Sample records for higher temperature values

  1. Plasmaspheric H+, He+, O+, He++, and O++ Densities and Temperatures

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Craven, P. D.; Comfort H.

    2013-01-01

    Thermal plasmaspheric densities and temperatures for five ion species have recently become available, even though these quantities were derived some time ago from the Retarding Ion Mass Spectrometer onboard the Dynamics Explorer 1 satellite over the years 1981-1984. The quantitative properties will be presented. Densities are found to have one behavior with lessor statistical variation below about L=2 and another with much greater variability above that Lshell. Temperatures also have a behavior difference between low and higher L-values. The density ratio He++/H+ is the best behaved with values of about 0.2% that slightly increase with increasing L. Unlike the He+/H+ density ratio that on average decreases with increasing Lvalue, the O+/H+ and O++/H+ density ratios have decreasing values below about L=2 and increasing average ratios at higher L-values. Hydrogen ion temperatures range from about 0.2 eV to several 10s of eV for a few measurements, although the bulk of the observations are of temperatures below 3 eV, again increasing with L-value. The temperature ratios of He+/H+ are tightly ordered around 1.0 except for the middle plasmasphere between L=3.5 and 4.5 where He+ temperatures can be significantly higher. The temperatures of He++, O+, and O++ are consistently higher than H+.

  2. Plasmaspheric H+, He+, He++, O+, and O++ Densities and Temperatures

    NASA Technical Reports Server (NTRS)

    Gallagher, G. L.; Craven, P. D.; Comfort, R. H.

    2013-01-01

    Thermal plasmaspheric densities and temperatures for five ion species have recently become available, even though these quantities were derived some time ago from the Retarding Ion Mass Spectrometer onboard the Dynamics Explorer 1 satellite over the years 1981-1984. The quantitative properties will be presented. Densities are found to have one behavior with lessor statistical variation below about L=2 and another with much greater variability above that Lshell. Temperatures also have a behavior difference between low and higher L-values. The density ratio He++/H+ is the best behaved with values of about 0.2% that slightly increase with increasing L. Unlike the He+/H+ density ratio that on average decreases with increasing Lvalue, the O+/H+ and O++/H+ density ratios have decreasing values below about L=2 and increasing average ratios at higher L-values. Hydrogen ion temperatures range from about 0.2 eV to several 10s of eV for a few measurements, although the bulk of the observations are of temperatures below 3 eV, again increasing with L-value. The temperature ratios of He+/H+ are tightly ordered around 1.0 except for the middle plasmasphere between L=3.5 and 4.5 where He+ temperatures can be significantly higher. The temperatures of He++, O+, and O++ are consistently higher than H+.

  3. Influence of air-drying temperature on drying kinetics, colour, firmness and biochemical characteristics of Atlantic salmon (Salmo salar L.) fillets.

    PubMed

    Ortiz, Jaime; Lemus-Mondaca, Roberto; Vega-Gálvez, Antonio; Ah-Hen, Kong; Puente-Diaz, Luis; Zura-Bravo, Liliana; Aubourg, Santiago

    2013-08-15

    In this work the drying kinetics of Atlantic salmon (Salmo salar L.) fillets and the influence of air drying temperature on colour, firmness and biochemical characteristics were studied. Experiments were conducted at 40, 50 and 60°C. Effective moisture diffusivity increased with temperature from 1.08×10(-10) to 1.90×10(-10) m(2) s(-1). The colour difference, determined as ΔE values (from 9.3 to 19.3), as well as firmness (from 25 to 75 N mm(-1)) of dried samples increased with dehydration temperature. The lightness value L(∗) and yellowness value b(∗) indicated formation of browning products at higher drying temperatures, while redness value a(∗) showed dependence on astaxanthin value. Compared with fresh fish samples, palmitic acid and tocopherol content decreased in a 20% and 40%, respectively, with temperature. While eicosapentaenoic acid (EPA) content remained unchanged and docosahexaenoic acid (DHA) content changed slightly. Anisidine and thiobarbituric acid values indicated the formation of secondary lipid oxidation products, which is more relevant for longer drying time than for higher drying temperatures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products

    DOEpatents

    Evans, Robert J.; Chum, Helena L.

    1994-01-01

    A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents, selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.

  5. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products

    DOEpatents

    Evans, Robert J.; Chum, Helena L.

    1994-01-01

    A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.

  6. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products

    DOEpatents

    Evans, Robert J.; Chum, Helena L.

    1993-01-01

    A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.

  7. Pyrolysis and hydrolysis of mixed polymer waste comprising polyethylene-terephthalate and polyethylene to sequentially recover [monomers

    DOEpatents

    Evans, R.J.; Chum, H.L.

    1998-10-13

    A process is described for using fast pyrolysis in a carrier gas to convert a plastic waste feed stream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feed stream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent. 83 figs.

  8. Pyrolysis and hydrolysis of mixed polymer waste comprising polyethyleneterephthalate and polyethylene to sequentially recover

    DOEpatents

    Evans, Robert J.; Chum, Helena L.

    1998-01-01

    A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.

  9. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products

    DOEpatents

    Evans, R.J.; Chum, H.L.

    1994-10-25

    A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent. 83 figs.

  10. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of polymer waste comprising nylon 6 and a polyolefin or mixtures of polyolefins to sequentially recover monomers or other high value products

    DOEpatents

    Evans, Robert J.; Chum, Helena L.

    1994-01-01

    A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.

  11. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products

    DOEpatents

    Evans, R.J.; Chum, H.L.

    1994-04-05

    A process is described for using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents, selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent. 87 figures.

  12. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of polymer waste comprising nylon 6 and a polyolefin or mixtures of polyolefins to sequentially recover monomers or other high value products

    DOEpatents

    Evans, R.J.; Chum, H.L.

    1994-10-25

    A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent. 83 figs.

  13. Evaluation of glass transition temperature and dynamic mechanical properties of autopolymerized hard direct denture reline resins.

    PubMed

    Takase, Kazuma; Watanabe, Ikuya; Kurogi, Tadafumi; Murata, Hiroshi

    2015-01-01

    This study assessed methods for evaluation of glass transition temperature (Tg) of autopolymerized hard direct denture reline resins using dynamic mechanical analysis and differential scanning calorimetry in addition to the dynamic mechanical properties. The Tg values of 3 different reline resins were determined using a dynamic viscoelastometer and differential scanning calorimeter, and rheological parameters were also determined. Although all materials exhibited higher storage modulus and loss modulus values, and a lower loss tangent at 37˚C with a higher frequency, the frequency dependence was not large. Tg values obtained by dynamic mechanical analysis were higher than those by differential scanning calorimetry and higher frequency led to higher Tg, while more stable Tg values were also obtained by that method. These results suggest that dynamic mechanical analysis is more advantageous for characterization of autopolymerized hard direct denture reline resins than differential scanning calorimetry.

  14. Effect of sodium bicarbonate supplementation on carcass characteristics of lambs fed concentrate diets at different ambient temperature levels.

    PubMed

    Jallow, Demba B; Hsia, Liang Chou

    2014-08-01

    The objective of this study was to investigate the influence of ambient temperatures on carcass characteristics of lambs fed concentrate diets with or without NaHCO3 supplementation. A slaughter study was carried on 12 male Black Belly Barbados lambs randomly drawn from a growth trial (35 weeks). The lambs were divided into four equal groups and allotted in a 2×2 factorial design. The lambs were allotted at random to two dietary treatments of a basal diet (35:65 roughage:concentrate) or basal diet supplemented with 4% NaHCO3 at different ambient temperatures (20°C and 30°C) in an environment controlled chamber for 10 days. Lambs were slaughtered for carcass evaluation at about 262 days of age (245 days of growth trial, 7 days adaptation and 10 days of experimental period). Ambient temperature had significant (p<0.05, p<0.05, p<0.01, and p<0.001) effects on meat color from the ribeye area (REA), fat, leg and longissimus dorsi muscles with higher values recorded for lambs in the lower temperature group than those from the higher ambient temperature group. Significant differences (p<0.05) in shear force value (kg/cm(2)) recorded on the leg muscles showed higher values (5.32 vs 4.16) in lambs under the lower ambient temperature group compared to the other group. Dietary treatments had significant (p<0.01, p<0.01, and p<0.05) effects on meat color from the REA, fat, and REA fat depth (cm(2)) with higher values recorded for lambs in the NaHCO3 supplementation group than the non supplemented group. Similarly, dietary treatments had significant differences (p<0.05) in shear force value (kg/cm(2)) of the leg muscles with the NaHCO3 groups recording higher (5.30 vs 4.60) values than those from the other group. Neither ambient temperature nor dietary treatments had any significant (p>0.05) effects on pH, and water holding capacity on both muscles. These results indicated that NaHCO3 supplementation at low ambient temperatures had caused an increase in carcass characteristics leading to significant effect on meat quality.

  15. A description of phases with induced hybridisation at finite temperatures

    NASA Astrophysics Data System (ADS)

    Golosov, D. I.

    2018-05-01

    In an extended Falicov-Kimball model, an excitonic insulator phase can be stabilised at zero temperature. With increasing temperature, the excitonic order parameter (interaction-induced hybridisation on-site, characterised by the absolute value and phase) eventually becomes disordered, which involves fluctuations of both its phase and (at higher T) its absolute value. In order to build an adequate mean field description, it is important to clarify the nature of degrees of freedom associated with the phase and absolute value of the induced hybridisation, and the corresponding phase space volume. We show that a possible description is provided by the SU(4) parametrisation on-site. In principle, this allows to describe both the lower-temperature regime where phase fluctuations destroy the long-range order, and the higher temperature crossover corresponding to a decrease of absolute value of the hybridisation relative to the fluctuations level. This picture is also expected to be relevant in other contexts, including the Kondo lattice model.

  16. Low temperature electrical properties of some Pb-free solders

    NASA Astrophysics Data System (ADS)

    Kisiel, Ryszard; Pekala, Marek

    2006-03-01

    The electronic industry is engaged in developing Pb-free technologies for more than ten years. However till now not all properties of new solders are described. The aim of the paper is to present some electrical properties of new series of Pb-free solders (eutectic SnAg, near eutectic SnAgCu with and without Bi) in low temperature ranges 10 K to 273K. The following parameters were analyzed: electrical resistivity, temperature coefficient of resistance and thermoelectric power. The electrical resistivity at temperatures above 50 K is a monotonically rising function of temperature for Pb-free solders studied. The electrical resistivity of the Bi containing alloys is higher as compared to the remaining ones. The thermoelectric power values at room temperature are about -8 μV/K to -6 μV/K for Pb-free solders studied, being higher as compared to typical values -3 μVK of SnPb solder. The relatively low absolute values as well as the smooth and weak temperature variation of electrical resistivity in lead free solders enable the possible low temperature application. The moderate values of thermoelectric power around and above the room temperature show that when applying the solders studied the temperature should be kept as uniform as possible, in order to avoid spurious or noise voltages.

  17. Comparison of primary zone combustor liner wall temperatures with calculated predictions

    NASA Technical Reports Server (NTRS)

    Norgren, C. T.

    1973-01-01

    Calculated liner temperatures based on a steady-state radiative and convective heat balance at the liner wall were compared with experimental values. Calculated liner temperatures were approximately 8 percent higher than experimental values. A radiometer was used to experimentally determine values of flame temperature and flame emissivity. Film cooling effectiveness was calculated from an empirical turbulent mixing expression assuming a turbulent mixing level of 2 percent. Liner wall temperatures were measured in a rectangular combustor segment 6 by 12 in. and tested at pressures up to 26.7 atm and inlet temperatures up to 922 K.

  18. Pyrolysis of polystyrene - polyphenylene oxide to recover styrene and useful products

    DOEpatents

    Evans, Robert J.; Chum, Helena L.

    1995-01-01

    A process of using fast pyrolysis in a carrier gas to convert a polystyrene and polyphenylene oxide plastic waste to a given polystyrene and polyphenylene oxide prior to pyrolysis of other plastic components therein comprising: selecting a first temperature range to cause pyrolysis of given polystyrene and polyphenylene oxide and its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and a support and treating the feed stream with the catalyst to affect acid or base catalyzed reaction pathways to maximize yield or enhance separation of high value monomeric constituent of styrene from polystyrene and polyphenylene oxide in the first temperature range; differentially heating the feed stream at a heat rate within the first temperature range to provide differential pyrolysis for selective recovery of the high value monomeric constituent of styrene from polystyrene and polyphenylene oxide prior to pyrolysis of other plastic components; separating the high value monomer constituent of styrene; selecting a second higher temperature range to cause pyrolysis to a different derived high value product of polyphenylene oxide from the plastic waste and differentially heating the feed stream at the higher temperature range to cause pyrolysis of the plastic into a polyphenylene oxide derived product; and separating the different derived high value polyphenylene oxide product.

  19. Pyrolysis of Lantana camara and Mimosa pigra: Influences of temperature, other process parameters and incondensable gas evolution on char yield and higher heating value.

    PubMed

    Mundike, Jhonnah; Collard, François-Xavier; Görgens, Johann F

    2017-11-01

    Pyrolysis of invasive non-indigenous plants, Lantana camara (LC) and Mimosa pigra (MP) was conducted at milligram-scale for optimisation of temperature, heating rate and hold time on char yield and higher heating value (HHV). The impact of scaling-up to gram-scale was also studied, with chromatography used to correlate gas composition with HHV evolution. Statistically significant effects of temperature on char yield and HHV were obtained, while heating rate and hold time effects were insignificant. Milligram-scale maximised HHVs were 30.03MJkg -1 (525°C) and 31.01MJkg -1 (580°C) for LC and MP, respectively. Higher char yields and HHVs for MP were attributed to increased lignin content. Scaling-up promoted secondary char formation thereby increasing HHVs, 30.82MJkg -1 for LC and 31.61MJkg -1 for MP. Incondensable gas analysis showed that temperature increase beyond preferred values caused dehydrogenation that decreased HHV. Similarly, CO evolution profile explained differences in optimal HHV temperatures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of phenolic resin containing waste streams to sequentially recover monomers and chemicals

    DOEpatents

    Chum, H.L.; Evans, R.J.

    1992-08-04

    A process is described for using fast pyrolysis in a carrier gas to convert a waste phenolic resin containing feedstreams in a manner such that pyrolysis of said resins and a given high value monomeric constituent occurs prior to pyrolyses of the resins in other monomeric components therein comprising: selecting a first temperature program range to cause pyrolysis of said resin and a given high value monomeric constituent prior to a temperature range that causes pyrolysis of other monomeric components; selecting, if desired, a catalyst and a support and treating said feedstreams with said catalyst to effect acid or basic catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said first temperature program range to utilize reactive gases such as oxygen and steam in the pyrolysis process to drive the production of specific products; differentially heating said feedstreams at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantity of said high value monomeric constituent prior to pyrolysis of other monomeric components therein; separating said high value monomeric constituent; selecting a second higher temperature program range to cause pyrolysis of a different high value monomeric constituent of said phenolic resins waste and differentially heating said feedstreams at said higher temperature program range to cause pyrolysis of said different high value monomeric constituent; and separating said different high value monomeric constituent. 11 figs.

  1. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of phenolic resin containing waste streams to sequentially recover monomers and chemicals

    DOEpatents

    Chum, Helena L.; Evans, Robert J.

    1992-01-01

    A process of using fast pyrolysis in a carrier gas to convert a waste phenolic resin containing feedstreams in a manner such that pyrolysis of said resins and a given high value monomeric constituent occurs prior to pyrolyses of the resins in other monomeric components therein comprising: selecting a first temperature program range to cause pyrolysis of said resin and a given high value monomeric constituent prior to a temperature range that causes pyrolysis of other monomeric components; selecting, if desired, a catalyst and a support and treating said feedstreams with said catalyst to effect acid or basic catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said first temperature program range to utilize reactive gases such as oxygen and steam in the pyrolysis process to drive the production of specific products; differentially heating said feedstreams at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantity of said high value monomeric constituent prior to pyrolysis of other monomeric components therein; separating said high value monomeric constituent; selecting a second higher temperature program range to cause pyrolysis of a different high value monomeric constituent of said phenolic resins waste and differentially heating said feedstreams at said higher temperature program range to cause pyrolysis of said different high value monomeric constituent; and separating said different high value monomeric constituent.

  2. Sensitivity of the equilibrium surface temperature of a GCM to systematic changes in atmospheric carbon dioxide

    NASA Technical Reports Server (NTRS)

    Oglesby, Robert J.; Saltzman, Barry

    1990-01-01

    The equilibrium response of surface temperature to atmospheric CO2 concentration, for six values between 100 and 1000 ppm, is calculated from a series of GCM experiments. This response is nonlinear, showing greater sensitivity for lower values of CO2 than for the higher values. It is suggested that changes in CO2 concentration of a given magnitude (e.g., 100 ppm) played a larger role in the Pleistocene ice-age-type temperature variations than in causing global temperature changes due to anthropogenic increases.

  3. Temperature, stress, and corrosive sensing apparatus utilizing harmonic response of magnetically soft sensor element (s)

    NASA Technical Reports Server (NTRS)

    Grimes, Craig A. (Inventor); Ong, Keat Ghee (Inventor)

    2003-01-01

    A temperature sensing apparatus including a sensor element made of a magnetically soft material operatively arranged within a first and second time-varying interrogation magnetic field, the first time-varying magnetic field being generated at a frequency higher than that for the second magnetic field. A receiver, remote from the sensor element, is engaged to measure intensity of electromagnetic emissions from the sensor element to identify a relative maximum amplitude value for each of a plurality of higher-order harmonic frequency amplitudes so measured. A unit then determines a value for temperature (or other parameter of interst) using the relative maximum harmonic amplitude values identified. In other aspects of the invention, the focus is on an apparatus and technique for determining a value for of stress condition of a solid analyte and for determining a value for corrosion, using the relative maximum harmonic amplitude values identified. A magnetically hard element supporting a biasing field adjacent the magnetically soft sensor element can be included.

  4. Temperature Dependence of the Thermal Conductivity of Single Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Osman, Mohamed A.; Srivastava, Deepak

    2000-01-01

    The thermal conductivity of several single wall carbon nanotubes (CNT) has been calculated over a temperature range of 100-500 K using molecular dynamics simulations with Tersoff-Brenner potential for C-C interactions. In all cases, starting from similar values at 100K, thermal conductivities show a peaking behavior before falling off at higher temperatures. The peak position shifts to higher temperatures for nanotubes of larger diameter, and no significant dependence on the tube chirality is observed. It is shown that this phenomenon is due to onset of Umklapp scattering, which shifts to higher temperatures for nanotubes of larger diameter.

  5. Numerical models to evaluate the temperature increase induced by ex vivo microwave thermal ablation.

    PubMed

    Cavagnaro, M; Pinto, R; Lopresto, V

    2015-04-21

    Microwave thermal ablation (MTA) therapies exploit the local absorption of an electromagnetic field at microwave (MW) frequencies to destroy unhealthy tissue, by way of a very high temperature increase (about 60 °C or higher). To develop reliable interventional protocols, numerical tools able to correctly foresee the temperature increase obtained in the tissue would be very useful. In this work, different numerical models of the dielectric and thermal property changes with temperature were investigated, looking at the simulated temperature increments and at the size of the achievable zone of ablation. To assess the numerical data, measurement of the temperature increases close to a MTA antenna were performed in correspondence with the antenna feed-point and the antenna cooling system, for increasing values of the radiated power. Results show that models not including the changes of the dielectric and thermal properties can be used only for very low values of the power radiated by the antenna, whereas a good agreement with the experimental values can be obtained up to 20 W if water vaporization is included in the numerical model. Finally, for higher power values, a simulation that dynamically includes the tissue's dielectric and thermal property changes with the temperature should be performed.

  6. A comparison of THI indices leads to a sensible heat-based heat stress index for shaded cattle that aligns temperature and humidity stress.

    PubMed

    Berman, A; Horovitz, Talia; Kaim, M; Gacitua, H

    2016-10-01

    The combined temperature-humidity heat stress is estimated in farm animals by indices derived of an index based on human thermal comfort sensation. The latter index consists of temperature and humidity measures that sum to form the temperature-humidity index (THI). The hitherto unknown relative contribution of temperature and humidity to the THI was examined. A temperature-humidity data set (temperature 20-42 °C and relative humidity 10-70 %) was used to assess by regression procedures the relative weights of temperature and humidity in the variance of THI values produced by six commonly used heat stress indices. The temperature (Ta) effect was predominant (0.82-0.95 of variance) and humidity accounted for only 0.05 to 0.12 of THI variance, half of the variance encountered in animal responses to variable humidity heat stress. Significant difference in THI values was found between indices in the relative weights of temperature and humidity. As in THI indices, temperature and humidity are expressed in different physical units, their sum has no physical attributes, and empirical evaluations assess THI relation to animal responses. A sensible heat THI was created, in which at higher temperatures humidity reaches 0.25 of sensible heat, similarly to evaporative heat loss span in heat stressed animals. It relates to ambient temperature-humidity similarly to present THI; its values are similar to other THI but greater at higher humidity. In warm conditions, mean animal responses are similar in both indices. The higher sensitivity to humidity makes this index preferable for warm-humid conditions.

  7. Temperature dependent lattice constant of InSb above room temperature

    NASA Astrophysics Data System (ADS)

    Breivik, Magnus; Nilsen, Tron Arne; Fimland, Bjørn-Ove

    2013-10-01

    Using temperature dependent X-ray diffraction on two InSb single crystalline substrates, the bulk lattice constant of InSb was determined between 32 and 325 °C. A polynomial function was fitted to the data: a(T)=6.4791+3.28×10-5×T+1.02×10-8×T2 Å (T in °C), which gives slightly higher values than previously published (which go up to 62 °C). From the fit, the thermal expansion of InSb was calculated to be α(T)=5.062×10-6+3.15×10-9×T K-1 (T in °C). We found that the thermal expansion coefficient is higher than previously published values above 100 °C (more than 10% higher at 325 °C).

  8. Effect of Air Temperature and Relative Humidity at Various Fuel-Air Ratios on Exhaust Emissions on a Per-Mode Basis of an AVCO Lycoming 0-320 Diad Light Aircraft Engine: Volume 1: Results and Plotted Data

    NASA Technical Reports Server (NTRS)

    Skorobatckyi, M.; Cosgrove, D. V.; Meng, P. R.; Kempe, E. E., Jr.

    1978-01-01

    A carbureted four cylinder air cooled 0-320 DIAD Lycoming aircraft engine was tested to establish the effects of air temperature and humidity at various fuel-air ratios on the exhaust emissions on a per-mode basis. The test conditions include carburetor lean out at air temperatures of 50, 59, 80, and 100 F at relative humidities of 0, 30, 60, and 80 percent. Temperature humidity effects at the higher values of air temperature and relative humidity tested indicated that the HC and CO emissions increased significantly, while the NOx emissions decreased. Even at a fixed fuel air ratio, the HC emissions increase and the NOx emissions decrease at the higher values of air temperature and humidity.

  9. Effect of air temperature and relative humidity at various fuel-air ratios on exhaust emissions on a per-mode basis of an Avco Lycoming 0-320 DIAD light aircraft engine. Volume 2: Individual data points

    NASA Technical Reports Server (NTRS)

    Skorobatckyi, M.; Cosgrove, D. V.; Meng, P. R.; Kempke, E. R.

    1976-01-01

    A carbureted four cylinder air cooled 0-320 DIAD Lycoming aircraft engine was tested to establish the effects of air temperature and humidity at various fuel-air ratios on the exhaust emissions on a per-mode basis. The test conditions included carburetor lean-out at air temperatures of 50, 59, 80, and 100 F at relative humidities of 0, 30, 60, and 80 percent. Temperature-humidity effects at the higher values of air temperature and relative humidity tested indicated that the HC and CO emissions increased significantly, while the NOx emissions decreased. Even at a fixed fuel-air ratio, the HC emissions increase and the NOx emissions decrease at the higher values of air temperature and humidity. Volume II contains the data taken at each of the individual test points.

  10. Characterization of Virgin Olive Oils with Two Kinds of 'Frostbitten Olives' Sensory Defect.

    PubMed

    Romero, Inmaculada; Aparicio-Ruiz, Ramón; Oliver-Pozo, Celia; Aparicio, Ramón; García-González, Diego L

    2016-07-13

    The frost of olives on the tree due to drops of temperature can produce sensory defects in virgin olive oil (VOO). Temperature changes can be abrupt with freeze-thaw cycles or gradual, and they produce sensory and chemical variations in the oil. This study has analyzed the quality parameters (free fatty acids, peroxide value, UV absorption, and fatty acid ethyl esters) and phenols of VOOs described with the 'frostbitten olives' sensory defect. The phenol profiles allowed grouping these VOOs into two types. One of them, characterized with "soapy" and "strawberry-like" aroma descriptors, had higher values of 1-acetoxypinoresinol, pinoresinol, and aldehydic form of the ligstroside aglycon. The other one, characterized with "wood" and "humidity" descriptors, had higher concentrations of luteolin and apigenin. Most VOOs (75%) from the first group, associated with abrupt drops of temperature, have concentration of phenols higher than the value established by the health claim on olive oil polyphenols approved by the European Commission.

  11. Digestive enzyme activities are higher in the shortfin mako shark, Isurus oxyrinchus, than in ectothermic sharks as a result of visceral endothermy.

    PubMed

    Newton, Kyle C; Wraith, James; Dickson, Kathryn A

    2015-08-01

    Lamnid sharks are regionally endothermic fishes that maintain visceral temperatures elevated above the ambient water temperature. Visceral endothermy is thought to increase rates of digestion and food processing and allow thermal niche expansion. We tested the hypothesis that, at in vivo temperatures, the endothermic shortfin mako shark, Isurus oxyrinchus, has higher specific activities of three digestive enzymes-gastric pepsin and pancreatic trypsin and lipase-than the thresher shark, Alopias vulpinus, and the blue shark, Prionace glauca, neither of which can maintain elevated visceral temperatures. Homogenized stomach or pancreas tissue obtained from sharks collected by pelagic longline was incubated at both 15 and 25 °C, at saturating substrate concentrations, to quantify tissue enzymatic activity. The mako had significantly higher enzyme activities at 25 °C than did the thresher and blue sharks at 15 °C. This difference was not a simple temperature effect, because at 25 °C the mako had higher trypsin activity than the blue shark and higher activities for all enzymes than the thresher shark. We also hypothesized that the thermal coefficient, or Q 10 value, would be higher for the mako shark than for the thresher and blue sharks because of its more stable visceral temperature. However, the mako and thresher sharks had similar Q 10 values for all enzymes, perhaps because of their closer phylogenetic relationship. The higher in vivo digestive enzyme activities in the mako shark should result in higher rates of food processing and may represent a selective advantage of regional visceral endothermy.

  12. Effect of banana flour, screw speed and temperature on extrusion behaviour of corn extrudates.

    PubMed

    Kaur, Amritpal; Kaur, Seeratpreet; Singh, Mrinal; Singh, Narpinder; Shevkani, Khetan; Singh, Baljit

    2015-07-01

    Effect of extrusion parameters (banana flour, screw speed, extrusion temperature) on extrusion behaviour of corn grit extrudates were studied. Second order quadratic equations for extrusion properties as function of banana flour (BF), screwspeed (SS) and extrusion temperature (ET) were computed. BF had predominant effect on the Hunter color (L*, a*, b*) parameters of the extrudates. Addition of BF resulted in corn extrudates with higher L* and lower a* and b* values. Higher ET resulted in dark colored extrudates with lower L* and a* value. Higher SS enhanced the lightness of the extrudates. Expansion of the extrudates increased with increase in the level of BF and ET. WAI of the extrudates decreased with BF whereas increased with SS. However, reversed effect of BF and SS on WSI was observed. Flextural strength of the extrudates increased with increase in SS followed by BF and ET. The addition of BF and higher ET resulted in extrudates with higher oil uptake.

  13. A Comparison of Theory and Experiment for High-speed Free-molecule Flow

    NASA Technical Reports Server (NTRS)

    Stalder, Jackson R; Goodwin, Glen; Creager, Marcus O

    1951-01-01

    A comparison is made of free-molecule-flow theory with the results of wind-tunnel tests performed to determine the drag and temperature-rise characteristics of a transverse circular cylinder. The measured values of the cylinder center-point temperature confirmed the salient point of the heat-transfer analysis which was the prediction that an insulated cylinder would attain a temperature higher than the stagnation temperature of the stream. Good agreement was obtained between the theoretical and the experimental values for the drag coefficient.

  14. Kinetic Modeling of Corn Fermentation with S. cerevisiae Using a Variable Temperature Strategy.

    PubMed

    Souza, Augusto C M; Mousaviraad, Mohammad; Mapoka, Kenneth O M; Rosentrater, Kurt A

    2018-04-24

    While fermentation is usually done at a fixed temperature, in this study, the effect of having a controlled variable temperature was analyzed. A nonlinear system was used to model batch ethanol fermentation, using corn as substrate and the yeast Saccharomyces cerevisiae , at five different fixed and controlled variable temperatures. The lower temperatures presented higher ethanol yields but took a longer time to reach equilibrium. Higher temperatures had higher initial growth rates, but the decay of yeast cells was faster compared to the lower temperatures. However, in a controlled variable temperature model, the temperature decreased with time with the initial value of 40 ∘ C. When analyzing a time window of 60 h, the ethanol production increased 20% compared to the batch with the highest temperature; however, the yield was still 12% lower compared to the 20 ∘ C batch. When the 24 h’ simulation was analyzed, the controlled model had a higher ethanol concentration compared to both fixed temperature batches.

  15. Quality evaluation of onion bulbs during low temperature drying

    NASA Astrophysics Data System (ADS)

    Djaeni, M.; Asiah, N.; Wibowo, Y. P.; Yusron, D. A. A.

    2016-06-01

    A drying technology must be designed carefully by evaluating the foods' final quality properties as a dried material. Thermal processing should be operated with the minimum chance of substantial flavour, taste, color and nutrient loss. The main objective of this research was to evaluate the quality parameters of quercetin content, color, non-enzymatic browning and antioxidant activity. The experiments showed that heating at different temperatures for several drying times resulted in a percentage of quercetin being generally constant. The quercetin content maintained at the value of ±1.2 % (dry basis). The color of onion bulbs was measured by CIE standard illuminant C. The red color (a*) of the outer layer of onion bulbs changed significantly when the drying temperature was increased. However the value of L* and b* changed in a fluctuating way based on the temperature. The change of onion colors was influenced by temperature and moisture content during the drying process. The higher the temperature, the higher it affects the rate of non-enzymatic browning reaction. The correlation between temperature and reaction rate constant was described as Arrhenius equation. The rate of non-enzymatic browning increases along with the increase of drying temperature. The results showed that higher drying temperatures were followed by a lower IC10. This condition indicated the increase of antioxidant activity after the drying process.

  16. Quality by Design approach to spray drying processing of crystalline nanosuspensions.

    PubMed

    Kumar, Sumit; Gokhale, Rajeev; Burgess, Diane J

    2014-04-10

    Quality by Design (QbD) principles were explored to understand spray drying process for the conversion of liquid nanosuspensions into solid nano-crystalline dry powders using indomethacin as a model drug. The effects of critical process variables: inlet temperature, flow and aspiration rates on critical quality attributes (CQAs): particle size, moisture content, percent yield and crystallinity were investigated employing a full factorial design. A central cubic design was employed to generate the response surface for particle size and percent yield. Multiple linear regression analysis and ANOVA were employed to identify and estimate the effect of critical parameters, establish their relationship with CQAs, create design space and model the spray drying process. Inlet temperature was identified as the only significant factor (p value <0.05) to affect dry powder particle size. Higher inlet temperatures caused drug surface melting and hence aggregation of the dried nano-crystalline powders. Aspiration and flow rates were identified as significant factors affecting yield (p value <0.05). Higher yields were obtained at higher aspiration and lower flow rates. All formulations had less than 3% (w/w) moisture content. Formulations dried at higher inlet temperatures had lower moisture compared to those dried at lower inlet temperatures. Published by Elsevier B.V.

  17. Performance Measurements and Mapping of a R-407C Vapor Injection Scroll Compressor

    NASA Astrophysics Data System (ADS)

    Lumpkin, Domenique; Spielbauer, Niklas; Groll, Eckhard

    2017-08-01

    Environmental conditions significantly define the performance of HVAC&R systems. Vapor compression systems in hot climates tend to operate at higher pressure ratios, leading to increased discharge temperatures. Higher discharge temperatures can lead to higher irreversibilities in the compression process, lower specific enthalpies differences across the evaporator, and possibly a reduction in the compressor life due to the breakdown of the oil used for lubrication. To counter these effects, the use of economized, vapor injection compressors is proposed for vapor compression systems in high temperature climates. Such compressors are commercially available for refrigeration applications, in particular, supermarket refrigeration systems. However, compressor maps for vapor injection compressors are limited and none exist for R-407C. Through calorimeter testing, a compressor map for a single-port vapor injection compressor using R-407C was developed. A standard correlation for mapping single-port vapor injection compressors is proposed and validated using the compressor test results. The system and compressor performance with and without vapor injection was considered. As expected, with vapor injection there was a reduction in compressor discharge temperatures and an increase in the system coefficient of performance. The proposed dimensionless correlation is more accurate than the AHRI polynomial for mapping the injection ratio, discharge temperature, and compressor heat loss. The predicted volumetric efficiency values from the dimensionless correlation is within 1% of the measured valued. Similarly, the predicted isentropic efficiency values are within 2% of the measured values.

  18. Spectral emissivity of candidate alloys for very high temperature reactors in high temperature air environment

    NASA Astrophysics Data System (ADS)

    Cao, G.; Weber, S. J.; Martin, S. O.; Sridharan, K.; Anderson, M. H.; Allen, T. R.

    2013-10-01

    Emissivity measurements for candidate alloys for very high temperature reactors were carried out in a custom-built experimental facility, capable of both efficient and reliable measurements of spectral emissivities of multiple samples at high temperatures. The alloys studied include 304 and 316 austenitic stainless steels, Alloy 617, and SA508 ferritic steel. The oxidation of alloys plays an important role in dictating emissivity values. The higher chromium content of 304 and 316 austenitic stainless steels, and Alloy 617 results in an oxide layer only of sub-micron thickness even at 700 °C and consequently the emissivity of these alloys remains low. In contrast, the low alloy SA508 ferritic steel which contains no chromium develops a thicker oxide layer, and consequently exhibits higher emissivity values.

  19. Investigation of the application of HCMM thermal data to snow hydrology. [Salt-Verde watershed, Arizona and the Sierra Nevada Mountains, California

    NASA Technical Reports Server (NTRS)

    Barnes, J. C. (Principal Investigator)

    1980-01-01

    The author has identified the following significant results. Comparison of the thermal IR band temperatures over the rapidly melting snowcover in a number of locations in the Salt-Verde Arizona watershed by the U-2 high altitude multispectral scanner, with temperatures for these same locations measured by the corresponding HCMM pass, indicate that the U-2 temperatures are typically 5 C higher than the values analyzed from the HCMM infrared digital printout. Results tend to substantiate findings of other investigators that with the offset that has been applied to all HCMM data, the HCMM temperature values may, in fact, actually be 5 C too low. Analysis of differences between the HCMM day and night temperatures for selected snowcovered areas in the Sierra Nevada Mountains, derived from the daytime and nighttime printouts, show greater delta tau values for the sparsely vegetated higher elevations than for the lower elevation, more densely forested terrain. The differences for the 12 hour sequence are also greater in most instances than the 36 hour difference.

  20. An Assessment on Temperature Profile of Jet-A/Biodiesel Mixture in a Simple Combustion Chamber with Plain Orifice Atomiser

    NASA Astrophysics Data System (ADS)

    Ng, W. X.; Mazlan, N. M.; Ismail, M. A.; Rajendran, P.

    2018-05-01

    The preliminary study to evaluate influence of biodiesel/kerosene mixtures on combustion temperature profile is explored. A simple cylindrical combustion chamber configuration with plain orifice atomiser is used for the evaluation. The evaluation is performed under stoichiometric air to fuel ratio. Six samples of fuels are used: 100BD (pure biodiesel), 100KE (pure Jet-A), 20KE80BD (20% Jet-A/80% Biodiesel), 40KE60BD (40% Jet-A/60% Biodiesel), 60KE40BD (60% Jet-A/40% Biodiesel), and 80KE20BD (80% Jet-A/20% Biodiesel). Results showed that the oxygen content, viscosity, and lower heating value are key parameters in affecting the temperature profile inside the chamber. Biodiesel is known to have higher energy content, higher viscosity and lower heating value compared to kerosene. Mixing biodiesel with kerosene improves viscosity and caloric value but reduces oxygen content of the fuel. High oxygen content of the biodiesel resulted to the highest flame temperature. However the flame temperature reduce as the percentage of biodiesel in the fuel mixture reduces.

  1. Subcritical Butane Extraction of Wheat Germ Oil and Its Deacidification by Molecular Distillation.

    PubMed

    Li, Jinwei; Sun, Dewei; Qian, Lige; Liu, Yuanfa

    2016-12-07

    Extraction and deacidification are important stages for wheat germ oil (WGO) production. Crude WGO was extracted using subcritical butane extraction (SBE) and compared with traditional solvent extraction (SE) and supercritical carbon dioxide extraction (SCE) based on the yield, chemical index and fatty acid profile. Furthermore, the effects of the molecular distillation temperature on the quality of WGO were also investigated in this study. Results indicated that WGO extracted by SBE has a higher yield of 9.10% and better quality; at the same time, its fatty acid composition has no significant difference compared with that of SE and SCE. The molecular distillation experiment showed that the acid value, peroxide value and p -anisidine value of WGO were reduced with the increase of the evaporation temperatures, and the contents of the active constituents of tocopherol, polyphenols and phytosterols are simultaneously decreased. Generally, the distillation temperature of 150 °C is an appropriate condition for WGO deacidification with the higher deacidification efficiency of 77.78% and the higher retention rate of active constituents.

  2. Excellent Thermoelectric Properties in monolayer WSe2 Nanoribbons due to Ultralow Phonon Thermal Conductivity.

    PubMed

    Wang, Jue; Xie, Fang; Cao, Xuan-Hao; An, Si-Cong; Zhou, Wu-Xing; Tang, Li-Ming; Chen, Ke-Qiu

    2017-01-25

    By using first-principles calculations combined with the nonequilibrium Green's function method and phonon Boltzmann transport equation, we systematically investigate the influence of chirality, temperature and size on the thermoelectric properties of monolayer WSe 2 nanoribbons. The results show that the armchair WSe 2 nanoribbons have much higher ZT values than zigzag WSe 2 nanoribbons. The ZT values of armchair WSe 2 nanoribbons can reach 1.4 at room temperature, which is about seven times greater than that of zigzag WSe 2 nanoribbons. We also find that the ZT values of WSe 2 nanoribbons increase first and then decrease with the increase of temperature, and reach a maximum value of 2.14 at temperature of 500 K. It is because the total thermal conductance reaches the minimum value at 500 K. Moreover, the impact of width on the thermoelectric properties in WSe 2 nanoribbons is not obvious, the overall trend of ZT value decreases lightly with the increasing temperature. This trend of ZT value originates from the almost constant power factor and growing phonon thermal conductance.

  3. Gamma irradiation increases the antioxidant properties of Tualang honey stored under different conditions.

    PubMed

    Khalil, Md Ibrahim; Sulaiman, Siti Amrah; Alam, Nadia; Moniruzzaman, Mohammed; Bai'e, Saringat; Man, Che Nin; Jamalullail, Syed Mohsin Sahil; Gan, Siew Hua

    2012-01-11

    This study was conducted to evaluate the effects of evaporation, gamma irradiation and temperature on the total polyphenols, flavonoids and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activities of Tualang honey samples (n = 14) following storage over three, six or twelve months. The mean polyphenol concentrations of the six gamma irradiated honey samples at three, six and twelve months, respectively, were 96.13%, 98.01% and 102.03% higher than the corresponding values of the eight non-gamma irradiated samples. Similarly, the mean values for flavonoids at three, six and twelve months were 111.52%, 114.81% and 110.04% higher, respectively, for the gamma irradiated samples. The mean values for DPPH radical-scavenging activities at three, six and twelve months were also 67.09%, 65.26% and 44.65% higher, respectively, for the gamma irradiated samples. These data indicate that all gamma irradiated honey samples had higher antioxidant potential following gamma irradiation, while evaporation and temperature had minor effects on antioxidant potential.

  4. [Scrotal temperature in 258 healthy men, randomly selected from a population of men aged 18 to 23 years old. Statistical analysis, epidemiologic observations, and measurement of the testicular diameters].

    PubMed

    Valeri, A; Mianné, D; Merouze, F; Bujan, L; Altobelli, A; Masson, J

    1993-06-01

    Scrotal hyperthermia can induce certain alterations in spermatogenesis. The basal scrotal temperature used to define hyperthermia is usually 33 degrees C. However, no study, conducted according to a strict methodology has validated this mean measurement. We therefore randomly selected 258 men between the ages of 18 and 23 years from a population of 2,000 young French men seen at the National Service Selection Centre in order to measure the scrotal temperature over each testis and in the median raphe in order to determine the mean and median values for these temperatures. For a mean room temperature of 23 +/- 0.5 degrees C with a range of 18 to 31 degrees C, the mean right and left scrotal temperature was 34.2 +/- 0.1 degree C and the mean medioscrotal temperature was 34.4 +/- 0.1 degree C. Scrotal temperature was very significantly correlated to room temperature and its variations. It was therefore impossible to define a normal value for scrotal temperature. Only measurement of scrotal temperature at neutral room temperature, between 21 and 25 degrees C, is able to provide a reference value for scrotal temperature. In this study, the mean scrotal temperature under these conditions was 34.4 +/- 0.2 degree C, i.e. 2.5 degrees C less than body temperature. In the 12.9% of cases with left varicocele, left scrotal temperature was significantly higher than in the absence of varicocele and was also higher than right Scrotal temperature. The authors also determined the dimensions of the testes.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Characteristics of carbonized sludge for co-combustion in pulverized coal power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Sang-Woo; Jang, Cheol-Hyeon, E-mail: jangch@hanbat.ac.kr

    2011-03-15

    Co-combustion of sewage sludge can destabilize its combustion profile due to high volatility, which results in unstable flame. We carried out fuel reforming for sewage sludge by way of carbonization at pyrolysis temperature of 300-500 deg. C. Fuel characteristics of carbonized sludge at each temperature were analyzed. As carbonization temperature increased, fuel ratio increased, volatile content reduced, and atomic ratio relation of H/C and O/C was similar to that of lignite. The analysis result of FT-IR showed the decrease of aliphatic C-H bond and O-C bond in carbonization. In the analysis result of TG-DTG, the thermogravimetry reduction temperature of carbonizedmore » sludge (CS400) was proven to be higher than that of dried sludge, but lower than that of sub-bituminous coal. Hardgrove grindability index increased in proportion to fuel ratio increase, where the carbonized sludge value of 43-110 was similar or higher than the coal value of 49-63. As for ash deposits, slagging and fouling index were higher than that of coal. When carbonized sludge (CS400) and coal were co-combusted in 1-10% according to calorific value, slagging tendency was low in all conditions, and fouling tendency was medium or high according to the compositions of coal.« less

  6. Characteristics of carbonized sludge for co-combustion in pulverized coal power plants.

    PubMed

    Park, Sang-Woo; Jang, Cheol-Hyeon

    2011-03-01

    Co-combustion of sewage sludge can destabilize its combustion profile due to high volatility, which results in unstable flame. We carried out fuel reforming for sewage sludge by way of carbonization at pyrolysis temperature of 300-500°C. Fuel characteristics of carbonized sludge at each temperature were analyzed. As carbonization temperature increased, fuel ratio increased, volatile content reduced, and atomic ratio relation of H/C and O/C was similar to that of lignite. The analysis result of FT-IR showed the decrease of aliphatic C-H bond and O-C bond in carbonization. In the analysis result of TG-DTG, the thermogravimetry reduction temperature of carbonized sludge (CS400) was proven to be higher than that of dried sludge, but lower than that of sub-bituminous coal. Hardgrove grindability index increased in proportion to fuel ratio increase, where the carbonized sludge value of 43-110 was similar or higher than the coal value of 49-63. As for ash deposits, slagging and fouling index were higher than that of coal. When carbonized sludge (CS400) and coal were co-combusted in 1-10% according to calorific value, slagging tendency was low in all conditions, and fouling tendency was medium or high according to the compositions of coal. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Magnetic behaviors of cataclasites within Wenchuan earthquake fault zone in heating experiments

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Li, H.; Sun, Z.; Chou, Y. M.; Cao, Y., Jr.; Huan, W.; Ye, X.; He, X.

    2017-12-01

    Previous rock magnetism of fault rocks were used to trace the frictional heating temperature, however, few studies are focus on different temperatures effect of rock magnetic properties. To investigate rock magnetic response to different temperature, we conducted heating experiments on cataclasites from the Wenchuan earthquake Fault Scientific Drilling borehole 2 (WFSD-2) cores. Samples of cataclasites were obtained using an electric drill with a 1 cm-diameter drill pipe from 580.65 m-depth. Experiments were performed by a Thermal-optical measurement system under argon atmosphere and elevated temperatures. Both microstructural observations and powder X-ray diffraction analyses show that feldspar and quartz start to melt at 1100 ° and 1300 ° respectively. Magnetic susceptibility values of samples after heating are higher than that before heating. Samples after heating at 700 and 1750 ° have the highest values of magnetic susceptibility. Rock magnetic measurements show that the main ferromagnetic minerals within samples heated below 1100 ° (400, 700, 900 and 1100 °) are magnetite, which is new-formed by transformation of paramagnetic minerals. The χferri results show that the quantity of magnetite is bigger at sample heated by 700° experiment than by 400, 900 and 1100° experiments. Based on the FORC diagrams, we consider that magnetite grains are getting finer from 400 to 900°, and growing coarser when heated from 900 to 1100 °. SEM-EDX results indicate that the pure iron are formed in higher temperature (1300, 1500 and 1750 °), which present as framboids with size <10 μm. Rock magnetic measurements imply pure iron is the main ferromagnetic materials in these heated samples. The amount and size of iron framboids increase with increasing temperature. Therefore, we conclude that the paramagnetic minerals are decomposed into fine magnetite, then to coarse-grained magnetite, finally to pure iron at super high temperature. New-formed magnetite contributes to the higher magnetic susceptibility values of samples when heated at 400, 700, 900 and 1100°, while the neoformed pure iron is responsible to the higher magnetic susceptibility values of samples when heated at 1300, 1500 and 1750°.

  8. Theoretical analysis of three methods for calculating thermal insulation of clothing from thermal manikin.

    PubMed

    Huang, Jianhua

    2012-07-01

    There are three methods for calculating thermal insulation of clothing measured with a thermal manikin, i.e. the global method, the serial method, and the parallel method. Under the condition of homogeneous clothing insulation, these three methods yield the same insulation values. If the local heat flux is uniform over the manikin body, the global and serial methods provide the same insulation value. In most cases, the serial method gives a higher insulation value than the global method. There is a possibility that the insulation value from the serial method is lower than the value from the global method. The serial method always gives higher insulation value than the parallel method. The insulation value from the parallel method is higher or lower than the value from the global method, depending on the relationship between the heat loss distribution and the surface temperatures. Under the circumstance of uniform surface temperature distribution over the manikin body, the global and parallel methods give the same insulation value. If the constant surface temperature mode is used in the manikin test, the parallel method can be used to calculate the thermal insulation of clothing. If the constant heat flux mode is used in the manikin test, the serial method can be used to calculate the thermal insulation of clothing. The global method should be used for calculating thermal insulation of clothing for all manikin control modes, especially for thermal comfort regulation mode. The global method should be chosen by clothing manufacturers for labelling their products. The serial and parallel methods provide more information with respect to the different parts of clothing.

  9. Bismuth Titanate Fabricated by Spray-on Deposition and Microwave Sintering For High-Temperature Ultrasonic Transducers.

    PubMed

    Searfass, Clifford T; Pheil, C; Sinding, K; Tittmann, B R; Baba, A; Agrawal, D K

    2016-01-01

    Thick films of ferroelectric bismuth titanate (Bi4Ti3O12) have been fabricated by spray-on deposition in conjunction with microwave sintering for use as high-temperature ultrasonic transducers. The elastic modulus, density, permittivity, and conductivity of the films were characterized. Electro-mechanical properties of the films were estimated with a commercial d33 meter which gave 16 pC/N. This value is higher than typically reported for bulk bismuth titanate; however, these films withstand higher field strengths during poling which is correlated with higher d33 values. Films were capable of operating at 650 °C for roughly 5 min before depoling and can operate at 600 °C for at least 7 days.

  10. Storage stability and composition changes of three cold-pressed nut oils under refrigeration and room temperature conditions.

    PubMed

    Rabadán, Adrián; Álvarez-Ortí, Manuel; Pardo, José Emilio; Alvarruiz, Andrés

    2018-09-01

    Chemical composition and stability parameters of three cold-pressed nut oils (almond, walnut and pistachio) were monitored for up to 16 months of storage at 5 °C, 10 °C, 20 °C and room temperature. Freshly pressed pistachio oil had lower peroxide value than almond oil and higher induction period than almond and walnut oils, indicating a higher stability. The peroxide values increased faster at room temperature than at lower temperatures during the storage time, and the highest increase was for pistachio oil stored at room temperature exposed to daylight. The induction period decreased for all three nut oils during the storage time, regardless of the storage conditions. Pistachio oil remained the most stable oil at the end of the storage time, followed by almond oil. The percentage of polyunsaturated fatty acids decreased slightly throughout the storage. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Aerobic batch degradation of 17-beta estradiol (E2) by activated sludge: effects of spiking E2 concentrations, MLVSS and temperatures.

    PubMed

    Li, Fusheng; Yuasa, Akira; Obara, Aya; Mathews, Alexander P

    2005-05-01

    Aerobic batch degradation of 17beta estradiol (E2) spiked into the activated sludge liquor from a sewage treatment plant was studied; and the likely impacts of E2's initial concentrations (C0), microbial population densities (MLVSS) and temperatures (TEMPT) were examined for a variety of combinations of these three factors: C0 = 10, 30 and 50 microgl(-1); MLVSS = 1750, 875 and 435 mgl(-1); and TEMPT = 5, 20 and 35 degrees C. The results, together with those obtained through two control runs performed using a killed sludge sample, demonstrated clearly that E2 was eliminated from the aqueous phase readily under appropriate MLVSS and temperature levels, with the role of sorption by biomass being less significant. By fitting observed concentration data with a first-order rate expression, the degradation rate constants (k) under all experimental conditions were estimated. The magnitude of k changed markedly in the range of 0.23-4.79 h(-1), following a general order that the higher the MLVSS was, the higher the rate constant, and that the higher the temperature, the higher the rate constant. An obvious increasing trend of the biomass-modified average rate constant (k') with increases in the temperature was also presented: the k' values at 5, 20 and 35 degrees C were 0.79, 1.77 and 3.29l MLVSS g(-1)h(-1), respectively. Furthermore, based upon the estimated k values, the temperature coefficients (theta) over the ranges of 5-20 and 20-35 degrees C were determined. In similarity with the magnitude of theta reported for ordinary BOD-based organic matrices in domestic wastewater, the theta values of E2 varied in the range of 1.026-1.09, suggesting that the temperature impacts on the degradation rates of E2 and BOD constituents are probably similar.

  12. The effect of temperature correction of blood gas values on the accuracy of end-tidal carbon dioxide monitoring in children after cardiac surgery.

    PubMed

    Suominen, Pertti K; Stayer, Stephen; Wang, Wei; Chang, Anthony C

    2007-01-01

    We evaluated accuracy of end-tidal carbon dioxide tension (PETco2) monitoring and measured the effect of temperature correction of blood gas values in children after cardiac surgery. Data from 49 consecutive mechanically ventilated children after cardiac surgery in the cardiac intensive care unit were prospectively collected. One patient was excluded from the study. Four arterial-end-tidal CO2 pairs in each patient were obtained. Both the arterial carbon dioxide tension (Paco2) values determined at a temperature of 37 degrees C and values corrected to body temperature (Patcco2) were compared with the PETco2 values. After the surgical correction 28 patients had biventricular, acyanotic (mean age 2.7 +/- 4.8 years) and 20 patients had a cyanotic lesion (mean age 1.0 +/- 1.7 years). The body temperature ranged from 35.2 degrees C to 38.9 degrees C. The Pa-PETco2 discrepancy was affected both by the type of cardiac lesion and by the temperature correction of Paco2 values. Correlation slopes of the Pa-PETco2 and Patc-PETco2 discrepancies were significantly different (p = 0.040) when the body temperature was higher or lower than 37 degrees C. In children, after cardiac surgery, end-tidal CO2 monitoring provided a clinically acceptable estimate of arterial CO2 value, which remained stabile in repeated measurements. End-tidal CO2 monitoring more accurately reflects temperature-corrected blood gas values.

  13. Low-temperature effect on enzyme activities involved in sucrose-starch partitioning in salt-stressed and salt-acclimated cotyledons of quinoa (Chenopodium quinoa Willd.) seedlings.

    PubMed

    Rosa, Mariana; Hilal, Mirna; González, Juan A; Prado, Fernando E

    2009-04-01

    The effect of low temperature on growth, sucrose-starch partitioning and related enzymes in salt-stressed and salt-acclimated cotyledons of quinoa (Chenopodium quinoa Willd.) was studied. The growth of cotyledons and growing axes in seedlings grown at 25/20 degrees C (light/dark) and shifted to 5/5 degrees C was lower than in those only growing at 25/20 degrees C (unstressed). However, there were no significant differences between low-temperature control and salt-treated seedlings. The higher activities of sucrose phosphate synthase (SPS, EC 2.4.1.14) and soluble acid invertase (acid INV, EC 3.2.1.25) were observed in salt-stressed cotyledons; however, the highest acid INV activity was observed in unstressed cotyledons. ADP-glucose pyrophosphorylase (ADP-GPPase, EC 2.7.7.27) was higher in unstressed cotyledons than in stressed ones. However, between 0 and 4days the highest value was observed in salt-stressed cotyledons. The lowest value of ADP-GPPase was observed in salt-acclimated cotyledons. Low temperature also affected sucrose synthase (SuSy, EC 2.4.1.13) activity in salt-treated cotyledons. Sucrose and glucose were higher in salt-stressed cotyledons, but fructose was essentially higher in low-temperature control. Starch was higher in low-temperature control; however, the highest content was observed at 0day in salt-acclimated cotyledons. Results demonstrated that low temperature induces different responses on sucrose-starch partitioning in salt-stressed and salt-acclimated cotyledons. Data also suggest that in salt-treated cotyledons source-sink relations (SSR) are changed in order to supply soluble sugars and proline for the osmotic adjustment. Relationships between starch formation and SuSy activity are also discussed.

  14. Effect of various sintering temperature on resistivity behaviour and magnetoresistance of La{sub 0.67}Ba{sub 0.33}MnO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratama, R.; Kurniawan, B., E-mail: bkuru07@gmail.com; Manaf, A.

    2016-04-19

    A detail work was conducted in order to investigate effect of various sintering temperature on resistivity behavior and its relation with the magneto-resistance effect of La{sub 0.67}Ba{sub 0.33}MnO{sub 3} (LBMO). The LBMO samples were synthesized using solid state reaction. Characterization using X-ray diffraction shows that all LBMO samples have a single phase for each variation. Variation of sintering temperature on the LBMO samples affects its lattice parameters. The resistivity measurement in an absence and under applied magnetic field resulted in a highly significant different values. In one of the sintering temperature variation of LBMO, an increasing resistivity had shown atmore » a low temperature and had reached its maximum value at a specific temperature, and then the resistivity decreases to the lowest value near the room temperature. Similar result observed at higher varieties of sintering temperature but with significant lower maximum resistivity.« less

  15. Airway humidification with a heat and moisture exchanger in mechanically ventilated neonates : a preliminary evaluation.

    PubMed

    Fassassi, Mikaïla; Michel, Fabrice; Thomachot, Laurent; Nicaise, Claire; Vialet, Renaud; Jammes, Yves; Lagier, Pierre; Martin, Claude

    2007-02-01

    We set out to evaluate the efficacy of passive inspiratory gas conditioning in mechanically ventilated neonates and compared it with that of a heated humidifier (HH). Prospective, randomized, controlled study. Neonatal and pediatric intensive care unit. Fourteen mechanically ventilated neonates nursed in incubators. The HH was set to deliver a temperature of 37 degrees C and an absolute humidity of 40 mgH(2)O/l at the incubator entrance. Inspired temperature (T degrees ) and absolute humidity (AH) were measured by the psychometric method, transpulmonary pressure (Tpres) by means of a differential pressure transducer. Measurements were performed at 5, 10, and 15 min. The values of T degrees were significantly higher using the HH (34.6+/-1.6 degrees C) than the heat and moisture exchanger (HME) (33.8+/2.3, p<0.001). The values of AH were significantly higher using the HH (36.6+/-2.5 mgH(2)O/l) than the HME (32.4+/-2.8 mgH(2)O/l, p<0.001). No significant changes were observed in transpulmonary pressure. A significant positive correlation was observed between incubator temperature and the temperature delivered by the HH (R(2)=0.61, p<0.001). The use of HMEs in neonates made it possible to achieve an absolute humidity of 28 mgH(2)O/l or more and a temperature of 30 degrees C or more. Higher values are obtained using a HH.

  16. Microclimate Evaluation of the Hradec Králové City using HUMIDEX

    NASA Astrophysics Data System (ADS)

    Rožnovský, Jaroslav; Litschmann, Tomáš; Středová, Hana; Středa, Tomáš; Salaš, Petr; Horká, Marie

    2017-09-01

    Urban environment differs from the surrounding landscape in terms of the values of meteorological parameters. This is often referred to as the urban heat island (UHI), which in simple terms means higher air temperatures in cities. The cause of these changes lies in the different active surfaces in cities, which subsequently results in a different radiation balance. The higher temperatures, however, also affect the living conditions in the city and during very high temperature periods can have negative effects on the health of the city inhabitants. The results presented in this paper are based on measurements taken over several years at locations near Hradec Králové, which is surrounded by different surface areas. Environment analysis was performed using the Humidex index. The obtained results show that replacing green areas with built-up areas affects temperatures in the city, when air temperatures are very high they significantly increase the discomfort of the inhabitants. Differences in the frequency of discomfort levels are observed especially during periods of high temperatures, at lower temperatures these differences are not significant. Higher frequencies of discomfort are observed at locations with artificial surfaces (asphalt, cobblestones, concrete) and in closed spaces. In contrast, locations with lots of green areas almost always have the value of this index lower or more balanced. The results should therefore be a valid argument for maintaining and extending green areas in cities.

  17. Temperature-dependent surface density of alkylthiol monolayers on gold nanocrystals

    NASA Astrophysics Data System (ADS)

    Liu, Xuepeng; Lu, Pin; Zhai, Hua; Wu, Yucheng

    2018-03-01

    Atomistic molecular dynamics (MD) simulations are performed to study the surface density of passivating monolayers of alkylthiol chains on gold nanocrystals at temperatures ranging from 1 to 800 K. The results show that the surface density of alkylthiol monolayer reaches a maximum value at near room temperature (200-300 K), while significantly decreases with increasing temperature in the higher temperature region (> 300 {{K}}), and slightly decreases with decreasing temperature at low temperature (< 200 {{K}}). We find that the temperature dependence of surface ligand density in the higher temperature region is attributed to the substantial ligand desorption induced by the thermal fluctuation, while that at low temperature results from the reduction in entropy caused by the change in the ordering of passivating monolayer. These results are expected helpful to understand the temperature-dependent surface coverage of gold nanocrystals.

  18. Albedo and land surface temperature shift in hydrocarbon seepage potential area, case study in Miri Sarawak Malaysia

    NASA Astrophysics Data System (ADS)

    Suherman, A.; Rahman, M. Z. A.; Busu, I.

    2014-02-01

    The presence of hydrocarbon seepage is generally associated with rock or mineral alteration product exposures, and changes of soil properties which manifest with bare development and stress vegetation. This alters the surface thermodynamic properties, changes the energy balance related to the surface reflection, absorption and emission, and leads to shift in albedo and LST. Those phenomena may provide a guide for seepage detection which can be recognized inexpensively by remote sensing method. District of Miri is used for study area. Available topographic maps of Miri and LANDSAT ETM+ were used for boundary construction and determination albedo and LST. Three land use classification methods, namely fixed, supervised and NDVI base classifications were employed for this study. By the intensive land use classification and corresponding statistical comparison was found a clearly shift on albedo and land surface temperature between internal and external seepage potential area. The shift shows a regular pattern related to vegetation density or NDVI value. In the low vegetation density or low NDVI value, albedo of internal area turned to lower value than external area. Conversely in the high vegetation density or high NDVI value, albedo of internal area turned to higher value than external area. Land surface temperature of internal seepage potential was generally shifted to higher value than external area in all of land use classes. In dense vegetation area tend to shift the temperature more than poor vegetation area.

  19. Effect of temperature on photosynthesis-light response and growth of four phytoplankton species isolated from a tidal freshwater river

    USGS Publications Warehouse

    Coles, J.F.; Jones, R.C.

    2000-01-01

    Three cyanobacteria (Microcystis aeruginosa Kutz. emend. Elenkin, Merismopedia tenuissima Lemmermann, and Oscillatoria sp.) and one diatom (Aulacoseira granulata var. angustissima O. Mull. emend. Simonsen) were isolated from the tidal freshwater Potomac River and maintained at 23??C and 40 ??mol photons??m-2??s-1 on a 16:8 L:D cycle in unialgal culture. Photosynthetic parameters were determined in nutrient-replete cultures growing exponentially at 15, 20, 25, and 30??C by incubation with 14C at six light levels. P(B)(max) was strongly correlated with temperature over the entire range for the cyanobacteria and from 15 to 25??C for Aulacoseira, with Q10 ranging from 1.79 to 2.67. The ?? values demonstrated a less consistent temperature pattern. Photosynthetic parameters indicated an advantage for cyanobacteria at warmer temperatures and in light-limited water columns. P(B)(max) and I(k) values were generally lower than comparable literature and field values, whereas ?? was generally higher, consistent with a somewhat shade acclimated status of our cultures. Specific growth rate (??), as measured by chlorophyll change, was strongly influenced by temperature in all species. Oscillatoria had the highest ?? at all temperatures, joined at lower temperatures by Aulacoseira and at higher temperatures by Microcystis. Values of ?? for Aulacaseira were near the low end of the literature range for diatoms consistent with the light-limited status of the cultures. The cyanobacteria exhibited growth rates similar to those reported in other studies. Q10 for growth ranged from 1.71 for Aulacoseira to 4.16 for Microcystis. Growth rate was highly correlated with P(B)(max) for each species and the regression slope coefficients were very similar for three of the species.

  20. Mixture optimization for mixed gas Joule-Thomson cycle

    NASA Astrophysics Data System (ADS)

    Detlor, J.; Pfotenhauer, J.; Nellis, G.

    2017-12-01

    An appropriate gas mixture can provide lower temperatures and higher cooling power when used in a Joule-Thomson (JT) cycle than is possible with a pure fluid. However, selecting gas mixtures to meet specific cooling loads and cycle parameters is a challenging design problem. This study focuses on the development of a computational tool to optimize gas mixture compositions for specific operating parameters. This study expands on prior research by exploring higher heat rejection temperatures and lower pressure ratios. A mixture optimization model has been developed which determines an optimal three-component mixture based on the analysis of the maximum value of the minimum value of isothermal enthalpy change, ΔhT , that occurs over the temperature range. This allows optimal mixture compositions to be determined for a mixed gas JT system with load temperatures down to 110 K and supply temperatures above room temperature for pressure ratios as small as 3:1. The mixture optimization model has been paired with a separate evaluation of the percent of the heat exchanger that exists in a two-phase range in order to begin the process of selecting a mixture for experimental investigation.

  1. Effect of different temperature-time combinations on physicochemical, microbiological, textural and structural features of sous-vide cooked lamb loins.

    PubMed

    Roldán, Mar; Antequera, Teresa; Martín, Alberto; Mayoral, Ana Isabel; Ruiz, Jorge

    2013-03-01

    Lamb loins were subjected to sous-vide cooking at different combinations of temperature (60, 70, and 80 °C) and time (6, 12, and 24 h). Different physicochemical, histological and structural parameters were studied. Increasing cooking temperatures led to higher weight losses and lower moisture contents, whereas the effect of cooking time on these variables was limited. Samples cooked at 60 °C showed the highest lightness and redness, while increasing cooking temperature and cooking time produced higher yellowness values. Most textural variables in a texture profile analysis showed a marked interaction between cooking temperature and time. Samples cooked for 24h showed significantly lower values for most of the studied textural parameters for all the temperatures considered. Connective tissue granulation at 60 °C and gelation at 70 °C were observed in the SEM micrographs. The sous-vide cooking of lamb loins dramatically reduced microbial population even with the less intense heat treatment studied (60 °C-6 h). Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. [Gas Concentration Measurement Based on the Integral Value of Absorptance Spectrum].

    PubMed

    Liu, Hui-jun; Tao, Shao-hua; Yang, Bing-chu; Deng, Hong-gui

    2015-12-01

    The absorptance spectrum of a gas is the basis for the qualitative and quantitative analysis of the gas by the law of the Lambert-Beer. The integral value of the absorptance spectrum is an important parameter to describe the characteristics of the gas absorption. Based on the measured absorptance spectrum of a gas, we collected the required data from the database of HIT-RAN, and chose one of the spectral lines and calculated the integral value of the absorptance spectrum in the frequency domain, and then substituted the integral value into Lambert-Beer's law to obtain the concentration of the detected gas. By calculating the integral value of the absorptance spectrum we can avoid the more complicated calculation of the spectral line function and a series of standard gases for calibration, so the gas concentration measurement will be simpler and faster. We studied the changing trends of the integral values of the absorptance spectrums versus temperature. Since temperature variation would cause the corresponding variation in pressure, we studied the changing trends of the integral values of the absorptance spectrums versus both the pressure not changed with temperature and changed with the temperature variation. Based on the two cases, we found that the integral values of the absorptance spectrums both would firstly increase, then decrease, and finally stabilize with temperature increasing, but the ranges of specific changing trend were different in the two cases. In the experiments, we found that the relative errors of the integrated values of the absorptance spectrum were much higher than 1% and still increased with temperature when we only considered the change of temperature and completely ignored the pressure affected by the temperature variation, and the relative errors of the integrated values of the absorptance spectrum were almost constant at about only 1% when we considered that the pressure were affected by the temperature variation. As the integral value of the absorptance spectrum varied with temperature and the calculating error for the integral value fluctuates with ranges of temperature, in the gas measurement when we usd integral values of the absoptance spectrum, we should select a suitable temperature variation and obtain a more accurate measurement result.

  3. Thermal Skin Damage During Reirradiation and Hyperthermia Is Time-Temperature Dependent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakker, Akke, E-mail: akke.bakker@amc.uva.nl; Kolff, M. Willemijn; Holman, Rebecca

    Purpose: To investigate the relationship of thermal skin damage (TSD) to time–temperature isoeffect levels for patients with breast cancer recurrence treated with reirradiation plus hyperthermia (reRT + HT), and to investigate whether the treatment history of previous treatments (scar tissue) is a risk factor for TSD. Methods and Materials: In this observational study, temperature characteristics of hyperthermia sessions were analyzed in 262 patients with recurrent breast cancer treated in the AMC between 2010 and 2014 with reirradiation and weekly hyperthermia for 1 hour. Skin temperature was measured using a median of 42 (range, 29-82) measurement points per hyperthermia session. Results: Sixty-eight patients (26%) developed 79more » sites of TSD, after the first (n=26), second (n=17), third (n=27), and fourth (n=9) hyperthermia session. Seventy percent of TSD occurred on or near scar tissue. Scar tissue reached higher temperatures than other skin tissue (0.4°C, P<.001). A total of 102 measurement points corresponded to actual TSD sites in 35 of 79 sessions in which TSD developed. Thermal skin damage sites had much higher maximum temperatures than non-TSD sites (2.8°C, P<.001). Generalized linear mixed models showed that the probability of TSD is related to temperature and thermal dose values (P<.001) and that scar tissue is more at risk (odds ratio 0.4, P<.001). Limiting the maximum temperature of a measurement point to 43.7°C would mean that the probability of observing TSD was at most 5%. Conclusion: Thermal skin damage during reRT + HT for recurrent breast cancer was related to higher local temperatures and time–temperature isoeffect levels. Scar tissue reached higher temperatures than other skin tissue, and TSD occurred at lower temperatures and thermal dose values in scar tissue compared with other skin tissue. Indeed, TSD developed often on and around scar tissue from previous surgical procedures.« less

  4. Relationship between body temperature, weight, and hematological parameters of black tufted-ear marmosets (Callithrix penicillata).

    PubMed

    Pereira, Lucas Cardoso; Barros, Marilia

    2016-06-01

    Basal thermal values of captive adult black tufted-ear marmosets (Callithrix penicillata) in a thermoneutral environment were measured via different methods, along with body weight and hematological parameters. Body temperatures were recorded with rectal (RC), subcutaneous (SC) microchip transponder and infrared (left and right) tympanic membrane (TM) thermometries. Thermal values were correlated with body mass and some hematological data. Similar RC and SC temperatures were observed, these being significantly higher than the left and right TM values. SC temperature was positively correlated and in close agreement with RC measurements. Although body temperatures were not influenced by gender, capture time, or body weight, they were correlated with hematological parameters. Thus, body temperatures in this species seem to reflect some of the characteristics of the assessments' location, with SC microchip transponders being a less invasive method to assess body temperature in these small-bodied non-human primates. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of polycarbonate and plastic waste to recover monomers

    DOEpatents

    Evans, R.J.; Chum, H.L.

    1994-06-14

    A process is described using fast pyrolysis to convert a plastic waste feed stream containing polycarbonate and ABS to high value monomeric constituents prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of a given polymer to its high value monomeric constituents prior to a temperature range that causes pyrolysis of other plastic components; selecting an acid or base catalysts and an oxide or carbonate support for treating the feed stream to affect acid or base catalyzed reaction pathways to maximize yield or enhance separation of the high value monomeric constituents of polycarbonate and ABS in the first temperature program range; differentially heating the feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituents prior to pyrolysis or other plastic components; separating the high value monomeric constituents from the polycarbonate to cause pyrolysis to a different high value monomeric constituent of the plastic waste and differentially heating the feed stream at the second higher temperature program range to cause pyrolysis of different high value monomeric constituents; and separating the different high value monomeric constituents. 68 figs.

  6. Controlled catalystic and thermal sequential pyrolysis and hydrolysis of polycarbonate and plastic waste to recover monomers

    DOEpatents

    Evans, Robert J.; Chum, Helena L.

    1994-01-01

    A process of using fast pyrolysis to convert a plastic waste feed stream containing polycarbonate and ABS to high value monomeric constituents prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of a given polymer to its high value monomeric constituents prior to a temperature range that causes pyrolysis of other plastic components; selecting an acid or base catalysts and an oxide or carbonate support for treating the feed stream to affect acid or base catalyzed reaction pathways to maximize yield or enhance separation of the high value monomeric constituents of polycarbonate and ABS in the first temperature program range; differentially heating the feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituents prior to pyrolysis or other plastic components; separating the high value monomeric constituents from the polycarbonate to cause pyrolysis to a different high value monomeric constituent of the plastic waste and differentially heating the feed stream at the second higher temperature program range to cause pyrolysis of different high value monomeric constituents; and separating the different high value monomeric constituents.

  7. Steam gasification of waste tyre: influence of process temperature on yield and product composition.

    PubMed

    Portofino, Sabrina; Donatelli, Antonio; Iovane, Pierpaolo; Innella, Carolina; Civita, Rocco; Martino, Maria; Matera, Domenico Antonio; Russo, Antonio; Cornacchia, Giacinto; Galvagno, Sergio

    2013-03-01

    An experimental survey of waste tyre gasification with steam as oxidizing agent has been conducted in a continuous bench scale reactor, with the aim of studying the influence of the process temperature on the yield and the composition of the products; the tests have been performed at three different temperatures, in the range of 850-1000°C, holding all the other operational parameters (pressure, carrier gas flow, solid residence time). The experimental results show that the process seems promising in view of obtaining a good quality syngas, indicating that a higher temperature results in a higher syngas production (86 wt%) and a lower char yield, due to an enhancement of the solid-gas phase reactions with the temperature. Higher temperatures clearly result in higher hydrogen concentrations: the hydrogen content rapidly increases, attaining values higher than 65% v/v, while methane and ethylene gradually decrease over the range of the temperatures; carbon monoxide and dioxide instead, after an initial increase, show a nearly constant concentration at 1000°C. Furthermore, in regards to the elemental composition of the synthesis gas, as the temperature increases, the carbon content continuously decreases, while the oxygen content increases; the hydrogen, being the main component of the gas fraction and having a small atomic weight, is responsible for the progressive reduction of the gas density at higher temperature. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. The Effects of Forming Parameters on Conical Ring Rolling Process

    PubMed Central

    Meng, Wen; Zhao, Guoqun; Guan, Yanjin

    2014-01-01

    The plastic penetration condition and biting-in condition of a radial conical ring rolling process with a closed die structure on the top and bottom of driven roll, simplified as RCRRCDS, were established. The reasonable value range of mandrel feed rate in rolling process was deduced. A coupled thermomechanical 3D FE model of RCRRCDS process was established. The changing laws of equivalent plastic strain (PEEQ) and temperature distributions with rolling time were investigated. The effects of ring's outer radius growth rate and rolls sizes on the uniformities of PEEQ and temperature distributions, average rolling force, and average rolling moment were studied. The results indicate that the PEEQ at the inner layer and outer layer of rolled ring are larger than that at the middle layer of ring; the temperatures at the “obtuse angle zone” of ring's cross-section are higher than those at “acute angle zone”; the temperature at the central part of ring is higher than that at the middle part of ring's outer surfaces. As the ring's outer radius growth rate increases at its reasonable value ranges, the uniformities of PEEQ and temperature distributions increase. Finally, the optimal values of the ring's outer radius growth rate and rolls sizes were obtained. PMID:25202716

  9. Steam gasification of acid-hydrolysis biomass CAHR for clean syngas production.

    PubMed

    Chen, Guanyi; Yao, Jingang; Yang, Huijun; Yan, Beibei; Chen, Hong

    2015-03-01

    Main characteristics of gaseous product from steam gasification of acid-hydrolysis biomass CAHR have been investigated experimentally. The comparison in terms of evolution of syngas flow rate, syngas quality and apparent thermal efficiency was made between steam gasification and pyrolysis in the lab-scale apparatus. The aim of this study was to determine the effects of temperature and steam to CAHR ratio on gas quality, syngas yield and energy conversion. The results showed that syngas and energy yield were better with gasification compared to pyrolysis under identical thermal conditions. Both high gasification temperature and introduction of proper steam led to higher gas quality, higher syngas yield and higher energy conversion efficiency. However, excessive steam reduced hydrogen yield and energy conversion efficiency. The optimal value of S/B was found to be 3.3. The maximum value of energy ratio was 0.855 at 800°C with the optimal S/B value. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. ENSO variability of Quelccaya Ice Cap δ18O driven by monsoon control of vapor isotope ratios

    NASA Astrophysics Data System (ADS)

    Hurley, J. V.; Vuille, M. F.; Hardy, D. R.

    2016-12-01

    The δ18O from the Quelccaya Ice Cap (QIC), Peru corresponds with and has been used to reconstruct Nino region SSTs but the physical mechanisms that tie ENSO-variable equatorial Pacific SSTs to snow δ18O at 5680 m in the Andes have not been fully described. We use a proxy system forward model to simulate and explore ENSO variable snow δ18O at the QIC, which is observed and accurately simulated with our model to be respectively higher and lower than average during El Nino and La Nina. We then explore the relative roles of ENSO-forcing on components of the forward model: the seasonality of snowfall at the QIC, vapor initial δ18O values, and temperature. The local hydrologic cycle is characterized by earlier onset and reduced duration of peak snowfall during El Nino, and more snow accumulation during La Nina. When we isolate the influence of the local hydrologic cycle in the forward model, El Nino and La Nina snowfall seasonalities yield respectively higher and lower snow δ18O values, compared with the control simulation. The South American summer monsoon (SASM) is characterized by enhanced convection over the Amazon during La Nina and as a consequence, lower vapor δ18O values over the western Amazon Basin. When we isolate the influence of the vapor initial delta-value in the forward model, higher initial delta-values during El Nino yield higher snow δ18O at the QIC. The seasonality of temeratures over the western Amazon Basin and near Quelccaya is amplified during El Nino when there are higher and lower temperatures respectively during austral summer and winter. When we isolate the temperature influence in the forward model, the warmer summer El Nino conditions require a more humid initial vapor and result in lower snow δ18O values. Most (more than two-thirds) of the ENSO variability in QIC δ18O can be accounted for by SASM activity and its influence on the vapor initial delta-value.

  11. Effect of Deep Drying and Torrefaction Temperature on Proximate, Ultimate Composition, and Heating Value of 2-mm Lodgepole Pine (Pinus contorta) Grind

    PubMed Central

    Tumuluru, Jaya Shankar

    2016-01-01

    Deep drying and torrefaction compose a thermal pretreatment method where biomass is heated in the temperature range of 150–300 °C in an inert or reduced environment. The process parameters, like torrefaction temperature and residence time, have a significant impact on the proximate, ultimate, and energy properties. In this study, torrefaction experiments were conducted on 2-mm ground lodgepole pine (Pinus contorta) using a thermogravimetric analyzer. Both deep drying and torrefaction temperature (160–270 °C) and time (15–120 min) were selected. Torrefied samples were analyzed for the proximate, ultimate, and higher heating value. The results indicate that moisture content decreases with increases in torrefaction temperature and time, where at 270 °C and 120 min, the moisture content is found to be 1.15% (w.b.). Volatile content in the lodgepole pine decreased from about 80% to about 45%, and ash content increased from 0.77% to about 1.91% at 270 °C and 120 min. The hydrogen, oxygen, and sulfur content decreased to 3%, 28.24%, and 0.01%, whereas the carbon content and higher heating value increased to 68.86% and 23.67 MJ/kg at 270 °C and 120 min. Elemental ratio of hydrogen to carbon and oxygen to carbon (H/C and O/C) calculated at 270 °C and a 120-min residence time were about 0.56 and 0.47. Based on this study, it can be concluded that higher torrefaction temperatures ≥230 °C and residence time ≥15 min influence the proximate, ultimate, and energy properties of ground lodgepole pine. PMID:28952578

  12. Associations between seasonal meteorological conditions and the daily step count of adults in Yokohama, Japan: Results of year-round pedometer measurements in a large population.

    PubMed

    Hino, Kimihiro; Lee, Jung Su; Asami, Yasushi

    2017-12-01

    People's year-round interpersonal step count variations according to meteorological conditions are not fully understood, because complete year-round data from a sufficient sample of the general population are difficult to acquire. This study examined the associations between meteorological conditions and objectively measured step counts using year-round data collected from a large cohort ( N  = 24,625) in Yokohama, Japan from April 2015 to March 2016. Two-piece linear regression analysis was used to examine the associations between the monthly median daily step count and three meteorological indices (mean values of temperature, temperature-humidity index (THI), and net effective temperature (NET)). The number of steps per day peaked at temperatures between 19.4 and 20.7 °C. At lower temperatures, the increase in steps per day was between 46.4 and 52.5 steps per 1 °C increase. At temperatures higher than those at which step counts peaked, the decrease in steps per day was between 98.0 and 187.9 per 1 °C increase. Furthermore, these effects were more obvious in elderly than non-elderly persons in both sexes. A similar tendency was seen when using THI and NET instead of temperature. Among the three meteorological indices, the highest R 2 value with step counts was observed with THI in all four groups. Both high and low meteorological indices discourage people from walking and higher values of the indices adversely affect step count more than lower values, particularly among the elderly. Among the three indices assessed, THI best explains the seasonal fluctuations in step counts.

  13. Effect of microclimate temperature during transportation of broiler chickens on quality of the pectoralis major muscle.

    PubMed

    Dadgar, S; Lee, E S; Leer, T L V; Burlinguette, N; Classen, H L; Crowe, T G; Shand, P J

    2010-05-01

    This study investigated the effect of microclimate temperature during preslaughter transportation on chicken meat quality. Ninety broilers per load of 2,900 were monitored individually during 3 to 4 h of preslaughter transport in an actively ventilated trailer. Six transport test runs were conducted at average ambient temperatures of -27, -22, -17, -5, +4, and +11 degrees C. Birds were classified into 4 groups based upon the temperatures recorded in their immediate surroundings as follows: -16 to 0, 0 to 10, 10 to 20, and 20 to 30 degrees C. Internal body temperatures of the birds were recorded using Thermocron DS1922L iButtons. Birds were slaughtered in a commercial facility and meat quality of the chilled carcasses was evaluated by determination of pH, color, drip loss, thaw loss, cook loss, shear force, water-binding capacity, and pellet cook yield of the pectoralis major muscle. The breast meat from birds exposed to temperatures below 0 degrees C showed a significantly higher (P < 0.05) ultimate pH. Breast meat from birds exposed to temperatures below 0 degrees C showed significantly higher (P < 0.05) ultimate pH, a* value, water-binding capacity, and pellet cook yield and a significantly lower L* compared with breast meat of birds exposed to temperatures above 0 degrees C. The average core body temperatures were significantly lower (P < 0.05) during transport for birds exposed to temperatures below 0 degrees C compared with those exposed to temperatures between 0 and 10 degrees C. The latter birds had significantly lower (P < 0.05) core body temperatures compared with those exposed to temperatures above 10 degrees C. Thaw loss was significantly higher (P < 0.05) for breast meat of birds exposed to temperatures above 20 degrees C during transportation. There was no significant trend for b* value, drip loss, cook loss, or shear values based on environment temperature immediately surrounding the birds. Exposure to temperatures below 0 degrees C increased the incidence of dark, firm, and dry breast meat and decreased the incidence of pale, soft, and exudative breast meat. These results demonstrate that preslaughter transport may influence breast meat quality characteristics of broiler chicken.

  14. Chemical composition, mineral profile, and functional properties of Canna (Canna edulis) and Arrowroot (Maranta spp.) starches.

    PubMed

    Pérez, Elevina; Lares, Mary

    2005-09-01

    The aim of the present study was to evaluate some chemical and mineral characteristics and functional and rheological properties of Canna and Arrowroot starches produced in the Venezuelan Andes. Canna starch showed a higher (P < 0.05) moisture, ash, and crude protein content than arrowroot starch, while crude fiber, crude fat, and amylose content of this starch were higher (P < 0.05). Starches of both rhizomes own phosphorus, sodium, potassium, magnesium, iron, calcium, and zinc in their composition. Phosphorus, sodium, and potassium are the higher in both starches. Water absorption, swelling power, and solubility values revealed weak bonding forces in Canna starch granules; this explained the lower gelatinization temperature and the substantial viscosity development of Canna starch during heating. Arrowroot starch showed a higher gelatinization temperature measure by DSC, than Canna starch and exhibited a lower value of DeltaH. Both starches show negative syneresis. The apparent viscosity of Canna starch was higher (P < 0.05) than the Arrowroot starch values. The size (wide and large) of Canna starch granules was higher than arrowroot starch. From the previous results, it can be concluded that Canna and Arrowroot starches could become interesting alternatives for food developers, depending on their characteristics and functional properties.

  15. Monitoring changes in body surface temperature associated with treadmill exercise in dogs by use of infrared methodology.

    PubMed

    Rizzo, Maria; Arfuso, Francesca; Alberghina, Daniela; Giudice, Elisabetta; Gianesella, Matteo; Piccione, Giuseppe

    2017-10-01

    The aim of this study was to evaluate the influence of moderate treadmill exercise session on body surface and core temperature in dog measured by means of two infrared instruments. Ten Jack Russell Terrier/Miniature Pinscher mixed-breed dogs were subjected to 15min of walking, 10min of trotting and 10min of gallop. At every step, body surface temperature (T surface ) was measured on seven regions (neck, shoulder, ribs, flank, back, internal thigh and eye) using two different methods, a digital infrared camera (ThermaCam P25) and a non-contact infrared thermometer (Infrared Thermometer THM010-VT001). Rectal temperature (T rectal ) and blood samples were collected before (T0) and after exercise (T3). Blood samples were tested for red blood cell (RBC), hemoglobin concentration (Hb) and hematocrit (Hct). A significant effect of exercise in all body surface regions was found, as measured by both infrared methods. The temperature obtained in the eye and the thigh area were higher with respect to the other studied regions throughout the experimental period (P<0.0001). RBC, Hb, Hct and T rectal values were higher at T3 (P<0.05). Statistically significant higher temperature values measured by infrared thermometer was found in neck, shoulder, ribs, flank, back regions respect to the values obtained by digital infrared camera (P<0.0001). The results obtained in this study showed that both internal and surface temperatures are influenced by physical exercise probably due to muscle activity and changes in blood flow in dogs. Both infrared instruments used in this study have proven to be useful in detecting surface temperature variations of specific body regions, however factors including type and color of animal hair coat must be taken into account in the interpretation of data obtained by thermography methodology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Upper atmosphere wind and temperature structure at sonmiani derived from the rocket grenade experiments conducted during 1965 - 1967

    NASA Technical Reports Server (NTRS)

    Rahmatullah, M.

    1972-01-01

    The grenade-TMA firing conducted in 1965-1967 bring out the following important features regarding the stratospheric circulation in the subtropics: (1) The temperature pattern during the month of March/April at Sonmiani is characterized by higher temperature than the corresponding CIRA 1965 value. (2) Double maxima in temperature has often been observed during spring. (3) In March the zonal wind is predominantly westerly reaching a maximum value of about 45 m/s at 55 km. (4) The meridional component exhibits oscillatory character between 45 and 60 kms. (5) The change from winter westerlies to summer easterlies first occurred around 50 km during April and gradually affected higher levels as the month progressed. (6) The height of the principal maxima at Sonmiani is located at 105 + or - 5 km. In autumn the wind at the principal maxima is below 100 m/s and is directed to NW, in spring it is of the order of 118 m/s but directed to E or NE.

  17. Simultaneous in situ electron temperature comparisons using Alouette 2 probe and plasma resonance data

    NASA Technical Reports Server (NTRS)

    Benson, R. F.

    1973-01-01

    The electron temperatures deduced from Alouette 2 diffuse resonance observations are compared with the temperature obtained from the Alouette 2 cylindrical electrostatic probe experiment using data from 5 mid-to-high latitude telemetry stations. The probe temperature is consistently higher than the diffuse resonance temperature. The average difference ranged from approximately 10% to 40% with the lower values occurring at the lowest altitudes sampled (near 500 km) and at high latitudes (dip latitude greater than 55 deg), and the larger values occurring at high altitudes and lower latitudes. The discrepancy appears to be of geophysical origin since it is dependent on the location of the data sample. The present observations support the view that the often observed radar backscatter - probe electron temperature discrepancy is also of geophysical origin.

  18. Changes in body temperature.

    PubMed

    2010-03-01

    People over the age of 60 have, on average, a lower temperature than the accepted 'normal' value of 37°C. There is also less variability in temperature, which means that older people may have little fever response to severe infection. People with cognitive impairment may have either higher or lower temperature; this may be due to loss of appropriate behavioural response to changes in temperature. Those with Alzheimer's disease sometimes have a modest increase in core body temperature, suggesting that change in basic metabolic rate may be responsible.

  19. Experimental study of 2-layer regenerators using Mn-Fe-Si-P materials

    NASA Astrophysics Data System (ADS)

    Christiaanse, T. V.; Trevizoli, P. V.; Misra, Sumohan; Carroll, Colman; van Asten, David; Zhang, Lian; Teyber, R.; Govindappa, P.; Niknia, I.; Rowe, A.

    2018-03-01

    This work describes an experimental study of a two layer active magnetic regenerator with varying transition temperature spacing. The transition temperature of the materials is based on the specific heat peak of the materials. A transition temperature based on the average of the heating and cooling curves at zero Tesla field value is used to refer to the materials throughout this paper. This study uses five Mn-Fe-Si-P materials with transition temperatures of 294.6 K, 292.3 K, 290.7 K, 282.5 K and 281.4 K. Six different regenerators are tested. A reference configuration is tested using the 294.6 K material a hot side layer and with a second passive layer of lead spheres as cold side layer. Followed by four configurations that use the same 294.6 K material as hot side layer, but where each configuration uses a different cold side material. For the second active layer the materials are used in sequence; 292.3 K, 290.7 K, 282.5 K and 281.4K. Lastly, a sixth configuration uses the 292.3 K and 282.5 K materials. For each configuration, the temperature span is measured for rejection temperatures from 40 °C to 9 °C and at 0 W and 2 W applied load. Experimental results for temperature span and exergetic cooling power are compared based on the differences from the reference configuration. Materials are analysed based on material performance metrics such as peak adiabatic temperature change, peak entropy change and RCP(s) values. For the cases considered, a closer transition temperature spacing generally gives a greater temperature span and exergetic cooling power than further spaced materials, even when the combined materials have comparatively lower performance metrics. When two materials with higher RCP(s) values with large transition temperature spacing are compared to materials with lower RCP(s) values but, closer transition temperature spacing a higher exergetic cooling power and temperature span is found for the latter.

  20. Temperature sensitivity of microbial respiration of fine root litter in a temperate broad-leaved forest.

    PubMed

    Makita, Naoki; Kawamura, Ayumi

    2015-01-01

    The microbial decomposition respiration of plant litter generates a major CO2 efflux from terrestrial ecosystems that plays a critical role in the regulation of carbon cycling on regional and global scales. However, the respiration from root litter decomposition and its sensitivity to temperature changes are unclear in current models of carbon turnover in forest soils. Thus, we examined seasonal changes in the temperature sensitivity and decomposition rates of fine root litter of two diameter classes (0-0.5 and 0.5-2.0 mm) of Quercus serrata and Ilex pedunculosa in a deciduous broad-leaved forest. During the study period, fine root litter of both diameter classes and species decreased approximately exponentially over time. The Q10 values of microbial respiration rates of root litter for the two classes were 1.59-3.31 and 1.28-6.27 for Q. serrata and 1.36-6.31 and 1.65-5.86 for I. pedunculosa. A significant difference in Q10 was observed between the diameter classes, indicating that root diameter represents the initial substrate quality, which may determine the magnitude of Q10 value of microbial respiration. Changes in these Q10 values were related to seasonal soil temperature patterns; the values were higher in winter than in summer. Moreover, seasonal variations in Q10 were larger during the 2-year decomposition period than the 1-year period. These results showed that the Q10 values of fine root litter of 0-0.5 and 0.5-2.0 mm have been shown to increase with lower temperatures and with the higher recalcitrance pool of the decomposed substrate during 2 years of decomposition. Thus, the temperature sensitivity of microbial respiration in root litter showed distinct patterns according to the decay period and season because of the temperature acclimation and adaptation of the microbial decomposer communities in root litter.

  1. CH-19 sweet, a non-pungent cultivar of red pepper, increased body temperature and oxygen consumption in humans.

    PubMed

    Ohnuki, K; Niwa, S; Maeda, S; Inoue, N; Yazawa, S; Fushiki, T

    2001-09-01

    We investigated the effect of CH-19 Sweet, a non-pungent cultivar of red pepper, on body temperature and oxygen consumption in humans. CH-19 Sweet was given to 11 healthy volunteers, and core body temperature, body surface temperature and oxygen consumption were measured. The control group ingested California-Wandar, which contained neither capsaicin nor capsiate. The core body temperature in the CH-19 Sweet group was significantly higher than that in the control group (P<0.01). The forehead temperature measured by infrared thermography in the CH-19 Sweet group was significantly higher than that in the control group. The body surface temperature was increased for about 20 min after consumption of CH-19 Sweet intake, and the neck temperature was significantly higher (P<0.001) than when the subjects consumed California-Wandar. We also measured respiratory gas by indirect calorimetry while subjects wore a face mask. A significant difference was detected in oxygen consumption between the two groups, and the value was significantly higher in the CH-19 Sweet group (P<0.03). These results suggest that CH-19 Sweet increased thermogenesis and energy consumption.

  2. Evaluation and projected changes of precipitation statistics in convection-permitting WRF climate simulations over Central Europe

    NASA Astrophysics Data System (ADS)

    Knist, Sebastian; Goergen, Klaus; Simmer, Clemens

    2018-02-01

    We perform simulations with the WRF regional climate model at 12 and 3 km grid resolution for the current and future climates over Central Europe and evaluate their added value with a focus on the daily cycle and frequency distribution of rainfall and the relation between extreme precipitation and air temperature. First, a 9 year period of ERA-Interim driven simulations is evaluated against observations; then global climate model runs (MPI-ESM-LR RCP4.5 scenario) are downscaled and analyzed for three 12-year periods: a control, a mid-of-century and an end-of-century projection. The higher resolution simulations reproduce both the diurnal cycle and the hourly intensity distribution of precipitation more realistically compared to the 12 km simulation. Moreover, the observed increase of the temperature-extreme precipitation scaling from the Clausius-Clapeyron (C-C) scaling rate of 7% K-1 to a super-adiabatic scaling rate for temperatures above 11 °C is reproduced only by the 3 km simulation. The drop of the scaling rates at high temperatures under moisture limited conditions differs between sub-regions. For both future scenario time spans both simulations suggest a slight decrease in mean summer precipitation and an increase in hourly heavy and extreme precipitation. This increase is stronger in the 3 km runs. Temperature-extreme precipitation scaling curves in the future climate are projected to shift along the 7% K-1 trajectory to higher peak extreme precipitation values at higher temperatures. The curves keep their typical shape of C-C scaling followed by super-adiabatic scaling and a drop-off at higher temperatures due to moisture limitation.

  3. Vegetation variation of loess deposits in the southeastern Inner Mongolia, NE China over the past ∼1.08 million years

    NASA Astrophysics Data System (ADS)

    Lyu, Anqi; Lu, Huayu; Zeng, Lin; Zhang, Hongyan; Zhang, Enlou; Yi, Shuangwen

    2018-04-01

    The stable carbon isotopic composition of organic matter of aeolian silt deposits is regarded as an appropriate proxy index of paleovegetation, especially in the Chinese Loess Plateau in central China. In this study, a loess-paleosol sequence in the southeastern Inner Mongolia Autonomous Region in northeastern (NE) China, which is located outside the Chinese Loess Plateau, is chosen to reconstruct the vegetation history since ∼1.08 Ma. Temperature exhibits a threshold value, which determines the growth of C4 plants in this study area. The organic matter of the samples is derived from two different vegetation types, namely, the mixed C3 and C4 plants and the pure C3 plants. The δ13C of the organic matter shows negative values in loess units and higher values in paleosol units. This finding reflects the influence of temperature and summer monsoon intensity on the vegetation dynamics over glacial-interglacial cycles. On a longer time scale, the δ13C values are higher between ∼1.1 and ∼0.9 Ma and after ∼0.35 Ma, and lower between ∼0.9 and ∼0.35 Ma, which may be attributed to a long-term temperature variation. Our analysis shows that regional temperature is the most important limiting factor that forces vegetation changes at the glacial-interglacial time scale in NE China.

  4. Thermodynamic properties of ideal Fermi gases in a harmonic potential in an n-dimensional space under the generalized uncertainty principle

    NASA Astrophysics Data System (ADS)

    Li, Heling; Ren, Jinxiu; Wang, Wenwei; Yang, Bin; Shen, Hongjun

    2018-02-01

    Using the semi-classical (Thomas-Fermi) approximation, the thermodynamic properties of ideal Fermi gases in a harmonic potential in an n-dimensional space are studied under the generalized uncertainty principle (GUP). The mean particle number, internal energy, heat capacity and other thermodynamic variables of the Fermi system are calculated analytically. Then, analytical expressions of the mean particle number, internal energy, heat capacity, chemical potential, Fermi energy, ground state energy and amendments of the GUP are obtained at low temperatures. The influence of both the GUP and the harmonic potential on the thermodynamic properties of a copper-electron gas and other systems with higher electron densities are studied numerically at low temperatures. We find: (1) When the GUP is considered, the influence of the harmonic potential is very much larger, and the amendments produced by the GUP increase by eight to nine orders of magnitude compared to when no external potential is applied to the electron gas. (2) The larger the particle density, or the smaller the particle masses, the bigger the influence of the GUP. (3) The effect of the GUP increases with the increase in the spatial dimensions. (4) The amendments of the chemical potential, Fermi energy and ground state energy increase with an increase in temperature, while the heat capacity decreases. T F0 is the Fermi temperature of the ideal Fermi system in a harmonic potential. When the temperature is lower than a certain value (0.22 times T F0 for the copper-electron gas, and this value decreases with increasing electron density), the amendment to the internal energy is positive, however, the amendment decreases with increasing temperature. When the temperature increases to the value, the amendment is zero, and when the temperature is higher than the value, the amendment to the internal energy is negative and the absolute value of the amendment increases with increasing temperature. (5) When electron density is greater than or equal to 1037 m-3, the influence of the GUP becomes the dominant factor affecting the thermodynamic properties of the system.

  5. Optimization of temperature and time for drying and carbonization to increase calorific value of coconut shell using Taguchi method

    NASA Astrophysics Data System (ADS)

    Musabbikhah, Saptoadi, H.; Subarmono, Wibisono, M. A.

    2016-03-01

    Fossil fuel still dominates the needs of energy in Indonesia for the past few years. The increasing scarcity of oil and gas from non-renewable materials results in an energy crisis. This condition turns to be a serious problem for society which demands immediate solution. One effort which can be taken to overcome this problem is the utilization and processing of biomass as renewable energy by means of carbonization. Thus, it can be used as qualified raw material for production of briquette. In this research, coconut shell is used as carbonized waste. The research aims at improving the quality of coconut shell as the material for making briquettes as cheap and eco-friendly renewable energy. At the end, it is expected to decrease dependence on oil and gas. The research variables are drying temperature and time, carbonization time and temperature. The dependent variable is calorific value of the coconut shell. The method used in this research is Taguchi Method. The result of the research shows thus variables, have a significant contribution on the increase of coconut shell's calorific value. It is proven that the higher thus variables are higher calorific value. Before carbonization, the average calorific value of coconut shell reaches 4,667 call/g, and a significant increase is notable after the carbonization. The optimization is parameter setting of A2B3C3D3, which means that the drying temperature is 105 °C, the drying time is 24 hours, the carbonization temperature is 650 °C and carbonization time is 120 minutes. The average calorific value is approximately 7,744 cal/g. Therefore, the increase of the coconut shell's calorific value after the carbonization is 3,077 cal/g or approximately 60 %. The charcoal of carbonized coconut shell has met the requirement of SNI, thus it can be used as raw material in making briquette which can eventually be used as cheap and environmental friendly fuel.

  6. Exploring the influence of texture and composition on the thermal transport properties of mudstones

    NASA Astrophysics Data System (ADS)

    Kenderes, S. M.; Hofmeister, A. M.; Merriman, J. D.; Whittington, A. G.

    2017-12-01

    The thermal history of sedimentary basins depends strongly on the thermal transport properties of the rocks within the basin. Mudstones are compositionally diverse, varying both chemically and with modal mineralogy, which are known to affect the thermal transport properties of earth materials. To explore the influence of composition and texture on the thermal transport properties of mudstones, we have measured the thermal diffusivity (D) and isobaric heat capacity (CP) of 12 mudstones using the contact-free laser flash analysis (LFA) and differential scanning calorimetry (DSC). At 20°C, D values of the shales range from 0.318 to 1.214 mm2·s-1 and CP values range from 799 to 918 J·kg-1·°C-1 and at 300°C, D values range from 0.227 to 0.582 mm2·s-1 and CP values range from 1095 to 1344 J·kg-1·°C-1. The mudstones with the highest D values, and lowest CP values are green micaceous or calcareous siltstones respectively, whereas the mudstones with the lowest D values, and highest CP values are black, claystones with 9% organic carbon. This suggests that organic carbon content and, to a lesser extent, the grainsize influence the thermal transport properties of these rocks. The lower D values and higher CP values cause organic rich claystones to absorb and transmit heat differently than other types of mudstones. This is especially true at lower temperatures, where the difference in D values is much greater than at higher temperatures. Additionally, when compared to other sedimentary rocks, shales generally have lower D values and higher CP values. These results also highlight the necessity of using rock type specific values in heat transport numerical models.

  7. Baryon number, strangeness, and electric charge fluctuations in QCD at high temperature

    NASA Astrophysics Data System (ADS)

    Cheng, M.; Hegde, P.; Jung, C.; Karsch, F.; Kaczmarek, O.; Laermann, E.; Mawhinney, R. D.; Miao, C.; Petreczky, P.; Schmidt, C.; Soeldner, W.

    2009-04-01

    We analyze baryon number, strangeness, and electric charge fluctuations as well as their correlations in QCD at high temperature. We present results obtained from lattice calculations performed with an improved staggered fermion action (p4 action) at two values of the lattice cutoff with almost physical up and down quark masses and a physical value for the strange quark mass. We compare these results, with an ideal quark gas at high temperature and a hadron resonance gas model at low temperature. We find that fluctuations and correlations are well described by the former already for temperatures about 1.5 times the transition temperature. At low temperature qualitative features of the lattice results are quite well described by a hadron resonance gas model. Higher order cumulants, which become increasingly sensitive to the light pions, however, show deviations from a resonance gas in the vicinity of the transition temperature.

  8. Heat generation during implant placement in low-density bone: effect of surgical technique, insertion torque and implant macro design.

    PubMed

    Marković, Aleksa; Mišić, Tijana; Miličić, Biljana; Calvo-Guirado, Jose Luis; Aleksić, Zoran; Ðinić, Ana

    2013-07-01

    The study aimed to investigate the effect of surgical technique, implant macrodesign and insertion torque on bone temperature changes during implant placement. In the in vitro study, 144 self-tapping (blueSKY(®) 4 × 10 mm; Bredent) and 144 non-self-tapping (Standard implant(®) 4.1 × 10 mm; Straumann) were placed in osteotomies prepared in pig ribs by lateral bone condensing or bone drilling techniques. The maximum insertion torque values of 30, 35 and 40 Ncm were used. Real-time bone temperature measurement during implant placement was performed by three thermocouples positioned vertically, in tripod configuration around every osteotomy, at a distance of 5 mm from it and at depths of 1, 5 and 10 mm. Data were analysed using Kruskal-Wallis, Mann-Whitney U-tests and Regression analysis. Significant predictor of bone temperature at the osteotomy depth of 1 mm was insertion torque (P = 0.003) and at the depth of 10-mm implant macrodesign (P = 0.029), while no significant predictor at depth of 5 mm was identified (P > 0.05). Higher insertion torque values as well as non-self-tapping implant macrodesign were related to higher temperatures. Implant placement in sites prepared by bone drilling induced significantly higher temperature increase (P = 0.021) compared with bone condensing sites at the depth of 5 mm, while no significant difference was recorded at other depths. Compared with 30 Ncm, insertion torque values of 35 and 40 Ncm produced significantly higher temperature increase (P = 0.005; P = 0.003, respectively) at the depth of 1 mm. There was no significant difference in temperature change induced by 35 and 40 Ncm, neither by implant macrodesign at all investigated depths (P > 0.05). Placement of self-tapping implants with low insertion torque into sites prepared by lateral bone condensing technique might be advantageous in terms of thermal effect on bone. © 2012 John Wiley & Sons A/S.

  9. Holographic conductivity of holographic superconductors with higher-order corrections

    NASA Astrophysics Data System (ADS)

    Sheykhi, Ahmad; Ghazanfari, Afsoon; Dehyadegari, Amin

    2018-02-01

    We analytically and numerically disclose the effects of the higher-order correction terms in the gravity and in the gauge field on the properties of s-wave holographic superconductors. On the gravity side, we consider the higher curvature Gauss-Bonnet corrections and on the gauge field side, we add a quadratic correction term to the Maxwell Lagrangian. We show that, for this system, one can still obtain an analytical relation between the critical temperature and the charge density. We also calculate the critical exponent and the condensation value both analytically and numerically. We use a variational method, based on the Sturm-Liouville eigenvalue problem for our analytical study, as well as a numerical shooting method in order to compare with our analytical results. For a fixed value of the Gauss-Bonnet parameter, we observe that the critical temperature decreases with increasing the nonlinearity of the gauge field. This implies that the nonlinear correction term to the Maxwell electrodynamics makes the condensation harder. We also study the holographic conductivity of the system and disclose the effects of the Gauss-Bonnet and nonlinear parameters α and b on the superconducting gap. We observe that, for various values of α and b, the real part of the conductivity is proportional to the frequency per temperature, ω /T, as the frequency is large enough. Besides, the conductivity has a minimum in the imaginary part which is shifted toward greater frequency with decreasing temperature.

  10. Gasification of refinery sludge in an updraft reactor for syngas production

    NASA Astrophysics Data System (ADS)

    Ahmed, Reem; Sinnathambi, Chandra M.; Eldmerdash, Usama

    2014-10-01

    The study probes into the investigation on gasification of dry refinery sludge. The details of the study includes; influence of operation time, oxidation temperature and equivalence ratios on carbon gas conversion rate, gasification efficiency, heating value and fuel gas yield are presented. The results show that, the oxidation temperature increased sharply up to 858°C as the operating time increased up to 36 min then bridging occurred at 39 min which cause drop in reaction temperature up to 819 °C. This bridging was found to affect also the syngas compositions, meanwhile as the temperature decreased the CO, H2, CH4 compositions are also found to be decreases. Higher temperature catalyzed the reduction reaction (CO2+ C = 450 2CO ), and accelerated the carbon conversion and gasification efficiencies, resulted in more solid fuel is converted to a high heating value gas fuel. The equivalence ratio of 0.195 was found to be the optimum value for carbon conversion and cold gas efficiencies, high heating value of gas, and fuel gas yield to reach their maximum values of 96.1 % and 53.7 %, 5.42 MJ Nm-3 of, and 2.5 Nm3 kg-1 respectively.

  11. Effect of the type of metal on the electrical conductivity and thermal properties of metal complexes: The relation between ionic radius of metal complexes and electrical conductivity

    NASA Astrophysics Data System (ADS)

    Morgan, Sh. M.; El-Ghamaz, N. A.; Diab, M. A.

    2018-05-01

    Co(II) complexes (1-4) and Ni(II) complexes (5-8) were prepared and characterized by elemental analysis, IR spectra and thermal analysis data. Thermal decomposition of all complexes was discussed using thermogravimetric analysis. The dielectric properties and alternating current conductivity were investigated in the frequency range 0.1-100 kHz and temperature range 300-660 K. The thermal activation energies of electrical conductivity (ΔE1 and ΔE2) values for complexes were calculated and discussed. The values of ΔE1 and ΔE2 for complexes (1-8) were found to decrease with increasing the frequency. Ac electrical conductivity (σac) values increases with increasing temperatures and the values of σac for Co(II) complexes are greater than Ni(II) complexes. Co(II) complexes showed a higher conductivity than other Ni(II) complexes due to the higher crystallinity as confirmed by X-ray diffraction analysis.

  12. Steady-state temperature distribution within a Brayton rotating unit operating in a power conversion system using helium-xenon gas

    NASA Technical Reports Server (NTRS)

    Johnsen, R. L.; Namkoong, D.; Edkin, R. A.

    1971-01-01

    The Brayton rotating unit (BRU), consisting of a turbine, an alternator, and a compressor, was tested as part of a Brayton cycle power conversion system over a side range of steady state operating conditions. The working fluid in the system was a mixture of helium-xenon gases. Turbine inlet temperature was varied from 1200 to 1600 F, compressor inlet temperature from 60 to 120 F, compressor discharge pressure from 20 to 45 psia, rotative speed from 32 400 to 39 600 rpm, and alternator liquid-coolant flow rate from 0.01 to 0.27 pound per second. Test results indicated that the BRU internal temperatures were highly sensitive to alternator coolant flow below the design value of 0.12 pound per second but much less so at higher values. The armature winding temperature was not influenced significantly by turbine inlet temperature, but was sensitive, up to 20 F per kVA alternator output, to varying alternator output. When only the rotational speed was changed (+ or - 10% of rated value), the BRU internal temperatures varied directly with the speed.

  13. Effect of temperature on excess post-exercise oxygen consumption in juvenile southern catfish (Silurus meridionalis Chen) following exhaustive exercise.

    PubMed

    Zeng, Ling-Qing; Zhang, Yao-Guang; Cao, Zhen-Dong; Fu, Shi-Jian

    2010-12-01

    The effects of temperature on resting oxygen consumption rate (MO2rest) and excess post-exercise oxygen consumption (EPOC) after exhaustive exercise (chasing) were measured in juvenile southern catfish (Silurus meridionalis) (8.40±0.30 g, n=40) to test whether temperature has a significant influence on MO2rest, maximum post-exercise oxygen consumption rate (MO2peak) and EPOC and to investigate how metabolic scope (MS: MO2peak - MO2rest) varies with acclimation temperature. The MO2rest increased from 64.7 (10°C) to 160.3 mg O2 h(-1) kg(-1) (25°C) (P<0.05) and reached a plateau between 25 and 30°C. The post-exercise MO2 in all temperature groups increased immediately to the peak values and then decreased slowly to a steady state that was higher than the pre-exercise MO2. The MO2peak did not significantly differ among the 20, 25 and 30°C groups, though these values were much higher than those of the lower temperature groups (10 and 15°C) (P<0.05). The duration of EPOC varied from 32.9 min at 10°C to 345 min at 20°C, depending on the acclimation temperatures. The MS values of the lower temperature groups (10 and 15°C) were significantly smaller than those of the higher temperature groups (20, 25 and 30°C) (P<0.05). The magnitude of EPOC varied ninefold among all of the temperature groups and was the largest for the 20°C temperature group (about 422.4 mg O2 kg(-1)). These results suggested that (1) the acclimation temperature had a significant effect on maintenance metabolism (as indicated by MO2rest) and the post-exercise metabolic recovery process (as indicated by MO2peak, duration and magnitude of EPOC), and (2) the change of the MS as a function of acclimation temperature in juvenile southern catfish might be related to their high degree of physiological flexibility, which allows them to adapt to changes in environmental conditions in their habitat in the Yangtze River and the Jialing River.

  14. Quality and Antioxidant Activity of Buckwheat-Based Cookies Designed for a Raw Food Vegan Diet as Affected by Moderate Drying Temperature.

    PubMed

    Brožková, Iveta; Dvořáková, Veronika; Michálková, Kateřina; Červenka, Libor; Velichová, Helena

    2016-12-01

    Buckwheat cookies with various ingredients for raw food vegan diet are usually prepared by soaking them in water at ambient temperature followed by drying at moderate temperature. The aim of this study was to examine the temperature effect on the microbiological quality, antioxidant properties and oxidative stability of lipids of final dried samples. The mixture of ingredients was soaked for 20 h in distilled water, and then cookies were formed and dried in air-forced oven at constant temperature in the range from 40 to 60 °C. Total viable counts, fungi, yeasts, coliform and aerobic spore-forming bacteria counts were evaluated in dried samples and were found to decrease during drying at 50 and 60 °C. Antioxidant activity was determined by DPPH and ABTS assays, and the former showed the highest value at 40 °C. Superoxide dismutase activity was also higher at 40 °C in comparison with that at 60 °C. The percentage of lipid peroxidation inhibition increased with the increase in drying temperature until 4th day of incubation. While peroxide value was significantly higher in samples dried at 40 °C, TBARS values did not show significant changes during the drying process. The results of this study suggest that drying buckwheat-based cookies at 40 °C retained their good antioxidant properties but represent a potentially serious microbial hazard.

  15. Temperature dependent quasi-static capacitance-voltage characterization of SiO2/β-Ga2O3 interface on different crystal orientations

    NASA Astrophysics Data System (ADS)

    Zeng, Ke; Singisetti, Uttam

    2017-09-01

    The interface trap density (Dit) of the SiO2/β-Ga2O3 interface in ( 2 ¯ 01), (010), and (001) orientations is obtained by the Hi-Lo method with the low frequency capacitance measured using the Quasi-Static Capacitance-Voltage (QSCV) technique. QSCV measurements are carried out at higher temperatures to increase the measured energy range of Dit in the bandgap. At room temperature, higher Dit is observed near the band edge for all three orientations. The measurement at higher temperatures led to an annealing effect that reduced the Dit value for all samples. Comparison with the conductance method and frequency dispersion of the capacitance suggests that the traps at the band edge are slow traps which respond to low frequency signals.

  16. Rehydration of freeze-dried and convective dried boletus edulis mushrooms: effect on some quality parameters.

    PubMed

    Hernando, I; Sanjuán, N; Pérez-Munuera, I; Mulet, A

    2008-10-01

    Quality of rehydrated products is a key aspect linked to rehydration conditions. To assess the effect of rehydration temperature on some quality parameters, experiments at 20 and 70 degrees C were performed with convective dried and freeze-dried Boletus edulis mushrooms. Rehydration characteristics (through Peleg's parameter, k(1), and equilibrium moisture, W(e)), texture (Kramer), and microstructure (Cryo-Scanning Electron Microscopy) were evaluated. Freeze-dried samples absorbed water more quickly and attained higher W(e) values than convective dried ones. Convective dehydrated samples rehydrated at 20 degrees C showed significantly lower textural values (11.9 +/- 3.3 N/g) than those rehydrated at 70 degrees C (15.7 +/- 1.2 N/g). For the freeze-dried Boletus edulis, the textural values also exhibited significant differences, being 8.2 +/- 1.3 and 10.5 +/- 2.3 N/g for 20 and 70 degrees C, respectively. Freeze-dried samples showed a porous structure that allows rehydration to take place mainly at the extracellular level. This explains the fact that, regardless of temperature, freeze-dried mushrooms absorbed water more quickly and reached higher W(e) values than convective dried ones. Whatever the dehydration technique used, rehydration at 70 degrees C produced a structural damage that hindered water absorption; consequently lower W(e) values and higher textural values were attained than when rehydrating at 20 degrees C.

  17. METHOD OF SEPARATING URANIUM VALUES, PLUTONIUM VALUES AND FISSION PRODUCTS BY CHLORINATION

    DOEpatents

    Brown, H.S.; Seaborg, G.T.

    1959-02-24

    The separation of plutonium and uranium from each other and from other substances is described. In general, the method comprises the steps of contacting the uranium with chlorine in the presence of a holdback material selected from the group consisting of lanthanum oxide and thorium oxide to form a uranium chloride higher than uranium tetrachloride, and thereafter heating the uranium chloride thus formed to a temperature at which the uranium chloride is volatilized off but below the volatilizalion temperature of plutonium chloride.

  18. Characterization of Coconut Oil Fractions Obtained from Solvent Fractionation Using Acetone.

    PubMed

    Sonwai, Sopark; Rungprasertphol, Poonyawee; Nantipipat, Nantinee; Tungvongcharoan, Satinee; Laiyangkoon, Nantikan

    2017-09-01

    This work was aimed to study the solvent fraction of coconut oil (CNO). The fatty acid and triacylglycerol compositions, solid fat content (SFC) and the crystallization properties of CNO and its solid and liquid fractions obtained from fractionation at different conditions were investigated using various techniques. CNO was dissolved in acetone (1:1 w/v) and left to crystallize isothermally at 10°C for 0.5, 1 and 2 h and at 12°C for 2, 3 and 6 h. The solid fractions contained significantly lower contents of saturated fatty acids of ≤ 10 carbon atoms but considerably higher contents of saturated fatty acids with > 12 carbon atoms with respect to those of CNO and the liquid fractions. They also contained higher contents of high-melting triacylglycerol species with carbon number ≥ 38. Because of this, the DSC crystallization onset temperatures and the crystallization peak temperatures of the solid fractions were higher than CNO and the liquid fractions. The SFC values of the solid fractions were significantly higher than CNO at all measuring temperatures before reaching 0% just below the body temperature with the fraction obtained at 12°C for 2 h exhibiting the highest SFC. On the contrary, the SFC values of the liquid fractions were lower than CNO. The crystallization duration exhibited strong influence on the solid fractions. There was no effect on the crystal polymorphic structure possibly because CNO has β'-2 as a stable polymorph. The enhanced SFC of the solid fractions would allow them to find use in food applications where a specific melting temperature is desired such as sophisticated confectionery fats, and the decreased SFC of the liquid fractions would provide them with a higher cold stability which would be useful during extended storage time.

  19. Noise contribution to the correlation between temperature-induced localized reflectance of diabetic skin and blood glucose.

    PubMed

    Lowery, Michael G; Calfin, Brenda; Yeh, Shu-Jen; Doan, Tao; Shain, Eric; Hanna, Charles; Hohs, Ronald; Kantor, Stan; Lindberg, John; Khalil, Omar S

    2006-01-01

    We used the effect of temperature on the localized reflectance of human skin to assess the role of noise sources on the correlation between temperature-induced fractional change in optical density of human skin (DeltaOD(T)) and blood glucose concentration [BG]. Two temperature-controlled optical probes at 30 degrees C contacted the skin, one was then cooled by -10 degrees C; the other was heated by +10 degrees C. DeltaOD(T) upon cooling or heating was correlated with capillary [BG] of diabetic volunteers over a period of three days. Calibration models in the first two days were used to predict [BG] in the third day. We examined the conditions where the correlation coefficient (R2) for predicting [BG] in a third day ranked higher than R2 values resulting from fitting permutations of randomized [BG] to the same DeltaOD(T) values. It was possible to establish a four-term linear regression correlation between DeltaOD(T) upon cooling and [BG] with a correlation coefficient higher than that of an established noise threshold in diabetic patients that were mostly females with less than 20 years of diabetes duration. The ability to predict [BG] values with a correlation coefficient above biological and body-interface noise varied between the cases of cooling and heating.

  20. Changes in the geographical distribution of plant species and climatic variables on the West Cornwall peninsula (South West UK).

    PubMed

    Kosanic, Aleksandra; Anderson, Karen; Harrison, Stephan; Turkington, Thea; Bennie, Jonathan

    2018-01-01

    Recent climate change has had a major impact on biodiversity and has altered the geographical distribution of vascular plant species. This trend is visible globally; however, more local and regional scale research is needed to improve understanding of the patterns of change and to develop appropriate conservation strategies that can minimise cultural, health, and economic losses at finer scales. Here we describe a method to manually geo-reference botanical records from a historical herbarium to track changes in the geographical distributions of plant species in West Cornwall (South West England) using both historical (pre-1900) and contemporary (post-1900) distribution records. We also assess the use of Ellenberg and climate indicator values as markers of responses to climate and environmental change. Using these techniques we detect a loss in 19 plant species, with 6 species losing more than 50% of their previous range. Statistical analysis showed that Ellenberg (light, moisture, nitrogen) and climate indicator values (mean January temperature, mean July temperature and mean precipitation) could be used as environmental change indicators. Significantly higher percentages of area lost were detected in species with lower January temperatures, July temperatures, light, and nitrogen values, as well as higher annual precipitation and moisture values. This study highlights the importance of historical records in examining the changes in plant species' geographical distributions. We present a method for manual geo-referencing of such records, and demonstrate how using Ellenberg and climate indicator values as environmental and climate change indicators can contribute towards directing appropriate conservation strategies.

  1. Changes in the geographical distribution of plant species and climatic variables on the West Cornwall peninsula (South West UK)

    PubMed Central

    Kosanic, Aleksandra; Anderson, Karen; Harrison, Stephan; Turkington, Thea; Bennie, Jonathan

    2018-01-01

    Recent climate change has had a major impact on biodiversity and has altered the geographical distribution of vascular plant species. This trend is visible globally; however, more local and regional scale research is needed to improve understanding of the patterns of change and to develop appropriate conservation strategies that can minimise cultural, health, and economic losses at finer scales. Here we describe a method to manually geo-reference botanical records from a historical herbarium to track changes in the geographical distributions of plant species in West Cornwall (South West England) using both historical (pre-1900) and contemporary (post-1900) distribution records. We also assess the use of Ellenberg and climate indicator values as markers of responses to climate and environmental change. Using these techniques we detect a loss in 19 plant species, with 6 species losing more than 50% of their previous range. Statistical analysis showed that Ellenberg (light, moisture, nitrogen) and climate indicator values (mean January temperature, mean July temperature and mean precipitation) could be used as environmental change indicators. Significantly higher percentages of area lost were detected in species with lower January temperatures, July temperatures, light, and nitrogen values, as well as higher annual precipitation and moisture values. This study highlights the importance of historical records in examining the changes in plant species’ geographical distributions. We present a method for manual geo-referencing of such records, and demonstrate how using Ellenberg and climate indicator values as environmental and climate change indicators can contribute towards directing appropriate conservation strategies. PMID:29401494

  2. On the importance of telemetric temperature sensor location during intraperitoneal implantation in rats.

    PubMed

    Chapon, P A; Bulla, J; Gauthier, A; Moussay, S

    2014-04-01

    This study aims to assess the thermal homogeneity of the intraperitoneal (IP) cavity and the relevance of using a fixed telemetric temperature sensor at a given location in studying rodents. Ten rats were intraperitoneally implanted with three Jonah® capsules each; after assessing the accuracy and reliability of the sensors. Two capsules were attached, one to the right iliac fossa (RIF) and the other to the left hypochondrium (LH), and another was placed between the intestines but not attached (Free). In the ex vivo condition, the differences between sensors and reference values remained in the range of ±0.1. In the in vivo condition, each sensor enabled the observation of temperature patterns. However, sensor location affected mean and median temperature values while the rats were moving freely. Indeed, temperature data collected in the LH were 0.1 significantly higher than those collected in the RIF and temperature data collected in the LH were 0.11 significantly higher than those collected with the Free capsules. In in vivo conditions, intra-sensor variability of temperature data was not affected by sensor location. Taking into account sensor accuracy, similar intra-sensor variability, and mean differences observed between the three locations, the impact of sensor location within the IP cavity could be considered negligible. In in vivo conditions, temperature differences between locations regularly exceeded ±0.2 and reached up to 2.5. These extreme values could be explained by behavioral factors such as food or water intake. Finally, considering the good thermal homogeneity of the IP cavity and possible adverse consequences of sensor attachment, it seems better to let sensors range free within the cavity.

  3. Low temperature measurement of the vapor pressures of planetary molecules

    NASA Technical Reports Server (NTRS)

    Kraus, George F.

    1989-01-01

    Interpretation of planetary observations and proper modeling of planetary atmospheres are critically upon accurate laboratory data for the chemical and physical properties of the constitutes of the atmospheres. It is important that these data are taken over the appropriate range of parameters such as temperature, pressure, and composition. Availability of accurate, laboratory data for vapor pressures and equilibrium constants of condensed species at low temperatures is essential for photochemical and cloud models of the atmospheres of the outer planets. In the absence of such data, modelers have no choice but to assume values based on an educated guess. In those cases where higher temperature data are available, a standard procedure is to extrapolate these points to the lower temperatures using the Clausius-Clapeyron equation. Last summer the vapor pressures of acetylene (C2H2) hydrogen cyanide (HCN), and cyanoacetylene (HC3N) was measured using two different methods. At the higher temperatures 1 torr and 10 torr capacitance manometers were used. To measure very low pressures, a technique was used which is based on the infrared absorption of thin film (TFIR). This summer the vapor pressure of acetylene was measured the TFIR method. The vapor pressure of hydrogen sulfide (H2S) was measured using capacitance manometers. Results for H2O agree with literature data over the common range of temperature. At the lower temperatures the data lie slightly below the values predicted by extrapolation of the Clausius-Clapeyron equation. Thin film infrared (TFIR) data for acetylene lie significantly below the values predicted by extrapolation. It is hoped to bridge the gap between the low end of the CM data and the upper end of the TFIR data in the future using a new spinning rotor gauge.

  4. Thermodynamic parameters of U (VI) sorption onto soils in aquatic systems.

    PubMed

    Kumar, Ajay; Rout, Sabyasachi; Ghosh, Malay; Singhal, Rakesh Kumar; Ravi, Pazhayath Mana

    2013-01-01

    The thermodynamic parameters viz. the standard free energy (∆Gº), Standard enthalpy change (∆Hº) and standard entropy change (∆Sº) were determined using the obtained values of distribution coefficient (kd) of U (VI) in two different types of soils (agricultural and undisturbed) by conducting a batch equilibrium experiment with aqueous media (groundwater and deionised water) at two different temperatures 25°C and 50°C. The obtained distribution coefficients (kd) values of U for undisturbed soil in groundwater showed about 75% higher than in agricultural soil at 25°C while in deionised water, these values were highly insignificant for both soils indicating that groundwater was observed to be more favorable for high surface sorption. At 50°C, the increased kd values in both soils revealed that solubility of U decreased with increasing temperature. Batch adsorption results indicated that U sorption onto soils was promoted at higher temperature and an endothermic and spontaneous interfacial process. The high positive values of ∆Sº for agricultural soil suggested a decrease in sorption capacity of U in that soil due to increased randomness at solid-solution interface. The low sorption onto agricultural soil may be due to presence of high amount of coarse particles in the form of sand (56%). Geochemical modeling predicted that mixed hydroxo-carbonato complexes of uranium were the most stable and abundant complexes in equilibrium solution during experimental.

  5. Temperature Dependent Electrical Properties of PZT Wafer

    NASA Astrophysics Data System (ADS)

    Basu, T.; Sen, S.; Seal, A.; Sen, A.

    2016-04-01

    The electrical and electromechanical properties of lead zirconate titanate (PZT) wafers were investigated and compared with PZT bulk. PZT wafers were prepared by tape casting technique. The transition temperature of both the PZT forms remained the same. The transition from an asymmetric to a symmetric shape was observed for PZT wafers at higher temperature. The piezoelectric coefficient (d 33) values obtained were 560 pc/N and 234 pc/N, and the electromechanical coupling coefficient (k p) values were 0.68 and 0.49 for bulk and wafer, respectively. The reduction in polarization after fatigue was only ~3% in case of PZT bulk and ~7% for PZT wafer.

  6. Radial turbine cooling

    NASA Technical Reports Server (NTRS)

    Roelke, Richard J.

    1992-01-01

    Radial turbines have been used extensively in many applications including small ground based electrical power generators, automotive engine turbochargers and aircraft auxiliary power units. In all of these applications the turbine inlet temperature is limited to a value commensurate with the material strength limitations and life requirements of uncooled metal rotors. To take advantage of all the benefits that higher temperatures offer, such as increased turbine specific power output or higher cycle thermal efficiency, requires improved high temperature materials and/or blade cooling. Extensive research is on-going to advance the material properties of high temperature superalloys as well as composite materials including ceramics. The use of ceramics with their high temperature potential and low cost is particularly appealing for radial turbines. However until these programs reach fruition the only way to make significant step increases beyond the present material temperature barriers is to cool the radial blading.

  7. Prolonging thermal barrier coated specimen life by thermal cycle management

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Mcdonald, G.; Poolos, N. P.

    1981-01-01

    Thermal barrier coatings applied to the heated side of engine components such as seals, combustor, and blades of a gas turbine offer a potential increase in efficiency through the use of higher gas temperatures or less cooling air or benefits arising from extended component life by reducing component metal temperatures. The considered investigation has the objective to show that while a thermal barrier coated (TBC) specimen can be brought to a fixed temperature using various fuel-air ratio (F/A) values, lower calculated stresses are associated with lower (F/A) values. This implies that control of (F/A) values (i.e., rates of heat input) during the starting transient and to a lesser extent during shutdown and operation, offers a potential method of improving TBC lifetime through thermal cycle management.

  8. Effect of menstrual cycle phase on the ventilatory response to rising body temperature during exercise.

    PubMed

    Hayashi, Keiji; Kawashima, Takayo; Suzuki, Yuichi

    2012-07-01

    To examine the effect of menstrual cycle on the ventilatory sensitivity to rising body temperature, ten healthy women exercised for ~60 min on a cycle ergometer at 50% of peak oxygen uptake during the follicular and luteal phases of their cycle. Esophageal temperature, mean skin temperature, mean body temperature, minute ventilation, and tidal volume were all significantly higher at baseline and during exercise in the luteal phase than the follicular phase. On the other hand, end-tidal partial pressure of carbon dioxide was significantly lower during exercise in the luteal phase than the follicular phase. Plotting ventilatory parameters against esophageal temperature revealed there to be no significant menstrual cycle-related differences in the slopes or intercepts of the regression lines, although minute ventilation and tidal volume did significantly differ during exercise with mild hyperthermia. To evaluate the cutaneous vasodilatory response, relative laser-Doppler flowmetry values were plotted against mean body temperature, which revealed that the mean body temperature threshold for cutaneous vasodilation was significantly higher in the luteal phase than the follicular phase, but there were no significant differences in the sensitivity or peak values. These results suggest that the menstrual cycle phase influences the cutaneous vasodilatory response during exercise and the ventilatory response at rest and during exercise with mild hyperthermia, but it does not influence ventilatory responses during exercise with moderate hyperthermia.

  9. Steam gasification of waste tyre: Influence of process temperature on yield and product composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Portofino, Sabrina, E-mail: sabrina.portofino@enea.it; Donatelli, Antonio; Iovane, Pierpaolo

    Highlights: ► Steam gasification of waste tyre as matter and energy recovery treatment. ► Process temperature affects products yield and gas composition. ► High temperature promotes hydrogen production. ► Char exploitation as activated carbon or carbon source. - Abstract: An experimental survey of waste tyre gasification with steam as oxidizing agent has been conducted in a continuous bench scale reactor, with the aim of studying the influence of the process temperature on the yield and the composition of the products; the tests have been performed at three different temperatures, in the range of 850–1000 °C, holding all the other operationalmore » parameters (pressure, carrier gas flow, solid residence time). The experimental results show that the process seems promising in view of obtaining a good quality syngas, indicating that a higher temperature results in a higher syngas production (86 wt%) and a lower char yield, due to an enhancement of the solid–gas phase reactions with the temperature. Higher temperatures clearly result in higher hydrogen concentrations: the hydrogen content rapidly increases, attaining values higher than 65% v/v, while methane and ethylene gradually decrease over the range of the temperatures; carbon monoxide and dioxide instead, after an initial increase, show a nearly constant concentration at 1000 °C. Furthermore, in regards to the elemental composition of the synthesis gas, as the temperature increases, the carbon content continuously decreases, while the oxygen content increases; the hydrogen, being the main component of the gas fraction and having a small atomic weight, is responsible for the progressive reduction of the gas density at higher temperature.« less

  10. Restoration of isospin symmetry in highly excited nuclei

    NASA Astrophysics Data System (ADS)

    Sagawa, H.; Bortignon, P. F.; Colò, G.

    1998-12-01

    Explicit relations between the isospin mixing probability, the spreading width ΓIAS↓ of the Isobaric Analog State (IAS) and the statistical decay width Γc of the compound nucleus at finite excitation energy, are derived by using the Feshbach projection formalism. The temperature dependence of the isospin mixing probability is discussed quantitatively for the first time by using the values of ΓIAS↓ and of Γc calculated by means of microscopic models. It is shown that the mixing probability remains essentially constant up to a temperature of the order of 1 MeV and then decreases to about 1/4 of its zero temperature value, at higher temperature than ~3 MeV, due to the short decay time of the compound system.

  11. Optimization of torrefaction conditions of coffee industry residues using desirability function approach.

    PubMed

    Buratti, C; Barbanera, M; Lascaro, E; Cotana, F

    2018-03-01

    The aim of the present study is to analyze the influence of independent process variables such as temperature, residence time, and heating rate on the torrefaction process of coffee chaff (CC) and spent coffee grounds (SCGs). Response surface methodology and a three-factor and three-level Box-Behnken design were used in order to evaluate the effects of the process variables on the weight loss (W L ) and the Higher Heating Value (HHV) of the torrefied materials. Results showed that the effects of the three factors on both responses were sequenced as follows: temperature>residence time>heating rate. Data obtained from the experiments were analyzed by analysis of variance (ANOVA) and fitted to second-order polynomial models by using multiple regression analysis. Predictive models were determined, able to obtain satisfactory fittings of the experimental data, with coefficient of determination (R 2 ) values higher than 0.95. An optimization study using Derringer's desired function methodology was also carried out and the optimal torrefaction conditions were found: temperature 271.7°C, residence time 20min, heating rate 5°C/min for CC and 256.0°C, 20min, 25°C/min for SCGs. The experimental values closely agree with the corresponding predicted values. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Sensing Properties of a Novel Temperature Sensor Based on Field Assisted Thermal Emission.

    PubMed

    Pan, Zhigang; Zhang, Yong; Cheng, Zhenzhen; Tong, Jiaming; Chen, Qiyu; Zhang, Jianpeng; Zhang, Jiaxiang; Li, Xin; Li, Yunjia

    2017-02-27

    The existing temperature sensors using carbon nanotubes (CNTs) are limited by low sensitivity, complicated processes, or dependence on microscopy to observe the experimental results. Here we report the fabrication and successful testing of an ionization temperature sensor featuring non-self-sustaining discharge. The sharp tips of nanotubes generate high electric fields at relatively low voltages, lowering the work function of electrons emitted by CNTs, and thereby enabling the safe operation of such sensors. Due to the temperature effect on the electron emission of CNTs, the collecting current exhibited an exponential increase with temperature rising from 20 °C to 100 °C. Additionally, a higher temperature coefficient of 0.04 K -1 was obtained at 24 V voltage applied on the extracting electrode, higher than the values of other reported CNT-based temperature sensors. The triple-electrode ionization temperature sensor is easy to fabricate and converts the temperature change directly into an electrical signal. It shows a high temperature coefficient and good application potential.

  13. Sensing Properties of a Novel Temperature Sensor Based on Field Assisted Thermal Emission

    PubMed Central

    Pan, Zhigang; Zhang, Yong; Cheng, Zhenzhen; Tong, Jiaming; Chen, Qiyu; Zhang, Jianpeng; Zhang, Jiaxiang; Li, Xin; Li, Yunjia

    2017-01-01

    The existing temperature sensors using carbon nanotubes (CNTs) are limited by low sensitivity, complicated processes, or dependence on microscopy to observe the experimental results. Here we report the fabrication and successful testing of an ionization temperature sensor featuring non-self-sustaining discharge. The sharp tips of nanotubes generate high electric fields at relatively low voltages, lowering the work function of electrons emitted by CNTs, and thereby enabling the safe operation of such sensors. Due to the temperature effect on the electron emission of CNTs, the collecting current exhibited an exponential increase with temperature rising from 20 °C to 100 °C. Additionally, a higher temperature coefficient of 0.04 K−1 was obtained at 24 V voltage applied on the extracting electrode, higher than the values of other reported CNT-based temperature sensors. The triple-electrode ionization temperature sensor is easy to fabricate and converts the temperature change directly into an electrical signal. It shows a high temperature coefficient and good application potential. PMID:28264427

  14. Pyrolysis polygeneration of poplar wood: Effect of heating rate and pyrolysis temperature.

    PubMed

    Chen, Dengyu; Li, Yanjun; Cen, Kehui; Luo, Min; Li, Hongyan; Lu, Bin

    2016-10-01

    The pyrolysis of poplar wood were comprehensively investigated at different pyrolysis temperatures (400, 450, 500, 550, and 600°C) and at different heating rates (10, 30, and 50°C/min). The results showed that BET surface area of biochar, the HHV of non-condensable gas and bio-oil reached the maximum values of 411.06m(2)/g, 14.56MJ/m(3), and 14.39MJ/kg, under the condition of 600°C and 30°C/min, 600°C and 50°C/min, and 550°C and 50°C/min, respectively. It was conducive to obtain high mass and energy yield of bio-oil at 500°C and higher heating rate, while lower pyrolysis temperature and heating rate contributed towards obtaining both higher mass yield and energy yield of biochar. However, higher pyrolysis temperature and heating rate contributed to obtain both higher mass yield and energy yield of the non-condensable gas. In general, compared to the heating rate, the pyrolysis temperature had more effect on the product properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. A novel approach for stabilizing fresh urine by calcium hydroxide addition

    PubMed Central

    Randall, Dyllon G.; Krähenbühl, Manuel; Köpping, Isabell; Larsen, Tove A.; Udert, Kai M.

    2016-01-01

    In this study, we investigated the prevention of enzymatic urea hydrolysis in fresh urine by increasing the pH with calcium hydroxide (Ca(OH)2) powder. The amount of Ca(OH)2 dissolving in fresh urine depends significantly on the composition of the urine. The different urine compositions used in our simulations showed that between 4.3 and 5.8 g Ca(OH)2 dissolved in 1 L of urine at 25 °C. At this temperature, the pH at saturation is 12.5 and is far above the pH of 11, which we identified as the upper limit for enzymatic urea hydrolysis. However, temperature has a strong effect on the saturation pH, with higher values being achieved at lower temperatures. Based on our results, we recommend a dosage of 10 g Ca(OH)2 L−1 of fresh urine to ensure solid Ca(OH)2 always remains in the urine reactor which ensures sufficiently high pH values. Besides providing sufficient Ca(OH)2, the temperature has to be kept in a certain range to prevent chemical urea hydrolysis. At temperatures below 14 °C, the saturation pH is higher than 13, which favors chemical urea hydrolysis. We chose a precautionary upper temperature of 40 °C because the rate of chemical urea hydrolysis increases at higher temperatures but this should be confirmed with kinetic studies. By considering the boundaries for pH and temperature developed in this study, urine can be stabilized effectively with Ca(OH)2 thereby simplifying later treatment processes or making direct use easier. PMID:27055084

  16. Influences of end-point heating temperature on the quality attributes of chicken meat.

    PubMed

    Chumngoen, W; Chen, C F; Chen, H Y; Tan, F J

    2016-12-01

    This study aimed to evaluate the changes in physicochemical, textural and sensory characteristics of broiler (BR) and Taiwan native chicken (TNC) pectoralis muscle heated at temperatures of 50-95°C. With increasing temperature, cooking loss, collagen solubility, shear force value and hardness, of samples increased in both chicken breeds. Rapid decreases in protein solubility were observed when the meat was heated to 50°C and gradually decreased thereafter. Meat from BRs and native chickens performed differently upon heating in certain characteristics. TNC meat had longer cooking time and lower myofibrillar fragmentation index than BR meat did. TNC meat had higher collagen content, shear force values and springiness but lower collagen solubility than BR meat did. BR meat had significantly higher onset and end transition temperatures than TNC meat did. In BR meat, a sensory analysis revealed that moisture release decreased and chicken flavour increased with increasing temperature. Protein solubility, cooking loss and the texture of heated meat were highly correlated. This study scientifically assessed the performances of the two breeds of chickens with different thermal treatments; producers could utilise the information to produce poultry products with more desirable qualities.

  17. Response of marine bacterioplankton to a massive under-ice phytoplankton bloom in the Chukchi Sea (Western Arctic Ocean)

    NASA Astrophysics Data System (ADS)

    Ortega-Retuerta, E.; Fichot, C. G.; Arrigo, K. R.; Van Dijken, G. L.; Joux, F.

    2014-07-01

    The activity of heterotrophic bacterioplankton and their response to changes in primary production in the Arctic Ocean is essential to understand biogenic carbon flows in the area. In this study, we explored the patterns of bacterial abundance (BA) and bacterial production (BP) in waters coinciding with a massive under-ice phytoplankton bloom in the Chukchi Sea in summer 2011, where chlorophyll a (chl a) concentrations were up to 38.9 mg m-3. Contrary to our expectations, BA and BP did not show their highest values coinciding with the bloom. In fact, bacterial biomass was only 3.5% of phytoplankton biomass. Similarly, average DOC values were similar inside (average 57.2±3.1 μM) and outside (average 64.3±4.8 μM) the bloom patch. Regression analyses showed relatively weak couplings, in terms of slope values, between chl a or primary production and BA or BP. Multiple regression analyses indicated that both temperature and chl a explained BA and BP variability in the Chukchi Sea. This temperature dependence was confirmed experimentally, as higher incubation temperatures (6.6 °C vs. 2.2 °C) enhanced BA and BP, with Q10 values of BP up to 20.0. Together, these results indicate that low temperatures in conjunction with low dissolved organic matter release can preclude bacteria to efficiently process a higher proportion of carbon fixed by phytoplankton, with further consequences on the carbon cycling in the area.

  18. Influence of shoulder diameter on Temperature and Z-parameter during friction stir welding of Al 6082 alloy

    NASA Astrophysics Data System (ADS)

    Kishore Mugada, Krishna; Adepu, Kumar

    2018-03-01

    In this research article, the effect of increasing shoulder diameter on temperature and Zener Holloman (Z)-parameter for friction stir butt welded AA6082-T6 was studied. The temperature at the Advancing side (AS) of weld was measured using the K-Type thermocouple at four different equidistant locations. The developed analytical model is utilized to predict the maximum temperature (Tpeak) during the welding. The strain, strain rate, Z- Parameter for all the shoulders at four distinct locations were evaluated. The temperature increases with increase in shoulder diameter and the maximum temperature was recorded for 24mm shoulder diameter. The computed log Z values are compared with the available process map and results shows that the values are in stable flow region and near to stir zone the values are in Dynamic recrystallization region (DRX). The axial load (Fz) and total tool torque (N-m) are found to be higher for shoulder diameter of 21 mm i.e., 6.3 kN and 56.5 N-m respectively.

  19. Temperature dependence of autoxidation of perilla oil and tocopherol degradation.

    PubMed

    Wang, Seonyeong; Hwang, Hyunsuk; Yoon, Sukhoo; Choe, Eunok

    2010-08-01

    Temperature dependence of the autoxidation of perilla oil and tocopherol degradation was studied with corn oil as a reference. The oils were oxidized in the dark at 20, 40, 60, and 80 degrees C. Oil oxidation was determined by peroxide and conjugated dienoic acid values. Tocopherols in the oils were quantified by HPLC. The oxidation of both oils increased with oxidation time and temperature. Induction periods for oil autoxidation decreased with temperature, and were longer in corn oil than in perilla oil, indicating higher sensitivity of perilla oil to oxidation. However, time lag for tocopherol degradation was longer in perilla oil, indicating higher stability of tocopherols in perilla oil than in corn oil. Activation energies for oil autoxidation and tocopherol degradation were higher in perilla oil (23.9 to 24.2, 9.8 kcal/mol, respectively) than in corn oil (12.5 to 15.8, 8.8 kcal/mol, respectively) indicating higher temperature-dependence in perilla oil. Higher stability of tocopherols in perilla oil was highly related with polyphenols. The study suggests that more careful temperature control is required to decrease the autoxidation of perilla oil than that of corn oil, and polyphenols contributed to the oxidative stability of perilla oil by protecting tocopherols from degradation, especially at the early stage of oil autoxidation.

  20. Shelf life of fresh meat products under LED or fluorescent lighting.

    PubMed

    Steele, K S; Weber, M J; Boyle, E A E; Hunt, M C; Lobaton-Sulabo, A S; Cundith, C; Hiebert, Y H; Abrolat, K A; Attey, J M; Clark, S D; Johnson, D E; Roenbaugh, T L

    2016-07-01

    Enhanced pork loin chops, beef longissimus lumborum steaks, semimembranosus steaks (superficial and deep portions), ground beef, and ground turkey were displayed under light emitting diode (LED) and fluorescent (FLS) lighting in two multi-shelf, retail display cases with identical operating parameters. Visual and instrumental color, internal product temperature, case temperature, case cycling, thiobarbituric acid reactive substances (TBARS), and Enterobacteriaceae and aerobic plate counts were evaluated. Under LED, beef products (except the deep portion of beef semimembranosus steaks) showed less (P<0.05) visual discoloration. Pork loin chops had higher (P<0.05) L* values for LED lighting. Other than beef longissimus lumborum steaks, products displayed under LED lights had colder internal temperatures than products under FLS lights (P<0.05). Under LED, pork loin chops, ground turkey, and beef semimembranosus steaks had higher (P<0.05) values for TBARS. LED provides colder case and product temperatures, more case efficiency, and extended color life by at least 0.5d for longissimus and semimembranosus steaks; however, some LED cuts showed increased lipid oxidation. Copyright © 2016. Published by Elsevier Ltd.

  1. Effects of Temperature on Bacterial Communities and Metabolites during Fermentation of Myeolchi-Aekjeot, a Traditional Korean Fermented Anchovy Sauce.

    PubMed

    Jung, Ji Young; Lee, Hyo Jung; Chun, Byung Hee; Jeon, Che Ok

    2016-01-01

    Myeolchi-aekjeot (MA) in Korea is produced outdoors without temperature controls, which is a major obstacle to produce commercial MA products with uniform quality. To investigate the effects of temperature on MA fermentation, pH, bacterial abundance and community, and metabolites were monitored during fermentation at 15°C, 20°C, 25°C, and 30°C. Initial pH values were approximately 6.0, and pH values increased after approximately 42 days, with faster increases at higher temperatures. Bacterial abundances increased rapidly in all MA samples after quick initial decreases during early fermentation and then they again steadily decreased after reaching their maxima, which were significantly greater at higher temperatures. Bacterial community analysis revealed that Proteobacteria and Tenericutes were predominant in all initial MA samples, but they were rapidly displaced by Firmicutes as fermentation progressed. Photobacterium and Mycoplasma belonging to Proteobacteria and Tenericutes, respectively, which may include potentially pathogenic strains, were dominant in initial MA, but decreased with the growth of Chromohalobacter, which occurred faster at higher temperatures--they were dominant until 273 and 100 days at 15°C and 20°C, respectively, but not detected after 30 days at 25°C and 30°C. Chromohalobacter also decreased with the appearance of subsequent genera belonging to Firmicutes in all MA samples. Tetragenococcus, halophilic lactic acid bacteria, appeared predominantly at 20°C, 25°C, and 30°C; they were most abundant at 30°C, but not detected at 15°C. Alkalibacillus and Lentibacillus appeared as dominant genera with the decrease of Tetragenococcus at 25°C and 30°C, but only Lentibacillus was dominant at 15°C and 20°C. Metabolite analysis showed that amino acids related to tastes were major metabolites and their concentrations were relatively higher at high temperatures. This study suggests that high temperatures (approximately 30°C) may be appropriate in MA fermentation, in the light of faster disappearance of potentially pathogenic genera, higher amino acids, growth of Tetragenococcus, and faster fermentation.

  2. Temperature and curing time affect composite sorption and solubility

    PubMed Central

    de CASTRO, Fabrício Luscino Alves; CAMPOS, Bruno Barbosa; BRUNO, Kely Firmino; REGES, Rogério Vieira

    2013-01-01

    Objective: This study evaluated the effect of temperature and curing time on composite sorption and solubility. Material and Methods: Seventy five specimens (8x2 mm) were prepared using a commercial composite resin (ICE, SDI). Three temperatures (10º C, 25º C and 60º C) and five curing times (5 s, 10 s, 20 s, 40 s and 60 s) were evaluated. The specimens were weighed on an analytical balance three times: A: before storage (M1); B: 7 days after storage (M2); C: 7 days after storage plus 1 day of drying (M3). The storage solution consisted of 75% alcohol/25% water. Sorption and solubility were calculated using these three weights and specimen dimensions. The data were analyzed using the Kruskal-Wallis and Mann-Whitney U Tests (α=5%). Results: The results showed that time, temperature and their interaction influenced the sorption and solubility of the composite (p<0.05). At 60º C, the composite sorption showed an inverse relationship with the curing time (p<0.05). The composite cured for 5 s showed higher sorption for the 40 s or 60 s curing times when compared with all temperatures (p<0.05). Curing times of 20 s and 40 s showed similar sorption data for all temperatures (p>0.05). The 60º C composite temperature led to lower values of sorption for all curing times when compared with the 10º C temperature (p<0.05). The same results were found when comparing 10º C and 25º C (p<0.05), except that the 20 s and 40 s curing times behaved similarly (p>0.05). Solubility was similar at 40 s and 60 s for all temperatures (p>0.05), but was higher at 10º C than at 60º C for all curing times (p<0.05). When the composite was cured at 25º C, similar solubility values were found when comparing the 5 s and 10 s or 20 s and 40 s curing times (p>0.05). Conclusion: In conclusion, higher temperatures or longer curing times led to lower sorption and solubility values for the composite tested; however, this trend was only significant in specific combinations of temperature and curing times. PMID:23739853

  3. Non-equilibrium thermionic electron emission for metals at high temperatures

    NASA Astrophysics Data System (ADS)

    Domenech-Garret, J. L.; Tierno, S. P.; Conde, L.

    2015-08-01

    Stationary thermionic electron emission currents from heated metals are compared against an analytical expression derived using a non-equilibrium quantum kappa energy distribution for the electrons. The latter depends on the temperature decreasing parameter κ ( T ) , which decreases with increasing temperature and can be estimated from raw experimental data and characterizes the departure of the electron energy spectrum from equilibrium Fermi-Dirac statistics. The calculations accurately predict the measured thermionic emission currents for both high and moderate temperature ranges. The Richardson-Dushman law governs electron emission for large values of kappa or equivalently, moderate metal temperatures. The high energy tail in the electron energy distribution function that develops at higher temperatures or lower kappa values increases the emission currents well over the predictions of the classical expression. This also permits the quantitative estimation of the departure of the metal electrons from the equilibrium Fermi-Dirac statistics.

  4. Correlation between Plantar Foot Temperature and Diabetic Neuropathy: A Case Study by Using an Infrared Thermal Imaging Technique

    PubMed Central

    Bagavathiappan, Subramnaiam; Philip, John; Jayakumar, Tammana; Raj, Baldev; Rao, Pallela Narayana Someshwar; Varalakshmi, Muthukrishnan; Mohan, Viswanathan

    2010-01-01

    Background Diabetic neuropathy consists of multiple clinical manifestations of which loss of sensation is most prominent. High temperatures under the foot coupled with reduced or complete loss of sensation can predispose the patient to foot ulceration. The aim of this study was to look at the correlation between plantar foot temperature and diabetic neuropathy using a noninvasive infrared thermal imaging technique. Methods Infrared thermal imaging, a remote and noncontact experimental tool, was used to study the plantar foot temperatures of 112 subjects with type 2 diabetes selected from a tertiary diabetes centre in South India. Results Patients with diabetic neuropathy (defined as vibration perception threshold (VPT) values on biothesiometry greater than 20 V) had a higher foot temperature (32–35 °C) compared to patients without neuropathy (27–30 °C). Diabetic subjects with neuropathy also had higher mean foot temperature (MFT) (p = .001) compared to non-neuropathic subjects. MFT also showed a positive correlation with right great toe (r = 0.301, p = .001) and left great toe VPT values (r = 0.292, p = .002). However, there was no correlation between glycated hemoglobin and MFT. Conclusion Infrared thermal imaging may be used as an additional tool for evaluation of high risk diabetic feet. PMID:21129334

  5. PROPERTIES OF THE T8.5 DWARF WOLF 940 B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leggett, S. K.; Saumon, D.; Burningham, Ben

    We present 7.5-14.2 {mu}m low-resolution spectroscopy, obtained with the Spitzer Infrared Spectrograph, of the T8.5 dwarf Wolf 940 B, which is a companion to an M4 dwarf with a projected separation of 400 AU. We combine these data with previously published near-infrared spectroscopy and mid-infrared photometry to produce the spectral energy distribution for the very low temperature T dwarf. We use atmospheric models to derive the bolometric correction and obtain a luminosity of log L/L{sub sun} = -6.01 {+-} 0.05 (the observed spectra make up 47% of the total flux). Evolutionary models are used with the luminosity to constrain themore » values of effective temperature (T{sub eff}) and surface gravity and hence mass and age for the T dwarf. We ensure that the spectral models used to determine the bolometric correction have T{sub eff} and gravity values consistent with the luminosity-implied values. We further restrict the allowed range of T{sub eff} and gravity using age constraints implied by the M dwarf primary and refine the physical properties of the T dwarf by comparison of the observed and modeled spectroscopy and photometry. This comparison indicates that Wolf 940 B has a metallicity within {approx}0.2 dex of solar, as more extreme values give poor fits to the data-lower metallicity produces a poor fit at {lambda}>2 {mu}m, while higher metallicity produces a poor fit at {lambda} < 2 {mu}m. This is consistent with the independently derived value of [m/H] =+0.24 {+-} 0.09 for the primary star, using the Johnson and Apps M{sub K} : V - K relationship. We find that the T dwarf atmosphere is undergoing vigorous mixing, with an eddy diffusion coefficient K{sub zz} of 10{sup 4} to 10{sup 6} cm{sup 2} s{sup -1}. We derive an effective temperature of 585 K to 625 K, and surface gravity log g = 4.83 to 5.22 (cm s{sup -2}), for an age range of 3 Gyr to 10 Gyr, as implied by the kinematic and H{alpha} properties of the M dwarf primary. Gravity and temperature are correlated such that the lower gravity corresponds to the lower temperature and younger age for the system and the higher values to the higher temperature and older age. The mass of the T dwarf is 24 M{sub Jupiter} to 45 M{sub Jupiter} for the younger to older age limit.« less

  6. Optimization of Sour Cherry Juice Spray Drying as
Affected by Carrier Material and Temperature

    PubMed Central

    Zorić, Zoran; Pedisić, Sandra; Dragović-Uzelac, Verica

    2016-01-01

    Summary Response surface methodology was applied for optimization of the sour cherry Marasca juice spray drying process with 20, 30 and 40% of carriers maltodextrin with dextrose equivalent (DE) value of 4–7 and 13–17 and gum arabic, at three drying temperatures: 150, 175 and 200 °C. Increase in carrier mass per volume ratio resulted in lower moisture content and powder hygroscopicity, higher bulk density, solubility and product yield. Higher temperatures decreased the moisture content and bulk density of powders. Temperature of 200 °C and 27% of maltodextrin with 4–7 DE were found to be the most suitable for production of sour cherry Marasca powder. PMID:28115901

  7. The Economic Potential of Nuclear-Renewable Hybrid Energy Systems Producing Hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruth, Mark; Cutler, Dylan; Flores-Espino, Francisco

    This report is one in a series of reports that Idaho National Laboratory and the Joint Institute for Strategic Energy Analysis are publishing that address the technical and economic aspects of nuclear-renewable hybrid energy systems (N-R HESs). This report discusses an analysis of the economic potential of a tightly coupled N-R HES that produces electricity and hydrogen. Both low and high temperature electrolysis options are considered in the analysis. Low-temperature electrolysis requires only electricity to convert water to hydrogen. High temperature electrolysis requires less electricity because it uses both electricity and heat to provide the energy necessary to electrolyze water.more » The study finds that, to be profitable, the examined high-temperature electrosis and low-temperature electrosis N-R HES configurations that produce hydrogen require higher electricity prices, more electricity price volatility, higher natural gas prices, or higher capacity payments than the reference case values of these parameters considered in this analysis.« less

  8. Nanocrystalline High-Entropy Alloys: A New Paradigm in High-Temperature Strength and Stability.

    PubMed

    Zou, Yu; Wheeler, Jeffrey M; Ma, Huan; Okle, Philipp; Spolenak, Ralph

    2017-03-08

    Metals with nanometer-scale grains or nanocrystalline metals exhibit high strengths at ambient conditions, yet their strengths substantially decrease with increasing temperature, rendering them unsuitable for usage at high temperatures. Here, we show that a nanocrystalline high-entropy alloy (HEA) retains an extraordinarily high yield strength over 5 GPa up to 600 °C, 1 order of magnitude higher than that of its coarse-grained form and 5 times higher than that of its single-crystalline equivalent. As a result, such nanostructured HEAs reveal strengthening figures of merit-normalized strength by the shear modulus above 1/50 and strength-to-density ratios above 0.4 MJ/kg, which are substantially higher than any previously reported values for nanocrystalline metals in the same homologous temperature range, as well as low strain-rate sensitivity of ∼0.005. Nanocrystalline HEAs with these properties represent a new class of nanomaterials for high-stress and high-temperature applications in aerospace, civilian infrastructure, and energy sectors.

  9. Investigation Into Shelf Life of Fresh Dates and Pistachios in a Package Modified With Nano-Silver.

    PubMed

    Mousavi, Fateme Peyro; Pour, Hasan Hashemi; Nasab, Amir Heidari; Rajabalipour, Ali A; Barouni, Mohsen

    2015-09-18

    The aim of this study was to apply polymer films containing silver nanoparticles as a new method for increasing the shelf life and preserving the quality of export/commercial products of Kerman Province and determine the ideal temperature for preserving these products. After preparing nano-composite films containing silver nanoparticles (3% and 5% by weight), Mazafati dates were packed in them and stored with their control samples under four temperatures. In the second series, the films were filled with fresh pistachios and stored at four temperatures. In date samples, after 2, 7, 21 and 53 days of storing the samples were examined under the certified test of Iran Institute of Industrial Standard for Dates, which includes pH, TSS, acidity and reducing sugars tests. In pistachio samples the color values and market-friendly quality were evaluated after 1, 2, 3, 6, 7 and 8 days of storage. In date samples, the pH value decreased with increasing acidity in 3 and 5 wt% of nano-silver and their control samples. In addition, in 5 wt% samples the acidity was higher than that in 3% samples, with pH being lower in the controls at almost all the intervals. Furthermore, pH values in 5% samples were higher in comparison with 3 wt% samples and controls. The amount of reducing sugars in the control samples was lower than those in 3 and 5 wt% samples. In relation to pistachio samples, the damage over time was greater in sample stored under higher temperatures. The maximum shelf life of the dates packaged in 5 wt% of silver nano-powder was 53 days and the best temperature to store samples was determined at 4°C. Packages containing nano-silver increased shelf life of fresh pistachios, with the best temperatures being 25°C and 0°C.

  10. Investigation Into Shelf Life of Fresh Dates and Pistachios in a Package Modified With Nano-Silver

    PubMed Central

    Mousavi, Fateme Peyro; Pour, Hasan Hashemi; Nasab, Amir Heidari; Rajabalipour, Ali A.; Barouni, Mohsen

    2016-01-01

    Aims: The aim of this study was to apply polymer films containing silver nanoparticles as a new method for increasing the shelf life and preserving the quality of export/commercial products of Kerman Province and determine the ideal temperature for preserving these products. Methods: After preparing nano-composite films containing silver nanoparticles (3% and 5% by weight), Mazafati dates were packed in them and stored with their control samples under four temperatures. In the second series, the films were filled with fresh pistachios and stored at four temperatures. In date samples, after 2, 7, 21 and 53 days of storing the samples were examined under the certified test of Iran Institute of Industrial Standard for Dates, which includes pH, TSS, acidity and reducing sugars tests. In pistachio samples the color values and market-friendly quality were evaluated after 1, 2, 3, 6, 7 and 8 days of storage. Results: In date samples, the pH value decreased with increasing acidity in 3 and 5 wt% of nano-silver and their control samples. In addition, in 5 wt% samples the acidity was higher than that in 3% samples, with pH being lower in the controls at almost all the intervals. Furthermore, pH values in 5% samples were higher in comparison with 3 wt% samples and controls. The amount of reducing sugars in the control samples was lower than those in 3 and 5 wt% samples. In relation to pistachio samples, the damage over time was greater in sample stored under higher temperatures. Conclusion: The maximum shelf life of the dates packaged in 5 wt% of silver nano-powder was 53 days and the best temperature to store samples was determined at 4°C. Packages containing nano-silver increased shelf life of fresh pistachios, with the best temperatures being 25°C and 0°C. PMID:26652097

  11. Gasification of refinery sludge in an updraft reactor for syngas production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Reem; Eldmerdash, Usama; Sinnathambi, Chandra M., E-mail: chandro@petronas.com.my

    2014-10-24

    The study probes into the investigation on gasification of dry refinery sludge. The details of the study includes; influence of operation time, oxidation temperature and equivalence ratios on carbon gas conversion rate, gasification efficiency, heating value and fuel gas yield are presented. The results show that, the oxidation temperature increased sharply up to 858°C as the operating time increased up to 36 min then bridging occurred at 39 min which cause drop in reaction temperature up to 819 °C. This bridging was found to affect also the syngas compositions, meanwhile as the temperature decreased the CO, H{sub 2}, CH{sub 4}more » compositions are also found to be decreases. Higher temperature catalyzed the reduction reaction (CO{sub 2}+C = 450 2CO), and accelerated the carbon conversion and gasification efficiencies, resulted in more solid fuel is converted to a high heating value gas fuel. The equivalence ratio of 0.195 was found to be the optimum value for carbon conversion and cold gas efficiencies, high heating value of gas, and fuel gas yield to reach their maximum values of 96.1 % and 53.7 %, 5.42 MJ Nm{sup −3} of, and 2.5 Nm{sup 3} kg{sup −1} respectively.« less

  12. Indirect Determination of the Thermodynamic Temperature of a Gold Fixed-Point Cell

    NASA Astrophysics Data System (ADS)

    Battuello, M.; Girard, F.; Florio, M.

    2010-09-01

    Since the value T 90(Au) was fixed on the ITS-90, some determinations of the thermodynamic temperature of the gold point have been performed which form, with other renormalized results of previous measurements by radiation thermometry, the basis for the current best estimates of ( T - T 90)Au = 39.9 mK as elaborated by the CCT-WG4. Such a value, even if consistent with the behavior of T - T 90 differences at lower temperatures, is quite influenced by the low values of T Au as determined with few radiometric measurements. At INRIM, an independent indirect determination of the thermodynamic temperature of gold was performed by means of a radiation thermometry approach. A fixed-point technique was used to realize approximated thermodynamic scales from the Zn point up to the Cu point. A Si-based standard radiation thermometer working at 900 nm and 950 nm was used. The low uncertainty presently associated to the thermodynamic temperature of fixed points and the accuracy of INRIM realizations, allowed scales with an uncertainty lower than 0.03 K in terms of the thermodynamic temperature to be realized. A fixed-point cell filled with gold, 99.999 % in purity, was measured, and its freezing temperature was determined by both interpolation and extrapolation. An average T Au = 1337.395 K was found with a combined standard uncertainty of 23 mK. Such a value is 25 mK higher than the presently available value as derived by the CCT-WG4 value of ( T - T 90)Au = 39.9 mK.

  13. Effect of molecular weight on polymer processability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karg, R.F.

    1983-01-01

    Differences in rheological behavior due to the polymer molecular weight and molecular weight distribution have been shown with the MPT. SBR polymers having high molecular weight fractions develop higher stress relaxation time values due to the higher degree of polymer entanglements. Tests conducted at increasing temperatures show the diminishing influence of the polymer entanglements upon stress relaxation time. EPDM polymers show stress relaxation time and head pressure behavior which correlates with mill processability. As anticipated, compounded stock of EPDM have broad molecular weight distribution has higher stress relaxation time values than EPDM compounds with narrow molecular weight distribution.

  14. Plastic catalytic pyrolysis to fuels as tertiary polymer recycling method: effect of process conditions.

    PubMed

    Gulab, Hussain; Jan, Muhammad Rasul; Shah, Jasmin; Manos, George

    2010-01-01

    This paper presents results regarding the effect of various process conditions on the performance of a zeolite catalyst in pyrolysis of high density polyethylene. The results show that polymer catalytic degradation can be operated at relatively low catalyst content reducing the cost of a potential industrial process. As the polymer to catalyst mass ratio increases, the system becomes less active, but high temperatures compensate for this activity loss resulting in high conversion values at usual batch times and even higher yields of liquid products due to less overcracking. The results also show that high flow rate of carrier gas causes evaporation of liquid products falsifying results, as it was obvious from liquid yield results at different reaction times as well as the corresponding boiling point distributions. Furthermore, results are presented regarding temperature effects on liquid selectivity. Similar values resulted from different final reactor temperatures, which are attributed to the batch operation of the experimental equipment. Since polymer and catalyst both undergo the same temperature profile, which is the same up to a specific time independent of the final temperature. Obviously, this common temperature step determines the selectivity to specific products. However, selectivity to specific products is affected by the temperature, as shown in the corresponding boiling point distributions, with higher temperatures showing an increased selectivity to middle boiling point components (C(8)-C(9)) and lower temperatures increased selectivity to heavy components (C(14)-C(18)).

  15. Environmental Controls on Mg/Ca in Neogloboquadrina incompta: A Core-Top Study From the Subpolar North Atlantic

    NASA Astrophysics Data System (ADS)

    Morley, Audrey; Babila, Tali L.; Wright, James; Ninnemann, Ulysses; Kleiven, Kikki; Irvali, Nil; Rosenthal, Yair

    2017-12-01

    Magnesium/calcium paleothermometry is an established tool for reconstructing past surface and deep-sea temperatures. However, our understanding of nonthermal environmental controls on the uptake of Mg into the calcitic lattice of foraminiferal tests remains limited. Here we present a combined analysis of multiple trace element/calcium ratios and stable isotope (δ18O and δ13C) geochemistry on the subpolar planktonic foraminifera Neogloboquadrina incompta to assess the validity of Mg/Ca as a proxy for surface ocean temperature. We identify small size-specific offsets in Mg/Ca and δ18Oc values for N. incompta that are consistent with depth habitat migration patterns throughout the life cycle of this species. Additionally, an assessment of nonthermal controls on Mg/Ca values reveals that (1) the presence of volcanic ash, (2) the addition of high-Mg abiotic overgrowths, and (3) ambient seawater carbonate chemistry can have a significant impact on the Mg/Ca-to-temperature relationship. For carbonate-ion concentrations of values > 200 μmol kg-1, we find that temperature exerts the dominant control on Mg/Ca values, while at values < 200 μmol kg-1 the carbonate-ion concentration of seawater increases the uptake of Mg, thereby resulting in higher-than-expected Mg/Ca values at low temperatures. We propose two independent correction schemes to remove the effects of volcanic ash and carbonate-ion concentration on Mg/Ca values in N. incompta within the calibration data set. Applying the corrections improves the fidelity of past ocean temperature reconstructions.

  16. QCD phase diagram using PNJL model with eight-quark interactions

    NASA Astrophysics Data System (ADS)

    Deb, Paramita; Bhattacharyya, Abhijit; Ghosh, Sanjay K.; Ray, Rajarshi; Lahiri, Anirban

    2011-07-01

    We present the phase diagram and the fluctuations of different conserved charges like quark number, charge and strangeness at vanishing chemical potential for the 2+1 flavor Polyakov Loop extended Nambu-Jona-Lasinio model with eight-quark interaction terms using three-momentum cutoff regularisation. The main effect of the higher order interaction term is to shift the critical end point to the lower value of the chemical potential and higher value of the temperature. The fluctuations show good qualitative agreement with the lattice data.

  17. The impact of temperature loading on massive concrete block resistance

    NASA Astrophysics Data System (ADS)

    Beran, Pavel; Kočí, Jan

    2017-07-01

    Very large and massive concrete blocks with thickness in interval 3.5 - 6 meters are often designed in cement industry. These massive blocks have high heat inertial and thus the thermal stress due to nonlinear temperature gradient in concrete block may occur. The coupled thermo-mechanical analysis of concrete block in Prague Czech Republic and Sterlitamak Russia was made. By the numerical model of concrete block was analyzed the typical year (called reference year) in particular localities. The results show that in concrete block the thermal stresses which are higher than the tensile strength of concrete originate. Therefore, the concrete block should be reinforced by steel rods. The values of stresses are markedly affected by climate. The significantly higher values of thermal stresses were detected in Sterlitamak than in Prague.

  18. Body surface infrared thermometry in patients with central venous cateter-related infections

    PubMed Central

    Silvah, José Henrique; de Lima, Cristiane Maria Mártires; de Unamuno, Maria do Rosário Del Lama; Schetino, Marco Antônio Alves; Schetino, Luana Pereira Leite; Fassini, Priscila Giácomo; Brandão, Camila Fernanda Costa e Cunha Moraes; Basile, Anibal; da Cunha, Selma Freire Carvalho; Marchini, Julio Sergio

    2015-01-01

    Objective To evaluate if body surface temperature close to the central venous catheter insertion area is different when patients develop catheter-related bloodstream infections. Methods Observational cross-sectional study. Using a non-contact infrared thermometer, 3 consecutive measurements of body surface temperature were collected from 39 patients with central venous catheter on the following sites: nearby the catheter insertion area or totally implantable catheter reservoir, the equivalent contralateral region (without catheter), and forehead of the same subject. Results A total of 323 observations were collected. Respectively, both in male and female patients, disregarding the occurrence of infection, the mean temperature on the catheter area minus that on the contralateral region (mean ± standard deviation: -0.3±0.6°C versus -0.2±0.5ºC; p=0.36), and the mean temperature on the catheter area minus that on the forehead (mean ± standard deviation: -0.2±0.5°C versus -0.1±0.5ºC; p=0.3) resulted in negative values. Moreover, in infected patients, higher values were obtained on the catheter area (95%CI: 36.6-37.5ºC versus 36.3-36.5ºC; p<0.01) and by temperature subtractions: catheter area minus contralateral region (95%CI: -0.17 - +0.33ºC versus -0.33 - -0.20ºC; p=0.02) and catheter area minus forehead (95%CI: -0.02 - +0.55ºC versus -0.22 - -0.10ºC; p<0.01). Conclusion Using a non-contact infrared thermometer, patients with catheter-related bloodstream infections had higher temperature values both around catheter insertion area and in the subtraction of the temperatures on the contralateral and forehead regions from those on the catheter area. PMID:26466058

  19. Body surface infrared thermometry in patients with central venous cateter-related infections.

    PubMed

    Silvah, José Henrique; Lima, Cristiane Maria Mártires de; Unamuno, Maria do Rosário Del Lama de; Schetino, Marco Antônio Alves; Schetino, Luana Pereira Leite; Fassini, Priscila Giácomo; Brandão, Camila Fernanda Costa e Cunha Moraes; Basile-Filho, Anibal; Cunha, Selma Freire Carvalho da; Marchini, Julio Sergio

    2015-01-01

    To evaluate if body surface temperature close to the central venous catheter insertion area is different when patients develop catheter-related bloodstream infections. Observational cross-sectional study. Using a non-contact infrared thermometer, 3 consecutive measurements of body surface temperature were collected from 39 patients with central venous catheter on the following sites: nearby the catheter insertion area or totally implantable catheter reservoir, the equivalent contralateral region (without catheter), and forehead of the same subject. A total of 323 observations were collected. Respectively, both in male and female patients, disregarding the occurrence of infection, the mean temperature on the catheter area minus that on the contralateral region (mean ± standard deviation: -0.3±0.6°C versus-0.2±0.5ºC; p=0.36), and the mean temperature on the catheter area minus that on the forehead (mean ± standard deviation: -0.2±0.5°C versus-0.1±0.5ºC; p=0.3) resulted in negative values. Moreover, in infected patients, higher values were obtained on the catheter area (95%CI: 36.6-37.5ºC versus 36.3-36.5ºC; p<0.01) and by temperature subtractions: catheter area minus contralateral region (95%CI: -0.17 - +0.33ºC versus -0.33 - -0.20ºC; p=0.02) and catheter area minus forehead (95%CI: -0.02 - +0.55ºC versus-0.22 - -0.10ºC; p<0.01). Using a non-contact infrared thermometer, patients with catheter-related bloodstream infections had higher temperature values both around catheter insertion area and in the subtraction of the temperatures on the contralateral and forehead regions from those on the catheter area.

  20. Temperature Values Variability in Piezoelectric Implant Site Preparation: Differences between Cortical and Corticocancellous Bovine Bone.

    PubMed

    Lamazza, Luca; Garreffa, Girolamo; Laurito, Domenica; Lollobrigida, Marco; Palmieri, Luigi; De Biase, Alberto

    2016-01-01

    Various parameters can influence temperature rise and detection during implant site preparation. The aim of this study is to investigate local temperature values in cortical and corticocancellous bovine bone during early stages of piezoelectric implant site preparation. 20 osteotomies were performed using a diamond tip (IM1s, Mectron Medical Technology, Carasco, Italy) on two different types of bovine bone samples, cortical and corticocancellous, respectively. A standardized protocol was designed to provide constant working conditions. Temperatures were measured in real time at a fixed position by a fiber optic thermometer. Significantly higher drilling time (154.90 sec versus 99.00 sec; p < 0.0001) and temperatures (39.26°C versus 34.73°C; p = 0.043) were observed in the cortical group compared to the corticocancellous group. A remarkable variability of results characterized the corticocancellous blocks as compared to the blocks of pure cortical bone. Bone samples can influence heat generation during in vitro implant site preparation. When compared to cortical bone, corticocancellous samples present more variability in temperature values. Even controlling most experimental factors, the impact of bone samples still remains one of the main causes of temperature variability.

  1. Evidence of Sr/Ca and Mg/Ca Temperature Invariance in Live Aragonitic Hoeglundina elegans Tests from the Little Bahama Bank

    NASA Astrophysics Data System (ADS)

    Blanks, J. K.; Hintz, C. J.; Chandler, G. T.; Shaw, T. J.; McCorkle, D. C.; Bernhard, J. M.

    2007-12-01

    Mg/Ca and Sr/Ca were analyzed from core-top individual Hoeglundina elegans aragonitic tests collected from three continental slope depths within the South Carolina and Little Bahama Bank continental slope environs (220 m to 1084 m). Our study utilized only individuals that labeled with the vital probe CellTracker Green - unlike bulk core-top material often stained with Rose Bengal, which has known inconsistencies in distinguishing live from dead foraminifera. DSr x 10 values were consistently 1.74 $ pm 0.23 across all sampling depths. The analytical error in DSr values (0.7%) determined by ICP-MS between repeated measurements on individual H. elegans tests across all depths was less than analytical error on repeated measurements from standards. Variation in DSr values was not directly explained by a linear temperature relationship (p=0.0003, R2=0.44) over the temperature range of 4.9-11.4°C with a sensitivity of 59.8 μmol/mol/1°C. The standard error by regressing DSr across temperature yields + 3.4°C, which is nearly 3x greater that reported in previous studies. Sr/Ca was more sensitive for calibrating temperature than Mg/Ca in H. elegans. Observed scatter in DSr was too great across individuals of the same size and of different sizes to resolve ontogenetic effects. However, higher DSr values were associated with smaller individuals and warmer/shallower sampling depths. The highest DSr values were observed at the intermediate sampling depth (~600 m). No significant ontogenetic relationship was found across DSr values in different sized individuals due to tighter overall constrained variance; however lower DSr values were observed from several smaller individuals. Several dead tests of H. elegans showed no significant differences in DSr values compared to live specimens cleaned by standard cleaning methods, unlike higher dead than live DMg values observed for the same individuals. There were no significant deviations in DSr across batches cleaned on separate days, unlike the observed sensitivity of DMg across batches. A subset of samples were reductively cleaned (hydrazine solution); and exhibited DMg values within analytical precision of those observed for non-reductively cleaned samples. Therefore, deviations in DMg values resulting from the removal of the reductive cleaning step did not explain analytical errors greater than published values for Mg/Ca or the high variance across same sized individuals. Variation in DMg values across the same cleaning methods and from dead individuals suggests the need for a careful look into how foraminiferal aragonite should be processed. These findings provide evidence that both Mg and Sr in benthic foraminiferal aragonite reflect factors in addition to temperature and pressure that may interfere with absolute temperature calibrations. Funded by NSF OCE 0351029, OCE 0437366, and OCE-0350794.

  2. Effect of temperature and dissolved oxygen on biological nitrification at high ammonia concentrations.

    PubMed

    Weon, S Y; Lee, S I; Koopman, B

    2004-11-01

    Effect of temperature and dissolved oxygen concentration on nitrification rate were investigated with enrichment cultures of nitrifying bacteria. Values of specific nitrite oxidation rate in the absence of ammonia were 2.9-12 times higher than maximum specific ammonia oxidation rates at the same temperatures. The presence of high ammonia levels reversed this relationship, causing maximum specific nitrite oxidation rates to fall to 19 to 45% as high as maximum specific ammonia oxidation rates. This result suggests that nitrification at high ammonia levels will invariably result in nitrite accumulation. The K(O2) for nitrite oxidation in the presence of high ammonia levels was higher than the K(O2) for ammonia oxidation when temperature exceeded 18 degrees C, whereas the opposite was true at lower temperatures. These results indicate that low oxygen tensions will exacerbate nitrite accumulation when water temperature is high.

  3. Feeding behavior and temperature and light tolerance of Mysis relicta in the laboratory

    USGS Publications Warehouse

    DeGraeve, G.M.; Reynolds, James B.

    1975-01-01

    Live specimens of Mysis relicta from Lake Michigan were held for one year in the laboratory to determine feeding behavior and tolerance to light and temperature. Mysids fed by moving with rapid, horizontal jerking motions toward food as it settled toward the bottom and by swimming slowly, upside down, to gather particles floating on the surface. Scavenging was common. Mysids tolerated considerably higher temperatures than previously reported. Temperature increases (from 5 C) of 1 C per day and 1 C per minute resulted in TLm values of 20.5 C and 20.4 C, respectively. Mortality increased rapidly at temperatures above 13 C. The upper lethal limit for mysids acclimated to 5 C was about 22 C. Survival under continuous, high light intensity (32 foot-candles) was considerably higher than previously reported. Low water temperature (5 C) may have increased light tolerance.

  4. Effect of Injection Molding Melt Temperatures on PLGA Craniofacial Plate Properties during In Vitro Degradation.

    PubMed

    de Melo, Liliane Pimenta; Salmoria, Gean Vitor; Fancello, Eduardo Alberto; Roesler, Carlos Rodrigo de Mello

    2017-01-01

    The purpose of this article is to present mechanical and physicochemical properties during in vitro degradation of PLGA material as craniofacial plates based on different values of injection molded temperatures. Injection molded plates were submitted to in vitro degradation in a thermostat bath at 37 ± 1°C by 16 weeks. The material was removed after 15, 30, 60, and 120 days; then bending stiffness, crystallinity, molecular weights, and viscoelasticity were studied. A significant decrease of molecular weight and mechanical properties over time and a difference in FT-IR after 60 days showed faster degradation of the material in the geometry studied. DSC analysis confirmed that the crystallization occurred, especially in higher melt temperature condition. DMA analysis suggests a greater contribution of the viscous component of higher temperature than lower temperature in thermomechanical behavior. The results suggest that physical-mechanical properties of PLGA plates among degradation differ per injection molding temperatures.

  5. Potential for adaptation to climate change in a coral reef fish.

    PubMed

    Munday, Philip L; Donelson, Jennifer M; Domingos, Jose A

    2017-01-01

    Predicting the impacts of climate change requires knowledge of the potential to adapt to rising temperatures, which is unknown for most species. Adaptive potential may be especially important in tropical species that have narrow thermal ranges and live close to their thermal optimum. We used the animal model to estimate heritability, genotype by environment interactions and nongenetic maternal components of phenotypic variation in fitness-related traits in the coral reef damselfish, Acanthochromis polyacanthus. Offspring of wild-caught breeding pairs were reared for two generations at current-day and two elevated temperature treatments (+1.5 and +3.0 °C) consistent with climate change projections. Length, weight, body condition and metabolic traits (resting and maximum metabolic rate and net aerobic scope) were measured at four stages of juvenile development. Additive genetic variation was low for length and weight at 0 and 15 days posthatching (dph), but increased significantly at 30 dph. By contrast, nongenetic maternal effects on length, weight and body condition were high at 0 and 15 dph and became weaker at 30 dph. Metabolic traits, including net aerobic scope, exhibited high heritability at 90 dph. Furthermore, significant genotype x environment interactions indicated potential for adaptation of maximum metabolic rate and net aerobic scope at higher temperatures. Net aerobic scope was negatively correlated with weight, indicating that any adaptation of metabolic traits at higher temperatures could be accompanied by a reduction in body size. Finally, estimated breeding values for metabolic traits in F2 offspring were significantly affected by the parental rearing environment. Breeding values at higher temperatures were highest for transgenerationally acclimated fish, suggesting a possible role for epigenetic mechanisms in adaptive responses of metabolic traits. These results indicate a high potential for adaptation of aerobic scope to higher temperatures, which could enable reef fish populations to maintain their performance as ocean temperatures rise. © 2016 John Wiley & Sons Ltd.

  6. Feasibility study of palm-based fuels for hybrid rocket motor applications

    NASA Astrophysics Data System (ADS)

    Tarmizi Ahmad, M.; Abidin, Razali; Taha, A. Latif; Anudip, Amzaryi

    2018-02-01

    This paper describes the combined analysis done in pure palm-based wax that can be used as solid fuel in a hybrid rocket engine. The measurement of pure palm wax calorific value was performed using a bomb calorimeter. An experimental rocket engine and static test stand facility were established. After initial measurement and calibration, repeated procedures were performed. Instrumentation supplies carried out allow fuel regression rate measurements, oxidizer mass flow rates and stearic acid rocket motors measurements. Similar tests are also carried out with stearate acid (from palm oil by-products) dissolved with nitrocellulose and bee solution. Calculated data and experiments show that rates and regression thrust can be achieved even in pure-tested palm-based wax. Additionally, palm-based wax is mixed with beeswax characterized by higher nominal melting temperatures to increase moisturizing points to higher temperatures without affecting regression rate values. Calorie measurements and ballistic experiments were performed on this new fuel formulation. This new formulation promises driving applications in a wide range of temperatures.

  7. Standardization of milk using cold ultrafiltration retentates for the manufacture of Swiss cheese: effect of altering coagulation conditions on yield and cheese quality.

    PubMed

    Govindasamy-Lucey, S; Jaeggi, J J; Martinelli, C; Johnson, M E; Lucey, J A

    2011-06-01

    Fortification of cheesemilk with membrane retentates is often practiced by cheesemakers to increase yield. However, the higher casein (CN) content can alter coagulation characteristics, which may affect cheese yield and quality. The objective of this study was to evaluate the effect of using ultrafiltration (UF) retentates that were processed at low temperatures on the properties of Swiss cheese. Because of the faster clotting observed with fortified milks, we also investigated the effects of altering the coagulation conditions by reducing the renneting temperature (from 32.2 to 28.3°C) and allowing a longer renneting time before cutting (i.e., giving an extra 5min). Milks with elevated total solids (TS; ∼13.4%) were made by blending whole milk retentates (26.5% TS, 7.7% CN, 11.5% fat) obtained by cold (<7°C) UF with part skim milk (11.4% TS, 2.5% CN, 2.6% fat) to obtain milk with CN:fat ratio of approximately 0.87. Control cheeses were made from part-skim milk (11.5% TS, 2.5% CN, 2.8% fat). Three types of UF fortified cheeses were manufactured by altering the renneting temperature and renneting time: high renneting temperature=32.2°C (UFHT), low renneting temperature=28.3°C (UFLT), and a low renneting temperature (28.3°C) plus longer cutting time (+5min compared to UFLT; UFLTL). Cutting times, as selected by a Wisconsin licensed cheesemaker, were approximately 21, 31, 35, and 32min for UFHT, UFLT, UFLTL, and control milks, respectively. Storage moduli of gels at cutting were lower for the UFHT and UFLT samples compared with UFLTL or control. Yield stress values of gels from the UF-fortified milks were higher than those of control milks, and decreasing the renneting temperature reduced the yield stress values. Increasing the cutting time for the gels made from the UF-fortified milks resulted in an increase in yield stress values. Yield strain values were significantly lower in gels made from control or UFLTL milks compared with gels made from UFHT or UFLT milks. Cheese composition did not differ except for fat content, which was lower in the control compared with the UF-fortified cheeses. No residual lactose or galactose remained in the cheeses after 2 mo of ripening. Fat recoveries were similar in control, UFHT, and UFLTL but lower in UFLT cheeses. Significantly higher N recoveries were obtained in the UF-fortified cheeses compared with control cheese. Because of higher fat and CN contents, cheese yield was significantly higher in UF-fortified cheeses (∼11.0 to 11.2%) compared with control cheese (∼8.5%). A significant reduction was observed in volume of whey produced from cheese made from UF-fortified milk and in these wheys, the protein was a higher proportion of the solids. During ripening, the pH values and 12% trichloroacetic acid-soluble N levels were similar for all cheeses. No differences were observed in the sensory properties of the cheeses. The use of UF retentates improved cheese yield with no significant effect on ripening or sensory quality. The faster coagulation and gel firming can be decreased by altering the renneting conditions. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Properties of raw meat and meat curry from spent goat in relation with post-mortem handling conditions.

    PubMed

    Narayan, Raj; Mendiratta, S K; Mane, B G

    2013-04-01

    The properties of raw meat and meat curry from spent goat meat in relation with post-mortem handling conditions were evaluated. The conditions evaluated were: cooking of meat within 1-2 h post-slaughter (condition 1); deboning meat storage at 25 ± 2 °C for 5-6 h and cooking (condition 2); post-slaughter storage of carcass at room temperature for 5-6 h, then deboning followed by storage of meat at refrigeration temperature for 5-6 h and cooking (condition 3); deboning and storage of meat at 25 ± 2 °C for 10-12 h and cooking (condition 4). Significant difference was observed in pH values in condition 1 (p < 0.01) and moisture content (p < 0.05) of raw meat as compared to the conditions 2, 3 and 4. However, the moisture content of cooked meat was significantly higher (p < 0.05) for conditions 1 and 2 as compared to the conditions 3 and 4. Significant differences were also observed in muscle fiber diameter values of different conditions, that is, the mean values were significantly higher (p < 0.05) for conditions 2 and 4 and significantly lower for condition 1. The mean water holding capacity and cooking yield values were highest in condition 1, followed by conditions 2, 3 and 4. The significant differences was also observed in shear force value of cooked meat chunks, that is, the mean value was significantly higher (p < 0.01) for condition 2 and significantly lower for condition 1. Sensory scores were significantly higher in condition 1 and significantly lower in condition 2. However, sensory scores for condition 4 were almost similar to the condition 1.

  9. Wear Potential Due to Low EHD Films During Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Leville, Alan; Ward, Peter

    2014-01-01

    An earlier study showed that EHD films could be accurately measured in a running bearing and that the EHD film eventually runs-in to a steady state value [1]. In the present paper, we report on additional tests conducted on bearings with more lubricants, wider speeds, and higher temperatures. The new results consistently show that all lubricants tested, including MAC-based lubricants have EHD film levels that are lower than model predictions in some situations. In addition, the MAC lubricants studied have lower film thickness than traditional hydrocarbons. Figure 1 is taken from [1] and shows room temperature data of MAC oil and Corey 100 oil, illustrating the smaller EHD film results when using this MAC oil. Since higher temperatures produce lower films by changing the viscosity, the concern we have is that the EHD films may be too small to prevent ball/race metal contact and resulting wear at lower speeds. Best bearing practices would have the EHD film thickness be at least three (3) times the composite surface roughness. In this paper, we will present measured EHD thicknesses of lubricant films at speeds up to several thousand RPM for bearing bore sizes from as low as 6 mm (0.2 in) to as large as 35 mm (1.4 in) using MAC, Corey and KG-80. Ambient temperatures from room temperature to 52C (125F) are used. Testing was done with the base oils as well as formulated greases. Greases eventually ran in to the same EHD values as the base oil but took longer times to get there. The results clearly indicate that wear is very possible in all steel bearings when using MAC lubricants and that this condition worsens with higher temperatures and smaller bearing size.

  10. Correlations among Stress Parameters, Meat and Carcass Quality Parameters in Pigs

    PubMed Central

    Dokmanovic, Marija; Baltic, Milan Z.; Duric, Jelena; Ivanovic, Jelena; Popovic, Ljuba; Todorovic, Milica; Markovic, Radmila; Pantic, Srdan

    2015-01-01

    Relationships among different stress parameters (lairage time and blood level of lactate and cortisol), meat quality parameters (initial and ultimate pH value, temperature, drip loss, sensory and instrumental colour, marbling) and carcass quality parameters (degree of rigor mortis and skin damages, hot carcass weight, carcass fat thickness, meatiness) were determined in pigs (n = 100) using Pearson correlations. After longer lairage, blood lactate (p<0.05) and degree of injuries (p<0.001) increased, meat became darker (p<0.001), while drip loss decreased (p<0.05). Higher lactate was associated with lower initial pH value (p<0.01), higher temperature (p<0.001) and skin blemishes score (p<0.05) and more developed rigor mortis (p<0.05), suggesting that lactate could be a predictor of both meat quality and the level of preslaughter stress. Cortisol affected carcass quality, so higher levels of cortisol were associated with increased hot carcass weight, carcass fat thickness on the back and at the sacrum and marbling, but also with decreased meatiness. The most important meat quality parameters (pH and temperature after 60 minutes) deteriorated when blood lactate concentration was above 12 mmol/L. PMID:25656214

  11. Liquidus temperatures of Hg-rich Hg-Cd-Te alloys

    NASA Technical Reports Server (NTRS)

    Szofran, F. R.; Lehoczky, S. L.

    1983-01-01

    Measurements are made of the liquidus temperatures for ten (Hg/1-x/Cd)Te/1-y/ compositions in which x ranges from 0.091 to 0.401 and y ranges from 0.544 to 0.952. It is found that for metal-rich melts with the same x value, the liquidus temperature increases with y when y is in the range 0.5-0.7. This behavior is explained by the higher degree of association between Cd and Te than between Hg and Te in the melts. It is noted that recent calculated values of the liquidus isotherms by Tung et al. (1982) are in fair to good agreement with the experimental results obtained here.

  12. Temperature effects on ash physical and chemical properties. A laboratory study.

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Úbeda, Xavier; Martin, Deborah

    2010-05-01

    Fire temperatures have different impacts on ash physical and chemical properties that depend mainly of the specie affected and time of exposition. In a real prescribed or wildland fire, the temperatures produce ash with different characteristics. Know the impacts of a specific temperature or a gradient on a certain element and specie is very difficult in real fires, especially in wildland fires, where temperatures achieve higher values and the burning conditions are not controlled. Hence, laboratory studies revealed to be an excellent methodology to understand the effects of fire temperatures in ash physical and chemical. The aim of this study is study the effects of a temperature gradient (150, 200, 250, 300, 350, 400, 450, 500 and 550°C) on ash physical and chemical properties. For this study we collected litter of Quercus suber, Pinus pinea and Pinus pinaster in a plot located in Portugal. The selected species are the most common in the ecosystem. We submitted samples to the mentioned temperatures throughout a time of two hours and we analysed several parameters, namely, Loss on Ignition (LOI%), ash colour - through the Croma Value (CV) observed in Munsell color chart - CaCO3, Total Nitrogen (TN), Total Carbon (TC), C/N ratio, ash pH, Electrical Conductivity (EC), extractable Calcium (Ca2+), Magnesium (Mg2+), Sodium (Na+), Potassium (K+), Aluminium (Al3+), Manganese (Mn2+), Iron (Fe2+), Zinc (Zn2+), Total Phosphorous (TP), Sulphur (S) and Silica (SiO2). Since we considered many elements, in order to obtain a better explanation of all dataset, we applied a Factorial Analysis (FA), based on the correlation matrix and the Factors were extracted according to the Principle Components method. To obtain a better relation between the variables with a specific Factor we rotated the matrix according to the VARIMAX NORMALIZED method. FA identified 5 Factors that explained a total of 95% of the variance. We retained in each Factor the variables that presented an eigenvalue >0.7. Factor 1 explained the majority of the variance (60.05%). LOI(%), CV, CaCO3, pH, Na+, K+, S (these last tree elements only in both Pinus) and SiO2, showed positive loadings. Inversely, TC, C/N ratio, Al3+, Fe2+ (these last tree elements for Quercus suber and Pinus pinaster ash) and Mn2+ (In the case of Quercus suber) presented negative loadings. Factor 2 explained 19.89% of the variance and showed higher loadings in TN, Ca2+ and Mg2+ (in the case of the ions only in both Pinus). Factor 3 explains only 6.69% of the variance and we identified higher loadings in Mg2+, Na+ and K+ of Quercus suber. Factor 4 explains less then the last Factor, only 4.60% of the variance and presented negative loadings above -0.7 in TP of Quercus suber and Pinus pinea. Factor 5 explained 3.93% of the variance, less than all other Factors and showed in Al3+, Mn2+ and Zn2+ of Pinus pinea and in the case of the last element, also in Pinus pinaster. The observation of the scores matrix allowed us to understand the major concentration of these elements according the temperature of exposition. Hence, the elements that showed higher positive loadings in Factor 1, have a major concentration at 450, 500 and 550°C, and the ones with higher negative loadings presented higher concentration at 200 and 250°C. The nutrients that presented higher positive loadings in Factor 2 have higher concentrations at 400°C. The elements with higher positive loadings in Factor 3 have bigger amounts in the ash slurries produced at 350°C and the ones with higher negative loadings in the Factor 4 showed greater concentrations in the ash produced at 300°C. The elements with higher negative loadings in the Factor 5 showed higher amounts in the ash created at 150°C of exposition. The results obtained showed that nutrients concentration is a function of the burned specie and temperature reached in the considered exposure time. Micronutrients and TC and C/N showed higher values at lower temperatures, TN, Ca2+, Mg2+ and TP at temperatures between 300-400°C. The other variables in study have major concentrations at temperatures higher than 450°C. Some differences between species can be identified and this is a result of the different litter vulnerabilities to the same temperature, producing diverse fire severities. This and other reasons for this behaviour will be discussed in the communication.

  13. Thermodynamic properties of selected uranium compounds and aqueous species at 298.15 K and 1 bar and at higher temperatures; preliminary models for the origin of coffinite deposits

    USGS Publications Warehouse

    Hemingway, B.S.

    1982-01-01

    Thermodynamic values for 110 uranium-bearing phases and 28 aqueous uranium solution species (298.15 K and l bar) are tabulated based upon evaluated experimental data (largely from calorimetric experiments) and estimated values. Molar volume data are given for most of the solid phases. Thermodynamic values for 16 uranium-bearing phases are presented for higher temperatures in the form of and as a supplement to U.S. Geological Survey Bulletin 1452 (Robie et al., 1979). The internal consistency of the thermodynamic values reported herein is dependent upon the reliability of the experimental results for several uranium phases that have been used as secondary calorimetric reference phases. The data for the reference phases and for those phases evaluated with respect to the secondary reference phases are discussed. A preliminary model for coffinite formation has been proposed together with an estimate of the free energy of formation of coffinite. Free energy values are estimated for several other uranium-bearing silicate phases that have been reported as secondary uranium phases associated with uranium ore deposits and that could be expected to develop wherever uranium is leached by groundwaters.

  14. Impact Tests of Welded Joints

    DTIC Science & Technology

    1936-04-01

    indicate that good welds by these two last named processes give excellent impact results. Welds subjected to extremely low or high temperature merit...variation with temperature of the ratio of shear to tensile stress developed in the Izod or Charpy test, falls from a high to an exceedingly low value...and Larsen also showed that high nitrogen or oxygen content shifted the "zone of transition" to higher temperatures , and that normalizing shifted the

  15. Tactical Missile Conceptual Design,

    DTIC Science & Technology

    1980-09-01

    Temperature ..... ........... 110 a. Example I .... ................. 111 6 Page b. Example II ... ............... .. 112 6. Simple IR System...meet a current threat. An example of this might be an advance in material science, which allows higher inlet turbine temperatures for a turbojet...Pmin = k TO B n N 0)min Boltzmans constant is k = 1.38 x 10- 2 3 joule/ k. The value of kT0 at room temperature is 4 x 10 - 21 watt/cps of bandwidth

  16. O and C stable isotopes in cryogenic cave calcite (CCC) - possible proxy for past climate changes

    NASA Astrophysics Data System (ADS)

    -Andreea, Badaluta Carmen; Ersek, Vasile; Piotrowska, Natalia; Persoiu, Aurel

    2017-04-01

    Perennial ice deposits in caves host various proxies of past climate variability, most notable, the isotopic composition of ice, which has been shown to reflect, generally, the temperature outside the cave during the formation of ice (usually, autumn though spring). This ice forms by the freezing of water, water that contains large amounts of dissolved calcium carbonate. The freezing is accompanied by degassing of CO2, and precipitation of cryogenic cave calcite (CCC) under strong kinetic conditions. These kinetic processes could lead to the alteration of the original putative climatic signal carried by the isotopic composition of CCC. Here, we present a possibly climatic explanation of the isotopic composition of CCC from a 1000 years old cave ice deposit from Scărișoara Ice Cave (SIC) in Romania, Eastern Europe. In a 7 m core from the Great Hall of SIC we have analyzed the isotopic composition of the water (oxygen and hydrogen) and CCC (oxygen and carbon) from individual ice layers in the core, as well as that of precipitation , outside the cave. The isotopic composition of precipitation from the cave area varies between -3.6 ‰ for δˡ⁸O and -22 ‰ for δ2H in summer, and -17.8 ‰ for δˡ⁸O and -22 ‰ for δ2H in winter, with mean values of -9.1 ‰ for δˡ⁸O and -62 ‰ for δ2H. A positive correlation between air temperature and the isotopic composition of precipitation, as well as drip water in the cave has been found. The mean values in the ice core during the past 1000 years are -10.3‰ for δ18O and -71 ‰ for δ2H. The water isotopic values in the ice core show low values up to 900 AD, higher values between 900 and 1300 AD (Medieval Warm Period, MWP), and again lower values after 1300 AD (Little Ice Age, LIA), reaching their minimum after 1800 AD. The isotopic composition of CCC shows slightly higher values in the MWP and lower in LIA, possibly suggesting a climatic influence. Modern observations are too short to be able to calibrate this putative signal. Further, clumped isotope thermometry has shown that the kinetic fractionation that dominates during the freezing of water leads to unusual reconstructed formative temperature: +20°C. However, δˡ3C and δˡ⁸O values in CCC have higher values for samples from the MWP than those from the LIA. CCC results from the deposition of CaCO3 from Ca(CO3)2. The main source of CO2 to form carbonic acid is soil CO2, produced by root respiration. Previous studies have shown that δˡ⁸O of this CO2 is in equilibrium with the δˡ⁸O of water, so that the higher (lower) δˡ⁸O values of CCC could reflect warmer (colder) conditions during the MPW (LIA). The interpretation of δˡ3C values of CCC is less straightforward. Higher δˡ3C values in soil CO2 are determined by moisture limitation on plants, either due to low moisture or higher evaporative conditions. While the MWP was warmer in the study area, conflicting data exists on precipitation, with studies suggesting both drier and wetter conditions, so that is difficult to interpret our carbon isotope data. Apart from the direct climatic influence, the depth of soil could have also played a part, as deeper soils, as expected under birch forests that dominated during the MWP, would have had more enrichment in the heavy isotopes with depth, than the thiner soils of the LIA (formed under mostly spruce forests). Further, drought/higher temperatures could also influence the kinetics of the reaction, which can be large enough to overprint any soil signal in δˡ3C.

  17. Effects of fire temperature on the physical and chemical characteristics of the ash from two plots of Cork oak (Quercus Suber)

    USGS Publications Warehouse

    Ubeda, X.; Pereira, P.; Outeiro, L.; Martin, D.A.

    2009-01-01

    Cork oak, (Quercus suber) is widely distributed in the Mediterranean region, an area subject to frequent fires. The ash produced by burning can have impacts on the soil status and water resources that can differ according to the temperature reached during fire and the characteristics of the litter, defined as the dead organic matter accumulated on the soil surface prior to the fire. The aim of this work is to determine the physical and chemical characteristics of ash produced in laboratory experiments to approximate conditions typical of fires in this region. The litter of Quercus suber collected from two different plots on the Iberian Peninsula, Mas Bassets (Catalonia) and Albufeira (Portugal), was combusted at different temperatures for 2h. We measured Mass Loss (ML per cent), ash colour and CaCO3 content, pH, Electrical Conductivity (EC) and the major cations (Ca2+, Mg2+, K+ and Na+) released from ash slurries created by mixing ash with deionized water. The results showed that ML per cent is higher at all temperatures in Albufeira samples compared to Mas Bassets samples, except at 550??C, and the rate of loss increases faster with temperature than the Mas Bassets samples. At 150??C the ash colour is yellowish, becoming reddish at 200- 250??C and black at 300??C. Above 400??C the ash is grey/white. This thermal degradation is mostly observed in Albufeira litter. The formation of CaCO3 was identified at a lower temperature in Albufeira litter. At temperatures <300??C, pH and EC values are lower, rising at higher temperatures, especially in Albufeira slurries. The concentration of cations at lower temperatures does not differ substantially from the unburned sample except for Mg2+. The cation concentration increases at medium temperatures and decrease at higher temperatures, especially the concentration of divalent cations. The monovalent cations showed a larger concentration at moderate temperatures, mainly in Albufeira ash slurries. The analysis of the Ca:Mg ratio also showed that for the same temperature, a higher severity results for Albufeira litter. Potential negative effects on soil properties are observed at medium and higher temperatures. These negative effects include a higher percentage of mass loss, meaning more soil may be exposed to erosion, higher pH values and greater cation release from ash, especially monovalalent cations (K+,Na+) in higher proportions than the divalent ions (Ca2+, Mg2+), that can lead to impacts on soil physical properties like aggregate stability. Furthermore, the ions in ash may alter soil chemistry which may be detrimental to some plants thus altering the recovery of these ecosystems after fire. Low intensity prescribed fire can be a useful tool to land management in these sites, due to the reduced effects of fire temperatures on the physical and chemical properties of surface litter, and can reduce the risk of high temperature wildland fires by reducing fuel loadings. From the perspective of water resources, lower fire temperatures produce fewer impacts on the chemistry of overland flow and there is less probability that the soil surface will be eroded. Copyright ?? 2009 John Wiley & Sons, Ltd.

  18. Oxygen isotopes from biogenic apatites suggest widespread endothermy in Cretaceous dinosaurs

    NASA Astrophysics Data System (ADS)

    Amiot, Romain; Lécuyer, Christophe; Buffetaut, Eric; Escarguel, Gilles; Fluteau, Frédéric; Martineau, François

    2006-06-01

    The much debated question of dinosaur thermophysiology has not yet been conclusively solved despite numerous attempts. We used the temperature-dependent oxygen isotope fractionation between vertebrate body water (δ 18O body water) and phosphatic tissues (δ 18O p) to compare the thermophysiology of dinosaurs with that of non-dinosaurian ectothermic reptiles. Present-day δ 18O p values of vertebrate apatites show that ectotherms have higher δ 18O p values than endotherms at high latitudes due to their lower body temperature, and conversely lower δ 18O p values than endotherms at low latitudes. Using a data set of 80 new and 49 published δ 18O p values, we observed similar and systematic differences in δ 18O p values (Δ 18O) between four groups of Cretaceous dinosaurs (theropods, sauropods, ornithopods and ceratopsians) and associated fresh water crocodiles and turtles. Expressed in terms of body temperatures ( Tb), these Δ 18O values indicate that dinosaurs maintained rather constant Tb in the range of endotherms whatever ambient temperatures were. This implies that high metabolic rates were widespread among Cretaceous dinosaurs belonging to widely different taxonomic groups and suggest that endothermy may be a synapomorphy of dinosaurs, or may have been acquired convergently in the studied taxa.

  19. Assessment of methane production from shredder waste in landfills: The influence of temperature, moisture and metals.

    PubMed

    Fathi Aghdam, Ehsan; Scheutz, Charlotte; Kjeldsen, Peter

    2017-05-01

    In this study, methane (CH 4 ) production rates from shredder waste (SW) were determined by incubation of waste samples over a period of 230days under different operating conditions, and first-order decay kinetic constants (k-values) were calculated. SW and sterilized SW were incubated under different temperatures (20-25°C, 37°C, and 55°C), moisture contents (35% and 75% w/w) and amounts of inoculum (5% and 30% of the samples wet weight). The biochemical methane potential (BMP) from different types of SW (fresh, old and sieved) was determined and compared. The ability of metals (iron, aluminum, zinc, and copper) contained in SW to provide electrons for methanogens resulting in gas compositions with high CH 4 contents and very low CO 2 contents was investigated. The BMP of SW was 1.5-6.2kg CH 4 /ton waste. The highest BMP was observed in fresh SW samples, while the lowest was observed in sieved samples (fine fraction of SW). Abiotic production of CH 4 was not observed in laboratory incubations. The biotic experiments showed that when the moisture content was 35% w/w and the temperature was 20-25°C, CH 4 production was extremely low. Increasing the temperature from 20-25°C to 37°C resulted in significantly higher CH 4 production while increasing the temperature from 37°C to 55°C resulted in higher CH 4 production, but to a lower extent. Increasing the moisture and inoculum content also increased CH 4 production. The k-values were 0.033-0.075yr -1 at room temperature, 0.220-0.429yr -1 at 37°C and 0.235-0.488yr -1 at 55°C, indicating that higher temperatures resulted in higher k-values. It was observed that H 2 can be produced by biocorrosion of iron, aluminum, and zinc and it was shown that produced H 2 can be utilized by hydrogenotrophic methanogens to convert CO 2 to CH 4 . Addition of iron and copper to SW resulted in inhibition of CH 4 production, while addition of aluminum and zinc resulted in higher CH 4 production. This suggested that aluminum and zinc contribute to high CH 4 production from SW by providing H 2 for hydrogenotrophic methanogens. Gas compositions with higher CH 4 and lower CO 2 observed in landfilled SW are thus most likely due to the consumption of existing CO 2 in the produced biogas and the produced H 2 by biocorrosion of aluminum and zinc by methanogens. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Physicochemical, rheological and structural characteristics of starch in maize tortillas.

    PubMed

    Hernández-Uribe, Juan P; Ramos-López, Gonzalo; Yee-Madeira, Hernani; Bello-Pérez, Luis A

    2010-06-01

    Fresh and stored maize (white and blue) tortillas were evaluated for physicochemical, rheological and structural characteristics assessed by calorimetry, x-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, dynamic viscoelastic tests, and high-performance size-exclusion chromatography. Two endotherms were found in studies of fresh and stored tortillas. The low temperature endotherm (50-56 degrees C) was due to reorganized (retrograded) amylopectin, while the high temperature endotherm (105-123 degrees C) was attributed to retrograded amylose. The enthalpy value for the lower temperature transition was minor than that of the high temperature transition. Fresh tortillas showed an amorphous starch arrangement by x-ray diffraction study. Stored samples showed the presence of peaks at 2theta = 17 masculine and 23 masculine, indicating re-crystallization of starch components. FTIR results confirmed the development of higher levels of starch crystals during storage. Differences in the viscoelastic parameters were also observed between fresh and stored samples. At the longest storage times, white tortillas were more rigid than blue tortillas. Molar mass values for starch increased for both white and blue tortillas as storage time progressed, though relatively higher values were obtained for white tortillas. More starch reorganization occurred in white tortillas, in accordance to calorimetric, x-ray diffraction, FTIR and rheological results. These results corroborate that changes occurring in tortillas during storage are related to reorganization of starch components, and the maize variety more than the color plays an important role.

  1. Effects of Temperature on Bacterial Communities and Metabolites during Fermentation of Myeolchi-Aekjeot, a Traditional Korean Fermented Anchovy Sauce

    PubMed Central

    Chun, Byung Hee; Jeon, Che Ok

    2016-01-01

    Myeolchi-aekjeot (MA) in Korea is produced outdoors without temperature controls, which is a major obstacle to produce commercial MA products with uniform quality. To investigate the effects of temperature on MA fermentation, pH, bacterial abundance and community, and metabolites were monitored during fermentation at 15°C, 20°C, 25°C, and 30°C. Initial pH values were approximately 6.0, and pH values increased after approximately 42 days, with faster increases at higher temperatures. Bacterial abundances increased rapidly in all MA samples after quick initial decreases during early fermentation and then they again steadily decreased after reaching their maxima, which were significantly greater at higher temperatures. Bacterial community analysis revealed that Proteobacteria and Tenericutes were predominant in all initial MA samples, but they were rapidly displaced by Firmicutes as fermentation progressed. Photobacterium and Mycoplasma belonging to Proteobacteria and Tenericutes, respectively, which may include potentially pathogenic strains, were dominant in initial MA, but decreased with the growth of Chromohalobacter, which occurred faster at higher temperatures––they were dominant until 273 and 100 days at 15°C and 20°C, respectively, but not detected after 30 days at 25°C and 30°C. Chromohalobacter also decreased with the appearance of subsequent genera belonging to Firmicutes in all MA samples. Tetragenococcus, halophilic lactic acid bacteria, appeared predominantly at 20°C, 25°C, and 30°C; they were most abundant at 30°C, but not detected at 15°C. Alkalibacillus and Lentibacillus appeared as dominant genera with the decrease of Tetragenococcus at 25°C and 30°C, but only Lentibacillus was dominant at 15°C and 20°C. Metabolite analysis showed that amino acids related to tastes were major metabolites and their concentrations were relatively higher at high temperatures. This study suggests that high temperatures (approximately 30°C) may be appropriate in MA fermentation, in the light of faster disappearance of potentially pathogenic genera, higher amino acids, growth of Tetragenococcus, and faster fermentation. PMID:26977596

  2. Beef customer satisfaction: trained sensory panel ratings and Warner-Bratzler shear force values.

    PubMed

    Lorenzen, C L; Miller, R K; Taylors, J F; Neely, T R; Tatum, J D; Wise, J W; Buyek, M J; Reagan, J O; Savell, J W

    2003-01-01

    Trained sensory panel ratings and Warner-Bratzler shear force (WBS) values from the Beef Customer Satisfaction study are reported. Carcasses were chosen to fit into USDA quality grades of Top Choice (upper two-thirds of USDA Choice), Low Choice, High Select, and Low Select. A trained, descriptive attribute panel evaluated top loin, top sirloin, and top round steaks for muscle fiber tenderness, connective tissue amount, overall tenderness, juiciness, flavor intensity, cooked beef flavor intensity, and cooked beef fat flavor intensity. Four steaks from each of the three cuts from each carcass were assigned randomly to one of four cooking endpoint temperature treatments (60, 65, 70, or 75 degrees C) for WBS determination. For all trained panel measures of tenderness and WBS, regardless of USDA quality grade, top loin steaks were rated higher than top sirloin steaks, which were rated higher than top round steaks (P < 0.05). There were significant interactions between USDA quality grade and cut for most of the trained sensory panel traits: USDA quality grade influenced ratings for top loin steaks more than ratings for top round steaks or top sirloin steaks. Three interactions were significant for WBS values: USDA quality grade x endpoint temperature (P = 0.02), USDA quality grade x cut (P = 0.0007), and cut x endpoint temperature (P = 0.0001). With the exception of High Select, WBS values increased (P < 0.05) for each grade with increasing endpoint temperature. Choice top loin and top round steaks had lower (P < 0.05) WBS values than Select steaks of the same cut; however, only Top Choice top sirloin steaks differed (P < 0.05) from the other USDA grades. As endpoint temperatures increased, WBS values for top sirloin steaks increased substantially compared to the other cuts. When cooked to 60 degrees C, top sirloin steaks were closer to top loin steaks in WBS values, when cooked to 75 degrees C, top sirloin steaks were closer to top round steaks in WBS values. Simple correlation coefficients between consumer ratings and trained sensory muscle fiber tenderness, connective tissue amount, overall tenderness, juiciness, flavor intensity, and cooked beef fat flavor were significant (P < 0.05), but values were low. While relationships exist between consumer and trained sensory measures, it is difficult to predict from objective data how consumers will rate meat at home.

  3. Ultrasonic Seismic Wave Elastic Moduli and Attenuation, Petro physical Models and Work Flows for Better Subsurface Imaging Related to Monitoring of Sequestrated Supercritical CO2 and Geothermal Energy Exploration

    NASA Astrophysics Data System (ADS)

    Harbert, W.; Delaney, D.; Mur, A. J.; Purcell, C.; Zorn, E.; Soong, Y.; Crandall, D.; Haljasmaa, I.

    2016-12-01

    To better understand the petrophysical response at ultrasonic frequencies in rhyolite and carbonate (relevant to CO2 storage and CO2 enhanced oil recovery) lithologies we conducted core analysis incorporating variation in temperature, effective pressure and pore filling fluid. Ultrasonic compressive and shear wave (VP, VS1 and VS2) velocities were measured allowing calculation of the Bulk modulus (K), Young's modulus (E), Lamè's first parameter (λ), Shear modulus (G), Poisson's ratio (ν), and P-wave modulus (M). In addition, from the ultrasonic waveform data collected, we employed the spectral ratio method to estimate the quality factor. Carbonate samples were tested dry, using atmospheric gas as the pore phase, and with deionized water, oil, and supercritical CO2. We observed that Qp was directly proportional to effective pressure in our rhyolite samples. In addition, we observed effects of core anisotropy on Qp, however this was not apparent in higher porosity samples. Increasing effective pressure seems to decrease the effects of ultrasonic P-wave anisotropy. Qp was inversely proportional to temperature, however this was not observed for higher porosity samples. Qp was highly dependent on the rock porosity. Higher porosity samples displayed significantly lower values of Qp. In our experiments we observed that ultrasonic wave scattering due to heterogeneities in the carbonate samples was dominant. Although we observed lower μρ values, trends in our data strongly agreed with the model proposed workers interpreting AVO trends in a LMR cross plot space. We found that μρ was proportional to temperature while λρ was temperature independent and that λρ-μρ trends were extremely dependent on porosity. Higher porosity results in lower values for both λρ and μρ. The presence of fluids causes a distinct shift in λρ values, an observation which could provide insight into subsurface exploration using amplitude variation with offset (AVO) classification. We present approaches to incorporate these laboratory results into well log calibrated MATLAB based Gassmann-Biot fluid substitution models incorporating compliant porosity, Thomsen parameters models that utilize orthorhombic velocity anisotropy to predict seismic responses.

  4. Effects of temperature on the ground state of a strongly-coupling magnetic polaron and mean phonon number in RbCl quantum pseudodot

    NASA Astrophysics Data System (ADS)

    Sun, Yong; Ding, Zhao-Hua; Xiao, Jing-Lin

    2016-07-01

    On the condition of strong electron-LO phonon coupling in a RbCl quantum pseudodot (QPD), the ground state energy and the mean number of phonons are calculated by using the Pekar variational method and quantum statistical theory. The variations of the ground state energy and the mean number with respect to the temperature and the cyclotron frequency of the magnetic field are studied in detail. We find that the absolute value of the ground state energy increases (decreases) with increasing temperature when the temperature is in the lower (higher) temperature region, and that the mean number increases with increasing temperature. The absolute value of the ground state energy is a decreasing function of the cyclotron frequency of the magnetic field whereas the mean number is an increasing function of it. We find two ways to tune the ground state energy and the mean number: controlling the temperature and controlling the cyclotron frequency of the magnetic field.

  5. Analysis of the dynamics of venous blood flow in the context of lower limb temperature distribution and tissue composition in the elderly.

    PubMed

    Skomudek, Aleksandra; Gilowska, Iwona; Jasiński, Ryszard; Rożek-Piechura, Krystyna

    2017-01-01

    The elderly are particularly vulnerable to degenerative diseases, such as circulatory and respiratory system and vascular system diseases. The objective of this study was therefore to evaluate the distribution of temperature and the dynamics of venous blood flow in the lower limbs (LLs) and to assess the interdependence of these parameters in terms of the somatic components in males and females participating in activities at the University of the Third Age. The study included 60 females (mean age 67.4 years) and 40 males (mean age 67.5 years). A body composition assessment was performed using the bioimpedance technique - Tanita BC-418MA. The following parameters were examined: fat%, fat mass, fat-free mass, and total body water. The minimal, maximal, and mean temperature values and their distributions were examined using infrared thermographic camera VarioCAM Head. Measurements of the venous refilling time and the work of the LL venous pump were examined using a Rheo Dopplex II PPG. In males, the mean value of the right LL temperature was 30.58 and the mean value of the left LL was 30.28; the P -value was 0.805769. In females, the mean value of the right LL temperature was 29.58 and the mean value of the left limb was 29.52; the P -value was 0.864773. In males, the right limb blood flow was 34.17 and the left limb blood flow was 34.67; the P -value was 0.359137. In females, the right limb blood flow was 26.89 and the left limb blood flow was 26.09; the P -value was 0.796348. Research results showed that the temperature distribution and the dynamics of blood flow are not significantly different between the right and left extremities in both males and females. However, significant temperature differences were found between the gender groups. Significantly higher temperature values in both the right and left extremities were recorded in males than in females.

  6. Turbulent convective heat transfer of methane at supercritical pressure in a helical coiled tube

    NASA Astrophysics Data System (ADS)

    Wang, Chenggang; Sun, Baokun; Lin, Wei; He, Fan; You, Yingqiang; Yu, Jiuyang

    2018-02-01

    The heat transfer of methane at supercritical pressure in a helically coiled tube was numerically investigated using the Reynolds Stress Model under constant wall temperature. The effects of mass flux ( G), inlet pressure ( P in) and buoyancy force on the heat transfer behaviors were discussed in detail. Results show that the light fluid with higher temperature appears near the inner wall of the helically coiled tube. When the bulk temperature is less than or approach to the pseudocritical temperature ( T pc ), the combined effects of buoyancy force and centrifugal force make heavy fluid with lower temperature appear near the outer-right of the helically coiled tube. Beyond the T pc , the heavy fluid with lower temperature moves from the outer-right region to the outer region owing to the centrifugal force. The buoyancy force caused by density variation, which can be characterized by Gr/ Re 2 and Gr/ Re 2.7, enhances the heat transfer coefficient ( h) when the bulk temperature is less than or near the T pc , and the h experiences oscillation due to the buoyancy force. The oscillation is reduced progressively with the increase of G. Moreover, h reaches its peak value near the T pc . Higher G could improve the heat transfer performance in the whole temperature range. The peak value of h depends on P in. A new correlation was proposed for methane at supercritical pressure convective heat transfer in the helical tube, which shows a good agreement with the present simulated results.

  7. Enthalpy of Vaporization and Vapor Pressures: An Inexpensive Apparatus

    ERIC Educational Resources Information Center

    Battino, Rubin; Dolson, David A.; Hall, Michael A.; Letcher, Trevor M.

    2007-01-01

    A simple and inexpensive method to determine the enthalpy of vaporization of liquids by measuring vapor pressure as a function of temperature is described. The vapor pressures measured with the stopcock cell were higher than the literature values and those measured with the sidearm rubber septum cell were both higher and lower than literature…

  8. Variations in temperature acclimation effects on glycogen storage, hypoxia tolerance and swimming performance with seasonal acclimatization in juvenile Chinese crucian carp.

    PubMed

    Yang, Yang; Cao, Zhen-Dong; Fu, Shi-Jian

    2015-07-01

    The aim of this study was to test whether temperature acclimation (10 vs 20 °C) effects on tissue glycogen content, hypoxia tolerance, and swimming performance of Chinese crucian carp (Carassius auratus) varied with seasonal acclimatization (winter vs spring) and potential combined interactions. Both the routine metabolic rate (MO(2rout)) and critical oxygen tension (P(crit)) of the MO(2rout) increased significantly with temperature, whereas the seasonal acclimatization showed no significant effect. Only the high temperature group that acclimatized in spring showed a significantly higher aquatic surface respiration (ASR(crit)) value compared with the other three groups. Fish in spring tended to show ASR behavior at higher oxygen tension compared with those in winter, which might have been caused by a more active lifestyle. Time to show LOE prolonged by 25-34% under low temperature. Spring fish showed 20% shorter LOE duration at 10 °C, whereas the difference tended to vanish at 20 °C. Glycogen contents in both liver and muscle were higher in winter than spring. The liver and muscle glycogen content decreased by 5-42% after exposure to anoxic conditions, whereas the magnitude was much smaller in spring. When fish swam in normoxic conditions, fish in higher temperatures showed higher critical swimming speed (Ucrit) than low temperature (5.49 vs 3.74 BL s(-1) in winter and 4.27 vs 3.21 BL s(-1) in spring), whereas fish in winter also showed higher U(crit) than fish in spring for each temperature. However, when fish swam in hypoxic waters, fish in higher temperatures showed a more profound decrease (52-61%) in U(crit) compared to those in lower temperature (25-27%). Fish in lower temperatures that had acclimatized in winter showed the highest U(crit), which might have been caused by higher glycogen storage. The present study suggested that both glycogen storage and alterations in lifestyle had profound effects on hypoxia tolerance and swimming performance, which resulted in a profound difference between seasons and acclimation temperatures. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Heat Transfer and Thermal Stress Analysis of a Mandibular Molar Tooth Restored by Different Indirect Restorations Using a Three-Dimensional Finite Element Method.

    PubMed

    Çelik Köycü, Berrak; İmirzalıoğlu, Pervin

    2017-07-01

    Daily consumption of food and drink creates rapid temperature changes in the oral cavity. Heat transfer and thermal stress caused by temperature changes in restored teeth may damage the hard and soft tissue components, resulting in restoration failure. This study evaluates the temperature distribution and related thermal stress on mandibular molar teeth restored via three indirect restorations using three-dimensional (3D) finite element analysis (FEA). A 3D finite element model was constructed of a mandibular first molar and included enamel, dentin, pulp, surrounding bone, and indirect class 2 restorations of type 2 dental gold alloy, ceramic, and composite resin. A transient thermal FEA was performed to investigate the temperature distribution and the resulting thermal stress after simulated temperature changes from 36°C to 4 or 60°C for a 2-second time period. The restoration models had similar temperature distributions at 2 seconds in both the thermal conditions. Compared with 60°C exposure, the 4°C condition resulted in thermal stress values of higher magnitudes. At 4ºC, the highest stress value observed was tensile stress (56 to 57 MPa), whereas at 60°C, the highest stress value observed was compressive stress (42 to 43 MPa). These stresses appeared at the cervical region of the lingual enamel. The thermal stress at the restoration surface and resin cement showed decreasing order of magnitude as follows: composite > gold > ceramic, in both thermal conditions. The properties of the restorative materials do not affect temperature distribution at 2 seconds in restored teeth. The pulpal temperature is below the threshold for vital pulp tissue (42ºC). Temperature changes generate maximum thermal stress at the cervical region of the enamel. With the highest thermal expansion coefficient, composite resin restorations exhibit higher stress patterns than ceramic and gold restorations. © 2015 by the American College of Prosthodontists.

  10. Application of TAM III to study sensitivity of soil organic matter degradation to temperature

    NASA Astrophysics Data System (ADS)

    Vikegard, Peter; Barros, Nieves; Piñeiro, Verónica

    2014-05-01

    Traditionally, studies of soil biodegradation are based on CO2 dissipation rates. CO2 is a product of aerobic degradation of labile organic substrates like carbohydrates. That limits the biodegradation concept to just one of the soil organic matter fractions. This feature is responsible for some problems to settle the concept of soil organic matter (SOM) recalcitrance and for controversial results defining sensitivity of SOM to temperature. SOM consists of highly complex macromolecules constituted by fractions with different chemical nature and redox state affecting the chemical nature of biodegradation processes. Biodegradation of fractions more reduced than carbohydrates take place through metabolic pathways that dissipate less CO2 than carbohydrate respiration, that may not dissipate CO2, or that even may uptake CO2. These compounds can be considered more recalcitrant and with lower turnover times than labile SOM just because they are degraded at lower CO2 rates that may be just a consequence of the metabolic path. Nevertheless, decomposition of every kind of organic substrate always releases heat. For this reason, the measurement of the heat rate by calorimetry yields a more realistic measurement of the biodegradation of the SOM continuum. TAM III is one of the most recent calorimeters designed for directly measuring in real time the heat rate associated with any degradation process. It is designed as a multichannel system allowing the concomitant measurement of to up 24 samples at isothermal conditions or through a temperature scanning mode from 18 to 100ºC, allowing the continous measure of any sample at controlled non-isothermal conditions. The temperature scanning mode was tested in several soil samples collected at different depths to study their sensitivity to temperature changes from 18 to 35 ºC calculating the Q10 and the activation energy (EA) by the Arrhenius equation. It was attempted to associate the obtained EA values with the soil thermal properties determined by differential scanning calorimetry and thermogravimetric analysis. The EA values obtained ranged from -30 to -48 kJ/mol increasing with soil depth and with higher heat of combustion values of the samples obtained by DSC, suggesting that increased SOM recalcitrance involves higher investment of energy by the microbial population to degrade SOM. The calorimetrically determined Q10 values were observed to decrease with soil depth and higher heat of combustión, supporting the hypothesis, as given by different authors, that higher SOM recalcitrance can be associated with a decreased sensitivity to temperature as in agreement with the increasing trend of the activation energy

  11. Properties of charmonia in a hot equilibrated medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giannuzzi, Floriana; Mannarelli, Massimo

    2009-09-01

    We investigate the properties of charmonia in a thermal medium, showing that with increasing temperature the decay widths of these mesons behave in a nontrivial way. Our analysis is based on a potential model with interaction potential extracted from thermal lattice QCD calculations of the free-energy of a static quark-antiquark pair. We find that in the crossover region some decay widths are extremely enhanced. In particular, at temperatures T{approx}T{sub c} the decay widths of the J/{psi} that depend on the value of the wave function at the origin are enhanced with respect to the values in vacuum by about amore » factor 2. In the same temperature range the decay width of the process {chi}{sub cJ}{yields}J/{psi}+{gamma} is enhanced by approximately a factor 6 with respect to the value in vacuum. At higher temperatures the charmonia states dissociate and the widths of both decay processes become vanishing small.« less

  12. Decay constants of the charmed tensor mesons at finite temperature

    NASA Astrophysics Data System (ADS)

    Azizi, K.; Sundu, H.; Türkan, A.; Veliev, E. Veli

    2016-01-01

    Investigation of the thermal properties of the mesons with higher spin is one of the important problems in the hadron physics. At finite temperature, the Lorentz invariance is broken by the choice of a preferred frame of reference and some new operators appear in the Wilson expansion. Taking into account these additional operators, we calculate the thermal two-point correlation function for D2*(2460 ) and Ds2 *(2573 ) tensor mesons. In order to perform the numerical analysis, we use the fermionic part of the energy density obtained both from lattice QCD and Chiral perturbation theory. We also use the temperature dependent continuum threshold and show that the values of the decay constants decrease considerably near to the critical temperature compared to their values in the vacuum. Our results at zero temperature are in good consistency with predictions of other nonperturbative models.

  13. PPM/NAR 8.4-GHz noise temperature statistics for DSN 64-meter antennas, 1982-1984

    NASA Technical Reports Server (NTRS)

    Slobin, S. D.; Andres, E. M.

    1986-01-01

    From August 1982 through November 1984, X-band downlink (8.4-GHz) system noise temperature measurements were made on the DSN 64-m antennas during tracking periods. Statistics of these noise temperature values are needed by the DSN and by spacecraft mission planners to assess antenna, receiving, and telemetry system needs, present performance, and future performance. These measurements were made using the DSN Mark III precision power monitor noise-adding radiometers located at each station. It is found that for DSS 43 and DSS 63, at the 90% cumulative distribution level, equivalent zenith noise temperature values fall between those presented in the earlier (1977) and present (1983) versions of DSN/Flight Project design documents. Noise temperatures measured for DSS 14 (Goldstone) are higher than those given in existing design documents and this disagreement will be investigated as a diagnostic of possible PPM or receiving system performance problems.

  14. Reassessing the role of temperature in precipitation oxygen isotopes across the eastern and central United States through weekly precipitation-day data

    NASA Astrophysics Data System (ADS)

    Akers, Pete D.; Welker, Jeffrey M.; Brook, George A.

    2017-09-01

    Air temperature is correlated with precipitation oxygen isotope (δ18Oprcp) variability for much of the eastern and central United States, but the nature of this δ18Oprcp-temperature relationship is largely based on data coarsely aggregated at a monthly resolution. We constructed a database of 6177 weeks of isotope and precipitation-day air temperature data from 25 sites to determine how more precise data change our understanding of this classic relationship. Because the δ18Oprcp-temperature relationship is not perfectly linear, trends in the regression residuals suggest the influence of additional environmental factors such as moisture recycling and extratropical cyclone interactions. Additionally, the temporal relationships between δ18Oprcp and temperature observed in the weekly data at individual sites can explain broader spatial patterns observed across the study region. For 20 of 25 sites, the δ18Oprcp-temperature relationship slope is higher for colder precipitation than for warmer precipitation. Accordingly, northern and western sites with relatively more cold precipitation events have steeper overall relationships with higher slope values than southeastern sites that have more warm precipitation events. Although the magnitude of δ18Oprcp variability increases to the north and west, the fraction of δ18Oprcp variability explained by temperature increases due to wider annual temperature ranges, producing stronger relationships in these regions. When our δ18Oprcp-temperature data are grouped by month, we observe significant variations in the relationship from month to month. This argues against a principal causative role for temperature and suggests the existence of an alternative environmental control on δ18Oprcp values that simply covaries seasonally with temperature.

  15. Accurate measurements and temperature dependence of the water vapor self-continuum absorption in the 2.1 μm atmospheric window

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ventrillard, I.; Romanini, D.; Mondelain, D.

    In spite of its importance for the evaluation of the Earth radiative budget, thus for climate change, very few measurements of the water vapor continuum are available in the near infrared atmospheric windows especially at temperature conditions relevant for our atmosphere. In addition, as a result of the difficulty to measure weak broadband absorption signals, the few available measurements show large disagreements. We report here accurate measurements of the water vapor self-continuum absorption in the 2.1 μm window by Optical Feedback Cavity Enhanced Absorption Spectroscopy (OF-CEAS) for two spectral points located at the low energy edge and at the centermore » of the 2.1 μm transparency window, at 4302 and 4723 cm{sup −1}, respectively. Self-continuum cross sections, C{sub S}, were retrieved with a few % relative uncertainty, from the quadratic dependence of the spectrum base line level measured as a function of water vapor pressure, between 0 and 16 Torr. At 296 K, the C{sub S} value at 4302 cm{sup −1} is found 40% higher than predicted by the MT-CKD V2.5 model, while at 4723 cm{sup −1}, our value is 5 times larger than the MT-CKD value. On the other hand, these OF-CEAS C{sub S} values are significantly smaller than recent measurements by Fourier transform spectroscopy at room temperature. The temperature dependence of the self-continuum cross sections was also investigated for temperatures between 296 K and 323 K (23-50 °C). The derived temperature variation is found to be similar to that derived from previous Fourier transform spectrometer (FTS) measurements performed at higher temperatures, between 350 K and 472 K. The whole set of measurements spanning the 296-472 K temperature range follows a simple exponential law in 1/T with a slope close to the dissociation energy of the water dimer, D{sub 0} ≈ 1100 cm{sup −1}.« less

  16. Influence of hydrogenated oil as cocoa butter replacers in the development of sugar-free compound chocolates: Use of inulin as stabilizing agent.

    PubMed

    Rodriguez Furlán, Laura T; Baracco, Yanina; Lecot, Javier; Zaritzky, Noemi; Campderrós, Mercedes E

    2017-02-15

    The effect of the addition of inulin as a surfactant or stability agent on white compound chocolate sweetened with sucralose and Stevia was studied. Samples were stored at 7, 15 and 30°C during 100days and the influence of inulin on rheological properties, sensorial attributes, shelf-life, physical properties such as melting, crystallization and blooming were analyzed. The shelf-life of the compound chocolate with the incorporation of inulin was higher than the control sample without replacement. Compound chocolate with inulin at 10%w/w showed a dense matrix structure, reducing the size and number of fat crystals formed during storage; furthermore they presented higher values of brightness and WI. This chocolate also showed less fracturability and improved thermal properties. DSC studies revealed increased values of onset and peak temperatures and enthalpy of melting of the polymorphic form V, at higher storage temperatures, achieving greater stability against degradation processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Initial comparison of single cylinder Stirling engine computer model predictions with test results

    NASA Technical Reports Server (NTRS)

    Tew, R. C., Jr.; Thieme, L. G.; Miao, D.

    1979-01-01

    A NASA developed digital computer code for a Stirling engine, modelling the performance of a single cylinder rhombic drive ground performance unit (GPU), is presented and its predictions are compared to test results. The GPU engine incorporates eight regenerator/cooler units and the engine working space is modelled by thirteen control volumes. The model calculates indicated power and efficiency for a given engine speed, mean pressure, heater and expansion space metal temperatures and cooler water inlet temperature and flow rate. Comparison of predicted and observed powers implies that the reference pressure drop calculations underestimate actual pressure drop, possibly due to oil contamination in the regenerator/cooler units, methane contamination in the working gas or the underestimation of mechanical loss. For a working gas of hydrogen, the predicted values of brake power are from 0 to 6% higher than experimental values, and brake efficiency is 6 to 16% higher, while for helium the predicted brake power and efficiency are 2 to 15% higher than the experimental.

  18. Combustion characterization of carbonized RDF, Joint Venture Task No. 7. Topical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    1995-04-30

    The overall objective of this research program was to demonstrate EnerTech's and the Energy & Environmental Research Center's (EERC) process of slurry carbonization for producing homogeneous, pumpable titels from refuse-derived fuel (RDF) with continuous pilot plant facilities, and to characterize flue gas and ash emissions from combustion of the carbonizd RDF slurry fuel. Please note that "Wet Thermal Oxidation" is EnerTech's trademark mme for combustion of the carbonized RDF slurry fuel. Carbonized RDF slurry fuels were produced with the EERC'S 7.5-tpd (wet basis) pilot plant facility. A hose diaphragm pump pressurized a 7- lo-wt% feed RDF slurry, with a viscositymore » of 500 cP, to approximately 2500 psig. The pressurized RDF slurry was heated by indirect heat exchangers to between 5850 -626°F, and its temperature and pressure was maintained in a downflow reactor. The carbonized slurry was flashed, concentrated in a filter press, and ground in an attritor. During operation of the pilot plant, samples of the feed RDF slurry, carbonization gas, condensate, carbonized solids, and filtrate were taken and analyzed. Pilot-scale slurry carbonization experiments with RDF produced a homogeneous pumpable slurry fuel with a higher heating value (HHV) of 3,000-6,600 Btu/lb (as-received basis), at a viscosity of 500 CP at 100 Hz decreasing, and ambient temperature. Greater-heating-value slurry fuels were produced at higher slurry carbonization temperatures. During slurry carbonization, polyvinyl chloride (PVC) plastics in the feed RDF also decompose to form hydrochloric acid and salts. Pilot-scale slurty carbonization experiments extracted 82-94% of the feed RDF chlorine content as chloride salts. Higher carbonization temperatures and higher alkali additions to the feed slurry produced a higher chlorine extraction.« less

  19. Highly temperature insensitive, low threshold-current density (λ = 8.7–8.8 μm) quantum cascade lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirch, J. D.; Chang, C.-C.; Boyle, C.

    2015-04-13

    By stepwise tapering, both the barrier heights and quantum-well depths in the active regions of 8.7–8.8 μm-emitting quantum-cascade-laser (QCL) structures, virtually complete carrier-leakage suppression is achieved. Such step-taper active-region-type QCLs possess, for 3 mm-long devices with high-reflectivity-coated back facets, threshold-current characteristic temperature coefficients, T{sub 0}, as high as 283 K and slope-efficiency characteristic temperature coefficients, T{sub 1}, as high as 561 K, over the 20–60 °C heatsink-temperature range. These high T{sub 0} and T{sub 1} values reflect at least a factor of four reduction in carrier-leakage current compared to conventional 8–9 μm-emitting QCLs. Room temperature, pulsed, threshold-current densities are 1.58 kA/cm{sup 2}; values comparable to those formore » 35-period conventional QCLs of similar injector-region doping level. Superlinear behavior of the light-current curves is shown to be the result of the onset of resonant extraction from the lower laser level at a drive level of ∼1.3× threshold. Maximum room-temperature slope efficiencies are 1.23 W/A; that is, slope efficiency per period values of 35 mW/A, which are 37%–40% higher than for same-geometry conventional 8–9 μm-emitting QCLs. Since the waveguide-loss coefficients are very similar, we estimate that the internal differential efficiency is at least 30% higher than in conventional QCLs. Such high internal differential efficiency values reflect the combined effect of nearly complete carrier-leakage suppression and high differential efficiency of the laser transition (∼90%), due to resonant extraction from the lower laser level.« less

  20. Periodicity analysis of δ18O in precipitation over Central Europe: Time-frequency considerations of the isotopic 'temperature' effect

    NASA Astrophysics Data System (ADS)

    Salamalikis, V.; Argiriou, A. A.; Dotsika, E.

    2016-03-01

    In this paper the periodic patterns of the isotopic composition of precipitation (δ18O) for 22 stations located around Central Europe are investigated through sinusoidal models and wavelet analysis over a 23 years period (1980/01-2002/12). The seasonal distribution of δ18O follows the temporal variability of air temperature providing seasonal amplitudes ranging from 0.94‰ to 4.47‰; the monthly isotopic maximum is observed in July. The isotopic amplitude reflects the geographical dependencies of the isotopic composition of precipitation providing higher values when moving inland. In order to describe the dominant oscillation modes included in δ18O time series, the Morlet Continuous Wavelet Transform is evaluated. The main periodicity is represented at 12-months (annual periodicity) where the wavelet power is mainly concentrated. Stations (i.e. Cuxhaven, Trier, etc.) with limited seasonal isotopic effect provide sparse wavelet power areas at the annual periodicity mode explaining the fact that precipitation has a complex isotopic fingerprint that cannot be examined solely by the seasonality effect. Since temperature is the main contributor of the isotopic variability in mid-latitudes, the isotope-temperature effect is also investigated. The isotope-temperature slope ranges from 0.11‰/°C to 0.47‰/°C with steeper values observed at the southernmost stations of the study area. Bivariate wavelet analysis is applied in order to determine the correlation and the slope of the δ18O - temperature relationship over the time-frequency plane. High coherencies are detected at the annual periodicity mode. The time-frequency slope is calculated at the annual periodicity mode ranging from 0.45‰/°C to 0.83‰/°C with higher values at stations that show a more distinguishable seasonal isotopic behavior. Generally the slope fluctuates around a mean value but in certain cases (sites with low seasonal effect) abrupt slope changes are derived and the slope becomes strongly unstable.

  1. Mechanical and Thermal Properties of Praseodymium Monopnictides: AN Ultrasonic Study

    NASA Astrophysics Data System (ADS)

    Bhalla, Vyoma; Kumar, Raj; Tripathy, Chinmayee; Singh, Devraj

    2013-09-01

    We have computed ultrasonic attenuation, acoustic coupling constants and ultrasonic velocities of praseodymium monopnictides PrX(X: N, P, As, Sb and Bi) along the <100>, <110>, <111> in the temperature range 100-500 K using higher order elastic constants. The higher order elastic constants are evaluated using Coulomb and Born-Mayer potential with two basic parameters viz. nearest-neighbor distance and hardness parameter in the temperature range of 0-500 K. Several other mechanical and thermal parameters like bulk modulus, shear modulus, Young's modulus, Poisson ratio, anisotropic ratio, tetragonal moduli, Breazeale's nonlinearity parameter and Debye temperature are also calculated. In the present study, the fracture/toughness (B/G) ratio is less than 1.75 which implies that PrX compounds are brittle in nature at room temperature. The chosen material fulfilled Born criterion of mechanical stability. We also found the deviation of Cauchy's relation at higher temperatures. PrN is most stable material as it has highest valued higher order elastic constants as well as the ultrasonic velocity. Further, the lattice thermal conductivity using modified approach of Slack and Berman is determined at room temperature. The ultrasonic attenuation due to phonon-phonon interaction and thermoelastic relaxation mechanisms have been computed using modified Mason's approach. The results with other well-known physical properties are useful for industrial applications.

  2. Water Use in Wetland Kalo Cultivation in Hawai`i

    USGS Publications Warehouse

    Gingerich, Stephen B.; Yeung, Chiu W.; Ibarra, Tracy-Joy N.; Engott, John A.

    2007-01-01

    Ten cultivation areas (8 windward, 2 leeward) were selected for a kalo water-use study, primarily on the basis of the diversity of environmental and agricultural conditions under which wetland kalo is grown and landowner permission and availability. Flow and water-temperature data were collected at the lo`i complex level and at the individual lo`i level. To ensure that flow and temperature data collected at different lo`i reflect similar irrigation conditions (continuous flooding of the mature crop), only lo`i with crops near the harvesting stage were selected for water-temperature data collection. The water need for kalo cultivation varies depending on the crop stage. In this study, data were collected during the dry season (June-October), when water requirements for cooling kalo approach upper limits. Flow measurements generally were made during the warmest part of the day, and temperature measurements were made every 15 minutes at each site for about a two-month period. Flow and temperature data were collected from kalo cultivation areas on four islands - Kaua`i, O`ahu, Maui, and Hawai`i. The average inflow value for the 19 lo`i complexes measured in this study is 260,000 gallons per acre per day, and the median inflow value is 150,000 gallons per acre per day. The average inflow value for the 17 windward sites is 270,000 gallons per acre per day, and the median inflow value is 150,000 gallons per acre per day. The average inflow value for the two leeward sites is 150,000 gallons per acre per day. The average inflow value measured for six individual lo`i is 350,000 gallons per acre per day, and the median inflow value is 270,000 gallons per acre per day. The average inflow value for the five windward lo`i is 370,000 gallons per acre per day, and the median inflow value is 320,000 gallons per acre per day. The inflow value for the one leeward lo`i is 210,000 gallons per acre per day. These inflow values are consistent with previously reported values for inflow and are significantly higher than values generally estimated for water consumption during kalo cultivation. These measurements of inflow are important for future considerations of water-use requirements for successful kalo cultivation. Of the 17 lo`i complexes where water inflow temperature was measured, only 3 had inflow temperatures that rose above 27 ?C, the threshold temperature above which wetland kalo is more susceptible to fungi and associated rotting diseases. The coldest mean inflow temperature was 20.0 ?C and the warmest inflow temperature was 24.9 ?C. All 15 of the sites where outflow temperatures were measured had some temperatures greater than 27 ?C. Outflow temperatures exceeded 27 ?C between 2.5 percent and about 40 percent of the time. Mean outflow temperatures ranged from 23.0 ?C to 26.7 ?C.

  3. Effect of Temperature on the Protonation of the TALSPEAK Ligands: Lactic and Diethylenetrinitropentaacetic Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Guoxin; Rao, Linfeng

    2009-10-20

    The protonation reactions of two ligands that play important roles in the TALSPEAK process for the separation of trivalent actinides from lanthanides, lactic acid and diethylenetrinitropentaacetic acid (DTPA), have been studied at variable temperatures. The protonation constants at 10-70 C were determined by titration potentiometry and the protonation enthalpies were determined at 25 C by titration microcalorimetry. The protonation constants remain essentially unchanged (25-70 C) within the experimental uncertainties, indicating that the effect of temperature on the protonation of lactate is insignificant. In contrast, the protonation constants of DTPA (log {beta}H's) generally decrease as the temperature is increased. Results frommore » this study indicate that the effect of temperature on the protonation of DTPA could alter the speciation of metal ions (actinides and lanthanides) in the TALSPEAK system, since lower values of log{beta}H at higher temperatures suggest that the hydrogen ions would compete less strongly with the metal ions for the complexation of DTPA at higher temperatures.« less

  4. Tolerance of chufa (Cyperus esculentus L.) plants, representing the higher plant compartment in bioregenerative life support systems, to super-optimal air temperatures

    NASA Astrophysics Data System (ADS)

    Shklavtsova, E. S.; Ushakova, S. A.; Shikhov, V. N.; Anishchenko, O. V.

    2013-01-01

    Plants intended to be included in the photosynthesizing compartment of the bioregenerative life support system (BLSS) need to be studied in terms of both their production parameters under optimal conditions and their tolerance to stress factors that might be caused by emergency situations. The purpose of this study was to investigate tolerance of chufa (Cyperus esculentus L.) plants to the super-optimal air temperature of 45 ± 1 °C as dependent upon PAR (photosynthetically active radiation) intensity and the duration of the exposure to the stress factor. Chufa plants were grown hydroponically, on expanded clay, under artificial light. The nutrient solution was Knop's mineral medium. Until the plants were 30 days old, they had been grown at 690 μmol m-2 s-1 PAR and air temperature 25 °C. Thirty-day-old plants were exposed to the temperature 45 °C for 6 h, 20 h, and 44 h at PAR intensities 690 μmol m-2 s-1 and 1150 μmol m-2 s-1. The exposure to the damaging air temperature for 44 h at 690 μmol m-2 s-1 PAR caused irreversible damage to PSA, resulting in leaf mortality. In chufa plants exposed to heat shock treatment at 690 μmol m-2 s-1 PAR for 6 h and 20 h, respiration exceeded photosynthesis, and CO2 release in the light was recorded. Functional activity of photosynthetic apparatus, estimated from parameters of pulse-modulated chlorophyll fluorescence in Photosystem 2 (PS 2), decreased 40% to 50%. After the exposure to the stress factor was finished, functional activity of PSA recovered its initial values, and apparent photosynthesis (Papparent) rate after a 20-h exposure to the stress factor was 2.6 times lower than before the elevation of the temperature. During the first hours of plant exposure to the temperature 45 °C at 1150 μmol m-2 s-1 PAR, respiration rate was higher than photosynthesis rate, but after 3-4 h of the exposure, photosynthetic processes exceeded oxidative ones and CO2 absorption in the light was recorded. At the end of the 6-h exposure, Papparent rate was close to that recorded prior to the exposure, and no significant changes were observed in the functional activity of PSA. At the end of the 20-h exposure, Papparent rate was close to its initial value, but certain parameters of the functional activity of PSA decreased 25% vs. their initial values. During the repair period, the parameters of external gas exchange recovered their initial values, and parameters of pulse-modulated chlorophyll fluorescence were 20-30% higher than their initial values. Thus, exposure of chufa plants to the damaging temperature of the air for 20 h did not cause any irreversible damage to the photosynthetic apparatus of plants at either 690 μmol m-2 s-1 or 1150 μmol m-2 s-1 PAR, and higher PAR intensity during the heat shock treatment enhanced heat tolerance of the plants.

  5. Some methods for achieving more efficient performance of fuel assemblies

    NASA Astrophysics Data System (ADS)

    Boltenko, E. A.

    2014-07-01

    More efficient operation of reactor plant fuel assemblies can be achieved through the use of new technical solutions aimed at obtaining more uniform distribution of coolant over the fuel assembly section, more intense heat removal on convex heat-transfer surfaces, and higher values of departure from nucleate boiling ratio (DNBR). Technical solutions using which it is possible to obtain more intense heat removal on convex heat-transfer surfaces and higher DNBR values in reactor plant fuel assemblies are considered. An alternative heat removal arrangement is described using which it is possible to obtain a significantly higher power density in a reactor plant and essentially lower maximal fuel rod temperature.

  6. Analysis of ingredient functionality and formulation optimization of pasta supplemented with peanut flour.

    PubMed

    Howard, Brandy M; Hung, Yen-Con; McWatters, Kay

    2011-01-01

    The working peanut pasta formulation range determined from a previous study was used to determine the effects of varying ingredient quantities and processing conditions on the pasta's quality and consumer acceptance. The variables studied were percent peanut flour substituted for durum wheat flour (30%, 40%, and 50%), amount of carrageenan (2.4%, 2.65%, and 2.9%), and drying temperature (60, 74, and 88 °C) on the final cooked pasta quality. Properties measured include color, texture, moisture content, and cooking loss. A home-use sensory test was conducted to determine consumer preferences and the optimum range for variables studied. Color lightness values ranged from 43.53 to 65.02, decreasing (becoming darker) with increased peanut flour level and increased drying temperature. Maximum cutting force for cooked pasta ranged from 1.59 N to 3.22 N, with higher values only for pasta dried at 88 °C. Moisture content ranged from 57.35% to 69.38%, and values decreased as drying temperature increased. Cooking loss ranged from 5.14% to 7.99%, increasing with higher levels of peanut flour and decreasing with higher levels of carrageenan. When prepared with 30% peanut flour and dried at 60 °C, the pasta was lighter in color, higher in moisture, and softer in texture than the varieties dried at higher temperatures and made with higher levels of peanut flour. Response surface analysis of consumer test data revealed that the optimum peanut pasta should contain between 35% and 45% peanut flour and should be dried between 60 and 71 °C; however, the pasta with 30% peanut flour was also a popular sample in the "favorite" categories. Practical Application: Most non-gluten protein fortification studies in durum wheat pasta found decreased firmness of dry and cooked pasta, increased cooking loss, increased stickiness, and darker product color when compared to traditional pasta. Partially defatted peanut flour is a versatile food ingredient and has high protein content. Since the lysine content of peanuts is higher than wheat, peanuts can be used to supplement wheat flour in food preparation. This study found by partially replacing wheat flour with peanut flour and with incorporation of hydrocolloid emulsifier, such as carrageenan or xanthan gum, dough viscosity, and pasta firmness significantly improved. Peanut pasta with high protein content and balanced amino acid profile can help support consumers with a healthy lifestyle.

  7. Pluto's atmosphere - Models based on refraction, inversion, and vapor-pressure equilibrium

    NASA Technical Reports Server (NTRS)

    Eshleman, Von R.

    1989-01-01

    Viking spacecraft radio-occultation measurements indicate that, irrespective of substantial differences, the polar ice cap regions on Mars have inversions similar to those of Pluto, and may also share vapor pressure equilibrium characteristics at the surface. This temperature-inversion phenomenon occurs in a near-surface boundary layer; surface pressure-temperature may correspond to the vapor-pressure equilibrium with CH4 ice, or the temperature may be slightly higher to match the value derived from IRAS data.

  8. Fabrication of nanostructured Al-doped ZnO thin film for methane sensing applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shafura, A. K., E-mail: shafura@ymail.com; Azhar, N. E. I.; Uzer, M.

    2016-07-06

    CH{sub 4} gas sensor was fabricated using spin-coating method of the nanostructured ZnO thin film. Effect of annealing temperature on the electrical and structural properties of the film was investigated. Dense nanostructured ZnO film are obtained at higher annealing temperature. The optimal condition of annealing temperature is 500°C which has conductivity and sensitivity value of 3.3 × 10{sup −3} S/cm and 11.5%, respectively.

  9. Influence of substrate temperature on properties of MgF 2 coatings

    NASA Astrophysics Data System (ADS)

    Yu, Hua; Qi, Hongji; Cui, Yun; Shen, Yanming; Shao, JianDa; Fan, ZhengXiu

    2007-05-01

    Thermal boat evaporation was employed to prepare MgF 2 single-layer coatings upon both JGS1 and UBK7 substrates at different substrate temperatures. Microstructure, transmittance and residual stress of these coatings were measured by X-ray diffraction, spectrophotometer, and optical interferometer, respectively. Measurement of laser induced damage threshold (LIDT) of the samples was performed at 355 nm, 8 ns pulses. The results showed that high substrate temperature was beneficial to crystallization of the film. Above 244 °C, the refractive index increased gradually with the substrate temperature rising. Whereas, it was exceptional at 210 °C that the refractive index was higher than those deposited at 244 and 277 °C. The tensile residual stresses were exhibited in all MgF 2 films, but not well correlated with the substrate temperature. In addition, the stresses were comparatively smaller upon JGS1 substrates. A tendency could be seen that the LIDTs reached the highest values at about 244 °C, and the films upon JGS1 had higher LIDTs than those upon UBK7 substrates at the same temperature. Meanwhile, the damage morphologies showed that the laser damage of the coating resulted from an absorbing center at the film-substrate interface. The features of the damages were displayed by an absorbing center dominated model. Furthermore, the reason of the difference in LIDT values was discussed in detail.

  10. High-pressure destruction kinetics of Clostridium sporogenes spores in ground beef at elevated temperatures.

    PubMed

    Zhu, Songming; Naim, Fadia; Marcotte, Michèle; Ramaswamy, Hosahalli; Shao, Yanwen

    2008-08-15

    High pressure (HP) is an alternative technique for thermal sterilization of foods with minimum quality loss. HP destruction kinetics of bacterial spores is essential to establishing sterilization process, but knowledge in this field is still very limited. In this study, destruction kinetics was investigated using Clostridium sporogenes PA 3679 (ATCC7955) spores in extra-lean ground beef (5 g each sealed in a sterile plastic bag). Duplicated samples were subjected to HP treatments at 700, 800 and 900 MPa in a HP system equipped with a Polyoxymethylene insulator to maintain constant temperatures at 80, 90 and 100 degrees C during pressure-holding time. The kinetic parameters of the spores (D- and Z-values) were evaluated at these pressures and temperatures. For the pressure from 700 to 900 MPa, D-values ranged from 15.8 to 7.0 and 1.5 to 0.63 min at 80 and 100 degrees C, respectively. The pressure resistance of Z(T)(P) value was 520-563 MPa at 80-100 degrees C. The temperature resistance of Z(P)(T) value was 19.1-19.7 degrees C at 700-900 MPa, much higher than that at atmospheric condition (12.4 degrees C). A regression model was generated which can be used to predict D-value or the death time of a minimum process under given pressure and temperature conditions. HP treatment with elevated temperatures can destroy bacterial spores with a shorter time or lower temperature than conventional thermal processing. This study provides useful information for the achievement of a safe HP sterilization process.

  11. Estimating missing daily temperature extremes in Jaffna, Sri Lanka

    NASA Astrophysics Data System (ADS)

    Thevakaran, A.; Sonnadara, D. U. J.

    2018-04-01

    The accuracy of reconstructing missing daily temperature extremes in the Jaffna climatological station, situated in the northern part of the dry zone of Sri Lanka, is presented. The adopted method utilizes standard departures of daily maximum and minimum temperature values at four neighbouring stations, Mannar, Anuradhapura, Puttalam and Trincomalee to estimate the standard departures of daily maximum and minimum temperatures at the target station, Jaffna. The daily maximum and minimum temperatures from 1966 to 1980 (15 years) were used to test the validity of the method. The accuracy of the estimation is higher for daily maximum temperature compared to daily minimum temperature. About 95% of the estimated daily maximum temperatures are within ±1.5 °C of the observed values. For daily minimum temperature, the percentage is about 92. By calculating the standard deviation of the difference in estimated and observed values, we have shown that the error in estimating the daily maximum and minimum temperatures is ±0.7 and ±0.9 °C, respectively. To obtain the best accuracy when estimating the missing daily temperature extremes, it is important to include Mannar which is the nearest station to the target station, Jaffna. We conclude from the analysis that the method can be applied successfully to reconstruct the missing daily temperature extremes in Jaffna where no data is available due to frequent disruptions caused by civil unrests and hostilities in the region during the period, 1984 to 2000.

  12. Crevice corrosion - NaCl concentration map for grade-2 titanium at elevated temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsujikawa, Shigeo; Kojima, Yoichi

    1993-12-31

    The repassivation potential, ER, for metal/metal-crevice of Commercially Pure Titanium, C.P.Ti, was determined in NaCl solutions at temperatures up to 250C. The ER has its least noble value near 100C and becomes more noble as the temperature increases. As shown in previous research, the shrinkage of the repassivation region should continue with increasing temperatures. However, in conducting this same experiment at temperatures higher than 100C, an examination of the NaCl concentration - temperature - crevice corrosion map verifies that the repassivation region began to expand again when the temperature exceeded 140C. This expansion continued as the temperature continued to increase.

  13. Identifying and monitoring urban heat island in Bucharest using satellite time series and low cost meteorological sensors

    NASA Astrophysics Data System (ADS)

    Sandric, Ionut; Onose, Diana; Vanau, Gabriel; Ioja, Cristian

    2016-04-01

    The present study is focusing on the identification of urban heat island in Bucharest using both remote sensing products and low cost temperature sensors. The urban heat island in Bucharest was analyzed through a network of sensors located in 56 points (47 inside the administrative boundary of the city, 9 outside) 2009-2011. The network lost progressively its initial density, but was reformed during a new phase, 2013-2015. Time series satellite images from MODIS were intersected with the sensors for both phases. Statistical analysis were conducted to identify the temporal and spatial pattern of extreme temperatures in Bucharest. Several environmental factors like albedou, presence and absence of vegetation were used to fit a regression model between MODIS satellite products sensors in order to upscale the temperatures values recorded by MODIS For Bucharest, an important role for air temperature values in urban environments proved to have the local environmental conditions that leads to differences in air temperature at Bucharest city scale between 3-5 °C (both in the summer and in the winter). The UHI maps shows a good correlation with the presence of green areas. Differences in air temperature between higher tree density areas and isolated trees can reach much higher values, averages over 24 h periods still are in the 3-5 °C range The results have been obtained within the project UCLIMESA (Urban Heat Island Monitoring under Present and Future Climate), ongoing between 2013 and 2015 in the framework of the Programme for Research-DevelopmentInnovation for Space Technology and Advanced Research (STAR), administrated by the Romanian Space Agency Keywords: time series, urban heat island

  14. An experimental approach to determine the heat transfer coefficient in directional solidification furnaces

    NASA Technical Reports Server (NTRS)

    Banan, Mohsen; Gray, Ross T.; Wilcox, William R.

    1992-01-01

    The heat transfer coefficient between a molten charge and its surroundings in a Bridgman furnace was experimentally determined using in-situ temperature measurement. The ampoule containing an isothermal melt was suddenly moved from a higher temperature zone to a lower temperature zone. The temperature-time history was used in a lumped-capacity cooling model to evaluate the heat transfer coefficient between the charge and the furnace. The experimentally determined heat transfer coefficient was of the same order of magnitude as the theoretical value estimated by standard heat transfer calculations.

  15. Effect of different temperature-time combinations on lipid and protein oxidation of sous-vide cooked lamb loins.

    PubMed

    Roldan, Mar; Antequera, Teresa; Armenteros, Monica; Ruiz, Jorge

    2014-04-15

    Forty-five lamb loins were subjected to sous-vide cooking at different combinations of temperature (60, 70 and 80 °C) and time (6, 12 and 24 h) to assess the effect on the oxidative stability of lipids and proteins. Heating induced both lipid and protein oxidation in lamb loins. Higher cooking temperature-time combinations increased conjugated dienes and decreased thiobarbituric reactive substances (TBARS) values and hexanal. Total protein carbonyls increased throughout time at all cooking temperatures considered, while α-aminoadipic (AAS) and γ-glutamic semialdehydes (GGS) increased when cooking at 60 °C but not at 80 °C. Links between the decrease in secondary compounds from lipid oxidation due to cooking at higher temperatures and for longer times with the increased levels of 3-methylbutanal and greater differences between total protein carbonyls and AAS plus GGS were hypothesised. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Influence of volume ratio of liquid to solid and low pouring temperature on interface structure of cast Babbitt-steel bimetal composite

    NASA Astrophysics Data System (ADS)

    Fathy, Naglaa; Ramadan, Mohamed

    2018-05-01

    The influence of volume ratio of liquid to Solid and low pouring temperature on interface structure of cast Babbitt-steel bimetal composite was evaluated for static casting technique. At low pouring temperature of 380 °C, Babbitt microstructures are improved to be finer and more globular. On the other side pouring the Babbitt at low pouring temperature of 380 °C increases the chance of present higher unbonded area percent. Increasing the volume ratio of liquid to solid decreases the Sn-Pb interface thicknesses and increases the bonded interface area. In order to optimize the production of Babbitt-steel bimetal composite at low pouring temperature, the volume ratio of liquid Babbitt to solid steel shell should be higher value that could be more than 5 depending on the extrapolation of current data presented.

  17. Do Weather Phenomena Have Any Influence on the Occurrence of Spontaneous Pneumothorax?

    PubMed

    Vodička, Josef; Vejvodová, Šárka; Šmíd, David; Fichtl, Jakub; Špidlen, Vladimír; Kormunda, Stanislav; Hostýnek, Jiří; Moláček, Jiří

    2016-05-01

    The objective of this study was to assess the impact of weather phenomena on the occurrence of spontaneous pneumothorax (SP) in the Plzeň region (Czech Republic). A retrospective analysis of 450 cases of SP in 394 patients between 1991 and 2013. We observed changes in average daily values of atmospheric pressure, air temperature and daily maximum wind gust for each day of that period and their effect on the development of SP. The risk of developing SP is 1.41 times higher (P=.0017) with air pressure changes of more than±6.1hPa. When the absolute value of the air temperature changes by more than±0.9°C, the risk of developing SP is 1.55 times higher (P=.0002). When the wind speed difference over the 5 days prior to onset of SP is less than 13m/sec, then the risk of SP is 2.16 times higher (P=.0004). If the pressure difference is greater than±6.1hPa and the temperature difference is greater than±0.9°C or the wind speed difference during the 5 days prior to onset of SP is less than 10.7m/s, the risk of SP is 2.04 times higher (P≤.0001). Changes in atmospheric pressure, air temperature and wind speed are undoubtedly involved in the development of SP, but don't seem to be the only factors causing rupture of blebs or emphysematous bullae. Copyright © 2015 SEPAR. Published by Elsevier Espana. All rights reserved.

  18. The role of metabolism in understanding the altitudinal segregation pattern of two potentially interacting lizards.

    PubMed

    Žagar, Anamarija; Simčič, Tatjana; Carretero, Miguel A; Vrezec, Al

    2015-01-01

    Sympatric species from the same ecological guild, that exhibit partial altitudinal segregation, can potentially interact in areas of syntopic occurrence. Besides general species' ecology, physiology can provide important answers about species interactions reflected in altitudinal patterns. Lizards Podarcis muralis and Iberolacerta horvathi exhibit partial altitudinal segregation, while they strongly resemble in overall morphology and ecology (diet, daily and seasonal activity pattern), but show certain degree of physiological dissimilarity. They have similar mean preferred body temperatures and patterns of seasonal and daily variations but differ in the magnitude of seasonal variation. Since an ectotherm metabolism is highly dependent on body temperature, thermoregulation is expected to directly affect their metabolism. We compared metabolic rates of adult males from an area of sympatry, measured under two temperature regimes (20°C and 28°C). Both species increased metabolic rates with temperature in a similar pattern. We also compared electron transport activity from tail tissues which provide values of species' potential metabolic activity (enzymatic capacity). Species clearly differed in potential metabolic activity; I. horvathi attained higher values than P. muralis. No difference was detected in how species exploited this potential (calculated from the ratio of electron transport activity and metabolic rates). However, we observed higher potential metabolic activity I. horvathi which together with the ability to thermoregulate more precisely could represent a higher competitive advantage over P. muralis in thermally more restrictive environments such as higher altitudes. Understanding of metabolism seems to provide valuable information for understanding recent distributional patterns as well as species interactions. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Development of microheaters for gas sensor with an AT-Mega 8535 temperature controller using a PWM (pulse width modulation) method

    NASA Astrophysics Data System (ADS)

    Megayanti, Meti; Panatarani, Camellia; Joni, I. Made

    2016-03-01

    Microheater is the main component in gas sensor characterized by their sensitivity, selectivity, and time response of gas sensor which is depend on the microheater temperature stability. A Cu microheater was developed and utilized AT-Mega 8535 controller using a PWM (pulse width modulation) method. This control system is interfaced to the PC to observe the real time temperature response of the microheater. Three initial resistance (R0) variations of microheater were developed in an open loop control system. The power characteristic of designed microheater depends on the specified microheater initial resistance. The smaller R0, the less power required to reach a temperature setting value. The developed microheater was designed to reach a temperature setting value of 250°C having resistance 0.531 Ω for 1.979 Watt and 0.265 Ω for 1.072 Watt respectively. The results of the investigation on the control performances shows microheater-control system achieved operating temperature up to 250°C. The response of the temperature control shows smallest R0 resulted in a high stability with short settling time, short delay time and small ripple for temperature setting values higher than 150°C. The obtained error of microheater temperature with R0 = 0.265 is 8.596 %. It is concluded that the developed microheater can be utilized as a component of a gas sensor.

  20. Time-resolved photoluminescence investigation of (Mg, Zn) O alloy growth on a non-polar plane

    NASA Astrophysics Data System (ADS)

    Mohammed Ali, Mohammed Jassim; Chauveau, J. M.; Bretagnon, T.

    2018-04-01

    Excitons recombination dynamics in ZnMgO alloy have been studied by time-resolved photoluminescence according to temperature. At low temperature, localisation effects of the exciton are found to play a significant role. The photoluminescence (PL) decays are bi-exponential. The short lifetime has a constant value, whereas the long lifetime shows a dependency with temperature. For temperature higher than 100 K the declines show a mono-exponential decay. The PL declines are dominated by non-radiative process at temperatures above 150 K. The PL lifetime dependancy with temperature is analysed using a model including localisation effects and non-radiative recombinations.

  1. The crystallization of tough thermoplastic resins in the presence of carbon fibers

    NASA Technical Reports Server (NTRS)

    Theil, Michael H.

    1988-01-01

    The presence of carbon fibers increased the crystallization rates of both PEEK and PPS thermoplastic polymers. The effect was most pronounced at higher crystallization temperatures. Isothermal crystallization rates were analyzed by applying classical phenomenological nucleation theory. Unusually high values of the so-called Avrami exponent were found for neat PEEK. Isothermal crystallization of PEEK and PPS polymers produced crystalline samples having a wide variety of melting temperatures. The melting as observed by differential scanning calorimetry occurred as dual endotherms which were called primary (higher temperature) and secondary melting peaks. Each primary peak accounted for most of the crystallinity present. The secondary peaks represented the melting of crystallites formed later than those attributable to the primary endotherms. The presence of carbon fibers increased the thermal stability of both PEEK and PPS crystallites as manifested by higher temperatures for the primary melting peaks. This may be attributable to increased crystallite size, greater crystallite perfection, and/or favorable modification of the crystallite interface. Over the range studied, crystallization temperature strongly influenced the positions of the secondary peaks but not the primary peaks.

  2. Carbon isotope geochemistry of hydrocarbons in the Cerro Prieto geothermal field, Baja California Norte, Mexico

    NASA Technical Reports Server (NTRS)

    Des Marais, D. J.; Stallard, M. L.; Nehring, N. L.; Truesdell, A. H.

    1988-01-01

    Hydrocarbon abundances and stable-isotopic compositions were measured in wells M5, M26, M35 and M102, which represent a range of depths (1270-2000 m) and temperatures (275-330 degrees C) in the field. In order to simulate the production of the geothermal hydrocarbons, gases were collected from the pyrolysis of lignite in the laboratory. This lignite was obtained from a well which sampled rock strata which are identical to those occurring in the field, but which have experienced much lower subsurface temperatures. In both the well and the laboratory observations, high-temperature environments favored higher relative concentrations of methane, ethane and benzene and generally higher delta 13C-values in the individual hydrocarbons. The best correlation between the laboratory and well data is obtained when laboratory-produced gases from experiments conducted at lower (400 degrees C) and higher (600 degrees C) temperatures are mixed. This improved correlation suggests that the wells are sampling hydrocarbons produced from a spectrum of depths and temperatures in the sediments.

  3. Study of the Effects of High Temperatures on the Engineering Properties of Steel 42CrMo4

    NASA Astrophysics Data System (ADS)

    Brnic, Josip; Turkalj, Goran; Canadija, Marko; Lanc, Domagoj; Brcic, Marino

    2015-02-01

    The paper presents and analyzes the experimental results of the effect of elevated temperatures on the engineering properties of steel 42CrMo4. Experimental data relating to the mechanical properties of the material, the creep resistance as well as Charpy impact energy. Temperature dependence of the mentioned properties is also shown. Some of creep curves were simulated using rheological models and an analytical equation. Finally, an assessment of fracture toughness was made that was based on experimentally determined Charpy impact energy. Based on the obtained results it is visible that the tensile strength (617 MPa) and yield strength (415 MPa) have the highest value at the room temperature while at the temperature of 700 °C (973 K) these values significantly decrease. This steel can be considered resistant to creep at 400 °C (673 K), but at higher temperatures this steel can be subjected to low levels of stress in a shorter time.

  4. Empirical potential influence and effect of temperature on the mechanical properties of pristine and defective hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Thomas, Siby; Ajith, K. M.; Valsakumar, M. C.

    2017-06-01

    The major objective of this work is to present results of a classical molecular dynamics study to investigate the effect of changing the cut-off distance in the empirical potential on the stress-strain relation and also the temperature dependent Young’s modulus of pristine and defective hexagonal boron nitride. As the temperature increases, the computed Young’s modulus shows a significant decrease along both the armchair and zigzag directions. The computed Young’s modulus shows a trend in keeping with the structural anisotropy of h-BN. The variation of Young’s modulus with system size is elucidated. The observed mechanical strength of h-BN is significantly affected by the vacancy and Stone-Wales type defects. The computed room temperature Young’s modulus of pristine h-BN is 755 GPa and 769 GPa respectively along the armchair and zigzag directions. The decrease of Young’s modulus with increase in temperature has been analyzed and the results show that the system with zigzag edge shows a higher value of Young’s modulus in comparison to that with armchair edge. As the temperature increases, the computed stiffness decreases and the system with zigzag edge possesses a higher value of stiffness as compared to the armchair counterpart and this behaviour is consistent with the variation of Young’s modulus. The defect analysis shows that presence of vacancy type defects leads to a higher Young’s modulus, in the studied range with different percentage of defect concentration, in comparison with Stone-Wales defect. The variations in the peak position of the computed radial distribution function reveals the changes in the structural features of systems with zigzag and armchair edges in the presence of applied stress.

  5. The prediction of gross calorific value using infrared (IR) spectroscopy and multivariate analysis

    Treesearch

    Chi-Leung So; Thomas L. Eberhardt

    2011-01-01

    The gross calorific value (GCV) of a fuel, also known as the higher heating value (HHV) or gross heat of combustion, is the amount of heat released by a specified quantity (initially at 25°C) once it is com-busted and the products returned to that temperature. Fuwape (1989) noted that extractive-free wood from Gmelina arborea (Roxb), a hardwood, had a lower gross heat...

  6. Regional and circadian variations of sweating rate and body surface temperature in camels (Camelus dromedarius).

    PubMed

    Abdoun, Khalid A; Samara, Emad M; Okab, Aly B; Al-Haidary, Ahmed A

    2012-07-01

    It was the aim of this study to investigate the regional variations in surface temperature and sweating rate and to visualize body thermal windows responsible for the dissipation of excess body heat in dromedary camels. This study was conducted on five dromedary camels with mean body weight of 450 ± 20.5 kg and 2 years of age. Sweating rate, skin and body surface temperature showed significant (P < 0.001) circadian variation together with the variation in ambient temperature. However, daily mean values of sweating rate, skin and body surface temperature measured on seven regions of the camel body did not significantly differ. The variation in body surface temperature compared to the variation in skin temperature was higher in the hump compared to the axillary and flank regions, indicating the significance of camel's fur in protecting the skin from daily variation in ambient temperature. Infrared thermography revealed that flank and axillary regions had lower thermal gradients at higher ambient temperature (T(a) ) and higher thermal gradients at lower T(a) , which might indicate the working of flank and axillary regions as thermal windows dissipating heat during the night. Sweating rate showed moderate correlation to skin and body surface temperatures, which might indicate their working as potential thermal drivers of sweating in camels. © 2012 The Authors. Animal Science Journal © 2012 Japanese Society of Animal Science.

  7. Declining Atmospheric pCO2 During the Late Miocene and Early Pliocene: New Insights from Paired Alkenone and Coccolith Stable Isotope Barometry

    NASA Astrophysics Data System (ADS)

    Phelps, S. R.; Polissar, P. J.; deMenocal, P. B.; Swann, J. P.; Guo, M. Y.; Stoll, H. M.

    2015-12-01

    The relationship between atmospheric CO2 concentrations and climate is broadly understood for the Cenozoic era: warmer periods are associated with higher atmospheric carbon dioxide. This understanding is supported by atmospheric samples of the past 800,000 years from ice cores, which suggest CO2 levels play a key role in regulating global climate on glacial interglacial timescales as well. In this context, the late Miocene poses a challenge: sea-surface temperatures indicate substantial global warmth, though existing data suggest atmospheric CO2 concentrations were lower than pre-industrial values. Recent work using the stable carbon and oxygen isotopic composition of coccolith calcite has demonstrated these organisms began actively diverting inorganic carbon away from calcification and to the site of photosynthesis during the late Miocene. This process occurs in culture experiments in response to low aqueous CO2 concentrations, and suggests decreasing atmospheric pCO2 values during the late Miocene. Here we present new data from ODP Site 806 in the western equatorial Pacific Ocean that supports declining atmospheric CO2 across the late Miocene. Carbon isotope values of coccolith calcite from Site 806 demonstrate carbon limitation and re-allocation of inorganic carbon to photosynthesis starting between ~8 and 6 Ma. The timing of this limitation at Site 806 precedes shifts at other ODP sites, reflecting the higher mixed layer temperature and resultant lower CO2 solubility at Site 806. New measurements of carbon isotope values from alkenones at Site 806 show an increase in photosynthetic carbon fractionation (ɛp) accompanied the carbon limitation evident from coccolith calcite stable isotope data. While higher ɛp is typically interpreted as higher CO2 concentrations, at Site 806, our data suggest it reflects enhancement of chloroplast CO2 from active carbon transport by the coccolithophore algae in response to lower CO2 concentrations. Our new data from ODP Site 806 combined with previous published measurements suggests atmospheric CO2 values declined across the late Miocene and early Pliocene. This decline is coincident with decreasing ocean temperatures suggesting the fundamental relationship between atmospheric CO2 and climate can qualitatively explain late Miocene warmth.

  8. The clumped-isotope geochemistry of exhumed marbles from Naxos, Greece

    NASA Astrophysics Data System (ADS)

    Ryb, U.; Lloyd, M. K.; Stolper, D. A.; Eiler, J. M.

    2017-07-01

    Exhumation and accompanying retrograde metamorphism alter the compositions and textures of metamorphic rocks through deformation, mineral-mineral reactions, water-rock reactions, and diffusion-controlled intra- and inter-mineral atomic mobility. Here, we demonstrate that these processes are recorded in the clumped- and single-isotope (δ13 C and δ18 O) compositions of marbles, which can be used to constrain retrograde metamorphic histories. We collected 27 calcite and dolomite marbles along a transect from the rim to the center of the metamorphic core-complex of Naxos (Greece), and analyzed their carbonate single- and clumped-isotope compositions. The majority of Δ47 values of whole-rock samples are consistent with exhumation- controlled cooling of the metamorphic complex. However, the data also reveal that water-rock interaction, deformation driven recrystallization and thermal shock associated with hydrothermal alteration may considerably impact the overall distribution of Δ47 values. We analyzed specific carbonate fabrics influenced by deformation and fluid-rock reaction to study how these processes register in the carbonate clumped-isotope system. Δ47 values of domains drilled from a calcite marble show a bimodal distribution. Low Δ47 values correspond to an apparent temperature of 260 °C and are common in static fabrics; high Δ47 values correspond to an apparent temperature of 200 °C and are common in dynamically recrystallized fabrics. We suggest that the low Δ47 values reflect diffusion-controlled isotopic reordering during cooling, whereas high Δ47 values reflect isotopic reordering driven by dynamic recrystallization. We further studied the mechanism by which dynamic recrystallization may alter Δ47 values by controlled heating experiments. Results show no significant difference between laboratory reactions rates in the static and dynamic fabrics, consistent with a mineral-extrinsic mechanism, in which slip along crystal planes was associated with atomic-scale isotopic reordering in the calcite lattice. An intrinsic mechanism (enhanced isotopic reordering rate in deformed minerals) is contraindicated by these experiments. We suggest that Δ47 values of dynamically recrystallized fabrics that form below the diffusion-controlled blocking-temperature for calcite constrain the temperature of deformation. We find that Δ47-based temperatures of static fabrics from Naxos marbles are ∼60-80 °C higher than commonly observed in slowly cooled metamorphic rocks, and would suggest cooling rates of ∼105 °CMyr-1. A similar thermal history is inferred for dolomite marbles from the core vicinity, which preserve apparent temperatures up to 200 °C higher than a typical blocking temperature (∼300 °C). This finding could be explained by a hydrothermal event driving a brief thermal pulse and locally resetting Δ47 values. Rapid cooling of the core-complex region is consistent with a compilation of published cooling ages and a new apatite U-Th/He age, associating the thermal event with the emplacement of a granodiorite pluton at ∼12 Ma.

  9. Mechanical and Infrared Thermography Analysis of Shape Memory Polyurethane

    NASA Astrophysics Data System (ADS)

    Pieczyska, Elzbieta Alicja; Maj, Michal; Kowalczyk-Gajewska, Katarzyna; Staszczak, Maria; Urbanski, Leszek; Tobushi, Hisaaki; Hayashi, Shunichi; Cristea, Mariana

    2014-07-01

    Multifunctional new material—polyurethane shape memory polymer (PU-SMP)—was subjected to tension carried out at room temperature at various strain rates. The influence of effects of thermomechanical couplings on the SMP mechanical properties was studied, based on the sample temperature changes, measured by a fast and sensitive infrared camera. It was found that the polymer deformation process strongly depends on the strain rate applied. The initial reversible strain is accompanied by a small drop in temperature, called thermoelastic effect. Its maximal value is related to the SMP yield point and increases upon increase of the strain rate. At higher strains, the stress and temperature significantly increase, caused by reorientation of the polymer molecular chains, followed by the stress drop and its subsequent increase accompanying the sample rupture. The higher strain rate, the higher stress, and temperature changes were obtained, since the deformation process was more dynamic and has occurred in almost adiabatic conditions. The constitutive model of SMP valid in finite strain regime was developed. In the proposed approach, SMP is described as a two-phase material composed of hyperelastic rubbery phase and elastic-viscoplastic glassy phase, while the volume content of phases is specified by the current temperature.

  10. Phase transition temperatures and magnetic entropy change in Ni-Mn-In-B based Heusler alloys

    NASA Astrophysics Data System (ADS)

    Pathak, Arjun; Gautam, Bhoj; Dubenko, Igor; Ali, Naushad

    2008-03-01

    One of the aspects of great attention of Heusler alloys is the large value of magnetic entropy change (δSM) and their possible application as a working material in magnetocaloric effect based magnetic refrigerators. It was reported earlier that Ni50Mn34.8In15.2 has first order martensitic transition temperature TM 212K, Curie temperature of austenitic phase TC 328K and δSM value associated with TM and TC are respectively 13 and -7 J/kg K [1]. In the present study, we are reporting the effect of partial substitution of In by B in Ni50Mn34.8In15.2 by AC susceptibility, thermal expansion, and magnetization measurements. We observed that substitution of boron sharply increase TM, and significantly enhance the δSM peak value higher than 30 J/kg K at TM 296K; however the δSM value remains almost same at TC. Therefore, the Ni-Mn-In-B based Heusler alloys will be potential material for the study of room temperature magnetic refrigerator materials. Reference: [1] A. K. Pathak, M. Khan, I. Dubenko, S. Stadler, and N. Ali, Appl. Phys. Lett. 90, 262504 (2007).

  11. Design on automatic rolling system for agricultural greenhouse

    NASA Astrophysics Data System (ADS)

    Fu, Li; Fu, Xiuwei; Zhang, Yanxiao

    2018-03-01

    The automatic rolling system of agricultural greenhouse is introduced in this paper. The opening degree of greenhouse according to changes in light intensity and temperature is adjusted. When the current is too large or the motor is blocked or lost, the buzzer is alarmed and warned someone the controlling system badly. When the temperature is higher than the default value, the fan is moved by the micro-controller controls, otherwise the heating rod so that the temperature reaches the preset range.

  12. Relaxation of a High-Energy Quasiparticle in a One-Dimensional Bose Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Shina; Glazman, Leonid I.; Pustilnik, Michael

    2010-08-27

    We evaluate the relaxation rate of high-energy quasiparticles in a weakly interacting one-dimensional Bose gas. Unlike in higher dimensions, the rate is a nonmonotonic function of temperature, with a maximum at the crossover to the state of suppressed density fluctuations. At the maximum, the relaxation rate may significantly exceed its zero-temperature value. We also find the dependence of the differential inelastic scattering rate on the transferred energy. This rate yields information about temperature dependence of local pair correlations.

  13. Influence of deformation behavior, oxydation, and temperature on the long time cyclic stress behavior of high temperature steels

    NASA Technical Reports Server (NTRS)

    Maile, K.

    1982-01-01

    The influence of different parameters on the creep-fatigue behavior of several steel alloys was investigated. The higher the temperature the lower the crack initiation value. Pauses during the cycle reduce the damage. Oxidation reduces and protective gas increases the lifetime. Prior loading and prior deformation reduce the lifetime. Short annealing slightly affects the cycle stress behavior. The test results do not satisfactorily agree with methods of extrapolation and damage accumulation.

  14. Correlation dimensions of climate subsystems and their geographic variability

    NASA Astrophysics Data System (ADS)

    Gan, Thian Yew; Wang, Qiang; Seneka, Michael

    2002-12-01

    The correlation dimension D2 of precipitation (Canada and Africa), air temperature (Canada, New Zealand, and Southern Hemisphere), geo-potential height (Canada), and unregulated streamflow (Canada, USA, and Africa) were estimated using the Hill procedure of Mikosch and Wang [1995] and the bias correction of Wang and Gan [1998]. After bias correction, it seems that D2 is distinct between climate subsystems, such that for precipitation, it is between 8 and 9, for streamflow, it is between 7 and 9, for temperature, it is between 10 and 11, and for geo-potential heights, it is between 12 and 14. The results seem to suggest that climate might be viewed as a loosely coupled set of fairly high-dimensional subsystems and that different climate variables can yield different D2 values. Further, results also suggest that the D2 values of the climate subsystems studied, generally, have low geographic variability, as found between the precipitation data of Western Canada and Uganda, between the streamflow data of basins representing wide range climate and scales from Canada, USA, and Africa, and among the temperature data of Western Canada, New Zealand, and the southern hemisphere, and that the original D2 values analyzed from Canadian geo-potential heights are similar to that of Western Europe, eastern North America, and Germany. There is at most a weak relationship among basin physical characteristics, location, basin scale, and streamflow D2, while climatic influence is more obvious, as shown by drier basins having slightly higher D2 values than basins of wetter climate, basins from temperate climate having higher D2 values than those from cold or hot climates, and comparable D2 values between precipitation and streamflow data.

  15. Effect of Injection Molding Melt Temperatures on PLGA Craniofacial Plate Properties during In Vitro Degradation

    PubMed Central

    Fancello, Eduardo Alberto

    2017-01-01

    The purpose of this article is to present mechanical and physicochemical properties during in vitro degradation of PLGA material as craniofacial plates based on different values of injection molded temperatures. Injection molded plates were submitted to in vitro degradation in a thermostat bath at 37 ± 1°C by 16 weeks. The material was removed after 15, 30, 60, and 120 days; then bending stiffness, crystallinity, molecular weights, and viscoelasticity were studied. A significant decrease of molecular weight and mechanical properties over time and a difference in FT-IR after 60 days showed faster degradation of the material in the geometry studied. DSC analysis confirmed that the crystallization occurred, especially in higher melt temperature condition. DMA analysis suggests a greater contribution of the viscous component of higher temperature than lower temperature in thermomechanical behavior. The results suggest that physical-mechanical properties of PLGA plates among degradation differ per injection molding temperatures. PMID:29056968

  16. High-temperature superconducting undulator magnets

    DOE PAGES

    Kesgin, Ibrahim; Kasa, Matthew; Ivanyushenkov, Yury; ...

    2017-02-13

    Here, this paper presents test results on a prototype superconducting undulator magnet fabricated using 15% Zr-doped rare-earth barium copper oxide high temperature superconducting (HTS) tapes. On an 11-pole magnet we demonstrate an engineering current density, J e, of more than 2.1 kA mm -2 at 4.2 K, a value that is 40% higher than reached in comparable devices wound with NbTi-wire, which is used in all currently operating superconducting undulators. A novel winding scheme enabling the continuous winding of tape-shaped conductors into the intricate undulator magnets as well as a partial interlayer insulation procedure were essential in reaching this advancemore » in performance. Currently, there are rapid advances in the performance of HTS; therefore, achieving even higher current densities in an undulator structure or/and operating it at temperatures higher than 4.2 K will be possible, which would substantially simplify the cryogenic design and reduce overall costs.« less

  17. Studies of doped LaMnO3 samples prepared by citrate combustion process

    NASA Astrophysics Data System (ADS)

    Dimri, M. Chandra; Khanduri, H.; Mere, A.; Stern, R.

    2018-04-01

    La0.95A0.05MnO3 (where A=Na, Sr, Er, Dy and Ce) powder samples were synthesized by chemical solution route and the magnetic and structural properties are reported in this paper. The pervoskite structure was confirmed from X-ray diffraction patterns and Raman spectra at room temperature in all of these doped samples. Curie transition temperatures in doped LaMnO3 bulk samples were around 250K, which are much higher than the ideal value (˜140 K) in undoped samples. The increase in the magnetic transition temperatures can be related to non-stoichiometry and cation vacancies created due to higher valence substitutions for the univalent La1+ ions.

  18. Cation hydrolysis and the regulation of trace metal composition in seawater

    NASA Astrophysics Data System (ADS)

    Kumar, M. Dileep

    1987-08-01

    Thermodynamic calculations have been performed for cation hydrolysis, including temperatures from 2°C to the high values of significance near Mid-Oceanic Ridge Systems (MORS). Eighteen elements with wide range of residence times ( t) in seawater (Mn, Th, Al, Bi, Ce, Co, Cr(III), Fe, Nd, Pb, Sc, Sm, Ag, Cd, Cu, Hg, Ni and Zn) have been considered. A model for the regulation of trace metal composition in seawater by cation hydrolytic processes, including those at MORS, is presented. Results show an increase in the abundance of neutral metal hydroxyl species with increase in temperature. During hydrothermal mixing, as the temperature increases, transformation from lower positive hydroxyl complexes to higher or neutral complexes would occur for Cd, Ce, Co, Cr(III), Cu, Mn, Nd, Ni, Pb, Sm and Zn. pH values for adsorption of the metal ion onto solid surfaces have direct relation with pH values of hydrolysis. Co, Mn and Pb could be oxidized to higher states (at Mn-oxide surfaces) that would occur even at MORS. Ce can also be oxidized at 25°C. Solubility calculations show that Al, Bi, Cr(III), Sc, Fe and Th are saturated while Ce, Nd and Sm are not with respect to their oxyhydroxide solids at their concentrations in seawater at 25°C. Cu, Hg, Ni and Zn reach saturation equilibrium at 250°C, whereas Co, Mn and Pb exhibit unsaturation. The results suggest an increase in scavenging capacity of a cation with rise in temperature.

  19. Age-stage, two-sex life table of Parapoynx crisonalis (Lepidoptera: Pyralidae) at different temperatures

    PubMed Central

    Chen, Qi; Li, Ni; Wang, Xing; Ma, Li; Huang, Jian-Bin; Huang, Guo-Hua

    2017-01-01

    Parapoynx crisonalis is an important pest of many aquatic vegetables including water chestnuts. Understanding the relationship between temperature variations and the population growth rates of P. crisonalis is essential to predicting its population dynamics in water chestnuts ponds. These relationships were examined in this study based on the age-stage, two-sex life table of P. crisonalis developed in the laboratory at 21, 24, 27, 30, 33 and 36°C. The results showed that the values of Sxj (age-stage–specific survival rate), fxj (age-stage-specific fecundity), lx (age specific survival rate) and mx (age-specific fecundity) increased as the temperature rose from 21 to 27°C, then decreased from 30 to 36°C. Temperature also had a significant effect on the net reproductive rate (R0), gross reproductive rate (GRR), intrinsic rate of increase (r) and finite rate of increase (λ). The value of these parameters were at low levels at 21, 33, and 36°C. Further, the r value decreased as the temperature rose from 24 to 30°C, while the GRR reached its highest level at 27°C. The results indicated that optimal growth and development of P. crisonalis occurred at temperatures between 24°C to 30°C when compared to the lowest temperature (21°C) and higher temperatures of 33°C and 36°C. PMID:28264022

  20. A study of poplar organosolv lignin after melt rheology treatment as carbon fiber precursors

    DOE PAGES

    Sun, Qining; Khunsupat, Ratayakorn; Akato, Kokouvi; ...

    2016-06-16

    Lignins from various poplar genotypes were isolated by using organosolv fractionation and subjected to rheological treatment at various temperatures. Physicochemical characterization of the lignin variants shows a broad distribution of glass transition temperatures, melt viscosity, and pyrolysis char residues. Rheological treatment at 170 °C induces lignin repolymerization accompanied with an increase in condensed linkages, molecular weights, and viscosities. In contrast, rheology testing at 190 °C results in the decrease in lignin aliphatic and phenolic hydroxyl groups, β-O-aryl ether linkages, molecular weights, and viscosity values. Lignin under air cooling generates more oxygenated and condensed compounds, but lower amounts of ether linkagesmore » than lignin cooled under nitrogen. Here, lignin with a lower syringyl/guaiacyl ratio tends to form more cross-linkages along with higher viscosity values, higher molecular weight and larger amounts of condensed bonds.« less

  1. Influence of Nanoinclusions on Thermoelectric Properties of n-Type Bi2Te3 Nanocomposites

    NASA Astrophysics Data System (ADS)

    Fan, Shufen; Zhao, Junnan; Yan, Qingyu; Ma, Jan; Hng, Huey Hoon

    2011-05-01

    n-Type Bi2Te3 nanocomposites with enhanced figure of merit, ZT, were fabricated by a simple, high-throughput method of mixing nanostructured Bi2Te3 particles obtained through melt spinning with micron-sized particles. Moderately high power factors were retained, while the thermal conductivity of the nanocomposites was found to decrease with increasing weight percent of nanoinclusions. The peak ZT values for all the nanocomposites were above 1.1, and the maximum shifted to higher temperature with increasing amount of nanoinclusions. A maximum ZT of 1.18 at 42°C was obtained for the 10 wt.% nanocomposite, which is a 43% increase over the bulk sample at the same temperature. This is the highest ZT reported for n-type Bi2Te3 binary material, and higher ZT values are expected if state-of-the-art Bi2Te3- x Se x materials are used.

  2. Extremely Low Frequency Electromagnetic Field from Convective Air Warming System on Temperature Selection and Distance.

    PubMed

    Cho, Kwang Rae; Kim, Myoung-Hun; Ko, Myoung Jin; Jung, Jae Wook; Lee, Ki Hwa; Park, Yei-Heum; Kim, Yong Han; Kim, Ki Hoon; Kim, Jin Soo

    2014-12-01

    Hypothermia generates potentially severe complications in operating or recovery room. Forced air warmer is effective to maintain body temperature. Extremely low frequency electromagnetic field (ELF-EMF) is harmful to human body and mainly produced by electronic equipment including convective air warming system. We investigated ELF-EMF from convective air warming device on various temperature selection and distance for guideline to protect medical personnel and patients. The intensity of ELF-EMF was measured as two-second interval for five minutes on various distance (0.1, 0.2, 0.3, 0.5 and 1meter) and temperature selection (high, medium, low and ambient). All of electrical devices were off including lamp, computer and air conditioner. Groups were compared using one-way ANOVA. P<0.05 was considered significant. Mean values of ELF-EMF on the distance of 30 cm were 18.63, 18.44, 18.23 and 17.92 milligauss (mG) respectively (high, medium, low and ambient temperature set). ELF-EMF of high temperature set was higher than data of medium, low and ambient set in all the distances. ELF-EMF from convective air warming system is higher in condition of more close location and higher temperature. ELF-EMF within thirty centimeters exceeds 2mG recommended by Swedish TCO guideline.

  3. Temperature rise and parasitic infection interact to increase the impact of an invasive species.

    PubMed

    Laverty, Ciaran; Brenner, David; McIlwaine, Christopher; Lennon, Jack J; Dick, Jaimie T A; Lucy, Frances E; Christian, Keith A

    2017-04-01

    Invasive species often detrimentally impact native biota, e.g. through predation, but predicting such impacts is difficult due to multiple and perhaps interacting abiotic and biotic context dependencies. Higher mean and peak temperatures, together with parasites, might influence the impact of predatory invasive host species additively, synergistically or antagonistically. Here, we apply the comparative functional response methodology (relationship between resource consumption rate and resource supply) in one experiment and conduct a second scaled-up mesocosm experiment to assess any differential predatory impacts of the freshwater invasive amphipod Gammarus pulex, when uninfected and infected with the acanthocephalan Echinorhynchus truttae, at three temperatures representative of current and future climate. Individual G. pulex showed Type II predatory functional responses. In both experiments, infection was associated with higher maximum feeding rates, which also increased with increasing temperatures. Additionally, infection interacted with higher temperatures to synergistically elevate functional responses and feeding rates. Parasitic infection also generally increased Q 10 values. We thus suggest that the differential metabolic responses of the host and parasite to increasing temperatures drives the synergy between infection and temperature, elevating feeding rates and thus enhancing the ecological impact of the invader. Copyright © 2017 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  4. Arctic boundary layer properties and its influence on cloud occurrence frequency, phase and structure in autumn season

    NASA Astrophysics Data System (ADS)

    Qiu, S.; Dong, X.; Xi, B.

    2017-12-01

    In this study, autumnal boundary layer characteristics and cloud properties have been investigated using data collected at the Atmospheric Radiation Measurement North Slope of Alaska (ARM NSA) site from January 2002 to December 2008. We found that both cloud and planetary boundary layer (PBL) properties can be well distinguished by surface wind directions. When the ARM NSA site is dominated by a northerly wind during the period September- November, the PBL is at near saturation for all three months; while the maximum RH layer varies from low and thin in September, to higher and thicker in October, and then it becomes close to surface again in November. Both the ceilometer and the MPL derived cloud base heights coincide well with the RH maximum layer in the PBL for all three autumnal months. The frequencies of occurrence of mixed phase clouds in September and October are around 60-80% under a northerly wind, which are about 1.5 times higher than those during a southerly wind. Under northerly wind, the PDFs of PBL temperature and specific humidity are narrow and unimodal, with a peak probability around 0.4-0.5. Under a southerly wind, on the other hand, the PBL is both warmer and wetter than northerly wind profiles, which result in lower RH values (10-15% lower) in September and October; and the PDFs of PBL temperature and specific humidity are more evenly distributed with larger distribution range and lower PDF peak values (<0.3). In September, colder and dryer PBL is more favorable for mixed phase cloud formation, cloud occurrence frequency decreases from 90% to 60% as PBL temperature and specific humidity increase. In October, the frequency of occurrence of mixed phase clouds also decreases from 90% to 50-60% as PBL temperature increases. While in November, it increases first and then decreases with increasing PBL temperature and specific humidity. The frequency of occurrence of mixed phase clouds is linearly correlated to PBL RH values: for all three months, it increases from 20-90% as PBL RH value increases from 50-100%, with R2 values of 0.85-0.95. Liquid-only cloud occurrence frequency has little relationship with PBL RH values, while it increases from 1% to 20% as PBL specific humidity increases from 0-5 g/kg, with R2 values of 0.6-0.85.

  5. Thermomechanical Behavior of Developmental Thermal Barrier Coating Bond Coats

    NASA Astrophysics Data System (ADS)

    Pandey, Amit; Tolpygo, Vladimir K.; Hemker, Kevin J.

    2013-04-01

    Thermal expansion, microtensile, and stress relaxation experiments have been performed to contrast and compare the thermal and mechanical response of two experimental (L1 and H1) coatings provided by Honeywell Corporation (Morristown, NY). Thermal expansion experiments reveal that both coatings have coefficients of thermal expansion (CTE) that vary with temperature and that the CTE mismatch between the coatings and superalloy substrate is significant in the case of L1 as compared to H1. Values of the 0.2% offset yield stress (YS), Young's modulus ( E), and hardening exponent ( n) are reported. Room-temperature microtensile experiments show higher strain hardening and a very low value of failure strain for L1 as compared to H1. At elevated temperatures, there is a significant decrease in the YS of as-received L1 for (924 MPa at room temperature to 85 MPa at 1000°C) as compared to H1. Finally, a power law creep description for high-temperature stress relaxation is developed and the measured values of the stress exponent ( n = 3) and activation energies ( Q creep = 200-250 kJ/mol) are shown to be consistent with power law creep.

  6. A case study demonstration of the soil temperature extrema recovery rates after precipitation cooling at 10-cm soil depth

    NASA Technical Reports Server (NTRS)

    Welker, Jean Edward

    1991-01-01

    Since the invention of maximum and minimum thermometers in the 18th century, diurnal temperature extrema have been taken for air worldwide. At some stations, these extrema temperatures were collected at various soil depths also, and the behavior of these temperatures at a 10-cm depth at the Tifton Experimental Station in Georgia is presented. After a precipitation cooling event, the diurnal temperature maxima drop to a minimum value and then start a recovery to higher values (similar to thermal inertia). This recovery represents a measure of response to heating as a function of soil moisture and soil property. Eight different curves were fitted to a wide variety of data sets for different stations and years, and both power and exponential curves were fitted to a wide variety of data sets for different stations and years. Both power and exponential curve fits were consistently found to be statistically accurate least-square fit representations of the raw data recovery values. The predictive procedures used here were multivariate regression analyses, which are applicable to soils at a variety of depths besides the 10-cm depth presented.

  7. Flow of 3D Eyring-Powell fluid by utilizing Cattaneo-Christov heat flux model and chemical processes over an exponentially stretching surface

    NASA Astrophysics Data System (ADS)

    Hayat, Tanzila; Nadeem, S.

    2018-03-01

    This paper examines the three dimensional Eyring-Powell fluid flow over an exponentially stretching surface with heterogeneous-homogeneous chemical reactions. A new model of heat flux suggested by Cattaneo and Christov is employed to study the properties of relaxation time. From the present analysis we observe that there is an inverse relationship between temperature and thermal relaxation time. The temperature in Cattaneo-Christov heat flux model is lesser than the classical Fourier's model. In this paper the three dimensional Cattaneo-Christov heat flux model over an exponentially stretching surface is calculated first time in the literature. For negative values of temperature exponent, temperature profile firstly intensifies to its most extreme esteem and after that gradually declines to zero, which shows the occurrence of phenomenon (SGH) "Sparrow-Gregg hill". Also, for higher values of strength of reaction parameters, the concentration profile decreases.

  8. Investigation of a temperature tolerant InGaP (GaInP) converter layer for a 63Ni betavoltaic cell

    NASA Astrophysics Data System (ADS)

    Butera, S.; Whitaker, M. D. C.; Krysa, A. B.; Barnett, A. M.

    2017-08-01

    A prototype InGaP p+-i-n+ mesa photodiode was studied for its potential as the energy conversion device in a 63Ni betavoltaic cell; its electrical performance was analysed across the temperature range  -20 °C to 100 °C. The results show that the InGaP detector when illuminated with a laboratory 63Ni radioisotope beta particle source had a maximum output power of 0.92 pW at  -20 °C, this value decreased at higher temperatures. A decrease in the open circuit voltage and in the cell internal conversion efficiency were also observed when the temperature was increased: at  -20 °C, the open circuit voltage and the cell internal conversion efficiency had values of 0.69 V and 4%, respectively. A short circuit current of 4.5 pA was measured at  -20 °C.

  9. Seasonal variations of alkenones and UK37 in the Chesapeake Bay water column

    USGS Publications Warehouse

    Mercer, J.L.; Zhao, M.; Colman, Steven M.

    2005-01-01

    Alkenone unsaturation indices (UK37 and U K???37) have long been used as proxies for surface water temperature in the open ocean. Recent studies have suggested that in other marine environments, variables other than temperature may affect both the production of alkenones and the values of the indices. Here, we present the results of a reconnaissance field study in which alkenones were extracted from particulate matter filtered from the water column in Chesapeake Bay during 2000 and 2001. A multivariate analysis shows a strong positive correlation between UK37 (and UK???37) values and temperature, and a significant negative correlation between UK37 (and UK???37) values and nitrate concentrations. However, temperature and nitrate concentrations also co-vary significantly. The temperature vs. UK37 relationships (UK37=0.018 (T)-0.162, R2=0.84, UK???37=0.013 (T)-0.04, R2=0.80) have lower slopes than the open-ocean equations of Prahl et al. [1988. Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions. Geochimica et Cosmochimica Acta 52, 2303-2310] and Mu??ller et al. [1998. Calibration of the alkenone paleotemperature index UK???37 based on core-tops from the eastern South Atlantic and the global ocean (60??N-60??S). Geochimica et Cosmochimica Acta 62, 1757-1772], but are similar to the relationships found in controlled studies with elevated nutrient levels and higher nitrate:phosphate (N:P) ratios. This implies that high nutrient levels in Chesapeake Bay have either lowered the UK37 vs. temperature slope, or nutrient levels are the main controller of the U K37 index. In addition, particularly high abundances (>5% of total C37 alkenones) of the tetra-unsaturated ketone, C37:4, were found when water temperatures reached 25??C or higher, thus posing further questions about the controls on alkenone production as well as the biochemical roles of alkenones. ?? 2005 Elsevier Ltd. All rights reserved.

  10. Extreme summer temperatures in Iberia: health impacts and associated synoptic conditions

    NASA Astrophysics Data System (ADS)

    García-Herrera, R.; Díaz, J.; Trigo, R. M.; Hernández, E.

    2005-02-01

    This paper examines the effect of extreme summer temperatures on daily mortality in two large cities of Iberia: Lisbon (Portugal) and Madrid (Spain). Daily mortality and meteorological variables are analysed using the same methodology based on Box-Jenkins models. Results reveal that in both cases there is a triggering effect on mortality when maximum daily temperature exceeds a given threshold (34°C in Lisbon and 36°C in Madrid). The impact of most intense heat events is very similar for both cities, with significant mortality values occurring up to 3 days after the temperature threshold has been surpassed. This impact is measured as the percentual increase of mortality associated to a 1°C increase above the threshold temperature. In this respect, Lisbon shows a higher impact, 31%, as compared with Madrid at 21%. The difference can be attributed to demographic and socio-economic factors. Furthermore, the longer life span of Iberian women is critical to explain why, in both cities, females are more susceptible than males to heat effects, with an almost double mortality impact value. The analysis of Sea Level Pressure (SLP), 500hPa geopotential height and temperature fields reveals that, despite being relatively close to each other, Lisbon and Madrid have relatively different synoptic circulation anomalies associated with their respective extreme summer temperature days. The SLP field reveals higher anomalies for Lisbon, but extending over a smaller area. Extreme values in Madrid seem to require a more western location of the Azores High, embracing a greater area over Europe, even if it is not as deep as for Lisbon. The origin of the hot and dry air masses that usually lead to extreme heat days in both cities is located in Northern Africa. However, while Madrid maxima require wind blowing directly from the south, transporting heat from Southern Spain and Northern Africa, Lisbon maxima occur under more easterly conditions, when Northern African air flows over the central Iberian plateau, which had been previously heated.

  11. Investigation of the thermoelectric properties of Nb and oxygen vacancy co-doped SrTiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Gong, Jing; Yuan, Zhanhui; Xu, Shikui; Li, Zhuangzhi; Xu, Jingzhou; Tang, Guide

    2017-05-01

    High quality Nb doped SrTi1-x Nb x O3 polycrystalline ceramics were fabricated using a conventional solid state reaction method. By annealing in a reducing atmosphere at an elevated temperature, a series of Nb and oxygen vacancy co-doped SrTi1-x Nb x O3-δ (0  ⩽  x  ⩽  0.2) samples was obtained. The thermoelectric properties of the samples were measured in the temperature range from 15 K to 380 K. These measurements showed that the transport behavior of these samples is consistent with the small polaron conduction mechanism for the temperature range from room temperature to 380 K. Furthermore, after annealing, samples with a lower Nb doping were found to give a relative higher ZT value, while excess Nb led to a reduced ZT value. The x  =  0.02 sample gave the optimal thermoelectric properties, with a ZT value of 0.023 at 300 K, and 0.028 at 380 K.

  12. DNA damage as a biomarker of genotoxic contamination in Mytilus galloprovincialis from the south coast of Portugal.

    PubMed

    Almeida, Catarina; Pereira, Catarina; Gomes, Tânia; Bebianno, Maria João; Cravo, Alexandra

    2011-09-01

    DNA damage was evaluated in the haemolymph of Mytilus galloprovincialis from nine sites along the south coast of Portugal using the comet assay. DNA damage was low, in the same range of sites considered to suffer low impact from genotoxic contaminants. Even so, differences between sites, seasons and genders were found. Highest values were in mussels from the main estuaries and the fishery harbour, reflecting higher genotoxin levels, whereas the lowest values can be used as a baseline for future work. Non-contaminant related factors (e.g. temperature and oxygen) were also shown to influence DNA damage. Between seasons, highest values were in summer related not only to the increase of tourism in this region (∼10-fold), but also to temperature. Between genders, males were found to be more sensitive. The condition index was also generally higher in summer. Lipid peroxidation, another damage biomarker, was measured in gills to assess if there is any association between the responses of both biomarkers and if they are similarly affected by the same environmental conditions. LPO like DNA damage was higher in summer. This work confirms that DNA damage is a sensitive biomarker to discriminate genotoxic contamination, even in areas considered to suffer low impact from genotoxins.

  13. Outdoor thermal comfort in public space in warm-humid Guayaquil, Ecuador

    NASA Astrophysics Data System (ADS)

    Johansson, Erik; Yahia, Moohammed Wasim; Arroyo, Ivette; Bengs, Christer

    2018-03-01

    The thermal environment outdoors affects human comfort and health. Mental and physical performance is reduced at high levels of air temperature being a problem especially in tropical climates. This paper deals with human comfort in the warm-humid city of Guayaquil, Ecuador. The main aim was to examine the influence of urban micrometeorological conditions on people's subjective thermal perception and to compare it with two thermal comfort indices: the physiologically equivalent temperature (PET) and the standard effective temperature (SET*). The outdoor thermal comfort was assessed through micrometeorological measurements of air temperature, humidity, mean radiant temperature and wind speed together with a questionnaire survey consisting of 544 interviews conducted in five public places of the city during both the dry and rainy seasons. The neutral and preferred values as well as the upper comfort limits of PET and SET* were determined. For both indices, the neutral values and upper thermal comfort limits were lower during the rainy season, whereas the preferred values were higher during the rainy season. Regardless of season, the neutral values of PET and SET* are above the theoretical neutral value of each index. The results show that local people accept thermal conditions which are above acceptable comfort limits in temperate climates and that the subjective thermal perception varies within a wide range. It is clear, however, that the majority of the people in Guayaquil experience the outdoor thermal environment during daytime as too warm, and therefore, it is important to promote an urban design which creates shade and ventilation.

  14. Outdoor thermal comfort in public space in warm-humid Guayaquil, Ecuador.

    PubMed

    Johansson, Erik; Yahia, Moohammed Wasim; Arroyo, Ivette; Bengs, Christer

    2018-03-01

    The thermal environment outdoors affects human comfort and health. Mental and physical performance is reduced at high levels of air temperature being a problem especially in tropical climates. This paper deals with human comfort in the warm-humid city of Guayaquil, Ecuador. The main aim was to examine the influence of urban micrometeorological conditions on people's subjective thermal perception and to compare it with two thermal comfort indices: the physiologically equivalent temperature (PET) and the standard effective temperature (SET*). The outdoor thermal comfort was assessed through micrometeorological measurements of air temperature, humidity, mean radiant temperature and wind speed together with a questionnaire survey consisting of 544 interviews conducted in five public places of the city during both the dry and rainy seasons. The neutral and preferred values as well as the upper comfort limits of PET and SET* were determined. For both indices, the neutral values and upper thermal comfort limits were lower during the rainy season, whereas the preferred values were higher during the rainy season. Regardless of season, the neutral values of PET and SET* are above the theoretical neutral value of each index. The results show that local people accept thermal conditions which are above acceptable comfort limits in temperate climates and that the subjective thermal perception varies within a wide range. It is clear, however, that the majority of the people in Guayaquil experience the outdoor thermal environment during daytime as too warm, and therefore, it is important to promote an urban design which creates shade and ventilation.

  15. Age-related changes of serum mitochondrial uncoupling 1, rumen and rectal temperature in goats.

    PubMed

    Arfuso, Francesca; Rizzo, Maria; Giannetto, Claudia; Giudice, Elisabetta; Fazio, Francesco; Piccione, Giuseppe

    2016-07-01

    Thermoregulatory processes are induced not only by exposure to cold or heat but also by a variety of physiological situations including age, fasting and food intake that result in changes in body temperature. The aim of the present study was to evaluate the differences in serum mitochondrial uncoupling protein 1 (UCP1), rumen temperature (TRUMEN) and rectal temperature (TRECTAL) values between adult and kids goats. Ten adult male Maltese goats aged 3-5 years old (Group A) and 30 male kids, raised for meat, were enrolled in this study. The kids were equally divided into 3 groups according to their age: Group B included kids aged 3 months, Group C included kids aged 4 months and Group D included kids aged 5 months. Blood samples and measurements of TRUMEN and TRECTAL were obtained from each animal. One-way repeated measures analysis of variance (ANOVA) was applied to evaluate the effect of age on the studied parameters. Statistically significant higher serum UCP1 levels (P<0.001) were found in Group A as compared to Groups B, C and D. Higher TRUMEN values (P<0.001) were found in Group A than in Groups B, C and D, and in Group B than in Groups C and D. Group A showed lower TRECTAL values (P<0.001) than Groups B, C and D. The Pearson's Correlation test was applied to assess significant relationship among studied parameters showing a statistically significant negative correlation between the values of TRECTAL and serum UCP1 in all studied Groups (P<0.001). These results indicate that goats have good control of body temperature suggesting that further details about the thermogenic capacity and the function of UCP1 in kids and adult goats are worth exploring. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Impacts of autochthonous marine branched GDGTs on related paleo- environmental proxies: a preliminary study

    NASA Astrophysics Data System (ADS)

    Dong, L.; Li, L.; Li, Q.; Zhang, C.

    2014-12-01

    Two proxies derived from branched glycerol dialkyl glycerol tetraethers (brGDGTs)-, the methylation index of branched tetraethers (MBT) and the cyclization ratio of branched tetraethers (CBT), are often used to reconstruct paleo mean annual air temperature (MAAT) and soil pH on the belief of their terrestrial origin. However, mounting evidence indicates the existence of autochthonous brGDGTs in marine environments,which may affect MAAT reconstruction and the use of other related paleoenvironmental proxies. Here we provide high resolution profiles of brGDGTs in a sedimentary core (MD05-2896/7) from the southern South China Sea, which include MBT and CBT indices as well as the branched and isoprenoid tetraether (BIT) index. The BIT results varied systematically with glacial-interglacial cycles, with values distinctly lower (<0.1) during the interglacial periods (MIS 1 and MIS 5) than during the glacial periods (MIS 2, MIS, 3, MIS 4 and MIS 6). Also distinct is the MBT/CBT-derived temperature, which show lower values during the interglacial periods but higher values during the glacial periods. We hypothesize that the lower MBT/CBT-derived temperature during the interglacial periods reflects subsurface water column temperature registered by autochthonous brGDGTs produced in situ marine conditions, whereas the higher MBT/CBT derived-temperature during the glacial periods reflects terrestrial MAAT because of the overwhelming input of brGDGTs from land when sea level was low. Similarly, the CBT-derived pH appears to have been overprinted also by the sea water signal of the interglacials but affected mostly by precipitation during the glacial intervals, showing patterns similar to or as a positive response to the southern hemispheric climate oscillation due to teleconnection. Our study demonstrates the complexity of brGDGT occurrence in marine environments and suggests that the MBT/CBT proxy should not be directly employed for the reconstruction of terrestrial MAAT at marine settings when BIT value is lower than 0.1.

  17. Prediction of parturition in bitches utilizing continuous vaginal temperature measurement.

    PubMed

    Geiser, B; Burfeind, O; Heuwieser, W; Arlt, S

    2014-02-01

    The objective of this study was to determine sensitivity and specificity of a body temperature decline in bitches to predict parturition. Temperature loggers were placed into the vaginal cavity of 16 pregnant bitches on day 56-61 after estimated ovulation or first mating. This measurement technique has been validated previously and enabled continuous sampling of body temperature. The temperature loggers were expelled from the vagina before delivery of the first pup. The computed values for specificity (77-92%) were higher than sensitivity (53-69%), indicating a more precise prognosis of parturition not occurring. In conclusion, our findings may assist interpreting vaginal temperature measurements in order to predict parturition in bitches. © 2013 Blackwell Verlag GmbH.

  18. Specific energy consumption and quality of wood pellets produced using high-moisture lodgepole pine grind in a flat die pellet mill

    DOE PAGES

    Tumuluru, Jaya Shankar

    2016-04-16

    In the present study a Box–Behnken experimental design was used to understand the effect of the moisture content of lodgepole pine grind (33–39%, w.b.), die speed (40–60 Hz) and preheating temperature (30–90 °C) on the pellet quality and specific energy consumption. The partially dried pellets produced had high-moisture content in the range of 19–28% (w.b.), and were further dried to <9% (w.b.) in a mechanical oven set at 70 °C for 3 h. Dried pellets were further evaluated for pellet moisture content, unit, bulk, tapped density, and durability. Response surface models developed for the product properties have adequately described themore » process based on coefficient of determination values. Surface plots developed indicated higher unit, bulk, and tapped density (1050, 520, 560 kg/m 3) are achievable at 33–35% (w.b.) moisture content of the lodgepole pine grind, die speed of 60 Hz and preheating temperature of 30–60 °C. Higher moisture content of 39% (w.b) reduced unit, bulk, and tapped density to <912, 396, and 452 kg/m 3. Higher durability values of >95% were obtained at 33–35% (w.b.) at lower preheating temperatures of 30–50 °C and higher die speed of >50 Hz. At 33% (w.b.) moisture content of the lodgepole pine grind, preheating temperature of 90 °C, and die speed of 60 Hz, the observed specific energy consumption was <116 kW h/ton. As a result, scanning electron microscope studies indicated that lignin crosslinking is the primary reason for binding of the lodgepole pine grind at high-moisture content.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumuluru, Jaya Shankar

    In the present study a Box–Behnken experimental design was used to understand the effect of the moisture content of lodgepole pine grind (33–39%, w.b.), die speed (40–60 Hz) and preheating temperature (30–90 °C) on the pellet quality and specific energy consumption. The partially dried pellets produced had high-moisture content in the range of 19–28% (w.b.), and were further dried to <9% (w.b.) in a mechanical oven set at 70 °C for 3 h. Dried pellets were further evaluated for pellet moisture content, unit, bulk, tapped density, and durability. Response surface models developed for the product properties have adequately described themore » process based on coefficient of determination values. Surface plots developed indicated higher unit, bulk, and tapped density (1050, 520, 560 kg/m 3) are achievable at 33–35% (w.b.) moisture content of the lodgepole pine grind, die speed of 60 Hz and preheating temperature of 30–60 °C. Higher moisture content of 39% (w.b) reduced unit, bulk, and tapped density to <912, 396, and 452 kg/m 3. Higher durability values of >95% were obtained at 33–35% (w.b.) at lower preheating temperatures of 30–50 °C and higher die speed of >50 Hz. At 33% (w.b.) moisture content of the lodgepole pine grind, preheating temperature of 90 °C, and die speed of 60 Hz, the observed specific energy consumption was <116 kW h/ton. As a result, scanning electron microscope studies indicated that lignin crosslinking is the primary reason for binding of the lodgepole pine grind at high-moisture content.« less

  20. Ethanol electrooxidation on a carbon-supported Pt catalyst at elevated temperature and pressure: A high-temperature/high-pressure DEMS study

    NASA Astrophysics Data System (ADS)

    Sun, S.; Halseid, M. Chojak; Heinen, M.; Jusys, Z.; Behm, R. J.

    The electrooxidation of ethanol on a Pt/Vulcan catalyst was investigated in model studies by on-line differential electrochemical mass spectrometry (DEMS) over a wide range of reaction temperatures (23-100 °C). Potentiodynamic and potentiostatic measurements of the Faradaic current and the CO 2 formation rate, performed at 3 bar overpressure under well-defined transport and diffusion conditions reveal significant effects of temperature, potential and ethanol concentration on the total reaction activity and on the selectivity for the pathway toward complete oxidation to CO 2. The latter pathway increasingly prevails at higher temperature, lower concentration and lower potentials (∼90% current efficiency for CO 2 formation at 100 °C, 0.01 M, 0.48 V), while at higher ethanol concentrations (0.1 M), higher potentials or lower temperatures the current efficiency for CO 2 formation drops, reaching values of a few percent at room temperature. These trends result in a significantly higher apparent activation barrier for complete oxidation to CO 2 (68 ± 2 kJ mol -1 at 0.48 V, 0.1 M) compared to that of the overall ethanol oxidation reaction determined from the Faradaic current (42 ± 2 kJ mol -1 at 0.48 V, 0.1 M). The mechanistic implications of these results and the importance of relevant reaction and mass transport conditions in model studies for reaction predictions in fuel cell applications are discussed.

  1. Development of microheaters for gas sensor with an AT-Mega 8535 temperature controller using a PWM (pulse width modulation) method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Megayanti, Meti; Panatarani, Camellia; Joni, I. Made, E-mail: imadejoni@phys.unpad.ac.id

    Microheater is the main component in gas sensor characterized by their sensitivity, selectivity, and time response of gas sensor which is depend on the microheater temperature stability. A Cu microheater was developed and utilized AT-Mega 8535 controller using a PWM (pulse width modulation) method. This control system is interfaced to the PC to observe the real time temperature response of the microheater. Three initial resistance (R0) variations of microheater were developed in an open loop control system. The power characteristic of designed microheater depends on the specified microheater initial resistance. The smaller R0, the less power required to reach amore » temperature setting value. The developed microheater was designed to reach a temperature setting value of 250°C having resistance 0.531 Ω for 1.979 Watt and 0.265 Ω for 1.072 Watt respectively. The results of the investigation on the control performances shows microheater-control system achieved operating temperature up to 250°C. The response of the temperature control shows smallest R0 resulted in a high stability with short settling time, short delay time and small ripple for temperature setting values higher than 150°C. The obtained error of microheater temperature with R0 = 0.265 is 8.596 %. It is concluded that the developed microheater can be utilized as a component of a gas sensor.« less

  2. Scaling of confinement and profiles in the EXTRAP T2 reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Welander, A.

    1999-01-01

    In the EXTRAP T2 reversed-field pinch the diagnostic techniques for the measurement of electron density and temperature include; Thomson scattering which gives values at three radial positions in the core (r/a = 0, 0.28, 0.56), Langmuir probes which give values at the edge (r/a > 0.9) and interferometry which gives a line-averaged density. The empirical scaling of electron density and temperature including profile information with global plasma parameters has been studied. The density profile is subject to large variations, with an average parabolic shape when the density is low and flatter shapes when the density is increased. The change in the profile shape can be attributed to a shift in the penetration length of neutrals from the vicinity of the wall. The temperature scales roughly as I/n1/2 where I is the plasma current and n is the density. The temperature profile is always quite flat with lower variations and there is a tendency for a flatter profile at higher temperatures.

  3. Temperature Effect of Hydrogen-Like Impurity on the Ground State Energy of Strong Coupling Polaron in a RbCl Quantum Pseudodot

    NASA Astrophysics Data System (ADS)

    Xiao, Jing-Lin

    2016-11-01

    We study the ground state energy and the mean number of LO phonons of the strong-coupling polaron in a RbCl quantum pseudodot (QPD) with hydrogen-like impurity at the center. The variations of the ground state energy and the mean number of LO phonons with the temperature and the strength of the Coulombic impurity potential are obtained by employing the variational method of Pekar type and the quantum statistical theory (VMPTQST). Our numerical results have displayed that [InlineMediaObject not available: see fulltext.] the absolute value of the ground state energy increases (decreases) when the temperature increases at lower (higher) temperature regime, [InlineMediaObject not available: see fulltext.] the mean number of the LO phonons increases with increasing temperature, [InlineMediaObject not available: see fulltext.] the absolute value of ground state energy and the mean number of LO phonons are increasing functions of the strength of the Coulombic impurity potential.

  4. Environment in pediatric wards: light, sound, and temperature.

    PubMed

    Oliveira, Lia; Gomes, Cláudia; Bacelar Nicolau, Leonor; Ferreira, Luís; Ferreira, Rosário

    2015-09-01

    The mutual relationship between sleep and disease is well known, becoming more relevant whenever the disease leads to hospitalization. We intend to describe patterns of environmental factors of some pediatric wards, and to verify if these are in line with those recommended. As a secondary aim, we characterize sleep quality during hospitalization. Five pediatric wards of a tertiary-level hospital were included. Light, sound, and temperature were measured and assessed through descriptive statistics. The following recommended values were considered: maximum light 100 Lux, maximum sound 45 dB, and optimal temperature 20-24 °C. A questionnaire was prepared to assess children's sleep, and it was completed by a caregiver. Light values were within the desirable limits for 86% of evaluated time. In all wards, the intensity of sound was much higher than desirable, being above 45 dB during 85% of evaluated time. The temperature was above 24 °C during 78% of total time. Based on 34 answered questionnaires (out of 50 distributed), almost half of the respondents believe that sleep quality and restlessness are worse at the hospital. Most children slept for a longer time at home. Eighteen children awoke more times at the hospital, and those awakenings were mostly attributed to noise. The sound and temperature were higher than recommended. The different values between these wards may be due to different levels of care, but this shows that there are no standard rules on this matter. A worse quality and shorter duration of sleep at hospital were reported. Comprehensive studies are necessary to evaluate the impact of environmental factors on disease recovery. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Wetting Transition of Water

    NASA Astrophysics Data System (ADS)

    Friedman, Serah; Khalil, Matt; Taborek, Peter

    2013-03-01

    Pure liquid water does not wet most solid surfaces. Liquid water on these surfaces beads up and forms droplets with a finite contact angle. General thermodynamic principles suggest that as the temperature approaches the critical point, the contact angle should go to zero, marking the wetting transition. We have made an optical cell which can operate near the critical point of water (Tc =373C, Pc =217 atm) to study this phenomenon on sapphire, graphite and silicon. We have used two methods to measure the wetting temperature of water on these surfaces. Firstly, we studied a single droplet on a horizontal surface and optically measured the change in contact angle as a function of increasing temperature. Second, we studied the condensation of droplets on a vertical plate as a function of temperature. As the temperature approached the wetting temperature in both cases, the droplets spread and eventually form a smooth film along the surface of the plate. The wetting temperature on sapphire is near 240C and is considerably higher on graphite. Our observed values of Tw are significantly higher than the predictions made by the sharp-kink approximation and recent molecular dynamics simulations.

  6. Entropy Drives the Formation of Salt Bridges in the Protein GB3.

    PubMed

    Zhang, Ning; Wang, Yefei; An, Liaoyuan; Song, Xiangfei; Huang, Qingshan; Liu, Zhijun; Yao, Lishan

    2017-06-19

    Salt bridges are very common in proteins. But what drives the formation of protein salt bridges is not clear. In this work, we determined the strength of four salt bridges in the protein GB3 by measuring the ΔpK a values of the basic residues that constitute the salt bridges with a highly accurate NMR titration method at different temperatures. The results show that the ΔpK a values increase with temperature, thus indicating that the salt bridges are stronger at higher temperatures. Fitting of ΔpK a values to the van't Hoff equation yields positive ΔH and ΔS values, thus indicating that entropy drives salt-bridge formation. Molecular dynamics simulations show that the protein and solvent make opposite contributions to ΔH and ΔS. Specifically, the enthalpic gain contributed from the protein is more than offset by the enthalpic loss contributed from the solvent, whereas the entropic gain originates from the desolvation effect. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Chemical durability and leaching mechanism of Ce0.5Eu0.5PO4 ceramics: Effects of temperature and pH values

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaofeng; Teng, Yuancheng; Wu, Lang; Huang, Yi; Ma, Jiyan; Wang, Guolong

    2015-11-01

    Ce0.5Eu0.5PO4 ceramics with high relative density were prepared by hot-press (HPS) and pressureless (PLS) sintering. The effects of temperature and pH values on the chemical durability of the ceramics were investigated. The results show that an increase of acidity significantly accelerated the corrosion of the samples. In alkaline leachates, further release elements were prevented by the newborn surface precipitation. The leach rate (Rn) of HPS sample was similar to that of PLS specimen in deionized water, but higher Rn for PLS sample was found in pH = 11 solution. Moreover, apparent activation energy of the dissolution of Eu (40 ± 4 kJ mol-1) is much higher than that of Ce (20 ± 1 kJ mol-1), leading to the higher normalized elemental leach rate of Eu. Both the Eu and Ce elements have low leach rates (10-12-10-9 m d-1) after 42 days in all the leachates studied in this work.

  8. Subcritical hydrothermal liquefaction of cattle manure to bio-oil: Effects of conversion parameters on bio-oil yield and characterization of bio-oil.

    PubMed

    Yin, Sudong; Dolan, Ryan; Harris, Matt; Tan, Zhongchao

    2010-05-01

    In this study, cattle manure was converted to bio-oil by subcritical hydrothermal liquefaction in the presence of NaOH. The effects of conversion temperature, process gas, initial conversion pressure, residence time and mass ratio of cattle manure to water on the bio-oil yield were studied. The bio-oil was characterized in terms of elemental composition, higher heating value, ultraviolet-visible (UV/Vis) spectroscopy, Fourier transform infrared spectroscopy (FTIR), gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Results showed that the bio-oil yield depended on the conversion temperature and the process gas. Higher initial conversion pressure, longer residence time and larger mass ratio of cattle manure to water, however, had negative impacts on the bio-oil yield. The higher heating value of bio-oil was 35.53MJ/kg on average. The major non-polar components of bio-oil were toluene, ethyl benzene and xylene, which are components of crude oil, gasoline and diesel. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Life History Characteristics of Frankliniella occidentalis and Frankliniella intonsa (Thysanoptera: Thripidae) in Constant and Fluctuating Temperatures.

    PubMed

    Ullah, Mohammad Shaef; Lim, Un Taek

    2015-06-01

    Frankliniella occidentalis (Pergande) and Frankliniella intonsa (Trybom) are sympatric pests of many greenhouse and field crops in Korea. We compared the influence of constant (27.3°C) and fluctuating temperatures (23.8-31.5°C, with an average of 27.3°C) on the life table characteristics of F. occidentalis and F. intonsa held at a photoperiod of 16:8 (L:D) h and 45±5% relative humidity. The development times of both F. occidentalis and F. intonsa were significantly affected by temperature fluctuation, species, and sex. The development time from egg to adult of F. intonsa was shorter than that for F. occidentalis at both constant and fluctuating temperatures. Survival of immature life stages was higher under fluctuating than constant temperature for both thrips species. The total and daily production of first instars was higher in F. intonsa (90.4 and 4.2 at constant temperature, and 95.7 and 3.9 at fluctuating temperatures) than that of F. occidentalis (58.7 and 3.3 at constant temperature, and 60.5 and 3.1 at fluctuating temperatures) under both constant and fluctuating temperatures. The percentage of female offspring was greater in F. intonsa (72.1-75.7%) than in F. occidentalis (57.4-58.7%) under both temperature regimes. The intrinsic rate of natural increase (rm) was higher at constant temperature than at fluctuating temperature for both thrips species. F. intonsa had a higher rm value (0.2146 and 0.2004) than did F. occidentalis (0.1808 and 0.1733), under both constant and fluctuating temperatures, respectively. The biological response of F. occidentalis and F. intonsa to constant and fluctuating temperature was found to be interspecifically different, and F. intonsa may have higher pest potential than F. occidentalis based on the life table parameters we are reporting first here. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Indirect determination of the thermodynamic temperature of the copper point by a multi-fixed-point technique

    NASA Astrophysics Data System (ADS)

    Battuello, M.; Florio, M.; Girard, F.

    2010-06-01

    An indirect determination of the thermodynamic temperature of the fixed point of copper was made at INRIM by measuring four cells with a Si-based and an InGaAs-based precision radiation thermometer carrying approximated thermodynamic scales realized up to the Ag point. An average value TCu = 1357.840 K was found with a standard uncertainty of 0.047 K. A consequent (T - T90)Cu value of 70 mK can be derived which is 18 mK higher than, but consistent with, the presently available (T - T90)Cu as elaborated by the CCT-WG4.

  11. Experimental performance of the regenerator for the Chrysler upgraded automotive gas turbine engine

    NASA Technical Reports Server (NTRS)

    Winter, J. M.; Nussle, R. C.

    1982-01-01

    Automobile gas turbine engine regenerator performance was studied in a regenerator test facility that provided a satisfactory simulation of the actual engine operating environment but with independent control of airflow and gas flow. Velocity and temperature distributions were measured immediately downstream of both the core high-pressure-side outlet and the core low-pressure-side outlet. For the original engine housing, the regenerator temperature effectiveness was 1 to 2 percent higher than the design value, and the heat transfer effectiveness was 2 to 4 percent lower than the design value over the range of test conditions simulating 50 to 100 percent of gas generator speed. Recalculating the design values to account for seal leakage decreased the design heat transfer effectiveness to values consistent with those measured herein. A baffle installed in the engine housing high-pressure-side inlet provided more uniform velocities out of the regenerator but did not improve the effectiveness. A housing designed to provide more uniform axial flow to the regenerator was also tested. Although temperature uniformity was improved, the effectiveness values were not improved. Neither did 50-percent flow blockage (90 degree segment) applied to the high-pressure-side inlet change the effectiveness significantly.

  12. Characteristics of energy harvesting using BaTiO3/Cu laminates with changes in temperature

    NASA Astrophysics Data System (ADS)

    Mori, K.; Takeuchi, H.; Narita, F.

    2018-03-01

    The energy harvesting characteristics of piezoelectric/copper (BaTiO3/Cu) laminates rising from sharp temperature changes were investigated both numerically and experimentally. First, a phase field simulation was performed to determine the temperature-dependent piezoelectric coefficient and permittivity values. Then, the output voltages of the BaTiO3/Cu laminates were calculated for variations from room temperature to either a cryogenic temperature (77 K) or a higher temperature (333 K) using a 3D finite element simulation with the properties calculated from the phase field simulation. Finally, the output voltages of the piezoelectric BaTiO3/Cu laminates were measured for the same temperature changes and were compared to the simulation results.

  13. Impact of substrate and thermal boundary resistance on the performance of AlGaN/GaN HEMTs analyzed by means of electro-thermal Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    García, S.; Íñiguez-de-la-Torre, I.; Mateos, J.; González, T.; Pérez, S.

    2016-06-01

    In this paper, we present results from the simulations of a submicrometer AlGaN/GaN high-electron-mobility transistor (HEMT) by using an in-house electro-thermal Monte Carlo simulator. We study the temperature distribution and the influence of heating on the transfer characteristics and the transconductance when the device is grown on different substrates (sapphire, silicon, silicon carbide and diamond). The effect of the inclusion of a thermal boundary resistance (TBR) is also investigated. It is found that, as expected, HEMTs fabricated on substrates with high thermal conductivities (diamond) exhibit lower temperatures, but the difference between hot-spot and average temperatures is higher. In addition, devices fabricated on substrates with higher thermal conductivities are more sensitive to the value of the TBR because the temperature discontinuity is greater in the TBR layer.

  14. Hydrothermal carbonization of Opuntia ficus-indica cladodes: Role of process parameters on hydrochar properties.

    PubMed

    Volpe, Maurizio; Goldfarb, Jillian L; Fiori, Luca

    2018-01-01

    Opuntia ficus-indica cladodes are a potential source of solid biofuel from marginal, dry land. Experiments assessed the effects of temperature (180-250°C), reaction time (0.5-3h) and biomass to water ratio (B/W; 0.07-0.30) on chars produced via hydrothermal carbonization. Multivariate linear regression demonstrated that the three process parameters are critically important to hydrochar solid yield, while B/W drives energy yield. Heating value increased together with temperature and reaction time and was maximized at intermediate B/W (0.14-0.20). Microscopy shows evidence of secondary char formed at higher temperatures and B/W ratios. X-ray diffraction, thermogravimetric data, microscopy and inductively coupled plasma mass spectrometry suggest that calcium oxalate in the raw biomass remains in the hydrochar; at higher temperatures, the mineral decomposes into CO 2 and may catalyze char/tar decomposition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Transparent and conducting ZnO films grown by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Hadjeris, Lazhar; Herissi, Labidi; Badreddine Assouar, M.; Easwarakhanthan, Thomas; Bougdira, Jamal; Attaf, Nadhir; Salah Aida, M.

    2009-03-01

    ZnO films were prepared using the simple, flexible and cost-effective spray pyrolysis technique at different substrate temperatures and precursor molarity values. The films' structural, optical and electrical properties were investigated by x-ray diffraction, UV-VIS transmittance spectroscopy, profilometry and voltage-current-temperature (VIT) measurements. The films prepared at substrate temperatures above 400 °C appear better crystallized with (0 0 2) preferred orientation and exhibit higher visible transmittance (65-80%), higher electrical n-type semiconductor conductivity (10-50 (Ω cm)-1), lower activation energy (<0.35 eV) and smaller Urbach energy (80 meV). These results indicate that such sprayed ZnO films are chemically purer and have many fewer defects and less disorder owing to an almost complete chemical decomposition of the precursor droplets. ZnO films having desired optical and electrical properties for cheaper large-area solar cells may thus be tailored through the substrate temperature and the precursor molarity.

  16. The effect of chemical vapor deposition temperature on the performance of binder-free sewage sludge-derived anodes in microbial fuel cells.

    PubMed

    Feng, Huajun; Jia, Yufeng; Shen, Dongsheng; Zhou, Yuyang; Chen, Ting; Chen, Wei; Ge, Zhipeng; Zheng, Shuting; Wang, Meizhen

    2018-04-13

    Conversion of sewage sludge (SS) into value-added material has garnered increasing attention due to its potential applications. In this study, we propose a new application of the sewage sludge-derived carbon (SSC) as an electrode without binder in microbial fuel cells (MFCs). SS was firstly converted into SSC monoliths by methane chemical vapor method at different temperature (600, 800, 1000 or 1200°C). Scanning electron microscopy images showed that carbon micro-wires were present on the surfaces of the samples prepared at 1000 and 1200°C. The results showed that it was beneficial for converting sludge into a highly conductive electrode and increasing carbon content of the electrode at higher temperatures, thereby improving the current generation. The conductivity results show that a higher temperature favors the conversion of sludge into a highly conductive electrode. The MFC using an SSC anode processed at 1200°C generated the maximum power density of 2228mWm -2 and the maximum current density of 14.2Am -2 . This value was 5 times greater than that generated by an MFC equipped with a graphite anode. These results present a promising means of converting SS into electrode materials. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Growth and characterization of crystals for room temperature I.R. detectors and second harmonic generation devices

    NASA Technical Reports Server (NTRS)

    Lal, R. B.

    1995-01-01

    One of the major objectives of this program was to modify the triglycine sulfate (TGS) crystals with suitable dopants and variants to achieve better pyroelectric properties and improved infrared detectivities (D(sup *)), and higher Curie transition temperature compared to undoped TGS crystals. Towards these objectives, many promising dopants, both inorganic and organic, were investigated in the last few years. These dopants gave significant improvement in the D(sup *) value of the infrared detectors fabricated from the grown crystals with no significant increase in the Curie temperature (49 C). The IR detectors were fabricated at EDO/Barnes Engineering Division, Shelton, CT. In the last one year many TGS crystals doped with urea were grown using the low temperature solution crystal growth facility. It is found that doping with urea, the normalized growth yield increased significantly compared to pure TGS crystals and there is an improvement in the pyroelectric and dielectric constant values of doped crystals. This gave a significant increase in the materials figure of merits. The Vicker's hardness of 10 wt percent urea doped crystals is found to be about three times higher in the (010) direction compared to undoped crystals. This report describes in detail the results of urea doped TGS crystals.

  18. First assessment of water and carbon cycles in two tropical coastal rivers of south-west India: an isotopic approach.

    PubMed

    Tripti, M; Lambs, L; Otto, T; Gurumurthy, G P; Teisserenc, R; Moussa, I; Balakrishna, K; Probst, J L

    2013-08-15

    The contribution of tropical coastal rivers to the global carbon budget remains unmeasured, despite their high water dynamics, i.e. higher run-off with their basin characteristic of warm temperature. Two rivers draining the western part of the Western Ghats, the Swarna (length 80 km) and Nethravati (147 km) Rivers, were studied for water and carbon cycles. The stable isotope ratios of oxygen (δ(18) O values), hydrogen (δ(2) H values) and carbon (δ(13) C values) were used to understand the water circulation, the weathering processes and the carbon biogeochemical cycle. The river water samples were collected during the dry post-monsoonal season (November 2011). The δ(18) O and δ(2) H values of river water suggested that the monsoonal vapour source and its high recycling have a dominant role because of the orographical and tropical conditions. The absence of calcareous rocks has led to dissolved inorganic carbon (DIC) mainly originating from atmospheric/soil CO2 , via rock-weathering processes, and the low soil organic matter combined with high run-off intensity has led to low riverine dissolved organic carbon (DOC) contents. The δ(13) C values increase from upstream to downstream and decrease with increasing pCO2 . There is a positive relationship between the δ(13) CDIC values and the DOC concentrations in these two rivers that is contrary to that in most of the studied rivers of the world. The higher evapotranspiration supported by tropical conditions suggests that there are higher vapour recycling process in the Swarna and Nethravati basins as studied from the water δ(18) O and δ(2) H values. The basin characteristics of higher rainfall/run-off accompanied by warm temperature suggest that the δ(13) C value of riverine DIC is mainly controlled by the weathering of source rocks (silicates) with variation along the river course by CO2 degassing from the river water to the atmosphere and is less dominated by the oxidation of DOC. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Temperature Coefficients of Electrical Conductivity and Conduction Mechanisms in Butyl Rubber-Carbon Black Composites

    NASA Astrophysics Data System (ADS)

    Alzamil, M. A.; Alfaramawi, K.; Abboudy, S.; Abulnasr, L.

    2018-02-01

    Electrical properties of butyl rubber filled with General Purpose Furnace (GPF) carbon black were studied. The carbon black concentration ( X) in the compound was X = 40, 60, 70, 80, and 100 parts by weight per hundred parts by weight of rubber (phr). The corresponding volume fractions of GPF carbon black were 0.447 ± 0.022, 0.548 ± 0.027, 0.586 ± 0.029, 0.618 ± 0.031 and 0.669 ± 0.034, respectively. The concentration dependence of conductivity ( σ ) at constant temperature showed that σ follows a percolation theory; σ ∝ ( {X - Xo } )^{γ } , where X o is the concentration at percolation threshold. The exponent γ was found as 6.6 (at room temperature 30°C). This value agrees with other experimental values obtained by many authors for different rubber-carbon black systems. Electron tunneling between the aggregates, which are dispersed in the insulator rubber, was mainly the conduction process proposed at constant temperature in the butyl-GPF carbon black composites. Temperature dependence of conductivity was investigated in the temperature range from 30°C up to 120°C. All samples exhibit negative temperature coefficients of conductivity (NTCC). The values obtained are - 0.130°C-1, - 0.019°C-1, - 0.0082°C-1, - 0.0094°C-1, and - 0.072°C-1 for carbon black concentrations of 40 phr, 60 phr, 70 phr, 80 phr, and 100 phr, respectively. The samples of concentrations 40 phr and 60 phr have also positive temperature coefficients of conductivity (PTCC) of values + 0.031 and + 0.013, respectively. Electrical conduction at different temperatures showed various mechanisms depending on the carbon black concentration and/or the interval of temperature. The hopping conduction mechanism was noticed at the lower temperature region while carrier thermal activation mechanisms were recorded at the higher temperature range.

  20. Determination of shelf heat transfer coefficients along the shelf flow path of a freeze dryer using the shelf fluid temperature perturbation approach.

    PubMed

    Kuu, Wei Y; Nail, Steven L; Hardwick, Lisa M

    2007-01-01

    The spatial distribution of local shelf heat transfer coefficients, Ks, was determined by mapping the transient temperature response of the shelf surface along the serpentine internal channels of the shelf while the temperature of the heat transfer fluid was ramped from -40 degrees to 40 degrees C. The solution of a first-order non-steady-state differential equation resulted in a predicted shelf surface temperature as a function of the shelf fluid temperature at any point along the flow path. During the study, the shelf surfaces were maintained under a thermally insulated condition so that the heat transfers by gas conduction and radiation were negligible. To minimize heat conduction by gas, the chamber was evacuated to a low pressure, such as 100 mTorr. To minimize heat transfers between shelves, shelves were moved close together, with a gap of approximately 3 mm between any two shelves, because the shelf surface temperatures at corresponding vertical locations of two shelves are virtually equal. In addition, this also provides a shielding from radiation heat transfer from shelf to walls. Local heat transfer coefficients at the probed locations h(x) ( approximately Ks) were calculated by fitting the experimental shelf temperature response to the theoretical value. While the resulting values of K(s) are in general agreement with previously reported values, the values of Ks close to the inlet are significantly higher than those of other locations of the shelf channel. This observation is most likely attributed to the variation of the flow pattern of heat transfer fluid within the channels.

  1. Circadian rhythm disruption was observed in hand, foot, and mouth disease patients.

    PubMed

    Zhu, Yu; Jiang, Zhou; Xiao, Guoguang; Cheng, Suting; Wen, Yang; Wan, Chaomin

    2015-03-01

    Hand, foot, and mouth disease (HFMD) with central nerve system complications may rapidly progress to fulminated cardiorespiratory failure, with higher mortality and worse prognosis. It has been reported that circadian rhythms of heart rate (HR) and respiratory rate are useful in predicting prognosis of severe cardiovascular and neurological diseases. The present study aims to investigate the characteristics of the circadian rhythms of HR, respiratory rate, and temperature in HFMD patients with neurological complications. Hospitalized HFMD patients including 33 common cases (common group), 61 severe cases (severe group), and 9 critical cases (critical group) were contrasted retrospectively. Their HR, respiratory rate, and temperatures were measured every 4 hours during the first 48-hour in the hospital. Data were analyzed with the least-squares fit of a 24-hour cosine function by the single cosinor and population-mean cosinor method. Results of population-mean cosinor analysis demonstrated that the circadian rhythm of HR, respiratory rate, and temperature was present in the common and severe group, but absent in the critical group. The midline-estimating statistic of rhythm (MESOR) (P = 0.016) and acrophase (P < 0.01) of temperature and respiratory rate were significantly different among 3 groups. But no statistical difference of amplitude in temperature and respiratory rate was observed among the 3 groups (P = 0.14). MESOR value of HR (P < 0.001) was significantly different in 3 groups. However, amplitude and acrophase revealed no statistical difference in circadian characteristics of HR among 3 groups. Compared with the common group, the MESOR of temperature and respiratory rate was significantly higher, and acrophase of temperature and respiratory rate was 2 hours ahead in the severe group, critical HFMD patients lost their population-circadian rhythm of temperature, HR, and respiratory rate. The high values of temperature and respiratory rate for the common group were concentrated between 3 and 9 PM, whereas those for the severe group were more dispersive. And the high values for the critical group were equally distributed in 24 hours of the day. Circadian rhythm of patients' temperature in the common group was the same as the normal rhythm of human body temperature. Circadian rhythm of patients' temperature, HR and respiratory rate in 3 groups were significantly different.

  2. Differential effects of temperature and glucose on glycogenolytic enzymes in tissues of rainbow trout (Oncorhynchus mykiss).

    PubMed

    Bolinger, Mark T; Rodnick, Kenneth J

    2014-05-01

    The pathways and regulatory mechanisms of glycogenolysis remain relatively unexplored in non-mammalian vertebrates, especially poikilotherms. We studied the temperature sensitivity and inhibition of glycogenolytic enzymes in liver, ventricle, and white muscle of rainbow trout acclimated to 14 °C. Glycogen phosphorylase (GP) and acid α-glucosidase (GAA) activities were measured in homogenates of tissues at physiological temperatures (4, 14, and 24 °C), and in the presence of allosteric inhibitor, glucose. Higher GP versus GAA activity in all three tissues suggested a predominance of phosphorolytic glycogenolysis over the lysosomal glucosidic pathway. GP activities at 14 °C were ~2-fold higher in the ventricle and white muscle versus the liver and selectively increased by AMP in striated muscle. Conversely, the activities of GAA and lysosomal marker acid phosphatase were 8- to 10-fold higher in the liver compared with the ventricle and white muscle. Thermal sensitivity (Q10) was increased for GP in all tissues below 14 °C and decreased in striated muscle in the absence of AMP above 14 °C. GAA had lower Q10 values than GP below 14 °C, and, unlike GP, Q10s for GAA were not different between tissues or affected by temperature. Both GP (in the absence of AMP) and GAA were inhibited by glucose in a dose-dependent manner, with the lowest IC50 values observed in the white muscle (1.4 and 6.3 mM, respectively). In conclusion, despite comparatively low kinetic potential, lysosomal GAA might facilitate glycogenolysis at colder body temperatures in striated muscle and intracellular glucose could limit phosphorolytic and glucosidic glycogenolysis in multiple tissues of the rainbow trout. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. [Influence of the type of dietary carbohydrate on the use of 2 protein sources by rainbow trout reared at 8 or 18C].

    PubMed

    Aguirre, P; Medale, F; Kaushik, S J

    1995-01-01

    The effect of the type of dietary starch (gelatinized vs native) on the biological value of fish meal (FP) and fish soluble protein concentrate (CPSP) was studied through the nitrogen balance in rainbow trout (Oncorhynchus mykiss) reared for 3 weeks at 2 water temperatures: 8 or 18 degrees C. The protein sources were included in diets at a level of 60% and gelatinized or raw starch at a level of 30%. Gelatinized starch improved the biological value of FP and CPSP by reducing the metabolic nitrogen losses. Trout fed the diet with CPSP had a higher nitrogen excretion than those fed the diet with FP. The biological value of both protein sources was unaffected by water temperature.

  4. Lamellar Thickness and Stretching Temperature Dependency of Cavitation in Semicrystalline Polymers

    PubMed Central

    Wang, Yaotao; Jiang, Zhiyong; Fu, Lianlian; Lu, Ying; Men, Yongfeng

    2014-01-01

    Polybutene-1 (PB-1), a typical semicrystalline polymer, in its stable form I shows a peculiar temperature dependent strain-whitening behavior when being stretched at temperatures in between room temperature and melting temperature of the crystallites where the extent of strain-whitening weakens with the increasing of stretching temperature reaching a minima value followed by an increase at higher stretching temperatures. Correspondingly, a stronger strain-hardening phenomenon was observed at higher temperatures. The strain-whitening phenomenon in semicrystalline polymers has its origin of cavitation process during stretching. In this work, the effect of crystalline lamellar thickness and stretching temperature on the cavitation process in PB-1 has been investigated by means of combined synchrotron ultrasmall-angle and wide-angle X-ray scattering techniques. Three modes of cavitation during the stretching process can be identified, namely “no cavitation” for the quenched sample with the thinnest lamellae where only shear yielding occurred, “cavitation with reorientation” for the samples stretched at lower temperatures and samples with thicker lamellae, and “cavitation without reorientation” for samples with thinner lamellae stretched at higher temperatures. The mode “cavitation with reorientation” occurs before yield point where the plate-like cavities start to be generated within the lamellar stacks with normal perpendicular to the stretching direction due to the blocky substructure of the crystalline lamellae and reorient gradually to the stretching direction after strain-hardening. The mode of “cavitation without reorientation” appears after yield point where ellipsoidal shaped cavities are generated in those lamellae stacks with normal parallel to the stretching direction followed by an improvement of their orientation at larger strains. X-ray diffraction results reveal a much improved crystalline orientation for samples with thinner lamellae stretched at higher temperatures. The observed behavior of microscopic structural evolution in PB-1 stretched at different temperatures explains above mentioned changes in macroscopic strain-whitening phenomenon with increasing in stretching temperature and stress-strain curves. PMID:24820772

  5. Stable isotopes in fossil mammals, fish and shells from Kunlun Pass Basin, Tibetan Plateau: Paleo-climatic and paleo-elevation implications

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Wang, Xiaoming; Xu, Yingfeng; Zhang, Chunfu; Li, Qiang; Tseng, Zhijie Jack; Takeuchi, Gary; Deng, Tao

    2008-06-01

    We report the results of a stable isotope study of a late Pliocene fauna recently discovered in the Kunlun Mountain Pass area (˜ 4700 m above sea level) on the northern Tibetan Plateau. The δ13C values of enamel samples from modern herbivores from the Kunlun Pass Basin range from - 14.8 to - 10.6‰, with a mean of - 12.0 ± 0.7‰, indicating pure C3 diets consistent with the current dominance of C3 vegetation in the area. In contrast, enamel samples from fossil herbivores yielded δ13C values of - 5.4‰ to - 10.2‰ (with a mean of - 7.9 ± 1.3‰), significantly higher than those of modern herbivores in the area. The higher δ13C values indicate that these ancient herbivores, unlike their modern counterparts, had a variety of diets ranging from pure C3 to mixed C3/C4 vegetation. The local ecosystems in the Kunlun Pass area in the late Pliocene likely included grasslands that had small amounts of C4 grasses. The δ18O values of enamel from large herbivores shifted to higher values after the late Pliocene, indicating a significant change in the δ18O of local meteoric water. We estimate that there has been approximately 3.2‰ increase in annual δ18O values of meteoric water since ˜ 2-3 Ma, most likely driven by changes in the regional hydrological cycle possibly as a result of tectonic and climate change. The δ18O values of fossil fish teeth/bones and gastropod shells, along with abundance of aquatic plants and other invertebrate fossils, clearly indicate that the Kunlun Pass Basin once had plenty of water and was occupied by a freshwater lake in the late Pliocene. Our isotope data from both terrestrial and aquatic fossils suggest that the Kunlun Pass Basin was a hospitable place with a much warmer and wetter climate in the late Pliocene, very different from today's rock desert and cold steppe environments. The mean annual temperature in the late Pliocene estimated from the δ18O of fossil bone carbonate and paleo-water was about 10 ± 8 °C, much higher than the present-day mean annual temperature in the basin. If valid, the estimated temperature change would imply that the elevation of the basin has increased by ˜ 2700 ±1600 m since ˜ 2-3 Ma.

  6. Post-shock temperatures in minerals. [infrared detection of brightness temperature

    NASA Technical Reports Server (NTRS)

    Raikes, S. A.; Ahrens, T. J.

    1978-01-01

    Post-shock temperatures were measured in a wide variety of materials, including those of geophysical interest such as silicates by using an infrared detector to determine the brightness temperature of samples shocked to pressures in the range 5 to approximately 30 GPa. Measurements were made in the 4.5 to 5.75 micron and in the 7 to 14 micron wavelength ranges. Reproducible results, withe the temperatures in the two wavelength bands generally in excellent agreement, were obtained for aluminum-2024 (10.5 to 33 GPa; 125 to 260 C), stainless steel-304 (11.5 to 50 GPa; 80 to 350 C), crystalline quartz (5.0 to 21.5 GPa; 80 to 250 C) forsterite (7.5 to 28.0 GPa; approximately 30 to 160 C) and Bamble bronzite (6.0 to 26.0 GPa; approximately 30 to 225 C). Results are generally much higher at low pressures than the values calculated assuming a hydrodynamic rheology and isentropic release parallel to the Hugoniot but tend towards them at higher pressures.

  7. Environmental factors controlling transient and seasonal changes of trace gases within shallow vadose zone

    NASA Astrophysics Data System (ADS)

    Pla, Concepcion; Galiana-Merino, Juan Jose; Cuezva, Soledad; Fernandez-Cortes, Angel; Garcia-Anton, Elena; Cuevas, Jaime; Cañaveras, Juan Carlos; Sanchez-Moral, Sergio; Benavente, David

    2014-05-01

    Shallow vadose environments below soil, mainly caves, show significant seasonal and even daily variations in gas composition of ground air, which involves the exchange of large amounts of gases, e.g. greenhouse gases (GHGs) as CO2 or CH4, with the lower troposphere. To understand better the role of caves as a sink or depot of GHGs, geochemical tracing of air (atmosphere, soil and ground air) was performed at Rull cave (southeast Spain) by monitoring CH4, CO2 and the stable carbon isotopic delta13C[CO2] using cavity ring-down spectroscopy (CRDS). A comprehensive microclimatic monitoring of exterior and cave atmosphere was simultaneously conducted to GHGs-tracking, including factors as temperature, barometric pressure, relative humidity and concentration of CO2 and 222Rn. The analysis of the measured data allows understanding outgassing and isolation processes taking place in the karst cavity. Annual patterns of gases behaviour can be distinguished, depending on the prevailing relationship between outer atmosphere, indoor atmosphere and soil system. Cave air temperature fluctuates around 15.7 ºC and relative humidity remains higher than 96% the whole annual cycle. The mean concentration of 222Rn is 1584 Bq m-3 while CO2 remains 1921 ppm. When external temperature is higher of indoor temperature (April-October), the highest levels of both trace gases are reached, while levels drop to its lowest values in the coldest months. Preliminary results obtained show an annual variation in concentration of CO2 inside the cave between 3300 ppm and 900 ppm, whereas corresponding isotopic signal delta13CO2 varies between -24‰ and -21‰. The results have been studied by Keeling model that approximates the isotopic signal of the source contribution in a resulting air mix. The values registered inside the cave were represented joined to results for exterior air (average values round 410 ppm of CO2 and -9 ‰ for delta13C). Value obtained is -27‰ pointing to a high influence of the soil produced CO2 (with a characteristic signal of -27‰ for C3 plants) in the cave atmosphere. The lowest levels of CO2 coincide with the highest of delta13C pointing to an input of exterior air during the degassing stage. Regarding the CH4 concentration inside the cave, higher values (0.3 ppm average concentration) are observed during outgassing stage than the isolation period (CH4 mean value of 0 ppm), confirming a major connection with the exterior atmosphere (average value of methane 1.8 ppm) during outgassing stage. By introducing wavelet analysis on obtained time series filtered signal of raw data show strong dependencies between trace gases and studied parameters. For instance, values of coherence between relative humidity and CO2 or 222Rn concentration are higher than 0.9. Results show that gas patterns dependence on relative humidity, atmospheric pressure and temperatures (indoor and outdoor) prevails throughout a year, determining the outgassing and isolation periods identified by statistical analyses. The measured of delta13C and CH4 concentration became a useful tool to understand processes affecting cave air and driving parameters variations inside the cave. Moreover, combining wavelet analysis, statistics and resemblance techniques, seasonal and transient behaviour of gases exchange can be highlighted in subterranean sites as Rull Cave.

  8. Validation of drying models and rehydration characteristics of betel (Piper betel L.) leaves.

    PubMed

    Balasubramanian, S; Sharma, R; Gupta, R K; Patil, R T

    2011-12-01

    Effect of temperature on drying behaviour of betel leaves at drying air temperatures of 50, 60 and 70°C was investigated in tunnel as well as cabinet dryer. The L* and b* values increased whereas, a* values decreased, as the drying air temperature increased from 50 to 70°C in both the dryers, but the colour values remained higher for cabinet dryer than tunnel dryer in all cases. Eleven different drying models were compared according to their coefficients of determination (R(2)), root mean square error (RMSE) and chi square (χ (2)) to estimate drying curves. The results indicated that, logarithmic model and modified Page model could satisfactorily describe the drying curve of betel leaves for tunnel drying and cabinet dryer, respectively. In terms of colour quality, drying of betel leaves at 60°C in tunnel dryer and at 50°C in cabinet dryer was found optimum whereas, rehydration at 40°C produced the best acceptable product.

  9. Preliminary assessment of the velocity pump reaction turbine as a geothermal total-flow expander

    NASA Astrophysics Data System (ADS)

    Demuth, O. J.

    1984-06-01

    The velocity pump reaction turbine (VPRT) was evaluated as a total flow expander in a geothermal-electric conversion cycle. Values of geofluid effectiveness of VPRT systems were estimated for conditions consisting of: a 360(F) geothermal resource, 60 F wet-bulb ambient temperature, zero and 0.003 mass concentrations of dissolved noncondensible gas in the geofluid, 100 and 120 F condensing temperatures, and engine efficiencies ranging from 0.4 to 1.0. Achievable engine efficiencies were estimated to range from 0.77, with plant geofluid effectiveness values ranging as high as 9.5 watt hr-lbm geofluid for the 360 F resource temperature. This value is competitive with magnitudes of geofluid effectiveness projected for advanced binary plants, and is on the order of 40% higher than estimates for dual-flash steam and other total flow systems reviewed. Because of its potentially high performance and relative simplicity, the VPRT system appears to warrant further investigation toward its use in a well-head geothermal plant.

  10. Anisotropy Changes of a Fluorescent Probe during the Micellar Growth and Clouding of a Nonionic Detergent.

    PubMed

    Komaromy-Hiller; von Wandruszka R

    1996-01-15

    The effects of temperature and Triton X-114 (TX-114) concentration on the fluorescence anisotropy of perylene were investigated before and after detergent clouding. The measured anisotropy values were used to estimate the microviscosity of the micellar interior. In the lower detergent concentration range, an anisotropy maximum was observed at the critical micelle concentration (CMC), while the values decreased in the range immediately above the CMC. This was ascribed to the micellar volume increase, which, in the case of TX-114, was not accompanied by a more ordered internal environment. A gradual decrease of anisotropy and microviscosity with increasing temperature below the cloud point was observed. At the cloud point, no abrupt changes were found to occur. Compared to detergents with more flexible hydrophobic moieties, TX-114 micelles have a relatively ordered micellar interior indicated by the microviscosity and calculated fusion energy values. In the separated micellar phase formed after clouding, the probe anisotropy increased as water was eliminated at higher temperatures.

  11. Oxidation Behavior of GRCop-84 (Cu-8Cr-4Nb) at Intermediate and High Temperatures

    NASA Technical Reports Server (NTRS)

    Thomas-Ogbuji, Linus U.; Humphrey, Donald L.; Greenbauer-Seng, Leslie (Technical Monitor)

    2000-01-01

    The oxidation behavior of GRCop-84 (Cu-8 at %Cr-4 at %Nb) has been investigated in air and in oxygen, for durations of 0.5 to 50 hours and temperatures ranging from 500 to 900 C. For comparison, data was also obtained for the oxidation of Cu and NARloy-Z (Cu-3 wt% Ag-0.5 wt% Zr) under the same conditions. Arrhenius plots of those data showed that all three materials had similar oxidation rates at high temperatures (> 750 C). However, at intermediate temperatures (500 to 750 C) GRCop exhibited significantly higher oxidation resistance than Cu and NARloy-Z. The oxidation kinetics of GRCop-84 exhibited a sharp and discontinuous jump between the two regimes. Also, in the high temperature regime GRCop-84 oxidation rate was found to change from a high initial value to a significantly smaller terminal value at each temperature, with progress of oxidation; the two different oxidation rates were found to correlate with a porous intial oxide and a dense final oxide, respectively.

  12. A THERMODYNAMIC ANALYSIS OF MITOTIC SPINDLE EQUILIBRIUM AT ACTIVE METAPHASE

    PubMed Central

    Stephens, R. E.

    1973-01-01

    The mitotic apparatus of first-division metaphase eggs of the sea urchin Strongylocentrotus drobachiensis was observed by means of polarization microscopy under controlled temperature conditions. Eggs were fertilized and grown at two temperature extremes in order to produce two different sizes of available spindle pool. Slow division time allowed successive samples of such cells to be observed at the same point in metaphase but at different equilibrium temperatures, yielding curves of metaphase equilibrium birefringence vs. observational temperature. Using the plateau value of birefringence at higher temperatures as a measure of total available spindle pool and the observed birefringence at lower temperatures as a measure of polymerized material at equilibrium, the spindle protein association was evaluated according to the method of Inoué. Both pool conditions produced linear van't Hoff functions. Analysis of these functions yielded enthalpy and entropy changes of +55–65 kcal/mol and +197–233 entropy units (eu), respectively. These values for active mitotic metaphase are quite comparable to those obtained by Inoué and co-workers for arrested meiotic metaphase cells. When other equilibrium treatments were considered, the best fit to the experimental data was still that of Inoué, a treatment which theoretically involves first-order polymerization and dissociation kinetics. Treatment of metaphase cells with D2O by direct immersion drove the equilibrium to completion regardless of temperature, attaining or exceeding a birefringence value equal to the cell's characteristic pool size; perfusion with D2O appeared to erase the original temperature-determined pool size differences for the two growth conditions, attaining a maximum value characteristic of the larger pool condition. These data confirm Inoué's earlier contention that D2O treatment can modify the available spindle pool. PMID:4734864

  13. Distribution of tetraether lipids in agricultural soils - differentiation between paddy and upland management

    NASA Astrophysics Data System (ADS)

    Mueller-Niggemann, C.; Utami, S. R.; Marxen, A.; Mangelsdorf, K.; Bauersachs, T.; Schwark, L.

    2015-10-01

    Insufficient knowledge of the composition and variation of isoprenoid and branched glycerol dialkyl glycerol tetraethers (GDGTs) in agricultural soils exists, despite of the potential effect of different management types (e.g. soil/water and redox conditions, cultivated plants) on GDGT distribution. Here, we determined the influence of different soil management types on the GDGT composition in paddy (flooded) and adjacent upland (non-flooded) soils, and if available also forest, bushland and marsh soils. To compare the local effects on GDGT distribution patterns, we collected comparable soil samples in various locations from tropical (Indonesia, Vietnam and Philippines) and subtropical (China and Italy) sites. We found that differences in the distribution of isoprenoid GDGTs (iGDGTs) as well as of branched GDGTs (brGDGTs) are predominantly controlled by management type and only secondarily by climatic exposition. In general upland soil had higher crenarchaeol contents than paddy soil, which on the contrary was more enriched in GDGT-0. The GDGT-0 / crenarchaeol ratio was 3-27 times higher in paddy soil and indicates the enhanced presence of methanogenic archaea, which were additionally linked to the number of rice cultivation cycles per year (higher number of cycles was coupled with an increase in the ratio). The TEX86 values were 1.3 times higher in upland, bushland and forest soils than in paddy soils. In all soils brGDGT predominated over iGDGTs, with the relative abundance of brGDGTs increasing from subtropical to tropical soils. Higher BIT values in paddy soils compared to upland soils together with higher BIT values in soil from subtropical climates indicate effects on the amounts of brGDGT through differences in management as well as climatic zones. In acidic soil CBT values correlated well with soil pH. In neutral to alkaline soils, however, no apparent correlation but an offset between paddy and upland managed soils was detected, which may suggest that soil moisture may exert an additional control on the CBT in these soils. Lower MBT' values and calculated temperatures (TMC) in paddy soils compared to upland soils may indicate a management (e.g. enhanced soil moisture through flooding practises) induced effect on mean annual soil temperature (MST).

  14. Hemispherical emissivity of V, Nb, Ta, Mo, and W from 300 to 1000 K

    NASA Technical Reports Server (NTRS)

    Cheng, S. X.; Hanssen, L. M.; Riffe, D. M.; Sievers, A. J.; Cebe, P.

    1987-01-01

    The hemispherical emissivities of five transition elements, V, Nb, Ta, Mo, and W, have been measured from 300 to 1000 K, complementing earlier higher-temperature results. These low-temperature data, which are similar, are fitted to a Drude model in which the room-temperature parameters have been obtained from optical measurements and the temperature dependence of the dc resistivity is used as input to calculate the temperature dependence of the emissivity. A frequency-dependent free-carrier relaxation rate is found to have a similar magnitude for all these elements. For temperatures larger than 1200 K the calculated emissivity is always greater than the measured value, indicating that the high-temperature interband features of transition elements are much weaker than those determined from room-temperature measurements.

  15. Altitude profiles of temperature from 4 to 80 km over the tropics from MST radar and lidar

    NASA Astrophysics Data System (ADS)

    Parameswaran, K.; Sasi, M. N.; Ramkumar, G.; Nair, P. R.; Deepa, V.; Murthy, B. V. K.; Nayar, S. R. P.; Revathy, K.; Mrudula, G.; Satheesan, K.; Bhavanikumar, Y.; Sivakumar, V.; Raghunath, K.; Rajendraprasad, T.; Krishnaiah, M.

    2000-10-01

    Using ground-based techniques of MST radar and Lidar, temperature profiles in the entire height range of 4 to 75km are obtained for the first time at a tropical location. The temporal resolution of the profiles is ~1h in the lower altitudes and 12.5min in the higher altitudes and altitude resolution is ~300m. The errors involved in the derived values are presented. Preliminary analysis of temperature variations in a night revealed fluctuations with characteristics resembling those of large-scale gravity waves.

  16. Effects of temperature on growth, photophysiology, Rubisco gene expression in Prorocentrum donghaiense and Karenia mikimotoi

    NASA Astrophysics Data System (ADS)

    Shen, Anglu; Ma, Zengling; Jiang, Keji; Li, Daoji

    2016-12-01

    To explore the effects of temperature changes on dinoflagellate bloom succession in the coastal waters of the East China Sea, changes in the growth, photophysiology, and Rubisco gene expression of Prorocentrum donghaiense and Karenia mikimotoi, two harmful algal species, were investigated at different temperatures (16 to 28°C). The maximal specific growth rate and the maximal mRNA expression of Rubisco gene in P. donghaiense and K. mikimotoi occurred at 20 and 24°C, respectively. The photosynthetic activity of P. donghaiense was generally stable, but K. mikimotoi photosynthesis increased when temperatures rose from 16 to 28°C. The effective photochemical efficiency ( F q ' / F m ' ) and the maximal relative electron transfer rate (rETRmax) of K. mikimotoi increased significantly with increasing temperature, and the lowest and highest values occurred at 16 and 28°C, respectively. It seems that P. donghaiense has higher photosynthetic capacity than K. mikimotoi due to its higher F q ' / F m ' , rETRmax, and photosynthetic efficiency (α). However, K. mikimotoi has a higher growth rate than P. donghaiense. These results suggest that the photosynthetic activity and genetic responses of dinoflagellates are species-dependent. It is likely that temperature changes affect species composition during blooms, leading to the observed patterns of bloom succession.

  17. Electrical and morphological properties of magnetocaloric nano ZnNi ferrite

    NASA Astrophysics Data System (ADS)

    Hemeda, O. M.; Mostafa, Nasser Y.; Abd Elkader, Omar H.; Hemeda, D. M.; Tawfik, A.; Mostafa, M.

    2015-11-01

    A series of Zn1-xNixFe2O4 nano ferrite (with x=0, 0.2, 0.4, 0.6, 0.8, and 1) compositions were synthesized using the combustion technique. The powder samples were characterized by XRD. The X-ray analysis showed that the samples were single phase spinel cubic structure. The AC resistivity decreases by increasing the frequency from 1 kHz to 10 kHz. As the frequency of the applied field increases the hopping of charge carrier also increase, thereby decreasing the resistivity. A shift in dielectric maximum is observed toward higher temperature with increasing the Ni content from 536 K to 560 K at 1 kHz. The HRTEM (high resolution TEM) images of four compositions have lattice spacing which confirms the crystalline nature of the samples. The surface morphology SEM of the sample consists of some grains with relatively homogenies distribution with an average size varying from 0.85 to 0.92 μm. The values for entropy change in this work are still small but are significally higher than the values that have been reported for iron oxide nanoparticle. The magnetic entropy change was calculated from measurements of M (H, T) where H is the magnetic field and T is the temperature. The maximum value of entropy change (ΔS) obtained near Curie temperature which makes these material candidates for magnetocaloric applications.

  18. Mg and Sr Incorporation in Foraminifer Shells: Patterns, Controls and Applications.

    NASA Astrophysics Data System (ADS)

    Lea, D. W.

    2001-12-01

    The incorporation of Mg and Sr in planktonic and benthic foraminifer shells is important for paleoceanographic research because of the potential to record physical and chemical changes in the oceanic environment. Pelagic shells are 99%+ CaCO3, and abundances of Mg and Sr are typically ~0.1%, requiring sensitive quantification methods such as ICP-MS or AES. Mg/Ca values range from 0.5 mmol/mol in cold planktics and benthics to ~5 mmol/mol in tropical planktics, with some species (Orbulina universa) having even higher values. The main control on Mg incorporation is temperature, but pH and salinity also exert small influences, presumably through calcification rate. The Mg/Ca content of the primary ontogenetic calcite can be altered by the addition of so-called gametogenic calcite, generally deposited in deep, colder waters. After deposition on the seafloor, dissolution becomes the main influence, with progressively lower Mg/Ca values in more dissolved samples. This loss appears to occur by preferential loss of the more Mg-rich portions of the shell, although the details remain unexplained. Sr/Ca values range from 0.9 in some benthic species (Uvigerina spp.) to 1.6 mmol/mol in some planktics. Culturing results suggest that temperature, salinity and pH all exert a weak control (i.e., 1% per ° C) on shell Sr, presumably through a kinetic effect. The main control appears to be related to environmental differences. For example, comparison of Sr/Ca in Neogloboquadrina pachyderma from plankton tows and cultures with core-top specimens indicates that the latter have significantly higher values, presumably due to deep crusting, perhaps added with a much higher calcification rate. This observation clearly demonstrates that Sr/Ca is not simply related to a single physical parameter such as temperature. Downcore records of shell Mg/Ca and Sr/Ca reveal substantial variability that can be correlated with known paleoceanographic change. For Mg/Ca, observed variations can largely be explained by climate-related variations in temperature. For Sr/Ca, it appears that observed variations related to secular changes in seawater Sr/Ca, but this cannot be fully substantiated without a more complete understanding of primary and post-depositional controls on shell composition.

  19. A new chronobiological approach to discriminate between acute and chronic depression using peripheral temperature, rest-activity, and light exposure parameters

    PubMed Central

    2013-01-01

    Background Circadian theories for major depressive disorder have suggested that the rhythm of the circadian pacemaker is misaligned. Stable phase relationships between internal rhythms, such as temperature and rest/activity, and the external day-night cycle, are considered to be crucial for adapting to life in the external environmental. Therefore, the relationship and possible alterations among (i) light exposure, (ii) activity rhythm, and (iii) temperature rhythm could be important factors in clinical depression. This study aimed to investigate the rhythmic alterations in depression and evaluate the ability of chronobiological parameters to discriminate between healthy subjects and depressed patients. Methods Thirty female subjects, including healthy subjects, depressed patients in the first episode, and major recurrent depression patients. Symptoms were assessed using Hamilton Depression Scale, Beck Depression Inventory and Montgomery-Äsberg Scale. Motor activity, temperature, and light values were determined for 7 days by actigraph, and circadian rhythms were calculated. Results Depressed groups showed a lower amplitude in the circadian rhythm of activity and light exposure, but a higher amplitude in the rhythm of peripheral temperature. The correlation between temperature and activity values was different in the day and night among the control and depressed groups. For the same level of activity, depressed patients had lowest temperature values during the day. The amplitudes of temperature and activity were the highest discriminant parameters. Conclusions These results indicate that the study of rhythms is useful for diagnosis and therapy for depressive mood disorders. PMID:23510455

  20. Comparison of temperature change among different adhesive resin cement during polymerization process.

    PubMed

    Alkurt, Murat; Duymus, Zeynep Yesil; Gundogdu, Mustafa; Karadas, Muhammet

    2017-01-01

    The aim of this study was to assess the intra-pulpal temperature changes in adhesive resin cements during polymerization. Dentin surface was prepared with extracted human mandibular third molars. Adhesive resin cements (Panavia F 2.0, Panavia SA, and RelyX U200) were applied to the dentin surface and polymerized under IPS e.max Press restoration. K-type thermocouple wire was positioned in the pulpal chamber to measure temperature change ( n = 7). The temperature data were recorded (0.0001 sensible) and stored on a computer every 0.1 second for sixteen minutes. Differences between the baseline temperature and temperatures of various time points (2, 4, 6, 8, 10, 12, 14, and 16 minute) were determined and mean temperature changes were calculated. At various time intervals, the differences in temperature values among the adhesive resin cements were analyzed by two-way ANOVA and post-hoc Tukey honestly test (α = 0.05). Significant differences were found among the time points and resin cements ( P < 0.05). Temperature values of the Pan SA group were significantly higher than Pan F and RelyX ( P < 0.05). Result of the study on self-adhesive and self-etch adhesive resin cements exhibited a safety intra-pulpal temperature change.

  1. Modelling CO emission - II. The physical characteristics that determine the X factor in Galactic molecular clouds

    NASA Astrophysics Data System (ADS)

    Shetty, Rahul; Glover, Simon C.; Dullemond, Cornelis P.; Ostriker, Eve C.; Harris, Andrew I.; Klessen, Ralf S.

    2011-08-01

    We investigate how the X factor, the ratio of the molecular hydrogen column density (?) to velocity-integrated CO intensity (W), is determined by the physical properties of gas in model molecular clouds (MCs). The synthetic MCs are results of magnetohydrodynamic simulations, including a treatment of chemistry. We perform radiative transfer calculations to determine the emergent CO intensity, using the large velocity gradient approximation for estimating the CO population levels. In order to understand why observations generally find cloud-averaged values of X = XGal˜ 2 × 1020 cm-2 K-1 km-1 s, we focus on a model representing a typical Milky Way MC. Using globally integrated ? and W reproduces the limited range in X found in observations and a mean value X = XGal= 2.2 × 1020 cm-2 K-1 km-1 s. However, we show that when considering limited velocity intervals, X can take on a much larger range of values due to CO line saturation. Thus, the X factor strongly depends on both the range in gas velocities and the volume densities. The temperature variations within individual MCs do not strongly affect X, as dense gas contributes most to setting the X factor. For fixed velocity and density structure, gas with higher temperatures T has higher W, yielding X ∝ T-1/2 for T ˜ 20-100 K. We demonstrate that the linewidth-size scaling relationship does not influence the X factor - only the range in velocities is important. Clouds with larger linewidths σ, regardless of the linewidth-size relationship, have a higher W, corresponding to a lower value of X, scaling roughly as X ∝σ-1/2. The 'mist' model, often invoked to explain a constant XGal consisting of optically thick cloudlets with well-separated velocities, does not accurately reflect the conditions in a turbulent MC. We propose that the observed cloud-averaged values of X ˜ XGal are simply a result of the limited range in ?, temperatures and velocities found in Galactic MCs - a nearly constant value of X therefore does not require any linewidth-size relationship, or that MCs are virialized objects. Since gas properties likely differ (albeit even slightly) from cloud to cloud, masses derived through a standard value of the X factor should only be considered as a rough first estimate. For temperatures T ˜ 10-20 K, velocity dispersions σ˜ 1-6 km s-1and ? cm-2, we find cloud-averaged values X ˜ 2-4 × 1020 cm-2 K-1 km-1 s for solar-metallicity models.

  2. An Impact Triggered Runaway Greenhouse on Mars

    NASA Technical Reports Server (NTRS)

    Segura, T. L.; McKay, C. P.; Toon, O. B.

    2004-01-01

    When a planet is in radiative equilibrium, the incoming solar flux balances the outgoing longwave flux. If something were to perturb the system slightly, say the incoming solar flux increased, the planet would respond by radiating at a higher surface temperature. Since any radiation that comes in must go out, if the incoming is increased, the outgoing must also increase, and this increase manifests itself as a warmer equilibrium temperature. The increase in solar flux would correspond to an increase in temperature, which would increase the amount of water vapor in the atmosphere due to increased evaporation. Since water vapor is a greenhouse gas, it would absorb more radiation in the atmosphere leading to a yet warmer equilibrium temperature. The planet would reach radiative equilibrium at this new temperature. There exists a point, however, past which this positive feedback leads to a "runaway" situation. In this case, the planet does not simply evaporate a little more water and eventually come to a slightly higher equilibrium temperature. Instead, the planet keeps evaporating more and more water until all of the planet's available liquid and solid water is in the atmosphere. The reason for this is generally understood. If the planet's temperature increases, evaporation of water increases, and the absorption of radiation increases. This increases the temperature and the feedback continues until all water is in the atmosphere. The resulting equilibrium temperature is very high, much higher than the equilibrium temperature of a point with slightly lower solar flux. One can picture that as solar flux increases, planetary temperature also increases until the runaway point where temperature suddenly "jumps" to a higher value, in response to all the available water now residing in the atmosphere. This new equilibrium is called a "runaway greenhouse" and it has been theorized that this is what happened to the planet Venus, where the surface temperature is more than 700 K (427 C).

  3. Ameliorative effects of melatonin administration and photoperiods on diurnal fluctuations in cloacal temperature of Marshall broiler chickens during the hot dry season

    NASA Astrophysics Data System (ADS)

    Sinkalu, Victor O.; Ayo, Joseph O.; Adelaiye, Alexander B.; Hambolu, Joseph O.

    2015-01-01

    Experiments were performed with the aim of determining the effect of melatonin administration on diurnal fluctuations in cloacal temperature (CT) of Marshall broiler chickens during the hot dry season. Birds in group I (12L:12D cycle) were raised under natural photoperiod of 12-h light and 12-h darkness, without melatonin supplementation, while those in group II (LL) were kept under 24-h continuous lighting, without melatonin administration. Broiler chickens in group III (LL + melatonin) were raised under 24-h continuous lighting, with melatonin supplementation at 0.5 mg/kg per os. The cloacal temperatures of 15 labeled broiler chickens from each group were measured at 6:00, 13:00, and 19:00 h, 7 days apart, from days 14-42. Temperature-humidity index was highest at day 14 of the study, with the value of 36.72 ± 0.82 °C but lowest at day 28 with the value of 30.91 ± 0.80 °C ( P < 0.0001). The overall mean hourly cloacal temperature value of 41.51 ± 0.03 °C obtained in the 12L:12D cycle birds was significantly higher ( P < 0.001) than the value of 41.16 ± 0.03 °C recorded in the melatonin-treated group but lower than that of 41.65 ± 0.03 °C obtained in the LL birds. Mortality due to hyperthermia commenced at day 28 in both 12L:12D cycle and LL broiler chickens but was delayed till day 42 in LL + MEL broiler chickens. In conclusion, melatonin administration alleviated the deleterious effects of heat stress on broiler chickens by maintaining their cloacal temperature at relatively low values.

  4. Global synthesis of the temperature sensitivity of leaf litter breakdown in streams and rivers

    DOE PAGES

    Follstad Shah, Jennifer J.; Kominoski, John S.; Ardón, Marcelo; ...

    2017-02-28

    Streams and rivers are important conduits of terrestrially derived carbon (C) to atmospheric and marine reservoirs. Leaf litter breakdown rates are expected to increase as water temperatures rise in response to climate change. The magnitude of increase in breakdown rates is uncertain, given differences in litter quality and microbial and detritivore community responses to temperature, factors that can influence the apparent temperature sensitivity of breakdown and the relative proportion of C lost to the atmosphere vs. stored or transported downstream. We synthesized 1025 records of litter breakdown in streams and rivers to quantify its temperature sensitivity, as measured by themore » activation energy (Ea, in eV). Temperature sensitivity of litter breakdown varied among twelve plant genera for which Ea could be calculated. Higher values of Ea were correlated with lower-quality litter, but these correlations were influenced by a single, N-fixing genus (Alnus). Ea values converged when genera were classified into three breakdown rate categories, potentially due to continual water availability in streams and rivers modulating the influence of leaf chemistry on breakdown. Across all data representing 85 plant genera, the Ea was 0.34 ± 0.04 eV, or approximately half the value (0.65 eV) predicted by metabolic theory. Our results indicate that average breakdown rates may increase by 5–21% with a 1–4 °C rise in water temperature, rather than a 10–45% increase expected, according to metabolic theory. Differential warming of tropical and temperate biomes could result in a similar proportional increase in breakdown rates, despite variation in Ea values for these regions (0.75 ± 0.13 eV and 0.27 ± 0.05 eV, respectively). The relative proportions of gaseous C loss and organic matter transport downstream should not change with rising temperature given that Ea values for breakdown mediated by microbes alone and microbes plus detritivores were similar at the global scale.« less

  5. Global synthesis of the temperature sensitivity of leaf litter breakdown in streams and rivers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Follstad Shah, Jennifer J.; Kominoski, John S.; Ardón, Marcelo

    Streams and rivers are important conduits of terrestrially derived carbon (C) to atmospheric and marine reservoirs. Leaf litter breakdown rates are expected to increase as water temperatures rise in response to climate change. The magnitude of increase in breakdown rates is uncertain, given differences in litter quality and microbial and detritivore community responses to temperature, factors that can influence the apparent temperature sensitivity of breakdown and the relative proportion of C lost to the atmosphere vs. stored or transported downstream. We synthesized 1025 records of litter breakdown in streams and rivers to quantify its temperature sensitivity, as measured by themore » activation energy (Ea, in eV). Temperature sensitivity of litter breakdown varied among twelve plant genera for which Ea could be calculated. Higher values of Ea were correlated with lower-quality litter, but these correlations were influenced by a single, N-fixing genus (Alnus). Ea values converged when genera were classified into three breakdown rate categories, potentially due to continual water availability in streams and rivers modulating the influence of leaf chemistry on breakdown. Across all data representing 85 plant genera, the Ea was 0.34 ± 0.04 eV, or approximately half the value (0.65 eV) predicted by metabolic theory. Our results indicate that average breakdown rates may increase by 5–21% with a 1–4 °C rise in water temperature, rather than a 10–45% increase expected, according to metabolic theory. Differential warming of tropical and temperate biomes could result in a similar proportional increase in breakdown rates, despite variation in Ea values for these regions (0.75 ± 0.13 eV and 0.27 ± 0.05 eV, respectively). The relative proportions of gaseous C loss and organic matter transport downstream should not change with rising temperature given that Ea values for breakdown mediated by microbes alone and microbes plus detritivores were similar at the global scale.« less

  6. Comparative evaluation of air cell and eggshell temperature measurement methodologies used in broiler hatching eggs during late incubation.

    PubMed

    Peebles, E D; Zhai, W; Gerard, P D

    2012-07-01

    The current study was conducted to compare and contrast the uses of 2 devices (temperature transponder or infrared thermometer) and their locations (inner air cell membrane or outer eggshell surface) in Ross × Ross 708 broiler hatching eggs. The air cells of 14 embryonated and 10 nonembryonated eggs were implanted with temperature transponders on d 13.5 of incubation. Likewise, for these same eggs, eggshell surface temperature was detected with the use of transponders and an infrared thermometer. Temperatures were recorded every 12 h between 14.5 and 18 d of incubation, and graphs and corresponding regression values were used to track the temperatures over these time periods. The temperature readings using all methods in embryonated and nonembryonated eggs were positively correlated. In nonembryonated eggs, temperatures in the air cell and on the eggshell surface using transponders were higher than those on the eggshell surface using an infrared thermometer. Mean air cell temperature readings of embryonated eggs using transponders were higher than those of the eggshell, as determined with the use of transponders or an infrared thermometer. Furthermore, the differences in air cell temperature using transponders and eggshell temperature using an infrared thermometer in embryonated eggs increased with embryonic age. These readings confirmed increased embryo heat production during the incubational period examined. It was further concluded that when compared with actual embryo body temperatures determined in previous studies, the use of transponders in the air cells of broiler hatching eggs detected a higher and closer temperature than eggshell surface temperature. It is suggested that the air cell transponders in embryonated eggs circumvented the confounding effects of the thermal barrier properties of the eggshell and the flow of air across its surface.

  7. Higher thermostability of l-lactate dehydrogenases is a key factor in decreasing the optical purity of d-lactic acid produced from Lactobacillus coryniformis.

    PubMed

    Gu, Sol-A; Jun, Chanha; Joo, Jeong Chan; Kim, Seil; Lee, Seung Hwan; Kim, Yong Hwan

    2014-05-10

    Lactobacillus coryniformis is known to produce d-lactic acid as a dominant fermentation product at a cultivation temperature of approximately 30°C. However, the considerable production of l-lactic acid is observed when the fermentation temperature is greater than 40°C. Because optically pure lactates are synthesized from pyruvate by the catalysis of chiral-specific d- or l-lactate dehydrogenase, the higher thermostability of l-LDHs is assumed to be one of the key factors decreasing the optical purity of d-lactic acid produced from L. coryniformis at high temperature. To verify this hypothesis, two types of d-ldh genes and six types of l-ldh genes based on the genomic information of L. coryniformis were synthesized and expressed in Escherichia coli. Among the LDHs tested, five LDHs showed activity and were used to construct polyclonal antibodies. d-LDH1, l-LDH2, and l-LDH3 were found to be expressed in L. coryniformis by Western blotting analysis. The half-life values (t1/2) of the LDHs at 40°C were estimated to be 10.50, 41.76, and 2311min, and the T50(10) values were 39.50, 39.90, and 58.60°C, respectively. In addition, the Tm values were 36.0, 41.0, and 62.4°C, respectively, which indicates that l-LDH has greater thermostability than d-LDH. The higher thermostability of l-LDHs compared with that of d-LDH1 may be a major reason why the enantiopurity of d-lactic acid is decreased at high fermentation temperatures. The key enzymes characterized will suggest a direction for the design of genetically modified lactic acid bacteria to produce optically pure d-lactic acid. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Effective temperatures and radiation spectra for a higher-dimensional Schwarzschild-de Sitter black hole

    NASA Astrophysics Data System (ADS)

    Kanti, P.; Pappas, T.

    2017-07-01

    The absence of a true thermodynamical equilibrium for an observer located in the causal area of a Schwarzschild-de Sitter spacetime has repeatedly raised the question of the correct definition of its temperature. In this work, we consider five different temperatures for a higher-dimensional Schwarzschild-de Sitter black hole: the bare T0, the normalized TBH, and three effective ones given in terms of both the black-hole and cosmological horizon temperatures. We find that these five temperatures exhibit similarities but also significant differences in their behavior as the number of extra dimensions and the value of the cosmological constant are varied. We then investigate their effect on the energy emission spectra of Hawking radiation. We demonstrate that the radiation spectra for the normalized temperature TBH—proposed by Bousso and Hawking over twenty years ago—leads to the dominant emission curve, while the other temperatures either support a significant emission rate only in a specific Λ regime or have their emission rates globally suppressed. Finally, we compute the bulk-over-brane emissivity ratio and show that the use of different temperatures may lead to different conclusions regarding the brane or bulk dominance.

  9. Temperature corrections in routine spirometry.

    PubMed Central

    Cramer, D; Peacock, A; Denison, D

    1984-01-01

    Forced expiratory volume (FEV1) and forced vital capacity (FVC) were measured in nine normal subjects with three Vitalograph and three rolling seal spirometers at three different ambient temperatures (4 degrees C, 22 degrees C, 32 degrees C). When the results obtained with the rolling seal spirometer were converted to BTPS the agreement between measurements in the three environments improved, but when the Vitalograph measurements obtained in the hot and cold rooms were converted an error of up to 13% was introduced. The error was similar whether ambient or spirometer temperatures were used to make the conversion. In an attempt to explain the behaviour of the Vitalograph spirometers the compliance of their bellows was measured at the three temperatures. It was higher at the higher temperature (32 degrees C) and lower at the lower temperature (4 degrees C) than at the normal room temperature. These changes in instrument compliance could account for the differences in measured values between the two types of spirometer. It is concluded that the ATPS-BTPS conversion is valid and necessary for measurements made with rolling seal spirometers, but can cause substantial error if it is used for Vitalograph measurements made under conditions other than normal room temperature. PMID:6495245

  10. Can we define an asymptotic value for the ice active surface site density for heterogeneous ice nucleation?

    NASA Astrophysics Data System (ADS)

    Niedermeier, Dennis; Augustin-Bauditz, Stefanie; Hartmann, Susan; Wex, Heike; Ignatius, Karoliina; Stratmann, Frank

    2015-05-01

    The immersion freezing behavior of droplets containing size-segregated, monodisperse feldspar particles was investigated. For all particle sizes investigated, a leveling off of the frozen droplet fraction was observed reaching a plateau within the heterogeneous freezing temperature regime (T >- 38°C). The frozen fraction in the plateau region was proportional to the particle surface area. Based on these findings, an asymptotic value for ice active surface site density ns, which we named ns⋆, could be determined for the investigated feldspar sample. The comparison of these results with those of other studies not only elucidates the general feasibility of determining such an asymptotic value but also shows that the value of ns⋆ strongly depends on the method of the particle surface area determination. However, such an asymptotic value might be an important input parameter for atmospheric modeling applications. At least it shows that care should be taken when ns is extrapolated to lower or higher temperature.

  11. Room temperature shear properties of the strain isolator pad for the shuttle thermal protection system

    NASA Technical Reports Server (NTRS)

    Sawyer, J. W.; Waters, W. A., Jr.

    1981-01-01

    Tests were conducted at room temperature to determine the shear properties of the strain isolator pad (SIP) material used in the thermal protection system of the space shuttle. Tests were conducted on both the .23 cm and .41 cm thick SIP material in the virgin state and after fifty fully reversed shear cycles. The shear stress displacement relationships are highly nonlinear, exhibit large hysteresis effects, are dependent on material orientation, and have a large low modulus region near the zero stress level where small changes in stress can result in large displacements. The values at the higher stress levels generally increase with normal and shear force load conditioning. Normal forces applied during the shear tests reduces the low modulus region for the material. Shear test techniques which restrict the normal movement of the material give erroneous stress displacement results. However, small normal forces do not significantly effect the shear modulus for a given shear stress. Poisson's ratio values for the material are within the range of values for many common materials. The values are not constant but vary as a function of the stress level and the previous stress history of the material. Ultimate shear strengths of the .23 cm thick SIP are significantly higher than those obtained for the .41 cm thick SIP.

  12. Plasma Thruster Development: Magnetoplasmadynamic Propulsion, Status and Basic Problems.

    DTIC Science & Technology

    1986-02-01

    34 9 Sublimation Rates vs. Temperature for Typical Electrode Materials 65 10 Time to Reach Melting vs. Surface Heat Load (One-Dimensional, Large Area...Approx.) for Different Electrode Materials and Initial Temperatures 75 V LIST OF TABLES TABLE PAGE I Models of Thruster Types (with approximation (1...much higher specific impulse values than the minimum must be achieved in order to obtain acceptable effi- Sciencies , e.g. for 30% efficiency with argon

  13. Oxygen Isotope Records in Modern Oyster Shells from Chi Ku, Tainan and Their Implication of Seasonality

    NASA Astrophysics Data System (ADS)

    Chen, Y. C.; Mii, H. S.; Li, K. T.

    2015-12-01

    To exam whether oxygen isotope records of Crassostrea gigasoysters can be used as proxies of environment, 133 cultivated oysters and 21 water samples were collected from Chi Ku area, Tainan City, southern Taiwan in December of 2012, and from March, 2013 to July, 2014. Instrumental air and water temperatures and precipitation records were obtained from a nearest Central Weather Bureau (CWB) station roughly 16 km north of Chi Ku. The oxygen and carbon isotope values of the ligamental area of the modern oyster shells are from -6.92‰ to -0.08‰ (-3.05 ± 1.17‰, N = 2280; 1σ; VPDB) and from -5.57‰ to 0.63‰ (-1.88 ± 0.81‰), respectively. Oxygen isotope values of the water samples are mainly between -0.28‰ and 0.74‰ (0.18 ± 0.29‰, N = 20; 1σ; VSMOW). However, water oxygen isotope value of -2.75‰ was observed for the water sample collected immediately after a typhoon heavy rainfall. Seasonal temperature fluctuation pattern of estimated oxygen isotope temperatures from modern shells is similar to that of CWB instrumental records. However, the oxygen isotope temperatures are respectively about 3 °C and 10°C higher than those of instrumental records for winter and summer. Higher estimated oxygen isotope temperatures are most likely caused by underestimated fraction of freshwater. We analyzed 5 archaeological oyster shells of Siraya culture (500~250B.P.) collected from Wu Chien Tuso North (WCTN) archaeological site of Tainan branch of Southern Taiwan Science Park to infer the harvest season of mollusks. Oxygen isotope values of the ligamental area of the archaeological oyster shells are between -5.98‰ and -1.26‰ (-3.34 ± 1.37‰, N = 60; 1σ), and carbon isotope values are between -3.21‰ and 0.60‰ (-2.04‰ ± 0.55‰). The oxygen isotope records of archaeological oyster shells also showed clear seasonality. Most of the oysters were collected in autumn and winter. Oxygen isotope values of archaeological oyster shells was 1‰ greater than that of present for summer whereas was 1.2‰ less than that of present for wintwr. Assuming the temperature of 500-300 B.P. in Tainan was similar to that of present, it may indicate that the precipitation was weaker in summer but heavier in winter in southern Taiwan 500-300 B.P.

  14. Holographic helical superconductor with higher curvature corrections

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Subir; Paul, Chandrima

    2018-01-01

    We study SU(2) × U(1) gauge theory with Chern-Simons term, coupled to scalar field in adjoint, in Einstein-Gauss-Bonnet gravity. We explore phases of holographic superconductor in terms of the condensates and free energies in the background of AdS black hole and AdS soliton. In the case of black hole, we find with increasing strength of higher curvature terms, transition temperature decreases. For AdS soliton, the critical value of chemical potential increases as the higher curvature terms dominate.

  15. Johnson Noise Thermometry for Advanced Small Modular Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britton Jr, Charles L; Roberts, Michael; Bull, Nora D

    Temperature is a key process variable at any nuclear power plant (NPP). The harsh reactor environment causes all sensor properties to drift over time. At the higher temperatures of advanced NPPs the drift occurs more rapidly. The allowable reactor operating temperature must be reduced by the amount of the potential measurement error to assure adequate margin to material damage. Johnson noise is a fundamental expression of temperature and as such is immune to drift in a sensor s physical condition. In and near core, only Johnson noise thermometry (JNT) and radiation pyrometry offer the possibility for long-term, high-accuracy temperature measurementmore » due to their fundamental natures. Small, Modular Reactors (SMRs) place a higher value on long-term stability in their temperature measurements in that they produce less power per reactor core and thus cannot afford as much instrument recalibration labor as their larger brethren. The purpose of this project is to develop and demonstrate a drift free Johnson noise-based thermometer suitable for deployment near core in advanced SMR plants.« less

  16. [Export of Total Organic Carbon (TOC) from Karst Watershed and Its Influencing Factors: An Example from Xueyudong Underground River System, Chongqing].

    PubMed

    Wang, Qiao-lian; Jiang, Yong-jun; Chen, Yu

    2016-05-15

    High time-resolution auto-monitoring techniques were used to obtain the data for TOC and hydrogeochemistry of groundwater, and air temperature and precipitation from August 2014 to September 2015 in Xueyu Cave karst watershed, Southwest China, and then the principal component regression model was used to reveal the variation of TOC in groundwater and its influencing factors. The results indicated that there were significant variations of the TOC and hydrogeochemistry of groundwater in seasonal timescale. The temperature and specific conductance (SpC) of groundwater showed higher values in summer and lower values in winter; while an opposite variation pattern for pH in groundwater was observed, and the TOC and turbidity of groundwater showed higher values in winter and summer seasons and lower values in spring and autumn seasons. Meanwhile, high time-resolution data revealed that the TOC of groundwater responded quickly to rainfall events with different intensities. Generally, an increasing trend for TOC in groundwater was observed during raining and a decreasing trend for TOC in groundwater was shown after rainfall events, especially after storm events due to the dilution effect of rainfall. The export and variations of the TOC in groundwater were mainly controlled by the precipitation and discharge of underground river in the study area, as revealed by the principal component regression model. The TOC increased with the increase of the precipitation, discharge and turbidity of groundwater, and declined with the increase of air temperature and pH of groundwater.

  17. Synthesis and thermoluminescence characterizations of Sr2B5O9Cl:Dy3+ phosphor for TL dosimetry.

    PubMed

    Oza, Abha H; Dhoble, N S; Park, K; Dhoble, S J

    2015-09-01

    The photoluminescence (PL) and thermoluminescence (TL) displayed by Dy-activated strontium haloborate (Sr2 B5 O9 Cl) were studied. A modified solid-state reaction was employed for the preparation of the phosphor. Photoluminescence spectra showed blue (484 nm) and yellow (575 nm) emissions due to incorporation of Dy(3+) into host matrix. The Dy-doped (0.5 mol%) Sr2 B5 O9 Cl was studied after exposure to γ-irradiation and revealed a prominent glow curve at 261°C with a small hump around 143°C indicating that two types of traps were generated. The glow peak at the higher temperature side (261°C) was more stable than the lower temperature glow peak. The TL intensity was 1.17 times less than that of the standard CaSO4 :Dy thermoluminescence dosimetry (TLD) phosphor, the phosphor showed a linear dose-response curve for different γ-ray irradiation doses (0.002-1.25 Gy) and fading of 5-7% was observed for higher temperature peaks upon storage. Trapping parameters and their estimated error values have been calculated by Chen's peak shape method and by the initial rise method. Values of activation energies estimated by both these techniques were comparable. The slight difference in activation energy values calculated by Chen's peak shape method indicated the formation of two kinds of traps Furthermore, slight differences in frequency values are due to various escaping and retrapping probabilities. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Marine heatwaves and optimal temperatures for microbial assemblage activity.

    PubMed

    Joint, Ian; Smale, Dan A

    2017-02-01

    The response of microbial assemblages to instantaneous temperature change was measured in a seasonal study of the coastal waters of the western English Channel. On 18 occasions between November 1999 and December 2000, bacterial abundance was assessed and temperature responses determined from the incorporation of 3 H leucine, measured in a temperature gradient from 5°C to 38°C. Q 10 values varied, being close to 2 in spring and summer but were >3 in autumn. There was a seasonal pattern in the assemblage optimum temperature (T opt ), which was out of phase with sea surface temperature. In July, highest 3 H-leucine incorporation rates were measured at temperatures that were only 2.8°C greater than ambient sea surface temperature but in winter, T opt was ∼20°C higher than the ambient sea surface temperature. Sea surface temperatures for the adjacent English Channel and Celtic Sea for 1982-2014 have periodically been >3°C higher than climatological mean temperatures. This suggests that discrete periods of anomalously high temperatures might be close to, or exceed, temperatures at which maximum microbial assemblage activity occurs. The frequency and magnitude of marine heatwaves are likely to increase as a consequence of anthropogenic climate change and extreme temperatures may influence the role of bacterial assemblages in biogeochemical processes. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Effect of low incubation temperature and low ambient temperature until 21 days of age on performance and body temperature in fast-growing chickens

    PubMed Central

    Nyuiadzi, D; Travel, A; Méda, B; Berri, C; Guilloteau, L A; Coustham, V; Wang, Y; Tona, J K; Collin, A

    2017-01-01

    Abstract Thermal manipulation during embryogenesis was previously reported to decrease the occurrence of ascites and to potentially improve cold tolerance of broilers. The objective of our study was to explore the effects of the interaction of cold incubation temperatures and cool ambient temperatures until 21 d of age on performance and body temperature. Ross 308 eggs were incubated either under control conditions I0 (37.6°C) or with cyclic cold stimulations I1 (6 h/d at 36.6°C from d 10 to 18 of incubation) or with 2 cold stimulations I2 (30 min at 15°C) at d 18 and 19 of incubation. These treatments were followed by individual rearing and postnatal exposure to either standard rearing temperature T0 (from 33°C at hatching to 21°C at d 21) or continuously lower temperature T2 (from 28°C at hatching to 21°C at d 21) or exposure to cyclically lower temperature T1 (with circadian temperature oscillations). Treatments I1 and I2 did not significantly alter hatchability compared to control incubation (with 94.8, 95.1, and 92.3%, respectively), or hatching BW and overall chick quality. Hatching body temperature (Tb) was 0.5 and 0.3°C higher in I1 than in I0 and I2 groups, respectively (P = 0.007). A doubled occurrence of health problems was observed with T2 condition, regardless of incubation or sex. At d 3, BW was 2% lower with treatment I1 than with I0 and I2 and was 3% higher in T1 and T2 groups than in T0, but these effects disappeared with age. Group T2 presented a 5% higher feed intake than the control group T0 between 3 and 21 d of age (P = 0.025). Feed conversion ratio (FCR) was affected by experimental conditions (P < 0.001), with low FCR values obtained with I2 incubation in control or cyclically cold postnatal conditions. Maximal FCR values were observed in the continuously cold postnatal conditions, in males submitted to control incubation and in females submitted to I1 incubation, revealing sex-dependent effects of the treatments on performance. PMID:29053847

  20. Kinetic analysis of Legionella inactivation using ozone in wastewater.

    PubMed

    Li, Jun; Li, Kunquan; Zhou, Yan; Li, Xuebin; Tao, Tao

    2017-02-01

    Legionella inactivation using ozone was studied in wastewater using kinetic analysis and modeling. The experimental results indicate that the relationship between the ozone concentration, germ concentration, and chemical oxygen demand (COD) can be used to predict variations in germ and COD concentrations. The ozone reaction with COD and inactivation of Legionella occurred simultaneously, but the reaction with COD likely occurred at a higher rate than the inactivation, as COD is more easily oxidized by ozone than Legionella. Higher initial COD concentrations resulted in a lower inactivation rate and higher lnN/N 0 . Higher temperature led to a higher inactivation efficiency. The relationship of the initial O 3 concentration and Legionella inactivation rate was not linear, and thus, the Ct value required for a 99.99% reduction was not constant. The initial O 3 concentration was more important than the contact time, and a reduction of the initial O 3 concentration could not be compensated by increasing the contact time. The Ct values were compared over a narrow range of initial concentrations; the Ct values could only be contrasted when the initial O 3 concentrations were very similar. A higher initial O 3 concentration led to a higher inflection point value for the lnN/N 0 vs C 0 t curve. Energy consumption using a plasma corona was lower than when using boron-doped diamond electrodes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Structural and electrical investigations of MBE-grown SiGe nanoislands

    NASA Astrophysics Data System (ADS)

    Şeker, İsa; Karatutlu, Ali; Gürbüz, Osman; Yanık, Serhat; Bakış, Yakup; Karakız, Mehmet

    2018-01-01

    SiGe nanoislands were grown by Molecular Beam Epitaxy (MBE) method on Si (100) substrates with comparative growth parameters such as annealing temperature, top Ge content and layer-by-layer annealing (LBLA). XRD and Raman data suggest that annealing temperature, top Ge content and layer-by-layer annealing (LBLA) can overall give a control not only over the amorphous content but also over yielding the strained Ge layer formation in addition to mostly Ge crystallites. Depending on the layer design and growth conditions, size of the crystallites was observed to be changed. Four Point Probe (FPP) Method via Semiconductor Analyzer shows that 100 °C rise in annealing temperature of the samples with Si0.25Ge0.75 top layers caused rougher islands with vacancies which further resulted in the formation of laterally higher resistive thin film sheets. However, vertically performed I-AFM analysis produced higher I-V values which suggest that the vertical and horizantal conductance mechanisms appear to be different. Ge top-layered samples gained greater crystalline structure and better surface conductivity where LBLA resulted in the formation of Ge nucleation and tight 2D stacking resulting in enhanced current values.

  2. Functional and energetic consequences of climate change on a predatory whelk

    NASA Astrophysics Data System (ADS)

    Giacoletti, A.; Maricchiolo, G.; Mirto, S.; Genovese, L.; Umani, M.; Sarà, G.

    2017-04-01

    The increasing rise in sea surface temperature caused by human activities currently represents the major threat to biodiversity and natural food webs. In this study we used the Lessepsian mussel Brachidontes pharaonis, one of the most recent invaders of the Mediterranean Sea, as a model to investigate the effect of a novel prey and a chronic increase in temperatures on functional parameters of local consumers, compared to the native mytilid species Mytilaster minimus. In particular we focused on the whelk Stramonita haemastoma, a widespread Mediterranean intertidal predator that actively preys on bivalves, barnacles and limpets, by studying the direct effects of such multiple stressors on feeding and growth rate, projected into a future climate change scenario (RCP8.5) relative to 2046-2065 with higher hypothesized temperatures of 2 °C. Gastropods showed a significantly higher feeding rate (ADFR) on M. minimus at high (6.45 ± 0.43) vs low temperatures (5.15 ± 0.33) compared to B. pharaonis (2.84 ± 0.37 vs 2.48 ± 0.27). Ingestion rate (ADIR), however, recorded higher values for B. pharaonis at high (1.71 ± 0.22) and low (1.49 ± 0.16) temperatures, compared to M. minimus (0.17 ± 0.01 vs 0.14 ± 0.01). Prey significantly influenced growth rate, condition index and the length-weight relationship (LWR) of whelks, while only ADFR seemed to be influenced by higher temperatures. In conclusion the extra amount of energy from the novel prey, together with temperature side effects, successfully influenced growth rates and reproductive events, positively affecting the global fitness of whelks.

  3. Body temperature stability achieved by the large body mass of sea turtles.

    PubMed

    Sato, Katsufumi

    2014-10-15

    To investigate the thermal characteristics of large reptiles living in water, temperature data were continuously recorded from 16 free-ranging loggerhead turtles, Caretta caretta, during internesting periods using data loggers. Core body temperatures were 0.7-1.7°C higher than ambient water temperatures and were kept relatively constant. Unsteady numerical simulations using a spherical thermodynamic model provided mechanistic explanations for these phenomena, and the body temperature responses to fluctuating water temperature can be simply explained by a large body mass with a constant thermal diffusivity and a heat production rate rather than physiological thermoregulation. By contrast, body temperatures increased 2.6-5.1°C in 107-152 min during their emergences to nest on land. The estimated heat production rates on land were 7.4-10.5 times the calculated values in the sea. The theoretical prediction that temperature difference between body and water temperatures would increase according to the body size was confirmed by empirical data recorded from several species of sea turtles. Comparing previously reported data, the internesting intervals of leatherback, green and loggerhead turtles were shorter when the body temperatures were higher. Sea turtles seem to benefit from a passive thermoregulatory strategy, which depends primarily on the physical attributes of their large body masses. © 2014. Published by The Company of Biologists Ltd.

  4. Climate predictability and prediction skill on seasonal time scales over South America from CHFP models

    NASA Astrophysics Data System (ADS)

    Osman, Marisol; Vera, C. S.

    2017-10-01

    This work presents an assessment of the predictability and skill of climate anomalies over South America. The study was made considering a multi-model ensemble of seasonal forecasts for surface air temperature, precipitation and regional circulation, from coupled global circulation models included in the Climate Historical Forecast Project. Predictability was evaluated through the estimation of the signal-to-total variance ratio while prediction skill was assessed computing anomaly correlation coefficients. Both indicators present over the continent higher values at the tropics than at the extratropics for both, surface air temperature and precipitation. Moreover, predictability and prediction skill for temperature are slightly higher in DJF than in JJA while for precipitation they exhibit similar levels in both seasons. The largest values of predictability and skill for both variables and seasons are found over northwestern South America while modest but still significant values for extratropical precipitation at southeastern South America and the extratropical Andes. The predictability levels in ENSO years of both variables are slightly higher, although with the same spatial distribution, than that obtained considering all years. Nevertheless, predictability at the tropics for both variables and seasons diminishes in both warm and cold ENSO years respect to that in all years. The latter can be attributed to changes in signal rather than in the noise. Predictability and prediction skill for low-level winds and upper-level zonal winds over South America was also assessed. Maximum levels of predictability for low-level winds were found were maximum mean values are observed, i.e. the regions associated with the equatorial trade winds, the midlatitudes westerlies and the South American Low-Level Jet. Predictability maxima for upper-level zonal winds locate where the subtropical jet peaks. Seasonal changes in wind predictability are observed that seem to be related to those associated with the signal, especially at the extratropics.

  5. Microphytobenthic primary production as 14C uptake in sublittoral sediments of the Gulf of Trieste (northern Adriatic Sea): Methodological aspects and data analyses

    NASA Astrophysics Data System (ADS)

    Cibic, Tamara; Blasutto, Oriana; Burba, Nicoletta; Fonda Umani, Serena

    2008-03-01

    From January 2003 to December 2004 microphytobenthic primary production was estimated both from in situ (MPPs) and in the laboratory (MPPp) 14C-incubation of slurries collected in a coastal site of the Gulf of Trieste (northern Adriatic Sea). MPPs values varied from -7.54 ± 3.12 to 34.59 ± 7.66 mg C m -2 h -1 over the whole period. The lowest MPPs were observed in November 2003 and August 2004, while the highest MPPs in July 2003 and May 2004, in correspondence with high PAR at the bottom. Significant correlations between MPPs and the microphytobenthic biomass (BIOM) ( r = 0.75, p < 0.001), between MPPs and PAR at the bottom ( r = 0.54, p < 0.01) and between MPPs and OXY ( r = 0.50, p < 0.05) were revealed. MPPp values were higher than MPPs ones in 15 out of 23 observations, with the highest MPPp recorded in July 2003. At 17 m depth a seasonal pattern of sampling months was revealed by the cluster analysis. The role of abiotic parameters in determining this seasonal pattern was highlighted by the PCA, with the first axis correlated with MPPs and PAR, and the second one with temperature. Applying the fuzzy sets it resulted that spring months showed a higher degree of membership with MPPs, summer months with temperature and autumn-winter months with OXY. The microphytobenthic community did not seem to be photosynthetically active throughout the study period. From August-September to December low or negative MPPs values were recorded. We infer that during these months a shift from the autotrophic to heterotrophic metabolism of the benthic microalgae occurred in correspondence with low PAR and/or high temperature at the bottom. Despite the progressive lowering of the trophy of the study area occurred during the last 20 years, we found higher primary production values than those estimated two decades earlier.

  6. Enhanced power factor via the control of structural phase transition in SnSe

    PubMed Central

    Yu, Hulei; Dai, Shuai; Chen, Yue

    2016-01-01

    Tin selenide has attracted much research interest due to its unprecedentedly high thermoelectric figure of merit (ZT). For real applications, it is desirable to increase the ZT value in the lower-temperature range, as the peak ZT value currently exists near the melting point. It is shown in this paper that the structural phase transition plays an important role in boosting the ZT value of SnSe in the lower-temperature range, as the Cmcm phase is found to have a much higher power factor than the Pnma phase. Furthermore, hydrostatic pressure is predicted to be extremely effective in tuning the phase transition temperature based on ab-initio molecular dynamic simulations; a remarkable decrease in the phase transition temperature is found when a hydrostatic pressure is applied. Dynamical stabilities are investigated based on phonon calculations, providing deeper insight into the pressure effects. Accurate band structures are obtained using the modified Becke-Johnson correction, allowing reliable prediction of the electrical transport properties. The effects of hydrostatic pressure on the thermal transport properties are also discussed. Hydrostatic pressure is shown to be efficient in manipulating the transport properties via the control of phase transition temperature in SnSe, paving a new path for enhancing its thermoelectric efficiency. PMID:27193260

  7. Evaluation results of the 700 deg C Chinese strain gauges. [for gas turbine engine

    NASA Technical Reports Server (NTRS)

    Hobart, H. F.

    1985-01-01

    Gauges fabricated from specially developed Fe-Cr-Al-V-Ti-Y alloy wire in the Republic of China were evaluated for use in static strain measurement of hot gas turbine engines. Gauge factor variation with temperature, apparent strain, and drift were included. Results of gauge factor versus temperature tests show gauge factor decreasing with increasing temperature. The average slope is -3-1/2 percent/100 K, with an uncertainty band of + or - 8 percent. Values of room temperature gauge factor for the Chinese and Kanthal A-1 gauges averaged 2.73 and 2.12, respectively. The room temperature gauge factor of the Chinese gauges was specified to be 2.62. The apparent strain data for both the Chinese alloy and Kanthal A-1 showed large cycle to cycle nonrepeatability. All apparent strain curves had a similar S-shape, first going negative and then rising to positive value with increasing temperatures. The mean curve for the Chinese gauges between room temperature and 100 K had a total apparent strain of 1500 microstrain. The equivalent value for Kanthal A-1 was about 9000 microstrain. Drift tests at 950 K for 50 hr show an average drift rate of about -9 microstrain/hr. Short-term (1 hr) rates are higher, averaging about -40 microstrain for the first hour. In the temperature range 700 to 870 K, however, short-term drift rates can be as high as 1700 microstrain for the first hour. Therefore, static strain measurements in this temperature range should be avoided.

  8. Effect of pregelatination on rheology, cooking and antioxidant activity of pasta.

    PubMed

    Rafiq, Aasima; Sharma, Savita; Singh, Baljit

    2018-05-01

    The present study explores the possibility of using twin screw extruder for preparation of pregelatinized pasta. The effects of extrusion parameters feed moisture (28 and 32%), barrel temperature (60-105 °C) and screw speed (100-200 rpm) on pregelatinized pasta were investigated. Prepared pasta was analysed for quality characteristics in terms of cooking quality, degree of gelatinization, color, texture, pasting properties, bioactive composition. Results indicated that higher screw speed improved the cooking quality of pasta and decreased gruel solid loss. Degree of gelatinization revealed positive relation with temperature and feed moisture. Extrusion conditions, altered the color of pasta, a decrease in L*, increase in a* and b* values was observed. Higher peak viscosity was observed at lower barrel temperature and feed moisture. A significant retention in total phenolic content and flavonoid content was observed with higher feed moisture. Extrusion leads to increase in antioxidant activity and firmness upon increasing screw speed and feed moisture.

  9. Maltodextrin: A consummate carrier for spray-drying of xylooligosaccharides.

    PubMed

    Zhang, Liangqing; Zeng, Xianhai; Fu, Nan; Tang, Xing; Sun, Yong; Lin, Lu

    2018-04-01

    The aim of this study was to evaluate the influence of spray-drying on the powder qualities and microstructures of prebiotic xylooligosaccharides (XOS). The relationships between glass transition temperature (T g ) and XOS retention, moisture content, drying yield as well as specific surface area under different inlet air temperatures and maltodextrin concentrations were investigated. Antioxidant activity retention, hygroscopicity, color attributes, X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR) of the spray-dried XOS product were also assessed. The results indicated that an increase in inlet air temperature decreased the moisture content, hence the T g value was increased. Higher maltodextrin concentration increased the T g value, and was attributed to the molecular weight increase. The wall deposition was a tendency to occur when the temperature beyond the T g , reduced the drying yield. Higher temperature and wall deposition promoted the decomposition of XOS into monosaccharide. The crust formation rate of droplets and stickiness of microparticles were affected by T g , and hence, influenced the specific surface area. The antioxidant activity retention of XOS exhibited a concentration-dependent behavior. The hygroscopicity of the microparticles could be reduced by both of the low inlet air temperature and high maltodextrin concentration. According to the results of color attributes, XRD and SEM, the particles were colorless and amorphous, and tended to become more spherical and scattered with the addition of maltodextrin. The FT-IR analysis confirmed that no chemical reaction occurred between XOS and agent, which indicated that maltodextrin is a promising carrier for producing bioactive XOS powder. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Effect of Deep Drying and Torrefaction Temperature on Proximate, Ultimate Composition, and Heating Value of 2-mm Lodgepole Pine (Pinus contorta) Grind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumuluru, Jaya

    Deep drying and torrefaction is a thermal pretreatment method, where biomass is heated in the temperature range of 150–300°C in an inert or reduced environment. The process parameters like temperature and residence time has a significant impact on proximate, ultimate, and energy properties of the biomass. In the present study, torrrefaction experiments were conducted on 2 mm lodgepole pine grind using a thermogravimetric analyzer. Both deep drying and torrefaction temperature (160–270°C) and time (15–120 min) were selected. Torrefied samples were analyzed for proximate, ultimate and energy properties. Results indicated that moisture content decreased with increases in torrefaction temperature and time,more » where at 270°C and 120 min, the moisture content was found to be 1.15% (w.b.). Volatile content in the biomass decreased from about 80% to about 45%, and ash content increased from 0.77 to about 1.91% at 270°C and 120 min. The hydrogen, oxygen and sulfur content decreased to 3%, 28.24%, and 0.01 whereas carbon content and higher heating value increased to 68.86% and 23.67 MJ/kg at 270°C and 120 min. H/C and O/C ratio calculated at 270°C and 120 min residence time were about 0.56 and 0.47. This study indicated that higher torrefaction temperatures >230°C and residence time >15 min influenced the proximate, ultimate, and energy properties.« less

  11. Economic Value of Narrowing the Uncertainty in Climate Sensitivity: Decadal Change in Shortwave Cloud Radiative Forcing and Low Cloud Feedback

    NASA Astrophysics Data System (ADS)

    Wielicki, B. A.; Cooke, R. M.; Golub, A. A.; Mlynczak, M. G.; Young, D. F.; Baize, R. R.

    2016-12-01

    Several previous studies have been published on the economic value of narrowing the uncertainty in climate sensitivity (Cooke et al. 2015, Cooke et al. 2016, Hope, 2015). All three of these studies estimated roughly 10 Trillion U.S. dollars for the Net Present Value and Real Option Value at a discount rate of 3%. This discount rate is the nominal discount rate used in the U.S. Social Cost of Carbon Memo (2010). The Cooke et al studies approached this problem by examining advances in accuracy of global temperature measurements, while the Hope 2015 study did not address the type of observations required. While temperature change is related to climate sensitivity, large uncertainties of a factor of 3 in current anthropogenic radiative forcing (IPCC, 2013) would need to be solved for advanced decadal temperature change observations to assist the challenge of narrowing climate sensitivity. The present study takes a new approach by extending the Cooke et al. 2015,2016 papers to replace observations of temperature change to observations of decadal change in the effects of changing clouds on the Earths radiative energy balance, a measurement known as Cloud Radiative Forcing, or Cloud Radiative Effect. Decadal change in this observation is direclty related to the largest uncertainty in climate sensitivity which is cloud feedback from changing amount of low clouds, primarily low clouds over the world's oceans. As a result, decadal changes in shortwave cloud radiative forcing are more directly related to cloud feedback uncertainty which is the dominant uncertainty in climate sensitivity. This paper will show results for the new approach, and allow an examination of the sensitivity of economic value results to different observations used as a constraint on uncertainty in climate sensitivity. The analysis suggests roughly a doubling of economic value to 20 Trillion Net Present Value or Real Option Value at 3% discount rate. The higher economic value results from two changes: a larger increase in accuracy for SW cloud radiative forcing vs temperature, and from a lower confounding noise from natural variability in the cloud radiative forcing variable compared to temperature. In particular, global average temperature is much more sensitive to the climate noise of ENSO cycles.

  12. The effects of temperature and salinity on phosphate levels in two euryhaline crustacean species

    NASA Astrophysics Data System (ADS)

    Spaargaren, D. H.; Richard, P.; Ceccaldi, H. J.

    Total phoshate, inorganic phosphate and organic (phospholipid) phosphate concentrations were determined in the blood of Carcinus maenas and in whole-animal homogenates of Penaeus japonicus acclimatized to various salinities and a high or a low temperature. In the blood of Carcinus, total and inorganic P concentrations range between 1.0 and 4.5 mmol · l -1; the amount of phospholipids is negligeable. The higher values were found at more extreme salinities. Low temperature is associated with low phosphate concentrations, particularly at intermediate salinities. Total P concentrations in Penaeus homogenates range between 10 and 60 mmol · 1 -1; phospholipid concentrations range between zero and 50 mmol · 1 -1. The higher values are again found at the extreme salinities. Inorganic P concentrations are almost constant — ca 10 mmol · 1 -1. No apparent effect of temperature on phosphate concentrations was observed. The results show clearly that osmotic stress influences severely the phosphate metabolism of the two species studied. Both species are able to accumulate phosphate at all experimental temperature/salinity combinations used, even when deprived of food. At extreme salinities, large quantities of phosphate are accumulated and converted to organic P compounds, most likely as phospholipids associated with the cell membranes. These effects of osmotic conditions in phosphate metabolism may offer an explanation for the effect of Ca ++ on membrane permeability as the regulation of both ions may be strongly interrelated, often under hormonal control.

  13. Comparative investigation of thermal and mechanical properties of cross-linked epoxy polymers with different curing agents by molecular dynamics simulation.

    PubMed

    Jeyranpour, F; Alahyarizadeh, Gh; Arab, B

    2015-11-01

    Molecular dynamics (MD) simulations were carried out to predict the thermal and mechanical properties of the cross-linked epoxy system composed of DGEBA resin and the curing agent TETA. To investigate the effects of curing agents, a comprehensive and comparative study was also performed on the thermal and mechanical properties of DGEBA/TETA and DGEBA/DETDA epoxy systems such as density, glass transition temperature (Tg), coefficient of thermal expansion (CTE) and elastic properties of different cross-linking densities and different temperatures. The results indicated that the glass transition temperature of DGEBA/TETA system calculated through density-temperature data, ∼ 385-395 °K, for the epoxy system with the cross-linking density of 62.5% has a better agreement with the experimental value (Tg, ∼ 400 °K) in comparison to the value calculated through the variation of cell volume in terms of temperature, 430-440 °K. They also indicated that CTE related parameters and elastic properties including Young, Bulk, and shear's moduli, and Poisson's ratio have a relative agreement with the experimental results. Comparison between the thermal and mechanical properties of epoxy systems of DGEBA/TETA and DGEBA/DETDA showed that the DGEBA/DETDA has a higher Tg in all cross linking densities than that of DGEBA/TETA, while higher mechanical properties was observed in the case of DGEBA/TETA in almost all cross linking densities. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Seasonal variation in the international normalized ratio of neonates and its relationship with ambient temperature.

    PubMed

    Iijima, Shigeo; Sekii, Katsuyuki; Baba, Toru; Ueno, Daizo; Ohishi, Akira

    2016-07-19

    The morbidity and mortality rates due to cardiovascular events such as myocardial infarction are known to exhibit seasonal variations. Moreover, changes in the ambient temperature are reportedly associated with an increase in these events, which may potentially involve blood coagulation markers. Bleeding due to vitamin K deficiency in neonates, which is associated with high mortality and a high frequency of neurological sequelae, is more commonly observed during the summer season and in warm regions in Japan. To determine the presence of seasonal variation and the influence of ambient temperature on blood coagulation markers in healthy term neonates, we assessed the international normalized ratio (INR) values measured using CoaguChek XS. We studied 488 consecutive healthy term neonates who were born at a perinatal center between July 2012 and June 2013. The INR values were measured using CoaguChek XS in 4-day-old neonates who received nursing care in the newborn nursery throughout the duration of hospitalization. The seasonal variations in the INR values and environmental effects on the INR were assessed. The mean monthly INR values peaked in July (1.13 ± 0.08), whereas the lowest values were observed in January (1.05 ± 0.08). Higher levels of INR were observed during the summer season (June to August) than during the winter season (December to February). Simple linear regression analysis indicated the presence of weakly positive but significant correlations between INR and outdoor temperature (r = 0.25, p < 0.001), outdoor relative humidity (r = 0.19, p < 0.001), and room relative humidity (r = 0.24, p < 0.001), and the presence of a significant negative correlation between INR and room temperature (r = -0.13, p = 0.02). Furthermore, multiple linear regression analysis showed that only outdoor temperature significantly influenced the INR. A seasonal variation in the INR values was observed among neonates, possibly due to the variation in ambient temperature. Even though the neonates received nursing care in the newborn nursery that was constantly air-conditioned, the outdoor temperature was the most influential factor on INR.

  15. Effects of transportation during the hot season, breed and electrical stimulation on histochemical and meat quality characteristics of goat longissimus muscle.

    PubMed

    Kadim, Isam T; Mahgoub, Osman; Al-Marzooqi, Waleed; Khalaf, Samera; Al-Sinawi, Shadia S H; Al-Amri, Issa

    2010-06-01

    The effects of transportation and electrical stimulation (90 V) on physiological, histochemical and meat quality characteristics of two breeds of Omani goats were assessed. Twenty 1-year-old male goats from each breed (Batina and Dhofari) were divided into two groups: 3 h transported during the hot season (42 degrees C day time temperature) and non-transported. Animals were blood-sampled before loading and prior to slaughter. Electrical stimulation was applied 20 min postmortem to 50% randomly selected carcasses of both breeds. Temperature and pH decline of the Longissimus was monitored. Ultimate pH, shear force, sarcomere length, myofibrillar fragmentation index, expressed juice, cooking loss and colour were measured from samples of Longissimus dorsi muscles. Electrical stimulation and transportation had a significant effect on most biochemical and meat quality characteristics of Longissimus dorsi. The transported goats had higher plasma cortisol (P < 0.01), adrenaline, nor-adrenaline and dopamine concentrations (P < 0.05) than non-transported goats. Electrical stimulation resulted in a significantly (P < 0.05) more rapid muscle pH fall during the first 12 h after slaughter. Muscles from electrically-stimulated carcasses had significantly (P < 0.05) longer sarcomeres, lower shear force value, a lighter colour (higher L* value), higher expressed juice and myofibrillar fragmentation index than those from non-stimulated ones. Meat from transported goats had significantly higher pH, expressed juice and shear force, but contained significantly lower sarcomere length and L* values than non-transported goats. The proportion of the myosin ATPase staining did not change as a function of stimulation, transportation or breed. These results indicated that subjecting goats to transportation for 3 h under high ambient temperatures can generate major physiological and muscle metabolism responses. Electrical stimulation improved quality characteristics of meat from both groups. This indicates that electrical stimulation may reduce detrimental effects of transportation on meat quality of Omani goats.

  16. Radiated chemical reaction impacts on natural convective MHD mass transfer flow induced by a vertical cone

    NASA Astrophysics Data System (ADS)

    Sambath, P.; Pullepu, Bapuji; Hussain, T.; Ali Shehzad, Sabir

    2018-03-01

    The consequence of thermal radiation in laminar natural convective hydromagnetic flow of viscous incompressible fluid past a vertical cone with mass transfer under the influence of chemical reaction with heat source/sink is presented here. The surface of the cone is focused to a variable wall temperature (VWT) and wall concentration (VWC). The fluid considered here is a gray absorbing and emitting, but non-scattering medium. The boundary layer dimensionless equations governing the flow are solved by an implicit finite-difference scheme of Crank-Nicolson which has speedy convergence and stable. This method converts the dimensionless equations into a system of tri-diagonal equations and which are then solved by using well known Thomas algorithm. Numerical solutions are obtained for momentum, temperature, concentration, local and average shear stress, heat and mass transfer rates for various values of parameters Pr, Sc, λ, Δ, Rd are established with graphical representations. We observed that the liquid velocity decreased for higher values of Prandtl and Schmidt numbers. The temperature is boost up for decreasing values of Schimdt and Prandtl numbers. The enhancement in radiative parameter gives more heat to liquid due to which temperature is enhanced significantly.

  17. The Impact of Different Absolute Solar Irradiance Values on Current Climate Model Simulations

    NASA Technical Reports Server (NTRS)

    Rind, David H.; Lean, Judith L.; Jonas, Jeffrey

    2014-01-01

    Simulations of the preindustrial and doubled CO2 climates are made with the GISS Global Climate Middle Atmosphere Model 3 using two different estimates of the absolute solar irradiance value: a higher value measured by solar radiometers in the 1990s and a lower value measured recently by the Solar Radiation and Climate Experiment. Each of the model simulations is adjusted to achieve global energy balance; without this adjustment the difference in irradiance produces a global temperature change of 0.48C, comparable to the cooling estimated for the Maunder Minimum. The results indicate that by altering cloud cover the model properly compensates for the different absolute solar irradiance values on a global level when simulating both preindustrial and doubled CO2 climates. On a regional level, the preindustrial climate simulations and the patterns of change with doubled CO2 concentrations are again remarkably similar, but there are some differences. Using a higher absolute solar irradiance value and the requisite cloud cover affects the model's depictions of high-latitude surface air temperature, sea level pressure, and stratospheric ozone, as well as tropical precipitation. In the climate change experiments it leads to an underestimation of North Atlantic warming, reduced precipitation in the tropical western Pacific, and smaller total ozone growth at high northern latitudes. Although significant, these differences are typically modest compared with the magnitude of the regional changes expected for doubled greenhouse gas concentrations. Nevertheless, the model simulations demonstrate that achieving the highest possible fidelity when simulating regional climate change requires that climate models use as input the most accurate (lower) solar irradiance value.

  18. Sensitivity of simulated South America Climate to the Land Surface Schemes in RegCM4

    NASA Astrophysics Data System (ADS)

    Llopart, Marta; da Rocha, Rosmeri; Reboita, Michelle; Cuadra, Santiago

    2017-04-01

    This work evaluates the impact of two land surface parameterizations on the simulated climate and its variability over South America (SA). Two numerical experiments using RegCM4 coupled with Biosphere-Atmosphere Transfer Scheme (RegBATS) and Community Land Model version 3.5 (RegCLM) land surface schemes are compared. For the period 1979-2008, RegCM4 simulations used 50 km horizontal grid spacing and the ERA-Interim reanalysis as initial and boundary conditions. For the period studied, both simulations represent the main observed spatial patterns of rainfall, air temperature and low level circulation over SA. However, concerning the precipitation intensity, RegCLM values are closer to the observations than RegBATS (it is in general, wetter) over most of SA. RegCLM also provides smaller biases for air temperature. Over the Amazon basin, the amplitudes of the annual cycles of the soil moisture, evapotranspiration and sensible heat flux are higher in RegBATS than in RegCLM. This indicates that RegBATS provides large amounts of water vapor to the atmosphere and has more available energy to increase the boundary layer and make it reach the level of free convection (higher sensible heat flux values) resulting in higher precipitation rates and a large wet bias. RegCLM is closer to the observations than RegBATS, presenting smaller wet and warm biases over the Amazon basin. On an interannual scale, the magnitudes of the anomalies of the precipitation and air temperature simulated by RegCLM are closer to the observations. In general, RegBATS simulates higher magnitude for the interannual variability signal.

  19. Ice core evidence of rapid air temperature increases since 1960 in alpine areas of the Wind River Range, Wyoming, United States

    USGS Publications Warehouse

    Naftz, D.L.; Susong, D.D.; Schuster, P.F.; Cecil, L.D.; Dettinger, M.D.; Michel, R.L.; Kendall, C.

    2002-01-01

    Site-specific transfer functions relating delta oxygen 18 (δ18O) values in snow to the average air temperature (TA) during storms on Upper Fremont Glacier (UFG) were used in conjunction with δ18O records from UFG ice cores to reconstruct long-term trends in air temperature from alpine areas in the Wind River Range, Wyoming. Transfer functions were determined by using data collected from four seasonal snowpacks (1989-1990, 1997-1998, 1998-1999, and 1999-2000). The timing and amount of each storm was determined from an automated snowpack telemetry (SNOTEL) site, 22 km northeast of UFG, and ~1060 m in elevation below UFG. Statistically significant and positive correlations between δ18O values in the snow and TA were consistently found in three of the four seasonal snowpacks. The snowpack with the poor correlation was deposited in 1997-1998 during the 1997-1998 El Nino Southern Oscillation (ENSO). An ultrasonic snow-depth sensor installed on UFG provided valuable insights into site-specific storms and postdepositional processes that occur on UFG. The timing of storms recorded at the UFG and Cold Springs SNOTEL sites were similar; however, selected storms did not correlate. Snow from storms occurring after mid-October and followed by high winds was most susceptible to redeposition of snow. This removal of lower temperature snowfall could potentially bias the δ18O values preserved in ice core records to environmental conditions reflecting higher air temperatures and lower wind speeds. Transfer functions derived from seasonal snow cover on UFG were used to reconstruct TA values from δ18O values determined from two ice cores collected from UFG. Reconstructed air temperatures from the ice core data indicate an increase in TA of ~3.5oC from the mid-1960s to the early 1990s in the alpine areas of northwestern Wyoming. Reconstructed TA from the ice core records between the end of the Little Ice Age (LIA), mid-1800s, and the early 1990s indicate a TA increase of ~55oC. The historically reconstructed TA values from the UFG were significantly higher than the global average observed during the 20th Century but were in agreement with TA increases observed at selected, high-altitude and high-latitude sites in other parts of the world. Additional research is required to determine if part of the observed trend toward heavier δ18O values in ice from the UFG since the LIA (and increased TA) is due to an increased proportion of snowfall from southerly storm tracks and moisture sources, as seems to have been the situation in 1997-1998. Copyright 2002 by the American Geophysical Union.

  20. Analog parameters of solid source Zn diffusion In X Ga1-X As nTFETs down to 10 K

    NASA Astrophysics Data System (ADS)

    Bordallo, C.; Martino, J. A.; Agopian, P. G. D.; Alian, A.; Mols, Y.; Rooyackers, R.; Vandooren, A.; Verhulst, A. S.; Smets, Q.; Simoen, E.; Claeys, C.; Collaert, N.

    2016-12-01

    The analog parameters of In0.53Ga0.47As and In0.7Ga0.3As nTFETs with solid state Zn diffused source are investigated from room temperature down to 10 K. The In0.7Ga0.3As devices are shown to yield a higher on-state current than the In0.53Ga0.47As counterparts, and, consequently, a higher transconductance due to the lower bandgap. At the same time, the In0.7Ga0.3As devices present higher output conductance values. The balance between these two factors results in a higher intrinsic voltage gain (A V) for In0.7Ga0.3As nTFETs at low gate bias and similar A V for both devices at high gate voltage. The transconductance is reduced at low temperature due to the increase of the bandgap, while the output conductance is decreased (improved) upon cooling, which is related to the reduction of the drain dependence of the BTBT generation rate. The temperature influence is more pronounced in the output conductance than in the transconductance, resulting in an increase of the intrinsic voltage gain at low temperatures for both devices and bias.

  1. Low pressure catalytic co-conversion of biogenic waste (rapeseed cake) and vegetable oil.

    PubMed

    Giannakopoulou, Kanellina; Lukas, Michael; Vasiliev, Aleksey; Brunner, Christoph; Schnitzer, Hans

    2010-05-01

    Zeolite catalysts of three types (H-ZSM-5, Fe-ZSM-5 and H-Beta) were tested in the catalytic co-conversion of rapeseed cake and safflower oil into bio-fuel. This low pressure process was carried out at the temperatures of 350 and 400 degrees Celsius. The yields and compositions of the product mixtures depended on the catalyst nature and the process temperatures. The produced organic phases consisted mainly of hydrocarbons, fatty acids and nitriles. This mixture possessed improved characteristics (e.g. heating value, water content, density, viscosity, pH) compared with the bio-oils, making possible its application as a bio-fuel. The most effective catalyst, providing the highest yield of organic liquid phase, was the highly acidic/wide-pore H-Beta zeolite. The products obtained on this catalyst demonstrated the highest degree of deoxygenation and the higher HHV (Higher Heating Value). The aqueous liquid phase contained water-soluble carboxylic acids, phenols and heterocyclic compounds. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. Biomass-based pyrolytic polygeneration system on cotton stalk pyrolysis: influence of temperature.

    PubMed

    Chen, Yingquan; Yang, Haiping; Wang, Xianhua; Zhang, Shihong; Chen, Hanping

    2012-03-01

    To study the process of biomass-based pyrolytic polygeneration and its mechanism in depth, the pyrolysis of cotton stalk was investigated in a packed bed, with focus on the evolution of the chemical and physical structures of the solid, liquid and gaseous products. The evolution of product characteristics could be good explaining the process mechanism of biomass pyrolysis. A relationship between the pore distribution of solid products and the fused aromatic rings system revealed by Raman analysis might be exist and need to quantify in further study. Regarding the optimum conditions for obtaining high-quality pyrolytic products from the polygeneration system, the optimum temperature is 550-750°C, with a higher calorific value of the obtained charcoal (≈ 28 MJ/kg) and a higher surface area (>200 m(2)/g). Meanwhile, the calorific value of the gas reaches 8-9 MJ/m(3) and the liquid oil would be used as a platform product in biorefinery. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  3. Regional potential evapotranspiration in arid climates based on temperature, topography and calculated solar radiation

    NASA Astrophysics Data System (ADS)

    Shevenell, Lisa

    1999-03-01

    Values of evapotranspiration are required for a variety of water planning activities in arid and semi-arid climates, yet data requirements are often large, and it is costly to obtain this information. This work presents a method where a few, readily available data (temperature, elevation) are required to estimate potential evapotranspiration (PET). A method using measured temperature and the calculated ratio of total to vertical radiation (after the work of Behnke and Maxey, 1969) to estimate monthly PET was applied for the months of April-October and compared with pan evaporation measurements. The test area used in this work was in Nevada, which has 124 weather stations that record sufficient amounts of temperature data. The calculated PET values were found to be well correlated (R2=0·940-0·983, slopes near 1·0) with mean monthly pan evaporation measurements at eight weather stations.In order to extrapolate these calculated PET values to areas without temperature measurements and to sites at differing elevations, the state was divided into five regions based on latitude, and linear regressions of PET versus elevation were calculated for each of these regions. These extrapolated PET values generally compare well with the pan evaporation measurements (R2=0·926-0·988, slopes near 1·0). The estimated values are generally somewhat lower than the pan measurements, in part because the effects of wind are not explicitly considered in the calculations, and near-freezing temperatures result in a calculated PET of zero at higher elevations in the spring months. The calculated PET values for April-October are 84-100% of the measured pan evaporation values. Using digital elevation models in a geographical information system, calculated values were adjusted for slope and aspect, and the data were used to construct a series of maps of monthly PET. The resultant maps show a realistic distribution of regional variations in PET throughout Nevada which inversely mimics topography. The general methods described here could be used to estimate regional PET in other arid western states (e.g. New Mexico, Arizona, Utah) and arid regions world-wide (e.g. parts of Africa).

  4. Study on chemical hydrography, chlorophyll-a and primary productivity in Liaodong Bay, China

    NASA Astrophysics Data System (ADS)

    Pei, Shaofeng; Laws, Edward A.; Zhang, Haibo; Ye, Siyuan; Kemper, Marc T.; Yuan, Hongming; Xu, Gang; Yang, Shixiong; Liu, Haiyue; Zhu, Yaxuan

    2018-03-01

    A field study was carried out during the summer of 2013 in Liaodong Bay, China to determine the dynamics of the phytoplankton in the bay and the extent to which primary production in the bay was constrained by environmental factors. There was little or no evidence of limitation of phytoplankton production by nutrient concentrations at any of the sampling stations, with the possible exception of a few offshore stations where phosphate concentrations were less than 30 nM. This assessment was consistent with the results of nutrient enrichment experiments and the values of light-saturated photosynthetic rates and areal photosynthetic rates. To examine the effects of irradiance and temperature on light-saturated photosynthetic rates normalized to chlorophyll a concentrations (Poptb) at twelve stations where photosynthetic rates were measured by 14C method, light-conditioned values were modeled as a function of the temperature with a satisfactory fit to our field data (R2 = 0.60, p = 0.003). According to this model, the light-conditioned Poptb values increased with temperatures from 22 °C to roughly 25 °C but declined precipitously at higher temperatures, and Poptb values and corresponding areal photosynthetic rates at all 66 stations were estimated to be 7.6 ± 2.4 g C g-1 Chl a h-1 and 532 ± 429 gC m-2 d-1 in average, respectively. The quanta absorbed per carbon atom fixed averaged 14 ± 2 and 37 ± 10 at six coastal stations and six estuarine stations, respectively. The relatively high Poptb values and low quantum requirements at the coastal stations implied the highly efficient usage of absorbed light by phytoplankton under nutrient-replete conditions and favorable temperatures. Comparatively, the low Poptb values and high quantum requirements at the estuarine stations suggested rather extreme light limitation and lowly efficient usage of absorbed light in photosynthesis in the Liaohe River estuary. Areal production in Liaodong Bay appears to be controlled by a combination of temperature and light limitation.

  5. High Temperature Mechanical Behavior of UHTC Coatings for Thermal Protection of Re-Entry Vehicles

    NASA Astrophysics Data System (ADS)

    Pulci, G.; Tului, M.; Tirillò, J.; Marra, F.; Lionetti, S.; Valente, T.

    2011-01-01

    In this work, the high temperature mechanical properties of ultra high temperature ceramics (UHTC) coatings deposited by plasma spraying have been investigated; particularly the stress-strain relationship of ZrB2-based thick films has been evaluated by means of 4-point bending tests up to 1500 °C in air. Results show that at each investigated temperature (500, 1000, and 1500 °C) modulus of rupture (MOR) values are higher than the ones obtained at room temperature (RT); moreover at 1500 °C the UHTC coatings exhibit a marked plastic behavior, maintaining a flexural strength 25% higher compared to RT tested samples. The coefficient of linear thermal expansion (CTE) has been evaluated up to 1500 °C: obtained data are of primary importance for substrate selection, interface design and to analyze the thermo-mechanical behavior of coating-substrate coupled system. Finally, SEM-EDS analyses have been carried out on as-sprayed and tested materials in order to understand the mechanisms of reinforcement activated by high temperature exposure and to identify the microstructural modifications induced by the combination of mechanical loads and temperature in an oxidizing environment.

  6. Color, bioactive compounds and morphological characteristics of encapsulated Asian pear juice powder during spray drying.

    PubMed

    Lee, Chang-Gon; Ahmed, Maruf; Jiang, Gui-Hun; Eun, Jong-Bang

    2017-08-01

    Encapsulated Asian pear juice powder was produced through spray drying using three maltodextrin levels (15, 20, and 25% w/v) and three inlet air temperatures (130, 150, and 170 °C). The impact of maltodextrin concentrations and inlet air temperatures on color, bioactive compounds, and morphological characteristics of encapsulated Asian pear juice powder were investigated. Maltodextrin concentrations and inlet air temperatures significantly influenced L * and b * values of encapsulated Asian pear juice powder. Increasing inlet air temperatures increased total phenolic content, whereas the vitamin C content decreased. Vitamin C content was strongly correlated with particle size, inlet air temperature, and maltodextrin concentration. ABTS + radical-scavenging activity was highly correlated with total phenol content while DPPH radical-scavenging activity was highly correlated with vitamin C content. Encapsulated powders made with higher inlet air temperature and higher maltodextrin concentration had lowest median particle diameter with a smoother, more regular and rounded outer surface than those of encapsulated powders produced with lower inlet air temperature and lower maltodextrin concentration. Therefore, the results demonstrate that high-quality encapsulated Asian pear juice powder could be manufactured by adding 15% (w/v) maltodextrin and spray-drying at 170 °C.

  7. Ranges of diurnal variation and the pattern of body temperature, blood pressure and heart rate in laboratory beagle dogs.

    PubMed

    Miyazaki, Hiroyasu; Yoshida, Mutsumi; Samura, Keiji; Matsumoto, Hiroyoshi; Ikemoto, Fumihiko; Tagawa, Masahiro

    2002-01-01

    Ranges in diurnal variation and the patterns of body temperature (T), blood pressure (BP), heart rate (HR) and locomotor activity (LA) in 61 laboratory beagle dogs were analyzed using a telemetry system. Body temperature, BP, HR and LA increased remarkably at feeding time. Locomotor activity increased sporadically during the other periods. Body temperature was maintained at the higher value after feeding but had decreased by 0.2 C by early the next morning. Blood pressure fell to a lower value after feeding but had increased by 2.8% by early the next morning. Heart rate decreased progressively after feeding and was 14.5% lower the next morning. This study determined that in laboratory beagles the ranges of diurnal variation and patterns of T, BP and HR are significantly different from those reported in humans and rodents, and that over 24 hr these physiological changes were associated with their sporadic wake-sleep cycles of the dogs.

  8. Dual-Responsive pH and Temperature Sensitive Nanoparticles Based on Methacrylic Acid and Di(ethylene glycol) Methyl Ether Methacrylate for the Triggered Release of Drugs.

    PubMed

    Khine, Yee Yee; Jiang, Yanyan; Dag, Aydan; Lu, Hongxu; Stenzel, Martina H

    2015-08-01

    A series of thermo-and pH-responsive poly(methyl methacrylate)-block-poly[methacrylic acid-co-di(ethylene glycol) methyl ether methacrylate] PMMA-b-P[MAA-co-DEGMA] block copolymers were synthesized by RAFT polymerization and self-assembled into micelles. The molar ratio of MAA was altered from 0-12% in order to modulate the lower critical solution temperature (LCST) of PDEGMA. The release of the drug albendazole from the micelle was strongly dependent on the temperature and the LCST value of the polymer. Systems below the LCST released the drug slowly while increasing the temperature above the LCST or decreasing the pH value to 5 resulted in the burst-like release of the drug. ABZ delivered in this pH-responsive drug carrier had a higher toxicity than the free drug or the drug delivered in a non-responsive drug carrier. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Oxidation Kinetics of a NiPtTi High Temperature Shape Memory Alloy

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Humphrey, Donald L.; Noebe, Ronald D.

    2007-01-01

    A high temperature shape memory alloy (HTSMA), Ni30Pt50Ti, with an M(sub s) near 600 C, was isothermally oxidized in air for 100 hr over the temperature range of 500 to 900 C. Parabolic kinetics were confirmed by log-log and parabolic plots and showed no indication of fast transient oxidation. The overall behavior could be best described by the Arrhenius relationship: k(sub p) = 1.64 x 10(exp 12)[(-250 kJ/mole)/RT] mg(sup 2)/cm(sup 4)hr. This is about a factor of 4 reduction compared to values measured here for a binary Ni47Ti commercial SMA. The activation energy agreed with most literature values for TiO2 scale growth measured for elemental Ti and other NiTi alloys. Assuming uniform alloy depletion of a 20 mil (0.5 mm) dia. HTSMA wire, approx. 1 percent Ti reduction is predicted after 20,000 hr oxidation at 500 C, but becomes much more serious at higher temperatures.

  10. The influence of point defects on the thermal conductivity of AlN crystals

    NASA Astrophysics Data System (ADS)

    Rounds, Robert; Sarkar, Biplab; Alden, Dorian; Guo, Qiang; Klump, Andrew; Hartmann, Carsten; Nagashima, Toru; Kirste, Ronny; Franke, Alexander; Bickermann, Matthias; Kumagai, Yoshinao; Sitar, Zlatko; Collazo, Ramón

    2018-05-01

    The average bulk thermal conductivity of free-standing physical vapor transport and hydride vapor phase epitaxy single crystal AlN samples with different impurity concentrations is analyzed using the 3ω method in the temperature range of 30-325 K. AlN wafers grown by physical vapor transport show significant variation in thermal conductivity at room temperature with values ranging between 268 W/m K and 339 W/m K. AlN crystals grown by hydride vapor phase epitaxy yield values between 298 W/m K and 341 W/m K at room temperature, suggesting that the same fundamental mechanisms limit the thermal conductivity of AlN grown by both techniques. All samples in this work show phonon resonance behavior resulting from incorporated point defects. Samples shown by optical analysis to contain carbon-silicon complexes exhibit higher thermal conductivity above 100 K. Phonon scattering by point defects is determined to be the main limiting factor for thermal conductivity of AlN within the investigated temperature range.

  11. Isotopic evidence for cooler and drier conditions in the tropical Andes during the last glacial stage

    NASA Astrophysics Data System (ADS)

    Mora, Germán; Pratt, Lisa M.

    2001-06-01

    Documentation of paleoclimatic conditions during the last glacial stage in the tropical Andes is sparse despite the importance of understanding past climate changes in the tropics. To reconstruct paleoenvironmental conditions in the alpine neotropics, we measured the oxygen (δ18O) and hydrogen (δD) isotopic composition of authigenic kaolinite within weathering profiles of the Bogota basin (Colombia) because of the strong dependence of isotopic values on both surface temperature and rainfall. While kaolinite isotope data from Holocene soils in the basin reflect modern mean annual temperature and mean weighted rainwater isotopic composition of the basin, kaolinite isotope data from paleosols developed during the last glacial stage suggest 6 ± 2 °C cooler temperatures. Moreover, the isotope data indicate higher isotopic values of paleorainwater, interpreted to reflect drier conditions. The combination of reduced rainfall, temperature, and pCO2 significantly affected the distribution of tropical montane flora during the last glacial stage.

  12. Physico-chemical characteristics of groundwater in and around Surat City (India).

    PubMed

    Raval, Viral H; Malik, G M

    2010-10-01

    Groundwater samples were collected from different locations of Surat city, Gujarat (India). These samples from 32 locations of Surat city were analysed for their physico-chemical characteristics involving pH, colour, odour, hardness, chloride, alkalinity, COD, sulfate, TDS, SS, iron, Cu, boron, chromium, temperature and Langelier Saturation Index. On comparing the results against drinking water quality standards laid by Indian Council of Medical Research (ICMR) and World Health Organization (WHO), it is found that most of the water samples are non-potable. Most of the samples indicated Total Alkalinity, Hardness, Chloride and TDS values much higher than the permissible level stipulated by ICMR and WHO. Even at some places Langelier Saturation Index values found higher too. The high values of these parameters may have health implications and therefore these need attention.

  13. Effect of annealing temperature and dopant concentration on the thermoluminescence sensitivity in LiF:Mg,Cu,Ag material.

    PubMed

    Yahyaabadi, Akram; Torkzadeh, Falamarz; Rezaei Ochbelagh, Dariush; Hosseini Pooya, Seyed Mahdi

    2018-04-24

    LiF:Mg,Cu,Ag is a new dosimetry material that is similar to LiF:Mg,Cu,P in terms of dosimetric properties. The effect of the annealing temperature in the range of 200 to 350°C on the thermoluminescence (TL) sensitivity and the glow curve structure of this material at different concentrations of silver (Ag) was investigated. It has been demonstrated that the optimum values of the annealing temperature and the Ag concentration are 240°C and 0.1 mol% for better sensitivity, respectively. The TL intensity decreases at annealing temperatures lower than 240°C or higher than 240°C, reaching a minimum at 300°C and then again increases for various Ag concentrations. It was observed that the glow curve structure altered and the area under the low temperature peak as well as the area under the main dosimetric peak decreased with increasing annealing temperature. The position of the main dosimetric peak moved in the direction of higher temperatures, but at 320 and 350°C annealing temperatures, it shifted to lower temperatures. It was also observed that the TL sensitivity could partially be recovered by a combined annealing procedure. Copyright © 2018 John Wiley & Sons, Ltd.

  14. Experience gained from shifting a PK-19 boiler to operate with increased superheating and with a load higher than its rated value

    NASA Astrophysics Data System (ADS)

    Kholshchev, V. V.

    2011-08-01

    Failures of steam superheater tubes occurred after the boiler was shifted to operate with a steam temperature of 540°C. The operation of the steam superheater became more reliable after it had been subjected to retrofitting. The modernization scheme is described. An estimate is given to the temperature operating conditions of tubes taking into account the thermal-hydraulic nonuniformity of their heating.

  15. Profile measurements of the electron temperature on the ASDEX Upgrade, COMPASS, and ISTTOK tokamak using Thomson scattering, triple, and ball-pen probes

    NASA Astrophysics Data System (ADS)

    Adamek, J.; Müller, H. W.; Silva, C.; Schrittwieser, R.; Ionita, C.; Mehlmann, F.; Costea, S.; Horacek, J.; Kurzan, B.; Bilkova, P.; Böhm, P.; Aftanas, M.; Vondracek, P.; Stöckel, J.; Panek, R.; Fernandes, H.; Figueiredo, H.

    2016-04-01

    The ball-pen probe (BPP) technique is used successfully to make profile measurements of the electron temperature on the ASDEX Upgrade (Axially Symmetric Divertor Experiment), COMPASS (COMPact ASSembly), and ISTTOK (Instituto Superior Tecnico TOKamak) tokamak. The electron temperature is provided by a combination of the BPP potential (ΦBPP) and the floating potential (Vfl) of the Langmuir probe (LP), which is compared with the Thomson scattering diagnostic on ASDEX Upgrade and COMPASS. Excellent agreement between the two diagnostics is obtained for circular and diverted plasmas and different heating mechanisms (Ohmic, NBI, ECRH) in deuterium discharges with the same formula Te = (ΦBPP - Vfl)/2.2. The comparative measurements of the electron temperature using BPP/LP and triple probe (TP) techniques on the ISTTOK tokamak show good agreement of averaged values only inside the separatrix. It was also found that the TP provides the electron temperature with significantly higher standard deviation than BPP/LP. However, the resulting values of both techniques are well in the phase with the maximum of cross-correlation function being 0.8.

  16. Profile measurements of the electron temperature on the ASDEX Upgrade, COMPASS, and ISTTOK tokamak using Thomson scattering, triple, and ball-pen probes.

    PubMed

    Adamek, J; Müller, H W; Silva, C; Schrittwieser, R; Ionita, C; Mehlmann, F; Costea, S; Horacek, J; Kurzan, B; Bilkova, P; Böhm, P; Aftanas, M; Vondracek, P; Stöckel, J; Panek, R; Fernandes, H; Figueiredo, H

    2016-04-01

    The ball-pen probe (BPP) technique is used successfully to make profile measurements of the electron temperature on the ASDEX Upgrade (Axially Symmetric Divertor Experiment), COMPASS (COMPact ASSembly), and ISTTOK (Instituto Superior Tecnico TOKamak) tokamak. The electron temperature is provided by a combination of the BPP potential (ΦBPP) and the floating potential (Vfl) of the Langmuir probe (LP), which is compared with the Thomson scattering diagnostic on ASDEX Upgrade and COMPASS. Excellent agreement between the two diagnostics is obtained for circular and diverted plasmas and different heating mechanisms (Ohmic, NBI, ECRH) in deuterium discharges with the same formula Te = (ΦBPP - Vfl)/2.2. The comparative measurements of the electron temperature using BPP/LP and triple probe (TP) techniques on the ISTTOK tokamak show good agreement of averaged values only inside the separatrix. It was also found that the TP provides the electron temperature with significantly higher standard deviation than BPP/LP. However, the resulting values of both techniques are well in the phase with the maximum of cross-correlation function being 0.8.

  17. Changes in the dissolved organic matter leaching from soil under severe temperature and N-deposition.

    PubMed

    Nguyen, Hang Vo-Minh; Choi, Jung Hyun

    2015-06-01

    In this study, we conducted growth chamber experiments using three types of soil (wetland, rice paddy, and forest) under the conditions of a severe increase in the temperature and N-deposition in order to investigate how extreme weather influences the characteristics of the dissolved organic matter (DOM) leaching from different soil types. This leachate controls the quantity and quality of DOM in surface water systems. After 5 months of incubation, the dissolved organic carbon (DOC) concentrations decreased in the range of 21.1 to 88.9 %, while the specific UV absorption (SUVA) values increased substantially in the range of 19.9 to 319.9 % for all of the samples. Higher increases in the SUVA values were observed at higher temperatures, whereas the opposite trend was observed for samples with N-addition. The parallel factor analysis (PARAFAC) results showed that four fluorescence components: terrestrial humic-like (component 1 (C1)), microbial humic-like (component 2 (C2)), protein-like (component 3 (C3)), and anthropogenic humic-like (component 4 (C4)) constituted the fluorescence matrices of soil samples. During the experiment, labile DOM from the soils was consumed and transformed into resistant aromatic carbon structures and less biodegradable components via microbial processes. The principle component analysis (PCA) results indicated that severe temperatures and N-deposition could enhance the contribution of the aromatic carbon compounds and humic-like components in the soil samples.

  18. Combined pressure-thermal inactivation kinetics of Bacillus amyloliquefaciens spores in egg patty mince.

    PubMed

    Rajan, S; Ahn, J; Balasubramaniam, V M; Yousef, A E

    2006-04-01

    Bacillus amyloliquefaciens is a potential surrogate for Clostridium botulinum in validation studies involving bacterial spore inactivation by pressure-assisted thermal processing. Spores of B. amyloliquefaciens Fad 82 were inoculated into egg patty mince (approximately 1.4 x 10(8) spores per g), and the product was treated with combinations of pressure (0.1 to 700 MPa) and heat (95 to 121 degrees C) in a custom-made high-pressure kinetic tester. The values for the inactivation kinetic parameter (D), temperature coefficient (zT), and pressure coefficient (zP) were determined with a linear model. Inactivation parameters from the nonlinear Weibull model also were estimated. An increase in process pressure decreased the D-value at 95, 105, and 110 degrees C; however, at 121 degrees C the contribution of pressure to spore lethality was less pronounced. The zP-value increased from 170 MPa at 95 degrees C to 332 MPa at 121 degrees C, suggesting that B. amyloliquefaciens spores became less sensitive to pressure changes at higher temperatures. Similarly, the zT-value increased from 8.2 degrees C at 0.1 MPa to 26.8 degrees C at 700 MPa, indicating that at elevated pressures, the spores were less sensitive to changes in temperature. The nonlinear Weibull model parameter b increased with increasing pressure or temperature and was inversely related to the D-value. Pressure-assisted thermal processing is a potential alternative to thermal processing for producing shelf-stable egg products.

  19. Optical and thermoelectric properties of nano-particles based Bi2(Te1-xSex)3 thin films

    NASA Astrophysics Data System (ADS)

    Adam, A. M.; Lilov, E.; Petkov, P.

    2017-01-01

    Nano-particles of Bi2Te3 and Bi2(Te1-xSex)3 films were deposited using vacuum thermal evaporation technique from previously prepared bulk alloys synthesized by melting method. Optical and thermoelectric properties were studied in the temperature range of 300-473K. The formation of none- and Se-doped Bi2Te3 nano-particles was verified by EDX and XRD analysis. TEM, SEM and AFM analysis showed the prepared films are polycrystalline in nature. The measurements of electrical conductivity and Seebeck coefficient, alongside with thermal conductivity calculations, resulted in the highest values of thermoelectric power at high temperature to be reported. The maximum value of power factor was calculated at 62.82917 μWK-2cm-1 for (Bi2Se0.3Te1.7) sample at 463 K. On the addition of Se to Bi2Te3 film, a significant decrease of the electronic thermal conductivity (Kel) from 2.181 × 10-2 to 0.598 × 10-2 (μW/cm.K) could be achieved. Figure of merit (ZT) calculations showed a maximum value of 0.85 at room temperature, for Bi2Te3. Besides the increase of ZT value for all samples at higher temperature, surprisingly, a value of 2.75 for (Bi2Se1.2Te1.8) was obtained. We believe our results could open avenues for new applications.

  20. Net radiation estimated by remote sensing in Cerrado areas in the Upper Paraguay River Basin

    NASA Astrophysics Data System (ADS)

    Fausto, Marcos Alves; Machado, Nadja Gomes; de Souza Nogueira, José; Biudes, Marcelo Sacardi

    2014-01-01

    The Cerrado is a heterogeneous landscape which is shrinking due to deforestation, giving rise to managed ecosystems. The land cover changes alter net radiation (Rn), which determines the quantity of available energy to the energy balance partition. The objectives of this study were (1) to determine the spatial pattern of the vegetation indices, albedo, and land surface temperature (LST) and (2) to evaluate the Rn estimated by Landsat 5 Thematic Mapper (TM) images over Cerrado areas in the Upper Paraguay River Basin. We estimated the vegetation indices, albedo, LST, and Rn of five selected vegetation types. The values estimated by Landsat 5 TM images had seasonal variations with higher values of the vegetation indices and lower values of the albedo and the LST during the wet season. The riparian and Cerrado strictu sensu had higher values of vegetation indices and lower albedo and LST than grasslands. The Rn estimated by Landsat 5 TM images was highly correlated with the measured Rn. The Rn had a seasonal pattern, following the solar radiation, with higher values during the wet season and varied spatially with higher values in the riparian forest and Cerrado strictu sensu and lower in the grasslands. This study showed the applicability of the Landsat 5 TM images to estimate Rn, which can help to understand the heterogeneity in the study area.

  1. INFLUENCE OF INTRAMUSCULAR FAT LEVEL ON ORGANOLEPTIC, PHYSICAL, AND CHEMICAL CHARACTERISTICS OF IRRADIATED PORK. I. HIGH-TEMPERATURE SHORT-TIME PRE-IRRADIATION HEAT TREATMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bray, R.W.; Weckel, K.G.; Evans, G.W.

    1964-02-01

    The influence of intramuscular fat (degree of marbling) on characteristics of precooked and irradiated pork muscle was studied. Loins were selected and categorized into three marbling levels by visual appraisal. A relatively high temperature (325 deg F) and short time (2 hr) heat treatment was used for enzyme inactivation. Samples were packed under vacuum in rigid containers and irradiated to 4.5 Mrad with gamma radiation. Irradiated and frozen control samples were evaluated up to 2l0 days later. Degree of marbling had no apparent influence on organoleptic properties of either irradiated or frozen control longissimus dorsi muscle samples. Frozen control samplesmore » were preferred in general appearance, flavor, and over-all acceptability by panelists. Irradiated samples were preferred in texture qualities. Storage time was not a major factor in organoleptic acceptability; however, acceptability of irradiated samples declined between 150 and 210 days of storage. Hunter color attributes were not affected by marbling level. L, a/sub L/ hue, and saturation were increased by radiation treatment. Mechanical tenderness values were decreased due to higher marbling level and radiation treatment. Expressible-moisture values were lowered by radiation treatment and increased with storage time. Iodine numbers were decreased by radiation. Degree of marbling did not affect thiobarbituric acid values but they were significantly lower for irradiated samples. pH values increased with higher levels of intramuscular fat, were significantly higher in irradiated samples than controls, and tended to increase steadily with advancing storage time. (BBB)« less

  2. Characterisation of boundary layer turbulent processes by the Raman lidar BASIL in the frame of HD(CP)2 Observational Prototype Experiment

    NASA Astrophysics Data System (ADS)

    Di Girolamo, Paolo; Cacciani, Marco; Summa, Donato; Scoccione, Andrea; De Rosa, Benedetto; Behrendt, Andreas; Wulfmeyer, Volker

    2017-01-01

    Measurements carried out by the University of Basilicata Raman lidar system (BASIL) are reported to demonstrate the capability of this instrument to characterise turbulent processes within the convective boundary layer (CBL). In order to resolve the vertical profiles of turbulent variables, high-resolution water vapour and temperature measurements, with a temporal resolution of 10 s and vertical resolutions of 90 and 30 m, respectively, are considered. Measurements of higher-order moments of the turbulent fluctuations of water vapour mixing ratio and temperature are obtained based on the application of autocovariance analyses to the water vapour mixing ratio and temperature time series. The algorithms are applied to a case study (11:30-13:30 UTC, 20 April 2013) from the High Definition Clouds and Precipitation for Climate Prediction (HD(CP)2) Observational Prototype Experiment (HOPE), held in western Germany in the spring 2013. A new correction scheme for the removal of the elastic signal crosstalk into the low quantum number rotational Raman signal is applied. The noise errors are small enough to derive up to fourth-order moments for both water vapour mixing ratio and temperature fluctuations.To the best of our knowledge, BASIL is the first Raman lidar with a demonstrated capability to simultaneously retrieve daytime profiles of water vapour turbulent fluctuations up to the fourth order throughout the atmospheric CBL. This is combined with the capability of measuring daytime profiles of temperature fluctuations up to the fourth order. These measurements, in combination with measurements from other lidar and in situ systems, are important for verifying and possibly improving turbulence and convection parameterisation in weather and climate models at different scales down to the grey zone (grid increment ˜ 1 km; Wulfmeyer et al., 2016).For the considered case study, which represents a well-mixed and quasi-stationary CBL, the mean boundary layer height is found to be 1290 ± 75 m above ground level (a.g.l.). Values of the integral scale for water vapour and temperature fluctuations at the top of the CBL are in the range of 70-125 and 75-225 s, respectively; these values are much larger than the temporal resolution of the measurements (10 s), which testifies that the temporal resolution considered for the measurements is sufficiently high to resolve turbulent processes down to the inertial subrange and, consequently, to resolve the major part of the turbulent fluctuations. Peak values of all moments are found in the interfacial layer in the proximity of the top of the CBL. Specifically, water vapour and temperature second-order moments (variance) have maximum values of 0.29 g2 kg-2 and 0.26 K2; water vapour and temperature third-order moments have peak values of 0.156 g3 kg-3 and -0.067 K3, while water vapour and temperature fourth-order moments have maximum values of 0.28 g4 kg-4 and 0.24 K4. Water vapour and temperature kurtosis have values of ˜ 3 in the upper portion of the CBL, which indicate normally distributed humidity and temperature fluctuations. Reported values of the higher-order moments are in good agreement with previous measurements at different locations, thus providing confidence in the possibility of using these measurements for turbulence parameterisation in weather and climate models.In the determination of the temperature profiles, particular care was dedicated to minimise potential effects associated with elastic signal crosstalk on the rotational Raman signals. For this purpose, a specific algorithm was defined and tested to identify and remove the elastic signal crosstalk and to assess the residual systematic uncertainty affecting temperature measurements after correction. The application of this approach confirms that, for the present Raman lidar system, the crosstalk factor remains constant with time; consequently an appropriate assessment of its constant value allows for a complete removal of the leaking elastic signal from the rotational Raman lidar signals at any time (with a residual error on temperature measurements after correction not exceeding 0.18 K).

  3. Thermal inactivation of H5N1 high pathogenicity avian influenza virus in naturally infected chicken meat.

    PubMed

    Thomas, Colleen; Swayne, David E

    2007-03-01

    Thermal inactivation of the H5N1 high pathogenicity avian influenza (HPAI) virus strain A/chicken/Korea/ES/2003 (Korea/03) was quantitatively measured in thigh and breast meat harvested from infected chickens. The Korea/03 titers were recorded as the mean embryo infectious dose (EID50) and were 10(8.0) EID50/g in uncooked thigh samples and 10(7.5) EID50/g in uncooked breast samples. Survival curves were constructed for Korea/03 in chicken thigh and breast meat at 1 degrees C intervals for temperatures of 57 to 61 degrees C. Although some curves had a slightly biphasic shape, a linear model provided a fair-to-good fit at all temperatures, with R2 values of 0.85 to 0.93. Stepwise linear regression revealed that meat type did not contribute significantly to the regression model and generated a single linear regression equation for z-value calculations and D-value predictions for Korea/03 in both meat types. The z-value and the upper limit of the 95% confidence interval for the z-value were 4.64 and 5.32 degrees C, respectively. From the lowest temperature to the highest, the predicted D-values and the upper limits of their 95% prediction intervals (conservative D-values) for 57 to 61 degrees C were 241.2 and 321.1 s, 146.8 and 195.4 s, 89.3 and 118.9 s, 54.4 and 72.4 s, and 33.1 and 44.0 s. D-values and conservative D-values predicted for higher temperatures were 0.28 and 0.50 s for 70 degrees C and 0.041 and 0.073 s for 73.9 degrees C. Calculations with the conservative D-values predicted that cooking chicken meat according to current U.S. Department of Agriculture Food Safety and Inspection Service time-temperature guidelines will inactivate Korea/03 in a heavily contaminated meat sample, such as those tested in this study, with a large margin of safety.

  4. Fractured Rock Permeability as a Function of Temperature and Confining Pressure

    NASA Astrophysics Data System (ADS)

    Alam, A. K. M. Badrul; Fujii, Yoshiaki; Fukuda, Daisuke; Kodama, Jun-ichi; Kaneko, Katsuhiko

    2015-10-01

    Triaxial compression tests were carried out on Shikotsu welded tuff, Kimachi sandstone, and Inada granite under confining pressures of 1-15 MPa at 295 and 353 K. The permeability of the tuff declined monotonically with axial compression. The post-compression permeability became smaller than that before axial compression. The permeability of Kimachi sandstone and Inada granite declined at first, then began to increase before the peak load, and showed values that were almost constant in the residual strength state. The post-compression permeability of Kimachi sandstone was higher than that before axial compression under low confining pressures, but lower under higher confining pressures. On the other hand, the permeability of Inada granite was higher than that before axial compression regardless of the confining pressure values. For the all rock types, the post-compression permeability at 353 K was lower than at 295 K and the influence of the confining pressure was less at 353 K than at 295 K. The above temperature effects were observed apparently for Inada granite, only the latter effect was apparent for Shikotsu welded tuff, and they were not so obvious for Kimachi sandstone. The mechanisms causing the variation in rock permeability and sealability of underground openings were discussed.

  5. Forced Convection Heat Transfer of Subcooled Liquid Nitrogen in Horizontal Tube

    NASA Astrophysics Data System (ADS)

    Tatsumoto, H.; Shirai, Y.; Hata, K.; Kato, T.; Shiotsu, M.

    2008-03-01

    The knowledge of forced convection heat transfer of liquid hydrogen is important for the cooling design of a HTS superconducting magnet and a cold neutron moderator material. An experimental apparatus that could obtain forced flow without a pump was developed. As a first step of the study, the forced flow heat transfer of subcooled liquid nitrogen in a horizontal tube, instead of liquid hydrogen, was measured for the pressures ranging from 0.3 to 2.5 MPa. The inlet temperature was varied from 78 K to around its saturation temperature. The flow velocities were varied from 0.1 to 7 m/s. The heat transfer coefficients in the non-boiling region and the departure from nucleate boiling (DNB) heat fluxes were higher for higher flow velocity and higher subcooling. The measured values of Nu/Pr0.4 in the non-boiling region were proportional to Reynolds number (Re) to the power of 0.8. With a decrease in Re, Nu/Pr0.4 approached a constant value corresponding to that in a pool of liquid nitrogen. The correlation of DNB heat flux was derived that can describe the experimental data within ±15% difference.

  6. Dynamic behavior of the bray-liebhafsky oscillatory reaction controlled by sulfuric acid and temperature

    NASA Astrophysics Data System (ADS)

    Pejić, N.; Vujković, M.; Maksimović, J.; Ivanović, A.; Anić, S.; Čupić, Ž.; Kolar-Anić, Lj.

    2011-12-01

    The non-periodic, periodic and chaotic regimes in the Bray-Liebhafsky (BL) oscillatory reaction observed in a continuously fed well stirred tank reactor (CSTR) under isothermal conditions at various inflow concentrations of the sulfuric acid were experimentally studied. In each series (at any fixed temperature), termination of oscillatory behavior via saddle loop infinite period bifurcation (SNIPER) as well as some kind of the Andronov-Hopf bifurcation is presented. In addition, it was found that an increase of temperature, in different series of experiments resulted in the shift of bifurcation point towards higher values of sulfuric acid concentration.

  7. Ferrite HOM Absorber for the RHIC ERL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn,H.; Choi, E.M.; Hammons, L.

    A superconducting Energy Recovery Linac is under construction at Brookhaven National Laboratory to serve as test bed for RHIC upgrades. The damping of higher-order modes in the superconducting five-cell cavity for the Energy-Recovery linac at RHIC is performed exclusively by two ferrite absorbers. The ferrite properties have been measured in ferrite-loaded pill box cavities resulting in the permeability values given by a first-order Debye model for the tiled absorber structure and an equivalent permeability value for computer simulations with solid ring dampers. Measured and simulated results for the higher-order modes in the prototype copper cavity are discussed. First room-temperature measurementsmore » of the finished niobium cavity are presented which confirm the effective damping of higher-order modes in the ERL. by the ferrite absorbers.« less

  8. [Temperature sensitivity of CO2 fluxes from rhizosphere soil mineralization and root decomposition in Pinus massoniana and Castanopsis sclerophylla forests].

    PubMed

    Liu, Yu; Hu, Xiao-Fei; Chen, Fu-Sheng; Yuan, Ping-Cheng

    2013-06-01

    Rhizospheric and non-rhizospheric soils and the absorption, transition, and storage roots were sampled from the mid-subtropical Pinus massoniana and Castanopsis sclerophylla forests to study the CO2 fluxes from soil mineralization and root decomposition in the forests. The samples were incubated in closed jars at 15 degrees C, 25 degrees C, 35 degrees C, and 45 degrees C, respectively, and alkali absorption method was applied to measure the CO2 fluxes during 53 days incubation. For the two forests, the rhizospheric effect (ratio of rhizospheric to non-rhizospheric soil) on the CO2 flux from soil mineralization across all incubation temperature ranged from 1.12 to 3.09, with a decreasing trend along incubation days. There was no significant difference in the CO2 flux from soil mineralization between the two forests at 15 degrees C, but the CO2 flux was significantly higher in P. massoniana forest than in C. sclerophylla forest at 25 degrees C and 35 degrees C, and in an opposite pattern at 45 degrees C. At all incubation temperature, the CO2 release from the absorption root decomposition was higher than that from the transition and storage roots decomposition, and was smaller in P. massoniana than in C. sclerophylla forest for all the root functional types. The Q10 values of the CO2 fluxes from the two forests were higher for soils (1.21-1.83) than for roots (0.96-1.36). No significant differences were observed in the Q10 values of the CO2 flux from soil mineralization between the two forests, but the Q10 value of the CO2 flux from root decomposition was significantly higher in P. massoniana than in C. sclerophylla forest. It was suggested that the increment of CO2 flux from soil mineralization under global warming was far higher than that from root decomposition, and for P. massoniana than for C. sclerophylla forest. In subtropics of China, the adaptability of zonal climax community to global warming would be stronger than that of pioneer community.

  9. The effect of temperature on growth and competition between Sphagnum species

    PubMed Central

    Heijmans, Monique M. P. D.; Robroek, Bjorn J. M.; Berendse, Frank

    2008-01-01

    Peat bogs play a large role in the global sequestration of C, and are often dominated by different Sphagnum species. Therefore, it is crucial to understand how Sphagnum vegetation in peat bogs will respond to global warming. We performed a greenhouse experiment to study the effect of four temperature treatments (11.2, 14.7, 18.0 and 21.4°C) on the growth of four Sphagnum species: S. fuscum and S. balticum from a site in northern Sweden and S. magellanicum and S. cuspidatum from a site in southern Sweden. In addition, three combinations of these species were made to study the effect of temperature on competition. We found that all species increased their height increment and biomass production with an increase in temperature, while bulk densities were lower at higher temperatures. The hollow species S. cuspidatum was the least responsive species, whereas the hummock species S. fuscum increased biomass production 13-fold from the lowest to the highest temperature treatment in monocultures. Nutrient concentrations were higher at higher temperatures, especially N concentrations of S. fuscum and S. balticum increased compared to field values. Competition between S. cuspidatum and S. magellanicum was not influenced by temperature. The mixtures of S. balticum with S. fuscum and S. balticum with S. magellanicum showed that S. balticum was the stronger competitor, but it lost competitive advantage in the highest temperature treatment. These findings suggest that species abundances will shift in response to global warming, particularly at northern sites where hollow species will lose competitive strength relative to hummock species and southern species. PMID:18283501

  10. [Relationship between reference values of fibrinogen and geographical factors based on neural network analysis].

    PubMed

    Li, Meng-Jiao; Ge, Miao; Wang, Cong-Xia; Cen, Min-Yi; Jiang, Ji-Lin; He, Jin-Wei; Lin, Qian-Yi; Liu, Xin

    2016-08-20

    To analyze the relationship between the reference values of fibrinogen (FIB) in healthy Chinese adults and geographical factors to provide scientific evidences for establishing the uniform standard. The reference values of FIB of 10701 Chinese healthy adults from 103 cities were collected to investigate their relationship with 18 geographical factors including spatial index, terrain index, climate index, and soil index. Geographical factors that significantly correlated with the reference values were selected for constructing the BP neural network model. The spatial distribution map of the reference value of FIB of healthy Chinese adults was fitted by disjunctive kriging interpolation. We used the 5-layer neural network and selected 2000 times of training covering 11 hidden layers to build the simulation rule for simulating the relationship between FIB and geographical environmental factors using the MATLAB software. s The reference value of FIB in healthy Chinese adults was significantly correlated with the latitude, sunshine duration, annual average temperature, annual average relative humidity, annual precipitation, annual range of air temperature, average annual soil gravel content, and soil cation exchange capacity (silt). The artificial neural networks were created to analyze the simulation of the selected indicators of geographical factors. The spatial distribution map of the reference values of FIB in healthy Chinese adults showed a distribution pattern that FIB levels were higher in the South and lower in the North, and higher in the East and lower in the West. When the geographical factors of a certain area are known, the reference values of FIB in healthy Chinese adults can be obtained by establishing the neural network mode or plotting the spatial distribution map.

  11. Oxygen and carbon isotope ratios of hydrothermal minerals from Yellowstone drill cores

    USGS Publications Warehouse

    Sturchio, N.C.; Keith, T.E.C.; Muehlenbachs, K.

    1990-01-01

    Oxygen and carbon isotope ratios were measured for hydrothermal minerals (silica, clay and calcite) from fractures and vugs in altered rhyolite, located between 28 and 129 m below surface (in situ temperatures ranging from 81 to 199??C) in Yellowstone drill holes. The purpose of this study was to investigate the mechanism of formation of these minerals. The ??18O values of the thirty-two analyzed silica samples (quartz, chalcedony, ??-cristobalite, and ??-cristobalite) range from -7.5 to +2.8???. About one third of the silica 7samples have ??18O values that are consistent with isotopic equilibrium with present thermal waters; most of the other silica samples appear to have precipitated from water enriched in 18O (up to 4.7???) relative to present thermal water, assuming precipitation at present in situ temperatures. Available data on fluid-inclusion homogenization temperatures in hydrothermal quartz indicate that silica precipitation occurred mostly at temperatures above those measured during drilling and imply that 15O enrichments in water during silica precipitation were generally larger than those estimated from present conditions. Similarly, clay minerals (celadonite and smectite) have ??18O values higher (by 3.5 to 7.9???) than equilibrium values under present conditions. In contrast, all eight analyzed calcite samples are close to isotopic equilibrium with present thermal waters. The frequent incidence of apparent 18O enrichment in thermal water from which the hydrothermal minerals precipitated may indicate that a higher proportion of strongly 18O-enriched deep hydrothermal fluid once circulated through shallow portions of the Yellowstone system, or that a recurring transient 18O-enrichment effect occurs at shallow depths and is caused either by sudden decompressional boiling or by isotopic exchange at low water/rock ratios in new fractures. The mineralogy and apparent 18O enrichments of hydrothermal fracture-filling minerals are consistent with deposition during transient boiling or rock-water exchange (fracturing) events. ?? 1990.

  12. Temperature dependent electrical transport behavior of InN/GaN heterostructure based Schottky diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roul, Basanta; Kumar, Mahesh; Central Research Laboratory, Bharat Electronics, Bangalore 560013

    InN/GaN heterostructure based Schottky diodes were fabricated by plasma-assisted molecular beam epitaxy. The temperature dependent electrical transport properties were carried out for InN/GaN heterostructure. The barrier height and the ideality factor of the Schottky diodes were found to be temperature dependent. The temperature dependence of the barrier height indicates that the Schottky barrier height is inhomogeneous in nature at the heterostructure interface. The higher value of the ideality factor and its temperature dependence suggest that the current transport is primarily dominated by thermionic field emission (TFE) other than thermionic emission (TE). The room temperature barrier height obtained by using TEmore » and TFE models were 1.08 and 1.43 eV, respectively.« less

  13. Water sorption in microfibrillated cellulose (MFC): The effect of temperature and pretreatment.

    PubMed

    Meriçer, Çağlar; Minelli, Matteo; Giacinti Baschetti, Marco; Lindström, Tom

    2017-10-15

    Water sorption behavior of two different microfibrillated cellulose (MFC) films, produced by delamination of cellulose pulp after different pretreatment methods, is examined at various temperatures (16-65°C) and up to 70% RH. The effect of drying temperature of MFC films on the water uptake is also investigated. The obtained solubility isotherms showed the typical downward curvature at moderate RH, while no upturn is observed at higher RH; the uptakes are in line with characteristic values for cellulose fibers. Enzymatically pretreated MFC dispersion showed lower solubility than carboxymethylated MFC, likely due to the different material structure, which results from the different preparation methods The experimental results are analyzed by Park and GAB models, which proved suitable to describe the observed behaviors. Interestingly, while no significant thermal effect is detected on water solubility above 35°C, the uptake at 16 and 25°C, at a given RH, is substantially lower than that at higher temperature, indicating that, in such range, sorption process is endothermic. Such unusual behavior for a cellulose-based system seems to be related mainly to the structural characteristics of MFC films, and to relaxation phenomena taking place upon water sorption. The diffusion kinetics, indeed, showed a clear Fickian behavior at low temperature and RH, whereas a secondary process seems to occur at high temperature and higher RH, leading to anomalous diffusion behaviors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Correlation between different markers for the assessment of red chilli pepper powders stability during shelf-life.

    PubMed

    Bignardi, Chiara; Cavazza, Antonella; Rinaldi, Massimiliano; Corradini, Claudio

    2016-06-01

    Pungency and red colour of Capsicum powders deteriorate during processing and storage, resulting in a decrease in market value. Two varieties of pepper with different pungencies were monitored for capsaicinoids, colour and furosine. Aliquots were stored at room and at low temperature during one year. At low temperature all indicators were stable in both varieties, while at room temperature, redness and capsacinoids decreased significantly, while furosine increased. High correlation was found between those markers. The more pungent variety exhibited higher stability in terms of all parameters. Differences observed suggest a potential protective effect exerted by capsaicinoids on powder stability. The decrease in capsaicinoids and redness accompanied by furosine increase showed a linkage between those markers never reported before. Considering that capsaicinoids and furosine occurrence have strong impact on the nutritional profile, the findings of this work show relevant changes in the nutritional value of chilli pepper powder after storage.

  15. Time-resolved study of the electron temperature and number density of argon metastable atoms in argon-based dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Desjardins, E.; Laurent, M.; Durocher-Jean, A.; Laroche, G.; Gherardi, N.; Naudé, N.; Stafford, L.

    2018-01-01

    A combination of optical emission spectroscopy and collisional-radiative modelling is used to determine the time-resolved electron temperature (assuming Maxwellian electron energy distribution function) and number density of Ar 1s states in atmospheric pressure Ar-based dielectric barrier discharges in presence of either NH3 or ethyl lactate. In both cases, T e values were higher early in the discharge cycle (around 0.8 eV), decreased down to about 0.35 eV with the rise of the discharge current, and then remained fairly constant during discharge extinction. The opposite behaviour was observed for Ar 1s states, with cycle-averaged values in the 1017 m-3 range. Based on these findings, a link was established between the discharge ionization kinetics (and thus the electron temperature) and the number density of Ar 1s state.

  16. Far-infrared line observations of planetary nebulae. 1: The O 3 spectrum

    NASA Technical Reports Server (NTRS)

    Dinerstein, H. L.; Lester, D. F.; Werner, M. W.

    1985-01-01

    Observations of the far-infrared fine structure lines of O III have been obtained for six planetary nebulae. The infrared measurements are combined with optical O III line fluxes to probe physical conditions in the gas. From the observed line intensity ratios, a simultaneous solution was obtained for electron temperature and density, as well as means of evaluating the importance of inhomogeneities. Densities determined from the far-infrared O III lines agree well density diagnostics from other ions, indicating a fairly homogeneous density in the emitting gas. Temperatures are determined separately from the O III 4363/5007 A and 5007 A/52 micron intensity ratios and compared. Systematically higher values are derived from the former ratio, which is expected from a nebula which is not isothermal. Allowance for the presence of temperature variations within these nebulae raises their derived oxygen abundances, determinations to be reconciled with the solar value.

  17. Sensitivity of peak flow to the change of rainfall temporal pattern due to warmer climate

    NASA Astrophysics Data System (ADS)

    Fadhel, Sherien; Rico-Ramirez, Miguel Angel; Han, Dawei

    2018-05-01

    The widely used design storms in urban drainage networks has different drawbacks. One of them is that the shape of the rainfall temporal pattern is fixed regardless of climate change. However, previous studies have shown that the temporal pattern may scale with temperature due to climate change, which consequently affects peak flow. Thus, in addition to the scaling of the rainfall volume, the scaling relationship for the rainfall temporal pattern with temperature needs to be investigated by deriving the scaling values for each fraction within storm events, which is lacking in many parts of the world including the UK. Therefore, this study analysed rainfall data from 28 gauges close to the study area with a 15-min resolution as well as the daily temperature data. It was found that, at warmer temperatures, the rainfall temporal pattern becomes less uniform, with more intensive peak rainfall during higher intensive times and weaker rainfall during less intensive times. This is the case for storms with and without seasonal separations. In addition, the scaling values for both the rainfall volume and the rainfall fractions (i.e. each segment of rainfall temporal pattern) for the summer season were found to be higher than the corresponding results for the winter season. Applying the derived scaling values for the temporal pattern of the summer season in a hydrodynamic sewer network model produced high percentage change of peak flow between the current and future climate. This study on the scaling of rainfall fractions is the first in the UK, and its findings are of importance to modellers and designers of sewer systems because it can provide more robust scenarios for flooding mitigation in urban areas.

  18. Single-particle spectroscopy on large SAPO-34 crystals at work: methanol-to-olefin versus ethanol-to-olefin processes.

    PubMed

    Qian, Qingyun; Ruiz-Martínez, Javier; Mokhtar, Mohamed; Asiri, Abdullah M; Al-Thabaiti, Shaeel A; Basahel, Suliman N; van der Bij, Hendrik E; Kornatowski, Jan; Weckhuysen, Bert M

    2013-08-19

    The formation of hydrocarbon pool (HCP) species during methanol-to-olefin (MTO) and ethanol-to-olefin (ETO) processes have been studied on individual micron-sized SAPO-34 crystals with a combination of in situ UV/Vis, confocal fluorescence, and synchrotron-based IR microspectroscopic techniques. With in situ UV/Vis microspectroscopy, the intensity changes of the λ=400 nm absorption band, ascribed to polyalkylated benzene (PAB) carbocations, have been monitored and fitted with a first-order kinetics at low reaction temperatures. The calculated activation energy (Ea ) for MTO, approximately 98 kJ mol(-1) , shows a strong correlation with the theoretical values for the methylation of aromatics. This provides evidence that methylation reactions are the rate-determining steps for the formation of PAB. In contrast for ETO, the Ea value is approximately 60 kJ mol(-1) , which is comparable to the Ea values for the condensation of light olefins into aromatics. Confocal fluorescence microscopy demonstrates that during MTO the formation of the initial HCP species are concentrated in the outer rim of the SAPO-34 crystal when the reaction temperature is at 600 K or lower, whereas larger HCP species are gradually formed inwards the crystal at higher temperatures. In the case of ETO, the observed egg-white distribution of HCP at 509 K suggests that the ETO process is kinetically controlled, whereas the square-shaped HCP distribution at 650 K is indicative of a diffusion-controlled process. Finally, synchrotron-based IR microspectroscopy revealed a higher degree of alkylation for aromatics for MTO as compared to ETO, whereas high reaction temperatures favor dealkylation processes for both the MTO and ETO processes. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Thermal and structural tests of Rene 41 honeycomb integral-tank concept for future space transportation systems

    NASA Technical Reports Server (NTRS)

    Shideler, John L.; Fields, Roger A.; Reardon, Lawrence F.; Gong, Leslie

    1992-01-01

    Two flat 12 by 72 inch Rene 41 honeycomb sandwich panels were tested in a manner to produce combined thermal and mechanical longitudinal stresses that simulated those that would occur in a larger, more complex integral tank and fuselage structure of an earth to orbit vehicle. Elastic strains measured at temperatures below 400 F are compared with calculated values obtained from a linear elastic finite element analysis to verify the analytical model and to establish confidence in the calculated strains. Elastic strain measurement at higher temperatures (between 600 F and 1400 F), where strain measurement is more difficult and less certain, are also compared with calculated strains. Agreement between measured and calculated strains for the lower temperatures is good, but agreement for the higher temperatures is poor because of unreliable strain measurements. Test results indicate that an ascent and entry life cycle of 500 is attainable under high combined thermal and mechanical elastic strains.

  20. Characterization of biochar prepared from biogas digestate.

    PubMed

    Hung, Chao-Yi; Tsai, Wen-Tien; Chen, Jie-Wei; Lin, Yu-Quan; Chang, Yuan-Ming

    2017-08-01

    In the study, the biogas digestate was evaluated as a potential feedstock for preparing biochars at a broad temperature range of 300-900°C. The physico-chemical and pore properties of the resulting biochars (denoted as SDBC, solid digestate biochar), including calorific value (higher heating value), surface area/pore volume/pore size distribution, true density, scanning electron microscopy - energy dispersive X-ray spectroscopy (SEM-EDS) and X-ray powder diffraction (XRD), were studied. It was found that the higher heating values of the SDBC products were on a decreasing trend as pyrolysis temperature increased, but they indicated an increase in true density. The results are probably associated with the active pyrolysis of the lignocellulosic fragments and the calcination (or shrinkage) processes, thus resulting in the increased contents of aromatic carbon clusters and main mineral constituents remained. Based on the pore properties, pyrolysis temperature at around 800°C seemed to be the optimal condition for producing SDBC, where its Brunauer-Emmet-Teller (BET) surface area (>100m 2 /g) largely increased as compared to that of the digestate feedstock (<1m 2 /g). Furthermore, the main compositions of mineral ash in the resulting biochar could exist as phosphates, carbonates, or oxides of calcium and other alkali/alkaline earth elements. According to the data on EDS and XRD, more pores could be significantly generated under severe pyrolysis (>700°C) due to the high aromaticity via the thermal decomposition of lignocelluloses and the volatilization of inorganic minerals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Particle size distribution properties in mixed-phase monsoon clouds from in situ measurements during CAIPEEX

    NASA Astrophysics Data System (ADS)

    Patade, Sachin; Prabha, T. V.; Axisa, D.; Gayatri, K.; Heymsfield, A.

    2015-10-01

    A comprehensive analysis of particle size distributions measured in situ with airborne instrumentation during the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) is presented. In situ airborne observations in the developing stage of continental convective clouds during premonsoon (PRE), transition, and monsoon (MON) period at temperatures from 25 to -22°C are used in the study. The PRE clouds have narrow drop size and particle size distributions compared to monsoon clouds and showed less development of size spectra with decrease in temperature. Overall, the PRE cases had much lower values of particle number concentrations and ice water content compared to MON cases, indicating large differences in the ice initiation and growth processes between these cloud regimes. This study provided compelling evidence that in addition to dynamics, aerosol and moisture are important for modulating ice microphysical processes in PRE and MON clouds through impacts on cloud drop size distribution. Significant differences are observed in the relationship of the slope and intercept parameters of the fitted particle size distributions (PSDs) with temperature in PRE and MON clouds. The intercept values are higher in MON clouds than PRE for exponential distribution which can be attributed to higher cloud particle number concentrations and ice water content in MON clouds. The PRE clouds tend to have larger values of dispersion of gamma size distributions than MON clouds, signifying narrower spectra. The relationships between PSDs parameters are presented and compared with previous observations.

  2. Plasma biochemical reference values in clinically healthy captive bearded dragons (Pogona vitticeps) and the effects of sex and season.

    PubMed

    Tamukai, Kenichi; Takami, Yoshinori; Akabane, Yoshihito; Kanazawa, Yuko; Une, Yumi

    2011-09-01

    Bearded dragons are one of the most popular pet lizard species, and biochemical reference values are useful for health management of these reptiles. The objectives of this study were to measure plasma biochemical values in healthy captive bearded dragons, determine reference values, and evaluate the effects of sex and season on the results. Blood samples were collected from 100 captive healthy bearded dragons in Tokyo during the summer and winter. Plasma biochemical measurements were performed using a dry-slide automated biochemical analyzer. The data were then compared based on sex and season using 2-way ANOVA. Globulin, cholesterol, and calcium concentrations of females were higher in both summer and winter compared with the values obtained for males. Both males and females had higher uric acid concentrations in winter than in summer. When compared with males, females had a higher chloride concentration in summer and a higher total protein concentration and aspartate aminotransferase activity in winter. Potassium concentration in males was lower in winter than in summer, whereas in females cholesterol concentration was lower in winter than in summer. Biochemical values that differed based on sex and season in bearded dragons were similar to those in other lizards. These differences reflect physiologic differences in reproductive status in females and seasonal changes in temperature and hydration status. Plasma biochemical values established for bearded dragons in this study will be useful in the diagnostic assessment of captive animals. ©2011 American Society for Veterinary Clinical Pathology.

  3. Metal spintronics: Tunneling spectroscopy in junctions with magnetic and superconducting electrodes

    NASA Astrophysics Data System (ADS)

    Yang, Hyunsoo

    Recent advances in generating, manipulating and detecting spin-polarized electrons and their electrical current make possible entirely new classes of spin-based sensor, logic and storage devices. An important such device is the magnetic tunnel junction (MTJ) which has been under intensive study in recent years: important applications include nonvolatile memory cells for high performance magnetic random access memory (MRAMs), and magnetic field sensors for high density hard disk drive read heads. Many aspects of the tunneling magnetoresistance (TMR) phenomenon are poorly understood although it is clear that the fundamental origin of TMR is the spin-polarization of the tunneling current. Thus, the measurement of the magnitude and sign of the tunneling spin polarization (TSP) is very important to help the further understanding of TMR. Recently, an extremely high TMR value, of up to 350% at room temperature, has been reported in practical MTJ devices. These MTJs are fabricated with highly oriented crystalline MgO(100) tunnel barriers by straightforward magnetron sputter deposition at room temperature. In parallel with this observation, we report extremely high TSP values exceeding 90% from CoFe/MgO tunnel spin injectors. These TSP values rival the highest polarization values previously reported using exotic half-metallic oxide ferromagnets. The spin polarization of electrons extracted from ferromagnetic films can be probed by a variety of techniques. Amongst these techniques, STS is perhaps the most relevant with respect to TMR but until now all measurements have been made with Al superconducting films which have low superconducting transition temperatures (Tc) so that the measurements must be made at temperatures below 400mK. We demonstrate the use of superconducting electrodes formed from NbN which has a much higher Tc (˜16K) than Al. The use of NbN allows measurements of TSP at higher temperatures above 1K. We have observed the phenomenon of Kondo-assisted tunneling in planar magnetic tunnel junctions. We demonstrate not only an increased conductance at low bias but also show that the tunneling magnetoresistance is quenched in the Kondo regime. The Kondo effect may be a useful means of detecting and possibly manipulating the spins of individual electrons in nanodots.

  4. Influence of Elevated Temperatures on Pet-Concrete Properties

    NASA Astrophysics Data System (ADS)

    Albano, C.; Camacho, N.; Hernández, M.; Matheus, A.; Gutiérrez, A.

    2008-08-01

    Lightweight aggregate is an important material in reducing the unit weight of concrete complying with special concrete structures of large high-rise buildings. Besides, the use of recycled PET bottles as lightweight aggregate in concrete is an effective contribution for environment preservation. So, the objective of the present work was to study experimentally the flexural strength of the PET -concrete blends and the thermal degradation of the PET in the concrete, when the blends with 10 and 20% in volume of PET were exposed to different temperatures (200, 400, 600 °C). The flexural strength of concrete-PET exposed to a heat source is strongly dependent on the temperature, water/cement ratio, as well as the content and particle size of PET. However, the activation energy is affected by the temperature, location of the PET particles on the slabs and the water/cement ratio. Higher water content originates thermal and hydrolytic degradation on the PET, while on the concrete, a higher vapor pressure which causes an increase in crack formation. The values of the activation energy are higher on the center of the slabs than on the surface, since concrete is a poor heat conductor.

  5. Solubility of carbamazepine co-crystals in ethanolic solution

    NASA Astrophysics Data System (ADS)

    Ramle, Noor Ashila; Rahim, Syarifah Abd; Anuar, Nornizar; El-Hadad, Omar

    2017-08-01

    The study aimed to determine the solubility of carbamazepine (CBZ) co-crystals formed from co-crystal formers (CCFs) of nicotinamide (NIC), saccharin (SAC), succinic acid (SUC) and fumaric acid (FUM) at various temperatures (25-50°C). High Performance Liquid Chromatography (HPLC) was used to determine the solubility and the X-Ray Powder Diffraction was used to characterize the crystals. The solubility of CBZ-NIC and CBZ-FUM co-crystals were found to be higher than the solubility of the CBZ for the range of studied temperatures. However, opposite findings was obtained for CBZ-SUC co-crystal as its solubility is lower than the solubility of CBZ. Different trend was found for CBZ-SAC co-crystal in which for temperature lower than 40°C, the solubility of CBZ crystal is higher than the CBZ-SAC co-crystal. The solubility of CBZ-SAC co-crystal is higher than the solubility of CBZ at a temperature above 40°C. CBZ co-crystals with NIC and FUM have shown to increase the solubility of CBZ by solubility ratio of 1.95 and 1.24 respectively. However, the CBZ co-crystal with SAC was found to have similar solubility value as the CBZ.

  6. Improved Hyperthermia Treatment of Tumors Under Consideration of Magnetic Nanoparticle Distribution Using Micro-CT Imaging.

    PubMed

    Dähring, H; Grandke, J; Teichgräber, U; Hilger, I

    2015-12-01

    Heterogeneous magnetic nanoparticle (MNP) distributions within tumors can cause regions of temperature under dosage and reduce the therapeutic efficiency. Here, micro-computed tomography (CT) imaging was used as a tool to determine the MNP distribution in vivo. The therapeutic success was evaluated based on tumor volume and temperature distribution. Tumor-bearing mice were intratumorally injected with iron oxide particles. MNP distribution was assessed by micro-CT with a low radiation dose protocol. MNPs were clearly visible, and the exact distribution to nontumor structures was detected by micro-CT. Knowledge of the intratumoral MNP distribution allowed the generation of higher temperatures within the tumor and led to higher temperature values after exposure to an alternating magnetic field (AMF). Consequently, the tumor size after 28 days was reduced to 14 and 73 % of the initial tumor volume for the MNP/AMF/CT and MNP/AMF groups, respectively. The MNP distribution pattern mainly governed the generated temperature spots in the tumor. Knowing the MNP distribution enabled individualized hyperthermia treatment and improved the overall therapeutic efficiency.

  7. Impact of torrefaction and low-temperature carbonization on the properties of biomass wastes from Arundo donax L. and Phoenix canariensis.

    PubMed

    Correia, Ricardo; Gonçalves, Margarida; Nobre, Catarina; Mendes, Benilde

    2017-01-01

    The impact of torrefaction and low-temperature carbonization on the properties of biomass wastes from Arundo donax L. and Phoenix canariensis was studied. Thermal treatments were performed at temperatures from 200°C to 350°C during 15 to 90min and temperature was the parameter that more influenced mass and energy yields as well as biochar composition. Torrefaction reduced moisture, volatile matter, O/C and H/C ratios of the biomass, while increasing heating value, ash content and fixed carbon. For torrefaction at 250°C or higher temperatures grindability of the biochars was significantly improved. The low volatile matter contents and high ash contents of these biochars restricts their use as solid fuels but they can be valorized otherwise. Raw biomasses and the biochars torrefied at 200°C could remove methylene blue from an aqueous solution, in fast adsorption test with a contact time of only 3s, with efficiencies higher than 50%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Evaluation of edible polymer coatings enriched with green tea extract on quality of chicken nuggets

    PubMed Central

    Kristam, Prathyusha; Eswarapragada, Naga Mallika; Bandi, Eswara Rao; Tumati, Srinivas Rao

    2016-01-01

    Aim: The present study was conducted to evaluate the physico-chemical and microbiological characteristics of chicken nuggets coated with sodium alginate (SA) coatings at refrigerated (4±1°C) and frozen (−18±1°C) storage condition at regular periodic intervals. Materials and Methods: Chicken meat nuggets were separated into three groups: Uncoated control (C), coated with alginate coating (T1), and coated with alginate coating incorporated with 1% green tea extract (GTE) (T2). The nuggets were analyzed at regular intervals of 5days for refrigerated storage and 15 days for frozen storage period in terms of pH, 2-thiobarbituric acid value (TBA), peroxide value (PV), total plate count (TPC), water loss, and sensory characteristics. Results: The results indicated that the nuggets coated with alginate-based coatings effectively reduced the spoilage as indicated by pH, TBA, and PVs. pH values of the formulations ranged from 6.15 to 6.34 at refrigerated storage temperature (4±1°C) and 6.49-6.71 at frozen storage temperature (−18±1°C). TBA value of the treatments ranged from 1.28 to 1.54 mg MDA/kg and 1.34 to 1.50 mg MDA/kg under refrigerated and frozen storage temperatures, respectively. Color, flavor, juiciness, tenderness, and overall acceptability of the nuggets differed significantly (p<0.05) with the coated nuggets. The coated nuggets were well acceptable upto 15 days at refrigerated storage temperature (4±1°C) and upto 75 days at frozen storage temperature (−18±1°C). Nuggets coated with GTE incorporated coating solution had a lower TBA-reactive substances values, PVs, and TPCs when compared to the nuggets coated with SA and the control group. Conclusion: Study revealed that incorporation of edible coatings with antioxidants, namely, GTE at 1% level had a significant effect in reducing the fat oxidation. The samples recorded a shelf life of 15 days under refrigerated storage when compared to their controls with 10 days of storage period and 75 days under frozen storage against controls with 60 days. T1, T2, and T3 formulations had higher sensory scores in comparison to the controls. Overall acceptability scores of T1 were higher when compared to the other formulations. PMID:27536027

  9. Takahasi Nearest-Neighbour Gas Revisited II: Morse Gases

    NASA Astrophysics Data System (ADS)

    Matsumoto, Akira

    2011-12-01

    Some thermodynamic quantities for the Morse potential are analytically evaluated at an isobaric process. The parameters of Morse gases for 21 substances are obtained by the second virial coefficient data and the spectroscopic data of diatomic molecules. Also some thermodynamic quantities for water are calculated numerically and drawn graphically. The inflexion point of the length L which depends on temperature T and pressure P corresponds physically to a boiling point. L indicates the liquid phase from lower temperature to the inflexion point and the gaseous phase from the inflexion point to higher temperature. The boiling temperatures indicate reasonable values compared with experimental data. The behaviour of L suggests a chance of a first-order phase transition in one dimension.

  10. Quantifying energy intake in Pacific bluefin tuna (Thunnus orientalis) using the heat increment of feeding.

    PubMed

    Whitlock, R E; Walli, A; Cermeño, P; Rodriguez, L E; Farwell, C; Block, B A

    2013-11-01

    Using implanted archival tags, we examined the effects of meal caloric value, food type (sardine or squid) and ambient temperature on the magnitude and duration of the heat increment of feeding in three captive juvenile Pacific bluefin tuna. The objective of our study was to develop a model that can be used to estimate energy intake in wild fish of similar body mass. Both the magnitude and duration of the heat increment of feeding (measured by visceral warming) showed a strong positive correlation with the caloric value of the ingested meal. Controlling for meal caloric value, the extent of visceral warming was significantly greater at lower ambient temperature. The extent of visceral warming was also significantly higher for squid meals compared with sardine meals. By using a hierarchical Bayesian model to analyze our data and treating individuals as random effects, we demonstrate how increases in visceral temperature can be used to estimate the energy intake of wild Pacific bluefin tuna of similar body mass to the individuals used in our study.

  11. [Comparison of eddy covariance and static chamber/gas chromatogram methods in measuring ecosystem respiration].

    PubMed

    Zheng, Ze-Mei; Yu, Gui-Rui; Sun, Xiao-Min; Cao, Guang-Min; Wang, Yue-Si; Du, Ming-Yuan; Li, Jun; Li, Ying-Nian

    2008-02-01

    Based on the measurement of carbon flux by the methods of eddy covariance and static chamber/gas chromatogram, a comparison was made between the two methods in evaluating ecosystem respiration over winter wheat (Triticum aestivum)--summer maize (Zea mays) double cropland and Kobresia humilis alpine meadow. The results showed that under the conditions of obtained data having good quality, nighttime ecosystem respiration from eddy covariance measurement was significantly agreed with that from static chamber/gas chromatogram measurement, with the correlation coefficients ranging from 0.95 to 0.98, and the daytime ecosystem respiration from these two measurements also had a good consistency though the static chamber/gas chromatogram measurement often produced higher values. The daily mean value of ecosystem respiration was significantly different between these two measurements, but the seasonal pattern was similar. For winter wheat-summer maize double cropland, the difference of mean air temperature inside and outside the chamber was 1.8 degrees C, and the daily mean value of ecosystem respiration across the whole study period was 30.3% lower in eddy covariance measurement than in static chamber/gas chromatogram measurement; while for alpine meadow, the difference of the mean air temperature was 1.9 degrees C, and the daily mean value of ecosystem respiration was 31.4% lower in eddy covariance measurement than in static chamber/gas chromatogram measurement. The variance between the daily mean values of ecosystem respiration obtained from the two measurements was higher in growing season than in dormant season.

  12. Temperature response of photosynthesis in different drug and fiber varieties of Cannabis sativa L.

    PubMed

    Chandra, Suman; Lata, Hemant; Khan, Ikhlas A; Elsohly, Mahmoud A

    2011-07-01

    The temperature response on gas and water vapour exchange characteristics of three medicinal drug type (HP Mexican, MX and W1) and four industrial fiber type (Felinq 34, Kompolty, Zolo 11 and Zolo 15) varieties of Cannabis sativa, originally from different agro-climatic zones worldwide, were studied. Among the drug type varieties, optimum temperature for photosynthesis (Topt) was observed in the range of 30-35 °C in high potency Mexican HPM whereas, it was in the range of 25-30 °C in W1. A comparatively lower value (25 °C) for Topt was observed in MX. Among fiber type varieties, Topt was around 30 °C in Zolo 11 and Zolo 15 whereas, it was near 25 °C in Felinq 34 and Kompolty. Varieties having higher maximum photosynthesis (PN max) had higher chlorophyll content as compared to those having lower PN max. Differences in water use efficiency (WUE) were also observed within and among the drug and fiber type plants. However, differences became less pronounced at higher temperatures. Both stomatal and mesophyll components seem to be responsible for the temperature dependence of photosynthesis (PN) in this species, however, their magnitude varied with the variety. In general, a two fold increase in dark respiration with increase in temperature (from 20 °C to 40 °C) was observed in all the varieties. However, a greater increase was associated with the variety having higher rate of photosynthesis, indicating a strong association between photosynthetic and respiratory rates. The results provide a valuable indication regarding variations in temperature dependence of PN in different varieties of Cannabis sativa L.

  13. Thermal/optical methods for elemental carbon quantification in soils and urban dusts: equivalence of different analysis protocols.

    PubMed

    Han, Yongming; Chen, Antony; Cao, Junji; Fung, Kochy; Ho, Fai; Yan, Beizhan; Zhan, Changlin; Liu, Suixin; Wei, Chong; An, Zhisheng

    2013-01-01

    Quantifying elemental carbon (EC) content in geological samples is challenging due to interferences of crustal, salt, and organic material. Thermal/optical analysis, combined with acid pretreatment, represents a feasible approach. However, the consistency of various thermal/optical analysis protocols for this type of samples has never been examined. In this study, urban street dust and soil samples from Baoji, China were pretreated with acids and analyzed with four thermal/optical protocols to investigate how analytical conditions and optical correction affect EC measurement. The EC values measured with reflectance correction (ECR) were found always higher and less sensitive to temperature program than the EC values measured with transmittance correction (ECT). A high-temperature method with extended heating times (STN120) showed the highest ECT/ECR ratio (0.86) while a low-temperature protocol (IMPROVE-550), with heating time adjusted for sample loading, showed the lowest (0.53). STN ECT was higher than IMPROVE ECT, in contrast to results from aerosol samples. A higher peak inert-mode temperature and extended heating times can elevate ECT/ECR ratios for pretreated geological samples by promoting pyrolyzed organic carbon (PyOC) removal over EC under trace levels of oxygen. Considering that PyOC within filter increases ECR while decreases ECT from the actual EC levels, simultaneous ECR and ECT measurements would constrain the range of EC loading and provide information on method performance. Further testing with standard reference materials of common environmental matrices supports the findings. Char and soot fractions of EC can be further separated using the IMPROVE protocol. The char/soot ratio was lower in street dusts (2.2 on average) than in soils (5.2 on average), most likely reflecting motor vehicle emissions. The soot concentrations agreed with EC from CTO-375, a pure thermal method.

  14. The Thermoregulatory Function of Thatched Nests in the South American Grass-Cutting Ant, Acromyrmex heyeri

    PubMed Central

    Bollazzi, Martin; Roces, Flavio

    2010-01-01

    The construction of mound-shaped nests by ants is considered as a behavioral adaptation to low environmental temperatures, i.e., colonies achieve higher and more stables temperatures than those of the environment. Besides the well-known nests of boreal Formica wood-ants, several species of South American leaf-cutting ants of the genus Acromyrmex construct thatched nests. Acromyrmex workers import plant fragments as building material, and arrange them so as to form a thatch covering a central chamber, where the fungus garden is located. Thus, the degree of thermoregulation attained by the fungus garden inside the thatched nest largely depends on how the thatch affects the thermal relations between the fungus and the environment. This work was aimed at studying the thermoregulatory function of the thatched nests built by the grass-cutting ant Acromyrmex heyeri Forel (Hymenoptera: Formicidae: Myrmicinae). Nest and environmental temperatures were measured as a function of solar radiation on the long-term. The thermal diffusivity of the nest thatch was measured and compared to that of the surrounding soil, in order to assess the influence of the building material on the nest's thermoregulatory ability. The results showed that the average core temperature of thatched nests was higher than that of the environment, but remained below values harmful for the fungus. This thermoregulation was brought about by the low thermal diffusivity of the nest thatch built by workers with plant fragments, instead of the readily-available soil particles that have a higher thermal diffusivity. The thatch prevented diurnal nest overheating by the incoming solar radiation, and avoided losses of the accumulated daily heat into the cold air during the night. The adaptive value of thatching behavior in Acromyrmex leaf-cutting ants occurring in the southernmost distribution range is discussed. PMID:20883129

  15. Optimization of Maillard Reaction in Model System of Glucosamine and Cysteine Using Response Surface Methodology

    PubMed Central

    Arachchi, Shanika Jeewantha Thewarapperuma; Kim, Ye-Joo; Kim, Dae-Wook; Oh, Sang-Chul; Lee, Yang-Bong

    2017-01-01

    Sulfur-containing amino acids play important roles in good flavor generation in Maillard reaction of non-enzymatic browning, so aqueous model systems of glucosamine and cysteine were studied to investigate the effects of reaction temperature, initial pH, reaction time, and concentration ratio of glucosamine and cysteine. Response surface methodology was applied to optimize the independent reaction parameters of cysteine and glucosamine in Maillard reaction. Box-Behnken factorial design was used with 30 runs of 16 factorial levels, 8 axial levels and 6 central levels. The degree of Maillard reaction was determined by reading absorption at 425 nm in a spectrophotometer and Hunter’s L, a, and b values. ΔE was consequently set as the fifth response factor. In the statistical analyses, determination coefficients (R2) for their absorbance, Hunter’s L, a, b values, and ΔE were 0.94, 0.79, 0.73, 0.96, and 0.79, respectively, showing that the absorbance and Hunter’s b value were good dependent variables for this model system. The optimum processing parameters were determined to yield glucosamine-cysteine Maillard reaction product with higher absorbance and higher colour change. The optimum estimated absorbance was achieved at the condition of initial pH 8.0, 111°C reaction temperature, 2.47 h reaction time, and 1.30 concentration ratio. The optimum condition for colour change measured by Hunter’s b value was 2.41 h reaction time, 114°C reaction temperature, initial pH 8.3, and 1.26 concentration ratio. These results can provide the basic information for Maillard reaction of aqueous model system between glucosamine and cysteine. PMID:28401086

  16. Optimization of Maillard Reaction in Model System of Glucosamine and Cysteine Using Response Surface Methodology.

    PubMed

    Arachchi, Shanika Jeewantha Thewarapperuma; Kim, Ye-Joo; Kim, Dae-Wook; Oh, Sang-Chul; Lee, Yang-Bong

    2017-03-01

    Sulfur-containing amino acids play important roles in good flavor generation in Maillard reaction of non-enzymatic browning, so aqueous model systems of glucosamine and cysteine were studied to investigate the effects of reaction temperature, initial pH, reaction time, and concentration ratio of glucosamine and cysteine. Response surface methodology was applied to optimize the independent reaction parameters of cysteine and glucosamine in Maillard reaction. Box-Behnken factorial design was used with 30 runs of 16 factorial levels, 8 axial levels and 6 central levels. The degree of Maillard reaction was determined by reading absorption at 425 nm in a spectrophotometer and Hunter's L, a, and b values. ΔE was consequently set as the fifth response factor. In the statistical analyses, determination coefficients (R 2 ) for their absorbance, Hunter's L, a, b values, and ΔE were 0.94, 0.79, 0.73, 0.96, and 0.79, respectively, showing that the absorbance and Hunter's b value were good dependent variables for this model system. The optimum processing parameters were determined to yield glucosamine-cysteine Maillard reaction product with higher absorbance and higher colour change. The optimum estimated absorbance was achieved at the condition of initial pH 8.0, 111°C reaction temperature, 2.47 h reaction time, and 1.30 concentration ratio. The optimum condition for colour change measured by Hunter's b value was 2.41 h reaction time, 114°C reaction temperature, initial pH 8.3, and 1.26 concentration ratio. These results can provide the basic information for Maillard reaction of aqueous model system between glucosamine and cysteine.

  17. High-Temperature Dielectric Properties of Aluminum Nitride Ceramic for Wireless Passive Sensing Applications

    PubMed Central

    Liu, Jun; Yuan, Yukun; Ren, Zhong; Tan, Qiulin; Xiong, Jijun

    2015-01-01

    The accurate characterization of the temperature-dependent permittivity of aluminum nitride (AlN) ceramic is quite critical to the application of wireless passive sensors for harsh environments. Since the change of the temperature-dependent permittivity will vary the ceramic-based capacitance, which can be converted into the change of the resonant frequency, an LC resonator, based on AlN ceramic, is prepared by the thick film technology. The dielectric properties of AlN ceramic are measured by the wireless coupling method, and discussed within the temperature range of 12 °C (room temperature) to 600 °C. The results show that the extracted relative permittivity of ceramic at room temperature is 2.3% higher than the nominal value of 9, and increases from 9.21 to 10.79, and the quality factor Q is decreased from 29.77 at room temperature to 3.61 at 600 °C within the temperature range. PMID:26370999

  18. Commensurate comparisons of models with energy budget observations reveal consistent climate sensitivities

    NASA Astrophysics Data System (ADS)

    Armour, K.

    2017-12-01

    Global energy budget observations have been widely used to constrain the effective, or instantaneous climate sensitivity (ICS), producing median estimates around 2°C (Otto et al. 2013; Lewis & Curry 2015). A key question is whether the comprehensive climate models used to project future warming are consistent with these energy budget estimates of ICS. Yet, performing such comparisons has proven challenging. Within models, values of ICS robustly vary over time, as surface temperature patterns evolve with transient warming, and are generally smaller than the values of equilibrium climate sensitivity (ECS). Naively comparing values of ECS in CMIP5 models (median of about 3.4°C) to observation-based values of ICS has led to the suggestion that models are overly sensitive. This apparent discrepancy can partially be resolved by (i) comparing observation-based values of ICS to model values of ICS relevant for historical warming (Armour 2017; Proistosescu & Huybers 2017); (ii) taking into account the "efficacies" of non-CO2 radiative forcing agents (Marvel et al. 2015); and (iii) accounting for the sparseness of historical temperature observations and differences in sea-surface temperature and near-surface air temperature over the oceans (Richardson et al. 2016). Another potential source of discrepancy is a mismatch between observed and simulated surface temperature patterns over recent decades, due to either natural variability or model deficiencies in simulating historical warming patterns. The nature of the mismatch is such that simulated patterns can lead to more positive radiative feedbacks (higher ICS) relative to those engendered by observed patterns. The magnitude of this effect has not yet been addressed. Here we outline an approach to perform fully commensurate comparisons of climate models with global energy budget observations that take all of the above effects into account. We find that when apples-to-apples comparisons are made, values of ICS in models are consistently in good agreement with values of ICS inferred from global energy budget constraints. This suggests that the current generation of coupled climate models are not overly sensitive. However, since global energy budget observations do not constrain ECS, it is less certain whether model ECS values are realistic.

  19. Experimental study on temperature profile of fixed - bed gasification of oil-palm fronds

    NASA Astrophysics Data System (ADS)

    Atnaw, Samson M.; Sulaiman, Shaharin A.; Moni, M. Nazmi Z.

    2012-06-01

    Currently the world's second largest palm oil producer Malaysia produces large amount of oil palm biomass each year. The abundance of the biomass introduces a challenge to utilize them as main feedstock for heat and energy generation. Although some oil palm parts and derivatives like empty fruit bunch and fibre have been commercialized as fuel, less attention has been given to oil palm fronds (OPF). Initial feasibility and characterization studies of OPF showed that it is highly feasible as fuel for gasification to produce high value gaseous fuel or syngas. This paper discusses the experimental gasification attempt carried out on OPF using a 50 kW lab scale downdraft gasifier and its results. The conducted study focused on the temperature distributions within the reactor and the characteristics of the dynamic temperature profile for each temperature zones during operation. OPF feedstock of one cubic inch in individual size with 15% average moisture content was utilized. An average pyrolysis zone temperature of 324°Cand an average oxidation zone temperature of 796°Cwere obtained over a total gasification period of 74 minutes. A maximum oxidation zone temperature of 952°Cwas obtained at 486 lpm inlet air flow rate and 10 kg/hr feedstock consumption rate. Stable bluish flare was produced for more than 70% of the total gasification time. The recorded temperature profiles produced closely similar patterns with the temperature profiles recorded from the gasification of woody materials. Similar temperature profile was obtained comparing the results from OPF gasification with that of woody biomass. Furthermore, the successful ignition of the syngas produced from OPF gasification ascertained that OPF indeed has a higher potential as gasification feedstock. Hence, more detailed studies need to be done for better understanding in exploiting the biomass as a high prospect alternative energy solution. In addition, a study of the effect of initial moisture content of OPF feedstock on the temperature distribution profile along the gasifier bed showed that initial moisture content of feedstock in the range of 15% gives satisfactory result, while experiment with feedstock having higher moisture content resulted in lower zone temperature values.

  20. On heat transfer in squish gaps

    NASA Astrophysics Data System (ADS)

    Spurk, J. H.

    1986-06-01

    Attention is given to the heat transfer characteristics of a squish gap in an internal combustion engine cylinder, when the piston is nearing top dead center (TDC) on the compression stroke. If the lateral extent of the gap is much larger than its height, the inviscid flow is similar to the stagnation point flow. Surface temperature and pressure histories during compression and expansion are studied. Surface temperature has a maximum near TDC, then drops and rises again during expansion; higher values are actually achieved during expansion than during compression.

  1. Equilibration of quantum hall edge states and its conductance fluctuations in graphene p-n junctions

    NASA Astrophysics Data System (ADS)

    Kumar, Chandan; Kuiri, Manabendra; Das, Anindya

    2018-02-01

    We report an observation of conductance fluctuations (CFs) in the bipolar regime of quantum hall (QH) plateaus in graphene (p-n-p/n-p-n) devices. The CFs in the bipolar regime are shown to decrease with increasing bias and temperature. At high temperature (above 7 K) the CFs vanishes completely and the flat quantized plateaus are recovered in the bipolar regime. The values of QH plateaus are in theoretical agreement based on full equilibration of chiral channels at the p-n junction. The amplitude of CFs for different filling factors follows a trend predicted by the random matrix theory. Although, there are mismatch in the values of CFs between the experiment and theory but at higher filling factors the experimental values become closer to the theoretical prediction. The suppression of CFs and its dependence has been understood in terms of time dependent disorders present at the p-n junctions.

  2. A Method for Calculating Viscosity and Thermal Conductivity of a Helium-Xenon Gas Mixture

    NASA Technical Reports Server (NTRS)

    Johnson, Paul K.

    2006-01-01

    A method for calculating viscosity and thermal conductivity of a helium-xenon (He-Xe) gas mixture was employed, and results were compared to AiResearch (part of Honeywell) analytical data. The method of choice was that presented by Hirschfelder with Singh's third-order correction factor applied to thermal conductivity. Values for viscosity and thermal conductivity were calculated over a temperature range of 400 to 1200 K for He-Xe gas mixture molecular weights of 20.183, 39.94, and 83.8 kg/kmol. First-order values for both transport properties were in good agreement with AiResearch analytical data. Third-order-corrected thermal conductivity values were all greater than AiResearch data, but were considered to be a better approximation of thermal conductivity because higher-order effects of mass and temperature were taken into consideration. Viscosity, conductivity, and Prandtl number were then compared to experimental data presented by Taylor.

  3. Initial-boundary value problem to 2D Boussinesq equations for MHD convection with stratification effects

    NASA Astrophysics Data System (ADS)

    Bian, Dongfen; Liu, Jitao

    2017-12-01

    This paper is concerned with the initial-boundary value problem to 2D magnetohydrodynamics-Boussinesq system with the temperature-dependent viscosity, thermal diffusivity and electrical conductivity. First, we establish the global weak solutions under the minimal initial assumption. Then by imposing higher regularity assumption on the initial data, we obtain the global strong solution with uniqueness. Moreover, the exponential decay rates of weak solutions and strong solution are obtained respectively.

  4. [Effect of acetylation and oxidation on some properties of breadfruit (Artocarpus altilis) seed starch].

    PubMed

    Rincón, Alicia Mariela; Bou Rached, Lizet; Aragoza, Luis E; Padilla, Fanny

    2007-09-01

    Starch extracted from seeds of Artocarpus altilis (Breadfruit) was chemically modified by acetylation and oxidation, and its functional properties were evaluated and compared with these of native starch. Analysis of the chemical composition showed that moisture content was higher for modified starches. Ash, protein, crude fiber and amylose contents were reduced by the modifications, but did not alter the native starch granules' irregularity, oval shape and smooth surface. Acetylation produced changes in water absorption, swelling power and soluble solids, these values were higher for acetylated starch, while values for native and oxidized starches were similar. Both modifications reduced pasting temperature; oxidation reduced maximum peak viscosity but it was increased by acetylation. Hot paste viscosity was reduced by both modifications, whereas cold paste viscosity was lower in the oxidized starch and higher in the acetylated starch. Breakdown was increased by acetylation and reduced with oxidation. Setback value was reduced after acetylation, indicating it could minimize retrogradation of the starch.

  5. Experimental Validation for Hot Stamping Process by Using Taguchi Method

    NASA Astrophysics Data System (ADS)

    Fawzi Zamri, Mohd; Lim, Syh Kai; Razlan Yusoff, Ahmad

    2016-02-01

    Due to the demand for reduction in gas emissions, energy saving and producing safer vehicles has driven the development of Ultra High Strength Steel (UHSS) material. To strengthen UHSS material such as boron steel, it needed to undergo a process of hot stamping for heating at certain temperature and time. In this paper, Taguchi method is applied to determine the appropriate parameter of thickness, heating temperature and heating time to achieve optimum strength of boron steel. The experiment is conducted by using flat square shape of hot stamping tool with tensile dog bone as a blank product. Then, the value of tensile strength and hardness is measured as response. The results showed that the lower thickness, higher heating temperature and heating time give the higher strength and hardness for the final product. In conclusion, boron steel blank are able to achieve up to 1200 MPa tensile strength and 650 HV of hardness.

  6. Nonextensive statistical mechanics approach to electron trapping in degenerate plasmas

    NASA Astrophysics Data System (ADS)

    Mebrouk, Khireddine; Gougam, Leila Ait; Tribeche, Mouloud

    2016-06-01

    The electron trapping in a weakly nondegenerate plasma is reformulated and re-examined by incorporating the nonextensive entropy prescription. Using the q-deformed Fermi-Dirac distribution function including the quantum as well as the nonextensive statistical effects, we derive a new generalized electron density with a new contribution proportional to the electron temperature T, which may dominate the usual thermal correction (∼T2) at very low temperatures. To make the physics behind the effect of this new contribution more transparent, we analyze the modifications arising in the propagation of ion-acoustic solitary waves. Interestingly, we find that due to the nonextensive correction, our plasma model allows the possibility of existence of quantum ion-acoustic solitons with velocity higher than the Fermi ion-sound velocity. Moreover, as the nonextensive parameter q increases, the critical temperature Tc beyond which coexistence of compressive and rarefactive solitons sets in, is shifted towards higher values.

  7. Magnetodielectric effect in CdS nanosheets grown within Na-4 mica

    NASA Astrophysics Data System (ADS)

    Mandal, Amrita; Mitra, Sreemanta; Datta, Anindya; Banerjee, Sourish; Chakravorty, Dipankar

    2012-04-01

    CdS nanosheets of thickness 0.6 nm were grown within the interlayer spaces of Na-4 mica. Magnetization measurements carried out in the temperature range 2-300 K showed the composites to have weak ferromagnetic-like properties even at room temperature. The saturation magnetization (MS) at room temperature was found to be higher than that reported for CdS nanoparticles. The higher value of MS may be ascribed to the presence of a large number defects in the present CdS system, due to a large surface to volume ratio in the nanosheets as compared to that of CdS nanoparticles. The nanocomposites exhibited a magnetodielectric effect with a dielectric constant change of 5.3% for a magnetic field of 0.5 T. This occurred due to a combination of magnetoresistance and Maxwell-Wagner effect as delineated in the model developed by Catalan.

  8. Modeling shock responses of plastic bonded explosives using material point method

    NASA Astrophysics Data System (ADS)

    Shang, Hailin; Zhao, Feng; Fu, Hua

    2017-01-01

    Shock responses of plastic bonded explosives are modeled using material point method as implemented in the Uintah Computational Framework. Two-dimensional simulation model was established based on the micrograph of PBX9501. Shock loading for the explosive was performed by a piston moving at a constant velocity. Unreactive simulation results indicate that under shock loading serious plastic strain appears on the boundary of HMX grains. Simultaneously, the plastic strain energy transforms to thermal energy, causing the temperature to rise rapidly on grain boundary areas. The influence of shock strength on the responses of explosive was also investigated by increasing the piston velocity. And the results show that with increasing shock strength, the distribution of plastic strain and temperature does not have significant changes, but their values increase obviously. Namely, the higher the shock strength is, the higher the temperature rise will be.

  9. Radiolysis of water at elevated temperatures—III. Simulation of radiolytic products at 25 and 250°C under the irradiation with γ-rays and fast neutrons

    NASA Astrophysics Data System (ADS)

    Sunaryo, Geni R.; Katsumura, Yosuke; Ishigure, Kenkichi

    1995-05-01

    The G-values of water decomposition products under the irradiations with γ-rays and fast neutrons up to 250°C have been determined in previous studies. In order to clarify the characteristics of the determined G-values, computer simulations under the simplified conditions in nuclear reactors have been carried out. The recent G-values for γ-radiolysis reported by Elliot, Chenier and Quellete [(1990) Can. J. Chem.68, 712; (1993) J. Chem. Soc. Faraday Trans.89, 1193], Kent and Sims [(1992) Water Chemistry of Nuclear Reactor Systems 6, p. 153. BNES, London], and Sunaryo, Katsumura, Shirai, Hiroishi and Ishigure [(1994) Radiat. Phys. Chem.44, 273] and Sunaryo, Katsumura, Hiroishi and Ishigure [(1995) Radiat. Phys. Chem.45, 131] are almost equivalent from the point of simulations. On the contrary, G-values for fast neutron radiolysis give a significant influence to the result, which arises from the higher molecular yields and smaller radical yields of water decomposition in fast neutron radiolysis, and it has been revealed that the dose evaluation in the reactor is inevitably important. In addition, it was pointed out by the simulations that reverse reactions for H 2+ .OH→ .H+H 2O and e aq-+H +→ .H, be neglected at room temperature, become important at higher temperatures.

  10. Effects of extrusion variables on the properties of waxy hulless barley extrudates.

    PubMed

    Köksel, Hamit; Ryu, Gy-Hyung; Başman, Arzu; Demiralp, Hande; Ng, Perry K W

    2004-02-01

    The objective of this research was to investigate the extrudability of waxy hulless barley flour under various extrusion conditions. Waxy hulless barley flour was processed in a laboratory-scale corotating twin-screw extruder with different levels of feed moisture content (22.3, 26.8, and 30.7%) and die temperature (130, 150, and 170 degrees C) to develop a snack food with high beta-glucan content. The effects of extrusion condition variables (screw configuration, moisture, and temperature) on the system variables (pressure and specific mechanical energy), the extrudate physical properties (sectional expansion index, bulk density), starch gelatinization, pasting properties (cold peak viscosity, trough viscosity, and final viscosity), and beta-glucan contents were determined. Results were evaluated by using response surface methodology. Increased extrusion temperature and feed moisture content resulted in decreases in exit die pressure and specific mechanical energy values. For extrudates extruded under low shear screw configuration (LS), increased barrel temperature decreased sectional expansion index (SEI) values at both low and high moisture contents. The feed moisture seems to have an inverse relationship with SEI over the range studied. Bulk density was higher at higher moisture contents, for both low and high barrel temperatures, for samples extruded under high shear screw configuration (HS) and LS. Cold peak viscosities (CV) were observed in all samples. The CV increased with the increase in extrusion temperature and feed moisture content. Although beta-glucan contents of the LS extrudates were comparable to that of barley flour sample, HS samples had generally lower beta-glucan contents. The extrusion cooking technique seems to be promising for the production of snack foods with high beta-glucan content, especially using LS conditions.

  11. Wheat plant selection for high yields entailed improvement of leaf anatomical and biochemical traits including tolerance to non-optimal temperature conditions.

    PubMed

    Brestic, Marian; Zivcak, Marek; Hauptvogel, Pavol; Misheva, Svetlana; Kocheva, Konstantina; Yang, Xinghong; Li, Xiangnan; Allakhverdiev, Suleyman I

    2018-05-01

    Assessment of photosynthetic traits and temperature tolerance was performed on field-grown modern genotype (MG), and the local landrace (LR) of wheat (Triticum aestivum L.) as well as the wild relative species (Aegilops cylindrica Host.). The comparison was based on measurements of the gas exchange (A/c i , light and temperature response curves), slow and fast chlorophyll fluorescence kinetics, and some growth and leaf parameters. In MG, we observed the highest CO 2 assimilation rate [Formula: see text] electron transport rate (J max ) and maximum carboxylation rate [Formula: see text]. The Aegilops leaves had substantially lower values of all photosynthetic parameters; this fact correlated with its lower biomass production. The mesophyll conductance was almost the same in Aegilops and MG, despite the significant differences in leaf phenotype. In contrary, in LR with a higher dry mass per leaf area, the half mesophyll conductance (g m ) values indicated more limited CO 2 diffusion. In Aegilops, we found much lower carboxylation capacity; this can be attributed mainly to thin leaves and lower Rubisco activity. The difference in CO 2 assimilation rate between MG and others was diminished because of its higher mitochondrial respiration activity indicating more intense metabolism. Assessment of temperature response showed lower temperature optimum and a narrow ecological valence (i.e., the range determining the tolerance limits of a species to an environmental factor) in Aegilops. In addition, analysis of photosynthetic thermostability identified the LR as the most sensitive. Our results support the idea that the selection for high yields was accompanied by the increase of photosynthetic productivity through unintentional improvement of leaf anatomical and biochemical traits including tolerance to non-optimal temperature conditions.

  12. The impact of environmental temperature on the diagnosis of gestational diabetes mellitus.

    PubMed

    Vasileiou, Vasiliki; Kyratzoglou, Eleni; Paschou, Stavroula A; Kyprianou, Miltiades; Anastasiou, Eleni

    2018-03-01

    To investigate a probable impact of seasons on the diagnosis of GDM, as well as the specific effect of the environmental temperature on the diagnosis of this clinical entity. Two observational studies, one retrospective and one prospective, were conducted in a referral center. Study A included retrospectively 7618 pregnant women who underwent a 3-h 100 g OGTT during the 3rd trimester of gestation. Study B prospectively included 768 pregnant women tested in the 3rd trimester of gestation with a 75 g OGTT. Temperature was recorded every day at 09:00 h. Retrospective Study A: GDM prevalence differed significantly by season: winter = 28.1%, summer = 39.2%, spring = 32.4% and autumn = 32.4% ( P  < 0.0001). The odds ratio for being diagnosed with GDM was much higher during summer 1.65 (95% CI: 1.43-1.90), with spring and autumn following with 1.23 (95% CI: 1.08-1.39) compared to winter. Glucose levels during OGTT were measured: significantly increased blood glucose values were observed at 60, 120 and 180 min in summer, which remained significant after adjustment for age, gestational age, BMI, weight gain during pregnancy and blood pressure. Prospective Study B: At temperatures above 25°C, the average glucose 60-min and 120-min levels were increased. The relative risk for abnormal glucose values at 60 min, when the environmental temperature increased over 25°C, was 2.2 (1.5-3.3). GDM prevalence in Greece presents seasonal variation, with higher risk during summer due to post glucose load level variations. These variations could be attributed to differences in environmental temperature. © 2018 European Society of Endocrinology.

  13. Clumped Isotope Records of Environmental Change and Diagenesis at the Onset of the Cryogenian

    NASA Astrophysics Data System (ADS)

    Mackey, T.; Bergmann, K.; Jost, A. B.; Cantine, M.; Wilcots, J.

    2017-12-01

    Carbonate strata from NE Spitsbergen and W Nordaustlandet, Svalbard, provide a window into changing depositional environments and sediment diagenesis through the Neoproterozoic. Our data bracket climate perturbations including the Sturtian and Marinoan Snowball Earth, and these sections have also experienced a range of burial and alteration histories. Comparison of clumped isotope values (Δ47­) in specific petrographic textures and mineralogies provides a test for post-depositional alteration. Specifically, we focus on strata across globally correlated carbon isotope excursions (CIE) and within carbonate conglomerates to constrain changes in Δ47­ through time. Calcites across sections from the onset of the Cryogenian typically record higher temperatures than co-occurring dolomites, consistent with calcite and dolomite reordering kinetics. In the most extreme cases, both depositional and burial calcites record equilibration above the closure temperature for calcites, but dolomite temperatures calculated from Δ47­ values indicate that they have not been fully reordered. For example, stratigraphic variation in Δ47­ values exceeds 40°C ( 60-100°C) from the pre-Sturtian Russøya Member of the Elbobreen Formation. Such variability could reflect preferential alteration of specific textures or changes in temperature associated with dolomite precipitation. Carbonate strata have also been resedimented as clasts in overriding Sturtian diamictites, and comparison of clasts to underlying stratigraphy and carbonate matrix provide a test for the source and timing of stratigraphic variations in Δ47­ values. In a single location dolomite clasts record temperatures varying by >20°C ( 60-80°C), and clast-associated dolomicrite matrix records temperatures as low as 20-30°C. Together, these data indicate that at least some component of the Δ47 signal reflects differences in attributes of the dolomites prior to the Sturtian glaciation.

  14. Effects of Vacancy Cluster Defects on Electrical and Thermodynamic Properties of Silicon Crystals

    PubMed Central

    Huang, Pei-Hsing; Lu, Chi-Ming

    2014-01-01

    A first-principle plane-wave pseudopotential method based on the density function theory (DFT) was employed to investigate the effects of vacancy cluster (VC) defects on the band structure and thermoelectric properties of silicon (Si) crystals. Simulation results showed that various VC defects changed the energy band and localized electron density distribution of Si crystals and caused the band gap to decrease with increasing VC size. The results can be ascribed to the formation of a defect level produced by the dangling bonds, floating bonds, or high-strain atoms surrounding the VC defects. The appearance of imaginary frequencies in the phonon spectrum of defective Si crystals indicates that the defect-region structure is dynamically unstable and demonstrates phase changes. The phonon dispersion relation and phonon density of state were also investigated using density functional perturbation theory. The obtained Debye temperature (θ D) for a perfect Si crystal had a minimum value of 448 K at T = 42 K and a maximum value of 671 K at the high-temperature limit, which is consistent with the experimental results reported by Flubacher. Moreover, the Debye temperature decreased with increases in the VC size. VC defects had minimal effects on the heat capacity (C v) value when temperatures were below 150 K. As the temperature was higher than 150 K, the heat capacity gradually increased with increasing temperature until it achieved a constant value of 11.8 cal/cell·K. The heat capacity significantly decreased as the VC size increased. For a 2 × 2 × 2 superlattice Si crystal containing a hexagonal ring VC (HRVC10), the heat capacity decreased by approximately 17%. PMID:24526923

  15. Use of near-IR to monitor the influence of external heating on dental composite photopolymerization.

    PubMed

    Trujillo, Marianela; Newman, Sheldon M; Stansbury, Jeffrey W

    2004-10-01

    This study was conducted to determine the effect of modest external heating on the photopolymerization kinetics and conversion of commercial dental composite restorative materials. A transmission-mode, real-time near-infrared spectroscopic technique was used to monitor the photopolymerization process in the composite materials at various temperatures between 23 and 70 degrees C. Several light curing units, differing in spectral output and power densities were compared at the different cure temperatures. Several significantly different commercial composites were compared for their response. Regardless of the curing light or composite material used, photopolymerization at a moderate curing temperature of 54.5 degrees C resulted in significantly higher immediate and final conversion values compared with room temperature photocuring. Contrary to the room temperature cured materials, at the elevated cure temperature the extent of post-cure was minor and different curing lights produced very uniform conversion values within a given material. The time required to reach a given level of conversion, established as full conversion with the room temperature cure, was reduced typically by 80-90% using the elevated curing conditions. Complementary kinetic studies confirmed the effect of cure temperature on increasing the polymerization rate in dental composites as significant. Increasing the temperature of composite resin within potentially biologically compatible limits can significantly influences resin polymerization. These increased rates and conversion could lead to improved properties of composite restorative materials.

  16. Role of annealing temperatures on structure polymorphism, linear and nonlinear optical properties of nanostructure lead dioxide thin films

    NASA Astrophysics Data System (ADS)

    Zeyada, H. M.; Makhlouf, M. M.

    2016-04-01

    The powder of as synthesized lead dioxide (PbO2) has polycrystalline structure β-PbO2 phase of tetragonal crystal system. It becomes nanocrystallites α-PbO2 phase with orthorhombic crystal system upon thermal deposition to form thin films. Annealing temperatures increase nanocrystallites size from 28 to 46 nm. The optical properties of α-PbO2 phase were calculated from absolute values of transmittance and reflectance at nearly normal incidence of light by spectrophotometer measurements. The refractive and extinction indices were determined and showed a response to annealing temperatures. The absorption coefficient of α-PbO2 films is >106 cm-1 in UV region of spectra. Analysis of the absorption coefficient spectra near optical edge showed indirect allowed transition. Annealing temperature decreases the value of indirect energy gap for α-PbO2 films. The dispersion parameters such as single oscillator energy, dispersion energy, dielectric constant at high frequency and lattice dielectric constant were calculated and its variations with annealing temperatures are reported. The nonlinear refractive index (n2), third-order nonlinear susceptibility (χ(3)) and nonlinear absorption coefficient (βc) were determined. It was found that χ(3), n2 and β increase with increasing photon energy and decrease with increasing annealing temperature. The pristine film of α-PbO2 has higher values of nonlinear optical constants than for annealed films; therefore it is suitable for applications in manufacturing nonlinear optical devices.

  17. Reexamination of Basal Plane Thermal Conductivity of Suspended Graphene Samples Measured by Electro-Thermal Micro-Bridge Methods

    DOE PAGES

    Jo, Insun; Pettes, Michael; Lindsay, Lucas R.; ...

    2015-05-18

    Thermal transport in suspended graphene samples has been measured in prior works and this work with the use of a suspended electro-thermal micro-bridge method. These measurement results are analyzed here to evaluate and eliminate the errors caused by the extrinsic thermal contact resistance. It is noted that the thermal resistance measured in a recent work increases linearly with the suspended length of the single-layer graphene samples synthesized by chemical vapor deposition (CVD), and that such a feature does not reveal the failure of Fourier s law despite the increase in the apparent thermal conductivity with length. The re-analyzed thermal conductivitymore » of a single-layer CVD graphene sample reaches about ( 1680 180 )Wm-1K-1 at room temperature, which is close to the highest value reported for highly oriented pyrolytic graphite. In comparison, the thermal conductivity values measured for two suspended exfoliated bi-layer graphene samples are about ( 880 60 ) and ( 730 60 ) Wm-1K-1 at room temperature, and approach that of the natural graphite source above room temperature. However, the low-temperature thermal conductivities of these suspended graphene samples are still considerably lower than the graphite values, with the peak thermal conductivities shifted to much higher temperatures. Analysis of the thermal conductivity data reveals that the low temperature behavior is dominated by phonon scattering by polymer residue instead of by the lateral boundary.« less

  18. Does long-term cultivation of saplings under elevated CO2 concentration influence their photosynthetic response to temperature?

    PubMed Central

    Šigut, Ladislav; Holišová, Petra; Klem, Karel; Šprtová, Mirka; Calfapietra, Carlo; Marek, Michal V.; Špunda, Vladimír; Urban, Otmar

    2015-01-01

    Background and Aims Plants growing under elevated atmospheric CO2 concentrations often have reduced stomatal conductance and subsequently increased leaf temperature. This study therefore tested the hypothesis that under long-term elevated CO2 the temperature optima of photosynthetic processes will shift towards higher temperatures and the thermostability of the photosynthetic apparatus will increase. Methods The hypothesis was tested for saplings of broadleaved Fagus sylvatica and coniferous Picea abies exposed for 4–5 years to either ambient (AC; 385 µmol mol−1) or elevated (EC; 700 µmol mol−1) CO2 concentrations. Temperature response curves of photosynthetic processes were determined by gas-exchange and chlorophyll fluorescence techniques. Key Results Initial assumptions of reduced light-saturated stomatal conductance and increased leaf temperatures for EC plants were confirmed. Temperature response curves revealed stimulation of light-saturated rates of CO2 assimilation (Amax) and a decline in photorespiration (RL) as a result of EC within a wide temperature range. However, these effects were negligible or reduced at low and high temperatures. Higher temperature optima (Topt) of Amax, Rubisco carboxylation rates (VCmax) and RL were found for EC saplings compared with AC saplings. However, the shifts in Topt of Amax were instantaneous, and disappeared when measured at identical CO2 concentrations. Higher values of Topt at elevated CO2 were attributed particularly to reduced photorespiration and prevailing limitation of photosynthesis by ribulose-1,5-bisphosphate (RuBP) regeneration. Temperature response curves of fluorescence parameters suggested a negligible effect of EC on enhancement of thermostability of photosystem II photochemistry. Conclusions Elevated CO2 instantaneously increases temperature optima of Amax due to reduced photorespiration and limitation of photosynthesis by RuBP regeneration. However, this increase disappears when plants are exposed to identical CO2 concentrations. In addition, increased heat-stress tolerance of primary photochemistry in plants grown at elevated CO2 is unlikely. The hypothesis that long-term cultivation at elevated CO2 leads to acclimation of photosynthesis to higher temperatures is therefore rejected. Nevertheless, incorporating acclimation mechanisms into models simulating carbon flux between the atmosphere and vegetation is necessary. PMID:25851132

  19. Phase behavior of Langmuir monolayers with ionic molecular heads: Molecular simulations

    NASA Astrophysics Data System (ADS)

    González-Castro, Carlos A.; Ramírez-Santiago, Guillermo

    2015-03-01

    We carried out Monte Carlo simulations in the N ,Π,T ensemble of a Langmuir monolayer coarse-grained molecular model. Considering that the hydrophilic groups can be ionized by modulating acid-base interactions, here we study the phase behavior of a model that incorporates the short-range steric and long-range ionic interactions. The simulations were carried out in the reduced temperature range 0.1 ≤T*<4.0 , where there is a competition of these interactions. Different order parameters were calculated and analyzed for several values of the reduced surface pressure in the interval, 1 ≤Π*≤40. For most of the surface pressures two directions of molecular tilt were found: (i) towards the nearest neighbor (NN) at low temperatures, T*<0.7, and most of the values of Π* and (ii) towards next-nearest neighbors (NNN) in the temperature interval 0.7 ≤T*<1.1 for Π*<25. We also found the coexistence of the NN and NNN at intermediate temperatures and Π*>25 . A low-temperature reentrant disorder-order-disorder transition in the positions of the molecular heads and in the collective tilt of the tails was found for all the surface pressure values. It was also found that the molecular tails arranged forming "rotating patterns" in the temperature interval, 0.5

  20. Properties of bioadhesive ketoprofen liquid suppositories: preparation, determination of gelation temperature, viscosity studies and evaluation of mechanical properties using texture analyzer by 4 × 4 factorial design.

    PubMed

    Ozgüney, Işık; Kardhiqi, Anita

    2014-12-01

    Development and evaluation of thermosensitive and bioadhesive liquid suppositories containing ketoprofen (KP). This study was conducted to develope thermosensitive and bioadhesive liquid suppositories containing KP using poloxamer and different bioadhesive polymers and to investigate their gelation temperature, viscosity and mechanical properties. Bioadhesive liquid suppositories were prepared by the cold method using poloxamer 407 (P 407), Poloxamer 188 (P 188) and various amounts of different bioadhesive polymers. Their gelation temperatures, viscosity values and mechanical properties were determined using texture analyzer by 4 × 4 factorial design. It was seen that in presence of KP, gelation temperature of formulation P 407/P 188 (4/20%) significantly decreased from 64 to 37.1 °C. It is to be noted that addition of increasing concentrations of bioadhesive polymers lowered gelation temperature and its decrease was highest with addition of Carbopol 934 P (C). Results of texture profile analysis (TPA) showed that formulations containing C have significantly higher hardness and adhesiveness values than other bioadhesive formulations. According to TPA, gel structure of liquid suppository formulation F5, containing P 407/P 188/KP/C (4/20/2.5/0.8%), exhibited the greatest hardness, compressibilty, adhesiveness and besides greatest viscosity. According to mechanical properties and viscosity values, it was concluded that F5 could be a promising formulation.

  1. Temperature history of Coregonus artedi in the St. Marys River, Laurentian Great Lakes, inferred from oxygen isotopes in otoliths

    USGS Publications Warehouse

    Joukhadar, Zeina; Patterson, W.P.; Todd, T.N.; Smith, G.R.

    2002-01-01

    The population of Coregonus artedi in the St. Marys River, between lakes Superior and Huron, was sampled and otoliths were analyzed for oxygen isotopic composition to determine whether the fish are residents in the St. Marys River and its warm bays or migrants to and from cold Lake Huron. Otoliths were extracted, sectioned, and growth ring-specific samples of calcium carbonate were milled to obtain samples for determination of oxygen isotope ratios (18O values). The 18O values of calcium carbonate (CaCO3) in accretionary structures such as otoliths allow calculation of growth temperatures of the fish, because of differential fractionation of oxygen isotopes at different temperatures. Growth temperatures of 10 St. Marys River lake herring were compared with lake and catch data as well as growth temperatures of lake herring collected from Lake Huron and other ciscoes from the Great Lakes. Results of this analysis indicate that these fish remained in the bays of the St. Marys River for their entire life history. After their second year they grew at average temperatures between 11 C and 13 C, consistent with temperature in the warmer bays of the St. Marys River and 6 C higher than expected for growth of this species in Lake Huron.

  2. Kinetics of moisture loss and oil uptake during deep fat frying of Gethi (Dioscorea kamoonensis Kunth) strips.

    PubMed

    Manjunatha, S S; Ravi, N; Negi, P S; Raju, P S; Bawa, A S

    2014-11-01

    Investigation was carried out to study kinetics of moisture loss, oil uptake and tristimulus colour during deep fat frying of Gethi (Dioscorea kamoonensis kunth) strips. Deep fat frying of Gethi strips of size 6 × 6 × 40 mm was carried out in a laboratory scale fryer at different temperatures ranging from 120 to 180 °C. The investigation showed that the moisture loss and oil uptake followed the first order kinetics equation (r > 0.95, p < 0.05). The kinetic coefficients for moisture loss and oil uptake increased significantly (p < 0.05) with temperature from 0.166 to 0.889 min(-1) and 0.139 to 0.430 min(-1) respectively. The temperature dependency of rate constants for moisture loss and oil uptake values was described using Arrhenius equation (r > 0.99, p < 0.01). The activation energies for moisture loss and oil uptake were found to be 41.53 KJ/mol and 27.12 KJ/mol respectively. The hunter colour parameters were significantly affected by frying temperature and frying time. The hunter lightness (L) value increased with respect to frying time initially, followed by decline and same trend was observed at higher temperatures of frying with elevated rate, whereas hunter redness (a) value increased significantly (p < 0.01) with time as well as temperature of frying and obeyed zero order rate equation. The temperature dependency kinetic coefficients of Hunter (a) value were described by Arrhenius equation and the energy of activation for change in hunter redness was found to be 42.41 KJ/mol (r > 0.99, p < 0.01). The other hunter colour parameters such as chroma, hue angle and total colour difference were markedly affected by frying temperature as well as frying time.

  3. Global synthesis of the temperature sensitivity of leaf litter breakdown in streams and rivers.

    PubMed

    Follstad Shah, Jennifer J; Kominoski, John S; Ardón, Marcelo; Dodds, Walter K; Gessner, Mark O; Griffiths, Natalie A; Hawkins, Charles P; Johnson, Sherri L; Lecerf, Antoine; LeRoy, Carri J; Manning, David W P; Rosemond, Amy D; Sinsabaugh, Robert L; Swan, Christopher M; Webster, Jackson R; Zeglin, Lydia H

    2017-08-01

    Streams and rivers are important conduits of terrestrially derived carbon (C) to atmospheric and marine reservoirs. Leaf litter breakdown rates are expected to increase as water temperatures rise in response to climate change. The magnitude of increase in breakdown rates is uncertain, given differences in litter quality and microbial and detritivore community responses to temperature, factors that can influence the apparent temperature sensitivity of breakdown and the relative proportion of C lost to the atmosphere vs. stored or transported downstream. Here, we synthesized 1025 records of litter breakdown in streams and rivers to quantify its temperature sensitivity, as measured by the activation energy (E a , in eV). Temperature sensitivity of litter breakdown varied among twelve plant genera for which E a could be calculated. Higher values of E a were correlated with lower-quality litter, but these correlations were influenced by a single, N-fixing genus (Alnus). E a values converged when genera were classified into three breakdown rate categories, potentially due to continual water availability in streams and rivers modulating the influence of leaf chemistry on breakdown. Across all data representing 85 plant genera, the E a was 0.34 ± 0.04 eV, or approximately half the value (0.65 eV) predicted by metabolic theory. Our results indicate that average breakdown rates may increase by 5-21% with a 1-4 °C rise in water temperature, rather than a 10-45% increase expected, according to metabolic theory. Differential warming of tropical and temperate biomes could result in a similar proportional increase in breakdown rates, despite variation in E a values for these regions (0.75 ± 0.13 eV and 0.27 ± 0.05 eV, respectively). The relative proportions of gaseous C loss and organic matter transport downstream should not change with rising temperature given that E a values for breakdown mediated by microbes alone and microbes plus detritivores were similar at the global scale. © 2017 John Wiley & Sons Ltd.

  4. [Hygienic aspects of the microclimate in intensive management of rabbits].

    PubMed

    Fiser, A

    1994-01-01

    In a four-row cowshed adapted for rabbit housing, air temperatures and humidity were recorded ambulantly and instrumentally, air flow rate, cooling variable, gas content in the air, microbial contamination of air and dust deposition were determined ambulantly in the years 1991-1992 and in January to April 1993. The values of ambulant measurings show that at the outside temperature -0.5 degrees C to -5.0 degrees C the microclimate quality decreases particularly with respect to the drop of air temperature in the cowshed below 10.0 degrees C, to the increase in cooling variable up to the value 53.17 mW/cm2 and to the increase in NH3 and CO2 content to 50 ppm and/or 0.45 vol.% in absolute maximum values. In these circumstances, the average determined values of both gases are higher than the standard prescription. At outside temperatures above 27.0 degrees C the average relative air humidity in the cowshed made 69.20% for the average temperature of 25.0 degrees C. To avoid the water vapor tension exceeding the limit in the cowshed air above the value 14.1 mm Hg, when sultry atmosphere sets in, the average relative air humidity should be maximally 59.0%. Hence the cowshed was found to be insufficiently ventilated at high outside temperatures above 27.0 degrees C, and it is recommended to increase the ventilator performance and at the same time to reduce water evaporation from catchpit surfaces when urine output of rabbits is excessive as a result of the increased water intake. Temperature and air humidity readings confirmed the need of heating source installation when the outside temperatures drop below 0.0 degrees C. Evaluation of air microbial contamination showed high counts of molds and particularly of micrococci in comparison with the ambience of a cage facility for piglet raising at a repopulation station with strict hygienic regime. Microbial picture of dust deposition was positively influenced by longitudinal aerosol disinfection of the air in the cowshed.

  5. Effect of temperature and moisture on the mineralization and humification of leaf litter in a model incubation experiment

    NASA Astrophysics Data System (ADS)

    Larionova, A. A.; Maltseva, A. N.; Lopes de Gerenyu, V. O.; Kvitkina, A. K.; Bykhovets, S. S.; Zolotareva, B. N.; Kudeyarov, V. N.

    2017-04-01

    The mineralization and humification of leaf litter collected in a mixed forest of the Prioksko-Terrasny Reserve depending on temperature (2, 12, and 22°C) and moisture (15, 30, 70, 100, and 150% of water holding capacity ( WHC)) has been studied in long-term incubation experiments. Mineralization is the most sensitive to temperature changes at the early stage of decomposition; the Q 10 value at the beginning of the experiment (1.5-2.7) is higher than at the later decomposition stages (0.3-1.3). Carbon losses usually exceed nitrogen losses during decomposition. Intensive nitrogen losses are observed only at the high temperature and moisture of litter (22°C and 100% WHC). Humification determined from the accumulation of humic substances in the end of incubation decreases from 34 to 9% with increasing moisture and temperature. The degree of humification CHA/CFA is maximum (1.14) at 12°C and 15% WHC; therefore, these temperature and moisture conditions are considered optimal for humification. Humification calculated from the limit value of litter mineralization is almost independent of temperature, but it significantly decreases from 70 to 3% with increasing moisture. A possible reason for the difference between the humification values measured by two methods is the conservation of a significant part of hemicelluloses, cellulose, and lignin during the transformation of litter and the formation of a complex of humic substances with plant residues, where HSs fulfill a protectoral role and decrease the decomposition rate of plant biopolymers.

  6. Viewpoints on impacts of climate change on soil quality

    NASA Astrophysics Data System (ADS)

    Dilly, Oliver; Pfeiffer, Eva-Maria; Trasar-Cepeda, Carmen; Nannipieri, Paolo

    2010-05-01

    Climate projections indicate a critical increase in temperature and modification of the precipitation pattern for the next century worldwide (IPCC 2007). Higher temperature increase are expected in polar than in temperate and tropical regions. In addition, studies on the response of microbial metabolism to temperature changes showed lower sensitivity at higher temperature level as analyzed by Q10 values (Kirschbaum 1995). The temperature response as indicated by the Q10 value refers to physiological response including enzyme configuration and substrate availability. For soils from an undisturbed forest site in eastern Amazonia, Knorr et al. (2005) observed even that the apparent pool turnover times are insensitive to temperature and received evidence that non-labile soil organic carbon was more sensitive to temperature than labile soil organic carbon. Linking the climate projections and the findings related to Q10 values suggests that the microbial activity may be stimulated to a higher degree at northern latitudes than at lower latitudes. But few studies address the role of temperature changes on soil organic matter pool and microbial biomass and activities although temperature changes may be important (Dilly et al. 2003). On top, the thawing of permafrost soil (24 % of exposed land in the Northern Hemisphere) represents a further threat since erosion processes will occur and captured gases may evolve to the atmosphere. Finally, dryness and drying-rewetting cycling that are affected by climate change are regulating soil organic carbon turnover (Mamilov and Dilly 2001). The lecture will summarize basic findings and positive feedback on our climate system and also address the concept of ‘soil energ-omics' including the interaction between respiration and microbial colonization and the respective metabolic quotient (Dilly 2006). Key words: Q10, Nitrogen deposition, Permafrost, Carbon turnover, Microbial biomass, adjustment References Dilly, O., 2006. Evaluating soil quality in ecosystems based on modern respiratory approaches. In: Cenci R., Sena F. (eds.) Biodiversity-bioindication to evaluate soil health. European Commission EUR 22245EN, p. 59-64 Dilly O., Blume H.-P., Munch J.C., 2003. Soil microbial activities in Luvisols and Anthrosols during 9 years of region-typical tillage and fertilisation practices in northern Germany. Biogeochemistry 65, 319-339 IPPC 2007. The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon, S. et al.) (Cambridge University Press, 2007). Kirschbaum, M.U.F., 1995. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biology and Biochemistry 27, 753-760 Knorr W., Prentice I.C., House J.I., Holland E.A. 2005. Long-term sensitivity of soil carbon to warming. Nature 433, 298-301 Mamilov, A. Sh., Dilly, O., 2002. Soil microbial eco-physiology as affected by short-term variations in environmental conditions. Soil Biology and Biochemistry 34, 1283-1290

  7. The production and escape of nitrogen atoms on Mars

    NASA Technical Reports Server (NTRS)

    Fox, J. L.

    1992-01-01

    The lack of agreement between our previously computed values and those measured by Viking of the N-15:N-14 isotope enhancement ratio has led us to reevaluate our model of the Martian ionosphere. In previous models, we were unable to reproduce the ion profiles measured by the RPA on Viking using electron temperatures that were higher that the ion temperatures. When we increased the electron temperatures to 2500-3000 K and with a zero flux upper boundary condition, the ion densities at high altitudes exceeded the measured values by a large factor. We found that we can better fit the observed profiles if we impose a loss process at the upper boundary of our model. If the horizontal fluxes of ions do not constitute a net loss of ions, then the escape of N due to dissociative recombination is also inhibited and better agreement with the measured isotope ratio is found. The production of escaping nitrogen atoms is closely related to the production of thermospheric odd nitrogen; therefore, the densities of NO measured by Viking provide a convenient check on our nitrogen escape model. Our standard model NO densities are less that the measured values by a factor of 2-3, as are those of previous models. We find that reasonable agreement can be obtained by assuming that the rate coefficient for loss of odd nitrogen in the reaction of N with NO is smaller at temperatures that prevail in the lower Martian thermosphere than the standard value, which applies to temperatures of 200-400 K. Other aspects of this investigation are presented.

  8. Oxygen-isotope trends and seawater temperature changes across the Late Cambrian Steptoean positive carbon-isotope excursion (SPICE event)

    USGS Publications Warehouse

    Elrick, M.; Rieboldt, S.; Saltzman, M.; McKay, R.M.

    2011-01-01

    The globally recognized Late Cambrian Steptoean positive C-isotope excursion (SPICE) is characterized by a 3???-5??? positive ??13C shift spanning <4 m.y. Existing hypotheses suggest that the SPICE represents a widespread ocean anoxic event leading to enhanced burial/preservation of organic matter (Corg) and pyrite. We analyzed ??18O values of apatitic inarticulate brachiopods from three Upper Cambrian successions across Laurentia to evaluate paleotemperatures during the SPICE. ??18O values range from ~12.5??? to 16.5???. Estimated seawater temperatures associated with the SPICE are unreasonably warm, suggesting that the brachiopod ??18O values were altered during early diagenesis. Despite this, all three localities show similar trends with respect to the SPICE ??13C curve, suggesting that the brachiopod apatite preserves a record of relative ??18O and temperature changes. The trends include relatively high ??18O values at the onset of the SPICE, decreasing and lowest values during the main event, and an increase in values at the end of the event. The higher ??18O values during the global extinction at the onset of the SPICE suggests seawater cooling and supports earlier hypotheses of upwelling of cool waters onto the shallow shelf. Decreasing and low ??18O values coincident with the rising limb of the SPICE support the hypothesis that seawater warming and associated reduced thermohaline circulation rates contributed to decreased dissolved O2 concentrations, which enhanced the preservation/burial of Corg causing the positive ??13C shift. ?? 2011 Geological Society of America.

  9. Sensitivity of simulated South America climate to the land surface schemes in RegCM4

    NASA Astrophysics Data System (ADS)

    Llopart, Marta; da Rocha, Rosmeri P.; Reboita, Michelle; Cuadra, Santiago

    2017-12-01

    This work evaluates the impact of two land surface parameterizations on the simulated climate and its variability over South America (SA). Two numerical experiments using RegCM4 coupled with the Biosphere-Atmosphere Transfer Scheme (RegBATS) and the Community Land Model version 3.5 (RegCLM) land surface schemes are compared. For the period 1979-2008, RegCM4 simulations used 50 km horizontal grid spacing and the ERA-Interim reanalysis as initial and boundary conditions. For the period studied, both simulations represent the main observed spatial patterns of rainfall, air temperature and low level circulation over SA. However, with regard to the precipitation intensity, RegCLM values are closer to the observations than RegBATS (it is wetter in general) over most of SA. RegCLM also produces smaller biases for air temperature. Over the Amazon basin, the amplitudes of the annual cycles of the soil moisture, evapotranspiration and sensible heat flux are higher in RegBATS than in RegCLM. This indicates that RegBATS provides large amounts of water vapor to the atmosphere and has more available energy to increase the boundary layer thickness and cause it to reach the level of free convection (higher sensible heat flux values) resulting in higher precipitation rates and a large wet bias. RegCLM is closer to the observations than RegBATS, presenting smaller wet and warm biases over the Amazon basin. On an interannual scale, the magnitudes of the anomalies of the precipitation and air temperature simulated by RegCLM are closer to the observations. In general, RegBATS simulates higher magnitude for the interannual variability signal.

  10. Tufted hairgrass (Deschampsia caespitosa) exhibits a lower photosynthetic plasticity than Antarctic hairgrass (D. antarctica).

    PubMed

    Bystrzejewska-Piotrowska, Grazyna; Urban, Pawel L

    2009-06-01

    The aim of our work was to assess photosynthetic plasticity of two hairgrass species with different ecological origins (a temperate zone species, Deschampsia caespitosa (L.) Beauv. and an Antarctic species, D. antarctica) and to consider how the anticipated climate change may affect vitality of these plants. Measurements of chlorophyll fluorescence showed that the photosystem II (PSII) quantum efficiency of D. caespitosa decreased during 4 d of incubation at 4 degrees C but it remained stable in D. antarctica. The fluorescence half-rise times were almost always lower in D. caespitosa than in D. antarctica, irrespective of the incubation temperature. These results indicate that the photosynthetic apparatus of D. caespitosa has poorer performance in these conditions. D. caespitosa reached the maximum photosynthesis rate at a higher temperature than D. antarctica although the values obtained at 8 degrees C were similar in both species. The photosynthetic water-use efficiency (photosynthesis-to-transpiration ratio, P/E) emerges as an important factor demonstrating presence of mechanisms which facilitate functioning of a plant in non-optimal conditions. Comparison of the P/E values, which were higher in D. antarctica than in D. caespitosa at low and medium temperatures, confirms a high degree of adjustability of the photosynthetic apparatus in D. antarctica and unveils the lack of such a feature in D. caespitosa.

  11. Effect of Temperature and Sheet Temper on Isothermal Solidification Kinetics in Clad Aluminum Brazing Sheet

    NASA Astrophysics Data System (ADS)

    Benoit, Michael J.; Whitney, Mark A.; Wells, Mary A.; Winkler, Sooky

    2016-09-01

    Isothermal solidification (IS) is a phenomenon observed in clad aluminum brazing sheets, wherein the amount of liquid clad metal is reduced by penetration of the liquid clad into the core. The objective of the current investigation is to quantify the rate of IS through the use of a previously derived parameter, the Interface Rate Constant (IRC). The effect of peak temperature and initial sheet temper on IS kinetics were investigated. The results demonstrated that IS is due to the diffusion of silicon (Si) from the liquid clad layer into the solid core. Reduced amounts of liquid clad at long liquid duration times, a roughened sheet surface, and differences in resolidified clad layer morphology between sheet tempers were observed. Increased IS kinetics were predicted at higher temperatures by an IRC model as well as by experimentally determined IRC values; however, the magnitudes of these values are not in good agreement due to deficiencies in the model when applied to alloys. IS kinetics were found to be higher for sheets in the fully annealed condition when compared with work-hardened sheets, due to the influence of core grain boundaries providing high diffusivity pathways for Si diffusion, resulting in more rapid liquid clad penetration.

  12. Degradation of MDEA in aqueous solution in the thermally activated persulfate system.

    PubMed

    Li, Yong-Tao; Yue, Dong; Wang, Bing; Ren, Hong-Yang

    2017-03-01

    The feasibility of methyldiethanolamine (MDEA) degradation in thermally activated PS system was evaluated. Effects of the PS concentration, pH, activation temperature and reaction time on MDEA degradation were investigated. Simultaneity, the thermodynamic analysis and degradation process were also performed. Several findings were made in this study including the following: the degradation rates of MDEA in thermally activated PS systems were higher than other systems. MDEA could be readily degraded at 40°C with a PS concentration of 25.2 mM, the process of MDEA degradation was accelerated by higher PS dose and reaction temperature, and MDEA degradation and PS consumption followed the pseudo-first-order kinetic model. The thermodynamic analysis showed that the activation process followed an endothermic path of the positive value of [Formula: see text] and spontaneous with the negative value of [Formula: see text], high temperature was favorable to the degradation of MDEA with the apparent activation energy of 87.11 KJ/mol. Combined FT-IR with GC-MS analysis techniques, MDEA could be oxidative degraded after the C-N bond broken to small molecules of organic acids, alcohols or nitro compounds until oxidized to CO 2 and H 2 O. In conclusion, the thermally activated PS process is a promising option for degrading MDEA effluent liquor.

  13. Performance analysis and optimization of power plants with gas turbines

    NASA Astrophysics Data System (ADS)

    Besharati-Givi, Maryam

    The gas turbine is one of the most important applications for power generation. The purpose of this research is performance analysis and optimization of power plants by using different design systems at different operation conditions. In this research, accurate efficiency calculation and finding optimum values of efficiency for design of chiller inlet cooling and blade cooled gas turbine are investigated. This research shows how it is possible to find the optimum design for different operation conditions, like ambient temperature, relative humidity, turbine inlet temperature, and compressor pressure ratio. The simulated designs include the chiller, with varied COP and fogging cooling for a compressor. In addition, the overall thermal efficiency is improved by adding some design systems like reheat and regenerative heating. The other goal of this research focuses on the blade-cooled gas turbine for higher turbine inlet temperature, and consequently, higher efficiency. New film cooling equations, along with changing film cooling effectiveness for optimum cooling air requirement at the first-stage blades, and an internal and trailing edge cooling for the second stage, are innovated for optimal efficiency calculation. This research sets the groundwork for using the optimum value of efficiency calculation, while using inlet cooling and blade cooling designs. In the final step, the designed systems in the gas cycles are combined with a steam cycle for performance improvement.

  14. Nucleation and growth of Ag on Sb-terminated Ge( 1 0 0 )

    NASA Astrophysics Data System (ADS)

    Chan, L. H.; Altman, E. I.

    2002-06-01

    The effect of Sb on Ag growth on Ge(1 0 0) was characterized using scanning tunneling microscopy, low energy electron diffraction, and Auger electron spectroscopy. Silver was found to immediately form three-dimensional clusters on the Sb-covered surface over the entire temperature range studied (320-570 K), thus the growth was Volmer-Weber. Regardless of the deposition conditions, there was no evidence that Sb segregated to the Ag surface, despite Sb having a lower surface tension than either Ag or Ge. The failure of Sb to segregate to the surface could be understood in terms of the much stronger interaction between Sb and Ge versus Ag and Ge creating a driving force to maintain an Sb-Ge interface. Silver nucleation on Sb/Ge(1 0 0) was characterized by measuring the Ag cluster density as a function of deposition rate. The results revealed that the cluster density was nearly independent of the deposition rate below 420 K, indicating that heterogeneous nucleation at defects in the Sb-terminated surface competed with homogeneous nucleation. At higher temperatures, the defects were less effective in trapping diffusing Ag atoms and the dependence of the cluster density on deposition rate suggested a critical size of at least two. For temperatures above 420 K, the Ag diffusion barrier plus the dissociation energy of the critical cluster was estimated by measuring the cluster density as a function of temperature; the results suggested a value of 0.84±0.1 eV which is significantly higher than values reported for Ag nucleation on Sb-free surfaces. In comparison to the bare Ge surface, Ag formed a higher density of smaller, lower clusters when Sb was present. Below 420 K the higher cluster density could be attributed to nucleation at defects in the Sb layer while at higher temperatures the high diffusion barrier restricted the cluster size and density. Although Sb does not act as a surfactant in this system since it does not continuously float to the surface and the growth is not layer-by-layer, adding Sb was found to be useful in limiting the Ag cluster size and height which led to smoother, more continuous Ag films and in preventing the formation of metastable Ag-Ge surface alloys.

  15. Climate variability in the past ∼19,000 yr in NE Tibetan Plateau inferred from biomarker and stable isotope records of Lake Donggi Cona

    NASA Astrophysics Data System (ADS)

    Saini, Jeetendra; Günther, Franziska; Aichner, Bernhard; Mischke, Steffen; Herzschuh, Ulrike; Zhang, Chengjun; Mäusbacher, Roland; Gleixner, Gerd

    2017-02-01

    We investigated 4.84-m-long sediment record spanning over the Late Glacial and Holocene from Lake Donggi Cona to be able to reconstruct circulation pattern on the Tibetan Plateau (TP). Presently, Lake Donggi Cona is located at the boundaries of Westerlies and Asian monsoon circulations in the northeastern TP. However, the exact timing and stimulating mechanisms for climatic changes and monsoon shifts in this region are still debated. We used a 19-ka-long stable isotope record of sedimentary n-alkanes to address this discrepancy by providing insights into paleohydrological conditions. The δD of nC23 is influenced by lake water evaporation; the δD values of sedimentary nC29 are mainly controlled by moisture source and temperature changes. Long-chain n-alkanes dominate over the core whereas three mean clusters (i.e. microbial, aquatic and terrestrial) can be inferred. Multi-proxies suggest five major episodes in the history of Lake Donggi Cona. The Lake Donggi Cona record indicates that the Late Glacial (18.4-14.8 cal ka BP) was dominated by low productivity of mainly microbial and aquatic organisms. Relatively low δD values suggest low temperatures and moist conditions eventually caused by stronger Westerlies, winter monsoon and melt-water influence. Likely, the shift (∼17.9 cal ka BP) from microbial to enhanced aquatic input suggests either a change from deep to shallow water lake or a break in local stratification. Between 14.8 and 13.0 cal ka BP, variable climatic conditions prevailed. Although the Westerlies weekend, the increase in temperature enhanced the permafrost and snow melting (displayed by a high sedimentary accumulation rate). Higher δD values indicate increasingly arid conditions with higher temperatures which eventually lead to high evaporative conditions and lowest lake levels. Low vegetation cover and high erosion rates led to high sediment accumulation resulting in stratification followed by anoxia in the terminal lake. From 13.0 to 9.2 cal ka BP, lowered values of δD along with high contents of terrestrial organic matter marked the early-Holocene warming indicating a further strengthening of summer precipitation and higher lake levels. A cooling trend was observed in the mid-Holocene between 9.2 and 3.0 cal ka BP accompanied by higher moisture availability (displayed by lowered δD values) caused by reduced evaporative conditions due to a drop in temperature and recovering Westerlies. After 3.0 cal ka BP, a decrease in lake productivity and cold and semi-arid conditions prevailed suggesting lower lake levels and reduced moisture from recycled air masses and Westerlies. We propose that the summer monsoon was the predominant moisture source during the Bølling-Allerød warm complex and early-Holocene followed by Westerlies in mid-to-late Holocene period. Stable carbon isotope values ∼ - 32‰ indicate the absence of C4-type vegetation in the region contradicting with their presence in the Lake Qinghai record. The δD record from lake Donggi Cona highlights the importance of the interplay between Westerlies and summer monsoon circulation at this location, which is highly dynamic in northeastern plateau compared to the North Atlantic circulation and insolation changes. Consequently lake Donggi Cona might be an important anchor point for environmental reconstructions on the Tibetan Plateau.

  16. Effect of low incubation temperature and low ambient temperature until 21 days of age on performance and body temperature in fast-growing chickens.

    PubMed

    Nyuiadzi, D; Travel, A; Méda, B; Berri, C; Guilloteau, L A; Coustham, V; Wang, Y; Tona, J K; Collin, A

    2017-12-01

    Thermal manipulation during embryogenesis was previously reported to decrease the occurrence of ascites and to potentially improve cold tolerance of broilers. The objective of our study was to explore the effects of the interaction of cold incubation temperatures and cool ambient temperatures until 21 d of age on performance and body temperature. Ross 308 eggs were incubated either under control conditions I0 (37.6°C) or with cyclic cold stimulations I1 (6 h/d at 36.6°C from d 10 to 18 of incubation) or with 2 cold stimulations I2 (30 min at 15°C) at d 18 and 19 of incubation. These treatments were followed by individual rearing and postnatal exposure to either standard rearing temperature T0 (from 33°C at hatching to 21°C at d 21) or continuously lower temperature T2 (from 28°C at hatching to 21°C at d 21) or exposure to cyclically lower temperature T1 (with circadian temperature oscillations). Treatments I1 and I2 did not significantly alter hatchability compared to control incubation (with 94.8, 95.1, and 92.3%, respectively), or hatching BW and overall chick quality. Hatching body temperature (Tb) was 0.5 and 0.3°C higher in I1 than in I0 and I2 groups, respectively (P = 0.007). A doubled occurrence of health problems was observed with T2 condition, regardless of incubation or sex. At d 3, BW was 2% lower with treatment I1 than with I0 and I2 and was 3% higher in T1 and T2 groups than in T0, but these effects disappeared with age. Group T2 presented a 5% higher feed intake than the control group T0 between 3 and 21 d of age (P = 0.025). Feed conversion ratio (FCR) was affected by experimental conditions (P < 0.001), with low FCR values obtained with I2 incubation in control or cyclically cold postnatal conditions. Maximal FCR values were observed in the continuously cold postnatal conditions, in males submitted to control incubation and in females submitted to I1 incubation, revealing sex-dependent effects of the treatments on performance. © The Author 2017. Published by Oxford University Press on behalf of Poultry Science Association.

  17. Removal Efficiency of the Heavy Metals Zn(II), Pb(II) and Cd(II) by Saprolegnia delica and Trichoderma viride at Different pH Values and Temperature Degrees

    PubMed Central

    Hashem, Mohamed

    2007-01-01

    The removal efficiency of the heavy metals Zn, Pb and Cd by the zoosporic fungal species Saprolegnia delica and the terrestrial fungus Trichoderma viride, isolated from polluted water drainages in the Delta of Nile in Egypt, as affected by various ranges of pH values and different temperature degrees,was extensively investigated. The maximum removal efficiency of S. delica for Zn(II) and Cd(II) was obtained at pH 8 and for Pb(II) was at pH 6 whilst the removal efficiency of T. viride was found to be optimum at pH 6 for the three applied heavy metals. Regardless the median lethal doses of the three heavy metals, Zn recorded the highest bioaccumulation potency by S. delica at all pH values except at pH 4, followed by Pb whereas Cd showed the lowest removal potency by the fungal species and vice versa in case of T. viride. The optimum biomass dry weight production by S. delica was found when the fungus was grown in the medium treated with the heavy metal Pb at pH 6, followed by Zn at pH 8 and Cd at pH 8. The optimum biomass dry weight yield by T. viride amended with Zn,Pb and Cd was obtained at pH 6 for the three heavy metals with the maximum value at Zn. The highest yield of biomass dry weight was found when T. viride treated with Cd at all different pH values followed by Pb whilst Zn output was the lowest and this result was reversed in case of S. delica. The maximum removal efficiency and the biomass dry weight production for the three tested heavy metals was obtained at the incubation temperature 20℃ in case of S. delica while it was 25℃ for T. viride. Incubation of T. viride at higher temperatures (30℃ and 35℃) enhanced the removal efficiency of Pb and Cd than low temperatures (15℃ and 20℃) and vice versa in case of Zn removal. At all tested incubation temperatures, the maximum yield of biomass dry weight was attained at Zn treatment by the two tested fungal species. The bioaccumulation potency of S. delica for Zn was higher than that for Pb at all temperature degrees of incubation and Cd bioaccumulation was the lowest whereas T. viride showed the highest removal efficiency for Pb followed by Cd and Zn was the minor of the heavy metals. PMID:24015084

  18. Avian thermoregulation in the heat: resting metabolism, evaporative cooling and heat tolerance in Sonoran Desert songbirds.

    PubMed

    Smith, Eric Krabbe; O'Neill, Jacqueline J; Gerson, Alexander R; McKechnie, Andrew E; Wolf, Blair O

    2017-09-15

    We examined thermoregulatory performance in seven Sonoran Desert passerine bird species varying in body mass from 10 to 70 g - lesser goldfinch, house finch, pyrrhuloxia, cactus wren, northern cardinal, Abert's towhee and curve-billed thrasher. Using flow-through respirometry, we measured daytime resting metabolism, evaporative water loss and body temperature at air temperatures ( T air ) between 30 and 52°C. We found marked increases in resting metabolism above the upper critical temperature ( T uc ), which for six of the seven species fell within a relatively narrow range (36.2-39.7°C), but which was considerably higher in the largest species, the curve-billed thrasher (42.6°C). Resting metabolism and evaporative water loss were minimal below the T uc and increased with T air and body mass to maximum values among species of 0.38-1.62 W and 0.87-4.02 g H 2 O h -1 , respectively. Body temperature reached maximum values ranging from 43.5 to 45.3°C. Evaporative cooling capacity, the ratio of evaporative heat loss to metabolic heat production, reached maximum values ranging from 1.39 to 2.06, consistent with known values for passeriforms and much lower than values in taxa such as columbiforms and caprimulgiforms. These maximum values occurred at heat tolerance limits that did not scale with body mass among species, but were ∼50°C for all species except the pyrrhuloxia and Abert's towhee (48°C). High metabolic costs associated with respiratory evaporation appeared to drive the limited heat tolerance in these desert passeriforms, compared with larger desert columbiforms and galliforms that use metabolically more efficient mechanisms of evaporative heat loss. © 2017. Published by The Company of Biologists Ltd.

  19. Moderate summer heat stress does not modify immunological parameters of Holstein dairy cows

    NASA Astrophysics Data System (ADS)

    Lacetera, Nicola; Bernabucci, Umberto; Ronchi, Bruno; Scalia, Daniela; Nardone, Alessandro

    2002-02-01

    The study was undertaken during spring and summer months in a territory representative of the Mediterranean climate to assess the effects of season on some immunological parameters of dairy cows. Twenty Holstein cows were used. Eleven of those cows gave birth during spring; the remaining nine cows gave birth in summer. The two groups of cows were homogeneous for parity. Values of air temperatures and relative humidity were recorded both during spring and summer, and were utilized to calculate the temperature humidity index (THI). One week before the expected calving, rectal temperatures and respiratory rates of the cows were recorded (1500 hours), and cell-mediated immunity was assessed by measuring the proliferation of mitogen-stimulated peripheral blood mononuclear cells (PBMC). Within 3 h of calving, one colostrum sample was taken from each cow and analysed to determine content of immunoglobulin (Ig) G1, IgG2, IgM and IgA. At 48 h after birth, passive immunization of the calves was assessed by measuring total serum IgG. During summer, daytime (0900-2000 hours) THI values were above the upper critical value of 72 [75.2, (SD 2.6)] indicating conditions that could represent moderate heat stress. That THI values were able to predict heat stress was confirmed by the values of rectal temperatures and respiratory rates, which were higher ( P < 0.05 and P < 0.001 respectively) during summer. Proliferation of PBMC, the colostral concentration of Ig fractions and serum levels of IgG in their respective offspring did not differ between spring and summer cows. Results indicated that moderate heat stress due to the hot Mediterranean summer does not modify cell-mediated immunity, the protective value of colostrum and passive immunization of the offspring in dairy cows.

  20. Measurement of Young's modulus and residual stress of thin SiC layers for MEMS high temperature applications

    NASA Astrophysics Data System (ADS)

    Pabst, Oliver; Schiffer, Michael; Obermeier, Ernst; Tekin, Tolga; Lang, Klaus Dieter; Ngo, Ha-Duong

    2011-06-01

    Silicon carbide (SiC) is a promising material for applications in harsh environments. Standard silicon (Si) microelectromechanical systems (MEMS) are limited in operating temperature to temperatures below 130 °C for electronic devices and below 600 °C for mechanical devices. Due to its large bandgap SiC enables MEMS with significantly higher operating temperatures. Furthermore, SiC exhibits high chemical stability and thermal conductivity. Young's modulus and residual stress are important mechanical properties for the design of sophisticated SiC-based MEMS devices. In particular, residual stresses are strongly dependent on the deposition conditions. Literature values for Young's modulus range from 100 to 400 GPa, and residual stresses range from 98 to 486 MPa. In this paper we present our work on investigating Young's modulus and residual stress of SiC films deposited on single crystal bulk silicon using bulge testing. This method is based on measurement of pressure-dependent membrane deflection. Polycrystalline as well as single crystal cubic silicon carbide samples are studied. For the samples tested, average Young's modulus and residual stress measured are 417 GPa and 89 MPa for polycrystalline samples. For single crystal samples, the according values are 388 GPa and 217 MPa. These results compare well with literature values.

  1. Effect of Gradual Heating and Fat/Oil Type on Fat Stability, Texture, Color, and Microstructure of Meat Batters.

    PubMed

    Barbut, S; Youssef, M K

    2016-09-01

    The effects of endpoint cooking temperature (40, 50, 60, 70, 80, and 90 °C) on emulsion stability, texture, color, and microstructure of meat batters prepared with different fats/oils were studied. Canola oil treatments showed the highest cooking loss whereas hydrogenated palm oil provided the most stable meat batters. Rendered beef fat was less stable than regular beef fat. Increasing endpoint cooking temperatures resulted in a progressive reduction of water holding capacity in all treatments. As temperature was raised, meat batters showed higher hardness and cohesiveness values, but no appreciable changes in cohesiveness above 60 °C. Canola and hydrogenated palm oil treatments showed the highest hardness and chewiness values. Lightness (L(*) ) values of all meat batters increased significantly with increasing temperature from 40 to 60 or 70 °C; no major changes observed above 70 °C. Light microscopy revealed no substantial changes in the microstructure of all the stable meat batters cooked to between 50 and 70 °C. Heating to 90 °C changed the microstructure in all meat batters except the hydrogenated palm oil treatments, which still showed nonround fat particles and a less aggregated protein matrix. © 2016 Institute of Food Technologists®

  2. How warm is too warm for the life cycle of actinopterygian fishes?

    PubMed Central

    Motani, Ryosuke; Wainwright, Peter C.

    2015-01-01

    We investigated the highest constant temperature at which actinopterygian fishes can complete their lifecycles, based on an oxygen supply model for cleavage-stage eggs. This stage is one of the most heat-sensitive periods during the lifecycle, likely reflecting the exhaustion of maternally supplied heat shock proteins without new production. The model suggests that average eggs would not develop normally under a constant temperature of about 36 °C or higher. This estimate matches published empirical values derived from laboratory and field observations. Spermatogenesis is more heat sensitive than embryogenesis in fishes, so the threshold may indeed be lower, at about 35 °C, unless actinopterygian fishes evolve heat tolerance during spermatogenesis as in birds. Our model also predicts an inverse relationship between egg size and temperature, and empirical data support this prediction. Therefore, the average egg size, and hence hatching size, is expected to shrink in a greenhouse world but a feeding function prohibits the survival of very small hatchlings, posing a limit to the shrinkage. It was once suggested that a marine animal community may be sustained under temperatures up to about 38 °C, and this value is being used, for example, in paleotemperature reconstruction. A revision of the value is overdue. (199/200) PMID:26166622

  3. Wang-Landau density of states based study of the folding-unfolding transition in the mini-protein Trp-cage (TC5b)

    NASA Astrophysics Data System (ADS)

    Singh, Priya; Sarkar, Subir K.; Bandyopadhyay, Pradipta

    2014-07-01

    We present the results of a high-statistics equilibrium study of the folding/unfolding transition for the 20-residue mini-protein Trp-cage (TC5b) in water. The ECEPP/3 force field is used and the interaction with water is treated by a solvent-accessible surface area method. A Wang-Landau type simulation is used to calculate the density of states and the conditional probabilities for the various values of the radius of gyration and the number of native contacts at fixed values of energy—along with a systematic check on their convergence. All thermodynamic quantities of interest are calculated from this information. The folding-unfolding transition corresponds to a peak in the temperature dependence of the computed specific heat. This is corroborated further by the structural signatures of folding in the distributions for radius of gyration and the number of native contacts as a function of temperature. The potentials of mean force are also calculated for these variables, both separately and jointly. A local free energy minimum, in addition to the global minimum, is found in a temperature range substantially below the folding temperature. The free energy at this second minimum is approximately 5 kBT higher than the value at the global minimum.

  4. Residual formaldehyde after low-temperature steam and formaldehyde sterilization

    PubMed Central

    Gibson, G. L.; Johnston, H. P.; Turkington, V. E.

    1968-01-01

    The levels of formaldehyde remaining in various articles have been estimated immediately after a low-temperature steam and formaldehyde sterilizing process and after various periods of aeration. These levels have been compared with the levels of ethylene oxide remaining after exposure to an ethylene oxide sterilizing process. In rubber and polythene and a plastic, formaldehyde levels are low and slowly fall even further. Ethylene oxide levels are relatively much higher even after seven days' aeration. It is not considered that the residual levels of formaldehyde in rubber, polythene, and a plastic should constitute a danger. Residual levels of formaldehyde in fabrics and paper are higher but this may be of value by giving a self-disinfecting action on storage. PMID:5717551

  5. Micro-scale temperature measurement method using fluorescence polarization

    NASA Astrophysics Data System (ADS)

    Tatsumi, K.; Hsu, C.-H.; Suzuki, A.; Nakabe, K.

    2016-09-01

    A novel method that can measure the fluid temperature in microscopic scale by measuring the fluorescence polarization is described in this paper. The measurement technique is not influenced by the quenching effects which appears in conventional LIF methods and is believed to show a higher reliability in temperature measurements. Experiment was performed using a microchannel flow and fluorescent molecule probes, and the effects of the fluid temperature, fluid viscosity, measurement time, and pH of the solution on the measured fluorescence polarization degree are discussed to understand the basic characteristics of the present method. The results showed that fluorescence polarization is considerably less sensible to these quenching factors. A good correlation with the fluid temperature, on the other hand, was obtained and agreed well with the theoretical values confirming the feasibility of the method.

  6. On the observation of a huge lattice contraction and crystal habit modifications in LiMn 2O 4 prepared by a fuel assisted solution combustion

    NASA Astrophysics Data System (ADS)

    Ragavendran, K.; Sherwood, D.; Vasudevan, D.; Emmanuel, Bosco

    2009-08-01

    Two batches of poly-crystalline lithium manganate were prepared by a fuel assisted solution combustion method. LiMn 2O 4(S) was prepared using starch as the fuel and LiMn 2O 4(P) was prepared using poly vinyl alcohol (PVA) as the fuel. XRD studies indicated a significant and consistent shift in the 2 θ values of all the hkl peaks to higher values in LiMn 2O 4(P) compared to LiMn 2O 4(S) indicating a lattice contraction in the former. TG/DTA studies indicated a higher formation temperature (∼25 °C higher) for LiMn 2O 4(P). The higher formation temperature most likely promotes the oxidation of some Mn 3+ to Mn 4+ with a lower ionic radius causing a lattice contraction. This hypothesis is confirmed through XPS studies which indicated the presence of a higher fraction of Mn 4+ in LiMn 2O 4(P) than that present in LiMn 2O 4(S). A crystal shape algorithm was used to generate the crystal habits of lithium manganate from their XRD data leading to an understanding on the exposed hkl planes in these materials. From the atomic arrangement on the exposed hkl planes it is predicted that LiMn 2O 4(P) would be less prone to manganese dissolution and hence would possess a higher cycle life when compared to LiMn 2O 4(S).

  7. Proxy Constraints on a Warm, Fresh Late Cretaceous Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Super, J. R.; Li, H.; Pagani, M.; Chin, K.

    2015-12-01

    The warm Late Cretaceous is thought to have been characterized by open Arctic Ocean temperatures upwards of 15°C (Jenkyns et al., 2004). The high temperatures and low equator-to-pole temperature gradient have proven difficult to reproduce in paleoclimate models, with the role of the atmospheric hydrologic cycle in heat transport being particularly uncertain. Here, sediments, coprolites and fish teeth of Santonian-Campanian age from two high-latitude mixed terrestrial and marine sections on Devon Island in the Canadian High Arctic (Chin et al., 2008) were analyzed using a suite of organic and inorganic proxies to evaluate the temperature and salinity of Arctic seawater. Surface temperature estimates were derived from TEX86 estimates of near-shore, shallow (~100 meters depth) marine sediments (Witkowski et al., 2011) and MBT-CBT estimates from terrestrial intervals and both suggest mean annual temperatures of ~20°C, consistent with previous estimates considering the more southerly location of Devon Island. The oxygen isotope composition of non-diagenetic phosphate from vertebrate coprolites and bony fish teeth were then measured, giving values ranging from +13‰ to +19‰. Assuming the TEX86 temperatures are valid and using the temperature calibration of Puceat 2010, the δ18O values of coprolites imply Arctic Ocean seawater δ18O values between -4‰ and -10‰, implying very fresh conditions. Lastly, the δD of precipitation will be estimated from the hydrogen isotope composition of higher plant leaf waxes (C-25, C-27, C-29 and C-31 n-alkanes) from both terrestrial and marine intervals. Data are used to model the salinity of seawater and the meteoric relationship between δD and δ18O, thereby helping to evaluate the northern high-latitude meteoric water line of the Late Cretaceous.

  8. Temperature dependence of gas sensing behaviour of TiO2 doped PANI composite thin films

    NASA Astrophysics Data System (ADS)

    Srivastava, Subodh; Sharma, S. S.; Sharma, Preetam; Sharma, Vinay; Rajura, Rajveer Singh; Singh, M.; Vijay, Y. K.

    2014-04-01

    In the present work we have reported the effect of temperature on the gas sensing properties of TiO2 doped PANI composite thin film based chemiresistor type gas sensors for hydrogen gas sensing application. PANI and TiO2 doped PANI composite were synthesized by in situ chemical oxidative polymerization of aniline at low temperature. The electrical properties of these composite thin films were characterized by I-V measurements as function of temperature. The I-V measurement revealed that conductivity of composite thin films increased as the temperature increased. The changes in resistance of the composite thin film sensor were utilized for detection of hydrogen gas. It was observed that at room temperature TiO2 doped PANI composite sensor shows higher response value and showed unstable behavior as the temperature increased. The surface morphology of these composite thin films has also been characterized by scanning electron microscopy (SEM) measurement.

  9. Enhanced exchange bias in MnN/CoFe bilayers after high-temperature annealing

    NASA Astrophysics Data System (ADS)

    Dunz, M.; Schmalhorst, J.; Meinert, M.

    2018-05-01

    We report an exchange bias of more than 2700 Oe at room temperature in MnN/CoFe bilayers after high-temperature annealing. We studied the dependence of exchange bias on the annealing temperature for different MnN thicknesses in detail and found that samples with tMnN > 32nm show an increase of exchange bias for annealing temperatures higher than TA = 400 °C. Maximum exchange bias values exceeding 2000 Oe with reasonably small coercive fields around 600 Oe are achieved for tMnN = 42, 48 nm. The median blocking temperature of those systems is determined to be 180 °C after initial annealing at TA = 525 °C. X-ray diffraction measurements and Auger depth profiling show that the large increase of exchange bias after high-temperature annealing is accompanied by strong nitrogen diffusion into the Ta buffer layer of the stacks.

  10. Multi-spectral pyrometer for gas turbine blade temperature measurement

    NASA Astrophysics Data System (ADS)

    Gao, Shan; Wang, Lixin; Feng, Chi

    2014-09-01

    To achieve the highest possible turbine inlet temperature requires to accurately measuring the turbine blade temperature. If the temperature of blade frequent beyond the design limits, it will seriously reduce the service life. The problem for the accuracy of the temperature measurement includes the value of the target surface emissivity is unknown and the emissivity model is variability and the thermal radiation of the high temperature environment. In this paper, the multi-spectral pyrometer is designed provided mainly for range 500-1000°, and present a model corrected in terms of the error due to the reflected radiation only base on the turbine geometry and the physical properties of the material. Under different working conditions, the method can reduce the measurement error from the reflect radiation of vanes, make measurement closer to the actual temperature of the blade and calculating the corresponding model through genetic algorithm. The experiment shows that this method has higher accuracy measurements.

  11. A fiber Bragg grating--bimetal temperature sensor for solar panel inverters.

    PubMed

    Ismail, Mohd Afiq; Tamchek, Nizam; Hassan, Muhammad Rosdi Abu; Dambul, Katrina D; Selvaraj, Jeyrai; Rahim, Nasrudin Abd; Sandoghchi, Reza; Adikan, Faisal Rafiq Mahamd

    2011-01-01

    This paper reports the design, characterization and implementation of a fiber Bragg grating (FBG)-based temperature sensor for an insulted-gate Bipolar transistor (IGBT) in a solar panel inverter. The FBG is bonded to the higher coefficient of thermal expansion (CTE) side of a bimetallic strip to increase its sensitivity. Characterization results show a linear relationship between increasing temperature and the wavelength shift. It is found that the sensitivity of the sensor can be categorized into three characterization temperature regions between 26 °C and 90 °C. The region from 41 °C to 90 °C shows the highest sensitivity, with a value of 14 pm/°C. A new empirical model that considers both temperature and strain effects has been developed for the sensor. Finally, the FBG-bimetal temperature sensor is placed in a solar panel inverter and results confirm that it can be used for real-time monitoring of the IGBT temperature.

  12. Effects of temperature and particles on nitrification in a eutrophic coastal bay in southern China

    NASA Astrophysics Data System (ADS)

    Zheng, Zhen-Zhen; Wan, Xianhui; Xu, Min Nina; Hsiao, Silver Sung-Yun; Zhang, Yao; Zheng, Li-Wei; Wu, Yanhua; Zou, Wenbin; Kao, Shuh-Ji

    2017-09-01

    Despite being the only link between reduced and oxidized nitrogen, the impact of environmental factors on nitrification, temperature and particles, in particular, remains unclear for coastal zones. By using the 15NH4+-labeling technique, we determined nitrification rates in bulk (NTRB) and free-living (NTRF, after removing particles >3 μm) for water samples with varying particle concentrations (as sampled at different tidal stages) during autumn, winter, and summer in a eutrophic coastal bay in southern China. The highest NTRB occurred in autumn, when particle concentrations were highest. In general, particle-associated nitrification rates (NTRP, >3 μm) were higher than NTRF and increased with particle abundance. Regardless of seasonally distinctive temperature and particle concentrations, nitrification exhibited consistent temperature dependence in all cases (including bulk, particle-associated, and free-living) with a Q10 value of 2.2. Meanwhile, the optimum temperature for NTRP was 29°C, 5°C higher than that for NTRF although the causes for such a difference remained unclear. Strong temperature dependence and particle association suggest that nitrification is sensitive to temperature change (seasonality and global warming) and to ocean dynamics (wave and tide). Our results can potentially be applied to biogeochemical models of the nitrogen cycle for future predictions.

  13. Study of temperature, air dew point temperature and reactant flow effects on proton exchange membrane fuel cell performances using electrochemical spectroscopy and voltammetry techniques

    NASA Astrophysics Data System (ADS)

    Wasterlain, S.; Candusso, D.; Hissel, D.; Harel, F.; Bergman, P.; Menard, P.; Anwar, M.

    A single PEMFC has been operated by varying the assembly temperature, the air dew point temperature and the anode/cathode stoichiometry rates with the aim to identify the parameters and combinations of factors affecting the cell performance. Some of the experiments were conducted with low humidified reactants (relative humidity of 12%). The FC characterizations tests have been conducted using in situ electrochemical methods based on load current and cell voltage signal analysis, namely: polarization curves, EIS measurements, cyclic and linear sweep voltammetries (CV and LSV). The impacts of the parameters on the global FC performances were observed using the polarization curves whereas EIS, CV and LSV test results were used to discriminate the different voltage loss sources. The test results suggest that some parameter sets allow maximal output voltages but can also induce material degradation. For instance, higher FC temperature and air flow values can induce significant electrical efficiency benefits, notably by increasing the reversible potential and the reaction kinetics. However, raising the cell temperature can also gradually dry the FC and increase the risk of membrane failure. LSV has also shown that elevated FC temperature and relative humidity can also accelerate the electrolyte degradation (i.e. slightly higher fuel crossover rate) and reduce the lifetime consequently.

  14. Fracture-Toughness Analysis in Transition-Temperature Region of Three American Petroleum Institute X70 and X80 Pipeline Steels

    NASA Astrophysics Data System (ADS)

    Shin, Sang Yong; Woo, Kuk Je; Hwang, Byoungchul; Kim, Sangho; Lee, Sunghak

    2009-04-01

    The fracture toughness in the transition-temperature region of three American Petroleum Institute (API) X70 and X80 pipeline steels was analyzed in accordance with the American Society for Testing and Materials (ASTM) E1921-05 standard test method. The elastic-plastic cleavage fracture toughness ( K Jc ) was determined by three-point bend tests, using precracked Charpy V-notch (PCVN) specimens; the measured K Jc values were then interpreted by the three-parameter Weibull distribution. The fracture-toughness test results indicated that the master curve and the 98 pct confidence curves explained the variation in the measured fracture toughness well. The reference temperatures obtained from the fracture-toughness test and index temperatures obtained from the Charpy impact test were lowest in the X70 steel rolled in the two-phase region, because this steel had smaller effective grains and the lowest volume fraction of hard phases. In this steel, few hard phases led to a higher resistance to cleavage crack initiation, and the smaller effective grain size led to a higher possibility of crack arrest, thereby resulting in the best overall fracture properties. Measured reference temperatures were then comparatively analyzed with the index temperatures obtained from the Charpy impact test, and the effects of microstructures on these temperatures were discussed.

  15. Influence of Fuel Moisture Content and Reactor Temperature on the Calorific Value of Syngas Resulted from Gasification of Oil Palm Fronds

    PubMed Central

    Atnaw, Samson Mekbib; Sulaiman, Shaharin Anwar; Yusup, Suzana

    2014-01-01

    Biomass wastes produced from oil palm mills and plantations include empty fruit bunches (EFBs), shells, fibers, trunks, and oil palm fronds (OPF). EFBs and shells are partially utilized as boiler fuel while the rest of the biomass materials like OPF have not been utilized for energy generation. No previous study has been reported on gasification of oil palm fronds (OPF) biomass for the production of fuel gas. In this paper, the effect of moisture content of fuel and reactor temperature on downdraft gasification of OPF was experimentally investigated using a lab scale gasifier of capacity 50 kW. In addition, results obtained from equilibrium model of gasification that was developed for facilitating the prediction of syngas composition are compared with experimental data. Comparison of simulation results for predicting calorific value of syngas with the experimental results showed a satisfactory agreement with a mean error of 0.1 MJ/Nm3. For a biomass moisture content of 29%, the resulting calorific value for the syngas was found to be only 2.63 MJ/Nm3, as compared to nearly double (4.95 MJ/Nm3) for biomass moisture content of 22%. A calorific value as high as 5.57 MJ/Nm3 was recorded for higher oxidation zone temperature values. PMID:24578617

  16. Influence of fuel moisture content and reactor temperature on the calorific value of syngas resulted from gasification of oil palm fronds.

    PubMed

    Atnaw, Samson Mekbib; Sulaiman, Shaharin Anwar; Yusup, Suzana

    2014-01-01

    Biomass wastes produced from oil palm mills and plantations include empty fruit bunches (EFBs), shells, fibers, trunks, and oil palm fronds (OPF). EFBs and shells are partially utilized as boiler fuel while the rest of the biomass materials like OPF have not been utilized for energy generation. No previous study has been reported on gasification of oil palm fronds (OPF) biomass for the production of fuel gas. In this paper, the effect of moisture content of fuel and reactor temperature on downdraft gasification of OPF was experimentally investigated using a lab scale gasifier of capacity 50 kW. In addition, results obtained from equilibrium model of gasification that was developed for facilitating the prediction of syngas composition are compared with experimental data. Comparison of simulation results for predicting calorific value of syngas with the experimental results showed a satisfactory agreement with a mean error of 0.1 MJ/Nm³. For a biomass moisture content of 29%, the resulting calorific value for the syngas was found to be only 2.63 MJ/Nm³, as compared to nearly double (4.95 MJ/Nm³) for biomass moisture content of 22%. A calorific value as high as 5.57 MJ/Nm³ was recorded for higher oxidation zone temperature values.

  17. Theoretical estimation of 13C-D clumped isotope effects in methyl of several organic compound

    NASA Astrophysics Data System (ADS)

    LIU, Q.; Yin, X.; Liu, Y.

    2015-12-01

    Recent developments in mass spectrometry and tunable infrared laser direct absorption spectroscopy make it possible to measure 13C-D clumped isotope effects of methane. These techniques can be further applied to determine 13C-D clumped isotope effects of methyl fragments, therefore need accurate equilirbium Δi values to calibrate experimental measurements. In this study, we calculate temperature depandences of 13C-D clumped isotope signatures in methyl of several organic compounds including ethane, propane, acetic acid, etc. Our calculation are performed at CCSD/6-311+G(3df,3pd) by using Gaussian 03 program with no scale treament. Our results show that the Δi values of 13C-D clumping in methyl fragments of different organic compounds yield similar signals (~5.5‰ at 25˚C, slightly lower than Δi value of 13C-D clumping in methane). For testing the calculated accuracy, theoretical treaments beyond the harmonic level by including several higher-order corrections to the Bigeleisen-Mayer equation are used. Contributions from higher-order corrections (e.g., AnZPE, AnEXC, VrZPE, VrEXC, QmCorr and CenDist) are estimated to repire the ignorings of the Bigeleisen-Mayer equation (the anharmonic effects of vibration, vibration-rotation coupling, quantum mechanics and centrifugal distortion for rotation, etc.) for the calculation of partition function ratios. The results show that the higher-order corrections contribute ~0.05‰ at 25˚C, which is similar to the contribution for calculating 13C-D clumped isotope signature of methane. By comparing our calculated frequencies to the measured ones, the uncertainty of our calculation of Δi values 13C-D clumping in methyl fragments is considered to be within ~0.05‰ at room temperature.

  18. Distribution of tetraether lipids in agricultural soils - differentiation between paddy and upland management

    NASA Astrophysics Data System (ADS)

    Mueller-Niggemann, Cornelia; Rahayu Utami, Sri; Marxen, Anika; Mangelsdorf, Kai; Bauersachs, Thorsten; Schwark, Lorenz

    2016-03-01

    Rice paddies constitute almost a fifth of global cropland and provide more than half of the world's population with staple food. At the same time, they are a major source of methane and therewith significantly contribute to the current warming of Earth's atmosphere. Despite their apparent importance in the cycling of carbon and other elements, however, the microorganisms thriving in rice paddies are insufficiently characterized with respect to their biomolecules. Hardly any information exists on human-induced alteration of biomolecules from natural microbial communities in paddy soils through varying management types (affecting, e.g., soil or water redox conditions, cultivated plants). Here, we determined the influence of different land use types on the distribution of glycerol dialkyl glycerol tetraethers (GDGTs), which serve as molecular indicators for microbial community structures, in rice paddy (periodically flooded) and adjacent upland (non-flooded) soils and, for further comparison, forest, bushland and marsh soils. To differentiate local effects on GDGT distribution patterns, we collected soil samples in locations from tropical (Indonesia, Vietnam and Philippines) and subtropical (China and Italy) sites. We found that differences in the distribution of isoprenoid GDGTs (iGDGTs) as well as of branched GDGTs (brGDGTs) are predominantly controlled by management type and only secondarily by climatic exposition. In general, upland soil had higher crenarchaeol contents than paddy soil, which by contrast was more enriched in GDGT-0. The GDGT-0 / crenarchaeol ratio, indicating the enhanced presence of methanogenic archaea, was 3-27 times higher in paddy soils compared to other soils and increased with the number of rice cultivation cycles per year. The index of tetraethers consisting of 86 carbons (TEX86) values were 1.3 times higher in upland, bushland and forest soils than in paddy soils, potentially due to differences in soil temperature. In all soils brGDGT predominated over iGDGTs with the relative abundance of brGDGTs increasing from subtropical to tropical soils. Higher branched vs. isoprenoid tetraether (BIT) values in paddy soils compared to upland soils together with higher BIT values in soils from subtropical climates indicated effects on the amounts of brGDGT induced by differences in management as well as climate. In acidic soils cyclization ratio of branched tetraethers (CBT) values correlated well with soil pH. In neutral to alkaline soils, however, no correlation but an offset in CBT between paddy and upland managed soils was detected. This is interpreted as indicating soil moisture exerting an additional control on the CBT in these soils. Lower modified methylation index of branched tetraether (MBT') values and temperatures calculated from this (TMC) in paddy soils compared to upland soils are attributed to a management-induced (e.g. enhanced soil moisture via flooding) effect on mean annual soil temperature (MST).

  19. Evaluation of MODIS Land Surface Temperature with In Situ Snow Surface Temperature from CREST-SAFE

    NASA Astrophysics Data System (ADS)

    Perez Diaz, C. L.; Lakhankar, T.; Romanov, P.; Munoz, J.; Khanbilvardi, R.; Yu, Y.

    2016-12-01

    This paper presents the procedure and results of a temperature-based validation approach for the Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST) product provided by the National Aeronautics and Space Administration (NASA) Terra and Aqua Earth Observing System satellites using in situ LST observations recorded at the Cooperative Remote Sensing Science and Technology Center - Snow Analysis and Field Experiment (CREST-SAFE) during the years of 2013 (January-April) and 2014 (February-April). A total of 314 day and night clear-sky thermal images, acquired by the Terra and Aqua satellites, were processed and compared to ground-truth data from CREST-SAFE with a frequency of one measurement every 3 min. Additionally, this investigation incorporated supplementary analyses using meteorological CREST-SAFE in situ variables (i.e. wind speed, cloud cover, incoming solar radiation) to study their effects on in situ snow surface temperature (T-skin) and T-air. Furthermore, a single pixel (1km2) and several spatially averaged pixels were used for satellite LST validation by increasing the MODIS window size to 5x5, 9x9, and 25x25 windows for comparison. Several trends in the MODIS LST data were observed, including the underestimation of daytime values and nighttime values. Results indicate that, although all the data sets (Terra and Aqua, diurnal and nocturnal) showed high correlation with ground measurements, day values yielded slightly higher accuracy ( 1°C), both suggesting that MODIS LST retrievals are reliable for similar land cover classes and atmospheric conditions. Results from the CREST-SAFE in situ variables' analyses indicate that T-air is commonly higher than T-skin, and that a lack of cloud cover results in: lower T-skin and higher T-air minus T-skin difference (T-diff). Additionally, the study revealed that T-diff is inversely proportional to cloud cover, wind speed, and incoming solar radiation. Increasing the MODIS window size showed an overestimation of in situ LST and some improvement in the daytime Terra and nighttime Aqua biases, with the highest accuracy achieved with the 5x5 window. A comparison between MODIS emmisivity from bands 31, 32, and in situ emissivity showed that emissivity errors (Relative error = -.003) were insignificant.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kesgin, Ibrahim; Kasa, Matthew; Ivanyushenkov, Yury

    Here, this paper presents test results on a prototype superconducting undulator magnet fabricated using 15% Zr-doped rare-earth barium copper oxide high temperature superconducting (HTS) tapes. On an 11-pole magnet we demonstrate an engineering current density, J e, of more than 2.1 kA mm -2 at 4.2 K, a value that is 40% higher than reached in comparable devices wound with NbTi-wire, which is used in all currently operating superconducting undulators. A novel winding scheme enabling the continuous winding of tape-shaped conductors into the intricate undulator magnets as well as a partial interlayer insulation procedure were essential in reaching this advancemore » in performance. Currently, there are rapid advances in the performance of HTS; therefore, achieving even higher current densities in an undulator structure or/and operating it at temperatures higher than 4.2 K will be possible, which would substantially simplify the cryogenic design and reduce overall costs.« less

  1. Estimation of Hoffman-Lauritzen parameters from nonisothermal crystallization kinetics of PET/MWCNT nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaonkar, Amita, E-mail: ami.gaonkar@gmail.com; Murudkar, Vrishali, E-mail: vru0077@gmail.com; Deshpande, V. D., E-mail: vindesh2@rediffmail.com

    2016-05-06

    Polyethylene terephthalate (PET) and Nucleated PET/ multi-walled carbon nanotubes (MWCNTs) nanocomposites with different MWCNTs loadings were prepared by melt compounding. The influence of the addition of MWCNTs and precipitated PET (p-PET) on the morphology and thermal properties of the nanocomposites was investigated. From Transmission Electronic Microscopy (TEM) and Wide angle X-Ray diffraction (WAXD) study, it can be clearly seen that nanocomposites with low MWCNTs contents (0.1 wt. %) get better MWCNTs dispersion than higher MWCNT loading. Comparing with PET, nucleated PET nanocomposite with 0.1% MWCNT loading shows higher value of Lauritzen-Hoffman parameters U* and Kg evaluated using the differential isoconversionalmore » method. Crystallization regime transition temperature range shifts to higher temperature (208°C - 215°C) for nanocomposites. The presence of p-PET in addition of MWCNT, which act as good nucleating agent, enhanced the crystallization of PET through heterogeneous nucleation.« less

  2. Estimation of Hoffman-Lauritzen parameters from nonisothermal crystallization kinetics of PET/MWCNT nanocomposites

    NASA Astrophysics Data System (ADS)

    Gaonkar, Amita; Murudkar, Vrishali; Deshpande, V. D.

    2016-05-01

    Polyethylene terephthalate (PET) and Nucleated PET/ multi-walled carbon nanotubes (MWCNTs) nanocomposites with different MWCNTs loadings were prepared by melt compounding. The influence of the addition of MWCNTs and precipitated PET (p-PET) on the morphology and thermal properties of the nanocomposites was investigated. From Transmission Electronic Microscopy (TEM) and Wide angle X-Ray diffraction (WAXD) study, it can be clearly seen that nanocomposites with low MWCNTs contents (0.1 wt. %) get better MWCNTs dispersion than higher MWCNT loading. Comparing with PET, nucleated PET nanocomposite with 0.1% MWCNT loading shows higher value of Lauritzen-Hoffman parameters U* and Kg evaluated using the differential isoconversional method. Crystallization regime transition temperature range shifts to higher temperature (208°C - 215°C) for nanocomposites. The presence of p-PET in addition of MWCNT, which act as good nucleating agent, enhanced the crystallization of PET through heterogeneous nucleation.

  3. Antioxidant activity and polyphenol content of green tea flavan-3-ols and oligomeric proanthocyanidins.

    PubMed

    Molan, Abdul L; De, Shampa; Meagher, Lucy

    2009-09-01

    The antioxidant activity and total phenolics content (TPC) of freshly prepared green tea extract (GTE) as affected by time, temperature and stirring were determined using the ferric reducing antioxidant power (FRAP) and Folin-Ciocalteu assays, respectively. Acetone-water fractions of GTE containing flavan-3-ols and oligomeric proanthocyanidins were evaluated at concentrations between 25 and 500 µg/ml. Increasing the extraction time from 3 min to 10 min resulted in a significant increase in both the FRAP values and TPC. Increasing the extraction time from 10 min to 30 min was without any significant effects on both FRAP and TPC values. Moreover, the FRAP values were correlated with the TPC. GTE fractions had widely different FRAP values that were well correlated with the TPC of the fraction. It was concluded that brewing conditions such as extraction temperature, period of extraction, ratio of tea leaves to extracting water, and stirring are important factors for determining the FRAP values and TPC in GTE. These factors should be taken into consideration during preparation for nutritional benefits during usual consumption of this beverage. Elevated FRAP and TPC values corresponded to those GTE fractions with a higher amount of phenolic compounds, which have stronger antioxidant activities.

  4. Tannat grape composition responses to spatial variability of temperature in an Uruguay's coastal wine region

    NASA Astrophysics Data System (ADS)

    Fourment, Mercedes; Ferrer, Milka; González-Neves, Gustavo; Barbeau, Gérard; Bonnardot, Valérie; Quénol, Hervé

    2017-09-01

    Spatial variability of temperature was studied in relation to the berry basic composition and secondary compounds of the Tannat cultivar at harvest from vineyards located in Canelones and Montevideo, the most important wine region of Uruguay. Monitoring of berries and recording of temperature were performed in 10 commercial vineyards of Tannat situated in the southern coastal wine region of the country for three vintages (2012, 2013, and 2014). Results from a multivariate correlation analysis between berry composition and temperature over the three vintages showed that (1) Tannat responses to spatial variability of temperature were different over the vintages, (2) correlations between secondary metabolites and temperature were higher than those between primary metabolites, and (3) correlation values between berry composition and climate variables increased when ripening occurred under dry conditions (below average rainfall). For a particular studied vintage (2013), temperatures explained 82.5% of the spatial variability of the berry composition. Daily thermal amplitude was found to be the most important spatial mode of variability with lower values recorded at plots nearest to the sea and more exposed to La Plata River. The highest levels in secondary compounds were found in berries issued from plots situated as far as 18.3 km from La Plata River. The increasing knowledge of temperature spatial variability and its impact on grape berry composition contributes to providing possible issues to adapt grapevine to climate change.

  5. The realization of temperature controller for small resistance measurement system

    NASA Astrophysics Data System (ADS)

    Sobecki, Jakub; Walendziuk, Wojciech; Idzkowski, Adam

    2017-08-01

    This paper concerns the issues of construction and experimental tests of a temperature stabilization system for small resistance increments measurement circuits. After switching the system on, a PCB board heats up and the long-term temperature drift altered the measurement result. The aim of this work is reducing the time of achieving constant nominal temperature by the measurement system, which would enable decreasing the time of measurements in the steady state. Moreover, the influence of temperatures higher than the nominal on the measurement results and the obtained heating curve were tested. During the working process, the circuit heats up to about 32 °C spontaneously, and it has the time to reach steady state of about 1200 s. Implementing a USART terminal on the PC and an NI USB-6341 data acquisition card makes recording the data (concerning temperature and resistance) in the digital form and its further processing easier. It also enables changing the quantity of the regulator settings. This paper presents sample results of measurements for several temperature values and the characteristics of the temperature and resistance changes in time as well as their comparison with the output values. The object identification is accomplished due to the Ziegler-Nichols method. The algorithm of determining the step characteristics parameters and examples of computations of the regulator settings are included together with example characteristics of the object regulation.

  6. Using Analog Ensemble to generate spatially downscaled probabilistic wind power forecasts

    NASA Astrophysics Data System (ADS)

    Delle Monache, L.; Shahriari, M.; Cervone, G.

    2017-12-01

    We use the Analog Ensemble (AnEn) method to generate probabilistic 80-m wind power forecasts. We use data from the NCEP GFS ( 28 km resolution) and NCEP NAM (12 km resolution). We use forecasts data from NAM and GFS, and analysis data from NAM which enables us to: 1) use a lower-resolution model to create higher-resolution forecasts, and 2) use a higher-resolution model to create higher-resolution forecasts. The former essentially increases computing speed and the latter increases forecast accuracy. An aggregated model of the former can be compared against the latter to measure the accuracy of the AnEn spatial downscaling. The AnEn works by taking a deterministic future forecast and comparing it with past forecasts. The model searches for the best matching estimates within the past forecasts and selects the predictand value corresponding to these past forecasts as the ensemble prediction for the future forecast. Our study is based on predicting wind speed and air density at more than 13,000 grid points in the continental US. We run the AnEn model twice: 1) estimating 80-m wind speed by using predictor variables such as temperature, pressure, geopotential height, U-component and V-component of wind, 2) estimating air density by using predictors such as temperature, pressure, and relative humidity. We use the air density values to correct the standard wind power curves for different values of air density. The standard deviation of the ensemble members (i.e. ensemble spread) will be used as the degree of difficulty to predict wind power at different locations. The value of the correlation coefficient between the ensemble spread and the forecast error determines the appropriateness of this measure. This measure is prominent for wind farm developers as building wind farms in regions with higher predictability will reduce the real-time risks of operating in the electricity markets.

  7. Conditional probability distribution function of "energy transfer rate" (PDF(ɛ|PVI)) as compared with its counterpart of temperature (PDF(T|PVI)) at the same condition of fluctuation

    NASA Astrophysics Data System (ADS)

    He, Jiansen; Wang, Yin; Pei, Zhongtian; Zhang, Lei; Tu, Chuanyi

    2017-04-01

    Energy transfer rate of turbulence is not uniform everywhere but suggested to follow a certain distribution, e.g., lognormal distribution (Kolmogorov 1962). The inhomogeneous transfer rate leads to emergence of intermittency, which may be identified with some parameter, e.g., normalized partial variance increments (PVI) (Greco et al., 2009). Large PVI of magnetic field fluctuations are found to have a temperature distribution with the median and mean values higher than that for small PVI level (Osman et al., 2012). However, there is a large proportion of overlap between temperature distributions associated with the smaller and larger PVIs. So it is recognized that only PVI cannot fully determine the temperature, since the one-to-one mapping relationship does not exist. One may be curious about the reason responsible for the considerable overlap of conditional temperature distribution for different levels of PVI. Usually the hotter plasma with higher temperature is speculated to be heated more with more dissipation of turbulence energy corresponding to more energy cascading rate, if the temperature fluctuation of the eigen wave mode is not taken into account. To explore the statistical relationship between turbulence cascading and plasma thermal state, we aim to study and reveal, for the first time, the conditional probability function of "energy transfer rate" under different levels of PVI condition (PDF(ɛ|PVI)), and compare it with the conditional probability function of temperature. The conditional probability distribution function, PDF(ɛ|PVI), is derived from PDF(PVI|ɛ)·PDF(ɛ)/PDF(PVI) according to the Bayesian theorem. PDF(PVI) can be obtained directly from the data. PDF(ɛ) is derived from the conjugate-gradient inversion of PDF(PVI) by assuming reasonably that PDF(δB|σ) is a Gaussian distribution, where PVI=|δB|/ σ and σ ( ɛι)1/3. PDF(ɛ) can also be acquired from fitting PDF(δB) with an integral function ∫PDF(δB|σ)PDF(σ)d σ. As a result, PDF(ɛ|PVI) is found to shift to higher median value of ɛ with increasing PVI but with a significant overlap of PDFs for different PVIs. Therefore, PDF(ɛ|PVI) is similar to PDF(T|PVI) in the sense of slow migration along with increasing PVI. The detailed comparison between these two conditional PDFs are also performed.

  8. Impact Toughness of 0.2 Pct C-1.5 Pct Si-(1.5 to 5) Pct Mn Transformation-Induced Plasticity-Aided Steels with an Annealed Martensite Matrix

    NASA Astrophysics Data System (ADS)

    Tanino, Hikaru; Horita, Masaomi; Sugimoto, Koh-Ichi

    2016-05-01

    The impact properties of 0.2 pct C-1.5 pct Si-(1.5 to 5) pct Mn transformation-induced plasticity (TRIP)-aided steels with an annealed martensite matrix which had been subjected to isothermal transformation after inter-critical annealing were investigated for potential automotive applications. The impact properties are related to the retained austenite characteristics of the steels. The products of tensile strength (TS) and Charpy impact absorbed value (CIAV) were the same for the 1.5 and 5 pct Mn steels, although the ductile-brittle transition temperature was higher for the latter. The impact properties of the 3 pct Mn steel were worse than these two steels. The high TS × CIAV value for the 5 pct Mn steel at 293 K (25 °C) was mainly caused by the TRIP effect of a larger amount of retained austenite (36 vol pct) and the hardened matrix structure; low retained austenite stability and/or a hard martensite-austenite phase reduced this value. The higher ductile-brittle transition temperature of the 5 pct Mn steel was associated with Mn segregation, a large amount of unstable retained austenite on prior austenitic grain boundaries, and decreased cleavage fracture stress owing to the high Mn content.

  9. S-Shaped Suppression of the Superconducting Transition Temperature in Cu-Intercalated NbSe 2

    DOE PAGES

    Luo, Huixia; Strychalska-Nowak, Judyta; Li, Jun; ...

    2017-03-21

    2H-NbSe 2 is the prototype and most frequently studied of the well-known transition metal dichalcogenide (TMDC) superconductors. As 2H-NbSe 2 is widely acknowledged as a conventional superconductor, its transition temperature to the superconducting state (T c) is 7.3 K, a T c that is substantially higher than those seen for the majority of TMDCs, where Tc values between 2 and 4 K are the norm. We report the intercalation of Cu into 2H-NbSe 2 to make Cu xNbSe 2. As is typically found when chemically altering an optimal superconductor, T c decreases with an increase in x, but the waymore » that Tc is suppressed in this case is unusual: an S-shaped character is observed, with an inflection point near x = 0.03 and, at higher x values, a leveling off of the T c near 3 K, down to the usual value for a layered TMDC. Electronic characterization reveals corresponding S-like behavior for many of the parameters of the materials that influence T c. In order to illustrate its character, the superconducting phase diagram for Cu xNbSe 2 is contrasted with those of FexNbSe 2 and NbSe 2–xS x.« less

  10. Effects of air temperature and velocity on the drying kinetics and product particle size of starch from arrowroot (Maranta arundinacae)

    NASA Astrophysics Data System (ADS)

    Caparanga, Alvin R.; Reyes, Rachael Anne L.; Rivas, Reiner L.; De Vera, Flordeliza C.; Retnasamy, Vithyacharan; Aris, Hasnizah

    2017-11-01

    This study utilized the 3k factorial design with k as the two varying factors namely, temperature and air velocity. The effects of temperature and air velocity on the drying rate curves and on the average particle diameter of the arrowroot starch were investigated. Extracted arrowroot starch samples were dried based on the designed parameters until constant weight was obtained. The resulting initial moisture content of the arrowroot starch was 49.4%. Higher temperatures correspond to higher drying rates and faster drying time while air velocity effects were approximately negligible or had little effect. Drying rate is a function of temperature and time. The constant rate period was not observed for the drying rate of arrowroot starch. The drying curves were fitted against five mathematical models: Lewis, Page, Henderson and Pabis, Logarithmic and Midili. The Midili Model was the best fit for the experimental data since it yielded the highest R2 and the lowest RSME values for all runs. Scanning electron microscopy (SEM) was used for qualitative analysis and for determination of average particle diameter of the starch granules. The starch granules average particle diameter had a range of 12.06 - 24.60 μm. The use of ANOVA proved that particle diameters for each run varied significantly with each other. And, the Taguchi Design proved that high temperatures yield lower average particle diameter, while high air velocities yield higher average particle diameter.

  11. Bio-syngas production from agro-industrial biomass residues by steam gasification.

    PubMed

    Pacioni, Tatiana Ramos; Soares, Diniara; Domenico, Michele Di; Rosa, Maria Fernanda; Moreira, Regina de Fátima Peralta Muniz; José, Humberto Jorge

    2016-12-01

    This study evaluated the steam gasification potential of three residues from Brazilian agro-industry by assessing their reaction kinetics and syngas production at temperatures from 650 to 850°C and a steam partial pressure range of 0.05 to 0.3bar. The transition temperature between kinetic control and diffusion control regimes was identified. Prior to the gasification tests, the raw biomasses, namely apple pomace, spent coffee grounds and sawdust, were pyrolyzed in a fixed-bed quartz tubular reactor under controlled conditions. Gasification tests were performed isothermally in a magnetic suspension thermobalance and the reaction products were analyzed by a gas chromatograph with TCD/FID detectors. According to the characterization results, the samples presented higher carbon and lower volatile matter contents than the biomasses. Nevertheless, all of the materials had high calorific value. Syngas production was influenced by both temperature and steam partial pressure. Higher concentrations of H 2 and CO were found in the conversion range of 50-80% and higher concentrations of CO 2 in conversions around 10%, for all the gasified biochars. The H 2 /CO decreased with increasing temperature, mainly in kinetic control regime, in the lower temperature range. The results indicate the gasification potential of Brazilian biomass residues and are an initial and important step in the development of gasification processes in Brazil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Germination response of Hylocereus setaceus (Salm-Dyck ex DC: ) Ralf Bauer (Cactaceae) seeds to temperature and reduced water potentials.

    PubMed

    Simão, E; Takaki, M; Cardoso, V J M

    2010-02-01

    The germination response of Hylocereus setaceus seeds to isothermic incubation at different water potentials was analysed by using the thermal time and hydrotime models, aiming to describe some germination parameters of the population and to test the validity of the models to describe the response of the seeds to temperature and water potential. Hylocereus setaceus seeds germinated relatively well in a wide range of temperatures and the germination was rate limited from 11 to 20 degrees C interval and beyond 30 degrees C until 40 degrees C, in which the germination rate respectively shifts positively and negatively with temperature. The minimum or base temperature (T(b)) for the germination of H. setaceus was 7 degrees C, and the ceiling temperature varied nearly from 43.5 to 59 degrees C depending on the percent fraction, with median set on 49.8 degrees C. The number of degrees day necessary for 50% of the seeds to germinate in the infra-optimum temperature range was 39.3 degrees C day, whereas at the supra-optimum interval the value of theta = 77 was assumed to be constant throughout. Germination was sensitive to decreasing values of psi in the medium, and both the germinability and the germination rate shift negatively with the reduction of psi, but the rate of reduction changed with temperature. The values of base water potential (psi(b)) shift to zero with increasing temperatures and such variation reflects in the relatively greater effect of low psi on germination in supra optimum range of T. In general, the model described better the germination time courses at lower than at higher water potentials. The analysis also suggest that Tb may not be independent of psi and that psi(b(g)) may change as a function of temperature at the infra-otimum temperature range.

  13. Carbon isotope exchange between CO2 and CH4 in hydrothermal fluids from the Tuscan-Roman and Campanian degassing systems (central-southern Italy)

    NASA Astrophysics Data System (ADS)

    Tassi, F.; Fiebig, J.; Nocentini, M.; Vaselli, O.

    2010-12-01

    The carbon isotope composition in CO2 and CH4 are commonly used as exploration tools and diagnostic indicators to investigate the origin of endogenous gases. At temperature <200 °C both proportions and isotope ratios of these two gases are considered to be largely controlled by processes (i.e. bacterial activity, thermal hydrolysis, and cracking of organic matter) that are mainly dictated by kinetics. Recent investigations on abiogenic generation of CH4 suggest that at temperatures as low as 100 °C, CH4 production from CO2 has halftimes in the order of 1 year. The present work is based on the d13C-CO2 and d13C-CH4 values of more than 83 gas discharges from the Tuscan-Roman and Campanian degassing systems (central-southern Italy). The main aims are to i) investigate the processes regulating the chemical and isotopic compositions of CO2 and CH4 and ii) verify the use of the CO2-CH4 carbon isotopic equilibrium for evaluating the temperature of deep hydrothermal reservoirs. Our results show that the d13C-CH4 values, with few exceptions related to local production of biogenic CH4 at shallow depth, are > -40 ‰ V-PDB. The most intriguing feature of the measured d13C-CH4 values is that they progressively decrease from the peri-Tyrrhenian area, where productive geothermal systems and active volcanoes are located, to East, i.e. approaching the CH4-rich reservoirs that mark the Adriatic side of the Italian peninsula. The d13C-CO2 values are substantially spanning from a thermometamorphic to a mantle degassing CO2 and do not show any preferential spatial distribution. Secondary carbon isotope fractionation caused by interaction with relatively shallow aquifers may contribute to the scatter of d13C-CO2 values, considering the high solubility of CO2 in liquid water. However, the CO2-CH4 isotopic compositions of fluids from the high temperature geothermal systems characterizing the Tyrrhenian coast of central-southern Italy, i.e. Larderello, Mt. Amiata, Manziana and Phlegrean Fields, provide apparent equilibrium temperatures in the range of those directly measured in production wells and/or estimated on the basis of the CH4-CO2 chemical geothermometer. These results are consistent with the fact that the carbon isotopic equilibrium in the CO2-CH4 system has to be preceded by that of the chemical exchange because the latter has a kinetic rate 400 times faster than the isotopic partitioning. The observed agreement between measured and/or inferred aquifer temperatures with apparent carbon isotopic equilibration supports recent findings that CO2 and CH4 can attain carbon isotopic equilibrium in high-enthalpy hydrothermal systems. The d13C-CH4 values of gas discharges located eastward, toward the Appennine sedimentary chain, are likely produced by mixing of high temperature fluids from the geothermal areas and a relatively cold deep aquifer characterized by biogenic CH4: The higher distance from the geothermal-volcanic systems, the higher fraction of low temperature fluids.

  14. Kinetics of cellular dissolution in a Cu-Cd alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakkalil, R.; Gupta, S.P.

    1989-07-01

    Dissolution of the cellular precipitate by cell boundary migration has been studied in a Cu-2 at.% Cd alloy in the temperature range 777--878 K. Microstructural observations have revealed that the process of dissolution begins at the original position of the grain boundary as well as the cell boundary. The steady state rate of cell boundary migration decreased with decreasing temperature of dissolution and became zero at approximately 770 K, which is about 30 K below the equilibrium solves temperature. The boundary diffusivities were determined at a number of temperatures by using the theory of Petermann and Hornbogen modified for dissolution.more » The diffusivity values calculated from the experimental data are seven orders of magnitude higher than the corresponding volume diffusivities. From the temperature dependence of the diffusivity, an activation energy of 157 kJ mol{sup {minus} 1} is obtained, which is bout three-quarters of the activation energy for the bulk diffusion of Cd into Cu. From the diffusivity and activation energy values, it is concluded that the diffusion of Cd along the migrating grain boundaries control the dissolution of the cellular precipitate in this alloy.« less

  15. Annealing effect on thermal conductivity and microhardness of carbon nanotube containing Se80Te16Cu4 glassy composites

    NASA Astrophysics Data System (ADS)

    Upadhyay, A. N.; Tiwari, R. S.; Singh, Kedar

    2018-02-01

    This study deals with the effect of thermal annealing on structural/microstructural, thermal and mechanical behavior of pristine Se80Te16Cu4 and carbon nanotubes (CNTs) containing Se80Te16Cu4 glassy composites. Pristine Se80Te16Cu4, 3 and 5 wt%CNTs-Se80Te16Cu4 glassy composites are annealed in the vicinity of glass transition temperature to onset crystallization temperature (340-380 K). X-ray diffraction (XRD) pattern revealed formation of polycrystalline phases of hexagonal CuSe and trigonal selenium. The indexed d-values in XRD patterns are in well conformity with the d-values obtained after the indexing of the ring pattern of selected area electron diffraction pattern of TEM images. The SEM investigation exhibited that the grain size of the CNTs containing Se80Te16Cu4 glassy composites increased with increasing annealing temperature and decreased at further higher annealing temperature. Thermal conductivity, microhardness exhibited a substantial increase with increasing annealing temperature of 340-360 K and slightly decreases for 380 K. The variation of thermal conductivity and microhardness can be explained by cross-linking formation and voids reduction.

  16. Glass dynamics and anomalous aging in a family of ionic liquids above the glass transition temperature.

    PubMed

    Shamim, Nabila; McKenna, Gregory B

    2010-12-09

    The present paper reports the results of a systematic rheological study of the dynamic moduli of 1-butyl 3-methylimidazolium tetrafluoroborate ([Bmim][BF(4)]), 1-butyl 3-methylimidazolium hexafluorophosphate ([Bmim][PF(6)]), and 1-ethyl 3-methylimidazolium ethylsulfate ([Emim][EtSO(4)]) in the vicinity of their respective glass transition temperatures. The results show an anomalous aging in that the dynamic and the low shear rate viscosities decrease with time at temperatures near to, but above, the glass transition temperature, and this is described. The samples that are aged into equilibrium obey the time-temperature superposition principle, and the shift factors and the viscosities follow classic super-Arrhenius behaviors with intermediate fragility values as the glass transition is approached. Similar experiments using a high-purity [Bmim][BF(4)] show that using a higher purity of the ionic liquid, while changing absolute values of the properties, does not eliminate the anomalous aging response. The data are also analyzed in a fashion similar to that used for polymer melts, and we find that these ionic liquids do not follow, for example, the Cox-Merz relationship between the steady shear viscosity and the dynamic viscosity.

  17. Profile measurements of the electron temperature on the ASDEX Upgrade, COMPASS, and ISTTOK tokamak using Thomson scattering, triple, and ball-pen probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamek, J., E-mail: adamek@ipp.cas.cz; Horacek, J.; Bilkova, P.

    The ball-pen probe (BPP) technique is used successfully to make profile measurements of the electron temperature on the ASDEX Upgrade (Axially Symmetric Divertor Experiment), COMPASS (COMPact ASSembly), and ISTTOK (Instituto Superior Tecnico TOKamak) tokamak. The electron temperature is provided by a combination of the BPP potential (Φ{sub BPP}) and the floating potential (V{sub fl}) of the Langmuir probe (LP), which is compared with the Thomson scattering diagnostic on ASDEX Upgrade and COMPASS. Excellent agreement between the two diagnostics is obtained for circular and diverted plasmas and different heating mechanisms (Ohmic, NBI, ECRH) in deuterium discharges with the same formula T{submore » e} = (Φ{sub BPP} − V{sub fl})/2.2. The comparative measurements of the electron temperature using BPP/LP and triple probe (TP) techniques on the ISTTOK tokamak show good agreement of averaged values only inside the separatrix. It was also found that the TP provides the electron temperature with significantly higher standard deviation than BPP/LP. However, the resulting values of both techniques are well in the phase with the maximum of cross-correlation function being 0.8.« less

  18. Climate data by elevation in the Great Smoky Mountains: a database and graphical displays for 1947 - 1950 with comparison to long-term data

    USGS Publications Warehouse

    Busing, Richard T.; Stephens, Luther A.; Clebsch, Edward E.C.

    2004-01-01

    A climate data set is presented for four sites spanning the elevation gradient in the Great Smoky Mountains from Gatlinburg to Clingmans Dome. Monthly mean values for cloud cover, temperature, humidity, precipitation, and soil moisture are included. Stephens (1969) is the source of all summarized mean monthly data. Values are the averages of four years (1947-1950) with moderate to high precipitation. Graphical displays show strong climatic patterns of variation among seasons and elevations. The upper stations had lower temperatures and higher precipitation totals; however, temperature lapse rates and variation in vapor pressure deficits decreased at upper elevations. To examine how well the four-year sample represents the long-term climate, temperature and precipitation for the Gatlinburg (1460 ft elevation at park headquarters) station were compared between the years in the sample and the years in the full record from 1928 to 2003. Trends related to season and elevation are consistent with earlier studies and provide a basis for interpretation of climate dynamics in the southern Appalachian Mountains.

  19. Room-temperature ferromagnetic Cr-doped Ge/GeOx core-shell nanowires.

    PubMed

    Katkar, Amar S; Gupta, Shobhnath P; Seikh, Md Motin; Chen, Lih-Juann; Walke, Pravin S

    2018-06-08

    The Cr-doped tunable thickness core-shell Ge/GeO x nanowires (NWs) were synthesized and characterized using x-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy and magnetization studies. The shell thickness increases with the increase in synthesis temperature. The presence of metallic Cr and Cr 3+ in core-shell structure was confirmed from XPS study. The magnetic property is highly sensitive to the core-shell thickness and intriguing room temperature ferromagnetism is realized only in core-shell NWs. The magnetization decreases with an increase in shell thickness and practically ceases to exist when there is no core. These NWs show remarkably high Curie temperature (T C  > 300 K) with the dominating values of its magnetic remanence (M R ) and coercivity (H C ) compared to germanium dilute magnetic semiconductor nanomaterials. We believe that our finding on these Cr-doped Ge/GeO X core-shell NWs has the potential to be used as a hard magnet for future spintronic devices, owing to their higher characteristic values of ferromagnetic ordering.

  20. Cold-adapted digestive aspartic protease of the clawed lobsters Homarus americanus and Homarus gammarus: biochemical characterization.

    PubMed

    Rojo, Liliana; García-Carreño, Fernando; de Los Angeles Navarrete del Toro, Maria

    2013-02-01

    Aspartic proteinases in the gastric fluid of clawed lobsters Homarus americanus and Homarus gammarus were isolated to homogeneity by single-step pepstatin-A affinity chromatography; such enzymes have been previously identified as cathepsin D-like enzymes based on their deduced amino acid sequence. Here, we describe their biochemical characteristics; the properties of the lobster enzymes were compared with those of its homolog, bovine cathepsin D, and found to be unique in a number of ways. The lobster enzymes demonstrated hydrolytic activity against synthetic and natural substrates at a wider range of pH; they were more temperature-sensitive, showed no changes in the K(M) value at 4°C, 10°C, and 25°C, and had 20-fold higher k(cat)/K(M) values than bovine enzyme. The bovine enzyme was temperature-dependent. We propose that both properties arose from an increase in molecular flexibility required to compensate for the reduction of reaction rates at low habitat temperatures. This is supported by the fast denaturation rates induced by temperature.

  1. Unravelling the magnetism, high spin polarization and thermoelectric efficiency of ZrFeSi half-Heusler

    NASA Astrophysics Data System (ADS)

    Yousuf, Saleem; Gupta, D. C.

    2018-04-01

    We report the systematic investigation of structural properties, occupancy of density of states, nature of bonding and thermoelectric efficiency of half-Heusler ZrFeSi. The band structure analysis predicts the hybridization of Zr-d and Fe-d metal atoms resulting in occupation of density of states above the Fermi level (EF) while Fe-p and Si-p occupy the lower energy states below the EF. Thermoelectric transport coefficients are predicted using the Boltzmann transport theory under constant relaxation approximation, where Seebeck coefficient (S), total thermal conductivity and figure of merit are calculated. The negative value of total S as -14.02 μV/K predicts the material as n-type with thermoelectric figure of merit (zT) of 0.5 at 800 K. The lattice thermal conductivity decreases with increasing temperature with room temperature value of 4.18 W/mK and shows a significant reduction towards higher temperatures. In view of above elements, structural stability, high zT, ZrFeSi alloy have the capabilities to stimulate experimental verification as a promising materials for high temperature power generation and spintronic device fabrications.

  2. Optimization of intermittent microwave–convective drying using response surface methodology

    PubMed Central

    Aghilinategh, Nahid; Rafiee, Shahin; Hosseinpur, Soleiman; Omid, Mahmoud; Mohtasebi, Seyed Saeid

    2015-01-01

    In this study, response surface methodology was used for optimization of intermittent microwave–convective air drying (IMWC) parameters with employing desirability function. Optimization factors were air temperature (40–80°C), air velocity (1–2 m/sec), pulse ratio) PR ((2–6), and microwave power (200–600 W) while responses were rehydration ratio, bulk density, total phenol content (TPC), color change, and energy consumption. Minimum color change, bulk density, energy consumption, maximum rehydration ratio, and TPC were assumed as criteria for optimizing drying conditions of apple slices in IMWC. The optimum values of process variables were 1.78 m/sec air velocity, 40°C air temperature, PR 4.48, and 600 W microwave power that characterized by maximum desirability function (0.792) using Design expert 8.0. The air temperature and microwave power had significant effect on total responses, but the role of air velocity can be ignored. Generally, the results indicated that it was possible to obtain a higher desirability value if the microwave power and temperature, respectively, increase and decrease. PMID:26286706

  3. Room temperature ferromagnetism of tin oxide nanocrystal based on synthesis methods

    NASA Astrophysics Data System (ADS)

    Sakthiraj, K.; Hema, M.; Balachandrakumar, K.

    2016-04-01

    The experimental conditions used in the preparation of nanocrystalline oxide materials play an important role in the room temperature ferromagnetism of the product. In the present work, a comparison was made between sol-gel, microwave assisted sol-gel and hydrothermal methods for preparing tin oxide nanocrystal. X-ray diffraction analysis indicates the formation of tetragonal rutile phase structure for all the samples. The crystallite size was estimated from the HRTEM images and it is around 6-12 nm. Using optical absorbance measurement, the band gap energy value of the samples has been calculated. It reveals the existence of quantum confinement effect in all the prepared samples. Photoluminescence (PL) spectra confirms that the luminescence process originates from the structural defects such as oxygen vacancies present in the samples. Room temperature hysteresis loop was clearly observed in M-H curve of all the samples. But the sol-gel derived sample shows the higher values of saturation magnetization (Ms) and remanence (Mr) than other two samples. This study reveals that the sol-gel method is superior to the other two methods for producing room temperature ferromagnetism in tin oxide nanocrystal.

  4. Room-temperature ferromagnetic Cr-doped Ge/GeOx core–shell nanowires

    NASA Astrophysics Data System (ADS)

    Katkar, Amar S.; Gupta, Shobhnath P.; Motin Seikh, Md; Chen, Lih-Juann; Walke, Pravin S.

    2018-06-01

    The Cr-doped tunable thickness core–shell Ge/GeOx nanowires (NWs) were synthesized and characterized using x-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy and magnetization studies. The shell thickness increases with the increase in synthesis temperature. The presence of metallic Cr and Cr3+ in core–shell structure was confirmed from XPS study. The magnetic property is highly sensitive to the core–shell thickness and intriguing room temperature ferromagnetism is realized only in core–shell NWs. The magnetization decreases with an increase in shell thickness and practically ceases to exist when there is no core. These NWs show remarkably high Curie temperature (TC > 300 K) with the dominating values of its magnetic remanence (MR) and coercivity (HC) compared to germanium dilute magnetic semiconductor nanomaterials. We believe that our finding on these Cr-doped Ge/GeOX core–shell NWs has the potential to be used as a hard magnet for future spintronic devices, owing to their higher characteristic values of ferromagnetic ordering.

  5. High-temperature pyrolysis of blended animal manures for producing renewable energy and value-added biochar

    USDA-ARS?s Scientific Manuscript database

    In this study, we used a commercial pilot-scale pyrolysis reactor system to produce combustible gas and biochar at 620 degrees Celsium from three sources (chicken litter, swine solids, mixture of swine solids with rye grass). Pyrolysis of swine solids produced gas with the greatest higher heating va...

  6. Cultural impacts to tribes from climate change influences on forests

    Treesearch

    Garrit Voggesser; Kathy Lynn; John Daigle; Frank K. Lake; Darren Ranco

    2013-01-01

    Climate change related impacts, such as increased frequency and intensity of wildfires, higher temperatures, extreme changes to ecosystem processes, forest conversion and habitat degradation are threatening tribal access to valued resources. Climate change is and will affect the quantity and quality of resources tribes depend upon to perpetuate their cultures and...

  7. Effects of an evaporative cooling system on plasma cortisol, IGF-I, and milk production in dairy cows in a tropical environment

    NASA Astrophysics Data System (ADS)

    Titto, Cristiane Gonçalves; Negrão, João Alberto; Titto, Evaldo Antonio Lencioni; Canaes, Taissa de Souza; Titto, Rafael Martins; Pereira, Alfredo Manuel Franco

    2013-03-01

    Access to an evaporative cooling system can increase production in dairy cows because of improved thermal comfort. This study aimed to evaluate the impact of ambient temperature on thermoregulation, plasma cortisol, insulin-like growth factor 1 (IGF-I), and productive status, and to determine the efficiency of an evaporative cooling system on physiological responses under different weather patterns. A total of 28 Holstein cows were divided into two groups, one with and the other without access to a cooling system with fans and mist in the free stall. The parameters were analyzed during morning (0700 hours) and afternoon milking (1430 hours) under five different weather patterns throughout the year (fall, winter, spring, dry summer, and rainy summer). Rectal temperature (RT), body surface temperature (BS), base of tail temperature (TT), and respiratory frequency (RF) were lower in the morning ( P < 0.01). The cooling system did not affect RT, and both the groups had values below 38.56 over the year ( P = 0.11). Cortisol and IGF-I may have been influenced by the seasons, in opposite ways. Cortisol concentrations were higher in winter ( P < 0.05) and IGF-I was higher during spring-summer ( P < 0.05). The air temperature and the temperature humidity index showed positive moderate correlations to RT, BS, TT, and RF ( P < 0.001). The ambient temperature was found to have a positive correlation with the physiological variables, independent of the cooling system, but cooled animals exhibited higher milk production during spring and summer ( P < 0.01).

  8. Effects of an evaporative cooling system on plasma cortisol, IGF-I, and milk production in dairy cows in a tropical environment.

    PubMed

    Titto, Cristiane Gonçalves; Negrão, João Alberto; Titto, Evaldo Antonio Lencioni; Canaes, Taissa de Souza; Titto, Rafael Martins; Pereira, Alfredo Manuel Franco

    2013-03-01

    Access to an evaporative cooling system can increase production in dairy cows because of improved thermal comfort. This study aimed to evaluate the impact of ambient temperature on thermoregulation, plasma cortisol, insulin-like growth factor 1 (IGF-I), and productive status, and to determine the efficiency of an evaporative cooling system on physiological responses under different weather patterns. A total of 28 Holstein cows were divided into two groups, one with and the other without access to a cooling system with fans and mist in the free stall. The parameters were analyzed during morning (0700 hours) and afternoon milking (1430 hours) under five different weather patterns throughout the year (fall, winter, spring, dry summer, and rainy summer). Rectal temperature (RT), body surface temperature (BS), base of tail temperature (TT), and respiratory frequency (RF) were lower in the morning (P < 0.01). The cooling system did not affect RT, and both the groups had values below 38.56 over the year (P = 0.11). Cortisol and IGF-I may have been influenced by the seasons, in opposite ways. Cortisol concentrations were higher in winter (P < 0.05) and IGF-I was higher during spring-summer (P < 0.05). The air temperature and the temperature humidity index showed positive moderate correlations to RT, BS, TT, and RF (P < 0.001). The ambient temperature was found to have a positive correlation with the physiological variables, independent of the cooling system, but cooled animals exhibited higher milk production during spring and summer (P < 0.01).

  9. Fate of cadmium at the soil-solution interface: a thermodynamic study as influenced by varying pH at South 24 Parganas, West Bengal, India.

    PubMed

    Karak, Tanmoy; Paul, Ranjit Kumar; Das, Sampa; Das, Dilip K; Dutta, Amrit Kumar; Boruah, Romesh K

    2015-11-01

    A study on the sorption kinetics of Cd from soil solution to soils was conducted to assess the persistence of Cd in soil solution as it is related to the leaching, bioavailability, and potential toxicity of Cd. The kinetics of Cd sorption on two non-contaminated alkaline soils from Canning (22° 18' 48.02″ N and 88° 39' 29.0″ E) and Lakshmikantapur (22° 06' 16.61″ N and 88° 19' 08.66″ E) of South 24 Parganas, West Bengal, India, were studied using conventional batch experiment. The variable soil suspension parameters were pH (4.00, 6.00, 8.18, and 9.00), temperatures (308, 318, and 328 K) and Cd concentrations (5-100 mg L(-1)). The average rate coefficient (kavg) and half-life (t1/2) values indicate that the persistence of Cd in soil solution is influenced by both temperature and soil suspension pH. The concentration of Cd in soil solution decreases with increase of temperature; therefore, Cd sorption on the soil-solution interface is an endothermic one. Higher pH decreases the t 1/2 of Cd in soil solution, indicating that higher pH (alkaline) is not a serious concern in Cd toxicity than lower pH (acidic). Based on the energy of activation (Ea) values, Cd sorption in acidic pH (14.76±0.29 to 64.45±4.50 kJ mol(-1)) is a surface control phenomenon and in alkaline pH (9.33±0.09 to 44.60±2.01 kJ mol(-1)) is a diffusion control phenomenon The enthalpy of activation (ΔH∓) values were found to be between 7.28 and 61.73 kJ mol(-1). Additionally, higher positive energy of activation (ΔG∓) values (46.82±2.01 to 94.47±2.36 kJ mol(-1)) suggested that there is an energy barrier for product formation.

  10. Monitoring the Spread of West Nile Virus with Satellite Data

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A NASA-funded study uses temperature and vegetation data from satellites to help track and predict where West Nile virus is spreading in North America. Scientists and public health officials hope one day to use near real-time maps to focus resources and stave off the disease more efficiently. This image is a composite of land surface temperatures (LST) recorded between 1997 and 2000 and was used to help monitor and predict the spread of West Nile virus in the United States. In the color figure above, the mean land surface temperatures are in red; annual amplitude-or the difference between low and high annual temperatures-is in blue; and annual phase-or the timing of annual temperature peaks-appears in green. Brighter colors mean higher values. The major north-south temperature difference (dull red in the upper part of the image to bright red in the lower part) is considerably affected by the Rockies in the west and to a much lesser extent by the Appalachians in the east. The brighter blue in the upper part of the image indicates the big difference between highest and lowest temperatures during the course of a year at higher latitudes. There is less variation in the timing of the annual peak of land surface temperatures, which occurs earlier in the south than in the north. Black dots superimposed on this image are the locations (county geo-centers) where birds infected with West Nile virus were reported between January and October 2001. Scientists working with the International Research Partnership for Infectious Diseases (INTREPID) program based at NASA are using such imagery to define and predict the conditions where mosquitoes transmit West Nile virus in the U.S. The conclusion reached about the importance of any single variable depends both upon its value and context. A temperature of 30o Celsius (86o Fahrenheit) might be fatal for a mosquito at low humidity but survivable at higher humidities. The work done here on West Nile virus and other diseases shows very clearly that it is a unique combination of temperature, humidity, and vegetation variables that tends to determine mosquito and disease presence and abundance. For more information read: Satellites vs. Mosquitoes: Tracking West Nile Virus in the U.S. The image was produced by INTREPID from data taken by the National Oceanic and Atmospheric Administration's (NOAA) Advanced Very High Resolution Radiometer (AVHRR) instrument.

  11. Advanced linear Fresnel optics for solar thermal energy (STE) production (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Collares-Pereira, Manuel

    2016-09-01

    One path towards low electricity cost is the use of ever higher concentration values, since that, in turn, will provide less thermal losses at higher temperatures and high temperature operation means higher thermodynamic efficiency in the conversion of heat into electricity. However concentration has an added value, since it is associated with larger primaries (see below) and thus with a reduction of collector rows in any given collector field. That, in turn, will reduce receiver length, connecting pipe lengths, number of components, thermal losses in pipes, heat transfer fluid mass, pumping power required (thus less parasitics), OM necessary, and all of that will contribute towards a lower electricity production cost. Conventional PT and LFR concentrators are, essentially, focusing optics solutions and thus very far from the concentration limits set by Non Imaging Optics. However if a conventional PT optics is designed to accommodate a second stage concentrator (or, even better, if a parabolic like primary is designed in an optimal way with a secondary concentrator for a given receiver) the result will have a much higher concentration, but also, as a consequence, a much larger size, since available evacuated tubular receivers come in basically one (standard) size : 70mm diameter. Thus from a typical aperture size of 6m and a concentration value of 26, to double the concentration value with n.i.o., would bring the aperture close to 12m, a value which is not practical for manufacture, transportation, field installation and operation (think about wind loads, for instance) . But with LFR technology this size limitation is not there at all, and low concentration values can now be substituted by much higher ones, and primaries between 20 and 30 m can be produced for the same tube. Some LFRs on the market do have second stage concentration and offer primaries of about 12m total mirror width when designed for those evacuated tubes. These correspond to a CPC type second stage combined with the conventional primary. But is possible to go much further in concentration ( or better yet, to go much further in CAP value - CAP= C*sinθ) by adopting Advanced LFR configurations which achieve the highest concentration possible for any given θ and do so by simultaneously conserve etendue as much as possible. This talk will present and some of these solutions and discuss their merits for the application in view. It will show that all things considered, Advanced LFR solutions, with Molten Salts operating at 565°C , have a much higher final solar to electricity conversion efficiency than the conventional solutions and thus LFR technology seems to have a future market potential (given its inherently low cost) much beyond its present very low market share.

  12. El Niño-Southern Oscillation Impacts on Winter Vegetable Production in Florida*.

    NASA Astrophysics Data System (ADS)

    Hansen, James W.; Jones, James W.; Kiker, Clyde F.; Hodges, Alan W.

    1999-01-01

    Florida's mild winters allow the state to play a vital role in supplying fresh vegetables for U.S. consumers. Producers also benefit from premium prices when low temperatures prevent production in most of the country. This study characterizes the influence of the El Niño-Southern Oscillation (ENSO) on the Florida vegetable industry using statistical analysis of the response of historical crop (yield, prices, production, and value) and weather variables (freeze hazard, temperatures, rainfall, and solar radiation) to ENSO phase and its interaction with location and time of year. Annual mean yields showed little evidence of response to ENSO phase and its interaction with location. ENSO phase and season interacted to influence quarterly yields, prices, production, and value. Yields (tomato, bell pepper, sweet corn, and snap bean) were lower and prices (bell pepper and snap bean) were higher in El Niño than in neutral or La Niña winters. Production and value of tomatoes were higher in La Niña winters. The yield response can be explained by increased rainfall, reduced daily maximum temperatures, and reduced solar radiation in El Niño winters. Yield and production of winter vegetables appeared to be less responsive to ENSO phase after 1980; for tomato and bell pepper, this may be due to improvements in production technology that mitigate problems associated with excess rainfall. Winter yield and price responses to El Niño events have important implications for both producers and consumers of winter vegetables, and suggest opportunities for further research.

  13. Tensile properties of V-Cr-Ti alloys after exposure in oxygen-containing environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Natesan, K.; Soppet, W.K.

    A systematic study was conducted to evaluate the oxidation kinetics of V-4Cr-4Ti (44 alloy) and V-5Cr-5Ti alloys (55 alloy) and to establish the role of oxygen ingress on the tensile behavior of the alloys at room temperature and at 500 C. The oxidation rate of the 44 alloy is slightly higher than that of the 55 alloy. The oxidation process followed parabolic kinetics. Maximum engineering stress for 55 alloy increased with an increase in oxidation time at 500 C. The maximum stress values for 55 alloy were higher at room temperature than ta 500 C for the same oxidation treatment.more » Maximum engineering stresses for 44 alloy were substantially lower than those for 55 alloy in the same oxidation {approx}500 h exposure in air at 500 C; the same values were 4.8 and 6.1%, respectively, at 500 C after {approx}2060 h oxidation in air at 500 C. Maximum engineering stress for 44 alloy at room temperature was 421.6--440.6 MPa after {approx}250 h exposure at 500 C in environments with a pO{sub 2} range of 1 {times} 10{sup {minus}6} to 760 torr. The corresponding uniform and total elongation values were 11--14.4% and 14.5--21.7%, respectively. Measurements of crack depths in various specimens showed that depth is independent of pO{sub 2} in the preexposure environment and was of 70--95 {micro}m after 250--275 h exposure at 500 C.« less

  14. Stable isotopes, Sr/Ca, and Mg/Ca in biogenic carbonates from Petaluma Marsh, northern California, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingram, B.L.; De Deckker, P.; Chivas, A.R.

    2004-10-19

    Stable isotope ({sup 18}O/{sup 16}O and {sup 13}C/{sup 12}C) and minor-element compositions (Sr/Ca and Mg/Ca ratios) of ostracodes and gastropods separated from marsh sediments from San Francisco Bay, Northern California, were used to reconstruct paleoenvironmental changes in Petaluma Marsh over the past 700 yr. The value of {delta}{sup 18}O in the marsh carbonates reflects changes in freshwater inflow, evaporation, and temperature. Mg/Ca and Sr/Ca in ostracode calcite reflect changes in both freshwater inflow and temperature, although primarily reflect temperature changes in the salinity range of about 10-35 {per_thousand}. Ostracode {delta}{sup 18}O values show a gradual increase by 5 {per_thousand} betweenmore » 500 yr BR and the present, probably reflecting rising sea level and increased evaporation in the marsh. Superimposed on this trend are higher frequency Mg/Ca and {delta}{sup 18}O variations (3-4 {per_thousand}), probably reflecting changes in freshwater inflow and evaporation. A period of low Mg/Ca occurred between about 100-300 cal yr BP, suggesting wetter and cooler conditions during the Little Ice Age. Higher Mg/Ca ratios occurred 600-700 cal yr BP, indicating drier and warmer conditions during the end of the Medieval Warm Period. Both ostracode and gastropod {delta}{sup 13}C values decrease up-core, reflecting decomposition of marsh vegetation, which changes from C{sub 4} ({delta}{sup 13}C {approx} -12{per_thousand}) to CAM ({delta}{sup 13}C = -26 {per_thousand})-type vegetation over time.« less

  15. Stable isotopes, Sr/Ca, and Mg/Ca in biogenic carbonates from Petaluma Marsh, northern California, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingram, B.L.; Deckker, P. de; Chivas, A.R.

    1998-10-01

    Stable isotope ({sup 18}O/{sup 16}O and {sup 13}C/{sup 12}C) and minor-element compositions (Sr/Ca and Mg/Ca ratios) of ostracodes and gastropods separated from marsh sediments from San Francisco Bay, Northern California, were used to reconstruct paleoenvironmental changes in Petaluma March over the past 700 yr. The value of {delta}{sup 18}O in the marsh carbonates reflects changes in freshwater inflow, evaporation, and temperature. Mg/Ca and Sr/Ca in ostracode calcite reflect changes in both freshwater inflow and temperature, although primarily reflect temperature changes in the salinity range of about 10--35{per_thousand}. Ostracode {delta}{sup 18}O values show a gradual increase by 5{per_thousand} between 500 yrmore » BP and the present, probably reflecting rising sea level and increased evaporation in the marsh. Superimposed on this trend are higher frequency Mg/Ca and {delta}{sup 18}O variations (3--4{per_thousand}), probably reflecting changes in freshwater inflow and evaporation. A period of low Mg/Ca occurred between about 100--300 cal yr BP, suggesting wetter and cooler conditions during the Little Ice Age. Higher Mg/Ca ratios occurred 600--700 cal yr BP, indicating drier and warmer conditions during the end of the Medieval Warm Period. Both ostracode and gastropod {delta}{sup 13}C values decrease up-core, reflecting decomposition of marsh vegetation, which changes from C{sub 4} ({delta}{sup 13}C {approximately} {minus}12{per_thousand}) to CAM ({delta}{sup 13}C = {minus}26{per_thousand})-type vegetation over time.« less

  16. Ozone profile measurements of McMurdo Station, Antarctica, during the spring of 1987

    NASA Technical Reports Server (NTRS)

    Hofmann, D. J.; Harder, J. W.; Rosen, J. M.; Hereford, J. V.; Carpenter, J. R.

    1989-01-01

    Ozone and temperature profiles were measured in 50 balloon flights at McMurdo Station (78 deg S) during the spring of 1987. Compared to similar data obtained in 1986, stratospheric temperatures were lower and the spring time Antarctic ozone reduction was greater in magnitude, extended to higher altitude, and proceeded at a higher rate in 1987. Ozone partial pressures reached values as low as 3 nbar (as compared to about 10 nbar in 1986) in the 16- to 18-km region in early and late October, down from about 150 nbar in late August. These low values suggest essentially complete removal of ozone in this region. The upper boundary of the depletion region was observed to be 2-3 km higher than in 1986, extending to altitudes as high as 24 km in mid-September. When averaged over September, the ozone mixing ratio at 18 km decayed with a half-life of only 12.4 days, as compared to about 28 days in 1986. Adiabatic vertical motions over 1- to 2-km intervals between 12 and 20 km with consequent ozone reductions were observed in association with the formation of nacreous clouds, indicating these to be rare events on a local scale probably associated with mountain lee waves.

  17. Hygrothermal Analysis of Indoor Environment of Residential Prefabricated Buildings

    NASA Astrophysics Data System (ADS)

    Kraus, Michal

    2017-10-01

    Recent studies show that the relative humidity and the indoor air temperature constitute an important determinant of the quality of indoor air. Hygrothermal microclimate has a significant impact on occupant’s health and their comfort. The study presents the results of experimental measurement of indoor air temperature and relative humidity in selected apartment in prefabricated panel house situated in Ostrava, Czechia. The contribution describes and analysis the relation between indoor air temperature [°C] and relative humidity [%] in this apartment. The experimental object is selected with respect to the housing stock in the Czech Republic. A third of the housing stock in the Czech Republic is composed of prefabricated panel houses. Regeneration and revitalization of these buildings were in the focus of interest during recent years. Building modifications, such as thermal insulation of building envelope or window replacement, lead to a significantly higher level of airtightness of these objects. Humidity and indoor air temperature are measured in 10-minute cycles for two periods. The values of temperature and humidity are measured for the non-heating and the heating season. The length of each experimental period is 30 days. The mean value of indoor air temperature is 22.21 °C and average relative humidity is 45.87% in the non-heating period. The values of 22.62 °C and 35.20% represent average values for the heating period. A slight increase of the average temperature of the indoor environment (+1.85%) is observed. The decrease of the relative humidity is evident at first glance. The relative humidity of the internal environment is approximately 10% lower in the heating period. Long-term decline of relative humidity below 30% brings many problems. It is necessary to take measures to increase of relative humidity in residential prefabricated building. The aquarium appears to be ineffective. The solution may be forced artificial ventilation or humidifiers.

  18. Humboldt's spa: microbial diversity is controlled by temperature in geothermal environments.

    PubMed

    Sharp, Christine E; Brady, Allyson L; Sharp, Glen H; Grasby, Stephen E; Stott, Matthew B; Dunfield, Peter F

    2014-06-01

    Over 200 years ago Alexander von Humboldt (1808) observed that plant and animal diversity peaks at tropical latitudes and decreases toward the poles, a trend he attributed to more favorable temperatures in the tropics. Studies to date suggest that this temperature-diversity gradient is weak or nonexistent for Bacteria and Archaea. To test the impacts of temperature as well as pH on bacterial and archaeal diversity, we performed pyrotag sequencing of 16S rRNA genes retrieved from 165 soil, sediment and biomat samples of 36 geothermal areas in Canada and New Zealand, covering a temperature range of 7.5-99 °C and a pH range of 1.8-9.0. This represents the widest ranges of temperature and pH yet examined in a single microbial diversity study. Species richness and diversity indices were strongly correlated to temperature, with R(2) values up to 0.62 for neutral-alkaline springs. The distributions were unimodal, with peak diversity at 24 °C and decreasing diversity at higher and lower temperature extremes. There was also a significant pH effect on diversity; however, in contrast to previous studies of soil microbial diversity, pH explained less of the variability (13-20%) than temperature in the geothermal samples. No correlation was observed between diversity values and latitude from the equator, and we therefore infer a direct temperature effect in our data set. These results demonstrate that temperature exerts a strong control on microbial diversity when considered over most of the temperature range within which life is possible.

  19. Magnetism of Amorphous and Nano-Crystallized Dc-Sputter-Deposited MgO Thin Films

    PubMed Central

    Mahadeva, Sreekanth K.; Fan, Jincheng; Biswas, Anis; Sreelatha, K.S.; Belova, Lyubov; Rao, K.V.

    2013-01-01

    We report a systematic study of room-temperature ferromagnetism (RTFM) in pristine MgO thin films in their amorphous and nano-crystalline states. The as deposited dc-sputtered films of pristine MgO on Si substrates using a metallic Mg target in an O2 containing working gas atmosphere of (N2 + O2) are found to be X-ray amorphous. All these films obtained with oxygen partial pressure (PO2) ~10% to 80% while maintaining the same total pressure of the working gas are found to be ferromagnetic at room temperature. The room temperature saturation magnetization (MS) value of 2.68 emu/cm3 obtained for the MgO film deposited in PO2 of 10% increases to 9.62 emu/cm3 for film deposited at PO2 of 40%. However, the MS values decrease steadily for further increase of oxygen partial pressure during deposition. On thermal annealing at temperatures in the range 600 to 800 °C, the films become nanocrystalline and as the crystallite size grows with longer annealing times and higher temperature, MS decreases. Our study clearly points out that it is possible to tailor the magnetic properties of thin films of MgO. The room temperature ferromagnetism in MgO films is attributed to the presence of Mg cation vacancies. PMID:28348346

  20. Effects of cumulative stressful and acute variation episodes of farm climate conditions on late embryo/early fetal loss in high producing dairy cows

    NASA Astrophysics Data System (ADS)

    Santolaria, Pilar; López-Gatius, Fernando; García-Ispierto, Irina; Bech-Sàbat, Gregori; Angulo, Eduardo; Carretero, Teresa; Sánchez-Nadal, Jóse Antonio; Yániz, Jesus

    2010-01-01

    The aim of this study was to determine possible relationships between farm climate conditions, recorded from day 0 to day 40 post-artificial insemination (AI), and late embryo/early fetal loss in high producing dairy cows. Pregnancy was diagnosed by rectal ultrasonography between 28 and 34 days post-AI. Fetal loss was registered when a further 80- to 86-day diagnosis proved negative. Climate variables such as air temperature and relative humidity (RH) were monitored in the cubicles area for each 30-min period. Temperature-humidity indices (THI); cumulative stressful values and episodes of acute change (defined as the mean daily value 1.2 times higher or lower than the mean daily values of the 10 previous days) of the climate variables were calculated. The data were derived from 759 cows in one herd. A total of 692 pregnancies (91.2%) carried singletons and 67 (8.8%) carried twins. No triplets were recorded. Pregnancy loss was recorded in 6.7% (51/759) of pregnancies: 5.6% (39/692) in single and 17.9% (12/67) in twin pregnancies. Using logistic regression procedures, a one-unit increase in the daily cumulative number of hours for the THI values higher than 85 during days 11-20 of gestation caused a 1.57-fold increase in the pregnancy loss, whereas the likelihood of fetal loss increased by a factor of 1.16 for each additional episode of acute variation for the maximum THI values during gestation days 0-40. THI values higher than 85 and episodes of acute variation for the maximum THI values were only recorded during the warm and cool periods, respectively. The presence of twins led to a 3.98-fold increase in pregnancy loss. In conclusion, our findings show that cumulative stressful and episodes of acute variation of climatic conditions can compromise the success of gestation during both the cool and warm periods of the year. Twin pregnancy was confirmed as a main factor associated with pregnancy loss.

  1. Seasonal variations in behaviour of thermoregulation in juveniles and adults Liolaemus lutzae (Squamata, Liolaemidae) in a remnant of Brazilian restinga.

    PubMed

    Maia-Carneiro, Thiago; Rocha, Carlos Frederico Duarte

    2013-11-01

    Adaptations of lizards inhabiting hot arid environments should include mechanisms of behavioural thermoregulation. In contrast, in environments with lower temperatures lizards tend to behave as thermoconformers. Herein we aim to infer thermoregulatory behaviours exhibited by Liolaemus lutzae (a lizard species endemic to restingas in the coast of the state of Rio de Janeiro, Brazil) in two different seasonal thermal environments. In the dry season, the body temperatures (Tb) of the lizards were higher than air temperature (Ta) and similar to substrate temperature (Ts), suggesting thermoconformer thermoregulatory behaviour using Ts. During the rainy season, the higher percentage of negative values of ΔTs (=Tb-Ts) and ΔTa (=Tb-Ta) and the tendency for lower Tb compared to Ts suggest a more active behavioural thermoregulation in that season. The ΔTs was higher for juveniles in the rainy season, suggesting that youngest lizards tended to thermoregulate more actively regarding to Ts than adults. L. lutzae probably survives under high Ts due to the behaviour of the individuals sheltering inside burrows or under detritus and burying themselves into the sand. This behavioural flexibility may potentially reduce variations in Tb of active lizards in changing thermal environments both during the daily cycle and between seasons. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Regularities in Low-Temperature Phosphatization of Silicates

    NASA Astrophysics Data System (ADS)

    Savenko, A. V.

    2018-01-01

    The regularities in low-temperature phosphatization of silicates are defined from long-term experiments on the interaction between different silicate minerals and phosphate-bearing solutions in a wide range of medium acidity. It is shown that the parameters of the reaction of phosphatization of hornblende, orthoclase, and labradorite have the same values as for clayey minerals (kaolinite and montmorillonite). This effect may appear, if phosphotization proceeds, not after silicate minerals with a different structure and composition, but after a secondary silicate phase formed upon interaction between silicates and water and stable in a certain pH range. Variation in the parameters of the reaction of phosphatization at pH ≈ 1.8 is due to the stability of the silicate phase different from that at higher pH values.

  3. New measurements of the sticking coefficient and binding energy of molecules on non-porous amorphous solid water in the submonolayer regime

    NASA Astrophysics Data System (ADS)

    He, Jiao; Acharyya, Kinsuk; Emtiaz, S. M.; Vidali, Gianfranco

    2016-06-01

    Sticking and adsorption of molecules on dust grains are two important processes in gas-grain interactions. We accurately measured both the sticking coefficient and the binding energy of several key molecules on the surface of amorphous solid water as a function of coverage.A time-resolved scattering technique was used to measure sticking coefficient of H2, D2, N2, O2, CO, CH4, and CO2 on non-porous amorphous solid water (np-ASW) in the low coverage limit over a wide range of surface temperatures. We found that the time-resolved scattering technique is advantageous over the conventional King-Wells method that underestimates the sticking coefficient. Based on the measured values we suggest a useful general formula of the sticking coefficient as a function of grain temperature and molecule-surface binding energy.We measured the binding energy of N2, CO, O2, CH4, and CO2 on np-ASW, and of N2 and CO on porous amorphous solid water (p-ASW). We were able to measure binding energies down to a fraction of 1% of a layer, thus making these measurements more appropriate for astrochemistry than the existing values. We found that CO2 forms clusters on np-ASW surface even at very low coverage; this may help in explaining the segregation of CO2 in ices. The binding energies of N2, CO, O2, and CH4 on np-ASW decrease with coverage in the submonolayer regime. Their values in the low coverage limit are much higher than what is commonly used in gas-grain models. An empirical formula was used to describe the coverage dependence of the binding energies. We used the newly determined binding energy distributions in a simulation of gas-grain chemistry for cold dense clouds and hot core models. We found that owing to the higher value of desorption energy in the sub-monlayer regime a fraction of all these ices stays much longer and to higher temperature on the grain surface compared to the case using single value energies as currently done in astrochemical models.This work was supported in part by a grant to GV from NSF --- Astronomy & Astrophysics Division (#1311958)

  4. Effects of Nutrient Dynamics, Light and Temperature on the Patchiness of Phytoplankton and Primary Production in the Estuarine and Coastal Zones of Liaodong Bay, China: A Typical Case Study

    NASA Astrophysics Data System (ADS)

    Pei, S.; Laws, E. A.; Ye, S.

    2017-12-01

    Fluvial inputs of nutrients and efficient nutrient recycling mechanisms make estuarine and coastal zones highly productive bodies of water. For the same reasons, they are susceptible to eutrophication problems. In China, eutrophication problems along coasts are becoming serious because of discharges of domestic sewage and industrial wastewater and runoff of agricultural fertilizer. Addressing these problems requires an informed assessment of the factors that controlling algal production. Our study aims at determining the factors that controlling patchiness of phytoplankton and primary production in Liaodong Bay, China that receives large inputs of nutrients from human activities in its watershed, and examining the variation patterns of phytoplankton photosynthesis under both stressors of climate change and human activities. Results of our field study suggest that nutrient concentrations were above growth-rate-saturating concentrations throughout Liaodong bay, with the possible exception of phosphate at some stations. This assessment was consistent with the results of nutrient enrichment experiments and the values of light-saturated photosynthetic rates and areal photosynthetic rates. Two large patches of high biomass and production with dimensions on the order of 10 km reflect the effects of water temperature and variation of light penetration restricted by water turbidity. To examine the effects of irradiance and temperature on light-saturated photosynthetic rates normalized to chlorophyll a concentrations (Popt), light-conditioned Popt values were modeled as a function of the temperature with a satisfactory fit to our field data (R2 = 0.60, p = 0.003). In this model, light-conditioned Popt values increased with temperatures from 22°C to roughly 25°C but declined precipitously at higher temperatures. The relatively high Popt values and low ratios of light absorbed to photosynthesis at coastal stations suggest the highly efficient usage of absorbed light by phytoplankton under replete nutrient levels and favorable temperatures. Comparatively, the low Popt values and high ratios of light absorbed to photosynthesis at estuarine stations suggest rather extreme light limitation and lowly efficient usage of absorbed light in photosynthesis in the Liaohe River estuary.

  5. Effect of drying and frying conditions on physical and chemical characteristics of fish maw from swim bladder of seabass (Lates calcarifer).

    PubMed

    Sinthusamran, Sittichoke; Benjakul, Soottawat

    2015-12-01

    Swim bladder is generated as a by-product during evisceration. It has been used for the production of fish maw, in which several processing parameters determine the characteristics or quality of the resulting fish maw. The present study aimed to investigate the characteristics of fish maws from seabass swim bladder as influenced by drying and frying conditions. The expansion ratio and oil uptake content of fish maw increased as the moisture content of swim bladder increased (P < 0.05). Nevertheless, the expansion ratio of fish maw decreased when the moisture content was higher than 150 g kg(-1) . The L*-value decreased, whilst the a*- and b*-values of fish maw increased with increasing moisture content. When pre-frying and frying temperatures increased, the expansion ratio of fish maw increased (P < 0.05). However, the expansion ratio decreased when the frying was performed at a temperature higher than 200 °C. The oil uptake contents of fish maw with frying temperatures of 180 and 200 °C were in the range of 451.06-578.06 g kg(-1) , whereas the lower contents (378.60-417.17 g kg(-1) ) were found in those having frying temperatures of 220-240 °C. Hardness of fish maw decreased but no changes in fracturability were observed with increasing pre-frying temperature when subsequent frying was carried out 200 °C. Drying temperatures, moisture content, pre-frying and frying temperatures were the factors influencing the characteristics and properties of fish maws from seabass swim bladder. Fish maw could be prepared by pre-frying swim bladder, dried at 60 °C to obtain 150 g kg(-1) moisture content, at 110 °C for 5 min, followed by frying at 200 °C for 20 s. © 2014 Society of Chemical Industry.

  6. Changes in plasma levels of adrenaline, noradrenaline, glucose, lactate and CO2 in the green turtle, Chelonia mydas, during peak period of nesting.

    PubMed

    Alkindi, A Y A; Al-Habsi, A A; Mahmoud, I Y

    2008-02-01

    Plasma concentrations of stress hormones [adrenaline (ADR), noradrenaline (NR)], lactate, glucose and CO2 were monitored during peak nesting period (May-October) at different phases of nesting in the green turtle, Chelonia mydas. These include, emergence from sea, excavating body and nest chambers, oviposition, covering and camouflaging the nest and then returning to sea. Turtles that completed all phases of nesting including oviposition before returning to sea were considered "successful" turtles, while those that completed all phases but failed to lay their eggs were "unsuccessful". Blood samples were taken from the cervical sinus within 5min of capture to avoid stress due to handling. The turtles were usually sampled for blood between 20:00 and 1:00h of nesting time to ensure uniformity in the sampling. Plasma ADR and NR values were highly significant (P<0.001) in successful turtles over emergence, excavating and unsuccessful turtles. Plasma glucose levels remained stable throughout the nesting phases while lactate levels were significantly higher in successful turtles over the other phases (P<0.05) which signifies anaerobic metabolism during nesting. Plasma CO2 values were negatively correlated with ADR and NR (r=-0.258, P=0.03; r=-0.304, P=0.010), respectively. Hematocrit was significantly higher in successful phase (P<0.05) compared to other phases, and this may signify a higher degree of stress in successful turtles. Body temperature were significantly lower (P<0.005) in the excavating phase compared to the other three phases. Overall, body temperatures were lower than sand temperatures around the nest, which may indicate a behavioral thermoregulation used by the turtles during nesting. This information will be of value to the ongoing conservation program at Ras Al-Hadd Reserve in the Sultanate of Oman.

  7. Electrical and optical performance of mid-wavelength infrared InAsSb heterostructure detectors

    NASA Astrophysics Data System (ADS)

    Gomółka, Emilia; Kopytko, Małgorzata; Michalczewski, Krystian; Kubiszyn, Łukasz; Kebłowski, Artur; Gawron, Waldemar; Martyniuk, Piotr; Piotrowski, Józef; Rutkowski, Jarosław

    2017-10-01

    In this work we investigate the high-operating temperature performance of InAsSb/AlSb heterostructure detectors with cut-off wavelengths near 5 μm at 230 K. The devices have been fabricated with different type of the absorbing layer: nominally undoped absorber, and both n- and p-type doped. The results show that the device performance strongly depends on absorber layer doping. Generally, p-type absorber provides higher values of current responsivity than n-type absorber, but at the same time also higher values of dark current. The device with nominally undoped absorbing layer shows moderate values of both current responsivity and dark current. Resulting detectivities D° of non-immersed devices varies from 2×109 to 7×109 cmHz1/2/W at 230 K, which is easily achievable with a two stage thermoelectric cooler.

  8. Crystallite Size-Lattice Strain Estimation and Optical Properties of Mn0.5Zn0.5Fe2O4 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Indrayana, I. P. T.; Suharyadi, E.

    2018-04-01

    In the present work, we performed William-Hall plot using uniform deformation model (UDM) to estimate the crystallite size and lattice strain of Mn0.5Zn0.5Fe2O4 with various calcination temperature. The calculated crystallite sizes are 25.86 nm, 29.55 nm and 24.97 nm for nanoparticles which were calcined at a temperature of 600°C, 800°C and 1000°C, consecutively. The strain of nanoparticles has value in the order of 10-3. Controlling the calcination temperature will facilitate a change in crystallinity of nanoparticles and influence their crystallite size and strain of the crystal lattice. The optical band gap energy of samples nanoparticles is in a range of 1.09 eV – 3.30 eV. Increasing calcination temperature increased the direct and indirect band gap energy. The Urbach energy was found to increase with increased of gap energy. These results demonstrated that higher structural and optical properties of Mn0.5Zn0.5Fe2O4 can be obtained from a higher calcination temperature.

  9. Effects of temperature and light on photosynthesis of dominant species of a northern hardwood forest. [Populus grandidentata, Quercus rubra, Betula papyrifera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jurik, T.W.; Weber, J.A.; Gates, D.M.

    1988-06-01

    The response of CO{sub 2} exchange rate (CER) to temperature and light was determined for 14 dominant plant species of a northern deciduous hardwood forest in northern lower Michigan. Leaves at the top of the canopy had temperature optima near 25 C for CER, whereas leaves in the understory had optima near 20 C. There was no change in optimum temperature over the growing season, and overall shapes of response curves were similar among species. The lack of change in temperature optima may be a result of little change in growing conditions rather than a lack of ability to acclimatize.more » Nine of 11 species in the understory had no significant differences in light-saturated, maximum CERs, whereas at the top of the canopy Populus grandidentata had a higher maximum CER than Quercus rubra and Betula papyrifera. The species in the understory also differed little in light-saturation points for CER. Species at the top of the canopy had higher values for maximum CER, light-saturation point for CER, and maximum conductance than did species in the understory.« less

  10. Water indicators based on SPOT 6 satellite images in irrigated area at the Paracatu River Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Leivas, Janice F.; de C. Teixeira, Antônio Heriberto; Bayma-Silva, Gustavo; Monteiro Garçon, Edlene A.; Ronquim, Carlos Cesar

    2017-10-01

    The Paracatu River is the largest affluent of the São Francisco River, Brazil. The main water use in the Paracatu river basin is irrigation, which occupies an area of 37,150 ha. The objective in this study was to obtain water indicators at irrigated areas using the SAFER (Simple Algorithm For Evapotranspiration Retrieving) and the Penman-Monteith models with images of SPOT 6 satellite (without the thermal band). The parameters obtained are evapotranspiration (ET), albedo (α), biomass (BIO), surface temperature (Tsup) and water productivity (PA) in irrigated areas of Paracatu River Basin. We used 2 satellite images by the sensor SPOT6 (by Astrium Company) with a spatial resolution of 6 m (August 8, 2014 and August 23, 2015) and data from meteorological stations. In irrigated areas, the NDVI reached values higher than 0.76, due the response of vegetation to irrigation. The daily average albedo was 0.18 ± 0.01 and 0.02 ± 0.17 respectively. In the analysis of the surface temperature (Tsup), it can be observed that in the image of 2015, mean values higher than those observed in the image of 2014 (303.03 +/- 1.97 K and 299.34 +/- 3.47 K, respectively). In 2015, due to increased atmospheric evaporative demand, ET reached values higher than those seen in the scene in 2014. The average daily evapotranspiration rate in Paracatu for 2014 scene was of 0.81+/-1.49 mm, with a maximum value of 8.96 mm at the irrigated areas. In image of 2015 the average evapotranspiration (ET) values was 1.87+/-1.27 mm. The results obtained in this study may assist in the monitoring of irrigated agriculture to face a trend of scarcity of water resources and of increasing conflicts over water use as occurs in the Paracatu River Basin.

  11. Dissipative properties of hot and dense hadronic matter in an excluded-volume hadron resonance gas model

    NASA Astrophysics Data System (ADS)

    Kadam, Guru Prakash; Mishra, Hiranmaya

    2015-09-01

    We estimate dissipative properties, viz., shear and bulk viscosities of hadronic matter using relativistic Boltzmann equation in relaxation time approximation within the framework of excluded-volume hadron resonance gas (EHRG) model. We find that at zero baryon chemical potential the shear viscosity to entropy ratio (η /s ) decreases with temperature while at finite baryon chemical potential this ratio shows the same behavior as a function of temperature but reaches close to the Kovtun-Son-Starinets (KSS) bound. Further along the chemical freezeout curve, ratio η /s is almost constant apart from small initial monotonic rise. This observation may have some relevance to the experimental finding that the differential elliptic flow of charged hadrons does not change considerably at lower center-of-mass energy. We further find that bulk viscosity to entropy density (ζ /s ) decreases with temperature while this ratio has higher value at finite baryon chemical potential at higher temperature. Along the freezeout curve ζ /s decreases monotonically at lower center-of-mass energy and then saturates.

  12. Capability of simultaneous Rayleigh LiDAR and O2 airglow measurements in exploring the short period wave characteristics

    NASA Astrophysics Data System (ADS)

    Taori, Alok; Raghunath, Karnam; Jayaraman, Achuthan

    We use combination of simultaneous measurements made with Rayleigh lidar and O2 airglow monitoring to improve lidar investigation capability to cover a higher altitude range. We feed instantaneous O2 airglow temperatures instead the model values at the top altitude for subsequent integration method of temperature retrieval using Rayleigh lidar back scattered signals. Using this method, errors in the lidar temperature estimates converges at higher altitudes indicating better altitude coverage compared to regular methods where model temperatures are used instead of real-time measurements. This improvement enables the measurements of short period waves at upper mesospheric altitudes (~90 km). With two case studies, we show that above 60 km the few short period wave amplitude drastically increases while, some of the short period wave show either damping or saturation. We claim that by using such combined measurements, a significant and cost effective progress can be made in the understanding of short period wave processes which are important for the coupling across the different atmospheric regions.

  13. Observation of magnetization reversal behavior in Sm0.9Gd0.1Cr0.85Mn0.15O3 orthochromites

    NASA Astrophysics Data System (ADS)

    Panwar, Neeraj; Joby, Jostin P.; Kumar, Surendra; Coondoo, Indrani; Vasundhara, M.; Kumar, Nitu; Palai, Ratnakar; Singhal, Rahul; Katiyar, Ram S.

    2018-05-01

    Impact of co-doping (Gd and Mn) on the magnetic properties has been systematically investigated in SmCrO3 compound. For the synthesized compound Sm0.9Gd0.1Cr0.85Mn0.15O3 (SGCMO), below the Neel transition temperature and under low applied magnetic field, temperature induced magnetization reversal at 105 K (crossover temperature) was noticed in the field cooled magnetization curve. Magnetization reversal attained maximum value of -1.03 emu/g at 17 K where spin reorientation occurred. The magnetization reversal disappeared under higher applied field. From the M-H plots an enhancement in the magnetization was observed due to Gd doping. Magnetocaloric effect at low temperatures measured through the magnetic entropy change was found sixteen times higher for this compound as compared to pristine SmCrO3 and twice to that of SmCr0.85Mn0.15O3 compound. The study reveals the importance of co-doping in tailoring the magnetic properties of rare-earth chromites.

  14. Silicon device performance measurements to support temperature range enhancement

    NASA Technical Reports Server (NTRS)

    Bromstead, James; Weir, Bennett; Johnson, R. Wayne; Askew, Ray

    1992-01-01

    Testing of the metal oxide semiconductor (MOS)-controlled thyristor (MCT) has uncovered a failure mechanism at elevated temperature. The failure appears to be due to breakdown of the gate oxide. Further testing is underway to verify the failure mode. Higher current level inverters were built to demonstrate 200 C operation of the N-MOSFET's and insulated-gate-bipolar transistors (IGBT's) and for life testing. One MOSFET failed early in testing. The origin of this failure is being studied. No IGBT's have failed. A prototype 28-to-42 V converter was built and is being tested at room temperature. The control loop is being finalized. Temperature stable, high value (10 micro-F) capacitors appear to be the limiting factor in the design at this time. In this application, the efficiency will be lower for the IGBT version due to the large V sub(cesat) (3.5-4 V) compared to the input voltage of 28 V. The MOSFET version should have higher efficiency; however, the MOSFET does not appear to be as robust at 200 C. Both versions are built for comparison.

  15. Long-term temperature monitoring at the biological community site on the Nankai accretionary prism off Kii Peninsula

    NASA Astrophysics Data System (ADS)

    Goto, S.; Hamamoto, H.; Yamano, M.; Kinoshita, M.; Ashi, J.

    2008-12-01

    Nankai subduction zone off Kii Peninsula is one of the most intensively surveyed areas for studies on the seismogenic zone. Multichannel seismic reflection surveys carried out in this area revealed the existence of splay faults that branched from the subduction zone plate boundary [Park et al., 2002]. Along the splay faults, reversal of reflection polarity was observed, indicating elevated pore fluid pressure along the faults. Cold seepages with biological communities were discovered along a seafloor outcrop of one of the splay faults through submersible observations. Long-term temperature monitoring at a biological community site along the outcrop revealed high heat flow carried by upward fluid flow (>180 mW/m2) [Goto et al., 2003]. Toki et al. [2004] estimated upward fluid flow rates of 40-200 cm/yr from chloride distribution of interstitial water extracted from sediments in and around biological community sites along the outcrop. These observation results suggest upward fluid flow along the splay fault. In order to investigate hydrological nature of the splay fault, we conducted long-term temperature monitoring again in the same cold seepage site where Goto et al. [2003] carried out long-term temperature monitoring. In this presentation, we present results of the temperature monitoring and estimate heat flow carried by upward fluid flow from the temperature records. In this long-term temperature monitoring, we used stand-alone heat flow meter (SAHF), a probe-type sediment temperature recorder. Two SAHFs (SAHF-3 and SAHF-4) were used in this study. SAHF-4 was inserted into a bacterial mat, within several meters of which the previous long-term temperature monitoring was conducted. SAHF-3 was penetrated into ordinary sediment near the bacterial mat. The sub-bottom temperature records were obtained for 8 months. The subsurface temperatures oscillated reflecting bottom- water temperature variation (BTV). For sub-bottom temperatures measured with SAHF-3 (outside of the bacterial mat), we found that the effects of the BTV propagated into sediment by conduction only. By correcting the effect of the BTV, conductive heat flow estimated is higher than 100 mW/m2. Sub-bottom temperatures measured within bacterial mat (SAHF-4) except for the topmost sensor could be explained by a conduction model. The heat flow estimated based on the conduction model is similar to that measured with SAHF-3. The temperature of the topmost sensor is slightly higher than that expected from the conduction model. To explain the high temperature, upward fluid flow at a rate of 10-7 m/s order is needed. Heat flow carried by the upward fluid flow is higher than that estimated by Goto et al. [2003]. Heat flow value expected from the distribution of heat flow around this area is 70-80 mW/m2. The high heat flow values inside and outside the bacterial mat estimated in the present and previous studies may reflect upward fluid flow along the splay fault.

  16. Effect of Thermal Aging and Test Temperatures on Fracture Toughness of SS 316(N) Welds

    NASA Astrophysics Data System (ADS)

    Dutt, B. Shashank; Babu, M. Nani; Shanthi, G.; Moitra, A.; Sasikala, G.

    2018-03-01

    The effect of thermal aging and test temperatures on fracture toughness (J 0.2) of SS 316(N) weld material has been studied based on J-R curve evaluations. The aging of the welds was carried out at temperatures 370, 475 and 550 °C and for durations varying from 1000 to 20,000 h. The fracture toughness (J-R curve) tests were carried out at 380 and 550 °C for specimens after all aging conditions, including as-weld condition. The initiation fracture toughness (J 0.2) of the SS 316(N) weld material has shown degradation after 20,000-h aging durations and is reflected in all the test temperatures and aging temperatures. The fracture toughness after different aging conditions and test temperatures, including as-weld condition, was higher than the minimum specified value for this class of welds.

  17. Low-temperature plasticity of olivine revisited with in situ TEM nanomechanical testing.

    PubMed

    Idrissi, Hosni; Bollinger, Caroline; Boioli, Francesca; Schryvers, Dominique; Cordier, Patrick

    2016-03-01

    The rheology of the lithospheric mantle is fundamental to understanding how mantle convection couples with plate tectonics. However, olivine rheology at lithospheric conditions is still poorly understood because experiments are difficult in this temperature range where rocks and mineral become very brittle. We combine techniques of quantitative in situ tensile testing in a transmission electron microscope and numerical modeling of dislocation dynamics to constrain the low-temperature rheology of olivine. We find that the intrinsic ductility of olivine at low temperature is significantly lower than previously reported values, which were obtained under strain-hardened conditions. Using this method, we can anchor rheological laws determined at higher temperature and can provide a better constraint on intermediate temperatures relevant for the lithosphere. More generally, we demonstrate the possibility of characterizing the mechanical properties of specimens, which can be available in the form of submillimeter-sized particles only.

  18. Stability of urea in solution and pharmaceutical preparations.

    PubMed

    Panyachariwat, Nattakan; Steckel, Hartwig

    2014-01-01

    The stability of urea in solution and pharmaceutical preparations was analyzed as a function of temperature (25°-60°C), pH (3.11-9.67), and initial urea concentration (2.5%-20%). This study was undertaken to (i) obtain more extensive, quantitative information relative to the degradation of urea in both aqueous and non-aqueous solutions and in pharmaceutical preparations, and (ii) test the effects of initial urea concentration, pH, buffer, and temperature values on urea degradation. The stability analysis shows that urea is more stable at the pH range of 4-8 and the stability of urea decreases by increase in temperature for all pH values. Within the experimental range of temperature and initial urea concentration values, the lowest urea degradation was found with lactate buffer pH 6.0. The urea decomposition rate in solution and pharmaceutical preparations shows the dependence of the initial urea concentrations. At higher initial urea concentrations, the rate of degradation is a decreasing function with time. This suggests that the reverse reaction is a factor in the degradation of concentrated urea solution. For non-aqueous solvents, isopropanol showed the best effort in retarding the decomposition of urea. Since the losses in urea is directly influenced by its stability at a given temperature and pH, the stability analysis of urea by the proposed model can be used to prevent the loss and optimize the operating condition for urea-containing pharmaceutical preparations.

  19. Assessment of the effects of environmental radiation on wind chill equivalent temperatures.

    PubMed

    Shitzer, Avraham

    2008-09-01

    Combinations of wind-driven convection and environmental radiation in cold weather, make the environment "feel" colder. The relative contributions of these mechanisms, which form the basis for estimating wind chill equivalent temperatures (WCETs), are studied over a wide range of environmental conditions. Distinction is made between direct solar radiation and environmental radiation. Solar radiation, which is not included in the analysis, has beneficial effects, as it counters and offsets some of the effects due to wind and low air temperatures. Environmental radiation effects, which are included, have detrimental effects in enhancing heat loss from the human body, thus affecting the overall thermal sensation due to the environment. The analysis is performed by a simple, steady-state analytical model of human-environment thermal interaction using upper and lower bounds of environmental radiation heat exchange. It is shown that, over a wide range of relevant air temperatures and reported wind speeds, convection heat losses dominate over environmental radiation. At low wind speeds radiation contributes up to about 23% of the overall heat loss from exposed skin areas. Its relative contributions reduce considerably as the time of the exposure prolongs and exposed skin temperatures drop. At still higher wind speeds, environmental radiation effects become much smaller contributing about 5% of the total heat loss. These values fall well within the uncertainties associated with the parameter values assumed in the computation of WCETs. It is also shown that environmental radiation effects may be accommodated by adjusting reported wind speeds slightly above their reported values.

  20. Determination of Critical Parameters Based on the Intensity of Transmitted Light Around Gas-Liquid Interface: Critical Parameters of CO

    NASA Astrophysics Data System (ADS)

    Nakayama, Masaki; Katano, Hiroaki; Sato, Haruki

    2014-05-01

    A precise determination of the critical temperature and density for technically important fluids would be possible on the basis of the digital image for the visual observation of the phase boundary in the vicinity of the critical point since the sensitivity and resolution are higher than those of naked eyes. In addition, the digital image can avoid the personal uncertainty of an observer. A strong density gradient occurs in a sample cell at the critical point due to gravity. It was carefully assessed to determine the critical density, where the density profile in the sample cell can be observed from the luminance profile of a digital image. The density-gradient profile becomes symmetric at the critical point. One of the best fluids, whose thermodynamic properties have been measured with the highest reliability among technically important fluids, would be carbon dioxide. In order to confirm the reliability of the proposed method, the critical temperature and density of carbon dioxide were determined using the digital image. The critical temperature and density values of carbon dioxide are ( and ( kg m, respectively. The critical temperature and density values agree with the existing best values within estimated uncertainties. The reliability of the method was confirmed. The critical pressure, 7.3795 MPa, corresponding to the determined critical temperature of 304.143 K is also proposed. A new set of parameters for the vapor-pressure equation is also provided.

Top