefits of increasing engine pressure ratios and cycle temperatures to decrease engine weight and improve performance of commercial turbine engines. NASA is working with industry to define technology requirements of advanced engines and engine technology to meet the goals of NASA's Advanced Subsonic Technology Initiative. As engine operating conditions become more severe and customers demand lower operating costs, NASA and engine manufacturers are investigating methods of improving engine efficiency and reducing operating costs. A number of new technologies are being examined that will allow next generation engines to operate at higher pressures and temperatures. Improving seal performance - reducing leakage and increasing service life while operating under more demanding conditions - will play an important role in meeting overall program goals of reducing specific fuel consumption and ultimately reducing direct operating costs. This paper provides an overview of the Advanced Subsonic Technology program goals, discusses the motivation for advanced seal development, and highlights seal technology requirements to meet future engine performance goals.

  4. Relationship between extreme Precipitation and Temperature over Japan: An analysis from Multi-GCMs and Multi-RCMs products

    NASA Astrophysics Data System (ADS)

    Nayak, S.; Dairaku, K.; Takayabu, I.

    2014-12-01

    According to the IPCC reports, the concentration of CO­2 has been increasing and projected to be increased significantly in future (IPCC, 2012). This can have significant impacts on climate. For instance, Dairaku and Emori (2006) examined over south Asia by doubling CO2 and documented an increase in precipitation intensities during Indian summer monsoon. This would increase natural disasters such as floods, landslide, coastal disaster, erosion etc. Recent studies investigated whether the rate of increase of extreme precipitation is related with the rate expected by Clausius-Clapeyron (CC) relationship (approximately 7% per degree temperature rise). In our study, we examine whether this rate can increase or decrease in the future regional climate scenarios over Japan. We have analysed the ensemble experiments by three RCMs(NHRCM, NRAMS, WRF) forced by JRA25 as well as three GCMs (CCSM4, MIROC5, MRI-GCM3) for the current climate (1981-2000) and future scenario (2081-2100, RCP4.5) over Japan. We have stratified the extreme (99th, 95th, 90th, 75th percentile) precipitation of daily sum and daily maximum of hourly precipitation intensities of wet events based on daily mean temperature in bins of 1°C width for annual as well as for each season (DJF, MAM, JJA, SON). The results indicate that precipitation intensity increases when temperature increases roughly up to 22 °C and further increase of temperature decreases the precipitation intensities. The obtained results are consistent and match with the observation (APHRODITE dataset) over Japan. The decrease of precipitation at higher temperature mainly can be found in JJA. It is also noticed that the rate of specific humidity is estimated higher during JJA than other seasons. The rate of increase of extreme precipitation is similar to the rate expected by CC relation except DJF (nearly twice of CC relation) in current climate. This rate becomes to be significantly larger in future scenario for higher temperatures than in current climate.Acknowledgement: This study is conducted as part of a research at NIED, Japan (PI: Koji Dairaku) of Research Program on Climate Change Adaptation (RECCA) and was supported by the SOUSEI Program, funded by Ministry of Education, Culture, Sports, Science and Technology, Government of Japan.

  5. Inter-comparison of hydro-climatic regimes across northern catchments: snychronicity, resistance and resilience

    Treesearch

    Sean K. Carey; Doerthe Tetzlaff; Jan Seibert; Chris Soulsby; Jim Buttle; Hjalmar Laudon; Jeff McDonnell; Kevin McGuire; Daniel Caissie; Jamie Shanley; Mike Kennedy; Kevin Devito; John W. Pomeroy

    2010-01-01

    The higher mid-latitudes of the Northern Hemisphere are particularly sensitive to climate change as small differences in temperature determine frozen ground status, precipitation phase, and the magnitude and timing of snow accumulation and melt. An international inter-catchment comparison program, North-Watch, seeks to improve our understanding of the sensitivity of...

  6. Fabrication of Very High Efficiency 5.8 GHz Power Amplifiers using AlGaN HFETs on SiC Substrates for Wireless Power Transmission

    NASA Technical Reports Server (NTRS)

    Sullivan, Gerry

    2001-01-01

    For wireless power transmission using microwave energy, very efficient conversion of the DC power into microwave power is extremely important. Class E amplifiers have the attractive feature that they can, in theory, be 100% efficient at converting, DC power to RF power. Aluminum gallium nitride (AlGaN) semiconductor material has many advantageous properties, relative to silicon (Si), gallium arsenide (GaAs), and silicon carbide (SiC), such as a much larger bandgap, and the ability to form AlGaN/GaN heterojunctions. The large bandgap of AlGaN also allows for device operation at higher temperatures than could be tolerated by a smaller bandgap transistor. This could reduce the cooling requirements. While it is unlikely that the AlGaN transistors in a 5.8 GHz class E amplifier can operate efficiently at temperatures in excess of 300 or 400 C, AlGaN based amplifiers could operate at temperatures that are higher than a GaAs or Si based amplifier could tolerate. Under this program, AlGaN microwave power HFETs have been fabricated and characterized. Hybrid class E amplifiers were designed and modeled. Unfortunately, within the time frame of this program, good quality HFETs were not available from either the RSC laboratories or commercially, and so the class E amplifiers were not constructed.

  7. The Programming Optimization of Capacitorless 1T DRAM Based on the Dual-Gate TFET.

    PubMed

    Li, Wei; Liu, Hongxia; Wang, Shulong; Chen, Shupeng; Wang, Qianqiong

    2017-09-06

    The larger volume of capacitor and higher leakage current of transistor have become the inherent disadvantages for the traditional one transistor (1T)-one capacitor (1C) dynamic random access memory (DRAM). Recently, the tunneling FET (TFET) is applied in DRAM cell due to the low off-state current and high switching ratio. The dual-gate TFET (DG-TFET) DRAM cell with the capacitorless structure has the superior performance-higher retention time (RT) and weak temperature dependence. But the performance of TFET DRAM cell is sensitive to programming condition. In this paper, the guideline of programming optimization is discussed in detail by using simulation tool-Silvaco Atlas. Both the writing and reading operations of DG-TFET DRAM depend on the band-to-band tunneling (BTBT). During the writing operation, the holes coming from BTBT governed by Gate2 are stored in potential well under Gate2. A small negative voltage is applied at Gate2 to retain holes for a long time during holding "1". The BTBT governed by Gate1 mainly influences the reading current. Using the optimized programming condition, the DG-TFET DRAM obtains the higher current ratio of reading "1" to reading "0" (10 7 ) and RT of more than 2 s. The higher RT reduces the refresh rate and dynamic power consumption of DRAM.

  8. The Effect of Molecular Weight on the Composite Properties of Cured Phenylethynyl Terminated Imide Oligomers

    NASA Technical Reports Server (NTRS)

    Smith, J. G., Jr.; Connell, J. W.; Hergenrother, P. M.

    1997-01-01

    As part of a program to develop high temperature/high performance structural resins for aeronautical applications, imide oligomers containing terminal phenylethynyl groups with calculated number average molecular weights of 1250, 2500 and 5000 g/mol were prepared, characterized, and evaluated as adhesives and composite matrix resins. The goal of this work was to develop resin systems that are processable using conventional processing equipment into void free composites that exhibit high mechanical properties with long term high temperature durability, and are not affected by exposure to common aircraft fluids. The imide oligomers containing terminal phenylethynyl groups were fabricated into titanium adhesive specimens and IM-7 carbon fiber laminates under 0.1 - 1.4 MPa for 1 hr at 350-371 C. The lower molecular weight oligomers exhibited higher cured Tg, better processability, and better retention of mechanical properties at elevated temperature without significantly sacrificing toughness or damage tolerance than the higher molecular weight oligomer. The neat resin, adhesive and composite properties of the cured polymers will be presented.

  9. Effect of Oxide Coating on Performance of Copper-Zinc Oxide-Based Catalyst for Methanol Synthesis via Hydrogenation of Carbon Dioxide.

    PubMed

    Umegaki, Tetsuo; Kojima, Yoshiyuki; Omata, Kohji

    2015-11-16

    The effect of oxide coating on the activity of a copper-zinc oxide-based catalyst for methanol synthesis via the hydrogenation of carbon dioxide was investigated. A commercial catalyst was coated with various oxides by a sol-gel method. The influence of the types of promoters used in the sol-gel reaction was investigated. Temperature-programmed reduction-thermogravimetric analysis revealed that the reduction peak assigned to the copper species in the oxide-coated catalysts prepared using ammonia shifts to lower temperatures than that of the pristine catalyst; in contrast, the reduction peak shifts to higher temperatures for the catalysts prepared using L(+)-arginine. These observations indicated that the copper species were weakly bonded with the oxide and were easily reduced by using ammonia. The catalysts prepared using ammonia show higher CO₂ conversion than the catalysts prepared using L(+)-arginine. Among the catalysts prepared using ammonia, the silica-coated catalyst displayed a high activity at high temperatures, while the zirconia-coated catalyst and titania-coated catalyst had high activity at low temperatures. At high temperature the conversion over the silica-coated catalyst does not significantly change with reaction temperature, while the conversion over the zirconia-coated catalyst and titania-coated catalyst decreases with reaction time. From the results of FTIR, the durability depends on hydrophilicity of the oxides.

  10. Effect of Oxide Coating on Performance of Copper-Zinc Oxide-Based Catalyst for Methanol Synthesis via Hydrogenation of Carbon Dioxide

    PubMed Central

    Umegaki, Tetsuo; Kojima, Yoshiyuki; Omata, Kohji

    2015-01-01

    The effect of oxide coating on the activity of a copper-zinc oxide–based catalyst for methanol synthesis via the hydrogenation of carbon dioxide was investigated. A commercial catalyst was coated with various oxides by a sol-gel method. The influence of the types of promoters used in the sol-gel reaction was investigated. Temperature-programmed reduction-thermogravimetric analysis revealed that the reduction peak assigned to the copper species in the oxide-coated catalysts prepared using ammonia shifts to lower temperatures than that of the pristine catalyst; in contrast, the reduction peak shifts to higher temperatures for the catalysts prepared using L(+)-arginine. These observations indicated that the copper species were weakly bonded with the oxide and were easily reduced by using ammonia. The catalysts prepared using ammonia show higher CO2 conversion than the catalysts prepared using L(+)-arginine. Among the catalysts prepared using ammonia, the silica-coated catalyst displayed a high activity at high temperatures, while the zirconia-coated catalyst and titania-coated catalyst had high activity at low temperatures. At high temperature the conversion over the silica-coated catalyst does not significantly change with reaction temperature, while the conversion over the zirconia-coated catalyst and titania-coated catalyst decreases with reaction time. From the results of FTIR, the durability depends on hydrophilicity of the oxides. PMID:28793674

  11. TURBINE COOLING FLOW AND THE RESULTING DECREASE IN TURBINE EFFICIENCY

    NASA Technical Reports Server (NTRS)

    Gauntner, J. W.

    1994-01-01

    This algorithm has been developed for calculating both the quantity of compressor bleed flow required to cool a turbine and the resulting decrease in efficiency due to cooling air injected into the gas stream. Because of the trend toward higher turbine inlet temperatures, it is important to accurately predict the required cooling flow. This program is intended for use with axial flow, air-breathing jet propulsion engines with a variety of airfoil cooling configurations. The algorithm results have compared extremely well with figures given by major engine manufacturers for given bulk metal temperatures and cooling configurations. The program calculates the required cooling flow and corresponding decrease in stage efficiency for each row of airfoils throughout the turbine. These values are combined with the thermodynamic efficiency of the uncooled turbine to predict the total bleed airflow required and the altered turbine efficiency. There are ten airfoil cooling configurations and the algorithm allows a different option for each row of cooled airfoils. Materials technology is incorporated and requires the date of the first year of service for the turbine stator vane and rotor blade. The user must specify pressure, temperatures, and gas flows into the turbine. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 3080 series computer with a central memory requirement of approximately 61K of 8 bit bytes. This program was developed in 1980.

  12. Stabilization of luciferase from Renilla reniformis using random mutations.

    PubMed

    Shigehisa, Megumi; Amaba, Norie; Arai, Shigeki; Higashi, Chisato; Kawanabe, Ryo; Matsunaga, Ayano; Laksmi, Fina Amreta; Tokunaga, Masao; Ishibashi, Matsujiro

    2017-01-01

    We expressed luciferase (RLuc) from Renilla reniformis in Escherichia coli RLuc was purified using a Ni-NTA column and subsequently characterized. It was unstable in acidic solutions and at 30°C. To increase the stability of RLuc, the Rluc gene was randomly mutated using error-prone polymerase chain reaction. E. coli harboring the mutated gene was screened by detecting luminescence on a plate containing the substrate coelenterazine at 34°C. Three mutants, i.e. N264SS287P, N178D and F116LI137V, were obtained. The solubilities and specific activities of these mutants were higher than those of the wild type. Furthermore, the N264SS287P mutant maintained stability at a temperature approximately 5°C higher than that of the wild type, while denaturation of the F116LI137V mutant started at a temperature that was 5°C lower than the wild type, and ended at a temperature that was 7°C higher. We examined the obtained mutations using thermal shift assays and a computer program Coot in this study. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Effects of temperature and surface contamination on D retention in ultrathin Li films on TZM

    DOE PAGES

    Capece, A. M.; Roszell, J. P.; Skinner, C. H.; ...

    2014-10-29

    Here in this work, we investigate deuterium retention at the Mo-Li interface by studying thin Li films three monolayers thick on a TZM Mo alloy. Li films at temperatures between 315 and 460 K were exposed to a deuterium ion beam and D retention was measured using temperature programmed desorption. In the absence of oxygen, D is retained as LiD, and the relative amount of retained D decreases with increasing substrate temperature. In three-monolayer thick lithium oxide films, the amount of D retained was 2.5 times higher than the amount retained as LiD in the metallic Li film. However, oxygenmore » reduces the thermal stability of D in the film, causing D 2O and D 2 to be released from the surface at temperatures 150-200 K below the LiD decomposition temperature. These results highlight the importance of maintaining a metallic Li layer for high D retention in Li films on TZM at elevated temperatures.« less

  14. Effects of temperature and surface contamination on D retention in ultrathin Li films on TZM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capece, A. M.; Roszell, J. P.; Skinner, C. H.

    Here in this work, we investigate deuterium retention at the Mo-Li interface by studying thin Li films three monolayers thick on a TZM Mo alloy. Li films at temperatures between 315 and 460 K were exposed to a deuterium ion beam and D retention was measured using temperature programmed desorption. In the absence of oxygen, D is retained as LiD, and the relative amount of retained D decreases with increasing substrate temperature. In three-monolayer thick lithium oxide films, the amount of D retained was 2.5 times higher than the amount retained as LiD in the metallic Li film. However, oxygenmore » reduces the thermal stability of D in the film, causing D 2O and D 2 to be released from the surface at temperatures 150-200 K below the LiD decomposition temperature. These results highlight the importance of maintaining a metallic Li layer for high D retention in Li films on TZM at elevated temperatures.« less

  15. Expansion of high-temperature; high-pressure data set for coal gasification. Fifth quarterly report, September 28-December 28, 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G.

    1985-01-01

    During the fifth quarter, the gas mixing station for the high pressure reactor (HPR) system was completed. This station allows us to make reproducible binary mixtures of any two gases. It will be used for pyrolysis experiments in helium/nitrogen or oxygen/nitrogen and gasification experiments in helium/nitrogen or oxygen/nitrogen and gasification experiments in carbon dioxide/nitrogen. In addition, work began on modifications of the HPR system for high pressure (600 psig) operation. A limited amount of data was taken with the HPR system due to the modifications for the mixing station. However, the test plan experiments for pyrolysis in mixtures of heliummore » and nitrogen were completed. In general, there is a slightly higher yield of volatiles and lower yield of char as the helium content (heating rate) increases. A new technique for measuring char reactivity resulted from an Army SBIR program and was further developed under our other METC Contract. It has also been used to characterize chars generated under the current program. It was evident that the severity of the thermal treatment had a direct effect on char reactivity. In this regard, rapid heating to a relatively low temperature was most favorable while slow heating to a high temperature was least favorable. With regard to pressure effects on reactivity, our preliminary data indicated that higher pressures produce chars lower initial reactivity. A total of four experiments were done in the heated tube reactor (HTR) at 60 psig, 800/sup 0/C maximum tube temperature. The trends are the same as observed in the atmospheric pressure experiments for the same tube temperature and cold gas velocity. During the past quarter, a particle temperature (PT) model was under development for the high pressure entrained flow reactor (HPR). 5 refs., 5 figs.« less

  16. Gas-phase measurements of combustion interaction with materials for radiation-cooled chambers

    NASA Technical Reports Server (NTRS)

    Barlow, R. S.; Lucht, R. P.; Jassowski, D. M.; Rosenberg, S. D.

    1991-01-01

    Foil samples of Ir and Pt are exposed to combustion products in a controlled premixed environment at atmospheric pressure. Electrical heating of the foil samples is used to control the surface temperature and to elevate it above the radiative equilibrium temperature within the test apparatus. Profiles of temperature and OH concentration in the boundary layer adjacent to the specimen surface are measured by laser-induced fluorescence. Measured OH concentrations are significantly higher than equilibrium concentrations calculated for the known mixture ratio and the measured temperature profiles. This result indicates that superequilibrium concentrations of H-atoms and O-atoms are also present in the boundary layer, due to partial equilibrium of the rapid binary reactions of the H2/O2 chemical kinetic system. These experiments are conducted as part of a research program to investigate fundamental aspects of the interaction of combustion gases with advanced high-temperature materials for radiation-cooled thrusters.

  17. A proposal to investigate higher enthalpy geothermal systems in the USA

    NASA Astrophysics Data System (ADS)

    Elders, W. A.

    2013-12-01

    After more than 50 years of development only ~3,400 MWe of electric power is currently being produced from geothermal resources in the USA. That is only about 0.33% of the country's total installed electrical capacity. In spite of the large demonstrated potential of geothermal resources, only ~2,500 MWe of new geothermal electrical capacity are under development, and the growth rate of this environmentally benign energy resource is overshadowed by the rapid increase in the installed capacity of wind and solar energy. Most of the new geothermal developments in the USA involve relatively small, moderate-temperature, geothermal systems. In contrast, development of higher enthalpy geothermal systems for power production has obvious advantages; specifically higher temperatures yield higher power outputs per well so that fewer wells are needed, leading to smaller environmental footprints for a given size of power plant. Disadvantages include that the fact that locations of suitable geothermal systems are restricted to young volcanic terrains, production of very high enthalpy fluids usually requires drilling deeper wells and may require enhanced geothermal (EGS) technology, and drilling deep into hot hostile environments is technologically challenging. However the potential for very favorable economic returns suggests that the USA should begin developing such a program. One approach to mitigating the cost issue is to form a consortium of industry, government and academia to share the costs and broaden the scope an investigation. An excellent example of such a collaboration is the Iceland Deep Drilling Project (IDDP) which is investigating the economic feasibility of producing electricity from supercritical geothermal reservoirs. This industry-government consortium planned to drill a deep well in the volcanic caldera of Krafla in NE Iceland. However drilling had to be terminated at 2.1 km depth when 900°C rhyolite magma flowed into the well. The resultant well was highly productive capable of generating >35 MWe from superheated steam at a well-head temperature of ~450°C. Plans for deep drilling to explore for deeper, much higher enthalpy, geothermal resources are already underway in the Taupo Volcanic Zone of New Zealand (Project HADES), and in northeast Japan the 'Beyond Brittle Project' (Project JBBP) is an ambitious program attempting to create an EGS reservoir in ~500oC rocks. However in the USA there is no comparable national program to develop such resources. There is a significant undeveloped potential for developing high-enthalpy geothermal systems in the western USA, Hawaii and Alaska. The purpose of this paper is to encourage the formation of a consortium to systematically explore, assess, and eventually develop such higher-enthalpy geothermal resources. Not only would this help develop large new sources of energy but it would permit scientific studies of pressure-temperature regimes not otherwise available for direct investigation, such as the coupling of magmatic and hydrothermal systems.

  18. Overview of C-2W Field-Reversed Configuration Experimental Program

    NASA Astrophysics Data System (ADS)

    Gota, H.; Binderbauer, M. W.; Tajima, T.; Putvinski, S.; Tuszewski, M.; Dettrick, S.; Korepanov, S.; Romero, J.; Smirnov, A.; Song, Y.; Thompson, M. C.; van Drie, A.; Yang, X.; Ivanov, A. A.; TAE Team

    2017-10-01

    Tri Alpha Energy's research has been devoted to producing a high temperature, stable, long-lived field-reversed configuration (FRC) plasma state by neutral-beam injection (NBI) and edge biasing/control. C-2U experiments have demonstrated drastic improvements in particle and energy confinement properties of FRC's, and the plasma performance obtained via 10 MW NBI has achieved plasma sustainment of up to 5 ms and plasma (diamagnetism) lifetimes of 10 + ms. The emerging confinement scaling, whereby electron energy confinement time is proportional to a positive power of the electron temperature, is very attractive for higher energy plasma confinement; accordingly, verification of the observed Te scaling law will be a key future research objective. The new experimental device, C-2W (now also called ``Norman''), has the following key subsystem upgrades from C-2U: (i) higher injected power, optimum energies, and extended pulse duration of the NBI system; (ii) installation of inner divertors with upgraded edge-biasing systems; (iii) fast external equilibrium/mirror-coil current ramp-up capability; and (iv) installation of trim/saddle coils for active feedback control of the FRC plasma. This paper will review highlights of the C-2W program.

  19. Enhancing the stability of copper chromite catalysts for the selective hydrogenation of furfural using ALD overcoating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hongbo; Lei, Yu; Kropf, A. Jeremy

    2014-08-01

    The stability of a gas-phase furfural hydrogenation catalyst (CuCr2O4 center dot CuO) was enhanced by depositing a thin Al2O3 layer using atomic layer deposition (ALD). Based on temperature-programed reduction (TPR) measurements, the reduction temperature of Cu was raised significantly, and the activation energy for furfural reduction was decreased following the ALD treatment. Thinner ALD layers yielded higher furfural hydrogenation activities. X-ray absorption fine structure (XAFS) spectroscopy studies indicated that Cu1+/Cu-0 are the active species for furfural reduction.

  20. Combustion characterization of carbonized RDF, Joint Venture Task No. 7. Topical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    1995-04-30

    The overall objective of this research program was to demonstrate EnerTech's and the Energy & Environmental Research Center's (EERC) process of slurry carbonization for producing homogeneous, pumpable titels from refuse-derived fuel (RDF) with continuous pilot plant facilities, and to characterize flue gas and ash emissions from combustion of the carbonizd RDF slurry fuel. Please note that "Wet Thermal Oxidation" is EnerTech's trademark mme for combustion of the carbonized RDF slurry fuel. Carbonized RDF slurry fuels were produced with the EERC'S 7.5-tpd (wet basis) pilot plant facility. A hose diaphragm pump pressurized a 7- lo-wt% feed RDF slurry, with a viscositymore » of 500 cP, to approximately 2500 psig. The pressurized RDF slurry was heated by indirect heat exchangers to between 5850 -626°F, and its temperature and pressure was maintained in a downflow reactor. The carbonized slurry was flashed, concentrated in a filter press, and ground in an attritor. During operation of the pilot plant, samples of the feed RDF slurry, carbonization gas, condensate, carbonized solids, and filtrate were taken and analyzed. Pilot-scale slurry carbonization experiments with RDF produced a homogeneous pumpable slurry fuel with a higher heating value (HHV) of 3,000-6,600 Btu/lb (as-received basis), at a viscosity of 500 CP at 100 Hz decreasing, and ambient temperature. Greater-heating-value slurry fuels were produced at higher slurry carbonization temperatures. During slurry carbonization, polyvinyl chloride (PVC) plastics in the feed RDF also decompose to form hydrochloric acid and salts. Pilot-scale slurty carbonization experiments extracted 82-94% of the feed RDF chlorine content as chloride salts. Higher carbonization temperatures and higher alkali additions to the feed slurry produced a higher chlorine extraction.« less

  1. Liquid oxygen liquid acquisition device bubble point tests with high pressure lox at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Jurns, J. M.; Hartwig, J. W.

    2012-04-01

    When transferring propellant in space, it is most efficient to transfer single phase liquid from a propellant tank to an engine. In earth's gravity field or under acceleration, propellant transfer is fairly simple. However, in low gravity, withdrawing single-phase fluid becomes a challenge. A variety of propellant management devices (PMDs) are used to ensure single-phase flow. One type of PMD, a liquid acquisition device (LAD) takes advantage of capillary flow and surface tension to acquire liquid. The present work reports on testing with liquid oxygen (LOX) at elevated pressures (and thus temperatures) (maximum pressure 1724 kPa and maximum temperature 122 K) as part of NASA's continuing cryogenic LAD development program. These tests evaluate LAD performance for LOX stored in higher pressure vessels that may be used in propellant systems using pressure fed engines. Test data shows a significant drop in LAD bubble point values at higher liquid temperatures, consistent with lower liquid surface tension at those temperatures. Test data also indicates that there are no first order effects of helium solubility in LOX on LAD bubble point prediction. Test results here extend the range of data for LOX fluid conditions, and provide insight into factors affecting predicting LAD bubble point pressures.

  2. Liquid Oxygen Liquid Acquisition Device Bubble Point Tests with High Pressure LOX at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Jurns, John M.; Hartwig, Jason W.

    2011-01-01

    When transferring propellant in space, it is most efficient to transfer single phase liquid from a propellant tank to an engine. In earth s gravity field or under acceleration, propellant transfer is fairly simple. However, in low gravity, withdrawing single-phase fluid becomes a challenge. A variety of propellant management devices (PMD) are used to ensure single-phase flow. One type of PMD, a liquid acquisition device (LAD) takes advantage of capillary flow and surface tension to acquire liquid. The present work reports on testing with liquid oxygen (LOX) at elevated pressures (and thus temperatures) (maximum pressure 1724 kPa and maximum temperature 122K) as part of NASA s continuing cryogenic LAD development program. These tests evaluate LAD performance for LOX stored in higher pressure vessels that may be used in propellant systems using pressure fed engines. Test data shows a significant drop in LAD bubble point values at higher liquid temperatures, consistent with lower liquid surface tension at those temperatures. Test data also indicates that there are no first order effects of helium solubility in LOX on LAD bubble point prediction. Test results here extend the range of data for LOX fluid conditions, and provide insight into factors affecting predicting LAD bubble point pressures.

  3. Progress in the utilization of an oxide-dispersion-strengthened alloy for small engine turbine blades

    NASA Technical Reports Server (NTRS)

    Beatty, T. G.; Millan, P. P.

    1984-01-01

    The conventional means of improving gas turbine engine performance typically involves increasing the turbine inlet temperature; however, at these higher operational temperatures the high pressure turbine blades require air-cooling to maintain durability. Air-cooling imposes design, material, and economic constraints not only on the turbine blades but also on engine performance. The use of uncooled turbine blades at increased operating temperatures can offer significantly improved performance in small gas turbine engines. A program to demonstrate uncooled MA6000 high pressure turbine blades in a GTEC TFE731 turbofan engine is being conducted. The project goals include demonstration of the advantages of using uncooled MA6000 turbine blades as compared with cast directionally solidified MAR-M 247 blades.

  4. How two types of fluctuating temperature affect the growth of Fusarium solani

    Treesearch

    Keith F. Jensen; Phillip E. Reynolds

    1969-01-01

    Growth of six isolates of Fusarium solani on potato dextrose agar was determined with (1) continually changing temperature programs, (2) programs consisting of two alternating constant temperatures, and (3) a constant temperature program. All programs had a mean of 70º F. Growth increased with an increase in temperature fluctuation of 10 or...

  5. High Energy Density and High Temperature Multilayer Capacitor Films for Electric Vehicle Applications

    NASA Astrophysics Data System (ADS)

    Treufeld, Imre; Song, Michelle; Zhu, Lei; Baer, Eric; Snyder, Joe; Langhe, Deepak

    2015-03-01

    Multilayer films (MLFs) with high energy density and high temperature capability (>120 °C) have been developed at Case Western Reserve University. Such films offer a potential solution for electric car DC-link capacitors, where high ripple currents and high temperature tolerance are required. The current state-of-the-art capacitors used in electric cars for converting DC to AC use biaxially oriented polypropylene (BOPP), which can only operate at temperatures up to 85 °C requiring an external cooling system. The polycarbonate (PC)/poly(vinylidene fluoride) (PVDF) MLFs have a higher permittivity compared to that of BOPP (2.3), leading to higher energy density. They have good mechanical stability and reasonably low dielectric losses at 120 °C. Nonetheless, our preliminary dielectric measurements show that the MLFs exhibit appreciable dielectric losses (20%) at 120 °C, which would, despite all the other advantages, make them not suitable for practical applications. Our preliminary data showed that dielectric losses of the MLFs at 120 °C up to 400 MV/m and 1000 Hz originate mostly from impurity ionic conduction. This work is supported by the NSF PFI/BIC Program (IIP-1237708).

  6. Experimental clean combustor program: Noise study

    NASA Technical Reports Server (NTRS)

    Sofrin, T. G.; Riloff, N., Jr.

    1976-01-01

    Under a Noise Addendum to the NASA Experimental Clean Combustor Program (ECCP) internal pressure fluctuations were measured during tests of JT9D combustor designs conducted in a burner test rig. Measurements were correlated with burner operating parameters using an expression relating farfield noise to these parameters. For a given combustor, variation of internal noise with operating parameters was reasonably well predicted by this expression but the levels were higher than farfield predictions and differed significantly among several combustors. For two burners, discharge stream temperature fluctuations were obtained with fast-response thermocouples to allow calculation of indirect combustion noise which would be generated by passage of the temperature inhomogeneities through the high pressure turbine stages of a JT9D turbofan engine. Using a previously developed analysis, the computed indirect combustion noise was significantly lower than total low frequency core noise observed on this and several other engines.

  7. Progress Toward a Compact 0.05 K Magnet Refrigerator Operating from 10 K

    NASA Technical Reports Server (NTRS)

    Canavan, Edgar; Shirron, Peter; DiPirro, Micheal; Tuttle, James; Jackson, Michael; King, Todd; Numazawa, Takenori

    2003-01-01

    Much of the most interesting information regarding our universe is hidden in the sub-millimeter, infrared, and x-rays bands of the spectrum, to which our atmosphere is largely opaque. Thus, missions exploring these bands are a very important part of NASA s Space Science program. Coincidentally, the most sensitive detectors in these spectral regions operate at extremely low temperatures, typically 0.05 - 0.10 K. Generally these temperatures will be achieved using magnetic refrigerators, also know as Adiabatic Demagnetization Refrigerators, or ADRs. Current ADRs, such as the one used in the XRS-II instrument on the Astro-E2 satellite, use a single-stage to cool detectors from 1.3 K to 0.06 K. The ADR is designed so that it can absorb the heat on the detector stage for at least 24 hours before it must stop, warm up to the helium bath temperature (1.3 K), and dump the accumulated heat. Future detector arrays will be much larger and will have higher heat dissipation. Furthermore, future missions will use mechanical cryocoolers to provide upper stage cooling, but they can only reach 4 - 10 K. Trying to scale heavy (-15 kg) single stage ADRs up to the higher heat loads and higher heat rejection temperatures required leads to unacceptably large systems. The GSFC Cryogenics Branch has developed the Continuous ADR (CADR) to solve this problem. The CADR consists of a series of ADR stages that sequentially pass heat from the load up to the high temperature heat sink. The stage connected to the load remains at a constant temperature. The continuous stage effectively decouples detector operation from ADR operation, allowing the ADR stages to be cycled much more rapidly. Rapid cycling leads to higher cooling power density. The cascading, multistage arrangement allows the magnetic refrigerant of each stage to be optimized for its own temperature swing. In the past year, we have made good progress toward a 0.05 to 10K system. A four-stage system that operates from 4.2 K was demonstrated. Magnetic shielding was added to eliminate inter-stage coupling. Improvements were made to superconducting and passive gas-gap heat switches. A second type of passive gas gap switch, one meant for use at higher temperature, was demonstrated. The presentation will focus primarily on these recent design improvements, and on the challenges that remain on the progress toward a system that will operate from 10 K or higher.

  8. Navy Expeditionary Technology Transition Program (NETTP)

    DTIC Science & Technology

    2012-03-02

    water vapor from feed air using a zeolite membrane •Temperature/Humidity levels can be met in warm, humid climates without reheating •Allows higher...UNCLASSIFIED, Distribution Unlimited Modular Thermal Hub •Small, efficient absorption cooling •Energy source: Combustion, low- grade waste heat, solar... thermal energy •Reversible operation enables space cooling and heating, and water heating •Modular cooling and heating unit •Monolithic packaging offers

  9. Biogas biodesulfurization in an anoxic biotrickling filter packed with open-pore polyurethane foam.

    PubMed

    Fernández, Maikel; Ramírez, Martín; Gómez, José Manuel; Cantero, Domingo

    2014-01-15

    Biogas biodesulfurization by an anoxic biotrickling filter packed with open pore polyurethane foam at the laboratory scale (packed volume 2.4L) has been studied. The biotrickling system was operated for 620 days with biogas supplied continuously and two nitrate feeding regimes were tested (manual and programmed). Biomass immobilization was carried out under the manual nitrate feeding regime and a study was then carried out on the effects on removal efficiency of the following parameters: nitrate source, H2S inlet load, nitrate concentration, sulfate accumulation, temperature, pH and trickling liquid velocity. The effect of increased H2S inlet load was studied under the programmed nitrate feeding regime. The results show that a removal efficiency of 99% can be obtained when working under the following conditions: inlet loads below 130gSm(-3)h(-1), a programmed nitrate feeding system, temperature of 30°C, sulfate concentration below 33gL(-1), a pH between 7.3 and 7.5, and a trickling liquid velocity higher than 4.6mh(-1). Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Basalt Weathering, Nutrient Uptake, And Carbon Release By An Exotic And A Native Arizona Grass Species Under Different Temperature Conditions

    NASA Astrophysics Data System (ADS)

    Gallas, G.; Dontsova, K.; Chorover, J.; Hunt, E.; Ravi, S.

    2010-12-01

    During this past summer, the National Science Foundation funded a 10-week Research Experience for Undergraduates (REU) program “Environmental and Earth Systems Research at Biosphere 2”. This program provides undergraduates with an opportunity to conduct guided research in environmental and Earth systems science and has resulted in this work. Biosphere 2 allows for the exploration of complex questions in Earth sciences because of its large scale and the precise control allowed over many experimental elements. The goal of this study was to observe plant-mediated weathering of granular basalt under two temperature conditions. Two grass species were studied, one native to Arizona: Tanglehead, Heteropogan contortus, and one exotic to Arizona: Buffelgrass, Pennisetum ciliar. The grasses were grown in pots located in the Desert and the Savannah Biomes in the Biosphere 2 to take advantage of a 4° C temperature difference. Understanding differences in how native and invasive grasses weather soil and take up nutrients may explain the mechanism behind current invasion of Sonoran Desert by exotic species and help predict response of native and invasive vegetation to expected increase in temperatures. Each biome also contained three replicate “control” pots without vegetation, and mixtures of the two grass species to observe possible competition between the species. Three factors were compared in this study: 1. Temperature: the same species of grass under two different temperature conditions 2. Species: Native Arizonan species vs. a species exotic to Arizona 3. Temporal: How the grasses use resources differently as they grow Leachate samples were collected and analyzed for pH, electrical conductivity, total organic carbon, total nitrogen, inorganic carbon by high temperature combustion coupled with infrared gas analysis; F-, Cl-, Br-, NO3-, NO2-, SO42-, and PO43- by ion chromatography; and cations and metals by ICP-MS. The data trends indicate that plants enhanced basalt weathering. All of the leachate samples showed higher pH than the input water, and the pH was elevated in treatments that contained grass. This indicated that in the presence of vegetation there was more proton absorption. The trends in total nitrogen concentrations indicate a dependence on temperature; the same can be said of anion concentrations. Anion leaching is lower at higher temperatures possibly due to greater plant uptake. Both organic and inorganic carbon concentrations were found to be higher in grass treatments than in control treatments. Because both dissolved CO2 and soluble organic exudates encourage mineral dissolution, this could be causative of the weathering enhancements observed. Denudation of nutrient elements differed between plant species and between temperatures, possibly relating to plant uptake and secondary mineral formation. This study gives unique insight into plant-mineral interactions as a function of plant species and temperature that is essential for understanding Earth systems under changing climate.

  11. Alternating temperatures affect life table parameters of Phytoseiulus persimilis, Neoseiulus californicus (Acari: Phytoseiidae) and their prey Tetranychus urticae (Acari: Tetranychidae).

    PubMed

    Vangansbeke, Dominiek; De Schrijver, Lien; Spranghers, Thomas; Audenaert, Joachim; Verhoeven, Ruth; Nguyen, Duc Tung; Gobin, Bruno; Tirry, Luc; De Clercq, Patrick

    2013-11-01

    Increasing energy costs force glasshouse growers to switch to energy saving strategies. In the temperature integration approach, considerable daily temperature variations are allowed, which not only have an important influence on plant growth but also on the development rate of arthropods in the crop. Therefore, we examined the influence of two constant temperature regimes (15 °C/15 °C and 20 °C/20 °C) and one alternating temperature regime (20 °C/5 °C, with an average of 15 °C) on life table parameters of Phytoseiulus persimilis and Neoseiulus californicus and their target pest, the two-spotted spider mite Tetranychus urticae at a 16:8 (L:D) h photoperiod and 65 ± 5 % RH. For females of both predatory mites the alternating temperature regime resulted in a 25-30 % shorter developmental time as compared to the corresponding mean constant temperature regime of 15 °C/15 °C. The immature development of female spider mites was prolonged for 7 days at 15 °C/15 °C as compared to 20 °C/5 °C. With a daytime temperature of 20 °C, no differences in lifetime fecundity were observed between a nighttime temperature of 20 and 5 °C for P. persimilis and T. urticae. The two latter species did show a higher lifetime fecundity at 20 °C/5 °C than at 15 °C/15 °C, and their daily fecundity at the alternating regime was about 30 % higher than at the corresponding mean constant temperature. P. persimilis and T. urticae showed no differences in sex ratio between the three temperature regimes, whereas the proportion of N. californicus females at 15 °C/15 °C (54.2 %) was significantly lower than that at 20 °C/5 °C (69.4 %) and 20 °C/20 °C (67.2 %). Intrinsic rates of increase were higher at the alternating temperature than at the corresponding mean constant temperature for both pest and predators. Our results indicate that thermal responses of the studied phytoseiid predators to alternating temperature regimes used in energy saving strategies in glasshouse crops may have consequences for their efficacy in biological control programs.

  12. World Ocean Database and the Global Temperature and Salinity Profile Program Database: Synthesis of historical and near real-time ocean profile data

    NASA Astrophysics Data System (ADS)

    Boyer, T.; Sun, L.; Locarnini, R. A.; Mishonov, A. V.; Hall, N.; Ouellet, M.

    2016-02-01

    The World Ocean Database (WOD) contains systematically quality controlled historical and recent ocean profile data (temperature, salinity, oxygen, nutrients, carbon cycle variables, biological variables) ranging from Captain Cooks second voyage (1773) to this year's Argo floats. The US National Centers for Environmental Information (NCEI) also hosts the Global Temperature and Salinity Profile Program (GTSPP) Continuously Managed Database (CMD) which provides quality controlled near-real time ocean profile data and higher level quality controlled temperature and salinity profiles from 1990 to present. Both databases are used extensively for ocean and climate studies. Synchronization of these two databases will allow easier access and use of comprehensive regional and global ocean profile data sets for ocean and climate studies. Synchronizing consists of two distinct phases: 1) a retrospective comparison of data in WOD and GTSPP to ensure that the most comprehensive and highest quality data set is available to researchers without the need to individually combine and contrast the two datasets and 2) web services to allow the constantly accruing near-real time data in the GTSPP CMD and the continuous addition and quality control of historical data in WOD to be made available to researchers together, seamlessly.

  13. High-Temperature Solid Lubricants Developed by NASA Lewis Offer Virtually "Unlimited Life" for Oil-Free Turbomachinery

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Valco, Mark J.

    1999-01-01

    The NASA Lewis Research Center is capitalizing on breakthroughs in foil air bearing performance, tribological coatings, and computer analyses to formulate the Oil-free Turbomachinery Program. The program s long-term goal is to develop an innovative, yet practical, oil-free aeropropulsion gas turbine engine that floats on advanced air bearings. This type of engine would operate at higher speeds and temperatures with lower weight and friction than conventional oil-lubricated engines. During startup and shutdown, solid lubricant coatings are required to prevent wear in such engines before the self-generating air-lubrication film develops. NASA s Tribology Branch has created PS304, a chrome-oxide-based plasma spray coating specifically tailored for shafts run against foil bearings. PS304 contains silver and barium fluoride/calcium fluoride eutectic (BaF2/CaF2) lubricant additives that, together, provide lubrication from cold start temperatures to over 650 C, the maximum use temperature for foil bearings. Recent lab tests show that bearings lubricated with PS304 survive over 100 000 start-stop cycles without experiencing any degradation in performance due to wear. The accompanying photograph shows a test bearing after it was run at 650 C. The rubbing process created a "polished" surface that enhances bearing load capacity.

  14. A temperature-programmed X-ray photoelectron spectroscopy (TPXPS) study of chlorine adsorption and diffusion on Ag(1 1 1)

    NASA Astrophysics Data System (ADS)

    Piao, H.; Adib, K.; Barteau, Mark A.

    2004-05-01

    Synchrotron-based temperature programmed X-ray photoelectron spectroscopy (TPXPS) has been used to investigate the surface chloridation of Ag(1 1 1) to monolayer coverages. At 100 K both atomic and molecular chlorine species are present on the surface; adsorption at 300 K or annealing the adlayer at 100 K to this temperature generates adsorbed Cl atoms. As the surface is heated from 300 to 600 K, chlorine atoms diffuse below the surface, as demonstrated by attenuation of the Cl2p signals in TPXPS experiments. Quantitative analysis of the extent of attenuation is consistent with chlorine diffusion below the topmost silver layer. For coverages in the monolayer and sub-monolayer regime, chlorine diffusion to and from the bulk appears not to be significant, in contrast to previous results obtained at higher chlorine loadings. Chlorine is removed from the surface at 650-780 K by desorption as AgCl. These results demonstrate that chlorine diffusion beneath the surface does occur at coverages and temperatures relevant to olefin epoxidation processes carried out on silver catalysts with chlorine promoters. The surface sensitivity advantages of synchrotron-based XPS experiments were critical to observing Cl diffusion to the sub-surface at low coverages.

  15. Dynamics of Hyperbranched Polymers under Confinement

    NASA Astrophysics Data System (ADS)

    Androulaki, Krystallenia; Chrissopoulou, Kiriaki; Anastasiadis, Spiros H.; Prevosto, Daniele; Labardi, Massimiliano

    2015-03-01

    The effect of severe confinement on the dynamics of three different generations of hyperbranched polyesters (Boltorns) is investigated by Dielectric Spectroscopy. The polymers are intercalated within the galleries of natural Na+-MMT, thus, forming 1nm polymer films confined between solid walls. The Tg's of the polymers determined by DSC show a clear dependence on the generation whereas the transition is completely suppressed when all the polymer chains are intercalated. The dynamic investigation of the bulk polymers reveals two sub-Tg processes, with similar behavior for the three polymers with the segmental relaxation observed above the Tg of each. For the nanocomposites, where all polymers are severely confined, the dynamics show significant differences compared to that of the bulk polymers. The sub-Tg processes are similar for the three generations but significantly faster and with weaker temperature dependence than those in the bulk. The segmental process appears at temperatures below the bulk polymer Tg, it exhibits an Arrhenius temperature dependence and shows differences for the three generations. A slow process that appears at higher temperatures is due to interfacial polarization. Co-financed by the EU and Greek funds through the Operational Program ``Education and Lifelong Learning'' of the NSRF-Research Funding Program: THALES-Investing in knowledge society through the Eur. Social Fund (MIS 377278) and COST Action MP0902-COINAPO.

  16. High Speed, Low Cost Fabrication of Gas Diffusion Electrodes for Membrane Electrode Assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeCastro, Emory S.; Tsou, Yu-Min; Liu, Zhenyu

    Fabrication of membrane electrode assemblies (MEAs) depends on creating inks or pastes of catalyst and binder, and applying this suspension to either the membrane (catalyst coated membrane) or gas diffusion media (gas diffusion electrode) and respectively laminating either gas diffusion media or gas diffusion electrodes (GDEs) to the membrane. One barrier to cost effective fabrication for either of these approaches is the development of stable and consistent suspensions. This program investigated the fundamental forces that destabilize the suspensions and developed innovative approaches to create new, highly stable formulations. These more concentrated formulations needed fewer application passes, could be coated overmore » longer and wider substrates, and resulted in significantly lower coating defects. In March of 2012 BASF Fuel Cell released a new high temperature product based on these advances, whereby our customers received higher performing, more uniform MEAs resulting in higher stack build yields. Furthermore, these new materials resulted in an “instant” increase in capacity due to higher product yields and material throughput. Although not part of the original scope of this program, these new formulations have also led us to materials that demonstrate equivalent performance with 30% less precious metal in the anode. This program has achieved two key milestones in DOE’s Manufacturing R&D program: demonstration of processes for direct coating of electrodes and continuous in-line measurement for component fabrication.« less

  17. Ultra-High Temperature Thermal Barrier Coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, Eric; Gell, Maurice; Wang, Jiwen

    In this project, HiFunda LLC worked with the University of Connecticut (UConn) to demonstrate an attractive option for thermal barrier coatings (TBCs), namely yttrium aluminum garnet (YAG), which was well known to have proven thermal stability and excellent high-temperature mechanical properties. YAG and other higher temperature TBCs have not been used to date because they exhibit inadequate durability, resulting from (a) poor erosion resistance and (b) greater thermal expansion mismatch strains compared to 7YSZ. UConn had previously demonstrated that the solution precursor plasma spray (SPPS) process could produce a durable 7YSZ TBC resulting from a highly strain tolerant microstructure, consistingmore » of through-coating-thickness vertical cracks. HiFunda/UConn reasoned at the start of Phase I that such a strain-tolerant microstructure could produce durable, higher temperature TBCs. The Phase I work demonstrated the feasibility of that concept and of SPPS YAG TBCs. The Phase II work demonstrated that SPPS YAG coating possessed the necessary range of properties to be a viable high temperature TBC, including cyclic durability and reduced elevated temperature thermal conductivity. The SPPS YAG TBCs were shown to have the potential to be used at temperatures 200°C higher than APS YSZ, based on thermal stability, sinter resistance, and CMAS resistance. The overall technical objectives of this Phase 2A project were to further improve the commercial viability of SPPS by improving their performance capabilities and manufacturing economics. The improved performance capability was to be achieved through: (1) further reductions in thermal conductivity, which allows higher gas temperatures and/or thinner coatings to achieve similar gas temperatures; and (2) improved resistance to calcium magnesium alumnoslicate (CMAS) attack of the TBCs, which can yield improved lifetimes. The improved thermal conductivity and CMAs resistance was to be accomplished through compositional and microstructural optimization. Finally, the key metrics to improve the process economics were increased deposition rate and efficiency. In addition to these technical objectives, there were commercialization objectives of getting key commercialization partners to evaluate and qualify the SPPS YAG technology independently so that the technology readiness level (TRL) of the technology could be sufficiently advanced to facilitate Phase III strategic partnerships, leading to eventual commercialization consistent with the overall objectives of the DOE SBIR/STTR program. All the Phase 2A goals were successfully achieved.« less

  18. Program to develop a performance and heat load prediction system for multistage turbines

    NASA Technical Reports Server (NTRS)

    Sharma, OM

    1994-01-01

    Flows in low-aspect ratio turbines, such as the SSME fuel turbine, are three dimensional and highly unsteady due to the relative motion of adjacent airfoil rows and the circumferential and spanwise gradients in total pressure and temperature, The systems used to design these machines, however, are based on the assumption that the flow is steady. The codes utilized in these design systems are calibrated against turbine rig and engine data through the use of empirical correlations and experience factors. For high aspect ratio turbines, these codes yield reasonably accurate estimates of flow and temperature distributions. However, future design trends will see lower aspect ratio (reduced number of parts) and higher inlet temperature which will result in increased three dimensionality and flow unsteadiness in turbines. Analysis of recently acquired data indicate that temperature streaks and secondary flows generated in combustors and up-stream airfoils can have a large impact on the time-averaged temperature and angle distributions in downstream airfoil rows.

  19. Advanced error-prediction LDPC with temperature compensation for highly reliable SSDs

    NASA Astrophysics Data System (ADS)

    Tokutomi, Tsukasa; Tanakamaru, Shuhei; Iwasaki, Tomoko Ogura; Takeuchi, Ken

    2015-09-01

    To improve the reliability of NAND Flash memory based solid-state drives (SSDs), error-prediction LDPC (EP-LDPC) has been proposed for multi-level-cell (MLC) NAND Flash memory (Tanakamaru et al., 2012, 2013), which is effective for long retention times. However, EP-LDPC is not as effective for triple-level cell (TLC) NAND Flash memory, because TLC NAND Flash has higher error rates and is more sensitive to program-disturb error. Therefore, advanced error-prediction LDPC (AEP-LDPC) has been proposed for TLC NAND Flash memory (Tokutomi et al., 2014). AEP-LDPC can correct errors more accurately by precisely describing the error phenomena. In this paper, the effects of AEP-LDPC are investigated in a 2×nm TLC NAND Flash memory with temperature characterization. Compared with LDPC-with-BER-only, the SSD's data-retention time is increased by 3.4× and 9.5× at room-temperature (RT) and 85 °C, respectively. Similarly, the acceptable BER is increased by 1.8× and 2.3×, respectively. Moreover, AEP-LDPC can correct errors with pre-determined tables made at higher temperatures to shorten the measurement time before shipping. Furthermore, it is found that one table can cover behavior over a range of temperatures in AEP-LDPC. As a result, the total table size can be reduced to 777 kBytes, which makes this approach more practical.

  20. Comparison of tissue deterioration of ripening banana fruit (Musa spp., AAA group, Cavendish subgroup) under chilling and non-chilling temperatures.

    PubMed

    Ramírez-Sánchez, Maricruz; Huber, Donald J; Vallejos, Carlos E

    2018-03-08

    In fleshy fruits, induced programmed cell death (PCD) has been observed in heat-treated tomato, and in ethylene-treated and low-temperature exposure in immature cucumber. No other fleshy fruit has been evaluated for chilling-injury-induced PCD, especially mature fruit with full ripening capacity. The purpose of this research was to identify and evaluate the presence of PCD processes during the development of low-temperature-induced physiopathy of banana fruit. Exposure of fruit to 5 °C for 4 days induced degradative processes similar to those occurring during ripening and overripening of non-chilled fruit. Nuclease from banana peel showed activity in both DNA substrates and RNA substrates. No exclusive low-temperature-induced proteases and nucleases were observed. DNA of chilled peel showed earlier signs of degradation and higher levels of DNA tailing during overripening. This study shows that exposure to low temperatures did not induce a pattern of degradative processes that differed from that occurring during ripening and overripening of non-chilled fruit. DNA showed earlier signs of degradation and higher levels of DNA tailing. Nuclease activity analysis showed bifunctionality in both chilled and non-chilled tissue and no chilling-exclusive protease and nuclease. Fleshy fruit might use their available resources on degradative processes and adjust them depending on environmental conditions. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  1. Repair, Evaluation, Maintenance, and Rehabilitation Research Program. Inspection of the Engineering Condition of Underwater Concrete Structures.

    DTIC Science & Technology

    1989-04-01

    corrosion of rebar Spalling of concrete surface IIl Detect hidden and beginning Location of rebar damage Beginning corrosion of rebar ...honeycombs MD Moderate defects: spalling of concrete minor corrosion of exposed rebar rust stains along rebar with or without visible cracking softening of...velocity. . Replenishment of the attacking chemical hgents. h. Higher temperatures. i. Corrosion of reinforcing steel. 46. Note that concrete which

  2. Development of Designer Diamond Anvils for High Pressure-High-Temperature Experiments in Support of the Stockpile Stewardship Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yogesh K. Vohra

    The focus of this program at the University of Alabama at Birmingham (UAB) is to develop the next generation of designer diamond anvils that can perform simultaneous joule heating and temperature profile measurements in a diamond anvil cell. A series of tungsten-rhenium thermocouples will be fabricated onto to the anvil and encapsulated by a chemical vapor deposited diamond layer to allow for a complete temperature profile measurement across the anvil. The tip of the diamond anvil will be engineered to reduce the thermal conductivity so that the tungsten-heating coils can be deposited on top of this layer. Several different approachesmore » will be investigated to engineer the tip of the diamond anvil for reduction in thermal conductivity (a) isotopic mixture of 12C and 13C in the diamond layer, (b) doping of diamond with impurities (nitrogen and/or boron), and (c) growing diamond in a higher concentration of methane in hydrogen plasma. Under this academic alliance with Lawrence Livermore National Laboratory (LLNL), PI and his graduate students will use the lithographic and diamond polishing facility at LLNL. This proposed next generation of designer diamond anvils will allow multi-tasking capability with the ability to measure electrical, magnetic, structural and thermal data on actinide materials with unparallel sensitivity in support of the stockpile stewardship program.« less

  3. The role of the Arabidopsis FUSCA3 transcription factor during inhibition of seed germination at high temperature.

    PubMed

    Chiu, Rex S; Nahal, Hardeep; Provart, Nicholas J; Gazzarrini, Sonia

    2012-01-27

    Imbibed seeds integrate environmental and endogenous signals to break dormancy and initiate growth under optimal conditions. Seed maturation plays an important role in determining the survival of germinating seeds, for example one of the roles of dormancy is to stagger germination to prevent mass growth under suboptimal conditions. The B3-domain transcription factor FUSCA3 (FUS3) is a master regulator of seed development and an important node in hormonal interaction networks in Arabidopsis thaliana. Its function has been mainly characterized during embryonic development, where FUS3 is highly expressed to promote seed maturation and dormancy by regulating ABA/GA levels. In this study, we present evidence for a role of FUS3 in delaying seed germination at supraoptimal temperatures that would be lethal for the developing seedlings. During seed imbibition at supraoptimal temperature, the FUS3 promoter is reactivated and induces de novo synthesis of FUS3 mRNA, followed by FUS3 protein accumulation. Genetic analysis shows that FUS3 contributes to the delay of seed germination at high temperature. Unlike WT, seeds overexpressing FUS3 (ML1:FUS3-GFP) during imbibition are hypersensitive to high temperature and do not germinate, however, they can fully germinate after recovery at control temperature reaching 90% seedling survival. ML1:FUS3-GFP hypersensitivity to high temperature can be partly recovered in the presence of fluridone, an inhibitor of ABA biosynthesis, suggesting this hypersensitivity is due in part to higher ABA level in this mutant. Transcriptomic analysis shows that WT seeds imbibed at supraoptimal temperature activate seed-specific genes and ABA biosynthetic and signaling genes, while inhibiting genes that promote germination and growth, such as GA biosynthetic and signaling genes. In this study, we have uncovered a novel function for the master regulator of seed maturation, FUS3, in delaying germination at supraoptimal temperature. Physiologically, this is important since delaying germination has a protective role at high temperature. Transcriptomic analysis of seeds imbibed at supraoptimal temperature reveal that a complex program is in place, which involves not only the regulation of heat and dehydration response genes to adjust cellular functions, but also the activation of seed-specific programs and the inhibition of germination-promoting programs to delay germination. © 2011 Chiu et al; licensee BioMed Central Ltd.

  4. The role of the Arabidopsis FUSCA3 transcription factor during inhibition of seed germination at high temperature

    PubMed Central

    2012-01-01

    Background Imbibed seeds integrate environmental and endogenous signals to break dormancy and initiate growth under optimal conditions. Seed maturation plays an important role in determining the survival of germinating seeds, for example one of the roles of dormancy is to stagger germination to prevent mass growth under suboptimal conditions. The B3-domain transcription factor FUSCA3 (FUS3) is a master regulator of seed development and an important node in hormonal interaction networks in Arabidopsis thaliana. Its function has been mainly characterized during embryonic development, where FUS3 is highly expressed to promote seed maturation and dormancy by regulating ABA/GA levels. Results In this study, we present evidence for a role of FUS3 in delaying seed germination at supraoptimal temperatures that would be lethal for the developing seedlings. During seed imbibition at supraoptimal temperature, the FUS3 promoter is reactivated and induces de novo synthesis of FUS3 mRNA, followed by FUS3 protein accumulation. Genetic analysis shows that FUS3 contributes to the delay of seed germination at high temperature. Unlike WT, seeds overexpressing FUS3 (ML1:FUS3-GFP) during imbibition are hypersensitive to high temperature and do not germinate, however, they can fully germinate after recovery at control temperature reaching 90% seedling survival. ML1:FUS3-GFP hypersensitivity to high temperature can be partly recovered in the presence of fluridone, an inhibitor of ABA biosynthesis, suggesting this hypersensitivity is due in part to higher ABA level in this mutant. Transcriptomic analysis shows that WT seeds imbibed at supraoptimal temperature activate seed-specific genes and ABA biosynthetic and signaling genes, while inhibiting genes that promote germination and growth, such as GA biosynthetic and signaling genes. Conclusion In this study, we have uncovered a novel function for the master regulator of seed maturation, FUS3, in delaying germination at supraoptimal temperature. Physiologically, this is important since delaying germination has a protective role at high temperature. Transcriptomic analysis of seeds imbibed at supraoptimal temperature reveal that a complex program is in place, which involves not only the regulation of heat and dehydration response genes to adjust cellular functions, but also the activation of seed-specific programs and the inhibition of germination-promoting programs to delay germination. PMID:22279962

  5. NEET Micro-Pocket Fission Detector. Final Project report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unruh, T.; Rempe, Joy; McGregor, Douglas

    2014-09-01

    A collaboration between the Idaho National Laboratory (INL), the Kansas State University (KSU), and the French Alternative Energies and Atomic Energy Commission, Commissariat à l'Énergie Atomique et aux Energies Alternatives, (CEA), is funded by the Nuclear Energy Enabling Technologies (NEET) program to develop and test Micro-Pocket Fission Detectors (MPFDs), which are compact fission chambers capable of simultaneously measuring thermal neutron flux, fast neutron flux and temperature within a single package. When deployed, these sensors will significantly advance flux detection capabilities for irradiation tests in US Material Test Reactors (MTRs). Ultimately, evaluations may lead to a more compact, more accurate, andmore » longer lifetime flux sensor for critical mock-ups, and high performance reactors, allowing several Department of Energy Office of Nuclear Energy (DOE-NE) programs to obtain higher accuracy/higher resolution data from irradiation tests of candidate new fuels and materials. Specifically, deployment of MPFDs will address several challenges faced in irradiations performed at MTRs: Current fission chamber technologies do not offer the ability to measure fast flux, thermal flux and temperature within a single compact probe; MPFDs offer this option. MPFD construction is very different than current fission chamber construction; the use of high temperature materials allow MPFDs to be specifically tailored to survive harsh conditions encountered in-core of high performance MTRs. The higher accuracy, high fidelity data available from the compact MPFD will significantly enhance efforts to validate new high-fidelity reactor physics codes and new multi-scale, multi-physics codes. MPFDs can be built with variable sensitivities to survive the lifetime of an experiment or fuel assembly in some MTRs, allowing for more efficient and cost effective power monitoring. The small size of the MPFDs allows multiple sensors to be deployed, offering the potential to accurately measure the flux and temperature profiles in the reactor. This report summarizes the status at the end of year two of this three year project. As documented in this report, all planned accomplishments for developing this unique new, compact, multipurpose sensor have been completed.« less

  6. A Smart High Accuracy Silicon Piezoresistive Pressure Sensor Temperature Compensation System

    PubMed Central

    Zhou, Guanwu; Zhao, Yulong; Guo, Fangfang; Xu, Wenju

    2014-01-01

    Theoretical analysis in this paper indicates that the accuracy of a silicon piezoresistive pressure sensor is mainly affected by thermal drift, and varies nonlinearly with the temperature. Here, a smart temperature compensation system to reduce its effect on accuracy is proposed. Firstly, an effective conditioning circuit for signal processing and data acquisition is designed. The hardware to implement the system is fabricated. Then, a program is developed on LabVIEW which incorporates an extreme learning machine (ELM) as the calibration algorithm for the pressure drift. The implementation of the algorithm was ported to a micro-control unit (MCU) after calibration in the computer. Practical pressure measurement experiments are carried out to verify the system's performance. The temperature compensation is solved in the interval from −40 to 85 °C. The compensated sensor is aimed at providing pressure measurement in oil-gas pipelines. Compared with other algorithms, ELM acquires higher accuracy and is more suitable for batch compensation because of its higher generalization and faster learning speed. The accuracy, linearity, zero temperature coefficient and sensitivity temperature coefficient of the tested sensor are 2.57% FS, 2.49% FS, 8.1 × 10−5/°C and 29.5 × 10−5/°C before compensation, and are improved to 0.13%FS, 0.15%FS, 1.17 × 10−5/°C and 2.1 × 10−5/°C respectively, after compensation. The experimental results demonstrate that the proposed system is valid for the temperature compensation and high accuracy requirement of the sensor. PMID:25006998

  7. Hot-Fire Testing of 100 LB(sub F) LOX/LCH4 Reaction Control Engine at Altitude Conditions

    NASA Technical Reports Server (NTRS)

    Marshall, William M.; Kleinhenz, Julie E.

    2010-01-01

    Liquid oxygen/liquid methane (LO2/LCH4 ) has recently been viewed as a potential green propulsion system for both the Altair ascent main engine (AME) and reaction control system (RCS). The Propulsion and Cryogenic Advanced Development Project (PCAD) has been tasked by NASA to develop these green propellant systems to enable safe and cost effective exploration missions. However, experience with LO2/LCH4 as a propellant combination is limited, so testing of these systems is critical to demonstrating reliable ignition and performance. A test program of a 100 lb f reaction control engine (RCE) is underway at the Altitude Combustion Stand (ACS) of the NASA Glenn Research Center, with a focus on conducting tests at altitude conditions. These tests include a unique propellant conditioning feed system (PCFS) which allows for the inlet conditions of the propellant to be varied to test warm to subcooled liquid propellant temperatures. Engine performance, including thrust, c* and vacuum specific impulse (I(sub sp,vac)) will be presented as a function of propellant temperature conditions. In general, the engine performed as expected, with higher performance at warmer propellant temperatures but better efficiency at lower propellant temperatures. Mixture ratio effects were inconclusive within the uncertainty bands of data, but qualitatively showed higher performance at lower ratios.

  8. Growth and characterization of crystals for room temperature I.R. detectors and second harmonic generation devices

    NASA Technical Reports Server (NTRS)

    Lal, R. B.

    1995-01-01

    One of the major objectives of this program was to modify the triglycine sulfate (TGS) crystals with suitable dopants and variants to achieve better pyroelectric properties and improved infrared detectivities (D(sup *)), and higher Curie transition temperature compared to undoped TGS crystals. Towards these objectives, many promising dopants, both inorganic and organic, were investigated in the last few years. These dopants gave significant improvement in the D(sup *) value of the infrared detectors fabricated from the grown crystals with no significant increase in the Curie temperature (49 C). The IR detectors were fabricated at EDO/Barnes Engineering Division, Shelton, CT. In the last one year many TGS crystals doped with urea were grown using the low temperature solution crystal growth facility. It is found that doping with urea, the normalized growth yield increased significantly compared to pure TGS crystals and there is an improvement in the pyroelectric and dielectric constant values of doped crystals. This gave a significant increase in the materials figure of merits. The Vicker's hardness of 10 wt percent urea doped crystals is found to be about three times higher in the (010) direction compared to undoped crystals. This report describes in detail the results of urea doped TGS crystals.

  9. The direct aromatization of methane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcelin, G.; Oukaci, R.; Migone, R.A.

    1995-12-31

    The thermal decomposition of methane shows significant potential as a process for the production of higher unsaturated and aromatic hydrocarbons when the extent of the reaction is limited. Thermodynamic calculations have shown that when the reaction is limited to the formation of C{sub 2} to C{sub 10} products, yields of aromatics can exceed 40% at temperatures of 1200{degrees}C. Preliminary experiments have shown that when the reaction is limited to the formation of C{sub 2} to C{sub 10} products, yields of aromatics can exceed 40% at temperatures of 1200{degrees}C. Preliminary experiments have shown that cooling the product and reacting gases asmore » the reaction proceeds can significantly reduce or eliminate the formation of solid carbon and heavier (C{sub 10+}) materials. Much work remains to be done in optimizing the quenching process and this is one of the goals of this program. Means to lower the temperature of the reaction are being studied as this result in a more feasible commercial process due to savings realized in energy and material of construction costs. The use of free-radical generators and catalysts will be investigated as a means of lowering the reaction temperature thus allowing faster quenching. It is highly likely that such studies will lead to a successful direct methane to higher hydrocarbon process.« less

  10. Treatment of Irradiated Graphite from French Bugey Reactor - 13424

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Thomas; Poncet, Bernard

    2013-07-01

    Beginning in 2009, in order to determine an alternative to direct disposal for decommissioned irradiated graphite from EDF's Bugey NPP, Studsvik and EDF began a test program to determine if graphite decontamination and destruction were practicable using Studsvik's thermal organic reduction (THOR) technology. The testing program focused primarily on the release of C-14, H-3, and Cl-36 and also monitored graphite mass loss. For said testing, a bench-scale steam reformer (BSSR) was constructed with the capability of flowing various compositions of gases at temperatures up to 1300 deg. C over uniformly sized particles of graphite for fixed amounts of time. Themore » BSSR was followed by a condenser, thermal oxidizer, and NaOH bubbler system designed to capture H-3 and C-14. Also, in a separate series of testing, high concentration acid and peroxide solutions were used to soak the graphite and leach out and measure Cl-36. A series of gasification tests were performed to scope gas compositions and temperatures for graphite gasification using steam and oxygen. Results suggested higher temperature steam (1100 deg. C vs. 900 deg. C) yielded a practicable gasification rate but that lower temperature (900 deg. C) gasification was also a practicable treatment alternative if oxygen is fed into the process. A series of decontamination tests were performed to determine the release behavior of and extent to which C-14 and H-3 were released from graphite in a high temperature (900-1300 deg. C), low flow roasting gas environment. In general, testing determined that higher temperatures and longer roasting times were efficacious for releasing H-3 completely and the majority (80%) of C-14. Manipulating oxidizing and reducing gas environments was also found to limit graphite mass loss. A series of soaking tests was performed to measure the amount of Cl-36 in the samples of graphite before and after roasting in the BSSR. Similar to C-14 release, these soaking tests revealed that 70-80% Cl-36 is released during roasting tests. (authors)« less

  11. Mechanical Properties of T650-35/AFR-PE-4 at Elevated Temperatures for Lightweight Aeroshell Designs

    NASA Technical Reports Server (NTRS)

    Whitley, Karen S.; Collins, TImothy J.

    2006-01-01

    Considerable efforts have been underway to develop multidisciplinary technologies for aeroshell structures that will significantly increase the allowable working temperature for the aeroshell components, and enable the system to operate at higher temperatures while sustaining performance and durability. As part of these efforts, high temperature polymer matrix composites and fabrication technologies are being developed for the primary load bearing structure (heat shield) of the spacecraft. New high-temperature resins and composite material manufacturing techniques are available that have the potential to significantly improve current aeroshell design. In order to qualify a polymer matrix composite (PMC) material as a candidate aeroshell structural material, its performance must be evaluated under realistic environments. Thus, verification testing of lightweight PMC's at aeroshell entry temperatures is needed to ensure that they will perform successfully in high-temperature environments. Towards this end, a test program was developed to characterize the mechanical properties of two candidate material systems, T650-35/AFR-PE-4 and T650-35/RP46. The two candidate high-temperature polyimide resins, AFR-PE-4 and RP46, were developed at the Air Force Research Laboratory and NASA Langley Research Center, respectively. This paper presents experimental methods, strength, and stiffness data of the T650-35/AFR-PE-4 material as a function of elevated temperatures. The properties determined during the research test program herein, included tensile strength, tensile stiffness, Poisson s ratio, compressive strength, compressive stiffness, shear modulus, and shear strength. Unidirectional laminates, a cross-ply laminate and two eight-harness satin (8HS)-weave laminates (4-ply and 10-ply) were tested according to ASTM standard methods at room and elevated temperatures (23, 316, and 343 C). All of the relevant test methods and data reduction schemes are outlined along with mechanical data. These data contribute to a database of material properties for high-temperature polyimide composites that will be used to identify the material characteristics of potential candidate materials for aeroshell structure applications.

  12. Solid Polymer Electrolyte Fuel Cell Technology Program

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Work is reported on phase 5 of the Solid Polymer Electrolyte (SPE) Fuel Cell Technology Development program. The SPE fuel cell life and performance was established at temperatures, pressures, and current densities significantly higher than those previously demonstrated in sub-scale hardware. Operation of single-cell Buildup No. 1 to establish life capabilities of the full-scale hardware was continued. A multi-cell full-scale unit (Buildup No. 2) was designed, fabricated, and test evaluated laying the groundwork for the construction of a reactor stack. A reactor stack was then designed, fabricated, and successfully test-evaluated to demonstrate the readiness of SPE fuel cell technology for future space applications.

  13. Documentation of a graphical display program for the saturated- unsaturated transport (SUTRA) finite-element simulation model

    USGS Publications Warehouse

    Souza, W.R.

    1987-01-01

    This report documents a graphical display program for the U. S. Geological Survey finite-element groundwater flow and solute transport model. Graphic features of the program, SUTRA-PLOT (SUTRA-PLOT = saturated/unsaturated transport), include: (1) plots of the finite-element mesh, (2) velocity vector plots, (3) contour plots of pressure, solute concentration, temperature, or saturation, and (4) a finite-element interpolator for gridding data prior to contouring. SUTRA-PLOT is written in FORTRAN 77 on a PRIME 750 computer system, and requires Version 9.0 or higher of the DISSPLA graphics library. The program requires two input files: the SUTRA input data list and the SUTRA simulation output listing. The program is menu driven and specifications for individual types of plots are entered and may be edited interactively. Installation instruction, a source code listing, and a description of the computer code are given. Six examples of plotting applications are used to demonstrate various features of the plotting program. (Author 's abstract)

  14. Effects of room temperature aging on two cryogenic temperature sensor models used in aerospace applications

    NASA Astrophysics Data System (ADS)

    Courts, S. Scott; Krause, John

    2012-06-01

    Cryogenic temperature sensors used in aerospace applications are typically procured far in advance of the mission launch date. Depending upon the program, the temperature sensors may be stored at room temperature for extended periods as installation and groundbased testing can take years before the actual flight. The effects of long term storage at room temperature are sometimes approximated by the use of accelerated aging at temperatures well above room temperature, but this practice can yield invalid results as the sensing material and/or electrical contacting method can be increasingly unstable with higher temperature exposure. To date, little data are available on the effects of extended room temperature aging on sensors commonly used in aerospace applications. This research examines two such temperature sensors models - the Lake Shore Cryotronics, Inc. model CernoxTM and DT-670-SD temperature sensors. Sample groups of each model type have been maintained for ten years or longer with room temperature storage between calibrations. Over an eighteen year period, the CernoxTM temperature sensors exhibited a stability of better than ±20 mK for T<30 K and better than ±0.1% of temperature for T>30 K. Over a ten year period the model DT-670-SD sensors exhibited a stability of better than ±140 mK for T<25 K and better than ±75 mK for T>25 K.

  15. Effect of Temperature on the Desorption of Lithium from Molybdenum(110) Surfaces: Implications for Fusion Reactor First Wall Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Mohan; Roszell, John; Scoullos, Emanuel V.

    2016-03-30

    Determining the strength of Li binding to Mo is critical to assessing the survivability of Li as a potential first wall material in fusion reactors. Here, we present the results of a joint experimental and theoretical investigation into how Li desorbs from Mo(110) surfaces, based on what can be deduced from temperature-programmed desorption measurements and density functional theory (DFT). Li desorption peaks measured at temperatures ranging from 711 K (1 monolayer, ML) to 1030 K (0.04 ML), with corresponding desorption onsets from 489 to 878 K, follow a trend similar to predicted Gibbs free energies for Li adsorption. Bader chargemore » analysis of DFT densities reveals that repulsive forces between neighboring positively charged Li atoms increase with coverage and thus reduce the bond strength between Mo and Li, thereby lowering the desorption temperature as the coverage increases. In addition, DFT predicts that Li desorbs at higher temperatures from a surface with vacancies than from a perfect surface, offering an explanation for the anomalously high desorption temperatures for the last Li to desorb from Mo(110). Analysis of simulated local densities of states indicates that the stronger binding to the defective surface is correlated with enhanced interaction between Li and Mo, involving the Li 2s electrons and not only the Mo 4d electrons as in the case of the pristine surface, but also the Mo 5s electrons in the case with surface vacancies. We suggest that steps and kinks present on the Mo(110) surface behave similarly and contribute to the high desorption temperatures. These findings imply that roughened Mo surfaces may strengthen Li film adhesion at higher temperatures.« less

  16. A Michelson Interferometer for Electron Cyclotron Emission Measurements on EAST

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Stefan, Schmuck; Zhao, Hailin; John, Fessey; Paul, Trimble; Liu, Xiang; Zhu, Zeying; Zang, Qing; Hu, Liqun

    2016-12-01

    A Michelson interferometer, on loan from EFDA-JET (Culham, United Kingdom) has recently been commissioned on the experimental advanced superconducting tokamak (EAST, ASIPP, Hefei, China). Following a successful in-situ absolute calibration the instrument is able to measure the electron cyclotron emission (ECE) spectrum, from 80 GHz to 350 GHz in extraordinary mode (X-mode) polarization, with high accuracy. This allows the independent determination of the electron temperature profile from observation of the second harmonic ECE and the possible identification of non-Maxwellian features by comparing higher harmonic emission with numerical simulations. The in-situ calibration results are presented together with the initial measured temperature profiles. These measurements are then discussed and compared with other independent temperature profile measurements. This paper also describes the main hardware features of the diagnostic and the associated commissioning test results. supported by National Natural Science Foundation of China (Nos. 11405211, 11275233), and the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB106002, 2015GB101000), and the RCUK Energy Programme (No. EP/I501045), partly supported by the JSPS-NRF-NSFC A3 Foresight Program in the Field of Plasma Physics (NSFC: No. 11261140328)

  17. Advanced Stirling Convertor Update

    NASA Astrophysics Data System (ADS)

    Wood, J. Gary; Carroll, Cliff; Matejczyk, Dan; Penswick, L. B.; Soendker, E.

    2006-01-01

    This paper reports on the 88 We Advanced Stirling Convertor (ASC) currently being developed under Phase II of a NASA NRA program for possible use in advanced high specific power radioisotope space power systems. An early developmental unit, the Frequency Test Bed (FTB) which was built and tested in Phase I demonstrated 36% efficiency. The ASC-1 currently being developed under Phase II, uses a high temperature heater head to allow for operation at 850 °C and is expected to have an efficiency approaching 40% (based on AC electrical out) at a temperature ratio of 3.1. The final lightweight ASC-2 convertor to be developed in Phase III is expected to have a mass of approximately 1 kg. The implementation of the ASC would allow for much higher specific power radioisotope power systems, requiring significantly less radioisotope fuel than current systems. The first run of the ASC-1 occurred in September 2005, and full temperature operation was achieved in early October 2005. Presented is an update on progress on the ASC program as well as the plans for future development. Also presented are efforts being performed to ensure the ASC has the required long life already demonstrated in free-piston Stirling cryocoolers.

  18. Template-Mediated Ni(II) Dispersion in Mesoporous SiO2 for Preparation of Highly Dispersed Ni Catalysts: Influence of Template Type.

    PubMed

    Ning, Xin; Lu, Yiyuan; Fu, Heyun; Wan, Haiqin; Xu, Zhaoyi; Zheng, Shourong

    2017-06-07

    Supported Ni catalysts on three mesoporous SiO 2 supports (i.e., SBA-15, MCM-41, and HMS) were prepared using a solid-state reaction between Ni(NO 3 ) 2 and organic template-occluded mesoporous SiO 2 . For comparison, supported Ni catalysts on mesoporous SiO 2 synthesized by the conventional impregnation method were also included. The catalysts were characterized by scanning electron microscopy, X-ray diffraction, UV-vis diffuse reflectance spectroscopy, N 2 adsorption, X-ray photoelectron spectroscopy, H 2 temperature-programmed reduction, transmission electron microscopy, and transmission electron microscopy-energy-dispersive X-ray. The catalytic properties of the catalysts were evaluated using gas-phase catalytic hydrodechlorination of 1,2-dichloroethane. The results showed that upon grinding Ni(NO 3 ) 2 with template-occluded mesoporous SiO 2 , strong coordination between Ni 2+ and dodecylamine was identified in the Ni(NO 3 ) 2 -HMS system. Additionally, the results of H 2 temperature-programmed reduction revealed that NiO in calcined NiO/HMS was reduced at higher temperature than those in calcined NiO/SBA-15 and NiO/MCM-41, reflecting the presence of a strong interaction between NiO and mesoporous SiO 2 in NiO/HMS. Consistently, the average particle sizes of metallic Ni were found to be 2.7, 3.4, and 9.6 nm in H 2 -reduced Ni/HMS, Ni/SBA-15, and Ni/MCM-41, respectively, indicative of a much higher Ni dispersion in Ni/HMS. For the catalytic hydrodechlorination of 1,2-dichloroethane, Ni/MCM-41 synthesized by the solid-state reaction method exhibited a catalytic activity similar to that prepared by the impregnation method, while higher catalytic activities were observed on Ni/HMS and Ni/SBA-15 than on their counterparts prepared by the impregnation method. Furthermore, a higher conversion was identified on Ni/HMS than on Ni/SBA-15 and Ni/MCM-41, highlighting the importance of template type for the preparation of highly dispersed metal catalysts on mesoporous SiO 2 .

  19. NEET Enhanced Micro Pocket Fission Detector for High Temperature Reactors - FY15 Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unruh, Troy; McGregor, Douglas; Ugorowski, Phil

    2015-09-01

    A new project, that is a collaboration between the Idaho National Laboratory (INL), the Kansas State University (KSU), and the French Atomic Energy Agency, Commissariat à l'Énergie Atomique et aux Energies Alternatives, (CEA), has been initiated by the Nuclear Energy Enabling Technologies (NEET) Advanced Sensors and Instrumentation (ASI) program for developing and testing High Temperature Micro-Pocket Fission Detectors (HT MPFD), which are compact fission chambers capable of simultaneously measuring thermal neutron flux, fast neutron flux and temperature within a single package for temperatures up to 800 °C. The MPFD technology utilizes a small, multi-purpose, robust, in-core parallel plate fission chambermore » and thermocouple. As discussed within this report, the small size, variable sensitivity, and increased accuracy of the MPFD technology represent a revolutionary improvement over current methods used to support irradiations in US Material Test Reactors (MTRs). Previous research conducted through NEET ASI1-3 has shown that the MPFD technology could be made robust and was successfully tested in a reactor core. This new project will further the MPFD technology for higher temperature regimes and other reactor applications by developing a HT MPFD suitable for temperatures up to 800 °C. This report summarizes the research progress for year one of this three year project. Highlights from research accomplishments include: A joint collaboration was initiated between INL, KSU, and CEA. Note that CEA is participating at their own expense because of interest in this unique new sensor. An updated HT MPFD design was developed. New high temperature-compatible materials for HT MPFD construction were procured. Construction methods to support the new design were evaluated at INL. Laboratory evaluations of HT MPFD were initiated. Electrical contact and fissile material plating has been performed at KSU. Updated detector electronics are undergoing evaluations at KSU. A project meeting was held at KSU to discuss the roles and responsibilities between INL and KSU for development of the HT MPFDs. Provide input to various irradiation programs for installation of the MPFD technology in irradiation tests. As documented in this report, FY15 funding has allowed the project to meet year one planned accomplishments to develop a HT MPFD that offers US MTR users enhanced capabilities for real-time measurement of flux and temperature with a single detector. In addition, the accomplishments of this project have attracted funding from other Department of Energy Office of Nuclear Energy (DOE-NE) programs for additional applications. The work in those programs will build on current activities completed in this NEETASI HT MPFD project, but the MPFD will be specifically tailored to meet their program needs.« less

  20. The growth of zinc selenide single crystals by physical vapor transport in microgravity

    NASA Technical Reports Server (NTRS)

    Anderson, Elmer E.; Rosenberger, Franz E.; Cheng, Hai-Yuin

    1990-01-01

    Growth and characterization studies will be performed on zinc selenide single crystals. The high temperature outgassing behavior of the silica ampoule material will be studied in order to develop a cleaning and bake-out procedure that will minimize the amount of impurities introduced into the vapor from the ampoule materials and in particular during the seal-off procedure. The outgassing behavior of the ZnSe starting material will be studied during high vacuum refinement at elevated temperatures in order to develop a temperature pressure program that will optimize the removal of impurities while minimizing a shift in stoichiometry due to preferred evaporation of the higher fugacity component. The mass spectrometer system was completed, and after calibration, will be used to perform the above tasks. The system and its operation is described in detail.

  1. Cyclic arc plasma tests of RSI materials using a preheater

    NASA Technical Reports Server (NTRS)

    Stewart, D. A.

    1973-01-01

    The results of a test program are reported in which a preheater was used with an arc plasma stream to study the thermal response of samples of candidate reusable surface insulation materials for the space shuttle. The preheater simulated the shuttle temperature history during the first and last portions of the test cycle, which could not be simulated by the air arc plasma flow. Pre- and post-test data taken for each of the materials included magnified views, optical properties, and chemical analyses. The test results indicate that the mullite base samples experience higher surface temperatures than the other materials at heating rates greater than 225 kw/sq m. The ceramic fibrous mullite and silica coatings show noncatalytic wall behavior. Internal temperature response data for the materials are compared and correlated with analytical predictions.

  2. Avionics Integrity Program (AVIP). Volume 1. Procurement Phase Issues - Design, Manufacturing, and Integration

    DTIC Science & Technology

    1984-03-01

    Engineering initiative to develop an orderly plan and procedure to assure that USAF acquire reliable, high quality, supportable avionics with a higher avail...susceptibility te~t~ (radiated and conducted), and emission of radio frequency energy tests."l6) Other electrical stresses can include over/under voltage...jo ints, poor welds, and dielectric defects. Also, instruments with components unable to endu very high temperatures can be safely tested. 1-19

  3. Estimation of the Barrier Layer Thickness in the Indian Ocean Using Aquarius Salinity

    DTIC Science & Technology

    2014-07-08

    number of temperature and salinity measurements in ocean basins . In 2005, buoy coverage in the Indian Ocean began meeting Argo program sampling...distribution of salinity in the Indian Ocean is unique when compared to the other basins with higher salinity in the western contrasted Journal of...eastern regions of the basin (Figure 2). In the Arabian Sea, evaporation (E) greatly exceeds precipitation (P) resulting in high salinity (>36 PSU

  4. Army Oil Analysis Program for Vehicle Testing

    DTIC Science & Technology

    1996-08-16

    4 TOP 2-2-690 16 August 1996 (l) Water determination: Karl Fischer method (TM 38-301-2 or ASTM-D1744 3 ): Set up the Karl Fischer titrator in...higher temperature if required. aMagnification. bReflected. CTransmitted. 5. DATA REQUIRED. a. Water: Karl Fischer percent water-- (% H2 0). b...Liquid Petroleum Products by Karl Fischer Reagent, 1984. 4. DL 18, Karl Fischer Titrator Operating Instructions. 5. ASTM-D445, Annual Book of ASTM

  5. Effects of programming and healing temperatures on the healing efficiency of a confined healable polymer composite

    NASA Astrophysics Data System (ADS)

    Yougoubare, Y. Quentin; Pang, Su-Seng

    2014-02-01

    In previous work, a biomimetic close-then-heal (CTH) healing mechanism was proposed and validated to repeatedly heal wide-open cracks in load carrying engineering structures by using constrained expansion of compression programmed thermoset shape memory polymers (SMPs). In this study, the effects on healing efficiencies of variation of temperature during both thermomechanical programming and shape recovery (healing) under three-dimensional (3D) confinement are evaluated. The polymer considered is a polystyrene shape memory polymer with 6% by volume of thermoplastic particle additives (copolyester) dispersed in the matrix. In addition to the programming and healing temperatures, some of the parameters investigated include the flexural strength, crack width and elemental composition at the crack interface. It is observed that while increase of the programming temperature is slightly beneficial to strength recovery, most of the strength recovered and damage repair are strongly dependent on the healing temperature. The best healing efficiency (63%) is achieved by a combination of a programming temperature above the glass transition temperature of the polymer and a healing temperature above the bonding point of the copolyester.

  6. Calculation of gas temperature at the outlet of the combustion chamber and in the air-gas channel of a gas-turbine unit by data of acceptance tests in accordance with ISO

    NASA Astrophysics Data System (ADS)

    Kostyuk, A. G.; Karpunin, A. P.

    2016-01-01

    This article describes a high accuracy method enabling performance of the calculation of real values of the initial temperature of a gas turbine unit (GTU), i.e., the gas temperature at the outlet of the combustion chamber, in a situation where manufacturers do not disclose this information. The features of the definition of the initial temperature of the GTU according to ISO standards were analyzed. It is noted that the true temperatures for high-temperature GTUs is significantly higher than values determined according to ISO standards. A computational procedure for the determination of gas temperatures in the air-gas channel of the gas turbine and cooling air consumptions over blade rims is proposed. As starting equations, the heat balance equation and the flow mixing equation for the combustion chamber are assumed. Results of acceptance GTU tests according to ISO standards and statistical dependencies of required cooling air consumptions on the gas temperature and the blade metal are also used for calculations. An example of the calculation is given for one of the units. Using a developed computer program, the temperatures in the air-gas channel of certain GTUs are calculated, taking into account their design features. These calculations are performed on the previously published procedure for the detailed calculation of the cooled gas turbine subject to additional losses arising because of the presence of the cooling system. The accuracy of calculations by the computer program is confirmed by conducting verification calculations for the GTU of the Mitsubishi Comp. and comparing results with published data of the company. Calculation data for temperatures were compared with the experimental data and the characteristics of the GTU, and the error of the proposed method is estimated.

  7. Metal- and intermetallic-matrix composites for aerospace propulsion and power systems

    NASA Astrophysics Data System (ADS)

    Doychak, J.

    1992-06-01

    Successful development and deployment of metal-matrix composites and intermetallic- matrix composites are critical to reaching the goals of many advanced aerospace propulsion and power development programs. The material requirements are based on the aerospace propulsion and power system requirements, economics, and other factors. Advanced military and civilian aircraft engines will require higher specific strength materials that operate at higher temperatures, and the civilian engines will also require long lifetimes. The specific space propulsion and power applications require hightemperature, high-thermal-conductivity, and high-strength materials. Metal-matrix composites and intermetallic-matrix composites either fulfill or have the potential of fulfilling these requirements.

  8. Augmenting Photoinduced Charge Transport in a Single-Component Gel System: Controlled In Situ Gel-Crystal Transformation at Room Temperature.

    PubMed

    Satapathy, Sitakanta; Prabakaran, Palani; Prasad, Edamana

    2018-04-20

    Smart single-component materials with versatile functions require pre-programming of a higher order molecular assembly. An electroactive supergelator (c=0.07 wt %) triphenylamine core-appended poly(aryl ether) dendron (TPAPAE) is described, where substantial dendritic effects improve the order and crystallinity by switching the local minima from self-assembled molecular wires to thermodynamically favorable global minima of ordered crystals, ripened within the fibers. Controlled in situ phase change at room temperature ultimately stabilized the mixed valence states in the single-component supramolecular assembly with photoluminescence and photoinduced charge transport amplified by two orders of magnitude. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The winter gap effect in methane leak detection and repair with optical gas imaging cameras

    NASA Astrophysics Data System (ADS)

    Fox, T. A.; Barchyn, T.; Hugenholtz, C.

    2017-12-01

    Implementing effective leak detection and repair (LDAR) programs is essential for mitigating fugitive methane emissions from oil and gas operations. In Canada, newly proposed regulations will require that high-risk facilities be surveyed 3 times/yr for fugitive leaks. Like the United States, Canada promotes the use of Optical Gas Imaging cameras (OGIs) for detecting natural gas leaks during LDAR surveys. However, recent research suggests OGIs may perform poorly under adverse environmental conditions, especially in low temperatures. For regions like Canada that experience cold winters, OGIs may not be reliably used for months at a time, meaning that leaks may accumulate and emit for longer periods before being repaired. While considerable oil and gas activity occurs in high-latitude regions with cold winters, no research has explored how extended cold periods impact OGI-focused LDAR programs. To improve this understanding, we present a simple model exploring relationships among winter gap length, fugitive methane emissions, and investment input for LDAR programs employing OGI instruments in gas producing regions of different latitudes. Preliminary results suggest that longer gaps between LDAR surveys caused by cold temperatures result in either 1) higher total emissions for the year, or 2) greater time and equipment investment in LDAR programs to achieve emissions mitigation equivalent to LDAR programs operating under ideal conditions. When weather constraints are removed and LDAR surveys are evenly spaced throughout the year, emissions mitigation is optimized. However, as the winter gap duration and the size of the implicated area increases, fugitive leaks last longer. Furthermore, a spillover effect is observed as LDAR crews become overwhelmed with the high volume of work required as temperatures increase in the spring. Our model adds weight to the argument that LDAR programs should be tailored to regional needs, and that regulators should be more cognisant of sensor-specific limitations as they develop LDAR protocols.

  10. Temporal and spatial variation in personal ambient temperatures for outdoor working populations in the southeastern USA

    NASA Astrophysics Data System (ADS)

    Sugg, Margaret M.; Fuhrmann, Christopher M.; Runkle, Jennifer D.

    2018-05-01

    Excessive ambient temperature exposure can result in significant morbidity and mortality, especially among vulnerable occupational groups like outdoor workers. Average temperatures in the USA are projected to increase in frequency and intensity, placing future worker populations at greater risk for unhealthy levels of exposure. Unlike previous research focused on aggregate-level temperature exposures from in situ weather station data, this study will measure location-based personal ambient temperatures (PAT) at the individual-level by piloting the use of wearable sensor technology. A total of 66 outdoor workers in three geographically and climatologically diverse regions in the Southeast USA were continuously sampled during the workday for a 1-week period throughout July 11 to August 8 2016. Results indicate significant worker variation in temperature exposure within and between study locations; with PAT characterized by less pronounced variability as workers moved between indoor and outdoor environments. Developed land covers, a factor often associated with higher temperatures, were poorly correlated with PAT. Future analysis should focus on a worker's physiological response to PAT and mapping of spatial patterns of PAT for a larger worker population to produce innovative and targeted heat prevention programs.

  11. Heavy Vehicle Propulsion System Materials Program Semiannual Progress Report for April 2000 Through September 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, DR

    2000-12-11

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advantages LE-55 diesel engines with 55% efficiency and low emissions levels of 2.0 g/bhp-h NOx and 0.05 g/bhp-h particulates. The goal ismore » also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55% efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies. OTT OHVT also recognizes a significant opportunity for reduction in petroleum consumption by dieselization of pickup trucks, vans, and sport utility vehicles. Application of the diesel engine to class 1, 2, and 3 trucks is expected to yield a 35% increase in fuel economy per vehicle. The foremost barrier to diesel use in this market is emission control. Once an engine is made certifiable, subsequent challenges will be in cost; noise, vibration, and harshness (NVH); and performance. The design of advanced components for high-efficiency diesel engines has, in some cases, pushed the performance envelope for materials of construction past the point of reliable operation. Higher mechanical and tribological stresses and higher temperatures of advanced designs limit the engine designer; advanced materials allow the design of components that may operate reliably at higher stresses and temperatures, thus enabling more efficient engine designs. Advanced materials also offer the opportunity to improve the emissions, NVH, and performance of diesel engines for pickup trucks, vans, and sport utility vehicles.« less

  12. High Temperature, Slow Strain Rate Forging of Advanced Disk Alloy ME3

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; OConnor, Kenneth

    2001-01-01

    The advanced disk alloy ME3 was designed in the HSR/EPM disk program to have extended durability at 1150 to 1250 F in large disks. This was achieved by designing a disk alloy and process producing balanced monotonic, cyclic, and time-dependent mechanical properties. combined with robust processing and manufacturing characteristics. The resulting baseline alloy, processing, and supersolvus heat treatment produces a uniform, relatively fine mean grain size of about ASTM 7, with as-large-as (ALA) grain size of about ASTM 3. There is a long term need for disks with higher rim temperature capabilities than 1250 F. This would allow higher compressor exit (T3) temperatures and allow the full utilization of advanced combustor and airfoil concepts under development. Several approaches are being studied that modify the processing and chemistry of ME3, to possibly improve high temperature properties. Promising approaches would be applied to subscale material, for screening the resulting mechanical properties at these high temperatures. n obvious path traditionally employed to improve the high temperature and time-dependent capabilities of disk alloys is to coarsen the grain size. A coarser grain size than ASTM 7 could potentially be achieved by varying the forging conditions and supersolvus heat treatment. The objective of this study was to perform forging and heat treatment experiments ("thermomechanical processing experiments") on small compression test specimens of the baseline ME3 composition, to identify a viable forging process allowing significantly coarser grain size targeted at ASTM 3-5, than that of the baseline, ASTM 7.

  13. Uranium from Seawater Marine Testing Program at the University of Miami’s Broad Key Island Research Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, Gary A.; Kuo, Li-Jung; Strivens, Jonathan E.

    Marine testing at Broad Key Island (BKI), Florida was conducted to validate adsorption capacity and adsorption kinetics results obtained for several formulations of the ORNL amidoxime-based polymeric adsorbents in Sequim Bay, Washington in another location with different oceanographic and water quality conditions (e.g. temperature, dissolved organic carbon, salinity and trace element content). Broad Key is a small island off the southeast coast of Florida at the southern end of Biscayne Bay. Flow-through column and recirculating flume experiments were conducted at BKI using ambient filtered seawater and identical exposure systems as were used at the Pacific Northwest National Laboratory’s (PNNL) Marinemore » Sciences laboratory (MSL). Testing was conducted in two periods in FY 2015 and FY 2016 with five different amidoxime-based adsorbent materials, four produced by ORNL (AF1, AI8, AF8, and AF1-DMSO) and one by LCW technologies (LCW-10). All exposures were conducted at ambient seawater temperatures, with moderate temperature control on the ambient seawater to mitigate large daily swings in the seawater temperature. The ORNL adsorbents AF1, AI8 and AF1-AO-DMSO all had fairly similar adsorption capacities (6.0 to 6.6 g U/ kg adsorbent) after 56 days of exposure at ambient temperature (26 to 31 °C) and salinity (35.7 to 37.4), but the AF8 adsorbent was considerably lower at 4.4 g U/kg adsorbent. All the adsorbents tested at BKI had higher capacities than was observed at PNNL, with the higher temperatures likely a major factor contributing to this difference. In general, the elemental distribution (expressed as a relative percentage) on all the adsorbents agreed well, including good agreement with the elemental distribution pattern for AF1 adsorbent exposed at PNNL. The most notable exception to a uniform elemental distributional pattern across the various adsorbents occurs with vanadium. The relative mass percentage for vanadium retained by the adsorbents ranged from a minimum of 13% for the AF8 formulation to a maximum of 29% for the AI8 formulation. All the V/U mass ratios at BKI are lower than observed for the AF1 adsorbent at PNNL (3.0). Temperature likely plays a significant role in the V/U mass ratio difference between BKI and PNNL. Because uranium has a higher adsorption capacity at higher temperatures, one would expect that warmer exposures would favor a lower V/U mass ratio, which could explain why the V/U mass ratio for the PNNL exposures are higher than observed for the BKI exposures. Marine Testing at BKI offers the opportunity to test adsorbent performance under warmer ambient and more saline conditions than exist at the marine test site on Sequim Bay. This is particularly important since the amidoxime-based adsorbents respond strongly to temperature. In addition, since salinities are about 15% higher at BKI compared to Sequim Bay (36 vs. 31), uranium adsorption capacities are about 15% higher at the BKI site compared to Sequim Bay.« less

  14. JSUS solar thermal thruster and its integration with thermionic power converter

    NASA Astrophysics Data System (ADS)

    Shimizu, Morio; Eguchi, Kunihisa; Itoh, Katsuya; Sato, Hitoshi; Fujii, Tadayuki; Okamoto, Ken-Ichi; Igarashi, Tadashi

    1998-01-01

    This paper describes solar heating test results of a single crystal Mo thruster of solar thermal propulsion (STP) with super high-temperature brazing of Mo/Ru for hydrogen-gas sealing, using the paraboloidal concentrator of 1.6 m diameter newly installed in NAL in the Japan Solar Upper Stage (JSUS) research program. The designed thruster has a target Isp about 800 sec for 2,250 K or higher temperatures of hydrogen propellant. Additionally, tungsten CVD-coating was applied to a outer surface of the thruster in order to prevent vaporization of the wall material and Mo/Ru under the condition of high temperature over 2,500K and high vacuum. Also addressed in our paper is solar thermionic power module design for the integration with the STP receiver. The thermionic converter (TIC) module is of a planar type in a Knudsen-mode operation and provides a high conversion efficiency of 23% at the TIC emitter temperature of nearly 1,850 K for a heat input flux of 24 W/cm2.

  15. Decomposition of ferrite in commercial superduplex stainless steel weld metals; microstructural transformations above 700 °C

    NASA Astrophysics Data System (ADS)

    Gregori, A.; Nilsson, J.-O.

    2002-04-01

    The microstructural stability at temperatures above 700 °C of weld metal of type 29Cr-8Ni-2Mo-0.39N and weld metal of type 25Cr-10Ni-4Mo-0.28N has been compared. Multipass welding was employed using the gas tungsten arc welding technique with a shielding gas of Ar+2 pct N2. The quantitative assessment of the intermetallic phase was performed using automatic image analysis in the light optical microscope (LOM). Detailed microanalysis was also performed using scanning and transmission electron microscopy. A computer program developed by the authors was used to calculate a continuous cooling-temperature (CCT) diagram on the basis of the experimentally determined time-temperature-transformation (TTT) diagram. Thermodynamic calculations for estimating phase stabilities and for interpreting experimental observations were performed. It was found that weld metal of type 29Cr-8Ni-2Mo-0.39N was microstructurally more stable than weld metal of type 25Cr-10Ni-4Mo-0.28N. A lower molybdenum concentration and a higher nitrogen concentration in the former alloy could explain the higher stability with respect to the intermetallic phase. The higher nitrogen concentration also provides a rationale for the higher stability against the formation of secondary austenite in weld metal of type 29Cr-8Ni-2Mo-0.39N. This effect, which is associated with a lower thermodynamic driving force for precipitation of secondary austenite during multipass welding, can be explained by nitrogen-enhanced primary austenite formation.

  16. Utilization of a by-product produced from oxidative desulfurization process over Cs-mesoporous silica catalysts.

    PubMed

    Kim, Hyeonjoo; Jeong, Kwang-Eun; Jeong, Soon-Yong; Park, Young-Kwon; Kim, Do Heui; Jeon, Jong-Ki

    2011-02-01

    We investigated the use of Cs-mesoporous silica catalysts to upgrade a by-product of oxidative desulfurization (ODS). Cs-mesoporous silica catalysts were characterized through N2 adsorption, XRD, CO2-temperature-programmed desorption, and XRF. Cs-mesoporous silica prepared by the direct incorporation method showed higher catalytic performance than a Cs/MCM-41 catalyst by impregnation method for the catalytic decomposition of sulfone compounds produced from ODS process.

  17. ROLE OF TUNGSTEN IN THE AQUEOUS PHASE HYDRODEOXYGENATION OF ETHYLENE GLYCOL ON TUNGSTATED ZIRCONIA SUPPORTED PALLADIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marin-Flores, Oscar G.; Karim, Ayman M.; Wang, Yong

    2014-11-15

    The focus of the present work was specifically on the elucidation of the role played by tungsten on the catalytic activity and selectivity of tungstated zirconia supported palladium (Pd-mWZ) for the aqueous phase hydrodeoxygenation (APHDO) of ethylene glycol (EG). Zirconia supported palladium (Pd-mZ) was used as reference. The catalysts were prepared via incipient wet impregnation and characterized using X-ray diffraction (XRD), temperature-programmed reduction (TPR), CO pulse chemisorption, CO-DRIFTS, ammonia temperature-programmed desorption (NH3-TPD) and pyridine adsorption. The presence of W results in larger Pd particles on supported Pd catalysts, i.e., 0.9 and 6.1 nm Pd particles are for Pd-mZ and Pd-mWZ,more » respectively. For comparison purposes, the activity of the catalytic materials used in this work was obtained using a well-defined set of operating conditions. The catalytic activity measurements show that the overall intrinsic activity of Pd particles on mWZ is 1.9 times higher than on mZ. APHDO process appears to be highly favored on Pd-mWZ whereas Pd-mZ exhibits a higher selectivity for reforming. This difference in terms of selectivity seems to be related to the high concentration of Brønsted acid sites and electron-deficient Pd species present on Pd-mWZ.« less

  18. Helicon plasma ion temperature measurements and observed ion cyclotron heating in proto-MPEX

    NASA Astrophysics Data System (ADS)

    Beers, C. J.; Goulding, R. H.; Isler, R. C.; Martin, E. H.; Biewer, T. M.; Caneses, J. F.; Caughman, J. B. O.; Kafle, N.; Rapp, J.

    2018-01-01

    The Prototype-Material Plasma Exposure eXperiment (Proto-MPEX) linear plasma device is a test bed for exploring and developing plasma source concepts to be employed in the future steady-state linear device Material Plasma Exposure eXperiment (MPEX) that will study plasma-material interactions for the nuclear fusion program. The concept foresees using a helicon plasma source supplemented with electron and ion heating systems to reach necessary plasma conditions. In this paper, we discuss ion temperature measurements obtained from Doppler broadening of spectral lines from argon ion test particles. Plasmas produced with helicon heating alone have average ion temperatures downstream of the Helicon antenna in the range of 3 ± 1 eV; ion temperature increases to 10 ± 3 eV are observed with the addition of ion cyclotron heating (ICH). The temperatures are higher at the edge than the center of the plasma either with or without ICH. This type of profile is observed with electrons as well. A one-dimensional RF antenna model is used to show where heating of the plasma is expected.

  19. High-Temperature, Lightweight, Self-Healing Ceramic Composites for Aircraft Engine Applications

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.; Bhatt, Ramkrishna

    2013-01-01

    The use of reliable, high-temperature, lightweight materials in the manufacture of aircraft engines is expected to result in lower fossil and biofuel consumption, thereby leading to cost savings and lower carbon emissions due to air travel. Although nickel-based superalloy blades and vanes have been successfully used in aircraft engines for several decades, there has been an increased effort to develop high-temperature, lightweight, creep-resistant substitute materials under various NASA programs over the last two decades. As a result, there has been a great deal of interest in developing SiC/SiC ceramic matrix composites (CMCs) due to their higher damage tolerance compared to monolithic ceramics. Current-generation SiC/SiC ceramic matrix composites rely almost entirely on the SiC fibers to carry the load, owing to the premature cracking of the matrix during loading. Thus, the high-temperature usefulness of these CMCs falls well below their theoretical capabilities. The objective of this work is to develop a new class of high-temperature, lightweight, self-healing, SiC fiber-reinforced, engineered matrix ceramic composites.

  20. Oxide_Oxide Ceramic Matrix Composite (CMC) Exhaust Mixer Development in the NASA Environmentally Responsible Aviation (ERA) Project

    NASA Technical Reports Server (NTRS)

    Kiser, J. Douglas; Bansal, Narottam P.; Szelagowski, James; Sokhey, Jagdish; Heffernan, Tab; Clegg, Joseph; Pierluissi, Anthony; Riedell, Jim; Wyen, Travis; Atmur, Steven; hide

    2015-01-01

    LibertyWorks®, a subsidiary of Rolls-Royce Corporation, first studied CMC (ceramic matrix composite) exhaust mixers for potential weight benefits in 2008. Oxide CMC potentially offered weight reduction, higher temperature capability, and the ability to fabricate complex-shapes for increased mixing and noise suppression. In 2010, NASA was pursuing the reduction of NOx emissions, fuel burn, and noise from turbine engines in Phase I of the Environmentally Responsible Aviation (ERA) Project (within the Integrated Systems Research Program). ERA subtasks, including those focused on CMC components, were being formulated with the goal of maturing technology from Proof of Concept Validation (Technology Readiness Level 3 (TRL 3)) to System/Subsystem or Prototype Demonstration in a Relevant Environment (TRL 6). LibertyWorks®, a subsidiary of Rolls-Royce Corporation, first studied CMC (ceramic matrix composite) exhaust mixers for potential weight benefits in 2008. Oxide CMC potentially offered weight reduction, higher temperature capability, and the ability to fabricate complex-shapes for increased mixing and noise suppression. In 2010, NASA was pursuing the reduction of NOx emissions, fuel burn, and noise from turbine engines in Phase I of the Environmentally Responsible Aviation (ERA) Project (within the Integrated Systems Research Program). ERA subtasks, including those focused on CMC components, were being formulated with the goal of maturing technology from Proof of Concept Validation (Technology Readiness Level 3 (TRL 3)) to System/Subsystem or Prototype Demonstration in a Relevant Environment (TRL 6). Oxide CMC component at both room and elevated temperatures. A TRL˜5 (Component Validation in a Relevant Environment) was attained and the CMC mixer was cleared for ground testing on a Rolls-Royce AE3007 engine for performance evaluation to achieve TRL 6.

  1. Climate Change and Health Risks from Extreme Heat and Air Pollution in the Eastern United States

    NASA Astrophysics Data System (ADS)

    Limaye, V.; Vargo, J.; Harkey, M.; Holloway, T.; Meier, P.; Patz, J.

    2013-12-01

    Climate change is expected to exacerbate health risks from exposure to extreme heat and air pollution through both direct and indirect mechanisms. Directly, warmer ambient temperatures promote biogenic emissions of ozone precursors and favor the formation of ground-level ozone, while an anticipated increase in the frequency of stagnant air masses will allow fine particulates to accumulate. Indirectly, warmer summertime temperatures stimulate energy demand and exacerbate polluting emissions from the electricity sector. Thus, while technological adaptations such as air conditioning can reduce risks from exposures to extreme heat, they can trigger downstream damage to air quality and public health. Through an interdisciplinary modeling effort, we quantify the impacts of climate change on ambient temperatures, summer energy demand, air quality, and public health. The first phase of this work explores how climate change will directly impact the burden of heat-related mortality. Climatic patterns, demographic trends, and epidemiologic risk models suggest that populations in the eastern United States are likely to experience an increasing heat stress mortality burden in response to rising summertime air temperatures. We use North American Regional Climate Change Assessment Program modeling data to estimate mid-century 2-meter air temperatures and humidity across the eastern US from June-August, and quantify how long-term changes in actual and apparent temperatures from present-day will affect the annual burden of heat-related mortality across this region. With the US Environmental Protection Agency's Environmental Benefits Mapping and Analysis Program, we estimate health risks using concentration-response functions, which relate temperature increases to changes in annual mortality rates. We compare mid-century summertime temperature data, downscaled using the Weather Research and Forecasting model, to 2007 baseline temperatures at a 12 km resolution in order to estimate the number of annual excess deaths attributable to increased summer temperatures. Warmer average temperatures are expected to cause 173 additional deaths due to cardiovascular stress, while higher minimum temperatures will cause 67 additional deaths. This work particularly improves on the spatial resolution of published analyses of heat-related mortality in the US.

  2. Role of CeO2 promoter in NiO/α-Al2O3 catalyst for dry reforming of methane

    NASA Astrophysics Data System (ADS)

    Loc, Luu Cam; Phuong, Phan Hong; Tri, Nguyen

    2017-09-01

    A series of Ni/α-Al2O3 (NiAl) catalysts promoted by CeO2 was prepared by co-impregnation methods with content of (NiO+CeO2) being in the range of 10-30 wt%. The NiO:CeO2 weight ratio was fluctuated at 1:1, 1:2 and 1:3. Several techniques, including X-ray powder diffraction (XRD), Hydrogen temperature-programmed reduction (H2-TPR), and transmission electron microscopy (TEM) were used to investigate catalysts' physico-chemical properties. The activity of these catalysts in dry reforming of CH4 was investigated at temperature range of 550-800 °C. The results revealed that the most suitable CeO2 promoted Ni catalyst contained 20 wt% of (NiO+CeO2) and NiO:CeO2 weight ratio of 1:2. The best catalytic performance of catalyst [20(1Ni2Ce)Al] due to a better reducibility resulted in a higher amount of free small particle NiO. At 700 °C and CH4:CO2 molar ratio of 1:1, the conversion of CH4 and CO2 on the most suitable CeO2 promoted Ni catalyst reached 86% and 67%, respectively; H2 and CO selectivity of 90% and H2:CO molar ratio of 1.15 were obtained. Being similar to MgO [1], promoter CeO2 could improve catalytic activity of Ni/α-Al2O3 catalyst at a lower range of temperature. Besides, both MgO and CeO2 had a great impact on improving coke resistance of Ni catalysts. At higher temperature, the role of CeO2 as well as MgO in preventing coke formation on catalyst was clarified by temperature-programmed oxidation (TPO) technique. Coke amount formed after 30-h TOS on 20(1Ni2Ce) catalyst was found to be 22.18 mgC/gcat, being less than on non-promoted catalyst (36.75 mgC/gcat), but more than on 20(1Ni2Mg)Al one (5.25 mgC/gcat).

  3. Iterative simulated quenching for designing irregular-spot-array generators.

    PubMed

    Gillet, J N; Sheng, Y

    2000-07-10

    We propose a novel, to our knowledge, algorithm of iterative simulated quenching with temperature rescaling for designing diffractive optical elements, based on an analogy between simulated annealing and statistical thermodynamics. The temperature is iteratively rescaled at the end of each quenching process according to ensemble statistics to bring the system back from a frozen imperfect state with a local minimum of energy to a dynamic state in a Boltzmann heat bath in thermal equilibrium at the rescaled temperature. The new algorithm achieves much lower cost function and reconstruction error and higher diffraction efficiency than conventional simulated annealing with a fast exponential cooling schedule and is easy to program. The algorithm is used to design binary-phase generators of large irregular spot arrays. The diffractive phase elements have trapezoidal apertures of varying heights, which fit ideal arbitrary-shaped apertures better than do trapezoidal apertures of fixed heights.

  4. Risk of Interval Cancer in Fecal Immunochemical Test Screening Significantly Higher During the Summer Months: Results from the National Cancer Screening Program in Korea.

    PubMed

    Cha, Jae Myung; Suh, Mina; Kwak, Min Seob; Sung, Na Young; Choi, Kui Son; Park, Boyoung; Jun, Jae Kwan; Hwang, Sang-Hyun; Lee, Do-Hoon; Kim, Byung Chang; Lee, You Kyoung; Han, Dong Soo

    2018-04-01

    This study aimed to evaluate the impact of seasonal variations in climate on the performance of the fecal immunochemical test (FIT) in screening for colorectal cancer in the National Cancer Screening Program in Korea. Data were extracted from the National Cancer Screening Program databases for participants who underwent FIT between 2009 and 2010. We compared positivity rates, cancer detection rates, interval cancer rates, positive predictive value, sensitivity, and specificity for FIT during the spring, summer, fall, and winter seasons in Korea. In total, 4,788,104 FIT results were analyzed. FIT positivity rate was lowest during the summer months. In the summer, the positive predictive value of FIT was about 1.1 times (adjusted odds ratio (aOR) 1.08, 95% confidence interval (CI) 1.00-1.16) higher in the overall FIT group and about 1.3 times (aOR 1.29, 95% CI 1.10-1.50) higher in the quantitative FIT group, compared to those in the other seasons. Cancer detection rates, however, were similar regardless of season. Interval cancer risk was significantly higher in the summer for both the overall FIT group (aOR 1.16, 95% CI 1.07-1.27) and the quantitative FIT group (aOR 1.31, 95% CI 1.12-1.52). In addition, interval cancers in the rectum and distal colon were more frequently detected in the summer and autumn than in the winter. The positivity rate of FIT was lower in the summer, and the performance of the FIT screening program was influenced by seasonal variations in Korea. These results suggest that more efforts to reduce interval cancer during the summer are needed in population-based screening programs using FIT, particularly in countries with high ambient temperatures.

  5. Numerical Analysis of the Temperature Impact on Performance of GaN-Based 460-nm Light-Emitting Diode.

    PubMed

    Tawfik, Wael Z; Lee, June Key

    2018-03-01

    The influence of temperature on the characteristics of a GaN-based 460-nm light-emitting diode (LED) prepared on sapphire substrate was simulated using the SiLENSe and SpeCLED software programs. High temperatures impose negative effects on the performance of GaN-based LEDs. As the temperature increases, electrons acquire higher thermal energies, and therefore LEDs may suffer more from high-current loss mechanisms, which in turn causes a reduction in the radiative recombination rate in the active region. The internal quantum efficiency was reduced by about 24% at a current density of 35 A/cm2, and the electroluminescence spectral peak wavelength was redshifted. The LED operated at 260 K and exhibited its highest light output power of ~317.5 mW at a maximum injection current of 350 mA, compared to 212.2 mW for an LED operated at 400 K. However, increasing temperature does not cause a droop in efficiency under high injection conditions. The peak efficiency at 1 mA of injection current decreases more rapidly by ~15% with increasing temperature from 260 to 400 K than the efficiency at high injection current of 350 mA by ~11%.

  6. Wireless contactless pressure measurement of an LC passive pressure sensor with a novel antenna for high-temperature applications

    NASA Astrophysics Data System (ADS)

    Li, Chen; Tan, Qiu-Lin; Xue, Chen-Yang; Zhang, Wen-Dong; Li, Yun-Zhi; Xiong, Ji-Jun

    2015-04-01

    In this paper, a novel antenna is proposed for high-temperature testing, which can make the high-temperature pressure characteristics of a wireless passive ceramic pressure sensor demonstrated at up to a temperature of 600 °C. The design parameters of the antenna are similar to those of the sensor, which will increase the coupling strength between the sensor and testing antenna. The antenna is fabricated in thick film integrated technology, and the properties of the alumina ceramic and silver ensure the feasibility of the antenna in high-temperature environments. The sensor, coupled with the ceramic antenna, is investigated using a high-temperature pressure testing platform. The experimental measurement results show that the pressure signal in a harsh environment can be detected by the frequency diversity of the sensor. Project supported by the National Natural Science Foundation for Distinguished Young Scholars, China (Grant No. 51425505), the National Natural Science Foundation of China (Grant No. 61471324), the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi Province, China (Grant No. 2013-077), and the Graduate Students Outstanding Innovation Project of Shanxi Province, China (Grant No. 20143020).

  7. NASA Glenn Research Center Program in High Power Density Motors for Aeropropulsion

    NASA Technical Reports Server (NTRS)

    Brown, Gerald V.; Kascak, Albert F.; Ebihara, Ben; Johnson, Dexter; Choi, Benjamin; Siebert, Mark; Buccieri, Carl

    2005-01-01

    Electric drive of transport-sized aircraft propulsors, with electric power generated by fuel cells or turbo-generators, will require electric motors with much higher power density than conventional room-temperature machines. Cryogenic cooling of the motor windings by the liquid hydrogen fuel offers a possible solution, enabling motors with higher power density than turbine engines. Some context on weights of various systems, which is required to assess the problem, is presented. This context includes a survey of turbine engine weights over a considerable size range, a correlation of gear box weights and some examples of conventional and advanced electric motor weights. The NASA Glenn Research Center program for high power density motors is outlined and some technical results to date are presented. These results include current densities of 5,000 A per square centimeter current density achieved in cryogenic coils, finite element predictions compared to measurements of torque production in a switched reluctance motor, and initial tests of a cryogenic switched reluctance motor.

  8. Potential improvements in turbofan engine fuel economy

    NASA Technical Reports Server (NTRS)

    Hines, R. W.; Gaffin, W. O.

    1976-01-01

    The method developed for initial evaluation of possible performance improvements in the NASA Aircraft Energy Efficiency Program, directed toward improving the fuel economy of turbofan engines, is outlined, and results of the evaluation of 100 candidate engine modifications are presented. The study indicates that fuel consumption improvements of as much as 5% may be possible in current JT3D, JT8D, and JT9D turbofan engines. Aerodynamic, thermodynamic, material, and structural advances are expected to yield fuel consumption improvements on the order of 10 to 15% in advanced turbofan engines, with the greatest improvement stemming from significantly higher cycle pressure ratios. Higher turbine temperature and fan bypass ratios are also expected to contribute to fuel conservation.

  9. Development of advanced diagnostics for characterization of burning droplets in microgravity

    NASA Technical Reports Server (NTRS)

    Sankar, Subramanian; Buermann, Dale H.; Bachalo, William D.

    1995-01-01

    Diagnostic techniques currently used for microgravity research are generally not as advanced as those used in earth based gravity experiments. Diagnostic techniques for measuring the instantaneous radial temperature profile (or temperature gradients) within the burning droplet do not exist. Over the past few years, Aerometrics has been researching and developing a rainbow thermometric technique for measuring the droplet temperatures of burning droplets. This technique has recently been integrated with the phase Doppler interferometric technique to yield a diagnostic instrument that can be used to simultaneously measure the size, velocity, and temperature of burning droplets in complex spray flames. Also, the rainbow thermometric technique has been recently integrated with a point-diffraction interferometric technique for measuring the instantaneous gas phase temperature field surrounding a burning droplet. These research programs, apart from being very successful, have also helped us identify other innovative techniques for the characterization of burning droplets. For example, new techniques have been identified for measuring the instantaneous regression rate of burning droplets. Also, there is the possibility of extracting the instantaneous radial temperature distribution or the temperature gradients within a droplet during transient heating. What is important is that these diagnostic techniques have the potential for making use of inexpensive, light-weight, and rugged devices such as diode lasers and linear CCD arrays. As a result, they can be easily packaged for incorporation into microgravity drop-test and flight-test facilities. Furthermore, with the use of linear CCD arrays, data rates as high as 10-100 kHz can be easily achieved. This data rate is orders of magnitude higher than what is currently achievable. In this research and development program, a compact and rugged diagnostic system will be developed that can be used to measure instantaneous fuel droplet diameter, droplet regression rate, and the droplet internal temperature profiles or gradients at very high data rates in microgravity experiments.

  10. Development of wear resistant ceramic coatings for diesel engine components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haselkorn, M.H.

    1992-04-01

    Improved fuel economy and a reduction of emissions can be achieved by insulation of the combustion chamber components to reduce heat rejection. However, insulating the combustion chamber components will also increase the operating temperature of the piston ring/cylinder liner interface from approximately 150{degree}C to over 300{degree}C. Existing ring/liner materials can not withstand these higher operating temperatures and for this reason, new materials need to be developed for this critical tribological interface. The overall goal of this program is the development of piston ring/cylinder liner material pairs which would be able to provide the required friction and wear properties at thesemore » more severe operating conditions. More specifically, this program first selected, and then evaluated, potential d/wear resistant coatings which could be applied to either piston rings an or cylinder liners and provide, at 350{degree}C under lubricated conditions, coefficients of friction below 0.1 and wear rates of less than 25 {times} lO{sup {minus}6} mm/hour. The processes selected for applying the candidate wear resistant coatings to piston rings and/or cylinder liners were plasma spraying, chemical vapor, physical vapor and low temperature arc vapor deposition techniques as well as enameling techniques.« less

  11. Development of wear resistant ceramic coatings for diesel engine components. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haselkorn, M.H.

    1992-04-01

    Improved fuel economy and a reduction of emissions can be achieved by insulation of the combustion chamber components to reduce heat rejection. However, insulating the combustion chamber components will also increase the operating temperature of the piston ring/cylinder liner interface from approximately 150{degree}C to over 300{degree}C. Existing ring/liner materials can not withstand these higher operating temperatures and for this reason, new materials need to be developed for this critical tribological interface. The overall goal of this program is the development of piston ring/cylinder liner material pairs which would be able to provide the required friction and wear properties at thesemore » more severe operating conditions. More specifically, this program first selected, and then evaluated, potential d/wear resistant coatings which could be applied to either piston rings an or cylinder liners and provide, at 350{degree}C under lubricated conditions, coefficients of friction below 0.1 and wear rates of less than 25 {times} lO{sup {minus}6} mm/hour. The processes selected for applying the candidate wear resistant coatings to piston rings and/or cylinder liners were plasma spraying, chemical vapor, physical vapor and low temperature arc vapor deposition techniques as well as enameling techniques.« less

  12. High invertase activity in tomato reproductive organs correlates with enhanced sucrose import into, and heat tolerance of, young fruit

    PubMed Central

    Li, Zhimiao; Palmer, William M.; Martin, Antony P.; Wang, Rongqing; Rainsford, Frederick; Jin, Ye; Patrick, John W.; Yang, Yuejian; Ruan, Yong-Ling

    2012-01-01

    Heat stress can cause severe crop yield losses by impairing reproductive development. However, the underlying mechanisms are poorly understood. We examined patterns of carbon allocation and activities of sucrose cleavage enzymes in heat-tolerant (HT) and -sensitive (HS) tomato (Solanum lycopersicum L.) lines subjected to normal (control) and heat stress temperatures. At the control temperature of 25/20 °C (day/night) the HT line exhibited higher cell wall invertase (CWIN) activity in flowers and young fruits and partitioned more sucrose to fruits but less to vegetative tissues as compared to the HS line, independent of leaf photosynthetic capacity. Upon 2-, 4-, or 24-h exposure to day or night temperatures of 5 °C or more above 25/20 °C, cell wall (CWIN) and vacuolar invertases (VIN), but not sucrose synthase (SuSy), activities in young fruit of the HT line were significantly higher than those of the HS line. The HT line had a higher level of transcript of a CWIN gene, Lin7, in 5-day fruit than the HS line under control and heat stress temperatures. Interestingly, heat induced transcription of an invertase inhibitor gene, INVINH1, but reduced its protein abundance. Transcript levels of LePLDa1, encoding phospholipase D, which degrades cell membranes, was less in the HT line than in the HS line after exposure to heat stress. The data indicate that high invertase activity of, and increased sucrose import into, young tomato fruit could contribute to their heat tolerance through increasing sink strength and sugar signalling activities, possibly regulating a programmed cell death pathway. PMID:22105847

  13. Thermal/optical methods for elemental carbon quantification in soils and urban dusts: equivalence of different analysis protocols.

    PubMed

    Han, Yongming; Chen, Antony; Cao, Junji; Fung, Kochy; Ho, Fai; Yan, Beizhan; Zhan, Changlin; Liu, Suixin; Wei, Chong; An, Zhisheng

    2013-01-01

    Quantifying elemental carbon (EC) content in geological samples is challenging due to interferences of crustal, salt, and organic material. Thermal/optical analysis, combined with acid pretreatment, represents a feasible approach. However, the consistency of various thermal/optical analysis protocols for this type of samples has never been examined. In this study, urban street dust and soil samples from Baoji, China were pretreated with acids and analyzed with four thermal/optical protocols to investigate how analytical conditions and optical correction affect EC measurement. The EC values measured with reflectance correction (ECR) were found always higher and less sensitive to temperature program than the EC values measured with transmittance correction (ECT). A high-temperature method with extended heating times (STN120) showed the highest ECT/ECR ratio (0.86) while a low-temperature protocol (IMPROVE-550), with heating time adjusted for sample loading, showed the lowest (0.53). STN ECT was higher than IMPROVE ECT, in contrast to results from aerosol samples. A higher peak inert-mode temperature and extended heating times can elevate ECT/ECR ratios for pretreated geological samples by promoting pyrolyzed organic carbon (PyOC) removal over EC under trace levels of oxygen. Considering that PyOC within filter increases ECR while decreases ECT from the actual EC levels, simultaneous ECR and ECT measurements would constrain the range of EC loading and provide information on method performance. Further testing with standard reference materials of common environmental matrices supports the findings. Char and soot fractions of EC can be further separated using the IMPROVE protocol. The char/soot ratio was lower in street dusts (2.2 on average) than in soils (5.2 on average), most likely reflecting motor vehicle emissions. The soot concentrations agreed with EC from CTO-375, a pure thermal method.

  14. High invertase activity in tomato reproductive organs correlates with enhanced sucrose import into, and heat tolerance of, young fruit.

    PubMed

    Li, Zhimiao; Palmer, William M; Martin, Antony P; Wang, Rongqing; Rainsford, Frederick; Jin, Ye; Patrick, John W; Yang, Yuejian; Ruan, Yong-Ling

    2012-02-01

    Heat stress can cause severe crop yield losses by impairing reproductive development. However, the underlying mechanisms are poorly understood. We examined patterns of carbon allocation and activities of sucrose cleavage enzymes in heat-tolerant (HT) and -sensitive (HS) tomato (Solanum lycopersicum L.) lines subjected to normal (control) and heat stress temperatures. At the control temperature of 25/20 °C (day/night) the HT line exhibited higher cell wall invertase (CWIN) activity in flowers and young fruits and partitioned more sucrose to fruits but less to vegetative tissues as compared to the HS line, independent of leaf photosynthetic capacity. Upon 2-, 4-, or 24-h exposure to day or night temperatures of 5 °C or more above 25/20 °C, cell wall (CWIN) and vacuolar invertases (VIN), but not sucrose synthase (SuSy), activities in young fruit of the HT line were significantly higher than those of the HS line. The HT line had a higher level of transcript of a CWIN gene, Lin7, in 5-day fruit than the HS line under control and heat stress temperatures. Interestingly, heat induced transcription of an invertase inhibitor gene, INVINH1, but reduced its protein abundance. Transcript levels of LePLDa1, encoding phospholipase D, which degrades cell membranes, was less in the HT line than in the HS line after exposure to heat stress. The data indicate that high invertase activity of, and increased sucrose import into, young tomato fruit could contribute to their heat tolerance through increasing sink strength and sugar signalling activities, possibly regulating a programmed cell death pathway.

  15. Recent Developments in Niobium Containing Austenitic Stainless Steels for Thermal Power Plants

    NASA Astrophysics Data System (ADS)

    de Oliveira, Mariana Perez; Zhang, Wei; Yu, Hongyao; Bao, Hansheng; Xie, Xishan

    The challenge of growing continuously in a sustainable way is the main driver to improve efficiency in the use of natural resources. The increasing demand for energy has made thermal power based countries to set audacious programs to increase efficiency of thermal power generation. In China, coal-burning accounts nowadays for approximately 65% of the total primary energy supply being responsible for around 25% of the countries' CO2 emission, this coal-based energy supply scenario is believed to continue until 2020. Therefore, the country has invested strongly in the last years in the construction of more efficient power plants. To attend higher operating temperatures and steam pressures, the application of higher performance materials is mandatory, presenting improved mechanical resistance — to stand the higher pressures applied — and having sufficient high temperature and corrosion resistance with the best cost-benefit relation possible. The present work addresses some research developments made in niobium containing austenitic stainless steels for super heaters and re-heater tubes in the past years as a joint effort between industry and academia to understand mechanisms and optimize the steel chemical composition, improving its performance. Niobium role has been studied in detail in heat resistant stainless steels TP347H, Super 304 and HR3C, a summary of such studies is presented in this paper. Niobium improves high temperature properties as it precipitates as nano-size MX and NbCrN, well dispersed in the matrix, hindering dislocation movement, increasing precipitation strengthening and creep resistance.

  16. Temperature imaging with speed of ultrasonic transmission tomography for medical treatment control: A physical model-based method

    NASA Astrophysics Data System (ADS)

    Chu, Zhe-Qi; Yuan, Jie; Stephen, Z. Pinter; Oliver, D. Kripfgans; Wang, Xue-Ding; Paul, L. Carson; Liu, Xiao-Jun

    2015-10-01

    Hyperthermia is a promising method to enhance chemo and radiation therapy of breast cancer. In the process of hyperthermia, temperature monitoring is of great importance to assure the effectiveness of treatment. The transmission speed of ultrasound in biomedical tissue changes with temperature. However, when mapping the speed of sound directly to temperature in each pixel as desired for using all speeds of ultrasound data, temperature bipolar edge enhancement artifacts occur near the boundary of two tissues with different speeds of ultrasound. After the analysis of the reasons for causing these artifacts, an optimized method is introduced to rebuild the temperature field image by using the continuity constraint as the judgment criterion. The significant smoothness of the rebuilding image in the transitional area shows that our proposed method can build a more precise temperature image for controlling the medical thermal treatment. Project supported in part by DoD/BCRP Idea Award, BC095397P1, the National Natural Science Foundation of China (Grant No. 61201425), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20131280), the Priority Academic Program Development of Jiangsu Provincial Higher Education Institutions, China, and the National Institutes of Health (NIH) of United States (Grant Nos. R01AR060350, R01CA91713, and R01AR055179).

  17. Taxiing, Take-Off, and Landing Simulation of the High Speed Civil Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Reaves, Mercedes C.; Horta, Lucas G.

    1999-01-01

    The aircraft industry jointly with NASA is studying enabling technologies for higher speed, longer range aircraft configurations. Higher speeds, higher temperatures, and aerodynamics are driving these newer aircraft configurations towards long, slender, flexible fuselages. Aircraft response during ground operations, although often overlooked, is a concern due to the increased fuselage flexibility. This paper discusses modeling and simulation of the High Speed Civil Transport aircraft during taxiing, take-off, and landing. Finite element models of the airframe for various configurations are used and combined with nonlinear landing gear models to provide a simulation tool to study responses to different ground input conditions. A commercial computer simulation program is used to numerically integrate the equations of motion and to compute estimates of the responses using an existing runway profile. Results show aircraft responses exceeding safe acceptable human response levels.

  18. Program for an improved hypersonic temperature-sensing probe

    NASA Technical Reports Server (NTRS)

    Reilly, Richard J.

    1993-01-01

    Under a NASA Dryden-sponsored contract in the mid 1960s, temperatures of up to 2200 C were successfully measured using a fluid oscillator. The current program, although limited in scope, explores the problem areas which must be solved if this technique is to be extended to 10,000 R. The potential for measuring extremely high temperatures, using fluid oscillator techniques, stems from the fact that the measuring element is the fluid itself. The containing structure of the oscillator need not be brought to equilibrium temperature with with the fluid for temperature measurement, provided that a suitable calibration can be arranged. This program concentrated on review of high-temperature material developments since the original program was completed. Other areas of limited study included related pressure instrumentation requirements, dissociation, rarefied gas effects, and analysis of sensor time response.

  19. Low cycle fatigue behaviour of a plasma-sprayed coating material

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Gabb, T. P.; Miner, R. V.

    1986-01-01

    Single crystal nickel-base superalloys employed in turbine blade applications are often used with a plasma spray coating for oxidation and hot corrosion resistance. These coatings may also affect fatigue life of the superalloy substrate. As part of a large program to understand the fatigue behavior of coated single crystals, fully reversed, total strain controlled fatigue tests were run on a free standing NiCoCrAlY coating alloy, PWA 276, at 0.1 Hz. Fatigue tests were conducted at 650 C, where the NiCoCrAlY alloy has modest ductility, and at 1050 C, where it is extremely ductile, showing tensile elongation in excess of 100 percent. At the lower test temperature, deformation induced disordering softened the NiCoCrAlY alloy, while at the higher test temperature cyclic hardening was observed which was linked to gradual coarsening of the two phase microstructure. Fatigue life of the NiCoCrAlY alloy was significantly longer at the higher temperature. Further, the life of the NiCoCrAlY alloy exceeds that of coated, /001/-oriented PWA 1480 single crystals at 1050 C but at 650 C the life of the coated crystal is greater than that of the NiCoCrAlY alloy on a total strain basis.

  20. The low cycle fatigue behavior of a plasma-sprayed coating material

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Gabb, T. P.; Miner, R. V., Jr.

    1986-01-01

    Single crystal nickel-base superalloys employed in turbine blade applications are often used with a plasma spray coating for oxidation and hot corrosion resistance. These coatings may also affect fatigue life of the superalloy substrate. As part of a large program to understand the fatigue behavior of coated single crystals, fully reversed, total strain controlled fatigue tests were run on a free standing NiCoCrAlY coating alloy, PWA 276, at 0.1 Hz. Fatigue tests were conducted at 650 C, where the NiCoCrAlY alloy has modest ductility, and at 1050 C, where it is extremely ductile, showing tensile elongation in excess of 100 percent. At the lower test temperature, deformation induced disordering softened the NiCoCrAlY alloy, while at the higher test temperature cyclic hardening was observed which was linked to gradual coarsening of the two phase microstructure. Fatigue life of the NiCoCrAlY alloy was significantly longer at the higher temperature. Further, the life of the NiCoCrAlY alloy exceeds that of coated, /001/-oriented PWA 1480 single crystals at 1050 C, but at 650 C the life of the coated crystal is greater than that of the NiCoCrAlY alloy on a total strain basis.

  1. Quaternary and quinary modifications of eutectic superalloys strengthened by delta Ni3Cb lamellae and gamma prime Ni3Al precipitates

    NASA Technical Reports Server (NTRS)

    Lemkey, F. D.; Mccarthy, G. P.

    1975-01-01

    By means of a compositional and heat treatment optimization program based on the quaternary gamma/gamma prime-delta, a tantalum modified gamma/gamma prime-delta alloy with improved shear and creep strength combined with better cyclic oxidation resistance was identified. Quinary additions, quaternary adjustments, and heat treatment were investigated. The tantalum modified gamma/gamma prime-delta alloy possessed a slightly higher liquidus temperature and exhibited rupture strength exceeding NASA VIA by approximately three and one-half Larson-Miller parameters (C = 20) above 1000 C. Although improvements in longitudinal mechanical properties were achieved, the shear and transverse strength property goals of the program were not met and present a continuing challenge to the alloy metallurgist.

  2. Effects of Heat Generation on Nuclear Waste Disposal in Salt

    NASA Astrophysics Data System (ADS)

    Clayton, D. J.

    2008-12-01

    Disposal of nuclear waste in salt is an established technology, as evidenced by the successful operations of the Waste Isolation Pilot Plant (WIPP) since 1999. The WIPP is located in bedded salt in southeastern New Mexico and is a deep underground facility for transuranic (TRU) nuclear waste disposal. There are many advantages for placing radioactive wastes in a geologic bedded-salt environment. One desirable mechanical characteristic of salt is that it flows plastically with time ("creeps"). The rate of salt creep is a strong function of temperature and stress differences. Higher temperatures and deviatoric stresses increase the creep rate. As the salt creeps, induced fractures may be closed and eventually healed, which then effectively seals the waste in place. With a backfill of crushed salt emplaced around the waste, the salt creep can cause the crushed salt to reconsolidate and heal to a state similar to intact salt, serving as an efficient seal. Experiments in the WIPP were conducted to investigate the effects of heat generation on the important phenomena and processes in and around the repository (Munson et al. 1987; 1990; 1992a; 1992b). Brine migration towards the heaters was induced from the thermal gradient, while salt creep rates showed an exponential dependence on temperature. The project "Backfill and Material Behavior in Underground Salt Repositories, Phase II" (BAMBUS II) studied the crushed salt backfill and material behavior with heat generation at the Asse mine located near Remlingen, Germany (Bechthold et al. 2004). Increased salt creep rates and significant reconsolidation of the crushed salt were observed at the termination of the experiment. Using the data provided from both projects, exploratory modeling of the thermal-mechanical response of salt has been conducted with varying thermal loading and waste spacing. Increased thermal loading and decreased waste spacing drive the system to higher temperatures, while both factors are desired to reduce costs, as well as decrease the overall footprint of the repository. Higher temperatures increase the rate of salt creep which then effectively seals the waste quicker. Data of the thermal-mechanical response of salt at these higher temperatures is needed to further validate the exploratory modeling and provide meaningful constraints on the repository design. Sandia is a multi program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04- 94AL85000.

  3. Effects of thickness and annealing condition on magnetic properties and thermal stabilities of Ta/Nd/NdFeB/Nd/Ta sandwiched films

    NASA Astrophysics Data System (ADS)

    Liu, Wen-Feng; Zhang, Min-Gang; Zhang, Ke-Wei; Zhang, Hai-Jie; Xu, Xiao-Hong; Chai, Yue-Sheng

    2016-11-01

    Ta/Nd/NdFeB/Nd/Ta sandwiched films are deposited by magnetron sputtering on Si (100) substrates, and subsequently annealed in vacuum at different temperatures for different time. It is found that both the thickness of NdFeB and Nd layer and the annealing condition can affect the magnetic properties of Ta/Nd/NdFeB/Nd/Ta films. Interestingly, the thickness and annealing temperature show the relevant behaviors that can affect the magnetic properties of the film. The high coercivity of 24.1 kOe (1 Oe = 79.5775 A/m) and remanence ratio (remanent magnetization/saturation magnetization) of 0.94 can be obtained in a Ta/Nd(250 nm)/NdFeB(600 nm)/Nd(250 nm)/Ta film annealed for 3 min at 1023 K. In addition, the thermal stability of the film is also linked to the thickness of NdFeB and Nd layer and the annealing temperature as well. The excellent thermal stability can be achieved in a Ta/Nd(250 nm)/NdFeB(600 nm)/Nd(250 nm)/Ta film annealed at 1023 K. Program supported by the National Natural Science Foundation of China (Grant No. 51305290), the Higher Education Technical Innovation Project of Shanxi Province, China (Grant No. 2013133), the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals of Shanxi Province, China (Grant No. 2015003), and the Program for the Key Team of Scientific and Technological Innovation of Shanxi Province, China (Grant No. 2013131009).

  4. [Development of a predictive program for microbial growth under various temperature conditions].

    PubMed

    Fujikawa, Hiroshi; Yano, Kazuyoshi; Morozumi, Satoshi; Kimura, Bon; Fujii, Tateo

    2006-12-01

    A predictive program for microbial growth under various temperature conditions was developed with a mathematical model. The model was a new logistic model recently developed by us. The program predicts Escherichia coli growth in broth, Staphylococcus aureus growth and its enterotoxin production in milk, and Vibrio parahaemolyticus growth in broth at various temperature patterns. The program, which was built with Microsoft Excel (Visual Basic Application), is user-friendly; users can easily input the temperature history of a test food and obtain the prediction instantly on the computer screen. The predicted growth and toxin production can be important indices to determine whether a food is microbiologically safe or not. This program should be a useful tool to confirm the microbial safety of commercial foods.

  5. High efficiency vapor-fed AMTEC system for direct conversion. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, W.G.; Bland, J.J.

    1997-05-23

    The Alkali Metal Thermal to Electric Converter (AMTEC) is a high temperature, high efficiency system for converting thermal to electrical energy, with no moving parts. It is based on the unique properties of {beta}{double_prime}-alumina solid electrolyte (BASE), which is an excellent conductor of sodium ions, but an extremely poor conductor of electrons. When the inside of the BASE is maintained at a higher temperature and pressure, a concentration gradient is created across the BASE. Electrons and sodium atoms cannot pass through the BASE. However, the sodium atoms are ionized, and the sodium ions move through the BASE to the lowermore » potential (temperature) region. The electrons travel externally to the AMTEC cell, providing power. There are a number of potential advantages to a wick-pumped, vapor-fed AMTEC system when compared with other designs. A wick-pumped system uses capillary forces to passively return liquid to the evaporator, and to distribute the liquid in the evaporator. Since the fluid return is self-regulating, multiple BASE tubes can use a single remote condenser, potentially improving efficiency in advanced AMTEC designs. Since the system is vapor-fed, sodium vapor is supplied at a uniform temperature and flux to the BASE tube, even with non-uniform heat fluxes and temperatures at the evaporator. The primary objective of the Phase 2 program was to develop wick-pumped AMTEC cells. During the program, procedures to fabricate wicks with smaller pore sizes were developed, to allow operation of an AMTEC cell at 800 C. A revised design was made for a High-Temperature, Wick-Fed AMTEC cell. In addition to the smaller wick pore size, several other changes were made to increase the cell efficiency: (1) internal artery return of condensate; (2) high temperature electrical feedthrough; and (3) separate heat pipe for providing heat to the BASE.« less

  6. Surface studies of water isotopes in Antarctica for quantitative interpretation of deep ice core data

    NASA Astrophysics Data System (ADS)

    Landais, Amaelle; Casado, Mathieu; Prié, Frédéric; Magand, Olivier; Arnaud, Laurent; Ekaykin, Alexey; Petit, Jean-Robert; Picard, Ghislain; Fily, Michel; Minster, Bénédicte; Touzeau, Alexandra; Goursaud, Sentia; Masson-Delmotte, Valérie; Jouzel, Jean; Orsi, Anaïs

    2017-07-01

    Polar ice cores are unique climate archives. Indeed, most of them have a continuous stratigraphy and present high temporal resolution of many climate variables in a single archive. While water isotopic records (δD or δ18O) in ice cores are often taken as references for past atmospheric temperature variations, their relationship to temperature is associated with a large uncertainty. Several reasons are invoked to explain the limitation of such an approach; in particular, post-deposition effects are important in East Antarctica because of the low accumulation rates. The strong influence of post-deposition processes highlights the need for surface polar research programs in addition to deep drilling programs. We present here new results on water isotopes from several recent surface programs, mostly over East Antarctica. Together with previously published data, the new data presented in this study have several implications for the climatic reconstructions based on ice core isotopic data: (1) The spatial relationship between surface mean temperature and mean snow isotopic composition over the first meters in depth can be explained quite straightforwardly using simple isotopic models tuned to d-excess vs. δ18O evolution in transects on the East Antarctic sector. The observed spatial slopes are significantly higher (∼ 0.7-0.8‰·°C-1 for δ18O vs. temperature) than seasonal slopes inferred from precipitation data at Vostok and Dome C (0.35 to 0.46‰·°C-1). We explain these differences by changes in condensation versus surface temperature between summer and winter in the central East Antarctic plateau, where the inversion layer vanishes in summer. (2) Post-deposition effects linked to exchanges between the snow surface and the atmospheric water vapor lead to an evolution of δ18O in the surface snow, even in the absence of any precipitation event. This evolution preserves the positive correlation between the δ18O of snow and surface temperature, but is associated with a much slower δ18O-vs-temperature slope than the slope observed in the seasonal precipitation. (3) Post-deposition effects clearly limit the archiving of high-resolution (seasonal) climatic variability in the polar snow, but we suggest that sites with an accumulation rate of the order of 40 kg.m-2.yr-1 may record a seasonal cycle at shallow depths.

  7. Temperature-dependent sex-reversal by a transformer-2 gene-edited mutation in the spotted wing drosophila, Drosophila suzukii.

    PubMed

    Li, Jianwei; Handler, Alfred M

    2017-09-28

    Female to male sex reversal was achieved in an emerging agricultural insect pest, Drosophila suzukii, by creating a temperature-sensitive point mutation in the sex-determination gene, transformer-2 (tra-2), using CRISPR/Cas9 (clustered regularly interspaced palindromic repeats/CRISPR-associated) homology-directed repair gene-editing. Ds-tra-2 ts2 mutants developed as normal fertile XX and XY adults at permissive temperatures below 20 °C, but at higher restrictive temperatures (26 to 29 °C) chromosomal XX females developed as sterile intersexuals with a predominant male phenotype, while XY males developed with normal morphology, but were sterile. The temperature-dependent function of the Ds-TRA-2 ts2 protein was also evident by the up- and down-regulation of female-specific Ds-Yolk protein 1 (Ds-Yp1) gene expression by temperature shifts during adulthood. This study confirmed the temperature-dependent function of a gene-edited mutation and provides a new method for the more general creation of conditional mutations for functional genomic analysis in insects, and other organisms. Furthermore, it provides a temperature-dependent system for creating sterile male populations useful for enhancing the efficacy of biologically-based programs, such as the sterile insect technique (SIT), to control D. suzukii and other insect pest species of agricultural and medical importance.

  8. Proceedings of RIKEN BNL Resarch Center Workshop: Fluctuations, Correlations and RHIC Low Energy Runs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karsch, F.; Kojo, T.; Mukherjee, S.

    Most of our visible universe is made up of hadronic matter. Quantum Chromodynamics (QCD) is the theory of strong interaction that describes the hadronic matter. However, QCD predicts that at high enough temperatures and/or densities ordinary hadronic matter ceases to exist and a new form of matter is created, the so-called Quark Gluon Plasma (QGP). Non-perturbative lattice QCD simulations shows that for high temperature and small densities the transition from the hadronic to the QCD matter is not an actual phase transition, rather it takes place via a rapid crossover. On the other hand, it is generally believed that atmore » zero temperature and high densities such a transition is an actual first order phase transition. Thus, in the temperature-density phase diagram of QCD, the first order phase transition line emanating from the zero temperature high density region ends at some higher temperature where the transition becomes a crossover. The point at which the first order transition line turns into a crossover is a second order phase transition point belonging to three dimensional Ising universality class. This point is known as the QCD Critical End Point (CEP). For the last couple of years the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been performing experiments at lower energies in search of the elusive QCD CEP. In general critical behaviors are manifested through appearance of long range correlations and increasing fluctuations associated with the presence of mass-less modes in the vicinity of a second order phase transition. Experimental signatures of the CEP are likely to be found in observables related to fluctuations and correlations. Thus, one of the major focuses of the RHIC low energy scan program is to measure various experimental observables connected to fluctuations and correlations. On the other hand, with the start of the RHIC low energy scan program, a flurry of activities are taking place to provide solid theoretical background for the search of the CEP using observables related to fluctuations and correlations. While new data are pouring in from the RHIC low energy scan program, many recent advances have also been made in the phenomenological and lattice gauge theory sides in order to have a better theoretical understanding of the wealth of new data. This workshop tried to create a synergy between the experimental, phenomenological and lattice QCD aspects of the fluctuation and correlation related studies of the RHIC low energy scan program. The workshop brought together all the leading experts from related fields under the same forum to share new ideas among themselves in order to streamline the continuing search of CEP in the RHIC low energy scan program.« less

  9. Monitoring the Spread of West Nile Virus with Satellite Data

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A NASA-funded study uses temperature and vegetation data from satellites to help track and predict where West Nile virus is spreading in North America. Scientists and public health officials hope one day to use near real-time maps to focus resources and stave off the disease more efficiently. This image is a composite of land surface temperatures (LST) recorded between 1997 and 2000 and was used to help monitor and predict the spread of West Nile virus in the United States. In the color figure above, the mean land surface temperatures are in red; annual amplitude-or the difference between low and high annual temperatures-is in blue; and annual phase-or the timing of annual temperature peaks-appears in green. Brighter colors mean higher values. The major north-south temperature difference (dull red in the upper part of the image to bright red in the lower part) is considerably affected by the Rockies in the west and to a much lesser extent by the Appalachians in the east. The brighter blue in the upper part of the image indicates the big difference between highest and lowest temperatures during the course of a year at higher latitudes. There is less variation in the timing of the annual peak of land surface temperatures, which occurs earlier in the south than in the north. Black dots superimposed on this image are the locations (county geo-centers) where birds infected with West Nile virus were reported between January and October 2001. Scientists working with the International Research Partnership for Infectious Diseases (INTREPID) program based at NASA are using such imagery to define and predict the conditions where mosquitoes transmit West Nile virus in the U.S. The conclusion reached about the importance of any single variable depends both upon its value and context. A temperature of 30o Celsius (86o Fahrenheit) might be fatal for a mosquito at low humidity but survivable at higher humidities. The work done here on West Nile virus and other diseases shows very clearly that it is a unique combination of temperature, humidity, and vegetation variables that tends to determine mosquito and disease presence and abundance. For more information read: Satellites vs. Mosquitoes: Tracking West Nile Virus in the U.S. The image was produced by INTREPID from data taken by the National Oceanic and Atmospheric Administration's (NOAA) Advanced Very High Resolution Radiometer (AVHRR) instrument.

  10. Promotion of redox and stability features of doped Ce-W-Ti for NH3-SCR reaction over a wide temperature range

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Han, Weiliang; Lu, Gongxuan; Lu, Jiangyin; Tang, Zhicheng; Zhen, Xinping

    2016-08-01

    In this study, transition metals Co, Mn, and Cu were introduced into a Ce-W-Ti catalyst to promote low-temperature catalytic activity. Among these metal-modified M/Ce-W-Ti catalysts (M represents Co, Mn, or Cu), the Cu/Ce-W-Ti catalyst with an optimized Cu content of 5 wt.% exhibited more than 90% conversion of nitrogen oxide (NOx) in the selective catalytic reduction by NH3 over a wide temperature range (260-400 °C). This catalyst likewise exhibited higher resistance to SO2 gas and water vapor under severe test conditions. On the basis of the characterization results by powder X-ray diffraction and X-ray photoelectron spectroscopy, we concluded that the superior catalytic properties of the Cu/Ce-W-Ti catalyst could be attributed to the highly dispersed Cu species, which increased the contents of Ce3+ species and adsorbed oxygen species in the catalysts. In addition, the NH3 temperature-programmed desorption results demonstrated that the Cu species doped into the Ce-W-Ti catalysts optimized surface acid content.

  11. Advanced radial inflow turbine rotor program: Design and dynamic testing

    NASA Technical Reports Server (NTRS)

    Rodgers, C.

    1976-01-01

    The advancement of small, cooled, radial inflow turbine technology in the area of operation at higher turbine inlet temperature is discussed. The first step was accomplished by designing, fabricating, and subjecting to limited mechanical testing an advanced gas generator rotating assembly comprising a radial inflow turbine and two-stage centrifugal compressor. The radial inflow turbine and second-stage compressor were designed as an integrally machined monorotor with turbine cooling taking place basically by conduction to the compressor. Design turbine inlet rotor gas temperature, rotational speed, and overall gas generator compressor pressure ratio were 1422 K (2560 R), 71,222 rpm, and 10/1 respectively. Mechanical testing on a fabricated rotating assembly and bearing system covered 1,000 cold start/stop cycles and three spins to 120 percent design speed (85,466 rpm).

  12. Novel Molecular Architectures Developed for Improved Solid Polymer Electrolytes for Lithium Polymer Batteries

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Kinder, James D.; Bennett, William R.

    2002-01-01

    Lithium-based polymer batteries for aerospace applications need the ability to operate in temperatures ranging from -70 to 70 C. Current state-of-the-art solid polymer electrolytes (based on amorphous polyethylene oxide, PEO) have acceptable ionic conductivities (10-4 to 10-3 S/cm) only above 60 C. Higher conductivity can be achieved in the current systems by adding solvent or plasticizers to the solid polymer to improve ion transport. However, this can compromise the dimensional and thermal stability of the electrolyte, as well as compatibility with electrode materials. One of NASA Glenn Research Center's objectives in the PERS program is to develop new electrolytes having unique molecular architectures and/or novel ion transport mechanisms, leading to good ionic conductivity at room temperature and below without solvents or plasticizers.

  13. Progress in the Long $${\\rm Nb}_{3}{\\rm Sn}$$ Quadrupole R&D by LARP

    DOE PAGES

    Ambrosio, G.; Andreev, N.; Anerella, M.; ...

    2011-11-14

    After the successful test of the first long Nb 3Sn quadrupole (LQS01) the US LHC Accelerator Research Program (LARP, a collaboration of BNL, FNAL, LBNL and SLAC) is assessing training memory, reproducibility, and other accelerator quality features of long Nb 3Sn quadrupole magnets. LQS01b (a reassembly of LQS01 with more uniform and higher pre-stress) was subjected to a full thermal cycle and reached the previous plateau of 222 T/m at 4.5 K in two quenches. A new set of four coils, made of the same type of conductor used in LQS01 (RRP 54/61 by Oxford Superconducting Technology), was assembled inmore » the LQS01 structure and tested at 4.5 K and lower temperatures. The new magnet (LQS02) reached the target gradient (200 T/m) only at 2.6 K and lower temperatures, at intermediate ramp rates. The preliminary test analysis, here reported, showed a higher instability in the limiting coil than in the other coils of LQS01 and LQS02.« less

  14. Size, Shape and Impurity Effects on Superconducting critical temperature.

    NASA Astrophysics Data System (ADS)

    Umeda, Masaki; Kato, Masaru; Sato, Osamu

    Bulk superconductors have their own critical temperatures Tc. However, for a nano-structured superconductor, Tc depends on size and shape of the superconductor. Nishizaki showed that the high pressure torsion on bulks of Nb makes Tc higher, because the torsion makes many nano-sized fine grains in the bulks. However the high pressure torsion on bulks of V makes Tc lower, and Nishizaki discussed that the decrease of Tc is caused by impurities in the bulks of V. We studied size, shape, and impurity effects on Tc, by solving the Gor'kov equations, using the finite element method. We found that smaller and narrower superconductors show higher Tc. We found how size and shape affects Tc by studying spacial order parameter distributions and quasi-particle eigen-energies. Also we studied the impurity effects on Tc, and found that Tc decreases with increase of scattering rate by impurities. This work was supported in part of KAKENHI Grant Number JP26400367 and JP16K05460, and program for leading graduate schools of ministry of education, culture, sports, science and technology-Japan.

  15. Cast heat-resistant austenitic steel with improved temperature creep properties and balanced alloying element additions and methodology for development of the same

    DOEpatents

    Pankiw, Roman I; Muralidharan, Govindrarajan; Sikka, Vinod Kumar; Maziasz, Philip J

    2012-11-27

    The present invention addresses the need for new austenitic steel compositions with higher creep strength and higher upper temperatures. The new austenitic steel compositions retain desirable phases, such as austenite, M.sub.23C.sub.6, and MC in its microstructure to higher temperatures. The present invention also discloses a methodology for the development of new austenitic steel compositions with higher creep strength and higher upper temperatures.

  16. Highly Efficient Multilayer Thermoelectric Devices

    NASA Technical Reports Server (NTRS)

    Boufelfel, Ali

    2006-01-01

    Multilayer thermoelectric devices now at the prototype stage of development exhibit a combination of desirable characteristics, including high figures of merit and high performance/cost ratios. These devices are capable of producing temperature differences of the order of 50 K in operation at or near room temperature. A solvent-free batch process for mass production of these state-of-the-art thermoelectric devices has also been developed. Like prior thermoelectric devices, the present ones have commercial potential mainly by virtue of their utility as means of controlled cooling (and/or, in some cases, heating) of sensors, integrated circuits, and temperature-critical components of scientific instruments. The advantages of thermoelectric devices for such uses include no need for circulating working fluids through or within the devices, generation of little if any noise, and high reliability. The disadvantages of prior thermoelectric devices include high power consumption and relatively low coefficients of performance. The present development program was undertaken in the hope of reducing the magnitudes of the aforementioned disadvantages and, especially, obtaining higher figures of merit for operation at and near room temperature. Accomplishments of the program thus far include development of an algorithm to estimate the heat extracted by, and the maximum temperature drop produced by, a thermoelectric device; solution of the problem of exchange of heat between a thermoelectric cooler and a water-cooled copper block; retrofitting of a vacuum chamber for depositing materials by sputtering; design of masks; and fabrication of multilayer thermoelectric devices of two different designs, denoted I and II. For both the I and II designs, the thicknesses of layers are of the order of nanometers. In devices of design I, nonconsecutive semiconductor layers are electrically connected in series. Devices of design II contain superlattices comprising alternating electron-acceptor (p)-doped and electron-donor (n)-doped, nanometer- thick semiconductor layers.

  17. In Situ UV-Visible Assessment of Iron-Based High-Temperature Water-Gas Shift Catalysts Promoted with Lanthana: An Extent of Reduction Study

    DOE PAGES

    Hallac, Basseem B.; Brown, Jared C.; Stavitski, Eli; ...

    2018-02-04

    Here, the extent of reduction of unsupported iron-based high-temperature water-gas shift catalysts with small (<5 wt %) lanthana contents was studied using UV-visible spectroscopy. Temperature- programmed reduction measurements showed that lanthana content higher than 0.5 wt % increased the extent of reduction to metallic Fe, while 0.5 wt % of lanthana facilitated the reduction to Fe 3O 4. In situ measurements on the iron oxide catalysts using mass and UV-visible spectroscopies permitted the quantification of the extent of reduction under temperature-programmed reduction and high-temperature water-gas shift conditions. The oxidation states were successfully calibrated against normalized absorbance spectra of visible lightmore » using the Kubelka-Munk theory. The normalized absorbance relative to the fully oxidized Fe 2O 3 increased as the extent of reduction increased. XANES suggested that the average bulk iron oxidation state during the water-gas shift reaction was Fe +2.57 for the catalyst with no lanthana and Fe +2.54 for the catalysts with 1 wt % lanthana. However, the UV-vis spectra suggest that the surface oxidation state of iron would be Fe +2.31 for the catalyst with 1 wt % lanthana if the oxidation state of iron in the catalyst with 0 wt % lanthana were Fe +2.57. The findings of this paper emphasize the importance of surface sensitive UV-visible spectroscopy for determining the extent of catalyst reduction during operation. Furthermore, the paper highlights the potential to use bench-scale UV-visible spectroscopy to study the surface chemistry of catalysts instead of less-available synchrotron X-ray radiation facilities.« less

  18. In Situ UV-Visible Assessment of Iron-Based High-Temperature Water-Gas Shift Catalysts Promoted with Lanthana: An Extent of Reduction Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallac, Basseem B.; Brown, Jared C.; Stavitski, Eli

    Here, the extent of reduction of unsupported iron-based high-temperature water-gas shift catalysts with small (<5 wt %) lanthana contents was studied using UV-visible spectroscopy. Temperature- programmed reduction measurements showed that lanthana content higher than 0.5 wt % increased the extent of reduction to metallic Fe, while 0.5 wt % of lanthana facilitated the reduction to Fe 3O 4. In situ measurements on the iron oxide catalysts using mass and UV-visible spectroscopies permitted the quantification of the extent of reduction under temperature-programmed reduction and high-temperature water-gas shift conditions. The oxidation states were successfully calibrated against normalized absorbance spectra of visible lightmore » using the Kubelka-Munk theory. The normalized absorbance relative to the fully oxidized Fe 2O 3 increased as the extent of reduction increased. XANES suggested that the average bulk iron oxidation state during the water-gas shift reaction was Fe +2.57 for the catalyst with no lanthana and Fe +2.54 for the catalysts with 1 wt % lanthana. However, the UV-vis spectra suggest that the surface oxidation state of iron would be Fe +2.31 for the catalyst with 1 wt % lanthana if the oxidation state of iron in the catalyst with 0 wt % lanthana were Fe +2.57. The findings of this paper emphasize the importance of surface sensitive UV-visible spectroscopy for determining the extent of catalyst reduction during operation. Furthermore, the paper highlights the potential to use bench-scale UV-visible spectroscopy to study the surface chemistry of catalysts instead of less-available synchrotron X-ray radiation facilities.« less

  19. Optimal husbandry of hatchling Eastern Indigo Snakes (Drymarchon couperi) during a captive head-start program.

    PubMed

    Wines, Michael P; Johnson, Valerie M; Lock, Brad; Antonio, Fred; Godwin, James C; Rush, Elizabeth M; Guyer, Craig

    2015-01-01

    Optimal husbandry techniques are desirable for any headstart program, but frequently are unknown for rare species. Here we describe key reproductive variables and determine optimal incubation temperature and diet diversity for Eastern Indigo Snakes (Drymarchon couperi) grown in laboratory settings. Optimal incubation temperature was estimated from two variables dependent on temperature, shell dimpling, a surrogate for death from fungal infection, and deviation of an egg from an ovoid shape, a surrogate for death from developmental anomalies. Based on these relationships and size at hatching we determined optimal incubation temperature to be 26°C. Additionally, we used incubation data to assess the effect of temperature on duration of incubation and size of hatchlings. We also examined hatchling diets necessary to achieve optimal growth over a 21-month period. These snakes exhibited a positive linear relationship between total mass eaten and growth rate, when individuals were fed less than 1711 g of prey, and displayed constant growth for individuals exceeding 1711 g of prey. Similarly, growth rate increased linearly with increasing diet diversity up to a moderately diverse diet, followed by constant growth for higher levels of diet diversity. Of the two components of diet diversity, diet evenness played a stronger role than diet richness in explaining variance in hatchling growth. These patterns document that our goal of satiating snakes was achieved for some individuals but not others and that diets in which total grams consumed over the first 21 months of life is distributed equivalently among at least three prey genera yielded the fastest growth rates for hatchling snakes. © 2015 Wiley Periodicals, Inc.

  20. SPECIFIC HEAT DATA ANALYSIS PROGRAM FOR THE IBM 704 DIGITAL COMPUTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roach, P.R.

    1962-01-01

    A computer program was developed to calculate the specific heat of a substance in the temperature range from 0.3 to 4.2 deg K, given temperature calibration data for a carbon resistance thermometer, experimental temperature drift, and heating period data. The speciftc heats calculated from these data are then fitted by a curve by the methods of least squares and the specific heats are corrected for the effect of the curvature of the data. The method, operation, program details, and program stops are discussed. A program listing is included. (M.C.G.)

  1. Steam Turbine Materials for Ultrasupercritical Coal Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viswanathan, R.; Hawk, J.; Schwant, R.

    The Ultrasupercritical (USC) Steam Turbine Materials Development Program is sponsored and funded by the U.S. Department of Energy and the Ohio Coal Development Office, through grants to Energy Industries of Ohio (EIO), a non-profit organization contracted to manage and direct the project. The program is co-funded by the General Electric Company, Alstom Power, Siemens Power Generation (formerly Siemens Westinghouse), and the Electric Power Research Institute, each organization having subcontracted with EIO and contributing teams of personnel to perform the requisite research. The program is focused on identifying, evaluating, and qualifying advanced alloys for utilization in coal-fired power plants that needmore » to withstand steam turbine operating conditions up to 760°C (1400°F) and 35 MPa (5000 psi). For these conditions, components exposed to the highest temperatures and stresses will need to be constructed from nickel-based alloys with higher elevated temperature strength than the highchromium ferritic steels currently used in today's high-temperature steam turbines. In addition to the strength requirements, these alloys must also be weldable and resistant to environmental effects such as steam oxidation and solid particle erosion. In the present project, candidate materials with the required creep strength at desired temperatures have been identified. Coatings that can resist oxidation and solid particle erosion have also been identified. The ability to perform dissimilar welds between nickel base alloys and ferritic steels have been demonstrated, and the properties of the welds have been evaluated. Results of this three-year study that was completed in 2009 are described in this final report. Additional work is being planned and will commence in 2009. The specific objectives of the future studies will include conducting more detailed evaluations of the weld-ability, mechanical properties and repair-ability of the selected candidate alloys for rotors, casings and valves, and to perform scale-up studies to establish a design basis for commercial scale components. A supplemental program funded by the Ohio Coal Development Office will undertake supporting tasks such as testing and trials using existing atmospheric, vacuum and developmental pressure furnaces to define specific metal casting techniques needed for producing commercial scale components.« less

  2. MR thermometry analysis program for laser- or high-intensity focused ultrasound (HIFU)-induced heating at a clinical MR scanner

    NASA Astrophysics Data System (ADS)

    Kim, Eun Ju; Jeong, Kiyoung; Oh, Seung Jae; Kim, Daehong; Park, Eun Hae; Lee, Young Han; Suh, Jin-Suck

    2014-12-01

    Magnetic resonance (MR) thermometry is a noninvasive method for monitoring local temperature change during thermal therapy. In this study, a MR temperature analysis program was established for a laser with gold nanorods (GNRs) and high-intensity focused ultrasound (HIFU)-induced heating MR thermometry. The MR temperature map was reconstructed using the water proton resonance frequency (PRF) method. The temperature-sensitive phase difference was acquired by using complex number subtraction instead of direct phase subtraction in order to avoid another phase unwrapping process. A temperature map-analyzing program was developed and implemented in IDL (Interactive Data Language) for effective temperature monitoring. This one program was applied to two different heating devices at a clinical MR scanner. All images were acquired with the fast spoiled gradient echo (fSPGR) pulse sequence on a 3.0 T GE Discovery MR750 scanner with an 8-channel knee array coil or with a home-built small surface coil. The analyzed temperature values were confirmed by using values simultaneously measured with an optical temperature probe (R2 = 0.996). The temperature change in small samples induced by a laser or by HIFU was analyzed by using a raw data, that consisted of complex numbers. This study shows that our MR thermometry analysis program can be used for thermal therapy study with a laser or HIFU at a clinical MR scanner. It can also be applied to temperature monitoring for any other thermal therapy based on the PRF method.

  3. Effect of temperature on the characteristics of silicon nanowire transistor.

    PubMed

    Hashim, Yasir; Sidek, Othman

    2012-10-01

    This paper presents the temperature characteristics of silicon nanowire transistors (SiNWTs) and examines the effect of temperature on transfer characteristics, threshold voltage, I(ON)/I(OFF) ratio, drain-induced barrier lowering (DIBL), and sub-threshold swing (SS). The (MuGFET) simulation tool was used to investigate the temperature characteristics of a transistor. The findings reveal the negative effect of higher working temperature on the use of SiNWTs in electronic circuits, such as digital circuits and amplifiers circuits, because of the lower I(ON)/I(OFF) ratio, higher DIBL, and higher SS at higher temperature. Moreover, the ON state is the optimum condition for using a transistor as a temperature nano-sensor.

  4. Identification of High-Temperature Tolerant Lentil (Lens culinaris Medik.) Genotypes through Leaf and Pollen Traits

    PubMed Central

    Sita, Kumari; Sehgal, Akanksha; Kumar, Jitendra; Kumar, Shiv; Singh, Sarvjeet; Siddique, Kadambot H. M.; Nayyar, Harsh

    2017-01-01

    Rising temperatures are proving detrimental for various agricultural crops. Cool-season legumes such as lentil (Lens culunaris Medik.) are sensitive to even small increases in temperature during the reproductive stage, hence the need to explore the available germplasm for heat tolerance as well as its underlying mechanisms. In the present study, a set of 38 core lentil accessions were screened for heat stress tolerance by sowing 2 months later (first week of January; max/min temperature >32/20°C during the reproductive stage) than the recommended date of sowing (first week of November; max/min temperature <32/20°C during the reproductive stage). Screening revealed some promising heat-tolerant genotypes (IG2507, IG3263, IG3297, IG3312, IG3327, IG3546, IG3330, IG3745, IG4258, and FLIP2009) which can be used in a breeding program. Five heat-tolerant (HT) genotypes (IG2507, IG3263, IG3745, IG4258, and FLIP2009) and five heat-sensitive (HS) genotypes (IG2821, IG2849, IG4242, IG3973, IG3964) were selected from the screened germplasm and subjected to further analysis by growing them the following year under similar conditions to probe the mechanisms associated with heat tolerance. Comparative studies on reproductive function revealed significantly higher pollen germination, pollen viability, stigmatic function, ovular viability, pollen tube growth through the style, and pod set in HT genotypes under heat stress. Nodulation was remarkably higher (1.8–22-fold) in HT genotypes. Moreover, HT genotypes produced more sucrose in their leaves (65–73%) and anthers (35–78%) that HS genotypes, which was associated with superior reproductive function and nodulation. Exogenous supplementation of sucrose to in vitro-grown pollen grains, collected from heat-stressed plants, enhanced their germination ability. Assessment of the leaves of HT genotypes suggested significantly less damage to membranes (1.3–1.4-fold), photosynthetic function (1.14–1.17-fold) and cellular oxidizing ability (1.1–1.5-fold) than HS genotypes, which was linked to higher relative leaf water content (RLWC) and stomatal conductance (gS). Consequently, HT genotypes had less oxidative damage (measured as malondialdehyde and hydrogen peroxide concentration), coupled with a higher expression of antioxidants, especially those of the ascorbate–glutathione pathway. Controlled environment studies on contrasting genotypes further supported the impact of heat stress and differentiated the response of HT and HS genotypes to varying temperatures. Our studies indicated that temperatures >35/25°C were highly detrimental for growth and yield in lentil. While HT genotypes tolerated temperatures up to 40/30°C by producing fewer pods, the HS genotypes failed to do so even at 38/28°C. The findings attributed heat tolerance to superior pollen function and higher expression of leaf antioxidants. PMID:28579994

  5. Climate warming causes life-history evolution in a model for Atlantic cod (Gadus morhua).

    PubMed

    Holt, Rebecca E; Jørgensen, Christian

    2014-01-01

    Climate change influences the marine environment, with ocean warming being the foremost driving factor governing changes in the physiology and ecology of fish. At the individual level, increasing temperature influences bioenergetics and numerous physiological and life-history processes, which have consequences for the population level and beyond. We provide a state-dependent energy allocation model that predicts temperature-induced adaptations for life histories and behaviour for the North-East Arctic stock (NEA) of Atlantic cod (Gadus morhua) in response to climate warming. The key constraint is temperature-dependent respiratory physiology, and the model includes a number of trade-offs that reflect key physiological and ecological processes. Dynamic programming is used to find an evolutionarily optimal strategy of foraging and energy allocation that maximizes expected lifetime reproductive output given constraints from physiology and ecology. The optimal strategy is then simulated in a population, where survival, foraging behaviour, growth, maturation and reproduction emerge. Using current forcing, the model reproduces patterns of growth, size-at-age, maturation, gonad production and natural mortality for NEA cod. The predicted climate responses are positive for this stock; under a 2°C warming, the model predicted increased growth rates and a larger asymptotic size. Maturation age was unaffected, but gonad weight was predicted to more than double. Predictions for a wider range of temperatures, from 2 to 7°C, show that temperature responses were gradual; fish were predicted to grow faster and increase reproductive investment at higher temperatures. An emergent pattern of higher risk acceptance and increased foraging behaviour was also predicted. Our results provide important insight into the effects of climate warming on NEA cod by revealing the underlying mechanisms and drivers of change. We show how temperature-induced adaptations of behaviour and several life-history traits are not only mediated by physiology but also by trade-offs with survival, which has consequences for conservation physiology.

  6. Climate warming causes life-history evolution in a model for Atlantic cod (Gadus morhua)

    PubMed Central

    Holt, Rebecca E.; Jørgensen, Christian

    2014-01-01

    Climate change influences the marine environment, with ocean warming being the foremost driving factor governing changes in the physiology and ecology of fish. At the individual level, increasing temperature influences bioenergetics and numerous physiological and life-history processes, which have consequences for the population level and beyond. We provide a state-dependent energy allocation model that predicts temperature-induced adaptations for life histories and behaviour for the North-East Arctic stock (NEA) of Atlantic cod (Gadus morhua) in response to climate warming. The key constraint is temperature-dependent respiratory physiology, and the model includes a number of trade-offs that reflect key physiological and ecological processes. Dynamic programming is used to find an evolutionarily optimal strategy of foraging and energy allocation that maximizes expected lifetime reproductive output given constraints from physiology and ecology. The optimal strategy is then simulated in a population, where survival, foraging behaviour, growth, maturation and reproduction emerge. Using current forcing, the model reproduces patterns of growth, size-at-age, maturation, gonad production and natural mortality for NEA cod. The predicted climate responses are positive for this stock; under a 2°C warming, the model predicted increased growth rates and a larger asymptotic size. Maturation age was unaffected, but gonad weight was predicted to more than double. Predictions for a wider range of temperatures, from 2 to 7°C, show that temperature responses were gradual; fish were predicted to grow faster and increase reproductive investment at higher temperatures. An emergent pattern of higher risk acceptance and increased foraging behaviour was also predicted. Our results provide important insight into the effects of climate warming on NEA cod by revealing the underlying mechanisms and drivers of change. We show how temperature-induced adaptations of behaviour and several life-history traits are not only mediated by physiology but also by trade-offs with survival, which has consequences for conservation physiology. PMID:27293671

  7. Temperature-programmed technique accompanied with high-throughput methodology for rapidly searching the optimal operating temperature of MOX gas sensors.

    PubMed

    Zhang, Guozhu; Xie, Changsheng; Zhang, Shunping; Zhao, Jianwei; Lei, Tao; Zeng, Dawen

    2014-09-08

    A combinatorial high-throughput temperature-programmed method to obtain the optimal operating temperature (OOT) of gas sensor materials is demonstrated here for the first time. A material library consisting of SnO2, ZnO, WO3, and In2O3 sensor films was fabricated by screen printing. Temperature-dependent conductivity curves were obtained by scanning this gas sensor library from 300 to 700 K in different atmospheres (dry air, formaldehyde, carbon monoxide, nitrogen dioxide, toluene and ammonia), giving the OOT of each sensor formulation as a function of the carrier and analyte gases. A comparative study of the temperature-programmed method and a conventional method showed good agreement in measured OOT.

  8. Structural stability of super duplex stainless weld metals and its dependence on tungsten and copper

    NASA Astrophysics Data System (ADS)

    Nilsson, J.-O.; Huhtala, T.; Jonsson, P.; Karlsson, L.; Wilson, A.

    1996-08-01

    Three different superduplex stainless weld metals have been produced using manual metal arc welding under identical welding conditions. The concentration of the alloying elements tungsten and copper corresponded to the concentrations in commercial superduplex stainless steels (SDSS). Aging experiments in the temperature range 700 °C to 1110 °C showed that the formation of intermetallic phase was enhanced in tungsten-rich weld metal and also dissolved at higher temperatures compared with tungsten-poor and tungsten-free weld metals. It could be inferred from time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams produced in the present investigation that the critical cooling rate to avoid 1 wt pct of intermetallic phase was 2 times faster for tungsten-rich weld metal. Microanalysis in combination with thermodynamic calculations showed that tungsten was accommodated in χ phase, thereby decreasing the free energy. Experimental evidence supports the view that the formation of intermetallic phase is enhanced in tungsten-rich weld metal, owing to easier nucleation of nonequilibrium χ phase compared with σ phase. The formation of secondary austenite (γ2) during welding was modeled using the thermodynamic computer program Thermo-Calc. Satisfactory agreement between theory and practice was obtained. Thermo-Calc was capable of predicting observed lower concentrations of chromium and nitrogen in γ2 compared with primary austenite. The volume fraction of γ2 was found to be significantly higher in tungsten-rich and tungsten + copper containing weld metal. The results could be explained by a higher driving force for precipitation of γ2 in these.

  9. Effect of ultrasonic treatment of palygorskite on the catalytic performance of Pd-Cu/palygorskite catalyst for room temperature CO oxidation in humid circumstances.

    PubMed

    Wang, Yongzhao; Wang, Yongning; Li, Xiao; Liu, Zhaotie; Zhao, Yongxiang

    2018-03-01

    Pd-Cu/palygorskite catalysts were prepared by a wet impregnation method using palygorskite (PC/N-Pal) and ultrasonic-treated palygorskite (PC/U-Pal) as the support. Their catalytic activities toward CO oxidation at room temperature and in humid circumstances were investigated. PC/U-Pal exhibits much higher catalytic activity and stability than PC/N-Pal under the conditions of 1.0 vol.% CO and 3.3 vol.% H 2 O in the feed gas. The X-ray diffraction results indicate that quartz impurities were eliminated from the Pal after the ultrasonic treatment, and more copper species exist in the form of Cu 2 Cl(OH) 3 in PC/U-Pal. The temperature-programmed reduction results suggest that there is an enhanced reducibility of PC/U-Pal after ultrasonic treatment. Furthermore, the ultrasonic treatment can properly decrease the hydrophilicity of the support and catalyst, which may also contribute to the excellent catalytic performance.

  10. Environmental Systems Test Stand

    NASA Astrophysics Data System (ADS)

    Barta, D.; Young, J.; Ewert, M.; Lee, S.; Wells, P.; Fortson, R.; Castillo, J.

    A test stand has been developed for the evaluation of prototype lighting, environmental control and crop cultivation technologies for plant production within an advanced life support system. Design of the test stand was based on preliminary designs of the center growth bay of the Biomass Production Chamber, one of several modules of the Bioregenerative Planetary Life Support Systems Test Complex (BIO- Plex). It consists of two controlled-environment shelves, each with 4.7 m2 of area for crop growth (150 cm width, 315 cm length). There are two chilled water loops, one for operation at conventional temperatures (5-10C) for air temperature and humidity control and one for operation at higher temperatures (15-50C) for waste heat acquisition and heating. Modular light boxes, utilizing either air-cooled or water- jacketed HPS lamps, have been developed. This modular design will allow for easy replacement of new lighting technologies within the light banks. An advanced data acquisition and control system has been developed utilizing localized, networked- based data acquisition modules and programmed with object-based control software.

  11. Development of a Polysilicon Process Based on Chemical Vapor Deposition of Dichlorosilane in an Advanced Siemen's Reactor

    NASA Technical Reports Server (NTRS)

    Arevidson, A. N.; Sawyer, D. H.; Muller, D. M.

    1983-01-01

    Dichlorosilane (DCS) was used as the feedstock for an advanced decomposition reactor for silicon production. The advanced reactor had a cool bell jar wall temperature, 300 C, when compared to Siemen's reactors previously used for DCS decomposition. Previous reactors had bell jar wall temperatures of approximately 750 C. The cooler wall temperature allows higher DCS flow rates and concentrations. A silicon deposition rate of 2.28 gm/hr-cm was achieved with power consumption of 59 kWh/kg. Interpretation of data suggests that a 2.8 gm/hr-cm deposition rate is possible. Screening of lower cost materials of construction was done as a separate program segment. Stainless Steel (304 and 316), Hastalloy B, Monel 400 and 1010-Carbon Steel were placed individually in an experimental scale reactor. Silicon was deposited from trichlorosilane feedstock. The resultant silicon was analyzed for electrically active and metallic impurities as well as carbon. No material contributed significant amounts of electrically active or metallic impurities, but all contributed carbon.

  12. High Technology Centrifugal Compressor for Commercial Air Conditioning Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruckes, John

    2006-04-15

    R&D Dynamics, Bloomfield, CT in partnership with the State of Connecticut has been developing a high technology, oil-free, energy-efficient centrifugal compressor called CENVA for commercial air conditioning systems under a program funded by the US Department of Energy. The CENVA compressor applies the foil bearing technology used in all modern aircraft, civil and military, air conditioning systems. The CENVA compressor will enhance the efficiency of water and air cooled chillers, packaged roof top units, and other air conditioning systems by providing an 18% reduction in energy consumption in the unit capacity range of 25 to 350 tons of refrigeration Themore » technical approach for CENVA involved the design and development of a high-speed, oil-free foil gas bearing-supported two-stage centrifugal compressor, CENVA encompassed the following high technologies, which are not currently utilized in commercial air conditioning systems: Foil gas bearings operating in HFC-134a; Efficient centrifugal impellers and diffusers; High speed motors and drives; and System integration of above technologies. Extensive design, development and testing efforts were carried out. Significant accomplishments achieved under this program are: (1) A total of 26 builds and over 200 tests were successfully completed with successively improved designs; (2) Use of foil gas bearings in refrigerant R134a was successfully proven; (3) A high speed, high power permanent magnet motor was developed; (4) An encoder was used for signal feedback between motor and controller. Due to temperature limitations of the encoder, the compressor could not operate at higher speed and in turn at higher pressure. In order to alleviate this problem a unique sensorless controller was developed; (5) This controller has successfully been tested as stand alone; however, it has not yet been integrated and tested as a system; (6) The compressor successfully operated at water cooled condensing temperatures Due to temperature limitations of the encoder, it could not be operated at air cooled condensing temperatures. (7) The two-stage impellers/diffusers worked well separately but combined did not match well.« less

  13. NASA's high-temperature engine materials program for civil aeronautics

    NASA Technical Reports Server (NTRS)

    Gray, Hugh R.; Ginty, Carol A.

    1992-01-01

    The Advanced High-Temperature Engine Materials Technology Program is described in terms of its research initiatives and its goal of developing propulsion systems for civil aeronautics with low levels of noise, pollution, and fuel consumption. The program emphasizes the analysis and implementation of structural materials such as polymer-matrix composites in fans, casings, and engine-control systems. Also investigated in the program are intermetallic- and metal-matrix composites for uses in compressors and turbine disks as well as ceramic-matrix composites for extremely high-temperature applications such as turbine vanes.

  14. Kinetic Modeling of Corn Fermentation with S. cerevisiae Using a Variable Temperature Strategy.

    PubMed

    Souza, Augusto C M; Mousaviraad, Mohammad; Mapoka, Kenneth O M; Rosentrater, Kurt A

    2018-04-24

    While fermentation is usually done at a fixed temperature, in this study, the effect of having a controlled variable temperature was analyzed. A nonlinear system was used to model batch ethanol fermentation, using corn as substrate and the yeast Saccharomyces cerevisiae , at five different fixed and controlled variable temperatures. The lower temperatures presented higher ethanol yields but took a longer time to reach equilibrium. Higher temperatures had higher initial growth rates, but the decay of yeast cells was faster compared to the lower temperatures. However, in a controlled variable temperature model, the temperature decreased with time with the initial value of 40 ∘ C. When analyzing a time window of 60 h, the ethanol production increased 20% compared to the batch with the highest temperature; however, the yield was still 12% lower compared to the 20 ∘ C batch. When the 24 h’ simulation was analyzed, the controlled model had a higher ethanol concentration compared to both fixed temperature batches.

  15. Monomethylhydrazine versus hydrazine fuels - Test results using a 100 pound thrust bipropellant rocket engine

    NASA Technical Reports Server (NTRS)

    Smith, J. A.; Stechman, R. C.

    1981-01-01

    A test program was performed to evaluate hydrazine (N2H4) as a fuel for a 445 Newton (100 lbf) thrust bipropellant rocket engine. Results of testing with an identical thruster utilizing monomethylhydrazine (MMH) are included for comparison. Engine performance with hydrazine fuel was essentially identical to that experienced with monomethylhydrazine although higher combustor wall temperatures (approximately 400 F) were obtained with hydrazine. Results are presented which indicate that hydrazine as a fuel is compatible with Marquardt bipropellant rocket engines which use monomethylhydrazine as a baseline fuel.

  16. Overview of NASA Glenn Seal Project

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Dunlap, Patrick; Proctor, Margaret; Delgado, Irebert; Finkbeiner, Josh; DeMange, Jeff; Daniels, Christopher C.; Taylor, Shawn; Oswald, Jay

    2006-01-01

    NASA Glenn is currently performing seal research supporting both advanced turbine engine development and advanced space vehicle/propulsion system development. Studies have shown that decreasing parasitic leakage through applying advanced seals will increase turbine engine performance and decrease operating costs. Studies have also shown that higher temperature, long life seals are critical in meeting next generation space vehicle and propulsion system goals in the areas of performance, reusability, safety, and cost. NASA Glenn is developing seal technology and providing technical consultation for the Agency s key aero- and space technology development programs.

  17. High-level waste program progress report, January 1, 1980-March 31, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-05-01

    FUETAP concretes cured at 100/sup 0/C and 0.1 or 0.6 MPa had essentially the same physical properties as those cured at higher temperatures and pressures. Standard specimens containing high concentrations of /sup 244/Cm showed little gasification after 1 month. The large (23-cm ID) spray calciner has been completed and is operating satisfactorily. Construction was completed on a sphere-forming system capable of producing 100-g batches of Synroc spheres by internal gelation, and several runs were made. Preparations for the compatibilty tests are underway. (DLC)

  18. Scaling Projections for Sb-based p-channel FETs

    DTIC Science & Technology

    2010-01-01

    the products of long-standing programs on antimonide growth by molecular beam epitaxy at the QinetiQ Corp. (for InSb) and at the Naval Research...electron mobilities in the channels of III–V HEMTs at room temperature are much higher than in Si or Ge, e.g., in InAs they are in the range of 20–30,000 cm2... HEMT structures. IEEE Trans Electron Dev 1985;32:11. [25] Awano Y, Kosugi M, Kosemura K, Mimura T, Abe M. Short-channel effects in subquarter

  19. Elevated temperature and temperature programming in conventional liquid chromatography--fundamentals and applications.

    PubMed

    Vanhoenacker, Gerd; Sandra, Pat

    2006-08-01

    Temperature, as a powerful variable in conventional LC is discussed from a fundamental point of view and illustrated with applications from the author's laboratory. Emphasis is given to the influence of temperature on speed, selectivity, efficiency, detectability, and mobile phase composition (green chromatography). The problems accompanying the use of elevated temperature and temperature programming in LC are reviewed and solutions are described. The available stationary phases for high temperature operation are summarized and a brief overview of recent applications reported in the literature is given.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Lizhen; Yang, Ying; Tyburska-Puschel, Beata

    The mission of the Nuclear Energy Enabling Technologies (NEET) program is to develop crosscutting technologies for nuclear energy applications. Advanced structural materials with superior performance at elevated temperatures are always desired for nuclear reactors, which can improve reactor economics, safety margins, and design flexibility. They benefit not only new reactors, including advanced light water reactors (LWRs) and fast reactors such as sodium-cooled fast reactor (SFR) that is primarily designed for management of high-level wastes, but also life extension of the existing fleet when component exchange is needed. Developing and utilizing the modern materials science tools (experimental, theoretical, and computational tools)more » is an important path to more efficient alloy development and process optimization. Ferritic-martensitic (FM) steels are important structural materials for nuclear reactors due to their advantages over other applicable materials like austenitic stainless steels, notably their resistance to void swelling, low thermal expansion coefficients, and higher thermal conductivity. However, traditional FM steels exhibit a noticeable yield strength reduction at elevated temperatures above ~500°C, which limits their applications in advanced nuclear reactors which target operating temperatures at 650°C or higher. Although oxide-dispersion-strengthened (ODS) ferritic steels have shown excellent high-temperature performance, their extremely high cost, limited size and fabricability of products, as well as the great difficulty with welding and joining, have limited or precluded their commercial applications. Zirconium has shown many benefits to Fe-base alloys such as grain refinement, improved phase stability, and reduced radiation-induced segregation. The ultimate goal of this project is, with the aid of computational modeling tools, to accelerate the development of a new generation of Zr-bearing ferritic alloys to be fabricated using conventional steelmaking practices, which have excellent radiation resistance and enhanced high-temperature creep performance greater than Grade 91.« less

  1. Temperature variation in metal ceramic technology analyzed using time domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Sinescu, Cosmin; Topala, Florin I.; Negrutiu, Meda Lavinia; Duma, Virgil-Florin; Podoleanu, Adrian G.

    2014-01-01

    The quality of dental prostheses is essential in providing good quality medical services. The metal ceramic technology applied in dentistry implies ceramic sintering inside the dental oven. Every ceramic material requires a special sintering chart which is recommended by the producer. For a regular dental technician it is very difficult to evaluate if the temperature inside the oven remains the same as it is programmed on the sintering chart. Also, maintaining the calibration in time is an issue for the practitioners. Metal ceramic crowns develop a very accurate pattern for the ceramic layers depending on the temperature variation inside the oven where they are processed. Different patterns were identified in the present study for the samples processed with a variation in temperature of +30 °C to +50 °C, respectively - 30 0°C to -50 °C. The OCT imagistic evaluations performed for the normal samples present a uniform spread of the ceramic granulation inside the ceramic materials. For the samples sintered at a higher temperature an alternation between white and darker areas between the enamel and opaque layers appear. For the samples sintered at a lower temperature a decrease in the ceramic granulation from the enamel towards the opaque layer is concluded. The TD-OCT methods can therefore be used efficiently for the detection of the temperature variation due to the ceramic sintering inside the ceramic oven.

  2. Halophilic Bacteria as a Source of Novel Hydrolytic Enzymes

    PubMed Central

    de Lourdes Moreno, María; Pérez, Dolores; García, María Teresa; Mellado, Encarnación

    2013-01-01

    Hydrolases constitute a class of enzymes widely distributed in nature from bacteria to higher eukaryotes. The halotolerance of many enzymes derived from halophilic bacteria can be exploited wherever enzymatic transformations are required to function under physical and chemical conditions, such as in the presence of organic solvents and extremes in temperature and salt content. In recent years, different screening programs have been performed in saline habitats in order to isolate and characterize novel enzymatic activities with different properties to those of conventional enzymes. Several halophilic hydrolases have been described, including amylases, lipases and proteases, and then used for biotechnological applications. Moreover, the discovery of biopolymer-degrading enzymes offers a new solution for the treatment of oilfield waste, where high temperature and salinity are typically found, while providing valuable information about heterotrophic processes in saline environments. In this work, we describe the results obtained in different screening programs specially focused on the diversity of halophiles showing hydrolytic activities in saline and hypersaline habitats, including the description of enzymes with special biochemical properties. The intracellular lipolytic enzyme LipBL, produced by the moderately halophilic bacterium Marinobacter lipolyticus, showed advantages over other lipases, being an enzyme active over a wide range of pH values and temperatures. The immobilized LipBL derivatives obtained and tested in regio- and enantioselective reactions, showed an excellent behavior in the production of free polyunsaturated fatty acids (PUFAs). On the other hand, the extremely halophilic bacterium, Salicola marasensis sp. IC10 showing lipase and protease activities, was studied for its ability to produce promising enzymes in terms of its resistance to temperature and salinity. PMID:25371331

  3. Hot gas ingestion test results of a two-poster vectored thrust concept with flow visualization in the NASA Lewis 9- x 15-foot low speed wind tunnel

    NASA Technical Reports Server (NTRS)

    Johns, Albert L.; Neiner, George; Bencic, Timothy J.; Flood, Joseph D.; Amuedo, Kurt C.; Strock, Thomas W.

    1990-01-01

    A 9.2 percent scale Short Takeoff and Vertical Landing (STOVL) hot gas ingestion model was designed and built by McDonnell Douglas Corporation (MCAIR) and tested in the Lewis Research Center 9 x 15 foot Low Speed Wind Tunnel (LSWT). Hot gas ingestion, the entrainment of heated engine exhaust into the inlet flow field, is a key development issure for advanced short takeoff and vertical landing aircraft. Flow visualization from the Phase 1 test program, which evaluated the hot ingestion phenomena and control techniques, is covered. The Phase 2 test program evaluated the hot gas ingestion phenomena at higher temperatures and used a laser sheet to investigate the flow field. Hot gas ingestion levels were measured for the several forward nozzle splay configurations and with flow control/life improvement devices (LIDs) which reduced the hot gas ingestion. The model support system had four degrees of freedom - pitch, roll, yaw, and vertical height variation. The model support system also provided heated high-pressure air for nozzle flow and a suction system exhaust for inlet flow. The test was conducted at full scale nozzle pressure ratios and inlet Mach numbers. Test and data analysis results from Phase 2 and flow visualization from both Phase 1 and 2 are documented. A description of the model and facility modifications is also provided. Headwind velocity was varied from 10 to 23 kn. Results are presented over a range of nozzle pressure ratios at a 10 kn headwind velocity. The Phase 2 program was conducted at exhaust nozzle temperatures up to 1460 R and utilized a sheet laser system for flow visualization of the model flow field in and out of ground effects. The results reported are for nozzle exhaust temperatures up to 1160 R. These results will contain the compressor face pressure and temperature distortions, the total pressure recovery, the inlet temperature rise, and the environmental effects of the hot gas. The environmental effects include the ground plane contours, the model airframe heating, and the location of the ground flow separation.

  4. Measurements of 222Rn, 220Rn, and CO 2 Emissions in Natural CO 2 Fields in Wyoming: MVA Techniques for Determining Gas Transport and Caprock Integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaszuba, John; Sims, Kenneth

    An integrated field-laboratory program evaluated the use of radon and CO 2 flux measurements to constrain source and timescale of CO 2 fluxes in environments proximate to CO 2 storage reservoirs. By understanding the type and depth of the gas source, the integrity of a CO 2 storage reservoir can be assessed and monitored. The concept is based on correlations of radon and CO 2 fluxes observed in volcanic systems. This fundamental research is designed to advance the science of Monitoring, Verification, and Accounting (MVA) and to address the Carbon Storage Program goal of developing and validating technologies to ensuremore » 99 percent storage performance. Graduate and undergraduate students conducted the research under the guidance of the Principal Investigators; in doing so they were provided with training opportunities in skills required for implementing and deploying CCS technologies. Although a final method or “tool” was not developed, significant progress was made. The field program identified issues with measuring radon in environments rich in CO 2. Laboratory experiments determined a correction factor to apply to radon measurements made in CO 2-bearing environments. The field program also identified issues with radon and CO 2-flux measurements in soil gases at a natural CO 2 analog. A systematic survey of radon and CO 2 flux in soil gases at the LaBarge CO 2 Field in Southwest Wyoming indicates that measurements of 222Rn (radon), 220Rn (thoron), and CO 2 flux may not be a robust method for monitoring the integrity of a CO 2 storage reservoir. The field program was also not able to correlate radon and CO 2 flux in the CO 2-charged springs of the Thermopolis hydrothermal system. However, this part of the program helped to motivate the aforementioned laboratory experiments that determined correction factors for measuring radon in CO 2-rich environments. A graduate student earned a Master of Science degree for this part of the field program; she is currently employed with a geologic consulting company. Measurement of radon in springs has improved significantly since the field program first began; however, in situ measurement of 222Rn and particularly 220Rn in springs is problematic. Future refinements include simultaneous salinity measurements and systematic corrections, or adjustments to the partition coefficient as needed for more accurate radon concentration determination. A graduate student earned a Master of Science degree for this part of the field program; he is currently employed with a geologic consulting company. Both graduate students are poised to begin work in a CCS technology area. Laboratory experiments evaluated important process-level fundamentals that effect measurements of radon and CO 2. Laboratory tests established that fine-grained source minerals yield higher radon emissivity compared to coarser-sized source minerals; subtleties in the dataset suggest that grain size alone is not fully representative of all the processes controlling the ability of radon to escape its mineral host. Emissivity for both 222Rn and 220Rn increases linearly with temperature due to reaction of rocks with water, consistent with faster diffusion and enhanced mineral dissolution at higher temperatures. The presence of CO 2 changes the relative importance of the factors that control release of radon. Emissivity for both 222Rn and 220Rn in CO 2-bearing experiments is greater at all temperatures compared to the experiments without CO 2, but emissivity does not increase as a simple function of temperature. Governing processes may include a balance between enhanced dissolution versus carbonate mineral formation in CO 2-rich waters.« less

  5. On-Line Thermal Barrier Coating Monitoring for Real-Time Failure Protection and Life Maximization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis H. LeMieux

    2005-04-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization'', to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability availability maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs havemore » been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can therefore accelerate the degradation of substrate components materials and eventually lead to a premature failure of critical component and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.« less

  6. ON-LINE THERMAL BARRIER COATING MONITORING FOR REAL-TIME FAILURE PROTECTION AND LIFE MAXIMIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis H. LeMieux

    2003-10-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization,'' to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability, availability, and maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCsmore » have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can, therefore, accelerate the degradation of substrate component materials and eventually lead to a premature failure of critical components and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.« less

  7. ON-LINE THERMAL BARRIER COATING MONITORING FOR REAL-TIME FAILURE PROTECTION AND LIFE MAXIMIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis H. LeMieux

    2003-07-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization,'' to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability, availability, and maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCsmore » have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can, therefore, accelerate the degradation of substrate component materials and eventually lead to a premature failure of critical components and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.« less

  8. On-Line Thermal Barrier Coating Monitoring for Real-Time Failure Protection and Life Maximization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis H. LeMieux

    2005-10-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Power Generation, Inc proposed a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization'', to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability availability maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs havemore » been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can therefore accelerate the degradation of substrate components materials and eventually lead to a premature failure of critical component and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Power Generation, Inc. has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.« less

  9. NASA/CARES dual-use ceramic technology spinoff applications

    NASA Technical Reports Server (NTRS)

    Powers, Lynn M.; Janosik, Lesley A.; Gyekenyesi, John P.; Nemeth, Noel N.

    1994-01-01

    NASA has developed software that enables American industry to establish the reliability and life of ceramic structures in a wide variety of 21st Century applications. Designing ceramic components to survive at higher temperatures than the capability of most metals and in severe loading environments involves the disciplines of statistics and fracture mechanics. Successful application of advanced ceramics material properties and the use of a probabilistic brittle material design methodology. The NASA program, known as CARES (Ceramics Analysis and Reliability Evaluation of Structures), is a comprehensive general purpose design tool that predicts the probability of failure of a ceramic component as a function of its time in service. The latest version of this software, CARESALIFE, is coupled to several commercially available finite element analysis programs (ANSYS, MSC/NASTRAN, ABAQUS, COSMOS/N4, MARC), resulting in an advanced integrated design tool which is adapted to the computing environment of the user. The NASA-developed CARES software has been successfully used by industrial, government, and academic organizations to design and optimize ceramic components for many demanding applications. Industrial sectors impacted by this program include aerospace, automotive, electronic, medical, and energy applications. Dual-use applications include engine components, graphite and ceramic high temperature valves, TV picture tubes, ceramic bearings, electronic chips, glass building panels, infrared windows, radiant heater tubes, heat exchangers, and artificial hips, knee caps, and teeth.

  10. Estimating SIT-driven population reduction in the Mediterranean fruit fly, Ceratitis capitata, from sterile mating.

    PubMed

    Juan-Blasco, M; Sabater-Muñoz, B; Pla, I; Argilés, R; Castañera, P; Jacas, J A; Ibáñez-Gual, M V; Urbaneja, A

    2014-04-01

    Area-wide sterile insect technique (SIT) programs assume that offspring reduction of the target population correlates with the mating success of the sterile males released. However, there is a lack of monitoring tools to prove the success of these programs in real-time. Field-cage tests were conducted under the environmental conditions of the Mediterranean coast of Spain to estimate: (a) the mating success of sterile Vienna-8 (V8) Ceratitis capitata males using molecular markers and (b) their efficacy to reduce C. capitata populations under six release ratios of wild females to wild males to V8 males (1:0:0, 1:1:0, 1:1:1, 1:1:5, 1:1:10, and 1:1:20). Statistical models were developed to predict: (a) the number of females captured in traps, (b) sperm ID (sterile or not) in spermathecae of the trapped females, and (c) the viable offspring produced, using release ratio and temperature as predictors. The number of females captured was affected by relative humidity. However, its influence in the model was low. Female captures were significantly higher in ratios 1:0:0 compared to ratios where V8 males were released. The proportion of V8 sperm in spermathecae increased with temperature and with the number of V8 males released, but leveled off between ratios 1:1:10 and 1:1:20. In all seasons, except winter (no offspring), viable offspring increased with temperature and was lowest for ratio 1:1:20. For the first time, a strong negative relationship between proportion of V8 sperm detected by molecular tools and C. capitata offspring was established. The models obtained should contribute to enhance the efficacy of SIT programs against this pest.

  11. Evaluation of thermal network correction program using test temperature data

    NASA Technical Reports Server (NTRS)

    Ishimoto, T.; Fink, L. C.

    1972-01-01

    An evaluation process to determine the accuracy of a computer program for thermal network correction is discussed. The evaluation is required since factors such as inaccuracies of temperatures, insufficient number of temperature points over a specified time period, lack of one-to-one correlation between temperature sensor and nodal locations, and incomplete temperature measurements are not present in the computer-generated information. The mathematical models used in the evaluation are those that describe a physical system composed of both a conventional and a heat pipe platform. A description of the models used, the results of the evaluation of the thermal network correction, and input instructions for the thermal network correction program are presented.

  12. Delineation of soil temperature regimes from HCMM data

    NASA Technical Reports Server (NTRS)

    Day, R. L.; Petersen, G. W. (Principal Investigator)

    1982-01-01

    The subsetting of HCMM data into ORSER format was completed for four dates using a modified SUBSET program. Large areas (approximately 2500 scan lines, 1680 elements) were selected to increase the occurrence of suitable control points for registration. Average daily temperatures (ADT) were calculated for each date. The MERGE program combined registered daytime temperature (DAY-IR) with nighttime temperature (NIGHT-IR) to form a separate two-channel data set. The SUBTRAN program averaged the DAY-IR and NIGHT-IR creating a third ADT channel. Registration equations for the four ADT data sets were generated. A one dimensional soil heat flow equation was modified to allow for mean annual soil temperature predictions using merged ADT data sets.

  13. Cumulative effects of heat exposure and storage conditions of Oxytocin-in-Uniject in rural Ghana: implications for scale up

    PubMed Central

    Mullany, Luke C; Newton, Sam; Afari-Asiedu, Samuel; Adiibokah, Edward; Agyemang, Charlotte T; Cofie, Patience; Brooke, Steve; Owusu-Agyei, Seth; Stanton, Cynthia K

    2014-01-01

    ABSTRACT Objective: Postpartum hemorrhage can be reduced substantially in home deliveries attended by community-based workers by using Oxytocin-in-Uniject (OIU) devices affixed with temperature-time indicators. We characterized the distribution of time to discard of these devices when stored under normal field conditions in Ghana. Methods: Two drug storage simulation studies were conducted in rural Ghana in 2011 and 2012. Devices were transported under refrigeration from manufacture (Argentina) to storage at the study site. Twenty-three field workers each stored at home (unrefrigerated) 25 OIU devices and monitored them daily to record: (1) time to transition from usable to unusable, and (2) continuous digital ambient temperature to determine heat exposure over the simulation period. Time to discard was estimated and compared with mean kinetic temperature exposure of the devices during the shipment and storage phases and with characteristics of the storage locations using Weibull regression models. We used the time to discard distributions in a Monte Carlo simulation to estimate wastage rates in a hypothetical program setting. Results: Time for shipment and transfer to long-term refrigerated storage and mean kinetic temperature during the shipment phase was 8.6 days/10.3°C and 13.4 days/12.1°C, for the first and second simulation studies, respectively. Median (range) time to discard when stored under field conditions (unrefrigerated) was 43 (6 to 59) days and 33 (14 to 50) days, respectively. Mean time to discard was 10.0 days shorter in the second simulation, during which mean kinetic temperature exposure was 3.9°C higher. Simulating a monthly distribution system and assuming typical usage, predicted wastage of product was less than 10%. Conclusion: The time to discard of devices was highly sensitive to small changes in temperature exposure. Under field conditions typical in rural Ghana, OIU packages will have a half-life of approximately 30 to 40 days based on the temperature monitor used during the study. Program managers will need to carefully consider variations in both ambient temperature and rate of use to allocate the appropriate supply level that will maximize coverage and minimize stock loss. PMID:25276588

  14. Cumulative effects of heat exposure and storage conditions of Oxytocin-in-Uniject in rural Ghana: implications for scale up.

    PubMed

    Mullany, Luke C; Newton, Sam; Afari-Asiedu, Samuel; Adiibokah, Edward; Agyemang, Charlotte T; Cofie, Patience; Brooke, Steve; Owusu-Agyei, Seth; Stanton, Cynthia K

    2014-08-01

    Postpartum hemorrhage can be reduced substantially in home deliveries attended by community-based workers by using Oxytocin-in-Uniject (OIU) devices affixed with temperature-time indicators. We characterized the distribution of time to discard of these devices when stored under normal field conditions in Ghana. Two drug storage simulation studies were conducted in rural Ghana in 2011 and 2012. Devices were transported under refrigeration from manufacture (Argentina) to storage at the study site. Twenty-three field workers each stored at home (unrefrigerated) 25 OIU devices and monitored them daily to record: (1) time to transition from usable to unusable, and (2) continuous digital ambient temperature to determine heat exposure over the simulation period. Time to discard was estimated and compared with mean kinetic temperature exposure of the devices during the shipment and storage phases and with characteristics of the storage locations using Weibull regression models. We used the time to discard distributions in a Monte Carlo simulation to estimate wastage rates in a hypothetical program setting. Time for shipment and transfer to long-term refrigerated storage and mean kinetic temperature during the shipment phase was 8.6 days/10.3°C and 13.4 days/12.1°C, for the first and second simulation studies, respectively. Median (range) time to discard when stored under field conditions (unrefrigerated) was 43 (6 to 59) days and 33 (14 to 50) days, respectively. Mean time to discard was 10.0 days shorter in the second simulation, during which mean kinetic temperature exposure was 3.9°C higher. Simulating a monthly distribution system and assuming typical usage, predicted wastage of product was less than 10%. The time to discard of devices was highly sensitive to small changes in temperature exposure. Under field conditions typical in rural Ghana, OIU packages will have a half-life of approximately 30 to 40 days based on the temperature monitor used during the study. Program managers will need to carefully consider variations in both ambient temperature and rate of use to allocate the appropriate supply level that will maximize coverage and minimize stock loss.

  15. Performance analysis of a potassium-base AMTEC cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, C.; Hendricks, T.J.; Hunt, T.K.

    1998-07-01

    Sodium-BASE Alkali-Metal-Thermal-to-Electric-Conversion (AMTEC) cells have been receiving increased attention and funding from the Department of Energy, NASA and the United States Air Force. Recently, sodium-BASE (Na-BASE) AMTEC cells were selected for the Advanced Radioisotope Power System (ARPS) program for the next generation of deep-space missions and spacecraft. Potassium-BASE (K-BASE) AMTEC cells have not received as much attention to date, even though the vapor pressure of potassium is higher than that of sodium at the same temperature. So that, K-BASE AMTEC cells with potentially higher open circuit voltage and higher power output than Na-BASE AMTEC cells are possible. Because the surfacemore » tension of potassium is about half of the surface tension of sodium at the same temperature, the artery and evaporator design in a potassium AMTEC cell has much more challenging pore size requirements than designs using sodium. This paper uses a flexible thermal/fluid/electrical model to predict the performance of a K-BASE AMTEC cell. Pore sizes in the artery of K-BASE AMTEC cells must be smaller by an order of magnitude than in Na-BASE AMTEC cells. The performance of a K-BASE AMTEC cell was higher than a Na-BASE AMTEC cell at low voltages/high currents. K-BASE AMTEC cells also have the potential of much better electrode performance, thereby creating another avenue for potentially better performance in K-BASE AMTEC cells.« less

  16. Elevated-Confined Phase-Change Random Access Memory Cells

    NASA Astrophysics Data System (ADS)

    Lee; Koon, Hock; Shi; Luping; Zhao; Rong; Yang; Hongxin; Lim; Guan, Kian; Li; Jianming; Chong; Chong, Tow

    2010-04-01

    A new elevated-confined phase-change random access memory (PCRAM) cell structure to reduce power consumption was proposed. In this proposed structure, the confined phase-change region is sitting on top of a small metal column enclosed by a dielectric at the sides. Hence, more heat can be effectively sustained underneath the phase-change region. As for the conventional structure, the confined phase-change region is sitting directly above a large planar bottom metal electrode, which can easily conduct most of the induced heat away. From simulations, a more uniform temperature profile around the active region and a higher peak temperature at the phase-change layer (PCL) in an elevated-confined structure were observed. Experimental results showed that the elevated-confined PCRAM cell requires a lower programming power and has a better scalability than a conventional confined PCRAM cell.

  17. Effects of temperature on Anoplophora glabripennis (Coleoptera: Cerambycidae) larvae and pupae.

    PubMed

    Keena, M A; Moore, P M

    2010-08-01

    Developmental thresholds, degree-days for development, larval weights, and head capsule widths for each larval instar and the pupal stage of Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae) were studied at eight constant temperatures (5, 10, 15, 20, 25, 30, 35, and 40°C) for two source populations (Ravenswood, Chicago, IL [IL], and Bayside, Queens, NY [NY]). The estimated lower threshold temperature for development of instars 1-5 and the pupal stage was near 10°C and was near 12°C for the higher instars. Developmental rate was less temperature sensitive for instars 5-9 compared with instars 1-4. Development for all but the first instar was inhibited at constant temperatures >30°C, and all instars failed to develop at 40°C. Although the two source populations had similar responses to temperature, IL larvae were heavier than those from NY. Temperature and its influence on larval weight had profound impacts on whether a larva proceeded to pupation. Based on the temperature effects detailed here, larval development and pupation should be possible in most of the continental United States where suitable hosts are available. These data can be used to develop a degree-day model to estimate beetle phenology; however, at least 2°C should be added to air temperatures to adjust for the mediation of temperature by the wood. These data provide a basis for predicting the potential geographical range of this species and for developing phenological models to predict the timing of immature stages, both of which are important for management programs.

  18. Microprocessor-controlled Nd:YAG laser for hyperthermia induction in the RIF-1 tumor.

    PubMed

    Waldow, S M; Russell, G E; Wallner, P E

    1992-01-01

    Near-infrared radiation from a Nd:YAG laser at 1,064 nm was used interstitially or superficially to induce hyperthermia in RIF-1 tumors in C3H male mice. A single 600-microns quartz fiber with a 0.5-cm cylindrical diffusor or a weakly diverging microlens at its distal end was used to deliver laser energy to tumors in the hind leg (mean volume = 100 mm3). Two thermocouples were inserted into each tumor. One thermocouple controlled a microprocessor-driven hyperthermia program (maximum output of 3.5 Watts) to maintain the desired temperature. Tumors were exposed to various temperature-time combinations (42-45 degrees C/30 min). Our initial results indicated that excellent temperature control to within 0.2 degrees C of the desired temperature at the feedback thermocouple was achievable during both superficial and interstitial heat treatments. Temperatures at the second thermocouple, however, were found to be lower by as much as 2.3 degrees C (using the cylindrical diffusor) or higher by up to 4.6 degrees C (using the microlens) when compared to the feedback thermocouple temperature. Several correlations were seen between total dose, tumor growth delay, percent skin necrosis, and temperature at the second thermocouple after several superficial and interstitial treatments. Statistically significant improvements in tumor growth delay (at 42 and 45 degrees C) and increased percent skin necrosis at all temperatures were observed after superficial versus interstitial treatment.

  19. Diurnal Soil Temperature Effects within the Globe[R] Program Dataset

    ERIC Educational Resources Information Center

    Witter, Jason D.; Spongberg, Alison L.; Czajkowski, Kevin P.

    2007-01-01

    Long-term collection of soil temperature with depth is important when studying climate change. The international program GLOBE[R] provides an excellent opportunity to collect such data, although currently endorsed temperature collection protocols need to be refined. To enhance data quality, protocol-based methodology and automated data logging,…

  20. ERBS fuel addendum: Pollution reduction technology program small jet aircraft engines, phase 3

    NASA Technical Reports Server (NTRS)

    Bruce, T. W.; Davis, F. G.; Kuhn, T. E.; Mongia, H. C.

    1982-01-01

    A Model TFE731-2 engine with a low emission, variable geometry combustion system was tested to compare the effects of operating the engine on Commercial Jet-A aviation turbine fuel and experimental referee broad specification (ERBS) fuels. Low power emission levels were essentially identical while the high power NOx emission indexes were approximately 15% lower with the EBRS fuel. The exhaust smoke number was approximately 50% higher with ERBS at the takeoff thrust setting; however, both values were still below the EPA limit of 40 for the Model TFE731 engine. Primary zone liner wall temperature ran an average of 25 K higher with ERBS fuel than with Jet-A. The possible adoption of broadened proprties fuels for gas turbine applications is suggested.

  1. Temperature lowering program for homogeneous doping in flux growth

    NASA Astrophysics Data System (ADS)

    Qiwei, Wang; Shouquan, Jia

    1989-10-01

    Based on the mass conservation law and the Burton-Prim-Slichter equation, the temperature program for homogeneous doping in flux growth by slow cooling was derived. The effect of various factors, such as initial supersaturation, solution volume, growth kinetic coefficient and degree of mixing in the solution on growth rate, crystal size and temperature program is discussed in detail. Theoretical analysis shows that there is a critical crystal size above which homogeneous doping is impossible.

  2. Do acute phase markers explain body temperature and brain temperature after ischemic stroke?

    PubMed Central

    Whiteley, William N.; Thomas, Ralph; Lowe, Gordon; Rumley, Ann; Karaszewski, Bartosz; Armitage, Paul; Marshall, Ian; Lymer, Katherine; Dennis, Martin

    2012-01-01

    Objective: Both brain and body temperature rise after stroke but the cause of each is uncertain. We investigated the relationship between circulating markers of inflammation with brain and body temperature after stroke. Methods: We recruited patients with acute ischemic stroke and measured brain temperature at hospital admission and 5 days after stroke with multivoxel magnetic resonance spectroscopic imaging in normal brain and the acute ischemic lesion (defined by diffusion-weighted imaging [DWI]). We measured body temperature with digital aural thermometers 4-hourly and drew blood daily to measure interleukin-6, C-reactive protein, and fibrinogen, for 5 days after stroke. Results: In 44 stroke patients, the mean temperature in DWI-ischemic brain soon after admission was 38.4°C (95% confidence interval [CI] 38.2–38.6), in DWI-normal brain was 37.7°C (95% CI 37.6–37.7), and mean body temperature was 36.6°C (95% CI 36.3–37.0). Higher mean levels of interleukin-6, C-reactive protein, and fibrinogen were associated with higher temperature in DWI-normal brain at admission and 5 days, and higher overall mean body temperature, but only with higher temperature in DWI-ischemic brain on admission. Conclusions: Systemic inflammation after stroke is associated with elevated temperature in normal brain and the body but not with later ischemic brain temperature. Elevated brain temperature is a potential mechanism for the poorer outcome observed in stroke patients with higher levels of circulating inflammatory markers. PMID:22744672

  3. Prehospital blood product transfusion by U.S. army MEDEVAC during combat operations in Afghanistan: a process improvement initiative.

    PubMed

    Malsby, Robert F; Quesada, Jose; Powell-Dunford, Nicole; Kinoshita, Ren; Kurtz, John; Gehlen, William; Adams, Colleen; Martin, Dustin; Shackelford, Stacy

    2013-07-01

    U.S. Army flight medics performed a process improvement initiative of 15 blood product transfusions on select Category A (Urgent) helicopter evacuation casualties meeting approved clinical indications for transfusion. These transfusions were initiated from point of injury locations aboard MEDEVAC aircraft originating from one of two locations in southern Afghanistan. All flight medics executing the transfusions were qualified through a standardized and approved program of instruction, which included day and night skills validation, and a 90% or higher written examination score. There was no adverse reaction or out-of-standard blood product temperature despite hazardous conditions and elevated cabin temperatures. All casualties within a 10-minute flight time who met clinical indications were transfused. Utilization of a standard operating procedure with strict handling and administration parameters, a rigorous training and qualification program, an elaborate cold chain system, and redundant documentation of blood product units ensured that flight medic initiated transfusions were safe and effective. Research study is needed to refine the indications for prehospital blood transfusion and to determine the effect on outcomes in severely injured trauma patients. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.

  4. Thermal processing of EVA encapsulants and effects of formulation additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pern, F.J.; Glick, S.H.

    1996-05-01

    The authors investigated the in-situ processing temperatures and effects of various formulation additives on the formation of ultraviolet (UV) excitable chromophores, in the thermal lamination and curing of ethylene-vinyl acetate (EVA) encapsulants. A programmable, microprocessor-controlled, double-bag vacuum laminator was used to study two commercial as formulated EVA films, A9918P and 15295P, and solution-cast films of Elvaxrm (EVX) impregnated with various curing agents and antioxidants. The results show that the actual measured temperatures of EVA lagged significantly behind the programmed profiles for the heating elements and were affected by the total thermal mass loaded inside the laminator chamber. The antioxidant Naugardmore » P{trademark}, used in the two commercial EVA formulations, greatly enhances the formation of UV-excitable, short chromophores upon curing, whereas other tested antioxidants show little effect. A new curing agent chosen specifically for the EVA formulation modification produces little or no effect on chromophore formation, no bubbling problems in the glass/EVX/glass laminates, and a gel content of {approximately}80% when cured at programmed 155{degrees}C for 4 min. Also demonstrated is the greater discoloring effect with higher concentrations of curing-generated chromophores.« less

  5. Thermal processing of EVA encapsulants and effects of formulation additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pern, F.J.; Glick, S.H.

    1996-09-01

    The authors investigated the in-situ processing temperatures and effects of various formulation additives on the formation of ultraviolet (UV) excitable chromophores in the thermal lamination and curing of ethylene-vinyl acetate (EVA) encapsulants. A programmable, microprocessor-controlled, double-bag vacuum laminator was used to study two commercial as-formulated EVA films. A9918P and 15295P, and solution-cast films of Elvax{trademark} (EVX) impregnated with various curing agents and antioxidants. The results show that the actual measured temperatures of EVA lagged significantly behind the programmed profiles for the heating elements and were affected by the total thermal mass loaded inside the laminator chamber. The antioxidant Naugard P{trademark},more » used in the two commercial EVA formulations, greatly enhances the formation of UV-excitable, short chromophores upon curing, whereas other tested antioxidants show little effect. A new curing agent chosen specifically for the EVA formulation modification produces little or no effect on chromophore formation, no bubbling problems in the glass/EVX/glass laminates, and a gel content of {approximately}80% when cured at programmed 155 C for 4 min. Also demonstrated is the greater discoloring effect with higher concentrations of curing-generated chromophores.« less

  6. Development of powder metallurgy Al alloys for high temperature aircraft structural applications, phase 2

    NASA Technical Reports Server (NTRS)

    Chellman, D. J.

    1982-01-01

    In this continuing study, the development of mechanically alloyed heat resistant aluminum alloys for aircraft were studied to develop higher strength targets and higher service temperatures. The use of higher alloy additions to MA Al-Fe-Co alloys, employment of prealloyed starting materials, and higher extrusion temperatures were investigated. While the MA Al-Fe-Co alloys exhibited good retention of strength and ductility properties at elevated temperatures and excellent stability of properties after 1000 hour exposure at elevated temperatures, a sensitivity of this system to low extrusion strain rates adversely affected the level of strength achieved. MA alloys in the Al-Li family showed excellent notched toughness and property stability after long time exposures at elevated temperatures. A loss of Li during processing and the higher extrusion temperature 482 K (900 F) resulted in low mechanical strengths. Subsequent hot and cold working of the MA Al-Li had only a mild influence on properties.

  7. High-Temperature Structures, Adhesives, and Advanced Thermal Protection Materials for Next-Generation Aeroshell Design

    NASA Technical Reports Server (NTRS)

    Collins, Timothy J.; Congdon, William M.; Smeltzer, Stanley S.; Whitley, Karen S.

    2005-01-01

    The next generation of planetary exploration vehicles will rely heavily on robust aero-assist technologies, especially those that include aerocapture. This paper provides an overview of an ongoing development program, led by NASA Langley Research Center (LaRC) and aimed at introducing high-temperature structures, adhesives, and advanced thermal protection system (TPS) materials into the aeroshell design process. The purpose of this work is to demonstrate TPS materials that can withstand the higher heating rates of NASA's next generation planetary missions, and to validate high-temperature structures and adhesives that can reduce required TPS thickness and total aeroshell mass, thus allowing for larger science payloads. The effort described consists of parallel work in several advanced aeroshell technology areas. The areas of work include high-temperature adhesives, high-temperature composite materials, advanced ablator (TPS) materials, sub-scale demonstration test articles, and aeroshell modeling and analysis. The status of screening test results for a broad selection of available higher-temperature adhesives is presented. It appears that at least one (and perhaps a few) adhesives have working temperatures ranging from 315-400 C (600-750 F), and are suitable for TPS-to-structure bondline temperatures that are significantly above the traditional allowable of 250 C (482 F). The status of mechanical testing of advanced high-temperature composite materials is also summarized. To date, these tests indicate the potential for good material performance at temperatures of at least 600 F. Application of these materials and adhesives to aeroshell systems that incorporate advanced TPS materials may reduce aeroshell TPS mass by 15% - 30%. A brief outline is given of work scheduled for completion in 2006 that will include fabrication and testing of large panels and subscale aeroshell test articles at the Solar-Tower Test Facility located at Kirtland AFB and operated by Sandia National Laboratories. These tests are designed to validate aeroshell manufacturability using advanced material systems, and to demonstrate the maintenance of bondline integrity at realistically high temperatures and heating rates. Finally, a status is given of ongoing aeroshell modeling and analysis efforts which will be used to correlate with experimental testing, and to provide a reliable means of extrapolating to performance under actual flight conditions. The modeling and analysis effort includes a parallel series of experimental tests to determine TSP thermal expansion and other mechanical properties which are required for input to the analysis models.

  8. High Purity Americium-241 for Fuel Cycle R&D Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Paul A. Lessing

    2011-07-01

    Previously the U.S. Department of Energy released Am-241 for various applications such as smoke detectors and Am-Be neutron sources for oil wells. At this date there is a shortage of usable, higher purity Am-241 in metal and oxide form available in the United States. Recently, the limited source of Am-241 has been from Russia with production being contracted to existing customers. The shortage has resulted in the price per gram rising dramatically over the last few years. DOE-NE currently has need for high purity Am-241 metal and oxide to fabricate fuel pellets for reactor testing in the Fuel Cycle R&Dmore » program. All the available high purity americium has been gathered from within the DOE system of laboratories. However, this is only a fraction of the projected needs of FCRD over the next 10 years. Therefore, FCR&D has proposed extraction and purification concepts to extract Am-241 from a mixed AmO2-PuO2 feedstock stored at the Savannah River Site. The most simple extraction system is based upon high temperature reduction using lanthanum metal with concurrent evaporation and condensation to produce high purity Am metal. Metallic americium has over a four order of magnitude higher vapor pressure than plutonium. Results from small-scale reduction experiments are presented. These results confirm thermodynamic predictions that at 1000 deg C metallic lanthanum reduces both PuO2 and AmO2. Faster kinetics are expected for temperatures up to about 1500 deg C.« less

  9. THERMTRAJ: A FORTRAN program to compute the trajectory and gas film temperatures of zero pressure balloons

    NASA Technical Reports Server (NTRS)

    Horn, W. J.; Carlson, L. A.

    1983-01-01

    A FORTRAN computer program called THERMTRAJ is presented which can be used to compute the trajectory of high altitude scientific zero pressure balloons from launch through all subsequent phases of the balloon flight. In addition, balloon gas and film temperatures can be computed at every point of the flight. The program has the ability to account for ballasting, changes in cloud cover, variable atmospheric temperature profiles, and both unconditional valving and scheduled valving of the balloon gas. The program was verified for an extensive range of balloon sizes (from 0.5 to 41.47 million cubic feet). Instructions on program usage, listing of the program source deck, input data and printed and plotted output for a verification case are included.

  10. Effect of chilling temperature on the long-term survival of rabbit spermatozoa held either in a tris-based or a jellified extender.

    PubMed

    Rosato, Mp; Iaffaldano, N

    2011-04-01

    As the preservation of the fertilizing capacity of rabbit spermatozoa for several days after semen collection remains a major target for the artificial insemination programs of rabbit breeding, a study was conducted to compare the efficacy of 5 or 15°C as holding temperature in lengthening the preservability of rabbit semen quality during 192 h of storage both in a solid (Cunigel) and a liquid (Tris-Citric acid-Glucose; TCG) extender. Six pooled semen samples (two ejaculates/male; two-three males/pool) were taken and made four aliquots: two aliquots were tenfold diluted with the TCG extender, whereas the other two were tenfold diluted with the Cunigel extender. One aliquot per diluent was stored at 5°C and the second one at 15°C. Sperm motility (light microscope), viability (SyBr-PI staining), plasma membrane functional integrity (Hypo-osmotic swelling test) and acrosome integrity (PSA-FITC staining) were recorded at 0, 48, 120 and 192 h of storage. In liquid-stored spermatozoa, mass motility and viability were significantly higher (p ≤ 0.05) in samples stored at 5°C than at 15°C at all the storage times; at 5°C resulted also higher (p ≤ 0.05) the percentages of both forward motility at 48 h and sperm functional integrity at 120 and 192 h of storage, whereas chilling temperature did not affect acrosome integrity. With the Cunigel extender, all the semen qualitative parameters were significantly higher in sample stored at 5 than 15°C over storage time (p ≤ 0.05); only acrosome integrity at 192 h was not different according to the chilling temperatures. In conclusion, 5°C were better than 15°C for the long-term storage of rabbit semen both in the TCG and Cunigel extender. © 2010 Blackwell Verlag GmbH.

  11. Thermal/Optical Methods for Elemental Carbon Quantification in Soils and Urban Dusts: Equivalence of Different Analysis Protocols

    PubMed Central

    Han, Yongming; Chen, Antony; Cao, Junji; Fung, Kochy; Ho, Fai; Yan, Beizhan; Zhan, Changlin; Liu, Suixin; Wei, Chong; An, Zhisheng

    2013-01-01

    Quantifying elemental carbon (EC) content in geological samples is challenging due to interferences of crustal, salt, and organic material. Thermal/optical analysis, combined with acid pretreatment, represents a feasible approach. However, the consistency of various thermal/optical analysis protocols for this type of samples has never been examined. In this study, urban street dust and soil samples from Baoji, China were pretreated with acids and analyzed with four thermal/optical protocols to investigate how analytical conditions and optical correction affect EC measurement. The EC values measured with reflectance correction (ECR) were found always higher and less sensitive to temperature program than the EC values measured with transmittance correction (ECT). A high-temperature method with extended heating times (STN120) showed the highest ECT/ECR ratio (0.86) while a low-temperature protocol (IMPROVE-550), with heating time adjusted for sample loading, showed the lowest (0.53). STN ECT was higher than IMPROVE ECT, in contrast to results from aerosol samples. A higher peak inert-mode temperature and extended heating times can elevate ECT/ECR ratios for pretreated geological samples by promoting pyrolyzed organic carbon (PyOC) removal over EC under trace levels of oxygen. Considering that PyOC within filter increases ECR while decreases ECT from the actual EC levels, simultaneous ECR and ECT measurements would constrain the range of EC loading and provide information on method performance. Further testing with standard reference materials of common environmental matrices supports the findings. Char and soot fractions of EC can be further separated using the IMPROVE protocol. The char/soot ratio was lower in street dusts (2.2 on average) than in soils (5.2 on average), most likely reflecting motor vehicle emissions. The soot concentrations agreed with EC from CTO-375, a pure thermal method. PMID:24358286

  12. Mathematical modeling of high and low temperature heat pipes

    NASA Technical Reports Server (NTRS)

    Chi, S. W.

    1971-01-01

    Mathematical models are developed for calculating heat-transfer limitations of high-temperature heat pipes and heat-transfer limitations and temperature gradient of low temperature heat pipes. Calculated results are compared with the available experimental data from various sources to increase confidence in the present math models. Complete listings of two computer programs for high- and low-temperature heat pipes respectively are appended. These programs enable the performance of heat pipes with wrapped-screen, rectangular-groove or screen-covered rectangular-groove wick to be predicted.

  13. Assessment of two-temperature kinetic model for dissociating and weakly-ionizing nitrogen

    NASA Technical Reports Server (NTRS)

    Park, C.

    1986-01-01

    The validity of the author's two-temperature, chemical/kinetic model which the author has recently improved is assessed by comparing the calculated results with the existing experimental data for nitrogen in the dissociating and weakly ionizing regime produced behind a normal shock wave. The computer program Shock Tube Radiation Program (STRAP) based on the two-temperature model is used in calculating the flow properties behind the shock wave and the Nonequilibrium Air Radiation (NEQAIR) program, in determining the radiative characteristics of the flow. Both programs were developed earlier. Comparison is made between the calculated and the existing shock tube data on (1) spectra in the equilibrium region, (2) rotational temperature of the N2(+) B state, (3) vibrational temperature of the N2(+) B state, (4) electronic excitation temperature of the N2 B state, (5) the shape of time-variation of radiation intensities, (6) the times to reach the peak in radiation intensity and equilibrium, and (7) the ratio of nonequilibrium to equilibrium radiative heat fluxes. Good agreement is seen between the experimental data and the present calculation except for the vibrational temperature. A possible reason for the discrepancy is given.

  14. NEET Enhanced Micro-Pocket Fission Detector for High Temperature Reactors - FY16 Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unruh, Troy; Reichenberger, Michael; Stevenson, Sarah

    2016-09-01

    A collaboration between the Idaho National Laboratory (INL), the Kansas State University (KSU), and the French Atomic Energy Agency, Commissariat à l'Énergie Atomique et aux Energies Alternatives, (CEA), has been initiated by the Nuclear Energy Enabling Technologies (NEET) Advanced Sensors and Instrumentation (ASI) program for developing and testing High Temperature Micro-Pocket Fission Detectors (HT MPFD), which are compact fission chambers capable of simultaneously measuring thermal neutron flux, fast neutron flux and temperature within a single package for temperatures up to 800 °C. The MPFD technology utilizes a small, multi-purpose, robust, in-core fission chambers and thermocouple. As discussed within this report,more » the small size, variable sensitivity, and increased accuracy of the MPFD technology represent a revolutionary improvement over current methods used to support irradiations in US Material Test Reactors (MTRs). Previous research conducted through NEET ASI1-3 has shown that the MPFD technology could be made robust and was successfully tested in a reactor core. This new project will further the MPFD technology for higher temperature regimes and other reactor applications by developing a HT MPFD suitable for temperatures up to 800 °C. This report summarizes the research progress for year two of this three year project. Highlights from research accomplishments include: • Continuation of a joint collaboration between INL, KSU, and CEA. Note that CEA is participating at their own expense because of interest in this unique new sensor. • An updated parallel wire HT MPFD design was developed. • Program support for HT MPFD deployments was given to Accident Tolerant Fuels (ATF) and Advanced Gas-cooled Reactor (AGR) irradiation test programs. • Quality approved materials for HT MPFD construction were procured by irradiation test programs for upcoming deployments. • KSU improved and performed electrical contact and fissile material plating. • KSU delivered fissile HT MPFD parts to INL for final construction of HT MPFD prototype. • A prototype HT MPFD was constructed and analyzed at INL. • The HT MPFD has been modeled in MCNP to optimize the amount of fissile material deposition. • The HT MPFD has been modeled in MCNP to optimize the sensor location in the irradiation test. • The fissile material deposition is undergoing independent verifications. • Detector amplifier electronics have been revised and tested by KSU. • Several project meetings were held at INL and KSU to discuss the roles and responsibilities between INL, KSU, and CEA for development and deployment of the HT MPFDs. As documented in this report, FY16 funding has allowed the project to meet year two planned accomplishments to develop a HT MPFD. In addition, the accomplishments of this project have attracted independent funding from other Department of Energy Office of Nuclear Energy (DOE-NE) programs for MTR irradiations of the MPFD technology. These are significant opportunities for this NEET Enhanced Micro-Pocket Fission Detector for High Temperature Reactors project because the irradiation expense of these experiments could not be included in the original project scope.« less

  15. Choice of precipitant and calcination temperature of precursor for synthesis of NiCo2O4 for control of CO-CH4 emissions from CNG vehicles.

    PubMed

    Trivedi, Suverna; Prasad, Ram

    2018-03-01

    Compressed natural gas (CNG) is most appropriate an alternative of conventional fuel for automobiles. However, emissions of carbon-monoxide and methane from such vehicles adversely affect human health and environment. Consequently, to abate emissions from CNG vehicles, development of highly efficient and inexpensive catalysts is necessary. Thus, the present work attempts to scan the effects of precipitants (Na 2 CO 3 , KOH and urea) for nickel cobaltite (NiCo 2 O 4 ) catalysts prepared by co-precipitation from nitrate solutions and calcined in a lean CO-air mixture at 400°C. The catalysts were used for oxidation of a mixture of CO and CH 4 (1:1). The catalysts were characterized by X-ray diffractometer, Brunauer-Emmett-Teller surface-area, X-ray photoelectron spectroscopy; temperature programmed reduction and Scanning electron microscopy coupled with Energy-Dispersive X-Ray Spectroscopy. The Na 2 CO 3 was adjudged as the best precipitant for production of catalyst, which completely oxidized CO-CH 4 mixture at the lowest temperature (T 100 =350°C). Whereas, for catalyst prepared using urea, T 100 =362°C. On the other hand the conversion of CO-CH 4 mixture over the catalyst synthesized by KOH limited to 97% even beyond 400°C. Further, the effect of higher calcination temperatures of 500 and 600°C was examined for the best catalyst. The total oxidation of the mixture was attained at higher temperatures of 375 and 410°C over catalysts calcined at 500 and 600°C respectively. Thus, the best precipitant established was Na 2 CO 3 and the optimum calcination temperature of 400°C was found to synthesize the NiCo 2 O 4 catalyst for the best performance in CO-CH 4 oxidation. Copyright © 2017. Published by Elsevier B.V.

  16. A high throughput MATLAB program for automated force-curve processing using the AdG polymer model.

    PubMed

    O'Connor, Samantha; Gaddis, Rebecca; Anderson, Evan; Camesano, Terri A; Burnham, Nancy A

    2015-02-01

    Research in understanding biofilm formation is dependent on accurate and representative measurements of the steric forces related to brush on bacterial surfaces. A MATLAB program to analyze force curves from an AFM efficiently, accurately, and with minimal user bias has been developed. The analysis is based on a modified version of the Alexander and de Gennes (AdG) polymer model, which is a function of equilibrium polymer brush length, probe radius, temperature, separation distance, and a density variable. Automating the analysis reduces the amount of time required to process 100 force curves from several days to less than 2min. The use of this program to crop and fit force curves to the AdG model will allow researchers to ensure proper processing of large amounts of experimental data and reduce the time required for analysis and comparison of data, thereby enabling higher quality results in a shorter period of time. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Steam gasification of waste tyre: influence of process temperature on yield and product composition.

    PubMed

    Portofino, Sabrina; Donatelli, Antonio; Iovane, Pierpaolo; Innella, Carolina; Civita, Rocco; Martino, Maria; Matera, Domenico Antonio; Russo, Antonio; Cornacchia, Giacinto; Galvagno, Sergio

    2013-03-01

    An experimental survey of waste tyre gasification with steam as oxidizing agent has been conducted in a continuous bench scale reactor, with the aim of studying the influence of the process temperature on the yield and the composition of the products; the tests have been performed at three different temperatures, in the range of 850-1000°C, holding all the other operational parameters (pressure, carrier gas flow, solid residence time). The experimental results show that the process seems promising in view of obtaining a good quality syngas, indicating that a higher temperature results in a higher syngas production (86 wt%) and a lower char yield, due to an enhancement of the solid-gas phase reactions with the temperature. Higher temperatures clearly result in higher hydrogen concentrations: the hydrogen content rapidly increases, attaining values higher than 65% v/v, while methane and ethylene gradually decrease over the range of the temperatures; carbon monoxide and dioxide instead, after an initial increase, show a nearly constant concentration at 1000°C. Furthermore, in regards to the elemental composition of the synthesis gas, as the temperature increases, the carbon content continuously decreases, while the oxygen content increases; the hydrogen, being the main component of the gas fraction and having a small atomic weight, is responsible for the progressive reduction of the gas density at higher temperature. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Assessing the quality of bottom water temperatures from the Finite-Volume Community Ocean Model (FVCOM) in the Northwest Atlantic Shelf region

    NASA Astrophysics Data System (ADS)

    Li, Bai; Tanaka, Kisei R.; Chen, Yong; Brady, Damian C.; Thomas, Andrew C.

    2017-09-01

    The Finite-Volume Community Ocean Model (FVCOM) is an advanced coastal circulation model widely utilized for its ability to simulate spatially and temporally evolving three-dimensional geophysical conditions of complex and dynamic coastal regions. While a body of literature evaluates model skill in surface fields, independent studies validating model skill in bottom fields over large spatial and temporal scales are scarce because these fields cannot be remotely sensed. In this study, an evaluation of FVCOM skill in modeling bottom water temperature was conducted by comparison to hourly in situ observed bottom temperatures recorded by the Environmental Monitors on Lobster Traps (eMOLT), a program that attached thermistors to commercial lobster traps from 2001 to 2013. Over 2 × 106 pairs of FVCOM-eMOLT records were evaluated by a series of statistical measures to quantify accuracy and precision of the modeled data across the Northwest Atlantic Shelf region. The overall comparison between modeled and observed data indicates reliable skill of FVCOM (r2 = 0.72; root mean squared error = 2.28 °C). Seasonally, the average absolute errors show higher model skill in spring, fall and winter than summer. We speculate that this is due to the increased difficulty of modeling high frequency variability in the exact position of the thermocline and frontal zones. The spatial patterns of the residuals suggest that there is improved similarity between modeled and observed data at higher latitudes. We speculate that this is due to increased tidal mixing at higher latitudes in our study area that reduces stratification in winter, allowing improved model accuracy. Modeled bottom water temperatures around Cape Cod, the continental shelf edges, and at one location at the entrance to Penobscot Bay were characterized by relatively high errors. Constraints for future uses of FVCOM bottom water temperature are provided based on the uncertainties in temporal-spatial patterns. This study is novel as it is the first skill assessment of a regional ocean circulation model in bottom fields at high spatial and temporal scales in the Northwest Atlantic Shelf region.

  19. Stream network and stream segment temperature models software

    USGS Publications Warehouse

    Bartholow, John

    2010-01-01

    This set of programs simulates steady-state stream temperatures throughout a dendritic stream network handling multiple time periods per year. The software requires a math co-processor and 384K RAM. Also included is a program (SSTEMP) designed to predict the steady state stream temperature within a single stream segment for a single time period.

  20. Wall-temperature effects on the aerodynamics of a hydrogen-fueled transport concept in Mach 8 blowdown and shock tunnels

    NASA Technical Reports Server (NTRS)

    Penland, J. A.; Marcum, D. C., Jr.; Stack, S. H.

    1983-01-01

    Results are presented from two separate tests on the same blended wing-body hydrogen fueled transport model at a Mach number of about 8 and a range of Reynolds numbers (based on theoretical body length) of 0.597 x 10 to the 6th power to about 156.22 x 10 to the 6th power. Tests were made in conventional hypersonic blowdown tunnel and a hypersonic shock tunnel at angles of attack of -2 deg to about 8 deg, with an extensive study made at a constant angle of attack of 3 deg. The model boundary-layer flow varied from laminar at the lower Reynolds numbers to predominantly turbulent at the higher Reynolds numbers. Model wall temperatures and stream static temperatures varied widely between the two tests, particularly at the lower Reynolds numbers. These temperature differences resulted in marked variations of the axial-force coefficients between the two tests, due in part to the effects of induced pressure and viscous interaction variations. The normal-force coefficient was essentially independent of Reynolds number. Analysis of results utilized current theoretical computer programs and basic boundary-layer theory.

  1. Current Issues with Environmental Barrier Coatings for Ceramics and Ceramic Composites

    NASA Technical Reports Server (NTRS)

    Lee, Kang N.

    2004-01-01

    The environmental barrier coating (EBC) for SiC/SiC ceramic matrix composites and Si3N4 ceramics is an emerging field as the application of silicon-based ceramics in the gas turbine engine hot section is on the horizon, both for aero and industrial gas turbines. EBC is an enabling technology for silicon-based ceramics because these materials without an EBC cannot be used in combustion environments due to rapid surface recession. Significant progress in EBC development has been made during the last decade through various government-sponsored programs. Current EBCs are based on silicon, mullite (3Al2O3-2SiO2) and BSAS (barium strontium aluminum silicate with celsian structure). Volatility of BSAS, BSAS-silica chemical reaction, and low melting point of silicon limit temperature capability of current EBCs to about 1350 C for long-term applications. There is a need for higher temperature EBCs as the temperature capability of silicon-based ceramics continue to increase. Therefore, research is underway to develop EBCs with improved temperature capability compared to current EBCs. The current status and issues with the advanced EBC development efforts will be discussed.

  2. On the organization and thermal behavior of functional groups on Ti3C2 MXene surfaces in vacuum

    NASA Astrophysics Data System (ADS)

    Persson, Ingemar; Näslund, Lars-Åke; Halim, Joseph; Barsoum, Michel W.; Darakchieva, Vanya; Palisaitis, Justinas; Rosen, Johanna; Persson, Per O. Å.

    2018-03-01

    The two-dimensional (2D) MXene Ti3C2T x is functionalized by surface groups (T x ) that determine its surface properties for, e.g. electrochemical applications. The coordination and thermal properties of these surface groups has, to date, not been investigated at the atomic level, despite strong variations in the MXene properties that are predicted from different coordinations and from the identity of the functional groups. To alleviate this deficiency, and to characterize the functionalized surfaces of single MXene sheets, the present investigation combines atomically resolved in situ heating in a scanning transmission electron microscope (STEM) and STEM simulations with temperature-programmed x-ray photoelectron spectroscopy (TP-XPS) in the room temperature to 750 °C range. Using these techniques, we follow the surface group coordination at the atomic level. It is concluded that the F and O atoms compete for the DFT-predicted thermodynamically preferred site and that at room temperature that site is mostly occupied by F. At higher temperatures, F desorbs and is replaced by O. Depending on the O/F ratio, the surface bare MXene is exposed as F desorbs, which enables a route for tailored surface functionalization.

  3. A method for estimating the diffuse attenuation coefficient (KdPAR)from paired temperature sensors

    USGS Publications Warehouse

    Read, Jordan S.; Rose, Kevin C.; Winslow, Luke A.; Read, Emily K.

    2015-01-01

    A new method for estimating the diffuse attenuation coefficient for photosynthetically active radiation (KdPAR) from paired temperature sensors was derived. We show that during cases where the attenuation of penetrating shortwave solar radiation is the dominant source of temperature changes, time series measurements of water temperatures at multiple depths (z1 and z2) are related to one another by a linear scaling factor (a). KdPAR can then be estimated by the simple equation KdPAR ln(a)/(z2/z1). A suggested workflow is presented that outlines procedures for calculating KdPAR according to this paired temperature sensor (PTS) method. This method is best suited for conditions when radiative temperature gains are large relative to physical noise. These conditions occur frequently on water bodies with low wind and/or high KdPARs but can be used for other types of lakes during time periods of low wind and/or where spatially redundant measurements of temperatures are available. The optimal vertical placement of temperature sensors according to a priori knowledge of KdPAR is also described. This information can be used to inform the design of future sensor deployments using the PTS method or for campaigns where characterizing sub-daily changes in temperatures is important. The PTS method provides a novel method to characterize light attenuation in aquatic ecosystems without expensive radiometric equipment or the user subjectivity inherent in Secchi depth measurements. This method also can enable the estimation of KdPAR at higher frequencies than many manual monitoring programs allow.

  4. Robust Mesoporous CoMo/γ-Al2O3 Catalysts from Cyclodextrin-Based Supramolecular Assemblies for Hydrothermal Processing of Microalgae: Effect of the Preparation Method.

    PubMed

    Bleta, Rudina; Schiavo, Benedetto; Corsaro, Natale; Costa, Paula; Giaconia, Alberto; Interrante, Leonardo; Monflier, Eric; Pipitone, Giuseppe; Ponchel, Anne; Sau, Salvatore; Scialdone, Onofrio; Tilloy, Sébastien; Galia, Alessandro

    2018-04-18

    Hydrothermal liquefaction (HTL) is a promising technology for the production of biocrude oil from microalgae. Although this catalyst-free technology is efficient under high-temperature and high-pressure conditions, the biocrude yield and quality can be further improved by using heterogeneous catalysts. The design of robust catalysts that preserve their performance under hydrothermal conditions will be therefore very important in the development of biorefinery technologies. In this work, we describe two different synthetic routes (i.e., impregnation and cyclodextrin-assisted one-pot colloidal approach), for the preparation in aqueous phase of six high surface area CoMo/γ-Al 2 O 3 catalysts. Catalytic tests performed on the HTL of Nannochloropsis gaditana microalga indicate that solids prepared by the one-pot colloidal approach show higher hydrothermal stability and enhanced biocrude yield with respect to the catalyst-free test. The positive effect of the substitution of the block copolymer Tetronic T90R4 for Pluronic F127 in the preparation procedure was evidenced by diffuse reflectance UV-visible spectroscopy, X-ray diffraction, N 2 -adsorption-desorption, and H 2 -temperature-programmed reduction measurements and confirmed by the higher quality of the obtained biocrude, which exhibited lower oxygen content and higher-energy recovery equal to 62.5% of the initial biomass.

  5. Preliminary assessment of a potassium-steam-gas vapor cycle for better fuel economy and reduced thermal pollution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fraas, A.P.

    1971-08-01

    The facts of fuel supply limitations, environmental quality demands, and spiraling electric generating costs strongly favor development of electric power plants that simultaneously run at higher efficiency, i.e., higher temperature, use to advantage clean fuels, and have as low a capital cost as possible. Both fuel supply and thermal pollution considerations that are becoming progressively more important strongly favor the development of a higher temperature, and more efficient, thermodynamic cycle for electric power plants. About 200,000 hr of operation of boiling potassium systems, including over 15,000 hr of potassium vapor turbine operation under the space power plant program, suggest thatmore » a potassium vapor topping cycle with a turbine inlet temperature of approximately 1500/sup 0/F merits consideration. A design study has been carried out to indicate the size, cost, and development problems of the new types of equipment required. The results indicate that a potassium vapor cycle superimposed on a conventional 1050/sup 0/F steam cycle would give an overall thermal efficiency of about 54% as compared to only 40% from a conventional steam cycle. Thus the proposed system would have a fuel consumption only 75% and a heat rejection rate only 50% that of a conventional plant. The system requires clean fuel, and takes advantage of the present trend toward eliminating SO/sub 2/, NO/sub x/ and ash emissions. Surprisingly, at first sight, the assessment at this stage shows that the capital cost may be less than that of a conventional plant. The main reason for this is use of pressurized combustion, which leads to a much smaller combustor, and thin tube walls to contain potassium at about the same pressure.« less

  6. Effects of temperature on development, mortality, mating and blood feeding behavior of Culiseta incidens (Diptera: Culicidae).

    PubMed

    Su, T; Mulla, M S

    2001-06-01

    Culiseta incidens Thomson is distributed over most of the western USA and Canada northward to Alaska. Because this mosquito is difficult to colonize, its biology has not been well investigated. We colonized this species in 1998 and studied the effects of temperature on various aspects of its life cycle. The time required for egg melanization and the duration of the egg stage were negatively correlated with temperature. The proportion of fertile egg rafts was temperature-independent. An inverse relationship existed between temperature and egg hatch. Molting and stadium duration after hatching were temperature-dependent, with higher temperature accelerating development and molting. Larvae and pupae experienced lower mortality and higher molting success at lower temperatures. Survivorship of adult mosquitoes fed on sugar solution was inversely proportional to temperature, lethal times for 50% mortality (LT50) were greater at the lower temperature than at the higher temperature. Females survived longer than did males at all test temperatures. Because this species is eurygamous, mating only occurred in large cages. Mating success was also affected by temperature. At the test temperatures, 20 degrees C, 25 degrees C and 30 degrees C, mating started from 3-5 days after emergence and reached a peak on days 13-15 after emergence. Maximum mating rates at 20 degrees C and 25 degrees C were higher than at 30 degrees C. Blood feeding, as indicated by cumulative feeding rates, was affected by cage size, mosquito age and temperature. Mosquitoes in large cages exhibited a much higher feeding rate than in small cages. With age, the cumulative blood feeding rate increased, with the highest rate at 25 degrees C, followed by 20 degrees C and 30 degrees C. At all temperatures tested, most of the blood fed females were mated.

  7. Body temperature and major neurological improvement in tPA-treated stroke patients.

    PubMed

    Kvistad, C E; Thomassen, L; Waje-Andreassen, U; Logallo, N; Naess, H

    2014-05-01

    Major neurological improvement (MNI) at 24 hours represents a marker of early recanalization in ischaemic stroke. Although low body temperature is considered neuroprotective in cerebral ischaemia, some studies have suggested that higher body temperature may promote clot lysis in the acute phase of ischaemic stroke. We hypothesized that higher body temperature was associated with MNI in severe stroke patients treated with tPA, suggesting a beneficial effect of higher body temperature on clot lysis and recanalization. Patients with ischaemic stroke or transient ischaemic attack (TIA) treated with tPA between February 2006 and August 2012 were prospectively included and retrospectively analysed. Body temperature was measured upon admission. MNI was defined by a ≥8 point improvement in NIHSS score at 24 hours as compared to NIHSS score on admission. No significant improvement (no-MNI) was defined by either an increase in NIHSS score or a decrease of ≤2 points at 24 hours in patients with an admission NIHSS score of ≥8. Of the 2351 patients admitted with ischaemic stroke or TIA, 347 patients (14.8%) were treated with tPA. A total of 32 patients (9.2%) had MNI and 56 patients (16.1%) had no-MNI. Patients with MNI had higher body temperatures compared with patients with no-MNI (36.7°C vs 36.3°C, P = 0.004). Higher body temperature was independently associated with MNI when adjusted for confounders (OR 5.16, P = 0.003). Higher body temperature was independently associated with MNI in severe ischaemic stroke patients treated with tPA. This may suggest a beneficial effect of higher body temperature on clot lysis and recanalization. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, R.D.

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OIT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55% efficiency and low emissions levels of 2.0 g/bhp-h NOX and 0.05 g/bhp-h particulate. The goal ismore » also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55% efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies. OIT OHVT also recognizes a significant opportunity for reduction in petroleum consumption by dieselization of pickup trucks, vans, and sport utility vehicles. Application of the diesel engine to class 1,2, and 3 trucks is expected to yield a 35% increase in fuel economy per vehicle. The foremost barrier to diesel use in this market is emission control. Once an engine is made certifiable, subsequent challenges will be in cost; noise, vibration, and harshness (NVH); and performance. The design of advanced components for high-efficiency diesel engines has, in some cases, pushed the performance envelope for materials of construction past the point of reliable operation. Higher mechanical and tribological stresses and higher temperatures of advanced designs limit the engine designer; advanced materials allow the design of components that may operate reliably at higher stresses and temperatures, thus enabling more efficient engine designs. Advanced materials also offer the opportunity to improve the emissions, NVH, and performance of diesel engines for pickup trucks, vans, and sport utility vehicles. The principal areas of research are: (1) Cost Effective High Performance Materials and Processing; (2) Advanced Manufacturing Technology; (3)Testing and Characterization; and (4) Materials and Testing Standards.« less

  9. Regeneration performance and carbon consumption of semi-coke and activated coke for SO₂ and NO removal.

    PubMed

    Ding, Song; Li, Yuran; Zhu, Tingyu; Guo, Yangyang

    2015-08-01

    To decrease the operating cost of flue gas purification technologies based on carbon-based materials, the adsorption and regeneration performance of low-price semi-coke and activated coke were compared for SO2 and NO removal in a simulated flue gas. The functional groups of the two adsorbents before and after regeneration were characterized by a Fourier transform infrared (FTIR) spectrometer, and were quantitatively assessed using temperature programmed desorption (TPD) coupled with FTIR and acid-base titration. The results show that semi-coke had higher adsorption capacity (16.2% for SO2 and 38.6% for NO) than activated coke because of its higher content of basic functional groups and lactones. After regeneration, the adsorption performance of semi-coke decreased because the number of active functional groups decreased and the micropores increased. Semi-coke had better regeneration performance than activated coke. Semi-coke had a larger SO2 recovery of 7.2% and smaller carbon consumption of 12% compared to activated coke. The semi-coke carbon-based adsorbent could be regenerated at lower temperatures to depress the carbon consumption, because the SO2 recovery was only reduced a small amount. Copyright © 2015. Published by Elsevier B.V.

  10. Carbon-carbon piston development

    NASA Technical Reports Server (NTRS)

    Gorton, Mark P.

    1994-01-01

    A new piston concept, made of carbon-carbon refractory-composite material, has been developed that overcomes a number of the shortcomings of aluminum pistons. Carbon-carbon material, developed in the early 1960's, is lighter in weight than aluminum, has higher strength and stiffness than aluminum and maintains these properties at temperatures over 2500 F. In addition, carbon-carbon material has a low coefficient of thermal expansion and excellent resistance to thermal shock. An effort, called the Advanced Carbon-Carbon Piston Program was started in 1986 to develop and test carbon-carbon pistons for use in spark ignition engines. The carbon-carbon pistons were designed to be replacements for existing aluminum pistons, using standard piston pin assemblies and using standard rings. Carbon-carbon pistons can potentially enable engines to be more reliable, more efficient and have greater power output. By utilizing the unique characteristics of carbon-carbon material a piston can: (1) have greater resistance to structural damage caused by overheating, lean air-fuel mixture conditions and detonation; (2) be designed to be lighter than an aluminum piston thus, reducing the reciprocating mass of an engine, and (3) be operated in a higher combustion temperature environment without failure.

  11. Stator Blade with Thermal Barrier Testing on Hot Gas Rig

    NASA Image and Video Library

    1975-04-21

    A 1-foot long stator blade with a thermal coating subjected to intense heat in order to test its strength at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Lewis researchers sought to determine optimal types of ceramic coatings to increase the durability of metals. The research was primarily intended to support the design of stator blades for high-performance axial-flow compressor and turbofan engines. The coatings reduced the temperature of the metal and the amount of required cooling. As engines became more and more sophisticated, compressor blades were required to withstand higher and higher temperatures. Lewis researchers developed a dual-layer thermal-barrier coating that could be applied to turbine vanes and blades and combustion liners. This new sprayable thermal-barrier coating was evaluated for its durability, strength, fatigue, and aerodynamic penalties. This hot-gas rig fired the scorching gas at the leading edge of a test blade. The blade was cooled by an internal air flow. The blades were heated at two different velocities during the program. When using Mach 0.3 gases the entire heating and cooling cycle only lasted 30 seconds. The cycle lasted 60 minutes during tests at Mach 1.

  12. Advanced High Temperature Polymer Matrix Composites for Gas Turbine Engines Program Expansion

    NASA Technical Reports Server (NTRS)

    Hanley, David; Carella, John

    1999-01-01

    This document, submitted by AlliedSignal Engines (AE), a division of AlliedSignal Aerospace Company, presents the program final report for the Advanced High Temperature Polymer Matrix Composites for Gas Turbine Engines Program Expansion in compliance with data requirements in the statement of work, Contract No. NAS3-97003. This document includes: 1 -Technical Summary: a) Component Design, b) Manufacturing Process Selection, c) Vendor Selection, and d) Testing Validation: 2-Program Conclusion and Perspective. Also, see the Appendix at the back of this report. This report covers the program accomplishments from December 1, 1996, to August 24, 1998. The Advanced High Temperature PMC's for Gas Turbine Engines Program Expansion was a one year long, five task technical effort aimed at designing, fabricating and testing a turbine engine component using NASA's high temperature resin system AMB-21. The fiber material chosen was graphite T650-35, 3K, 8HS with UC-309 sizing. The first four tasks included component design and manufacturing, process selection, vendor selection, component fabrication and validation testing. The final task involved monthly financial and technical reports.

  13. Ambient high temperature and mortality in Jinan, China: A study of heat thresholds and vulnerable populations.

    PubMed

    Li, Jing; Xu, Xin; Yang, Jun; Liu, Zhidong; Xu, Lei; Gao, Jinghong; Liu, Xiaobo; Wu, Haixia; Wang, Jun; Yu, Jieqiong; Jiang, Baofa; Liu, Qiyong

    2017-07-01

    Understanding the health consequences of continuously rising temperatures-as is projected for China-is important in terms of developing heat-health adaptation and intervention programs. This study aimed to examine the association between mortality and daily maximum (T max ), mean (T mean ), and minimum (T min ) temperatures in warmer months; to explore threshold temperatures; and to identify optimal heat indicators and vulnerable populations. Daily data on temperature and mortality were obtained for the period 2007-2013. Heat thresholds for condition-specific mortality were estimated using an observed/expected analysis. We used a generalised additive model with a quasi-Poisson distribution to examine the association between mortality and T max /T min /T mean values higher than the threshold values, after adjustment for covariates. T max /T mean /T min thresholds were 32/28/24°C for non-accidental deaths; 32/28/24°C for cardiovascular deaths; 35/31/26°C for respiratory deaths; and 34/31/28°C for diabetes-related deaths. For each 1°C increase in T max /T mean /T min above the threshold, the mortality risk of non-accidental-, cardiovascular-, respiratory, and diabetes-related death increased by 2.8/5.3/4.8%, 4.1/7.2/6.6%, 6.6/25.3/14.7%, and 13.3/30.5/47.6%, respectively. Thresholds for mortality differed according to health condition when stratified by sex, age, and education level. For non-accidental deaths, effects were significant in individuals aged ≥65 years (relative risk=1.038, 95% confidence interval: 1.026-1.050), but not for those ≤64 years. For most outcomes, women and people ≥65 years were more vulnerable. High temperature significantly increases the risk of mortality in the population of Jinan, China. Climate change with rising temperatures may bring about the situation worse. Public health programs should be improved and implemented to prevent and reduce health risks during hot days, especially for the identified vulnerable groups. Copyright © 2017. Published by Elsevier Inc.

  14. Variations in temperature acclimation effects on glycogen storage, hypoxia tolerance and swimming performance with seasonal acclimatization in juvenile Chinese crucian carp.

    PubMed

    Yang, Yang; Cao, Zhen-Dong; Fu, Shi-Jian

    2015-07-01

    The aim of this study was to test whether temperature acclimation (10 vs 20 °C) effects on tissue glycogen content, hypoxia tolerance, and swimming performance of Chinese crucian carp (Carassius auratus) varied with seasonal acclimatization (winter vs spring) and potential combined interactions. Both the routine metabolic rate (MO(2rout)) and critical oxygen tension (P(crit)) of the MO(2rout) increased significantly with temperature, whereas the seasonal acclimatization showed no significant effect. Only the high temperature group that acclimatized in spring showed a significantly higher aquatic surface respiration (ASR(crit)) value compared with the other three groups. Fish in spring tended to show ASR behavior at higher oxygen tension compared with those in winter, which might have been caused by a more active lifestyle. Time to show LOE prolonged by 25-34% under low temperature. Spring fish showed 20% shorter LOE duration at 10 °C, whereas the difference tended to vanish at 20 °C. Glycogen contents in both liver and muscle were higher in winter than spring. The liver and muscle glycogen content decreased by 5-42% after exposure to anoxic conditions, whereas the magnitude was much smaller in spring. When fish swam in normoxic conditions, fish in higher temperatures showed higher critical swimming speed (Ucrit) than low temperature (5.49 vs 3.74 BL s(-1) in winter and 4.27 vs 3.21 BL s(-1) in spring), whereas fish in winter also showed higher U(crit) than fish in spring for each temperature. However, when fish swam in hypoxic waters, fish in higher temperatures showed a more profound decrease (52-61%) in U(crit) compared to those in lower temperature (25-27%). Fish in lower temperatures that had acclimatized in winter showed the highest U(crit), which might have been caused by higher glycogen storage. The present study suggested that both glycogen storage and alterations in lifestyle had profound effects on hypoxia tolerance and swimming performance, which resulted in a profound difference between seasons and acclimation temperatures. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Using Rainfall and Temperature Data in the Evaluation of National Malaria Control Programs in Africa.

    PubMed

    Thomson, Madeleine C; Ukawuba, Israel; Hershey, Christine L; Bennett, Adam; Ceccato, Pietro; Lyon, Bradfield; Dinku, Tufa

    2017-09-01

    Since 2010, the Roll Back Malaria (RBM) Partnership, including National Malaria Control Programs, donor agencies (e.g., President's Malaria Initiative and Global Fund), and other stakeholders have been evaluating the impact of scaling up malaria control interventions on all-cause under-five mortality in several countries in sub-Saharan Africa. The evaluation framework assesses whether the deployed interventions have had an impact on malaria morbidity and mortality and requires consideration of potential nonintervention influencers of transmission, such as drought/floods or higher temperatures. Herein, we assess the likely effect of climate on the assessment of the impact malaria interventions in 10 priority countries/regions in eastern, western, and southern Africa for the President's Malaria Initiative. We used newly available quality controlled Enhanced National Climate Services rainfall and temperature products as well as global climate products to investigate likely impacts of climate on malaria evaluations and test the assumption that changing the baseline period can significantly impact on the influence of climate in the assessment of interventions. Based on current baseline periods used in national malaria impact assessments, we identify three countries/regions where current evaluations may overestimate the impact of interventions (Tanzania, Zanzibar, Uganda) and three countries where current malaria evaluations may underestimate the impact of interventions (Mali, Senegal and Ethiopia). In four countries (Rwanda, Malawi, Mozambique, and Angola) there was no strong difference in climate suitability for malaria in the pre- and post-intervention period. In part, this may be due to data quality and analysis issues.

  16. Effects of electrostatic discharge on three cryogenic temperature sensor models

    NASA Astrophysics Data System (ADS)

    Courts, S. Scott; Mott, Thomas B.

    2014-01-01

    Cryogenic temperature sensors are not usually thought of as electrostatic discharge (ESD) sensitive devices. However, the most common cryogenic thermometers in use today are thermally sensitive diodes or resistors - both electronic devices in their base form. As such, they are sensitive to ESD at some level above which either catastrophic or latent damage can occur. Instituting an ESD program for safe handling and installation of the sensor is costly and it is desirable to balance the risk of ESD damage against this cost. However, this risk cannot be evaluated without specific knowledge of the ESD vulnerability of the devices in question. This work examines three types of cryogenic temperature sensors for ESD sensitivity - silicon diodes, Cernox{trade mark, serif} resistors, and wire wound platinum resistors, all manufactured by Lake Shore Cryotronics, Inc. Testing was performed per TIA/EIA FOTP129 (Human Body Model). Damage was found to occur in the silicon diode sensors at discharge levels of 1,500 V. For Cernox{trade mark, serif} temperature sensors, damage was observed at 3,500 V. The platinum temperature sensors were not damaged by ESD exposure levels of 9,900 V. At the lower damage limit, both the silicon diode and the Cernox{trade mark, serif} temperature sensors showed relatively small calibration shifts of 1 to 3 K at room temperature. The diode sensors were stable with time and thermal cycling, but the long term stability of the Cernox{trade mark, serif} sensors was degraded. Catastrophic failure occurred at higher levels of ESD exposure.

  17. Magnetostructural transformation and magnetocaloric effect in Mn48‑x V x Ni42Sn10 ferromagnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Hassan, Najam ul; Shah, Ishfaq Ahmad; Khan, Tahira; Liu, Jun; Gong, Yuanyuan; Miao, Xuefei; Xu, Feng

    2018-03-01

    In this work, we tuned the magnetostructural transformation and the coupled magnetocaloric properties of Mn48‑x V x Ni42Sn10 (x = 0, 1, 2, and 3) ferromagnetic shape memory alloys prepared by means of partial replacement of Mn by V. It is observed that the martensitic transformation temperatures decrease with the increase of V content. The shift of the transition temperatures to lower temperatures driven by the applied field, the metamagnetic behavior, and the thermal hysteresis indicates the first-order nature for the magnetostructural transformation. The entropy changes with a magnetic field variation of 0–5 T are 15.2, 18.8, and 24.3 {{J}}\\cdot {kg}}-1\\cdot {{{K}}}-1 for the x = 0, 1, and 2 samples, respectively. The tunable martensitic transformation temperature, enhanced field driving capacity, and large entropy change suggest that Mn48‑x V x Ni42Sn10 alloys have a potential for applications in magnetic cooling refrigeration. Project supported by the National Natural Science Foundation of China (Grant Nos. 51601092, 51571121, and 11604148), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 30916011344 and 30916011345), the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province, China, the Postdoctoral Science Foundation Funded Project (Grant No. 2016M591851), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20160833, 20160829, and 20140035), the Qing Lan Project of Jiangsu Province, the Priority Academic Program Development of Jiangsu Higher Education Institutions, and Shanxi Scholarship Council of China (Grant No. 2016-092).

  18. Formation of nanocarbon spheres by thermal treatment of woody char from fast pyrolysis process

    Treesearch

    Qiangu Yan; Hossein Toghiani; Zhiyong Cai; Jilei Zhang

    2014-01-01

    Influences of thermal treatment conditions of temperature, reaction cycle and time, and purge gas type on nanocarbon formation over bio-chars from fast pyrolysis and effects of thermal reaction cycle and purge gas type on bio-char surface functional groups were investigated by temperature-programmed desorption (TPD) and temperature programmed reduction methods....

  19. Hydrogen storage development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, G.J.; Guthrie, S.E.

    1998-08-01

    A summary of the hydride development efforts for the current program year (FY98) are presented here. The Mg-Al-Zn alloy system was studied at low Zn levels (2--4 wt%) and midrange Al contents (40--60 wt%). Higher plateau pressures were found with Al and Zn alloying in Mg and, furthermore, it was found that the hydrogen desorption kinetics were significantly improved with small additions of Zn. Results are also shown here for a detailed study of the low temperature properties of Mg{sub 2}NiH{sub 4}, and a comparison made between conventional melt cast alloy and the vapor process material.

  20. Sub-to super-ambient temperature programmable microfabricated gas chromatography column

    DOEpatents

    Robinson, Alex L.; Anderson, Lawrence F.

    2004-03-16

    A sub- to super-ambient temperature programmable microfabricated gas chromatography column enables more efficient chemical separation of chemical analytes in a gas mixture by combining a thermoelectric cooler and temperature sensing on the microfabricated column. Sub-ambient temperature programming enables the efficient separation of volatile organic compounds and super-ambient temperature programming enables the elution of less volatile analytes within a reasonable time. The small heat capacity and thermal isolation of the microfabricated column improves the thermal time response and power consumption, both important factors for portable microanalytical systems.

  1. Steam gasification of waste tyre: Influence of process temperature on yield and product composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Portofino, Sabrina, E-mail: sabrina.portofino@enea.it; Donatelli, Antonio; Iovane, Pierpaolo

    Highlights: ► Steam gasification of waste tyre as matter and energy recovery treatment. ► Process temperature affects products yield and gas composition. ► High temperature promotes hydrogen production. ► Char exploitation as activated carbon or carbon source. - Abstract: An experimental survey of waste tyre gasification with steam as oxidizing agent has been conducted in a continuous bench scale reactor, with the aim of studying the influence of the process temperature on the yield and the composition of the products; the tests have been performed at three different temperatures, in the range of 850–1000 °C, holding all the other operationalmore » parameters (pressure, carrier gas flow, solid residence time). The experimental results show that the process seems promising in view of obtaining a good quality syngas, indicating that a higher temperature results in a higher syngas production (86 wt%) and a lower char yield, due to an enhancement of the solid–gas phase reactions with the temperature. Higher temperatures clearly result in higher hydrogen concentrations: the hydrogen content rapidly increases, attaining values higher than 65% v/v, while methane and ethylene gradually decrease over the range of the temperatures; carbon monoxide and dioxide instead, after an initial increase, show a nearly constant concentration at 1000 °C. Furthermore, in regards to the elemental composition of the synthesis gas, as the temperature increases, the carbon content continuously decreases, while the oxygen content increases; the hydrogen, being the main component of the gas fraction and having a small atomic weight, is responsible for the progressive reduction of the gas density at higher temperature.« less

  2. Photocatalytic Degradation of DIPA Using Bimetallic Cu-Ni/TiO2 Photocatalyst under Visible Light Irradiation

    PubMed Central

    Bustam, Mohamad Azmi; Chong, Fai Kait; Man, Zakaria B.; Khan, Muhammad Saqib; Shariff, Azmi M.

    2014-01-01

    Bimetallic Cu-Ni/TiO2 photocatalysts were synthesized using wet impregnation (WI) method with TiO2 (Degussa-P25) as support and calcined at different temperatures (180, 200, and 300°C) for the photodegradation of DIPA under visible light. The photocatalysts were characterized using TGA, FESEM, UV-Vis diffuse reflectance spectroscopy, fourier transform infrared spectroscopy (FTIR) and temperature programmed reduction (TPR). The results from the photodegradation experiments revealed that the Cu-Ni/TiO2 photocatalysts exhibited much higher photocatalytic activities compared to bare TiO2. It was found that photocatalyst calcined at 200°C had the highest photocatalyst activities with highest chemical oxygen demand (COD) removal (86.82%). According to the structural and surface analysis, the enhanced photocatalytic activity could be attributed to its strong absorption into the visible region and high metal dispersion. PMID:25105158

  3. Development of monolithic nuclear fuels for RERTR by hot isostatic pressing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jue, J.-F.; Park, Blair; Chapple, Michael

    2008-07-15

    The RERTR Program (Reduced Enrichment for Research and Test Reactors) is developing advanced nuclear fuels for high power test reactors. Monolithic fuel design provides a higher uranium loading than that of the traditional dispersion fuel design. In order to bond monolithic fuel meat to aluminum cladding, several bonding methods such as roll bonding, friction stir bonding and hot isostatic pressing, have been explored. Hot isostatic pressing is a promising process for low cost, batch fabrication of monolithic RERTR fuel plates. The progress on the development of this process at the Idaho National Laboratory will be presented. Due to the relativelymore » high processing temperature used, the reaction between fuel meat and aluminum cladding to form brittle intermetallic phases may be a concern. The effect of processing temperature and time on the fuel/cladding reaction will be addressed. The influence of chemical composition on the reaction will also be discussed. (author)« less

  4. Pathways for Ethanol Dehydrogenation and Dehydration Catalyzed by Ceria (111) and (100) Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beste, Ariana; Steven Overbury

    2015-01-08

    We have performed computations to better understand how surface structure affects selectivity in dehydrogenation and dehydration reactions of alcohols. Ethanol reactions on the (111) and (100) ceria surfaces were studied starting from the dominant surface species, ethoxy. We used DFT (PBE+U) to explore reaction pathways leading to ethylene and acetaldehyde and calculated estimates of rate constants employing transition state theory. To assess pathway contributions, we carried out kinetic analysis. Our results show that intermediate and transition state structures are stabilized on the (100) surface compared to the (111) surface. Formation of acetaldehyde over ethylene is kinetically and thermodynamically preferred onmore » both surfaces. Our results are consistent with temperature programmed surface reaction and steady-state experiments, where acetaldehyde was found as the main product and evidence was presented that ethylene formation at higher temperature originates from changes in adsorbate and surface structure.« less

  5. Solar Physics at Evergreen: Solar Dynamo and Chromospheric MHD

    NASA Astrophysics Data System (ADS)

    Zita, E. J.; Maxwell, J.; Song, N.; Dikpati, M.

    2006-12-01

    We describe our five year old solar physics research program at The Evergreen State College. Famed for its cloudy skies, the Pacific Northwest is an ideal location for theoretical and remote solar physics research activities. Why does the Sun's magnetic field flip polarity every 11 years or so? How does this contribute to the magnetic storms Earth experiences when the Sun's field reverses? Why is the temperature in the Sun's upper atmosphere millions of degrees higher than the Sun's surface temperature? How do magnetic waves transport energy in the Sun’s chromosphere and the Earth’s atmosphere? How does solar variability affect climate change? Faculty and undergraduates investigate questions such as these in collaboration with the High Altitude Observatory (HAO) at the National Center for Atmospheric Research (NCAR) in Boulder. We will describe successful student research projects, logistics of remote computing, and our current physics investigations into (1) the solar dynamo and (2) chromospheric magnetohydrodynamics.

  6. Continued development of abradable gas path seals. [for gas turbine engines

    NASA Technical Reports Server (NTRS)

    Shiembob, L. T.

    1975-01-01

    Major program objectives were the continued development of NiCrAlY feltmetal and honeycomb systems for knife edge seal applications in the 1144 to 1366 K temperature range, and to initiate abradable seal material evaluation for blade tip seal applications in the 1366 to 1589 K temperature range. Larger fiber size, higher density feltmetal showed greatly improved erosion resistance with a slight reduction in abradability compared to the baseline feltmetal. Pack aluminide coating of the honeycomb extended the oxidation resistance and slightly improved the abradability of this material. Evaluation through selected abradability, erosion and oxidation testing, and pertinent metallography led to selection of a plasma sprayed yttria stabilized zirconia (ZrO2)/CoCrAlY layered system as the system with the most potential to meet the 1589 K requirement for blade tip seals. This system demonstrated structural integrity, erosion resistance, and some degree of abradability.

  7. Experimental clean combustor program: Diesel no. 2 fuel addendum, phase 3

    NASA Technical Reports Server (NTRS)

    Gleason, C. C.; Bahr, D. W.

    1979-01-01

    A CF6-50 engine equipped with an advanced, low emission, double annular combustor was operated 4.8 hours with No. 2 diesel fuel. Fourteen steady-state operating conditions ranging from idle to full power were investigated. Engine/combustor performance and exhaust emissions were obtained and compared to JF-5 fueled test results. With one exception, fuel effects were very small and in agreement with previously obtained combustor test rig results. At high power operating condition, the two fuels produced virtually the same peak metal temperatures and exhaust emission levels. At low power operating conditions, where only the pilot stage was fueled, smoke levels tended to be significantly higher with No. 2 diesel fuel. Additional development of this combustor concept is needed in the areas of exit temperature distribution, engine fuel control, and exhaust emission levels before it can be considered for production engine use.

  8. Modified EVA Encapsulant Formulations for Low Temperature Processing: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, Z.; Pern, F. J.; Glick, S. H.

    2001-10-01

    Presented at the 2001 NCPV Program Review Meeting: We have developed several new ethylene-vinyl acetate (EVA) formulations modified on the basis of NREL patented EVA formulations [1]. The new formulations can be cured to a desired gel content of {approx}80% in the ambient at temperatures 20-30 C lower than the typical conditions in vacuum (i.e. {approx}150 C). Glass/glass laminates showed transmittance spectra that are essentially the same as that of EVA 15295P in the visible and NIR regions but higher in the UV region. Results of fluorescence analysis of the ambient-processed new EVA formulations showed the concentrations of the curing-generatedmore » {alpha},{beta}-unsaturated carbonyl chromophores, which are responsible for the UV induced EVA discoloration and photodegradation, were considerably lower than that of EVA 15295P, therefore suggesting a better photochemical stability of new EVA formulations.« less

  9. Hydrogen production from methane using oxygen-permeable ceramic membranes

    NASA Astrophysics Data System (ADS)

    Faraji, Sedigheh

    Non-porous ceramic membranes with mixed ionic and electronic conductivity have received significant interest in membrane reactor systems for the conversion of methane and higher hydrocarbons to higher value products like hydrogen. However, hydrogen generation by this method has not yet been commercialized and suffers from low membrane stability, low membrane oxygen flux, high membrane fabrication costs, and high reaction temperature requirements. In this dissertation, hydrogen production from methane on two different types of ceramic membranes (dense SFC and BSCF) has been investigated. The focus of this research was on the effects of different parameters to improve hydrogen production in a membrane reactor. These parameters included operating temperature, type of catalyst, membrane material, membrane thickness, membrane preparation pH, and feed ratio. The role of the membrane in the conversion of methane and the interaction with a Pt/CeZrO2 catalyst has been studied. Pulse studies of reactants and products over physical mixtures of crushed membrane material and catalyst have clearly demonstrated that a synergy exists between the membrane and the catalyst under reaction conditions. The degree of catalyst/membrane interaction strongly impacts the conversion of methane and the catalyst performance. During thermogravimetric analysis, the onset temperature of oxygen release for BSCF was observed to be lower than that for SFC while the amount of oxygen release was significantly greater. Pulse injections of CO2 over crushed membranes at 800°C have shown more CO2 dissociation on the BSCF membrane than the SFC membrane, resulting in higher CO formation on the BSCF membrane. Similar to the CO2 pulses, when CO was injected on the samples at 800°C, CO2 production was higher on BSCF than SFC. It was found that hydrogen consumption on BSCF particles is 24 times higher than that on SFC particles. Furthermore, Raman spectroscopy and temperature programmed desorption studies of CO and CO2 showed a higher CO and CO2 adsorption (for temperatures ranging from room temperature to 600°C) on BSCF compared to the SFC membrane. CO2 reforming reactions on BSCF and SFC dense membranes in a membrane reactor showed higher methane conversion and H2/CO ratio on BSCF than SFC in the presence of the Pt/CeZrO2 catalyst. This high conversion and H2/CO ratio could be ascribed to higher CO, CO2, and H2 adsorption on BSCF than SFC, resulting in higher steam and CO2 reforming on the BSCF. The Pt-Ni/CeZrO2 catalyst exhibits promising performance for hydrogen production. Platinum enhances the reducibility of Ni/Al2O 3 and Ni/CeZrO2 catalysts resulting in improved catalysts for H2 production at moderate temperatures. TPR and Raman studies show an alloy formation in the Pt-Ni/Al2O3 catalyst. Further work is required to study the interaction between Pt and Ni in the bimetallic Pt-Ni/CeZrO2 and Pt-Ni/Al2O3 catalysts. Although the Pt-Ni/Al2O3 catalyst shows high methane conversion in the presence of the BSCF membrane at 800°C, the activity of this catalyst is low at 600°C. Pt-Ni/CeZrO2 bimetallic catalyst demonstrates superior performance compared to Pt-Ni/Al2O3 catalyst at 600°C. The thinner BSCF membrane (2.2 mm) demonstrates a higher methane conversion and H2:CO ratio than the thicker BSCF membrane (2.6 mm) because membrane oxygen flux is inversely proportional to thickness. Varying the pH of the precursor solution during membrane preparation has no significant effect on the oxygen flux or the reaction. The CH 4:CO2 feed ratio significantly affects the hydrogen production over the BSCF membrane. Altering the CH4:CO2 ratio has a direct impact on the oxygen flux, which in turn can influence the reaction pathway. These studies suggest that the Pt-Ni/CeZrO2 catalyst might be suitable for low-temperature hydrocarbon conversion reactions over thin BSCF ceramic membranes. Most importantly, the BSCF membrane can reduce the apparent activation energy of the CO2 reforming reaction by changing the reaction pathway to include more steam reforming.

  10. Research and development program for the development of advanced time-temperature dependent constitutive relationships. Volume 2: Programming manual

    NASA Technical Reports Server (NTRS)

    Cassenti, B. N.

    1983-01-01

    The results of a 10-month research and development program for nonlinear structural modeling with advanced time-temperature constitutive relationships are presented. The implementation of the theory in the MARC nonlinear finite element code is discussed, and instructions for the computational application of the theory are provided.

  11. Acclimation temperature alters the relationship between growth and swimming performance among juvenile common carp (Cyprinus carpio).

    PubMed

    Pang, Xu; Fu, Shi-Jian; Zhang, Yao-Guang

    2016-09-01

    Individual variation in growth, metabolism and swimming performance, their possible interrelationships, and the effects of temperature were investigated in 30 juvenile common carp (Cyprinus carpio) at two acclimation temperatures (15 and 25°C). We measured body mass, critical swimming speed (Ucrit), resting metabolic rate (RMR), active metabolic rate (AMR) and metabolic scope (MS) twice (28days apart) in both temperature groups. Fish acclimated to 25°C showed a 204% higher specific growth rate (SGR) than those acclimated to 15°C due to a 97% higher feeding rate (FR) and a 46% higher feed efficiency (FE). Among individuals, SGR was positively correlated with the FR and FE at both low and high temperatures. All measured variables (Ucrit, RMR and AMR) related to swimming except MS showed a high repeatability after adjusting for body mass (mass-independent). Fish acclimated to 25°C had a 40% higher Ucrit compared with 15°C acclimated fish, which was at least partially due to an improved metabolic capacity. AMR showed a 97% increase, and MS showed a 104% parallel increase with the higher acclimation temperature. Residual (mass-independent) Ucrit was positively correlated with residual RMR, AMR and MS, except for the residual RMR at high temperature. When acclimated to the lower temperature, both the residual and absolute Ucrit were negatively correlated with FR and FE and, hence, with SGR, suggesting a functional trade-off between growth and locomotion in fish acclimated to low temperatures. However, when acclimated to the higher temperature, this trade-off no longer existed; absolute Ucrit was positively correlated with SGR because individuals with rapid growth exhibited greatly increased body mass. The higher metabolic capacity at 25°C showed a positive effect on both swimming performance and growth rate (because of improved digestive efficiency) under the high-temperature condition, which we did not anticipate. Overall, these results indicate that temperature alters the relationship between growth and swimming performance of juvenile common carp. This change may be an adaptive strategy to seasonal temperature variation during their life history. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Thermal conductivity and Kapitza resistance of epoxy resin fiberglass tape at superfluid helium temperature

    NASA Astrophysics Data System (ADS)

    Baudouy, B.; Polinski, J.

    2009-03-01

    The system of materials composed of fiberglass epoxy resin impregnated tape constitutes in many cases the electrical insulation for "dry"-type superconducting accelerator magnet such as Nb 3Sn magnets. Nb 3Sn magnet technology is still under development in a few programs to reach higher magnetic fields than what NbTi magnets can produce. The European program, Next European Dipole (NED), is one of such programs and it aims to develop and construct a 15 T class Nb 3Sn magnet mainly for upgrading the Large Hardron Collider. Superfluid helium is considered as one possible coolant and since the magnet has been designed with a "dry" insulation, the thermal conductivity and the Kapitza resistance of the electrical insulation are the key properties that must be know for the thermal design of such a magnet. Accordingly, property measurements of the epoxy resin fiberglass tape insulation system developed for the NED project was carried out in superfluid helium. Four sheets with thicknesses varying from 40 to 300 μm have been tested in a steady-state condition. The determined thermal conductivity, k, is [(25.8 ± 2.8) · T - (12.2 ± 4.9)] × 10 -3 W m -1 K -1 and the Kapitza resistance is given by R K = (1462 ± 345) · T(-1.86 ± 0.41) × 10 -6 Km 2 W -1 in the temperature range of 1.55-2.05 K.

  13. Shock states of solid Mg2SiO4

    NASA Astrophysics Data System (ADS)

    Townsend, Joshua; Shulenburger, Luke

    2017-06-01

    To date there have been thousands of planets discovered outside our solar system. Forsterite, the magnesium end-member of olivine, ((Mg , Fe) 2SiO4) is abundant in the Earth's mantle, and is likely a common planetary building block throughout the galaxy. Despite extensive investigation under terrestrial pressure and temperature regimes, the behavior of the Mg2SiO4 system at higher pressures and temperatures (P>100 GPa, T>4000 K) remains poorly understood. To better understand the behavior of planetary impact processes and the structure of massive planets we investigated the high pressure and high temperature properties of Mg2SiO4 using combined shock compression experiments on the Z-machine at Sandia National Laboratories, and ab-initio molecular dynamics simulations. We compare our results to other recent experiments on shocked forsterite. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. SAND2017-1987 C.

  14. Carbon dioxide capture utilizing zeolites synthesized with paper sludge and scrap-glass.

    PubMed

    Espejel-Ayala, F; Corella, R Chora; Pérez, A Morales; Pérez-Hernández, R; Ramírez-Zamora, R M

    2014-12-01

    The present work introduces the study of the CO2 capture process by zeolites synthesized from paper sludge and scrap glass. Zeolites ZSM-5, analcime and wairakite were produced by means of two types of Structure Directing Agents (SDA): tetrapropilamonium (TPA) and ethanol. On the one hand, zeolite ZSM-5 was synthesized using TPA; on the other hand, analcime and wairakite were produced with ethanol. The temperature programmed desorption (TPD) technique was performed for determining the CO2 sorption capacity of these zeolites at two sorption temperatures: 50 and 100 °C. CO2 sorption capacity of zeolite ZSM-5 synthesized at 50 °C was 0.683 mmol/g representing 38.2% of the value measured for a zeolite ZSM-5 commercial. Zeolite analcime showed a higher CO2 sorption capacity (1.698 mmol/g) at 50 °C and its regeneration temperature was relatively low. Zeolites synthesized in this study can be used in the purification of biogas and this will produce energy without increasing the atmospheric CO2 concentrations. © The Author(s) 2014.

  15. Selection And Evaluation Of An Alloy For Nozzle Application

    NASA Technical Reports Server (NTRS)

    Pandey, A. B.; Shah, S.; Shadoan, M.; Lyles, Garry (Technical Monitor)

    2003-01-01

    The present work includes results on material characterization conducted under COBRA Hydrogen Cooled Nozzle Program and was funded by NASA MSFC. The nozzle requires a material that has high strength at ambient and high (up to l200 F) temperatures in air and hydrogen. Presently, a precipitation hardened steel; A-286 is used in nozzles for Space Shuttle Engines. The A-286 alloy has limited hydrogen compatibility and weldability. The present work focused on selection and characterization of JBK-75 alloy that has significantly higher capability in hydrogen and weldability in addition to other attributes. The alloy was evaluated at different temperatures and environments. Tungsten Inert Gas (TIG) and Electron Beam welding techniques were used to evaluate the weldability of material. Brazing was also conducted on the alloy and evaluated. The characterization of base JBK-75 alloy, welded and brazed alloy included tensile properties, low cycle fatigue and crack growth resistance at different temperatures in air and hydrogen environments. The results indicated that JBK-75 has excellent tensile and fatigue properties in air and hydrogen. The welded and brazed alloy also showed very good properties.

  16. Effects of Temperature on Sound Production and Auditory Abilities in the Striped Raphael Catfish Platydoras armatulus (Family Doradidae)

    PubMed Central

    Papes, Sandra; Ladich, Friedrich

    2011-01-01

    Background Sound production and hearing sensitivity of ectothermic animals are affected by the ambient temperature. This is the first study investigating the influence of temperature on both sound production and on hearing abilities in a fish species, namely the neotropical Striped Raphael catfish Platydoras armatulus. Methodology/Principal Findings Doradid catfishes produce stridulation sounds by rubbing the pectoral spines in the shoulder girdle and drumming sounds by an elastic spring mechanism which vibrates the swimbladder. Eight fish were acclimated for at least three weeks to 22°, then to 30° and again to 22°C. Sounds were recorded in distress situations when fish were hand-held. The stridulation sounds became shorter at the higher temperature, whereas pulse number, maximum pulse period and sound pressure level did not change with temperature. The dominant frequency increased when the temperature was raised to 30°C and the minimum pulse period became longer when the temperature decreased again. The fundamental frequency of drumming sounds increased at the higher temperature. Using the auditory evoked potential (AEP) recording technique, the hearing thresholds were tested at six different frequencies from 0.1 to 4 kHz. The temporal resolution was determined by analyzing the minimum resolvable click period (0.3–5 ms). The hearing sensitivity was higher at the higher temperature and differences were more pronounced at higher frequencies. In general, latencies of AEPs in response to single clicks became shorter at the higher temperature, whereas temporal resolution in response to double-clicks did not change. Conclusions/Significance These data indicate that sound characteristics as well as hearing abilities are affected by temperatures in fishes. Constraints imposed on hearing sensitivity at different temperatures cannot be compensated even by longer acclimation periods. These changes in sound production and detection suggest that acoustic orientation and communication are affected by temperature changes in the neotropical catfish P. armatulus. PMID:22022618

  17. Microplastics co-gasification with biomass: Modelling syngas characteristics at low temperatures

    NASA Astrophysics Data System (ADS)

    Ramos, Ana; Tavares, Raquel; Rouboa, Abel

    2018-05-01

    To assess the syngas produced through the gasification of microplastics at low temperatures, distinct blends of polyethylene terephthalate (PET) with biomass (vine pruning) were modelled using Aspen Plus. Critical gasification parameters such as co-fuel mixture, temperature and hydrogen production were evaluated, under two different gasifier agents (air and O2). Results have shown that higher PET ratios and higher temperatures (< 1200 °C) lead to enhanced hydrogen yields, for both atmospheres. The calorific content was also seen to increase with growing temperatures, superior LHV being achieved for the mixture with less microplastics fraction (9.2 MJ/Nm3) for both air and O2 environments. A final high-quality syngas was achieved, the dominant requirement determining which parameter to optimize: on one hand, higher H2 contents were seen for the blend with higher microplastic fraction, and on the other higher LHV was achieved for the equimolar mixture.

  18. TAP 1: A Finite Element Program for Steady-State Thermal Analysis of Convectively Cooled Structures

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.

    1976-01-01

    The program has a finite element library of six elements: two conduction/convection elements to model heat transfer in a solid, two convection elements to model heat transfer in a fluid, and two integrated conduction/convection elements to represent combined heat transfer in tubular and plate/fin fluid passages. Nonlinear thermal analysis due to temperature dependent thermal parameters is performed using the Newton-Raphson iteration method. Program output includes nodal temperatures and element heat fluxes. Pressure drops in fluid passages may be computed as an option. A companion plotting program for displaying the finite element model and predicted temperature distributions is presented. User instructions and sample problems are presented in appendixes.

  19. Temperature Dependence of the Thermal Conductivity of Single Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Osman, Mohamed A.; Srivastava, Deepak

    2000-01-01

    The thermal conductivity of several single wall carbon nanotubes (CNT) has been calculated over a temperature range of 100-500 K using molecular dynamics simulations with Tersoff-Brenner potential for C-C interactions. In all cases, starting from similar values at 100K, thermal conductivities show a peaking behavior before falling off at higher temperatures. The peak position shifts to higher temperatures for nanotubes of larger diameter, and no significant dependence on the tube chirality is observed. It is shown that this phenomenon is due to onset of Umklapp scattering, which shifts to higher temperatures for nanotubes of larger diameter.

  20. Preparing aircraft propulsion for a new era in energy and the environment

    NASA Technical Reports Server (NTRS)

    Stewart, W. L.; Nored, D. L.; Grobman, J. S.; Feiler, C. E.; Petrash, D. A.

    1980-01-01

    Improving fuel efficiency, new sources of jet fuel, and noise and emission control are subjects of NASA's aeronautics program. Projects aimed at attaining a 5% fuel savings for existing engines and a 13-22% savings for the next generation of turbofan engines using advanced components, and establishing a basis for turboprop-powered commercial air transports with 30-40% savings over conventional turbofan aircraft at comparable speeds and altitudes, are discussed. Fuel sources are considered in terms of reduced hydrogen and higher aromatic contents and resultant higher liner temperatures, and attention is given to lean burning, improved fuel atomization, higher freezing-point fuel, and deriving jet fuel from shale oil or coal. Noise sources including the fan, turbine, combustion process, and flow over internal struts, and attenuation using acoustic treatment, are discussed, while near-term reduction of polluting gaseous emissions at both low and high power, and far-term defining of the minimum gaseous-pollutant levels possible from turbine engines are also under study.

  1. 45 CFR 2519.300 - Who may participate in a Higher Education program?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... FOR NATIONAL AND COMMUNITY SERVICE HIGHER EDUCATION INNOVATIVE PROGRAMS FOR COMMUNITY SERVICE Participant Eligibility and Benefits § 2519.300 Who may participate in a Higher Education program? Students... 45 Public Welfare 4 2010-10-01 2010-10-01 false Who may participate in a Higher Education program...

  2. Effect of environmental temperature on sleep, locomotor activity, core body temperature and immune responses of C57BL/6J mice

    PubMed Central

    Jhaveri, KA; Trammell, RA; Toth, LA

    2007-01-01

    Ambient temperature exerts a prominent influence on sleep. In rats and humans, low ambient temperatures generally impair sleep, whereas higher temperatures tend to promote sleep. The purpose of the current study was to evaluate sleep patterns and core body temperatures of C57BL/6J mice at ambient temperatures of 22°C, 26°C and 30°C under baseline conditions, after sleep deprivation (SD), and after infection with influenza virus. C57BL/6J mice were surgically implanted with electrodes for recording electroencephalogram (EEG) and electromyogram (EMG) and with intraperitoneal transmitters for recording core body temperature (Tc) and locomotor activity. The data indicate that higher ambient temperatures (26°C and 30°C) promote spontaneous slow wave sleep (SWS) in association with reduced delta wave amplitude during SWS in C57BL/6J mice. Furthermore, higher ambient temperatures also promote recuperative sleep after SD. Thus, in mice, higher ambient temperatures reduced sleep depth under normal conditions, but augmented the recuperative response to sleep loss. Mice infected with influenza virus while maintained at 22 or 26°C developed more SWS, less rapid eye movement sleep, lower locomotor activity and greater hypothermia than did mice maintained at 30°C during infection. In addition, despite equivalent viral titers, mice infected with influenza virus at 30°C showed less leucopenia and lower cytokine induction as compared with 22 and 26°C, respectively, suggesting that less inflammation develops at the higher ambient temperature. PMID:17467232

  3. Temperature adaptation of bacterial communities in experimentally warmed forest soils.

    PubMed

    Rousk, Johannes; Frey, Serita D; Bååth, Erland

    2012-10-01

    A detailed understanding of the influence of temperature on soil microbial activity is critical to predict future atmospheric CO 2 concentrations and feedbacks to anthropogenic warming. We investigated soils exposed to 3-4 years of continuous 5 °C-warming in a field experiment in a temperate forest. We found that an index for the temperature adaptation of the microbial community, T min for bacterial growth, increased by 0.19 °C per 1 °C rise in temperature, showing a community shift towards one adapted to higher temperature with a higher temperature sensitivity (Q 10(5-15 °C) increased by 0.08 units per 1 °C). Using continuously measured temperature data from the field experiment we modelled in situ bacterial growth. Assuming that warming did not affect resource availability, bacterial growth was modelled to become 60% higher in warmed compared to the control plots, with the effect of temperature adaptation of the community only having a small effect on overall bacterial growth (<5%). However, 3 years of warming decreased bacterial growth, most likely due to substrate depletion because of the initially higher growth in warmed plots. When this was factored in, the result was similar rates of modelled in situ bacterial growth in warmed and control plots after 3 years, despite the temperature difference. We conclude that although temperature adaptation for bacterial growth to higher temperatures was detectable, its influence on annual bacterial growth was minor, and overshadowed by the direct temperature effect on growth rates. © 2012 Blackwell Publishing Ltd.

  4. Computer program MCAP-TOSS calculates steady-state fluid dynamics of coolant in parallel channels and temperature distribution in surrounding heat-generating solid

    NASA Technical Reports Server (NTRS)

    Lee, A. Y.

    1967-01-01

    Computer program calculates the steady state fluid distribution, temperature rise, and pressure drop of a coolant, the material temperature distribution of a heat generating solid, and the heat flux distributions at the fluid-solid interfaces. It performs the necessary iterations automatically within the computer, in one machine run.

  5. Burner liner thermal/structural load modeling: TRANCITS program user's manual

    NASA Technical Reports Server (NTRS)

    Maffeo, R.

    1985-01-01

    Transfer Analysis Code to Interface Thermal/Structural Problems (TRANCITS) is discussed. The TRANCITS code satisfies all the objectives for transferring thermal data between heat transfer and structural models of combustor liners and it can be used as a generic thermal translator between heat transfer and stress models of any component, regardless of the geometry. The TRANCITS can accurately and efficiently convert the temperature distributions predicted by the heat transfer programs to those required by the stress codes. It can be used for both linear and nonlinear structural codes and can produce nodal temperatures, elemental centroid temperatures, or elemental Gauss point temperatures. The thermal output of both the MARC and SINDA heat transfer codes can be interfaced directly with TRANCITS, and it will automatically produce stress model codes formatted for NASTRAN and MARC. Any thermal program and structural program can be interfaced by using the neutral input and output forms supported by TRANCITS.

  6. Locatable-Body Temperature Monitoring Based on Semi-Active UHF RFID Tags

    PubMed Central

    Liu, Guangwei; Mao, Luhong; Chen, Liying; Xie, Sheng

    2014-01-01

    This paper presents the use of radio-frequency identification (RFID) technology for the real-time remote monitoring of body temperature, while an associated program can determine the location of the body carrying the respective sensor. The RFID chip's internal integrated temperature sensor is used for both the human-body temperature detection and as a measurement device, while using radio-frequency communication to broadcast the temperature information. The adopted RFID location technology makes use of reference tags together with a nearest neighbor localization algorithm and a multiple-antenna time-division multiplexing location system. A graphical user interface (GUI) was developed for collecting temperature and location data for the data fusion by using RFID protocols. With a puppy as test object, temperature detection and localization experiments were carried out. The measured results show that the applied method, when using a mercury thermometer for comparison in terms of measuring the temperature of the dog, has a good consistency, with an average temperature error of 0.283 °C. When using the associated program over the area of 12.25 m2, the average location error is of 0.461 m, which verifies the feasibility of the sensor-carrier location by using the proposed program. PMID:24675759

  7. Locatable-body temperature monitoring based on semi-active UHF RFID tags.

    PubMed

    Liu, Guangwei; Mao, Luhong; Chen, Liying; Xie, Sheng

    2014-03-26

    This paper presents the use of radio-frequency identification (RFID) technology for the real-time remote monitoring of body temperature, while an associated program can determine the location of the body carrying the respective sensor. The RFID chip's internal integrated temperature sensor is used for both the human-body temperature detection and as a measurement device, while using radio-frequency communication to broadcast the temperature information. The adopted RFID location technology makes use of reference tags together with a nearest neighbor localization algorithm and a multiple-antenna time-division multiplexing location system. A graphical user interface (GUI) was developed for collecting temperature and location data for the data fusion by using RFID protocols. With a puppy as test object, temperature detection and localization experiments were carried out. The measured results show that the applied method, when using a mercury thermometer for comparison in terms of measuring the temperature of the dog, has a good consistency, with an average temperature error of 0.283 °C. When using the associated program over the area of 12.25 m2, the average location error is of 0.461 m, which verifies the feasibility of the sensor-carrier location by using the proposed program.

  8. Relationships between brain and body temperature, clinical and imaging outcomes after ischemic stroke

    PubMed Central

    Karaszewski, Bartosz; Carpenter, Trevor K; Thomas, Ralph G R; Armitage, Paul A; Lymer, Georgina Katherine S; Marshall, Ian; Dennis, Martin S; Wardlaw, Joanna M

    2013-01-01

    Pyrexia soon after stroke is associated with severe stroke and poor functional outcome. Few studies have assessed brain temperature after stroke in patients, so little is known of its associations with body temperature, stroke severity, or outcome. We measured temperatures in ischemic and normal-appearing brain using 1H-magnetic resonance spectroscopy and its correlations with body (tympanic) temperature measured four-hourly, infarct growth by 5 days, early neurologic (National Institute of Health Stroke Scale, NIHSS) and late functional outcome (death or dependency). Among 40 patients (mean age 73 years, median NIHSS 7, imaged at median 17 hours), temperature in ischemic brain was higher than in normal-appearing brain on admission (38.6°C-core, 37.9°C-contralateral hemisphere, P=0.03) but both were equally elevated by 5 days; both were higher than tympanic temperature. Ischemic lesion temperature was not associated with NIHSS or 3-month functional outcome; in contrast, higher contralateral normal-appearing brain temperature was associated with worse NIHSS, infarct expansion and poor functional outcome, similar to associations for tympanic temperature. We conclude that brain temperature is higher than body temperature; that elevated temperature in ischemic brain reflects a local tissue response to ischemia, whereas pyrexia reflects the systemic response to stroke, occurs later, and is associated with adverse outcomes. PMID:23571281

  9. Molecular deformation and stress-strain behavior of poly(bisphenol-A-diphenyl sulfone)

    NASA Technical Reports Server (NTRS)

    Hong, S.-D.; Chung, S. Y.; Fedors, R. F.

    1983-01-01

    The strain-birefringence response of poly(bisphenol-A-diphenyl sulfone) is found to be independent of temperature at temperatures below -100 C; at higher temperatures, the response becomes slightly dependent on temperature, with lower birefringence seen at higher temperatures. The stress-strain behavior and the stress-birefringence response both depend on temperature over the entire testing temperature range (-179 C to 150 C) studied; this dependence, however, is not pronounced. The evidence is seen as suggesting that the polymer molecules respond to deformation by undergoing conformational rearrangements; the mode of the molecular deformation remains unchanged for temperatures of -100 C or lower. At higher temperatures, the average length of the chain segments involved in the rearrangement increases. The stress-strain response is attributed mainly to chain orientation. The entropic contribution deriving from chain orientation at temperatures below -100 C is still substantial. The modest temperature dependence of the stress-strain response suggests that the energy barriers for the chain segments involved in the rearrangement are relatively low.

  10. Higher Moments of Net-Particle Multiplicity Distributions

    NASA Astrophysics Data System (ADS)

    Thäder, Jochen

    2016-12-01

    Studying fluctuations of conserved quantities, such as baryon number, strangeness, and charge, provides insights into the properties of matter created in high-energy nuclear collisions. Lattice QCD calculations suggest that higher moments of these quantities are sensitive to the phase structure of the hot and dense nuclear matter created in such collisions. In this paper, we present first experimental results of volume and temperature independent cumulant ratios of net-charge and net-proton distributions in Au+Au collisions at √{sNN} = 14.5 GeV completing the first RHIC Beam Energy Scan (BES-I) program for √{sNN} = 7.7 to 200GeV, together with the first measurement of fully corrected net-kaon results, measured with the STAR detector at RHIC at mid-rapidity and a transverse momentum up to pT = 2GeV/c. The pseudorapidity dependence of the √{sNN} = 14.5 GeV net-charge cumulant ratios is discussed. The estimated uncertainties on the ratio c4 /c2, the most statistics-hungry of the present observables, at √{sNN} = 7.7 GeV in the upcoming RHIC BES-II program will also be presented.

  11. Characterization and comparison of phytoplankton in selected lakes of five Great Lakes area national parks

    USGS Publications Warehouse

    Nevers, Meredith Becker; Whitman, Richard L.

    2004-01-01

    Phytoplankton species have been widely used as indicators of lake conditions, and they may be useful for detecting changes in overall lake condition. In an attempt to inventory and monitor its natural resources, the National Park Service wants to establish a monitoring program for aquatic resources in the Great Lakes Cluster National Parks. This study sought to establish baseline information on the phytoplankton and water chemistry of selected lakes in five national parks in a preliminary effort toward establishing a long-term monitoring program. Phytoplankton and water chemistry samples were collected from ten lakes in five national parks over a two-year period. A total of 176 taxa were identified during the study. Northern lakes generally had higher Shannon-Wiener diversity and clustered together in similarity. Lakes exhibited a south to north gradient of many water chemistry variables, with northern lakes having lower hardness, sulfate, turbidity, and temperature and higher dissolved oxygen. Chloride and sulfate concentrations were the variables that best explained variation among phytoplankton in the ten lakes. A monitoring plan will have to incorporate the differences among lakes, but by coordinating the effort, comparisons within and among parks and other regions will prove useful for determining environmental change.

  12. Quantitative and Qualitative Analyzes of the Explosive Cyclones that Reached the Antarctic Coast in the First Half of 2017

    NASA Astrophysics Data System (ADS)

    Pires, L. B. M.; Romao, M.; Freitas, A. C. V.

    2017-12-01

    An explosive cyclone is a kind of extratropical cyclone which shows a drop in pressure of at least 24 hPa in 24 hours. These are usually intense and they have rapid displacement which hinders their predictability. It is likely that climate change is causing an increase in this type of event in the Antarctic coast and, if this increase is confirmed, the regime of winds and temperatures may be changing. If there are more incidences of explosive cyclones, probably the Antarctic winds are becoming more intense and the temperatures in some places are becoming lower and in others are becoming higher. In the northern portion of the Antarctic Peninsula a decrease in temperature already has been recorded over the last 15 years, while a higher incidence of explosive cyclones over the region also has been found during this period. Studies also have suggested that the drop in temperatures in the Antarctic may be associated with the changes in wind direction, but the cause of these wind direction changes is unknown. Explosive cyclones, which change the wind patterns when they reach certain areas therefore may be contributing to this change in the Antarctic climate. This study is part of the "Explosive Cyclones on the Antarctic Coast" (EXCANC) Project conducted by the World Environmental Conservancy organization. This project analyzes data from meteorological stations strategically scattered throughout the coast and operated by various international Antarctic programs, and also utilizes satellite images. Results show that during the first half of 2017 the highest number of events were recorded at the Australian Casey station with 10 cases, followed by the French station of Dumont D'Urville with 7 cases. Halley's English station recorded its first explosive cyclone this year. Intensity analyzes also are shown.

  13. Debranching and temperature-cycled crystallization of waxy rice starch and their digestibility.

    PubMed

    Zeng, Feng; Ma, Fei; Gao, Qunyu; Yu, Shujuan; Kong, Fansheng; Zhu, Siming

    2014-11-26

    Slowly digestible starch (SDS) was obtained through debranched waxy rice starch and subsequent crystallization under isothermal and temperature-cycled conditions. Temperature-cycled crystallization of dual 4/-20 °C produced a higher yield of SDS product than isotherm crystallization. Crystal structure of SDS products changed from A-type to a mixture of B and V-type X-ray diffraction patterns. The relative crystallinity was higher in the temperature-cycled samples than that of isotherm. Attenuated total reflectance Fourier transform infrared spectroscopy suggested that the peripheral regions of isothermal storage starch were better organized than temperature-cycles. Temperature cycling induced higher onset temperature for melting of crystals than isothermal storage under a differential scanning calorimeter. The cycled temperature storage induced a greater amount of SDS than the isothermal storage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. A Low-Cost CMOS Programmable Temperature Switch

    PubMed Central

    Li, Yunlong; Wu, Nanjian

    2008-01-01

    A novel uncalibrated CMOS programmable temperature switch with high temperature accuracy is presented. Its threshold temperature Tth can be programmed by adjusting the ratios of width and length of the transistors. The operating principles of the temperature switch circuit is theoretically explained. A floating gate neural MOS circuit is designed to compensate automatically the threshold temperature Tth variation that results form the process tolerance. The switch circuit is implemented in a standard 0.35 μm CMOS process. The temperature switch can be programmed to perform the switch operation at 16 different threshold temperature Tths from 45—120°C with a 5°C increment. The measurement shows a good consistency in the threshold temperatures. The chip core area is 0.04 mm2 and power consumption is 3.1 μA at 3.3V power supply. The advantages of the temperature switch are low power consumption, the programmable threshold temperature and the controllable hysteresis. PMID:27879871

  15. Indoor Thermal Factors and Symptoms in Office Workers: Findings from the U.S. EPA BASE Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendell, Mark; Mirer, Anna

    2008-06-01

    Some prior research in office buildings has associated higher indoor temperatures even within the recommended thermal comfort range with increased worker symptoms. We reexamined this relationship in data from 95 office buildings in the U.S. Environmental Protection Agency's Building Assessment Survey and Evaluation (BASE) Study. We investigated relationships between building-related symptoms and thermal metrics constructed from real-time measurements. We estimated odds ratios (ORs) and 95percent confidence intervals in adjusted logistic regression models with general estimating equations, overall and by season. Winter indoor temperatures spanned the recommended winter comfort range; summer temperatures were mostly colder than the recommended summer range. Increasingmore » indoor temperatures, overall, were associated with increases in few symptoms. Higher winter indoor temperatures, however, were associated with increases in all symptoms analyzed. Higher summer temperatures, above 23oC, were associated with decreases in most symptoms. Humidity ratio, a metric of absolute humidity, showed few clear associations. Thus, increased symptoms with higher temperatures within the thermal comfort range were found only in winter. In summer, buildings were overcooled, and only the higher observed temperatures were within the comfort range; these were associated with decreased symptoms. Confirmation of these findings would suggest that thermal management guidelines consider health effects as well as comfort.« less

  16. Sloths like it hot: ambient temperature modulates food intake in the brown-throated sloth (Bradypus variegatus).

    PubMed

    Cliffe, Rebecca N; Haupt, Ryan J; Avey-Arroyo, Judy A; Wilson, Rory P

    2015-01-01

    Sloths are considered to have one of the lowest mass-specific metabolic rates of any mammal and, in tandem with a slow digestive rate, have been theorized to have correspondingly low rates of ingestion. Here, we show in a study conducted over five months, that three captive Bradypus variegatus (Brown-throated sloths) had a remarkably low mean food intake of 17 g kg(-1)day(-1) (SD 4.2). Food consumption was significantly affected by ambient temperature, with increased intake at higher temperatures. We suggest that the known fluctuation of sloth core body temperature with ambient temperature affects the rate at which gut fauna process digesta, allowing for increased rates of fermentation at higher temperatures. Since Bradypus sloths maintain a constantly full stomach, faster rates of fermentation should enhance digestive throughput, increasing the capacity for higher levels of food intake, thereby allowing increased energy acquisition at higher ambient temperatures. This contrasts with other mammals, which tend to show increased levels of food intake in colder conditions, and points to the importance of temperature in regulating all aspects of energy use in sloths.

  17. 45 CFR 2519.600 - How are funds for Higher Education programs distributed?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false How are funds for Higher Education programs...) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE HIGHER EDUCATION INNOVATIVE PROGRAMS FOR COMMUNITY SERVICE Distribution of Funds § 2519.600 How are funds for Higher Education programs distributed? All funds under this...

  18. Overview of NASA battery technology program

    NASA Technical Reports Server (NTRS)

    Riebling, R. W.

    1980-01-01

    Highlights of NASA's technology program in batteries for space applications are presented. Program elements include: (1) advanced ambient temperature alkaline secondaries, which are primarily nickel-cadmium cells in batteries; (2) a toroidal nickel cadmium secondaries with multi-kilowatt-hour storage capacity primarily for lower orbital applications; (3) ambient temperature lithium batteries, both primary and secondaries, primarily silver hydrogen and high-capacity nickel hydrogen.

  19. Computer program documentation: Raw-to-processed SINDA program (RTOPHS) user's guide

    NASA Technical Reports Server (NTRS)

    Damico, S. J.

    1980-01-01

    Use of the Raw to Processed SINDA(System Improved Numerical Differencing Analyzer) Program, RTOPHS, which provides a means of making the temperature prediction data on binary HSTFLO and HISTRY units generated by SINDA available to engineers in an easy to use format, is discussed. The program accomplishes this by reading the HISTRY unit and according to user input instructions, the desired times and temperature prediction data are extracted and written to a word addressable drum file.

  20. Low Energy X-Ray and Electron Physics and Technology for High-Temperature Plasma Diagnostics

    DTIC Science & Technology

    1987-10-01

    This program in low-energy x-ray physics and technology has expanded into a major program with the principal objective of supporting research and application programs at the new large x-ray source facilities, particularly the high temperature plasma and synchrotron radiation sources. This program addresses the development of absolute x-ray diagnostics for the fusion energy and x-ray laser research and development. The new laboratory includes five specially designed

  1. An Integrated, Layered-Spinel Composite Cathode for Energy Storage Applications

    NASA Technical Reports Server (NTRS)

    Hagh, Nader; Skandan, Ganesh

    2012-01-01

    At low operating temperatures, commercially available electrode materials for lithium-ion batteries do not fully meet the energy and power requirements for NASA fs exploration activities. The composite cathode under development is projected to provide the required energy and power densities at low temperatures and its usage will considerably reduce the overall volume and weight of the battery pack. The newly developed composite electrode material can provide superior electrochemical performance relative to a commercially available lithium cobalt system. One advantage of using a composite cathode is its higher energy density, which can lead to smaller and lighter battery packs. In the current program, different series of layered-spinel composite materials with at least two different systems in an integrated structure were synthesized, and the volumetric and gravimetric energy densities were evaluated. In an integrated network of a composite electrode, the effect of the combined structures is to enhance the capacity and power capabilities of the material to levels greater than what is possible in current state-of-the-art cathode systems. The main objective of the current program is to implement a novel cathode material that meets NASA fs low temperature energy density requirements. An important feature of the composite cathode is that it has at least two components (e.g., layered and spinel) that are structurally integrated. The layered material by itself is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated, thereby delivering a large amount of energy with stable cycling. A key aspect of the innovation has been the development of a scalable process to produce submicronand micron-scale particles of these composite materials. An additional advantage of using such a composite electrode material is its low irreversible loss (.5%), which is primarily due to the unique activation of the composite. High columbic efficiency (greater than 99%) upon cycling may indicate the formation of a stable SEI (solid-electrolyte interface) layer, which can contribute to long cycle life. The innovation in the current program, when further developed, will enable the system to maintain high energy and power densities at low temperatures, improve efficiency, and further stabilize and enhance the safety of the cell.

  2. Temperature effects on metal-alumina-nitride-oxide-silicon memory operations

    NASA Astrophysics Data System (ADS)

    Padovani, Andrea; Larcher, Luca; Heh, Dawei; Bersuker, Gennadi; Della Marca, Vincenzo; Pavan, Paolo

    2010-05-01

    We present a detailed investigation of temperature effects on the operation of TaN/Al2O3/Si3N4/SiO2/Si (TANOS) memory devices. We show that not only retention but also program and erase operations are affected significantly by temperature. Using a large set of experimental data and simulations on a variety of TANOS stacks, we show that the temperature dependence of TANOS program and erase operations can be explained by accounting for that the alumina dielectric constant increases by 20%-25% over a 125 K temperature range.

  3. Mathematical modeling of high and low temperature heat pipes

    NASA Technical Reports Server (NTRS)

    Chi, S. W.

    1971-01-01

    Following a review of heat and mass transfer theory relevant to heat pipe performance, math models are developed for calculating heat-transfer limitations of high-temperature heat pipes and heat-transfer limitations and temperature gradient of low temperature heat pipes. Calculated results are compared with the available experimental data from various sources to increase confidence in the present math models. Complete listings of two computer programs for high- and low-temperature heat pipes respectively are included. These programs enable the performance to be predicted of heat pipes with wrapped-screen, rectangular-groove, or screen-covered rectangular-groove wick.

  4. Requirements for an Advanced Low Earth Orbit (LEO) Sounder (ALS) for Improved Regional Weather Prediction and Monitoring of Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Chahine, Moustafa T.; Susskind, Joel

    2008-01-01

    Hyperspectral infrared atmospheric sounders (e.g., the Atmospheric Infrared Sounder (AIRS) on Aqua and the Infrared Atmospheric Sounding Interferometer (IASI) on Met Op) provide highly accurate temperature and water vapor profiles in the lower to upper troposphere. These systems are vital operational components of our National Weather Prediction system and the AIRS has demonstrated over 6 hrs of forecast improvement on the 5 day operational forecast. Despite the success in the mid troposphere to lower stratosphere, a reduction in sensitivity and accuracy has been seen in these systems in the boundary layer over land. In this paper we demonstrate the potential improvement associated with higher spatial resolution (1 km vs currently 13.5 km) on the accuracy of boundary layer products with an added consequence of higher yield of cloud free scenes. This latter feature is related to the number of samples that can be assimilated and has also shown to have a significant impact on improving forecast accuracy. We also present a set of frequencies and resolutions that will improve vertical resolution of temperature and water vapor and trace gas species throughout the atmosphere. Development of an Advanced Low Earth Orbit (LEO) Sounder (ALS) with these improvements will improve weather forecast at the regional scale and of tropical storms and hurricanes. Improvements are also expected in the accuracy of the water vapor and cloud properties products, enhancing process studies and providing a better match to the resolution of future climate models. The improvements of technology required for the ALS are consistent with the current state of technology as demonstrated in NASA Instrument Incubator Program and NOAA's Hyperspectral Environmental Suite (HES) formulation phase development programs.

  5. Combustion and NOx emissions in deep-air-staging combustion of char in a circulating fluidized bed

    NASA Astrophysics Data System (ADS)

    Gong, Zhiqiang; Wang, Zhentong; Wang, Lei; Du, Aixun

    2017-10-01

    Combustion and NOx emissions in deep-air-staging (with higher level secondary air (SA) injection) combustion of char have been investigated in a CFB test rig. A good fluidized condition and uniform temperature distribution can be achieved with injection of higher level SA. NOx emission decreases with injection of higher level SA and the reduction effect is more obvious at higher temperature. NOx emission decreases with combustion temperature increasing for char combustion.

  6. (abstract) Ulysses Solar Wind Ion Temperatures: Radial, Latitudinal, and Dynamical Dependencies

    NASA Technical Reports Server (NTRS)

    Goldstein, B. E.; Smith, E. J.; Gosling, J. T.; McComas, D. J.; Balogh, A.

    1996-01-01

    Observations of the Ulysses SWOOPS plasma experiment are used to determine the dependencies of solar wind ion temperatures upon radial distance, speed, and other parameters, and to estimate solar wind heating. Comparisons with three dimensional temperature estimates determined from the ion spectra by a least squares fitting program will be provided (only small samples of data have been reduced with this program).

  7. Development of Polybenzimidazole-Based High-Temperature Membrane and Electrode Assemblies for Stationary and Automotive Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogel, John A.

    The program began on August 1, 2003 and ended on July 31, 2007. The goal of the project was to optimize a high-temperature polybenzimidazole (PBI) membrane to meet the performance, durability, and cost targets required for stationary fuel cell applications. These targets were identified in the Fuel Cell section (3.4) of DOE’s Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan. A membrane that operates at high temperatures is important to the fuel cell industry because it is insensitive to carbon monoxide (a poison to low-temperature fuel cells), and does not require complex water management strategies.more » Together, these two benefits greatly simplify the fuel cell system. As a result, the high-temperature fuel cell system realizes a cost benefit as the number of components is reduced by nearly 30%. There is also an inherent reliability benefit as components such as humidifiers and pumps for water management are unnecessary. Furthermore, combined heat and power (CHP) systems may be the best solution for a commercial, grid-connected, stationary product that must offer a cost benefit to the end user. For a low-temperature system, the quality of the heat supplied is insufficient to meet consumer needs and comfort requirements, so peak heaters or supplemental boilers are required. The higher operating temperature of PBI technology allows the fuel cell to meet the heat and comfort demand without the additional equipment. Plug Power, working with the Rensselaer Polytechnic Institute (RPI) Polymer Science Laboratory, made significant advances in optimizing the PBI membrane material for operation at temperatures greater than 160oC with a lifetime of 40,000 hours. Supporting hardware such as flow field plates and a novel sealing concept were explored to yield the lower-cost stack assembly and corresponding manufacturing process. Additional work was conducted on acid loss, flow field design and cathode electrode development. Membranes and MEAs were supplied by team member BASF Fuel Cell (formerly PEMEAS), a manufacturer of polymer and fiber. Additional subcontractors Entegris, the University of South Carolina (USC) Fuel Cell Center, and RPI’s Fuel Cell Center conducted activities with regard to stack sealing, acid modeling, and electrode development.« less

  8. The Mechanical Performance of Subscale Candidate Elastomer Docking Seals

    NASA Technical Reports Server (NTRS)

    Bastrzyk, Marta B.; Daniels, Christopher C.

    2010-01-01

    The National Aeronautics and Space Administration is developing a Low Impact Docking System (LIDS) for future exploration missions. The mechanism is a new state-of-the-art device for in-space assembly of structures and rendezvous of vehicles. At the interface between two pressurized modules, each with a version of the LIDS attached, a composite elastomer-metal seal assembly prevents the breathable air from escaping into the vacuum of space. Attached to the active LIDS, this seal mates against the passive LIDS during docking operation. The main interface seal assembly must exhibit low leak and outgas values, must be able to withstand various harsh space environments, must remain operational over a range of temperatures from -50 C to 75 C, and perform after numerous docking cycles. This paper presents results from a comprehensive study of the mechanical performance of four candidate subscale seal assembly designs at -50, 23, 50, and 75 C test temperatures. In particular, the force required to fully compress the seal during docking, and that which is required for separation during the undocking operation were measured. The height of subscale main interface seal bulbs, as well as the test temperature, were shown to have a significant effect on the forces the main interface seal of the LIDS may experience during docking and undocking operations. The average force values required to fully compress each of the seal assemblies were shown to increase with test temperature by approximately 50% from -50 to 75 C. Also, the required compression forces were shown to increase as the height of the seal bulb was increased. The seal design with the tallest elastomer seal bulb, which was 31% taller than that with the shortest bulb, required force values approximately 45% higher than those for the shortest bulb, independent of the test temperature. The force required to separate the seal was shown to increase with decreasing temperature after 15 hours of simulated docking. No adhesion force was observed at 75 C, while magnitudes of up to 235 lbf were recorded at the refrigerated temperature. In addition, the adhesion force was observed to increase with bulb height. When compared with the LIDS program requirements, the measured compression force values were found to be below the maximum allowable load allotted to the main interface seal. However, the measured adhesion force values at the refrigerated test temperature were found to exceed the program limits.

  9. Thermal Testing of Ablators in the NASA Johnson Space Center Radiant Heat Test Facility

    NASA Technical Reports Server (NTRS)

    Del Papa, Steven; Milhoan, Jim; Remark, Brian; Suess, Leonard

    2016-01-01

    A spacecraft's thermal protection system (TPS) is required to survive the harsh environment experienced during reentry. Accurate thermal modeling of the TPS is required to since uncertainties in the thermal response result in higher design margins and an increase in mass. The Radiant Heat Test Facility (RHTF) located at the NASA Johnson Space Center (JSC) replicates the reentry temperatures and pressures on system level full scale TPS test models for the validation of thermal math models. Reusable TPS, i.e. tile or reinforced carbon-carbon (RCC), have been the primary materials tested in the past. However, current capsule designs for MPCV and commercial programs have required the use of an ablator TPS. The RHTF has successfully completed a pathfinder program on avcoat ablator material to demonstrate the feasibility of ablator testing. The test results and corresponding ablation analysis results are presented in this paper.

  10. Turbine Blade and Endwall Heat Transfer Measured in NASA Glenn's Transonic Turbine Blade Cascade

    NASA Technical Reports Server (NTRS)

    Giel, Paul W.

    2000-01-01

    Higher operating temperatures increase the efficiency of aircraft gas turbine engines, but can also degrade internal components. High-pressure turbine blades just downstream of the combustor are particularly susceptible to overheating. Computational fluid dynamics (CFD) computer programs can predict the flow around the blades so that potential hot spots can be identified and appropriate cooling schemes can be designed. Various blade and cooling schemes can be examined computationally before any hardware is built, thus saving time and effort. Often though, the accuracy of these programs has been found to be inadequate for predicting heat transfer. Code and model developers need highly detailed aerodynamic and heat transfer data to validate and improve their analyses. The Transonic Turbine Blade Cascade was built at the NASA Glenn Research Center at Lewis Field to help satisfy the need for this type of data.

  11. Prediction of elemental creep. [steady state and cyclic data from regression analysis

    NASA Technical Reports Server (NTRS)

    Davis, J. W.; Rummler, D. R.

    1975-01-01

    Cyclic and steady-state creep tests were performed to provide data which were used to develop predictive equations. These equations, describing creep as a function of stress, temperature, and time, were developed through the use of a least squares regression analyses computer program for both the steady-state and cyclic data sets. Comparison of the data from the two types of tests, revealed that there was no significant difference between the cyclic and steady-state creep strains for the L-605 sheet under the experimental conditions investigated (for the same total time at load). Attempts to develop a single linear equation describing the combined steady-state and cyclic creep data resulted in standard errors of estimates higher than obtained for the individual data sets. A proposed approach to predict elemental creep in metals uses the cyclic creep equation and a computer program which applies strain and time hardening theories of creep accumulation.

  12. ASRM propellant and igniter propellant development and process scale-up

    NASA Technical Reports Server (NTRS)

    Landers, L. C.; Booth, D. W.; Stanley, C. B.; Ricks, D. W.

    1993-01-01

    A program of formulation and process development for ANB-3652 motor propellant was conducted to validate design concepts and screen critical propellant composition and process parameters. Design experiments resulted in the selection of a less active grade of ferric oxide to provide better burning rate control, the establishment of AP fluidization conditions that minimized the adverse effects of particle attrition, and the selection of a higher mix temperature to improve mechanical properties. It is shown that the propellant can be formulated with AP and aluminum powder from various producers. An extended duration pilot plant run demonstrated stable equipment operation and excellent reproducibility of propellant properties. A similar program of formulation and process optimization culminating in large batch scaleup was conducted for ANB-3672 igniter propellant. The results for both ANB-3652 and ANB 37672 confirmed that their processing characteristics are compatible with full-scale production.

  13. Products from NASA's In-Space Propulsion Technology Program Applicable to Low-Cost Planetary Missions

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Pencil, Eric; Vento, Daniel; Peterson, Todd; Dankanich, John; Hahne, David; Munk, Michelle M.

    2011-01-01

    Since September 2001 NASA s In-Space Propulsion Technology (ISPT) program has been developing technologies for lowering the cost of planetary science missions. Recently completed is the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. Two other cost saving technologies nearing completion are the NEXT ion thruster and the Aerocapture technology project. Also under development are several technologies for low cost sample return missions. These include a low cost Hall effect thruster (HIVHAC) which will be completed in 2011, light weight propellant tanks, and a Multi-Mission Earth Entry Vehicle (MMEEV). This paper will discuss the status of the technology development, the cost savings or performance benefits, and applicability of these in-space propulsion technologies to NASA s future Discovery, and New Frontiers missions, as well as their relevance for sample return missions.

  14. Thin film strain gage development program

    NASA Technical Reports Server (NTRS)

    Grant, H. P.; Przybyszewski, J. S.; Anderson, W. L.; Claing, R. G.

    1983-01-01

    Sputtered thin-film dynamic strain gages of 2 millimeter (0.08 in) gage length and 10 micrometer (0.0004 in) thickness were fabricated on turbojet engine blades and tested in a simulated compressor environment. Four designs were developed, two for service to 600 K (600 F) and two for service to 900 K (1200 F). The program included a detailed study of guidelines for formulating strain-gage alloys to achieve superior dynamic and static gage performance. The tests included gage factor, fatigue, temperature cycling, spin to 100,000 G, and erosion. Since the installations are 30 times thinner than conventional wire strain gage installations, and any alteration of the aerodynamic, thermal, or structural performance of the blade is correspondingly reduced, dynamic strain measurement accuracy higher than that attained with conventional gages is expected. The low profile and good adherence of the thin film elements is expected to result in improved durability over conventional gage elements in engine tests.

  15. Middle Atmosphere Program. Handbook for MAP. Volume 13: Ground-based Techniques

    NASA Technical Reports Server (NTRS)

    Vincent, R. A. (Editor)

    1984-01-01

    Topics of activities in the middle Atmosphere program covered include: lidar systems of aerosol studies; mesosphere temperature; upper atmosphere temperatures and winds; D region electron densities; nitrogen oxides; atmospheric composition and structure; and optical sounding of ozone.

  16. Contour temperature programmed desorption for monitoring multiple chemical reaction products

    NASA Astrophysics Data System (ADS)

    Chusuei, C. C.; de la Peña, J. V.; Schreifels, J. A.

    1999-09-01

    A simple method for obtaining a comprehensive overview of major compounds desorbing from the surface during temperature programmed desorption (TPD) experiments is outlined. Standard commercially available equipment is used to perform the experiment. The method is particularly valuable when high molecular mass compounds are being studied. The acquisition of contour temperature programmed desorption (CTPD) spectra, sampling 50-dalton mass ranges at a time in the thermal desorption experiments, is described and demonstrated for the interaction of benzotriazole adsorbed on a Ni(111) surface. Conventional two-dimensional TPD spectra can be extracted from the CTPD by taking vertical slices of the contour.

  17. HEATPLOT: a temperature distribution plotting program for heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elrod, D.C.; Turner, W.D.

    1977-07-01

    HEATPLOT is a temperature distribution plotting program that may be used with HEATING5, a generalized heat conduction code. HEATPLOT is capable of drawing temperature contours (isotherms), temperature-time profiles, and temperature-distance profiles from the current HEATING5 temperature distribution or from temperature changes relative to the initial temperature distribution. Contour plots may be made for two- or three-dimensional models. Temperature-time profiles and temperature-distance profiles may be made for one-, two-, and three-dimensional models. HEATPLOT is an IBM 360/370 computer code which uses the DISSPLA plotting package. Plots may be created on the CALCOMP pen-and-ink, and CALCOMP cathode ray tube (CRT), or themore » EAI pen-and-ink plotters. Printer plots may be produced or a compressed data set that may be routed to any of the available plotters may be made.« less

  18. Do the western Himalayas defy global warming?

    NASA Astrophysics Data System (ADS)

    Yadav, Ram R.; Park, Won-Kyu; Singh, Jayendra; Dubey, Bhasha

    2004-09-01

    Observational records and reconstructions from tree rings reflect premonsoon (March to May) temperature cooling in the western Himalaya during the latter part of the 20th century. A rapid decrease of minimum temperatures at around three times higher rate, as compared to the rate of increase in maximum temperatures found in local climate records is responsible for the cooling trend in mean premonsoon temperature. The increase of the diurnal temperature range is attributed to large scale deforestation and land degradation in the area and shows the higher influence of local forcing factors on climate in contrast to the general trend found in higher latitudes of the northern Hemisphere.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Sean W., E-mail: sean.king@intel.com; Davis, Robert F.; Carter, Richard J.

    The desorption kinetics of molecular hydrogen (H{sub 2}) from silicon (001) surfaces exposed to aqueous hydrogen fluoride and remote hydrogen plasmas were examined using temperature programmed desorption. Multiple H{sub 2} desorption states were observed and attributed to surface monohydride (SiH), di/trihydride (SiH{sub 2/3}), and hydroxide (SiOH) species, subsurface hydrogen trapped at defects, and hydrogen evolved during the desorption of surface oxides. The observed surface hydride species were dependent on the surface temperature during hydrogen plasma exposure with mono, di, and trihydride species being observed after low temperature exposure (150 °C), while predominantly monohydride species were observed after higher temperature exposure (450 °C).more » The ratio of surface versus subsurface H{sub 2} desorption was also found to be dependent on the substrate temperature with 150 °C remote hydrogen plasma exposure generally leading to more H{sub 2} evolved from subsurface states and 450 °C exposure leading to more H{sub 2} desorption from surface SiH{sub x} species. Additional surface desorption states were observed, which were attributed to H{sub 2} desorption from Si (111) facets formed as a result of surface etching by the remote hydrogen plasma or aqueous hydrogen fluoride treatment. The kinetics of surface H{sub 2} desorption were found to be in excellent agreement with prior investigations of silicon surfaces exposed to thermally generated atomic hydrogen.« less

  20. Exergy analysis and simulation of a 30MW cogeneration cycle

    NASA Astrophysics Data System (ADS)

    Dev, Nikhil; Samsher; Kachhwaha, S. S.; Attri, Rajesh

    2013-06-01

    Cogeneration cycle is an efficient mean to recover the waste heat from the flue gases coming out of gas turbine. With the help of computer simulation, design parameters may be selected for the best performance of cogeneration cycle. In the present work a program is executed in software EES on the basis of mathematical modelling described in paper to study cogeneration cycle performance for different parameters. Results obtained are compared with the results available in literature and are found in good agreement with them. Real gas and water properties are inbuilt in the software. Results show that enthalpy of air entering the combustion chamber is higher than that of the flue gases at combustion chamber outlet. For different operative conditions, energy and exergy efficiencies follow similar trends; although, exergy efficiency values are always lower than the corresponding energy efficiency ones. From the results it is found that turbine outlet temperature (TIT) of 524°C is uniquely suited to efficient cogeneration cycle because it enables the transfer of heat from exhaust gas to the steam cycle to take place over a minimal temperature difference. This temperature range results in the maximum thermodynamic availability while operating with highest temperature and highest efficiency cogeneration cycle. Effect of cycle pressure ratio (CR), inlet air temperature (IAT) and water pressure at heat recovery steam generator (HRSG) inlet on the 30MW cogeneration cycle is also studied.

  1. Novel immobilization process of a thermophilic catalase: efficient purification by heat treatment and subsequent immobilization at high temperature.

    PubMed

    Xu, Juan; Luo, Hui; López, Claudia; Xiao, Jing; Chang, Yanhong

    2015-10-01

    The main goal of the present work is to investigate a novel process of purification and immobilization of a thermophilic catalase at high temperatures. The catalase, originated from Bacillus sp., was overexpressed in a recombinant Escherichia coli BL21(DE3)/pET28-CATHis and efficiently purified by heat treatment, achieving a threefold purification. The purified catalase was then immobilized onto an epoxy support at different temperatures (25, 40, and 55 °C). The immobilizate obtained at higher temperatures reached its maximum activity in a shorter time than that obtained at lower temperatures. Furthermore, immobilization at higher temperatures required a lower ionic strength than immobilization at lower temperatures. The characteristics of immobilized enzymes prepared at different temperatures were investigated. The high-temperature immobilizate (55 °C) showed the highest thermal stability, followed by the 40 °C immobilizate. And the high-temperature immobilizate (55 °C) had slightly higher operational stability than the 25 °C immobilizate. All of the immobilized catalase preparations showed higher stability than the free enzyme at alkaline pH 10.0, while the alkali resistance of the 25 °C immobilizate was slightly better than that of the 40 and 55 °C immobilizates.

  2. On-Line Thermal Barrier Coating Monitoring for Real-Time Failure Protection and Life Maximization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis H. LeMieux

    2004-10-01

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization'', to develop, build and install the first generation of an on-line TBC monitoring system for use on land -based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability availability maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCsmore » have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can therefore accelerate the degradation of substrate components materials and eventually lead to a premature failure of critical component and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems; a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization.« less

  3. Microencapsulated PCM slurries for heat transfer and energy storage in spacecraft systems

    NASA Astrophysics Data System (ADS)

    Colvin, David P.; Mulligan, James C.; Bryant, Yvonne G.; Duncan, John L.; Gravely, Benjamin T.

    The technical feasibility for providing significantly enhanced heat transport and storage as well as improved thermal control has been investigated during several Small Business Innovative Research (SBIR) programs for NASA, the United States Air Force (USAF), and the Strategic Defense Initiative Organization (SDIO) using microencapsulated phase change materials (PCMs) in both aqueous and nonaqueous two-component slurries. In the program for SDIO, novel two-component coolant fluids were prepared and successfully tested at both low (300 K) and intermediate temperatures (460 to 700 K). The two-component fluid slurries of microencapsulated PCMs included organic particles in aqueous and nonaqueous liquids, as well as microencapsulated metals that potentially could be carried by liquid metals or used as powdered heat sinks. Simulation and experimental studies showed that such active cooling systems could be designed and operated with enhancements of heat capacity that exceeded 10 times or 1000 percent that for the base fluid along with significant enhancement in the fluid's heat capacity. Furthermore, this enhancement provided essentially isothermal conditions throughout the pumped primary coolant fluid loop. The results suggest that together with much higher fluid thermal capacity, greater uniformity of temperature is achievable with such fluids, and that significant reductions in pumping power, system size, and system mass are also possible.

  4. High-pressure studies of cycloheptane up to 30 GPa

    NASA Astrophysics Data System (ADS)

    Ma, Chunli; Cui, Qiliang; Liu, Zhenxian

    2013-06-01

    High-pressure synchrotron angle dispersive x-ray diffraction, Raman scattering and infrared absorption studies have been performed on cycloheptane (C7H14) up to 30 GPa at room temperature by using diamond anvil cell techniques. The synchrotron x-ray diffraction results indicate that the liquid cyclopentane undergoes two phase transitions at around 0.5 and 1.0 GPa, respectively. Then, it gradually turns into glass state starting from 3.0 GPa. The features of the Raman scattering and infrared absorption show no significant changes with increasing pressure below 3 GPa. This implies that the two phases observed by the x-ray diffraction can be attributed to plastic phases in which the cycloheptane molecules are held in an ordered structure while the molecular orientation is disordered. Up on further compression, all Raman and infrared bands begin broadening around 3.0 GPa that provide further evidence on the transition to glass state. Our results also suggest different paths on phase transitions under isothermal compression at room temperature compare to that previously reported under isobaric cooling at ambient pressure. This work was supported by the NSF of China (91014004, 11004074,11074089), the specialized Research Fund for the Doctoral Program of Higher Education (20110061110011, 20100061120093), and the National Basic Research Program of China (2011CB808200).

  5. Computer Program for Calculation of a Gas Temperature Profile by Infrared Emission: Absorption Spectroscopy

    NASA Technical Reports Server (NTRS)

    Buchele, D. R.

    1977-01-01

    A computer program to calculate the temperature profile of a flame or hot gas was presented in detail. Emphasis was on profiles found in jet engine or rocket engine exhaust streams containing H2O or CO2 radiating gases. The temperature profile was assumed axisymmetric with an assumed functional form controlled by two variable parameters. The parameters were calculated using measurements of gas radiation at two wavelengths in the infrared. The program also gave some information on the pressure profile. A method of selection of wavelengths was given that is likely to lead to an accurate determination of the parameters. The program is written in FORTRAN IV language and runs in less than 60 seconds on a Univac 1100 computer.

  6. Computer programs for thermodynamic and transport properties of hydrogen (tabcode-II)

    NASA Technical Reports Server (NTRS)

    Roder, H. M.; Mccarty, R. D.; Hall, W. J.

    1972-01-01

    The thermodynamic and transport properties of para and equilibrium hydrogen have been programmed into a series of computer routines. Input variables are the pair's pressure-temperature and pressure-enthalpy. The programs cover the range from 1 to 5000 psia with temperatures from the triple point to 6000 R or enthalpies from minus 130 BTU/lb to 25,000 BTU/lb. Output variables are enthalpy or temperature, density, entropy, thermal conductivity, viscosity, at constant volume, the heat capacity ratio, and a heat transfer parameter. Property values on the liquid and vapor boundaries are conveniently obtained through two small routines. The programs achieve high speed by using linear interpolation in a grid of precomputed points which define the surface of the property returned.

  7. Implications of the pH and temperature of diluted, cooled boar semen on fresh and frozen-thawed sperm motility characteristics.

    PubMed

    Purdy, P H; Tharp, N; Stewart, T; Spiller, S F; Blackburn, H D

    2010-10-15

    Boar semen is typically collected, diluted and cooled for AI use over numerous days, or frozen immediately after shipping to capable laboratories. The storage temperature and pH of the diluted, cooled boar semen could influence the fertility of boar sperm. Therefore, the purpose of this study was to determine the effects of pH and storage temperature on fresh and frozen-thawed boar sperm motility end points. Semen samples (n = 199) were collected, diluted, cooled and shipped overnight to the National Animal Germplasm Program laboratory for freezing and analysis from four boar stud facilities. The temperature, pH and motility characteristics, determined using computer automated semen analysis, were measured at arrival. Samples were then cryopreserved and post-thaw motility determined. The commercial stud was a significant source of variation for mean semen temperature and pH, as well as total and progressive motility, and numerous other sperm motility characteristics. Based on multiple regression analysis, pH was not a significant source of variation for fresh or frozen-thawed boar sperm motility end points. However, significant models were derived which demonstrated that storage temperature, boar, and the commercial stud influenced sperm motility end points and the potential success for surviving cryopreservation. We inferred that maintaining cooled boar semen at approximately 16 °C during storage will result in higher fresh and frozen-thawed boar sperm quality, which should result in greater fertility. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Master Curve and Conventional Fracture Toughness of Modified 9Cr-1Mo Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji-Hyun, Yoon; Sung-Ho, Kim; Bong-Sang, Lee

    2006-07-01

    Modified 9Cr-1Mo steel is a primary candidate material for reactor pressure vessel of Very High Temperature Gas-Cooled Reactor (VHTR) in Korean Nuclear Hydrogen Development and Demonstration (NHDD) program. In this study, T0 reference temperature, J-R fracture resistance and Charpy impact properties were evaluated for commercial Grade 91 steel as preliminary tests for the selection of the RPV material for VHTR. The fracture toughness of the modified 9Cr-1Mo steel was compared with those of SA508-Gr.3. The objective of this study was to obtain pre-irradiation fracture toughness properties of modified 9Cr-1Mo steel as reference data for the radiation effects investigation. The resultsmore » are as follows. Charpy impact properties of the modified 9Cr-1Mo steel were similar to those of SA508-Gr.3. T0 reference temperatures were measured as -67.7 deg C and -72.4 deg C from the tests with standard PCVN (pre-cracked Charpy V-notch) and half sized PCVN specimens respectively, which were similar to results for SA508-Gr.3. The K{sub Jc} values of modified 9Cr-1Mo with test temperatures are successfully expressed with the Master Curve. The J-R fracture resistance of modified 9Cr-1Mo steel at room temperature was almost the same as that of SA508-Gr.3. On the other hand it was a little bit higher at an elevated temperature. (authors)« less

  9. Fracture toughness and the master curve for modified 9Cr-1Mo steel

    NASA Astrophysics Data System (ADS)

    Yoon, Ji-Hyun; Yoon, Eui-Pak

    2006-12-01

    Modified 9Cr-1Mo steel is a primary candidate material for the reactor pressure vessel of a Very High Temperature Gas-Cooled Reactor (VHTR) in the Korean Nuclear Hydrogen Development and Demonstration (NHDD) program. In this study, the T0 reference temperature, J-R fracture resistance and Charpy impact properties were evaluated for commercial Grade 91 steel as part of the preliminary testing for a selection of the RPV material for the VHTR. The fracture toughness of the modified 9Cr-1Mo steel was compared with that of SA508-Gr.3. The objective of this study was to obtain the pre-irradiation fracture toughness properties of the modified 9Cr-1Mo steel as reference data for an investigation of radiation effects. Charpy impact properties of the modified 9Cr-1Mo steel were similar to those of SA508-Gr.3. T0 reference temperatures were measured as -67.7 and -72.4°C from the tests with standard PCVN (pre-cracked Charpy V-notch) and half-sized PCVN specimens respectively, which were similar to the results for SA508-Gr.3. The KJc values of the modified 9Cr-1Mo steel with the test temperatures are successfully expressed by the Master Curve. The J-R fracture resistance of the modified 9Cr-1Mo steel at room temperature was nearly identical to that of SA508-Gr.3; in contrast, it was slightly higher at an elevated temperature.

  10. Long-Term Time Variability of Thermal Emission in Jupiter

    NASA Astrophysics Data System (ADS)

    Orton, Glenn; Fletcher, Leigh; Fisher, Brendan; Yanamandra-Fisher, Padma; Greathouse, Thomas; Sinclair, James; Greco, Jennifer; Boydstun, Kimberly; Wakefield, Laura; Kim, Sonia; Fujiyoshi, Takuya

    2015-04-01

    Mid-infrared images of Jupiter's thermal emission in discrete filters between 4.8 and 24.5 μm from 1996 to the present day, spanning over a Jovian year, enable time-domain studies of its temperature field, minor-constituent distribution and cloud properties. The behavior of stratospheric (~10-mbar) and upper-tropospheric (~100-400 mbar) temperatures is generally consistent with predictions of seasonal variability. There also appear to be long-term periodicities of tropospheric temperatures, with meridionally dependent amplitudes, phases and periods. Temperatures near and south of the equator vary the least. During the 'global upheaval' or the corresponding 'revival' events that have produced dramatic changes in Jupiter's visible appearance and cloud cover, there were few large-scale variations of zonal mean temperatures in the stratosphere or troposphere, although there are colder discrete regions associated with the updraft events that marked the early stages of revivals. Changes in visible albedo during the upheavals are accompanied by increases in cloudiness at 700 mbar and higher pressures, along with increases in the ammonia-gas mixing ratio. In contrast to all these changes, the meridional distribution of the 240-mbar para-hydrogen fraction appears to be time-invariant. Jupiter also exhibits prominent temperature waves in both the upper troposphere and stratosphere that move slowly westward in System III. J. Sinclair is supported by a NASA Postdoctoral Program fellowship; J. Greco, K. Boydstun, L. Wakefield and S. Kim were supported by Caltech Summer Undergraduate Research Fellowships while resident at JPL.

  11. Influences of P doping on magnetic phase transition and structure in MnCoSi ribbon

    NASA Astrophysics Data System (ADS)

    Du, Qian-Heng; Chen, Guo-Fu; Yang, Wen-Yun; Hua, Mu-Xin; Du, Hong-Lin; Wang, Chang-Sheng; Liu, Shun-Quan; Hang, Jing-Zhi; Zhou, Dong; Zhang, Yan; Yan, Jin-Bo

    2015-06-01

    The structure and magnetic properties of MnCoSi1- x Px (x = 0.05-0.50) are systematically investigated. With P content increasing, the lattice parameter a increases monotonically while both b and c decrease. At the same time, the temperature of metamagnetic transition from a low-temperature non-collinear ferromagnetic state to a high-temperature ferromagnetic state decreases and a new magnetic transition from a higher-magnetization ferromagnetic state to a lower-magnetization ferromagnetic state is observed in each of these compounds for the first time. This is explained by the changes of crystal structure and distance between Mn and Si atoms with the increase of temperature according to the high-temperature XRD result. The metamagnetic transition is found to be a second-order magnetic transition accompanied by a low inversed magnetocaloric effect (1.0 J·kg-1·K-1 at 5 T) with a large temperature span (190 K at 5 T) compared with the scenario of MnCoSi. The changes in the order of metamagnetic transition and structure make P-doped MoCoSi compounds good candidates for the study of magnetoelastic coupling and the modulation of magnetic phase transition. Project supported by the National Natural Science Foundation of China (Grant No. 11275013), the Fund from the National Physics Laboratory, China Academy of Engineering Physics (Grant No. 2013DB01), and the National Key Basic Research Program of China (Grant No. 2010CB833104).

  12. Thales Cryogenics rotary cryocoolers for HOT applications

    NASA Astrophysics Data System (ADS)

    Martin, Jean-Yves; Cauquil, Jean-Marc; Benschop, Tonny; Freche, Sébastien

    2012-06-01

    Thales Cryogenics has an extensive background in delivering reliable linear and rotary coolers for military, civil and space programs. Recent work carried out at detector level enable to consider a higher operation temperature for the cooled detectors. This has a direct impact on the cooling power required to the cryocooler. In continuation of the work presented last year, Thales cryogenics has studied the operation and optimization of the rotary cryocoolers at high cold regulation temperature. In this paper, the performances of the Thales Cryogenics rotary cryocoolers at elevated cold regulation temperature will be presented. From these results, some trade-offs can be made to combine correct operation of the cryocooler on all the ambient operational range and maximum efficiency of the cryocooler. These trade-offs and the impact on MTTF of elevated cold regulation temperature will be presented and discussed. In correlation with the increase of the cold operation temperature, the cryocooler input power is significantly decreased. As a consequence, the cooler drive electronics own consumption becomes relatively important and must be reduced in order to minimize global input power to the cooling function (cryocooler and cooler drive electronics). Thales Cryogenics has developed a new drive electronics optimized for low input power requirements. In parallel, improvements on RM1 and RM2 cryocoolers have been defined and implemented. The main impacts on performances of these new designs will be presented. Thales cryogenics is now able to propose an efficient cooling function for application requiring a high cold regulation temperature including a range of tuned rotary coolers.

  13. Changes in Land Cover and Terrestrial Biogeochemistry in the US: Key Findings from the Climate Science Special Report (CSSR)

    NASA Astrophysics Data System (ADS)

    Hibbard, K. A.; Hoffman, F. M.; Huntzinger, D. N.; West, T. O.

    2017-12-01

    The continual increase in annual average temperatures (1.0°C for the period 1901-2016 for the contiguous US), growing number of high temperature records, increasing intensity and frequency of heavy precipitation events in most parts of the US, and rising global mean sea level are among the key findings from the forthcoming Climate Science Special Report (CSSR) produced by the US Global Change Research Program (USGCRP). A chapter new to the climate science assessments directly addresses the feedbacks between climate change, land use and land cover change, and the carbon cycle. While the terrestrial biosphere is presently a net carbon sink, which has steadily increased since 1980, the future sign and magnitude of biosphere uptake cannot be determined because of uncertainties in the future trajectory of land cover and land use. Citing recent research, the chapter highlights that the combined effects of land use and land cover changes due to human activities account for 40% ± 16% of the human-caused global radiative forcing from 1850 to present. Moverover, plant community structure has already been altered by climate change and changes in the frequency and intensity of extreme events. Changes in temperature also have direct effects on the land surface as well as feedbacks to the atmosphere. For example, the number of consecutive frost-free days and the length of the growing season have increased across all regions in the contiguous US; however, overall plant productivity has been limited by biotic factors and seasonal limitations in water and nutrient availability. Within cities, the urban heat island (UHI) effect results in daytime temperatures 0.5°C-4.0°C higher and nighttime temperatures 1.0°C-2.5°C higher in urban areas than surrounding rural areas. We discuss terrestrial and biogeochemical forcings and feedbacks that can serve as critical evaluation and paramaterization datasets for Earth system modeling approaches with implications for management of agriculture, forestry, and urban environments.

  14. Microstructural indicators of transition mechanisms in time-dependent fatigue crack growth in nickel base superalloys

    NASA Astrophysics Data System (ADS)

    Heeter, Ann E.

    Gas turbine engines are an important part of power generation in modern society, especially in the field of aerospace. Aerospace engines are design to last approximately 30 years and the engine components must be designed to survive for the life of the engine or to be replaced at regular intervals to ensure consumer safety. Fatigue crack growth analysis is a vital component of design for an aerospace component. Crack growth modeling and design methods date back to an origin around 1950 with a high rate of accuracy. The new generation of aerospace engines is designed to be efficient as possible and require higher operating temperatures than ever seen before in previous generations. These higher temperatures place more stringent requirements on the material crack growth performance under creep and time dependent conditions. Typically the types of components which are subject to these requirements are rotating disk components which are made from advanced materials such as nickel base superalloys. Traditionally crack growth models have looked at high temperature crack growth purely as a function of temperature and assumed that all crack growth was either controlled by a cycle dependent or time dependent mechanism. This new analysis is trying to evaluate the transition between cycle-dependent and time-dependent mechanism and the microstructural markers that characterize this transitional behavior. The physical indications include both the fracture surface morphology as well as the shape of the crack front. The research will evaluate whether crack tunneling occurs and whether it consistently predicts a transition from cycle-dependent crack growth to time-dependent crack growth. The study is part of a larger research program trying to include the effects of geometry, mission profile and environmental effects, in addition to temperature effects, as a part of the overall crack growth system. The outcome will provide evidence for various transition types and correlate those physical attributes back to the material mechanisms to improve predictive modeling capability.

  15. 34 CFR 668.8 - Eligible program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... counseling. (c) Institution of higher education. An eligible program provided by an institution of higher...) Proprietary institution of higher education and postsecondary vocational institution. An eligible program provided by a proprietary institution of higher education or postsecondary vocational institution— (1)(i...

  16. Development of a Temperature Sensor for Jet Engine and Space Missions Environments

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Culley, Dennis E.; Elbuluk, Malik

    2008-01-01

    Electronic systems in aerospace and in space exploration missions are expected to encounter extreme temperatures and wide thermal swings. To address the needs for extreme temperature electronics, research efforts exist at the NASA Glenn Research Center (GRC) to develop and evaluate electronics for extreme temperature operations, and to establish their reliability under extreme temperature operation and thermal cycling; conditions that are typical of both the aerospace and space environments. These efforts are supported by the NASA Fundamental Aeronautics/Subsonic Fixed Wing Program and by the NASA Electronic Parts and Packaging (NEPP) Program. This work reports on the results obtained on the development of a temperature sensor geared for use in harsh environments.

  17. CosmoTransitions: Computing cosmological phase transition temperatures and bubble profiles with multiple fields

    NASA Astrophysics Data System (ADS)

    Wainwright, Carroll L.

    2012-09-01

    I present a numerical package (CosmoTransitions) for analyzing finite-temperature cosmological phase transitions driven by single or multiple scalar fields. The package analyzes the different vacua of a theory to determine their critical temperatures (where the vacuum energy levels are degenerate), their supercooling temperatures, and the bubble wall profiles which separate the phases and describe their tunneling dynamics. I introduce a new method of path deformation to find the profiles of both thin- and thick-walled bubbles. CosmoTransitions is freely available for public use.Program summaryProgram Title: CosmoTransitionsCatalogue identifier: AEML_v1_0Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEML_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 8775No. of bytes in distributed program, including test data, etc.: 621096Distribution format: tar.gzProgramming language: Python.Computer: Developed on a 2009 MacBook Pro. No computer-specific optimization was performed.Operating system: Designed and tested on Mac OS X 10.6.8. Compatible with any OS with Python installed.RAM: Approximately 50 MB, mostly for loading plotting packages.Classification: 1.9, 11.1.External routines: SciPy, NumPy, matplotLibNature of problem: I describe a program to analyze early-Universe finite-temperature phase transitions with multiple scalar fields. The goal is to analyze the phase structure of an input theory, determine the amount of supercooling at each phase transition, and find the bubble-wall profiles of the nucleated bubbles that drive the transitions.Solution method: To find the bubble-wall profile, the program assumes that tunneling happens along a fixed path in field space. This reduces the equations of motion to one dimension, which can then be solved using the overshoot/undershoot method. The path iteratively deforms in the direction opposite the forces perpendicular to the path until the perpendicular forces vanish (or become very small). To find the phase structure, the program finds and integrates the change in a phase's minimum with respect to temperature.Running time: Approximately 1 minute for full analysis of the two-scalar-field test model on a 2.5 GHz CPU.

  18. Embryonic developmental patterns and energy expenditure are affected by incubation temperature in wood ducks (Aix sponsa).

    PubMed

    DuRant, S E; Hopkins, W A; Hepp, G R

    2011-01-01

    Recent research in birds has demonstrated that incubation temperature influences a suite of traits important for hatchling development and survival. We explored a possible mechanism for the effects on hatchling quality by determining whether incubation temperature influences embryonic energy expenditure of wood ducks (Aix sponsa). Because avian embryos are ectothermic, we hypothesized that eggs incubated at higher temperatures would have greater energy expenditure at any given day of incubation. However, because eggs incubated at lower temperatures take longer to hatch than embryos incubated at higher temperatures, we hypothesized that the former would expend more energy during incubation. We incubated eggs at three temperatures (35.0°, 35.9°, and 37.0°C) that fall within the range of temperatures of naturally incubated wood duck nests. We then measured the respiration of embryos every 3 d during incubation, immediately after ducks externally pipped, and immediately after hatching. As predicted, embryos incubated at the highest temperature had the highest metabolic rates on most days of incubation, and they exhibited faster rates of development. Yet, because of greater energy expended during the hatching process, embryos incubated at the lowest temperature expended 20%-37% more energy during incubation than did embryos incubated at the higher temperatures. Slower developmental rates and greater embryonic energy expenditure of embryos incubated at the lowest temperature could contribute to their poor physiological performance as ducklings compared with ducklings that hatch from eggs incubated at higher temperatures.

  19. Effect of temperature on the formation of creep substructure in sodium chloride single crystals

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.; Pharr, George M.

    1992-01-01

    The effect of temperature on the substructure morphology and the cell and subgrain size was investigated experimentally in NaCl single crystals under creep in the temperature range 573-873 K. It is found that the effect of temperature on the cell and subgrain sizes is weak in comparison with the effect of stress. However, there was a qualitative change in the substructure morphology with temperature, with the cells and subgrains better defined at higher temperatures. The volume fraction of the cell boundaries decreased with increasing temperature, thereby indicating a refinement of the microstructure at higher temperatures.

  20. 34 CFR 668.8 - Eligible program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... counseling. (c) Institution of higher education. An eligible program provided by an institution of higher... institution of higher education and postsecondary vocational institution. An eligible program provided by a proprietary institution of higher education or postsecondary vocational institution— (1)(i) Must require a...

  1. Operate A Chemical Surety Program And Studies Supporting The Medical Chemical Defense Research Program

    DTIC Science & Technology

    2010-05-01

    23 Task Execution Plan 34 – Temperature Testing of Pyridostigmine Bromide (PB) .......... 23 KEY RESEARCH ACCOMPLISHMENTS...29, 2010. Staff was assembled and materials have been ordered. Task Execution Plan (TEP) 0034 – Temperature Testing of Pyridostigmine Bromide

  2. Chromatographic efficiency of polar capillary columns applied for the analysis of fatty acid methyl esters by gas chromatography.

    PubMed

    Waktola, Habtewold D; Mjøs, Svein A

    2018-04-01

    The chromatographic efficiency that could be achieved in temperature-programmed gas chromatography was compared for four capillary columns that are typically applied for analysis of fatty acid methyl esters (FAME). Three different carrier gases, hydrogen, helium and nitrogen, were applied. For each experiment, the carrier gas velocities and the temperature rates were varied with a full 9 × 3 design, with nine levels on the carrier gas velocity and temperature rates of 1, 2 or 3°C/min. Response surface methodology was used to create models of chromatographic efficiency as a function of temperature rate and carrier gas velocity. The chromatographic efficiency was defined as the inverse of peak widths measured in retention index units. The final results were standardized so that the efficiencies that could be achieved within a certain time frame, defined by the retention time of the last compound in the chromatogram, could be compared. The results show that there were clear differences in the efficiencies that could be achieved with the different columns and that the efficiency decreased with increasing polarity of the stationary phase. The differences can be explained by higher resistance to mass transfer in the stationary phase in the most polar columns. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Frequency analysis of stress relaxation dynamics in model asphalts

    NASA Astrophysics Data System (ADS)

    Masoori, Mohammad; Greenfield, Michael L.

    2014-09-01

    Asphalt is an amorphous or semi-crystalline material whose mechanical performance relies on viscoelastic responses to applied strain or stress. Chemical composition and its effect on the viscoelastic properties of model asphalts have been investigated here by computing complex modulus from molecular dynamics simulation results for two different model asphalts whose compositions each resemble the Strategic Highway Research Program AAA-1 asphalt in different ways. For a model system that contains smaller molecules, simulation results for storage and loss modulus at 443 K reach both the low and high frequency scaling limits of the Maxwell model. Results for a model system composed of larger molecules (molecular weights 300-900 g/mol) with longer branches show a quantitatively higher complex modulus that decreases significantly as temperature increases over 400-533 K. Simulation results for its loss modulus approach the low frequency scaling limit of the Maxwell model at only the highest temperature simulated. A Black plot or van Gurp-Palman plot of complex modulus vs. phase angle for the system of larger molecules suggests some overlap among results at different temperatures for less high frequencies, with an interdependence consistent with the empirical Christensen-Anderson-Marasteanu model. Both model asphalts are thermorheologically complex at very high frequencies, where they show a loss peak that appears to be independent of temperature and density.

  4. Tensile Properties of GRCop-84

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Loewenthal, William S.; Yun, Hee-Man

    2012-01-01

    This is a chapter in the final report on GRCop-84 for the Reusable Launch Vehicle (RLV) Second Generation/Project Constellation Program. It contains information on the tensile properties of GRCop-84. GRCop-84 (Cu-8 at.% Cr-4 at.% Nb) was produced by extrusion and Hot Isostatic Pressing (HIPing). Some of the extrusions were rolled to plate and sheet while other extrusions were drawn into tubing. The material was further subjected to various heat treatments corresponding to annealing, anticipated typical brazing conditions, an end-of-life condition and various elevated temperature exposures to attempt to improve creep resistance. As anticipated, cold work increased strength while decreasing ductility. Annealing at 600 C (1112 F) and higher temperatures was effective. An exposure for 100 h at 500 C (932 F) resulted in an increase in strength rather than the anticipated decrease. High temperature simulated-braze cycles and thermal exposures lowered the strength of GRCop-84, but the deceases were small compared to precipitation strengthened copper alloys. It was observed that the excess Cr could form large precipitates that lower the reduction in area though it appears a minimum amount is required. Overall, GRCop-84 exhibits good stability of its tensile properties, which makes it an excellent candidate for rocket engine liners and many other high temperature applications.

  5. Combustor and Vane Features and Components Tested in a Gas Turbine Environment

    NASA Technical Reports Server (NTRS)

    Roinson, R. Craig; Verrilli, Michael J.

    2003-01-01

    The use of ceramic matrix composites (CMCs) as combustor liners and turbine vanes provides the potential of improving next-generation turbine engine performance, through lower emissions and higher cycle efficiency, relative to today s use of superalloy hot-section components. For example, the introduction of film-cooling air in metal combustor liners has led to higher levels of nitrogen oxide (NOx) emissions from the combustion process. An environmental barrier coated (EBC) siliconcarbide- fiber-reinforced silicon carbide matrix (SiC/SiC) composite is a new material system that can operate at higher temperatures, significantly reducing the film-cooling requirements and enabling lower NOx production. Evaluating components and subcomponents fabricated from these advanced CMCs under gas turbine conditions is paramount to demonstrating that the material system can perform as required in the complex thermal stress and environmentally aggressive engine environment. To date, only limited testing has been conducted on CMC combustor and turbine concepts and subelements of this type throughout the industry. As part of the Ultra-Efficient Engine Technology (UEET) Program, the High Pressure Burner Rig (HPBR) at the NASA Glenn Research Center was selected to demonstrate coupon, subcomponent feature, and component testing because it can economically provide the temperatures, pressures, velocities, and combustion gas compositions that closely simulate the engine environments. The results have proven the HPBR to be a highly versatile test rig amenable to multiple test specimen configurations essential to coupon and component testing.

  6. High environmental temperature around farrowing induced heat stress in crated sows.

    PubMed

    Muns, R; Malmkvist, J; Larsen, M L V; Sørensen, D; Pedersen, L J

    2016-01-01

    The aim of the experiment was to study the impact of high ambient temperature (25°C) around farrowing on crated sows unable to perform thermoregulatory behavior. Twenty sows were housed in 2 farrowing rooms in conventional farrowing crates. In 1 room (CONTROL) temperature was kept at 20°C. In the other room (HEAT) temperature was initially kept at 20°C and gradually raised until it reached 25°C from d 112 to 115 of gestation. Then the temperature was gradually lowered to 20°C. Sows were continuously video recorded for behavior recording. Sows' respiration rates were recorded from d 3 before farrowing to d 5 after farrowing. Sows' rectal temperatures were recorded from d 1 before farrowing to d 8 after farrowing, and sows' udder surface temperatures were recorded from the day of farrowing to d 3 after farrowing. All measures were recorded daily. Sows' BW were recorded at d 108 of gestation and at weaning. Sows' back fat was recorded on farrowing day, when room temperature was set again at 20°C, and at weaning. Piglets were weighed at d 1, 14, and 21. The HEAT sows spent a higher proportion of time lying in the lateral position than CONTROL sows, both during the 16 h before farrowing and the 24 h after the start of farrowing ( < 0.05), but with no difference in the amount of time spent lying down between groups ( > 0.10). The HEAT sows had higher rectal temperature on d 1 after farrowing ( < 0.05) and had udder surface temperature 0.9°C higher than that of CONTROL sows during the recording period ( < 0.05). The HEAT sows also tended to have longer farrowing duration ( < 0.10). Respiration rate was higher in HEAT sows on d 1 before farrowing and on the day of farrowing. On d 7, 8, and 9, CONTROL sows had higher feed intake ( < 0.05), and piglets from CONTROL sows were heavier at d 21 after farrowing ( < 0.05). High ambient temperature around farrowing altered sows' postural behavior. Sows reacted to the thermal challenge with higher respiration rate around farrowing, but both their rectal and udder temperatures were elevated, indicating that they were not able to compensate for the higher ambient temperature. High ambient temperature negatively influenced sows' feed intake, with negative impact on piglets' weaning weight. High temperatures around farrowing (25°C) compromise crated sows' welfare, with a potential negative impact on offspring performance.

  7. Increasing access and support for emergency management higher education programs.

    PubMed

    Cwiak, Carol L

    2014-01-01

    The number of emergency management higher education programs has grown dramatically since 1994 when the FEMA Higher Education Program was created to propagate and support such growth. Data collected annually since 2007 from emergency management higher education programs shows that these programs face some consistent challenges. These challenges were coupled with annual data on program access and support indicators via dimensional analysis to answer the questions: To what extent are the challenges linked to a lack of access or support? If there is linkage, what can be gleaned from these linkages that can help address the challenges through improving access and support? The analysis showed that lack of access to funding and resources, and lack of support from partner organizations, has an impact on emergency management higher education. Discussion of that impact is followed with detailed recommendations that are focused on strengthening both internal and external access and support relationships for emergency management higher education programs.

  8. Temperature and electrical memory of polymer fibers

    NASA Astrophysics Data System (ADS)

    Yuan, Jinkai; Zakri, Cécile; Grillard, Fabienne; Neri, Wilfrid; Poulin, Philippe

    2014-05-01

    We report in this work studies of the shape memory behavior of polymer fibers loaded with carbon nanotubes or graphene flakes. These materials exhibit enhanced shape memory properties with the generation of a giant stress upon shape recovery. In addition, they exhibit a surprising temperature memory with a peak of generated stress at a temperature nearly equal to the temperature of programming. This temperature memory is ascribed to the presence of dynamical heterogeneities and to the intrinsic broadness of the glass transition. We present recent experiments related to observables other than mechanical properties. In particular nanocomposite fibers exhibit variations of electrical conductivity with an accurate memory. Indeed, the rate of conductivity variations during temperature changes reaches a well defined maximum at a temperature equal to the temperature of programming. Such materials are promising for future actuators that couple dimensional changes with sensing electronic functionalities.

  9. Optimization of the freezing process for hematopoietic progenitor cells: effect of precooling, initial dimethyl sulfoxide concentration, freezing program, and storage in vapor-phase or liquid nitrogen on in vitro white blood cell quality.

    PubMed

    Dijkstra-Tiekstra, Margriet J; Setroikromo, Airies C; Kraan, Marcha; Gkoumassi, Effimia; de Wildt-Eggen, Janny

    2014-12-01

    Adding dimethyl sulfoxide (DMSO) to hematopoietic progenitor cells (HPCs) causes an exothermic reaction, potentially affecting their viability. The freezing method might also influence this. The aim was to investigate the effect of 1) precooling of DMSO and plasma (D/P) and white blood cell (WBC)-enriched product, 2) DMSO concentration of D/P, 3) freezing program, and 4) storage method on WBC quality. WBC-enriched product without CD34+ cells was used instead of HPCs. This was divided into six or eight portions. D/P (20 or 50%; precooled or room temperature [RT]) was added to the WBC-enriched product (precooled or RT), resulting in 10% DMSO, while monitoring temperature. The product was frozen using controlled-rate freezing ("fast-rate" or "slow-rate") and placed in vapor-phase or liquid nitrogen. After thawing, WBC recovery and viability were determined. Temperature increased most for precooled D/P to precooled WBC-enriched product, without influence of 20 or 50% D/P, but remained for all variations below 30°C. WBC recovery for both freezing programs was more than 95%. Recovery of WBC viability was higher for slow-rate freezing compared to fast-rate freezing (74% vs. 61%; p < 0.05) and also for 50% compared to 20% D/P (two test variations). Effect of precooling D/P or WBC-enriched product and of storage in vapor-phase or liquid nitrogen was marginal. Based on these results, precooling is not necessary. Fifty percent D/P is preferred over 20% D/P. Slow-rate freezing is preferred over fast-rate freezing. For safety reasons storage in vapor-phase nitrogen is preferred over storage in liquid nitrogen. Additional testing using real HPCs might be necessary. © 2014 AABB.

  10. Inspired gas humidity and temperature during mechanical ventilation with the Stephanie ventilator.

    PubMed

    Preo, Bianca L; Shadbolt, Bruce; Todd, David A

    2013-11-01

    To measure inspired gas humidity and temperature delivered by a Stephanie neonatal ventilator with variations in (i) circuit length; (ii) circuit insulation; (iii) proximal airway temperature probe (pATP) position; (iv) inspiratory temperature (offset); and (v) incubator temperatures. Using the Stephanie neonatal ventilator, inspired gas humidity and temperature were measured during mechanical ventilation at the distal inspiratory limb and 3 cm down the endotracheal tube. Measurements were made with a long or short circuit; with or without insulation of the inspiratory limb; proximal ATP (pATP) either within or external to the incubator; at two different inspiratory temperature (offset) of 37(-0.5) and 39(-2.0)°C; and at three different incubator temperatures of 32, 34.5, and 37°C. Long circuits produced significantly higher inspired humidity than short circuits at all incubator settings, while only at 32°C was the inspired temperature higher. In the long circuits, insulation further improved the inspired humidity especially at 39(-2.0)°C, while only at incubator temperatures of 32 and 37°C did insulation significantly improve inspired temperature. Positioning the pATP outside the incubator did not result in higher inspired humidity but did significantly improve inspired temperature. An inspiratory temperature (offset) of 39(-2.0)°C delivered significantly higher inspired humidity and temperature than the 37(-0.5)°C especially when insulated. Long insulated Stephanie circuits should be used for neonatal ventilation when the infant is nursed in an incubator. The recommended inspiratory temperature (offset) of 37(-0.5)°C produced inspired humidity and temperature below international standards, and we suggest an increase to 39(-2.0)°C. © 2013 John Wiley & Sons Ltd.

  11. Sloths like it hot: ambient temperature modulates food intake in the brown-throated sloth (Bradypus variegatus)

    PubMed Central

    Haupt, Ryan J.; Avey-Arroyo, Judy A.; Wilson, Rory P.

    2015-01-01

    Sloths are considered to have one of the lowest mass-specific metabolic rates of any mammal and, in tandem with a slow digestive rate, have been theorized to have correspondingly low rates of ingestion. Here, we show in a study conducted over five months, that three captive Bradypus variegatus (Brown-throated sloths) had a remarkably low mean food intake of 17 g kg−1day−1 (SD 4.2). Food consumption was significantly affected by ambient temperature, with increased intake at higher temperatures. We suggest that the known fluctuation of sloth core body temperature with ambient temperature affects the rate at which gut fauna process digesta, allowing for increased rates of fermentation at higher temperatures. Since Bradypus sloths maintain a constantly full stomach, faster rates of fermentation should enhance digestive throughput, increasing the capacity for higher levels of food intake, thereby allowing increased energy acquisition at higher ambient temperatures. This contrasts with other mammals, which tend to show increased levels of food intake in colder conditions, and points to the importance of temperature in regulating all aspects of energy use in sloths. PMID:25861559

  12. CH-19 sweet, a non-pungent cultivar of red pepper, increased body temperature and oxygen consumption in humans.

    PubMed

    Ohnuki, K; Niwa, S; Maeda, S; Inoue, N; Yazawa, S; Fushiki, T

    2001-09-01

    We investigated the effect of CH-19 Sweet, a non-pungent cultivar of red pepper, on body temperature and oxygen consumption in humans. CH-19 Sweet was given to 11 healthy volunteers, and core body temperature, body surface temperature and oxygen consumption were measured. The control group ingested California-Wandar, which contained neither capsaicin nor capsiate. The core body temperature in the CH-19 Sweet group was significantly higher than that in the control group (P<0.01). The forehead temperature measured by infrared thermography in the CH-19 Sweet group was significantly higher than that in the control group. The body surface temperature was increased for about 20 min after consumption of CH-19 Sweet intake, and the neck temperature was significantly higher (P<0.001) than when the subjects consumed California-Wandar. We also measured respiratory gas by indirect calorimetry while subjects wore a face mask. A significant difference was detected in oxygen consumption between the two groups, and the value was significantly higher in the CH-19 Sweet group (P<0.03). These results suggest that CH-19 Sweet increased thermogenesis and energy consumption.

  13. Toxin production and growth of pathogens subjected to temperature fluctuations simulating consumer handling of cold cuts.

    PubMed

    Røssvoll, Elin; Rønning, Helene Thorsen; Granum, Per Einar; Møretrø, Trond; Hjerpekjøn, Marianne Røine; Langsrud, Solveig

    2014-08-18

    It is crucial for the quality and safety of ready-to-eat (RTE) foods to maintain the cold chain from production to consumption. The effect of temperature abuse related to daily meals and elevated refrigerator temperatures on the growth and toxin production of Bacillus cereus, Bacillus weihenstephanensis and Staphylococcus aureus and the growth of Listeria monocytogenes and Yersinia enterocolitica was studied. A case study with temperature loggings in the domestic environment during Easter and Christmas holidays was performed to select relevant time and temperature courses. A model for bacterial surface growth on food using nutrient agar plates exposed to variations in temperatures was used to simulate food stored at different temperatures and exposed to room temperature for short periods of time. The results were compared with predicted growth using the modeling tool ComBase Predictor. The consumers exposed their cold cuts to room temperatures as high as 26.5°C with an average duration of meals was 47 min daily for breakfast/brunch during the vacations. Short (≤ 2 h) daily intervals at 25°C nearly halved the time the different pathogens needed to reach levels corresponding to the levels associated with human infection or intoxication, compared with the controls continuously stored at refrigerator temperature. Although the temperature fluctuations affected growth of both B. weihenstephanensis and S. aureus, toxin production was only detected at much higher cell concentrations than what has been associated with human intoxications. Therefore, growth of L. monocytogenes and Y. enterocolitica was found to be the limiting factor for safety. In combination with data on temperature abuse in the domestic environment, modeling programs such as ComBase Predictor can be efficient tools to predict growth of some pathogens but will not predict toxin production. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Using Rainfall and Temperature Data in the Evaluation of National Malaria Control Programs in Africa

    PubMed Central

    Thomson, Madeleine C.; Ukawuba, Israel; Hershey, Christine L.; Bennett, Adam; Ceccato, Pietro; Lyon, Bradfield; Dinku, Tufa

    2017-01-01

    Abstract. Since 2010, the Roll Back Malaria (RBM) Partnership, including National Malaria Control Programs, donor agencies (e.g., President's Malaria Initiative and Global Fund), and other stakeholders have been evaluating the impact of scaling up malaria control interventions on all-cause under-five mortality in several countries in sub-Saharan Africa. The evaluation framework assesses whether the deployed interventions have had an impact on malaria morbidity and mortality and requires consideration of potential nonintervention influencers of transmission, such as drought/floods or higher temperatures. Herein, we assess the likely effect of climate on the assessment of the impact malaria interventions in 10 priority countries/regions in eastern, western, and southern Africa for the President's Malaria Initiative. We used newly available quality controlled Enhanced National Climate Services rainfall and temperature products as well as global climate products to investigate likely impacts of climate on malaria evaluations and test the assumption that changing the baseline period can significantly impact on the influence of climate in the assessment of interventions. Based on current baseline periods used in national malaria impact assessments, we identify three countries/regions where current evaluations may overestimate the impact of interventions (Tanzania, Zanzibar, Uganda) and three countries where current malaria evaluations may underestimate the impact of interventions (Mali, Senegal and Ethiopia). In four countries (Rwanda, Malawi, Mozambique, and Angola) there was no strong difference in climate suitability for malaria in the pre- and post-intervention period. In part, this may be due to data quality and analysis issues. PMID:28990912

  15. Impact of flow and temperature on patient comfort during respiratory support by high-flow nasal cannula.

    PubMed

    Mauri, Tommaso; Galazzi, Alessandro; Binda, Filippo; Masciopinto, Laura; Corcione, Nadia; Carlesso, Eleonora; Lazzeri, Marta; Spinelli, Elena; Tubiolo, Daniela; Volta, Carlo Alberto; Adamini, Ileana; Pesenti, Antonio; Grasselli, Giacomo

    2018-05-09

    The high-flow nasal cannula (HFNC) delivers up to 60 l/min of humidified air/oxygen blend at a temperature close to that of the human body. In this study, we tested whether higher temperature and flow decrease patient comfort. In more severe patients, instead, we hypothesized that higher flow might be associated with improved comfort. A prospective, randomized, cross-over study was performed on 40 acute hypoxemic respiratory failure (AHRF) patients (PaO 2 /FiO 2  ≤ 300 + pulmonary infiltrates + exclusion of cardiogenic edema) supported by HFNC. The primary outcome was the assessment of patient comfort during HFNC delivery at increasing flow and temperature. Two flows (30 and 60 l/min), each combined with two temperatures (31 and 37 °C), were randomly applied for 20 min (four steps per patient), leaving clinical FiO 2 unchanged. Toward the end of each step, the following were recorded: comfort by Visual Numerical Scale ranging between 1 (extreme discomfort) and 5 (very comfortable), together with respiratory parameters. A subgroup of more severe patients was defined by clinical FiO 2  ≥ 45%. Patient comfort was reported as significantly higher during steps at the lower temperature (31 °C) in comparison to 37 °C, with the HFNC set at both 30 and 60 l/min (p < 0.0001). Higher flow, however, was not associated with poorer comfort. In the subgroup of patients with clinical FiO 2  ≥ 45%, both lower temperature (31 °C) and higher HFNC flow (60 l/min) led to higher comfort (p < 0.01). HFNC temperature seems to significantly impact the comfort of AHRF patients: for equal flow, lower temperature could be more comfortable. Higher flow does not decrease patient comfort; at variance, it improves comfort in the more severely hypoxemic patient.

  16. 43 CFR 3261.13 - What is a drilling program and how do I apply for drilling program approval?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the well; (3) If you plan to directionally drill your well, also send us: (i) The proposed bottom hole... reservoir temperature and pressure; (11) Anticipated temperature gradient in the area; (12) A plat certified...

  17. 43 CFR 3261.13 - What is a drilling program and how do I apply for drilling program approval?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the well; (3) If you plan to directionally drill your well, also send us: (i) The proposed bottom hole... reservoir temperature and pressure; (11) Anticipated temperature gradient in the area; (12) A plat certified...

  18. 43 CFR 3261.13 - What is a drilling program and how do I apply for drilling program approval?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the well; (3) If you plan to directionally drill your well, also send us: (i) The proposed bottom hole... reservoir temperature and pressure; (11) Anticipated temperature gradient in the area; (12) A plat certified...

  19. 43 CFR 3261.13 - What is a drilling program and how do I apply for drilling program approval?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the well; (3) If you plan to directionally drill your well, also send us: (i) The proposed bottom hole... reservoir temperature and pressure; (11) Anticipated temperature gradient in the area; (12) A plat certified...

  20. Synthesis and Hydrodeoxygenation Properties of Ruthenium Phosphide Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowker, Richard H.; Smith, Mica C.; Pease, Melissa

    2011-07-01

    Ru2P/SiO2 and RuP/SiO2 catalysts were prepared by the temperature-programmed reduction (TPR) of uncalcined precursors containing hypophosphite ion (H2PO2-) as the phosphorus source. The Ru2P/SiO2 and RuP/SiO2 catalysts had small average particle sizes (~4 nm) and high CO chemisorption capacities (90-110 umol/g). The Ru phosphide catalysts exhibited similar or higher furan (C4H4O) hydrodeoxygenation (HDO) activities than did a Ru/SiO2 catalyst, and the phosphide catalysts favored C4 hydrocarbon products while the Ru metal catalyst produced primarily C3 hydrocarbons.

  1. Calculation methods for steadily loaded, off-set pivot, tilting pad thrust bearings. (Guide to use of computer program A9235.)

    NASA Astrophysics Data System (ADS)

    1992-12-01

    ESDU 92035 provides details of a FORTRAN program that implements the calculation method of ESDU 83004. It allows performance analysis of an existing design, or the design of a bearing dimensions, subject to any space constraint, are recommended. The predicted performance includes the lubricant film thickness under load, its temperature and flow rate, the power loss, and the bearing temperature. Recommendations are also made on surface finish. Warning messages are output in the following cases, for each of which possible remedial actions are suggested: drain or pad temperature too high, churning losses too great, film thickness too small, pad number too high, ratio or inner to outer pad radius too large, flow rate too great, lubricant or pad temperature outside usable range. A lubricant database is provided that may be extended or edited. The program applies to Newtonian lubricants in laminar flow. Worked examples illustrate the use of the program.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nabeel Riza

    In this program, Nuonics, Inc. has studied the fundamentals of a new Silicon Carbide (SiC) materials-based optical sensor technology suited for extreme environments of coal-fired engines in power production. The program explored how SiC could be used for sensing temperature, pressure, and potential gas species in a gas turbine environment. The program successfully demonstrated the optical designs, signal processing and experimental data for enabling both temperature and pressure sensing using SiC materials. The program via its sub-contractors also explored gas species sensing using SiC, in this case, no clear commercially deployable method was proven. Extensive temperature and pressure measurement datamore » using the proposed SiC sensors was acquired to 1000 deg-C and 40 atms, respectively. Importantly, a first time packaged all-SiC probe design was successfully operated in a Siemens industrial turbine rig facility with the probe surviving the harsh chemical, pressure, and temperature environment during 28 days of test operations. The probe also survived a 1600 deg-C thermal shock test using an industrial flame.« less

  3. Program for the feasibility of developing a high pressure acoustic levitator

    NASA Technical Reports Server (NTRS)

    Rey, Charles A.; Merkley, Dennis R.; Hammarlund, Gregory R.

    1988-01-01

    This is the final report for the program for the feasibility of developing a high-pressure acoustic levitator (HPAL). It includes work performed during the period from February 15, 1987 to October 26, 1987. The program was conducted for NASA under contract number NAS3-25115. The HPAL would be used for containerless processing of materials in the 1-g Earth environment. Results show that the use of increased gas pressure produces higher sound pressure levels. The harmonics produced by the acoustic source are also reduced. This provides an improvement in the capabilities of acoustic levitation in 1-g. The reported processing capabilities are directly limited by the design of the Medium Pressure Acoustic Levitator used for this study. Data show that sufficient acoustic intensities can be obtained to levitate and process a specimen of density 5 g/cu cm at 1500 C. However, it is recommended that a working engineering model of the HPAL be developed. The model would be used to establish the maximum operating parameters of furnace temperature and sample density.

  4. Predicting chemical degradation during storage from two successive concentration ratios: Theoretical investigation.

    PubMed

    Peleg, Micha; Normand, Mark D

    2015-09-01

    When a vitamin's, pigment's or other food component's chemical degradation follows a known fixed order kinetics, and its rate constant's temperature-dependence follows a two parameter model, then, at least theoretically, it is possible to extract these two parameters from two successive experimental concentration ratios determined during the food's non-isothermal storage. This requires numerical solution of two simultaneous equations, themselves the numerical solutions of two differential rate equations, with a program especially developed for the purpose. Once calculated, these parameters can be used to reconstruct the entire degradation curve for the particular temperature history and predict the degradation curves for other temperature histories. The concept and computation method were tested with simulated degradation under rising and/or falling oscillating temperature conditions, employing the exponential model to characterize the rate constant's temperature-dependence. In computer simulations, the method's predictions were robust against minor errors in the two concentration ratios. The program to do the calculations was posted as freeware on the Internet. The temperature profile can be entered as an algebraic expression that can include 'If' statements, or as an imported digitized time-temperature data file, to be converted into an Interpolating Function by the program. The numerical solution of the two simultaneous equations requires close initial guesses of the exponential model's parameters. Programs were devised to obtain these initial values by matching the two experimental concentration ratios with a generated degradation curve whose parameters can be varied manually with sliders on the screen. These programs too were made available as freeware on the Internet and were tested with published data on vitamin A. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Computer programs for pressurization (RAMP) and pressurized expulsion from a cryogenic liquid propellant tank

    NASA Technical Reports Server (NTRS)

    Masters, P. A.

    1974-01-01

    An analysis to predict the pressurant gas requirements for the discharge of cryogenic liquid propellants from storage tanks is presented, along with an algorithm and two computer programs. One program deals with the pressurization (ramp) phase of bringing the propellant tank up to its operating pressure. The method of analysis involves a numerical solution of the temperature and velocity functions for the tank ullage at a discrete set of points in time and space. The input requirements of the program are the initial ullage conditions, the initial temperature and pressure of the pressurant gas, and the time for the expulsion or the ramp. Computations are performed which determine the heat transfer between the ullage gas and the tank wall. Heat transfer to the liquid interface and to the hardware components may be included in the analysis. The program output includes predictions of mass of pressurant required, total energy transfer, and wall and ullage temperatures. The analysis, the algorithm, a complete description of input and output, and the FORTRAN 4 program listings are presented. Sample cases are included to illustrate use of the programs.

  6. Rotational state modification and fast ortho-para conversion of H2 trapped within the highly anisotropic potential of Pd(210)

    NASA Astrophysics Data System (ADS)

    Ohno, S.; Ivanov, D.; Ogura, S.; Wilde, M.; Arguelles, E. F.; Diño, W. A.; Kasai, H.; Fukutani, K.

    2018-02-01

    The rotational state and ortho-para conversion of H2 on a Pd(210) surface is investigated with rotational-state-selective temperature-programmed desorption (RS-TPD) and theoretical calculations. The isotope dependence of TPD shows a higher desorption energy for D2 than that for H2, which is ascribed to the rotational and zero-point vibrational energies. The RS-TPD data show that the desorption energy of H2(J =1 ) (J : rotational quantum number) is higher than that of H2(J =0 ). This is due to the orientationally anisotropic potential confining the adsorbed H2, which is in agreement with theoretical calculations. Furthermore, the H2 desorption intensity ratio in J =1 and J =0 indicates fast ortho-para conversion in the adsorption state, which we estimate to be of the order of 1 s.

  7. Advanced Control Surface Seal Development for Future Space Vehicles

    NASA Technical Reports Server (NTRS)

    DeMange, J. J.; Dunlap, P. H., Jr.; Steinetz, B. M.

    2004-01-01

    NASA s Glenn Research Center (GRC) has been developing advanced high temperature structural seals since the late 1980's and is currently developing seals for future space vehicles as part of the Next Generation Launch Technology (NGLT) program. This includes control surface seals that seal the edges and hinge lines of movable flaps and elevons on future reentry vehicles. In these applications, the seals must operate at temperatures above 2000 F in an oxidizing environment, limit hot gas leakage to protect underlying structures, endure high temperature scrubbing against rough surfaces, and remain flexible and resilient enough to stay in contact with sealing surfaces for multiple heating and loading cycles. For this study, three seal designs were compared against the baseline spring tube seal through a series of compression tests at room temperature and 2000 F and flow tests at room temperature. In addition, canted coil springs were tested as preloaders behind the seals at room temperature to assess their potential for improving resiliency. Addition of these preloader elements resulted in significant increases in resiliency compared to the seals by themselves and surpassed the performance of the baseline seal at room temperature. Flow tests demonstrated that the seal candidates with engineered cores had lower leakage rates than the baseline spring tube design. However, when the seals were placed on the preloader elements, the flow rates were higher as the seals were not compressed as much and therefore were not able to fill the groove as well. High temperature tests were also conducted to asses the compatibility of seal fabrics against ceramic matrix composite (CMC) panels anticipated for use in next generation launch vehicles. These evaluations demonstrated potential bonding issues between the Nextel fabrics and CMC candidates.

  8. Case-crossover analysis of heat-coded deaths and vulnerable subpopulations: Oklahoma, 1990-2011

    NASA Astrophysics Data System (ADS)

    Moore, Brianna F.; Brooke Anderson, G.; Johnson, Matthew G.; Brown, Sheryll; Bradley, Kristy K.; Magzamen, Sheryl

    2017-11-01

    The extent of the association between temperature and heat-coded deaths, for which heat is the primary cause of death, remains largely unknown. We explored the association between temperature and heat-coded deaths and potential interactions with various demographic and environmental factors. A total of 335 heat-coded deaths that occurred in Oklahoma from 1990 through 2011 were identified using heat-related International Classification of Diseases codes, cause-of-death nomenclature, and narrative descriptions. Conditional logistic regression models examined the association between temperature and heat index on heat-coded deaths. Interaction by demographic factors (age, sex, marital status, living alone, outdoor/heavy labor occupations) and environmental factors (ozone, PM10, PM2.5) was also explored. Temperatures ≥99 °F (the median value) were associated with approximately five times higher odds of a heat-coded death as compared to temperatures <99 °F (adjusted OR = 4.9, 95% CI 3.3, 7.2). The effect estimates were attenuated when exposure to heat was characterized by heat index. The interaction results suggest that effect of temperature on heat-coded deaths may depend on sex and occupation. For example, the odds of a heat-coded death among outdoor/heavy labor workers exposed to temperatures ≥99 °F was greater than expected based on the sum of the individual effects (observed OR = 14.0, 95% CI 2.7, 72.0; expected OR = 4.1 [2.8 + 2.3-1.0]). Our results highlight the extent of the association between temperature and heat-coded deaths and emphasize the need for a comprehensive, multisource definition of heat-coded deaths. Furthermore, based on the interaction results, we recommend that states implement or expand heat safety programs to protect vulnerable subpopulations, such as outdoor workers.

  9. Chemical Stockpile Disposal Program. Transportation of Chemical Munitions at Reduced Temperature

    DTIC Science & Technology

    1987-08-01

    ADA193346 Chemical Stockpile Disposal Program. Transportation of Chemical Munitions at Reduced Temperature. MITRE CORP MCLEAN VA AUG 1987...NO. ACCESSION NO. Aberdeen Proving Ground, fD 21010-5401 11. TITLE (Include Security Classification) Transportation of Chemical Munitions at Reducfd...Year, Month, Day) S. PAGE COUNT nal FROM TO Au USt 1987 65 16. SUPPLEMENTARY NOTATION Prepared for the Chemical Stockpile D’i sal Program Programmatic

  10. Promising SiC support for Pd catalyst in selective hydrogenation of acetylene to ethylene

    NASA Astrophysics Data System (ADS)

    Guo, Zhanglong; Liu, Yuefeng; Liu, Yan; Chu, Wei

    2018-06-01

    In this study, SiC supported Pd nanoparticles were found to be an efficient catalyst in acetylene selective hydrogenation reaction. The ethylene selectivity can be about 20% higher than that on Pd/TiO2 catalyst at the same acetylene conversion at 90%. Moreover, Pd/SiC catalyst showed a stable catalytic life at 65 °C with 80% ethylene selectivity. With the detailed characterization using temperature-programmed reduction (H2-TPR), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), N2 adsorption/desorption analysis, CO-chemisorption and thermo-gravimetric analysis (TGA), it was found that SiC owns a lower surface area (22.9 m2/g) and a broad distribution of meso-/macro-porosity (from 5 to 65 nm), which enhanced the mass transfer during the chemical process at high reaction rate and decreased the residence time of ethylene on catalyst surface. Importantly, SiC support has the high thermal conductivity, which favored the rapid temperature homogenization through the catalyst bed and inhabited the over-hydrogenation of acetylene. The surface electronic density of Pd on Pd/SiC catalyst was higher than that on Pd/TiO2, which could promote desorption of ethylene from surface of the catalyst. TGA results confirmed a much less coke deposition on Pd/SiC catalyst.

  11. The FEI-TPS on the Upper Surface of the X-38

    NASA Astrophysics Data System (ADS)

    Antonenko, Johann; Kowal, John

    2002-01-01

    The X-38 is being developed by NASA-JSC as a technology demonstrator of a future Crew Rescue Vehicle. The size of the vehicle is limited to fit into the cargo bay of the shuttle. Due to its small size and shuttle-like trajectory all surfaces will receive comparably high heat rates leading to high surface temperatures. Temperatures on the nose are calculated to reach 1750°C, which is significantly higher than on the shuttle. Due to the lifting body shape, large areas of the central fuselage will be exposed to flow of hot gases around the vehicle. Here temperatures of the upper surface are calculated to reach up to 1000°C and the application of a high temperature blanket thermal protection system (TPS) becomes mandatory. Consecutively, the temperature level of the upper surface and the base area will be significantly high. Unlike on the shuttle, where large areas of the surface are covered by flexible reusable surface insulation (FRSI), locations with temperatures below 400°C will be scarce on the X-38. During development of the European shuttle HERMES the Flexible External Insulation (FEI) was developed for the upper surface TPS. This development was continued by ESA and DLR funded programs and currently a product family is available for temperatures ranging from 450°C to 1100°C for re-usable application. For a single re- entry under ultimate conditions temperatures may reach up to 1400°C. Under funding of DLR and ESA, the FEI assembly is one of the European contributions to the X-38. Three subassemblies have been chosen: the FEI-450, FEI-650 and FEI- 1000, capable of limit temperatures of 450°C, 650°C and 1000°C, respectively. The FEI-650 and FEI-1000 were already developed in the HERMES program. The FEI- 450 was developed in the German TETRA program. The qualification for X-38 application was performed for temperatures up to 510°C for the FEI-450 and up to 1130°C for the FEI-1000. Acoustic noise loads of up to 160dB have been endured, far beyond what X-38 will ever experience. The paper presents the design of the flexible blanket TPS in a joint effort by NASA-JSC and Astrium. The design process at NASA had to consider aerothermal loads and constraints of the structure and parachute subsystems. It provided the configuration of the FEI assembly and the requirements design of the FEI blankets. Astrium first designed the concept and lay-out of the FEI-assembly. Proceeding from NASA furnished model files, the design to manufacturing of the FEI-blankets was established. In addition, Astrium qualified the FEI for X-38 application. The FEI design is constrained by the aeroshell concept that distinguishes acreage panels, carrier panels and close-out areas, with dedicated blankets for each. Close out areas cover the locations of the parafoil system and create an uneven surface requiring vaulted blankets. The total of these requirements leads to an assembly of a large number of blankets, several of which have a complex shape.

  12. Development of a fiber optic high temperature strain sensor

    NASA Technical Reports Server (NTRS)

    Rausch, E. O.; Murphy, K. E.; Brookshire, S. P.

    1992-01-01

    From 1 Apr. 1991 to 31 Aug. 1992, the Georgia Tech Research Institute conducted a research program to develop a high temperature fiber optic strain sensor as part of a measurement program for the space shuttle booster rocket motor. The major objectives of this program were divided into four tasks. Under Task 1, the literature on high-temperature fiber optic strain sensors was reviewed. Task 2 addressed the design and fabrication of the strain sensor. Tests and calibration were conducted under Task 3, and Task 4 was to generate recommendations for a follow-on study of a distributed strain sensor. Task 4 was submitted to NASA as a separate proposal.

  13. Investigation on Two Forms of Temperature-Sensing Parameters for Fluorescence Intensity Ratio Thermometry Based on Thermal Coupled Theory.

    PubMed

    Jia, Mochen; Liu, Guofeng; Sun, Zhen; Fu, Zuoling; Xu, Weiguo

    2018-02-05

    Absolute temperature sensitivity (S a ) reflects the precision of sensors that belong to the same mechanism, whereas relative temperature sensitivity (S r ) is used to compare sensors from different mechanisms. For the fluorescence intensity ratio (FIR) thermometry based on two thermally coupled energy levels of one rare earth (RE) ion, we define a new ratio as the temperature-sensing parameter that can vary greatly with temperature in some circumstances, which can obtain higher S a without changing S r . Further discussion is made on the conditions under which these two forms of temperature-sensing parameters can be used to achieve higher S a for biomedical temperature sensing. Based on the new ratio as the temperature-sensing parameter, the S a and S r of the BaTiO 3 : 0.01%Pr 3+ , 8%Yb 3+ nanoparticles at 313 K reach as high as 0.1380 K -1 and 1.23% K -1 , respectively. Similarly, the S a and S r of the BaTiO 3 : 1%Er 3+ , 3%Yb 3+ nanoparticles at 313 K are as high as 0.0413 K -1 and 1.05% K -1 , respectively. By flexibly choosing the two ratios as the temperature-sensing parameter, higher S a can be obtained at the target temperature, which means higher precision for the FIR thermometers.

  14. Effect of substrate baking temperature on zinc sulfide and germanium thin films optical parameters

    NASA Astrophysics Data System (ADS)

    Liu, Fang; Gao, Jiaobo; Yang, Chongmin; Zhang, Jianfu; Liu, Yongqiang; Liu, Qinglong; Wang, Songlin; Mi, Gaoyuan; Wang, Huina

    2016-10-01

    ZnS and Ge are very normal optical thin film materials in Infrared wave. Studying the influence of different substrate baking temperature to refractive index and actual deposition rates is very important to promote optical thin film quality. In the same vacuum level, monitoring thickness and evaporation rate, we use hot evaporation to deposit ZnS thin film materials and use ion-assisted electron beam to deposit Ge thin film materials with different baking temperature. We measure the spectral transmittance with the spectrophotometer and calculate the actual deposition rates and the refractive index in different temperature. With the higher and higher temperature in a particular range, ZnS and Ge refractive index become higher and actual deposition rates become smaller. The refractive index of Ge film material change with baking temperature is more sensitive than ZnS. However, ZnS film actual deposition rates change with baking temperature is more sensitive than Ge.

  15. Visualization techniques to experimentally model flow and heat transfer in turbine and aircraft flow passages

    NASA Technical Reports Server (NTRS)

    Russell, Louis M.; Hippensteele, Steven A.

    1991-01-01

    Increased attention to fuel economy and increased thrust requirements have increased the demand for higher aircraft gas turbine engine efficiency through the use of higher turbine inlet temperatures. These higher temperatures increase the importance of understanding the heat transfer patterns which occur throughout the turbine passages. It is often necessary to use a special coating or some form of cooling to maintain metal temperatures at a level which the metal can withstand for long periods of time. Effective cooling schemes can result in significant fuel savings through higher allowable turbine inlet temperatures and can increase engine life. Before proceeding with the development of any new turbine it is economically desirable to create both mathematical and experimental models to study and predict flow characteristics and temperature distributions. Some of the methods are described used to physically model heat transfer patterns, cooling schemes, and other complex flow patterns associated with turbine and aircraft passages.

  16. Summary of laser speckle photogrammetry for HOST

    NASA Technical Reports Server (NTRS)

    Pollack, Frank G.

    1986-01-01

    High temperature static strain measurement capability is important for the success of the HOST program. As part of the NASA Lewis effort to develop the technology for improved hot-section durability, the HOST instrumentation program has, as a major goal, the development of methods for measuring strain at high temperature. Development work includes both improvements in resistance strain-gauge technology and, as an alternative approach, the development of optical techniques for high temperature strain measurement.

  17. High-temperature electronics

    NASA Technical Reports Server (NTRS)

    Matus, Lawrence G.; Seng, Gary T.

    1990-01-01

    To meet the needs of the aerospace propulsion and space power communities, the high temperature electronics program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. This program supports a major element of the Center's mission - to perform basic and developmental research aimed at improving aerospace propulsion systems. Research is focused on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of SiC devices.

  18. Incubation Temperature during Fetal Development Influences Morphophysiological Characteristics and Preferred Ambient Temperature of Chicken Hatchlings

    PubMed Central

    Morita, Viviane de Souza; de Almeida, Vitor Rosa; Matos, João Batista; Vicentini, Tamiris Iara; van den Brand, Henry; Boleli, Isabel Cristina

    2016-01-01

    Skin and feather characteristics, which play a critical role in body temperature maintenance, can be affected by incubation circumstances, such as incubation temperature. However, no study to date has assessed the influence of incubation temperature during the fetal stage on morphometric characteristics and vascular development of the skin, feather characteristics, and their relationship to hormone levels and preferred temperature in later life in chickens. Broiler breeder eggs were exposed to low (36°C), control (37.5°C), or high (39°C) temperatures (treatments LT, CK, and HT, respectively) from day 13 of incubation onward, because it is known that the endocrine axes are already established at this time. During this period, eggshell temperature of HT eggs (38.8±0.33°C) was higher than of LT (37.4±0.08°C) and CK eggs (37.8 ±0.15°C). The difference between eggshell and incubator air temperature diminished with the increasing incubation temperature, and was approximately zero for HT. HT hatchlings had higher surface temperature on the head, neck, and back, and thinner and more vascularized skin than did CK and LT hatchlings. No differences were found among treatments for body weight, total feather weight, number and length of barbs, barbule length, and plasma T4 concentration. LT hatchlings showed lower plasma T3 and GH, as well as lower T3/T4 ratio and decreased vascularity in the neck, back, and thigh skin compared to CK hatchlings. On the other hand, HT hatchlings had decreased skin thickness and increased vascularity, and preferred a higher ambient temperature compared to CK and HT hatchlings. In addition, for all treatments, surface temperature on the head was higher than of the other body regions. We conclude that changes in skin thickness and vascularity, as well as changes in thyroid and growth hormone levels, are the result of embryonic strategies to cope with higher or lower than normal incubation temperatures. Additionally exposure to increased temperature during incubation is an environmental factor that can exert early-life influence on ambient temperature preference of broiler hatchlings in later life. PMID:27183111

  19. Incubation Temperature during Fetal Development Influences Morphophysiological Characteristics and Preferred Ambient Temperature of Chicken Hatchlings.

    PubMed

    Morita, Viviane de Souza; Almeida, Vitor Rosa de; Matos, João Batista; Vicentini, Tamiris Iara; van den Brand, Henry; Boleli, Isabel Cristina

    2016-01-01

    Skin and feather characteristics, which play a critical role in body temperature maintenance, can be affected by incubation circumstances, such as incubation temperature. However, no study to date has assessed the influence of incubation temperature during the fetal stage on morphometric characteristics and vascular development of the skin, feather characteristics, and their relationship to hormone levels and preferred temperature in later life in chickens. Broiler breeder eggs were exposed to low (36°C), control (37.5°C), or high (39°C) temperatures (treatments LT, CK, and HT, respectively) from day 13 of incubation onward, because it is known that the endocrine axes are already established at this time. During this period, eggshell temperature of HT eggs (38.8±0.33°C) was higher than of LT (37.4±0.08°C) and CK eggs (37.8 ±0.15°C). The difference between eggshell and incubator air temperature diminished with the increasing incubation temperature, and was approximately zero for HT. HT hatchlings had higher surface temperature on the head, neck, and back, and thinner and more vascularized skin than did CK and LT hatchlings. No differences were found among treatments for body weight, total feather weight, number and length of barbs, barbule length, and plasma T4 concentration. LT hatchlings showed lower plasma T3 and GH, as well as lower T3/T4 ratio and decreased vascularity in the neck, back, and thigh skin compared to CK hatchlings. On the other hand, HT hatchlings had decreased skin thickness and increased vascularity, and preferred a higher ambient temperature compared to CK and HT hatchlings. In addition, for all treatments, surface temperature on the head was higher than of the other body regions. We conclude that changes in skin thickness and vascularity, as well as changes in thyroid and growth hormone levels, are the result of embryonic strategies to cope with higher or lower than normal incubation temperatures. Additionally exposure to increased temperature during incubation is an environmental factor that can exert early-life influence on ambient temperature preference of broiler hatchlings in later life.

  20. Combined Loads Test Fixture for Thermal-Structural Testing Aerospace Vehicle Panel Concepts

    NASA Technical Reports Server (NTRS)

    Fields, Roger A.; Richards, W. Lance; DeAngelis, Michael V.

    2004-01-01

    A structural test requirement of the National Aero-Space Plane (NASP) program has resulted in the design, fabrication, and implementation of a combined loads test fixture. Principal requirements for the fixture are testing a 4- by 4-ft hat-stiffened panel with combined axial (either tension or compression) and shear load at temperatures ranging from room temperature to 915 F, keeping the test panel stresses caused by the mechanical loads uniform, and thermal stresses caused by non-uniform panel temperatures minimized. The panel represents the side fuselage skin of an experimental aerospace vehicle, and was produced for the NASP program. A comprehensive mechanical loads test program using the new test fixture has been conducted on this panel from room temperature to 500 F. Measured data have been compared with finite-element analyses predictions, verifying that uniform load distributions were achieved by the fixture. The overall correlation of test data with analysis is excellent. The panel stress distributions and temperature distributions are very uniform and fulfill program requirements. This report provides details of an analytical and experimental validation of the combined loads test fixture. Because of its simple design, this unique test fixture can accommodate panels from a variety of aerospace vehicle designs.

  1. Determination of the Arrhenius Activation Energy Using a Temperature-Programmed Flow Reactor.

    ERIC Educational Resources Information Center

    Chan, Kit-ha C.; Tse, R. S.

    1984-01-01

    Describes a novel method for the determination of the Arrhenius activation energy, without prejudging the validity of the Arrhenius equation or the concept of activation energy. The method involves use of a temperature-programed flow reactor connected to a concentration detector. (JN)

  2. Program on Administration in Higher Education.

    ERIC Educational Resources Information Center

    Karadima, Oscar

    The importance of developing a university level program on administration in higher education in Latin America is discussed. The objective of such a program would provide training to faculty and higher level education and administrative staff in matters related to administration. The program would offer the necessary guidelines in dealing with…

  3. NECAP 4.1: NASA's Energy-Cost Analysis Program input manual

    NASA Technical Reports Server (NTRS)

    Jensen, R. N.

    1982-01-01

    The computer program NECAP (NASA's Energy Cost Analysis Program) is described. The program is a versatile building design and energy analysis tool which has embodied within it state of the art techniques for performing thermal load calculations and energy use predictions. With the program, comparisons of building designs and operational alternatives for new or existing buildings can be made. The major feature of the program is the response factor technique for calculating the heat transfer through the building surfaces which accounts for the building's mass. The program expands the response factor technique into a space response factor to account for internal building temperature swings; this is extremely important in determining true building loads and energy consumption when internal temperatures are allowed to swing.

  4. Digestive enzyme activities are higher in the shortfin mako shark, Isurus oxyrinchus, than in ectothermic sharks as a result of visceral endothermy.

    PubMed

    Newton, Kyle C; Wraith, James; Dickson, Kathryn A

    2015-08-01

    Lamnid sharks are regionally endothermic fishes that maintain visceral temperatures elevated above the ambient water temperature. Visceral endothermy is thought to increase rates of digestion and food processing and allow thermal niche expansion. We tested the hypothesis that, at in vivo temperatures, the endothermic shortfin mako shark, Isurus oxyrinchus, has higher specific activities of three digestive enzymes-gastric pepsin and pancreatic trypsin and lipase-than the thresher shark, Alopias vulpinus, and the blue shark, Prionace glauca, neither of which can maintain elevated visceral temperatures. Homogenized stomach or pancreas tissue obtained from sharks collected by pelagic longline was incubated at both 15 and 25 °C, at saturating substrate concentrations, to quantify tissue enzymatic activity. The mako had significantly higher enzyme activities at 25 °C than did the thresher and blue sharks at 15 °C. This difference was not a simple temperature effect, because at 25 °C the mako had higher trypsin activity than the blue shark and higher activities for all enzymes than the thresher shark. We also hypothesized that the thermal coefficient, or Q 10 value, would be higher for the mako shark than for the thresher and blue sharks because of its more stable visceral temperature. However, the mako and thresher sharks had similar Q 10 values for all enzymes, perhaps because of their closer phylogenetic relationship. The higher in vivo digestive enzyme activities in the mako shark should result in higher rates of food processing and may represent a selective advantage of regional visceral endothermy.

  5. Influence of temperature regimes on resistance gene-mediated response to rice bacterial blight

    USDA-ARS?s Scientific Manuscript database

    Increasing temperatures could reduce yield growth rate of rice by 10% in several rice production areas. Similarly, higher temperatures are predicted to accelerate the breakdown of plant disease resistance through higher disease pressure or altered resistance (R) gene effectiveness in many host-path...

  6. Automotive Stirling engine development program - Overview and status report

    NASA Technical Reports Server (NTRS)

    Nightingale, N. P.

    1983-01-01

    The current status of the automotive-Stirling-engine development program being undertaken by DOE and NASA Lewis is reviewed. The program goals and the reference-engine design are explained, and the modifications introduced to improve performance and lower manufacturing costs are discussed and illustrated, including part-power optimization; increased operating temperature (from 720 to 820 C); 45.4-kg weight reduction; elimination of Co and reduction of Cr used; and improved seals, ceramic components, and high-temperature alloys. The test program, some difficulties encountered, and results after 2042 h are summarized.

  7. Voluntary Running Aids to Maintain High Body Temperature in Rats Bred for High Aerobic Capacity

    PubMed Central

    Karvinen, Sira M.; Silvennoinen, Mika; Ma, Hongqiang; Törmäkangas, Timo; Rantalainen, Timo; Rinnankoski-Tuikka, Rita; Lensu, Sanna; Koch, Lauren G.; Britton, Steven L.; Kainulainen, Heikki

    2016-01-01

    The production of heat, i.e., thermogenesis, is a significant component of the metabolic rate, which in turn affects weight gain and health. Thermogenesis is linked to physical activity (PA) level. However, it is not known whether intrinsic exercise capacity, aging, and long-term voluntary running affect core body temperature. Here we use rat models selectively bred to differ in maximal treadmill endurance running capacity (Low capacity runners, LCR and High capacity Runners, HCR), that as adults are divergent for aerobic exercise capacity, aging, and metabolic disease risk to study the connection between PA and body temperature. Ten high capacity runner (HCR) and ten low capacity runner (LCR) female rats were studied between 9 and 21 months of age. Rectal body temperature of HCR and LCR rats was measured before and after 1-year voluntary running/control intervention to explore the effects of aging and PA. Also, we determined whether injected glucose and spontaneous activity affect the body temperature differently between LCR and HCR rats at 9 vs. 21 months of age. HCRs had on average 1.3°C higher body temperature than LCRs (p < 0.001). Aging decreased the body temperature level of HCRs to similar levels with LCRs. The opportunity to run voluntarily had a significant impact on the body temperature of HCRs (p < 0.001) allowing them to maintain body temperature at a similar level as when at younger age. Compared to LCRs, HCRs were spontaneously more active, had higher relative gastrocnemius muscle mass and higher UCP2, PGC-1α, cyt c, and OXPHOS levels in the skeletal muscle (p < 0.050). These results suggest that higher PA level together with greater relative muscle mass and higher mitochondrial content/function contribute to the accumulation of heat in the HCRs. Interestingly, neither aging nor voluntary training had a significant impact on core body temperature of LCRs. However, glucose injection resulted in a lowering of the body temperature of LCRs (p < 0.050), but not that of HCRs. In conclusion, rats born with high intrinsic capacity for aerobic exercise and better health have higher body temperature compared to rats born with low exercise capacity and disease risk. Voluntary running allowed HCRs to maintain high body temperature during aging, which suggests that high PA level was crucial in maintaining the high body temperature of HCRs. PMID:27504097

  8. Voluntary Running Aids to Maintain High Body Temperature in Rats Bred for High Aerobic Capacity.

    PubMed

    Karvinen, Sira M; Silvennoinen, Mika; Ma, Hongqiang; Törmäkangas, Timo; Rantalainen, Timo; Rinnankoski-Tuikka, Rita; Lensu, Sanna; Koch, Lauren G; Britton, Steven L; Kainulainen, Heikki

    2016-01-01

    The production of heat, i.e., thermogenesis, is a significant component of the metabolic rate, which in turn affects weight gain and health. Thermogenesis is linked to physical activity (PA) level. However, it is not known whether intrinsic exercise capacity, aging, and long-term voluntary running affect core body temperature. Here we use rat models selectively bred to differ in maximal treadmill endurance running capacity (Low capacity runners, LCR and High capacity Runners, HCR), that as adults are divergent for aerobic exercise capacity, aging, and metabolic disease risk to study the connection between PA and body temperature. Ten high capacity runner (HCR) and ten low capacity runner (LCR) female rats were studied between 9 and 21 months of age. Rectal body temperature of HCR and LCR rats was measured before and after 1-year voluntary running/control intervention to explore the effects of aging and PA. Also, we determined whether injected glucose and spontaneous activity affect the body temperature differently between LCR and HCR rats at 9 vs. 21 months of age. HCRs had on average 1.3°C higher body temperature than LCRs (p < 0.001). Aging decreased the body temperature level of HCRs to similar levels with LCRs. The opportunity to run voluntarily had a significant impact on the body temperature of HCRs (p < 0.001) allowing them to maintain body temperature at a similar level as when at younger age. Compared to LCRs, HCRs were spontaneously more active, had higher relative gastrocnemius muscle mass and higher UCP2, PGC-1α, cyt c, and OXPHOS levels in the skeletal muscle (p < 0.050). These results suggest that higher PA level together with greater relative muscle mass and higher mitochondrial content/function contribute to the accumulation of heat in the HCRs. Interestingly, neither aging nor voluntary training had a significant impact on core body temperature of LCRs. However, glucose injection resulted in a lowering of the body temperature of LCRs (p < 0.050), but not that of HCRs. In conclusion, rats born with high intrinsic capacity for aerobic exercise and better health have higher body temperature compared to rats born with low exercise capacity and disease risk. Voluntary running allowed HCRs to maintain high body temperature during aging, which suggests that high PA level was crucial in maintaining the high body temperature of HCRs.

  9. Flight summaries and temperature climatology at airliner cruise altitudes from GASP (Global Atmospheric Sampling Program) data

    NASA Technical Reports Server (NTRS)

    Nastrom, G. D.; Jasperson, W. H.

    1983-01-01

    Temperature data obtained by the Global Atmospheric Sampling Program (GASP) during the period March 1975 to July 1979 are compiled to form flight summaries of static air temperature and a geographic temperature climatology. The flight summaries include the height and location of the coldest observed temperature and the mean flight level, temperature and the standard deviation of temperature for each flight as well as for flight segments. These summaries are ordered by route and month. The temperature climatology was computed for all statistically independent temperture data for each flight. The grid used consists of 5 deg latitude, 30 deg longitude and 2000 feet vertical resolution from FL270 to FL430 for each month of the year. The number of statistically independent observations, their mean, standard deviation and the empirical 98, 50, 16, 2 and .3 probability percentiles are presented.

  10. Temperature-Induced Increase in Methane Release from Peat Bogs: A Mesocosm Experiment

    PubMed Central

    van Winden, Julia F.; Reichart, Gert-Jan; McNamara, Niall P.; Benthien, Albert; Damsté, Jaap S. Sinninghe.

    2012-01-01

    Peat bogs are primarily situated at mid to high latitudes and future climatic change projections indicate that these areas may become increasingly wetter and warmer. Methane emissions from peat bogs are reduced by symbiotic methane oxidizing bacteria (methanotrophs). Higher temperatures and increasing water levels will enhance methane production, but also methane oxidation. To unravel the temperature effect on methane and carbon cycling, a set of mesocosm experiments were executed, where intact peat cores containing actively growing Sphagnum were incubated at 5, 10, 15, 20, and 25°C. After two months of incubation, methane flux measurements indicated that, at increasing temperatures, methanotrophs are not able to fully compensate for the increasing methane production by methanogens. Net methane fluxes showed a strong temperature-dependence, with higher methane fluxes at higher temperatures. After removal of Sphagnum, methane fluxes were higher, increasing with increasing temperature. This indicates that the methanotrophs associated with Sphagnum plants play an important role in limiting the net methane flux from peat. Methanotrophs appear to consume almost all methane transported through diffusion between 5 and 15°C. Still, even though methane consumption increased with increasing temperature, the higher fluxes from the methane producing microbes could not be balanced by methanotrophic activity. The efficiency of the Sphagnum-methanotroph consortium as a filter for methane escape thus decreases with increasing temperature. Whereas 98% of the produced methane is retained at 5°C, this drops to approximately 50% at 25°C. This implies that warming at the mid to high latitudes may be enhanced through increased methane release from peat bogs. PMID:22768100

  11. Low-Temperature Power Electronics Program

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Dickman, John E.; Hammoud, Ahmad; Gerber, Scott

    1997-01-01

    Many space and some terrestrial applications would benefit from the availability of low-temperature electronics. Exploration missions to the outer planets, Earth-orbiting and deep-space probes, and communications satellites are examples of space applications which operate in low-temperature environments. Space probes deployed near Pluto must operate in temperatures as low as -229 C. Figure 1 depicts the average temperature of a space probe warmed by the sun for various locations throughout the solar system. Terrestrial applications where components and systems must operate in low-temperature environments include cryogenic instrumentation, superconducting magnetic energy storage, magnetic levitation transportation system, and arctic exploration. The development of electrical power systems capable of extremely low-temperature operation represents a key element of some advanced space power systems. The Low-Temperature Power Electronics Program at NASA Lewis Research Center focuses on the design, fabrication, and characterization of low-temperature power systems and the development of supporting technologies for low-temperature operations such as dielectric and insulating materials, power components, optoelectronic components, and packaging and integration of devices, components, and systems.

  12. Is higher body temperature beneficial in ischemic stroke patients with normal admission CT angiography of the cerebral arteries?

    PubMed

    Kvistad, Christopher Elnan; Khanevski, Andrej; Nacu, Aliona; Thomassen, Lars; Waje-Andreassen, Ulrike; Naess, Halvor

    2014-01-01

    Low body temperature is considered beneficial in ischemic stroke due to neuroprotective mechanisms, yet some studies suggest that higher temperatures may improve clot lysis and outcomes in stroke patients treated with tissue plasminogen activator (tPA). The effect of increased body temperature in stroke patients treated with tPA and with normal computed tomography angiography (CTA) on admission is unknown. We hypothesized a beneficial effect of higher body temperature in the absence of visible clots on CTA, possibly due to enhanced lysis of small, peripheral clots. Patients with ischemic stroke admitted to our Stroke Unit between February 2006 and April 2013 were prospectively registered in a database (Bergen NORSTROKE Registry). Ischemic stroke patients treated with tPA with normal CTA of the cerebral arteries were included. Outcomes were assessed by the modified Rankin Scale (mRS) after 1 week. An excellent outcome was defined as mRS=0, and a favorable outcome as mRS=0-1. A total of 172 patients were included, of which 48 (27.9%) had an admission body temperature ≥37.0°C, and 124 (72.1%) had a body temperature <37.0°C. Body temperature ≥37.0°C was independently associated with excellent outcomes (odds ratio [OR]: 2.8; 95% confidence interval [CI]: 1.24-6.46; P=0.014) and favorable outcomes (OR: 2.8; 95% CI: 1.13-4.98; P=0.015) when adjusted for confounders. We found an association between higher admission body temperature and improved outcome in tPA-treated stroke patients with normal admission CTA of the cerebral arteries. This may suggest a beneficial effect of higher body temperature on clot lysis in the absence of visible clots on CTA.

  13. Construction Guidelines for High R-Value Walls without Exterior Rigid Insulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arena, Lois B.

    High R-value wall assemblies (R-40 and above) are gaining popularity in the market due to programs such as the U.S. Department of Energy Zero Energy Ready Home program, Passive House, Net Zero Energy Home challenges in several states, and highly incentivized retrofit programs. In response to this demand, several builders have successfully used double-wall systems to achieve higher R-values in thicker, framed walls. To builders of conventional stick-framed homes, often one of the most appealing features of double-wall systems is that there are very few new exterior details. Exterior sheathings, structural bracings, house wraps or building paper, window and doormore » flashings, and siding attachments are usually identical to good details in conventional framed-wall systems. However, although the details in double-wall systems are very similar to those in conventional stick framing, there is sometimes less room for error. Several studies have confirmed colder temperatures of exterior sheathing in high R-value wall assemblies that do not have exterior rigid foam insulation. These colder temperatures can lead to increased chances for condensation from air exfiltration, and they have the potential to result in moisture-related problems (Straube and Smegal 2009, Arena 2014, Ueno 2015). The information presented in this guide is intended to reduce the risk of failure in these types of assemblies, increase durability, and reduce material brought to landfills due to failures and resulting decay. Although this document focuses on double-wall framing techniques, the majority of the information about how to properly construct and finish high R-value assemblies is applicable to all wall assemblies that do not have foam insulation installed on the exterior of the structural sheathing. The techniques presented have been shown through field studies to reduce the likelihood of mold growth and moisture-related damage and are intended for builders, framing contractors, architects, and consultants involved in designing and building super-insulated homes. The information is applicable to both new construction and gut-rehabilitation projects in Climate Zones 5 and higher.« less

  14. Comparative thermal analysis of the Space Station Freedom photovoltaic deployable boom structure using TRASYS, NEVADA, and SINDA programs

    NASA Technical Reports Server (NTRS)

    Baumeister, Joseph F.; Beach, Duane E.; Armand, Sasan C.

    1989-01-01

    The proposed Space Station Photovoltaic Deployable Boom was analyzed for operating temperatures. The boom glass/epoxy structure design needs protective shielding from environmental degradation. The protective shielding optical properties (solar absorptivity and emissivity) dictate the operating temperatures of the boom components. The Space Station Boom protective shielding must also withstand the effects of the extendible/retractable coiling acting within the mast canister. A thermal analysis method was developed for the Space Station Deployable Boom to predict transient temperatures for a variety of surface properties. The modeling procedures used to evaluate temperatures within the boom structure incorporated the TRASYS, NEVADA, and SINDA thermal analysis programs. Use of these programs led to a comparison between TRASYS and NEVADA analysis methods. Comparing TRASYS and NEVADA results exposed differences in the environmental solar flux predictions.

  15. Comparative thermal analysis of the space station Freedom photovoltaic deployable boom structure using TRASYS, NEVADA, and SINDA programs

    NASA Technical Reports Server (NTRS)

    Baumeister, Joseph F.; Beach, Duane E.; Armand, Sasan C.

    1989-01-01

    The proposed Space Station Photovoltaic Deployable Boom was analyzed for operating temperatures. The boom glass/epoxy structure design needs protective shielding from environmental degradation. The protective shielding optical properties (solar absorptivity and emissivity) dictate the operating temperatures of the boom components. The Space Station Boom protective shielding must also withstand the effects of the extendible/retractable coiling action within the mast canister. A thermal analysis method was developed for the Space Station Deployable Boom to predict transient temperatures for a variety of surface properties. The modeling procedures used to evaluate temperatures within the boom structure incorporated the TRASYS, NEVADA, and SINDA thermal analysis programs. Use of these programs led to a comparison between TRASYS and NEVADA analysis methods. Comparing TRASYS and NEVADA results exposed differences in the environmental solar flux predictions.

  16. An Application of Trimethylsilyl Derivatives with Temperature Programmed Gas Chromatography to the Senior Analytical Laboratory.

    ERIC Educational Resources Information Center

    Kelter, Paul B.; Carr, James D.

    1983-01-01

    Describes an experiment designed to teach temperature programed gas chromatography (TPGC) techniques and importance of derivatizing many classes of substrated to be separated. Includes equipment needed, procedures for making trimethylsilyl derivatives, applications, sample calculations, and typical results. Procedure required one, three-hour…

  17. Computer program determines thermal environment and temperature history of lunar orbiting space vehicles

    NASA Technical Reports Server (NTRS)

    Head, D. E.; Mitchell, K. L.

    1967-01-01

    Program computes the thermal environment of a spacecraft in a lunar orbit. The quantities determined include the incident flux /solar and lunar emitted radiation/, total radiation absorbed by a surface, and the resulting surface temperature as a function of time and orbital position.

  18. How Are the Results of Quality Assurance Programs Used to Inform Practices at a Distance Higher Education?

    ERIC Educational Resources Information Center

    Darojat, Ojat

    2018-01-01

    This paper is to examine the implementation of quality assurance (QA) programs in distance higher education. Different challenges related to the development of QA programs at a distance higher institution and how to manage and implement the programs are discussed to show how the programs have been used to ensure the survival of the institution. A…

  19. Life History Characteristics of Frankliniella occidentalis and Frankliniella intonsa (Thysanoptera: Thripidae) in Constant and Fluctuating Temperatures.

    PubMed

    Ullah, Mohammad Shaef; Lim, Un Taek

    2015-06-01

    Frankliniella occidentalis (Pergande) and Frankliniella intonsa (Trybom) are sympatric pests of many greenhouse and field crops in Korea. We compared the influence of constant (27.3°C) and fluctuating temperatures (23.8-31.5°C, with an average of 27.3°C) on the life table characteristics of F. occidentalis and F. intonsa held at a photoperiod of 16:8 (L:D) h and 45±5% relative humidity. The development times of both F. occidentalis and F. intonsa were significantly affected by temperature fluctuation, species, and sex. The development time from egg to adult of F. intonsa was shorter than that for F. occidentalis at both constant and fluctuating temperatures. Survival of immature life stages was higher under fluctuating than constant temperature for both thrips species. The total and daily production of first instars was higher in F. intonsa (90.4 and 4.2 at constant temperature, and 95.7 and 3.9 at fluctuating temperatures) than that of F. occidentalis (58.7 and 3.3 at constant temperature, and 60.5 and 3.1 at fluctuating temperatures) under both constant and fluctuating temperatures. The percentage of female offspring was greater in F. intonsa (72.1-75.7%) than in F. occidentalis (57.4-58.7%) under both temperature regimes. The intrinsic rate of natural increase (rm) was higher at constant temperature than at fluctuating temperature for both thrips species. F. intonsa had a higher rm value (0.2146 and 0.2004) than did F. occidentalis (0.1808 and 0.1733), under both constant and fluctuating temperatures, respectively. The biological response of F. occidentalis and F. intonsa to constant and fluctuating temperature was found to be interspecifically different, and F. intonsa may have higher pest potential than F. occidentalis based on the life table parameters we are reporting first here. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. United States Air Force Summer Faculty Research Program (1984). Program Management Report. Volume 2.

    DTIC Science & Technology

    1984-12-01

    temperature properties and thermal stability (2). Perfluorinated fluids which have excellent thermal and oxidative stabilities, have several disadvantages...fluids with improved properties, a Materials Laboratory Program has led to the development of a class of compounds called silahydrocarbons. These... compounds have excellent . . . !.vsct temperature proe operies a ifctdyi thera stbl t empraure xpec e to of 54C o 35°. Snteti hyroarbnsbasd n hdroentedp5y

  1. Program documentation: Surface heating rate of thin skin models (THNSKN)

    NASA Technical Reports Server (NTRS)

    Mcbryde, J. D.

    1975-01-01

    Program THNSKN computes the mean heating rate at a maximum of 100 locations on the surface of thin skin transient heating rate models. Output is printed in tabular form and consists of time history tabulation of temperatures, average temperatures, heat loss without conduction correction, mean heating rate, least squares heating rate, and the percent standard error of the least squares heating rates. The input tape used is produced by the program EHTS03.

  2. Retrieval of surface temperature by remote sensing. [of earth surface using brightness temperature of air pollutants

    NASA Technical Reports Server (NTRS)

    Gupta, S. K.; Tiwari, S. N.

    1976-01-01

    A simple procedure and computer program were developed for retrieving the surface temperature from the measurement of upwelling infrared radiance in a single spectral region in the atmosphere. The program evaluates the total upwelling radiance at any altitude in the region of the CO fundamental band (2070-2220 1/cm) for several values of surface temperature. Actual surface temperature is inferred by interpolation of the measured upwelling radiance between the computed values of radiance for the same altitude. Sensitivity calculations were made to determine the effect of uncertainty in various surface, atmospheric and experimental parameters on the inferred value of surface temperature. It is found that the uncertainties in water vapor concentration and surface emittance are the most important factors affecting the accuracy of the inferred value of surface temperature.

  3. Advanced Power Electronics Components

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.

    2004-01-01

    This paper will give a description and status of the Advanced Power Electronics Materials and Components Technology program being conducted by the NASA Glenn Research Center for future aerospace power applications. The focus of this research program is on the following: 1) New and/or significantly improved dielectric materials for the development of power capacitors with increased volumetric efficiency, energy density, and operating temperature. Materials being investigated include nanocrystalline and composite ceramic dielectrics and diamond-like carbon films; 2) New and/or significantly improved high frequency, high temperature, low loss soft magnetic materials for the development of transformers/inductors with increased power/energy density, electrical efficiency, and operating temperature. Materials being investigated include nanocrystalline and nanocomposite soft magnetic materials; 3) Packaged high temperature, high power density, high voltage, and low loss SiC diodes and switches. Development of high quality 4H- and 6H- SiC atomically smooth substrates to significantly improve device performance is a major emphasis of the SiC materials program; 4) Demonstration of high temperature (> 200 C) circuits using the components developed above.

  4. Evaluation of COTS Electronic Parts for Extreme Temperature Use in NASA Missions

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Elbuluk, Malik

    2008-01-01

    Electronic systems capable of extreme temperature operation are required for many future NASA space exploration missions where it is desirable to have smaller, lighter, and less expensive spacecraft and probes. Presently, spacecraft on-board electronics are maintained at about room temperature by use of thermal control systems. An Extreme Temperature Electronics Program at the NASA Glenn Research Center focuses on development of electronics suitable for space exploration missions. The effects of exposure to extreme temperatures and thermal cycling are being investigated for commercial-off-the-shelf components as well as for components specially developed for harsh environments. An overview of this program along with selected data is presented.

  5. Characterization of a High Current, Long Life Hollow Cathode

    NASA Technical Reports Server (NTRS)

    VanNoord, Jonathan L.; Kamhawi, Hani; McEwen, Heather K.

    2006-01-01

    The advent of higher power spacecraft makes it desirable to use higher power electric propulsion thrusters such as ion thrusters or Hall thrusters. Higher power thrusters require cathodes that are capable of producing higher currents. One application of these higher power spacecraft is deep-space missions that require tens of thousands of hours of operation. This paper presents the approach used to design a high current, long life hollow cathode assembly for that application, along with test results from the corresponding hollow cathode. The design approach used for the candidate hollow cathode was to reduce the temperature gradient in the insert, yielding a lower peak temperature and allowing current to be produced more uniformly along the insert. The lower temperatures result in a hollow cathode with increased life. The hollow cathode designed was successfully operated at currents from 10 to 60 A with flow rates of 5 to 19 sccm with a maximum orifice temperature measured of 1100 C. Data including discharge voltage, keeper voltage, discharge current, flow rates, and orifice plate temperatures are presented.

  6. Local adaptation and evolutionary potential along a temperature gradient in the fungal pathogen Rhynchosporium commune

    PubMed Central

    Stefansson, Tryggvi S; McDonald, Bruce A; Willi, Yvonne

    2013-01-01

    To predict the response of plant pathogens to climate warming, data are needed on current thermal adaptation, the pathogen's evolutionary potential, and the link between them. We conducted a common garden experiment using isolates of the fungal pathogen Rhynchosporium commune from nine barley populations representing climatically diverse locations. Clonal replicates of 126 genetically distinct isolates were assessed for their growth rate at 12°C, 18°C, and 22°C. Populations originating from climates with higher monthly temperature variation had higher growth rate at all three temperatures compared with populations from climates with less temperature fluctuation. Population differentiation in growth rate (QST) was significantly higher at 22°C than population differentiation for neutral microsatellite loci (GST), consistent with local adaptation for growth at higher temperatures. At 18°C, we found evidence for stabilizing selection for growth rate as QST was significantly lower than GST. Heritability of growth rate under the three temperatures was substantial in all populations (0.58–0.76). Genetic variation was lower in populations with higher growth rate at the three temperatures and evolvability increased under heat stress in seven of nine populations. Our findings imply that the distribution of this pathogen is unlikely to be genetically limited under climate warming, due to its high genetic variation and plasticity for thermal tolerance. PMID:23745143

  7. Plasmaspheric H+, He+, O+, He++, and O++ Densities and Temperatures

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Craven, P. D.; Comfort H.

    2013-01-01

    Thermal plasmaspheric densities and temperatures for five ion species have recently become available, even though these quantities were derived some time ago from the Retarding Ion Mass Spectrometer onboard the Dynamics Explorer 1 satellite over the years 1981-1984. The quantitative properties will be presented. Densities are found to have one behavior with lessor statistical variation below about L=2 and another with much greater variability above that Lshell. Temperatures also have a behavior difference between low and higher L-values. The density ratio He++/H+ is the best behaved with values of about 0.2% that slightly increase with increasing L. Unlike the He+/H+ density ratio that on average decreases with increasing Lvalue, the O+/H+ and O++/H+ density ratios have decreasing values below about L=2 and increasing average ratios at higher L-values. Hydrogen ion temperatures range from about 0.2 eV to several 10s of eV for a few measurements, although the bulk of the observations are of temperatures below 3 eV, again increasing with L-value. The temperature ratios of He+/H+ are tightly ordered around 1.0 except for the middle plasmasphere between L=3.5 and 4.5 where He+ temperatures can be significantly higher. The temperatures of He++, O+, and O++ are consistently higher than H+.

  8. Plasmaspheric H+, He+, He++, O+, and O++ Densities and Temperatures

    NASA Technical Reports Server (NTRS)

    Gallagher, G. L.; Craven, P. D.; Comfort, R. H.

    2013-01-01

    Thermal plasmaspheric densities and temperatures for five ion species have recently become available, even though these quantities were derived some time ago from the Retarding Ion Mass Spectrometer onboard the Dynamics Explorer 1 satellite over the years 1981-1984. The quantitative properties will be presented. Densities are found to have one behavior with lessor statistical variation below about L=2 and another with much greater variability above that Lshell. Temperatures also have a behavior difference between low and higher L-values. The density ratio He++/H+ is the best behaved with values of about 0.2% that slightly increase with increasing L. Unlike the He+/H+ density ratio that on average decreases with increasing Lvalue, the O+/H+ and O++/H+ density ratios have decreasing values below about L=2 and increasing average ratios at higher L-values. Hydrogen ion temperatures range from about 0.2 eV to several 10s of eV for a few measurements, although the bulk of the observations are of temperatures below 3 eV, again increasing with L-value. The temperature ratios of He+/H+ are tightly ordered around 1.0 except for the middle plasmasphere between L=3.5 and 4.5 where He+ temperatures can be significantly higher. The temperatures of He++, O+, and O++ are consistently higher than H+.

  9. Pretreatment of a primary and secondary sludge blend at different thermal hydrolysis temperatures: Impacts on anaerobic digestion, dewatering and filtrate characteristics.

    PubMed

    Higgins, Matthew J; Beightol, Steven; Mandahar, Ushma; Suzuki, Ryu; Xiao, Steven; Lu, Hung-Wei; Le, Trung; Mah, Joshua; Pathak, Bipin; DeClippeleir, Haydee; Novak, John T; Al-Omari, Ahmed; Murthy, Sudhir N

    2017-10-01

    A study was performed to evaluate the effect of thermal hydrolysis pretreatment (THP) temperature on subsequent digestion performance and operation, as well as downstream parameters such as dewatering and cake quality. A blend of primary and secondary solids from the Blue Plains treatment plant in Washington, DC was dewatered to about 16% total solids (TS), and thermally hydrolyzed at five different temperatures 130, 140, 150, 160, 170 °C. The thermally hydrolyzed solids were then fed to five separate, 10 L laboratory digesters using the same feed concentration, 10.5% TS and a solids retention time (SRT) of 15 days. The digesters were operated over a six month period to achieve steady state conditions. The higher thermal hydrolysis temperatures generally improved the solids reduction and methane yields by about 5-6% over the temperature range. The increased temperature reduced viscosity of the solids and increased the cake solids after dewatering. The dissolved organic nitrogen and UV absorbance generally increased at the higher THP temperatures. Overall, operating at a higher temperature improved performance with a tradeoff of higher dissolved organic nitrogen and UV adsorbing materials in the return liquor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Development of Anode-Supported Single Cells and Small Stacks for Intermediate Temperature Sofc at Kepri

    NASA Astrophysics Data System (ADS)

    Yoo, Y.-S.; Park, J.-W.; Park, J.-K.; Lim, H.-C.; Oh, J.-M.; Bae, J.-M.

    Recent results on intermediate temperature-operating solid oxide fuel cells (IT-SOFC) are mainly focused on getting the higher performance of single cell at lower operating temperature, especially using planar type. We have started a project to develop 1 kW-class SOFC system for Residential Power Generation(RPG) application. For a 1 kW-class SOFC stack that can be operated at intermediate temperatures, we have developed anode-supported, planar type SOFC to have advantages for commercialization of SOFCs considering mass production and using cost-effective interconnects such as ferritic stainless steels. At higher temperature, performance of SOFC can be increased due to higher electrochemical activity of electrodes and lower ohmic losses, but the surface of metallic interconnects at cathode side is rapidly oxidized into resistive oxide scale. For efficient operation of SOFC at reduced temperature at, firstly we have developed alternative cathode materials of LSCF instead of LSM to get higher performance of electrodes, and secondly introduced functional-layered structure at anode side. The I-V and AC impedance characteristics of improved single cells and small stacks were evaluated at intermediate temperatures (650°C and 750°C) using hydrogen gas as a fuel.

  11. Hydrogen adsorption and diffusion, and subcritical-crack growth in high-strength steels and nickel base alloys

    NASA Technical Reports Server (NTRS)

    Wei, R. P.; Klier, K.; Simmons, G. W.

    1974-01-01

    Coordinated studies of the kinetics of crack growth and of hydrogen adsorption and diffusion were initiated to develop information that is needed for a clearer determination of the rate controlling process and possible mechanism for hydrogen enhanced crack growth, and for estimating behavior over a range of temperatures and pressures. Inconel 718 alloy and 18Ni(200) maraging steel were selected for these studies. 18Ni(250) maraging steel, 316 stainless steel, and iron single crystal of (111) orientation were also included in the chemistry studies. Crack growth data on 18Ni(250) maraging steel from another program are included for comparison. No sustained-load crack growth was observed for the Inconel 718 alloy in gaseous hydrogen. Gaseous hydrogen assisted crack growth in the 18Ni maraging steels were characterized by K-independent (Stage 2) extension over a wide range of hydrogen pressures (86 to 2000 torr or 12 kN/m2 to 266 kN/m2) and test temperatures (-60 C to +100 C). The higher strength 18Ni(250) maraging steel was more susceptible than the lower strength 200 grade. A transition temperature was observed, above which crack growth rates became diminishingly small.

  12. Numerical Simulation of Pulsation Flow in the Vapour Channel of Short Low Temperature Heat Pipes at High Heat Loads

    NASA Astrophysics Data System (ADS)

    Seryakov, A. V.; Konkin, A. V.

    2017-11-01

    The results of the numerical simulation of pulsations in the Laval-liked vapour channel of short low-temperature range heat pipes (HPs) are presented. The numerical results confirmed the experimentally obtained increase of the frequency of pulsations in the vapour channel of short HPs with increasing overheat of the porous evaporator relative to the boiling point of the working fluid. The occurrence of pressure pulsations inside the vapour channel in a short HPs is a complex phenomenon associated with the boiling beginning in the capillary-porous evaporator at high heat loads, and appearance the excess amount of vapour above it, leading to the increase in pressure P to a value at which the boiling point TB of the working fluid becomes higher than the evaporator temperature Tev. Vapour clot spreads through the vapour channel and condense, and then a rarefaction wave return from condenser in the evaporator, the boiling in which is resumed and the next cycle of the pulsations is repeated. Numerical simulation was performed using finite element method implemented in the commercial program ANSYS Multiphisics 14.5 in the two-dimensional setting of axis symmetric moist vapour flow with third kind boundary conditions.

  13. Correlation between the thermal performance and the microstructure of the material used in medium and high voltage transformer terminals

    NASA Astrophysics Data System (ADS)

    Salas, Y. J.; Vera-Monroy, S. P.; Mejia-Camacho, A.; Rivera, W.

    2017-12-01

    In Colombia, energy companies neglect the distribution that represents the main and most valuable process, presenting shortcomings in prevention and forecasting programs, using contractors who perform corrective maintenance of the components without guaranteeing the quality and performance of the materials. Within the process, the terminals determine the effective connection between the voltage line and the transformer, which have faults that are evidenced by the thermal deterioration of the material. In this work, a diagnosis of the thermal performance of these components was carried out and it was correlated with the microstructure, observing variations of the working temperature, with a thermography camera, for three types of terminals, which were classified by X-ray fluorescence in brass Z20, Z40 and Z60, and for two types of connection, copper and aluminium. The microstructure results showed that copper is the conductor that degrades the terminals faster, evidencing cracking of the material; on the other hand, the Z40 brass was the most stable with the lowest temperature variation regardless of the conductor diameter; however, in all cases the behaviour of higher temperature to lower calibre is satisfied.

  14. Cryogenic Electric Motor Tested

    NASA Technical Reports Server (NTRS)

    Brown, Gerald V.

    2004-01-01

    Technology for pollution-free "electric flight" is being evaluated in a number of NASA Glenn Research Center programs. One approach is to drive propulsive fans or propellers with electric motors powered by fuel cells running on hydrogen. For large transport aircraft, conventional electric motors are far too heavy to be feasible. However, since hydrogen fuel would almost surely be carried as liquid, a propulsive electric motor could be cooled to near liquid hydrogen temperature (-423 F) by using the fuel for cooling before it goes to the fuel cells. Motor windings could be either superconducting or high purity normal copper or aluminum. The electrical resistance of pure metals can drop to 1/100th or less of their room-temperature resistance at liquid hydrogen temperature. In either case, super or normal, much higher current density is possible in motor windings. This leads to more compact motors that are projected to produce 20 hp/lb or more in large sizes, in comparison to on the order of 2 hp/lb for large conventional motors. High power density is the major goal. To support cryogenic motor development, we have designed and built in-house a small motor (7-in. outside diameter) for operation in liquid nitrogen.

  15. Gravity waves generated by a tropical cyclone during the STEP tropical field program - A case study

    NASA Technical Reports Server (NTRS)

    Pfister, L.; Chan, K. R.; Bui, T. P.; Bowen, S.; Legg, M.; Gary, B.; Kelly, K.; Proffitt, M.; Starr, W.

    1993-01-01

    Overflights of a tropical cyclone during the Australian winter monsoon field experiment of the Stratosphere-Troposphere Exchange Project (STEP) show the presence of two mesoscale phenomena: a vertically propagating gravity wave with a horizontal wavelength of about 110 km and a feature with a horizontal scale comparable to that of the cyclone's entire cloud shield. The larger feature is fairly steady, though its physical interpretation is ambiguous. The 110-km gravity wave is transient, having maximum amplitude early in the flight and decreasing in amplitude thereafter. Its scale is comparable to that of 100-to 150-km-diameter cells of low satellite brightness temperatures within the overall cyclone cloud shield; these cells have lifetimes of 4.5 to 6 hrs. These cells correspond to regions of enhanced convection, higher cloud altitude, and upwardly displaced potential temperature surfaces. The temporal and spatial distribution of meteorological variables associated with the 110-km gravity wave can be simulated by a slowly moving transient forcing at the anvil top having an amplitude of 400-600 m, a lifetime of 4.5-6 hrs, and a size comparable to the cells of low brightness temperature.

  16. 45 CFR 2519.100 - What is the purpose of the Higher Education programs?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false What is the purpose of the Higher Education...) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE HIGHER EDUCATION INNOVATIVE PROGRAMS FOR COMMUNITY SERVICE Purpose and Eligibility To Apply § 2519.100 What is the purpose of the Higher Education programs? The...

  17. The Cutting Edge of High-Temperature Composites

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA s Ultra-Efficient Engine Technology (UEET) program was formed in 1999 at Glenn Research Center to manage an important national propulsion program for the Space Agency. The UEET program s focus is on developing innovative technologies to enable intelligent, environmentally friendly, and clean-burning turbine engines capable of reducing harmful emissions while maintaining high performance and increasing reliability. Seven technology projects exist under the program, with each project working towards specific goals to provide new technology for propulsion. One of these projects, Materials and Structures for High Performance, is concentrating on developing and demonstrating advanced high-temperature materials to enable high-performance, high-efficiency, and environmentally compatible propulsion systems. Materials include ceramic matrix composite (CMC) combustor liners and turbine vanes, disk alloys, turbine airfoil material systems, high-temperature polymer matrix composites, and lightweight materials for static engine structures.

  18. Are thermal barriers "higher" in deep sea turtle nests?

    PubMed

    Santidrián Tomillo, Pilar; Fonseca, Luis; Paladino, Frank V; Spotila, James R; Oro, Daniel

    2017-01-01

    Thermal tolerances are affected by the range of temperatures that species encounter in their habitat. Daniel Janzen hypothesized in his "Why mountain passes are higher in the tropics" that temperature gradients were effective barriers to animal movements where climatic uniformity was high. Sea turtles bury their eggs providing some thermal stability that varies with depth. We assessed the relationship between thermal uniformity and thermal tolerance in nests of three species of sea turtles. We considered that barriers were "high" when small thermal changes had comparatively large effects and "low" when the effects were small. Mean temperature was lower and fluctuated less in species that dig deeper nests. Thermal barriers were comparatively "higher" in leatherback turtle (Dermochelys coriacea) nests, which were the deepest, as embryo mortality increased at lower "high" temperatures than in olive ridley (Lepidochelys olivacea) and green turtle (Chelonia mydas) nests. Sea turtles have temperature-dependent sex determination (TSD) and embryo mortality increased as temperature approached the upper end of the transitional range of temperatures (TRT) that produces both sexes (temperature producing 100% female offspring) in leatherback and olive ridley turtles. As thermal barriers are "higher" in some species than in others, the effects of climate warming on embryo mortality is likely to vary among sea turtles. Population resilience to climate warming may also depend on the balance between temperatures that produce female offspring and those that reduce embryo survival.

  19. Freezing avoidance by supercooling in Olea europaea cultivars: the role of apoplastic water, solute content and cell wall rigidity.

    PubMed

    Arias, Nadia S; Bucci, Sandra J; Scholz, Fabian G; Goldstein, Guillermo

    2015-10-01

    Plants can avoid freezing damage by preventing extracellular ice formation below the equilibrium freezing temperature (supercooling). We used Olea europaea cultivars to assess which traits contribute to avoid ice nucleation at sub-zero temperatures. Seasonal leaf water relations, non-structural carbohydrates, nitrogen and tissue damage and ice nucleation temperatures in different plant parts were determined in five cultivars growing in the Patagonian cold desert. Ice seeding in roots occurred at higher temperatures than in stems and leaves. Leaves of cold acclimated cultivars supercooled down to -13 °C, substantially lower than the minimum air temperatures observed in the study site. During winter, leaf ice nucleation and leaf freezing damage (LT50 ) occurred at similar temperatures, typical of plant tissues that supercool. Higher leaf density and cell wall rigidity were observed during winter, consistent with a substantial acclimation to sub-zero temperatures. Larger supercooling capacity and lower LT50 were observed in cold-acclimated cultivars with higher osmotically active solute content, higher tissue elastic adjustments and lower apoplastic water. Irreversible leaf damage was only observed in laboratory experiments at very low temperatures, but not in the field. A comparative analysis of closely related plants avoids phylogenetic independence bias in a comparative study of adaptations to survive low temperatures. © 2015 John Wiley & Sons Ltd.

  20. Comprehensive Adsorption Studies of Doxycycline and Ciprofloxacin Antibiotics by Biochars Prepared at Different Temperatures

    PubMed Central

    Zeng, Zhi-wei; Tan, Xiao-fei; Liu, Yun-guo; Tian, Si-rong; Zeng, Guang-ming; Jiang, Lu-hua; Liu, Shao-bo; Li, Jiang; Liu, Ni; Yin, Zhi-hong

    2018-01-01

    This paper comparatively investigated the removal efficiency and mechanisms of rice straw biochars prepared under three pyrolytic temperatures for two kinds of tetracycline and quinolone antibiotics (doxycycline and ciprofloxacin). The influencing factors of antibiotic adsorption (including biochar dosage, pH, background electrolytes, humic acid, initial antibiotics concentration, contact time, and temperature) were comprehensively studied. The results suggest that biochars produced at high-temperature [i.e., 700°C (BC700)], have higher adsorption capacity for the two antibiotics than low-temperature (i.e., 300–500°C) biochars (BC300 and BC500). Higher surface area gives rise to greater volume of micropores and mesopores, and higher graphitic surfaces of the BC700 contributed to its higher functionality. The maximum adsorption capacity was found to be in the following order: DOX > CIP. The π-π EDA interaction and hydrogen bonding might be the predominant adsorption mechanisms. Findings in this study highlight the important roles of high-temperature biochars in controlling the contamination of tetracycline and quinolone antibiotics in the environment. PMID:29637067

  1. Sink property of metallic glass free surfaces

    DOE PAGES

    Shao, Lin; Fu, Engang; Price, Lloyd; ...

    2015-03-16

    When heated to a temperature close to glass transition temperature, metallic glasses (MGs) begin to crystallize. Under deformation or particle irradiation, crystallization occurs at even lower temperatures. Hence, phase instability represents an application limit for MGs. Here, we report that MG membranes of a few nanometers thickness exhibit properties different from their bulk MG counterparts. The study uses in situ transmission electron microscopy with concurrent heavy ion irradiation and annealing to observe crystallization behaviors of MGs. For relatively thick membranes, ion irradiations introduce excessive free volumes and thus induce nanocrystal formation at a temperature linearly decreasing with increasing ion fluences.more » For ultra-thin membranes, however, the critical temperature to initiate crystallization is about 100 K higher than the bulk glass transition temperature. Molecular dynamics simulations indicate that this effect is due to the sink property of the surfaces which can effectively remove excessive free volumes. These findings suggest that nanostructured MGs having a higher surface to volume ratio are expected to have higher crystallization resistance, which could pave new paths for materials applications in harsh environments requiring higher stabilities.« less

  2. Comprehensive adsorption studies of doxycycline and ciprofloxacin antibiotics by biochars prepared at different temperatures

    NASA Astrophysics Data System (ADS)

    Zeng, Zhi-wei; Tan, Xiao-fei; Liu, Yun-guo; Tian, Si-rong; Zeng, Guang-ming; Jiang, Lu-hua; Liu, Shao-bo; Li, Jiang; Liu, Ni; Yin, Zhi-hong

    2018-03-01

    This paper comparatively investigated the removal efficiency and mechanisms of rice straw biochars prepared under three pyrolytic temperatures for two kinds of tetracycline and quinolone antibiotics (doxycycline and ciprofloxacin). The influencing factors of antibiotic adsorption (including biochar dosage, pH, background electrolytes, humic acid, initial antibiotics concentration, contact time, and temperature) were comprehensively studied. The results suggest that biochars produced at high-temperature (i.e., 700°C (BC700)), have higher adsorption capacity for the two antibiotics than low-temperature (i.e., 300-500°C) biochars (BC300 and BC500). Higher surface area gives rise to greater volume of micropores and mesopores, and higher graphitic surfaces of the BC700 contributed to its higher functionality. The maximum adsorption capacity was found to be in the following order: DOX > CIP. The π-π EDA interaction and hydrogen bonding might be the predominant adsorption mechanisms. Findings in this study highlight the important roles of high-temperature biochars in controlling the contamination of tetracycline and quinolone antibiotics in the environment.

  3. Computer program for obtaining thermodynamic and transport properties of air and products of combustion of ASTM-A-1 fuel and air

    NASA Technical Reports Server (NTRS)

    Hippensteele, S. A.; Colladay, R. S.

    1978-01-01

    A computer program for determining desired thermodynamic and transport property values by means of a three-dimensional (pressure, fuel-air ratio, and either enthalpy or temperature) interpolation routine was developed. The program calculates temperature (or enthalpy), molecular weight, viscosity, specific heat at constant pressure, thermal conductivity, isentropic exponent (equal to the specific heat ratio at conditions where gases do not react), Prandtl number, and entropy for air and a combustion gas mixture of ASTM-A-1 fuel and air over fuel-air ratios from zero to stoichiometric, pressures from 1 to 40 atm, and temperatures from 250 to 2800 K.

  4. Novel devices for solvent delivery and temperature programming designed for capillary liquid chromatography.

    PubMed

    Coutinho, Lincoln Figueira Marins; Nazario, Carlos Eduardo Domingues; Monteiro, Alessandra Maffei; Lanças, Fernando Mauro

    2014-08-01

    Analyses in chromatographic systems able to save mobile and stationary phases without reducing efficiency and resolution are of current interest. These advantages regarding savings have challenged us to develop a system dedicated to miniaturized liquid chromatography. This paper reports on the development of a high-pressure syringe-type pump, an oven able to perform isothermal and temperature programming and a software program to control these chromatographic devices. The experimental results show that the miniaturized system can generate reproducible and accurate temperature and flow rate. The system was applied to the separation of statins and tetracylines and showed excellent performance. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Characterization of geothermal paleosystem in the Lesser Antilles volcanic arc: structural, petrographic, thermodynamic and petrophysics analysis of Terre-de-Haut (Les Saintes archipelago, Lesser Antilles)

    NASA Astrophysics Data System (ADS)

    Favier, Alexiane; Navelot, Vivien; Verati, Chrystèle; Lardeaux, Jean-Marc; Corsini, Michel; Diraison, Marc; Géraud, Yves; Mercier de Lépinay, Jeanne; Munschy, Marc

    2017-04-01

    This survey takes part in the GEOTREF project (high enthalpy geothermal energy in fractured reservoirs), supported by the French government program "Investments for the future". The program focuses on the exploration of geothermal resource in the Lesser Antilles volcanic arc. An exclusive license has been issued in the Vieux-Habitants area (Basse-Terre, Guadeloupe) to carry on the development of high-temperature geothermal energy in this active volcanic region. The deep geothermal reservoir on the Basse-Terre island could be characterized in exhumed paleosystems. The reference paleosystem in the Guadeloupe archipelago is located in Terre-de-Haut. Four major fault directions have been highlighted N000-N020, N050-N070, N090-N110 and N130-N140. Field observations emphasize three major cleavage directions overlaying the fault systems: N035-N060, N080-N110, N145-N165. Volcanic rocks affected by cleavage display several metamorphic transformation grades. The more transformed calc-alkaline rocks are located at the intersection of several cleavage directions. Mineralogical transformations due to metamorphism and surimposed fractures are also responsible for strong changes of petrophysical properties. In comparison with the reference protolith of andesitic lava flows outcropping in Vieux-Habitants, which have porosity and permeability lower than 5 % and 10-15 m2, andesites of Terre-de-Haut have better reservoir properties with connected porosity and permeability higher than 15 % and 10-14-10-15 m2 respectively. Thermodynamic modelling based on petrography and chemical composition of the most transformed rocks highlights a steady state mineral assemblage between 0.25 - 1.5 kbar and 350 - 450 ˚ C. It corresponds to a geothermal gradient higher than 120 to 150˚ C/km. This is consistent with temperatures measured in Bouillante wells. However, this geothermal gradient is notably higher to a usual volcanic arc conductive gradient estimated to 70-100˚ C/km. It can be explained by the addition of a convective processes caused by hydrothermal fluid flows.

  6. Formaldehyde exposure in U.S. industries from OSHA air sampling data.

    PubMed

    Lavoue, Jerome; Vincent, Raymond; Gerin, Michel

    2008-09-01

    National occupational exposure databanks have been cited as sources of exposure data for exposure surveillance and exposure assessment for occupational epidemiology. Formaldehyde exposure data recorded in the U.S Integrated Management Information System (IMIS) between 1979 and 2001 were collected to elaborate a multi-industry retrospective picture of formaldehyde exposures and to identify exposure determinants. Due to the database design, only detected personal measurement results (n = 5228) were analyzed with linear mixed-effect models, which explained 29% of the total variance. Short-term measurement results were higher than time-weighted average (TWA) data and decreased 18% per year until 1987 (TWA data 5% per year) and 5% per year (TWA data 4% per year) after that. Exposure varied across industries with maximal estimated TWA geometric means (GM) for 2001 in the reconstituted wood products, structural wood members, and wood dimension and flooring industries (GM = 0.20 mg/m(3). Highest short-term GMs estimated for 2001 were in the funeral service and crematory and reconstituted wood products industries (GM = 0.35 mg/m(3). Exposure levels in IMIS were marginally higher during nonprogrammed inspections compared with programmed inspections. An increasing exterior temperature tended to cause a decrease in exposure levels for cold temperatures (-5% per 5 degrees C for T < 15 degrees C) but caused an increase in exposure levels for warm temperatures (+15% per 5 degrees C for T >15 degrees C). Concentrations measured during the same inspection were correlated and varied differently across industries and sample type (TWA, short term). Sensitivity analyses using TOBIT regression suggested that the average bias caused by excluding non-detects is approximately 30%, being potentially higher for short-term data if many non-detects were actually short-term measurements. Although limited by availability of relevant exposure determinants and potential selection biases in IMIS, these results provide useful insight on formaldehyde occupational exposure in the United States in the last two decades. The authors recommend that more information on exposure determinants be recorded in IMIS.

  7. Changes in plasma levels of adrenaline, noradrenaline, glucose, lactate and CO2 in the green turtle, Chelonia mydas, during peak period of nesting.

    PubMed

    Alkindi, A Y A; Al-Habsi, A A; Mahmoud, I Y

    2008-02-01

    Plasma concentrations of stress hormones [adrenaline (ADR), noradrenaline (NR)], lactate, glucose and CO2 were monitored during peak nesting period (May-October) at different phases of nesting in the green turtle, Chelonia mydas. These include, emergence from sea, excavating body and nest chambers, oviposition, covering and camouflaging the nest and then returning to sea. Turtles that completed all phases of nesting including oviposition before returning to sea were considered "successful" turtles, while those that completed all phases but failed to lay their eggs were "unsuccessful". Blood samples were taken from the cervical sinus within 5min of capture to avoid stress due to handling. The turtles were usually sampled for blood between 20:00 and 1:00h of nesting time to ensure uniformity in the sampling. Plasma ADR and NR values were highly significant (P<0.001) in successful turtles over emergence, excavating and unsuccessful turtles. Plasma glucose levels remained stable throughout the nesting phases while lactate levels were significantly higher in successful turtles over the other phases (P<0.05) which signifies anaerobic metabolism during nesting. Plasma CO2 values were negatively correlated with ADR and NR (r=-0.258, P=0.03; r=-0.304, P=0.010), respectively. Hematocrit was significantly higher in successful phase (P<0.05) compared to other phases, and this may signify a higher degree of stress in successful turtles. Body temperature were significantly lower (P<0.005) in the excavating phase compared to the other three phases. Overall, body temperatures were lower than sand temperatures around the nest, which may indicate a behavioral thermoregulation used by the turtles during nesting. This information will be of value to the ongoing conservation program at Ras Al-Hadd Reserve in the Sultanate of Oman.

  8. Comparison of photovoltaic cell temperatures in modules operating with exposed and enclosed back surfaces

    NASA Technical Reports Server (NTRS)

    Namkoong, D.; Simon, F. F.

    1981-01-01

    Four different photovoltaic module designs were tested to determine the cell temperature of each design. The cell temperatures were compared to those obtained on identical design, using the same nominal operating cell temperature (NOCT) concept. The results showed that the NOCT procedure does not apply to the enclosed configurations due to continuous transient conditions. The enclosed modules had higher cell temperatures than the open modules, and insulated modules higher than the uninsulated. The severest performance loss - when translated from cell temperatures - 17.5 % for one enclosed, insulated module as a compared to that module mounted openly.

  9. AO13. High energy, low methane syngas from low-rank coals for coal-to-liquids production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucero, Andrew; Goyal, Amit; McCabe, Kevin

    2015-06-30

    An experimental program was undertaken to develop and demonstrate novel steam reforming catalysts for converting tars, C2+ hydrocarbons, and methane under high temperature and sulfur environments at lab scale. Several catalysts were developed and synthesized along with some catalysts based on recipes found in the literature. Of these, two had good resistance at 90 ppm H 2S with one almost not affected at all. Higher concentrations of H 2S did affect methane conversion across the catalyst, but performance was fairly stable for up to 200 hours. Based on the results of the experimental program, a techno-economic analysis was developed formore » IGCC and CTL applications and compared to DOE reference cases to examine the effects of the new technology. In the IGCC cases, the reformer/POX system produces nearly the same amount of electricity for nearly the same cost, however, the reformers/POX case sequesters a higher percentage of the carbon when compared to IGCC alone. For the CTL case the economics of the new process were nearly identical to the CTL case, but due to improved yields, the greenhouse gas emissions for a given production of fuels was approximately 50% less than the baseline case.« less

  10. Behaviour and physiology shape the growth accelerations associated with predation risk, high temperatures and southern latitudes in Ischnura damselfly larvae.

    PubMed

    Stoks, Robby; Swillen, Ine; De Block, Marjan

    2012-09-01

    1. To better predict effects of climate change and predation risk on prey animals and ecosystems, we need studies documenting not only latitudinal patterns in growth rate but also growth plasticity to temperature and predation risk and the underlying proximate mechanisms: behaviour (food intake) and digestive physiology (growth efficiency). The mechanistic underpinnings of predator-induced growth increases remain especially poorly understood. 2. We reared larvae from replicated northern and southern populations of the damselfly Ischnura elegans in a common garden experiment manipulating temperature and predation risk and quantified growth rate, food intake and growth efficiency. 3. The predator-induced and temperature-induced growth accelerations were the same at both latitudes, despite considerably faster growth rates in the southern populations. While the higher growth rates in the southern populations and the high rearing temperature were driven by both an increased food intake and a higher growth efficiency, the higher growth rates under predation risk were completely driven by a higher growth efficiency, despite a lowered food intake. 4. The emerging pattern that higher growth rates associated with latitude, temperature and predation risk were all (partly or completely) mediated by a higher growth efficiency has two major implications. First, it indicates that energy allocation trade-offs and the associated physiological costs play a major role both in shaping large-scale geographic variation in growth rates and in shaping the extent and direction of growth rate plasticity. Secondly, it suggests that the efficiency of energy transfer in aquatic food chains, where damselfly larvae are important intermediate predators, will be higher in southern populations, at higher temperatures and under predation risk. This may eventually contribute to the lengthening of food chains under these conditions and highlights that the prey identity may determine the influence of predation risk on food chain length. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.

  11. Development of Metal Oxide Nanostructure-based Optical Sensors for Fossil Fuel Derived Gases Measurement at High Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Kevin P.

    2015-02-13

    This final technical report details research works performed supported by a Department of Energy grant (DE-FE0003859), which was awarded under the University Coal Research Program administrated by National Energy Technology Laboratory. This research program studied high temperature fiber sensor for harsh environment applications. It developed two fiber optical sensor platform technology including regenerative fiber Bragg grating sensors and distributed fiber optical sensing based on Rayleigh backscattering optical frequency domain reflectometry. Through the studies of chemical and thermal regenerative techniques for fiber Bragg grating (FBG) fabrication, high-temperature stable FBG sensors were successfully developed and fabricated in air-hole microstructured fibers, high-attenuation fibers,more » rare-earth doped fibers, and standard telecommunication fibers. By optimizing the laser processing and thermal annealing procedures, fiber grating sensors with stable performance up to 1100°C have been developed. Using these temperature-stable FBG gratings as sensor platform, fiber optical flow, temperature, pressure, and chemical sensors have been developed to operate at high temperatures up to 800°C. Through the integration of on-fiber functional coating, the use of application-specific air-hole microstructural fiber, and application of active fiber sensing scheme, distributed fiber sensor for temperature, pressure, flow, liquid level, and chemical sensing have been demonstrated with high spatial resolution (1-cm or better) with wide temperature ranges. These include the demonstration of 1) liquid level sensing from 77K to the room temperature, pressure/temperature sensing from the room temperature to 800C and from the 15psi to 2000 psi, and hydrogen concentration measurement from 0.2% to 10% with temperature ranges from the room temperature to 700°C. Optical sensors developed by this program has broken several technical records including flow sensors with the highest operation temperature up to 750°C, first distributed chemical measurements at the record high temperature up to 700°C, first distributed pressure measurement at the record high temperature up to 800°C, and the fiber laser sensors with the record high operation temperature up to 700°C. The research performed by this program dramatically expand the functionality, adaptability, and applicability of distributed fiber optical sensors with potential applications in a number of high-temperature energy systems such as fossil-fuel power generation, high-temperature fuel cell applications, and potential for nuclear energy systems.« less

  12. 20 CFR 627.220 - Coordination with programs under title IV of the Higher Education Act including the Pell grant...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Coordination with programs under title IV of the Higher Education Act including the Pell grant program. 627.220 Section 627.220 Employees' Benefits... of the Higher Education Act including the Pell grant program. (a) Coordination. Financial assistance...

  13. The Development of a Transportable Leadership and Management Program in Higher Education.

    ERIC Educational Resources Information Center

    Shapiro, Joan P.; And Others

    The impact of an evaluation design on the effective implementation of a training program for women in higher education leadership and management was assessed. The program was designed by the University of Pennsylvania's Higher Education Resource Services. The training program, entitled "The Next Move," was introduced at three pilot sites: a large,…

  14. Brominated flame retardants in Chinese air before and after the phase out of polybrominated diphenyl ethers

    NASA Astrophysics Data System (ADS)

    Li, Wen-Long; Qi, Hong; Ma, Wan-Li; Liu, Li-Yan; Zhang, Zhi; Mohammed, Mohammed O. A.; Song, Wei-Wei; Zhang, Zifeng; Li, Yi-Fan

    2015-09-01

    Brominated flame retardants (BFRs), including polybrominated diphenyl ethers (PBDEs) and novel non-BDE flame retardants (NBFRs), were analyzed in Chinese air during China's POPs Soil and Air Monitoring Program Phase I (SAMP-I) and Phase II (SAMP-II). The levels of Σ12PBDEs and Σ6NBFRs in urban sites were significantly higher than those in rural sites and background sites. The higher detection rate and concentrations of high molecular weight PBDEs and NBFRs in Phase II indicated the changing of the commercial pattern of BFRs after the phase out of PBDEs in China. Temperature was the major factor affecting the seasonal variations of molecular weight BFRs in atmosphere. A significant correlation between BFRs concentration and gross domestic product (GDP) was observed, with the GDP parameter explained 59.4% and 72.7% of the total variability for Octa-BDEs and low molecular weight NBFRs, respectively. Our findings indicated an evolving commercial usage of BFRs from SAMP-I to SAMP-II, i.e. shifting from lower molecular weight to higher molecular weight congeners in China.

  15. Improvement of sulfur resistance of Pd/Ce-Zr-Al-O catalysts for CO oxidation

    NASA Astrophysics Data System (ADS)

    Shin, Haebin; Baek, Minsung; Ro, Youngsoo; Song, Changyeol; Lee, Kwan-Young; Song, In Kyu

    2018-01-01

    Two kinds of mesoporous ceria-zirconia-alumina supports were prepared by a single-step epoxide-driven sol-gel method (SGCZA) and by a co-precipitation method (PCZA). Palladium catalysts supported on these materials were then prepared by a wet impregnation method (Pd/SGCZA and Pd/PCZA). The prepared catalysts were applied to the CO oxidation reaction before and after sulfur aging. XRD and N2 adsorption-desorption analyses revealed that these two catalysts retained different physicochemical properties. Pd/SGCZA had higher surface area and larger pore volume than Pd/PCZA before and after sulfur aging. TPR (Temperature-programmed reduction), CO chemisorption, FT-IR, and XPS analyses showed that the catalysts were differently influenced by sulfur species. Pd/SGCZA formed less sulfate and retained higher palladium dispersion than Pd/PCZA after sulfur aging. In the CO oxidation, Pd/PCZA showed better activity than Pd/SGCZA before sulfur aging. However, Pd/SGCZA showed higher CO conversion than Pd/PCZA after sulfur aging. We concluded that Pd/SGCZA was less poisoned by sulfur species than Pd/PCZA.

  16. Overview of NASA Glenn Seal Program

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Proctor, Margaret P.; Dunlap, Patrick H., Jr.; Delgado, Irebert; DeMange, Jeffrey J.; Daniels, Christopher C.; Lattime, Scott B.

    2003-01-01

    The Seal Team is divided into four primary areas. These areas include turbine engine seal development, structural seal development, acoustic seal development, and adaptive seal development. The turbine seal area focuses on high temperature, high speed shaft seals for secondary air system flow management. The structural seal area focuses on high temperature, resilient structural seals required to accommodate large structural distortions for both space- and aero-applications. Our goal in the acoustic seal project is to develop non-contacting, low leakage seals exploiting the principles of advanced acoustics. We are currently investigating a new acoustic field known as Resonant Macrosonic Synthesis (RMS) to see if we can harness the large acoustic standing pressure waves to form an effective air-barrier/seal. Our goal in the adaptive seal project is to develop advanced sealing approaches for minimizing blade-tip (shroud) or interstage seal leakage. We are planning on applying either rub-avoidance or regeneration clearance control concepts (including smart structures and materials) to promote higher turbine engine efficiency and longer service lives.

  17. Stepping outside the neighborhood of T at LHC

    NASA Astrophysics Data System (ADS)

    Wiedemann, Urs Achim

    2009-11-01

    “ As you are well aware, many in the RHIC community are interested in the LHC heavy-ion program, but have several questions: What can we learn at the LHC that is qualitatively new? Are collisions at LHC similar to RHIC ones, just with a somewhat hotter/denser initial state? If not, why not? These questions are asked in good faith, and this talk is an opportunity to answer them directly to much of the RHIC community.” With these words, the organizers of Quark Matter 2009 in Knoxville invited me to discuss the physics opportunities for heavy ion collisions at the LHC without recalling the standard arguments, which are mainly based on the extended kinematic reach of the machine. In response, I emphasize here that lattice QCD indicates characteristic qualitative differences between thermal physics in the neighborhood of the critical temperature (T400-500MeV), for which the relevant energy densities will be solely attainable at the LHC.

  18. Spacecraft thermal balance testing using infrared sources

    NASA Technical Reports Server (NTRS)

    Tan, G. B. T.; Walker, J. B.

    1982-01-01

    A thermal balance test (controlled flux intensity) on a simple black dummy spacecraft using IR lamps was performed and evaluated, the latter being aimed specifically at thermal mathematical model (TMM) verification. For reference purposes the model was also subjected to a solar simulation test (SST). The results show that the temperature distributions measured during IR testing for two different model attitudes under steady state conditions are reproducible with a TMM. The TMM test data correlation is not as accurate for IRT as for SST. Using the standard deviation of the temperature difference distribution (analysis minus test) the SST data correlation is better by a factor of 1.8 to 2.5. The lower figure applies to the measured and the higher to the computer-generated IR flux intensity distribution. Techniques of lamp power control are presented. A continuing work program is described which is aimed at quantifying the differences between solar simulation and infrared techniques for a model representing the thermal radiating surfaces of a large communications spacecraft.

  19. Desorption Kinetics of Methanol, Ethanol, and Water from Graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, R. Scott; Matthiesen, Jesper; Kay, Bruce D.

    2014-09-18

    The desorption kinetics of methanol, ethanol, and water from graphene covered Pt(111) are investigated. The temperature programmed desorption (TPD) spectra for both methanol and ethanol have well-resolved first, second, third, and multilayer layer desorption peaks. The alignment of the leading edges is consistent with zero-order desorption kinetics from all layers. In contrast, for water the first and second layers are not resolved. At low water coverages (< 1 ML) the initial desorption leading edges are aligned but then fall out of alignment at higher temperatures. For thicker water layers (10 to 100 ML), the desorption leading edges are in alignmentmore » throughout the desorption of the film. The coverage dependence of the desorption behavoir suggests that at low water coverages the non-alignment of the desorption leading edges is due to water dewetting from the graphene substrate. Kinetic simulations reveal that the experimental results are consistent with zero-order desorption. The simulations also show that fractional order desorption kinetics would be readily apparent in the experimental TPD spectra.« less

  20. Desorption kinetics of methanol, ethanol, and water from graphene.

    PubMed

    Smith, R Scott; Matthiesen, Jesper; Kay, Bruce D

    2014-09-18

    The desorption kinetics of methanol, ethanol, and water from graphene covered Pt(111) are investigated. The temperature programmed desorption (TPD) spectra for both methanol and ethanol have well-resolved first, second, third, and multilayer layer desorption peaks. The alignment of the leading edges is consistent with zero-order desorption kinetics from all layers. In contrast, for water, the first and second layers are not resolved. At low water coverages (<1 monolayer (ML)) the initial desorption leading edges are aligned but then fall out of alignment at higher temperatures. For thicker water layers (10-100 ML), the desorption leading edges are in alignment throughout the desorption of the film. The coverage dependence of the desorption behavoir suggests that at low water coverages the nonalignment of the desorption leading edges is due to water dewetting from the graphene substrate. Kinetic simulations reveal that the experimental results are consistent with zero-order desorption. The simulations also show that fractional order desorption kinetics would be readily apparent in the experimental TPD spectra.

  1. Determination of residual solvents in pharmaceuticals by thermal desorption-GC/MS.

    PubMed

    Hashimoto, K; Urakami, K; Fujiwara, Y; Terada, S; Watanabe, C

    2001-05-01

    A novel method for the determination of residual solvents in pharmaceuticals by thermal desorption (TD)-GC/MS has been established. A programmed temperature pyrolyzer (double shot pyrolyzer) is applied for the TD. This method does not require any sample pretreatment and allows very small amounts of the sample. Directly desorbed solvents from intact pharmaceuticals (ca. 1 mg) in the desorption cup (5 mm x 3.8 mm i.d.) were cryofocused at the head of a capillary column prior to a GC/MS analysis. The desorption temperature was set at a point about 20 degrees C higher than the melting point of each sample individually, and held for 3 min. The analytical results using 7 different pharmaceuticals were in agreement with those obtained by direct injection (DI) of the solution, followed by USP XXIII. This proposed TD-GC/MS method was demonstrated to be very useful for the identification and quantification of residual solvents. Furthermore, this method was simple, allowed rapid analysis and gave good repeatability.

  2. Enhanced capture of elemental mercury by bamboo-based sorbents.

    PubMed

    Tan, Zengqiang; Xiang, Jun; Su, Sheng; Zeng, Hancai; Zhou, Changsong; Sun, Lushi; Hu, Song; Qiu, Jianrong

    2012-11-15

    To develop cost-effective sorbent for gas-phase elemental mercury removal, the bamboo charcoal (BC) produced from renewable bamboo and KI modified BC (BC-I) were used for elemental mercury removal. The effect of NO, SO2 on gas-phase Hg0 adsorption by KI modified BC was evaluated on a fixed bed reactor using an online mercury analyzer. BET surface area analysis, temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS) were used to determine the pore structure and surface chemistry of the sorbents. The results show that KI impregnation reduced the sorbents' BET surface area and total pore volume compared with that of the original BC. But the BC-I has excellent adsorption capacity for elemental mercury at a relatively higher temperature of 140 °C and 180 °C. The presence of NO or SO2 could inhibit Hg0 capture, but BC-I has strong anti-poisoning ability. The specific reaction mechanism has been further analyzed. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Disorder-induced Revival of the Bose-Einstein Condensation at High Magnetic Fields in Ni(Cl1-xBrx)2- 4SC(NH2)2

    NASA Astrophysics Data System (ADS)

    Laflorencie, Nicolas; Dupont, Maxime; Capponi, Sylvain

    Building on recent NMR experiments, we theoretically investigate the high magnetic field regime of the disordered quasi-one-dimensional S = 1 antiferromagnetic material Ni(Cl1-xBrx)2- 4SC(NH2)2. The interplay between disorder, chemically controlled by Br-doping, interactions, and the external magnetic field, leads to a very rich phase diagram. Beyond the well-known antiferromagnetically ordered regime, analog of a Bose condensate of magnons, which disappears when H >= 12 . 3 T, we unveil a resurgence of phase coherence at higher field H 13 . 6 T, induced by the doping. Interchain couplings stabilize finite temperature long-range order whose extension in the field - temperature space is governed by the concentration of impurities x. Such a ``mini-condensation'' contrasts with previously reported Bose-glass physics in the same regime by Yu et al., and should be accessible to future experiments. Work supported by the French ANR program BOLODISS and by Region Midi-Pyrenees.

  4. Study of high field side/low field side asymmetry in the electron temperature profile with electron cyclotron emission

    NASA Astrophysics Data System (ADS)

    Gugliada, V. R.; Austin, M. E.; Brookman, M. W.

    2017-10-01

    Electron cyclotron emission (ECE) provides high resolution measurements of electron temperature profiles (Te(R , t)) in tokamaks. Calibration accuracy of this data can be improved using a sawtooth averaging technique. This improved calibration will then be utilized to determine the symmetry of Te profiles by comparing low field side (LFS) and high field side (HFS) measurements. Although Te is considered constant on flux surfaces, cases have been observed in which there are pronounced asymmetries about the magnetic axis, particularly with increased pressure. Trends in LFS/HFS overlap are examined as functions of plasma pressure, MHD mode presence, heating techniques, and other discharge conditions. This research will provide information on the accuracy of the current two-dimensional mapping of flux surfaces in the tokamak. Findings can be used to generate higher quality EFITs and inform ECE calibration. Work supported in part by US DoE under the Science Undergraduate Laboratory Internship (SULI) program and under DE-FC02-04ER549698.

  5. NERVA irradiation program. GTR 23, volume 1: Combined effects of reactor radiation and cryogenic temperature on NERVA structural materials

    NASA Technical Reports Server (NTRS)

    Mcdaniel, R. H.; Bradford, E. W.; Lewis, J. H.; Wattier, J. B.

    1973-01-01

    Specimens fabricated from structural materials that were candidates for certain NERVA applications were irradiated in liquid nitrogen (LN2), liquid hydrogen (LH2), water, and air. The specimens irradiated in LN2 were stored in LN2 and finally tested in LN2, or at some higher temperature in a few instances. The specimens irradiated in LH2 underwent an unplanned warmup while in storage so this portion of the test was lost; some specimens were tested in LN2 but none were tested in LH2. The Ground Test Reactor was the radiation source. The test specimens consisted mainly of tensile and fracture toughness specimens of several different materials, but other types of specimens such as tear, flexure, springs, and lubricant were also irradiated. Materials tested include Hastelloy X, Al, Ni steel, steel, Be, ZrC, Ti-6Al-4V, CuB, and Ti-5Al-2.5Sn.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demicheli, M.C.; Duprez, D.; Barbier, J.

    The influence of potassium on the hydrogenolysis of cyclopentane and on the simultaneous carbon formation over a series of alumina-supported Ni catalysts was studied. With increasing potassium loadings at temperatures where either a deactivating two-dimensional carbon or a filamentary carbon was formed, the catalytic activity passed through a maximum and then decreased. With relatively high K-doses there was less coking in the presence of steam; the growth of filamentary carbon was then largely reduced. Characterization of the coked catalysts by temperature-programmed oxidation and SEM disclosed quite different roles of alkali: at lower contents, associated with alumina, potassium facilitates the formationmore » of filamentary carbon and minimizes the generation of coke precursors, whereas at higher contents it acts as a poison for both hydrogenolysis and coking reactions. In all cases, the alkali promoted the catalytic oxidation of the carbon deposits. Because of its localization, the alkali could also modify the nickel-carbon interface in carbon filaments. 32 refs., 12 figs., 5 tabs.« less

  7. Effect of flame stabilizer design on performance and exhaust pollutants of a two-row 72-module swirl-can combustor

    NASA Technical Reports Server (NTRS)

    Biaglow, J. A.; Trout, A. M.

    1976-01-01

    A test program was conducted to evaluate the effects of four flame stabilizer designs on the performance and gaseous pollutant levels of an experimental full-annular swirl-can combustor. Combustor operating parameters, including inlet-air temperature, reference velocity, and fuel-air ratio, were set to simulate conditions in a 30:1 pressure ratio engine. Combustor inlet total pressure was held constant at 6 atm due to the facility limit. Combustor performance and gaseous pollutant levels were strongly affected by the geometry and resulting total pressure loss of the four flame stabilizer designs investigated. The addition of shrouds to two designs produced an 18 to 22% decrease in the combustion chamber pressure loss and thus resulted in doubling the exit temperature pattern factor and up to 42% higher levels of oxides of nitrogen. A previously developed oxides of nitrogen correlating parameter agreed with each model within an emission index of plus or minus 1 but was not capable of correlating all models together.

  8. Observations of Poynting fluxes, ion temperatures and neutral densities during the March 2015 magnetic storm

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Su, Y. J.; Huang, C. Y.; Hairston, M. R.; Sutton, E. K.

    2015-12-01

    We will present various observations regarding the geomagnetic energy input and the response of Ionosphere-Thermosphere (IT) system during the March 17, 2015 storm, the largest one in solar cycle 24. The Poynting fluxes measured by Defense Meteorological Satellite Program (DMSP) satellites (F16, F17 and F18) show significant enhancements in the auroral oval and at high latitudes poleward of the auroral oval. Moreover, the ion temperatures observed by DMSP satellites (F16, F17 and F19) at magnetic latitudes greater than 80° are higher than those in the auroral oval, and the their averaged increases are 316K in the northern hemisphere and 248 K in the southern hemisphere, respectively. In addition, the neutral density residuals measured by the Gravity Recovery and Climate Experiment (GRACE) satellite indicate the largest values at the highest orbital latitudes. The wave-like perturbations originating at high latitudes move equatorward with decreasing amplitudes along GRACE orbits, implying a source region for Traveling Atmospheric Disturbances (TADs) at polar latitudes.

  9. Assessment of surface acidity in mesoporous materials containing aluminum and titanium

    NASA Astrophysics Data System (ADS)

    Araújo, Rinaldo S.; Maia, Débora A. S.; Azevedo, Diana C. S.; Cavalcante, Célio L., Jr.; Rodríguez-Castellón, E.; Jimenez-Lopez, A.

    2009-04-01

    The surface acidity of mesoporous molecular sieves of aluminum and titanium was evaluated using four different techniques: n-butylamine volumetry, cyclohexylamine thermodesorption, temperature-programmed desorption of ammonia and adsorption of pyridine. The nature, strength and concentration of the acid sites were determined and correlated to the results of a probe reaction of anthracene oxidation to 9,10-anthraquinone (in liquid phase). In general, the surface acidity was highly influenced by the nature, location and coordination of the metal species (Al and Ti) in the mesoporous samples. Moderate to strong Brönsted acid sites were identified for the Al-MCM-41 sample in a large temperature range. For mesoporous materials containing Ti, the acidity was represented by a combination of weak to moderate Brönsted and Lewis acid sites. The Ti-HMS sample exhibits a higher acidity of moderate strength together with a well-balanced concentration of Brönsted and Lewis acid sites, which enhanced both conversion and selectivity in the oxidation reaction of anthracene.

  10. Organic electrical double layer transistors gated with ionic liquids

    NASA Astrophysics Data System (ADS)

    Xie, Wei; Frisbie, C. Daniel

    2011-03-01

    Transport in organic semiconductors gated with several types of ionic liquids has been systematically studied at charge densities larger than 1013 cm-2 . We observe a pronounced maximum in channel conductance for both p-type and n-type organic single crystals which is attributed to carrier localization at the semiconductor-electrolyte interface. Carrier mobility, as well as charge density and dielectric capacitance are determined through displacement current measurement and capacitance-voltage measurement. By using a larger-sized and spherical anion, tris(pentafluoroethyl)trifluorophosphate (FAP), effective carrier mobility in rubrene can be enhanced substantially up to 3.2 cm2 V-1 s -1 . Efforts have been made to maximize the charge density in rubrene single crystals, and at low temperature when higher gate bias can be applied, charge density can more than double the amount of that at room temperature, reaching 8*1013 cm-2 holes (0.4 holes per rubrene molecule). NSF MRSEC program at the University of Minnesota.

  11. Computer program to simulate Raman scattering

    NASA Technical Reports Server (NTRS)

    Zilles, B.; Carter, R.

    1977-01-01

    A computer program is described for simulating the vibration-rotation and pure rotational spectrum of a combustion system consisting of various diatomic molecules and CO2 as a function of temperature and number density. Two kinds of spectra are generated: a pure rotational spectrum for any mixture of diatomic and linear triatomic molecules, and a vibrational spectrum for diatomic molecules. The program is designed to accept independent rotational and vibrational temperatures for each molecule, as well as number densities.

  12. Hydrogen retention in Li and Li-C-O films

    NASA Astrophysics Data System (ADS)

    Buzi, Luxherta; Nelson, Andrew O.; Yang, Yuxin; Kaita, Robert; Koel, Bruce E.

    2017-10-01

    The efficiency of Li in binding H isotopes has led to reduced recycling in magnetic fusion devices and improved plasma performance. Since elemental Li surfaces are challenging to maintain in fusion devices due to the presence of impurities, parameterizing and understanding the mechanisms for H retention in various Li compounds (Li-C-O), in addition to pure Li, is crucial for Li plasma-facing material applications. To determine H retention in Li and Li-C-O films, measurements were done under ultrahigh vacuum conditions using temperature programmed desorption (TPD). Thin Li films (20 monolayers) were deposited on a nickel single crystal substrate and irradiated with 500 eV H2+ions at surface temperatures from 90K to 520K. Initial measurements on Li and Li-O films showed that the retention was comparable and dropped exponentially with surface temperature, from 95% at 90 K to 35% at 520 K. Auger electron spectroscopy and TPD showed that H was retained as lithium hydride (LiH) in pure Li and as lithium hydroxide (LiOH) in Li2O, which decomposed to H2O and Li2O at temperatures higher than 470K. H retention in Li-C and Li-C-O films will be determined over a similar temperature range, and the sputtering rate of these layers with H ions will also be reported. This material is based upon work supported by the U.S. Department of Energy, Office of Science/Fusion Energy Sciences under Award Number DE-SC0012890.

  13. A Model of Loggerhead Sea Turtle (Caretta caretta) Habitat and Movement in the Oceanic North Pacific

    PubMed Central

    Abecassis, Melanie; Senina, Inna; Lehodey, Patrick; Gaspar, Philippe; Parker, Denise; Balazs, George; Polovina, Jeffrey

    2013-01-01

    Habitat preferences for juvenile loggerhead turtles in the North Pacific were investigated with data from two several-year long tagging programs, using 224 satellite transmitters deployed on wild and captive-reared turtles. Animals ranged between 23 and 81 cm in straight carapace length. Tracks were used to investigate changes in temperature preferences and speed of the animals with size. Average sea surface temperatures along the tracks ranged from 18 to 23 °C. Bigger turtles generally experienced larger temperature ranges and were encountered in warmer surface waters. Seasonal differences between small and big turtles suggest that the larger ones dive deeper than the mixed layer and subsequently target warmer surface waters to rewarm. Average swimming speeds were under 1 km/h and increased with size for turtles bigger than 30 cm. However, when expressed in body lengths per second (bl s−1), smaller turtles showed much higher swimming speeds (>1 bl s −1) than bigger ones (0.5 bl s−1). Temperature and speed values at size estimated from the tracks were used to parameterize a habitat-based Eulerian model to predict areas of highest probability of presence in the North Pacific. The model-generated habitat index generally matched the tracks closely, capturing the north-south movements of tracked animals, but the model failed to replicate observed east-west movements, suggesting temperature and foraging preferences are not the only factors driving large-scale loggerhead movements. Model outputs could inform potential bycatch reduction strategies. PMID:24039901

  14. Fluidized-bed technology enabling the integration of high temperature solar receiver CSP systems with steam and advanced power cycles

    DOE PAGES

    Sakadjian, B.; Hu, S.; Maryamchik, M.; ...

    2015-06-05

    Solar Particle Receivers (SPR) are under development to drive concentrating solar plants (CSP) towards higher operating temperatures to support higher efficiency power conversion cycles. The novel high temperature SPR-based CSP system uses solid particles as the heat transfer medium (HTM) in place of the more conventional fluids such as molten salt or steam used in current state-of-the-art CSP plants. The solar particle receiver (SPR) is designed to heat the HTM to temperatures of 800 °C or higher which is well above the operating temperatures of nitrate-based molten salt thermal energy storage (TES) systems. The solid particles also help overcome somemore » of the other challenges associated with molten salt-based systems such as freezing, instability and degradation. The higher operating temperatures and use of low cost HTM and higher efficiency power cycles are geared towards reducing costs associated with CSP systems. This paper describes the SPR-based CSP system with a focus on the fluidized-bed (FB) heat exchanger and its integration with various power cycles. Furthermore, the SPR technology provides a potential pathway to achieving the levelized cost of electricity (LCOE) target of $0.06/kWh that has been set by the U.S. Department of Energy's SunShot initiative.« less

  15. Temperature dependence of autoxidation of perilla oil and tocopherol degradation.

    PubMed

    Wang, Seonyeong; Hwang, Hyunsuk; Yoon, Sukhoo; Choe, Eunok

    2010-08-01

    Temperature dependence of the autoxidation of perilla oil and tocopherol degradation was studied with corn oil as a reference. The oils were oxidized in the dark at 20, 40, 60, and 80 degrees C. Oil oxidation was determined by peroxide and conjugated dienoic acid values. Tocopherols in the oils were quantified by HPLC. The oxidation of both oils increased with oxidation time and temperature. Induction periods for oil autoxidation decreased with temperature, and were longer in corn oil than in perilla oil, indicating higher sensitivity of perilla oil to oxidation. However, time lag for tocopherol degradation was longer in perilla oil, indicating higher stability of tocopherols in perilla oil than in corn oil. Activation energies for oil autoxidation and tocopherol degradation were higher in perilla oil (23.9 to 24.2, 9.8 kcal/mol, respectively) than in corn oil (12.5 to 15.8, 8.8 kcal/mol, respectively) indicating higher temperature-dependence in perilla oil. Higher stability of tocopherols in perilla oil was highly related with polyphenols. The study suggests that more careful temperature control is required to decrease the autoxidation of perilla oil than that of corn oil, and polyphenols contributed to the oxidative stability of perilla oil by protecting tocopherols from degradation, especially at the early stage of oil autoxidation.

  16. Fluidized-bed technology enabling the integration of high temperature solar receiver CSP systems with steam and advanced power cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakadjian, B.; Hu, S.; Maryamchik, M.

    Solar Particle Receivers (SPR) are under development to drive concentrating solar plants (CSP) towards higher operating temperatures to support higher efficiency power conversion cycles. The novel high temperature SPR-based CSP system uses solid particles as the heat transfer medium (HTM) in place of the more conventional fluids such as molten salt or steam used in current state-of-the-art CSP plants. The solar particle receiver (SPR) is designed to heat the HTM to temperatures of 800 °C or higher which is well above the operating temperatures of nitrate-based molten salt thermal energy storage (TES) systems. The solid particles also help overcome somemore » of the other challenges associated with molten salt-based systems such as freezing, instability and degradation. The higher operating temperatures and use of low cost HTM and higher efficiency power cycles are geared towards reducing costs associated with CSP systems. This paper describes the SPR-based CSP system with a focus on the fluidized-bed (FB) heat exchanger and its integration with various power cycles. Furthermore, the SPR technology provides a potential pathway to achieving the levelized cost of electricity (LCOE) target of $0.06/kWh that has been set by the U.S. Department of Energy's SunShot initiative.« less

  17. Performance testing of elastomeric seal materials under low and high temperature conditions: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BRONOWSKI,DAVID R.

    The US Department of Energy Offices of Defense Programs and Civilian Radioactive Waste Management jointly sponsored a program to evaluate elastomeric O-ring seal materials for radioactive material shipping containers. The report presents the results of low- and high-temperature tests conducted on 27 common elastomeric compounds.

  18. Temperature Influences on Diapause Induction and Survival in the Boll Weevil (Coleoptera: Curculionidae)

    PubMed Central

    Suh, Charles P-C

    2017-01-01

    Abstract The boll weevil, Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae), has been the most important pest of cotton (Gossypium spp.) wherever it occurs. Although eradication programs in the United States have reduced the range of this pest, the weevil remains an intractable problem in subtropical Texas, Mexico, and much of South America. A key to managing the weevil in the subtropics and tropics might lie in better understanding its diapause and overwintering survival in regions characterized by relatively high late-season temperatures. We examined the temporal patterns of acquisition of diapause characters at 18.3, 23.9, and 29.4°C, and the effects of temperature during the diapause-induction period on subsequent host-free survival at 23.9°C. Occurrence of the diapause characters generally increased with weevil age at all temperatures but appeared more rapidly at higher temperatures. Acquisition of the diapause characters tended to occur slightly earlier in female weevils compared with the male weevils. Despite the slower development of diapause characters at lower temperatures, when adult weevils were fed under low temperatures, subsequent host-free survival was enhanced. These results are consistent with reports of increased weevil survival with delayed entry into overwintering. Our findings also suggest that the potential host-free survival facilitated by diapause occurring in subtropical or tropical production regions may be reduced compared with dormancy developing in southern temperate regions. This reduced survival potential emphasizes the importance of a maximized host-free season and suggests that the late-season diapause spray intervals should be short enough to ensure that the number of dormant weevils developing in late-season cotton is minimized.

  19. Temperature-dependent surface density of alkylthiol monolayers on gold nanocrystals

    NASA Astrophysics Data System (ADS)

    Liu, Xuepeng; Lu, Pin; Zhai, Hua; Wu, Yucheng

    2018-03-01

    Atomistic molecular dynamics (MD) simulations are performed to study the surface density of passivating monolayers of alkylthiol chains on gold nanocrystals at temperatures ranging from 1 to 800 K. The results show that the surface density of alkylthiol monolayer reaches a maximum value at near room temperature (200-300 K), while significantly decreases with increasing temperature in the higher temperature region (> 300 {{K}}), and slightly decreases with decreasing temperature at low temperature (< 200 {{K}}). We find that the temperature dependence of surface ligand density in the higher temperature region is attributed to the substantial ligand desorption induced by the thermal fluctuation, while that at low temperature results from the reduction in entropy caused by the change in the ordering of passivating monolayer. These results are expected helpful to understand the temperature-dependent surface coverage of gold nanocrystals.

  20. An experimental study on effects of increased ventilation flow on students' perception of indoor environment in computer classrooms.

    PubMed

    Norbäck, D; Nordström, K

    2008-08-01

    The effects of ventilation in computer classrooms were studied with university students (n = 355) in a blinded study, 31% were women and 3.8% had asthma. Two classrooms had a higher air exchange (4.1-5.2 ac/h); two others had a lower air exchange (2.3-2.6 ac/h). After 1 week, ventilation conditions were shifted. The students reported environmental perceptions during the last hour. Room temperature, RH, CO2, PM10 and ultra-fine particles were measured simultaneously. Mean CO2 was 1185 ppm at lower and 922 ppm at higher air exchange. Mean temperature was 23.2 degrees C at lower and 22.1 degrees C at higher air exchange. After mutual adjustment (temperature, RH, CO2, air exchange), measured temperature was associated with a perception of higher temperature (P < 0.001), lower air movement (P < 0.001), and poorer air quality (P < 0.001). Higher air exchange was associated with a perception of lower temperature (P < 0.001), higher air movement (P = 0.001), and better air quality (P < 0.001). In the longitudinal analysis (n = 83), increased air exchange caused a perception of lower temperature (P = 0.002), higher air movement (P < 0.001), better air quality (P = 0.001), and less odor (P = 0.02). In conclusion, computer classrooms have CO2 levels above 1000 ppm and temperatures above 22 degrees C. Increased ventilation from 7 l/s per person to 10-13 l/s per person can improve thermal comfort and air quality. Computer classrooms are crowded indoor environments with a high thermal load from both students and computer equipment. It is important to control room temperature either by air conditioning, sun shields, or sufficiently high ventilation flow. A high ventilation flow is also crucial to achieving good perceived air quality. Personal ventilation flow should be at least 10 l/s. Possible loss of learning ability due to poor indoor air quality in university buildings deserves more attention.

  1. Effect of different shipping temperatures (∼22 °C vs. ∼7 °C) and holding media on blastocyst development after overnight holding of immature equine cumulus-oocyte complexes.

    PubMed

    Diaw, Mouhamadou; Salgado, Renato M; Canesin, Heloísa S; Gridley, Nell; Hinrichs, Katrin

    2018-04-15

    Intracytoplasmic sperm injection (ICSI) is an important tool for equine embryo production in both clinical and research settings. In clinical ICSI programs, immature equine cumulus-oocyte complexes (COCs) are often collected at the mare's location and shipped to the ICSI laboratory. To simplify shipment and aid scheduling of subsequent procedures, COCs can be held overnight at room temperature (∼22 °C) before placement into maturation culture, with no detrimental effect on meiotic or developmental competence. A recent study indicated that it might be possible to hold COCs overnight at cold (∼4 °C) temperatures. If so, this might allow longer holding periods that would ease shipping requirements. In this study, we compared oocyte maturation rates, as well as cleavage and blastocyst rates after ICSI, for COCs held at either room or cold temperatures overnight before the onset of in vitro maturation. In Exp. 1, COCs were shipped overnight in a commercial embryo holding medium, ViGRO (Vg), in insulated containers designed to hold at either room temperature (RT, ∼22 °C) or cold temperatures (Cold, ∼7 °C). Subsequent rates of in vitro maturation, cleavage and blastocyst formation were significantly higher in the RT treatment (39%, 90% and 41%, respectively) than in the Cold treatment (23%, 60% and 17%, respectively, P < .05). In Exp. 2, we compared Vg medium with a second commercial embryo holding medium, SYNGRO (Sy). There was no significant difference between Vg and Sy groups in any evaluated parameter within either RT or Cold treatments. Within each medium group and for both media combined, the rates of in vitro maturation, cleavage and blastocyst formation were significantly higher in the RT treatment (42%, 81% and 42%, respectively for the combined media) than in the Cold treatment (29%, 54% and 10%, respectively for the combined media, P < .05). We conclude that shipment of immature equine COCs at cold temperatures (∼7 °C) is detrimental to subsequent in vitro maturation and embryo production. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Hydrogen desorption from hydrogen fluoride and remote hydrogen plasma cleaned silicon carbide (0001) surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Sean W., E-mail: sean.king@intel.com; Tanaka, Satoru; Davis, Robert F.

    2015-09-15

    Due to the extreme chemical inertness of silicon carbide (SiC), in-situ thermal desorption is commonly utilized as a means to remove surface contamination prior to initiating critical semiconductor processing steps such as epitaxy, gate dielectric formation, and contact metallization. In-situ thermal desorption and silicon sublimation has also recently become a popular method for epitaxial growth of mono and few layer graphene. Accordingly, numerous thermal desorption experiments of various processed silicon carbide surfaces have been performed, but have ignored the presence of hydrogen, which is ubiquitous throughout semiconductor processing. In this regard, the authors have performed a combined temperature programmed desorptionmore » (TPD) and x-ray photoelectron spectroscopy (XPS) investigation of the desorption of molecular hydrogen (H{sub 2}) and various other oxygen, carbon, and fluorine related species from ex-situ aqueous hydrogen fluoride (HF) and in-situ remote hydrogen plasma cleaned 6H-SiC (0001) surfaces. Using XPS, the authors observed that temperatures on the order of 700–1000 °C are needed to fully desorb C-H, C-O and Si-O species from these surfaces. However, using TPD, the authors observed H{sub 2} desorption at both lower temperatures (200–550 °C) as well as higher temperatures (>700 °C). The low temperature H{sub 2} desorption was deconvoluted into multiple desorption states that, based on similarities to H{sub 2} desorption from Si (111), were attributed to silicon mono, di, and trihydride surface species as well as hydrogen trapped by subsurface defects, steps, or dopants. The higher temperature H{sub 2} desorption was similarly attributed to H{sub 2} evolved from surface O-H groups at ∼750 °C as well as the liberation of H{sub 2} during Si-O desorption at temperatures >800 °C. These results indicate that while ex-situ aqueous HF processed 6H-SiC (0001) surfaces annealed at <700 °C remain terminated by some surface C–O and Si–O bonding, they may still exhibit significant chemical reactivity due to the creation of surface dangling bonds resulting from H{sub 2} desorption from previously undetected silicon hydride and surface hydroxide species.« less

  3. Labile and recalcitrant organic matter utilization by river biofilm under increasing water temperature.

    PubMed

    Ylla, Irene; Romaní, Anna M; Sabater, Sergi

    2012-10-01

    Microbial biofilms in rivers contribute to the decomposition of the available organic matter which typically shows changes in composition and bioavailability due to their origin, seasonality, and watershed characteristics. In the context of global warming, enhanced biofilm organic matter decomposition would be expected but this effect could be specific when either a labile or a recalcitrant organic matter source would be available. A laboratory experiment was performed to mimic the effect of the predicted increase in river water temperature (+4 °C above an ambient temperature) on the microbial biofilm under differential organic matter sources. The biofilm microbial community responded to higher water temperature by increasing bacterial cell number, respiratory activity (electron transport system) and microbial extracellular enzymes (extracellular enzyme activity). At higher temperature, the phenol oxidase enzyme explained a large fraction of respiratory activity variation suggesting an enhanced microbial use of degradation products from humic substances. The decomposition of hemicellulose (β-xylosidase activity) seemed to be also favored by warmer conditions. However, at ambient temperature, the enzymes highly responsible for respiration activity variation were β-glucosidase and leu-aminopeptidase, suggesting an enhanced microbial use of polysaccharides and peptides degradation products. The addition of labile dissolved organic carbon (DOC; dipeptide plus cellobiose) caused a further augmentation of heterotrophic biomass and respiratory activity. The changes in the fluorescence index and the ratio Abs(250)/total DOC indicated that higher temperature accelerated the rates of DOC degradation. The experiment showed that the more bioavailable organic matter was rapidly cycled irrespective of higher temperature while degradation of recalcitrant substances was enhanced by warming. Thus, pulses of carbon at higher water temperature might have consequences for DOC processing.

  4. Saturday night fever in ecstasy/MDMA dance clubbers: Heightened body temperature and associated psychobiological changes

    PubMed Central

    Parrott, Andrew C; Young, Lucy

    2014-01-01

    Aims and rationale: to investigate body temperature and thermal self-ratings of Ecstasy/MDMA users at a Saturday night dance club. Methods: 68 dance clubbers (mean age 21.6 years, 30 females and 38 males), were assessed at a Saturday night dance club, then 2–3 d later. Three subgroups were compared: 32 current Ecstasy users who had taken Ecstasy/MDMA that evening, 10 abstinent Ecstasy/MDMA users on other psychoactive drugs, and 26 non-user controls (predominantly alcohol drinkers). In a comparatively quiet area of the dance club, each unpaid volunteer had their ear temperature recorded, and completed a questionnaire on thermal feelings and mood states. A similar questionnaire was repeated 2–3 d later by mobile telephone. Results: Ecstasy/MDMA users had a mean body temperature 1.2°C higher than non-user controls (P < 0.001), and felt significantly hotter and thirstier. The abstinent Ecstasy/MDMA polydrug user group had a mean body temperature intermediate between the other 2 groups, significantly higher than controls, and significantly lower than current Ecstasy/MDMA users. After 2–3 d of recovery, the Ecstasy/MDMA users remained significantly ‘thirstier’. Higher body temperature while clubbing was associated with greater Ecstasy/MDMA usage at the club, and younger age of first use. Higher temperature also correlated with lower elation and poor memory 2–3 d later. It also correlated positively with nicotine, and negatively with cannabis. Conclusions: Ecstasy/MDMA using dance clubbers had significantly higher body temperature than non-user controls. This heightened body temperature was associated with a number of adverse psychobiological consequences, including poor memory. PMID:27626048

  5. Effects of temperature on feed intake and plasma chemistry after exhaustive exercise in triploid brown trout (Salmo trutta L).

    PubMed

    Preston, Andrew C; Taylor, John F; Fjelldal, Per Gunnar; Hansen, Tom; Migaud, Hervé

    2017-04-01

    The physiological effect of temperature on feed intake and haematological parameters after exhaustive swimming in diploid and triploid brown trout (Salmo trutta) was investigated. Trout were exposed to an incremental temperature challenge (2 °C/day) from ambient (6 °C) to either 10 or 19 °C. Feed intake profiles did not differ between ploidy at 10 °C; however, triploids had a significantly higher total feed intake at 19 °C. After 24 days, each temperature-ploidy group was exposed to exhaustive swimming for 10 min. The haematological response differed between ploidy, with the magnitude of the response affected by temperature and ploidy. Post-exercise, acid-base and ionic differences were observed. Plasma lactate increased significantly from rest for both temperature and ploidy groups, but glucose increased significantly at higher temperature. Post-exercise, triploids at 19 °C had significantly higher osmolality and cholesterol than diploids, but differences were resumed within 4 h. Elevated alkaline phosphatase (ALP) and aspartate aminotransferase (AST) in fish at higher temperature suggested greater tissue damage; however, both ploidy responded similarly. Despite no significant differences in deformity prevalence, the type and location of deformities observed differed between ploidy (decreased intervertebral space with higher prevalence in tail area and fin regions for diploids, while vertebral compression, fusion in cranial and caudal trunks for triploids). These results suggest triploids have greater appetite than diploids at elevated temperature and that triploids suffer similar blood disturbances after exercise as diploids. These findings have implications for the management of freshwater ecosystems and suggest that stocking triploid brown trout may offer an alternative to diploid brown trout.

  6. Combined effects of fermentation temperature and pH on kinetic changes of chemical constituents of durian wine fermented with Saccharomyces cerevisiae.

    PubMed

    Lu, Yuyun; Voon, Marilyn Kai Wen; Huang, Dejian; Lee, Pin-Rou; Liu, Shao-Quan

    2017-04-01

    This study investigated the effects of temperature (20 and 30 °C) and pH (pH 3.1, 3.9) on kinetic changes of chemical constituents of the durian wine fermented with Saccharomyces cerevisiae. Temperature significantly affected growth of S. cerevisiae EC-1118 regardless of pH with a higher temperature leading to a faster cell death. The pH had a more significant effect on ethanol production than temperature with higher production at 20 °C (5.95%, v/v) and 30 °C (5.56%, v/v) at pH 3.9, relative to that at pH 3.1 (5.25 and 5.01%, v/v). However, relatively higher levels of isobutyl alcohol and isoamyl alcohol up to 64.52 ± 6.39 and 56.27 ± 3.00 mg/L, respectively, were produced at pH 3.1 than at pH 3.9 regardless of temperature. In contrast, production of esters was more affected by temperature than pH, where levels of ethyl esters (ethyl esters of octanoate, nonanoate, and decanoate) and acetate esters (ethyl acetate and isoamyl acetate) were significantly higher up to 2.13 ± 0.23 and 4.61 ± 0.22 mg/L, respectively, at 20 °C than at 30 °C. On the other hand, higher temperature improved the reduction of volatile sulfur compounds. This study illustrated that temperature control would be a more effective tool than pH in modulating the resulting aroma compound profile of durian wine.

  7. Inter-comparison of hydro-climatic regimes across northern catchments: Synchronicity, resistance and resilience

    USGS Publications Warehouse

    Carey, S.K.; Tetzlaff, D.; Seibert, J.; Soulsby, C.; Buttle, J.; Laudon, H.; McDonnell, J.; McGuire, K.; Caissie, D.; Shanley, J.; Kennedy, M.; Devito, K.; Pomeroy, J.W.

    2010-01-01

    The higher mid-latitudes of the Northern Hemisphere are particularly sensitive to climate change as small differences in temperature determine frozen ground status, precipitation phase, and the magnitude and timing of snow accumulation and melt. An international inter-catchment comparison program, North-Watch, seeks to improve our understanding of the sensitivity of northern catchments to climate change by examining their hydrological and biogeochemical responses. The catchments are located in Sweden (Krycklan), Scotland (Mharcaidh, Girnock and Strontian), the United States (Sleepers River, Hubbard Brook and HJ Andrews) and Canada (Catamaran, Dorset and Wolf Creek). This briefing presents the initial stage of the North-Watch program, which focuses on how these catchments collect, store and release water and identify 'types' of hydro-climatic catchment response. At most sites, a 10-year data of daily precipitation, discharge and temperature were compiled and evaporation and storage were calculated. Inter-annual and seasonal patterns of hydrological processes were assessed via normalized fluxes and standard flow metrics. At the annual-scale, relations between temperature, precipitation and discharge were compared, highlighting the role of seasonality, wetness and snow/frozen ground. The seasonal pattern and synchronicity of fluxes at the monthly scale provided insight into system memory and the role of storage. We identified types of catchments that rapidly translate precipitation into runoff and others that more readily store water for delayed release. Synchronicity and variance of rainfall-runoff patterns were characterized by the coefficient of variation (cv) of monthly fluxes and correlation coefficients. Principal component analysis (PCA) revealed clustering among like catchments in terms of functioning, largely controlled by two components that (i) reflect temperature and precipitation gradients and the correlation of monthly precipitation and discharge and (ii) the seasonality of precipitation and storage. By advancing the ecological concepts of resistance and resilience for catchment functioning, results provided a conceptual framework for understanding susceptibility to hydrological change across northern catchments. ?? 2010 John Wiley & Sons, Ltd.

  8. System for and method of freezing biological tissue

    NASA Technical Reports Server (NTRS)

    Williams, T. E.; Cygnarowicz, T. A. (Inventor)

    1978-01-01

    Biological tissue is frozen while a polyethylene bag placed in abutting relationship against opposed walls of a pair of heaters. The bag and tissue are cooled with refrigerating gas at a time programmed rate at least equal to the maximum cooling rate needed at any time during the freezing process. The temperature of the bag, and hence of the tissue, is compared with a time programmed desired value for the tissue temperature to derive an error indication. The heater is activated in response to the error indication so that the temperature of the tissue follows the desired value for the time programmed tissue temperature. The tissue is heated to compensate for excessive cooling of the tissue as a result of the cooling by the refrigerating gas. In response to the error signal, the heater is deactivated while the latent heat of fusion is being removed from the tissue while the tissue is changing phase from liquid to solid.

  9. Research and development program for the development of advanced time-temperature dependent constitutive relationships. Volume 1: Theoretical discussion

    NASA Technical Reports Server (NTRS)

    Cassenti, B. N.

    1983-01-01

    The results of a 10-month research and development program for the development of advanced time-temperature constitutive relationships are presented. The program included (1) the effect of rate of change of temperature, (2) the development of a term to include time independent effects, and (3) improvements in computational efficiency. It was shown that rate of change of temperature could have a substantial effect on the predicted material response. A modification to include time-independent effects, applicable to many viscoplastic constitutive theories, was shown to reduce to classical plasticity. The computation time can be reduced by a factor of two if self-adaptive integration is used when compared to an integration using ordinary forward differences. During the course of the investigation, it was demonstrated that the most important single factor affecting the theoretical accuracy was the choice of material parameters.

  10. Preferred temperature correlates with evaporative water loss in hylid frogs from northern Australia.

    PubMed

    Tracy, Christopher R; Christian, Keith A

    2005-01-01

    We measured temperature preferences of 12 species of hylid frogs (Litoria and Cyclorana) from northern Australia in a laboratory thermal gradient. These species represented a range of ecological habitat use (aquatic, terrestrial, arboreal), adult body size (0.5-60 g), and cutaneous resistance to water loss (Rc=0.6-63.1 s cm-1). We found significant differences among species in selected skin temperature and gradient temperature but not in the variances of these measures (an index of precision of temperature selection). The species' differences correlated significantly with cutaneous resistance to water loss, with more-resistant frogs selecting higher skin and substrate temperatures in the thermal gradient, even after phylogenetic relationships are taken into account. Because cutaneous resistance to water loss also correlates with ecological habit (arboreal>terrestrial>aquatic), we suggest that their higher resistance to water loss allows arboreal and terrestrial species better ability to tolerate high temperatures, where growth or locomotory speed may be higher, without the associated risk of desiccation.

  11. Macroalgal response to a warmer ocean with higher CO2 concentration.

    PubMed

    Hernández, Celso A; Sangil, Carlos; Fanai, Alessandra; Hernández, José Carlos

    2018-05-01

    Primary production and respiration rates were studied for six seaweed species (Cystoseira abies-marina, Lobophora variegata, Pterocladiella capillacea, Canistrocarpus cervicornis, Padina pavonica and Corallina caespitosa) from Subtropical North-East Atlantic, to estimate the combined effects of different pH and temperature levels. Macroalgal samples were cultured at temperature and pH combinations ranging from current levels to those predicted for the next century (19, 21, 23, 25 °C, pH: 8.1, 7.7 and 7.4). Decreased pH had a positive effect on short-term production of the studied species. Raised temperatures had a more varied and species dependent effect on short term primary production. Thermophilic algae increased their production at higher temperatures, while temperate species were more productive at lower or present temperature conditions. Temperature also affected algal respiration rates, which were higher at low temperature levels. The results suggest that biomass and productivity of the more tropical species in coastal ecosystems would be enhanced by future ocean conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Compliant Foil Journal Bearing Performance at Alternate Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.; Puleo, Bernadette J.

    2008-01-01

    An experimental test program has been conducted to determine the highly loaded performance of current generation gas foil bearings at alternate pressures and temperatures. Typically foil bearing performance has been reported at temperatures relevant to turbomachinery applications but only at an ambient pressure of one atmosphere. This dearth of data at alternate pressures has motivated the current test program. Two facilities were used in the test program, the ambient pressure rig and the high pressure rig. The test program utilized a 35 mm diameter by 27 mm long foil journal bearing having an uncoated Inconel X-750 top foil running against a shaft with a PS304 coated journal. Load capacity tests were conducted at 3, 6, 9, 12, 15, 18, and 21 krpm at temperatures from 25 to 500 C and at pressures from 0.1 to 2.5 atmospheres. Results show an increase in load capacity with increased ambient pressure and a reduction in load capacity with increased ambient temperature. Below one-half atmosphere of ambient pressure a dramatic loss of load capacity is experienced. Additional lightly loaded foil bearing performance in nitrogen at 25 C and up to 48 atmospheres of ambient pressure has also been reported. In the lightly loaded region of operation the power loss increases for increasing pressure at a fixed load. Knowledge of foil bearing performance at operating conditions found within potential machine applications will reduce program development risk of future foil bearing supported turbomachines.

  13. SSME structural computer program development. Volume 2: BOPACE users manual

    NASA Technical Reports Server (NTRS)

    Vos, R. G.

    1973-01-01

    A computer program for use with a thermal-elastic-plastic-creep structural analyzer is presented. The following functions of the computer program are discussed: (1) analysis of very high temperature and large plastic-creep effects, (2) treatment of cyclic thermal and mechanical loads, (3) development of constitutive theory which closely follows actual behavior under variable temperature conditions, (4) stable numerical solution approach which avoids cumulative errors, and (5) capability of handling up to 1000 degrees of freedom. The computer program is written in FORTRAN IV and has been run on the IBM 360 and UNIVAC 1108 computer systems.

  14. Interfacing of high temperature Z-meter setup using python

    NASA Astrophysics Data System (ADS)

    Patel, Ashutosh; Sisodia, Shashank; Pandey, Sudhir K.

    2017-05-01

    In this work, we interface high temperature Z-meter setup to automize the whole measurement process. A program is built on open source programming language `Python' which convert the manual measurement process into fully automated process without any cost addition. Using this program, simultaneous measurement of Seebeck coefficient (α), thermal conductivity (κ) and electrical resistivity (ρ), are performed and using all three, figure-of-merit (ZT) is calculated. Developed program is verified by performing measurement over p-type Bi0.36Sb1.45Te3 sample and the data obtained are found to be in good agreement with the reported data.

  15. Computer program for preliminary design analysis of axial-flow turbines

    NASA Technical Reports Server (NTRS)

    Glassman, A. J.

    1972-01-01

    The program method is based on a mean-diameter flow analysis. Input design requirements include power or pressure ratio, flow, temperature, pressure, and speed. Turbine designs are generated for any specified number of stages and for any of three types of velocity diagrams (symmetrical, zero exit swirl, or impulse). Exit turning vanes can be included in the design. Program output includes inlet and exit annulus dimensions, exit temperature and pressure, total and static efficiencies, blading angles, and last-stage critical velocity ratios. The report presents the analysis method, a description of input and output with sample cases, and the program listing.

  16. Toroidal transformer design program with application to inverter circuitry

    NASA Technical Reports Server (NTRS)

    Dayton, J. A., Jr.

    1972-01-01

    Estimates of temperature, weight, efficiency, regulation, and final dimensions are included in the output of the computer program for the design of transformers for use in the basic parallel inverter. The program, written in FORTRAN 4, selects a tape wound toroidal magnetic core and, taking temperature, materials, core geometry, skin depth, and ohmic losses into account, chooses the appropriate wire sizes and number of turns for the center tapped primary and single secondary coils. Using the program, 2- and 4-kilovolt-ampere transformers are designed for frequencies from 200 to 3200 Hz and the efficiency of a basic transistor inverter is estimated.

  17. Temperature Effects in Varactors and Multipliers

    NASA Technical Reports Server (NTRS)

    East, J.; Mehdi, Imran

    2001-01-01

    Varactor diode multipliers are a critical part of many THz measurement systems. The power and efficiencies of these devices limit the available power for THz sources. Varactor operation is determined by the physics of the varactor device and a careful doping profile design is needed to optimize the performance. Higher doped devices are limited by junction breakdown and lower doped structures are limited by current saturation. Higher doped structures typically have higher efficiencies and lower doped structures typically have higher powers at the same operating frequency and impedance level. However, the device material properties are also a function of the operating temperature. Recent experimental evidence has shown that the power output of a multiplier can be improved by cooling the device. We have used a particle Monte Carlo simulation to investigate the temperature dependent velocity vs. electric field in GaAs. This information was then included in a nonlinear device circuit simulator to predict multiplier performance for various temperatures and device designs. This paper will describe the results of this analysis of temperature dependent multiplier operation.

  18. Thermal insulation and body temperature wearing a thermal swimsuit during water immersion.

    PubMed

    Wakabayashi, Hitoshi; Hanai, Atsuko; Yokoyama, Shintaro; Nomura, Takeo

    2006-09-01

    This study evaluated the effects of a thermal swimsuit on body temperatures, thermoregulatory responses and thermal insulation during 60 min water immersion at rest. Ten healthy male subjects wearing either thermal swimsuits or normal swimsuits were immersed in water (26 degrees C or 29 degrees C). Esophageal temperature, skin temperatures and oxygen consumption were measured during the experiments. Metabolic heat production was calculated from oxygen consumption. Heat loss from skin to the water was calculated from the metabolic heat production and the change in mean body temperature during water immersion. Total insulation and tissue insulation were estimated by dividing the temperature difference between the esophagus and the water or the esophagus and the skin with heat loss from the skin. Esophageal temperature with a thermal swimsuit was higher than that with a normal swimsuit at the end of immersion in both water temperature conditions (p<0.05). Oxygen consumption, metabolic heat production and heat loss from the skin were less with the thermal swimsuit than with a normal swimsuit in both water temperatures (p<0.05). Total insulation with the thermal swimsuit was higher than that with a normal swimsuit due to insulation of the suit at both water temperatures (p<0.05). Tissue insulation was similar in all four conditions, but significantly higher with the thermal swimsuit in both water temperature conditions (p<0.05), perhaps due to of the attenuation of shivering during immersion with a thermal swimsuit. A thermal swimsuit can increase total insulation and reduce heat loss from the skin. Therefore, subjects with thermal swimsuits can maintain higher body temperatures than with a normal swimsuit and reduce shivering thermo-genesis.

  19. Multicolor pyrometer for materials processing in space

    NASA Technical Reports Server (NTRS)

    Frish, M. B.; Frank, J.; Baker, J. E.; Foutter, R. R.; Beerman, H.; Allen, M. G.

    1990-01-01

    This report documents the work performed by Physical Sciences Inc. (PSI), under contract to NASA JPL, during a 2.5-year SBIR Phase 2 Program. The program goals were to design, construct, and program a prototype passive imaging pyrometer capable of measuring, as accurately as possible, and controlling the temperature distribution across the surface of a moving object suspended in space. These goals were achieved and the instrument was delivered to JPL in November 1989. The pyrometer utilizes an optical system which operates at short wavelengths compared to the peak of the black-body spectrum for the temperature range of interest, thus minimizing errors associated with a lack of knowledge about the heated sample's emissivity. To cover temperatures from 900 to 2500 K, six wavelengths are available. The preferred wavelength for measurement of a particular temperature decreases as the temperature increases. Images at all six wavelengths are projected onto a single CCD camera concurrently. The camera and optical system have been calibrated to relate the measured intensity at each pixel to the temperature of the heated object. The output of the camera is digitized by a frame grabber installed in a personal computer and analyzed automatically to yield temperature information. The data can be used in a feedback loop to alter the status of computer-activated switches and thereby control a heating system.

  20. Effects of fire temperature on the physical and chemical characteristics of the ash from two plots of Cork oak (Quercus Suber)

    USGS Publications Warehouse

    Ubeda, X.; Pereira, P.; Outeiro, L.; Martin, D.A.

    2009-01-01

    Cork oak, (Quercus suber) is widely distributed in the Mediterranean region, an area subject to frequent fires. The ash produced by burning can have impacts on the soil status and water resources that can differ according to the temperature reached during fire and the characteristics of the litter, defined as the dead organic matter accumulated on the soil surface prior to the fire. The aim of this work is to determine the physical and chemical characteristics of ash produced in laboratory experiments to approximate conditions typical of fires in this region. The litter of Quercus suber collected from two different plots on the Iberian Peninsula, Mas Bassets (Catalonia) and Albufeira (Portugal), was combusted at different temperatures for 2h. We measured Mass Loss (ML per cent), ash colour and CaCO3 content, pH, Electrical Conductivity (EC) and the major cations (Ca2+, Mg2+, K+ and Na+) released from ash slurries created by mixing ash with deionized water. The results showed that ML per cent is higher at all temperatures in Albufeira samples compared to Mas Bassets samples, except at 550??C, and the rate of loss increases faster with temperature than the Mas Bassets samples. At 150??C the ash colour is yellowish, becoming reddish at 200- 250??C and black at 300??C. Above 400??C the ash is grey/white. This thermal degradation is mostly observed in Albufeira litter. The formation of CaCO3 was identified at a lower temperature in Albufeira litter. At temperatures <300??C, pH and EC values are lower, rising at higher temperatures, especially in Albufeira slurries. The concentration of cations at lower temperatures does not differ substantially from the unburned sample except for Mg2+. The cation concentration increases at medium temperatures and decrease at higher temperatures, especially the concentration of divalent cations. The monovalent cations showed a larger concentration at moderate temperatures, mainly in Albufeira ash slurries. The analysis of the Ca:Mg ratio also showed that for the same temperature, a higher severity results for Albufeira litter. Potential negative effects on soil properties are observed at medium and higher temperatures. These negative effects include a higher percentage of mass loss, meaning more soil may be exposed to erosion, higher pH values and greater cation release from ash, especially monovalalent cations (K+,Na+) in higher proportions than the divalent ions (Ca2+, Mg2+), that can lead to impacts on soil physical properties like aggregate stability. Furthermore, the ions in ash may alter soil chemistry which may be detrimental to some plants thus altering the recovery of these ecosystems after fire. Low intensity prescribed fire can be a useful tool to land management in these sites, due to the reduced effects of fire temperatures on the physical and chemical properties of surface litter, and can reduce the risk of high temperature wildland fires by reducing fuel loadings. From the perspective of water resources, lower fire temperatures produce fewer impacts on the chemistry of overland flow and there is less probability that the soil surface will be eroded. Copyright ?? 2009 John Wiley & Sons, Ltd.

Top