Sample records for higher temporal frequency

  1. A Spatial and Temporal Frequency Based Figure-Ground Processor

    NASA Astrophysics Data System (ADS)

    Weisstein, Namoi; Wong, Eva

    1990-03-01

    Recent findings in visual psychophysics have shown that figure-ground perception can be specified by the spatial and temporal response characteristics of the visual system. Higher spatial frequency regions of the visual field are perceived as figure and lower spatial frequency regions are perceived as background/ (Klymenko and Weisstein, 1986, Wong and Weisstein, 1989). Higher temporal frequency regions are seen as background and lower temporal frequency regions are seen as figure (Wong and Weisstein, 1987, Klymenko, Weisstein, Topolski, and Hsieh, 1988). Thus, high spatial and low temporal frequencies appear to be associated with figure and low spatial and high temporal frequencies appear to be associated with background.

  2. Temporal Instabilities in Amblyopic Perception: A Quantitative Approach.

    PubMed

    Thiel, Aylin; Iftime, Adrian

    2016-04-01

    The purpose of this study is to quantify the temporal characteristics of spatial misperceptions in human amblyopia. Twenty-two adult participants with strabismus, strabismic, anisometropic, or mixed amblyopia were asked to describe their subjective percept of static geometrical patterns with different spatial frequencies and shapes, as seen with their non-dominant eye. We generated digital reconstructions of their perception (static images or movies) that were subsequently validated by the subjects using consecutive matching sessions. We calculated the Shannon entropy variation in time for each recorded movie, as a measure of temporal instability. Nineteen of the 22 subjects perceived temporal instabilities that can be broadly classified in two categories. We found that the average frequency of the perceived temporal instabilities is ∼1 Hz. The stimuli with higher spatial frequencies yielded more often temporally unstable perceptions with higher frequencies. We suggest that type and amount of temporal instabilities in amblyopic vision are correlated with the etiology and spatial frequency of the stimulus.

  3. Endogenous modulation of low frequency oscillations by temporal expectations

    PubMed Central

    Cravo, Andre M.; Rohenkohl, Gustavo; Wyart, Valentin

    2011-01-01

    Recent studies have associated increasing temporal expectations with synchronization of higher frequency oscillations and suppression of lower frequencies. In this experiment, we explore a proposal that low-frequency oscillations provide a mechanism for regulating temporal expectations. We used a speeded Go/No-go task and manipulated temporal expectations by changing the probability of target presentation after certain intervals. Across two conditions, the temporal conditional probability of target events differed substantially at the first of three possible intervals. We found that reactions times differed significantly at this first interval across conditions, decreasing with higher temporal expectations. Interestingly, the power of theta activity (4–8 Hz), distributed over central midline sites, also differed significantly across conditions at this first interval. Furthermore, we found a transient coupling between theta phase and beta power after the first interval in the condition with high temporal expectation for targets at this time point. Our results suggest that the adjustments in theta power and the phase-power coupling between theta and beta contribute to a central mechanism for controlling neural excitability according to temporal expectations. PMID:21900508

  4. Temporal-frequency tuning of cross-orientation suppression in the cat striate cortex.

    PubMed

    Allison, J D; Smith, K R; Bonds, A B

    2001-01-01

    A sinusoidal mask grating oriented orthogonally to and superimposed onto an optimally oriented base grating reduces a cortical neuron's response amplitude. The spatial selectivity of cross-orientation suppression (XOR) has been described, so for this paper we investigated the temporal properties of XOR. We recorded from single striate cortical neurons (n = 72) in anesthetized and paralyzed cats. After quantifying the spatial and temporal characteristics of each cell's excitatory response to a base grating, we measured the temporal-frequency tuning of XOR by systematically varying the temporal frequency of a mask grating placed at a null orientation outside of the cell's excitatory orientation domain. The average preferred temporal frequency of the excitatory response of the neurons in our sample was 3.8 (+/- 1.5 S.D.) Hz. The average cutoff frequency for the sample was 16.3 (+/- 1.7) Hz. The average preferred temporal frequency (7.0 +/- 2.6 Hz) and cutoff frequency (20.4 +/- 6.9 Hz) of the XOR were significantly higher. The differences averaged 1.1 (+/- 0.6) octaves for the peaks and 0.3 (+/- 0.4) octaves for the cutoffs. The XOR mechanism's preference for high temporal frequencies suggests a possible extrastriate origin for the effect and could help explain the low-pass temporal-frequency response profile displayed by most striate cortical neurons.

  5. Frequency-following and connectivity of different visual areas in response to contrast-reversal stimulation.

    PubMed

    Stephen, Julia M; Ranken, Doug F; Aine, Cheryl J

    2006-01-01

    The sensitivity of visual areas to different temporal frequencies, as well as the functional connections between these areas, was examined using magnetoencephalography (MEG). Alternating circular sinusoids (0, 3.1, 8.7 and 14 Hz) were presented to foveal and peripheral locations in the visual field to target ventral and dorsal stream structures, respectively. It was hypothesized that higher temporal frequencies would preferentially activate dorsal stream structures. To determine the effect of frequency on the cortical response we analyzed the late time interval (220-770 ms) using a multi-dipole spatio-temporal analysis approach to provide source locations and timecourses for each condition. As an exploratory aspect, we performed cross-correlation analysis on the source timecourses to determine which sources responded similarly within conditions. Contrary to predictions, dorsal stream areas were not activated more frequently during high temporal frequency stimulation. However, across cortical sources the frequency-following response showed a difference, with significantly higher power at the second harmonic for the 3.1 and 8.7 Hz stimulation and at the first and second harmonics for the 14 Hz stimulation with this pattern seen robustly in area V1. Cross-correlations of the source timecourses showed that both low- and high-order visual areas, including dorsal and ventral stream areas, were significantly correlated in the late time interval. The results imply that frequency information is transferred to higher-order visual areas without translation. Despite the less complex waveforms seen in the late interval of time, the cross-correlation results show that visual, temporal and parietal cortical areas are intricately involved in late-interval visual processing.

  6. Effects of Frequency Separation and Diotic/Dichotic Presentations on the Alternation Frequency Limits in Audition Derived from a Temporal Phase Discrimination Task.

    PubMed

    Kanaya, Shoko; Fujisaki, Waka; Nishida, Shin'ya; Furukawa, Shigeto; Yokosawa, Kazuhiko

    2015-02-01

    Temporal phase discrimination is a useful psychophysical task to evaluate how sensory signals, synchronously detected in parallel, are perceptually bound by human observers. In this task two stimulus sequences synchronously alternate between two states (say, A-B-A-B and X-Y-X-Y) in either of two temporal phases (ie A and B are respectively paired with X and Y, or vice versa). The critical alternation frequency beyond which participants cannot discriminate the temporal phase is measured as an index characterizing the temporal property of the underlying binding process. This task has been used to reveal the mechanisms underlying visual and cross-modal bindings. To directly compare these binding mechanisms with those in another modality, this study used the temporal phase discrimination task to reveal the processes underlying auditory bindings. The two sequences were alternations between two pitches. We manipulated the distance between the two sequences by changing intersequence frequency separation, or presentation ears (diotic vs dichotic). Results showed that the alternation frequency limit ranged from 7 to 30 Hz, becoming higher as the intersequence distance decreased, as is the case with vision. However, unlike vision, auditory phase discrimination limits were higher and more variable across participants. © 2015 SAGE Publications.

  7. Rightward dominance in temporal high-frequency electrical asymmetry corresponds to higher resting heart rate and lower baroreflex sensitivity in a heterogeneous population.

    PubMed

    Tegeler, Charles H; Shaltout, Hossam A; Tegeler, Catherine L; Gerdes, Lee; Lee, Sung W

    2015-06-01

    Explore potential use of a temporal lobe electrical asymmetry score to discriminate between sympathetic and parasympathetic tendencies in autonomic cardiovascular regulation. 131 individuals (82 women, mean age 43.1, range 13-83) with diverse clinical conditions completed inventories for depressive (CES-D or BDI-II) and insomnia-related (ISI) symptomatology, and underwent five-minute recordings of heart rate and blood pressure, allowing calculation of heart rate variability and baroreflex sensitivity (BRS), followed by one-minute, two-channel, eyes-closed scalp recordings of brain electrical activity. A temporal lobe high-frequency (23-36 Hz) electrical asymmetry score was calculated for each subject by subtracting the average amplitude in the left temporal region from amplitude in the right temporal region, and dividing by the lesser of the two. Depressive and insomnia-related symptomatology exceeding clinical threshold levels were reported by 48% and 50% of subjects, respectively. Using a cutoff value of 5% or greater to define temporal high-frequency asymmetry, subjects with leftward compared to rightward asymmetry were more likely to report use of a sedative-hypnotic medication (42% vs. 22%, P = 0.02). Among subjects with asymmetry of 5% or greater to 30% or greater, those with rightward compared to leftward temporal high-frequency asymmetry had higher resting heart rate (≥5% asymmetry, 72.3 vs. 63.8, P = 0.004; ≥10%, 71.5 vs. 63.0, P = 0.01; ≥20%, 72.2 vs. 64.2, P = 0.05; ≥30%, 71.4 vs. 64.6, P = 0.05). Subjects with larger degrees of rightward compared to leftward temporal high-frequency asymmetry had lower baroreflex sensitivity (≥40% asymmetry, 10.6 vs. 16.4, P = 0.03; ≥50% asymmetry, 10.4 vs. 16.7, P = 0.05). In a heterogeneous population, individuals with rightward compared to leftward temporal high-frequency electrical asymmetry had higher resting heart rate and lower BRS. Two-channel recording of brain electrical activity from bilateral temporal regions appears to hold promise for further investigation as a means to assess cortical activity associated with autonomic cardiovascular regulation.

  8. Separating monocular and binocular neural mechanisms mediating chromatic contextual interactions.

    PubMed

    D'Antona, Anthony D; Christiansen, Jens H; Shevell, Steven K

    2014-04-17

    When seen in isolation, a light that varies in chromaticity over time is perceived to oscillate in color. Perception of that same time-varying light may be altered by a surrounding light that is also temporally varying in chromaticity. The neural mechanisms that mediate these contextual interactions are the focus of this article. Observers viewed a central test stimulus that varied in chromaticity over time within a larger surround that also varied in chromaticity at the same temporal frequency. Center and surround were presented either to the same eye (monocular condition) or to opposite eyes (dichoptic condition) at the same frequency (3.125, 6.25, or 9.375 Hz). Relative phase between center and surround modulation was varied. In both the monocular and dichoptic conditions, the perceived modulation depth of the central light depended on the relative phase of the surround. A simple model implementing a linear combination of center and surround modulation fit the measurements well. At the lowest temporal frequency (3.125 Hz), the surround's influence was virtually identical for monocular and dichoptic conditions, suggesting that at this frequency, the surround's influence is mediated primarily by a binocular neural mechanism. At higher frequencies, the surround's influence was greater for the monocular condition than for the dichoptic condition, and this difference increased with temporal frequency. Our findings show that two separate neural mechanisms mediate chromatic contextual interactions: one binocular and dominant at lower temporal frequencies and the other monocular and dominant at higher frequencies (6-10 Hz).

  9. Definition of a temporal distribution index for high temporal resolution precipitation data over Peninsular Spain and the Balearic Islands: the fractal dimension; and its synoptic implications

    NASA Astrophysics Data System (ADS)

    Meseguer-Ruiz, Oliver; Osborn, Timothy J.; Sarricolea, Pablo; Jones, Philip D.; Cantos, Jorge Olcina; Serrano-Notivoli, Roberto; Martin-Vide, Javier

    2018-03-01

    Precipitation on the Spanish mainland and in the Balearic archipelago exhibits a high degree of spatial and temporal variability, regardless of the temporal resolution of the data considered. The fractal dimension indicates the property of self-similarity, and in the case of this study, wherein it is applied to the temporal behaviour of rainfall at a fine (10-min) resolution from a total of 48 observatories, it provides insights into its more or less convective nature. The methodology of Jenkinson & Collison which automatically classifies synoptic situations at the surface, as well as an adaptation of this methodology at 500 hPa, was applied in order to gain insights into the synoptic implications of extreme values of the fractal dimension. The highest fractal dimension values in the study area were observed in places with precipitation that has a more random behaviour over time with generally high totals. Four different regions in which the atmospheric mechanisms giving rise to precipitation at the surface differ from the corresponding above-ground mechanisms have been identified in the study area based on the fractal dimension. In the north of the Iberian Peninsula, high fractal dimension values are linked to a lower frequency of anticyclonic situations, whereas the opposite occurs in the central region. In the Mediterranean, higher fractal dimension values are associated with a higher frequency of the anticyclonic type and a lower frequency of the advective type from the east. In the south, lower fractal dimension values indicate higher frequency with respect to the anticyclonic type from the east and lower frequency with respect to the cyclonic type.

  10. X-Ray Variability Characteristics of the Seyfert 1 Galaxy NGC 3783

    NASA Astrophysics Data System (ADS)

    Markowitz, A.

    2005-12-01

    We have characterized the energy-dependent X-ray variability properties of the Seyfert 1 galaxy NGC 3783 using archival XMM-Newton and Rossi X-Ray Timing Explorer data. The high-frequency fluctuation power spectral density function (PSD) slope is consistent with flattening toward higher energies. Light-curve cross-correlation functions yield no significant lags, but peak coefficients generally decrease as energy separation of the bands increases on both short and long timescales. We have measured the coherence between various X-ray bands over the temporal frequency range of 6×10-8-1×10-4 Hz; this range includes the temporal frequency of the low-frequency PSD break tentatively detected by Markowitz et al. and includes the lowest temporal frequency over which coherence has been measured in any active galactic nucleus to date. Coherence is generally near unity at these temporal frequencies, although it decreases slightly as energy separation of the bands increases. Temporal frequency-dependent phase lags are detected on short timescales; phase lags are consistent with increasing as energy separation increases or as temporal frequency decreases. All of these results are similar to those obtained previously for several Seyfert galaxies and stellar mass black hole systems. Qualitatively, these results are consistent with the variability models of Kotov et al. and Lyubarskii, wherein the X-ray variability is due to inwardly propagating variations in the local mass accretion rate.

  11. Separate channels for the analysis of the shape and the movement of moving visual stimulus.

    PubMed

    Tolhurst, D J

    1973-06-01

    1. The effects of temporal modulation on the properties of spatial frequency channels have been investigated using adaptation.2. Adapting to drifting sinusoidal gratings caused threshold elevation that was both spatial frequency and direction specific. Little systematic difference was found between the band widths of the elevation curves for drifting and stationary gratings.3. It was confirmed that adaptation fails to reveal channels at low spatial frequencies when stationary gratings are used. However, channels were revealed at frequencies at least as low as 0.66 c/deg when the test gratings were made to move. These channels are adapted only a little by stationary gratings, confirming their dependence on movement.4. The existence of movement-sensitive channels at low spatial frequencies explains the well known observation that temporal modulation greatly increases the sensitivity of the visual system to low spatial frequencies.5. Temporal modulation was effective at revealing these channels only when the flicker or movement of the test patterns was apparent to the observer; only at low spatial frequencies did patterns, modulated at low rates, actually appear to be temporarily modulated at threshold. At higher spatial frequencies, they were indistinguishable from stationary patterns until the contrast was some way above the detection threshold.6. It is suggested, therefore, that the movement-sensitive channels are responsible for signalling the occurrence of movement; the channels at higher spatial frequencies give no information about temporal changes. These two systems of channels are compared to the Y- and X-cells respectively of the cat.

  12. Frequency modulation of neural oscillations according to visual task demands.

    PubMed

    Wutz, Andreas; Melcher, David; Samaha, Jason

    2018-02-06

    Temporal integration in visual perception is thought to occur within cycles of occipital alpha-band (8-12 Hz) oscillations. Successive stimuli may be integrated when they fall within the same alpha cycle and segregated for different alpha cycles. Consequently, the speed of alpha oscillations correlates with the temporal resolution of perception, such that lower alpha frequencies provide longer time windows for perceptual integration and higher alpha frequencies correspond to faster sampling and segregation. Can the brain's rhythmic activity be dynamically controlled to adjust its processing speed according to different visual task demands? We recorded magnetoencephalography (MEG) while participants switched between task instructions for temporal integration and segregation, holding stimuli and task difficulty constant. We found that the peak frequency of alpha oscillations decreased when visual task demands required temporal integration compared with segregation. Alpha frequency was strategically modulated immediately before and during stimulus processing, suggesting a preparatory top-down source of modulation. Its neural generators were located in occipital and inferotemporal cortex. The frequency modulation was specific to alpha oscillations and did not occur in the delta (1-3 Hz), theta (3-7 Hz), beta (15-30 Hz), or gamma (30-50 Hz) frequency range. These results show that alpha frequency is under top-down control to increase or decrease the temporal resolution of visual perception.

  13. Unified treatment and measurement of the spectral resolution and temporal effects in frequency-resolved sum-frequency generation vibrational spectroscopy (SFG-VS).

    PubMed

    Velarde, Luis; Wang, Hong-Fei

    2013-12-14

    The lack of understanding of the temporal effects and the restricted ability to control experimental conditions in order to obtain intrinsic spectral lineshapes in surface sum-frequency generation vibrational spectroscopy (SFG-VS) have limited its applications in surface and interfacial studies. The emergence of high-resolution broadband sum-frequency generation vibrational spectroscopy (HR-BB-SFG-VS) with sub-wavenumber resolution [Velarde et al., J. Chem. Phys., 2011, 135, 241102] offers new opportunities for obtaining and understanding the spectral lineshapes and temporal effects in SFG-VS. Particularly, the high accuracy of the HR-BB-SFG-VS experimental lineshape provides detailed information on the complex coherent vibrational dynamics through direct spectral measurements. Here we present a unified formalism for the theoretical and experimental routes for obtaining an accurate lineshape of the SFG response. Then, we present a detailed analysis of a cholesterol monolayer at the air/water interface with higher and lower resolution SFG spectra along with their temporal response. With higher spectral resolution and accurate vibrational spectral lineshapes, it is shown that the parameters of the experimental SFG spectra can be used both to understand and to quantitatively reproduce the temporal effects in lower resolution SFG measurements. This perspective provides not only a unified picture but also a novel experimental approach to measuring and understanding the frequency-domain and time-domain SFG response of a complex molecular interface.

  14. Frequency difference limens at high frequencies: evidence for a transition from a temporal to a place code.

    PubMed

    Moore, Brian C J; Ernst, Stephan M A

    2012-09-01

    It is commonly believed that difference limens for frequency (DLFs) for pure tones depend on a temporal mechanism (phase locking) for frequencies up to 4-5 kHz and a place mechanism at higher frequencies. The DLFs predicted from a place mechanism, expressed as a proportion of center frequency (Δf/f), should be approximately invariant with frequency at medium to high frequencies. If there is a transition from a temporal to a place mechanism, Δf/f should increase with increasing center frequency until the transition occurs, and then reach a plateau. Published data do not show such an effect. In this study, DLFs were measured for center frequencies from 2 to 14 kHz, using earphones designed to produce a flat response at the eardrum. The level of every tone was varied over a range of ±4 dB, to reduce loudness cues. The value of Δf/f increased progressively from 2 to 8 kHz, but did not change significantly for frequencies from 8 to 14 kHz. The results are consistent with the idea that there is a transition from a temporal to a place mechanism at about 8 kHz, rather than at 4-5 kHz, as is commonly assumed.

  15. Reduction of magnetic field fluctuations in powered magnets for NMR using inductive measurements and sampled-data feedback control.

    PubMed

    Li, Mingzhou; Schiano, Jeffrey L; Samra, Jenna E; Shetty, Kiran K; Brey, William W

    2011-10-01

    Resistive and hybrid (resistive/superconducting) magnets provide substantially higher magnetic fields than those available in low-temperature superconducting magnets, but their relatively low spatial homogeneity and temporal field fluctuations are unacceptable for high resolution NMR. While several techniques for reducing temporal fluctuations have demonstrated varying degrees of success, this paper restricts attention to methods that utilize inductive measurements and feedback control to actively cancel the temporal fluctuations. In comparison to earlier studies using analog proportional control, this paper shows that shaping the controller frequency response results in significantly higher reductions in temporal fluctuations. Measurements of temporal fluctuation spectra and the frequency response of the instrumentation that cancels the temporal fluctuations guide the controller design. In particular, we describe a sampled-data phase-lead-lag controller that utilizes the internal model principle to selectively attenuate magnetic field fluctuations caused by the power supply ripple. We present a quantitative comparison of the attenuation in temporal fluctuations afforded by the new design and a proportional control design. Metrics for comparison include measurements of the temporal fluctuations using Faraday induction and observations of the effect that the fluctuations have on nuclear resonance measurements. Copyright © 2011. Published by Elsevier Inc.

  16. Coherent storage of temporally multimode light using a spin-wave atomic frequency comb memory

    NASA Astrophysics Data System (ADS)

    Gündoǧan, M.; Mazzera, M.; Ledingham, P. M.; Cristiani, M.; de Riedmatten, H.

    2013-04-01

    We report on the coherent and multi-temporal mode storage of light using the full atomic frequency comb memory scheme. The scheme involves the transfer of optical atomic excitations in Pr3+:Y2SiO5 to spin waves in hyperfine levels using strong single-frequency transfer pulses. Using this scheme, a total of five temporal modes are stored and recalled on-demand from the memory. The coherence of the storage and retrieval is characterized using a time-bin interference measurement resulting in visibilities higher than 80%, independent of the storage time. This coherent and multimode spin-wave memory is promising as a quantum memory for light.

  17. Factors affecting reorganisation of memory encoding networks in temporal lobe epilepsy

    PubMed Central

    Sidhu, M.K.; Stretton, J.; Winston, G.P.; Symms, M.; Thompson, P.J.; Koepp, M.J.; Duncan, J.S.

    2015-01-01

    Summary Aims In temporal lobe epilepsy (TLE) due to hippocampal sclerosis reorganisation in the memory encoding network has been consistently described. Distinct areas of reorganisation have been shown to be efficient when associated with successful subsequent memory formation or inefficient when not associated with successful subsequent memory. We investigated the effect of clinical parameters that modulate memory functions: age at onset of epilepsy, epilepsy duration and seizure frequency in a large cohort of patients. Methods We studied 53 patients with unilateral TLE and hippocampal sclerosis (29 left). All participants performed a functional magnetic resonance imaging memory encoding paradigm of faces and words. A continuous regression analysis was used to investigate the effects of age at onset of epilepsy, epilepsy duration and seizure frequency on the activation patterns in the memory encoding network. Results Earlier age at onset of epilepsy was associated with left posterior hippocampus activations that were involved in successful subsequent memory formation in left hippocampal sclerosis patients. No association of age at onset of epilepsy was seen with face encoding in right hippocampal sclerosis patients. In both left hippocampal sclerosis patients during word encoding and right hippocampal sclerosis patients during face encoding, shorter duration of epilepsy and lower seizure frequency were associated with medial temporal lobe activations that were involved in successful memory formation. Longer epilepsy duration and higher seizure frequency were associated with contralateral extra-temporal activations that were not associated with successful memory formation. Conclusion Age at onset of epilepsy influenced verbal memory encoding in patients with TLE due to hippocampal sclerosis in the speech-dominant hemisphere. Shorter duration of epilepsy and lower seizure frequency were associated with less disruption of the efficient memory encoding network whilst longer duration and higher seizure frequency were associated with greater, inefficient, extra-temporal reorganisation. PMID:25616449

  18. Spike Timing Matters in Novel Neuronal Code Involved in Vibrotactile Frequency Perception.

    PubMed

    Birznieks, Ingvars; Vickery, Richard M

    2017-05-22

    Skin vibrations sensed by tactile receptors contribute significantly to the perception of object properties during tactile exploration [1-4] and to sensorimotor control during object manipulation [5]. Sustained low-frequency skin vibration (<60 Hz) evokes a distinct tactile sensation referred to as flutter whose frequency can be clearly perceived [6]. How afferent spiking activity translates into the perception of frequency is still unknown. Measures based on mean spike rates of neurons in the primary somatosensory cortex are sufficient to explain performance in some frequency discrimination tasks [7-11]; however, there is emerging evidence that stimuli can be distinguished based also on temporal features of neural activity [12, 13]. Our study's advance is to demonstrate that temporal features are fundamental for vibrotactile frequency perception. Pulsatile mechanical stimuli were used to elicit specified temporal spike train patterns in tactile afferents, and subsequently psychophysical methods were employed to characterize human frequency perception. Remarkably, the most salient temporal feature determining vibrotactile frequency was not the underlying periodicity but, rather, the duration of the silent gap between successive bursts of neural activity. This burst gap code for frequency represents a previously unknown form of neural coding in the tactile sensory system, which parallels auditory pitch perception mechanisms based on purely temporal information where longer inter-pulse intervals receive higher perceptual weights than short intervals [14]. Our study also demonstrates that human perception of stimuli can be determined exclusively by temporal features of spike trains independent of the mean spike rate and without contribution from population response factors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Microscopic mild focal cortical dysplasia in temporal lobe dual pathology: an electrocorticography study.

    PubMed

    Morales Chacón, L; Estupiñán, B; Lorigados Pedre, L; Trápaga Quincoses, O; García Maeso, I; Sanchez, A; Bender del Busto, J; Garcia, M E; Baez Martin, M; Zaldivar, M; Gómez, A; Orozco, S; Rocha Arrieta, L

    2009-10-01

    Associations between electrophysiological and histological findings might provide an insight into the epileptogenicity of mild focal cortical dysplasia (FCD) in patients with temporal lobe epilepsy (TLE) and a dual pathology. A total of 22 patients with pharmacoresistant TLE were included in the study, 16 of them with histologically confirmed hippocampal sclerosis (HS) associated with neocortical temporal mild Palmini Type-I FCD subtypes and 6 with HS. Intraoperative electrocorticography (ECoG) recordings were analysed for epileptiform discharge frequency and morphology. Associations between histological, and electrocorticography pattern findings in these patients were analysed. Electroclinical outcomes in these patients were also evaluated. Neocortical areas with mild Palmini Type-I FCD showed a significantly higher spike frequency (SF) recorded in the inferior temporal gyrus than those neocortical areas in patients with HS. There was a tendency to higher spike frequency and lower amplitude in neocortical areas with histopathologic subtype IB FCD in relation with IA during intraoperative ECoG. Post-SF excision and amplitude were significantly lower during neocortical post-excision intraoperative ECoG than during neocortical pre-excision recording. There was no difference found in the clinical outcome between patients with and without FCD. Intraoperative electrocorticographic interictal spike frequency recorded in the neocortical inferior temporal gyrus may help to characterize the histopathologic subtypes of mild Palmini Type-I FCD in patients with temporal lobe epilepsy (TLE) and a dual pathology. Our data support the epileptogenicity of neocortical mild FCD in TLE and assessments of ECoG patterns are relevant to determine the extent of the resection in these patients which can influence the electroclinical outcome.

  20. Peripheral resolution and contrast sensitivity: Effects of stimulus drift.

    PubMed

    Venkataraman, Abinaya Priya; Lewis, Peter; Unsbo, Peter; Lundström, Linda

    2017-04-01

    Optimal temporal modulation of the stimulus can improve foveal contrast sensitivity. This study evaluates the characteristics of the peripheral spatiotemporal contrast sensitivity function in normal-sighted subjects. The purpose is to identify a temporal modulation that can potentially improve the remaining peripheral visual function in subjects with central visual field loss. High contrast resolution cut-off for grating stimuli with four temporal frequencies (0, 5, 10 and 15Hz drift) was first evaluated in the 10° nasal visual field. Resolution contrast sensitivity for all temporal frequencies was then measured at four spatial frequencies between 0.5 cycles per degree (cpd) and the measured stationary cut-off. All measurements were performed with eccentric optical correction. Similar to foveal vision, peripheral contrast sensitivity is highest for a combination of low spatial frequency and 5-10Hz drift. At higher spatial frequencies, there was a decrease in contrast sensitivity with 15Hz drift. Despite this decrease, the resolution cut-off did not vary largely between the different temporal frequencies tested. Additional measurements of contrast sensitivity at 0.5 cpd and resolution cut-off for stationary (0Hz) and 7.5Hz stimuli performed at 10, 15, 20 and 25° in the nasal visual field also showed the same characteristics across eccentricities. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Modulation frequency as a cue for auditory speed perception.

    PubMed

    Senna, Irene; Parise, Cesare V; Ernst, Marc O

    2017-07-12

    Unlike vision, the mechanisms underlying auditory motion perception are poorly understood. Here we describe an auditory motion illusion revealing a novel cue to auditory speed perception: the temporal frequency of amplitude modulation (AM-frequency), typical for rattling sounds. Naturally, corrugated objects sliding across each other generate rattling sounds whose AM-frequency tends to directly correlate with speed. We found that AM-frequency modulates auditory speed perception in a highly systematic fashion: moving sounds with higher AM-frequency are perceived as moving faster than sounds with lower AM-frequency. Even more interestingly, sounds with higher AM-frequency also induce stronger motion aftereffects. This reveals the existence of specialized neural mechanisms for auditory motion perception, which are sensitive to AM-frequency. Thus, in spatial hearing, the brain successfully capitalizes on the AM-frequency of rattling sounds to estimate the speed of moving objects. This tightly parallels previous findings in motion vision, where spatio-temporal frequency of moving displays systematically affects both speed perception and the magnitude of the motion aftereffects. Such an analogy with vision suggests that motion detection may rely on canonical computations, with similar neural mechanisms shared across the different modalities. © 2017 The Author(s).

  2. Structural covariance mapping delineates medial and medio-lateral temporal networks in déjà vu.

    PubMed

    Shaw, Daniel Joel; Mareček, Radek; Brázdil, Milan

    2016-12-01

    Déjà vu (DV) is an eerie phenomenon experienced frequently as an aura of temporal lobe epilepsy, but also reported commonly by healthy individuals. The former pathological manifestation appears to result from aberrant neural activity among brain structures within the medial temporal lobes. Recent studies also implicate medial temporal brain structures in the non-pathological experience of DV, but as one element of a diffuse neuroanatomical correlate; it remains to be seen if neural activity among the medial temporal lobes also underlies this benign manifestation. The present study set out to investigate this. Due to its unpredictable and infrequent occurrence, however, non-pathological DV does not lend itself easily to functional neuroimaging. Instead, we draw on research showing that brain structure covaries among regions that interact frequently as nodes of functional networks. Specifically, we assessed whether grey-matter covariance among structures implicated in non-pathological DV differs according to the frequency with which the phenomenon is experienced. This revealed two diverging patterns of structural covariation: Among the first, comprised primarily of medial temporal structures and the caudate, grey-matter volume becomes more positively correlated with higher frequency of DV experience. The second pattern encompasses medial and lateral temporal structures, among which greater DV frequency is associated with more negatively correlated grey matter. Using a meta-analytic method of co-activation mapping, we demonstrate a higher probability of functional interactions among brain structures constituting the former pattern, particularly during memory-related processes. Our findings suggest that altered neural signalling within memory-related medial temporal brain structures underlies both pathological and non-pathological DV.

  3. Multi-scale Slip Inversion Based on Simultaneous Spatial and Temporal Domain Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Liu, W.; Yao, H.; Yang, H. Y.

    2017-12-01

    Finite fault inversion is a widely used method to study earthquake rupture processes. Some previous studies have proposed different methods to implement finite fault inversion, including time-domain, frequency-domain, and wavelet-domain methods. Many previous studies have found that different frequency bands show different characteristics of the seismic rupture (e.g., Wang and Mori, 2011; Yao et al., 2011, 2013; Uchide et al., 2013; Yin et al., 2017). Generally, lower frequency waveforms correspond to larger-scale rupture characteristics while higher frequency data are representative of smaller-scale ones. Therefore, multi-scale analysis can help us understand the earthquake rupture process thoroughly from larger scale to smaller scale. By the use of wavelet transform, the wavelet-domain methods can analyze both the time and frequency information of signals in different scales. Traditional wavelet-domain methods (e.g., Ji et al., 2002) implement finite fault inversion with both lower and higher frequency signals together to recover larger-scale and smaller-scale characteristics of the rupture process simultaneously. Here we propose an alternative strategy with a two-step procedure, i.e., firstly constraining the larger-scale characteristics with lower frequency signals, and then resolving the smaller-scale ones with higher frequency signals. We have designed some synthetic tests to testify our strategy and compare it with the traditional one. We also have applied our strategy to study the 2015 Gorkha Nepal earthquake using tele-seismic waveforms. Both the traditional method and our two-step strategy only analyze the data in different temporal scales (i.e., different frequency bands), while the spatial distribution of model parameters also shows multi-scale characteristics. A more sophisticated strategy is to transfer the slip model into different spatial scales, and then analyze the smooth slip distribution (larger scales) with lower frequency data firstly and more detailed slip distribution (smaller scales) with higher frequency data subsequently. We are now implementing the slip inversion using both spatial and temporal domain wavelets. This multi-scale analysis can help us better understand frequency-dependent rupture characteristics of large earthquakes.

  4. Detection of radial motion depends on spatial displacement.

    PubMed

    de la Malla, Cristina; López-Moliner, Joan

    2010-06-01

    Nakayama and Tyler (1981) disentangled the use of pure motion (speed) information from spatial displacement information for the detection of lateral motion. They showed that when positional cues were removed the contribution of motion or spatial information was dependent on the temporal frequency: for temporal frequencies lower than 1Hz the mechanism used to detect motion relied on speed information while for higher temporal frequencies a mechanism based on displacement information was used. Here we test whether the same dependency is also revealed in radial motion. In order to do so, we adapted the paradigm previously used by Nakayama and Tyler to obtain detection thresholds for lateral and radial motion by using a 2-IFC procedure. Subjects had to report which of the intervals contained the signal stimulus (33% coherent motion). We replicated the temporal frequency dependency for lateral motion but results indicate, however, that the detection of radial is always consistent with detecting a spatial displacement amplitude. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  5. Duration estimates within a modality are integrated sub-optimally

    PubMed Central

    Cai, Ming Bo; Eagleman, David M.

    2015-01-01

    Perceived duration can be influenced by various properties of sensory stimuli. For example, visual stimuli of higher temporal frequency are perceived to last longer than those of lower temporal frequency. How does the brain form a representation of duration when each of two simultaneously presented stimuli influences perceived duration in different way? To answer this question, we investigated the perceived duration of a pair of dynamic visual stimuli of different temporal frequencies in comparison to that of a single visual stimulus of either low or high temporal frequency. We found that the duration representation of simultaneously occurring visual stimuli is best described by weighting the estimates of duration based on each individual stimulus. However, the weighting performance deviates from the prediction of statistically optimal integration. In addition, we provided a Bayesian account to explain a difference in the apparent sensitivity of the psychometric curves introduced by the order in which the two stimuli are displayed in a two-alternative forced-choice task. PMID:26321965

  6. Study of the Effect of Temporal Sampling Frequency on DSCOVR Observations Using the GEOS-5 Nature Run Results (Part I): Earths Radiation Budget

    NASA Technical Reports Server (NTRS)

    Holdaway, Daniel; Yang, Yuekui

    2016-01-01

    Satellites always sample the Earth-atmosphere system in a finite temporal resolution. This study investigates the effect of sampling frequency on the satellite-derived Earth radiation budget, with the Deep Space Climate Observatory (DSCOVR) as an example. The output from NASA's Goddard Earth Observing System Version 5 (GEOS-5) Nature Run is used as the truth. The Nature Run is a high spatial and temporal resolution atmospheric simulation spanning a two-year period. The effect of temporal resolution on potential DSCOVR observations is assessed by sampling the full Nature Run data with 1-h to 24-h frequencies. The uncertainty associated with a given sampling frequency is measured by computing means over daily, monthly, seasonal and annual intervals and determining the spread across different possible starting points. The skill with which a particular sampling frequency captures the structure of the full time series is measured using correlations and normalized errors. Results show that higher sampling frequency gives more information and less uncertainty in the derived radiation budget. A sampling frequency coarser than every 4 h results in significant error. Correlations between true and sampled time series also decrease more rapidly for a sampling frequency less than 4 h.

  7. High temporal resolution aberrometry in a 50-eye population and implications for adaptive optics error budget.

    PubMed

    Jarosz, Jessica; Mecê, Pedro; Conan, Jean-Marc; Petit, Cyril; Paques, Michel; Meimon, Serge

    2017-04-01

    We formed a database gathering the wavefront aberrations of 50 healthy eyes measured with an original custom-built Shack-Hartmann aberrometer at a temporal frequency of 236 Hz, with 22 lenslets across a 7-mm diameter pupil, for a duration of 20 s. With this database, we draw statistics on the spatial and temporal behavior of the dynamic aberrations of the eye. Dynamic aberrations were studied on a 5-mm diameter pupil and on a 3.4 s sequence between blinks. We noted that, on average, temporal wavefront variance exhibits a n -2 power-law with radial order n and temporal spectra follow a f -1.5 power-law with temporal frequency f . From these statistics, we then extract guidelines for designing an adaptive optics system. For instance, we show the residual wavefront error evolution as a function of the number of corrected modes and of the adaptive optics loop frame rate. In particular, we infer that adaptive optics performance rapidly increases with the loop frequency up to 50 Hz, with gain being more limited at higher rates.

  8. High temporal resolution aberrometry in a 50-eye population and implications for adaptive optics error budget

    PubMed Central

    Jarosz, Jessica; Mecê, Pedro; Conan, Jean-Marc; Petit, Cyril; Paques, Michel; Meimon, Serge

    2017-01-01

    We formed a database gathering the wavefront aberrations of 50 healthy eyes measured with an original custom-built Shack-Hartmann aberrometer at a temporal frequency of 236 Hz, with 22 lenslets across a 7-mm diameter pupil, for a duration of 20 s. With this database, we draw statistics on the spatial and temporal behavior of the dynamic aberrations of the eye. Dynamic aberrations were studied on a 5-mm diameter pupil and on a 3.4 s sequence between blinks. We noted that, on average, temporal wavefront variance exhibits a n−2 power-law with radial order n and temporal spectra follow a f−1.5 power-law with temporal frequency f. From these statistics, we then extract guidelines for designing an adaptive optics system. For instance, we show the residual wavefront error evolution as a function of the number of corrected modes and of the adaptive optics loop frame rate. In particular, we infer that adaptive optics performance rapidly increases with the loop frequency up to 50 Hz, with gain being more limited at higher rates. PMID:28736657

  9. Differences of the Solar Magnetic Activity Signature in Velocity and Intensity Helioseismic Observations

    NASA Astrophysics Data System (ADS)

    Salabert, D.; García, R. A.; Jiménez, A.

    2013-12-01

    The high-quality, full-disk helioseismic observations continuously collected by the spectrophotometer GOLF and the three photometers VIRGO/SPMs onboard the SoHO spacecraft for 17 years now (since April 11, 1996, apart from the SoHO “vacations”) are absolutely unique for the study of the interior of the Sun and its variability with magnetic activity. Here, we look at the differences in the low-degree oscillation p-mode frequencies between radial velocity and intensity measurements taking into account all the known features of the p-mode profiles (e.g., the opposite peak asymmetry), and of the power spectrum (e.g., the presence of the higher degrees ℓ = 4 and 5 in the signal). We show that the intensity frequencies are higher than the velocity frequencies during the solar cycle with a clear temporal dependence. The response between the individual angular degrees is also different. Time delays are observed between the temporal variations in GOLF and VIRGO frequencies. Such analysis is important in order to put new constraints and to better understand the mechanisms responsible for the temporal variations of the oscillation frequencies with the solar magnetic activity as well as their height dependences in the solar atmosphere. It is also important for the study of the stellar magnetic activity using asteroseismic data.

  10. Blind identification of full-field vibration modes of output-only structures from uniformly-sampled, possibly temporally-aliased (sub-Nyquist), video measurements

    NASA Astrophysics Data System (ADS)

    Yang, Yongchao; Dorn, Charles; Mancini, Tyler; Talken, Zachary; Nagarajaiah, Satish; Kenyon, Garrett; Farrar, Charles; Mascareñas, David

    2017-03-01

    Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers have high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30-60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than what is required by the Shannon-Nyquist sampling theorem for output-only modal analysis. In particular, the spatio-temporal uncoupling property of the modal expansion of structural vibration responses enables a direct modal decoupling of the temporally-aliased vibration measurements by existing output-only modal analysis methods, yielding (full-field) mode shapes estimation directly. Then the signal aliasing properties in modal analysis is exploited to estimate the modal frequencies and damping ratios. The proposed method is validated by laboratory experiments where output-only modal identification is conducted on temporally-aliased acceleration responses and particularly the temporally-aliased video measurements of bench-scale structures, including a three-story building structure and a cantilever beam.

  11. [Effects of temporal lobe epilepsy and idiopathic epilepsy on cognitive function and emotion in children].

    PubMed

    Yang, Xiao-Yan; Long, Li-Li; Xiao, Bo

    2016-07-01

    To investigate the effects of temporal lobe epilepsy and idiopathic epilepsy on cognitive function and emotion in children and the risk factors for cognitive impairment. A retrospective analysis was performed for the clinical data of 38 children with temporal lobe epilepsy and 40 children with idiopathic epilepsy. The controls were 42 healthy children. All subjects received the following neuropsychological tests: Montreal Cognitive Assessment (MoCA) scale, verbal fluency test, digit span test, block design test, Social Anxiety Scale for Children (SASC), and Depression Self-rating Scale for Children (DSRSC). Compared with the control group, the temporal lobe epilepsy and idiopathic epilepsy groups showed significantly lower scores of MoCA, verbal fluency, digit span, and block design (P<0.05) and significantly higher scores on SASC and DSRSC (P<0.05). Compared with the idiopathic epilepsy group, the temporal lobe epilepsy group showed significantly lower scores of MoCA, verbal fluency, digit span, and block design (P<0.05) and significantly higher scores on SASC and DSRSC (P<0.05). In the temporal lobe epilepsy group, MoCA score was negatively correlated with SASC score, DSRSC score, and seizure frequency (r=-0.571, -0.529, and -0.545 respectively; P<0.01). In the idiopathic epilepsy group, MoCA score was also negatively correlated with SASC score, DSRSC score, and seizure frequency (r=-0.542, -0.487, and -0.555 respectively; P<0.01). Children with temporal lobe epilepsy and idiopathic epilepsy show impaired whole cognition, verbal fluency, memory, and executive function and have anxiety and depression, which are more significant in children with temporal lobe epilepsy. High levels of anxiety, depression, and seizure frequency are risk factors for impaired cognitive function.

  12. Evolution of spatial and temporal correlations in the solar wind - Observations and interpretation

    NASA Technical Reports Server (NTRS)

    Klein, L. W.; Matthaeus, W. H.; Roberts, D. A.; Goldstein, M. L.

    1992-01-01

    Observations of solar wind magnetic field spectra from 1-22 AU indicate a distinctive structure in frequency which evolves with increasing heliocentric distance. At 1 AU extremely low frequency correlations are associated with temporal variations at the solar period and its first few harmonics. For periods of l2-96 hours, a l/f distribution is observed, which we interpret as an aggregate of uncorrelated coronal structures which have not dynamically interacted by 1 AU. At higher frequencies the familiar Kolmogorov-like power law is seen. Farther from the sun the frequency break point between the shallow l/f and the steeper Kolmogorov spectrum evolves systematically towards lower frequencies. We suggest that the Kolmogorov-like spectra emerge due to in situ turbulence that generates spatial correlations associated with the turbulent cascade and that the background l/f noise is a largely temporal phenomenon, not associated with in situ dynamical processes. In this paper we discuss these ideas from the standpoint of observations from several interplanetary spacecraft.

  13. Factors affecting sensitivity to frequency change in school-age children and adults.

    PubMed

    Buss, Emily; Taylor, Crystal N; Leibold, Lori J

    2014-10-01

    The factors affecting frequency discrimination in school-age children are poorly understood. The goal of the present study was to evaluate developmental effects related to memory for pitch and the utilization of temporal fine structure. Listeners were 5.1- to 13.6-year-olds and adults, all with normal hearing. A subgroup of children had musical training. The task was a 3-alternative forced choice in which listeners identified the interval with the higher frequency tone or the tone characterized by frequency modulation (FM). The standard was 500 or 5000 Hz, and the FM rate was either 2 or 20 Hz. Thresholds tended to be higher for younger children than for older children and adults for all conditions, although this age effect was smaller for FM detection than for pure-tone frequency discrimination. Neither standard frequency nor modulation rate affected the child/adult difference FM thresholds. Children with musical training performed better than their peers on pure-tone frequency discrimination at 500 Hz. Testing frequency discrimination using a low-rate FM detection task may minimize effects related to cognitive factors like memory for pitch or training effects. Maturation of frequency discrimination does not appear to differ across conditions in which listeners are hypothesized to rely on temporal cues and place cues.

  14. Wide-field motion tuning in nocturnal hawkmoths

    PubMed Central

    Theobald, Jamie C.; Warrant, Eric J.; O'Carroll, David C.

    2010-01-01

    Nocturnal hawkmoths are known for impressive visually guided behaviours in dim light, such as hovering while feeding from nectar-bearing flowers. This requires tight visual feedback to estimate and counter relative motion. Discrimination of low velocities, as required for stable hovering flight, is fundamentally limited by spatial resolution, yet in the evolution of eyes for nocturnal vision, maintenance of high spatial acuity compromises absolute sensitivity. To investigate these trade-offs, we compared responses of wide-field motion-sensitive neurons in three species of hawkmoth: Manduca sexta (a crepuscular hoverer), Deilephila elpenor (a fully nocturnal hoverer) and Acherontia atropos (a fully nocturnal hawkmoth that does not hover as it feeds uniquely from honey in bees' nests). We show that despite smaller eyes, the motion pathway of D. elpenor is tuned to higher spatial frequencies and lower temporal frequencies than A. atropos, consistent with D. elpenor's need to detect low velocities for hovering. Acherontia atropos, however, presumably evolved low-light sensitivity without sacrificing temporal acuity. Manduca sexta, active at higher light levels, is tuned to the highest spatial frequencies of the three and temporal frequencies comparable with A. atropos. This yields similar tuning to low velocities as in D. elpenor, but with the advantage of shorter neural delays in processing motion. PMID:19906663

  15. Temporal patterns of rat behaviour in the central platform of the elevated plus maze. Comparative analysis between male subjects of strains with different basal levels of emotionality.

    PubMed

    Casarrubea, M; Faulisi, F; Caternicchia, F; Santangelo, A; Di Giovanni, G; Benigno, A; Magnusson, M S; Crescimanno, G

    2016-08-01

    We have analyzed the temporal patterns of behaviour of male rats of the Wistar and DA/Han strains on the central platform of the elevated plus maze. The ethogram encompassed 10 behavioural elements. Durations, frequencies and latencies showed quantitative differences as to walking and sniffing activities. Wistar rats displayed significantly lower latency and significantly higher durations and frequencies of walking activities. DA/Han rats showed a significant increase of sniffing duration. In addition, DA/Han rats showed a significantly higher amount of time spent in the central platform. Multivariate T-pattern analysis revealed differences in the temporal organization of behaviour of the two rat strains. DA/Han rats showed (a) higher behavioural complexity and variability and (b) a significantly higher mean number of T-patterns than Wistar rats. Taken together, T-pattern analysis of behaviour in the centre of the elevated plus maze can noticeably improve the detection of subtle features of anxiety related behaviour. We suggest that T-pattern analysis could be used as sensitive tool to test the action of anxiolytic and anxiogenic manipulations. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Blind identification of full-field vibration modes of output-only structures from uniformly-sampled, possibly temporally-aliased (sub-Nyquist), video measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yongchao; Dorn, Charles; Mancini, Tyler

    Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers havemore » high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30–60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than what is required by the Shannon-Nyquist sampling theorem for output-only modal analysis. In particular, the spatio-temporal uncoupling property of the modal expansion of structural vibration responses enables a direct modal decoupling of the temporally-aliased vibration measurements by existing output-only modal analysis methods, yielding (full-field) mode shapes estimation directly. Then the signal aliasing properties in modal analysis is exploited to estimate the modal frequencies and damping ratios. Furthermore, the proposed method is validated by laboratory experiments where output-only modal identification is conducted on temporally-aliased acceleration responses and particularly the temporally-aliased video measurements of bench-scale structures, including a three-story building structure and a cantilever beam.« less

  17. Blind identification of full-field vibration modes of output-only structures from uniformly-sampled, possibly temporally-aliased (sub-Nyquist), video measurements

    DOE PAGES

    Yang, Yongchao; Dorn, Charles; Mancini, Tyler; ...

    2016-12-05

    Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers havemore » high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30–60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than what is required by the Shannon-Nyquist sampling theorem for output-only modal analysis. In particular, the spatio-temporal uncoupling property of the modal expansion of structural vibration responses enables a direct modal decoupling of the temporally-aliased vibration measurements by existing output-only modal analysis methods, yielding (full-field) mode shapes estimation directly. Then the signal aliasing properties in modal analysis is exploited to estimate the modal frequencies and damping ratios. Furthermore, the proposed method is validated by laboratory experiments where output-only modal identification is conducted on temporally-aliased acceleration responses and particularly the temporally-aliased video measurements of bench-scale structures, including a three-story building structure and a cantilever beam.« less

  18. Mechanisms of time-based figure-ground segregation.

    PubMed

    Kandil, Farid I; Fahle, Manfred

    2003-11-01

    Figure-ground segregation can rely on purely temporal information, that is, on short temporal delays between positional changes of elements in figure and ground (Kandil, F.I. & Fahle, M. (2001) Eur. J. Neurosci., 13, 2004-2008). Here, we investigate the underlying mechanisms by measuring temporal segregation thresholds for various kinds of motion cues. Segregation can rely on monocular first-order motion (based on luminance modulation) and second-order motion cues (contrast modulation) with a high temporal resolution of approximately 20 ms. The mechanism can also use isoluminant motion with a reduced temporal resolution of 60 ms. Figure-ground segregation can be achieved even at presentation frequencies too high for human subjects to inspect successive frames individually. In contrast, when stimuli are presented dichoptically, i.e. separately to both eyes, subjects are unable to perceive any segregation, irrespective of temporal frequency. We propose that segregation in these displays is detected by a mechanism consisting of at least two stages. On the first level, standard motion or flicker detectors signal local positional changes (flips). On the second level, a segregation mechanism combines the local activities of the low-level detectors with high temporal precision. Our findings suggest that the segregation mechanism can rely on monocular detectors but not on binocular mechanisms. Moreover, the results oppose the idea that segregation in these displays is achieved by motion detectors of a higher order (motion-from-motion), but favour mechanisms sensitive to short temporal delays even without activation of higher-order motion detectors.

  19. Octopaminergic Modulation of Temporal Frequency Coding in an Identified Optic Flow-Processing Interneuron

    PubMed Central

    Longden, Kit D.; Krapp, Holger G.

    2010-01-01

    Flying generates predictably different patterns of optic flow compared with other locomotor states. A sensorimotor system tuned to rapid responses and a high bandwidth of optic flow would help the animal to avoid wasting energy through imprecise motor action. However, neural processing that covers a higher input bandwidth itself comes at higher energetic costs which would be a poor investment when the animal was not flying. How does the blowfly adjust the dynamic range of its optic flow-processing neurons to the locomotor state? Octopamine (OA) is a biogenic amine central to the initiation and maintenance of flight in insects. We used an OA agonist chlordimeform (CDM) to simulate the widespread OA release during flight and recorded the effects on the temporal frequency coding of the H2 cell. This cell is a visual interneuron known to be involved in flight stabilization reflexes. The application of CDM resulted in (i) an increase in the cell's spontaneous activity, expanding the inhibitory signaling range (ii) an initial response gain to moving gratings (20–60 ms post-stimulus) that depended on the temporal frequency of the grating and (iii) a reduction in the rate and magnitude of motion adaptation that was also temporal frequency-dependent. To our knowledge, this is the first demonstration that the application of a neuromodulator can induce velocity-dependent alterations in the gain of a wide-field optic flow-processing neuron. The observed changes in the cell's response properties resulted in a 33% increase of the cell's information rate when encoding random changes in temporal frequency of the stimulus. The increased signaling range and more rapid, longer lasting responses employed more spikes to encode each bit, and so consumed a greater amount of energy. It appears that for the fly investing more energy in sensory processing during flight is more efficient than wasting energy on under-performing motor control. PMID:21152339

  20. Spectro-Temporal Weighting of Loudness

    PubMed Central

    Oberfeld, Daniel; Heeren, Wiebke; Rennies, Jan; Verhey, Jesko

    2012-01-01

    Real-world sounds like speech or traffic noise typically exhibit spectro-temporal variability because the energy in different spectral regions evolves differently as a sound unfolds in time. However, it is currently not well understood how the energy in different spectral and temporal portions contributes to loudness. This study investigated how listeners weight different temporal and spectral components of a sound when judging its overall loudness. Spectral weights were measured for the combination of three loudness-matched narrowband noises with different center frequencies. To measure temporal weights, 1,020-ms stimuli were presented, which randomly changed in level every 100 ms. Temporal weights were measured for each narrowband noise separately, and for a broadband noise containing the combination of the three noise bands. Finally, spectro-temporal weights were measured with stimuli where the level of the three narrowband noises randomly and independently changed every 100 ms. The data consistently showed that (i) the first 300 ms of the sounds had a greater influence on overall loudness perception than later temporal portions (primacy effect), and (ii) the lowest noise band contributed significantly more to overall loudness than the higher bands. The temporal weights did not differ between the three frequency bands. Notably, the spectral weights and temporal weights estimated from the conditions with only spectral or only temporal variability were very similar to the corresponding weights estimated in the spectro-temporal condition. The results indicate that the temporal and the spectral weighting of the loudness of a time-varying sound are independent processes. The spectral weights remain constant across time, and the temporal weights do not change across frequency. The results are discussed in the context of current loudness models. PMID:23209670

  1. The 10 Hz Frequency: A Fulcrum For Transitional Brain States.

    PubMed

    Garcia-Rill, E; D'Onofrio, S; Luster, B; Mahaffey, S; Urbano, F J; Phillips, C

    A 10 Hz rhythm is present in the occipital cortex when the eyes are closed (alpha waves), in the precentral cortex at rest ( mu rhythm), in the superior and middle temporal lobe ( tau rhythm), in the inferior olive (projection to cerebellar cortex), and in physiological tremor (underlying all voluntary movement). These are all considered resting rhythms in the waking brain which are "replaced" by higher frequency activity with sensorimotor stimulation. That is, the 10 Hz frequency fulcrum is replaced on the one hand by lower frequencies during sleep, or on the other hand by higher frequencies during volition and cognition. The 10 Hz frequency fulcrum is proposed as the natural frequency of the brain during quiet waking, but is replaced by higher frequencies capable of permitting more complex functions, or by lower frequencies during sleep and inactivity. At the center of the transition shifts to and from the resting rhythm is the reticular activating system, a phylogenetically preserved area of the brain essential for preconscious awareness.

  2. The 10 Hz Frequency: A Fulcrum For Transitional Brain States

    PubMed Central

    Garcia-Rill, E.; D’Onofrio, S.; Luster, B.; Mahaffey, S.; Urbano, F. J.; Phillips, C.

    2016-01-01

    A 10 Hz rhythm is present in the occipital cortex when the eyes are closed (alpha waves), in the precentral cortex at rest (mu rhythm), in the superior and middle temporal lobe (tau rhythm), in the inferior olive (projection to cerebellar cortex), and in physiological tremor (underlying all voluntary movement). These are all considered resting rhythms in the waking brain which are “replaced” by higher frequency activity with sensorimotor stimulation. That is, the 10 Hz frequency fulcrum is replaced on the one hand by lower frequencies during sleep, or on the other hand by higher frequencies during volition and cognition. The 10 Hz frequency fulcrum is proposed as the natural frequency of the brain during quiet waking, but is replaced by higher frequencies capable of permitting more complex functions, or by lower frequencies during sleep and inactivity. At the center of the transition shifts to and from the resting rhythm is the reticular activating system, a phylogenetically preserved area of the brain essential for preconscious awareness. PMID:27547831

  3. Spatiotemporal Characteristics for the Depth from Luminance Contrast

    PubMed Central

    Matsubara, Kazuya; Matsumiya, Kazumichi; Shioiri, Satoshi; Takahashi, Shuichi; Hyodo, Yasuhide; Ohashi, Isao

    2011-01-01

    Images with higher luminance contrast tend to be perceived closer in depth. To investigate a spatiotemporal characteristic of this effect, we evaluated subjective depth of a test stimulus with various spatial and temporal frequencies. For the purpose, the depth of a reference stimulus was matched to that of the test stimulus by changing the binocular disparity. The results showed that the test stimulus was perceived closer with higher luminance contrast for all conditions. Contrast efficiency was obtained from the contrast that provided the subjective depth for each spatiotemporal frequency. The shape of the contrast efficiency function was spatially low-pass and temporally band-pass. This characteristic is different from the one measure for a detection task. This suggests that only subset of contrast signals are used for depth from contrast.

  4. Auditory Stream Segregation and the Perception of Across-Frequency Synchrony

    ERIC Educational Resources Information Center

    Micheyl, Christophe; Hunter, Cynthia; Oxenham, Andrew J.

    2010-01-01

    This study explored the extent to which sequential auditory grouping affects the perception of temporal synchrony. In Experiment 1, listeners discriminated between 2 pairs of asynchronous "target" tones at different frequencies, A and B, in which the B tone either led or lagged. Thresholds were markedly higher when the target tones were temporally…

  5. The influence of spatially and temporally high-resolution wind forcing on the power input to near-inertial waves in the ocean

    NASA Astrophysics Data System (ADS)

    Rimac, Antonija; von Storch, Jin-Song; Eden, Carsten

    2013-04-01

    The estimated power required to sustain global general circulation in the ocean is about 2 TW. This power is supplied with wind stress and tides. Energy spectrum shows pronounced maxima at near-inertial frequency. Near-inertial waves excited by high-frequency winds represent an important source for deep ocean mixing since they can propagate into the deep ocean and dissipate far away from the generation sites. The energy input by winds to near-inertial waves has been studied mostly using slab ocean models and wind stress forcing with coarse temporal resolution (e.g. 6-hourly). Slab ocean models lack the ability to reproduce fundamental aspects of kinetic energy balance and systematically overestimate the wind work. Also, slab ocean models do not account the energy used for the mixed layer deepening or the energy radiating downward into the deep ocean. Coarse temporal resolution of the wind forcing strongly underestimates the near-inertial energy. To overcome this difficulty we use an eddy permitting ocean model with high-frequency wind forcing. We establish the following model setup: We use the Max Planck Institute Ocean Model (MPIOM) on a tripolar grid with 45 km horizontal resolution and 40 vertical levels. We run the model with wind forcings that vary in horizontal and temporal resolution. We use high-resolution (1-hourly with 35 km horizontal resolution) and low-resolution winds (6-hourly with 250 km horizontal resolution). We address the following questions: Is the kinetic energy of near-inertial waves enhanced when high-resolution wind forcings are used? If so, is this due to higher level of overall wind variability or higher spatial or temporal resolution of wind forcing? How large is the power of near-inertial waves generated by winds? Our results show that near-inertial waves are enhanced and the near-inertial kinetic energy is two times higher (in the storm track regions 3.5 times higher) when high-resolution winds are used. Filtering high-resolution winds in space and time, the near-inertial kinetic energy reduces. The reduction is faster when a temporal filter is used suggesting that the high-frequency wind forcing is more efficient in generating near-inertial wave energy than the small-scale wind forcing. Using low-resolution wind forcing the wind generated power to near-inertial waves is 0.55 TW. When we use high-resolution wind forcing the result is 1.6 TW meaning that the result increases by 300%.

  6. Airy pulse shaping using time-dependent power-law potentials

    NASA Astrophysics Data System (ADS)

    Han, Tianwen; Chen, Hao; Qin, Chengzhi; Li, Wenwan; Wang, Bing; Lu, Peixiang

    2018-06-01

    We investigate the temporal and spectral evolutions of finite-energy Airy pulses in the presence of power-law optical potentials. The potentials are generated by the time-dependent pumped light, which propagates together with the Airy pulses in a highly nonlinear optical fiber. We show that the intrinsic acceleration of Airy pulses can be modified by an external force that stems from a linear potential, and hence unidirectional frequency shift can be realized. When a triangle potential is employed, the pulse will exhibit self-splitting both in temporal and spectral domains. Additionally, as a parabolic potential is utilized, both the temporal waveform and frequency spectrum of the Airy pulse will exchange alternately between the Airy and Gaussian profiles. By using higher-order power-law potentials, we also realize both revival and antirevival effects for the Airy pulses. The study may find wide applications in pulse reshaping and spectral-temporal imaging for both optical communication and signal processing.

  7. Atypical language representation in children with intractable temporal lobe epilepsy.

    PubMed

    Maulisova, Alice; Korman, Brandon; Rey, Gustavo; Bernal, Byron; Duchowny, Michael; Niederlova, Marketa; Krsek, Pavel; Novak, Vilem

    2016-05-01

    This study evaluated language organization in children with intractable epilepsy caused by temporal lobe focal cortical dysplasia (FCD) alone or dual pathology (temporal lobe FCD and hippocampal sclerosis, HS). We analyzed clinical, neurological, fMRI, neuropsychological, and histopathologic data in 46 pediatric patients with temporal lobe lesions who underwent excisional epilepsy surgery. The frequency of atypical language representation was similar in both groups, but children with dual pathology were more likely to be left-handed. Atypical receptive language cortex correlated with lower intellectual capacity, verbal abstract conceptualization, receptive language abilities, verbal working memory, and a history of status epilepticus but did not correlate with higher seizure frequency or early seizure onset. Histopathologic substrate had only a minor influence on neuropsychological status. Greater verbal comprehension deficits were noted in children with atypical receptive language representation, a risk factor for cognitive morbidity. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Cortical evoked potentials to an auditory illusion: binaural beats.

    PubMed

    Pratt, Hillel; Starr, Arnold; Michalewski, Henry J; Dimitrijevic, Andrew; Bleich, Naomi; Mittelman, Nomi

    2009-08-01

    To define brain activity corresponding to an auditory illusion of 3 and 6Hz binaural beats in 250Hz or 1000Hz base frequencies, and compare it to the sound onset response. Event-Related Potentials (ERPs) were recorded in response to unmodulated tones of 250 or 1000Hz to one ear and 3 or 6Hz higher to the other, creating an illusion of amplitude modulations (beats) of 3Hz and 6Hz, in base frequencies of 250Hz and 1000Hz. Tones were 2000ms in duration and presented with approximately 1s intervals. Latency, amplitude and source current density estimates of ERP components to tone onset and subsequent beats-evoked oscillations were determined and compared across beat frequencies with both base frequencies. All stimuli evoked tone-onset P(50), N(100) and P(200) components followed by oscillations corresponding to the beat frequency, and a subsequent tone-offset complex. Beats-evoked oscillations were higher in amplitude with the low base frequency and to the low beat frequency. Sources of the beats-evoked oscillations across all stimulus conditions located mostly to left lateral and inferior temporal lobe areas in all stimulus conditions. Onset-evoked components were not different across stimulus conditions; P(50) had significantly different sources than the beats-evoked oscillations; and N(100) and P(200) sources located to the same temporal lobe regions as beats-evoked oscillations, but were bilateral and also included frontal and parietal contributions. Neural activity with slightly different volley frequencies from left and right ear converges and interacts in the central auditory brainstem pathways to generate beats of neural activity to modulate activities in the left temporal lobe, giving rise to the illusion of binaural beats. Cortical potentials recorded to binaural beats are distinct from onset responses. Brain activity corresponding to an auditory illusion of low frequency beats can be recorded from the scalp.

  9. Cortical Evoked Potentials to an Auditory Illusion: Binaural Beats

    PubMed Central

    Pratt, Hillel; Starr, Arnold; Michalewski, Henry J.; Dimitrijevic, Andrew; Bleich, Naomi; Mittelman, Nomi

    2009-01-01

    Objective: To define brain activity corresponding to an auditory illusion of 3 and 6 Hz binaural beats in 250 Hz or 1,000 Hz base frequencies, and compare it to the sound onset response. Methods: Event-Related Potentials (ERPs) were recorded in response to unmodulated tones of 250 or 1000 Hz to one ear and 3 or 6 Hz higher to the other, creating an illusion of amplitude modulations (beats) of 3 Hz and 6 Hz, in base frequencies of 250 Hz and 1000 Hz. Tones were 2,000 ms in duration and presented with approximately 1 s intervals. Latency, amplitude and source current density estimates of ERP components to tone onset and subsequent beats-evoked oscillations were determined and compared across beat frequencies with both base frequencies. Results: All stimuli evoked tone-onset P50, N100 and P200 components followed by oscillations corresponding to the beat frequency, and a subsequent tone-offset complex. Beats-evoked oscillations were higher in amplitude with the low base frequency and to the low beat frequency. Sources of the beats-evoked oscillations across all stimulus conditions located mostly to left lateral and inferior temporal lobe areas in all stimulus conditions. Onset-evoked components were not different across stimulus conditions; P50 had significantly different sources than the beats-evoked oscillations; and N100 and P200 sources located to the same temporal lobe regions as beats-evoked oscillations, but were bilateral and also included frontal and parietal contributions. Conclusions: Neural activity with slightly different volley frequencies from left and right ear converges and interacts in the central auditory brainstem pathways to generate beats of neural activity to modulate activities in the left temporal lobe, giving rise to the illusion of binaural beats. Cortical potentials recorded to binaural beats are distinct from onset responses. Significance: Brain activity corresponding to an auditory illusion of low frequency beats can be recorded from the scalp. PMID:19616993

  10. Large-scale vegetation responses to terrestrial moisture storage changes

    NASA Astrophysics Data System (ADS)

    Andrew, Robert L.; Guan, Huade; Batelaan, Okke

    2017-09-01

    The normalised difference vegetation index (NDVI) is a useful tool for studying vegetation activity and ecosystem performance at a large spatial scale. In this study we use the Gravity Recovery and Climate Experiment (GRACE) total water storage (TWS) estimates to examine temporal variability of the NDVI across Australia. We aim to demonstrate a new method that reveals the moisture dependence of vegetation cover at different temporal resolutions. Time series of monthly GRACE TWS anomalies are decomposed into different temporal frequencies using a discrete wavelet transform and analysed against time series of the NDVI anomalies in a stepwise regression. The results show that combinations of different frequencies of decomposed GRACE TWS data explain NDVI temporal variations better than raw GRACE TWS alone. Generally, the NDVI appears to be more sensitive to interannual changes in water storage than shorter changes, though grassland-dominated areas are sensitive to higher-frequencies of water-storage changes. Different types of vegetation, defined by areas of land use type, show distinct differences in how they respond to the changes in water storage, which is generally consistent with our physical understanding. This unique method provides useful insight into how the NDVI is affected by changes in water storage at different temporal scales across land use types.

  11. Frequency modulation detection in cochlear implant subjects

    NASA Astrophysics Data System (ADS)

    Chen, Hongbin; Zeng, Fan-Gang

    2004-10-01

    Frequency modulation (FM) detection was investigated in acoustic and electric hearing to characterize cochlear-implant subjects' ability to detect dynamic frequency changes and to assess the relative contributions of temporal and spectral cues to frequency processing. Difference limens were measured for frequency upward sweeps, downward sweeps, and sinusoidal FM as a function of standard frequency and modulation rate. In electric hearing, factors including electrode position and stimulation level were also studied. Electric hearing data showed that the difference limen increased monotonically as a function of standard frequency regardless of the modulation type, the modulation rate, the electrode position, and the stimulation level. In contrast, acoustic hearing data showed that the difference limen was nearly a constant as a function of standard frequency. This difference was interpreted to mean that temporal cues are used only at low standard frequencies and at low modulation rates. At higher standard frequencies and modulation rates, the reliance on the place cue is increased, accounting for the better performance in acoustic hearing than for electric hearing with single-electrode stimulation. The present data suggest a speech processing strategy that encodes slow frequency changes using lower stimulation rates than those typically employed by contemporary cochlear-implant speech processors. .

  12. Sensitivity to Envelope Interaural Time Differences at High Modulation Rates

    PubMed Central

    Bleeck, Stefan; McAlpine, David

    2015-01-01

    Sensitivity to interaural time differences (ITDs) conveyed in the temporal fine structure of low-frequency tones and the modulated envelopes of high-frequency sounds are considered comparable, particularly for envelopes shaped to transmit similar fidelity of temporal information normally present for low-frequency sounds. Nevertheless, discrimination performance for envelope modulation rates above a few hundred Hertz is reported to be poor—to the point of discrimination thresholds being unattainable—compared with the much higher (>1,000 Hz) limit for low-frequency ITD sensitivity, suggesting the presence of a low-pass filter in the envelope domain. Further, performance for identical modulation rates appears to decline with increasing carrier frequency, supporting the view that the low-pass characteristics observed for envelope ITD processing is carrier-frequency dependent. Here, we assessed listeners’ sensitivity to ITDs conveyed in pure tones and in the modulated envelopes of high-frequency tones. ITD discrimination for the modulated high-frequency tones was measured as a function of both modulation rate and carrier frequency. Some well-trained listeners appear able to discriminate ITDs extremely well, even at modulation rates well beyond 500 Hz, for 4-kHz carriers. For one listener, thresholds were even obtained for a modulation rate of 800 Hz. The highest modulation rate for which thresholds could be obtained declined with increasing carrier frequency for all listeners. At 10 kHz, the highest modulation rate at which thresholds could be obtained was 600 Hz. The upper limit of sensitivity to ITDs conveyed in the envelope of high-frequency modulated sounds appears to be higher than previously considered. PMID:26721926

  13. Temporal Tuning of Word- and Face-selective Cortex.

    PubMed

    Yeatman, Jason D; Norcia, Anthony M

    2016-11-01

    Sensitivity to temporal change places fundamental limits on object processing in the visual system. An emerging consensus from the behavioral and neuroimaging literature suggests that temporal resolution differs substantially for stimuli of different complexity and for brain areas at different levels of the cortical hierarchy. Here, we used steady-state visually evoked potentials to directly measure three fundamental parameters that characterize the underlying neural response to text and face images: temporal resolution, peak temporal frequency, and response latency. We presented full-screen images of text or a human face, alternated with a scrambled image, at temporal frequencies between 1 and 12 Hz. These images elicited a robust response at the first harmonic that showed differential tuning, scalp topography, and delay for the text and face images. Face-selective responses were maximal at 4 Hz, but text-selective responses, by contrast, were maximal at 1 Hz. The topography of the text image response was strongly left-lateralized at higher stimulation rates, whereas the response to the face image was slightly right-lateralized but nearly bilateral at all frequencies. Both text and face images elicited steady-state activity at more than one apparent latency; we observed early (141-160 msec) and late (>250 msec) text- and face-selective responses. These differences in temporal tuning profiles are likely to reflect differences in the nature of the computations performed by word- and face-selective cortex. Despite the close proximity of word- and face-selective regions on the cortical surface, our measurements demonstrate substantial differences in the temporal dynamics of word- versus face-selective responses.

  14. Aberrant Network Activity in Schizophrenia.

    PubMed

    Hunt, Mark J; Kopell, Nancy J; Traub, Roger D; Whittington, Miles A

    2017-06-01

    Brain dynamic changes associated with schizophrenia are largely equivocal, with interpretation complicated by many factors, such as the presence of therapeutic agents and the complex nature of the syndrome itself. Evidence for a brain-wide change in individual network oscillations, shared by all patients, is largely equivocal, but stronger for lower (delta) than for higher (gamma) bands. However, region-specific changes in rhythms across multiple, interdependent, nested frequencies may correlate better with pathology. Changes in synaptic excitation and inhibition in schizophrenia disrupt delta rhythm-mediated cortico-cortical communication, while enhancing thalamocortical communication in this frequency band. The contrasting relationships between delta and higher frequencies in thalamus and cortex generate frequency mismatches in inter-regional connectivity, leading to a disruption in temporal communication between higher-order brain regions associated with mental time travel. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Walking modulates speed sensitivity in Drosophila motion vision.

    PubMed

    Chiappe, M Eugenia; Seelig, Johannes D; Reiser, Michael B; Jayaraman, Vivek

    2010-08-24

    Changes in behavioral state modify neural activity in many systems. In some vertebrates such modulation has been observed and interpreted in the context of attention and sensorimotor coordinate transformations. Here we report state-dependent activity modulations during walking in a visual-motor pathway of Drosophila. We used two-photon imaging to monitor intracellular calcium activity in motion-sensitive lobula plate tangential cells (LPTCs) in head-fixed Drosophila walking on an air-supported ball. Cells of the horizontal system (HS)--a subgroup of LPTCs--showed stronger calcium transients in response to visual motion when flies were walking rather than resting. The amplified responses were also correlated with walking speed. Moreover, HS neurons showed a relatively higher gain in response strength at higher temporal frequencies, and their optimum temporal frequency was shifted toward higher motion speeds. Walking-dependent modulation of HS neurons in the Drosophila visual system may constitute a mechanism to facilitate processing of higher image speeds in behavioral contexts where these speeds of visual motion are relevant for course stabilization. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Analysis of the spatial-temporal variation characteristics of vegetative drought and its relationship with meteorological factors in China from 1982 to 2010.

    PubMed

    Shen, Qiu; Liang, Liang; Luo, Xiang; Li, Yanjun; Zhang, Lianpeng

    2017-08-25

    Drought is a complex natural phenomenon that can cause reduced water supplies and can consequently have substantial effects on agriculture and socioeconomic activities. The objective of this study was to gain a better understanding of the spatial-temporal variation characteristics of vegetative drought and its relationship with meteorological factors in China. The Vegetation Condition Index (VCI) dataset calculated from NOAA/AVHRR images from 1982 to 2010 was used to analyse the spatial-temporal variation characteristics of vegetative drought in China. This study also examined the trends in meteorological factors and their influences on drought using monitoring data collected from 686 national ground meteorological stations. The results showed that the VCI appeared to slowly rise in China from 1982 to 2010. From 1982 to 1999, the VCI rose slowly. Then, around 2000, the VCI exhibited a severe fluctuation before it entered into a relatively stable stage. Drought frequencies in China were higher, showing a spatial distribution feature of "higher in the north and lower in the south". Based on the different levels of drought, the frequencies of mild and moderate drought in four geographical areas were higher, and the frequency of severe drought was higher only in ecologically vulnerable areas, such as the Tarim Basin and the Qaidam Basin. Drought was mainly influenced by meteorological factors, which differed regionally. In the northern region, the main influential factor was sunshine duration, while the other factors showed minimal effects. In the southern region and Tibetan Plateau, the main influential factors were sunshine duration and temperature. In the northwestern region, the main influential factors were wind velocity and station atmospheric pressure.

  17. An improved genetic algorithm for designing optimal temporal patterns of neural stimulation

    NASA Astrophysics Data System (ADS)

    Cassar, Isaac R.; Titus, Nathan D.; Grill, Warren M.

    2017-12-01

    Objective. Electrical neuromodulation therapies typically apply constant frequency stimulation, but non-regular temporal patterns of stimulation may be more effective and more efficient. However, the design space for temporal patterns is exceedingly large, and model-based optimization is required for pattern design. We designed and implemented a modified genetic algorithm (GA) intended for design optimal temporal patterns of electrical neuromodulation. Approach. We tested and modified standard GA methods for application to designing temporal patterns of neural stimulation. We evaluated each modification individually and all modifications collectively by comparing performance to the standard GA across three test functions and two biophysically-based models of neural stimulation. Main results. The proposed modifications of the GA significantly improved performance across the test functions and performed best when all were used collectively. The standard GA found patterns that outperformed fixed-frequency, clinically-standard patterns in biophysically-based models of neural stimulation, but the modified GA, in many fewer iterations, consistently converged to higher-scoring, non-regular patterns of stimulation. Significance. The proposed improvements to standard GA methodology reduced the number of iterations required for convergence and identified superior solutions.

  18. The temporal structures and functional significance of scale-free brain activity

    PubMed Central

    He, Biyu J.; Zempel, John M.; Snyder, Abraham Z.; Raichle, Marcus E.

    2010-01-01

    SUMMARY Scale-free dynamics, with a power spectrum following P ∝ f-β, are an intrinsic feature of many complex processes in nature. In neural systems, scale-free activity is often neglected in electrophysiological research. Here, we investigate scale-free dynamics in human brain and show that it contains extensive nested frequencies, with the phase of lower frequencies modulating the amplitude of higher frequencies in an upward progression across the frequency spectrum. The functional significance of scale-free brain activity is indicated by task performance modulation and regional variation, with β being larger in default network and visual cortex and smaller in hippocampus and cerebellum. The precise patterns of nested frequencies in the brain differ from other scale-free dynamics in nature, such as earth seismic waves and stock market fluctuations, suggesting system-specific generative mechanisms. Our findings reveal robust temporal structures and behavioral significance of scale-free brain activity and should motivate future study on its physiological mechanisms and cognitive implications. PMID:20471349

  19. Impaired temporal contrast sensitivity in dyslexics is specific to retain-and-compare paradigms.

    PubMed

    Ben-Yehudah, G; Sackett, E; Malchi-Ginzberg, L; Ahissar, M

    2001-07-01

    Developmental dyslexia is a specific reading disability that affects 5-10% of the population. Recent studies have suggested that dyslexics may experience a deficit in the visual magnocellular pathway. The most extensively studied prediction deriving from this hypothesis is impaired contrast sensitivity to transient, low-luminance stimuli at low spatial frequencies. However, the findings are inconsistent across studies and even seemingly contradictory. In the present study, we administered several different paradigms for assessing temporal contrast sensitivity, and found both impaired and normal contrast sensitivity within the same group of dyslexic participants. Under sequential presentation, in a temporal forced choice paradigm, dyslexics showed impaired sensitivity to both drifting and flickering gratings. However, under simultaneous presentation, with a spatial forced choice paradigm, dyslexics' sensitivity did not differ from that of the controls. Within each paradigm, dyslexics' sensitivity was poorer at higher temporal frequencies, consistent with the magnocellular hypothesis. These results suggest that a basic perceptual impairment in dyslexics may be their limited ability to retain-and-compare perceptual traces across brief intervals.

  20. Temporal epilepsy seizures monitoring and prediction using cross-correlation and chaos theory.

    PubMed

    Haddad, Tahar; Ben-Hamida, Naim; Talbi, Larbi; Lakhssassi, Ahmed; Aouini, Sadok

    2014-01-01

    Temporal seizures due to hippocampal origins are very common among epileptic patients. Presented is a novel seizure prediction approach employing correlation and chaos theories. The early identification of seizure signature allows for various preventive measures to be undertaken. Electro-encephalography signals are spectrally broken down into the following sub-bands: delta; theta; alpha; beta; and gamma. The proposed approach consists of observing a high correlation level between any pair of electrodes for the lower frequencies and a decrease in the Lyapunov index (chaos or entropy) for the higher frequencies. Power spectral density and statistical analysis tools were used to determine threshold levels for the lower frequencies. After studying all five sub-bands, the analysis has revealed that the seizure signature can be extracted from the delta band and the high frequencies. High frequencies are defined as both the gamma band and the ripples occurring within the 60-120 Hz sub-band. To validate the proposed approach, six patients from both sexes and various age groups with temporal epilepsies originating from the hippocampal area were studied using the Freiburg database. An average seizure prediction of 30 min, an anticipation accuracy of 72%, and a false-positive rate of 0% were accomplished throughout 200 h of recording time.

  1. Phenomenology of spectrally and temporally resolved infrared emissions from bomb detonations

    NASA Astrophysics Data System (ADS)

    Gross, Kevin; Dills, Anthony; Tuttle, Ron; Perram, Glen

    2002-10-01

    The remote sensing of infrared signatures from exothermic reactions during military operations, including missile launches, muzzle flashes, and bomb detonations has been studied using fast FTIR techniques. Battle space characterization includes the ability to classify the munitions type, size, and other characteristics. One possible approach to munitions classification is to understand the spectral and temporal signatures from explosive ordinance. To investigate this possibility, experimental data has been collected remotely from ground-based sensors, processed, and analyzed for several conventional munitions. Field observations of 56 detonation events included a set of aircraft delivered ordnance and a series of static ground detonations for a variety of bomb sizes, types and environmental conditions. The emission is well represented by a gray body with continuously decreasing temperature and characteristic decay times of 1-4 s, providing only limited variability with detonation conditions. However, the fireball size times the emissivity as a function of time can be determined from the spectra without imaging and provides a more sensitive signature. The degree of temporal overlap as a function of frequency for a pair of detonation events provides a very sensitive discriminator for explosion conditions. The temporal overlap decreases with increasing emission frequency for all the observed events, indicating more information content at higher frequencies. Finally, the temporal nature of the emissions has been analyzed, providing a significant reduction in the dimensionality of the data.

  2. Time-domain multiplexed high resolution fiber optics strain sensor system based on temporal response of fiber Fabry-Perot interferometers.

    PubMed

    Chen, Jiageng; Liu, Qingwen; He, Zuyuan

    2017-09-04

    We developed a multiplexed strain sensor system with high resolution using fiber Fabry-Perot interferometers (FFPI) as sensing elements. The temporal responses of the FFPIs excited by rectangular laser pulses are used to obtain the strain applied on each FFPI. The FFPIs are connected by cascaded couplers and delay fiber rolls for the time-domain multiplexing. A compact optoelectronic system performing closed-loop cyclic interrogation is employed to improve the sensing resolution and the frequency response. In the demonstration experiment, 3-channel strain sensing with resolutions better than 0.1 nε and frequency response higher than 100 Hz is realized.

  3. A study of temporal dynamics and spatial variability of power frequency electromagnetic fields in Saint-Petersburg

    NASA Astrophysics Data System (ADS)

    Sturman, V. I.

    2018-01-01

    This paper studies spatial distribution and temporal dynamics of power frequency electric and magnetic fields in Saint-Petersburg. It was determined that sanitary-protection and exclusion zones of the standard size high-voltage transmission lines (HVTL) do not always ensure maximum allowable limits of the electrical field depression. A dependence of the electric field strength on meteorological factors was defined. A series of sources create a city-wide background for magnetic fields. That said, the heavier the man-caused load is, the higher the mean values of magnetic induction are. Abnormally high values of magnetic induction are explained by the influence of underground electric cables.

  4. Reconstructing the spectrotemporal modulations of real-life sounds from fMRI response patterns

    PubMed Central

    Santoro, Roberta; Moerel, Michelle; De Martino, Federico; Valente, Giancarlo; Ugurbil, Kamil; Yacoub, Essa; Formisano, Elia

    2017-01-01

    Ethological views of brain functioning suggest that sound representations and computations in the auditory neural system are optimized finely to process and discriminate behaviorally relevant acoustic features and sounds (e.g., spectrotemporal modulations in the songs of zebra finches). Here, we show that modeling of neural sound representations in terms of frequency-specific spectrotemporal modulations enables accurate and specific reconstruction of real-life sounds from high-resolution functional magnetic resonance imaging (fMRI) response patterns in the human auditory cortex. Region-based analyses indicated that response patterns in separate portions of the auditory cortex are informative of distinctive sets of spectrotemporal modulations. Most relevantly, results revealed that in early auditory regions, and progressively more in surrounding regions, temporal modulations in a range relevant for speech analysis (∼2–4 Hz) were reconstructed more faithfully than other temporal modulations. In early auditory regions, this effect was frequency-dependent and only present for lower frequencies (<∼2 kHz), whereas for higher frequencies, reconstruction accuracy was higher for faster temporal modulations. Further analyses suggested that auditory cortical processing optimized for the fine-grained discrimination of speech and vocal sounds underlies this enhanced reconstruction accuracy. In sum, the present study introduces an approach to embed models of neural sound representations in the analysis of fMRI response patterns. Furthermore, it reveals that, in the human brain, even general purpose and fundamental neural processing mechanisms are shaped by the physical features of real-world stimuli that are most relevant for behavior (i.e., speech, voice). PMID:28420788

  5. Study of the Effect of Temporal Sampling Frequency on DSCOVR Observations Using the GEOS-5 Nature Run Results. Part II; Cloud Coverage

    NASA Technical Reports Server (NTRS)

    Holdaway, Daniel; Yang, Yuekui

    2016-01-01

    This is the second part of a study on how temporal sampling frequency affects satellite retrievals in support of the Deep Space Climate Observatory (DSCOVR) mission. Continuing from Part 1, which looked at Earth's radiation budget, this paper presents the effect of sampling frequency on DSCOVR-derived cloud fraction. The output from NASA's Goddard Earth Observing System version 5 (GEOS-5) Nature Run is used as the "truth". The effect of temporal resolution on potential DSCOVR observations is assessed by subsampling the full Nature Run data. A set of metrics, including uncertainty and absolute error in the subsampled time series, correlation between the original and the subsamples, and Fourier analysis have been used for this study. Results show that, for a given sampling frequency, the uncertainties in the annual mean cloud fraction of the sunlit half of the Earth are larger over land than over ocean. Analysis of correlation coefficients between the subsamples and the original time series demonstrates that even though sampling at certain longer time intervals may not increase the uncertainty in the mean, the subsampled time series is further and further away from the "truth" as the sampling interval becomes larger and larger. Fourier analysis shows that the simulated DSCOVR cloud fraction has underlying periodical features at certain time intervals, such as 8, 12, and 24 h. If the data is subsampled at these frequencies, the uncertainties in the mean cloud fraction are higher. These results provide helpful insights for the DSCOVR temporal sampling strategy.

  6. Spectro-temporal modulation masking patterns reveal frequency selectivity.

    PubMed

    Oetjen, Arne; Verhey, Jesko L

    2015-02-01

    The present study investigated the possibility that the human auditory system demonstrates frequency selectivity to spectro-temporal amplitude modulations. Threshold modulation depth for detecting sinusoidal spectro-temporal modulations was measured using a generalized masked threshold pattern paradigm with narrowband masker modulations. Four target spectro-temporal modulations were examined, differing in their temporal and spectral modulation frequencies: a temporal modulation of -8, 8, or 16 Hz combined with a spectral modulation of 1 cycle/octave and a temporal modulation of 4 Hz combined with a spectral modulation of 0.5 cycles/octave. The temporal center frequencies of the masker modulation ranged from 0.25 to 4 times the target temporal modulation. The spectral masker-modulation center-frequencies were 0, 0.5, 1, 1.5, and 2 times the target spectral modulation. For all target modulations, the pattern of average thresholds for the eight normal-hearing listeners was consistent with the hypothesis of a spectro-temporal modulation filter. Such a pattern of modulation-frequency sensitivity was predicted on the basis of psychoacoustical data for purely temporal amplitude modulations and purely spectral amplitude modulations. An analysis of separability indicates that, for the present data set, selectivity in the spectro-temporal modulation domain can be described by a combination of a purely spectral and a purely temporal modulation filter function.

  7. Enhancement of temporal periodicity cues in cochlear implants: Effects on prosodic perception and vowel identification

    NASA Astrophysics Data System (ADS)

    Green, Tim; Faulkner, Andrew; Rosen, Stuart; Macherey, Olivier

    2005-07-01

    Standard continuous interleaved sampling processing, and a modified processing strategy designed to enhance temporal cues to voice pitch, were compared on tests of intonation perception, and vowel perception, both in implant users and in acoustic simulations. In standard processing, 400 Hz low-pass envelopes modulated either pulse trains (implant users) or noise carriers (simulations). In the modified strategy, slow-rate envelope modulations, which convey dynamic spectral variation crucial for speech understanding, were extracted by low-pass filtering (32 Hz). In addition, during voiced speech, higher-rate temporal modulation in each channel was provided by 100% amplitude-modulation by a sawtooth-like wave form whose periodicity followed the fundamental frequency (F0) of the input. Channel levels were determined by the product of the lower- and higher-rate modulation components. Both in acoustic simulations and in implant users, the ability to use intonation information to identify sentences as question or statement was significantly better with modified processing. However, while there was no difference in vowel recognition in the acoustic simulation, implant users performed worse with modified processing both in vowel recognition and in formant frequency discrimination. It appears that, while enhancing pitch perception, modified processing harmed the transmission of spectral information.

  8. Vegetation resurvey is robust to plot location uncertainty

    PubMed Central

    Kopecký, Martin; Macek, Martin

    2017-01-01

    Aim Resurveys of historical vegetation plots are increasingly used for the assessment of decadal changes in plant species diversity and composition. However, historical plots are usually relocated only approximately. This potentially inflates temporal changes and undermines results. Location Temperate deciduous forests in Central Europe. Methods To explore if robust conclusions can be drawn from resurvey studies despite location uncertainty, we compared temporal changes in species richness, frequency, composition and compositional heterogeneity between exactly and approximately relocated plots. We hypothesized that compositional changes should be lower and changes in species richness should be less variable on exactly relocated plots, because pseudo-turnover inflates temporal changes on approximately relocated plots. Results Temporal changes in species richness were not more variable and temporal changes in species composition and compositional heterogeneity were not higher on approximately relocated plots. Moreover, the frequency of individual species changed similarly on both plot types. Main conclusions The resurvey of historical vegetation plots is robust to uncertainty in original plot location and, when done properly, provides reliable evidence of decadal changes in plant communities. This provides important background for other resurvey studies and opens up the possibility for large-scale assessments of plant community change. PMID:28503083

  9. Temporal modulation transfer functions in cochlear implantees using a method that limits overall loudness cues

    PubMed Central

    Fraser, Matthew; McKay, Colette M.

    2012-01-01

    Temporal modulation transfer functions (TMTFs) were measured for six users of cochlear implants, using different carrier rates and levels. Unlike most previous studies investigating modulation detection, the experimental design limited potential effects of overall loudness cues. Psychometric functions (percent correct discrimination of modulated from unmodulated stimuli versus modulation depth) were obtained. For each modulation depth, each modulated stimulus was loudness balanced to the unmodulated reference stimulus, and level jitter was applied in the discrimination task. The loudness-balance data showed that the modulated stimuli were louder than the unmodulated reference stimuli with the same average current, thus confirming the need to limit loudness cues when measuring modulation detection. TMTFs measured in this way had a low-pass characteristic, with a cut-off frequency (at comfortably loud levels) similar to that for normal-hearing listeners. A reduction in level caused degradation in modulation detection efficiency and a lower-cut-off frequency (i.e. poorer temporal resolution). An increase in carrier rate also led to a degradation in modulation detection efficiency, but only at lower levels or higher modulation frequencies. When detection thresholds were expressed as a proportion of dynamic range, there was no effect of carrier rate for the lowest modulation frequency (50 Hz) at either level. PMID:22146425

  10. Assessment of Responsiveness to Everyday Non-Noxious Stimuli in Pain-Free Migraineurs With Versus Without Aura.

    PubMed

    Granovsky, Yelena; Shor, Merav; Shifrin, Alla; Sprecher, Elliot; Yarnitsky, David; Bar-Shalita, Tami

    2018-03-27

    Migraineurs with aura (MWA) express higher interictal response to non-noxious and noxious experimental sensory stimuli compared with migraineurs without aura (MWoA), but whether these differences also prevail in response to everyday non-noxious stimuli is not yet explored. This is a cross-sectional study testing 53 female migraineurs (30 MWA; 23 MWoA) who underwent a wide battery of noxious psychophysical testing at a pain-free phase, and completed a Sensory Responsiveness Questionnaire and pain-related psychological questionnaires. The MWA group showed higher questionnaire-based sensory over-responsiveness (P = .030), higher magnitude of pain temporal summation (P = .031) as well as higher monthly attack frequency (P = .027) compared with the MWoA group. Overall, 45% of migraineurs described abnormal sensory (hyper- or hypo-) responsiveness; its incidence was higher among MWA (19 of 30, 63%) versus MWoA (6 of 23, 27%, P = .012), with an odds ratio of 3.58 for MWA. Sensory responsiveness scores were positively correlated with attack frequency (r = .361, P = .008) and temporal summation magnitude (r = .390, P = .004), both regardless of migraine type. MWA express higher everyday sensory responsiveness than MWoA, in line with higher response to experimental noxious stimuli. Abnormal scores of sensory responsiveness characterize people with sensory modulation dysfunction, suggesting possible underlying mechanisms overlap, and possibly high incidence of both clinical entities. This article presents findings distinguishing MWA, showing enhanced pain amplification, monthly attack frequency, and over-responsiveness to everyday sensations, compared with MWoA. Further, migraine is characterized by a high incidence of abnormal responsiveness to everyday sensation, specifically sensory over-responsiveness, that was also found related to pain. Copyright © 2018 The American Pain Society. Published by Elsevier Inc. All rights reserved.

  11. Interictal mood and personality disorders in temporal lobe epilepsy and juvenile myoclonic epilepsy.

    PubMed Central

    Perini, G I; Tosin, C; Carraro, C; Bernasconi, G; Canevini, M P; Canger, R; Pellegrini, A; Testa, G

    1996-01-01

    BACKGROUND: Mood disorders have been described as the commonest psychiatric disorders in patients with temporal lobe epilepsy. Secondary depression in temporal lobe epilepsy could be interpreted either as an adjustment reaction to a chronic disease or as a limbic dysfunction. To clarify this issue, a controlled study of psychiatric disorders was conducted in different forms of epileptic and non-epileptic chronic conditions. METHODS: Twenty outpatients with temporal lobe epilepsy, 18 outpatients with juvenile myoclonic epilepsy--a primary generalised seizure disorder--20 matched type I diabetic patients, and 20 matched normal controls were assessed by a structured interview (SADS) and by self rating scales (Beck depression inventory (BDI) and the state and trait anxiety scales STAIX1 and STAIX2). RESULTS: Sixteen (80%) patients with temporal lobe epilepsy fulfilled the criteria for a psychiatric diagnosis at the SADS interview with a significantly higher frequency than patients with juvenile myoclonic epilepsy (22%) and diabetic patients (10%) (P < 0.0001). The most frequent disorder in temporal lobe epilepsy was a mood disorder: 11 (55%) patients with temporal lobe epilepsy had depression compared with three patients with juvenile myoclonic epilepsy and two diabetic patients (P < 0.001). Eight patients with temporal lobe epilepsy with an affective disorder also had a comorbid personality or anxiety disorder. Patients with temporal lobe epilepsy scored significantly higher on BDI, STAIX1, and STAIX2 than the three control groups (P < 0.001, P < 0.01, P < 0.001). CONCLUSIONS: Patients with temporal lobe epilepsy have a higher incidence of affective and personality disorders, often in comorbidity, than patients with juvenile myoclonic epilepsy and diabetic patients suggesting that these psychiatric disorders are not an adjustment reaction to a chronic disease but rather reflect a limbic dysfunction. PMID:8971108

  12. The temporal representation of the delay of dynamic iterated rippled noise with positive and negative gain by single units in the ventral cochlear nucleus.

    PubMed

    Sayles, Mark; Winter, Ian Michael

    2007-09-26

    Spike trains were recorded from single units in the ventral cochlear nucleus of the anaesthetised guinea-pig in response to dynamic iterated rippled noise with positive and negative gain. The short-term running waveform autocorrelation functions of these stimuli show peaks at integer multiples of the time-varying delay when the gain is +1, and troughs at odd-integer multiples and peaks at even-integer multiples of the time-varying delay when the gain is -1. In contrast, the short-term autocorrelation of the Hilbert envelope shows peaks at integer multiples of the time-varying delay for both positive and negative gain stimuli. A running short-term all-order interspike interval analysis demonstrates the ability of single units to represent the modulated pitch contour in their short-term interval statistics. For units with low best frequency (approximate < or = 1.1 kHz) the temporal discharge pattern reflected the waveform fine structure regardless of unit classification (Primary-like, Chopper). For higher best frequency units the pattern of response varied according to unit type. Chopper units with best frequency approximate > or = 1.1 kHz responded to envelope modulation; showing no difference between their response to stimuli with positive and negative gain. Primary-like units with best frequencies in the range 1-3 kHz were still able to represent the difference in the temporal fine structure between dynamic rippled noise with positive and negative gain. No unit with a best frequency above 3 kHz showed a response to the temporal fine structure. Chopper units in this high frequency group showed significantly greater representation of envelope modulation relative to primary-like units with the same range of best frequencies. These results show that at the level of the cochlear nucleus there exists sufficient information in the time domain to represent the time-varying pitch associated with dynamic iterated rippled noise.

  13. The Phosphorylation State of the Drosophila TRP Channel Modulates the Frequency Response to Oscillating Light In Vivo

    PubMed Central

    Rhodes-Mordov, Elisheva; Katz, Ben; Oberegelsbacher, Claudia; Yasin, Bushra; Tzadok, Hanan; Huber, Armin

    2017-01-01

    Drosophila photoreceptors respond to oscillating light of high frequency (∼100 Hz), while the detected maximal frequency is modulated by the light rearing conditions, thus enabling high sensitivity to light and high temporal resolution. However, the molecular basis for this adaptive process is unclear. Here, we report that dephosphorylation of the light-activated transient receptor potential (TRP) ion channel at S936 is a fast, graded, light-dependent, and Ca2+-dependent process that is partially modulated by the rhodopsin phosphatase retinal degeneration C (RDGC). Electroretinogram measurements of the frequency response to oscillating lights in vivo revealed that dark-reared flies expressing wild-type TRP exhibited a detection limit of oscillating light at relatively low frequencies, which was shifted to higher frequencies upon light adaptation. Strikingly, preventing phosphorylation of the S936-TRP site by alanine substitution in transgenic Drosophila (trpS936A) abolished the difference in frequency response between dark-adapted and light-adapted flies, resulting in high-frequency response also in dark-adapted flies. In contrast, inserting a phosphomimetic mutation by substituting the S936-TRP site to aspartic acid (trpS936D) set the frequency response of light-adapted flies to low frequencies typical of dark-adapted flies. Light-adapted rdgC mutant flies showed relatively high S936-TRP phosphorylation levels and light–dark phosphorylation dynamics. These findings suggest that RDGC is one but not the only phosphatase involved in pS936-TRP dephosphorylation. Together, this study indicates that TRP channel dephosphorylation is a regulatory process that affects the detection limit of oscillating light according to the light rearing condition, thus adjusting dynamic processing of visual information under varying light conditions. SIGNIFICANCE STATEMENT Drosophila photoreceptors exhibit high temporal resolution as manifested in frequency response to oscillating light of high frequency (≤∼100 Hz). Light rearing conditions modulate the maximal frequency detected by photoreceptors, thus enabling them to maintain high sensitivity to light and high temporal resolution. However, the precise mechanisms for this process are not fully understood. Here, we show by combination of biochemistry and in vivo electrophysiology that transient receptor potential (TRP) channel dephosphorylation at a specific site is a fast, light-activated and Ca2+-dependent regulatory process. TRP dephosphorylation affects the detection limit of oscillating light according to the adaptation state of the photoreceptor cells by shifting the detection limit to higher frequencies upon light adaptation. This novel mechanism thus adjusts dynamic processing of visual information under varying light conditions. PMID:28314815

  14. Electrophysiological measurement of binaural beats: effects of primary tone frequency and observer age.

    PubMed

    Grose, John H; Mamo, Sara K

    2012-01-01

    The purpose of this study was to determine the reliability of the electrophysiological binaural beat steady state response as a gauge of temporal fine structure coding, particularly as it relates to the aging auditory system. The hypothesis was that the response would be more robust in a lower, than in a higher, frequency region and in younger, than in older, adults. Two experiments were undertaken. The first measured the 40 Hz binaural beat steady state response elicited by tone pairs in two frequency regions: lower (390 and 430 Hz tone pair) and higher (810 and 850 Hz tone pair). Frequency following responses (FFRs) evoked by the tones were also recorded. Ten young adults with normal hearing participated. The second experiment measured the binaural beat and FFRs in older adults but only in the lower frequency region. Fourteen older adults with relatively normal hearing participated. Response metrics in both experiments included response component signal-to-noise ratio (F statistic) and magnitude-squared coherence. Experiment 1 showed that FFRs were elicited in both frequency regions but were more robust in the lower frequency region. Binaural beat responses elicited by the lower frequency pair of tones showed greater amplitude fluctuation within a participant than the respective FFRs. Experiment 2 showed that older adults exhibited similar FFRs to younger adults, but proportionally fewer older participants showed binaural beat responses. Age differences in onset responses were also observed. The lower prevalence of the binaural beat response in older adults, despite the presence of FFRs, provides tentative support for the sensitivity of this measure to age-related deficits in temporal processing. However, the lability of the binaural beat response advocates caution in its use as an objective measure of fine structure coding.

  15. Separable spectro-temporal Gabor filter bank features: Reducing the complexity of robust features for automatic speech recognition.

    PubMed

    Schädler, Marc René; Kollmeier, Birger

    2015-04-01

    To test if simultaneous spectral and temporal processing is required to extract robust features for automatic speech recognition (ASR), the robust spectro-temporal two-dimensional-Gabor filter bank (GBFB) front-end from Schädler, Meyer, and Kollmeier [J. Acoust. Soc. Am. 131, 4134-4151 (2012)] was de-composed into a spectral one-dimensional-Gabor filter bank and a temporal one-dimensional-Gabor filter bank. A feature set that is extracted with these separate spectral and temporal modulation filter banks was introduced, the separate Gabor filter bank (SGBFB) features, and evaluated on the CHiME (Computational Hearing in Multisource Environments) keywords-in-noise recognition task. From the perspective of robust ASR, the results showed that spectral and temporal processing can be performed independently and are not required to interact with each other. Using SGBFB features permitted the signal-to-noise ratio (SNR) to be lowered by 1.2 dB while still performing as well as the GBFB-based reference system, which corresponds to a relative improvement of the word error rate by 12.8%. Additionally, the real time factor of the spectro-temporal processing could be reduced by more than an order of magnitude. Compared to human listeners, the SNR needed to be 13 dB higher when using Mel-frequency cepstral coefficient features, 11 dB higher when using GBFB features, and 9 dB higher when using SGBFB features to achieve the same recognition performance.

  16. Electroencephalographic characterization of subgroups of children with learning disorders

    PubMed Central

    Roca-Stappung, Milene; Bosch-Bayard, Jorge; Harmony, Thalía; Ricardo-Garcell, Josefina

    2017-01-01

    Electroencephalographic alterations have been reported in subjects with learning disorders, but there is no consensus on what characterizes their electroencephalogram findings. Our objective was to determine if there were subgroups within a group of scholars with not otherwise specified learning disorders and if they had specific electroencephalographic patterns. Eighty-five subjects (31 female, 8–11 years) who scored low in at least two subscales -reading, writing and arithmetic- of the Infant Neuropsychological Evaluation were included. Electroencephalograms were recorded in 19 leads during rest with eyes closed; absolute power was obtained every 0.39 Hz. Three subgroups were formed according to children’s performance: Group 1 (G1, higher scores than Group 2 in reading speed and reading and writing accuracy), Group 2 (G2, better performance than G1 in composition) and Group 3 (G3, lower scores than Groups 1 and 2 in the three subscales). G3 had higher absolute power in frequencies in the delta and theta range at left frontotemporal sites than G1 and G2. G2 had higher absolute power within alpha frequencies than G3 and G1 at the left occipital site. G3 had higher absolute power in frequencies in the beta range than G1 in parietotemporal areas and than G2 in left frontopolar and temporal sites. G1 had higher absolute power within beta frequencies than G2 in the left frontopolar site. G3 had lower gamma absolute power values than the other groups in the left hemisphere, and gamma activity was higher in G1 than in G2 in frontopolar and temporal areas. This group of children with learning disorders is very heterogeneous. Three subgroups were found with different cognitive profiles, as well as a different electroencephalographic pattern. It is important to consider these differences when planning interventions for children with learning disorders. PMID:28708890

  17. Effects of Temperature on Sound Production and Auditory Abilities in the Striped Raphael Catfish Platydoras armatulus (Family Doradidae)

    PubMed Central

    Papes, Sandra; Ladich, Friedrich

    2011-01-01

    Background Sound production and hearing sensitivity of ectothermic animals are affected by the ambient temperature. This is the first study investigating the influence of temperature on both sound production and on hearing abilities in a fish species, namely the neotropical Striped Raphael catfish Platydoras armatulus. Methodology/Principal Findings Doradid catfishes produce stridulation sounds by rubbing the pectoral spines in the shoulder girdle and drumming sounds by an elastic spring mechanism which vibrates the swimbladder. Eight fish were acclimated for at least three weeks to 22°, then to 30° and again to 22°C. Sounds were recorded in distress situations when fish were hand-held. The stridulation sounds became shorter at the higher temperature, whereas pulse number, maximum pulse period and sound pressure level did not change with temperature. The dominant frequency increased when the temperature was raised to 30°C and the minimum pulse period became longer when the temperature decreased again. The fundamental frequency of drumming sounds increased at the higher temperature. Using the auditory evoked potential (AEP) recording technique, the hearing thresholds were tested at six different frequencies from 0.1 to 4 kHz. The temporal resolution was determined by analyzing the minimum resolvable click period (0.3–5 ms). The hearing sensitivity was higher at the higher temperature and differences were more pronounced at higher frequencies. In general, latencies of AEPs in response to single clicks became shorter at the higher temperature, whereas temporal resolution in response to double-clicks did not change. Conclusions/Significance These data indicate that sound characteristics as well as hearing abilities are affected by temperatures in fishes. Constraints imposed on hearing sensitivity at different temperatures cannot be compensated even by longer acclimation periods. These changes in sound production and detection suggest that acoustic orientation and communication are affected by temperature changes in the neotropical catfish P. armatulus. PMID:22022618

  18. Characteristics of spectro-temporal modulation frequency selectivity in humans.

    PubMed

    Oetjen, Arne; Verhey, Jesko L

    2017-03-01

    There is increasing evidence that the auditory system shows frequency selectivity for spectro-temporal modulations. A recent study of the authors has shown spectro-temporal modulation masking patterns that were in agreement with the hypothesis of spectro-temporal modulation filters in the human auditory system [Oetjen and Verhey (2015). J. Acoust. Soc. Am. 137(2), 714-723]. In the present study, that experimental data and additional data were used to model this spectro-temporal frequency selectivity. The additional data were collected to investigate to what extent the spectro-temporal modulation-frequency selectivity results from a combination of a purely temporal amplitude-modulation filter and a purely spectral amplitude-modulation filter. In contrast to the previous study, thresholds were measured for masker and target modulations with opposite directions, i.e., an upward pointing target modulation and a downward pointing masker modulation. The comparison of this data set with previous corresponding data with the same direction from target and masker modulations indicate that a specific spectro-temporal modulation filter is required to simulate all aspects of spectro-temporal modulation frequency selectivity. A model using a modified Gabor filter with a purely temporal and a purely spectral filter predicts the spectro-temporal modulation masking data.

  19. Random walker in temporally deforming higher-order potential forces observed in a financial crisis.

    PubMed

    Watanabe, Kota; Takayasu, Hideki; Takayasu, Misako

    2009-11-01

    Basic peculiarities of market price fluctuations are known to be well described by a recently developed random-walk model in a temporally deforming quadratic potential force whose center is given by a moving average of past price traces [M. Takayasu, T. Mizuno, and H. Takayasu, Physica A 370, 91 (2006)]. By analyzing high-frequency financial time series of exceptional events, such as bubbles and crashes, we confirm the appearance of higher-order potential force in the markets. We show statistical significance of its existence by applying the information criterion. This time series analysis is expected to be applied widely for detecting a nonstationary symptom in random phenomena.

  20. Encoding of frequency-modulation (FM) rates in human auditory cortex.

    PubMed

    Okamoto, Hidehiko; Kakigi, Ryusuke

    2015-12-14

    Frequency-modulated sounds play an important role in our daily social life. However, it currently remains unclear whether frequency modulation rates affect neural activity in the human auditory cortex. In the present study, using magnetoencephalography, we investigated the auditory evoked N1m and sustained field responses elicited by temporally repeated and superimposed frequency-modulated sweeps that were matched in the spectral domain, but differed in frequency modulation rates (1, 4, 16, and 64 octaves per sec). The results obtained demonstrated that the higher rate frequency-modulated sweeps elicited the smaller N1m and the larger sustained field responses. Frequency modulation rate had a significant impact on the human brain responses, thereby providing a key for disentangling a series of natural frequency-modulated sounds such as speech and music.

  1. Optimized two-frequency phase-measuring-profilometry light-sensor temporal-noise sensitivity.

    PubMed

    Li, Jielin; Hassebrook, Laurence G; Guan, Chun

    2003-01-01

    Temporal frame-to-frame noise in multipattern structured light projection can significantly corrupt depth measurement repeatability. We present a rigorous stochastic analysis of phase-measuring-profilometry temporal noise as a function of the pattern parameters and the reconstruction coefficients. The analysis is used to optimize the two-frequency phase measurement technique. In phase-measuring profilometry, a sequence of phase-shifted sine-wave patterns is projected onto a surface. In two-frequency phase measurement, two sets of pattern sequences are used. The first, low-frequency set establishes a nonambiguous depth estimate, and the second, high-frequency set is unwrapped, based on the low-frequency estimate, to obtain an accurate depth estimate. If the second frequency is too low, then depth error is caused directly by temporal noise in the phase measurement. If the second frequency is too high, temporal noise triggers ambiguous unwrapping, resulting in depth measurement error. We present a solution for finding the second frequency, where intensity noise variance is at its minimum.

  2. Using individual differences to test the role of temporal and place cues in coding frequency modulation

    PubMed Central

    Whiteford, Kelly L.; Oxenham, Andrew J.

    2015-01-01

    The question of how frequency is coded in the peripheral auditory system remains unresolved. Previous research has suggested that slow rates of frequency modulation (FM) of a low carrier frequency may be coded via phase-locked temporal information in the auditory nerve, whereas FM at higher rates and/or high carrier frequencies may be coded via a rate-place (tonotopic) code. This hypothesis was tested in a cohort of 100 young normal-hearing listeners by comparing individual sensitivity to slow-rate (1-Hz) and fast-rate (20-Hz) FM at a carrier frequency of 500 Hz with independent measures of phase-locking (using dynamic interaural time difference, ITD, discrimination), level coding (using amplitude modulation, AM, detection), and frequency selectivity (using forward-masking patterns). All FM and AM thresholds were highly correlated with each other. However, no evidence was obtained for stronger correlations between measures thought to reflect phase-locking (e.g., slow-rate FM and ITD sensitivity), or between measures thought to reflect tonotopic coding (fast-rate FM and forward-masking patterns). The results suggest that either psychoacoustic performance in young normal-hearing listeners is not limited by peripheral coding, or that similar peripheral mechanisms limit both high- and low-rate FM coding. PMID:26627783

  3. Using individual differences to test the role of temporal and place cues in coding frequency modulation.

    PubMed

    Whiteford, Kelly L; Oxenham, Andrew J

    2015-11-01

    The question of how frequency is coded in the peripheral auditory system remains unresolved. Previous research has suggested that slow rates of frequency modulation (FM) of a low carrier frequency may be coded via phase-locked temporal information in the auditory nerve, whereas FM at higher rates and/or high carrier frequencies may be coded via a rate-place (tonotopic) code. This hypothesis was tested in a cohort of 100 young normal-hearing listeners by comparing individual sensitivity to slow-rate (1-Hz) and fast-rate (20-Hz) FM at a carrier frequency of 500 Hz with independent measures of phase-locking (using dynamic interaural time difference, ITD, discrimination), level coding (using amplitude modulation, AM, detection), and frequency selectivity (using forward-masking patterns). All FM and AM thresholds were highly correlated with each other. However, no evidence was obtained for stronger correlations between measures thought to reflect phase-locking (e.g., slow-rate FM and ITD sensitivity), or between measures thought to reflect tonotopic coding (fast-rate FM and forward-masking patterns). The results suggest that either psychoacoustic performance in young normal-hearing listeners is not limited by peripheral coding, or that similar peripheral mechanisms limit both high- and low-rate FM coding.

  4. Assessing spatial and temporal properties of perimetric stimuli for resistance to clinical variations in retinal illumination.

    PubMed

    Swanson, William H; Dul, Mitchell W; Horner, Douglas G; Liu, Tiffany; Tran, Irene

    2014-01-20

    To develop perimetric stimuli for which sensitivities are more resistant to reduced retinal illumination than current clinical perimeters. Fifty-four people free of eye disease were dilated and tested monocularly. For each test, retinal illumination was attenuated with neutral density (ND) filters, and a standard adaptation model was fit to derive mean and SEM for the adaptation parameter (NDhalf). For different stimuli, t-tests on NDhalf were used to assess significance of differences in consistency with Weber's law. Three experiments used custom Gaussian-windowed contrast sensitivity perimetry (CSP). Experiment 1 used CSP-1, with a Gaussian temporal pulse, a spatial frequency of 0.375 cyc/deg (cpd), and SD of 1.5°. Experiment 1 also used the Humphrey Matrix perimeter, with the N-30 test using 0.25 cpd and 25 Hz flicker. Experiment 2 used a rectangular temporal pulse, SDs of 0.25° and 0.5°, and spatial frequencies of 0.0 and 1.0 cpd. Experiment 3 used CSP-2, with 5-Hz flicker, SDs from 0.5° to 1.8°, and spatial frequencies from 0.14 to 0.50 cpd. In Experiment 1, CSP-1 was more consistent with Weber's law (NDhalf ± SEM = 1.86 ± 0.08 log unit) than N-30 (NDhalf = 1.03 ± 0.03 log unit; t > 9, P < 0.0001). All stimuli used in Experiments 2 and 3 had comparable consistency with Weber's law (NDhalf = 1.49-1.69 log unit; t < 2). Perimetric sensitivities were consistent with Weber's law when higher temporal frequencies were avoided.

  5. Top-down Processes in Simulated Electric-Acoustic Hearing: The Effect of Linguistic Context on Bimodal Benefit for Temporally Interrupted Speech

    PubMed Central

    Oh, Soo Hee; Donaldson, Gail S.; Kong, Ying-Yee

    2016-01-01

    Objectives Previous studies have documented the benefits of bimodal hearing as compared with a CI alone, but most have focused on the importance of bottom-up, low-frequency cues. The purpose of the present study was to evaluate the role of top-down processing in bimodal hearing by measuring the effect of sentence context on bimodal benefit for temporally interrupted sentences. It was hypothesized that low-frequency acoustic cues would facilitate the use of contextual information in the interrupted sentences, resulting in greater bimodal benefit for the higher context (CUNY) sentences than for the lower context (IEEE) sentences. Design Young normal-hearing listeners were tested in simulated bimodal listening conditions in which noise band vocoded sentences were presented to one ear with or without low-pass (LP) filtered speech or LP harmonic complexes (LPHCs) presented to the contralateral ear. Speech recognition scores were measured in three listening conditions: vocoder-alone, vocoder combined with LP speech, and vocoder combined with LPHCs. Temporally interrupted versions of the CUNY and IEEE sentences were used to assess listeners’ ability to fill in missing segments of speech by using top-down linguistic processing. Sentences were square-wave gated at a rate of 5 Hz with a 50 percent duty cycle. Three vocoder channel conditions were tested for each type of sentence (8, 12, and 16 channels for CUNY; 12, 16, and 32 channels for IEEE) and bimodal benefit was compared for similar amounts of spectral degradation (matched-channel comparisons) and similar ranges of baseline performance. Two gain measures, percentage-point gain and normalized gain, were examined. Results Significant effects of context on bimodal benefit were observed when LP speech was presented to the residual-hearing ear. For the matched-channel comparisons, CUNY sentences showed significantly higher normalized gains than IEEE sentences for both the 12-channel (20 points higher) and 16-channel (18 points higher) conditions. For the individual gain comparisons that used a similar range of baseline performance, CUNY sentences showed bimodal benefits that were significantly higher (7 percentage points, or 15 points normalized gain) than those for IEEE sentences. The bimodal benefits observed here for temporally interrupted speech were considerably smaller than those observed in an earlier study that used continuous speech (Kong et al., 2015). Further, unlike previous findings for continuous speech, no bimodal benefit was observed when LPHCs were presented to the LP ear. Conclusions Findings indicate that linguistic context has a significant influence on bimodal benefit for temporally interrupted speech and support the hypothesis that low-frequency acoustic information presented to the residual-hearing ear facilitates the use of top-down linguistic processing in bimodal hearing. However, bimodal benefit is reduced for temporally interrupted speech as compared to continuous speech, suggesting that listeners’ ability to restore missing speech information depends not only on top-down linguistic knowledge, but also on the quality of the bottom-up sensory input. PMID:27007220

  6. The influence of spatially and temporally high-resolution wind forcing on the power input to near-inertial waves in the ocean

    NASA Astrophysics Data System (ADS)

    Rimac, A.; Eden, C.; von Storch, J.

    2012-12-01

    Coexistence of stable stratification, the meridional overturning circulation and meso-scale eddies and their influence on the ocean's circulation still raise complex questions concerning the ocean energetics. Oceanic general circulation is mainly forced by the wind field and deep water tides. Its essential energetics are the conversion of kinetic energy of the winds and tides into oceanic potential and kinetic energy. Energy needed for the circulation is bound to internal wave fields. Direct internal wave generation by the wind at the sea surface is one of the sources of this energy. Previous studies using mixed-layer type of models and low frequency wind forcings (six-hourly and daily) left room for improvement. Using mixed-layer models it is not possible to assess the distribution of near-inertial energy into the deep ocean. Also, coarse temporal resolution of wind forcing strongly underestimates the near-inertial wave energy. To overcome this difficulty we use a high resolution ocean model with high frequency wind forcings. We establish the following model setup: We use the Max Planck Institute Ocean Model (MPIOM) on a tripolar grid with 45km horizontal resolution and 40 vertical levels. We run the model with wind forcings that vary in horizontal (250km versus 40km) and temporal resolution (six versus one-hourly). In our study we answer the following questions: How big is the wind kinetic energy input to the near-inertial waves? Is the kinetic energy of the near-inertial waves enhanced when high-frequency wind forcings are used? If so, by how much and why, due to higher level of temporal wind variability or due to better spatial representation of the near-inertial waves? How big is the total power of near-inertial waves generated by the wind at the surface of the ocean? We run the model for one year. Our model results show that the near-inertial waves are excited both using wind forcings of high and low horizontal and temporal resolution. Near-inertial energy is almost two times higher when we force the model with high frequency wind forcings. The influence on the energy mostly depends on the time difference between two forcing fields while the spatial difference has little influence.

  7. Figure/ground segregation from temporal delay is best at high spatial frequencies.

    PubMed

    Kojima, H

    1998-12-01

    Two experiments investigated the role of spatial frequency in performance of a figure/ground segregation task based on temporal cues. Figure orientation was much easier to judge when figure and ground portions of the target were defined exclusively by random texture composed entirely of high spatial frequencies. When target components were defined by low spatial frequencies only, the task was nearly impossible except with long temporal delay between figure and ground. These results are inconsistent with the hypothesis that M-cell activity is primarily responsible for figure/ground segregation from temporal delay. Instead, these results point to a distinction between temporal integration and temporal differentiation. Additionally, the present results can be related to recent work on the binding of spatial features over time.

  8. Enhancing the Temporal Complexity of Distributed Brain Networks with Patterned Cerebellar Stimulation

    PubMed Central

    Farzan, Faranak; Pascual-Leone, Alvaro; Schmahmann, Jeremy D.; Halko, Mark

    2016-01-01

    Growing evidence suggests that sensory, motor, cognitive and affective processes map onto specific, distributed neural networks. Cerebellar subregions are part of these networks, but how the cerebellum is involved in this wide range of brain functions remains poorly understood. It is postulated that the cerebellum contributes a basic role in brain functions, helping to shape the complexity of brain temporal dynamics. We therefore hypothesized that stimulating cerebellar nodes integrated in different networks should have the same impact on the temporal complexity of cortical signals. In healthy humans, we applied intermittent theta burst stimulation (iTBS) to the vermis lobule VII or right lateral cerebellar Crus I/II, subregions that prominently couple to the dorsal-attention/fronto-parietal and default-mode networks, respectively. Cerebellar iTBS increased the complexity of brain signals across multiple time scales in a network-specific manner identified through electroencephalography (EEG). We also demonstrated a region-specific shift in power of cortical oscillations towards higher frequencies consistent with the natural frequencies of targeted cortical areas. Our findings provide a novel mechanism and evidence by which the cerebellum contributes to multiple brain functions: specific cerebellar subregions control the temporal dynamics of the networks they are engaged in. PMID:27009405

  9. Temporal and spatial resolution required for imaging myocardial function

    NASA Astrophysics Data System (ADS)

    Eusemann, Christian D.; Robb, Richard A.

    2004-05-01

    4-D functional analysis of myocardial mechanics is an area of significant interest and research in cardiology and vascular/interventional radiology. Current multidimensional analysis is limited by insufficient temporal resolution of x-ray and magnetic resonance based techniques, but recent improvements in system design holds hope for faster and higher resolution scans to improve images of moving structures allowing more accurate functional studies, such as in the heart. This paper provides a basis for the requisite temporal and spatial resolution for useful imaging during individual segments of the cardiac cycle. Multiple sample rates during systole and diastole are compared to determine an adequate sample frequency to reduce regional myocardial tracking errors. Concurrently, out-of-plane resolution has to be sufficiently high to minimize partial volume effect. Temporal resolution and out-of-plane spatial resolution are related factors that must be considered together. The data used for this study is a DSR dynamic volume image dataset with high temporal and spatial resolution using implanted fiducial markers to track myocardial motion. The results of this study suggest a reduced exposure and scan time for x-ray and magnetic resonance imaging methods, since a lower sample rate during systole is sufficient, whereas the period of rapid filling during diastole requires higher sampling. This could potentially reduce the cost of these procedures and allow higher patient throughput.

  10. Object Categorization in Finer Levels Relies More on Higher Spatial Frequencies and Takes Longer.

    PubMed

    Ashtiani, Matin N; Kheradpisheh, Saeed R; Masquelier, Timothée; Ganjtabesh, Mohammad

    2017-01-01

    The human visual system contains a hierarchical sequence of modules that take part in visual perception at different levels of abstraction, i.e., superordinate, basic, and subordinate levels. One important question is to identify the "entry" level at which the visual representation is commenced in the process of object recognition. For a long time, it was believed that the basic level had a temporal advantage over two others. This claim has been challenged recently. Here we used a series of psychophysics experiments, based on a rapid presentation paradigm, as well as two computational models, with bandpass filtered images of five object classes to study the processing order of the categorization levels. In these experiments, we investigated the type of visual information required for categorizing objects in each level by varying the spatial frequency bands of the input image. The results of our psychophysics experiments and computational models are consistent. They indicate that the different spatial frequency information had different effects on object categorization in each level. In the absence of high frequency information, subordinate and basic level categorization are performed less accurately, while the superordinate level is performed well. This means that low frequency information is sufficient for superordinate level, but not for the basic and subordinate levels. These finer levels rely more on high frequency information, which appears to take longer to be processed, leading to longer reaction times. Finally, to avoid the ceiling effect, we evaluated the robustness of the results by adding different amounts of noise to the input images and repeating the experiments. As expected, the categorization accuracy decreased and the reaction time increased significantly, but the trends were the same. This shows that our results are not due to a ceiling effect. The compatibility between our psychophysical and computational results suggests that the temporal advantage of the superordinate (resp. basic) level to basic (resp. subordinate) level is mainly due to the computational constraints (the visual system processes higher spatial frequencies more slowly, and categorization in finer levels depends more on these higher spatial frequencies).

  11. Object Categorization in Finer Levels Relies More on Higher Spatial Frequencies and Takes Longer

    PubMed Central

    Ashtiani, Matin N.; Kheradpisheh, Saeed R.; Masquelier, Timothée; Ganjtabesh, Mohammad

    2017-01-01

    The human visual system contains a hierarchical sequence of modules that take part in visual perception at different levels of abstraction, i.e., superordinate, basic, and subordinate levels. One important question is to identify the “entry” level at which the visual representation is commenced in the process of object recognition. For a long time, it was believed that the basic level had a temporal advantage over two others. This claim has been challenged recently. Here we used a series of psychophysics experiments, based on a rapid presentation paradigm, as well as two computational models, with bandpass filtered images of five object classes to study the processing order of the categorization levels. In these experiments, we investigated the type of visual information required for categorizing objects in each level by varying the spatial frequency bands of the input image. The results of our psychophysics experiments and computational models are consistent. They indicate that the different spatial frequency information had different effects on object categorization in each level. In the absence of high frequency information, subordinate and basic level categorization are performed less accurately, while the superordinate level is performed well. This means that low frequency information is sufficient for superordinate level, but not for the basic and subordinate levels. These finer levels rely more on high frequency information, which appears to take longer to be processed, leading to longer reaction times. Finally, to avoid the ceiling effect, we evaluated the robustness of the results by adding different amounts of noise to the input images and repeating the experiments. As expected, the categorization accuracy decreased and the reaction time increased significantly, but the trends were the same. This shows that our results are not due to a ceiling effect. The compatibility between our psychophysical and computational results suggests that the temporal advantage of the superordinate (resp. basic) level to basic (resp. subordinate) level is mainly due to the computational constraints (the visual system processes higher spatial frequencies more slowly, and categorization in finer levels depends more on these higher spatial frequencies). PMID:28790954

  12. Intrinsic frequency biases and profiles across human cortex.

    PubMed

    Mellem, Monika S; Wohltjen, Sophie; Gotts, Stephen J; Ghuman, Avniel Singh; Martin, Alex

    2017-11-01

    Recent findings in monkeys suggest that intrinsic periodic spiking activity in selective cortical areas occurs at timescales that follow a sensory or lower order-to-higher order processing hierarchy (Murray JD, Bernacchia A, Freedman DJ, Romo R, Wallis JD, Cai X, Padoa-Schioppa C, Pasternak T, Seo H, Lee D, Wang XJ. Nat Neurosci 17: 1661-1663, 2014). It has not yet been fully explored if a similar timescale hierarchy is present in humans. Additionally, these measures in the monkey studies have not addressed findings that rhythmic activity within a brain area can occur at multiple frequencies. In this study we investigate in humans if regions may be biased toward particular frequencies of intrinsic activity and if a full cortical mapping still reveals an organization that follows this hierarchy. We examined the spectral power in multiple frequency bands (0.5-150 Hz) from task-independent data using magnetoencephalography (MEG). We compared standardized power across bands to find regional frequency biases. Our results demonstrate a mix of lower and higher frequency biases across sensory and higher order regions. Thus they suggest a more complex cortical organization that does not simply follow this hierarchy. Additionally, some regions do not display a bias for a single band, and a data-driven clustering analysis reveals a regional organization with high standardized power in multiple bands. Specifically, theta and beta are both high in dorsal frontal cortex, whereas delta and gamma are high in ventral frontal cortex and temporal cortex. Occipital and parietal regions are biased more narrowly toward alpha power, and ventral temporal lobe displays specific biases toward gamma. Thus intrinsic rhythmic neural activity displays a regional organization but one that is not necessarily hierarchical. NEW & NOTEWORTHY The organization of rhythmic neural activity is not well understood. Whereas it has been postulated that rhythms are organized in a hierarchical manner across brain regions, our novel analysis allows comparison of full cortical maps across different frequency bands, which demonstrate that the rhythmic organization is more complex. Additionally, data-driven methods show that rhythms of multiple frequencies or timescales occur within a particular region and that this nonhierarchical organization is widespread. Copyright © 2017 the American Physiological Society.

  13. Dependence of the Startle Response on Temporal and Spectral Characteristics of Acoustic Modulatory Influences in Rats and Gerbils

    PubMed Central

    Steube, Natalie; Nowotny, Manuela; Pilz, Peter K. D.; Gaese, Bernhard H.

    2016-01-01

    The acoustic startle response (ASR) and its modulation by non-startling prepulses, presented shortly before the startle-eliciting stimulus, is a broadly applied test paradigm to determine changes in neural processing related to auditory or psychiatric disorders. Modulation by a gap in background noise as a prepulse is especially used for tinnitus assessment. However, the timing and frequency-related aspects of prepulses are not fully understood. The present study aims to investigate temporal and spectral characteristics of acoustic stimuli that modulate the ASR in rats and gerbils. For noise-burst prepulses, inhibition was frequency-independent in gerbils in the test range between 4 and 18 kHz. Prepulse inhibition (PPI) by noise-bursts in rats was constant in a comparable range (8–22 kHz), but lower outside this range. Purely temporal aspects of prepulse–startle-interactions were investigated for gap-prepulses focusing mainly on gap duration. While very short gaps had no (rats) or slightly facilitatory (gerbils) influence on the ASR, longer gaps always had a strong inhibitory effect. Inhibition increased with durations up to 75 ms and remained at a high level of inhibition for durations up to 1000 ms for both, rats and gerbils. Determining spectral influences on gap-prepulse inhibition (gap-PPI) revealed that gerbils were unaffected in the limited frequency range tested (4–18 kHz). The more detailed analysis in rats revealed a variety of frequency-dependent effects. Gaps in pure-tone background elicited constant and high inhibition (around 75%) over a broad frequency range (4–32 kHz). For gaps in noise-bands, on the other hand, a clear frequency-dependency was found: inhibition was around 50% at lower frequencies (6–14 kHz) and around 70% at high frequencies (16–20 kHz). This pattern of frequency-dependency in rats was specifically resulting from the inhibitory effect by the gaps, as revealed by detailed analysis of the underlying startle amplitudes. An interaction of temporal and spectral influences, finally, resulted in higher inhibition for 500 ms gaps than for 75 ms gaps at all frequencies tested. Improved prepulse paradigms based on these results are well suited to quantify the consequences of central processing disorders. PMID:27445728

  14. Extraction, quantification and characterization of uterine magnetomyographic activity--a proof of concept case study.

    PubMed

    Eswaran, Hari; Govindan, Rathinaswamy B; Furdea, Adrian; Murphy, Pam; Lowery, Curtis L; Preissl, Hubert T

    2009-05-01

    The objective was to extract, quantify and characterize the uterine magnetomyographic (MMG) signals that correspond to the electrophysiological activity of the uterus. Transabdominal MMG recordings with high spatial-temporal resolution were performed with the use of the 151 non-invasive magnetic sensor system. The extraction, quantification and characterization procedures were developed and applied to representative MMG signals that were recorded from a pregnant woman at regular intervals starting at 37 weeks of gestation until the subject reached active labor. Multiple MMG recordings were successfully performed on the subject before she went into active labor. The extracted MMG burst activity showed a statistically significant correlation (r=0.2; p<0.001) with the contractile events perceived by mothers. The time-frequency analysis of the burst activity showed a power shift towards higher-frequency at 48 h before the subject went into active labor as compared to earlier recordings. Further there was a gradual increase in the synchrony in the higher-frequency band as the subject reached close to active labor. The non-invasive recording of the magnetic signals of pregnant uterus with high spatial-temporal resolution can provide an insight into the preparatory phase of labor and has the potential of predicting term and preterm labor.

  15. Factors influencing the temporal growth rate of the high order TM{sub 0n} modes in the Ka-band overmoded Cherenkov oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Dapeng, E-mail: vipbenjamin@163.com; Shu, Ting; Ju, Jinchuan

    2015-06-15

    When the wavelength of overmoded Cherenkov oscillator goes into Ka-band, power handling capacity becomes an essential issue. Using the TM{sub 02} mode or higher order TM{sub 0n} modes as the operating mode is a potential solution. This paper is aimed to find some proper parameters to make the temporal growth rate of the TM{sub 02} mode higher in our previously studied Gigawatt (GW)-class Ka band oscillator. An accurate and fast calculation method of the “hot” dispersion equation is derived for rectangular corrugated SWSs, which are widely used in the high frequency Cherenkov devices. Then, factors that affect the temporal growthmore » rate of the high order TM{sub 0n} modes are analyzed, including the depth of corrugation, the radius of drift tube, and the diode voltage. Results show that, when parameters are chosen properly, the temporal growth rate of the TM{sub 02} mode can be as high as 0.3 ns{sup −1}.« less

  16. Absence of simple partial seizure in temporal lobe epilepsy: its diagnostic and prognostic significance.

    PubMed

    Inoue, Y; Mihara, T; Matsuda, K; Tottori, T; Otsubo, T; Yagi, K

    2000-02-01

    The diagnostic and prognostic significance of the absence of simple partial seizures (SPS) immediately preceding complex partial seizures (CPS) was examined in patients with temporal lobe epilepsy. The status of self-reported SPS in 193 patients with temporal lobe epilepsy who had surgical therapy more than 2 years ago was reviewed. Before surgery, 37 patients never experienced SPS before CPS (Group A), 156 patients either always or occasionally had SPS before CPS (Group B). The frequency of mesial temporal sclerosis (MTS) was lower and the age at onset of epilepsy was higher in Group A. The seizure focus was in the language-dominant temporal lobe in 73% of the cases in Group A, compared with 40% in Group B. The surgical outcome did not differ between the two groups. The findings suggest that temporal lobe seizures without preceding SPS tend to originate in the language-dominant temporal lobe that contains a pathologic etiology other than MTS, especially in the lateral temporal lobe. The surgical outcome in patients without SPS is similar to that in patients with SPS.

  17. Improving uniformity of atmospheric-pressure dielectric barrier discharges using dual frequency excitation

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Peeters, F. J. J.; Starostin, S. A.; van de Sanden, M. C. M.; de Vries, H. W.

    2018-01-01

    This letter reports a novel approach to improve the uniformity of atmospheric-pressure dielectric barrier discharges using a dual-frequency excitation consisting of a low frequency (LF) at 200 kHz and a radio frequency (RF) at 13.56 MHz. It is shown that due to the periodic oscillation of the RF electric field, the electron acceleration and thus the gas ionization is temporally modulated, i.e. enhanced and suppressed during each RF cycle. As a result, the discharge development is slowed down with a lower amplitude and a longer duration of the LF discharge current. Hence, the RF electric field facilitates improved stability and uniformity simultaneously allowing a higher input power.

  18. Assessing Spatial and Temporal Properties of Perimetric Stimuli for Resistance to Clinical Variations in Retinal Illumination

    PubMed Central

    Swanson, William H.; Dul, Mitchell W.; Horner, Douglas G.; Liu, Tiffany; Tran, Irene

    2014-01-01

    Purpose. To develop perimetric stimuli for which sensitivities are more resistant to reduced retinal illumination than current clinical perimeters. Methods. Fifty-four people free of eye disease were dilated and tested monocularly. For each test, retinal illumination was attenuated with neutral density (ND) filters, and a standard adaptation model was fit to derive mean and SEM for the adaptation parameter (NDhalf). For different stimuli, t-tests on NDhalf were used to assess significance of differences in consistency with Weber's law. Three experiments used custom Gaussian-windowed contrast sensitivity perimetry (CSP). Experiment 1 used CSP-1, with a Gaussian temporal pulse, a spatial frequency of 0.375 cyc/deg (cpd), and SD of 1.5°. Experiment 1 also used the Humphrey Matrix perimeter, with the N-30 test using 0.25 cpd and 25 Hz flicker. Experiment 2 used a rectangular temporal pulse, SDs of 0.25° and 0.5°, and spatial frequencies of 0.0 and 1.0 cpd. Experiment 3 used CSP-2, with 5-Hz flicker, SDs from 0.5° to 1.8°, and spatial frequencies from 0.14 to 0.50 cpd. Results. In Experiment 1, CSP-1 was more consistent with Weber's law (NDhalf ± SEM = 1.86 ± 0.08 log unit) than N-30 (NDhalf = 1.03 ± 0.03 log unit; t > 9, P < 0.0001). All stimuli used in Experiments 2 and 3 had comparable consistency with Weber's law (NDhalf = 1.49–1.69 log unit; t < 2). Conclusions. Perimetric sensitivities were consistent with Weber's law when higher temporal frequencies were avoided. PMID:24370832

  19. Role of the mouse retinal photoreceptor ribbon synapse in visual motion processing for optokinetic responses.

    PubMed

    Sugita, Yuko; Araki, Fumiyuki; Chaya, Taro; Kawano, Kenji; Furukawa, Takahisa; Miura, Kenichiro

    2015-01-01

    The ribbon synapse is a specialized synaptic structure in the retinal outer plexiform layer where visual signals are transmitted from photoreceptors to the bipolar and horizontal cells. This structure is considered important in high-efficiency signal transmission; however, its role in visual signal processing is unclear. In order to understand its role in visual processing, the present study utilized Pikachurin-null mutant mice that show improper formation of the photoreceptor ribbon synapse. We examined the initial and late phases of the optokinetic responses (OKRs). The initial phase was examined by measuring the open-loop eye velocity of the OKRs to sinusoidal grating patterns of various spatial frequencies moving at various temporal frequencies for 0.5 s. The mutant mice showed significant initial OKRs with a spatiotemporal frequency tuning (spatial frequency, 0.09 ± 0.01 cycles/°; temporal frequency, 1.87 ± 0.12 Hz) that was slightly different from the wild-type mice (spatial frequency, 0.11 ± 0.01 cycles/°; temporal frequency, 1.66 ± 0.12 Hz). The late phase of the OKRs was examined by measuring the slow phase eye velocity of the optokinetic nystagmus induced by the sinusoidal gratings of various spatiotemporal frequencies moving for 30 s. We found that the optimal spatial and temporal frequencies of the mutant mice (spatial frequency, 0.11 ± 0.02 cycles/°; temporal frequency, 0.81 ± 0.24 Hz) were both lower than those in the wild-type mice (spatial frequency, 0.15 ± 0.02 cycles/°; temporal frequency, 1.93 ± 0.62 Hz). These results suggest that the ribbon synapse modulates the spatiotemporal frequency tuning of visual processing along the ON pathway by which the late phase of OKRs is mediated.

  20. Role of the Mouse Retinal Photoreceptor Ribbon Synapse in Visual Motion Processing for Optokinetic Responses

    PubMed Central

    Sugita, Yuko; Araki, Fumiyuki; Chaya, Taro; Kawano, Kenji; Furukawa, Takahisa; Miura, Kenichiro

    2015-01-01

    The ribbon synapse is a specialized synaptic structure in the retinal outer plexiform layer where visual signals are transmitted from photoreceptors to the bipolar and horizontal cells. This structure is considered important in high-efficiency signal transmission; however, its role in visual signal processing is unclear. In order to understand its role in visual processing, the present study utilized Pikachurin-null mutant mice that show improper formation of the photoreceptor ribbon synapse. We examined the initial and late phases of the optokinetic responses (OKRs). The initial phase was examined by measuring the open-loop eye velocity of the OKRs to sinusoidal grating patterns of various spatial frequencies moving at various temporal frequencies for 0.5 s. The mutant mice showed significant initial OKRs with a spatiotemporal frequency tuning (spatial frequency, 0.09 ± 0.01 cycles/°; temporal frequency, 1.87 ± 0.12 Hz) that was slightly different from the wild-type mice (spatial frequency, 0.11 ± 0.01 cycles/°; temporal frequency, 1.66 ± 0.12 Hz). The late phase of the OKRs was examined by measuring the slow phase eye velocity of the optokinetic nystagmus induced by the sinusoidal gratings of various spatiotemporal frequencies moving for 30 s. We found that the optimal spatial and temporal frequencies of the mutant mice (spatial frequency, 0.11 ± 0.02 cycles/°; temporal frequency, 0.81 ± 0.24 Hz) were both lower than those in the wild-type mice (spatial frequency, 0.15 ± 0.02 cycles/°; temporal frequency, 1.93 ± 0.62 Hz). These results suggest that the ribbon synapse modulates the spatiotemporal frequency tuning of visual processing along the ON pathway by which the late phase of OKRs is mediated. PMID:25955222

  1. Dream recall frequency and content in patients with temporal lobe epilepsy.

    PubMed

    Bentes, Carla; Costa, João; Peralta, Rita; Pires, Joana; Sousa, Paula; Paiva, Teresa

    2011-11-01

    To evaluate morning dream recall frequency and content in patients with temporal lobe epilepsy (TLE). Fifty-two patients with pharmacoresistant TLE submitted to a written dream diary during five consecutive days and continuous video-electroencephalographic (video-EEG) monitoring. A matched control group of 41 healthy subjects completed the same diary at home. The number of recalled dreams (including long dreams) and nonrecalled dream mentation were collected, and the Dream Recall Rate (DRR) was calculated. Hall and Van de Castle dream content analysis was performed. Greater than 70% of patients with TLE (37 of 52) recall their dreams, but DRR rate in these patients is lower than in controls (p ≤ 0.001). Dream recall does not appear to be influenced by the presence of neuropsychological deficits nor seizure frequency. In dreams descriptions, TLE patients (vs. controls) have a higher percentage of familiarity in settings and fewer dreams with at least one success. Onirical activity of patients with TLE is different from that of healthy subjects. Our results support the role of mesial and neocortical temporal structures in dream experience. The selective activation of dysfunctional mesial structures may be responsible for some of the observed variability. However, dream content changes can also mirror social and psychological comorbidities of patients with epilepsy. Wiley Periodicals, Inc. © 2011 International League Against Epilepsy.

  2. Comparing the effects of age on amplitude modulation and frequency modulation detection.

    PubMed

    Wallaert, Nicolas; Moore, Brian C J; Lorenzi, Christian

    2016-06-01

    Frequency modulation (FM) and amplitude modulation (AM) detection thresholds were measured at 40 dB sensation level for young (22-28 yrs) and older (44-66 yrs) listeners with normal audiograms for a carrier frequency of 500 Hz and modulation rates of 2 and 20 Hz. The number of modulation cycles, N, varied between 2 and 9. For FM detection, uninformative AM at the same rate as the FM was superimposed to disrupt excitation-pattern cues. For both groups, AM and FM detection thresholds were lower for the 2-Hz than for the 20-Hz rate, and AM and FM detection thresholds decreased with increasing N. Thresholds were higher for older than for younger listeners, especially for FM detection at 2 Hz, possibly reflecting the effect of age on the use of temporal-fine-structure cues for 2-Hz FM detection. The effect of increasing N was similar across groups for both AM and FM. However, at 20 Hz, older listeners showed a greater effect of increasing N than younger listeners for both AM and FM. The results suggest that ageing reduces sensitivity to both excitation-pattern and temporal-fine-structure cues for modulation detection, but more so for the latter, while sparing temporal integration of these cues at low modulation rates.

  3. Comparison of temporal properties of auditory single units in response to cochlear infrared laser stimulation recorded with multi-channel and single tungsten electrodes

    NASA Astrophysics Data System (ADS)

    Tan, Xiaodong; Xia, Nan; Young, Hunter; Richter, Claus-Peter

    2015-02-01

    Auditory prostheses may benefit from Infrared Neural Stimulation (INS) because optical stimulation allows for spatially selective activation of neuron populations. Selective activation of neurons in the cochlear spiral ganglion can be determined in the central nucleus of the inferior colliculus (ICC) because the tonotopic organization of frequencies in the cochlea is maintained throughout the auditory pathway. The activation profile of INS is well represented in the ICC by multichannel electrodes (MCEs). To characterize single unit properties in response to INS, however, single tungsten electrodes (STEs) should be used because of its better signal-to-noise ratio. In this study, we compared the temporal properties of ICC single units recorded with MCEs and STEs in order to characterize the response properties of single auditory neurons in response to INS in guinea pigs. The length along the cochlea stimulated with infrared radiation corresponded to a frequency range of about 0.6 octaves, similar to that recorded with STEs. The temporal properties of single units recorded with MCEs showed higher maximum rates, shorter latencies, and higher firing efficiencies compared to those recorded with STEs. When the preset amplitude threshold for triggering MCE recordings was raised to twice over the noise level, the temporal properties of the single units became similar to those obtained with STEs. Undistinguishable neural activities from multiple sources in MCE recordings could be responsible for the response property difference between MCEs and STEs. Thus, caution should be taken in single unit recordings with MCEs.

  4. Vibration characteristics of bone conducted sound in vitro.

    PubMed

    Stenfelt, S; Håkansson, B; Tjellström, A

    2000-01-01

    A dry skull added with damping material was used to investigate the vibratory pattern of bone conducted sound. Three orthogonal vibration responses of the cochleae were measured, by means of miniature accelerometers, in the frequency range 0.1-10 kHz. The exciter was attached to the temporal, parietal, and frontal bones, one at the time. In the transmission response to the ipsilateral cochlea, a profound low frequency antiresonance (attenuation) was found, verified psycho-acoustically, and shown to yield a distinct lateralization effect. It was also shown that, for the ipsilateral side, the direction of excitation coincides with that of maximum response. At the contralateral cochlea, no such dominating response direction was found for frequencies above the first skull resonance. An overall higher response level was achieved, for the total energy transmission in general and specifically for the direction of excitation, at the ipsilateral cochlea when the transducer was attached to the excitation point closest to the cochlea. The transranial attenuation was found to be frequency dependent, with values from -5 to 10 dB for the energy transmission and -30 to 40 dB for measurements in a single direction, with a tendency toward higher attenuation at the higher frequencies.

  5. Assessment of DNA damage in Ardea cinerea and Ciconia ciconia: A 5-year study in Portuguese birds retrieved for rehabilitation.

    PubMed

    Santos, Cátia S A; Brandão, Ricardo; Monteiro, Marta S; Bastos, Ana C; Soares, Amadeu M V M; Loureiro, Susana

    2017-02-01

    Over the past decades, the presence of micronucleated blood cells has been used to detect genotoxic effects of xenobiotics in fish, amphibians and birds. This study assessed the frequency of micronuclei (MN) and other nuclear abnormalities in erythrocytes of individuals of Ardea cinerea and Ciconia ciconia retrieved for rehabilitation in order to evaluate the influence of age, temporal and spatial factors on the occurrence of DNA damage in Portuguese wild birds. Blood smears from 65 birds with different life-history backgrounds (e.g. geographic origin, age) were collected between 2007 and 2011 and the frequency of erythrocyte nuclear abnormalities (ENAs) was analysed. Differences in DNA damage between ages were observed to occur in C. ciconia, with chicks displaying significantly higher frequencies of ENAs (both when looking at total ENAs or only MN frequency) than juveniles and adults. Additionally, significant differences in ENAs frequencies were observed between different years and geographic origins, whereas MN frequency alone did not show significant alterations concerning spatial and temporal variations. These results suggest that the assessment of ENAs rather than MN frequency alone may be a useful and valuable tool to complement the evaluation of DNA damage in populations of birds, as prompted by individual life-history traits and environmental factors. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Contrast affects flicker and speed perception differently

    NASA Technical Reports Server (NTRS)

    Thompson, P.; Stone, L. S.

    1997-01-01

    We have previously shown that contrast affects speed perception, with lower-contrast, drifting gratings perceived as moving slower. In a recent study, we examined the implications of this result on models of speed perception that use the amplitude of the response of linear spatio-temporal filters to determine speed. In this study, we investigate whether the contrast dependence of speed can be understood within the context of models in which speed estimation is made using the temporal frequency of the response of linear spatio-temporal filters. We measured the effect of contrast on flicker perception and found that contrast manipulations produce opposite effects on perceived drift rate and perceived flicker rate, i.e., reducing contrast increases the apparent temporal frequency of counterphase modulated gratings. This finding argues that, if a temporal frequency-based algorithm underlies speed perception, either flicker and speed perception must not be based on the output of the same mechanism or contrast effects on perceived spatial frequency reconcile the disparate effects observed for perceived temporal frequency and speed.

  7. In-situ Fluorometers Reveal High Frequency Dynamics In Dissolved Organic Matter For Urban Rivers

    NASA Astrophysics Data System (ADS)

    Croghan, D.; Bradley, C.; Khamis, K.; Hannah, D. M.; Sadler, J. P.; Van Loon, A.

    2017-12-01

    To-date Dissolved Organic Matter (DOM) dynamics have been quantified poorly in urban rivers, despite the substantial water quality issues linked to urbanisation. Research has been hindered by the low temporal resolution of observations and over-reliance on manual sampling which often fail to capture precipitation events and diurnal dynamics. High frequency data are essential to estimate more accurately DOM fluxes/loads and to understand DOM furnishing and transport processes. Recent advances in optical sensor technology, including field deployable in-situ fluorometers, are yielding new high resolution DOM information. However, no consensus regarding the monitoring resolution required for urban systems exists, with no studies monitoring at <15 min time steps. High-frequency monitoring (5 min resolution; 4 week duration) was conducted on a headwater urban stream in Birmingham, UK (N 52.447430 W -1.936715) to determine the optimum temporal resolution for characterization of DOM event dynamics. A through-flow GGNU-30 monitored wavelengths corresponding to tryptophan-like fluorescence (TLF; Peak T1) (Ex 285 nm/ Em 345 nm) and humic-like fluorescence (HLF; Peak C) (Ex 365 nm/Em 490 nm). The results suggest that at base flow TLF and HLF are relatively stable, though episodic DOM inputs can pulse through the system, which may be missed during lower temporal resolution monitoring. High temporal variation occurs during storm events in TLF and HLF intensity: TLF intensity is highest during the rising limb of the hydrograph and can rapidly decline thereafter, indicating the importance of fast flow-path and close proximity sources to TLF dynamics. HLF intensity tracks discharge more closely, but can also quickly decline during high flow events due to dilution effects. Furthermore, the ratio of TLF:HLF when derived at high-frequency provides a useful indication of the presence and type of organic effluents in stream, which aids in the identification of Combined Sewage Overflow releases. Our work highlights the need for future studies to utilise shorter temporal scales than previously used to monitor urban DOM dynamics. The application of higher frequency monitoring enables the identification of finer-scale patterns and subsequently aids in deciphering the sources and pathways controlling urban DOM dynamics.

  8. [Incidence of peptic ulcer at the Instituto Nacional de la Nutrición "Salvador Zubirán": study of localization, associated factors and temporal trends].

    PubMed

    Bobadilla, J; Vargas-Vorácková, F; Gómez, A; Jesús Villalobos, J

    1996-01-01

    To know the frequency, trends and associated factors of peptic ulcer disease in our Institute. Peptic ulcer is an important disease; about 5-10% of the population can expect to develop this disease during lifetime. We reviewed 1,123 patients with peptic ulcer in five years. Sex, age, habits (tobacco and alcohol consumption), non-steroidal anti-inflammatory drugs use, ulcer location and complications were analyzed. To evaluate temporal trends, our results were compared with previous studies made in our Institute. The male-female ratio was 1:1, with a mean age of 52.2 years. Forty percent of the patients had duodenal ulcer, 42% had gastric ulcer, and 19% had esophageal, anastomotic or multiple ulcers. The most common complication was bleeding, which occurred more frequently in gastric (37%) than duodenal ulcer (24%) (P < 0.005). Gastric ulcer occurred in older patients when compared to duodenal ulcer (P < 0.02). Non-steroidal anti-inflammatory drugs consumption was more frequent in patients with gastric (14%) than duodenal ulcer (10%) (P < 0.04). The frequency of tobacco and alcohol consumption was higher in multiple ulcers. A tendency toward a decreased frequency of duodenal ulcer and increased frequency of gastric ulcer was observed in our Institute during the last 30 years. In the same period, bleeding has been the leading complication, suggesting a higher referral of complicated peptic ulcer.

  9. Decoding Face Information in Time, Frequency and Space from Direct Intracranial Recordings of the Human Brain

    PubMed Central

    Oya, Hiroyuki; Howard, Matthew A.; Adolphs, Ralph

    2008-01-01

    Faces are processed by a neural system with distributed anatomical components, but the roles of these components remain unclear. A dominant theory of face perception postulates independent representations of invariant aspects of faces (e.g., identity) in ventral temporal cortex including the fusiform gyrus, and changeable aspects of faces (e.g., emotion) in lateral temporal cortex including the superior temporal sulcus. Here we recorded neuronal activity directly from the cortical surface in 9 neurosurgical subjects undergoing epilepsy monitoring while they viewed static and dynamic facial expressions. Applying novel decoding analyses to the power spectrogram of electrocorticograms (ECoG) from over 100 contacts in ventral and lateral temporal cortex, we found better representation of both invariant and changeable aspects of faces in ventral than lateral temporal cortex. Critical information for discriminating faces from geometric patterns was carried by power modulations between 50 to 150 Hz. For both static and dynamic face stimuli, we obtained a higher decoding performance in ventral than lateral temporal cortex. For discriminating fearful from happy expressions, critical information was carried by power modulation between 60–150 Hz and below 30 Hz, and again better decoded in ventral than lateral temporal cortex. Task-relevant attention improved decoding accuracy more than10% across a wide frequency range in ventral but not at all in lateral temporal cortex. Spatial searchlight decoding showed that decoding performance was highest around the middle fusiform gyrus. Finally, we found that the right hemisphere, in general, showed superior decoding to the left hemisphere. Taken together, our results challenge the dominant model for independent face representation of invariant and changeable aspects: information about both face attributes was better decoded from a single region in the middle fusiform gyrus. PMID:19065268

  10. Evidence of Physiological Decoupling from Grassland Ecosystem Drivers by an Encroaching Woody Shrub

    PubMed Central

    Nippert, Jesse B.; Ocheltree, Troy W.; Orozco, Graciela L.; Ratajczak, Zak; Ling, Bohua; Skibbe, Adam M.

    2013-01-01

    Shrub encroachment of grasslands is a transformative ecological process by which native woody species increase in cover and frequency and replace the herbaceous community. Mechanisms of encroachment are typically assessed using temporal data or experimental manipulations, with few large spatial assessments of shrub physiology. In a mesic grassland in North America, we measured inter- and intra-annual variability in leaf δ13C in Cornus drummondii across a grassland landscape with varying fire frequency, presence of large grazers and topographic variability. This assessment of changes in individual shrub physiology is the largest spatial and temporal assessment recorded to date. Despite a doubling of annual rainfall (in 2008 versus 2011), leaf δ13C was statistically similar among and within years from 2008-11 (range of −28 to −27‰). A topography*grazing interaction was present, with higher leaf δ13C in locations that typically have more bare soil and higher sensible heat in the growing season (upland topographic positions and grazed grasslands). Leaf δ13C from slopes varied among grazing contrasts, with upland and slope leaf δ13C more similar in ungrazed locations, while slopes and lowlands were more similar in grazed locations. In 2011, canopy greenness (normalized difference vegetation index – NDVI) was assessed at the centroid of individual shrubs using high-resolution hyperspectral imagery. Canopy greenness was highest mid-summer, likely reflecting temporal periods when C assimilation rates were highest. Similar to patterns seen in leaf δ13C, NDVI was highest in locations that typically experience lowest sensible heat (lowlands and ungrazed). The ability of Cornus drummondii to decouple leaf physiological responses from climate variability and fire frequency is a likely contributor to the increase in cover and frequency of this shrub species in mesic grassland and may be generalizable to other grasslands undergoing woody encroachment. PMID:24339950

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Küchemann, Stefan; Mahn, Carsten; Samwer, Konrad

    The investigation of short time dynamics using X-ray scattering techniques is commonly limited either by the read out frequency of the detector or by a low intensity. In this paper, we present a chopper system, which can increase the temporal resolution of 2D X-ray detectors by a factor of 13. This technique only applies to amorphous or polycrystalline samples due to their circular diffraction patterns. Using the chopper, we successfully increased the temporal resolution up to 5.1 ms during synchrotron experiments. For the construction, we provide a mathematical formalism, which, in principle, allows an even higher increase of the temporalmore » resolution.« less

  12. Factorizing the motion sensitivity function into equivalent input noise and calculation efficiency.

    PubMed

    Allard, Rémy; Arleo, Angelo

    2017-01-01

    The photopic motion sensitivity function of the energy-based motion system is band-pass peaking around 8 Hz. Using an external noise paradigm to factorize the sensitivity into equivalent input noise and calculation efficiency, the present study investigated if the variation in photopic motion sensitivity as a function of the temporal frequency is due to a variation of equivalent input noise (e.g., early temporal filtering) or calculation efficiency (ability to select and integrate motion). For various temporal frequencies, contrast thresholds for a direction discrimination task were measured in presence and absence of noise. Up to 15 Hz, the sensitivity variation was mainly due to a variation of equivalent input noise and little variation in calculation efficiency was observed. The sensitivity fall-off at very high temporal frequencies (from 15 to 30 Hz) was due to a combination of a drop of calculation efficiency and a rise of equivalent input noise. A control experiment in which an artificial temporal integration was applied to the stimulus showed that an early temporal filter (generally assumed to affect equivalent input noise, not calculation efficiency) could impair both the calculation efficiency and equivalent input noise at very high temporal frequencies. We conclude that at the photopic luminance intensity tested, the variation of motion sensitivity as a function of the temporal frequency was mainly due to early temporal filtering, not to the ability to select and integrate motion. More specifically, we conclude that photopic motion sensitivity at high temporal frequencies is limited by internal noise occurring after the transduction process (i.e., neural noise), not by quantal noise resulting from the probabilistic absorption of photons by the photoreceptors as previously suggested.

  13. Inhalation Frequency Controls Reformatting of Mitral/Tufted Cell Odor Representations in the Olfactory Bulb.

    PubMed

    Díaz-Quesada, Marta; Youngstrom, Isaac A; Tsuno, Yusuke; Hansen, Kyle R; Economo, Michael N; Wachowiak, Matt

    2018-02-28

    In mammals, olfactory sensation depends on inhalation, which controls activation of sensory neurons and temporal patterning of central activity. Odor representations by mitral and tufted (MT) cells, the main output from the olfactory bulb (OB), reflect sensory input as well as excitation and inhibition from OB circuits, which may change as sniff frequency increases. To test the impact of sampling frequency on MT cell odor responses, we obtained whole-cell recordings from MT cells in anesthetized male and female mice while varying inhalation frequency via tracheotomy, allowing comparison of inhalation-linked responses across cells. We characterized frequency effects on MT cell responses during inhalation of air and odorants using inhalation pulses and also "playback" of sniffing recorded from awake mice. Inhalation-linked changes in membrane potential were well predicted across frequency from linear convolution of 1 Hz responses; and, as frequency increased, near-identical temporal responses could emerge from depolarizing, hyperpolarizing, or multiphasic MT responses. However, net excitation was not well predicted from 1 Hz responses and varied substantially across MT cells, with some cells increasing and others decreasing in spike rate. As a result, sustained odorant sampling at higher frequencies led to increasing decorrelation of the MT cell population response pattern over time. Bulk activation of sensory inputs by optogenetic stimulation affected MT cells more uniformly across frequency, suggesting that frequency-dependent decorrelation emerges from odor-specific patterns of activity in the OB network. These results suggest that sampling behavior alone can reformat early sensory representations, possibly to optimize sensory perception during repeated sampling. SIGNIFICANCE STATEMENT Olfactory sensation in mammals depends on inhalation, which increases in frequency during active sampling of olfactory stimuli. We asked how inhalation frequency can shape the neural coding of odor information by recording from projection neurons of the olfactory bulb while artificially varying odor sampling frequency in the anesthetized mouse. We found that sampling an odor at higher frequencies led to diverse changes in net responsiveness, as measured by action potential output, that were not predicted from low-frequency responses. These changes led to a reorganization of the pattern of neural activity evoked by a given odorant that occurred preferentially during sustained, high-frequency inhalation. These results point to a novel mechanism for modulating early sensory representations solely as a function of sampling behavior. Copyright © 2018 the authors 0270-6474/18/382189-18$15.00/0.

  14. Higher order memories for objects encountered in different spatio-temporal contexts in mice: evidence for episodic memory.

    PubMed

    Dere, Ekrem; Silva, Maria A De Souza; Huston, Joseph P

    2004-01-01

    The ability to build higher order multi-modal memories comprising information about the spatio-temporal context of events has been termed 'episodic memory'. Deficits in episodic memory are apparent in a number of neuropsychiatric diseases. Unfortunately, the development of animal models of episodic memory has made little progress. Towards the goal of such a model we devised an object exploration task for mice, providing evidence that rodents can associate object, spatial and temporal information. In our task the mice learned the temporal sequence by which identical objects were introduced into two different contexts. The 'what' component of an episodic memory was operationalized via physically distinct objects; the 'where' component through physically different contexts, and, most importantly, the 'when' component via the context-specific inverted sequence in which four objects were presented. Our results suggest that mice are able to recollect the inverted temporal sequence in which identical objects were introduced into two distinct environments. During two consecutive test trials mice showed an inverse context-specific exploration pattern regarding identical objects that were previously encountered with even frequencies. It seems that the contexts served as discriminative stimuli signaling which of the two sequences are decisive during the two test trials.

  15. Acoustic habitat of an oceanic archipelago in the Southwestern Atlantic

    NASA Astrophysics Data System (ADS)

    Bittencourt, Lis; Barbosa, Mariana; Secchi, Eduardo; Lailson-Brito, José; Azevedo, Alexandre

    2016-09-01

    Underwater soundscapes can be highly variable, and in natural conditions are often dominated by biological signals and physical features of the environment. Few studies, however, focused on oceanic islands soundscapes. Islands in the middle of ocean basins can provide a good example of how untouched marine soundscapes are. Autonomous acoustic recordings were carried out in two different seasons in Trindade-Martin Vaz Archipelago, Southwestern Atlantic, providing nearly continuous data for both periods. Sound levels varied daily and between seasons. During summer, higher frequencies were noisier than lower frequencies, with snapping shrimp being the dominating sound source. During winter, lower frequencies were noisier than higher frequencies due to humpback whale constant singing. Biological signal detection had a marked temporal pattern, playing an important role in the soundscape. Over 1000 humpback whale sounds were detected hourly during winter. Fish vocalizations were detected mostly during night time during both summer and winter. The results show an acoustic habitat dominated by biological sound sources and highlight the importance of the island to humpback whales in winter.

  16. Metabolic rate and body size are linked with perception of temporal information☆

    PubMed Central

    Healy, Kevin; McNally, Luke; Ruxton, Graeme D.; Cooper, Natalie; Jackson, Andrew L.

    2013-01-01

    Body size and metabolic rate both fundamentally constrain how species interact with their environment, and hence ultimately affect their niche. While many mechanisms leading to these constraints have been explored, their effects on the resolution at which temporal information is perceived have been largely overlooked. The visual system acts as a gateway to the dynamic environment and the relative resolution at which organisms are able to acquire and process visual information is likely to restrict their ability to interact with events around them. As both smaller size and higher metabolic rates should facilitate rapid behavioural responses, we hypothesized that these traits would favour perception of temporal change over finer timescales. Using critical flicker fusion frequency, the lowest frequency of flashing at which a flickering light source is perceived as constant, as a measure of the maximum rate of temporal information processing in the visual system, we carried out a phylogenetic comparative analysis of a wide range of vertebrates that supported this hypothesis. Our results have implications for the evolution of signalling systems and predator–prey interactions, and, combined with the strong influence that both body mass and metabolism have on a species' ecological niche, suggest that time perception may constitute an important and overlooked dimension of niche differentiation. PMID:24109147

  17. Temporal dynamics of contrast gain in single cells of the cat striate cortex.

    PubMed

    Bonds, A B

    1991-03-01

    The response amplitude of cat striate cortical cells is usually reduced after exposure to high-contrast stimuli. The temporal characteristics and contrast sensitivity of this phenomenon were explored by stimulating cortical cells with drifting gratings in which contrast sequentially incremented and decremented in stepwise fashion over time. All responses showed a clear hysteresis, in which contrast gain dropped on average 0.36 log unit and then returned to baseline values within 60 s. Noticeable gain adjustments were seen in as little as 3 s and with peak contrasts as low as 3%. Contrast adaptation was absent in responses from LGN cells. Adaptation was found to depend on temporal frequency of stimulation, with greater and more rapid adaptation at higher temporal frequencies. Two different tests showed that the mechanism controlling response reduction was influenced primarily by stimulus contrast rather than response amplitude. These results support the existence of a rapid and sensitive cortically based system that normalizes the output of cortical cells as a function of local mean contrast. Control of the adaptation appears to arise at least in part across a population of cells, which is consistent with the idea that the gain control serves to limit the information converging from many cells onto subsequent processing areas.

  18. Determinants of brain metabolism changes in mesial temporal lobe epilepsy.

    PubMed

    Chassoux, Francine; Artiges, Eric; Semah, Franck; Desarnaud, Serge; Laurent, Agathe; Landre, Elisabeth; Gervais, Philippe; Devaux, Bertrand; Helal, Ourkia Badia

    2016-06-01

    To determine the main factors influencing metabolic changes in mesial temporal lobe epilepsy (MTLE) due to hippocampal sclerosis (HS). We prospectively studied 114 patients with MTLE (62 female; 60 left HS; 15- to 56-year-olds) with (18) F-fluorodeoxyglucose-positron emission tomography and correlated the results with the side of HS, structural atrophy, electroclinical features, gender, age at onset, epilepsy duration, and seizure frequency. Imaging processing was performed using statistical parametric mapping. Ipsilateral hypometabolism involved temporal (mesial structures, pole, and lateral cortex) and extratemporal areas including the insula, frontal lobe, perisylvian regions, and thalamus, more extensively in right HS (RHS). A relative increase of metabolism (hypermetabolism) was found in the nonepileptic temporal lobe and in posterior areas bilaterally. Voxel-based morphometry detected unilateral hippocampus atrophy and gray matter concentration decrease in both frontal lobes, more extensively in left HS (LHS). Regardless of the structural alterations, the topography of hypometabolism correlated strongly with the extent of epileptic networks (mesial, anterior-mesiolateral, widespread mesiolateral, and bitemporal according to the ictal spread), which were larger in RHS. Notably, widespread perisylvian and bitemporal hypometabolism was found only in RHS. Mirror hypermetabolism was grossly proportional to the hypometabolic areas, coinciding partly with the default mode network. Gender-related effect was significant mainly in the contralateral frontal lobe, in which metabolism was higher in female patients. Epilepsy duration correlated with the contralateral temporal metabolism, positively in LHS and negatively in RHS. Opposite results were found with age at onset. High seizure frequency correlated negatively with the contralateral metabolism in LHS. Epileptic networks, as assessed by electroclinical correlations, appear to be the main determinant of hypometabolism in MTLE. Compensatory mechanisms reflected by a relative hypermetabolism in the nonepileptic temporal lobe and in extratemporal areas seem more efficient in LHS and in female patients, whereas long duration, late onset of epilepsy, and high seizure frequency may reduce these adaptive changes. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  19. Electroencephalographic prodromal markers of dementia across conscious states in Parkinson’s disease

    PubMed Central

    Latreille, Véronique; Gaudet-Fex, Benjamin; Rodrigues-Brazète, Jessica; Panisset, Michel; Chouinard, Sylvain; Postuma, Ronald B.

    2016-01-01

    Abstract In Parkinson’s disease, electroencephalographic abnormalities during wakefulness and non-rapid eye movement sleep (spindles) were found to be predictive biomarkers of dementia. Because rapid eye movement sleep is regulated by the cholinergic system, which shows early degeneration in Parkinson’s disease with cognitive impairment, anomalies during this sleep stage might mirror dementia development. In this prospective study, we examined baseline electroencephalographic absolute spectral power across three states of consciousness (non-rapid eye movement sleep, rapid eye movement sleep, and wakefulness) in 68 non-demented patients with Parkinson’s disease and 44 healthy controls. All participants underwent baseline polysomnographic recordings and a comprehensive neuropsychological assessment. Power spectral analyses were performed on standard frequency bands. Dominant occipital frequency during wakefulness and ratios of slow-to-fast frequencies during rapid eye movement sleep and wakefulness were also computed. At follow-up (an average 4.5 years after baseline), 18 patients with Parkinson’s disease had developed dementia and 50 patients remained dementia-free. In rapid eye movement sleep, patients with Parkinson’s disease who later developed dementia showed, at baseline, higher absolute power in delta and theta bands and a higher slowing ratio, especially in temporal, parietal, and occipital regions, compared to patients who remained dementia-free and controls. In non-rapid eye movement sleep, lower baseline sigma power in parietal cortical regions also predicted development of dementia. During wakefulness, patients with Parkinson’s disease who later developed dementia showed lower dominant occipital frequency as well as higher delta and slowing ratio compared to patients who remained dementia-free and controls. At baseline, higher slowing ratios in temporo-occipital regions during rapid eye movement sleep were associated with poor performance on visuospatial tests in patients with Parkinson’s disease. Using receiver operating characteristic curves, we found that best predictors of dementia in Parkinson’s disease were rapid eye movement sleep slowing ratios in posterior regions, wakefulness slowing ratios in temporal areas, and lower dominant occipital frequency. These results suggest that electroencephalographic slowing during sleep is a new promising predictive biomarker for Parkinson’s disease dementia, perhaps as a marker of cholinergic denervation. PMID:26912643

  20. Temporality of couple conflict and relationship perceptions.

    PubMed

    Johnson, Matthew D; Horne, Rebecca M; Hardy, Nathan R; Anderson, Jared R

    2018-05-03

    Using 5 waves of longitudinal survey data gathered from 3,405 couples, the present study investigates the temporal associations between self-reported couple conflict (frequency and each partner's constructive and withdrawing behaviors) and relationship perceptions (satisfaction and perceived instability). Autoregressive cross-lagged model results revealed couple conflict consistently predicted future relationship perceptions: More frequent conflict and withdrawing behaviors and fewer constructive behaviors foretold reduced satisfaction and conflict frequency and withdrawal heightened perceived instability. Relationship perceptions also shaped future conflict, but in surprising ways: Perceptions of instability were linked with less frequent conflict, and male partner instability predicted fewer withdrawing behaviors for female partners. Higher satisfaction from male partners also predicted more frequent and less constructive conflict behavior in the future. These findings illustrate complex bidirectional linkages between relationship perceptions and couple conflict behaviors in the development of couple relations. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  1. Definition of SMOS Level 3 Land Products for the Villafranca del Castillo Data Processing Centre (CP34)

    NASA Astrophysics Data System (ADS)

    Lopez-Baeza, E.; Monsoriu Torres, A.; Font, J.; Alonso, O.

    2009-04-01

    The ESA SMOS (Soil Moisture and Ocean Salinity) Mission is planned to be launched in July 2009. The satellite will measure soil moisture over the continents and surface salinity of the oceans at resolutions that are sufficient for climatological-type studies. This paper describes the procedure to be used at the Spanish SMOS Level 3 and 4 Data Processing Centre (CP34) to generate Soil Moisture and other Land Surface Product maps from SMOS Level 2 data. This procedure can be used to map Soil Moisture, Vegetation Water Content and Soil Dielectric Constant data into different pre-defined spatial grids with fixed temporal frequency. The L3 standard Land Surface Products to be generated at CP34 are: Soil Moisture products: maximum spatial resolution with no spatial averaging, temporal averaging of 3 days, daily generation maximum spatial resolution with no spatial averaging, temporal averaging of 10 days, generation frequency of once every 10 days. b': maximum spatial resolution with no spatial averaging, temporal averaging of monthly decades (1st to 10th of the month, 11th to 20th of the month, 21st to last day of the month), generation frequency of once every decade monthly average, temporal averaging from L3 decade averages, monthly generation Seasonal average, temporal averaging from L3 monthly averages, seasonally generation yearly average, temporal averaging from L3 monthly averages, yearly generation Vegetation Water Content products: maximum spatial resolution with no spatial averaging, temporal averaging of 10 days, generation frequency of once every 10 days. a': maximum spatial resolution with no spatial averaging, temporal averaging of monthly decades (1st to 10th of the month, 11th to 20th of the month, 21st to last day of the month) using simple averaging method over the L2 products in ISEA grid, generation frequency of once every decade monthly average, temporal averaging from L3 decade averages, monthly generation seasonal average, temporal averaging from L3 monthly averages, seasonally generation yearly average, temporal averaging from L3 monthly averages, yearly generation Dielectric Constant products: (the dielectric constant products are delivered together with soil moisture products, with the same averaging periods and generation frequency): maximum spatial resolution with no spatial averaging, temporal averaging of 3 days, daily generation maximum spatial resolution with no spatial averaging, temporal averaging of 10 days, generation frequency of once every 10 days. b': maximum spatial resolution with no spatial averaging, temporal averaging of monthly decades (1st to 10th of the month, 11th to 20th of the month, 21st to last day of the month), generation frequency of once every decade monthly average, temporal averaging from L3 decade averages, monthly generation seasonal average, temporal averaging from L3 monthly averages, seasonally generation yearly average, temporal averaging from L3 monthly averages, yearly generation.

  2. Intra- and inter-brain synchronization during musical improvisation on the guitar.

    PubMed

    Müller, Viktor; Sänger, Johanna; Lindenberger, Ulman

    2013-01-01

    Humans interact with the environment through sensory and motor acts. Some of these interactions require synchronization among two or more individuals. Multiple-trial designs, which we have used in past work to study interbrain synchronization in the course of joint action, constrain the range of observable interactions. To overcome the limitations of multiple-trial designs, we conducted single-trial analyses of electroencephalography (EEG) signals recorded from eight pairs of guitarists engaged in musical improvisation. We identified hyper-brain networks based on a complex interplay of different frequencies. The intra-brain connections primarily involved higher frequencies (e.g., beta), whereas inter-brain connections primarily operated at lower frequencies (e.g., delta and theta). The topology of hyper-brain networks was frequency-dependent, with a tendency to become more regular at higher frequencies. We also found hyper-brain modules that included nodes (i.e., EEG electrodes) from both brains. Some of the observed network properties were related to musical roles during improvisation. Our findings replicate and extend earlier work and point to mechanisms that enable individuals to engage in temporally coordinated joint action.

  3. Intra- and Inter-Brain Synchronization during Musical Improvisation on the Guitar

    PubMed Central

    Müller, Viktor; Sänger, Johanna; Lindenberger, Ulman

    2013-01-01

    Humans interact with the environment through sensory and motor acts. Some of these interactions require synchronization among two or more individuals. Multiple-trial designs, which we have used in past work to study interbrain synchronization in the course of joint action, constrain the range of observable interactions. To overcome the limitations of multiple-trial designs, we conducted single-trial analyses of electroencephalography (EEG) signals recorded from eight pairs of guitarists engaged in musical improvisation. We identified hyper-brain networks based on a complex interplay of different frequencies. The intra-brain connections primarily involved higher frequencies (e.g., beta), whereas inter-brain connections primarily operated at lower frequencies (e.g., delta and theta). The topology of hyper-brain networks was frequency-dependent, with a tendency to become more regular at higher frequencies. We also found hyper-brain modules that included nodes (i.e., EEG electrodes) from both brains. Some of the observed network properties were related to musical roles during improvisation. Our findings replicate and extend earlier work and point to mechanisms that enable individuals to engage in temporally coordinated joint action. PMID:24040094

  4. Experimental and analytical studies of a true airspeed sensor

    NASA Technical Reports Server (NTRS)

    Goglia, G. L.; Shen, J. Y.

    1983-01-01

    A true airspeed sensor based on the precession of a vortex whistle for sensing airspeeds up to 321.9 km/hr (200 mph). In an attempt to model the complicated fluid mechanics of the vortex precession, three dimensional, inviscid, unsteady, incompressible fluid flow was studied by using the hydrodynamical linearized stability theory. The temporal stability approach was used to derive the relationship between the true airspeed and frequency response. The results show that the frequency response is linearly proportional to the airspeed. A computer program was developed to obtain the numerical solution. Computational results for various parameters were obtained. The designed sensor basically consisted of a vortex tube, a swirler, and a transducer system. A microphone converted the audible tone to an electronic frequency signal. Measurements for both the closed conduit tests and wind tunnel tests were recorded. For a specific flow rate or airspeed, larger exit swirler angles produced higher frequencies. For a smaller cross sectional area in the precessional flow region, the frequency was higher. It was observed that as the airspeed was increased the Strouhal number remained constant.

  5. Absolute spike frequency as a predictor of surgical outcome in temporal lobe epilepsy.

    PubMed

    Ngo, Ly; Sperling, Michael R; Skidmore, Christopher; Mintzer, Scott; Nei, Maromi

    2017-04-01

    Frequent interictal epileptiform abnormalities may correlate with poor prognosis after temporal lobe resection for refractory epilepsy. To date, studies have focused on limited resections such as selective amygdalohippocampectomy and apical temporal lobectomy without hippocampectomy. However, it is unclear whether the frequency of spikes predicts outcome after standard anterior temporal lobectomy. Preoperative scalp video-EEG monitoring data from patients who subsequently underwent anterior temporal lobectomy over a three year period and were followed for at least one year were reviewed for the frequency of interictal epileptiform abnormalities. Surgical outcome for those patients with frequent spikes (>60/h) was compared with those with less frequent spikes. Additionally, spike frequency was evaluated as a continuous variable and correlated with outcome to determine if increased spike frequency correlated with worse outcome, as assessed by modified Engel Class outcome. Forty-seven patients (18 men, 29 women; mean age 40 years at surgery) were included. Forty-six patients had standard anterior temporal lobectomy (24 right, 22 left) and one had a modified left temporal lobectomy. There was no significant difference in seizure outcome between those with frequent (57% Class I) vs. those with less frequent (58% Class I) spikes. Increased spike frequency did not correlate with worse outcome. Greater than 20 complex partial seizures/month and generalized tonic-clonic seizures within one year of surgery correlated with worse outcome. This study suggests that absolute spike frequency does not predict seizure outcome after anterior temporal lobectomy unlike in selective procedures, and should not be used as a prognostic factor in this population. Copyright © 2017 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  6. What is the Temporal Analog of Reflection and Refraction of Optical Beams?

    PubMed

    Plansinis, B W; Donaldson, W R; Agrawal, G P

    2015-10-30

    It is shown numerically and analytically that when an optical pulse approaches a moving temporal boundary across which the refractive index changes, it undergoes a temporal equivalent of reflection and refraction of optical beams at a spatial boundary. The main difference is that the role of angles is played by changes in the frequency. The frequency dependence of the dispersion of the material in which the pulse is propagating plays a fundamental role in determining the frequency shifts experienced by the reflected and refracted pulses. Our analytic expressions for these frequency shifts allow us to find the condition under which an analog of total internal reflection may occur at the temporal boundary.

  7. Period Concatenation Underlies Interactions between Gamma and Beta Rhythms in Neocortex

    PubMed Central

    Roopun, Anita K.; Kramer, Mark A.; Carracedo, Lucy M.; Kaiser, Marcus; Davies, Ceri H.; Traub, Roger D.; Kopell, Nancy J.; Whittington, Miles A.

    2008-01-01

    The neocortex generates rhythmic electrical activity over a frequency range covering many decades. Specific cognitive and motor states are associated with oscillations in discrete frequency bands within this range, but it is not known whether interactions and transitions between distinct frequencies are of functional importance. When coexpressed rhythms have frequencies that differ by a factor of two or more interactions can be seen in terms of phase synchronization. Larger frequency differences can result in interactions in the form of nesting of faster frequencies within slower ones by a process of amplitude modulation. It is not known how coexpressed rhythms, whose frequencies differ by less than a factor of two may interact. Here we show that two frequencies (gamma – 40 Hz and beta2 – 25 Hz), coexpressed in superficial and deep cortical laminae with low temporal interaction, can combine to generate a third frequency (beta1 – 15 Hz) showing strong temporal interaction. The process occurs via period concatenation, with basic rhythm-generating microcircuits underlying gamma and beta2 rhythms forming the building blocks of the beta1 rhythm by a process of addition. The mean ratio of adjacent frequency components was a constant – approximately the golden mean – which served to both minimize temporal interactions, and permit multiple transitions, between frequencies. The resulting temporal landscape may provide a framework for multiplexing – parallel information processing on multiple temporal scales. PMID:18946516

  8. Effect of Round Window Reinforcement on Hearing: A Temporal Bone Study With Clinical Implications for Surgical Reinforcement of the Round Window.

    PubMed

    Wegner, Inge; Eldaebes, Mostafa M A S; Landry, Thomas G; Adamson, Robert B; Grolman, Wilko; Bance, Manohar L

    2016-06-01

    Round window reinforcement leads to conductive hearing loss. The round window is stiffened surgically as therapy for various conditions, including perilymphatic fistula and superior semicircular canal dehiscence. Round window reinforcement reduces symptoms in these patients. However, it also reduces fluid displacement in the cochlea and might therefore increase conductive hearing loss. Perichondrium was applied to the round window membrane in nine fresh-frozen, nonpathologic temporal bones. In four temporal bones cartilage was applied subsequently. Acoustic stimuli in the form of frequency sweeps from 250 to 8000 Hz were generated at 110 dB sound pressure level. A total of 16 frequencies in a 1/3-octave series were used. Stapes velocities in response to the acoustic stimuli were measured at equally spaced multiple points covering the stapes footplate using a scanning laser Doppler interferometry system. Measurements were made at baseline, after applying perichondrium, and after applying cartilage. At frequencies up to 1000 Hz perichondrium reinforcement decreased stapes velocities by 1.5 to 2.9 dB compared with no reinforcement (p value = 0.003). Reinforcement with cartilage led to a further deterioration of stapes velocities by 2.6 to 4.2 dB at frequencies up to 1000 Hz (p value = 0.050). The higher frequencies were not affected by perichondrium reinforcement (p value = 0.774) or cartilage reinforcement (p value = 0.644). Our results seem to suggest a modest, clinically negligible effect of reinforcement with perichondrium. Placing cartilage on the round window resulted in a graded effect on stapes velocities in keeping with the increased stiffness of cartilage compared with perichondrium. Even so, the effect was relatively small.

  9. Analysis on the time and frequency domains of the acceleration in front crawl stroke.

    PubMed

    Gil, Joaquín Madera; Moreno, Luis-Millán González; Mahiques, Juan Benavent; Muñoz, Víctor Tella

    2012-05-01

    The swimming involves accelerations and decelerations in the swimmer's body. Thus, the main objective of this study is to make a temporal and frequency analysis of the acceleration in front crawl swimming, regarding the gender and the performance. The sample was composed by 31 male swimmers (15 of high-level and 16 of low-level) and 20 female swimmers (11 of high-level and 9 of low-level). The acceleration was registered from the third complete cycle during eight seconds in a 25 meters maximum velocity test. A position transducer (200Hz) was used to collect the data, and it was synchronized to an aquatic camera (25Hz). The acceleration in the temporal (root mean square, minimum and maximum of the acceleration) and frequency (power peak, power peak frequency and spectral area) domains was calculated with Fourier analysis, as well as the velocity and the spectrums distribution in function to present one or more main peaks (type 1 and type 2). A one-way ANOVA was used to establish differences between gender and performance. Results show differences between genders in all the temporal domain variables (p<0.05) and only the Spectral Area (SA) in the frequency domain (p<0.05). Between gender and performance, only the Root Mean Square (RMS) showed differences in the performance of the male swimmers (p<0.05) and in the higher level swimmers, the Maximum (Max) and the Power Peak (PP) of the acceleration showed differences between both genders (p<0.05). These results confirms the importance of knowing the RMS to determine the efficiency of the swimmers regarding gender and performance level.

  10. Blue Light Protects Against Temporal Frequency Sensitive Refractive Changes.

    PubMed

    Rucker, Frances; Britton, Stephanie; Spatcher, Molly; Hanowsky, Stephan

    2015-09-01

    Time spent outdoors is protective against myopia. The outdoors allows exposure to short-wavelength (blue light) rich sunlight, while indoor illuminants can be deficient at short-wavelengths. In the current experiment, we investigate the role of blue light, and temporal sensitivity, in the emmetropization response. Five-day-old chicks were exposed to sinusoidal luminance modulation of white light (with blue; N = 82) or yellow light (without blue; N = 83) at 80% contrast, at one of six temporal frequencies: 0, 0.2, 1, 2, 5, 10 Hz daily for 3 days. Mean illumination was 680 lux. Changes in ocular components and corneal curvature were measured. Refraction, eye length, and choroidal changes were dependent on the presence of blue light (P < 0.03, all) and on temporal frequency (P < 0.03, all). In the presence of blue light, refraction did not change across frequencies (mean change -0.24 [diopters] D), while in the absence of blue light, we observed a hyperopic shift (>1 D) at high frequencies, and a myopic shift (>-0.6 D) at low frequencies. With blue light there was little difference in eye growth across frequencies (77 μm), while in the absence of blue light, eyes grew more at low temporal frequencies and less at high temporal frequencies (10 vs. 0.2 Hz: 145 μm; P < 0.003). Overall, neonatal astigmatism was reduced with blue light. Illuminants rich in blue light can protect against myopic eye growth when the eye is exposed to slow changes in luminance contrast as might occur with near work.

  11. Blue Light Protects Against Temporal Frequency Sensitive Refractive Changes

    PubMed Central

    Rucker, Frances; Britton, Stephanie; Spatcher, Molly; Hanowsky, Stephan

    2015-01-01

    Purpose Time spent outdoors is protective against myopia. The outdoors allows exposure to short-wavelength (blue light) rich sunlight, while indoor illuminants can be deficient at short-wavelengths. In the current experiment, we investigate the role of blue light, and temporal sensitivity, in the emmetropization response. Methods Five-day-old chicks were exposed to sinusoidal luminance modulation of white light (with blue; N = 82) or yellow light (without blue; N = 83) at 80% contrast, at one of six temporal frequencies: 0, 0.2, 1, 2, 5, 10 Hz daily for 3 days. Mean illumination was 680 lux. Changes in ocular components and corneal curvature were measured. Results Refraction, eye length, and choroidal changes were dependent on the presence of blue light (P < 0.03, all) and on temporal frequency (P < 0.03, all). In the presence of blue light, refraction did not change across frequencies (mean change −0.24 [diopters] D), while in the absence of blue light, we observed a hyperopic shift (>1 D) at high frequencies, and a myopic shift (>−0.6 D) at low frequencies. With blue light there was little difference in eye growth across frequencies (77 μm), while in the absence of blue light, eyes grew more at low temporal frequencies and less at high temporal frequencies (10 vs. 0.2 Hz: 145 μm; P < 0.003). Overall, neonatal astigmatism was reduced with blue light. Conclusions Illuminants rich in blue light can protect against myopic eye growth when the eye is exposed to slow changes in luminance contrast as might occur with near work. PMID:26393671

  12. Temporal and spatial tuning of dorsal lateral geniculate nucleus neurons in unanesthetized rats

    PubMed Central

    Sriram, Balaji; Meier, Philip M.

    2016-01-01

    Visual response properties of neurons in the dorsolateral geniculate nucleus (dLGN) have been well described in several species, but not in rats. Analysis of responses from the unanesthetized rat dLGN will be needed to develop quantitative models that account for visual behavior of rats. We recorded visual responses from 130 single units in the dLGN of 7 unanesthetized rats. We report the response amplitudes, temporal frequency, and spatial frequency sensitivities in this population of cells. In response to 2-Hz visual stimulation, dLGN cells fired 15.9 ± 11.4 spikes/s (mean ± SD) modulated by 10.7 ± 8.4 spikes/s about the mean. The optimal temporal frequency for full-field stimulation ranged from 5.8 to 19.6 Hz across cells. The temporal high-frequency cutoff ranged from 11.7 to 33.6 Hz. Some cells responded best to low temporal frequency stimulation (low pass), and others were strictly bandpass; most cells fell between these extremes. At 2- to 4-Hz temporal modulation, the spatial frequency of drifting grating that drove cells best ranged from 0.008 to 0.18 cycles per degree (cpd) across cells. The high-frequency cutoff ranged from 0.01 to 1.07 cpd across cells. The majority of cells were driven best by the lowest spatial frequency tested, but many were partially or strictly bandpass. We conclude that single units in the rat dLGN can respond vigorously to temporal modulation up to at least 30 Hz and spatial detail up to 1 cpd. Tuning properties were heterogeneous, but each fell along a continuum; we found no obvious clustering into discrete cell types along these dimensions. PMID:26936980

  13. Temporal motifs reveal homophily, gender-specific patterns, and group talk in call sequences.

    PubMed

    Kovanen, Lauri; Kaski, Kimmo; Kertész, János; Saramäki, Jari

    2013-11-05

    Recent studies on electronic communication records have shown that human communication has complex temporal structure. We study how communication patterns that involve multiple individuals are affected by attributes such as sex and age. To this end, we represent the communication records as a colored temporal network where node color is used to represent individuals' attributes, and identify patterns known as temporal motifs. We then construct a null model for the occurrence of temporal motifs that takes into account the interaction frequencies and connectivity between nodes of different colors. This null model allows us to detect significant patterns in call sequences that cannot be observed in a static network that uses interaction frequencies as link weights. We find sex-related differences in communication patterns in a large dataset of mobile phone records and show the existence of temporal homophily, the tendency of similar individuals to participate in communication patterns beyond what would be expected on the basis of their average interaction frequencies. We also show that temporal patterns differ between dense and sparse neighborhoods in the network. Because also this result is independent of interaction frequencies, it can be seen as an extension of Granovetter's hypothesis to temporal networks.

  14. Temporal motifs reveal homophily, gender-specific patterns, and group talk in call sequences

    PubMed Central

    Kovanen, Lauri; Kaski, Kimmo; Kertész, János; Saramäki, Jari

    2013-01-01

    Recent studies on electronic communication records have shown that human communication has complex temporal structure. We study how communication patterns that involve multiple individuals are affected by attributes such as sex and age. To this end, we represent the communication records as a colored temporal network where node color is used to represent individuals’ attributes, and identify patterns known as temporal motifs. We then construct a null model for the occurrence of temporal motifs that takes into account the interaction frequencies and connectivity between nodes of different colors. This null model allows us to detect significant patterns in call sequences that cannot be observed in a static network that uses interaction frequencies as link weights. We find sex-related differences in communication patterns in a large dataset of mobile phone records and show the existence of temporal homophily, the tendency of similar individuals to participate in communication patterns beyond what would be expected on the basis of their average interaction frequencies. We also show that temporal patterns differ between dense and sparse neighborhoods in the network. Because also this result is independent of interaction frequencies, it can be seen as an extension of Granovetter’s hypothesis to temporal networks. PMID:24145424

  15. The Frequency-dependent Damping of Slow Magnetoacoustic Waves in a Sunspot Umbral Atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasad, S. Krishna; Jess, D. B.; Doorsselaere, T. Van

    High spatial and temporal resolution images of a sunspot, obtained simultaneously in multiple optical and UV wavelengths, are employed to study the propagation and damping characteristics of slow magnetoacoustic waves up to transition region heights. Power spectra are generated from intensity oscillations in sunspot umbra, across multiple atmospheric heights, for frequencies up to a few hundred mHz. It is observed that the power spectra display a power-law dependence over the entire frequency range, with a significant enhancement around 5.5 mHz found for the chromospheric channels. The phase difference spectra reveal a cutoff frequency near 3 mHz, up to which themore » oscillations are evanescent, while those with higher frequencies propagate upward. The power-law index appears to increase with atmospheric height. Also, shorter damping lengths are observed for oscillations with higher frequencies suggesting frequency-dependent damping. Using the relative amplitudes of the 5.5 mHz (3 minute) oscillations, we estimate the energy flux at different heights, which seems to decay gradually from the photosphere, in agreement with recent numerical simulations. Furthermore, a comparison of power spectra across the umbral radius highlights an enhancement of high-frequency waves near the umbral center, which does not seem to be related to magnetic field inclination angle effects.« less

  16. Signal coding in cockroach photoreceptors is tuned to dim environments.

    PubMed

    Heimonen, K; Immonen, E-V; Frolov, R V; Salmela, I; Juusola, M; Vähäsöyrinki, M; Weckström, M

    2012-11-01

    In dim light, scarcity of photons typically leads to poor vision. Nonetheless, many animals show visually guided behavior with dim environments. We investigated the signaling properties of photoreceptors of the dark active cockroach (Periplaneta americana) using intracellular and whole-cell patch-clamp recordings to determine whether they show selective functional adaptations to dark. Expectedly, dark-adapted photoreceptors generated large and slow responses to single photons. However, when light adapted, responses of both phototransduction and the nontransductive membrane to white noise (WN)-modulated stimuli remained slow with corner frequencies ~20 Hz. This promotes temporal integration of light inputs and maintains high sensitivity of vision. Adaptive changes in dynamics were limited to dim conditions. Characteristically, both step and frequency responses stayed effectively unchanged for intensities >1,000 photons/s/photoreceptor. A signal-to-noise ratio (SNR) of the light responses was transiently higher at frequencies <5 Hz for ~5 s after light onset but deteriorated to a lower value upon longer stimulation. Naturalistic light stimuli, as opposed to WN, evoked markedly larger responses with higher SNRs at low frequencies. This allowed realistic estimates of information transfer rates, which saturated at ~100 bits/s at low-light intensities. We found, therefore, selective adaptations beneficial for vision in dim environments in cockroach photoreceptors: large amplitude of single-photon responses, constant high level of temporal integration of light inputs, saturation of response properties at low intensities, and only transiently efficient encoding of light contrasts. The results also suggest that the sources of the large functional variability among different photoreceptors reside mostly in phototransduction processes and not in the properties of the nontransductive membrane.

  17. Observing videos of a baby crying or smiling induces similar, but not identical, electroencephalographic responses in biological and adoptive mothers.

    PubMed

    Hernández-González, M; Hidalgo-Aguirre, R M; Guevara, M A; Pérez-Hernández, M; Amezcua-Gutiérrez, C

    2016-02-01

    It is well-known that adoptive mothers respond to cues from their babies in similar ways to biological mothers, and that cortical processing is critical for adequate motive-emotional maternal responses. This study used electroencephalographic activity (EEG) to characterize prefrontal, parietal and temporal functioning in biological mothers (BM), adoptive mothers (AM), and non-mothers (NM), while viewing videos of a baby smiling or crying. The BM presented higher absolute power (AP) in the delta and theta bands (associated with pleasant, positive emotional experiences) in the frontal and parietal areas under all conditions. In response to the smiling video, both types of mothers presented a lower AP in alpha1 in the three cortices (indicative of increased attention) and, mainly in temporal areas, a higher AP in the fast frequencies (beta and gamma, reflecting increased alertness to sensory stimuli and cognitive processing). This EEG pattern in the BM and AM could reflect the greater attention and, probably, the positive mood caused by the smiling video, showing that both are sensitive to these pleasant stimuli. When viewing the video of a baby crying, the AM had higher AP in the fast frequencies (temporal and parietal areas), indicating that they were more reactive to this unpleasant video, while the NM presented only a lower AP in alpha1 in all cortices, a finding that could be associated with the general activation induced by these unpleasant stimuli as a consequence of their lack of maternal experience. These findings should help improve our understanding of the neural mechanisms involved in the processing of sensorial stimuli that establish affective-emotional links during motherhood. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. What is the temporal analog of reflection and refraction of optical beams?

    DOE PAGES

    Plansinis, B. W.; Donaldson, W. R.; Agrawal, G. P.

    2015-10-28

    It is shown numerically and analytically that when an optical pulse approaches a moving temporal boundary across which the refractive index changes, it undergoes a temporal equivalent of reflection and refraction of optical beams at a spatial boundary. The main difference is that the role of angles is played by changes in the frequency. The frequency dependence of the dispersion of the material in which the pulse is propagating plays a fundamental role in determining the frequency shifts experienced by the reflected and refracted pulses. As a result, our analytic expressions for these frequency shifts allow us to find themore » condition under which an analog of total internal reflection may occur at the temporal boundary.« less

  19. Pulse-coupled Belousov-Zhabotinsky oscillators with frequency modulation

    NASA Astrophysics Data System (ADS)

    Horvath, Viktor; Epstein, Irving R.

    2018-04-01

    Inhibitory perturbations to the ferroin-catalyzed Belousov-Zhabotinsky (BZ) chemical oscillator operated in a continuously fed stirred tank reactor cause long term changes to the limit cycle: the lengths of the cycles subsequent to the perturbation are longer than that of the unperturbed cycle, and the unperturbed limit cycle is recovered only after several cycles. The frequency of the BZ reaction strongly depends on the acid concentration of the medium. By adding strong acid or base to the perturbing solutions, the magnitude and the direction of the frequency changes concomitant to excitatory or inhibitory perturbations can be controlled independently of the coupling strength. The dynamics of two BZ oscillators coupled through perturbations carrying a coupling agent (activator or inhibitor) and a frequency modulator (strong acid or base) was explored using a numerical model of the system. Here, we report new complex temporal patterns: higher order, partially synchronized modes that develop when inhibitory coupling is combined with positive frequency modulation (FM), and complex bursting patterns when excitatory coupling is combined with negative FM. The role of time delay between the peak and perturbation (the analog of synaptic delays in networks of neurons) has also been studied. The complex patterns found under inhibitory coupling and positive FM vanish when the delay is significant, whereas a sufficiently long time delay is required for the complex temporal dynamics to occur when coupling is excitatory and FM is negative.

  20. Pitch contour identification with combined place and temporal cues using cochlear implants

    PubMed Central

    Luo, Xin; Padilla, Monica; Landsberger, David M.

    2012-01-01

    This study investigated the integration of place- and temporal-pitch cues in pitch contour identification (PCI), in which cochlear implant (CI) users were asked to judge the overall pitch-change direction of stimuli. Falling and rising pitch contours were created either by continuously steering current between adjacent electrodes (place pitch), by continuously changing amplitude modulation (AM) frequency (temporal pitch), or both. The percentage of rising responses was recorded as a function of current steering or AM frequency change, with single or combined pitch cues. A significant correlation was found between subjects’ sensitivity to current steering and AM frequency change. The integration of place- and temporal-pitch cues was most effective when the two cues were similarly discriminable in isolation. Adding the other (place or temporal) pitch cues shifted the temporal- or place-pitch psychometric functions horizontally without changing the slopes. PCI was significantly better with consistent place- and temporal-pitch cues than with inconsistent cues. PCI with single cues and integration of pitch cues were similar on different electrodes. The results suggest that CI users effectively integrate place- and temporal-pitch cues in relative pitch perception tasks. Current steering and AM frequency change should be coordinated to better transmit dynamic pitch information to CI users. PMID:22352506

  1. Life satisfaction in the new country: a multilevel longitudinal analysis of effects of culture and 5-HTT allele frequency distribution in country of origin

    PubMed Central

    Kent, Stephen; Kashima, Yoshihisa

    2015-01-01

    Life satisfaction of migrants to Australia from 17 countries, assessed at 4–5 months, 16–17 months and 3½ years after arrival, was analyzed with a longitudinal, multilevel analysis. The results indicated that migrants were more satisfied, if the national average life satisfaction was higher in their country of origin, after adjustment for individual-level income, age, and sex and a linear temporal trend. Simultaneously, the migrants were also happier if people in their country of origin had a higher frequency of 5-HTT long allele, a genotype known to be associated with resilience under life stresses. These two relationships were independent, suggesting that both culture and gene matter in international transitions. PMID:24532702

  2. Distribution of RF energy emitted by mobile phones in anatomical structures of the brain.

    PubMed

    Cardis, E; Deltour, I; Mann, S; Moissonnier, M; Taki, M; Varsier, N; Wake, K; Wiart, J

    2008-06-07

    The rapid worldwide increase in mobile phone use in the last decade has generated considerable interest in possible carcinogenic effects of radio frequency (RF). Because exposure to RF from phones is localized, if a risk exists it is likely to be greatest for tumours in regions with greatest energy absorption. The objective of the current paper was to characterize the spatial distribution of RF energy in the brain, using results of measurements made in two laboratories on 110 phones used in Europe or Japan. Most (97-99% depending on frequency) appears to be absorbed in the brain hemisphere on the side where the phone is used, mainly (50-60%) in the temporal lobe. The average relative SAR is highest in the temporal lobe (6-15%, depending on frequency, of the spatial peak SAR in the most exposed region of the brain) and the cerebellum (2-10%) and decreases very rapidly with increasing depth, particularly at higher frequencies. The SAR distribution appears to be fairly similar across phone models, between older and newer phones and between phones with different antenna types and positions. Analyses of risk by location of tumour are therefore important for the interpretation of results of studies of brain tumours in relation to mobile phone use.

  3. Antipsychotics reverse abnormal EEG complexity in drug-naïve schizophrenia: A multiscale entropy analysis

    PubMed Central

    Takahashi, Tetsuya; Cho, Raymond Y.; Mizuno, Tomoyuki; Kikuchi, Mitsuru; Murata, Tetsuhito; Takahashi, Koichi; Wada, Yuji

    2010-01-01

    Multiscale entropy (MSE) analysis is a novel entropy-based approach for measuring dynamical complexity in physiological systems over a range of temporal scales. To evaluate this analytic approach as an aid to elucidating the pathophysiologic mechanisms in schizophrenia, we examined MSE in EEG activity in drug-naïve schizophrenia subjects pre- and post-treatment with antipsychotics in comparison with traditional EEG analysis. We recorded eyes-closed resting state EEG from frontal, temporal, parietal and occipital regions in drug-naïve 22 schizophrenia and 24 age-matched healthy control subjects. Fifteen patients were re-evaluated within 2–8 weeks after the initiation of antipsychotic treatment. For each participant, MSE was calculated on one continuous 60 second epoch for each experimental session. Schizophrenia subjects showed significantly higher complexity at higher time scales (lower frequencies), than that of healthy controls in fronto-centro-temporal, but not in parieto-occipital regions. Post-treatment, this higher complexity decreased to healthy control subject levels selectively in fronto-central regions, while the increased complexity in temporal sites remained higher. Comparative power analysis identified spectral slowing in frontal regions in pre-treatment schizophrenia subjects, consistent with previous findings, whereas no antipsychotic treatment effect was observed. In summary, multiscale entropy measures identified abnormal dynamical EEG signal complexity in anterior brain areas in schizophrenia that normalized selectively in fronto-central areas with antipsychotic treatment. These findings show that entropy-based analytic methods may serve as a novel approach for characterizing and understanding abnormal cortical dynamics in schizophrenia, and elucidating the therapeutic mechanisms of antipsychotics. PMID:20149880

  4. Electric-acoustic pitch comparisons in single-sided-deaf cochlear implant users: frequency-place functions and rate pitch.

    PubMed

    Schatzer, Reinhold; Vermeire, Katrien; Visser, Daniel; Krenmayr, Andreas; Kals, Mathias; Voormolen, Maurits; Van de Heyning, Paul; Zierhofer, Clemens

    2014-03-01

    Eight cochlear implant users with near-normal hearing in their non-implanted ear compared pitch percepts for pulsatile electric and acoustic pure-tone stimuli presented to the two ears. Six subjects were implanted with a 31-mm MED-EL FLEX(SOFT) electrode, and two with a 24-mm medium (M) electrode, with insertion angles of the most apical contacts ranging from 565° to 758°. In the first experiment, frequency-place functions were derived from pure-tone matches to 1500-pps unmodulated pulse trains presented to individual electrodes and compared to Greenwood's frequency position map along the organ of Corti. While the overall median downward shift of the obtained frequency-place functions (-0.16 octaves re. Greenwood) and the mean shifts in the basal (<240°; -0.33 octaves) and middle (-0.35 octaves) regions were statistically significant, the shift in the apical region (>480°; 0.26 octaves) was not. Standard deviations of frequency-place functions were approximately half an octave at electrode insertion angles below 480°, increasing to an octave at higher angular locations while individual functions were gradually leveling off. In a second experiment, subjects matched the rates of unmodulated pulse trains presented to individual electrodes in the apical half of the array to low-frequency pure tones between 100 Hz and 450 Hz. The aim was to investigate the influence of electrode place on the salience of temporal pitch cues, for coding strategies that present temporal fine structure information via rate modulations on select apical channels. Most subjects achieved reliable matches to tone frequencies from 100 Hz to 300 Hz only on electrodes at angular insertion depths beyond 360°, while rate-matches to 450-Hz tones were primarily achieved on electrodes at shallower insertion angles. Only for electrodes in the second turn the average slopes of rate-pitch functions did not differ significantly from the pure-tone references, suggesting their use for the encoding of within-channel fine frequency information via rate modulations in temporal fine structure stimulation strategies. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Time-Frequency Approach for Stochastic Signal Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Ripul; Akula, Aparna; Kumar, Satish

    2011-10-20

    The detection of events in a stochastic signal has been a subject of great interest. One of the oldest signal processing technique, Fourier Transform of a signal contains information regarding frequency content, but it cannot resolve the exact onset of changes in the frequency, all temporal information is contained in the phase of the transform. On the other hand, Spectrogram is better able to resolve temporal evolution of frequency content, but has a trade-off in time resolution versus frequency resolution in accordance with the uncertainty principle. Therefore, time-frequency representations are considered for energetic characterisation of the non-stationary signals. Wigner Villemore » Distribution (WVD) is the most prominent quadratic time-frequency signal representation and used for analysing frequency variations in signals.WVD allows for instantaneous frequency estimation at each data point, for a typical temporal resolution of fractions of a second. This paper through simulations describes the way time frequency models are applied for the detection of event in a stochastic signal.« less

  6. Time-Frequency Approach for Stochastic Signal Detection

    NASA Astrophysics Data System (ADS)

    Ghosh, Ripul; Akula, Aparna; Kumar, Satish; Sardana, H. K.

    2011-10-01

    The detection of events in a stochastic signal has been a subject of great interest. One of the oldest signal processing technique, Fourier Transform of a signal contains information regarding frequency content, but it cannot resolve the exact onset of changes in the frequency, all temporal information is contained in the phase of the transform. On the other hand, Spectrogram is better able to resolve temporal evolution of frequency content, but has a trade-off in time resolution versus frequency resolution in accordance with the uncertainty principle. Therefore, time-frequency representations are considered for energetic characterisation of the non-stationary signals. Wigner Ville Distribution (WVD) is the most prominent quadratic time-frequency signal representation and used for analysing frequency variations in signals.WVD allows for instantaneous frequency estimation at each data point, for a typical temporal resolution of fractions of a second. This paper through simulations describes the way time frequency models are applied for the detection of event in a stochastic signal.

  7. Large-scale cortical correlation structure of spontaneous oscillatory activity

    PubMed Central

    Hipp, Joerg F.; Hawellek, David J.; Corbetta, Maurizio; Siegel, Markus; Engel, Andreas K.

    2013-01-01

    Little is known about the brain-wide correlation of electrophysiological signals. Here we show that spontaneous oscillatory neuronal activity exhibits frequency-specific spatial correlation structure in the human brain. We developed an analysis approach that discounts spurious correlation of signal power caused by the limited spatial resolution of electrophysiological measures. We applied this approach to source estimates of spontaneous neuronal activity reconstructed from magnetoencephalography (MEG). Overall, correlation of power across cortical regions was strongest in the alpha to beta frequency range (8–32 Hz) and correlation patterns depended on the underlying oscillation frequency. Global hubs resided in the medial temporal lobe in the theta frequency range (4–6 Hz), in lateral parietal areas in the alpha to beta frequency range (8–23 Hz), and in sensorimotor areas for higher frequencies (32–45 Hz). Our data suggest that interactions in various large-scale cortical networks may be reflected in frequency specific power-envelope correlations. PMID:22561454

  8. Differential inhibition onto developing and mature granule cells generates high-frequency filters with variable gain

    PubMed Central

    Pardi, María Belén; Ogando, Mora Belén; Schinder, Alejandro F; Marin-Burgin, Antonia

    2015-01-01

    Adult hippocampal neurogenesis provides the dentate gyrus with heterogeneous populations of granule cells (GC) originated at different times. The contribution of these cells to information encoding is under current investigation. Here, we show that incoming spike trains activate different populations of GC determined by the stimulation frequency and GC age. Immature GC respond to a wider range of stimulus frequencies, whereas mature GC are less responsive at high frequencies. This difference is dictated by feedforward inhibition, which restricts mature GC activation. Yet, the stronger inhibition of mature GC results in a higher temporal fidelity compared to that of immature GC. Thus, hippocampal inputs activate two populations of neurons with variable frequency filters: immature cells, with wide‐range responses, that are reliable transmitters of the incoming frequency, and mature neurons, with narrow frequency response, that are precise at informing the beginning of the stimulus, but with a sparse activity. DOI: http://dx.doi.org/10.7554/eLife.08764.001 PMID:26163657

  9. Probing the Spatio-Temporal Characteristics of Temporal Aliasing Errors and their Impact on Satellite Gravity Retrievals

    NASA Astrophysics Data System (ADS)

    Wiese, D. N.; McCullough, C. M.

    2017-12-01

    Studies have shown that both single pair low-low satellite-to-satellite tracking (LL-SST) and dual-pair LL-SST hypothetical future satellite gravimetry missions utilizing improved onboard measurement systems relative to the Gravity Recovery and Climate Experiment (GRACE) will be limited by temporal aliasing errors; that is, the error introduced through deficiencies in models of high frequency mass variations required for the data processing. Here, we probe the spatio-temporal characteristics of temporal aliasing errors to understand their impact on satellite gravity retrievals using high fidelity numerical simulations. We find that while aliasing errors are dominant at long wavelengths and multi-day timescales, improving knowledge of high frequency mass variations at these resolutions translates into only modest improvements (i.e. spatial resolution/accuracy) in the ability to measure temporal gravity variations at monthly timescales. This result highlights the reliance on accurate models of high frequency mass variations for gravity processing, and the difficult nature of reducing temporal aliasing errors and their impact on satellite gravity retrievals.

  10. [FREQUENCY-TEMPORAL STRUCTURE OF HUMAN ELECTROENCEPHALOGRAM IN THE CONDITION OF ARTIFICIAL HYPOGRAVITY: DRY IMMERSION MODEL].

    PubMed

    Kuznetsova, G D; Gabova, A V; Lazarev, I E; Obukhov, Iu V; Obukhov, K Iu; Morozov, A A; Kulikov, M A; Shchatskova, A B; Vasil'eva, O N; Tomilovskaia, E S

    2015-01-01

    Frequency-temporal electroencephalogram (EEG) reactions to hypogravity were studied in 7 male subjects at the age of 20 to 27 years. The experiment was conducted using dry immersion (DI) as the best known method of simulating the space microgravity effects on the Earth. This hypogravity model reproduces hypokinesia, i.e. the weight-bearing and mechanic load removal, which is typical of microgravity. EEG was recorded by Neuroscan-2 (Compumedics) before the experiment (baseline data) and at the end of day 2 in DI. Comparative analysis of the EEG frequency-temporal structure was performed with the use of 2 techniques: Fourier transform and modified wavelet analysis. The Fourier transform elicited that after 2 days in DI the main shifts occurring to the EEG spectral composition are a decline in the alpha power and a slight though reliable growth of theta power. Similar frequency shifts were detected in the same records analyzed using the wavelet transform. According to wavelet analysis, during DI shifts in EEG frequency spectrum are accompanied by frequency desorganization of the EEG dominant rhythm and gross impairment of total stability of the electrical activity with time. Wavelet transform provides an opportunity to quantify changes in the frequency-temporal structure of the electrical activity of the brain. Quantitative evidence of frequency desorganization and temporal instability of EEG wavelet spectrograms may be the key to the understanding of mechanisms that drive functional disorders in the brain cortex in the conditions of hypogravity.

  11. Spatial-Temporal Dynamics of Urban Fire Incidents: a Case Study of Nanjing, China

    NASA Astrophysics Data System (ADS)

    Yao, J.; Zhang, X.

    2016-06-01

    Fire and rescue service is one of the fundamental public services provided by government in order to protect people, properties and environment from fires and other disasters, and thus promote a safer living environment. Well understanding spatial-temporal dynamics of fire incidents can offer insights for potential determinants of various fire events and enable better fire risk estimation, assisting future allocation of prevention resources and strategic planning of mitigation programs. Using a 12-year (2002-2013) dataset containing the urban fire events in Nanjing, China, this research explores the spatial-temporal dynamics of urban fire incidents. A range of exploratory spatial data analysis (ESDA) approaches and tools, such as spatial kernel density and co-maps, are employed to examine the spatial, temporal and spatial-temporal variations of the fire events. Particular attention has been paid to two types of fire incidents: residential properties and local facilities, due to their relatively higher occurrence frequencies. The results demonstrated that the amount of urban fire has greatly increased in the last decade and spatial-temporal distribution of fire events vary among different incident types, which implies varying impact of potential influencing factors for further investigation.

  12. Syntactic Complexity and Frequency in the Neurocognitive Language System.

    PubMed

    Yang, Yun-Hsuan; Marslen-Wilson, William D; Bozic, Mirjana

    2017-09-01

    Prominent neurobiological models of language follow the widely accepted assumption that language comprehension requires two principal mechanisms: a lexicon storing the sound-to-meaning mapping of words, primarily involving bilateral temporal regions, and a combinatorial processor for syntactically structured items, such as phrases and sentences, localized in a left-lateralized network linking left inferior frontal gyrus (LIFG) and posterior temporal areas. However, recent research showing that the processing of simple phrasal sequences may engage only bilateral temporal areas, together with the claims of distributional approaches to grammar, raise the question of whether frequent phrases are stored alongside individual words in temporal areas. In this fMRI study, we varied the frequency of words and of short and long phrases in English. If frequent phrases are indeed stored, then only less frequent items should generate selective left frontotemporal activation, because memory traces for such items would be weaker or not available in temporal cortex. Complementary univariate and multivariate analyses revealed that, overall, simple words (verbs) and long phrases engaged LIFG and temporal areas, whereas short phrases engaged bilateral temporal areas, suggesting that syntactic complexity is a key factor for LIFG activation. Although we found a robust frequency effect for words in temporal areas, no frequency effects were found for the two phrasal conditions. These findings support the conclusion that long and short phrases are analyzed, respectively, in the left frontal network and in a bilateral temporal network but are not retrieved from memory in the same way as simple words during spoken language comprehension.

  13. The Role of Oscillatory Phase in Determining the Temporal Organization of Perception: Evidence from Sensory Entrainment.

    PubMed

    Ronconi, Luca; Melcher, David

    2017-11-01

    Recent behavioral, neuroimaging, and neurophysiological studies have renewed the idea that the information processing within different temporal windows is linked to the phase and/or frequency of the ongoing oscillations, predominantly in the theta/alpha band (∼4-7 and 8-12 Hz, respectively). However, being correlational in nature, this evidence might reflect a nonfunctional byproduct rather than having a causal role. A more direct link can be shown with methods that manipulate oscillatory activity. Here, we used audiovisual entrainment at different frequencies in the prestimulus period of a temporal integration/segregation task. We hypothesized that entrainment would align ongoing oscillations and drive them toward the stimulation frequency. To reveal behavioral oscillations in temporal perception after the entrainment, we sampled the segregation/integration performance densely in time. In Experiment 1, two groups of human participants (both males and females) received stimulation either at the lower or the upper boundary of the alpha band (∼8.5 vs 11.5 Hz). For both entrainment frequencies, we found a phase alignment of the perceptual oscillation across subjects, but with two different power spectra that peaked near the entrainment frequency. These results were confirmed when perceptual oscillations were characterized in the time domain with sinusoidal fittings. In Experiment 2, we replicated the findings in a within-subject design, extending the results for frequencies in the theta (∼6.5 Hz), but not in the beta (∼15 Hz), range. Overall, these findings show that temporal segregation can be modified by sensory entrainment, providing evidence for a critical role of ongoing oscillations in the temporal organization of perception. SIGNIFICANCE STATEMENT The continuous flow of sensory input is not processed in an analog fashion, but rather is grouped by the perceptual system over time. Recent studies pinpointed the phase and/or frequency of the neural oscillations in the theta/alpha band (∼4-12 Hz) as possible mechanisms underlying temporal windows in perception. Here, we combined two innovative methodologies to provide more direct support for this evidence. We used sensory entrainment to align neural oscillations to different frequencies and then characterized the resultant perceptual oscillation with a temporal dense sampling of the integration/segregation performance. Our results provide the first evidence that the frequency of temporal segregation can be modified by sensory entrainment, supporting a critical role of ongoing oscillations in the integration/segregation of information over time. Copyright © 2017 Ronconi and Melcher.

  14. Temporal genetic structure in a poecilogonous polychaete: the interplay of developmental mode and environmental stochasticity

    PubMed Central

    2014-01-01

    Background Temporal variation in the genetic structure of populations can be caused by multiple factors, including natural selection, stochastic environmental variation, migration, or genetic drift. In benthic marine species, the developmental mode of larvae may indicate a possibility for temporal genetic variation: species with dispersive planktonic larvae are expected to be more likely to show temporal genetic variation than species with benthic or brooded non-dispersive larvae, due to differences in larval mortality and dispersal ability. We examined temporal genetic structure in populations of Pygospio elegans, a poecilogonous polychaete with within-species variation in developmental mode. P. elegans produces either planktonic, benthic, or intermediate larvae, varying both among and within populations, providing a within-species test of the generality of a relationship between temporal genetic variation and larval developmental mode. Results In contrast to our expectations, our microsatellite analyses of P. elegans revealed temporal genetic stability in the UK population with planktonic larvae, whereas there was variation indicative of drift in temporal samples of the populations from the Baltic Sea, which have predominantly benthic and intermediate larvae. We also detected temporal variation in relatedness within these populations. A large temporal shift in genetic structure was detected in a population from the Netherlands, having multiple developmental modes. This shift could have been caused by local extiction due to extreme environmental conditions and (re)colonization by planktonic larvae from neighboring populations. Conclusions In our study of P. elegans, temporal genetic variation appears to be due to not only larval developmental mode, but also the stochastic environment of adults. Large temporal genetic shifts may be more likely in marine intertidal habitats (e.g. North Sea and Wadden Sea) which are more prone to environmental stochasticity than the sub-tidal Baltic habitats. Sub-tidal and/or brackish (less saline) habitats may support smaller P. elegans populations and these may be more susceptible to the effects of random genetic drift. Moreover, higher frequencies of asexual reproduction and the benthic larval developmental mode in these populations leads to higher relatedness and contributes to drift. Our results indicate that a general relationship between larval developmental mode and temporal genetic variation may not exist. PMID:24447386

  15. Temporal genetic structure in a poecilogonous polychaete: the interplay of developmental mode and environmental stochasticity.

    PubMed

    Kesäniemi, Jenni E; Mustonen, Marina; Boström, Christoffer; Hansen, Benni W; Knott, K Emily

    2014-01-22

    Temporal variation in the genetic structure of populations can be caused by multiple factors, including natural selection, stochastic environmental variation, migration, or genetic drift. In benthic marine species, the developmental mode of larvae may indicate a possibility for temporal genetic variation: species with dispersive planktonic larvae are expected to be more likely to show temporal genetic variation than species with benthic or brooded non-dispersive larvae, due to differences in larval mortality and dispersal ability. We examined temporal genetic structure in populations of Pygospio elegans, a poecilogonous polychaete with within-species variation in developmental mode. P. elegans produces either planktonic, benthic, or intermediate larvae, varying both among and within populations, providing a within-species test of the generality of a relationship between temporal genetic variation and larval developmental mode. In contrast to our expectations, our microsatellite analyses of P. elegans revealed temporal genetic stability in the UK population with planktonic larvae, whereas there was variation indicative of drift in temporal samples of the populations from the Baltic Sea, which have predominantly benthic and intermediate larvae. We also detected temporal variation in relatedness within these populations. A large temporal shift in genetic structure was detected in a population from the Netherlands, having multiple developmental modes. This shift could have been caused by local extiction due to extreme environmental conditions and (re)colonization by planktonic larvae from neighboring populations. In our study of P. elegans, temporal genetic variation appears to be due to not only larval developmental mode, but also the stochastic environment of adults. Large temporal genetic shifts may be more likely in marine intertidal habitats (e.g. North Sea and Wadden Sea) which are more prone to environmental stochasticity than the sub-tidal Baltic habitats. Sub-tidal and/or brackish (less saline) habitats may support smaller P. elegans populations and these may be more susceptible to the effects of random genetic drift. Moreover, higher frequencies of asexual reproduction and the benthic larval developmental mode in these populations leads to higher relatedness and contributes to drift. Our results indicate that a general relationship between larval developmental mode and temporal genetic variation may not exist.

  16. Tomography and Purification of the Temporal-Mode Structure of Quantum Light

    NASA Astrophysics Data System (ADS)

    Ansari, Vahid; Donohue, John M.; Allgaier, Markus; Sansoni, Linda; Brecht, Benjamin; Roslund, Jonathan; Treps, Nicolas; Harder, Georg; Silberhorn, Christine

    2018-05-01

    High-dimensional quantum information processing promises capabilities beyond the current state of the art, but addressing individual information-carrying modes presents a significant experimental challenge. Here we demonstrate effective high-dimensional operations in the time-frequency domain of nonclassical light. We generate heralded photons with tailored temporal-mode structures through the pulse shaping of a broadband parametric down-conversion pump. We then implement a quantum pulse gate, enabled by dispersion-engineered sum-frequency generation, to project onto programmable temporal modes, reconstructing the quantum state in seven dimensions. We also manipulate the time-frequency structure by selectively removing temporal modes, explicitly demonstrating the effectiveness of engineered nonlinear processes for the mode-selective manipulation of quantum states.

  17. Assessment of Extent and Role of Tau in Subcortical Vascular Cognitive Impairment Using 18F-AV1451 Positron Emission Tomography Imaging.

    PubMed

    Kim, Hee Jin; Park, Seongbeom; Cho, Hanna; Jang, Young Kyoung; San Lee, Jin; Jang, Hyemin; Kim, Yeshin; Kim, Ko Woon; Ryu, Young Hoon; Choi, Jae Yong; Moon, Seung Hwan; Weiner, Michael W; Jagust, William J; Rabinovici, Gil D; DeCarli, Charles; Lyoo, Chul Hyoung; Na, Duk L; Seo, Sang Won

    2018-05-14

    Amyloid-β (Aβ), tau, and cerebral small vessel disease (CSVD), which occasionally coexist, are the most common causes of cognitive impairments in older people. However, whether tau is observed in patients with subcortical vascular cognitive impairment (SVCI), as well as its associations with Aβ and CSVD, are not yet established. More importantly, the role of tau underlying cognitive impairments in SVCI is unknown. To investigate the extent and the role of tau in patients with SVCI using 18F-AV1451, which is a new ligand to detect neurofibrillary tangles in vivo. This cross-sectional study recruited 64 patients with SVCI from June 2015 to December 2016 at Samsung Medical Center, Seoul, Korea. The patients had significant ischemia on brain magnetic resonance imaging, defined as periventricular white matter hyperintensity at least 10 mm and deep white matter hyperintensity at least 25 mm. We excluded 3 patients with SVCI owing to segmentation error during AV1451 positron emission tomography analysis. We calculated CSVD scores based on the volumes of white matter hyperintensities, numbers of lacunes, and microbleeds using magnetic resonance imaging data. The presence of Aβ was assessed using fluorine 18-labeled (18F) florbetaben positron emission tomography. Tau was measured using 18F-AV1451 positron emission tomography. We determined the spreading order of tau by sorting the regional frequencies of cortical involvement. We evaluated the complex associations between Aβ, CSVD, AV1451 uptake, and cognition in patients with SVCI. Of the 61 patients with SVCI, 44 (72.1%) were women and the mean (SD) age was 78.7 (6.3) years. Patients with SVCI, especially patients with Aβ-negative SVCI, showed higher AV1451 uptake in the inferior temporal areas compared with normal control individuals. In patients with SVCI, Aβ positivity and CSVD score were each independently associated with increased AV1451 uptake in the medial temporal and inferior temporal regions, respectively. Involvement frequency of AV1451 uptake in the fusiform gyrus, inferior temporal, and precuneus regions were higher than that in the parahippocampal region. In patients with SVCI, higher AV1451 uptake in the inferior temporal and medial temporal regions correlated with worse language and general cognitive function. In patients with SVCI, Aβ positivity and CSVD score each correlated with worse general cognitive function, which was completely mediated by AV1451 uptake in the entorhinal cortex and inferior temporal gyrus, respectively. Our findings suggest that in SVCI, both Aβ and CSVD were independently associated with increased tau accumulation. Furthermore, tau burden played a pivotal role because it was the final common pathway for the cognitive impairment in patients with SVCI.

  18. Coastal Low-Level Wind Jets: A Global Study Based On An Ensemble Of Reanalysis

    NASA Astrophysics Data System (ADS)

    Cardoso, R. M.; Lima, D. C. A.; Soares, P. M. M.; Semedo, A.

    2017-12-01

    Reanalyses data are a useful tool for climate and atmospheric studies since they provide physically consistent spatial and temporal information of observable and unobservable atmospheric parameters. Here, we propose the analysis of coastal low-level jets (CLLJs) resorting to three global reanalyses. The six hourly data from the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Reanalysis (ERA-Interim), the Japanese 55-year Reanalysis (JRA-55) and the Modern Era Retrospective-analysis for Research and Applications (MERRA2), are used to build an ensemble of reanalyses, for a period encompassing 1980-2016. A detailed global climatology of CLLJs is presented based on a reanalyses ensemble. This gives robustness to the CLLJs representation and also reduces uncertainty. The annual and diurnal cycle as well as the inter-annual variability are analysed in order to evaluate the temporal fluctuations of frequency of occurrence of CLLJ. The ensemble mean displays a good representation of their seasonal spatial variability. The Oman and Benguela CLLJs show, respectively, a decrease and increase of frequency of occurrence, which is statistically significant during boreal summer and austral spring for the period of study. The Oman CLLJ is the most intense and occurs in higher altitudes when compared with the other jets occurring during the season where each CLLJs have higher mean incidence.

  19. A common perceptual temporal limit of binding synchronous inputs across different sensory attributes and modalities.

    PubMed

    Fujisaki, Waka; Nishida, Shin'ya

    2010-08-07

    The human brain processes different aspects of the surrounding environment through multiple sensory modalities, and each modality can be subdivided into multiple attribute-specific channels. When the brain rebinds sensory content information ('what') across different channels, temporal coincidence ('when') along with spatial coincidence ('where') provides a critical clue. It however remains unknown whether neural mechanisms for binding synchronous attributes are specific to each attribute combination, or universal and central. In human psychophysical experiments, we examined how combinations of visual, auditory and tactile attributes affect the temporal frequency limit of synchrony-based binding. The results indicated that the upper limits of cross-attribute binding were lower than those of within-attribute binding, and surprisingly similar for any combination of visual, auditory and tactile attributes (2-3 Hz). They are unlikely to be the limits for judging synchrony, since the temporal limit of a cross-attribute synchrony judgement was higher and varied with the modality combination (4-9 Hz). These findings suggest that cross-attribute temporal binding is mediated by a slow central process that combines separately processed 'what' and 'when' properties of a single event. While the synchrony performance reflects temporal bottlenecks existing in 'when' processing, the binding performance reflects the central temporal limit of integrating 'when' and 'what' properties.

  20. Temporal and spectral manipulations of correlated photons using a time lens

    NASA Astrophysics Data System (ADS)

    Mittal, Sunil; Orre, Venkata Vikram; Restelli, Alessandro; Salem, Reza; Goldschmidt, Elizabeth A.; Hafezi, Mohammad

    2017-10-01

    A common challenge in quantum information processing with photons is the limited ability to manipulate and measure correlated states. An example is the inability to measure picosecond-scale temporal correlations of a multiphoton state, given state-of-the-art detectors have a temporal resolution of about 100 ps. Here, we demonstrate temporal magnification of time-bin-entangled two-photon states using a time lens and measure their temporal correlation function, which is otherwise not accessible because of the limited temporal resolution of single-photon detectors. Furthermore, we show that the time lens maps temporal correlations of photons to frequency correlations and could be used to manipulate frequency-bin-entangled photons. This demonstration opens a new avenue to manipulate and analyze spectral and temporal wave functions of many-photon states.

  1. Pulse shaping of on-chip microresonator frequency combs: investigation of temporal coherence

    NASA Astrophysics Data System (ADS)

    Ferdous, F.; Miao, H.; Leaird, D. E.; Srinivasan, K.; Chen, L.; Aksyuk, V.; Weiner, A. M.

    2013-03-01

    We use pulse shaping to investigate the temporal coherence of frequency combs generated in microresonators pumped by a strong CW laser. We observe that different groups of comb lines have different mutual coherence.

  2. Temporal interference with frequency-controllable long photons from independent cold atomic sources

    NASA Astrophysics Data System (ADS)

    Qian, Peng; Gu, Zhenjie; Wen, Rong; Zhang, Weiping; Chen, J. F.

    2018-01-01

    The interference of single photons from independent sources is an essential tool in quantum information processing. However, the interfering of photons with long temporal states in a time-resolved manner has rarely been studied. This is because without transmitting spectral filters or coupling to a cavity mode single photons generated in traditional nonlinear crystals suffer from a short temporal profile below 1 ns. With spectral correlation maintained in the biphotons generated from spontaneous four-wave mixing process in cold atom clouds, here we demonstrate the temporal interference of two frequency-tunable long photons from two independent cold atomic sources. We observe and analyze the interference of frequency-mismatched photons, where the phenomenon of the quantum beat at megahertz separation is displayed. Our paper provides more details for the quantum beat of two independent narrow-band single photons, which may find potential application in frequency-encoded photonic qubits in quantum information processing.

  3. Cellular and Network Mechanisms Underlying Information Processing in a Simple Sensory System

    NASA Technical Reports Server (NTRS)

    Jacobs, Gwen; Henze, Chris; Biegel, Bryan (Technical Monitor)

    2002-01-01

    Realistic, biophysically-based compartmental models were constructed of several primary sensory interneurons in the cricket cercal sensory system. A dynamic atlas of the afferent input to these cells was used to set spatio-temporal parameters for the simulated stimulus-dependent synaptic inputs. We examined the roles of dendritic morphology, passive membrane properties, and active conductances on the frequency tuning of the neurons. The sensitivity of narrow-band low pass interneurons could be explained entirely by the electronic structure of the dendritic arbors and the dynamic sensitivity of the SIZ. The dynamic characteristics of interneurons with higher frequency sensitivity required models with voltage-dependent dendritic conductances.

  4. Turbulent black holes.

    PubMed

    Yang, Huan; Zimmerman, Aaron; Lehner, Luis

    2015-02-27

    We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids.

  5. Comparison of the results of refractometric measurements in the process of diffusion, obtained by means of the backgroundoriented schlieren method and the holographic interferometry method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraiskii, A V; Mironova, T V

    2015-08-31

    The results of the study of interdiffusion of two liquids, obtained using the holographic recording scheme with a nonstationary reference wave with the frequency linearly varying in space and time are compared with the results of correlation processing of digital photographs, made with a random background screen. The spatio-temporal behaviour of the signal in four basic representations ('space – temporal frequency', 'space – time', 'spatial frequency – temporal frequency' and 'spatial frequency – time') is found in the holographic experiment and calculated (in the appropriate coordinates) based on the background-oriented schlieren method. Practical coincidence of the results of the correlationmore » analysis and the holographic double-exposure interferometry is demonstrated. (interferometry)« less

  6. Spatio-temporal analysis of irregular vocal fold oscillations: Biphonation due to desynchronization of spatial modes

    NASA Astrophysics Data System (ADS)

    Neubauer, Jürgen; Mergell, Patrick; Eysholdt, Ulrich; Herzel, Hanspeter

    2001-12-01

    This report is on direct observation and modal analysis of irregular spatio-temporal vibration patterns of vocal fold pathologies in vivo. The observed oscillation patterns are described quantitatively with multiline kymograms, spectral analysis, and spatio-temporal plots. The complex spatio-temporal vibration patterns are decomposed by empirical orthogonal functions into independent vibratory modes. It is shown quantitatively that biphonation can be induced either by left-right asymmetry or by desynchronized anterior-posterior vibratory modes, and the term ``AP (anterior-posterior) biphonation'' is introduced. The presented phonation examples show that for normal phonation the first two modes sufficiently explain the glottal dynamics. The spatio-temporal oscillation pattern associated with biphonation due to left-right asymmetry can be explained by the first three modes. Higher-order modes are required to describe the pattern for biphonation induced by anterior-posterior vibrations. Spatial irregularity is quantified by an entropy measure, which is significantly higher for irregular phonation than for normal phonation. Two asymmetry measures are introduced: the left-right asymmetry and the anterior-posterior asymmetry, as the ratios of the fundamental frequencies of left and right vocal fold and of anterior-posterior modes, respectively. These quantities clearly differentiate between left-right biphonation and anterior-posterior biphonation. This paper proposes methods to analyze quantitatively irregular vocal fold contour patterns in vivo and complements previous findings of desynchronization of vibration modes in computer modes and in in vitro experiments.

  7. Visuospatial Working Memory in Toddlers with a History of Periventricular Leukomalacia: An EEG Narrow-Band Power Analysis

    PubMed Central

    García-Gomar, María Luisa; Santiago-Rodríguez, Efraín; Rodríguez-Camacho, Mario; Harmony, Thalía

    2013-01-01

    Background Periventricular Leukomalacia (PVL) affects white matter, but grey matter injuries have also been reported, particularly in the dorsomedial nucleus and the cortex. Both structures have been related to working memory (WM) processes. The aim of this study was to compare behavioral performances and EEG power spectra during a visuospatial working memory task (VSWMT) of toddlers with a history of PVL and healthy toddlers. Methodology/Principal Findings A prospective, comparative study of WM was conducted in toddlers with a history of PVL and healthy toddlers. The task responses and the EEG narrow-band power spectra during a VSWMT were compared in both groups. The EEG absolute power was analyzed during the following three conditions: baseline, attention and WM retention. The number of correct responses was higher in the healthy group (20.5±5.0) compared to the PVL group (16.1±3.9) (p = 0.04). The healthy group had absolute power EEG increases (p≤0.05) during WM compared to the attention condition in the bilateral frontal and right temporal, parietal and occipital regions in frequencies ranging from 1.17 to 2.34 Hz and in the right temporal, parietal and occipital regions in frequencies ranging from 14.06 to 15.23 Hz. In contrast, the PVL group had absolute power increases (p≤0.05) in the bilateral fronto-parietal, left central and occipital regions in frequencies that ranged from 1.17 to 3.52 Hz and in the bilateral frontal and right temporal regions in frequencies ranging from 9.37 to 19.14 Hz. Conclusions/Significance This study provides evidence that PVL toddlers have visuospatial WM deficits and a very different pattern of absolute power increases compared to a healthy group of toddlers, with greater absolute power in the low frequency range and widespread neuronal networks in the WM retention phase. PMID:23922816

  8. Visuospatial working memory in toddlers with a history of periventricular Leukomalacia: an EEG narrow-band power analysis.

    PubMed

    García-Gomar, María Luisa; Santiago-Rodríguez, Efraín; Rodríguez-Camacho, Mario; Harmony, Thalía

    2013-01-01

    Periventricular Leukomalacia (PVL) affects white matter, but grey matter injuries have also been reported, particularly in the dorsomedial nucleus and the cortex. Both structures have been related to working memory (WM) processes. The aim of this study was to compare behavioral performances and EEG power spectra during a visuospatial working memory task (VSWMT) of toddlers with a history of PVL and healthy toddlers. A prospective, comparative study of WM was conducted in toddlers with a history of PVL and healthy toddlers. The task responses and the EEG narrow-band power spectra during a VSWMT were compared in both groups. The EEG absolute power was analyzed during the following three conditions: baseline, attention and WM retention. The number of correct responses was higher in the healthy group (20.5 ± 5.0) compared to the PVL group (16.1 ± 3.9) (p = 0.04). The healthy group had absolute power EEG increases (p ≤ 0.05) during WM compared to the attention condition in the bilateral frontal and right temporal, parietal and occipital regions in frequencies ranging from 1.17 to 2.34 Hz and in the right temporal, parietal and occipital regions in frequencies ranging from 14.06 to 15.23 Hz. In contrast, the PVL group had absolute power increases (p ≤ 0.05) in the bilateral fronto-parietal, left central and occipital regions in frequencies that ranged from 1.17 to 3.52 Hz and in the bilateral frontal and right temporal regions in frequencies ranging from 9.37 to 19.14 Hz. This study provides evidence that PVL toddlers have visuospatial WM deficits and a very different pattern of absolute power increases compared to a healthy group of toddlers, with greater absolute power in the low frequency range and widespread neuronal networks in the WM retention phase.

  9. The temporal characteristics of the early and late stages of the L- and M-cone pathways that signal color

    PubMed Central

    Petrova, Daniela; Henning, G. Bruce; Stockman, Andrew

    2013-01-01

    Flickering long-wavelength light appears more yellow than steady light of the same average intensity. The hue change is consistent with distortion of the visual signal at some nonlinear site (or sites) that produces temporal components not present in the original stimulus (known as distortion products). We extracted the temporal attenuation characteristics of the early (prenonlinearity) and late (post-nonlinearity) filter stages in the L- and M-cone chromatic pathway by varying the input stimulus to manipulate the distortion products and the measuring of the observers' sensitivity to them. The early, linear, filter stage acts like a band-pass filter peaking at 10–15 Hz with substantial sensitivity losses at both lower and higher frequencies. Its characteristics are consistent with nonlinearity being early in the visual pathway but following surround inhibition. The late stage, in contrast, acts like a low-pass filter with a cutoff frequency around 3 Hz. The response of the early stage speeds up with radiance, but the late stage does not. A plausible site for the nonlinearity, which modelling suggests may be smoothly compressive but with a hard limit at high input levels, is after surround inhibition from the horizontal cells. PMID:23457358

  10. Treatment of temporal aliasing effects in the context of next generation satellite gravimetry missions

    NASA Astrophysics Data System (ADS)

    Daras, Ilias; Pail, Roland

    2017-09-01

    Temporal aliasing effects have a large impact on the gravity field accuracy of current gravimetry missions and are also expected to dominate the error budget of Next Generation Gravimetry Missions (NGGMs). This paper focuses on aspects concerning their treatment in the context of Low-Low Satellite-to-Satellite Tracking NGGMs. Closed-loop full-scale simulations are performed for a two-pair Bender-type Satellite Formation Flight (SFF), by taking into account error models of new generation instrument technology. The enhanced spatial sampling and error isotropy enable a further reduction of temporal aliasing errors from the processing perspective. A parameterization technique is adopted where the functional model is augmented by low-resolution gravity field solutions coestimated at short time intervals, while the remaining higher-resolution gravity field solution is estimated at a longer time interval. Fine-tuning the parameterization choices leads to significant reduction of the temporal aliasing effects. The investigations reveal that the parameterization technique in case of a Bender-type SFF can successfully mitigate aliasing effects caused by undersampling of high-frequency atmospheric and oceanic signals, since their most significant variations can be captured by daily coestimated solutions. This amounts to a "self-dealiasing" method that differs significantly from the classical dealiasing approach used nowadays for Gravity Recovery and Climate Experiment processing, enabling NGGMs to retrieve the complete spectrum of Earth's nontidal geophysical processes, including, for the first time, high-frequency atmospheric and oceanic variations.

  11. Time reversal of arbitrary photonic temporal modes via nonlinear optical frequency conversion

    NASA Astrophysics Data System (ADS)

    Raymer, Michael G.; Reddy, Dileep V.; van Enk, Steven J.; McKinstrie, Colin J.

    2018-05-01

    Single-photon wave packets can carry quantum information between nodes of a quantum network. An important general operation in photon-based quantum information systems is ‘blind’ reversal of a photon’s temporal wave packet envelope, that is, the ability to reverse an envelope without knowing the temporal state of the photon. We present an all-optical means for doing so, using nonlinear-optical frequency conversion driven by a short pump pulse. The process used may be sum-frequency generation or four-wave Bragg scattering. This scheme allows for quantum operations such as a temporal-mode parity sorter. We also verify that the scheme works for arbitrary states (not only single-photon ones) of an unknown wave packet.

  12. Response of a hydrothermal system to magmatic heat inferred from temporal variations in the complex frequencies of long-period events at Kusatsu-Shirane Volcano, Japan

    USGS Publications Warehouse

    Nakano, M.; Kumagai, H.

    2005-01-01

    We investigate temporal variations in the complex frequencies (frequency and quality factor Q) of long-period (LP) events that occurred at Kusatsu-Shirane Volcano, central Japan. We analyze LP waveforms observed at this volcano in the period between 1988 and 1995, which covers a seismically active period between 1989 and 1993. Systematic temporal variations in the complex frequencies are observed in October-November 1989, July-October 1991, and September 1992-January 1993. We use acoustic properties of a crack filled with hydrothermal fluids to interpret the observed temporal variations in the complex frequencies. The temporal variations in October-November 1989 can be divided into two periods, which are explained by a gradual decrease and increase of a gas-volume fraction in a water-steam mixture in a crack, respectively. The temporal variations in July-October 1991 can be also divided into two periods. These variations in the first and second periods are similar to those observed in November 1989 and in September-November 1992, respectively, and are interpreted as drying of a water-steam mixture and misty gas in a crack, respectively. The repeated nature of the temporal variations observed in similar seasons between July and November suggests the existence of seasonality in the occurrence of LP events. This may be caused by a seasonally variable meteoritic water supply to a hydrothermal system, which may have been heated by the flux of volcanic gases from magma beneath this volcano. ?? 2005 Elsevier B.V. All rights reserved.

  13. Attempting to physically explain space-time correlation of extremes

    NASA Astrophysics Data System (ADS)

    Bernardara, Pietro; Gailhard, Joel

    2010-05-01

    Spatial and temporal clustering of hydro-meteorological extreme events is scientific evidence. Moreover, the statistical parameters characterizing their local frequencies of occurrence show clear spatial patterns. Thus, in order to robustly assess the hydro-meteorological hazard, statistical models need to be able to take into account spatial and temporal dependencies. Statistical models considering long term correlation for quantifying and qualifying temporal and spatial dependencies are available, such as multifractal approach. Furthermore, the development of regional frequency analysis techniques allows estimating the frequency of occurrence of extreme events taking into account spatial patterns on the extreme quantiles behaviour. However, in order to understand the origin of spatio-temporal clustering, an attempt to find physical explanation should be done. Here, some statistical evidences of spatio-temporal correlation and spatial patterns of extreme behaviour are given on a large database of more than 400 rainfall and discharge series in France. In particular, the spatial distribution of multifractal and Generalized Pareto distribution parameters shows evident correlation patterns in the behaviour of frequency of occurrence of extremes. It is then shown that the identification of atmospheric circulation pattern (weather types) can physically explain the temporal clustering of extreme rainfall events (seasonality) and the spatial pattern of the frequency of occurrence. Moreover, coupling this information with the hydrological modelization of a watershed (as in the Schadex approach) an explanation of spatio-temporal distribution of extreme discharge can also be provided. We finally show that a hydro-meteorological approach (as the Schadex approach) can explain and take into account space and time dependencies of hydro-meteorological extreme events.

  14. Objective evaluation of the knocking sound of a diesel engine considering the temporal and frequency masking effect simultaneously

    NASA Astrophysics Data System (ADS)

    Yun, Dong-Un; Lee, Sang-Kwon

    2017-06-01

    In this paper, we present a novel method for an objective evaluation of knocking noise emitted by diesel engines based on the temporal and frequency masking theory. The knocking sound of a diesel engine is a vibro-acoustic sound correlated with the high-frequency resonances of the engine structure and a periodic impulsive sound with amplitude modulation. Its period is related to the engine speed and includes specific frequency bands related to the resonances of the engine structure. A knocking sound with the characteristics of a high-frequency impulsive wave can be masked by low-frequency sounds correlated with the harmonics of the firing frequency and broadband noise. The degree of modulation of the knocking sound signal was used for such objective evaluations in previous studies, without considering the masking effect. However, the frequency masking effect must be considered for the objective evaluation of the knocking sound. In addition to the frequency masking effect, the temporal masking effect occurs because the period of the knocking sound changes according to the engine speed. Therefore, an evaluation method considering the temporal and frequency masking effect is required to analyze the knocking sound objectively. In this study, an objective evaluation method considering the masking effect was developed based on the masking theory of sound and signal processing techniques. The method was applied successfully for the objective evaluation of the knocking sound of a diesel engine.

  15. Temporal-spatial characteristics of phase-amplitude coupling in electrocorticogram for human temporal lobe epilepsy.

    PubMed

    Zhang, Ruihua; Ren, Ye; Liu, Chunyan; Xu, Na; Li, Xiaoli; Cong, Fengyu; Ristaniemi, Tapani; Wang, YuPing

    2017-09-01

    Neural activity of the epileptic human brain contains low- and high-frequency oscillations in different frequency bands, some of which have been used as reliable biomarkers of the epileptogenic brain areas. However, the relationship between the low- and high-frequency oscillations in different cortical areas during the period from pre-seizure to post-seizure has not been completely clarified. We recorded electrocorticogram data from the temporal lobe and hippocampus of seven patients with temporal lobe epilepsy. The modulation index based on the Kullback-Leibler distance and the phase-amplitude coupling co-modulogram were adopted to quantify the coupling strength between the phase of low-frequency oscillations (0.2-10Hz) and the amplitude of high-frequency oscillations (11-400Hz) in different seizure epochs. The time-varying phase-amplitude modulogram was used to analyze the phase-amplitude coupling pattern during the entire period from pre-seizure to post-seizure in both the left and right temporal lobe and hippocampus. Channels with strong modulation index were compared with the seizure onset channels identified by the neurosurgeons and the resection channels in the clinical surgery. The phase-amplitude coupling strength (modulation index) increased significantly in the mid-seizure epoch and decrease significantly in seizure termination and post-seizure epochs (p<0.001). The strong phase-amplitude-modulating low- and high-frequency oscillations in the mid-seizure epoch were mainly δ, θ, and α oscillations and γ and ripple oscillations, respectively. The phase-amplitude modulation and strength varied among channels and was asymmetrical in the left and right temporal cortex and hippocampus. The "fall-max" phase-amplitude modulation pattern, i.e., high-frequency amplitudes were largest in the low-frequency phase range [-π, 0], which corresponded to the falling edges of low-frequency oscillations, appeared in the middle period of the seizures at epileptic focus channels. Channels with strong modulation index appeared on the corresponding left or right temporal cortex of surgical resection and overlapped with the clinical resection zones in all patients. The "fall-max" pattern between the phase of low-frequency oscillation and amplitude of high-frequency oscillation that appeared in the middle period of the seizures is a reliable biomarker in epileptogenic cortical areas. The modulation index can be used as a good tool for lateralization and localization for the epileptic focus in patients with epilepsy. Phase-amplitude coupling can provide meaningful reference for accurate resection of epileptogenic focus and provide insight into the underlying neural dynamics of the epileptic seizure in patients with temporal lobe epilepsy. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  16. Distribution of RF energy emitted by mobile phones in anatomical structures of the brain

    NASA Astrophysics Data System (ADS)

    Cardis, E.; Deltour, I.; Mann, S.; Moissonnier, M.; Taki, M.; Varsier, N.; Wake, K.; Wiart, J.

    2008-06-01

    The rapid worldwide increase in mobile phone use in the last decade has generated considerable interest in possible carcinogenic effects of radio frequency (RF). Because exposure to RF from phones is localized, if a risk exists it is likely to be greatest for tumours in regions with greatest energy absorption. The objective of the current paper was to characterize the spatial distribution of RF energy in the brain, using results of measurements made in two laboratories on 110 phones used in Europe or Japan. Most (97-99% depending on frequency) appears to be absorbed in the brain hemisphere on the side where the phone is used, mainly (50-60%) in the temporal lobe. The average relative SARSAR is the specific energy absorption rate i.e. energy absorption rate per unit mass (measured in W kg-1). is highest in the temporal lobe (6-15%, depending on frequency, of the spatial peak SAR in the most exposed region of the brain) and the cerebellum (2-10%) and decreases very rapidly with increasing depth, particularly at higher frequencies. The SAR distribution appears to be fairly similar across phone models, between older and newer phones and between phones with different antenna types and positions. Analyses of risk by location of tumour are therefore important for the interpretation of results of studies of brain tumours in relation to mobile phone use.

  17. Spatio-temporal dynamics of multimodal EEG-fNIRS signals in the loss and recovery of consciousness under sedation using midazolam and propofol

    PubMed Central

    Won, Dong-Ok; Chi, Seong In; Seo, Kwang-Suk; Kim, Hyun Jeong; Müller, Klaus-Robert; Lee, Seong-Whan

    2017-01-01

    On sedation motivated by the clinical needs for safety and reliability, recent studies have attempted to identify brain-specific signatures for tracking patient transition into and out of consciousness, but the differences in neurophysiological effects between 1) the sedative types and 2) the presence/absence of surgical stimulations still remain unclear. Here we used multimodal electroencephalography–functional near-infrared spectroscopy (EEG–fNIRS) measurements to observe electrical and hemodynamic responses during sedation simultaneously. Forty healthy volunteers were instructed to push the button to administer sedatives in response to auditory stimuli every 9–11 s. To generally illustrate brain activity at repetitive transition points at the loss of consciousness (LOC) and the recovery of consciousness (ROC), patient-controlled sedation was performed using two different sedatives (midazolam (MDZ) and propofol (PPF)) under two surgical conditions. Once consciousness was lost via sedatives, we observed gradually increasing EEG power at lower frequencies (<15 Hz) and decreasing power at higher frequencies (>15 Hz), as well as spatially increased EEG powers in the delta and lower alpha bands, and particularly also in the upper alpha rhythm, at the frontal and parieto-occipital areas over time. During ROC from unconsciousness, these spatio-temporal changes were reversed. Interestingly, the level of consciousness was switched on/off at significantly higher effect-site concentrations of sedatives in the brain according to the use of surgical stimuli, but the spatio-temporal EEG patterns were similar, regardless of the sedative used. We also observed sudden phase shifts in fronto-parietal connectivity at the LOC and the ROC as critical points. fNIRS measurement also revealed mild hemodynamic fluctuations. Compared with general anesthesia, our results provide insights into critical hallmarks of sedative-induced (un)consciousness, which have similar spatio-temporal EEG-fNIRS patterns regardless of the stage and the sedative used. PMID:29121108

  18. Spatio-temporal dynamics of multimodal EEG-fNIRS signals in the loss and recovery of consciousness under sedation using midazolam and propofol.

    PubMed

    Yeom, Seul-Ki; Won, Dong-Ok; Chi, Seong In; Seo, Kwang-Suk; Kim, Hyun Jeong; Müller, Klaus-Robert; Lee, Seong-Whan

    2017-01-01

    On sedation motivated by the clinical needs for safety and reliability, recent studies have attempted to identify brain-specific signatures for tracking patient transition into and out of consciousness, but the differences in neurophysiological effects between 1) the sedative types and 2) the presence/absence of surgical stimulations still remain unclear. Here we used multimodal electroencephalography-functional near-infrared spectroscopy (EEG-fNIRS) measurements to observe electrical and hemodynamic responses during sedation simultaneously. Forty healthy volunteers were instructed to push the button to administer sedatives in response to auditory stimuli every 9-11 s. To generally illustrate brain activity at repetitive transition points at the loss of consciousness (LOC) and the recovery of consciousness (ROC), patient-controlled sedation was performed using two different sedatives (midazolam (MDZ) and propofol (PPF)) under two surgical conditions. Once consciousness was lost via sedatives, we observed gradually increasing EEG power at lower frequencies (<15 Hz) and decreasing power at higher frequencies (>15 Hz), as well as spatially increased EEG powers in the delta and lower alpha bands, and particularly also in the upper alpha rhythm, at the frontal and parieto-occipital areas over time. During ROC from unconsciousness, these spatio-temporal changes were reversed. Interestingly, the level of consciousness was switched on/off at significantly higher effect-site concentrations of sedatives in the brain according to the use of surgical stimuli, but the spatio-temporal EEG patterns were similar, regardless of the sedative used. We also observed sudden phase shifts in fronto-parietal connectivity at the LOC and the ROC as critical points. fNIRS measurement also revealed mild hemodynamic fluctuations. Compared with general anesthesia, our results provide insights into critical hallmarks of sedative-induced (un)consciousness, which have similar spatio-temporal EEG-fNIRS patterns regardless of the stage and the sedative used.

  19. Inferring the relative resilience of alternative states

    USGS Publications Warehouse

    Angeler, David G.; Allen, Craig R.; Rojo, Carmen; Alvarez-Cobelas, Miguel; Rodrigo, Maria A.; Sanchez-Carrillo, Salvador

    2013-01-01

    Ecological systems may occur in alternative states that differ in ecological structures, functions and processes. Resilience is the measure of disturbance an ecological system can absorb before changing states. However, how the intrinsic structures and processes of systems that characterize their states affects their resilience remains unclear. We analyzed time series of phytoplankton communities at three sites in a floodplain in central Spain to assess the dominant frequencies or “temporal scales” in community dynamics and compared the patterns between a wet and a dry alternative state. The identified frequencies and cross-scale structures are expected to arise from positive feedbacks that are thought to reinforce processes in alternative states of ecological systems and regulate emergent phenomena such as resilience. Our analyses show a higher species richness and diversity but lower evenness in the dry state. Time series modeling revealed a decrease in the importance of short-term variability in the communities, suggesting that community dynamics slowed down in the dry relative to the wet state. The number of temporal scales at which community dynamics manifested, and the explanatory power of time series models, was lower in the dry state. The higher diversity, reduced number of temporal scales and the lower explanatory power of time series models suggest that species dynamics tended to be more stochastic in the dry state. From a resilience perspective our results highlight a paradox: increasing species richness may not necessarily enhance resilience. The loss of cross-scale structure (i.e. the lower number of temporal scales) in community dynamics across sites suggests that resilience erodes during drought. Phytoplankton communities in the dry state are therefore likely less resilient than in the wet state. Our case study demonstrates the potential of time series modeling to assess attributes that mediate resilience. The approach is useful for assessing resilience of alternative states across ecological and other complex systems.

  20. Temporal Stability of Genetic Variability and Differentiation in the Three-Spined Stickleback (Gasterosteus aculeatus)

    PubMed Central

    DeFaveri, Jacquelin; Merilä, Juha

    2015-01-01

    Temporal variation in allele frequencies, whether caused by deterministic or stochastic forces, can inform us about interesting demographic and evolutionary phenomena occurring in wild populations. In spite of the continued surge of interest in the genetics of three-spined stickleback (Gasterosteus aculeatus) populations, little attention has been paid towards the temporal stability of allele frequency distributions, and whether there are consistent differences in effective size (Ne) of local populations. We investigated temporal stability of genetic variability and differentiation in 15 microsatellite loci within and among eight collection sites of varying habitat type, surveyed twice over a six-year time period. In addition, Nes were estimated with the expectation that they would be lowest in isolated ponds, intermediate in larger lakes and largest in open marine sites. In spite of the marked differences in genetic variability and differentiation among the study sites, the temporal differences in allele frequencies, as well as measures of genetic diversity and differentiation, were negligible. Accordingly, the Ne estimates were temporally stable, but tended to be lower in ponds than in lake or marine habitats. Hence, we conclude that allele frequencies in putatively neutral markers in three-spined sticklebacks seem to be temporally stable – at least over periods of few generations – across a wide range of habitat types differing markedly in levels of genetic variability, effective population size and gene flow. PMID:25853707

  1. Temporal stability of genetic variability and differentiation in the three-spined stickleback (Gasterosteus aculeatus).

    PubMed

    DeFaveri, Jacquelin; Merilä, Juha

    2015-01-01

    Temporal variation in allele frequencies, whether caused by deterministic or stochastic forces, can inform us about interesting demographic and evolutionary phenomena occurring in wild populations. In spite of the continued surge of interest in the genetics of three-spined stickleback (Gasterosteus aculeatus) populations, little attention has been paid towards the temporal stability of allele frequency distributions, and whether there are consistent differences in effective size (Ne) of local populations. We investigated temporal stability of genetic variability and differentiation in 15 microsatellite loci within and among eight collection sites of varying habitat type, surveyed twice over a six-year time period. In addition, Nes were estimated with the expectation that they would be lowest in isolated ponds, intermediate in larger lakes and largest in open marine sites. In spite of the marked differences in genetic variability and differentiation among the study sites, the temporal differences in allele frequencies, as well as measures of genetic diversity and differentiation, were negligible. Accordingly, the Ne estimates were temporally stable, but tended to be lower in ponds than in lake or marine habitats. Hence, we conclude that allele frequencies in putatively neutral markers in three-spined sticklebacks seem to be temporally stable - at least over periods of few generations - across a wide range of habitat types differing markedly in levels of genetic variability, effective population size and gene flow.

  2. When Interpolation-Induced Reflection Artifact Meets Time-Frequency Analysis.

    PubMed

    Lin, Yu-Ting; Flandrin, Patrick; Wu, Hau-Tieng

    2016-10-01

    While extracting the temporal dynamical features based on the time-frequency analyses, like the reassignment and synchrosqueezing transform, attracts more and more interest in biomedical data analysis, we should be careful about artifacts generated by interpolation schemes, in particular when the sampling rate is not significantly higher than the frequency of the oscillatory component we are interested in. We formulate the problem called the reflection effect and provide a theoretical justification of the statement. We also show examples in the anesthetic depth analysis with clear but undesirable artifacts. The artifact associated with the reflection effect exists not only theoretically but practically as well. Its influence is pronounced when we apply the time-frequency analyses to extract the time-varying dynamics hidden inside the signal. We have to carefully deal with the artifact associated with the reflection effect by choosing a proper interpolation scheme.

  3. Binaural sluggishness in the perception of tone sequences and speech in noise.

    PubMed

    Culling, J F; Colburn, H S

    2000-01-01

    The binaural system is well-known for its sluggish response to changes in the interaural parameters to which it is sensitive. Theories of binaural unmasking have suggested that detection of signals in noise is mediated by detection of differences in interaural correlation. If these theories are correct, improvements in the intelligibility of speech in favorable binaural conditions is most likely mediated by spectro-temporal variations in interaural correlation of the stimulus which mirror the spectro-temporal amplitude modulations of the speech. However, binaural sluggishness should limit the temporal resolution of the representation of speech recovered by this means. The present study tested this prediction in two ways. First, listeners' masked discrimination thresholds for ascending vs descending pure-tone arpeggios were measured as a function of rate of frequency change in the NoSo and NoSpi binaural configurations. Three-tone arpeggios were presented repeatedly and continuously for 1.6 s, masked by a 1.6-s burst of noise. In a two-interval task, listeners determined the interval in which the arpeggios were ascending. The results showed a binaural advantage of 12-14 dB for NoSpi at 3.3 arpeggios per s (arp/s), which reduced to 3-5 dB at 10.4 arp/s. This outcome confirmed that the discrimination of spectro-temporal patterns in noise is susceptible to the effects of binaural sluggishness. Second, listeners' masked speech-reception thresholds were measured in speech-shaped noise using speech which was 1, 1.5, and 2 times the original articulation rate. The articulation rate was increased using a phase-vocoder technique which increased all the modulation frequencies in the speech without altering its pitch. Speech-reception thresholds were, on average, 5.2 dB lower for the NoSpi than for the NoSo configuration, at the original articulation rate. This binaural masking release was reduced to 2.8 dB when the articulation rate was doubled, but the most notable effect was a 6-8 dB increase in thresholds with articulation rate for both configurations. These results suggest that higher modulation frequencies in masked signals cannot be temporally resolved by the binaural system, but that the useful modulation frequencies in speech are sufficiently low (<5 Hz) that they are invulnerable to the effects of binaural sluggishness, even at elevated articulation rates.

  4. Specificity of the Human Frequency Following Response for Carrier and Modulation Frequency Assessed Using Adaptation.

    PubMed

    Gockel, Hedwig E; Krugliak, Alexandra; Plack, Christopher J; Carlyon, Robert P

    2015-12-01

    The frequency following response (FFR) is a scalp-recorded measure of phase-locked brainstem activity to stimulus-related periodicities. Three experiments investigated the specificity of the FFR for carrier and modulation frequency using adaptation. FFR waveforms evoked by alternating-polarity stimuli were averaged for each polarity and added, to enhance envelope, or subtracted, to enhance temporal fine structure information. The first experiment investigated peristimulus adaptation of the FFR for pure and complex tones as a function of stimulus frequency and fundamental frequency (F0). It showed more adaptation of the FFR in response to sounds with higher frequencies or F0s than to sounds with lower frequency or F0s. The second experiment investigated tuning to modulation rate in the FFR. The FFR to a complex tone with a modulation rate of 213 Hz was not reduced more by an adaptor that had the same modulation rate than by an adaptor with a different modulation rate (90 or 504 Hz), thus providing no evidence that the FFR originates mainly from neurons that respond selectively to the modulation rate of the stimulus. The third experiment investigated tuning to audio frequency in the FFR using pure tones. An adaptor that had the same frequency as the target (213 or 504 Hz) did not generally reduce the FFR to the target more than an adaptor that differed in frequency (by 1.24 octaves). Thus, there was no evidence that the FFR originated mainly from neurons tuned to the frequency of the target. Instead, the results are consistent with the suggestion that the FFR for low-frequency pure tones at medium to high levels mainly originates from neurons tuned to higher frequencies. Implications for the use and interpretation of the FFR are discussed.

  5. IMPACTS OF IMAGERY TEMPORAL FREQUENCES ON LAND-COVER CHANGE DETECTION MONITORING

    EPA Science Inventory

    An important consideration for monitoring land~cover (LC) change is the nominal temporal frequency of remote sensor data acquisitions required to adequately characterize change events, Ecosystem specific regeneration rates are an important consideration for determining the requir...

  6. Neurophysiological Basis of Multi-Scale Entropy of Brain Complexity and Its Relationship With Functional Connectivity.

    PubMed

    Wang, Danny J J; Jann, Kay; Fan, Chang; Qiao, Yang; Zang, Yu-Feng; Lu, Hanbing; Yang, Yihong

    2018-01-01

    Recently, non-linear statistical measures such as multi-scale entropy (MSE) have been introduced as indices of the complexity of electrophysiology and fMRI time-series across multiple time scales. In this work, we investigated the neurophysiological underpinnings of complexity (MSE) of electrophysiology and fMRI signals and their relations to functional connectivity (FC). MSE and FC analyses were performed on simulated data using neural mass model based brain network model with the Brain Dynamics Toolbox, on animal models with concurrent recording of fMRI and electrophysiology in conjunction with pharmacological manipulations, and on resting-state fMRI data from the Human Connectome Project. Our results show that the complexity of regional electrophysiology and fMRI signals is positively correlated with network FC. The associations between MSE and FC are dependent on the temporal scales or frequencies, with higher associations between MSE and FC at lower temporal frequencies. Our results from theoretical modeling, animal experiment and human fMRI indicate that (1) Regional neural complexity and network FC may be two related aspects of brain's information processing: the more complex regional neural activity, the higher FC this region has with other brain regions; (2) MSE at high and low frequencies may represent local and distributed information processing across brain regions. Based on literature and our data, we propose that the complexity of regional neural signals may serve as an index of the brain's capacity of information processing-increased complexity may indicate greater transition or exploration between different states of brain networks, thereby a greater propensity for information processing.

  7. Induction of self awareness in dreams through frontal low current stimulation of gamma activity.

    PubMed

    Voss, Ursula; Holzmann, Romain; Hobson, Allan; Paulus, Walter; Koppehele-Gossel, Judith; Klimke, Ansgar; Nitsche, Michael A

    2014-06-01

    Recent findings link fronto-temporal gamma electroencephalographic (EEG) activity to conscious awareness in dreams, but a causal relationship has not yet been established. We found that current stimulation in the lower gamma band during REM sleep influences ongoing brain activity and induces self-reflective awareness in dreams. Other stimulation frequencies were not effective, suggesting that higher order consciousness is indeed related to synchronous oscillations around 25 and 40 Hz.

  8. Fatty acid profiles among the Inuit of Nunavik: current status and temporal change.

    PubMed

    Proust, Françoise; Lucas, Michel; Dewailly, Eric

    2014-05-01

    The Inuit undergo substantial changes in their lifestyle, but few data exist on how these changes occur in biomarkers, such as polyunsaturated fatty acids (PUFAs). Here, we report data from a cross-sectional survey conducted in 2004 among 861 representative Nunavik Inuit adults, in whom FAs were measured in red blood cells (RBCs). FAs were also measured in plasma phospholipids (n=452) to assess temporal trend by comparing plasma PUFAs measured in 1992. Food intakes were estimated using a validated food frequency questionnaire. In 2004, marine food intake was 84±4g/d (±SEM). Adjusted-mean of RBC omega-3 was significantly higher, and omega-6 lower, in older age groups (Ptrend<0.001). In 2004, plasma omega-3 was 25% lower, while omega-6 was 9% higher, compared to 1992. Our study revealed that Nunavik Inuit adults still have high RBC omega-3, but show signs of nutritional transition - as indicated by lower omega-3 and higher trans-fats in RBCs of young compared to older. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Spatio-temporal variations in the siphonophore community of the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Li, Kaizhi; Yin, Jianqiang; Huang, Liangmin; Lian, Shumin; Zhang, Jianlin

    2013-03-01

    To understand how hydrological and biological factors affect near- to off-shore variations in the siphonophore community, we sampled zooplankton at 82 stations in the northern South China Sea during summer, winter, and spring. Forty-one species of siphonophore were collected by vertical trawling. The species richness of siphonophores increased from the nearshore to offshore regions in all three seasons of investigation, with maximum richness in summer and minimum richness in winter. The abundance of siphonophores was also higher in summer than in spring and winter, concentrated in the nearshore region in the warm season and scattered in the offshore region in the cold season. Four siphonophore groups were classified according to the frequency of occurrence: nearshore, near-offshore, offshore, and tropical pelagic. Among them, the nearshore group had higher abundance nearshore compared with the offshore. The tropical pelagic group had higher species number offshore than nearshore. Spatial and temporal fluctuations in taxonomic composition and abundance of siphonophores were due to the influence of the coastal upwelling and surface ocean currents of the South China Sea, driven by the East Asia monsoonal system.

  10. Ambient noise causes independent changes in distinct spectro-temporal features of echolocation calls in horseshoe bats.

    PubMed

    Hage, Steffen R; Jiang, Tinglei; Berquist, Sean W; Feng, Jiang; Metzner, Walter

    2014-07-15

    One of the most efficient mechanisms to optimize signal-to-noise ratios is the Lombard effect - an involuntary rise in call amplitude due to ambient noise. It is often accompanied by changes in the spectro-temporal composition of calls. We examined the effects of broadband-filtered noise on the spectro-temporal composition of horseshoe bat echolocation calls, which consist of a constant-frequency component and initial and terminal frequency-modulated components. We found that the frequency-modulated components became larger for almost all noise conditions, whereas the bandwidth of the constant-frequency component increased only when broadband-filtered noise was centered on or above the calls' dominant or fundamental frequency. This indicates that ambient noise independently modifies the associated acoustic parameters of the Lombard effect, such as spectro-temporal features, and could significantly affect the bat's ability to detect and locate targets. Our findings may be of significance in evaluating the impact of environmental noise on echolocation behavior in bats. © 2014. Published by The Company of Biologists Ltd.

  11. Heat wave phenomenon in southern Slovakia: long-term changes and variability of daily maximum air temperature in Hurbanovo within the 1901-2009 period

    NASA Astrophysics Data System (ADS)

    Pecho, J.; Výberči, D.; Jarošová, M.; Å¥Astný, P. Å.

    2010-09-01

    Analysis of long-term changes and temporal variability of heat waves incidence in the region of southern Slovakia within the 1901-2009 periods is a goal of the presented contribution. It is expected that climate change in terms of global warming would amplify temporal frequency and spatial extension of extreme heat wave incidence in region of central Europe in the next few decades. The frequency of occurrence and amplitude of heat waves may be impacted by changes in the temperature regime. Heat waves can cause severe thermal environmental stress leading to higher hospital admission rates, health complications, and increased mortality. These effects arise because of one or more meteorology-related factors such as higher effective temperatures, sunshine, more consecutive hot days and nights, stagnation, increased humidity, increased pollutant emissions, and accelerated photochemical smog and particulate formation. Heat waves bring about higher temperatures, increased solar heating of buildings, inhibited ventilation, and a larger number of consecutive warm days and nights. All of these effects increase the thermal loads on buildings, reduce their ability to cool down, and increase indoor temperatures. The paper is focused to analysis of long-term and inter-decadal temporal variability of heat waves occurrence at meteorological station Hurbanovo (time-series of daily maximum air temperature available from at least 1901). We can characterize the heat waves by its magnitude and duration, hence both of these characteristics need to be investigated together using sophisticated statistical methods developed particularly for the analysis of extreme hydrological events. We investigated particular heat wave periods either from the severity point of view using HWI index. In the paper we also present the results of statistical analysis of daily maximum air temperature within 1901-2009 period. Apart from these investigation efforts we also focused on synoptic causes of heat wave incidence in connection with macro scale circulation patterns in central European region.

  12. Gap Detection and Temporal Modulation Transfer Function as Behavioral Estimates of Auditory Temporal Acuity Using Band-Limited Stimuli in Young and Older Adults

    PubMed Central

    Shen, Yi

    2015-01-01

    Purpose Gap detection and the temporal modulation transfer function (TMTF) are 2 common methods to obtain behavioral estimates of auditory temporal acuity. However, the agreement between the 2 measures is not clear. This study compares results from these 2 methods and their dependencies on listener age and hearing status. Method Gap detection thresholds and the parameters that describe the TMTF (sensitivity and cutoff frequency) were estimated for young and older listeners who were naive to the experimental tasks. Stimuli were 800-Hz-wide noises with upper frequency limits of 2400 Hz, presented at 85 dB SPL. A 2-track procedure (Shen & Richards, 2013) was used for the efficient estimation of the TMTF. Results No significant correlation was found between gap detection threshold and the sensitivity or the cutoff frequency of the TMTF. No significant effect of age and hearing loss on either the gap detection threshold or the TMTF cutoff frequency was found, while the TMTF sensitivity improved with increasing hearing threshold and worsened with increasing age. Conclusion Estimates of temporal acuity using gap detection and TMTF paradigms do not seem to provide a consistent description of the effects of listener age and hearing status on temporal envelope processing. PMID:25087722

  13. Continuous high-frequency activity in mesial temporal lobe structures

    PubMed Central

    Mari, Francesco; Zelmann, Rina; Andrade-Valenca, Luciana; Dubeau, Francois; Gotman, Jean

    2013-01-01

    Summary Purpose Many recent studies have reported the importance of high-frequency oscillations (HFOs) in the intracerebral electroencephalography (EEG) of patients with epilepsy. These HFOs have been defined as events that stand out from the background. We have noticed that this background often consists itself of high-frequency rhythmic activity. The purpose of this study is to perform a first evaluation of the characteristics of high-frequency continuous or semicontinuous background activity. Methods Because the continuous high-frequency pattern was noted mainly in mesial temporal structures, we reviewed the EEG studies from these structures in 24 unselected patients with electrodes implanted in these regions. Sections of background away from interictal spikes were marked visually during periods of slow-wave sleep and wakefulness. They were then high-passed filtered at 80 Hz and categorized as having high-frequency rhythmic activity in one of three patterns: continuous/semicontinuous, irregular, sporadic. Wavelet entropy, which measures the degree of rhythmicity of a signal, was calculated for the marked background sections. Key Findings Ninety-six bipolar channels were analyzed. The continuous/semicontinuous pattern was found frequently (29/96 channels during wake and 34/96 during sleep). The different patterns were consistent between sleep and wakefulness. The continuous/semicontinuous pattern was found significantly more often in the hippocampus than in the parahippocampal gyrus and was rarely found in the amygdala. The types of pattern were not influenced by whether a channel was within the seizure-onset zone, or whether it was a lesional channel. The continuous/semicontinuous pattern was associated with a higher frequency of spikes and with high rates of ripples and fast ripples. Significance It appears that high-frequency activity (above 80 Hz) does not appear only in the form of brief paroxysmal events but also in the form of continuous rhythmic activity or very long bursts. In this study limited to mesial temporal structures, we found a clear anatomic preference for the hippocampus. Although associated with spikes and with distinct HFOs, this pattern was not clearly associated with the seizure-onset zone. Future studies will need to evaluate systematically the presence of this pattern, as it may have a pathophysiologic significance and it will also have an important influence on the very definition of HFOs. PMID:22416973

  14. Round Window Membrane Implantation with an Active Middle Ear Implant: A Study of the Effects on the Performance of Round Window Exposure and Transducer Tip Diameter in Human Cadaveric Temporal Bones

    PubMed Central

    Tringali, Stéphane; Koka, Kanthaiah; Deveze, Arnaud; Holland, N. Julian; Jenkins, Herman A.; Tollin, Daniel J.

    2010-01-01

    Objectives To assess the importance of 2 variables, transducer tip diameter and resection of the round window (RW) niche, affecting the optimization of the mechanical stimulation of the RW membrane with an active middle ear implant (AMEI). Materials and Methods: Ten temporal bones were prepared with combined atticotomy and facial recess approach to expose the RW. An AMEI stimulated the RW with 2 ball tip diameters (0.5 and 1.0 mm) before and after the resection of the bony rim of the RW niche. The RW drive performance, assessed by stapes velocities using laser Doppler velocimetry, was analyzed in 3 frequency ranges: low (0.25–1 kHz), medium (1–3 kHz) and high (3–8 kHz). Results Driving the RW produced mean peak stapes velocities (HEV) of 0.305 and 0.255 mm/s/V at 3.03 kHz, respectively, for the 1- and 0.5-mm tips, with the RW niche intact. Niche drilling increased the HEV to 0.73 and 0.832 mm/s/V for the 1- and 0.5-mm tips, respectively. The tip diameter produced no difference in output at low and medium frequencies; however, the 0.5-mm tip was 5 and 6 dB better than the 1-mm tip at high frequencies before and after niche drilling, respectively. Drilling the niche significantly improved the output by 4 dB at high frequencies for the 1-mm tip, and by 6 and 10 dB in the medium- and high-frequency ranges for the 0.5-mm tip. Conclusion The AMEI was able to successfully drive the RW membrane in cadaveric temporal bones using a classical facial recess approach. Stimulation of the RW membrane with an AMEI without drilling the niche is sufficient for successful hearing outputs. However, the resection of the bony rim of the RW niche significantly improved the RW stimulation at medium and higher frequencies. Drilling the niche enhances the exposure of the RW membrane and facilitates positioning the implant tip. PMID:20150727

  15. Spatial-temporal and cancer risk assessment of selected hazardous air pollutants in Seattle.

    PubMed

    Wu, Chang-fu; Liu, L-J Sally; Cullen, Alison; Westberg, Hal; Williamson, John

    2011-01-01

    In the Seattle Air Toxics Monitoring Pilot Program, we measured 15 hazardous air pollutants (HAPs) at 6 sites for more than a year between 2000 and 2002. Spatial-temporal variations were evaluated with random-effects models and principal component analyses. The potential health risks were further estimated based on the monitored data, with the incorporation of the bootstrapping technique for the uncertainty analysis. It is found that the temporal variability was generally higher than the spatial variability for most air toxics. The highest temporal variability was observed for tetrachloroethylene (70% temporal vs. 34% spatial variability). Nevertheless, most air toxics still exhibited significant spatial variations, even after accounting for the temporal effects. These results suggest that it would require operating multiple air toxics monitoring sites over a significant period of time with proper monitoring frequency to better evaluate population exposure to HAPs. The median values of the estimated inhalation cancer risks ranged between 4.3 × 10⁻⁵ and 6.0 × 10⁻⁵, with the 5th and 95th percentile levels exceeding the 1 in a million level. VOCs as a whole contributed over 80% of the risk among the HAPs measured and arsenic contributed most substantially to the overall risk associated with metals. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Life satisfaction in the new country: a multilevel longitudinal analysis of effects of culture and 5-HTT allele frequency distribution in country of origin.

    PubMed

    Kashima, Emiko S; Kent, Stephen; Kashima, Yoshihisa

    2015-01-01

    Life satisfaction of migrants to Australia from 17 countries, assessed at 4-5 months, 16-17 months and 3½ years after arrival, was analyzed with a longitudinal, multilevel analysis. The results indicated that migrants were more satisfied, if the national average life satisfaction was higher in their country of origin, after adjustment for individual-level income, age, and sex and a linear temporal trend. Simultaneously, the migrants were also happier if people in their country of origin had a higher frequency of 5-HTT long allele, a genotype known to be associated with resilience under life stresses. These two relationships were independent, suggesting that both culture and gene matter in international transitions. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  17. Noise frame duration, masking potency and whiteness of temporal noise.

    PubMed

    Kukkonen, Heljä; Rovamo, Jyrki; Donner, Kristian; Tammikallio, Marja; Raninen, Antti

    2002-09-01

    Because of the limited contrast range, increasing the duration of the noise frame is often the only option for increasing the masking potency of external, white temporal noise. This, however, reduces the high-frequency cutoff beyond which noise is no longer white. This study was conducted to determine the longest noise frame duration that produces the strongest masking effect and still mimics white noise on the detection of sinusoidal flicker. Contrast energy thresholds (E(th)) were measured for flicker at 1.25 to 20 Hz in strong, purely temporal (spatially uniform), additive, external noise. The masking power of white external noise, characterized by its spectral density at zero frequency N0, increases with the duration of the noise frame. For short noise frame durations, E(th) increased in direct proportion to N0, keeping the nominal signal-to-noise ratio [SNR = (E(th)/N0)(0.5)] constant at threshold. The masking effect thus increased with the duration of the noise frame and the noise mimicked white noise. When noise frame duration and N0 increased further, the nominal SNR at threshold started to decrease, indicating that noise no longer mimicked white noise. The minimum number of noise frames per flicker cycle needed to mimic white noise decreased with increasing flicker frequency from 8.3 at 1.25 Hz to 1.6 at 20 Hz. The critical high-frequency cutoff of detection-limiting temporal noise in terms of noise frames per signal cycle depends on the temporal frequency of the signal. This is opposite to the situation in the spatial domain and must be taken into consideration when temporal signals are masked with temporal noise.

  18. On the temporal and spatial characteristics of tornado days in the United States

    NASA Astrophysics Data System (ADS)

    Moore, Todd W.

    2017-02-01

    More tornadoes are produced per year in the United States than in any other country, and these tornadoes have produced tremendous losses of life and property. Understanding how tornado activity will respond to climate change is important if we wish to prepare for future changes. Trends in various tornado and tornado day characteristics, including their annual frequencies, their temporal variability, and their spatial distributions, have been reported in the past few years. This study contributes to this body of literature by further analyzing the temporal and spatial characteristics of tornado days in the United States. The analyses performed in this study support previously reported findings in addition to providing new perspectives, including that the temporal trends are observed only in low-frequency and high-frequency tornado days and that the eastward shift in tornado activity is produced, in part, by the increasing number of high-frequency tornado days, which tend to occur to the east of the traditionally depicted tornado alley in the Great Plains.

  19. Encoding of Spatio-Temporal Input Characteristics by a CA1 Pyramidal Neuron Model

    PubMed Central

    Pissadaki, Eleftheria Kyriaki; Sidiropoulou, Kyriaki; Reczko, Martin; Poirazi, Panayiota

    2010-01-01

    The in vivo activity of CA1 pyramidal neurons alternates between regular spiking and bursting, but how these changes affect information processing remains unclear. Using a detailed CA1 pyramidal neuron model, we investigate how timing and spatial arrangement variations in synaptic inputs to the distal and proximal dendritic layers influence the information content of model responses. We find that the temporal delay between activation of the two layers acts as a switch between excitability modes: short delays induce bursting while long delays decrease firing. For long delays, the average firing frequency of the model response discriminates spatially clustered from diffused inputs to the distal dendritic tree. For short delays, the onset latency and inter-spike-interval succession of model responses can accurately classify input signals as temporally close or distant and spatially clustered or diffused across different stimulation protocols. These findings suggest that a CA1 pyramidal neuron may be capable of encoding and transmitting presynaptic spatiotemporal information about the activity of the entorhinal cortex-hippocampal network to higher brain regions via the selective use of either a temporal or a rate code. PMID:21187899

  20. The impact of breathing on HRV measurements: implications for the longitudinal follow-up of athletes.

    PubMed

    Saboul, Damien; Pialoux, Vincent; Hautier, Christophe

    2013-01-01

    The purpose of the present work was to compare daily variations of heart rate variability (HRV) parameters between controlled breathing (CB) and spontaneous breathing (SB) sessions during a longitudinal follow-up of athletes. HRV measurements were performed daily on 10 healthy male runners for 21 consecutive days. The signals were recorded during two successive randomised 5-minutes sessions. One session was performed in CB and the other in SB. The results showed significant differences between the two respiration methods in the temporal, nonlinear and frequency domains. However, significant correlations were observed between CB and SB (higher than 0.70 for RMSSD and SD1), demonstrating that during a longitudinal follow-up, these markers provide the same HRV variations regardless of breathing pattern. By contrast, independent day-to-day variations were observed with HF and LF/HF frequency markers, indicating no significant relationship between SB and CB data over time. Therefore, we consider that SB and CB may be used for HRV longitudinal follow-ups only for temporal and nonlinear markers. Indeed, the same daily increases and decreases were observed whatever the breathing method employed. Conversely, frequency markers did not provide the same variations between SB and CB and we propose that these indicators are not reliable enough to be used for day-to-day HRV monitoring.

  1. Data mining neocortical high-frequency oscillations in epilepsy and controls

    PubMed Central

    Stead, Matt; Krieger, Abba; Stacey, William; Maus, Douglas; Marsh, Eric; Viventi, Jonathan; Lee, Kendall H.; Marsh, Richard; Litt, Brian; Worrell, Gregory A.

    2011-01-01

    Transient high-frequency (100–500 Hz) oscillations of the local field potential have been studied extensively in human mesial temporal lobe. Previous studies report that both ripple (100–250 Hz) and fast ripple (250–500 Hz) oscillations are increased in the seizure-onset zone of patients with mesial temporal lobe epilepsy. Comparatively little is known, however, about their spatial distribution with respect to seizure-onset zone in neocortical epilepsy, or their prevalence in normal brain. We present a quantitative analysis of high-frequency oscillations and their rates of occurrence in a group of nine patients with neocortical epilepsy and two control patients with no history of seizures. Oscillations were automatically detected and classified using an unsupervised approach in a data set of unprecedented volume in epilepsy research, over 12 terabytes of continuous long-term micro- and macro-electrode intracranial recordings, without human preprocessing, enabling selection-bias-free estimates of oscillation rates. There are three main results: (i) a cluster of ripple frequency oscillations with median spectral centroid = 137 Hz is increased in the seizure-onset zone more frequently than a cluster of fast ripple frequency oscillations (median spectral centroid = 305 Hz); (ii) we found no difference in the rates of high frequency oscillations in control neocortex and the non-seizure-onset zone neocortex of patients with epilepsy, despite the possibility of different underlying mechanisms of generation; and (iii) while previous studies have demonstrated that oscillations recorded by parenchyma-penetrating micro-electrodes have higher peak 100–500 Hz frequencies than penetrating macro-electrodes, this was not found for the epipial electrodes used here to record from the neocortical surface. We conclude that the relative rate of ripple frequency oscillations is a potential biomarker for epileptic neocortex, but that larger prospective studies correlating high-frequency oscillations rates with seizure-onset zone, resected tissue and surgical outcome are required to determine the true predictive value. PMID:21903727

  2. Data mining neocortical high-frequency oscillations in epilepsy and controls.

    PubMed

    Blanco, Justin A; Stead, Matt; Krieger, Abba; Stacey, William; Maus, Douglas; Marsh, Eric; Viventi, Jonathan; Lee, Kendall H; Marsh, Richard; Litt, Brian; Worrell, Gregory A

    2011-10-01

    Transient high-frequency (100-500 Hz) oscillations of the local field potential have been studied extensively in human mesial temporal lobe. Previous studies report that both ripple (100-250 Hz) and fast ripple (250-500 Hz) oscillations are increased in the seizure-onset zone of patients with mesial temporal lobe epilepsy. Comparatively little is known, however, about their spatial distribution with respect to seizure-onset zone in neocortical epilepsy, or their prevalence in normal brain. We present a quantitative analysis of high-frequency oscillations and their rates of occurrence in a group of nine patients with neocortical epilepsy and two control patients with no history of seizures. Oscillations were automatically detected and classified using an unsupervised approach in a data set of unprecedented volume in epilepsy research, over 12 terabytes of continuous long-term micro- and macro-electrode intracranial recordings, without human preprocessing, enabling selection-bias-free estimates of oscillation rates. There are three main results: (i) a cluster of ripple frequency oscillations with median spectral centroid = 137 Hz is increased in the seizure-onset zone more frequently than a cluster of fast ripple frequency oscillations (median spectral centroid = 305 Hz); (ii) we found no difference in the rates of high frequency oscillations in control neocortex and the non-seizure-onset zone neocortex of patients with epilepsy, despite the possibility of different underlying mechanisms of generation; and (iii) while previous studies have demonstrated that oscillations recorded by parenchyma-penetrating micro-electrodes have higher peak 100-500 Hz frequencies than penetrating macro-electrodes, this was not found for the epipial electrodes used here to record from the neocortical surface. We conclude that the relative rate of ripple frequency oscillations is a potential biomarker for epileptic neocortex, but that larger prospective studies correlating high-frequency oscillations rates with seizure-onset zone, resected tissue and surgical outcome are required to determine the true predictive value.

  3. A common perceptual temporal limit of binding synchronous inputs across different sensory attributes and modalities

    PubMed Central

    Fujisaki, Waka; Nishida, Shin'ya

    2010-01-01

    The human brain processes different aspects of the surrounding environment through multiple sensory modalities, and each modality can be subdivided into multiple attribute-specific channels. When the brain rebinds sensory content information (‘what’) across different channels, temporal coincidence (‘when’) along with spatial coincidence (‘where’) provides a critical clue. It however remains unknown whether neural mechanisms for binding synchronous attributes are specific to each attribute combination, or universal and central. In human psychophysical experiments, we examined how combinations of visual, auditory and tactile attributes affect the temporal frequency limit of synchrony-based binding. The results indicated that the upper limits of cross-attribute binding were lower than those of within-attribute binding, and surprisingly similar for any combination of visual, auditory and tactile attributes (2–3 Hz). They are unlikely to be the limits for judging synchrony, since the temporal limit of a cross-attribute synchrony judgement was higher and varied with the modality combination (4–9 Hz). These findings suggest that cross-attribute temporal binding is mediated by a slow central process that combines separately processed ‘what’ and ‘when’ properties of a single event. While the synchrony performance reflects temporal bottlenecks existing in ‘when’ processing, the binding performance reflects the central temporal limit of integrating ‘when’ and ‘what’ properties. PMID:20335212

  4. The temporal response of recombination events to gamma radiation of meiotic cells in Sordaria brevicollis.

    PubMed

    Lewis, L A

    1982-01-01

    The temporal frequencies of different stages of prophase I were determined cytologically in Sordaria brevicollis (Olive and Fantini) as the basis for ascertaining the degree of synchrony in meiosis in this ascomycete. Croziers, karyogamy-zygotene and pachytene asci were shown to be in significant majorities at three distinct periods of the meiotic cycle. The response of recombination frequency to ionizing radiation was examined for the entire meiotic cycle. Three radiosensitive periods were determined. This response, which correlated temporally with each of the three peaks in ascal frequency, is interpreted as showing that the meiotic cycle of this organism is divided into periods of recombination commitment (radiation reduced frequencies) during the pre-meiotic S phase and recombination consummation (radiation induced frequencies) during zygotene and pachytene. The results are discussed in the context of the time at which recombination is consummated in eukaryotes such as yeast and Drosophila.

  5. Target dependence of orientation and direction selectivity of corticocortical projection neurons in the mouse V1

    PubMed Central

    Matsui, Teppei; Ohki, Kenichi

    2013-01-01

    Higher order visual areas that receive input from the primary visual cortex (V1) are specialized for the processing of distinct features of visual information. However, it is still incompletely understood how this functional specialization is acquired. Here we used in vivo two photon calcium imaging in the mouse visual cortex to investigate whether this functional distinction exists at as early as the level of projections from V1 to two higher order visual areas, AL and LM. Specifically, we examined whether sharpness of orientation and direction selectivity and optimal spatial and temporal frequency of projection neurons from V1 to higher order visual areas match with that of target areas. We found that the V1 input to higher order visual areas were indeed functionally distinct: AL preferentially received inputs from V1 that were more orientation and direction selective and tuned for lower spatial frequency compared to projection of V1 to LM, consistent with functional differences between AL and LM. The present findings suggest that selective projections from V1 to higher order visual areas initiates parallel processing of sensory information in the visual cortical network. PMID:24068987

  6. Transcranial alternating current stimulation modulates auditory temporal resolution in elderly people.

    PubMed

    Baltus, Alina; Vosskuhl, Johannes; Boetzel, Cindy; Herrmann, Christoph Siegfried

    2018-05-13

    Recent research provides evidence for a functional role of brain oscillations for perception. For example, auditory temporal resolution seems to be linked to individual gamma frequency of auditory cortex. Individual gamma frequency not only correlates with performance in between-channel gap detection tasks but can be modulated via auditory transcranial alternating current stimulation. Modulation of individual gamma frequency is accompanied by an improvement in gap detection performance. Aging changes electrophysiological frequency components and sensory processing mechanisms. Therefore, we conducted a study to investigate the link between individual gamma frequency and gap detection performance in elderly people using auditory transcranial alternating current stimulation. In a within-subject design, twelve participants were electrically stimulated with two individualized transcranial alternating current stimulation frequencies: 3 Hz above their individual gamma frequency (experimental condition) and 4 Hz below their individual gamma frequency (control condition) while they were performing a between-channel gap detection task. As expected, individual gamma frequencies correlated significantly with gap detection performance at baseline and in the experimental condition, transcranial alternating current stimulation modulated gap detection performance. In the control condition, stimulation did not modulate gap detection performance. In addition, in elderly, the effect of transcranial alternating current stimulation on auditory temporal resolution seems to be dependent on endogenous frequencies in auditory cortex: elderlies with slower individual gamma frequencies and lower auditory temporal resolution profit from auditory transcranial alternating current stimulation and show increased gap detection performance during stimulation. Our results strongly suggest individualized transcranial alternating current stimulation protocols for successful modulation of performance. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Temporal Dependence of Chromosomal Aberration on Radiation Quality and Cellular Genetic Background

    NASA Technical Reports Server (NTRS)

    Lu, Tao; Zhang, Ye; Krieger, Stephanie; Yeshitla, Samrawit; Goss, Rosalin; Bowler, Deborah; Kadhim, Munira; Wilson, Bobby; Wu, Honglu

    2017-01-01

    Radiation induced cancer risks are driven by genetic instability. It is not well understood how different radiation sources induce genetic instability in cells with different genetic background. Here we report our studies on genetic instability, particularly chromosome instability using fluorescence in situ hybridization (FISH), in human primary lymphocytes, normal human fibroblasts, and transformed human mammary epithelial cells in a temporal manner after exposure to high energy protons and Fe ions. The chromosome spread was prepared 48 hours, 1 week, 2 week, and 1 month after radiation exposure. Chromosome aberrations were analyzed with whole chromosome specific probes (chr. 3 and chr. 6). After exposure to protons and Fe ions of similar cumulative energy (??), Fe ions induced more chromosomal aberrations at early time point (48 hours) in all three types of cells. Over time (after 1 month), more chromosome aberrations were observed in cells exposed to Fe ions than in the same type of cells exposed to protons. While the mammary epithelial cells have higher intrinsic genetic instability and higher rate of initial chromosome aberrations than the fibroblasts, the fibroblasts retained more chromosomal aberration after long term cell culture (1 month) in comparison to their initial frequency of chromosome aberration. In lymphocytes, the chromosome aberration frequency at 1 month after exposure to Fe ions was close to unexposed background, and the chromosome aberration frequency at 1 month after exposure to proton was much higher. In addition to human cells, mouse bone marrow cells isolated from strains CBA/CaH and C57BL/6 were irradiated with proton or Fe ions and were analyzed for chromosome aberration at different time points. Cells from CBA mice showed similar frequency of chromosome aberration at early and late time points, while cells from C57 mice showed very different chromosome aberration rate at early and late time points. Our results suggest that relative biological effectiveness (RBE) of radiation are different for different radiation sources, for different cell types, and for the same cell type with different genetic background at different times after radiation exposure. Caution must be taken in using RBE value to estimate biological effects from radiation exposure.

  8. Noise Trauma Induced Plastic Changes in Brain Regions outside the Classical Auditory Pathway

    PubMed Central

    Chen, Guang-Di; Sheppard, Adam; Salvi, Richard

    2017-01-01

    The effects of intense noise exposure on the classical auditory pathway have been extensively investigated; however, little is known about the effects of noise-induced hearing loss on non-classical auditory areas in the brain such as the lateral amygdala (LA) and striatum (Str). To address this issue, we compared the noise-induced changes in spontaneous and tone-evoked responses from multiunit clusters (MUC) in the LA and Str with those seen in auditory cortex (AC). High-frequency octave band noise (10–20 kHz) and narrow band noise (16–20 kHz) induced permanent thresho ld shifts (PTS) at high-frequencies within and above the noise band but not at low frequencies. While the noise trauma significantly elevated spontaneous discharge rate (SR) in the AC, SRs in the LA and Str were only slightly increased across all frequencies. The high-frequency noise trauma affected tone-evoked firing rates in frequency and time dependent manner and the changes appeared to be related to severity of noise trauma. In the LA, tone-evoked firing rates were reduced at the high-frequencies (trauma area) whereas firing rates were enhanced at the low-frequencies or at the edge-frequency dependent on severity of hearing loss at the high frequencies. The firing rate temporal profile changed from a broad plateau to one sharp, delayed peak. In the AC, tone-evoked firing rates were depressed at high frequencies and enhanced at the low frequencies while the firing rate temporal profiles became substantially broader. In contrast, firing rates in the Str were generally decreased and firing rate temporal profiles become more phasic and less prolonged. The altered firing rate and pattern at low frequencies induced by high frequency hearing loss could have perceptual consequences. The tone-evoked hyperactivity in low-frequency MUC could manifest as hyperacusis whereas the discharge pattern changes could affect temporal resolution and integration. PMID:26701290

  9. Tissue Expressions of Soluble Human Epoxide Hydrolase-2 Enzyme in Patients with Temporal Lobe Epilepsy.

    PubMed

    Ahmedov, Merdin Lyutviev; Kemerdere, Rahsan; Baran, Oguz; Inal, Berrin Bercik; Gumus, Alper; Coskun, Cihan; Yeni, Seher Naz; Eren, Bulent; Uzan, Mustafa; Tanriverdi, Taner

    2017-10-01

    We sought to simply demonstrate how levels of soluble human epoxide hydrolase-2 show changes in both temporal the cortex and hippocampal complex in patients with temporal lobe epilepsy. A total of 20 patients underwent anterior temporal lobe resection due to temporal lobe epilepsy. The control group comprised 15 people who died in traffic accidents or by falling from a height, and their autopsy findings were included. Adequately sized temporal cortex and hippocampal samples were removed from each patient during surgery, and the same anatomic structures were removed from the control subjects during the autopsy procedures. Each sample was stored at -80°C as rapidly as possible until the enzyme assay. The temporal cortex in the epilepsy patients had a significantly higher enzyme level than did the temporal cortex of the control group (P = 0.03). Correlation analysis showed that as the enzyme level increases in the temporal cortex, it also increases in the hippocampal complex (r 2  = 0.06, P = 0.00001). More important, enzyme tissue levels showed positive correlations with seizure frequency in both the temporal cortex and hippocampal complex in patients (r 2  = 0.7, P = 0.00001 and r 2  = 0.4, P = 0.003, respectively). The duration of epilepsy was also positively correlated with the hippocampal enzyme level (r 2  = 0.06, P = 0.00001). Soluble human epoxy hydrolase enzyme-2 is increased in both lateral and medial temporal tissues in temporal lobe epilepsy. Further studies should be conducted as inhibition of this enzyme has resulted in a significant decrease in or stopping of seizures and attenuated neuroinflammation in experimental epilepsy models in the current literature. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Multi objective climate change impact assessment using multi downscaled climate scenarios

    NASA Astrophysics Data System (ADS)

    Rana, Arun; Moradkhani, Hamid

    2016-04-01

    Global Climate Models (GCMs) are often used to downscale the climatic parameters on a regional and global scale. In the present study, we have analyzed the changes in precipitation and temperature for future scenario period of 2070-2099 with respect to historical period of 1970-2000 from a set of statistically downscaled GCM projections for Columbia River Basin (CRB). Analysis is performed using 2 different statistically downscaled climate projections namely the Bias Correction and Spatial Downscaling (BCSD) technique generated at Portland State University and the Multivariate Adaptive Constructed Analogs (MACA) technique, generated at University of Idaho, totaling to 40 different scenarios. Analysis is performed on spatial, temporal and frequency based parameters in the future period at a scale of 1/16th of degree for entire CRB region. Results have indicated in varied degree of spatial change pattern for the entire Columbia River Basin, especially western part of the basin. At temporal scales, winter precipitation has higher variability than summer and vice-versa for temperature. Frequency analysis provided insights into possible explanation to changes in precipitation.

  11. Temporal modulation transfer functions for listeners with real and simulated hearing loss

    PubMed Central

    Desloge, Joseph G.; Reed, Charlotte M.; Braida, Louis D.; Perez, Zachary D.; Delhorne, Lorraine A.

    2011-01-01

    A functional simulation of hearing loss was evaluated in its ability to reproduce the temporal modulation transfer functions (TMTFs) for nine listeners with mild to profound sensorineural hearing loss. Each hearing loss was simulated in a group of three age-matched normal-hearing listeners through spectrally shaped masking noise or a combination of masking noise and multiband expansion. TMTFs were measured for both groups of listeners using a broadband noise carrier as a function of modulation rate in the range 2 to 1024 Hz. The TMTFs were fit with a lowpass filter function that provided estimates of overall modulation-depth sensitivity and modulation cutoff frequency. Although the simulations were capable of accurately reproducing the threshold elevations of the hearing-impaired listeners, they were not successful in reproducing the TMTFs. On average, the simulations resulted in lower sensitivity and higher cutoff frequency than were observed in the TMTFs of the hearing-impaired listeners. Discrepancies in performance between listeners with real and simulated hearing loss are possibly related to inaccuracies in the simulation of recruitment. PMID:21682411

  12. Voice gender discrimination provides a measure of more than pitch-related perception in cochlear implant users.

    PubMed

    Li, Tianhao; Fu, Qian-Jie

    2011-08-01

    (1) To investigate whether voice gender discrimination (VGD) could be a useful indicator of the spectral and temporal processing abilities of individual cochlear implant (CI) users; (2) To examine the relationship between VGD and speech recognition with CI when comparable acoustic cues are used for both perception processes. VGD was measured using two talker sets with different inter-gender fundamental frequencies (F(0)), as well as different acoustic CI simulations. Vowel and consonant recognition in quiet and noise were also measured and compared with VGD performance. Eleven postlingually deaf CI users. The results showed that (1) mean VGD performance differed for different stimulus sets, (2) VGD and speech recognition performance varied among individual CI users, and (3) individual VGD performance was significantly correlated with speech recognition performance under certain conditions. VGD measured with selected stimulus sets might be useful for assessing not only pitch-related perception, but also spectral and temporal processing by individual CI users. In addition to improvements in spectral resolution and modulation detection, the improvement in higher modulation frequency discrimination might be particularly important for CI users in noisy environments.

  13. Sensitivity and specificity of auditory steady‐state response testing

    PubMed Central

    Rabelo, Camila Maia; Schochat, Eliane

    2011-01-01

    INTRODUCTION: The ASSR test is an electrophysiological test that evaluates, among other aspects, neural synchrony, based on the frequency or amplitude modulation of tones. OBJECTIVE: The aim of this study was to determine the sensitivity and specificity of auditory steady‐state response testing in detecting lesions and dysfunctions of the central auditory nervous system. METHODS: Seventy volunteers were divided into three groups: those with normal hearing; those with mesial temporal sclerosis; and those with central auditory processing disorder. All subjects underwent auditory steady‐state response testing of both ears at 500 Hz and 2000 Hz (frequency modulation, 46 Hz). The difference between auditory steady‐state response‐estimated thresholds and behavioral thresholds (audiometric evaluation) was calculated. RESULTS: Estimated thresholds were significantly higher in the mesial temporal sclerosis group than in the normal and central auditory processing disorder groups. In addition, the difference between auditory steady‐state response‐estimated and behavioral thresholds was greatest in the mesial temporal sclerosis group when compared to the normal group than in the central auditory processing disorder group compared to the normal group. DISCUSSION: Research focusing on central auditory nervous system (CANS) lesions has shown that individuals with CANS lesions present a greater difference between ASSR‐estimated thresholds and actual behavioral thresholds; ASSR‐estimated thresholds being significantly worse than behavioral thresholds in subjects with CANS insults. This is most likely because the disorder prevents the transmission of the sound stimulus from being in phase with the received stimulus, resulting in asynchronous transmitter release. Another possible cause of the greater difference between the ASSR‐estimated thresholds and the behavioral thresholds is impaired temporal resolution. CONCLUSIONS: The overall sensitivity of auditory steady‐state response testing was lower than its overall specificity. Although the overall specificity was high, it was lower in the central auditory processing disorder group than in the mesial temporal sclerosis group. Overall sensitivity was also lower in the central auditory processing disorder group than in the mesial temporal sclerosis group. PMID:21437442

  14. Combined electric and acoustic hearing performance with Zebra® speech processor: speech reception, place, and temporal coding evaluation.

    PubMed

    Vaerenberg, Bart; Péan, Vincent; Lesbros, Guillaume; De Ceulaer, Geert; Schauwers, Karen; Daemers, Kristin; Gnansia, Dan; Govaerts, Paul J

    2013-06-01

    To assess the auditory performance of Digisonic(®) cochlear implant users with electric stimulation (ES) and electro-acoustic stimulation (EAS) with special attention to the processing of low-frequency temporal fine structure. Six patients implanted with a Digisonic(®) SP implant and showing low-frequency residual hearing were fitted with the Zebra(®) speech processor providing both electric and acoustic stimulation. Assessment consisted of monosyllabic speech identification tests in quiet and in noise at different presentation levels, and a pitch discrimination task using harmonic and disharmonic intonating complex sounds ( Vaerenberg et al., 2011 ). These tests investigate place and time coding through pitch discrimination. All tasks were performed with ES only and with EAS. Speech results in noise showed significant improvement with EAS when compared to ES. Whereas EAS did not yield better results in the harmonic intonation test, the improvements in the disharmonic intonation test were remarkable, suggesting better coding of pitch cues requiring phase locking. These results suggest that patients with residual hearing in the low-frequency range still have good phase-locking capacities, allowing them to process fine temporal information. ES relies mainly on place coding but provides poor low-frequency temporal coding, whereas EAS also provides temporal coding in the low-frequency range. Patients with residual phase-locking capacities can make use of these cues.

  15. Reflection of the State of Hunger in Impulse Activity of Nose Wing Muscles and Upper Esophageal Sphincter during Search behavior in Rabbits.

    PubMed

    Kromin, A A; Dvoenko, E E; Zenina, O Yu

    2016-07-01

    Reflection of the state of hunger in impulse activity of nose wing muscles and upper esophageal sphincter muscles was studied in chronic experiments on rabbits subjected to 24-h food deprivation in the absence of locomotion and during search behavior. In the absence of apparent behavioral activity, including sniffing, alai nasi muscles of hungry rabbits constantly generated bursts of action potentials synchronous with breathing, while upper esophageal sphincter muscles exhibited regular aperiodic low-amplitude impulse activity of tonic type. Latent form of food motivation was reflected in the structure of temporal organization of impulse activity of alai nasi muscles in the form of bimodal distribution of interpulse intervals and in temporal structure of impulse activity of upper esophageal sphincter muscles in the form of monomodal distribution. The latent form of food motivation was manifested in the structure of temporal organization of periods of the action potentials burst-like rhythm, generated by alai nasi muscles, in the form of monomodal distribution, characterized by a high degree of dispersion of respiratory cycle periods. In the absence of physical activity hungry animals sporadically exhibited sniffing activity, manifested in the change from the burst-like impulse activity of alai nasi muscles to the single-burst activity type with bimodal distribution of interpulse intervals and monomodal distribution of the burst-like action potentials rhythm periods, the maximum of which was shifted towards lower values, which was the cause of increased respiratory rate. At the same time, the monomodal temporal structure of impulse activity of the upper esophageal sphincter muscles was not changed. With increasing food motivation in the process of search behavior temporal structure of periods of the burst-like action potentials rhythm, generated by alai nasi muscles, became similar to that observed during sniffing, not accompanied by animal's locomotion, which is typical for the increased respiratory rhythm frequency. Increased hunger motivation was reflected in the temporal structure of impulse activity of upper esophageal sphincter muscles in the form of a shift to lower values of the maximum of monomodal distribution of interpulse intervals on the histogram, resulting in higher impulse activity frequency. The simultaneous increase in the frequency of action potentials bursts generation by alai nasi muscles and regular impulse activity of upper esophageal sphincter muscles is a reliable criterion for enhanced food motivation during search behavior in rabbits.

  16. Augmented feedback of COM and COP modulates the regulation of quiet human standing relative to the stability boundary.

    PubMed

    Kilby, Melissa C; Slobounov, Semyon M; Newell, Karl M

    2016-06-01

    The experiment manipulated real-time kinematic feedback of the motion of the whole body center of mass (COM) and center of pressure (COP) in anterior-posterior (AP) and medial-lateral (ML) directions to investigate the variables actively controlled in quiet standing of young adults. The feedback reflected the current 2D postural positions within the 2D functional stability boundary that was scaled to 75%, 30% and 12% of its original size. The findings showed that the distance of both COP and COM to the respective stability boundary was greater during the feedback trials compared to a no feedback condition. However, the temporal safety margin of the COP, that is, the virtual time-to-contact (VTC), was higher without feedback. The coupling relation of COP-COM showed stable in-phase synchronization over all of the feedback conditions for frequencies below 1Hz. For higher frequencies (up to 5Hz), there was progressive reduction of COP-COM synchronization and local adaptation under the presence of augmented feedback. The findings show that the augmented feedback of COM and COP motion differentially and adaptively influences spatial and temporal properties of postural motion relative to the stability boundary while preserving the organization of the COM-COP coupling in postural control. Copyright © 2016. Published by Elsevier B.V.

  17. A possible role for a paralemniscal auditory pathway in the coding of slow temporal information

    PubMed Central

    Abrams, Daniel A.; Nicol, Trent; Zecker, Steven; Kraus, Nina

    2010-01-01

    Low frequency temporal information present in speech is critical for normal perception, however the neural mechanism underlying the differentiation of slow rates in acoustic signals is not known. Data from the rat trigeminal system suggest that the paralemniscal pathway may be specifically tuned to code low-frequency temporal information. We tested whether this phenomenon occurs in the auditory system by measuring the representation of temporal rate in lemniscal and paralemniscal auditory thalamus and cortex in guinea pig. Similar to the trigeminal system, responses measured in auditory thalamus indicate that slow rates are differentially represented in a paralemniscal pathway. In cortex, both lemniscal and paralemniscal neurons indicated sensitivity to slow rates. We speculate that a paralemniscal pathway in the auditory system may be specifically tuned to code low frequency temporal information present in acoustic signals. These data suggest that somatosensory and auditory modalities have parallel sub-cortical pathways that separately process slow rates and the spatial representation of the sensory periphery. PMID:21094680

  18. Frequency-Selective Attention in Auditory Scenes Recruits Frequency Representations Throughout Human Superior Temporal Cortex.

    PubMed

    Riecke, Lars; Peters, Judith C; Valente, Giancarlo; Kemper, Valentin G; Formisano, Elia; Sorger, Bettina

    2017-05-01

    A sound of interest may be tracked amid other salient sounds by focusing attention on its characteristic features including its frequency. Functional magnetic resonance imaging findings have indicated that frequency representations in human primary auditory cortex (AC) contribute to this feat. However, attentional modulations were examined at relatively low spatial and spectral resolutions, and frequency-selective contributions outside the primary AC could not be established. To address these issues, we compared blood oxygenation level-dependent (BOLD) responses in the superior temporal cortex of human listeners while they identified single frequencies versus listened selectively for various frequencies within a multifrequency scene. Using best-frequency mapping, we observed that the detailed spatial layout of attention-induced BOLD response enhancements in primary AC follows the tonotopy of stimulus-driven frequency representations-analogous to the "spotlight" of attention enhancing visuospatial representations in retinotopic visual cortex. Moreover, using an algorithm trained to discriminate stimulus-driven frequency representations, we could successfully decode the focus of frequency-selective attention from listeners' BOLD response patterns in nonprimary AC. Our results indicate that the human brain facilitates selective listening to a frequency of interest in a scene by reinforcing the fine-grained activity pattern throughout the entire superior temporal cortex that would be evoked if that frequency was present alone. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Frequency-Dependent Modulation of Regional Synchrony in the Human Brain by Eyes Open and Eyes Closed Resting-States.

    PubMed

    Song, Xiaopeng; Zhou, Shuqin; Zhang, Yi; Liu, Yijun; Zhu, Huaiqiu; Gao, Jia-Hong

    2015-01-01

    The eyes-open (EO) and eyes-closed (EC) states have differential effects on BOLD-fMRI signal dynamics, affecting both the BOLD oscillation frequency of a single voxel and the regional homogeneity (ReHo) of several neighboring voxels. To explore how the two resting-states modulate the local synchrony through different frequency bands, we decomposed the time series of each voxel into several components that fell into distinct frequency bands. The ReHo in each of the bands was calculated and compared between the EO and EC conditions. The cross-voxel correlations between the mean frequency and the overall ReHo of each voxel's original BOLD series in different brain areas were also calculated and compared between the two states. Compared with the EC state, ReHo decreased with EO in a wide frequency band of 0.01-0.25 Hz in the bilateral thalamus, sensorimotor network, and superior temporal gyrus, while ReHo increased significantly in the band of 0-0.01 Hz in the primary visual cortex, and in a higher frequency band of 0.02-0.1 Hz in the higher order visual areas. The cross-voxel correlations between the frequency and overall ReHo were negative in all the brain areas but varied from region to region. These correlations were stronger with EO in the visual network and the default mode network. Our results suggested that different frequency bands of ReHo showed different sensitivity to the modulation of EO-EC states. The better spatial consistency between the frequency and overall ReHo maps indicated that the brain might adopt a stricter frequency-dependent configuration with EO than with EC.

  20. Effects of Spatio-Temporal Aliasing on Pilot Performance in Active Control Tasks

    NASA Technical Reports Server (NTRS)

    Zaal, Peter; Sweet, Barbara

    2010-01-01

    Spatio-temporal aliasing affects pilot performance and control behavior. For increasing refresh rates: 1) Significant change in control behavior: a) Increase in visual gain and neuromuscular frequency. b) Decrease in visual time delay. 2) Increase in tracking performance: a) Decrease in RMSe. b) Increase in crossover frequency.

  1. Temporal Frequency Modulates Reaction Time Responses to First-Order and Second-Order Motion

    ERIC Educational Resources Information Center

    Hutchinson, Claire V.; Ledgeway, Tim

    2010-01-01

    This study investigated the effect of temporal frequency and modulation depth on reaction times for discriminating the direction of first-order (luminance-defined) and second-order (contrast-defined) motion, equated for visibility using equal multiples of direction-discrimination threshold. Results showed that reaction times were heavily…

  2. Effect of Temporal Constraints on Hemispheric Asymmetries during Spatial Frequency Processing

    ERIC Educational Resources Information Center

    Peyrin, Carole; Mermillod, Martial; Chokron, Sylvie; Marendaz, Christian

    2006-01-01

    Studies on functional hemispheric asymmetries have suggested that the right vs. left hemisphere should be predominantly involved in low vs. high spatial frequency (SF) analysis, respectively. By manipulating exposure duration of filtered natural scene images, we examined whether the temporal characteristics of SF analysis (i.e., the temporal…

  3. Gait characteristics and spatio-temporal variables of climbing in bonobos (Pan paniscus).

    PubMed

    Schoonaert, Kirsten; D'Août, Kristiaan; Samuel, Diana; Talloen, Willem; Nauwelaerts, Sandra; Kivell, Tracy L; Aerts, Peter

    2016-11-01

    Although much is known about the terrestrial locomotion of great apes, their arboreal locomotion has been studied less extensively. This study investigates arboreal locomotion in bonobos (Pan paniscus), focusing on the gait characteristics and spatio-temporal variables associated with locomotion on a pole. These features are compared across different substrate inclinations (0°, 30°, 45°, 60°, and 90°), and horizontal quadrupedal walking is compared between an arboreal and a terrestrial substrate. Our results show greater variation in footfall patterns with increasing incline, resulting in more lateral gait sequences. During climbing on arboreal inclines, smaller steps and strides but higher stride frequencies and duty factors are found compared to horizontal arboreal walking. This may facilitate better balance control and dynamic stability on the arboreal substrate. We found no gradual change in spatio-temporal variables with increasing incline; instead, the results for all inclines were clustered together. Bonobos take larger strides at lower stride frequencies and lower duty factors on a horizontal arboreal substrate than on a flat terrestrial substrate. We suggest that these changes are the result of the better grip of the grasping feet on an arboreal substrate. Speed modulation of the spatio-temporal variables is similar across substrate inclinations and between substrate types, suggesting a comparable underlying motor control. Finally, we contrast these variables of arboreal inclined climbing with those of terrestrial bipedal locomotion, and briefly discuss the results with respect to the origin of habitual bipedalism. Am. J. Primatol. 78:1165-1177, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. A comparative quantitative analysis of magnetic susceptibility artifacts in echo planar and PROPELLER diffusion-weighted images

    NASA Astrophysics Data System (ADS)

    Cho, Jae-Hwan; Lee, Hae-Kag; Yang, Han-Joon; Lee, Gui-Won; Park, Yong-Soon; Chung, Woon-Kwan

    2013-01-01

    In this study, the authors investigated whether periodically-rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) diffusion-weighted imaging (DWI) can remove magnetic susceptibility artifacts and compared apparent diffusion coefficient (ADC) values for PROPELLER DWI and the common echo planar (EP) DWI. Twenty patients that underwent brain MRI with a metal dental implant were selected. A 3.0T MR scanner was then used to obtain EP DWI, PROPELLER DWI, and corresponding apparent diffusion coefficient (ADC) maps for a b-value of 0 and 1,000 s/mm2. The frequencies of magnetic susceptibility artifacts in four parts of the brain (bilateral temporal lobes, pons, and orbit) were selected. In the ADC maps, we measured the ADC values of both sides of the temporal lobe and the pons. According to the study results, the frequency of magnetic susceptibility artifacts in PROPELLER DW images was lower than it was in EP DW images. In ADC maps, the ADC values of the bilateral temporal lobes and the pons were all higher in PROPELLER ADC maps than in EP ADC maps. Our findings show that when a high-field MRI machine is used, magnetic susceptibility artifacts can distort anatomical structures and produce high-intensity signals. Furthermore, our findings suggest that in many cases, PROPELLER DWI would be helpful in terms of achieving a correct diagnosis.

  5. Polybrominated diphenyl ether serum concentrations in a Californian population of children, their parents, and older adults: an exposure assessment study.

    PubMed

    Wu, Xiangmei May; Bennett, Deborah H; Moran, Rebecca E; Sjödin, Andreas; Jones, Richard S; Tancredi, Daniel J; Tulve, Nicolle S; Clifton, Matthew Scott; Colón, Maribel; Weathers, Walter; Hertz-Picciotto, Irva

    2015-03-14

    Polybrominated diphenyl ethers (PBDEs) are used as flame retardants in many household items. Given concerns over their potential adverse health effects, we identified predictors and evaluated temporal changes of PBDE serum concentrations. PBDE serum concentrations were measured in young children (2-8 years old; N = 67), parents of young children (<55 years old; N = 90), and older adults (≥55 years old; N = 59) in California, with concurrent floor wipe samples collected in participants' homes in 2008-2009. We also measured serum concentrations one year later in a subset of children (N = 19) and parents (N = 42). PBDE serum concentrations in children were significantly higher than in adults. Floor wipe concentration is a significant predictor of serum BDE-47, 99, 100 and 154. Positive associations were observed between the intake frequency of canned meat and serum concentrations of BDE-47, 99 and 154, between canned meat entrees and BDE-154 and 209, as well as between tuna and white fish and BDE-153. The model with the floor wipe concentration and food intake frequencies explained up to 40% of the mean square prediction error of some congeners. Lower home values and renting (vs. owning) a home were associated with higher serum concentrations of BDE-47, 99 and 100. Serum concentrations measured one year apart were strongly correlated as expected (r = 0.70-0.97) with a slight decreasing trend. Floor wipe concentration, food intake frequency, and housing characteristics can explain 12-40% of the prediction error of PBDE serum concentrations. Decreasing temporal trends should be considered when characterizing long-term exposure.

  6. Effects of sensorineural hearing loss on temporal coding of narrowband and broadband signals in the auditory periphery

    PubMed Central

    Henry, Kenneth S.; Heinz, Michael G.

    2013-01-01

    People with sensorineural hearing loss have substantial difficulty understanding speech under degraded listening conditions. Behavioral studies suggest that this difficulty may be caused by changes in auditory processing of the rapidly-varying temporal fine structure (TFS) of acoustic signals. In this paper, we review the presently known effects of sensorineural hearing loss on processing of TFS and slower envelope modulations in the peripheral auditory system of mammals. Cochlear damage has relatively subtle effects on phase locking by auditory-nerve fibers to the temporal structure of narrowband signals under quiet conditions. In background noise, however, sensorineural loss does substantially reduce phase locking to the TFS of pure-tone stimuli. For auditory processing of broadband stimuli, sensorineural hearing loss has been shown to severely alter the neural representation of temporal information along the tonotopic axis of the cochlea. Notably, auditory-nerve fibers innervating the high-frequency part of the cochlea grow increasingly responsive to low-frequency TFS information and less responsive to temporal information near their characteristic frequency (CF). Cochlear damage also increases the correlation of the response to TFS across fibers of varying CF, decreases the traveling-wave delay between TFS responses of fibers with different CFs, and can increase the range of temporal modulation frequencies encoded in the periphery for broadband sounds. Weaker neural coding of temporal structure in background noise and degraded coding of broadband signals along the tonotopic axis of the cochlea are expected to contribute considerably to speech perception problems in people with sensorineural hearing loss. PMID:23376018

  7. The beat in laser-accelerated ion beams

    NASA Astrophysics Data System (ADS)

    Schnürer, M.; Andreev, A. A.; Abicht, F.; Bränzel, J.; Koschitzki, Ch.; Platonov, K. Yu.; Priebe, G.; Sandner, W.

    2013-10-01

    Regular modulation in the ion velocity distribution becomes detectable if intense femtosecond laser pulses with very high temporal contrast are used for target normal sheath acceleration of ions. Analytical and numerical analysis of the experimental observation associates the modulation with the half-cycle of the driving laser field period. In processes like ion acceleration, the collective and laser-frequency determined electron dynamics creates strong fields in plasma to accelerate the ions. Even the oscillatory motion of electrons and its influence on the acceleration field can dominate over smoothing effects in plasma if a high temporal contrast of the driving laser pulse is given. Acceleration parameters can be directly concluded out of the experimentally observed modulation period in ion velocity spectra. The appearance of the phenomenon at a temporal contrast of ten orders between the intensity of the pulse peak and the spontaneous amplified emission background as well as remaining intensity wings at picosecond time-scale might trigger further parameter studies with even higher contrast.

  8. Coherence properties of the radiation from FLASH

    NASA Astrophysics Data System (ADS)

    Schneidmiller, E. A.; Yurkov, M. V.

    2016-02-01

    Free electron LASer in Hamburg is the first free electron laser user facility operating in the vacuum ultraviolet and soft X-ray wavelength range. Many user experiments require knowledge of the spatial and temporal coherence properties of the radiation. In this paper, we present a theoretical analysis of the coherence properties of the radiation for the fundamental and for the higher odd frequency harmonics. We show that temporal and spatial coherence reach their maxima close to the free electron laser (FEL) saturation but may degrade significantly in the post-saturation regime. We also find that the pointing stability of short FEL pulses is limited due to the fact that nonazimuthal FEL eigenmodes are not sufficiently suppressed. We discuss possible ways for improving the degree of transverse coherence and the pointing stability.

  9. Downscaling Solar Power Output to 4-Seconds for Use in Integration Studies (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hummon, M.; Weekley, A.; Searight, K.

    2013-10-01

    High penetration renewable integration studies require solar power data with high spatial and temporal accuracy to quantify the impact of high frequency solar power ramps on the operation of the system. Our previous work concentrated on downscaling solar power from one hour to one minute by simulation. This method used clearness classifications to categorize temporal and spatial variability, and iterative methods to simulate intra-hour clearness variability. We determined that solar power ramp correlations between sites decrease with distance and the duration of the ramp, starting at around 0.6 for 30-minute ramps between sites that are less than 20 km apart.more » The sub-hour irradiance algorithm we developed has a noise floor that causes the correlations to approach ~0.005. Below one minute, the majority of the correlations of solar power ramps between sites less than 20 km apart are zero, and thus a new method to simulate intra-minute variability is needed. These intra-minute solar power ramps can be simulated using several methods, three of which we evaluate: a cubic spline fit to the one-minute solar power data; projection of the power spectral density toward the higher frequency domain; and average high frequency power spectral density from measured data. Each of these methods either under- or over-estimates the variability of intra-minute solar power ramps. We show that an optimized weighted linear sum of methods, dependent on the classification of temporal variability of the segment of one-minute solar power data, yields time series and ramp distributions similar to measured high-resolution solar irradiance data.« less

  10. Downscaling Solar Power Output to 4-Seconds for Use in Integration Studies: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hummon, M.; Weekley, A.; Searight, K.

    2013-10-01

    High penetration renewable integration studies require solar power data with high spatial and temporal accuracy to quantify the impact of high frequency solar power ramps on the operation of the system. Our previous work concentrated on downscaling solar power from one hour to one minute by simulation. This method used clearness classifications to categorize temporal and spatial variability, and iterative methods to simulate intra-hour clearness variability. We determined that solar power ramp correlations between sites decrease with distance and the duration of the ramp, starting at around 0.6 for 30-minute ramps between sites that are less than 20 km apart.more » The sub-hour irradiance algorithm we developed has a noise floor that causes the correlations to approach ~0.005. Below one minute, the majority of the correlations of solar power ramps between sites less than 20 km apart are zero, and thus a new method to simulate intra-minute variability is needed. These intra-minute solar power ramps can be simulated using several methods, three of which we evaluate: a cubic spline fit to the one-minute solar power data; projection of the power spectral density toward the higher frequency domain; and average high frequency power spectral density from measured data. Each of these methods either under- or over-estimates the variability of intra-minute solar power ramps. We show that an optimized weighted linear sum of methods, dependent on the classification of temporal variability of the segment of one-minute solar power data, yields time series and ramp distributions similar to measured high-resolution solar irradiance data.« less

  11. The Indris Have Got Rhythm! Timing and Pitch Variation of a Primate Song Examined between Sexes and Age Classes

    PubMed Central

    Gamba, Marco; Torti, Valeria; Estienne, Vittoria; Randrianarison, Rose M.; Valente, Daria; Rovara, Paolo; Bonadonna, Giovanna; Friard, Olivier; Giacoma, Cristina

    2016-01-01

    A crucial, common feature of speech and music is that they show non-random structures over time. It is an open question which of the other species share rhythmic abilities with humans, but in most cases the lack of knowledge about their behavioral displays prevents further studies. Indris are the only lemurs who sing. They produce loud howling cries that can be heard at several kilometers, in which all members of a group usually sing. We tested whether overlapping and turn-taking during the songs followed a precise pattern by analysing the temporal structure of the individuals' contribution to the song. We found that both dominants (males and females) and non-dominants influenced the onset timing one another. We have found that the dominant male and the dominant female in a group overlapped each other more frequently than they did with the non-dominants. We then focused on the temporal and frequency structure of particular phrases occurring during the song. Our results show that males and females have dimorphic inter-onset intervals during the phrases. Moreover, median frequencies of the unit emitted in the phrases also differ between the sexes, with males showing higher frequencies when compared to females. We have not found an effect of age on the temporal and spectral structure of the phrases. These results indicate that singing in indris has a high behavioral flexibility and varies according to social and individual factors. The flexible spectral structure of the phrases given during the song may underlie perceptual abilities that are relatively unknown in other non-human primates, such as the ability to recognize particular pitch patterns. PMID:27378834

  12. Effects of volcanic tremor on noise-based measurements of temporal velocity changes at Hawaiian volcanoes

    NASA Astrophysics Data System (ADS)

    Ballmer, S.; Wolfe, C. J.; Okubo, P.; Haney, M. M.; Thurber, C. H.

    2011-12-01

    Green's functions calculated with ambient seismic noise may aid in volcano research and monitoring. The continuous character of ambient seismic noise and hence of the reconstructed Green's functions has enabled measurements of short-term (~days) temporal perturbations in seismic velocities. Very small but clear velocity decreases prior to some volcanic eruptions have been documented and motivate our present study. We apply this method to Hawaiian volcanoes using data from the USGS Hawaiian Volcano Observatory (HVO) seismic network. In order to obtain geologically relevant and reliable results, stable Green's functions need to be recovered from the ambient noise. Station timing problems, changes in noise source directivity, as well as changes in the source's spectral content are known biases that critically affect the Green's functions' stability and hence need to be considered. Here we show that volcanic tremor is a potential additional bias. During the time period of our study (2007-present), we find that volcanic tremor is a common feature in the HVO seismic data. Pu'u O'o tremor is continuously present before a dike intrusion into Kilauea's east rift zone in June 2007 and Halema'uma'u tremor occurs before and during resumed Kilauea summit activity from early 2008 and onward. For the frequency band considered (0.1-0.9 Hz), we find that these active tremor sources can drastically modify the recovered Green's functions for station pairs on the entire island at higher (> 0.5 Hz) frequencies, although the effect of tremor appears diminished at lower frequencies. In this presentation, we perform measurements of temporal velocity changes using ambient noise Green's functions and explore how volcanic tremor affects the results. Careful quality assessment of reconstructed Green's functions appears to be essential for the desired high precision measurements.

  13. Encoding of a spectrally-complex communication sound in the bullfrog's auditory nerve.

    PubMed

    Schwartz, J J; Simmons, A M

    1990-02-01

    1. A population study of eighth nerve responses in the bullfrog, Rana catesbeiana, was undertaken to analyze how the eighth nerve codes the complex spectral and temporal structure of the species-specific advertisement call over a biologically-realistic range of intensities. Synthetic advertisement calls were generated by Fourier synthesis and presented to individual eighth nerve fibers of anesthetized bullfrogs. Fiber responses were analyzed by calculating rate responses based on post-stimulus-time (PST) histograms and temporal responses based on Fourier transforms of period histograms. 2. At stimulus intensities of 70 and 80 dB SPL, normalized rate responses provide a fairly good representation of the complex spectral structure of the stimulus, particularly in the low- and mid-frequency range. At higher intensities, rate responses saturate, and very little of the spectral structure of the complex stimulus can be seen in the profile of rate responses of the population. 3. Both AP and BP fibers phase-lock strongly to the fundamental (100 Hz) of the complex stimulus. These effects are relatively resistant to changes in stimulus intensity. Only a small number of fibers synchronize to the low-frequency spectral energy in the stimulus. The underlying spectral complexity of the stimulus is not accurately reflected in the timing of fiber firing, presumably because firing is 'captured' by the fundamental frequency. 4. Plots of average localized synchronized rate (ALSR), which combine both spectral and temporal information, show a similar, low-pass shape at all stimulus intensities. ALSR plots do not generally provide an accurate representation of the structure of the advertisement call. 5. The data suggest that anuran peripheral auditory fibers may be particularly sensitive to the amplitude envelope of sounds.

  14. Quantifying spatiotemporal variability of fine particles in an urban environment using combined fixed and mobile measurements

    NASA Astrophysics Data System (ADS)

    Sullivan, R. C.; Pryor, S. C.

    2014-06-01

    Spatiotemporal variability of fine particle concentrations in Indianapolis, Indiana is quantified using a combination of high temporal resolution measurements at four fixed sites and mobile measurements with instruments attached to bicycles during transects of the city. Average urban PM2.5 concentrations are an average of ˜3.9-5.1 μg m-3 above the regional background. The influence of atmospheric conditions on ambient PM2.5 concentrations is evident with the greatest temporal variability occurring at periods of one day and 5-10 days corresponding to diurnal and synoptic meteorological processes, and lower mean wind speeds are associated with episodes of high PM2.5 concentrations. An anthropogenic signal is also evident. Higher PM2.5 concentrations coincide with morning rush hour, the frequencies of PM2.5 variability co-occur with those for carbon monoxide, and higher extreme concentrations were observed mid-week compared to weekends. On shorter time scales (

  15. Deconstruction of spatial integrity in visual stimulus detected by modulation of synchronized activity in cat visual cortex.

    PubMed

    Zhou, Zhiyi; Bernard, Melanie R; Bonds, A B

    2008-04-02

    Spatiotemporal relationships among contour segments can influence synchronization of neural responses in the primary visual cortex. We performed a systematic study to dissociate the impact of spatial and temporal factors in the signaling of contour integration via synchrony. In addition, we characterized the temporal evolution of this process to clarify potential underlying mechanisms. With a 10 x 10 microelectrode array, we recorded the simultaneous activity of multiple cells in the cat primary visual cortex while stimulating with drifting sine-wave gratings. We preserved temporal integrity and systematically degraded spatial integrity of the sine-wave gratings by adding spatial noise. Neural synchronization was analyzed in the time and frequency domains by conducting cross-correlation and coherence analyses. The general association between neural spike trains depends strongly on spatial integrity, with coherence in the gamma band (35-70 Hz) showing greater sensitivity to the change of spatial structure than other frequency bands. Analysis of the temporal dynamics of synchronization in both time and frequency domains suggests that spike timing synchronization is triggered nearly instantaneously by coherent structure in the stimuli, whereas frequency-specific oscillatory components develop more slowly, presumably through network interactions. Our results suggest that, whereas temporal integrity is required for the generation of synchrony, spatial integrity is critical in triggering subsequent gamma band synchronization.

  16. Spectrotemporal modulation sensitivity for hearing-impaired listeners: dependence on carrier center frequency and the relationship to speech intelligibility.

    PubMed

    Mehraei, Golbarg; Gallun, Frederick J; Leek, Marjorie R; Bernstein, Joshua G W

    2014-07-01

    Poor speech understanding in noise by hearing-impaired (HI) listeners is only partly explained by elevated audiometric thresholds. Suprathreshold-processing impairments such as reduced temporal or spectral resolution or temporal fine-structure (TFS) processing ability might also contribute. Although speech contains dynamic combinations of temporal and spectral modulation and TFS content, these capabilities are often treated separately. Modulation-depth detection thresholds for spectrotemporal modulation (STM) applied to octave-band noise were measured for normal-hearing and HI listeners as a function of temporal modulation rate (4-32 Hz), spectral ripple density [0.5-4 cycles/octave (c/o)] and carrier center frequency (500-4000 Hz). STM sensitivity was worse than normal for HI listeners only for a low-frequency carrier (1000 Hz) at low temporal modulation rates (4-12 Hz) and a spectral ripple density of 2 c/o, and for a high-frequency carrier (4000 Hz) at a high spectral ripple density (4 c/o). STM sensitivity for the 4-Hz, 4-c/o condition for a 4000-Hz carrier and for the 4-Hz, 2-c/o condition for a 1000-Hz carrier were correlated with speech-recognition performance in noise after partialling out the audiogram-based speech-intelligibility index. Poor speech-reception and STM-detection performance for HI listeners may be related to a combination of reduced frequency selectivity and a TFS-processing deficit limiting the ability to track spectral-peak movements.

  17. X-ray Variability Characteristics of the Narrow line SEYFERT 1 MKN 766 I: Energy Dependent Timing Properties

    NASA Technical Reports Server (NTRS)

    Markowitz, A.; Turner, T. J.; Papadakis, I.; Arevalo, P.; Reeves, J. N.; Miller, L.

    2007-01-01

    We present the energy-dependent power spectral density (PSD) and cross-spectral properties of Mkn 766 obtained from a six-revolution XMM-Newton observation in 2005. The resulting PSDs, which have highest temporal frequency resolution for an AGN PSD to date, show breaks which increase in temporal frequency as photon energy increases; break frequencies differ by an average of approx.0.4 in the log between the softest and hardest bands. The consistency of the 2001 and 2005 observations variability properties, namely PSD shapes and the linear rms-flux relation, suggests the 2005 observation is simply a low-flux extension of the 2001 observation. The coherence function is measured to be approx.0.6-0.9 at temporal frequencies below the PSD break, and is lower for relatively larger energy band separation; coherence also drops significantly towards zero above the PSD break frequency. Temporal frequency-dependent soft-to-hard time lags are detected in this object for the first time: lags increase towards longer time scales and as energy separation increases. Cross-spectral properties are the thus consistent with previous measurements for Mkn 766 (Vaughan & Fabian 2003) and other accreting black hole systems. The results are discussed in the context of several variability models, including those based on inwardly-propagating viscosity variations in the accretion disk.

  18. Accounting for nonmonotonic precursor duration effects with gain reduction in the temporal window model.

    PubMed

    Roverud, Elin; Strickland, Elizabeth A

    2014-03-01

    The mechanisms of forward masking are not clearly understood. The temporal window model (TWM) proposes that masking occurs via a neural mechanism that integrates within a temporal window. The medial olivocochlear reflex (MOCR), a sound-evoked reflex that reduces cochlear amplifier gain, may also contribute to forward masking if the preceding sound reduces gain for the signal. Psychophysical evidence of gain reduction can be observed using a growth of masking (GOM) paradigm with an off-frequency forward masker and a precursor. The basilar membrane input/output (I/O) function is estimated from the GOM function, and the I/O function gain is reduced by the precursor. In this study, the effect of precursor duration on this gain reduction effect was examined for on- and off-frequency precursors. With on-frequency precursors, thresholds increased with increasing precursor duration, then decreased (rolled over) for longer durations. Thresholds with off-frequency precursors continued to increase with increasing precursor duration. These results are not consistent with solely neural masking, but may reflect gain reduction that selectively affects on-frequency stimuli. The TWM was modified to include history-dependent gain reduction to simulate the MOCR, called the temporal window model-gain reduction (TWM-GR). The TWM-GR predicted rollover and the differences with on- and off-frequency precursors whereas the TWM did not.

  19. Input-dependent frequency modulation of cortical gamma oscillations shapes spatial synchronization and enables phase coding.

    PubMed

    Lowet, Eric; Roberts, Mark; Hadjipapas, Avgis; Peter, Alina; van der Eerden, Jan; De Weerd, Peter

    2015-02-01

    Fine-scale temporal organization of cortical activity in the gamma range (∼25-80Hz) may play a significant role in information processing, for example by neural grouping ('binding') and phase coding. Recent experimental studies have shown that the precise frequency of gamma oscillations varies with input drive (e.g. visual contrast) and that it can differ among nearby cortical locations. This has challenged theories assuming widespread gamma synchronization at a fixed common frequency. In the present study, we investigated which principles govern gamma synchronization in the presence of input-dependent frequency modulations and whether they are detrimental for meaningful input-dependent gamma-mediated temporal organization. To this aim, we constructed a biophysically realistic excitatory-inhibitory network able to express different oscillation frequencies at nearby spatial locations. Similarly to cortical networks, the model was topographically organized with spatially local connectivity and spatially-varying input drive. We analyzed gamma synchronization with respect to phase-locking, phase-relations and frequency differences, and quantified the stimulus-related information represented by gamma phase and frequency. By stepwise simplification of our models, we found that the gamma-mediated temporal organization could be reduced to basic synchronization principles of weakly coupled oscillators, where input drive determines the intrinsic (natural) frequency of oscillators. The gamma phase-locking, the precise phase relation and the emergent (measurable) frequencies were determined by two principal factors: the detuning (intrinsic frequency difference, i.e. local input difference) and the coupling strength. In addition to frequency coding, gamma phase contained complementary stimulus information. Crucially, the phase code reflected input differences, but not the absolute input level. This property of relative input-to-phase conversion, contrasting with latency codes or slower oscillation phase codes, may resolve conflicting experimental observations on gamma phase coding. Our modeling results offer clear testable experimental predictions. We conclude that input-dependency of gamma frequencies could be essential rather than detrimental for meaningful gamma-mediated temporal organization of cortical activity.

  20. Input-Dependent Frequency Modulation of Cortical Gamma Oscillations Shapes Spatial Synchronization and Enables Phase Coding

    PubMed Central

    Lowet, Eric; Roberts, Mark; Hadjipapas, Avgis; Peter, Alina; van der Eerden, Jan; De Weerd, Peter

    2015-01-01

    Fine-scale temporal organization of cortical activity in the gamma range (∼25–80Hz) may play a significant role in information processing, for example by neural grouping (‘binding’) and phase coding. Recent experimental studies have shown that the precise frequency of gamma oscillations varies with input drive (e.g. visual contrast) and that it can differ among nearby cortical locations. This has challenged theories assuming widespread gamma synchronization at a fixed common frequency. In the present study, we investigated which principles govern gamma synchronization in the presence of input-dependent frequency modulations and whether they are detrimental for meaningful input-dependent gamma-mediated temporal organization. To this aim, we constructed a biophysically realistic excitatory-inhibitory network able to express different oscillation frequencies at nearby spatial locations. Similarly to cortical networks, the model was topographically organized with spatially local connectivity and spatially-varying input drive. We analyzed gamma synchronization with respect to phase-locking, phase-relations and frequency differences, and quantified the stimulus-related information represented by gamma phase and frequency. By stepwise simplification of our models, we found that the gamma-mediated temporal organization could be reduced to basic synchronization principles of weakly coupled oscillators, where input drive determines the intrinsic (natural) frequency of oscillators. The gamma phase-locking, the precise phase relation and the emergent (measurable) frequencies were determined by two principal factors: the detuning (intrinsic frequency difference, i.e. local input difference) and the coupling strength. In addition to frequency coding, gamma phase contained complementary stimulus information. Crucially, the phase code reflected input differences, but not the absolute input level. This property of relative input-to-phase conversion, contrasting with latency codes or slower oscillation phase codes, may resolve conflicting experimental observations on gamma phase coding. Our modeling results offer clear testable experimental predictions. We conclude that input-dependency of gamma frequencies could be essential rather than detrimental for meaningful gamma-mediated temporal organization of cortical activity. PMID:25679780

  1. Noise-induced hearing loss increases the temporal precision of complex envelope coding by auditory-nerve fibers

    PubMed Central

    Henry, Kenneth S.; Kale, Sushrut; Heinz, Michael G.

    2014-01-01

    While changes in cochlear frequency tuning are thought to play an important role in the perceptual difficulties of people with sensorineural hearing loss (SNHL), the possible role of temporal processing deficits remains less clear. Our knowledge of temporal envelope coding in the impaired cochlea is limited to two studies that examined auditory-nerve fiber responses to narrowband amplitude modulated stimuli. In the present study, we used Wiener-kernel analyses of auditory-nerve fiber responses to broadband Gaussian noise in anesthetized chinchillas to quantify changes in temporal envelope coding with noise-induced SNHL. Temporal modulation transfer functions (TMTFs) and temporal windows of sensitivity to acoustic stimulation were computed from 2nd-order Wiener kernels and analyzed to estimate the temporal precision, amplitude, and latency of envelope coding. Noise overexposure was associated with slower (less negative) TMTF roll-off with increasing modulation frequency and reduced temporal window duration. The results show that at equal stimulus sensation level, SNHL increases the temporal precision of envelope coding by 20–30%. Furthermore, SNHL increased the amplitude of envelope coding by 50% in fibers with CFs from 1–2 kHz and decreased mean response latency by 0.4 ms. While a previous study of envelope coding demonstrated a similar increase in response amplitude, the present study is the first to show enhanced temporal precision. This new finding may relate to the use of a more complex stimulus with broad frequency bandwidth and a dynamic temporal envelope. Exaggerated neural coding of fast envelope modulations may contribute to perceptual difficulties in people with SNHL by acting as a distraction from more relevant acoustic cues, especially in fluctuating background noise. Finally, the results underscore the value of studying sensory systems with more natural, real-world stimuli. PMID:24596545

  2. Neural correlates of mirth and laughter: a direct electrical cortical stimulation study.

    PubMed

    Yamao, Yukihiro; Matsumoto, Riki; Kunieda, Takeharu; Shibata, Sumiya; Shimotake, Akihiro; Kikuchi, Takayuki; Satow, Takeshi; Mikuni, Nobuhiro; Fukuyama, Hidenao; Ikeda, Akio; Miyamoto, Susumu

    2015-05-01

    Laughter consists of both motor and emotional aspects. The emotional component, known as mirth, is usually associated with the motor component, namely, bilateral facial movements. Previous electrical cortical stimulation (ES) studies revealed that mirth was associated with the basal temporal cortex, inferior frontal cortex, and medial frontal cortex. Functional neuroimaging implicated a role for the left inferior frontal and bilateral temporal cortices in humor processing. However, the neural origins and pathways linking mirth with facial movements are still unclear. We hereby report two cases with temporal lobe epilepsy undergoing subdural electrode implantation in whom ES of the left basal temporal cortex elicited both mirth and laughter-related facial muscle movements. In one case with normal hippocampus, high-frequency ES consistently caused contralateral facial movement, followed by bilateral facial movements with mirth. In contrast, in another case with hippocampal sclerosis (HS), ES elicited only mirth at low intensity and short duration, and eventually laughter at higher intensity and longer duration. In both cases, the basal temporal language area (BTLA) was located within or adjacent to the cortex where ES produced mirth. In conclusion, the present direct ES study demonstrated that 1) mirth had a close relationship with language function, 2) intact mesial temporal structures were actively engaged in the beginning of facial movements associated with mirth, and 3) these emotion-related facial movements had contralateral dominance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Scaling A Moment-Rate Function For Small To Large Magnitude Events

    NASA Astrophysics Data System (ADS)

    Archuleta, Ralph; Ji, Chen

    2017-04-01

    Since the 1980's seismologists have recognized that peak ground acceleration (PGA) and peak ground velocity (PGV) scale differently with magnitude for large and moderate earthquakes. In a recent paper (Archuleta and Ji, GRL 2016) we introduced an apparent moment-rate function (aMRF) that accurately predicts the scaling with magnitude of PGA, PGV, PWA (Wood-Anderson Displacement) and the ratio PGA/2πPGV (dominant frequency) for earthquakes 3.3 ≤ M ≤ 5.3. This apparent moment-rate function is controlled by two temporal parameters, tp and td, which are related to the time for the moment-rate function to reach its peak amplitude and the total duration of the earthquake, respectively. These two temporal parameters lead to a Fourier amplitude spectrum (FAS) of displacement that has two corners in between which the spectral amplitudes decay as 1/f, f denotes frequency. At higher or lower frequencies, the FAS of the aMRF looks like a single-corner Aki-Brune omega squared spectrum. However, in the presence of attenuation the higher corner is almost certainly masked. Attempting to correct the spectrum to an Aki-Brune omega-squared spectrum will produce an "apparent" corner frequency that falls between the double corner frequency of the aMRF. We reason that the two corners of the aMRF are the reason that seismologists deduce a stress drop (e.g., Allmann and Shearer, JGR 2009) that is generally much smaller than the stress parameter used to produce ground motions from stochastic simulations (e.g., Boore, 2003 Pageoph.). The presence of two corners for the smaller magnitude earthquakes leads to several questions. Can deconvolution be successfully used to determine scaling from small to large earthquakes? Equivalently will large earthquakes have a double corner? If large earthquakes are the sum of many smaller magnitude earthquakes, what should the displacement FAS look like for a large magnitude earthquake? Can a combination of such a double-corner spectrum and random vibration theory explain the PGA, PGV scaling relationships for larger magnitude?

  4. Assessing spectral and temporal processing in children and adults using temporal modulation transfer function (TMTF), Iterated Ripple Noise (IRN) perception, and spectral ripple discrimination (SRD).

    PubMed

    Peter, Varghese; Wong, Kogo; Narne, Vijaya Kumar; Sharma, Mridula; Purdy, Suzanne C; McMahon, Catherine

    2014-02-01

    There are many clinically available tests for the assessment of auditory processing skills in children and adults. However, there is limited data available on the maturational effects on the performance on these tests. The current study investigated maturational effects on auditory processing abilities using three psychophysical measures: temporal modulation transfer function (TMTF), iterated ripple noise (IRN) perception, and spectral ripple discrimination (SRD). A cross-sectional study. Three groups of subjects were tested: 10 adults (18-30 yr), 10 older children (12-18 yr), and 10 young children (8-11 yr) Temporal envelope processing was measured by obtaining thresholds for amplitude modulation detection as a function of modulation frequency (TMTF; 4, 8, 16, 32, 64, and 128 Hz). Temporal fine structure processing was measured using IRN, and spectral processing was measured using SRD. The results showed that young children had significantly higher modulation thresholds at 4 Hz (TMTF) compared to the other two groups and poorer SRD scores compared to adults. The results on IRN did not differ across groups. The results suggest that different aspects of auditory processing mature at different age periods and these maturational effects need to be considered while assessing auditory processing in children. American Academy of Audiology.

  5. Motion mechanisms with different spatiotemporal characteristics identified by an MAE technique with superimposed gratings.

    PubMed

    Shioiri, Satoshi; Matsumiya, Kazumichi

    2009-05-29

    We investigated spatiotemporal characteristics of motion mechanisms using a new type of motion aftereffect (MAE) we found. Our stimulus comprised two superimposed sinusoidal gratings with different spatial frequencies. After exposure to the moving stimulus, observers perceived the MAE in the static test in the direction opposite to that of the high spatial frequency grating even when low spatial frequency motion was perceived during adaptation. In contrast, in the flicker test, the MAE was perceived in the direction opposite to that of the low spatial frequency grating. These MAEs indicate that two different motion systems contribute to motion perception and can be isolated by using different test stimuli. Using a psychophysical technique based on the MAE, we investigated the differences between the two motion mechanisms. The results showed that the static MAE is the aftereffect of the motion system with a high spatial and low temporal frequency tuning (slow motion detector) and the flicker MAE is the aftereffect of the motion system with a low spatial and high temporal frequency tuning (fast motion detector). We also revealed that the two motion detectors differ in orientation tuning, temporal frequency tuning, and sensitivity to relative motion.

  6. Cloud and convection frequencies over the southeast United States as related to small-scale geographic features

    NASA Technical Reports Server (NTRS)

    Gibson, Harold M.; Vonder Haar, Thomas H.

    1990-01-01

    Based on relatively high spatial and temporal resolution satelite data collected at 0700 CST and at each hour from 1000 CST to 1700 CST during the summer of 1986, cloud and convection variations over the area from Mississippi east to Georgia and from the Gulf of Mexico north to Tennessee are discussed. The data analyses show an average maximum cloud frequency over the land areas at 1400 local time and a maximum of deep convection one hour later. Both cloudiness and deep convection are found to be at a maximum during the nocturnal hours over the Gulf of Mexico. Cloud frequency shows a strong relationship to small terrain features. Small fresh water bodies have cloud minima relative to the surroundings in the afternoon hours. Higher, steep terrain shows cloud maxima and the adjacent lower terrain exhibits afternoon cloud minima due to a divergence of mountain breeze caused by the valley.

  7. Measuring saccade peak velocity using a low-frequency sampling rate of 50 Hz.

    PubMed

    Wierts, Roel; Janssen, Maurice J A; Kingma, Herman

    2008-12-01

    During the last decades, small head-mounted video eye trackers have been developed in order to record eye movements. Real-time systems-with a low sampling frequency of 50/60 Hz-are used for clinical vestibular practice, but are generally considered not to be suited for measuring fast eye movements. In this paper, it is shown that saccadic eye movements, having an amplitude of at least 5 degrees, can, in good approximation, be considered to be bandwidth limited up to a frequency of 25-30 Hz. Using the Nyquist theorem to reconstruct saccadic eye movement signals at higher temporal resolutions, it is shown that accurate values for saccade peak velocities, recorded at 50 Hz, can be obtained, but saccade peak accelerations and decelerations cannot. In conclusion, video eye trackers sampling at 50/60 Hz are appropriate for detecting the clinical relevant saccade peak velocities in contrast to what has been stated up till now.

  8. Episodic sequence memory is supported by a theta-gamma phase code.

    PubMed

    Heusser, Andrew C; Poeppel, David; Ezzyat, Youssef; Davachi, Lila

    2016-10-01

    The meaning we derive from our experiences is not a simple static extraction of the elements but is largely based on the order in which those elements occur. Models propose that sequence encoding is supported by interactions between high- and low-frequency oscillations, such that elements within an experience are represented by neural cell assemblies firing at higher frequencies (gamma) and sequential order is encoded by the specific timing of firing with respect to a lower frequency oscillation (theta). During episodic sequence memory formation in humans, we provide evidence that items in different sequence positions exhibit greater gamma power along distinct phases of a theta oscillation. Furthermore, this segregation is related to successful temporal order memory. Our results provide compelling evidence that memory for order, a core component of an episodic memory, capitalizes on the ubiquitous physiological mechanism of theta-gamma phase-amplitude coupling.

  9. Radio Astronomy Explorer (RAE) 1 observations of terrestrial radio noise

    NASA Technical Reports Server (NTRS)

    Herman, J. R.; Caruso, J. A.

    1971-01-01

    Radio Astonomy Explorer (RAE) 1 data are analyzed to establish characteristics of HF terrestrial radio noise at an altitude of about 6000 km. Time and frequency variations in amplitude of the observed noise well above cosmic noise background are explained on the basis of temporal and spatial variations in ionospheric critical frequency coupled with those in noise source distributions. It is shown that terrestrial noise regularly breaks through the ionosphere and reaches RAE with magnitudes 15 or more db higher than cosmic noise background. Maximum terrestrial noise is observed when RAE is over the dark side of the Earth in the neighborhood of equatorial continental land masses where thunderstorms occur most frequently. The observed noise level is 30-40 db lower with RAE over oceans.

  10. Revealing plasma oscillation in THz spectrum from laser plasma of molecular jet.

    PubMed

    Li, Na; Bai, Ya; Miao, Tianshi; Liu, Peng; Li, Ruxin; Xu, Zhizhan

    2016-10-03

    Contribution of plasma oscillation to the broadband terahertz (THz) emission is revealed by interacting two-color (ω/2ω) laser pulses with a supersonic jet of nitrogen molecules. Temporal and spectral shifts of THz waves are observed as the plasma density varies. The former owes to the changing refractive index of the THz waves, and the latter correlates to the varying plasma frequency. Simulation of considering photocurrents, plasma oscillation and decaying plasma density explains the broadband THz spectrum and the varying THz spectrum. Plasma oscillation only contributes to THz waves at low plasma density owing to negligible plasma absorption. At the longer medium or higher density, the combining effects of plasma oscillation and absorption results in the observed low-frequency broadband THz spectra.

  11. Temporal Intraspeech Masking of Plosive Bursts: Effects of Hearing Loss and Frequency Shaping

    ERIC Educational Resources Information Center

    Mackersie, Carol L.

    2007-01-01

    Purpose: The purposes were (a) to compare masking of consonant bursts by adjacent vowels for listeners with and without hearing loss and (b) to determine the extent to which the temporal intraspeech masking can be reduced by a simulated hearing-aid frequency-response shaping. Method: Fourteen adults with sensorineural hearing loss and 10 with…

  12. Halftoning method for the generation of motion stimuli

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.; Stone, Leland S.

    1989-01-01

    This paper describes a novel computer-graphic technique for the generation of a broad class of motion stimuli for vision research, which uses color table animation in conjunction with a single base image. Using this technique, contrast and temporal frequency can be varied with a negligible amount of computation, once a single-base image is produced. Since only two-bit planes are needed to display a single drifting grating, an eight-bit/pixel display can be used to generate four-component plaids, in which each component of the plaid has independently programmable contrast and temporal frequency. Because the contrast and temporal frequencies of the various components are mutually independent, a large number of two-dimensional stimulus motions can be produced from a single image file.

  13. Joint temporal density measurements for two-photon state characterization.

    PubMed

    Kuzucu, Onur; Wong, Franco N C; Kurimura, Sunao; Tovstonog, Sergey

    2008-10-10

    We demonstrate a technique for characterizing two-photon quantum states based on joint temporal correlation measurements using time-resolved single-photon detection by femtosecond up-conversion. We measure for the first time the joint temporal density of a two-photon entangled state, showing clearly the time anticorrelation of the coincident-frequency entangled photon pair generated by ultrafast spontaneous parametric down-conversion under extended phase-matching conditions. The new technique enables us to manipulate the frequency entanglement by varying the down-conversion pump bandwidth to produce a nearly unentangled two-photon state that is expected to yield a heralded single-photon state with a purity of 0.88. The time-domain correlation technique complements existing frequency-domain measurement methods for a more complete characterization of photonic entanglement.

  14. Enhanced dual-frequency pattern scheme based on spatial-temporal fringes method

    NASA Astrophysics Data System (ADS)

    Wang, Minmin; Zhou, Canlin; Si, Shuchun; Lei, Zhenkun; Li, Xiaolei; Li, Hui; Li, YanJie

    2018-07-01

    One of the major challenges of employing a dual-frequency phase-shifting algorithm for phase retrieval is its sensitivity to noise. Yun et al proposed a dual-frequency method based on the Fourier transform profilometry, yet the low-frequency lobes are close to each other for accurate band-pass filtering. In the light of this problem, a novel dual-frequency pattern based on the spatial-temporal fringes (STF) method is developed in this paper. Three fringe patterns with two different frequencies are required. The low-frequency phase is obtained from two low-frequency fringe patterns by the STF method, so the signal lobes can be extracted accurately as they are far away from each other. The high-frequency phase is retrieved from another fringe pattern without the impact of the DC component. Simulations and experiments are conducted to demonstrate the excellent precision of the proposed method.

  15. Flicker-Driven Responses in Visual Cortex Change during Matched-Frequency Transcranial Alternating Current Stimulation

    PubMed Central

    Ruhnau, Philipp; Keitel, Christian; Lithari, Chrysa; Weisz, Nathan; Neuling, Toralf

    2016-01-01

    We tested a novel combination of two neuro-stimulation techniques, transcranial alternating current stimulation (tACS) and frequency tagging, that promises powerful paradigms to study the causal role of rhythmic brain activity in perception and cognition. Participants viewed a stimulus flickering at 7 or 11 Hz that elicited periodic brain activity, termed steady-state responses (SSRs), at the same temporal frequency and its higher order harmonics. Further, they received simultaneous tACS at 7 or 11 Hz that either matched or differed from the flicker frequency. Sham tACS served as a control condition. Recent advances in reconstructing cortical sources of oscillatory activity allowed us to measure SSRs during concurrent tACS, which is known to impose strong artifacts in magnetoencephalographic (MEG) recordings. For the first time, we were thus able to demonstrate immediate effects of tACS on SSR-indexed early visual processing. Our data suggest that tACS effects are largely frequency-specific and reveal a characteristic pattern of differential influences on the harmonic constituents of SSRs. PMID:27199707

  16. Frequency stabilization of diode-laser-pumped solid state lasers

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1988-01-01

    The goal of the NASA Sunlite program is to fly two diode-laser-pumped solid-state lasers on the space shuttle and while doing so to perform a measurement of their frequency stability and temporal coherence. These measurements will be made by combining the outputs of the two lasers on an optical radiation detector and spectrally analyzing the beat note. Diode-laser-pumped solid-state lasers have several characteristics that will make them useful in space borne experiments. First, this laser has high electrical efficiency. Second, it is of a technology that enables scaling to higher powers in the future. Third, the laser can be made extremely reliable, which is crucial for many space based applications. Fourth, they are frequency and amplitude stable and have high temporal coherence. Diode-laser-pumped solid-state lasers are inherently efficient. Recent results have shown 59 percent slope efficiency for a diode-laser-pumped solid-state laser. As for reliability, the laser proposed should be capable of continuous operation. This is possible because the diode lasers can be remote from the solid state gain medium by coupling through optical fibers. Diode lasers are constructed with optical detectors for monitoring their output power built into their mounting case. A computer can actively monitor the output of each diode laser. If it sees any variation in the output power that might indicate a problem, the computer can turn off that diode laser and turn on a backup diode laser. As for stability requirements, it is now generally believed that any laser can be stabilized if the laser has a frequency actuator capable of tuning the laser frequency as far as it is likely to drift in a measurement time.

  17. Experimental investigation of mode transitions in asymmetric capacitively coupled radio-frequency Ne and CF4 plasmas

    NASA Astrophysics Data System (ADS)

    Liu, Gang-Hu; Liu, Yong-Xin; Bai, Li-Shui; Zhao, Kai; Wang, You-Nian

    2018-02-01

    The dependence of the electron density and the emission intensity on external parameters during the transitions of the electron power absorption mode is experimentally studied in asymmetric electropositive (neon) and electronegative (CF4) capacitively coupled radio-frequency plasmas. The spatio-temporal distribution of the emission intensity is measured with phase resolved optical emission spectroscopy and the electron density at the discharge center is measured by utilizing a floating hairpin probe. In neon discharge, the emission intensity increases almost linearly with the rf voltage at all driving frequencies covered here, while the variation of the electron density with the rf voltage behaves differently at different driving frequencies. In particular, the electron density increases linearly with the rf voltage at high driving frequencies, while at low driving frequencies the electron density increases slowly at the low-voltage side and, however, grows rapidly, when the rf voltage is higher than a certain value, indicating a transition from α to γ mode. The rf voltage, at which the mode transition occurs, increases with the decrease of the driving frequency/the working pressure. By contrast, in CF4 discharge, three different electron power absorption modes can be observed and the electron density and emission intensity do not exhibit a simple dependence on the rf voltage. In particular, the electron density exhibits a minimum at a certain rf voltage when the electron power absorption mode is switching from drift-ambipolar to the α/γ mode. A minimum can also be found in the emission intensity at a higher rf voltage when a discharge is switching into the γ mode.

  18. The effects of context and musical training on auditory temporal-interval discrimination.

    PubMed

    Banai, Karen; Fisher, Shirley; Ganot, Ron

    2012-02-01

    Non sensory factors such as stimulus context and musical experience are known to influence auditory frequency discrimination, but whether the context effect extends to auditory temporal processing remains unknown. Whether individual experiences such as musical training alter the context effect is also unknown. The goal of the present study was therefore to investigate the effects of stimulus context and musical experience on auditory temporal-interval discrimination. In experiment 1, temporal-interval discrimination was compared between fixed context conditions in which a single base temporal interval was presented repeatedly across all trials and variable context conditions in which one of two base intervals was randomly presented on each trial. Discrimination was significantly better in the fixed than in the variable context conditions. In experiment 2 temporal discrimination thresholds of musicians and non-musicians were compared across 3 conditions: a fixed context condition in which the target interval was presented repeatedly across trials, and two variable context conditions differing in the frequencies used for the tones marking the temporal intervals. Musicians outperformed non-musicians on all 3 conditions, but the effects of context were similar for the two groups. Overall, it appears that, like frequency discrimination, temporal-interval discrimination benefits from having a fixed reference. Musical experience, while improving performance, did not alter the context effect, suggesting that improved discrimination skills among musicians are probably not an outcome of more sensitive contextual facilitation or predictive coding mechanisms. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Emotions induced by intracerebral electrical stimulation of the temporal lobe.

    PubMed

    Meletti, Stefano; Tassi, Laura; Mai, Roberto; Fini, Nicola; Tassinari, Carlo Alberto; Russo, Giorgio Lo

    2006-01-01

    To assess the quality and frequency of emotions induced by intracerebral electrical stimulation of the temporal lobe. Behavioral responses were obtained by electrical stimulation in 74 patients undergoing presurgical video-stereo-EEG monitoring for drug-resistant epilepsy. Intracerebral electrical stimulation was performed by delivering trains of electrical stimuli of alternating polarity; the intensity could vary from 0.2 to 3 mA. Stimulation frequency was 1 Hz or 50 Hz. Nine hundred thirty-eight stimulation procedures were performed. Seventy-nine emotional responses (ERs) were obtained (8.4%). Of these, 67 were "fear responses." Sad feelings were evoked 3 times, happy-pleasant feelings 9 times. Anger and disgust were never observed. The following variables affected the incidence of ER: (a) Anatomical site of stimulation. ERs (always fear) were maximal at the amygdala (12%) and minimal for lateral neocortical stimulation (3%, p < 0.01). (b) Pathology. Stimulation of a temporal lobe with hippocampal sclerosis was associated with a lower frequency of ERs compared with stimulation of a temporal lobe with no evidence of atrophy in the medial temporal structures. (c) Stimulation frequency. ERs were 12% at 50 Hz versus 6.0% at 1 Hz (p < 0.01). (d) Gender. In women fear responses were 16% compared with 3% in men (p < 0.01). There were no gender differences when analyzing nonemotional responses. These data confirm the role of the medial temporal lobe region in the expression of emotions, especially fear-related behaviors. Fear was observed more frequently in the absence of medial temporal sclerosis, supporting the hypothesis that emotional behaviors induced by stimulation are positive phenomena, strictly related to the physiological function of these regions. Further investigations should address why women express fear behaviors more frequently than men.

  20. Neurophysiological correlates of abnormal somatosensory temporal discrimination in dystonia.

    PubMed

    Antelmi, Elena; Erro, Roberto; Rocchi, Lorenzo; Liguori, Rocco; Tinazzi, Michele; Di Stasio, Flavio; Berardelli, Alfredo; Rothwell, John C; Bhatia, Kailash P

    2017-01-01

    Somatosensory temporal discrimination threshold is often prolonged in patients with dystonia. Previous evidence suggested that this might be caused by impaired somatosensory processing in the time domain. Here, we tested if other markers of reduced inhibition in the somatosensory system might also contribute to abnormal somatosensory temporal discrimination in dystonia. Somatosensory temporal discrimination threshold was measured in 19 patients with isolated cervical dystonia and 19 age-matched healthy controls. We evaluated temporal somatosensory inhibition using paired-pulse somatosensory evoked potentials, spatial somatosensory inhibition by measuring the somatosensory evoked potentials interaction between simultaneous stimulation of the digital nerves in thumb and index finger, and Gamma-aminobutyric acid-ergic (GABAergic) sensory inhibition using the early and late components of high-frequency oscillations in digital nerves somatosensory evoked potentials. When compared with healthy controls, dystonic patients had longer somatosensory temporal discrimination thresholds, reduced suppression of cortical and subcortical paired-pulse somatosensory evoked potentials, less spatial inhibition of simultaneous somatosensory evoked potentials, and a smaller area of the early component of the high-frequency oscillations. A logistic regression analysis found that paired pulse suppression of the N20 component at an interstimulus interval of 5 milliseconds and the late component of the high-frequency oscillations were independently related to somatosensory temporal discrimination thresholds. "Dystonia group" was also a predictor of enhanced somatosensory temporal discrimination threshold, indicating a dystonia-specific effect that independently influences this threshold. Increased somatosensory temporal discrimination threshold in dystonia is related to reduced activity of inhibitory circuits within the primary somatosensory cortex. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.

  1. Decoding-Accuracy-Based Sequential Dimensionality Reduction of Spatio-Temporal Neural Activities

    NASA Astrophysics Data System (ADS)

    Funamizu, Akihiro; Kanzaki, Ryohei; Takahashi, Hirokazu

    Performance of a brain machine interface (BMI) critically depends on selection of input data because information embedded in the neural activities is highly redundant. In addition, properly selected input data with a reduced dimension leads to improvement of decoding generalization ability and decrease of computational efforts, both of which are significant advantages for the clinical applications. In the present paper, we propose an algorithm of sequential dimensionality reduction (SDR) that effectively extracts motor/sensory related spatio-temporal neural activities. The algorithm gradually reduces input data dimension by dropping neural data spatio-temporally so as not to undermine the decoding accuracy as far as possible. Support vector machine (SVM) was used as the decoder, and tone-induced neural activities in rat auditory cortices were decoded into the test tone frequencies. SDR reduced the input data dimension to a quarter and significantly improved the accuracy of decoding of novel data. Moreover, spatio-temporal neural activity patterns selected by SDR resulted in significantly higher accuracy than high spike rate patterns or conventionally used spatial patterns. These results suggest that the proposed algorithm can improve the generalization ability and decrease the computational effort of decoding.

  2. Voice gender identification by cochlear implant users: The role of spectral and temporal resolution

    NASA Astrophysics Data System (ADS)

    Fu, Qian-Jie; Chinchilla, Sherol; Nogaki, Geraldine; Galvin, John J.

    2005-09-01

    The present study explored the relative contributions of spectral and temporal information to voice gender identification by cochlear implant users and normal-hearing subjects. Cochlear implant listeners were tested using their everyday speech processors, while normal-hearing subjects were tested under speech processing conditions that simulated various degrees of spectral resolution, temporal resolution, and spectral mismatch. Voice gender identification was tested for two talker sets. In Talker Set 1, the mean fundamental frequency values of the male and female talkers differed by 100 Hz while in Talker Set 2, the mean values differed by 10 Hz. Cochlear implant listeners achieved higher levels of performance with Talker Set 1, while performance was significantly reduced for Talker Set 2. For normal-hearing listeners, performance was significantly affected by the spectral resolution, for both Talker Sets. With matched speech, temporal cues contributed to voice gender identification only for Talker Set 1 while spectral mismatch significantly reduced performance for both Talker Sets. The performance of cochlear implant listeners was similar to that of normal-hearing subjects listening to 4-8 spectral channels. The results suggest that, because of the reduced spectral resolution, cochlear implant patients may attend strongly to periodicity cues to distinguish voice gender.

  3. Quantitative phase imaging of biological cells using spatially low and temporally high coherent light source.

    PubMed

    Ahmad, Azeem; Dubey, Vishesh; Singh, Gyanendra; Singh, Veena; Mehta, Dalip Singh

    2016-04-01

    In this Letter, we demonstrate quantitative phase imaging of biological samples, such as human red blood cells (RBCs) and onion cells using narrow temporal frequency and wide angular frequency spectrum light source. This type of light source was synthesized by the combined effect of spatial, angular, and temporal diversity of speckle reduction technique. The importance of using low spatial and high temporal coherence light source over the broad band and narrow band light source is that it does not require any dispersion compensation mechanism for biological samples. Further, it avoids the formation of speckle or spurious fringes which arises while using narrow band light source.

  4. Idealized Computational Models for Auditory Receptive Fields

    PubMed Central

    Lindeberg, Tony; Friberg, Anders

    2015-01-01

    We present a theory by which idealized models of auditory receptive fields can be derived in a principled axiomatic manner, from a set of structural properties to (i) enable invariance of receptive field responses under natural sound transformations and (ii) ensure internal consistency between spectro-temporal receptive fields at different temporal and spectral scales. For defining a time-frequency transformation of a purely temporal sound signal, it is shown that the framework allows for a new way of deriving the Gabor and Gammatone filters as well as a novel family of generalized Gammatone filters, with additional degrees of freedom to obtain different trade-offs between the spectral selectivity and the temporal delay of time-causal temporal window functions. When applied to the definition of a second-layer of receptive fields from a spectrogram, it is shown that the framework leads to two canonical families of spectro-temporal receptive fields, in terms of spectro-temporal derivatives of either spectro-temporal Gaussian kernels for non-causal time or a cascade of time-causal first-order integrators over the temporal domain and a Gaussian filter over the logspectral domain. For each filter family, the spectro-temporal receptive fields can be either separable over the time-frequency domain or be adapted to local glissando transformations that represent variations in logarithmic frequencies over time. Within each domain of either non-causal or time-causal time, these receptive field families are derived by uniqueness from the assumptions. It is demonstrated how the presented framework allows for computation of basic auditory features for audio processing and that it leads to predictions about auditory receptive fields with good qualitative similarity to biological receptive fields measured in the inferior colliculus (ICC) and primary auditory cortex (A1) of mammals. PMID:25822973

  5. Spatiotemporal Phase Synchronization in Adaptive Reconfiguration from Action Observation Network to Mentalizing Network for Understanding Other's Action Intention.

    PubMed

    Zhang, Li; Gan, John Q; Zheng, Wenming; Wang, Haixian

    2018-05-01

    In action intention understanding, the mirror system is involved in perception-action matching process and the mentalizing system underlies higher-level intention inference. By analyzing the dynamic functional connectivity in α (8-12 Hz) and β (12-30 Hz) frequency bands over a "hand-cup interaction" observation task, this study investigates the topological transition from the action observation network (AON) to the mentalizing network (MZN), and estimates their functional relevance for intention identification from other's different action kinematics. Sequential brain microstates were extracted based on event-related potentials (ERPs), in which significantly differing neuronal responses were found in N170-P200 related to perceptually matching kinematic profiles and P400-700 involved in goal inference. Inter-electrode weighted phase lag index analysis on the ERP microstates revealed a shift of hub centrality salient in α frequency band, from the AON dominated by left-lateral frontal-premotor-temporal and temporal-parietooccipital synchronizations to the MZN consisting of more bilateral frontal-parietal and temporal-parietal synchronizations. As compared with usual actions, intention identification of unintelligible actions induces weaker synchronizations in the AON but dramatically increased connectivity in right frontal-temporal-parietal regions of the MZN, indicating a spatiotemporally complementary effect between the functional network configurations involved in mirror and mentalizing processes. Perceptual processing in observing usual/unintelligible actions decreases/increases requirements for intention inference, which would induce less/greater functional network reorganization on the way to mentalization. From the comparison, our study suggests that the adaptive topological changes from the AON to the MZN indicate implicit causal association between the mirror and mentalizing systems for decoding others' intentionality.

  6. Temporal changes in blood product usage in preterm neonates born at less than 30 weeks' gestation in Canada.

    PubMed

    Keir, Amy K; Yang, Junmin; Harrison, Adele; Pelausa, Ermelinda; Shah, Prakesh S

    2015-06-01

    Knowledge of neonatal transfusion practices remains limited to local cohorts or survey-based studies. This study evaluated the pattern and temporal changes in the types and frequency of blood product use among preterm neonates born at less than 30 weeks' gestation in Canada. A retrospective cohort study of preterm neonates born at less than 30 weeks' gestation and admitted to participating neonatal intensive care units in the Canadian Neonatal Network from 2004 to 2012 was conducted to evaluate blood product usage. The temporal change in red blood cell (RBC) use was evaluated by dividing the study period into three epochs: 2004 to 2006, 2007 to 2009, and 2010 to 2012. Of 14,868 eligible neonates admitted to participating units in Canada during the overall study period, 8252 (56%) received RBCs, 2151 (15%) platelets, 1556 (11%) fresh-frozen plasma, 915 (6%) albumin, and 302 (2%) cryoprecipitate. Temporal evaluation over three epochs revealed a trend toward fewer RBC transfusions among neonates born at 26 to 29 weeks' gestation (p = <0.01-0.04) but use remained unchanged or increased for neonates born at 23 to 25 weeks' gestation (p = 0.02-0.54). Blood product use remains at a very high frequency in preterm neonates born at less than 30 weeks' gestation. Evolutionary practice changes and relative high tolerance for anemia may be associated with a reduction in RBC usage in recent years in neonates born at at least 26 weeks' gestation. This contrasts with the ongoing higher usage of blood products observed at extremely low gestational ages. © 2015 AABB.

  7. The edge of awareness: Mask spatial density, but not color, determines optimal temporal frequency for continuous flash suppression.

    PubMed

    Drewes, Jan; Zhu, Weina; Melcher, David

    2018-01-01

    The study of how visual processing functions in the absence of visual awareness has become a major research interest in the vision-science community. One of the main sources of evidence that stimuli that do not reach conscious awareness-and are thus "invisible"-are still processed to some degree by the visual system comes from studies using continuous flash suppression (CFS). Why and how CFS works may provide more general insight into how stimuli access awareness. As spatial and temporal properties of stimuli are major determinants of visual perception, we hypothesized that these properties of the CFS masks would be of significant importance to the achieved suppression depth. In previous studies however, the spatial and temporal properties of the masks themselves have received little study, and masking parameters vary widely across studies, making a metacomparison difficult. To investigate the factors that determine the effectiveness of CFS, we varied both the temporal frequency and the spatial density of Mondrian-style masks. We consistently found the longest suppression duration for a mask temporal frequency of around 6 Hz. In trials using masks with reduced spatial density, suppression was weaker and frequency tuning was less precise. In contrast, removing color reduced mask effectiveness but did not change the pattern of suppression strength as a function of frequency. Overall, this pattern of results stresses the importance of CFS mask parameters and is consistent with the idea that CFS works by disrupting the spatiotemporal mechanisms that underlie conscious access to visual input.

  8. Spectrotemporal modulation sensitivity for hearing-impaired listeners: Dependence on carrier center frequency and the relationship to speech intelligibility

    PubMed Central

    Mehraei, Golbarg; Gallun, Frederick J.; Leek, Marjorie R.; Bernstein, Joshua G. W.

    2014-01-01

    Poor speech understanding in noise by hearing-impaired (HI) listeners is only partly explained by elevated audiometric thresholds. Suprathreshold-processing impairments such as reduced temporal or spectral resolution or temporal fine-structure (TFS) processing ability might also contribute. Although speech contains dynamic combinations of temporal and spectral modulation and TFS content, these capabilities are often treated separately. Modulation-depth detection thresholds for spectrotemporal modulation (STM) applied to octave-band noise were measured for normal-hearing and HI listeners as a function of temporal modulation rate (4–32 Hz), spectral ripple density [0.5–4 cycles/octave (c/o)] and carrier center frequency (500–4000 Hz). STM sensitivity was worse than normal for HI listeners only for a low-frequency carrier (1000 Hz) at low temporal modulation rates (4–12 Hz) and a spectral ripple density of 2 c/o, and for a high-frequency carrier (4000 Hz) at a high spectral ripple density (4 c/o). STM sensitivity for the 4-Hz, 4-c/o condition for a 4000-Hz carrier and for the 4-Hz, 2-c/o condition for a 1000-Hz carrier were correlated with speech-recognition performance in noise after partialling out the audiogram-based speech-intelligibility index. Poor speech-reception and STM-detection performance for HI listeners may be related to a combination of reduced frequency selectivity and a TFS-processing deficit limiting the ability to track spectral-peak movements. PMID:24993215

  9. Groundwater-fed irrigation impacts spatially distributed temporal scaling behavior of the natural system: a spatio-temporal framework for understanding water management impacts

    NASA Astrophysics Data System (ADS)

    Condon, Laura E.; Maxwell, Reed M.

    2014-03-01

    Regional scale water management analysis increasingly relies on integrated modeling tools. Much recent work has focused on groundwater-surface water interactions and feedbacks. However, to our knowledge, no study has explicitly considered impacts of management operations on the temporal dynamics of the natural system. Here, we simulate twenty years of hourly moisture dependent, groundwater-fed irrigation using a three-dimensional, fully integrated, hydrologic model (ParFlow-CLM). Results highlight interconnections between irrigation demand, groundwater oscillation frequency and latent heat flux variability not previously demonstrated. Additionally, the three-dimensional model used allows for novel consideration of spatial patterns in temporal dynamics. Latent heat flux and water table depth both display spatial organization in temporal scaling, an important finding given the spatial homogeneity and weak scaling observed in atmospheric forcings. Pumping and irrigation amplify high frequency (sub-annual) variability while attenuating low frequency (inter-annual) variability. Irrigation also intensifies scaling within irrigated areas, essentially increasing temporal memory in both the surface and the subsurface. These findings demonstrate management impacts that extend beyond traditional water balance considerations to the fundamental behavior of the system itself. This is an important step to better understanding groundwater’s role as a buffer for natural variability and the impact that water management has on this capacity.

  10. Splitting attention reduces temporal resolution from 7 Hz for tracking one object to <3 Hz when tracking three.

    PubMed

    Holcombe, Alex O; Chen, Wei-Ying

    2013-01-09

    Overall performance when tracking moving targets is known to be poorer for larger numbers of targets, but the specific effect on tracking's temporal resolution has never been investigated. We document a broad range of display parameters for which visual tracking is limited by temporal frequency (the interval between when a target is at each location and a distracter moves in and replaces it) rather than by object speed. We tested tracking of one, two, and three moving targets while the eyes remained fixed. Variation of the number of distracters and their speed revealed both speed limits and temporal frequency limits on tracking. The temporal frequency limit fell from 7 Hz with one target to 4 Hz with two targets and 2.6 Hz with three targets. The large size of this performance decrease implies that in the two-target condition participants would have done better by tracking only one of the two targets and ignoring the other. These effects are predicted by serial models involving a single tracking focus that must switch among the targets, sampling the position of only one target at a time. If parallel processing theories are to explain why dividing the tracking resource reduces temporal resolution so markedly, supplemental assumptions will be required.

  11. Temporal expectation and spectral expectation operate in distinct fashion on neuronal populations.

    PubMed

    Hsu, Yi-Fang; Hämäläinen, Jarmo A; Waszak, Florian

    2013-11-01

    The formation of temporal expectation (i.e., the prediction of "when") is of prime importance to sensory processing. It can modulate sensory processing at early processing stages probably via the entrainment of low-frequency neuronal oscillations in the brain. However, sensory predictions involve not only temporal expectation but also spectral expectation (i.e., the prediction of "what"). Here we investigated how temporal expectation may interrelate with spectral expectation by explicitly setting up temporal expectation and spectral expectation in a target detection task. We found that reaction time (RT) was shorter when targets were temporally expected than when they were temporally unexpected. The temporal expectation effect was larger with than without spectral expectation. However, this interaction in the behavioural data did not result from an interaction in the electroencephalography (EEG), where we observed independent main effects of temporal expectation and spectral expectation. More precisely, we found that the N1 and P2 event-related potential (ERP) components and the entrainment of low-frequency neuronal oscillations were exclusively modulated by temporal expectation, whilst only the P3 ERP component was modulated by spectral expectation. Our results, thus, support the idea that temporal expectation and spectral expectation operate in distinct fashion on neuronal populations. © 2013 Elsevier Ltd. All rights reserved.

  12. Specializations for aerial hawking in the echolocation system of Molossus molossus (Molossidae, Chiroptera).

    PubMed

    Mora, E C; Macías, S; Vater, M; Coro, F; Kössl, M

    2004-07-01

    While searching for prey, Molossus molossus broadcasts narrow-band calls of 11.42 ms organized in pairs of pulses that alternate in frequency. The first signal of the pair is at 34.5 kHz, the second at 39.6 kHz. Pairs of calls with changing frequencies were only emitted when the interpulse intervals were below 200 ms. Maximum duty cycles during search phase are close to 20%. Frequency alternation of search calls is interpreted as a mechanism for increasing duty cycle and thus the temporal continuity of scanning, as well as increasing the detection range. A neurophysiological correlate for the processing of search calls was found in the inferior colliculus. 64% of neurons respond to frequencies in the 30- to 40-kHz range and only in this frequency range were closed tuning curves found for levels below 40 dB SPL. In addition, 15% of the neurons have double-tuned frequency-threshold curves with best thresholds at 34 and 39 kHz. Differing from observations in other bats, approach calls of M. molossus are longer and of higher frequencies than search calls. Close to the roost, the call frequency is increased to 45.0-49.8 kHz and, in addition, extremely broadband signals are emitted. This demonstrates high plasticity of call design.

  13. The effects of temporal variability of mixed layer depth on primary productivity around Bermuda

    NASA Technical Reports Server (NTRS)

    Bissett, W. Paul; Meyers, Mark B.; Walsh, John J.; Mueller-Karger, Frank E.

    1994-01-01

    Temporal variations in primary production and surface chlorophyll concentrations, as measured by ship and satellite around Bermuda, were simulated with a numerical model. In the upper 450 m of the water column, population dynamics of a size-fractionated phytoplankton community were forced by daily changes of wind, light, grazing stress, and nutrient availability. The temporal variations of production and chlorophyll were driven by changes in nutrient introduction to the euphotic zone due to both high- and low-frequency changes of the mixed layer depth within 32 deg-34 deg N, 62 deg-64 deg W between 1979 and 1984. Results from the model derived from high-frequency (case 1) changes in the mixed layer depth showed variations in primary production and peak chlorophyll concentrations when compared with results from the model derived from low-frequency (case 2) mixed layer depth changes. Incorporation of size-fractionated plankton state variables in the model led to greater seasonal resolution of measured primary production and vertical chlorophyll profiles. The findings of this study highlight the possible inadequacy of estimating primary production in the sea from data of low-frequency temporal resolution and oversimplified biological simulations.

  14. Classification of EEG signals to identify variations in attention during motor task execution.

    PubMed

    Aliakbaryhosseinabadi, Susan; Kamavuako, Ernest Nlandu; Jiang, Ning; Farina, Dario; Mrachacz-Kersting, Natalie

    2017-06-01

    Brain-computer interface (BCI) systems in neuro-rehabilitation use brain signals to control external devices. User status such as attention affects BCI performance; thus detecting the user's attention drift due to internal or external factors is essential for high detection accuracy. An auditory oddball task was applied to divert the users' attention during a simple ankle dorsiflexion movement. Electroencephalogram signals were recorded from eighteen channels. Temporal and time-frequency features were projected to a lower dimension space and used to analyze the effect of two attention levels on motor tasks in each participant. Then, a global feature distribution was constructed with the projected time-frequency features of all participants from all channels and applied for attention classification during motor movement execution. Time-frequency features led to significantly better classification results with respect to the temporal features, particularly for electrodes located over the motor cortex. Motor cortex channels had a higher accuracy in comparison to other channels in the global discrimination of attention level. Previous methods have used the attention to a task to drive external devices, such as the P300 speller. However, here we focus for the first time on the effect of attention drift while performing a motor task. It is possible to explore user's attention variation when performing motor tasks in synchronous BCI systems with time-frequency features. This is the first step towards an adaptive real-time BCI with an integrated function to reveal attention shifts from the motor task. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Modeling Sluggishness in Binaural Unmasking of Speech for Maskers With Time-Varying Interaural Phase Differences

    PubMed Central

    Brand, Thomas

    2018-01-01

    In studies investigating binaural processing in human listeners, relatively long and task-dependent time constants of a binaural window ranging from 10 ms to 250 ms have been observed. Such time constants are often thought to reflect “binaural sluggishness.” In this study, the effect of binaural sluggishness on binaural unmasking of speech in stationary speech-shaped noise is investigated in 10 listeners with normal hearing. In order to design a masking signal with temporally varying binaural cues, the interaural phase difference of the noise was modulated sinusoidally with frequencies ranging from 0.25 Hz to 64 Hz. The lowest, that is the best, speech reception thresholds (SRTs) were observed for the lowest modulation frequency. SRTs increased with increasing modulation frequency up to 4 Hz. For higher modulation frequencies, SRTs remained constant in the range of 1 dB to 1.5 dB below the SRT determined in the diotic situation. The outcome of the experiment was simulated using a short-term binaural speech intelligibility model, which combines an equalization–cancellation (EC) model with the speech intelligibility index. This model segments the incoming signal into 23.2-ms time frames in order to predict release from masking in modulated noises. In order to predict the results from this study, the model required a further time constant applied to the EC mechanism representing binaural sluggishness. The best agreement with perceptual data was achieved using a temporal window of 200 ms in the EC mechanism. PMID:29338577

  16. Modeling Sluggishness in Binaural Unmasking of Speech for Maskers With Time-Varying Interaural Phase Differences.

    PubMed

    Hauth, Christopher F; Brand, Thomas

    2018-01-01

    In studies investigating binaural processing in human listeners, relatively long and task-dependent time constants of a binaural window ranging from 10 ms to 250 ms have been observed. Such time constants are often thought to reflect "binaural sluggishness." In this study, the effect of binaural sluggishness on binaural unmasking of speech in stationary speech-shaped noise is investigated in 10 listeners with normal hearing. In order to design a masking signal with temporally varying binaural cues, the interaural phase difference of the noise was modulated sinusoidally with frequencies ranging from 0.25 Hz to 64 Hz. The lowest, that is the best, speech reception thresholds (SRTs) were observed for the lowest modulation frequency. SRTs increased with increasing modulation frequency up to 4 Hz. For higher modulation frequencies, SRTs remained constant in the range of 1 dB to 1.5 dB below the SRT determined in the diotic situation. The outcome of the experiment was simulated using a short-term binaural speech intelligibility model, which combines an equalization-cancellation (EC) model with the speech intelligibility index. This model segments the incoming signal into 23.2-ms time frames in order to predict release from masking in modulated noises. In order to predict the results from this study, the model required a further time constant applied to the EC mechanism representing binaural sluggishness. The best agreement with perceptual data was achieved using a temporal window of 200 ms in the EC mechanism.

  17. Age-related full-field motion change in baboon tympanic membrane

    NASA Astrophysics Data System (ADS)

    Gan, Rong Z.; Jiang, Shangyuan; Pineda, Mario

    2018-05-01

    Clinical observations indicate that the structure and function of the middle ear change from newborn to adult. However, due to the lack of young children's temporal bones for investigators, characterizations of the pediatric middle ear function and tissue mechanical properties are limited. Higher primates such as olive baboons (Papio anubis) ear specimens may provide alternative testing sources whose properties are likely to closely resemble those of humans. This paper reports our recent study on measurement of the tympanic membrane (TM) surface motion of baboon temporal bones in the age range from 6 months to young adult using the scanning laser Doppler vibrometry (SLDV). The full-field TM motion and the umbo displacement show that the mobility of the TM at frequencies below 2 kHz increased as age increases and the middle ear input impedance decreased with the age increase. The traveling-wave-like vibration modes in adult TMs started appearing at lower frequencies than that of young baboons. The results show the age-dependent middle ear function changes in baboons which may open a new research dimension to provide urgently needed data for biomechanical properties of young children ears.

  18. Time-space variations in infrasound sources related to environmental dynamics around Lützow-Holm Bay, east Antarctica

    NASA Astrophysics Data System (ADS)

    Murayama, Takahiko; Kanao, Masaki; Yamamoto, Masa-Yuki; Ishihara, Yoshiaki; Matsushima, Takeshi; Kakinami, Yoshihiro; Okada, Kazumi; Miyamachi, Hiroki; Nakamoto, Manami; Takeuchi, Yukari; Toda, Shigeru

    2017-12-01

    Characteristic features of infrasound waves observed in the Antarctic reflect the physical interaction between the surface environment along the continental margin and the surrounding Southern Ocean. The temporal-spatial variability of the source locations for infrasound excitation during the eight-month period between January and August 2015 was investigated using recordings made by two infrasound arrays deployed along a section of the coast of Lützow-Holm Bay (LHB), Antarctica. The infrasound arrays clearly detected temporal variations in frequency content and propagation direction during this period. A number of infrasound sources were identified, many located north of the arrays. Many of the events had a predominant frequency content of a few Hz, higher than microbaroms from the ocean. A comparison of the results with MODIS satellite images indicated that these infrasound sources were ice-quakes associated with the calving of glaciers, the breaking off of sea ice, and collisions between this sea ice and icebergs around the LHB. Continuous measurements of infrasound in the Antarctic may serve as a proxy for monitoring the regional surface environment in terms of climate change at high southern latitudes.

  19. Ictal electroencephalograms in neonatal seizures: characteristics and associations.

    PubMed

    Nagarajan, Lakshmi; Ghosh, Soumya; Palumbo, Linda

    2011-07-01

    The characteristics of ictal electroencephalograms in 160 neonatal seizures of 43 babies were correlated with mortality and neurodevelopmental outcomes. Neonatal seizures are focal at onset, most frequently temporal, and often occur during sleep. Twenty-one percent of babies with seizures died, and 76% of survivors manifested neurodevelopmental impairment during 2-6-year follow-up. A low-amplitude ictal electroencephalogram discharge was associated with increased mortality, and a frequency of <2 Hz with increased morbidity. Status epilepticus, ictal fractions, multiple foci, and bihemispheric involvement did not influence outcomes. Of 160 seizures, 99 exhibited no associated clinical features (electrographic seizures). Neonatal seizures with clinical correlates (electroclinical seizures) exhibited a higher amplitude and frequency of ictal electroencephalogram discharge than electrographic seizures. During electroclinical seizures, the ictal electroencephalogram was more likely to involve larger areas of the brain and to cross the midline. Mortality and morbidity were similar in babies with electroclinical and electrographic seizures, emphasizing the need to diagnose and treat both types. Ictal electroencephalogram topography has implications for electrode application during limited-channel, amplitude-integrated electroencephalograms. We recommend temporal and paracentral electrodes. Video electroencephalograms are important in diagnosing neonatal seizures and providing useful information regarding ictal electroencephalogram characteristics. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. The ability of cochlear implant users to use temporal envelope cues recovered from speech frequency modulation.

    PubMed

    Won, Jong Ho; Lorenzi, Christian; Nie, Kaibao; Li, Xing; Jameyson, Elyse M; Drennan, Ward R; Rubinstein, Jay T

    2012-08-01

    Previous studies have demonstrated that normal-hearing listeners can understand speech using the recovered "temporal envelopes," i.e., amplitude modulation (AM) cues from frequency modulation (FM). This study evaluated this mechanism in cochlear implant (CI) users for consonant identification. Stimuli containing only FM cues were created using 1, 2, 4, and 8-band FM-vocoders to determine if consonant identification performance would improve as the recovered AM cues become more available. A consistent improvement was observed as the band number decreased from 8 to 1, supporting the hypothesis that (1) the CI sound processor generates recovered AM cues from broadband FM, and (2) CI users can use the recovered AM cues to recognize speech. The correlation between the intact and the recovered AM components at the output of the sound processor was also generally higher when the band number was low, supporting the consonant identification results. Moreover, CI subjects who were better at using recovered AM cues from broadband FM cues showed better identification performance with intact (unprocessed) speech stimuli. This suggests that speech perception performance variability in CI users may be partly caused by differences in their ability to use AM cues recovered from FM speech cues.

  1. Voice gender discrimination provides a measure of more than pitch-related perception in cochlear implant users

    PubMed Central

    Li, Tianhao; Fu, Qian-Jie

    2013-01-01

    Objectives (1) To investigate whether voice gender discrimination (VGD) could be a useful indicator of the spectral and temporal processing abilities of individual cochlear implant (CI) users; (2) To examine the relationship between VGD and speech recognition with CI when comparable acoustic cues are used for both perception processes. Design VGD was measured using two talker sets with different inter-gender fundamental frequencies (F0), as well as different acoustic CI simulations. Vowel and consonant recognition in quiet and noise were also measured and compared with VGD performance. Study sample Eleven postlingually deaf CI users. Results The results showed that (1) mean VGD performance differed for different stimulus sets, (2) VGD and speech recognition performance varied among individual CI users, and (3) individual VGD performance was significantly correlated with speech recognition performance under certain conditions. Conclusions VGD measured with selected stimulus sets might be useful for assessing not only pitch-related perception, but also spectral and temporal processing by individual CI users. In addition to improvements in spectral resolution and modulation detection, the improvement in higher modulation frequency discrimination might be particularly important for CI users in noisy environments. PMID:21696330

  2. The basilar membrane acts as a passive support structure at the cochlear apex

    NASA Astrophysics Data System (ADS)

    Warren, Rebecca L.; Fridberger, Anders

    2015-12-01

    The precise mechanical behavior of the basilar membrane (BM) at low frequencies is still unknown. To address this issue we use an in vitro preparation of the guinea pig temporal bone to investigate the mechanical behaviour of the organ of Corti at the apex of the cochlea. Confocal laser interferometry is used to record the nanometre displacements of both Hensen's cells (HeC) and the BM in response to sound and electrical stimulation. We show that at low frequencies, the BM exhibits greatly reduced sound-evoked movement (˜35dB less) and no current-evoked movement, when compared to the HeC at the same position along the spiral. The BM best frequency is found to be an average of 52Hz (0.35 octave) higher than the HeC best frequency. In addition, we demonstrate that BM motion is not affected by inhibition of somatic electromotility or by blocking the mechanoelectrical transduction channels.We therefore propose that the BM primarily acts as a passive support structure at the cochlear apex. We suggest that the micromechanics of the cochlea that are vital to low-frequency amplification and frequency selectivity take place predominantly at the surface of the organ of Corti.

  3. Pure-quartic solitons

    PubMed Central

    Blanco-Redondo, Andrea; Martijn, de Sterke C.; Sipe, J.E.; Krauss, Thomas F.; Eggleton, Benjamin J.; Husko, Chad

    2016-01-01

    Temporal optical solitons have been the subject of intense research due to their intriguing physics and applications in ultrafast optics and supercontinuum generation. Conventional bright optical solitons result from the interaction of anomalous group-velocity dispersion and self-phase modulation. Here we experimentally demonstrate a class of bright soliton arising purely from the interaction of negative fourth-order dispersion and self-phase modulation, which can occur even for normal group-velocity dispersion. We provide experimental and numerical evidence of shape-preserving propagation and flat temporal phase for the fundamental pure-quartic soliton and periodically modulated propagation for the higher-order pure-quartic solitons. We derive the approximate shape of the fundamental pure-quartic soliton and discover that is surprisingly Gaussian, exhibiting excellent agreement with our experimental observations. Our discovery, enabled by precise dispersion engineering, could find applications in communications, frequency combs and ultrafast lasers. PMID:26822758

  4. High baseline activity in inferior temporal cortex improves neural and behavioral discriminability during visual categorization

    PubMed Central

    Emadi, Nazli; Rajimehr, Reza; Esteky, Hossein

    2014-01-01

    Spontaneous firing is a ubiquitous property of neural activity in the brain. Recent literature suggests that this baseline activity plays a key role in perception. However, it is not known how the baseline activity contributes to neural coding and behavior. Here, by recording from the single neurons in the inferior temporal cortex of monkeys performing a visual categorization task, we thoroughly explored the relationship between baseline activity, the evoked response, and behavior. Specifically we found that a low-frequency (<8 Hz) oscillation in the spike train, prior and phase-locked to the stimulus onset, was correlated with increased gamma power and neuronal baseline activity. This enhancement of the baseline activity was then followed by an increase in the neural selectivity and the response reliability and eventually a higher behavioral performance. PMID:25404900

  5. Nonlinear pattern analysis of ventricular premature beats by mutual information

    NASA Technical Reports Server (NTRS)

    Osaka, M.; Saitoh, H.; Yokoshima, T.; Kishida, H.; Hayakawa, H.; Cohen, R. J.

    1997-01-01

    The frequency of ventricular premature beats (VPBs) has been related to the risk of mortality. However, little is known about the temporal pattern of occurrence of VPBs and its relationship to autonomic activity. Hence, we applied a general correlation measure, mutual information, to quantify how VPBs are generated over time. We also used mutual information to determine the correlation between VPB production and heart rate in order to evaluate effects of autonomic activity on VPB production. We examined twenty subjects with more than 3000 VPBs/day and simulated random time series of VPB occurrence. We found that mutual information values could be used to characterize quantitatively the temporal patterns of VPB generation. Our data suggest that VPB production is not random and VPBs generated with a higher value of mutual information may be more greatly affected by autonomic activity.

  6. Gauss-Legendre quadrature method used to evaluate the spatio-temporal intensity of ultrashort pulses in the focal region of lenses.

    PubMed

    García-Martínez, L; Rosete-Aguilar, M; Garduño-Mejia, J

    2012-01-20

    We analyze the spatio-temporal intensity of sub-20 femtosecond pulses with a carrier wavelength of 810 nm along the optical axis of low numerical aperture achromatic and apochromatic doublets designed in the IR region by using the scalar diffraction theory. The diffraction integral is solved by expanding the wave number around the carrier frequency of the pulse in a Taylor series up to third order, and then the integral over the frequencies is solved by using the Gauss-Legendre quadrature method. The numerical errors in this method are negligible by taking 96 nodes and the computational time is reduced by 95% compared to the integration method by rectangles. We will show that the third-order group velocity dispersion (GVD) is not negligible for 10 fs pulses at 810 nm propagating through the low numerical aperture doublets, and its effect is more important than the propagation time difference (PTD). This last effect, however, is also significant. For sub-20 femtosecond pulses, these two effects make the use of a pulse shaper necessary to correct for second and higher-order GVD terms and also the use of apochromatic optics to correct the PTD effect. The design of an apochromatic doublet is presented in this paper and the spatio-temporal intensity of the pulse at the focal region of this doublet is compared to that given by the achromatic doublet. © 2012 Optical Society of America

  7. Delay differential analysis of time series.

    PubMed

    Lainscsek, Claudia; Sejnowski, Terrence J

    2015-03-01

    Nonlinear dynamical system analysis based on embedding theory has been used for modeling and prediction, but it also has applications to signal detection and classification of time series. An embedding creates a multidimensional geometrical object from a single time series. Traditionally either delay or derivative embeddings have been used. The delay embedding is composed of delayed versions of the signal, and the derivative embedding is composed of successive derivatives of the signal. The delay embedding has been extended to nonuniform embeddings to take multiple timescales into account. Both embeddings provide information on the underlying dynamical system without having direct access to all the system variables. Delay differential analysis is based on functional embeddings, a combination of the derivative embedding with nonuniform delay embeddings. Small delay differential equation (DDE) models that best represent relevant dynamic features of time series data are selected from a pool of candidate models for detection or classification. We show that the properties of DDEs support spectral analysis in the time domain where nonlinear correlation functions are used to detect frequencies, frequency and phase couplings, and bispectra. These can be efficiently computed with short time windows and are robust to noise. For frequency analysis, this framework is a multivariate extension of discrete Fourier transform (DFT), and for higher-order spectra, it is a linear and multivariate alternative to multidimensional fast Fourier transform of multidimensional correlations. This method can be applied to short or sparse time series and can be extended to cross-trial and cross-channel spectra if multiple short data segments of the same experiment are available. Together, this time-domain toolbox provides higher temporal resolution, increased frequency and phase coupling information, and it allows an easy and straightforward implementation of higher-order spectra across time compared with frequency-based methods such as the DFT and cross-spectral analysis.

  8. Spatiotemporal frequency tuning of BOLD and gamma band MEG responses compared in primary visual cortex.

    PubMed

    Muthukumaraswamy, Suresh D; Singh, Krish D

    2008-05-01

    In this study, the spatial and temporal frequency tuning characteristics of the MEG gamma (40-60 Hz) rhythm and the BOLD response in primary visual cortex were measured and compared. In an identical MEG/fMRI paradigm, 10 participants viewed reversing square wave gratings at 2 spatial frequencies [0.5 and 3 cycles per degree (cpd)] reversing at 5 temporal frequencies (0, 1 6, 10, 15 Hz). Three-dimensional images of MEG source power were generated with synthetic aperture magnetometry (SAM) and showed a high degree of spatial correspondence with BOLD responses in primary visual cortex with a mean spatial separation of 6.5 mm, but the two modalities showed different tuning characteristics. The gamma rhythm showed a clear increase in induced power for the high spatial frequency stimulus while BOLD showed no difference in activity for the two spatial frequencies used. Both imaging modalities showed a general increase of activity with temporal frequency, however, BOLD plateaued around 6-10 Hz while the MEG generally increased with a dip exhibited at 6 Hz. These results demonstrate that the two modalities may show activation in similar spatial locations but that the functional pattern of these activations may differ in a complex manner, suggesting that they may be tuned to different aspects of neuronal activity.

  9. How Internally Coupled Ears Generate Temporal and Amplitude Cues for Sound Localization.

    PubMed

    Vedurmudi, A P; Goulet, J; Christensen-Dalsgaard, J; Young, B A; Williams, R; van Hemmen, J L

    2016-01-15

    In internally coupled ears, displacement of one eardrum creates pressure waves that propagate through air-filled passages in the skull and cause displacement of the opposing eardrum, and conversely. By modeling the membrane, passages, and propagating pressure waves, we show that internally coupled ears generate unique amplitude and temporal cues for sound localization. The magnitudes of both these cues are directionally dependent. The tympanic fundamental frequency segregates a low-frequency regime with constant time-difference magnification from a high-frequency domain with considerable amplitude magnification.

  10. A New Hybrid Method for Remote Sensing Time Series Reconstruction in Support of Land Surface Phenology

    NASA Astrophysics Data System (ADS)

    Barreto-Munoz, A.; Didan, K.; Riveracamacho, J.; Yitayew, M.

    2010-12-01

    Remote sensing vegetation indices (NDVI, EVI, and EVI2) are proxies for studying vegetation states and enable the effective and consistent monitoring of global vegetation. Records of daily global satellite images are available from the last three decades, however, the presence of clouds, aerosols, variable viewing geometry and less than ideal processing techniques makes it difficult to obtain high quality data every time; resulting in incomplete daily coverage (80% of the data is either missing or useless sometimes). In order to improve the temporal frequency and coverage, gap fill techniques are usually employed. There are several methods that are mostly based on the use of complex Fourier Transform (TF) functions, Gaussian fitting models, or simple compositing techniques. The first two methods are extremely CPU and memory intensive and the results tend to be biased towards the periods of time when data is available . The composite-method sacrifices the temporal frequency in order to achieve higher quality data over longer periods of time by combining several images into one to insure the elimination of problematic data Long composite period interval tend to inhibit proper change detection during periods of rapid change and periods of land cover disturbance. Because this method is based on maximizing the vegetation index value during the composite period, longer composite interval will shift the start of season towards later dates, the end of season towards earlier dates, and consequently shorter growing season. These slight errors and uncertainties interfere with accurate change detection as they add a level of uncertainty to the estimated Phenology parameters. In this research we’re developing a new technique that aims at producing consistently high quality vegetation index data, while preserving adequate temporal resolution to support accurate phenological studies. This method involves finding the optimum number of days for compositing and then using an interpolation approach for filling the remaining temporal gaps. The seasonally variable per-pixel optimum composite period is obtained by minimizing the number of temporal gaps when varying the composite period from 1 day to 16 days. Remaining gaps are then estimated using a local linear function that uses as input only the nearest high quality observation days. We further constrain this method by a moving window long term average to address biases that may result from over- or under-fitting. This method was evaluated using the 30+ year Climate Modeling Grid resolution (CMG, 0.05 deg.) records of AVHRR and MODIS Terra/Aqua daily surface reflectance. We note several advantages to this method: 1) Simpler and less computer intensive to implement, 2) Superior to other methods since it only looked at the data around the temporal gap which helps eliminate the biases that may result from methods that simultaneously use the full annual cycle, and 3) Most importantly it kept a balance between providing higher frequency and high quality data and the potential noise that results from daily data. It is currently being implemented as a package to support the estimation of global phenology and to generate high quality long term Earth System Data Records of Vegetation Index from multiple sensors.

  11. The effect of sampling rate on interpretation of the temporal characteristics of radiative and convective heating in wildland flames

    Treesearch

    David Frankman; Brent W. Webb; Bret W. Butler; Daniel Jimenez; Michael Harrington

    2012-01-01

    Time-resolved radiative and convective heating measurements were collected on a prescribed burn in coniferous fuels at a sampling frequency of 500 Hz. Evaluation of the data in the time and frequency domain indicate that this sampling rate was sufficient to capture the temporal fluctuations of radiative and convective heating. The convective heating signal contained...

  12. Use of EEG workload indices for diagnostic monitoring of vigilance decrement.

    PubMed

    Kamzanova, Altyngul T; Kustubayeva, Almira M; Matthews, Gerald

    2014-09-01

    A study was run to test which of five electroencephalographic (EEG) indices was most diagnostic of loss of vigilance at two levels of workload. EEG indices of alertness include conventional spectral power measures as well as indices combining measures from multiple frequency bands, such as the Task Load Index (TLI) and the Engagement Index (El). However, it is unclear which indices are optimal for early detection of loss of vigilance. Ninety-two participants were assigned to one of two experimental conditions, cued (lower workload) and uncued (higher workload), and then performed a 40-min visual vigilance task. Performance on this task is believed to be limited by attentional resource availability. EEG was recorded continuously. Performance, subjective state, and workload were also assessed. The task showed a vigilance decrement in performance; cuing improved performance and reduced subjective workload. Lower-frequency alpha (8 to 10.9 Hz) and TLI were most sensitive to the task parameters. The magnitude of temporal change was larger for lower-frequency alpha. Surprisingly, higher TLI was associated with superior performance. Frontal theta and El were influenced by task workload only in the final period of work. Correlational data also suggested that the indices are distinct from one another. Lower-frequency alpha appears to be the optimal index for monitoring vigilance on the task used here, but further work is needed to test how diagnosticity of EEG indices varies with task demands. Lower-frequency alpha may be used to diagnose loss of operator alertness on tasks requiring vigilance.

  13. Temporal variability of spectro-temporal receptive fields in the anesthetized auditory cortex.

    PubMed

    Meyer, Arne F; Diepenbrock, Jan-Philipp; Ohl, Frank W; Anemüller, Jörn

    2014-01-01

    Temporal variability of neuronal response characteristics during sensory stimulation is a ubiquitous phenomenon that may reflect processes such as stimulus-driven adaptation, top-down modulation or spontaneous fluctuations. It poses a challenge to functional characterization methods such as the receptive field, since these often assume stationarity. We propose a novel method for estimation of sensory neurons' receptive fields that extends the classic static linear receptive field model to the time-varying case. Here, the long-term estimate of the static receptive field serves as the mean of a probabilistic prior distribution from which the short-term temporally localized receptive field may deviate stochastically with time-varying standard deviation. The derived corresponding generalized linear model permits robust characterization of temporal variability in receptive field structure also for highly non-Gaussian stimulus ensembles. We computed and analyzed short-term auditory spectro-temporal receptive field (STRF) estimates with characteristic temporal resolution 5-30 s based on model simulations and responses from in total 60 single-unit recordings in anesthetized Mongolian gerbil auditory midbrain and cortex. Stimulation was performed with short (100 ms) overlapping frequency-modulated tones. Results demonstrate identification of time-varying STRFs, with obtained predictive model likelihoods exceeding those from baseline static STRF estimation. Quantitative characterization of STRF variability reveals a higher degree thereof in auditory cortex compared to midbrain. Cluster analysis indicates that significant deviations from the long-term static STRF are brief, but reliably estimated. We hypothesize that the observed variability more likely reflects spontaneous or state-dependent internal fluctuations that interact with stimulus-induced processing, rather than experimental or stimulus design.

  14. Spatio-temporal coordination among functional residues in protein

    NASA Astrophysics Data System (ADS)

    Dutta, Sutapa; Ghosh, Mahua; Chakrabarti, J.

    2017-01-01

    The microscopic basis of communication among the functional sites in bio-macromolecules is a fundamental challenge in uncovering their functions. We study the communication through temporal cross-correlation among the binding sites. We illustrate via Molecular Dynamics simulations the properties of the temporal cross-correlation between the dihedrals of a small protein, ubiquitin which participates in protein degradation in eukaryotes. We show that the dihedral angles of the residues possess non-trivial temporal cross-correlations with asymmetry with respect to exchange of the dihedrals, having peaks at low frequencies with time scales in nano-seconds and an algebraic tail with a universal exponent for large frequencies. We show the existence of path for temporally correlated degrees of freedom among the functional residues. We explain the qualitative features of the cross-correlations through a general mathematical model. The generality of our analysis suggests that temporal cross-correlation functions may provide convenient theoretical framework to understand bio-molecular functions on microscopic basis.

  15. Synchronization enhancement of indirectly coupled oscillators via periodic modulation in an optomechanical system.

    PubMed

    Du, Lei; Fan, Chu-Hui; Zhang, Han-Xiao; Wu, Jin-Hui

    2017-11-20

    We study the synchronization behaviors of two indirectly coupled mechanical oscillators of different frequencies in a doublecavity optomechanical system. It is found that quantum synchronization is roughly vanishing though classical synchronization seems rather good when each cavity mode is driven by an external field in the absence of temporal modulations. By periodically modulating cavity detunings or driving amplitudes, however, it is possible to observe greatly enhanced quantum synchronization accompanied with nearly perfect classical synchronization. The level of quantum synchronization observed here is, in particular, much higher than that for two directly coupled mechanical oscillators. Note also that the modulation on cavity detunings is more appealing than that on driving amplitudes when the robustness of quantum synchronization is examined against the bath's mean temperature or the oscillators' frequency difference.

  16. Acoustic detection of Oryctes rhinoceros (Coleoptera: Scarabaeidae: Dynastinae) and Nasutitermes luzonicus (Isoptera: Termitidae) in palm trees in urban Guam.

    PubMed

    Mankin, R W; Moore, A

    2010-08-01

    Adult and larval Oryctes rhinoceros (L.) (Coleoptera: Scarabaeidae: Dynastinae) were acoustically detected in live and dead palm trees and logs in recently invaded areas of Guam, along with Nasutitermes luzonicus Oshima (Isoptera: Termitidae), and other small, sound-producing invertebrates and invertebrates. The low-frequency, long-duration sound-impulse trains produced by large, active O. rhinoceros and the higher frequency, shorter impulse trains produced by feeding N. luzonicus had distinctive spectral and temporal patterns that facilitated their identification and discrimination from background noise, as well as from roaches, earwigs, and other small sound-producing organisms present in the trees and logs. The distinctiveness of the O. rhinoceros sounds enables current usage of acoustic detection as a tactic in Guam's ongoing O. rhinoceros eradication program.

  17. Model of human visual-motion sensing

    NASA Technical Reports Server (NTRS)

    Watson, A. B.; Ahumada, A. J., Jr.

    1985-01-01

    A model of how humans sense the velocity of moving images is proposed. The model exploits constraints provided by human psychophysics, notably that motion-sensing elements appear tuned for two-dimensional spatial frequency, and by the frequency spectrum of a moving image, namely, that its support lies in the plane in which the temporal frequency equals the dot product of the spatial frequency and the image velocity. The first stage of the model is a set of spatial-frequency-tuned, direction-selective linear sensors. The temporal frequency of the response of each sensor is shown to encode the component of the image velocity in the sensor direction. At the second stage, these components are resolved in order to measure the velocity of image motion at each of a number of spatial locations and spatial frequencies. The model has been applied to several illustrative examples, including apparent motion, coherent gratings, and natural image sequences. The model agrees qualitatively with human perception.

  18. Microbial oceanography and the Hawaii Ocean Time-series programme.

    PubMed

    Karl, David M; Church, Matthew J

    2014-10-01

    The Hawaii Ocean Time-series (HOT) programme has been tracking microbial and biogeochemical processes in the North Pacific Subtropical Gyre since October 1988. The near-monthly time series observations have revealed previously undocumented phenomena within a temporally dynamic ecosystem that is vulnerable to climate change. Novel microorganisms, genes and unexpected metabolic pathways have been discovered and are being integrated into our evolving ecological paradigms. Continued research, including higher-frequency observations and at-sea experimentation, will help to provide a comprehensive scientific understanding of microbial processes in the largest biome on Earth.

  19. A single subconvulsant dose of domoic acid at mid-gestation does not cause temporal lobe epilepsy in mice.

    PubMed

    Demars, Fanny; Clark, Kristen; Wyeth, Megan S; Abrams, Emily; Buckmaster, Paul S

    2018-05-01

    Harmful blooms of domoic acid (DA)-producing algae are a problem in oceans worldwide. DA is a potent glutamate receptor agonist that can cause status epilepticus and in survivors, temporal lobe epilepsy. In mice, one-time low-dose in utero exposure to DA was reported to cause hippocampal damage and epileptiform activity, leading to the hypothesis that unrecognized exposure to DA from contaminated seafood in pregnant women can damage the fetal hippocampus and initiate temporal lobe epileptogenesis. However, development of epilepsy (i.e., spontaneous recurrent seizures) has not been tested. In the present study, long-term seizure monitoring and histology was used to test for temporal lobe epilepsy following prenatal exposure to DA. In Experiment One, the previous study's in utero DA treatment protocol was replicated, including use of the CD-1 mouse strain. Afterward, mice were video-monitored for convulsive seizures from 2 to 6 months old. None of the CD-1 mice treated in utero with vehicle or DA was observed to experience spontaneous convulsive seizures. After seizure monitoring, mice were evaluated for pathological evidence of temporal lobe epilepsy. None of the mice treated in utero with DA displayed the hilar neuron loss that occurs in patients with temporal lobe epilepsy and in the mouse pilocarpine model of temporal lobe epilepsy. In Experiment Two, a higher dose of DA was administered to pregnant FVB mice. FVB mice were tested as a potentially more sensitive strain, because they have a lower seizure threshold, and some females spontaneously develop epilepsy. Female offspring were monitored with continuous video and telemetric bilateral hippocampal local field potential recording at 1-11 months old. A similar proportion of vehicle- and DA-treated female FVB mice spontaneously developed epilepsy, beginning in the fourth month of life. Average seizure frequency and duration were similar in both groups. Seizure frequency was lower than that of positive-control pilocarpine-treated mice, but seizure duration was similar. None of the mice treated in utero with vehicle or DA displayed hilar neuron loss or intense mossy fiber sprouting, a form of aberrant synaptic reorganization that develops in patients with temporal lobe epilepsy and in pilocarpine-treated mice. FVB mice that developed epilepsy (vehicle- and DA-treated) displayed mild mossy fiber sprouting. Results of this study suggest that a single subconvulsive dose of DA at mid-gestation does not cause temporal lobe epilepsy in mice. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Ocular-following responses to white noise stimuli in humans reveal a novel nonlinearity that results from temporal sampling

    PubMed Central

    Sheliga, Boris M.; Quaia, Christian; FitzGibbon, Edmond J.; Cumming, Bruce G.

    2016-01-01

    White noise stimuli are frequently used to study the visual processing of broadband images in the laboratory. A common goal is to describe how responses are derived from Fourier components in the image. We investigated this issue by recording the ocular-following responses (OFRs) to white noise stimuli in human subjects. For a given speed we compared OFRs to unfiltered white noise with those to noise filtered with band-pass filters and notch filters. Removing components with low spatial frequency (SF) reduced OFR magnitudes, and the SF associated with the greatest reduction matched the SF that produced the maximal response when presented alone. This reduction declined rapidly with SF, compatible with a winner-take-all operation. Removing higher SF components increased OFR magnitudes. For higher speeds this effect became larger and propagated toward lower SFs. All of these effects were quantitatively well described by a model that combined two factors: (a) an excitatory drive that reflected the OFRs to individual Fourier components and (b) a suppression by higher SF channels where the temporal sampling of the display led to flicker. This nonlinear interaction has an important practical implication: Even with high refresh rates (150 Hz), the temporal sampling introduced by visual displays has a significant impact on visual processing. For instance, we show that this distorts speed tuning curves, shifting the peak to lower speeds. Careful attention to spectral content, in the light of this nonlinearity, is necessary to minimize the resulting artifact when using white noise patterns undergoing apparent motion. PMID:26762277

  1. Temporal Characterization of Aircraft Noise Sources

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Sullivan, Brenda M.; Rizzi, Stephen A.

    2004-01-01

    Current aircraft source noise prediction tools yield time-independent frequency spectra as functions of directivity angle. Realistic evaluation and human assessment of aircraft fly-over noise require the temporal characteristics of the noise signature. The purpose of the current study is to analyze empirical data from broadband jet and tonal fan noise sources and to provide the temporal information required for prediction-based synthesis. Noise sources included a one-tenth-scale engine exhaust nozzle and a one-fifth scale scale turbofan engine. A methodology was developed to characterize the low frequency fluctuations employing the Short Time Fourier Transform in a MATLAB computing environment. It was shown that a trade-off is necessary between frequency and time resolution in the acoustic spectrogram. The procedure requires careful evaluation and selection of the data analysis parameters, including the data sampling frequency, Fourier Transform window size, associated time period and frequency resolution, and time period window overlap. Low frequency fluctuations were applied to the synthesis of broadband noise with the resulting records sounding virtually indistinguishable from the measured data in initial subjective evaluations. Amplitude fluctuations of blade passage frequency (BPF) harmonics were successfully characterized for conditions equivalent to take-off and approach. Data demonstrated that the fifth harmonic of the BPF varied more in frequency than the BPF itself and exhibited larger amplitude fluctuations over the duration of the time record. Frequency fluctuations were found to be not perceptible in the current characterization of tonal components.

  2. Encoding frequency contrast in primate auditory cortex

    PubMed Central

    Scott, Brian H.; Semple, Malcolm N.

    2014-01-01

    Changes in amplitude and frequency jointly determine much of the communicative significance of complex acoustic signals, including human speech. We have previously described responses of neurons in the core auditory cortex of awake rhesus macaques to sinusoidal amplitude modulation (SAM) signals. Here we report a complementary study of sinusoidal frequency modulation (SFM) in the same neurons. Responses to SFM were analogous to SAM responses in that changes in multiple parameters defining SFM stimuli (e.g., modulation frequency, modulation depth, carrier frequency) were robustly encoded in the temporal dynamics of the spike trains. For example, changes in the carrier frequency produced highly reproducible changes in shapes of the modulation period histogram, consistent with the notion that the instantaneous probability of discharge mirrors the moment-by-moment spectrum at low modulation rates. The upper limit for phase locking was similar across SAM and SFM within neurons, suggesting shared biophysical constraints on temporal processing. Using spike train classification methods, we found that neural thresholds for modulation depth discrimination are typically far lower than would be predicted from frequency tuning to static tones. This “dynamic hyperacuity” suggests a substantial central enhancement of the neural representation of frequency changes relative to the auditory periphery. Spike timing information was superior to average rate information when discriminating among SFM signals, and even when discriminating among static tones varying in frequency. This finding held even when differences in total spike count across stimuli were normalized, indicating both the primacy and generality of temporal response dynamics in cortical auditory processing. PMID:24598525

  3. Decadal predictability of winter windstorm frequency in Eastern Europe

    NASA Astrophysics Data System (ADS)

    Höschel, Ines; Grieger, Jens; Ulbrich, Uwe

    2017-04-01

    Winter windstorms are one of the most impact relevant extreme-weather events in Europe. This study is focussed on windstorm frequency in Eastern Europe at multi-year time scale. Individual storms are identified by using 6-hourly 10m-wind-fields. The impact-oriented tracking algorithm is based on the exceedance of the local 98 percentile of wind speed and a minimum duration of 18 hours. Here, storm frequency is the number of 1000km-footprints of identified windstorms touching the location during extended boreal winter from October to March. The temporal development of annual storm frequencies in Eastern Europe shows variations on a six to fifteen years period. Higher than normal windstorm frequency occurred end of the 1950s and in beginning of the seventies, while lower than normal frequency were around 1960 and in the forties, for example. The correlation between bandpass filtered storm frequency and North Atlantic sea surface temperature shows a significant pattern with a positive correlation in the subtropical East Atlantic and significant negative correlations in the Gulfstream region. The relationship between these multi-year variations and predictability on decadal time scales is discussed. The resulting skill of winter wind storms in the German decadal prediction system MiKlip, based on the numerical earth system model MPI-ESM, will be presented.

  4. Incidence of Facultative Bacterial Endosymbionts in Spider Mites Associated with Local Environments and Host Plants.

    PubMed

    Zhu, Yu-Xi; Song, Yue-Ling; Zhang, Yan-Kai; Hoffmann, Ary A; Zhou, Jin-Cheng; Sun, Jing-Tao; Hong, Xiao-Yue

    2018-03-15

    Spider mites are frequently associated with multiple endosymbionts whose infection patterns often exhibit spatial and temporal variation. However, the association between endosymbiont prevalence and environmental factors remains unclear. Here, we surveyed endosymbionts in natural populations of the spider mite, Tetranychus truncatus , in China, screening 935 spider mites from 21 localities and 12 host plant species. Three facultative endosymbiont lineages, Wolbachia , Cardinium , and Spiroplasma , were detected at different infection frequencies (52.5%, 26.3%, and 8.6%, respectively). Multiple endosymbiont infections were observed in most local populations, and the incidence of individuals with the Wolbachia - Spiroplasma coinfection was higher than expected from the frequency of each infection within a population. Endosymbiont infection frequencies exhibited associations with environmental factors: Wolbachia infection rates increased at localities with higher annual mean temperatures, while Cardinium and Spiroplasma infection rates increased at localities from higher altitudes. Wolbachia was more common in mites from Lycopersicon esculentum and Glycine max compared to those from Zea mays This study highlights that host-endosymbiont interactions may be associated with environmental factors, including climate and other geographically linked factors, as well as the host's food plant. IMPORTANCE The aim of this study was to examine the incidence of endosymbiont distribution and the infection patterns in spider mites. The main findings are that multiple endosymbiont infections were more common than expected and that endosymbiont infection frequencies were associated with environmental factors. This work highlights that host-endosymbiont interactions need to be studied within an environmental and geographic context. Copyright © 2018 American Society for Microbiology.

  5. Laminar Module Cascade from Layer 5 to 6 Implementing Cue-to-Target Conversion for Object Memory Retrieval in the Primate Temporal Cortex.

    PubMed

    Koyano, Kenji W; Takeda, Masaki; Matsui, Teppei; Hirabayashi, Toshiyuki; Ohashi, Yohei; Miyashita, Yasushi

    2016-10-19

    The cerebral cortex computes through the canonical microcircuit that connects six stacked layers; however, how cortical processing streams operate in vivo, particularly in the higher association cortex, remains elusive. By developing a novel MRI-assisted procedure that reliably localizes recorded single neurons at resolution of six individual layers in monkey temporal cortex, we show that transformation of representations from a cued object to a to-be-recalled object occurs at the infragranular layer in a visual cued-recall task. This cue-to-target conversion started in layer 5 and was followed by layer 6. Finally, a subset of layer 6 neurons exclusively encoding the sought target became phase-locked to surrounding field potentials at theta frequency, suggesting that this coordinated cell assembly implements cortical long-distance outputs of the recalled target. Thus, this study proposes a link from local computation spanning laminar modules of the temporal cortex to the brain-wide network for memory retrieval in primates. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Disturbed functional connectivity within the left prefrontal cortex and sensorimotor areas predicts impaired cognitive speed in patients with first-episode schizophrenia.

    PubMed

    Krukow, Paweł; Jonak, Kamil; Karakuła-Juchnowicz, Hanna; Podkowiński, Arkadiusz; Jonak, Katarzyna; Borys, Magdalena; Harciarek, Michał

    2018-05-30

    This study aimed at identifying abnormal cortico-cortical functional connectivity patterns that could predict cognitive slowing in patients with schizophrenia. A group of thirty-two patients with the first-episode schizophrenia and comparable healthy controls underwent resting-state qEEG and cognitive assessment. Phase Lag Index (PLI) was applied as a connectivity index and the synchronizations were analyzed in six frequencies. Pairs of electrodes were grouped to separately cover frontal, temporal, central, parietal and occipital regions. PLI was calculated for intra-regional connectivity and between-regions connectivity. Computer version processing speed tests were applied to control for possible fluctuations in cognitive efficiency during the performance of the tasks. In the group of patients, in comparison to healthy controls, significantly higher PLI values were recorded in theta frequency, especially in the posterior areas and decreased PLI in low-alpha frequency within the frontal regions. Mean PLI in gamma frequency was also lower in the patients group. Regression analysis showed that lower intra-regional PLI for left frontal cortex and higher PLI within somatosensory cortex in theta band, together with the duration of untreated psychosis, proved to be significant predictors of impaired processing speed in first-episode patients. Our investigation confirmed that disrupted cortico-cortical synchronization contributes to cognitive slowing in schizophrenia. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Temporal evolution of near-surface chlorophyll over cyclonic eddy lifecycles in the southeastern Pacific

    NASA Astrophysics Data System (ADS)

    Huang, Jie; Xu, Fanghua; Zhou, Kuanbo; Xiu, Peng; Lin, Yanluan

    2017-08-01

    Temporal evolution of near-surface chlorophyll (CHL) associated with mesoscale eddies over entire eddy lifespan is complicated. Based on satellite measurements and a reanalysis data set, we identify and quantify major temporal and spatial CHL responses in cyclonic eddies in the southeastern Pacific, and explore the associated mechanisms. Only few temporal CHL variations can be directly linked to the four primary mechanisms: "eddy pumping," "eddy trapping," "eddy stirring," and "eddy-induced Ekman pumping." About 80% of the temporal CHL variations are too complex to be explained by a single mechanism. Five characteristic CHL responses, including classic dipoles (CD), positive-dominant dipoles (PD), negative-dominant dipoles (ND), positive monopoles (PM), and negative monopoles (NM) are identified using the self-organizing map (SOM). CD, a dominant response induced primarily by "eddy stirring," has a continued increasing of frequency of occurrence with time, although its contribution to the total CHL variability remains low. As the secondary prominent response, NM has two peaks of frequency of occurrence at eddy formation and maturation stages, mainly accounted by "eddy trapping" after eddy breakup and "eddy-induced Ekman pumping," respectively. The sum of frequency of occurrence of PD and PM are comparable to that of NM. The initial positive CHL at eddy formation stage is associated with "eddy trapping." The significant positive CHL increase from the eddy intensification to early decay stage is mainly attributed to "eddy pumping." Although the frequency of occurrence of ND is the smallest, its contribution to negative CHL anomalies is unnegligible.

  8. Sensory deprivation due to otitis media episodes in early childhood and its effect at later age: A psychoacoustic and speech perception measure.

    PubMed

    Shetty, Hemanth Narayan; Koonoor, Vishal

    2016-11-01

    Past research has reported that children with repeated occurrences of otitis media at an early age have a negative impact on speech perception at a later age. The present study necessitates documenting the temporal and spectral processing on speech perception in noise from normal and atypical groups. The present study evaluated the relation between speech perception in noise and temporal; and spectral processing abilities in children with normal and atypical groups. The study included two experiments. In the first experiment, temporal resolution and frequency discrimination of listeners with normal group and three subgroups of atypical groups (had a history of OM) a) less than four episodes b) four to nine episodes and c) More than nine episodes during their chronological age of 6 months to 2 years) were evaluated using measures of temporal modulation transfer function and frequency discrimination test. In the second experiment, SNR 50 was evaluated on each group of study participants. All participants had normal hearing and middle ear status during the course of testing. Demonstrated that children with atypical group had significantly poorer modulation detection threshold, peak sensitivity and bandwidth; and frequency discrimination to each F0 than normal hearing listeners. Furthermore, there was a significant correlation seen between measures of temporal resolution; frequency discrimination and speech perception in noise. It infers atypical groups have significant impairment in extracting envelope as well as fine structure cues from the signal. The results supported the idea that episodes of OM before 2 years of agecan produce periods of sensory deprivation that alters the temporal and spectral skills which in turn has negative consequences on speech perception in noise. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Complex-valued time-series correlation increases sensitivity in FMRI analysis.

    PubMed

    Kociuba, Mary C; Rowe, Daniel B

    2016-07-01

    To develop a linear matrix representation of correlation between complex-valued (CV) time-series in the temporal Fourier frequency domain, and demonstrate its increased sensitivity over correlation between magnitude-only (MO) time-series in functional MRI (fMRI) analysis. The standard in fMRI is to discard the phase before the statistical analysis of the data, despite evidence of task related change in the phase time-series. With a real-valued isomorphism representation of Fourier reconstruction, correlation is computed in the temporal frequency domain with CV time-series data, rather than with the standard of MO data. A MATLAB simulation compares the Fisher-z transform of MO and CV correlations for varying degrees of task related magnitude and phase amplitude change in the time-series. The increased sensitivity of the complex-valued Fourier representation of correlation is also demonstrated with experimental human data. Since the correlation description in the temporal frequency domain is represented as a summation of second order temporal frequencies, the correlation is easily divided into experimentally relevant frequency bands for each voxel's temporal frequency spectrum. The MO and CV correlations for the experimental human data are analyzed for four voxels of interest (VOIs) to show the framework with high and low contrast-to-noise ratios in the motor cortex and the supplementary motor cortex. The simulation demonstrates the increased strength of CV correlations over MO correlations for low magnitude contrast-to-noise time-series. In the experimental human data, the MO correlation maps are noisier than the CV maps, and it is more difficult to distinguish the motor cortex in the MO correlation maps after spatial processing. Including both magnitude and phase in the spatial correlation computations more accurately defines the correlated left and right motor cortices. Sensitivity in correlation analysis is important to preserve the signal of interest in fMRI data sets with high noise variance, and avoid excessive processing induced correlation. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Temporal masking functions for listeners with real and simulated hearing loss

    PubMed Central

    Desloge, Joseph G.; Reed, Charlotte M.; Braida, Louis D.; Perez, Zachary D.; Delhorne, Lorraine A.

    2011-01-01

    A functional simulation of hearing loss was evaluated in its ability to reproduce the temporal masking functions for eight listeners with mild to severe sensorineural hearing loss. Each audiometric loss was simulated in a group of age-matched normal-hearing listeners through a combination of spectrally-shaped masking noise and multi-band expansion. Temporal-masking functions were obtained in both groups of listeners using a forward-masking paradigm in which the level of a 110-ms masker required to just mask a 10-ms fixed-level probe (5-10 dB SL) was measured as a function of the time delay between the masker offset and probe onset. At each of four probe frequencies (500, 1000, 2000, and 4000 Hz), temporal-masking functions were obtained using maskers that were 0.55, 1.0, and 1.15 times the probe frequency. The slopes and y-intercepts of the masking functions were not significantly different for listeners with real and simulated hearing loss. The y-intercepts were positively correlated with level of hearing loss while the slopes were negatively correlated. The ratio of the slopes obtained with the low-frequency maskers relative to the on-frequency maskers was similar for both groups of listeners and indicated a smaller compressive effect than that observed in normal-hearing listeners. PMID:21877806

  11. Dual frequency diffuse dielectric barrier discharge in atmospheric-pressure air-like gas mixture for thin film deposition

    NASA Astrophysics Data System (ADS)

    Liu, Yaoge; Starostin, Serguei; Welzel, Stefan; van de Sanden, M. C. M.; de Vries, Hindrik; Fom Institute-Differ Team; Eindhoven University Of Technology Team; Fujifilm Manufacturing Europe B. v. Team

    2016-09-01

    A dual frequency (DF) diffuse discharge was obtained in an atmospheric-pressure dielectric barrier discharge reactor in air-like gas mixtures. By adding a radio frequency (RF) voltage to a low frequency (LF) voltage, we aim to increase the plasma power density. In this study, the discussion is mainly focused on the discharge characteristics and the thin film deposition. According to the spatio-temporal emission, the discharge shows a glow-like structure with both LF and DF voltages. By fitting the spectral lines of the second positive system of N2, the gas temperature was estimated which does not obviously increase with the extra RF signal. Moreover, SiO2-like film was deposited from TEOS using the DF power supply. Thin film properties such as surface morphology, microstructure and stoichiometry were analyzed by AFM, FTIR and XPS, respectively. Because of the higher plasma power density, the DF power supply can be an efficient approach to improve the properties and to increase the throughput of the thin film deposition.

  12. LGI1-antibody encephalitis is characterised by frequent, multifocal clinical and subclinical seizures.

    PubMed

    Aurangzeb, Sidra; Symmonds, Mkael; Knight, Ravi K; Kennett, Robin; Wehner, Tim; Irani, Sarosh R

    2017-08-01

    To describe clinical and electrographic characteristics of seizures LGI1-antibody encephalitis, and their correlations with two-year outcomes. Video-electroencephalography recordings were performed on a cohort of 16 consecutive patients with LGI1-antibodies from two UK neuroscience-centers over five-years. From 14 of 16 patients (13 males; age-range 53-92years), 86 faciobrachial dystonic seizures were recorded at a median frequency of 0.4 per hour (range 0.1-9.8), and ictal EEG changes accompanied 5/86 events. In addition, 11/16 patients showed 53 other seizures - subclinical (n=18), motor (n=16), or sensory (n=19) - at a median of 0.1 per hour (range 0.1-2) associated with temporal and frontal discharges. The sensory events were most commonly thermal sensations or body-shuddering, and the motor events were frequently automatisms or vocalisations. Furthermore, multifocal interictal epileptiform discharges, from temporal, frontal and parietal regions, and interictal slow-wave activity were observed in 25% and 69% of patients, respectively. Higher observed seizure frequency correlated with poorer functional recovery at two-years (p=0.001). Multiple frequent seizure semiologies, in addition to numerous subclinical seizures and interictal epileptiform discharges, are hallmarks of LGI1-antibody encephalitis. High overall seizure frequency may predict more limited long-term recovery. These observations should encourage closer monitoring and proactive treatment of seizure activity in these patients. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Transmitted HIV drug resistance in antiretroviral-treatment-naive patients from Poland differs by transmission category and subtype.

    PubMed

    Parczewski, Miłosz; Leszczyszyn-Pynka, Magdalena; Witak-Jędra, Magdalena; Maciejewska, Katarzyna; Rymer, Weronika; Szymczak, Aleksandra; Szetela, Bartosz; Gąsiorowski, Jacek; Bociąga-Jasik, Monika; Skwara, Paweł; Garlicki, Aleksander; Grzeszczuk, Anna; Rogalska, Magdalena; Jankowska, Maria; Lemańska, Małgorzata; Hlebowicz, Maria; Barałkiewicz, Grażyna; Mozer-Lisewska, Iwona; Mazurek, Renata; Lojewski, Władyslaw; Grąbczewska, Edyta; Olczak, Anita; Jabłonowska, Elżbieta; Clark, Jeremy; Urbańska, Anna

    2015-01-01

    The surveillance of HIV-transmitted drug resistance mutations (t-DRMs), including temporal trends across subtypes and exposure groups, remains a priority in the current management of the epidemic worldwide. A cross-sectional analysis of 833 treatment-naive patients from 9 of 17 Polish HIV treatment centres. Partial pol sequences were used to analyse drug resistance with a general time reversible (GTR)-based maximum likelihood algorithm used for cluster/pair identification. Mutation frequencies and temporal trends were investigated. t-DRMs were observed in 9% of cases (5.8% for NRTI, 1.2% NNRTI and 2.0% PI mutations) and were more common among heterosexually infected (HET) individuals (13.4%) compared with MSM (8.3%, P = 0.03) or injection drug users (IDUs; 2.9%, P = 0.001) and in MSM compared with IDUs (P = 0.046). t-DRMs were more frequent in cases infected with the non-B variant (21.6%) compared with subtype B (6.6%, P < 0.001). With subtype B a higher mutation frequency was found in MSM compared with non-MSM cases (8.3% versus 1.8% for IDU + HET, P = 0.038), while non-B variants were associated with heterosexual exposure (30.4% for HET versus 4.8% for MSM, P = 0.019; versus 0 for IDU, P = 0.016). Trends in t-DRM frequencies were stable over time except for a decrease in NNRTI t-DRMs among MSM (P = 0.0662) and an NRTI t-DRM decrease in HET individuals (P = 0.077). With subtype B a higher frequency of sequence pairs/clusters in MSM (50.4%) was found compared with HET (P < 0.001) and IDUs (P = 0.015). Despite stable trends over time, patterns of t-DRMs differed notably between transmission categories and subtypes: subtype B was associated with MSM transmission and clustering while in non-B clades t-DRMs were more common and were associated with heterosexual infections. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Psychophysical Evaluation of Achromatic and Chromatic Vision of Workers Chronically Exposed to Organic Solvents

    PubMed Central

    Lacerda, Eliza Maria da Costa Brito; Lima, Monica Gomes; Rodrigues, Anderson Raiol; Teixeira, Cláudio Eduardo Correa; de Lima, Lauro José Barata; Ventura, Dora Fix; Silveira, Luiz Carlos de Lima

    2012-01-01

    The purpose of this paper was to evaluate achromatic and chromatic vision of workers chronically exposed to organic solvents through psychophysical methods. Thirty-one gas station workers (31.5 ± 8.4 years old) were evaluated. Psychophysical tests were achromatic tests (Snellen chart, spatial and temporal contrast sensitivity, and visual perimetry) and chromatic tests (Ishihara's test, color discrimination ellipses, and Farnsworth-Munsell 100 hue test—FM100). Spatial contrast sensitivities of exposed workers were lower than the control at spatial frequencies of 20 and 30 cpd whilst the temporal contrast sensitivity was preserved. Visual field losses were found in 10–30 degrees of eccentricity in the solvent exposed workers. The exposed workers group had higher error values of FM100 and wider color discrimination ellipses area compared to the controls. Workers occupationally exposed to organic solvents had abnormal visual functions, mainly color vision losses and visual field constriction. PMID:22220188

  15. Inter-hemispheric electroencephalography coherence analysis: assessing brain activity during monotonous driving.

    PubMed

    Jap, Budi Thomas; Lal, Sara; Fischer, Peter

    2010-06-01

    The current study investigated the effect of monotonous driving on inter-hemispheric electroencephalography (EEG) coherence. Twenty-four non-professional drivers were recruited to perform a fatigue instigating monotonous driving task while 30 channels of EEG were simultaneously recorded. The EEG recordings were then divided into 5 equal sections over the entire driving period for analysis. Inter-hemispheric coherence was computed from 5 homologous EEG electrode pairs (FP1-FP2, C3-C4, T7-T8, P7-P8, and O1-O2) for delta, theta, alpha and beta frequency bands. Results showed that frontal and occipital inter-hemispheric coherence values were significantly higher than central, parietal, and temporal sites for all four frequency bands (p<0.0001). In the alpha frequency band, significant difference was found between earlier and later driving sections (p=0.02). The coherence values in all EEG frequency bands were slightly increased at the end of the driving session, except for FP1-FP2 electrode pair, which showed no significant change in coherence in the beta frequency band at the end of the driving session. Copyright 2010 Elsevier B.V. All rights reserved.

  16. Comprehension of concrete and abstract words in semantic dementia

    PubMed Central

    Jefferies, Elizabeth; Patterson, Karalyn; Jones, Roy W.; Lambon Ralph, Matthew A.

    2009-01-01

    The vast majority of brain-injured patients with semantic impairment have better comprehension of concrete than abstract words. In contrast, several patients with semantic dementia (SD), who show circumscribed atrophy of the anterior temporal lobes bilaterally, have been reported to show reverse imageability effects, i.e., relative preservation of abstract knowledge. Although these reports largely concern individual patients, some researchers have recently proposed that superior comprehension of abstract concepts is a characteristic feature of SD. This would imply that the anterior temporal lobes are particularly crucial for processing sensory aspects of semantic knowledge, which are associated with concrete not abstract concepts. However, functional neuroimaging studies of healthy participants do not unequivocally predict reverse imageability effects in SD because the temporal poles sometimes show greater activation for more abstract concepts. We examined a case-series of eleven SD patients on a synonym judgement test that orthogonally varied the frequency and imageability of the items. All patients had higher success rates for more imageable as well as more frequent words, suggesting that (a) the anterior temporal lobes underpin semantic knowledge for both concrete and abstract concepts, (b) more imageable items – perhaps due to their richer multimodal representations – are typically more robust in the face of global semantic degradation and (c) reverse imageability effects are not a characteristic feature of SD. PMID:19586212

  17. Mate choice in the eye and ear of the beholder? Female multimodal sensory configuration influences her preferences.

    PubMed

    Ronald, Kelly L; Fernández-Juricic, Esteban; Lucas, Jeffrey R

    2018-05-16

    A common assumption in sexual selection studies is that receivers decode signal information similarly. However, receivers may vary in how they rank signallers if signal perception varies with an individual's sensory configuration. Furthermore, receivers may vary in their weighting of different elements of multimodal signals based on their sensory configuration. This could lead to complex levels of selection on signalling traits. We tested whether multimodal sensory configuration could affect preferences for multimodal signals. We used brown-headed cowbird ( Molothrus ater ) females to examine how auditory sensitivity and auditory filters, which influence auditory spectral and temporal resolution, affect song preferences, and how visual spatial resolution and visual temporal resolution, which influence resolution of a moving visual signal, affect visual display preferences. Our results show that multimodal sensory configuration significantly affects preferences for male displays: females with better auditory temporal resolution preferred songs that were shorter, with lower Wiener entropy, and higher frequency; and females with better visual temporal resolution preferred males with less intense visual displays. Our findings provide new insights into mate-choice decisions and receiver signal processing. Furthermore, our results challenge a long-standing assumption in animal communication which can affect how we address honest signalling, assortative mating and sensory drive. © 2018 The Author(s).

  18. Sound envelope processing in the developing human brain: A MEG study.

    PubMed

    Tang, Huizhen; Brock, Jon; Johnson, Blake W

    2016-02-01

    This study investigated auditory cortical processing of linguistically-relevant temporal modulations in the developing brains of young children. Auditory envelope following responses to white noise amplitude modulated at rates of 1-80 Hz in healthy children (aged 3-5 years) and adults were recorded using a paediatric magnetoencephalography (MEG) system and a conventional MEG system, respectively. For children, there were envelope following responses to slow modulations but no significant responses to rates higher than about 25 Hz, whereas adults showed significant envelope following responses to almost the entire range of stimulus rates. Our results show that the auditory cortex of preschool-aged children has a sharply limited capacity to process rapid amplitude modulations in sounds, as compared to the auditory cortex of adults. These neurophysiological results are consistent with previous psychophysical evidence for a protracted maturational time course for auditory temporal processing. The findings are also in good agreement with current linguistic theories that posit a perceptual bias for low frequency temporal information in speech during language acquisition. These insights also have clinical relevance for our understanding of language disorders that are associated with difficulties in processing temporal information in speech. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Temporal Compounding of Heat Waves in the Present and Projected Future

    NASA Astrophysics Data System (ADS)

    Baldwin, J. W.; Dessy, J.; Vecchi, G. A.; Oppenheimer, M.

    2017-12-01

    The hazard of heat waves is projected to increase significantly with global warming, motivating much recent research characterizing various aspects of these extreme events. One less examined aspect of heat waves is their temporal structure. Here we first modify existing heat wave duration definitions to flexibly account for a variety of possible heat wave temporal structures (sequences of hot and cooler days). We then examine past heat waves associated with high mortality using observational reanalysis data, and note that many past heat waves might be better described as series of hot days compounded together with short breaks of cooler days in between. We employ Geophysical Fluid Dynamics Laboratory (GFDL) global climate model (GCM) simulations to compare the frequency of these compound heat waves in the present and projected future with higher levels of atmospheric carbon dioxide. Our results indicate that temporally compound heatwaves will constitute a greater proportion of heat wave risk with global warming. Via examining synthetic autoregressive model data, we propose that this phenomenon is expected when shifting the mean of a time series with some memory and noise. Notably, an increased proportion of compound events implies that vulnerability from prior hot days will play an increasingly large role in heat wave risk, with possible implications for both heat wave-related policy and preparedness.

  20. Changes in Hippocampal Volume are Correlated with Cell Loss but Not with Seizure Frequency in Two Chronic Models of Temporal Lobe Epilepsy

    PubMed Central

    Polli, Roberson S.; Malheiros, Jackeline M.; dos Santos, Renan; Hamani, Clement; Longo, Beatriz M.; Tannús, Alberto; Mello, Luiz E.; Covolan, Luciene

    2014-01-01

    Kainic acid (KA) or pilocarpine (PILO) have been used in rats to model human temporal lobe epilepsy (TLE) but the distribution and severity of structural lesions between these two models may differ. Magnetic resonance imaging (MRI) studies have used quantitative measurements of hippocampal T2 (T2HP) relaxation time and volume, but simultaneous comparative results have not been reported yet. The aim of this study was to compare the MRI T2HP and volume with histological data and frequency of seizures in both models. KA- and PILO-treated rats were imaged with a 2 T MRI scanner. T2HP and volume values were correlated with the number of cells, mossy fiber sprouting, and spontaneous recurrent seizures (SRS) frequency over the 9 months following status epilepticus (SE). Compared to controls, KA-treated rats had unaltered T2HP, pronounced reduction in hippocampal volume and concomitant cell reduction in granule cell layer, CA1 and CA3 at 3 months post SE. In contrast, hippocampal volume was unchanged in PILO-treated animals despite detectable increased T2HP and cell loss in granule cell layer, CA1 and CA3. In the following 6 months, MRI hippocampal volume remained stable with increase of T2HP signal in the KA-treated group. The number of CA1 and CA3 cells was smaller than age-matched CTL group. In contrast, PILO group had MRI volumetric reduction accompanied by reduction in the number of CA1 and CA3 cells. In this group, T2HP signal was unaltered at 6 or 9 months after status. Reductions in the number of cells were not progressive in both models. Notably, the SRS frequency was higher in PILO than in the KA model. The volumetry data correlated well with tissue damage in the epileptic brain, suggesting that MRI may be useful for tracking longitudinal hippocampal changes, allowing the assessment of individual variability and disease progression. Our results indicate that the temporal changes in hippocampal morphology are distinct for both models of TLE and that these are not significantly correlated to the frequency of SRS. PMID:25071699

  1. [EEG features during olfactory stimulation in drug dependence persons].

    PubMed

    Batukhtina, E I; Nevidimova, T I; Vetlugina, T P; Kokorina, N P; Bokhan, N A

    2013-01-01

    Power spectra analysis EEG was used for baseline interval and during olfactory stimulation in drug dependence and healthy persons. Intergroup differences of EEG spectra were related with enhancement of cortex biopotential power in narcological patients at parietal and temporal sites. Interhemispheres features of frequency bands contribution in EEG spectra were identified. Increased biopotential power in drug dependence persons was observed at left temporal hemisphere in high-frequency bands in baseline interval and during olfactory stimulation. Increased power of alpha activity was typical for right temporal hemisphere in narcological patients as compare to healthy persons. Detected neurophysiological patterns may be related with psychological and behavioral features of addictive disorders.

  2. Temporal and Spatial Evolution Characteristics of Disturbance Wave in a Hypersonic Boundary Layer due to Single-Frequency Entropy Disturbance

    PubMed Central

    Lv, Hongqing; Shi, Jianqiang

    2014-01-01

    By using a high-order accurate finite difference scheme, direct numerical simulation of hypersonic flow over an 8° half-wedge-angle blunt wedge under freestream single-frequency entropy disturbance is conducted; the generation and the temporal and spatial nonlinear evolution of boundary layer disturbance waves are investigated. Results show that, under the freestream single-frequency entropy disturbance, the entropy state of boundary layer is changed sharply and the disturbance waves within a certain frequency range are induced in the boundary layer. Furthermore, the amplitudes of disturbance waves in the period phase are larger than that in the response phase and ablation phase and the frequency range in the boundary layer in the period phase is narrower than that in these two phases. In addition, the mode competition, dominant mode transformation, and disturbance energy transfer exist among different modes both in temporal and in spatial evolution. The mode competition changes the characteristics of nonlinear evolution of the unstable waves in the boundary layer. The development of the most unstable mode along streamwise relies more on the motivation of disturbance waves in the upstream than that of other modes on this motivation. PMID:25143983

  3. Temporal and spatial evolution characteristics of disturbance wave in a hypersonic boundary layer due to single-frequency entropy disturbance.

    PubMed

    Wang, Zhenqing; Tang, Xiaojun; Lv, Hongqing; Shi, Jianqiang

    2014-01-01

    By using a high-order accurate finite difference scheme, direct numerical simulation of hypersonic flow over an 8° half-wedge-angle blunt wedge under freestream single-frequency entropy disturbance is conducted; the generation and the temporal and spatial nonlinear evolution of boundary layer disturbance waves are investigated. Results show that, under the freestream single-frequency entropy disturbance, the entropy state of boundary layer is changed sharply and the disturbance waves within a certain frequency range are induced in the boundary layer. Furthermore, the amplitudes of disturbance waves in the period phase are larger than that in the response phase and ablation phase and the frequency range in the boundary layer in the period phase is narrower than that in these two phases. In addition, the mode competition, dominant mode transformation, and disturbance energy transfer exist among different modes both in temporal and in spatial evolution. The mode competition changes the characteristics of nonlinear evolution of the unstable waves in the boundary layer. The development of the most unstable mode along streamwise relies more on the motivation of disturbance waves in the upstream than that of other modes on this motivation.

  4. Is stress a trigger factor for migraine?

    PubMed

    Schoonman, G G; Evers, D J; Ballieux, B E; de Geus, E J; de Kloet, E R; Terwindt, G M; van Dijk, J G; Ferrari, M D

    2007-06-01

    Although mental stress is commonly considered to be an important trigger factor for migraine, experimental evidence for this belief is yet lacking. To study the temporal relationship between changes in stress-related parameters (both subjective and objective) and the onset of a migraine attack. This was a prospective, ambulatory study in 17 migraine patients. We assessed changes in perceived stress and objective biological measures for stress (saliva cortisol, heart rate average [HRA], and heart rate variability [low-frequency power and high-frequency power]) over 4 days prior to the onset of spontaneous migraine attacks. Analyses were repeated for subgroups of patients according to whether or not they felt their migraine to be triggered by stress. There were no significant temporal changes over time for the whole group in perceived stress (p=0.50), morning cortisol (p=0.73), evening cortisol (p=0.55), HRA (p=0.83), low-frequency power (p=0.99) and high-frequency power (p=0.97) prior to or during an attack. Post hoc analysis of the subgroup of nine stress-sensitive patients who felt that >2/3 of their migraine attacks were triggered by psychosocial stress, revealed an increase for perceived stress (p=0.04) but no changes in objective stress response measures. At baseline, this group also showed higher scores on the Penn State Worry Questionnaire (p=0.003) and the Cohen Perceived Stress Scale (p=0.001) compared to non-stress-sensitive patients. Although stress-sensitive patients, in contrast to non-stress-sensitive patients, may perceive more stress in the days before an impending migraine attack, we failed to detect any objective evidence for a biological stress response before or during migraine attacks.

  5. High frequency repetitive sensory stimulation improves temporal discrimination in healthy subjects.

    PubMed

    Erro, Roberto; Rocchi, Lorenzo; Antelmi, Elena; Palladino, Raffaele; Tinazzi, Michele; Rothwell, John; Bhatia, Kailash P

    2016-01-01

    High frequency electrical stimulation of an area of skin on a finger improves two-point spatial discrimination in the stimulated area, likely depending on plastic changes in the somatosensory cortex. However, it is unknown whether improvement also applies to temporal discrimination. Twelve young and ten elderly volunteers underwent the stimulation protocol onto the palmar skin of the right index finger. Somatosensory temporal discrimination threshold (STDT) was evaluated before and immediately after stimulation as well as 2.5h and 24h later. There was a significant reduction in somatosensory temporal threshold only on the stimulated finger. The effect was reversible, with STDT returning to the baseline values within 24h, and was smaller in the elderly than in the young participants. High frequency stimulation of the skin focally improves temporal discrimination in the area of stimulation. Given previous suggestions that the perceptual effects rely on plastic changes in the somatosensory cortex, our results are consistent with the idea that the timing of sensory stimuli is, at least partially, encoded in the primary somatosensory cortex. Such a protocol could potentially be used as a therapeutic intervention to ameliorate physiological decline in the elderly or in other disorders of sensorimotor integration. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Temporal and frequency characteristics of a narrow light beam in sea water.

    PubMed

    Luchinin, Alexander G; Kirillin, Mikhail Yu

    2016-09-20

    The structure of a light field in sea water excited by a unidirectional point-sized pulsed source is studied by Monte Carlo technique. The pulse shape registered at the distances up to 120 m from the source on the beam axis and in its axial region is calculated with a time resolution of 1 ps. It is shown that with the increase of the distance from the source the pulse splits into two parts formed by components of various scattering orders. Frequency and phase responses of the beam are calculated by means of the fast Fourier transform. It is also shown that for higher frequencies, the attenuation of harmonic components of the field is larger. In the range of parameters corresponding to pulse splitting on the beam axis, the attenuation of harmonic components in particular spectral ranges exceeds the attenuation predicted by Bouguer law. In this case, the transverse distribution of the amplitudes of these harmonics is minimal on the beam axis.

  7. Time-frequency model for echo-delay resolution in wideband biosonar.

    PubMed

    Neretti, Nicola; Sanderson, Mark I; Intrator, Nathan; Simmons, James A

    2003-04-01

    A time/frequency model of the bat's auditory system was developed to examine the basis for the fine (approximately 2 micros) echo-delay resolution of big brown bats (Eptesicus fuscus), and its performance at resolving closely spaced FM sonar echoes in the bat's 20-100-kHz band at different signal-to-noise ratios was computed. The model uses parallel bandpass filters spaced over this band to generate envelopes that individually can have much lower bandwidth than the bat's ultrasonic sonar sounds and still achieve fine delay resolution. Because fine delay separations are inside the integration time of the model's filters (approximately 250-300 micros), resolving them means using interference patterns along the frequency dimension (spectral peaks and notches). The low bandwidth content of the filter outputs is suitable for relay of information to higher auditory areas that have intrinsically poor temporal response properties. If implemented in fully parallel analog-digital hardware, the model is computationally extremely efficient and would improve resolution in military and industrial sonar receivers.

  8. Ambient noise and temporal patterns of boat activity in the US Virgin Islands National Park.

    PubMed

    Kaplan, Maxwell B; Mooney, T Aran

    2015-09-15

    Human activity is contributing increasing noise to marine ecosystems. Recent studies have examined the effects of boat noise on marine fishes, but there is limited understanding of the prevalence of this type of sound source. This investigation tracks vessel noise on three reefs in the US Virgin Islands National Park over four months in 2013. Ambient noise levels ranged from 106 to 129dBrms re 1μPa (100Hz-20kHz). Boat noise occurred in 6-12% of samples. In the presence of boat noise, ambient noise in a low-frequency band (100-1000Hz) increased by >7dB above baseline levels and sound levels were significantly higher. The frequency with the most acoustic energy shifted to a significantly lower frequency when boat noise was present during the day. These results indicate the abundance of boat noise and its overlap with reef organism sound production, raising concern for the communication abilities of these animals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Generation of 360 ps laser pulse with 3 J energy by stimulated Brillouin scattering with a nonfocusing scheme.

    PubMed

    Zhu, Xuehua; Wang, Yulei; Lu, Zhiwei; Zhang, Hengkang

    2015-09-07

    A new technique for generating high energy sub-400 picosecond laser pulses is presented in this paper. The temporally super-Gaussian-shaped laser pulses are used as light source. When the forward pump is reflected by the rear window of SBS cell, the frequency component that fulfills Brillouin frequency shift in its sideband spectrum works as a seed and excites SBS, which results in efficient compression of the incident pump pulse. First the pulse compression characteristics of 20th-order super-Gaussian temporally shaped pulses with 5 ns duration are analyzed theoretically. Then experiment is carried out with a narrow-band high power Nd:glass laser system at the double-frequency and wavelength of 527 nm which delivers 5 ns super-Gaussian temporally shaped pulses with single pulse energy over 10 J. FC-40 is used as the active SBS medium for its brief phonon lifetime and high power capacity. In the experiment, the results agree well with the numerical calculations. With pump energy of 5.36J, the compression of pulse duration from 5 ns to 360 ps is obtained. The output energy is 3.02 J and the peak-power is magnified 8.3 times. Moreover, the compressed pulse shows a high stability because it is initiated by the feedback of rear window rather than the thermal noise distributing inside the medium. This technique of generating high energy hundred picosecond laser pulses has simple structure and is easy to operate, and it also can be scaled to higher energy pulse compression in the future. Meanwhile, it should also be taken into consideration that in such a nonfocusing scheme, the noise-initiated SBS would increase the distortion on the wavefront of Stokes beam to some extent, and the pump energy should be controlled below the threshold of noise-initiated SBS.

  10. The influence of seizure frequency on anterograde and remote memory in mesial temporal lobe epilepsy.

    PubMed

    Voltzenlogel, Virginie; Vignal, Jean-Pierre; Hirsch, Edouard; Manning, Liliann

    2014-10-01

    Seizure frequency, although considered as an important factor in memory impairment in mesial temporal epilepsy (mTLE), is mostly confounded with other clinical variables, making it unclear to what extent recurrent seizures actually interfere with memory. The present study focuses on the influence of seizure frequency, studied as a main variable, on anterograde and remote memory. Seventy-one patients with unilateral mTLE were divided into two subgroups, as a function of their seizure frequency (monthly versus weekly seizures). Other seizure-related variables were controlled, namely, lateralisation and type of lesion, age at onset, years of ongoing seizures, etiologic factors, and number of AED. A comprehensive neuropsychological examination, including anterograde memory (verbal and non verbal recognition memory and free recall) tasks together with a large range of tests exploring different domains of remote memory, was carried out. Despite similar results on IQ, executive functions and attention, the low seizure-frequency group performed significantly better than the high seizure-frequency group on anterograde memory tests. Loss of autobiographical episodes and public-events memory, concomitant with spared personal semantic knowledge, was observed in both patient groups compared with healthy subjects. A worsening effect of high seizure frequency was recorded for autobiographical incidents and news-events memory, but unexpectedly, not for memory for famous people. The study of seizure frequency as the main variable leads us to suggest that high seizure frequency, itself, potentiates the effects of mesial temporal lobe damage on episodic memory deficits. Copyright © 2014 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  11. Dissociable neural response signatures for slow amplitude and frequency modulation in human auditory cortex.

    PubMed

    Henry, Molly J; Obleser, Jonas

    2013-01-01

    Natural auditory stimuli are characterized by slow fluctuations in amplitude and frequency. However, the degree to which the neural responses to slow amplitude modulation (AM) and frequency modulation (FM) are capable of conveying independent time-varying information, particularly with respect to speech communication, is unclear. In the current electroencephalography (EEG) study, participants listened to amplitude- and frequency-modulated narrow-band noises with a 3-Hz modulation rate, and the resulting neural responses were compared. Spectral analyses revealed similar spectral amplitude peaks for AM and FM at the stimulation frequency (3 Hz), but amplitude at the second harmonic frequency (6 Hz) was much higher for FM than for AM. Moreover, the phase delay of neural responses with respect to the full-band stimulus envelope was shorter for FM than for AM. Finally, the critical analysis involved classification of single trials as being in response to either AM or FM based on either phase or amplitude information. Time-varying phase, but not amplitude, was sufficient to accurately classify AM and FM stimuli based on single-trial neural responses. Taken together, the current results support the dissociable nature of cortical signatures of slow AM and FM. These cortical signatures potentially provide an efficient means to dissect simultaneously communicated slow temporal and spectral information in acoustic communication signals.

  12. Dissociable Neural Response Signatures for Slow Amplitude and Frequency Modulation in Human Auditory Cortex

    PubMed Central

    Henry, Molly J.; Obleser, Jonas

    2013-01-01

    Natural auditory stimuli are characterized by slow fluctuations in amplitude and frequency. However, the degree to which the neural responses to slow amplitude modulation (AM) and frequency modulation (FM) are capable of conveying independent time-varying information, particularly with respect to speech communication, is unclear. In the current electroencephalography (EEG) study, participants listened to amplitude- and frequency-modulated narrow-band noises with a 3-Hz modulation rate, and the resulting neural responses were compared. Spectral analyses revealed similar spectral amplitude peaks for AM and FM at the stimulation frequency (3 Hz), but amplitude at the second harmonic frequency (6 Hz) was much higher for FM than for AM. Moreover, the phase delay of neural responses with respect to the full-band stimulus envelope was shorter for FM than for AM. Finally, the critical analysis involved classification of single trials as being in response to either AM or FM based on either phase or amplitude information. Time-varying phase, but not amplitude, was sufficient to accurately classify AM and FM stimuli based on single-trial neural responses. Taken together, the current results support the dissociable nature of cortical signatures of slow AM and FM. These cortical signatures potentially provide an efficient means to dissect simultaneously communicated slow temporal and spectral information in acoustic communication signals. PMID:24205309

  13. Topographic controls on overland flow generation in a forest - An ensemble tree approach

    NASA Astrophysics Data System (ADS)

    Loos, Martin; Elsenbeer, Helmut

    2011-10-01

    SummaryOverland flow is an important hydrological pathway in many forests of the humid tropics. Its generation is subject to topographic controls at differing spatial scales. Our objective was to identify such controls on the occurrence of overland flow in a lowland tropical rainforest. To this end, we installed 95 overland flow detectors (OFDs) in four nested subcatchments of the Lutzito catchment on Barro Colorado Island, Panama, and monitored the frequency of overland flow occurrence during 18 rainfall events at each OFD location temporal frequency. For each such location, we derived three non-digital terrain attributes and 17 digital ones, of which 15 were based on Digital Elevation Models (DEMs) of three different resolutions. These attributes then served as input into a Random Forest ensemble tree model to elucidate the importance and partial and joint dependencies of topographic controls for overland flow occurrence. Lutzito features a high median temporal frequency in overland flow occurrence of 0.421 among OFD locations. However, spatial temporal frequencies of overland flow occurrence vary strongly among these locations and the subcatchments of Lutzito catchment. This variability is best explained by (1) microtopography, (2) coarse terrain sloping and (3) various measures of distance-to-channel, with the contribution of all other terrain attributes being small. Microtopographic features such as concentrated flowlines and wash areas produce highest temporal frequencies, whereas the occurrence of overland flow drops sharply for flow distances and terrain sloping beyond certain threshold values. Our study contributes to understanding both the spatial controls on overland flow generation and the limitations of terrain attributes for the spatially explicit prediction of overland flow frequencies.

  14. Oscillations in motor unit discharge are reflected in the low-frequency component of rectified surface EMG and the rate of change in force.

    PubMed

    Yoshitake, Yasuhide; Shinohara, Minoru

    2013-11-01

    Common drive to a motor unit (MU) pool manifests as low-frequency oscillations in MU discharge rate, producing fluctuations in muscle force. The aim of the study was to examine the temporal correlation between instantaneous MU discharge rate and rectified EMG in low frequencies. Additionally, we attempted to examine whether there is a temporal correlation between the low-frequency oscillations in MU discharge rate and the first derivative of force (dF/dt). Healthy young subjects produced steady submaximal force with their right finger as a single task or while maintaining a pinch-grip force with the left hand as a dual task. Surface EMG and fine-wire MU potentials were recorded from the first dorsal interosseous muscle in the right hand. Surface EMG was band-pass filtered (5-1,000 Hz) and full-wave rectified. Rectified surface EMG and the instantaneous discharge rate of MUs were smoothed by a Hann-window of 400 ms duration (equivalent to 2 Hz low-pass filtering). In each of the identified MUs, the smoothed MU discharge rate was positively correlated with the rectified-and-smoothed EMG as confirmed by the distinct peak in cross-correlation function with greater values in the dual task compared with the single task. Additionally, the smoothed MU discharge rate was temporally correlated with dF/dt more than with force and with rectified-and-smoothed EMG. The results indicated that the low-frequency component of rectified surface EMG and the first derivative of force provide temporal information on the low-frequency oscillations in the MU discharge rate.

  15. Temporal and spatio-temporal vibrotactile displays for voice fundamental frequency: an initial evaluation of a new vibrotactile speech perception aid with normal-hearing and hearing-impaired individuals.

    PubMed

    Auer, E T; Bernstein, L E; Coulter, D C

    1998-10-01

    Four experiments were performed to evaluate a new wearable vibrotactile speech perception aid that extracts fundamental frequency (F0) and displays the extracted F0 as a single-channel temporal or an eight-channel spatio-temporal stimulus. Specifically, we investigated the perception of intonation (i.e., question versus statement) and emphatic stress (i.e., stress on the first, second, or third word) under Visual-Alone (VA), Visual-Tactile (VT), and Tactile-Alone (TA) conditions and compared performance using the temporal and spatio-temporal vibrotactile display. Subjects were adults with normal hearing in experiments I-III and adults with severe to profound hearing impairments in experiment IV. Both versions of the vibrotactile speech perception aid successfully conveyed intonation. Vibrotactile stress information was successfully conveyed, but vibrotactile stress information did not enhance performance in VT conditions beyond performance in VA conditions. In experiment III, which involved only intonation identification, a reliable advantage for the spatio-temporal display was obtained. Differences between subject groups were obtained for intonation identification, with more accurate VT performance by those with normal hearing. Possible effects of long-term hearing status are discussed.

  16. Automatic Co-Registration of Multi-Temporal Landsat-8/OLI and Sentinel-2A/MSI Images

    NASA Technical Reports Server (NTRS)

    Skakun, S.; Roger, J.-C.; Vermote, E.; Justice, C.; Masek, J.

    2017-01-01

    Many applications in climate change and environmental and agricultural monitoring rely heavily on the exploitation of multi-temporal satellite imagery. Combined use of freely available Landsat-8 and Sentinel-2 images can offer high temporal frequency of about 1 image every 3-5 days globally.

  17. Gender-specific effects of emotional modulation on visual temporal order thresholds.

    PubMed

    Liang, Wei; Zhang, Jiyuan; Bao, Yan

    2015-09-01

    Emotions affect temporal information processing in the low-frequency time window of a few seconds, but little is known about their effect in the high-frequency domain of some tens of milliseconds. The present study aims to investigate whether negative and positive emotional states influence the ability to discriminate the temporal order of visual stimuli, and whether gender plays a role in temporal processing. Due to the hemispheric lateralization of emotion, a hemispheric asymmetry between the left and the right visual field might be expected. Using a block design, subjects were primed with neutral, negative and positive emotional pictures before performing temporal order judgment tasks. Results showed that male subjects exhibited similarly reduced order thresholds under negative and positive emotional states, while female subjects demonstrated increased threshold under positive emotional state and reduced threshold under negative emotional state. Besides, emotions influenced female subjects more intensely than male subjects, and no hemispheric lateralization was observed. These observations indicate an influence of emotional states on temporal order processing of visual stimuli, and they suggest a gender difference, which is possibly associated with a different emotional stability.

  18. EEG theta power and coherence to octave illusion in first-episode paranoid schizophrenia with auditory hallucinations.

    PubMed

    Zheng, Leilei; Chai, Hao; Yu, Shaohua; Xu, You; Chen, Wanzhen; Wang, Wei

    2015-01-01

    The exact mechanism behind auditory hallucinations in schizophrenia remains unknown. A corollary discharge dysfunction hypothesis has been put forward, but it requires further confirmation. Electroencephalography (EEG) of the Deutsch octave illusion might offer more insight, by demonstrating an abnormal cerebral activation similar to that under auditory hallucinations in schizophrenic patients. We invited 23 first-episode schizophrenic patients with auditory hallucinations and 23 healthy participants to listen to silence and two sound sequences, which consisted of alternating 400- and 800-Hz tones. EEG spectral power and coherence values of different frequency bands, including theta rhythm (3.5-7.5 Hz), were computed using 32 scalp electrodes. Task-related spectral power changes and task-related coherence differences were also calculated. Clinical characteristics of patients were rated using the Positive and Negative Syndrome Scale. After both sequences of octave illusion, the task-related theta power change values of frontal and temporal areas were significantly lower, and the task-related theta coherence difference values of intrahemispheric frontal-temporal areas were significantly higher in schizophrenic patients than in healthy participants. Moreover, the task-related power change values in both hemispheres were negatively correlated and the task-related coherence difference values in the right hemisphere were positively correlated with the hallucination score in schizophrenic patients. We only tested the Deutsch octave illusion in primary schizophrenic patients with acute first episode. Further studies might adopt other illusions or employ other forms of schizophrenia. Our results showed a lower activation but higher connection within frontal and temporal areas in schizophrenic patients under octave illusion. This suggests an oversynchronized but weak frontal area to exert an action to the ipsilateral temporal area, which supports the corollary discharge dysfunction hypothesis. © 2014 S. Karger AG, Basel.

  19. Indexes of temporal myocardial repolarization dispersion and sudden cardiac death in heart failure: any difference?

    PubMed

    Piccirillo, Gianfranco; Rossi, Pietro; Mitra, Marilena; Quaglione, Raffaele; Dell'Armi, Annalaura; Di Barba, Daniele; Maisto, Damiana; Lizio, Andrea; Barillà, Francesco; Magrì, Damiano

    2013-03-01

    The QT variability index, calculated between Q- and the T-wave end (QTend VI), is an index of temporal myocardial repolarization lability associated with sudden cardiac death (SCD) in chronic heart failure (CHF). Little is known about temporal variability in the other two temporal myocardial repolarization descriptors obtained from Q-Tpeak and Tpeak -Tend intervals. We therefore investigated differences between these indexes in patients with CHF who died suddenly and in those who survived with a left ventricular ejection fraction (LVEF) ≤35% or >35%. We selected 127 ECG and systolic blood pressure (SPB) recordings from outpatients with CHF all of whom had been followed up for 30 months. We calculated RR and SPB variability by power spectral analysis and QTend VI, QTpeak VI, Tpeak Tend VI. We then subdivided data patients into three groups SCD, LVEF ≤ 35%, and LVEF > 35%. The LVEF was higher in the SCD than in the LVEF ≤ 35% group, whereas no difference was found between the SCD and LVEF > 35% groups. QTend VI, QTpeak VI, and Tpeak Tend VI were higher in the SCD and LVEF ≤ 35% groups than in the LVEF > 35% group. Multivariate analysis detected a negative relationship between all repolarization variability indexes, low frequency obtained from RR intervals and LVEF. Our data show that variability in the first (QTpeak VI) and second halves of the QT interval (Tpeak -Tend VI) significantly contributes to the QTend VI in patients with CHF. Further studies should investigate whether these indexes might help stratify the risk of SCD in patients with a moderately depressed LVEF. ©2012, Wiley Periodicals, Inc.

  20. Improved two-photon imaging of living neurons in brain tissue through temporal gating

    PubMed Central

    Gautam, Vini; Drury, Jack; Choy, Julian M. C.; Stricker, Christian; Bachor, Hans-A.; Daria, Vincent R.

    2015-01-01

    We optimize two-photon imaging of living neurons in brain tissue by temporally gating an incident laser to reduce the photon flux while optimizing the maximum fluorescence signal from the acquired images. Temporal gating produces a bunch of ~10 femtosecond pulses and the fluorescence signal is improved by increasing the bunch-pulse energy. Gating is achieved using an acousto-optic modulator with a variable gating frequency determined as integral multiples of the imaging sampling frequency. We hypothesize that reducing the photon flux minimizes the photo-damage to the cells. Our results, however, show that despite producing a high fluorescence signal, cell viability is compromised when the gating and sampling frequencies are equal (or effectively one bunch-pulse per pixel). We found an optimum gating frequency range that maintains the viability of the cells while preserving a pre-set fluorescence signal of the acquired two-photon images. The neurons are imaged while under whole-cell patch, and the cell viability is monitored as a change in the membrane’s input resistance. PMID:26504651

  1. Measurement and simulation of unmyelinated nerve electrostimulation: Lumbricus terrestris experiment and numerical model

    NASA Astrophysics Data System (ADS)

    Šarolić, A.; Živković, Z.; Reilly, J. P.

    2016-06-01

    The electrostimulation excitation threshold of a nerve depends on temporal and frequency parameters of the stimulus. These dependences were investigated in terms of: (1) strength-duration (SD) curve for a single monophasic rectangular pulse, and (2) frequency dependence of the excitation threshold for a continuous sinusoidal current. Experiments were performed on the single-axon measurement setup based on Lumbricus terrestris having unmyelinated nerve fibers. The simulations were performed using the well-established SENN model for a myelinated nerve. Although the unmyelinated experimental model differs from the myelinated simulation model, both refer to a single axon. Thus we hypothesized that the dependence on temporal and frequency parameters should be very similar. The comparison was made possible by normalizing each set of results to the SD time constant and the rheobase current of each model, yielding the curves that show the temporal and frequency dependencies regardless of the model differences. The results reasonably agree, suggesting that this experimental setup and method of comparison with SENN model can be used for further studies of waveform effect on nerve excitability, including unmyelinated neurons.

  2. Measurement and simulation of unmyelinated nerve electrostimulation: Lumbricus terrestris experiment and numerical model.

    PubMed

    Šarolić, A; Živković, Z; Reilly, J P

    2016-06-21

    The electrostimulation excitation threshold of a nerve depends on temporal and frequency parameters of the stimulus. These dependences were investigated in terms of: (1) strength-duration (SD) curve for a single monophasic rectangular pulse, and (2) frequency dependence of the excitation threshold for a continuous sinusoidal current. Experiments were performed on the single-axon measurement setup based on Lumbricus terrestris having unmyelinated nerve fibers. The simulations were performed using the well-established SENN model for a myelinated nerve. Although the unmyelinated experimental model differs from the myelinated simulation model, both refer to a single axon. Thus we hypothesized that the dependence on temporal and frequency parameters should be very similar. The comparison was made possible by normalizing each set of results to the SD time constant and the rheobase current of each model, yielding the curves that show the temporal and frequency dependencies regardless of the model differences. The results reasonably agree, suggesting that this experimental setup and method of comparison with SENN model can be used for further studies of waveform effect on nerve excitability, including unmyelinated neurons.

  3. Studies on the transmission of sub-THz waves in magnetized inhomogeneous plasma sheath

    NASA Astrophysics Data System (ADS)

    Yuan, Kai; Shen, Linfang; Yao, Ming; Deng, Xiaohua; Chen, Zhou; Hong, Lujun

    2018-01-01

    There have been many studies on the sub-terahertz (sub-THz) wave transmission in reentry plasma sheaths. However, only some of them have paid attention to the transmission of sub-THz waves in magnetized plasma sheaths. In this paper, the transmission of sub-THz waves in both unmagnetized and magnetized reentry plasma sheaths was investigated. The impacts of temporal evolution of the plasma sheath on the wave transmission were studied. The transmission of "atmospheric window" frequencies in a magnetized plasma sheath was discussed in detail. According to the study, the power transmission rates (Tp) for the left hand circular (LHC) and the right hand circular modes in the magnetized plasma sheath are obviously higher and lower than those in the unmagnetized plasma sheath, respectively. The Tp of LHC mode increases with both wave frequency and external magnetic field strength. Also, the Tp of LHC mode in both magnetized and unmagnetized plasma sheaths varies with time due to the temporal evolution of the plasma sheath. Moreover, the performance of sub-THz waves in magnetized plasma sheath hints at a new approach to the "blackout" problem. The new approach, which is in the capability of modern technology, is to utilize the communication system operating at 140 GHz with an onboard magnet installed near the antenna.

  4. Alternating activation is related to fatigue in lumbar muscles during sustained sitting.

    PubMed

    Ringheim, Inge; Indahl, Aage; Roeleveld, Karin

    2014-06-01

    The aim of this study was to investigate the relation between variability in muscle activity and fatigue during a sustained low level contraction in the lumbar muscles. Twenty-five healthy participants (13 men 12 women) performed a 30min sitting task with 5 degrees inclination of the trunk. Surface electromyographic (EMG) signals were recorded bilaterally from the lumbar muscles with 2 high density surface EMG grids of 9×14 electrodes. Median frequency (MDF) decrease, amplitude (RMS) increase and the rating of perceived exertion (RPE) were used as fatigue indices. Alternating activation and spatial and temporal variability were computed and relations with the fatigue indices were explored. During sitting, the mono- and bipolar RMS slightly increased while the MDF remained unchanged indicating no systematic muscle fatigue, although the average RPE increased from 6 to 13 on a scale ranging between 6 and 20. Higher frequency of alternating activation between the left and right side was associated with increased RPE (p=0.03) and decreased MDF (p=0.05). A tendency in the same direction was seen between increased spatial and temporal variation within the grids and increased RPE and decreased MDF. Present findings provide evidence for a relationship between variability in muscle activity and fatigue. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Herbicides and degradates in shallow aquifers of Illinois: Spatial and temporal trends

    USGS Publications Warehouse

    Mills, P.C.; Kolpin, D.W.; Scribner, E.A.; Thurman, E.M.

    2005-01-01

    During the fall of 2000, the occurrence was examined of 16 herbicides and 13 herbicide degradates in samples from 55 wells in shallow aquifers underlying grain producing regions of Illinois. Herbicide compounds with concentrations above 0.05 ??g/L were detected in 56 percent of the samples. No concentrations exceeded regulatory drinking water standards. The six most frequently detected compounds were degradates. Water age was an important factor in determining vulnerability of ground water to transport of herbicide compounds. Unconsolidated aquifers, which were indicated to generally contain younger ground water than bedrock aquifers, had a higher occurrence of herbicides (73 percent of samples) than bedrock aquifers (22 percent). Temporal analysis to determine if changes in concentrations of selected herbicides and degradates could be observed over a near decadal period indicated a decrease in detection frequency (25 to 18 percent) between samplings in 1991 and 2000. Over this period, significant differences in concentrations were observed for atrazine (decrease) and total acetochlor (increase). The increase in acetochlor compound concentrations corresponds to an increase in acetochlor use during the study period, while the decrease in atrazine concentrations corresponds to relatively consistent use of atrazine. Changes in frequency of herbicide detection and concentration do not appear related to changes in land use near sampled wells.

  6. The ability of cochlear implant users to use temporal envelope cues recovered from speech frequency modulationa

    PubMed Central

    Won, Jong Ho; Lorenzi, Christian; Nie, Kaibao; Li, Xing; Jameyson, Elyse M.; Drennan, Ward R.; Rubinstein, Jay T.

    2012-01-01

    Previous studies have demonstrated that normal-hearing listeners can understand speech using the recovered “temporal envelopes,” i.e., amplitude modulation (AM) cues from frequency modulation (FM). This study evaluated this mechanism in cochlear implant (CI) users for consonant identification. Stimuli containing only FM cues were created using 1, 2, 4, and 8-band FM-vocoders to determine if consonant identification performance would improve as the recovered AM cues become more available. A consistent improvement was observed as the band number decreased from 8 to 1, supporting the hypothesis that (1) the CI sound processor generates recovered AM cues from broadband FM, and (2) CI users can use the recovered AM cues to recognize speech. The correlation between the intact and the recovered AM components at the output of the sound processor was also generally higher when the band number was low, supporting the consonant identification results. Moreover, CI subjects who were better at using recovered AM cues from broadband FM cues showed better identification performance with intact (unprocessed) speech stimuli. This suggests that speech perception performance variability in CI users may be partly caused by differences in their ability to use AM cues recovered from FM speech cues. PMID:22894230

  7. Estimating Gross Primary Production in Cropland with High Spatial and Temporal Scale Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Lin, S.; Li, J.; Liu, Q.

    2018-04-01

    Satellite remote sensing data provide spatially continuous and temporally repetitive observations of land surfaces, and they have become increasingly important for monitoring large region of vegetation photosynthetic dynamic. But remote sensing data have their limitation on spatial and temporal scale, for example, higher spatial resolution data as Landsat data have 30-m spatial resolution but 16 days revisit period, while high temporal scale data such as geostationary data have 30-minute imaging period, which has lower spatial resolution (> 1 km). The objective of this study is to investigate whether combining high spatial and temporal resolution remote sensing data can improve the gross primary production (GPP) estimation accuracy in cropland. For this analysis we used three years (from 2010 to 2012) Landsat based NDVI data, MOD13 vegetation index product and Geostationary Operational Environmental Satellite (GOES) geostationary data as input parameters to estimate GPP in a small region cropland of Nebraska, US. Then we validated the remote sensing based GPP with the in-situ measurement carbon flux data. Results showed that: 1) the overall correlation between GOES visible band and in-situ measurement photosynthesis active radiation (PAR) is about 50 % (R2 = 0.52) and the European Center for Medium-Range Weather Forecasts ERA-Interim reanalysis data can explain 64 % of PAR variance (R2 = 0.64); 2) estimating GPP with Landsat 30-m spatial resolution data and ERA daily meteorology data has the highest accuracy(R2 = 0.85, RMSE < 3 gC/m2/day), which has better performance than using MODIS 1-km NDVI/EVI product import; 3) using daily meteorology data as input for GPP estimation in high spatial resolution data would have higher relevance than 8-day and 16-day input. Generally speaking, using the high spatial resolution and high frequency satellite based remote sensing data can improve GPP estimation accuracy in cropland.

  8. Gamma oscillations precede interictal epileptiform spikes in the seizure onset zone

    PubMed Central

    Ren, Liankun; Kucewicz, Michal T.; Cimbalnik, Jan; Matsumoto, Joseph Y.; Brinkmann, Benjamin H.; Hu, Wei; Marsh, W. Richard; Meyer, Fredric B.; Stead, S. Matthew

    2015-01-01

    Objective: To investigate the generation, spectral characteristics, and potential clinical significance of brain activity preceding interictal epileptiform spike discharges (IEDs) recorded with intracranial EEG. Methods: Seventeen adult patients with drug-resistant temporal lobe epilepsy were implanted with intracranial electrodes as part of their evaluation for epilepsy surgery. IEDs detected on clinical macro- and research microelectrodes were analyzed using time-frequency spectral analysis. Results: Gamma frequency oscillations (30–100 Hz) often preceded IEDs in spatially confined brain areas. The gamma-IEDs were consistently observed 35 to 190 milliseconds before the epileptiform spike waveforms on individual macro- and microelectrodes. The gamma oscillations associated with IEDs had longer duration (p < 0.001) and slightly higher frequency (p = 0.045) when recorded on microelectrodes compared with clinical macroelectrodes. Although gamma-IEDs comprised only a subset of IEDs, they were strongly associated with electrodes in the seizure onset zone (SOZ) compared with the surrounding brain regions (p = 0.004), in sharp contrast to IEDs without preceding gamma oscillations that were often also detected outside of the SOZ. Similar to prior studies, isolated pathologic high-frequency oscillations in the gamma (30–100 Hz) and higher (100–600 Hz) frequency range, not associated with an IED, were also found to be associated with SOZ. Conclusions: The occurrence of locally generated gamma oscillations preceding IEDs suggests a mechanistic role for gamma in pathologic network activity generating IEDs. The results show a strong association between SOZ and gamma-IEDs. The potential clinical application of gamma-IEDs for mapping pathologic brain regions is intriguing, but will require future prospective studies. PMID:25589669

  9. Towards real-time thermometry using simultaneous multislice MRI

    NASA Astrophysics Data System (ADS)

    Borman, P. T. S.; Bos, C.; de Boorder, T.; Raaymakers, B. W.; Moonen, C. T. W.; Crijns, S. P. M.

    2016-09-01

    MR-guided thermal therapies, such as high-intensity focused ultrasound (MRgHIFU) and laser-induced thermal therapy (MRgLITT) are increasingly being applied in oncology and neurology. MRI is used for guidance since it can measure temperature noninvasively based on the proton resonance frequency shift (PRFS). For therapy guidance using PRFS thermometry, high temporal resolution and large spatial coverage are desirable. We propose to use the parallel imaging technique simultaneous multislice (SMS) in combination with controlled aliasing (CAIPIRINHA) to accelerate the acquisition. We compare this with the sensitivity encoding (SENSE) acceleration technique. Two experiments were performed to validate that SMS can be used to increase the spatial coverage or the temporal resolution. The first was performed in agar gel using LITT heating and a gradient-echo sequence with echo-planar imaging (EPI), and the second was performed in bovine muscle using HIFU heating and a gradient-echo sequence without EPI. In both experiments temperature curves from an unaccelerated scan and from SMS, SENSE, and SENSE/SMS accelerated scans were compared. The precision was quantified by a standard deviation analysis of scans without heating. Both experiments showed a good agreement between the temperature curves obtained from the unaccelerated, and SMS accelerated scans, confirming that accuracy was maintained during SMS acceleration. The standard deviations of the temperature measurements obtained with SMS were significantly smaller than when SENSE was used, implying that SMS allows for higher acceleration. In the LITT and HIFU experiments SMS factors up to 4 and 3 were reached, respectively, with a loss of precision of less than a factor of 3. Based on these results we conclude that SMS acceleration of PRFS thermometry is a valuable addition to SENSE, because it allows for a higher temporal resolution or bigger spatial coverage, with a higher precision.

  10. Video quality assessment method motivated by human visual perception

    NASA Astrophysics Data System (ADS)

    He, Meiling; Jiang, Gangyi; Yu, Mei; Song, Yang; Peng, Zongju; Shao, Feng

    2016-11-01

    Research on video quality assessment (VQA) plays a crucial role in improving the efficiency of video coding and the performance of video processing. It is well acknowledged that the motion energy model generates motion energy responses in a middle temporal area by simulating the receptive field of neurons in V1 for the motion perception of the human visual system. Motivated by the biological evidence for the visual motion perception, a VQA method is proposed in this paper, which comprises the motion perception quality index and the spatial index. To be more specific, the motion energy model is applied to evaluate the temporal distortion severity of each frequency component generated from the difference of Gaussian filter bank, which produces the motion perception quality index, and the gradient similarity measure is used to evaluate the spatial distortion of the video sequence to get the spatial quality index. The experimental results of the LIVE, CSIQ, and IVP video databases demonstrate that the random forests regression technique trained by the generated quality indices is highly correspondent to human visual perception and has many significant improvements than comparable well-performing methods. The proposed method has higher consistency with subjective perception and higher generalization capability.

  11. Quantitative analysis of neuronal response properties in primary and higher-order auditory cortical fields of awake house mice (Mus musculus)

    PubMed Central

    Joachimsthaler, Bettina; Uhlmann, Michaela; Miller, Frank; Ehret, Günter; Kurt, Simone

    2014-01-01

    Because of its great genetic potential, the mouse (Mus musculus) has become a popular model species for studies on hearing and sound processing along the auditory pathways. Here, we present the first comparative study on the representation of neuronal response parameters to tones in primary and higher-order auditory cortical fields of awake mice. We quantified 12 neuronal properties of tone processing in order to estimate similarities and differences of function between the fields, and to discuss how far auditory cortex (AC) function in the mouse is comparable to that in awake monkeys and cats. Extracellular recordings were made from 1400 small clusters of neurons from cortical layers III/IV in the primary fields AI (primary auditory field) and AAF (anterior auditory field), and the higher-order fields AII (second auditory field) and DP (dorsoposterior field). Field specificity was shown with regard to spontaneous activity, correlation between spontaneous and evoked activity, tone response latency, sharpness of frequency tuning, temporal response patterns (occurrence of phasic responses, phasic-tonic responses, tonic responses, and off-responses), and degree of variation between the characteristic frequency (CF) and the best frequency (BF) (CF–BF relationship). Field similarities were noted as significant correlations between CFs and BFs, V-shaped frequency tuning curves, similar minimum response thresholds and non-monotonic rate-level functions in approximately two-thirds of the neurons. Comparative and quantitative analyses showed that the measured response characteristics were, to various degrees, susceptible to influences of anesthetics. Therefore, studies of neuronal responses in the awake AC are important in order to establish adequate relationships between neuronal data and auditory perception and acoustic response behavior. PMID:24506843

  12. Temporal and Spatial Patterns of Preferential Flow Occurrence in the Shale Hills Catchment: From the Hillslope to the Catchment Scales

    NASA Astrophysics Data System (ADS)

    Liu, H.; Lin, H.

    2013-12-01

    Understanding temporal and spatial patterns of preferential flow (PF) occurrence is important in revealing hillslope and catchment hydrologic and biogeochemical processes. Quantitative assessment of the frequency and control of PF occurrence in the field, however, has been limited, especially at the landscape scale of hillslope and catchment. By using 5.5-years' (2007-2012) real-time soil moisture at 10 sites response to 323 precipitation events, we tested the temporal consistency of PF occurrence at the hillslope scale in the forested Shale Hills Catchment; and by using 25 additional sites with at least 1-year data (2011-2012), we evaluated the spatial patterns of PF occurrence across the catchment. To explore the potential effects of PF occurrence on catchment hydrology, wavelet analysis was performed on the recorded time series of hydrological signals (i.e., precipitation, soil moisture, catchment discharge). Considerable temporal consistence was observed in both the frequency and the main controls of PF occurrence at the hillslope scale, which was attributed largely to the statistical stability of precipitation pattern over the monitoring period and the relatively stable subsurface preferential pathways. Preferential flow tended to occur more often in response to intense rainfall events, and favored the conditions at dry hilltop or wet valley floor sites. When upscaling to the entire catchment, topographic control on the PF occurrence was amplified remarkably, leading to the identification of a subsurface PF network in the catchment. Higher frequency of PF occurrence was observed at the valley floor (average 48%), hilltop (average 46%), and swales/hillslopes near the stream (average 40%), while the hillslopes in the eastern part of the catchment were least likely to experience PF (0-20%). No clear relationship, however, was observed between terrain attributes and PF occurrence, because the initiation and persistency of PF in this catchment was controlled jointly by complex interactions among landform units, soil types, initial soil moisture, precipitation features, and season. Through the wavelet method (coherence spectrum and phase differences), dual-pore filtering effects of soil system were proven, rendering it possible to further infer characteristic properties of the underlying hydrological processes in the subsurface. We found that preferential flow dominates the catchment discharge response at short-time periods (< 3 days), while the matrix flow may dominate the discharge response at the time scales of around 10-12 days. The temporal and spatial patterns of PF occurrence revealed in this study can help advance the modeling and prediction of complex PF dynamics in this and other similar landscapes.

  13. Seismic sensitivity to sub-surface solar activity from 18 yr of GOLF/SoHO observations

    NASA Astrophysics Data System (ADS)

    Salabert, D.; García, R. A.; Turck-Chièze, S.

    2015-06-01

    Solar activity has significantly changed over the last two Schwabe cycles. After a long and deep minimum at the end of Cycle 23, the weaker activity of Cycle 24 contrasts with the previous cycles. In this work, the response of the solar acoustic oscillations to solar activity is used in order to provide insights into the structural and magnetic changes in the sub-surface layers of the Sun during this on-going unusual period of low activity. We analyze 18 yr of continuous observations of the solar acoustic oscillations collected by the Sun-as-a-star GOLF instrument on board the SoHO spacecraft. From the fitted mode frequencies, the temporal variability of the frequency shifts of the radial, dipolar, and quadrupolar modes are studied for different frequency ranges that are sensitive to different layers in the solar sub-surface interior. The low-frequency modes show nearly unchanged frequency shifts between Cycles 23 and 24, with a time evolving signature of the quasi-biennial oscillation, which is particularly visible for the quadrupole component revealing the presence of a complex magnetic structure. The modes at higher frequencies show frequency shifts that are 30% smaller during Cycle 24, which is in agreement with the decrease observed in the surface activity between Cycles 23 and 24. The analysis of 18 yr of GOLF oscillations indicates that the structural and magnetic changes responsible for the frequency shifts remained comparable between Cycle 23 and Cycle 24 in the deeper sub-surface layers below 1400 km as revealed by the low-frequency modes. The frequency shifts of the higher-frequency modes, sensitive to shallower regions, show that Cycle 24 is magnetically weaker in the upper layers of Sun. Appendices are available in electronic form at http://www.aanda.orgThe following 68 GOLF frequency tables are available and Table A.1 is also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/578/A137

  14. An underestimated role of precipitation frequency in regulating summer soil moisture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chaoyang; Chen, Jing M.; Pumpanen, Jukka

    2012-04-26

    Soil moisture induced droughts are expected to become more frequent under future global climate change. Precipitation has been previously assumed to be mainly responsible for variability in summer soil moisture. However, little is known about the impacts of precipitation frequency on summer soil moisture, either interannually or spatially. To better understand the temporal and spatial drivers of summer drought, 415 site yr measurements observed at 75 flux sites world wide were used to analyze the temporal and spatial relationships between summer soil water content (SWC) and the precipitation frequencies at various temporal scales, i.e., from half-hourly, 3, 6, 12 andmore » 24 h measurements. Summer precipitation was found to be an indicator of interannual SWC variability with r of 0.49 (p < 0.001) for the overall dataset. However, interannual variability in summer SWC was also significantly correlated with the five precipitation frequencies and the sub-daily precipitation frequencies seemed to explain the interannual SWC variability better than the total of precipitation. Spatially, all these precipitation frequencies were better indicators of summer SWC than precipitation totals, but these better performances were only observed in non-forest ecosystems. Our results demonstrate that precipitation frequency may play an important role in regulating both interannual and spatial variations of summer SWC, which has probably been overlooked or underestimated. However, the spatial interpretation should carefully consider other factors, such as the plant functional types and soil characteristics of diverse ecoregions.« less

  15. Discriminative spatial-frequency-temporal feature extraction and classification of motor imagery EEG: An sparse regression and Weighted Naïve Bayesian Classifier-based approach.

    PubMed

    Miao, Minmin; Zeng, Hong; Wang, Aimin; Zhao, Changsen; Liu, Feixiang

    2017-02-15

    Common spatial pattern (CSP) is most widely used in motor imagery based brain-computer interface (BCI) systems. In conventional CSP algorithm, pairs of the eigenvectors corresponding to both extreme eigenvalues are selected to construct the optimal spatial filter. In addition, an appropriate selection of subject-specific time segments and frequency bands plays an important role in its successful application. This study proposes to optimize spatial-frequency-temporal patterns for discriminative feature extraction. Spatial optimization is implemented by channel selection and finding discriminative spatial filters adaptively on each time-frequency segment. A novel Discernibility of Feature Sets (DFS) criteria is designed for spatial filter optimization. Besides, discriminative features located in multiple time-frequency segments are selected automatically by the proposed sparse time-frequency segment common spatial pattern (STFSCSP) method which exploits sparse regression for significant features selection. Finally, a weight determined by the sparse coefficient is assigned for each selected CSP feature and we propose a Weighted Naïve Bayesian Classifier (WNBC) for classification. Experimental results on two public EEG datasets demonstrate that optimizing spatial-frequency-temporal patterns in a data-driven manner for discriminative feature extraction greatly improves the classification performance. The proposed method gives significantly better classification accuracies in comparison with several competing methods in the literature. The proposed approach is a promising candidate for future BCI systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Human auditory steady state responses to binaural and monaural beats.

    PubMed

    Schwarz, D W F; Taylor, P

    2005-03-01

    Binaural beat sensations depend upon a central combination of two different temporally encoded tones, separately presented to the two ears. We tested the feasibility to record an auditory steady state evoked response (ASSR) at the binaural beat frequency in order to find a measure for temporal coding of sound in the human EEG. We stimulated each ear with a distinct tone, both differing in frequency by 40Hz, to record a binaural beat ASSR. As control, we evoked a beat ASSR in response to both tones in the same ear. We band-pass filtered the EEG at 40Hz, averaged with respect to stimulus onset and compared ASSR amplitudes and phases, extracted from a sinusoidal non-linear regression fit to a 40Hz period average. A 40Hz binaural beat ASSR was evoked at a low mean stimulus frequency (400Hz) but became undetectable beyond 3kHz. Its amplitude was smaller than that of the acoustic beat ASSR, which was evoked at low and high frequencies. Both ASSR types had maxima at fronto-central leads and displayed a fronto-occipital phase delay of several ms. The dependence of the 40Hz binaural beat ASSR on stimuli at low, temporally coded tone frequencies suggests that it may objectively assess temporal sound coding ability. The phase shift across the electrode array is evidence for more than one origin of the 40Hz oscillations. The binaural beat ASSR is an evoked response, with novel diagnostic potential, to a signal that is not present in the stimulus, but generated within the brain.

  17. Linearised dynamics and non-modal instability analysis of an impinging under-expanded supersonic jet

    NASA Astrophysics Data System (ADS)

    Karami, Shahram; Stegeman, Paul C.; Theofilis, Vassilis; Schmid, Peter J.; Soria, Julio

    2018-04-01

    Non-modal instability analysis of the shear layer near the nozzle of a supersonic under-expanded impinging jet is studied. The shear layer instability is considered to be one of the main components of the feedback loop in supersonic jets. The feedback loop is observed in instantaneous visualisations of the density field where it is noted that acoustic waves scattered by the nozzle lip internalise as shear layer instabilities. A modal analysis describes the asymptotic limit of the instability disturbances and fails to capture short-time responses. Therefore, a non-modal analysis which allows the quantitative description of the short-time amplification or decay of a disturbance is performed by means of a local far-field pressure pulse. An impulse response analysis is performed which allows a wide range of frequencies to be excited. The temporal and spatial growths of the disturbances in the shear layer near the nozzle are studied by decomposing the response using dynamic mode decomposition and Hilbert transform analysis. The short-time response shows that disturbances with non-dimensionalised temporal frequencies in the range of 1 to 4 have positive growth rates in the shear layer. The Hilbert transform analysis shows that high non-dimensionalised temporal frequencies (>4) are dampened immediately, whereas low non-dimensionalised temporal frequencies (<1) are neutral. Both dynamic mode decomposition and Hilbert transform analysis show that spatial frequencies between 1 and 3 have positive spatial growth rates. Finally, the envelope of the streamwise velocity disturbances reveals the presence of a convective instability.

  18. Adaptive changes in echolocation sounds by Pipistrellus abramus in response to artificial jamming sounds.

    PubMed

    Takahashi, Eri; Hyomoto, Kiri; Riquimaroux, Hiroshi; Watanabe, Yoshiaki; Ohta, Tetsuo; Hiryu, Shizuko

    2014-08-15

    The echolocation behavior of Pipistrellus abramus during exposure to artificial jamming sounds during flight was investigated. Echolocation pulses emitted by the bats were recorded using a telemetry microphone mounted on the bats' backs, and their adaptation based on acoustic characteristics of emitted pulses was assessed in terms of jamming-avoidance responses (JARs). In experiment 1, frequency-modulated jamming sounds (3 ms duration) mimicking echolocation pulses of P. abramus were prepared. All bats showed significant increases in the terminal frequency of the frequency-modulated pulse by an average of 2.1-4.5 kHz when the terminal frequency of the jamming sounds was lower than the bats' own pulses. This frequency shift was not observed using jamming frequencies that overlapped with or were higher than the bats' own pulses. These findings suggest that JARs in P. abramus are sensitive to the terminal frequency of jamming pulses and that the bats' response pattern was dependent on the slight difference in stimulus frequency. In experiment 2, when bats were repeatedly exposed to a band-limited noise of 70 ms duration, the bats in flight more frequently emitted pulses during silent periods between jamming sounds, suggesting that the bats could actively change the timing of pulse emissions, even during flight, to avoid temporal overlap with jamming sounds. Our findings demonstrate that bats could adjust their vocalized frequency and emission timing during flight in response to acoustic jamming stimuli. © 2014. Published by The Company of Biologists Ltd.

  19. Die Fledermaus: Regarding Optokinetic Contrast Sensitivity and Light-Adaptation, Chicks Are Mice with Wings

    PubMed Central

    Shi, Qing; Stell, William K.

    2013-01-01

    Background Through adaptation, animals can function visually under an extremely broad range of light intensities. Light adaptation starts in the retina, through shifts in photoreceptor sensitivity and kinetics plus modulation of visual processing in retinal circuits. Although considerable research has been conducted on retinal adaptation in nocturnal species with rod-dominated retinas, such as the mouse, little is known about how cone-dominated avian retinas adapt to changes in mean light intensity. Methodology/Principal Findings We used the optokinetic response to characterize contrast sensitivity (CS) in the chick retina as a function of spatial frequency and temporal frequency at different mean light intensities. We found that: 1) daytime, cone-driven CS was tuned to spatial frequency; 2) nighttime, presumably rod-driven CS was tuned to temporal frequency and spatial frequency; 3) daytime, presumably cone-driven CS at threshold intensity was invariant with temporal and spatial frequency; and 4) daytime photopic CS was invariant with clock time. Conclusion/Significance Light- and dark-adaptational changes in CS were investigated comprehensively for the first time in the cone-dominated retina of an avian, diurnal species. The chick retina, like the mouse retina, adapts by using a “day/night” or “cone/rod” switch in tuning preference during changes in lighting conditions. The chick optokinetic response is an attractive model for noninvasive, behavioral studies of adaptation in retinal circuitry in health and disease. PMID:24098693

  20. Spatial Heterogeneity of Leaf Area Index (LAI) and Its Temporal Course on Arable Land: Combining Field Measurements, Remote Sensing and Simulation in a Comprehensive Data Analysis Approach (CDAA).

    PubMed

    Reichenau, Tim G; Korres, Wolfgang; Montzka, Carsten; Fiener, Peter; Wilken, Florian; Stadler, Anja; Waldhoff, Guido; Schneider, Karl

    2016-01-01

    The ratio of leaf area to ground area (leaf area index, LAI) is an important state variable in ecosystem studies since it influences fluxes of matter and energy between the land surface and the atmosphere. As a basis for generating temporally continuous and spatially distributed datasets of LAI, the current study contributes an analysis of its spatial variability and spatial structure. Soil-vegetation-atmosphere fluxes of water, carbon and energy are nonlinearly related to LAI. Therefore, its spatial heterogeneity, i.e., the combination of spatial variability and structure, has an effect on simulations of these fluxes. To assess LAI spatial heterogeneity, we apply a Comprehensive Data Analysis Approach that combines data from remote sensing (5 m resolution) and simulation (150 m resolution) with field measurements and a detailed land use map. Test area is the arable land in the fertile loess plain of the Rur catchment on the Germany-Belgium-Netherlands border. LAI from remote sensing and simulation compares well with field measurements. Based on the simulation results, we describe characteristic crop-specific temporal patterns of LAI spatial variability. By means of these patterns, we explain the complex multimodal frequency distributions of LAI in the remote sensing data. In the test area, variability between agricultural fields is higher than within fields. Therefore, spatial resolutions less than the 5 m of the remote sensing scenes are sufficient to infer LAI spatial variability. Frequency distributions from the simulation agree better with the multimodal distributions from remote sensing than normal distributions do. The spatial structure of LAI in the test area is dominated by a short distance referring to field sizes. Longer distances that refer to soil and weather can only be derived from remote sensing data. Therefore, simulations alone are not sufficient to characterize LAI spatial structure. It can be concluded that a comprehensive picture of LAI spatial heterogeneity and its temporal course can contribute to the development of an approach to create spatially distributed and temporally continuous datasets of LAI.

  1. Spatial Heterogeneity of Leaf Area Index (LAI) and Its Temporal Course on Arable Land: Combining Field Measurements, Remote Sensing and Simulation in a Comprehensive Data Analysis Approach (CDAA)

    PubMed Central

    Korres, Wolfgang; Montzka, Carsten; Fiener, Peter; Wilken, Florian; Stadler, Anja; Waldhoff, Guido; Schneider, Karl

    2016-01-01

    The ratio of leaf area to ground area (leaf area index, LAI) is an important state variable in ecosystem studies since it influences fluxes of matter and energy between the land surface and the atmosphere. As a basis for generating temporally continuous and spatially distributed datasets of LAI, the current study contributes an analysis of its spatial variability and spatial structure. Soil-vegetation-atmosphere fluxes of water, carbon and energy are nonlinearly related to LAI. Therefore, its spatial heterogeneity, i.e., the combination of spatial variability and structure, has an effect on simulations of these fluxes. To assess LAI spatial heterogeneity, we apply a Comprehensive Data Analysis Approach that combines data from remote sensing (5 m resolution) and simulation (150 m resolution) with field measurements and a detailed land use map. Test area is the arable land in the fertile loess plain of the Rur catchment on the Germany-Belgium-Netherlands border. LAI from remote sensing and simulation compares well with field measurements. Based on the simulation results, we describe characteristic crop-specific temporal patterns of LAI spatial variability. By means of these patterns, we explain the complex multimodal frequency distributions of LAI in the remote sensing data. In the test area, variability between agricultural fields is higher than within fields. Therefore, spatial resolutions less than the 5 m of the remote sensing scenes are sufficient to infer LAI spatial variability. Frequency distributions from the simulation agree better with the multimodal distributions from remote sensing than normal distributions do. The spatial structure of LAI in the test area is dominated by a short distance referring to field sizes. Longer distances that refer to soil and weather can only be derived from remote sensing data. Therefore, simulations alone are not sufficient to characterize LAI spatial structure. It can be concluded that a comprehensive picture of LAI spatial heterogeneity and its temporal course can contribute to the development of an approach to create spatially distributed and temporally continuous datasets of LAI. PMID:27391858

  2. Economy of scale: a motion sensor with variable speed tuning.

    PubMed

    Perrone, John A

    2005-01-26

    We have previously presented a model of how neurons in the primate middle temporal (MT/V5) area can develop selectivity for image speed by using common properties of the V1 neurons that precede them in the visual motion pathway (J. A. Perrone & A. Thiele, 2002). The motion sensor developed in this model is based on two broad classes of V1 complex neurons (sustained and transient). The S-type neuron has low-pass temporal frequency tuning, p(omega), and the T-type has band-pass temporal frequency tuning, m(omega). The outputs from the S and T neurons are combined in a special way (weighted intersection mechanism [WIM]) to generate a sensor tuned to a particular speed, v. Here I go on to show that if the S and T temporal frequency tuning functions have a particular form (i.e., p(omega)/(m(omega) = k/omega), then a motion sensor with variable speed tuning can be generated from just two V1 neurons. A simple scaling of the S- or T-type neuron output before it is incorporated into the WIM model produces a motion sensor that can be tuned to a wide continuous range of optimal speeds.

  3. Multiple adaptable mechanisms early in the primate visual pathway

    PubMed Central

    Dhruv, Neel T.; Tailby, Chris; Sokol, Sach H.; Lennie, Peter

    2011-01-01

    We describe experiments that isolate and characterize multiple adaptable mechanisms that influence responses of orientation-selective neurons in primary visual cortex (V1) of anesthetized macaque (Macaca fascicularis). The results suggest that three adaptable stages of machinery shape neural responses in V1: a broadly-tuned early stage and a spatio-temporally tuned later stage, both of which provide excitatory input, and a normalization pool that is also broadly tuned. The early stage and the normalization pool are revealed by adapting gratings that themselves fail to evoke a response from the neuron: either low temporal frequency gratings at the null orientation or gratings of any orientation drifting at high temporal frequencies. When effective, adapting stimuli that altered the sensitivity of these two mechanisms caused reductions of contrast gain and often brought about a paradoxical increase in response gain due to a relatively greater desensitization of the normalization pool. The tuned mechanism is desensitized only by stimuli well-matched to a neuron’s receptive field. We could thus infer desensitization of the tuned mechanism by comparing effects obtained with adapting gratings of preferred and null orientation modulated at low temporal frequencies. PMID:22016535

  4. How sensitivity to ongoing interaural temporal disparities is affected by manipulations of temporal features of the envelopes of high-frequency stimuli

    PubMed Central

    Bernstein, Leslie R.; Trahiotis, Constantine

    2009-01-01

    This study addressed how manipulating certain aspects of the envelopes of high-frequency stimuli affects sensitivity to envelope-based interaural temporal disparities (ITDs). Listener’s threshold ITDs were measured using an adaptive two-alternative paradigm employing “raised-sine” stimuli [John, M. S., et al. (2002). Ear Hear. 23, 106–117] which permit independent variation in their modulation frequency, modulation depth, and modulation exponent. Threshold ITDs were measured while manipulating modulation exponent for stimuli having modulation frequencies between 32 and 256 Hz. The results indicated that graded increases in the exponent led to graded decreases in envelope-based threshold ITDs. Threshold ITDs were also measured while parametrically varying modulation exponent and modulation depth. Overall, threshold ITDs decreased with increases in the modulation depth. Unexpectedly, increases in the exponent of the raised-sine led to especially large decreases in threshold ITD when the modulation depth was low. An interaural correlation-based model was generally able to capture changes in threshold ITD stemming from changes in the exponent, depth of modulation, and frequency of modulation of the raised-sine stimuli. The model (and several variations of it), however, could not account for the unexpected interaction between the value of raised-sine exponent and its modulation depth. PMID:19425666

  5. The Energy-Dependent X-Ray Timing Characteristics of the Narrow Line Seyfert 1 MKN 766

    NASA Technical Reports Server (NTRS)

    Markowitz, A.; Papadakis, I.; Arevalo, P.; Turner, T. J.; Miller, L.; Reeves, J. N.

    2007-01-01

    We present the energy-dependent power spectral density (PSD) and cross-spectral properties of Mkn 766, obtained from combining data obtained during an XMM-Newton observation spanning six revolutions in 2005 with data obtained from an XMM-Newton long-look in 2001. The PSD shapes and rms-flux relations are found to be consistent between the 2001 and 2005 observations, suggesting the 2005 observation is simply a low-flux extension of the 2001 observation and permitting us to combine the two data sets. The resulting PSD has the highest temporal frequency resolution for any AGN PSD measured to date. Applying a broken power-law model yields break frequencies which increase in temporal frequency with photon energy. Obtaining a good fit when assuming energy-independent break frequencies requires the presence of a Lorentzian at 4.6 +/- 0.4 x 10(exp -4)Hz whose strength increases with photon energy, a behavior seen in black hole X-ray binaries. The cross-spectral properties are measured; temporal frequency-dependent soft-to-hard time lags are detected in this object for the first time. Cross-spectral results are consistent with those for other accreting black hole systems. The results are discussed in the context of several variability models, including those based on inwardly-propagating viscosity variations in the accretion disk.

  6. Auditory Magnetoencephalographic Frequency-Tagged Responses Mirror the Ongoing Segmentation Processes Underlying Statistical Learning.

    PubMed

    Farthouat, Juliane; Franco, Ana; Mary, Alison; Delpouve, Julie; Wens, Vincent; Op de Beeck, Marc; De Tiège, Xavier; Peigneux, Philippe

    2017-03-01

    Humans are highly sensitive to statistical regularities in their environment. This phenomenon, usually referred as statistical learning, is most often assessed using post-learning behavioural measures that are limited by a lack of sensibility and do not monitor the temporal dynamics of learning. In the present study, we used magnetoencephalographic frequency-tagged responses to investigate the neural sources and temporal development of the ongoing brain activity that supports the detection of regularities embedded in auditory streams. Participants passively listened to statistical streams in which tones were grouped as triplets, and to random streams in which tones were randomly presented. Results show that during exposure to statistical (vs. random) streams, tritone frequency-related responses reflecting the learning of regularities embedded in the stream increased in the left supplementary motor area and left posterior superior temporal sulcus (pSTS), whereas tone frequency-related responses decreased in the right angular gyrus and right pSTS. Tritone frequency-related responses rapidly developed to reach significance after 3 min of exposure. These results suggest that the incidental extraction of novel regularities is subtended by a gradual shift from rhythmic activity reflecting individual tone succession toward rhythmic activity synchronised with triplet presentation, and that these rhythmic processes are subtended by distinct neural sources.

  7. Patterns in Temporal Variability of Temperature, Oxygen and pH along an Environmental Gradient in a Coral Reef

    PubMed Central

    Guadayol, Òscar; Silbiger, Nyssa J.; Donahue, Megan J.; Thomas, Florence I. M.

    2014-01-01

    Spatial and temporal environmental variability are important drivers of ecological processes at all scales. As new tools allow the in situ exploration of individual responses to fluctuations, ecologically meaningful ways of characterizing environmental variability at organism scales are needed. We investigated the fine-scale spatial heterogeneity of high-frequency temporal variability in temperature, dissolved oxygen concentration, and pH experienced by benthic organisms in a shallow coastal coral reef. We used a spatio-temporal sampling design, consisting of 21 short-term time-series located along a reef flat-to-reef slope transect, coupled to a long-term station monitoring water column changes. Spectral analyses revealed sharp gradients in variance decomposed by frequency, as well as differences between physically-driven and biologically-reactive parameters. These results highlight the importance of environmental variance at organismal scales and present a new sampling scheme for exploring this variability in situ. PMID:24416364

  8. Conjugating time and frequency: hemispheric specialization, acoustic uncertainty, and the mustached bat

    PubMed Central

    Washington, Stuart D.; Tillinghast, John S.

    2015-01-01

    A prominent hypothesis of hemispheric specialization for human speech and music states that the left and right auditory cortices (ACs) are respectively specialized for precise calculation of two canonically-conjugate variables: time and frequency. This spectral-temporal asymmetry does not account for sex, brain-volume, or handedness, and is in opposition to closed-system hypotheses that restrict this asymmetry to humans. Mustached bats have smaller brains, but greater ethological pressures to develop such a spectral-temporal asymmetry, than humans. Using the Heisenberg-Gabor Limit (i.e., the mathematical basis of the spectral-temporal asymmetry) to frame mustached bat literature, we show that recent findings in bat AC (1) support the notion that hemispheric specialization for speech and music is based on hemispheric differences in temporal and spectral resolution, (2) discredit closed-system, handedness, and brain-volume theories, (3) underscore the importance of sex differences, and (4) provide new avenues for phonological research. PMID:25926767

  9. Conjugating time and frequency: hemispheric specialization, acoustic uncertainty, and the mustached bat.

    PubMed

    Washington, Stuart D; Tillinghast, John S

    2015-01-01

    A prominent hypothesis of hemispheric specialization for human speech and music states that the left and right auditory cortices (ACs) are respectively specialized for precise calculation of two canonically-conjugate variables: time and frequency. This spectral-temporal asymmetry does not account for sex, brain-volume, or handedness, and is in opposition to closed-system hypotheses that restrict this asymmetry to humans. Mustached bats have smaller brains, but greater ethological pressures to develop such a spectral-temporal asymmetry, than humans. Using the Heisenberg-Gabor Limit (i.e., the mathematical basis of the spectral-temporal asymmetry) to frame mustached bat literature, we show that recent findings in bat AC (1) support the notion that hemispheric specialization for speech and music is based on hemispheric differences in temporal and spectral resolution, (2) discredit closed-system, handedness, and brain-volume theories, (3) underscore the importance of sex differences, and (4) provide new avenues for phonological research.

  10. Long-distance thermal temporal ghost imaging over optical fibers

    NASA Astrophysics Data System (ADS)

    Yao, Xin; Zhang, Wei; Li, Hao; You, Lixing; Wang, Zhen; Huang, Yidong

    2018-02-01

    A thermal ghost imaging scheme between two distant parties is proposed and experimentally demonstrated over long-distance optical fibers. In the scheme, the weak thermal light is split into two paths. Photons in one path are spatially diffused according to their frequencies by a spatial dispersion component, then illuminate the object and record its spatial transmission information. Photons in the other path are temporally diffused by a temporal dispersion component. By the coincidence measurement between photons of two paths, the object can be imaged in a way of ghost imaging, based on the frequency correlation between photons in the two paths. In the experiment, the weak thermal light source is prepared by the spontaneous four-wave mixing in a silicon waveguide. The temporal dispersion is introduced by single mode fibers of 50 km, which also could be looked as a fiber link. Experimental results show that this scheme can be realized over long-distance optical fibers.

  11. The Temporal Signature of Memories: Identification of a General Mechanism for Dynamic Memory Replay in Humans

    PubMed Central

    Michelmann, Sebastian; Bowman, Howard; Hanslmayr, Simon

    2016-01-01

    Reinstatement of dynamic memories requires the replay of neural patterns that unfold over time in a similar manner as during perception. However, little is known about the mechanisms that guide such a temporally structured replay in humans, because previous studies used either unsuitable methods or paradigms to address this question. Here, we overcome these limitations by developing a new analysis method to detect the replay of temporal patterns in a paradigm that requires participants to mentally replay short sound or video clips. We show that memory reinstatement is accompanied by a decrease of low-frequency (8 Hz) power, which carries a temporal phase signature of the replayed stimulus. These replay effects were evident in the visual as well as in the auditory domain and were localized to sensory-specific regions. These results suggest low-frequency phase to be a domain-general mechanism that orchestrates dynamic memory replay in humans. PMID:27494601

  12. Textural timbre

    PubMed Central

    Hollins, Mark

    2009-01-01

    During haptic exploration of surfaces, complex mechanical oscillations—of surface displacement and air pressure—are generated, which are then transduced by receptors in the skin and in the inner ear. Tactile and auditory signals thus convey redundant information about texture, partially carried in the spectral content of these signals. It is no surprise, then, that the representation of temporal frequency is linked in the auditory and somatosensory systems. An emergent hypothesis is that there exists a supramodal representation of temporal frequency, and by extension texture. PMID:19721886

  13. Mode-Selective Photon Counting Via Quantum Frequency Conversion Using Spectrally-Engineered Pump Pulses

    NASA Astrophysics Data System (ADS)

    Manurkar, Paritosh

    Most of the existing protocols for quantum communication operate in a two-dimensional Hilbert space where their manipulation and measurement have been routinely investigated. Moving to higher-dimensional Hilbert spaces is desirable because of advantages in terms of longer distance communication capabilities, higher channel capacity and better information security. We can exploit the spatio-temporal degrees of freedom for the quantum optical signals to provide the higher-dimensional signals. But this necessitates the need for measurement and manipulation of multidimensional quantum states. To that end, there have been significant theoretical studies based on quantum frequency conversion (QFC) in recent years even though the experimental progress has been limited. QFC is a process that allows preservation of the quantum information while changing the frequency of the input quantum state. It has deservedly garnered a lot of attention because it serves as the connecting bridge between the communications band (C-band near 1550 nm) where the fiber-optic infrastructure is already established and the visible spectrum where high efficiency single-photon detectors and optical memories have been demonstrated. In this experimental work, we demonstrate mode-selective frequency conversion as a means to measure and manipulate photonic signals occupying d -dimensional Hilbert spaces where d=2 and 4. In the d=2 case, we demonstrate mode contrast between two temporal modes (TMs) which serves as the proof-of-concept demonstration. In the d=4 version, we employ six different TMs for our detailed experimental study. These TMs also include superposition modes which are a crucial component in many quantum key distribution protocols. Our method is based on producing pump pulses which allow us to upconvert the TM of interest while ideally preserving the other modes. We use MATLAB simulations to determine the pump pulse shapes which are subsequently produced by controlling the amplitude and phase of each spectral frequency from an optical frequency comb. The latter is generated using a cascaded configuration of phase and amplitude modulators. We characterize the mode selectivity using classical signals by arranging the six TMs into two orthogonal signal sets. Furthermore, we also demonstrate that mode selectivity is preserved if we use sub-photon signals (weak coherent light). Thus, this work supports the idea that QFC has the basic properties needed for advanced multi-dimensional quantum measurements given that we have demonstrated for the first time the ability to move to high dimensions (d=4), measure coherent superposition modes, and measure sub-photon signal levels. In addition to mode-selective photon counting, we also experimentally demonstrate a method of reshaping optical pulses based on QFC. Such a method has the potential to serve as the interface between quantum memories and the existing fiber infrastructure. At the same time, it can be employed in all-optical systems for optical signal regeneration.

  14. Spectral Evolution of Intensive Microwave Bursts at Centimeter-Millimeter Wavelengths

    NASA Astrophysics Data System (ADS)

    Melnikov, V. F.; Magun, A.

    The dynamics of the frequency spectrum of intensive broad band microwave bursts with one spectral maximum and simple time profiles are investigated. The aim of the study is to correlate the temporal evolution of the microwave burst spectrum above and below the spectral peak frequency f_p, as well as to compare these features with theoretical expectations. The analysis was carried out by using the data from the patrol instruments of IAP, Bern University and NIRFI, Nizhnii Novgorod (10 fixed frequencies in the range 1-50 GHz). It has been found for the majority of these bursts that: a) during the rise phase of the burst flux there is an anticorrelation of the absolute values of the spectral indices above and below peak frequency whereas a good correlation during the decay phase was found; b) time delays between flux profiles at neighbouring frequencies change sign under the transition from low to high frequencies. As a rule the lower frequency emission is delayed at frequencies below f_p whereas at high frequencies (f>f_p) the higher frequency emission is delayed (see also Melnikov and Magun, 1998). Qualitatively these results fit well the calculated spectral evolution of the gyrosynchrotron if one takes into account the flattening of the electron energy spectrum in a flare loop (Melnikov and Magun, 1996) due to Coulomb collisions (Vilmer et al., 1982), and uses values for the background plasma density derived from hard X-ray data (Aschwanden et al., 1997). For some of the bursts, however, quantitative discrepancies with the predictions of the homogeneous model have been found. For these bursts the absolute value of the spectral index at low frequencies is remarkably smaller, and the time delay remarkably higher than expected. We have investigated several possibilities to obtain an agremeent between theory and observations. Special attention is paid to model calculations taking into account the dynamics of energetic electrons in flare loops with an inhomogeneous magnetic field and plasma density. In this context the capabilities of the models for the diagnostics of the physical conditions in flare loops using observations with high spatial

  15. Temporal resolution in children.

    PubMed

    Wightman, F; Allen, P; Dolan, T; Kistler, D; Jamieson, D

    1989-06-01

    The auditory temporal resolving power of young children was measured using an adaptive forced-choice psychophysical paradigm that was disguised as a video game. 20 children between 3 and 7 years of age and 5 adults were asked to detect the presence of a temporal gap in a burst of half-octave-band noise at band center frequencies of 400 and 2,000 Hz. The minimum detectable gap (gap threshold) was estimated adaptively in 20-trial runs. The mean gap thresholds in the 400-Hz condition were higher for the younger children than for the adults, with the 3-year-old children producing the highest thresholds. Gap thresholds in the 2,000-Hz condition were generally lower than in the 400-Hz condition and showed a similar age effect. All the individual adaptive runs were "adult-like," suggesting that the children were generally attentive to the task during each run. However, the variability of threshold estimates from run to run was substantial, especially in the 3-5-year-old children. Computer simulations suggested that this large within-subjects variability could have resulted from frequent, momentary lapses of attention, which would lead to "guessing" on a substantial portion of the trials.

  16. Temporal Variability of Daily Personal Magnetic Field Exposure Metrics in Pregnant Women

    PubMed Central

    Lewis, Ryan C.; Evenson, Kelly R.; Savitz, David A.; Meeker, John D.

    2015-01-01

    Recent epidemiology studies of power-frequency magnetic fields and reproductive health have characterized exposures using data collected from personal exposure monitors over a single day, possibly resulting in exposure misclassification due to temporal variability in daily personal magnetic field exposure metrics, but relevant data in adults are limited. We assessed the temporal variability of daily central tendency (time-weighted average, median) and peak (upper percentiles, maximum) personal magnetic field exposure metrics over seven consecutive days in 100 pregnant women. When exposure was modeled as a continuous variable, central tendency metrics had substantial reliability, whereas peak metrics had fair (maximum) to moderate (upper percentiles) reliability. The predictive ability of a single day metric to accurately classify participants into exposure categories based on a weeklong metric depended on the selected exposure threshold, with sensitivity decreasing with increasing exposure threshold. Consistent with the continuous measures analysis, sensitivity was higher for central tendency metrics than for peak metrics. If there is interest in peak metrics, more than one day of measurement is needed over the window of disease susceptibility to minimize measurement error, but one day may be sufficient for central tendency metrics. PMID:24691007

  17. The compression of perceived time in a hot environment depends on physiological and psychological factors.

    PubMed

    Tamm, Maria; Jakobson, Ainika; Havik, Merle; Burk, Andres; Timpmann, Saima; Allik, Jüri; Oöpik, Vahur; Kreegipuu, Kairi

    2014-01-01

    The human perception of time was observed under extremely hot conditions. Young healthy men performed a time production task repeatedly in 4 experimental trials in either a temperate (22 °C, relative humidity 35%) or a hot (42 °C, relative humidity 18%) environment and with or without a moderate-intensity treadmill exercise. Within 1 hour, the produced durations indicated a significant compression of short intervals (0.5 to 10 s) in the combination of exercising and high ambient temperature, while neither variable/condition alone was enough to yield the effect. Temporal judgement was analysed in relation to different indicators of arousal, such as critical flicker frequency (CFF), core temperature, heart rate, and subjective ratings of fatigue and exertion. The arousal-sensitive internal clock model (originally proposed by Treisman) is used to explain the temporal compression while exercising in heat. As a result, we suggest that the psychological response to heat stress, the more precisely perceived fatigue, is important in describing the relationship between core temperature and time perception. Temporal compression is related to higher core temperature, but only if a certain level of perceived fatigue is accounted for, implying the existence of a thermoemotional internal clock.

  18. Coexistence of gamma and high-frequency oscillations in rat medial entorhinal cortex in vitro

    PubMed Central

    Cunningham, M O; Halliday, David M; Davies, Ceri H; Traub, Roger D; Buhl, Eberhard H; Whittington, Miles A

    2004-01-01

    High frequency oscillations (> 80–90 Hz) occur in neocortex and hippocampus in vivo where they are associated with specific behavioural states and more classical EEG frequency bands. In the hippocampus in vitro these oscillations can occur in the absence of pyramidal neuronal somatodendritic compartments and are temporally correlated with on-going, persistent gamma frequency oscillations. Their occurrence in the hippocampus is dependent on gap-junctional communication and it has been suggested that these high frequency oscillations originate as collective behaviour in populations of electrically coupled principal cell axonal compartments. Here we demonstrate that the superficial layers of medial entorhinal cortex can also generate high frequency oscillations associated with gamma rhythms. During persistent gamma frequency oscillations high frequency oscillations occur with a high bispectral coherence with the field gamma activity. Bursts of high frequency oscillations are temporally correlated with both the onset of compound excitatory postsynaptic potentials in fast-spiking interneurones and spikelet potentials in both pyramidal and stellate principal neurones. Both the gamma frequency and high frequency oscillations were attenuated by the gap junction blocker carbenoxolone. These data suggest that high frequency oscillations may represent the substrate for phasic drive to interneurones during persistent gamma oscillations in the medial entorhinal cortex. PMID:15254156

  19. Extracellular signal-regulated kinase activation and endothelin-1 production in human endothelial cells exposed to vibration

    PubMed Central

    White, Charles R; Haidekker, Mark A; Stevens, Hazel Y; Frangos, John A

    2004-01-01

    Hand–arm vibration syndrome is a vascular disease of occupational origin and a form of secondary Raynaud's phenomenon. Chronic exposure to hand-held vibrating tools may cause endothelial injury. This study investigates the biomechanical forces involved in the transduction of fluid vibration in the endothelium. Human endothelial cells were exposed to direct vibration and rapid low-volume fluid oscillation. Rapid low-volume fluid oscillation was used to simulate the effects of vibration by generating defined temporal gradients in fluid shear stress across an endothelial monolayer. Extracellular signal-regulated kinase (ERK1/2) phosphorylation and endothelin-1 (ET-1) release were monitored as specific biochemical markers for temporal gradients and endothelial response, respectively. Both vibrational methods were found to phosphorylate ERK1/2 in a similar pattern. At a fixed frequency of fluid oscillation where the duration of each pulse cycle remained constant, ERK1/2 phosphorylation increased with the increasing magnitude of the applied temporal gradient. However, when the frequency of flow oscillation was increased (thus decreasing the duration of each pulse cycle), ERK1/2 phosphorylation was attenuated across all temporal gradient flow profiles. Fluid oscillation significantly stimulated ET-1 release compared to steady flow, and endothelin-1 was also attenuated with the increase in oscillation frequency. Taken together, these results show that both the absolute magnitude of the temporal gradient and the frequency/duration of each pulse cycle play a role in the biomechanical transduction of fluid vibrational forces in endothelial cells. Furthermore, this study reports for the first time a link between the ERK1/2 signal transduction pathway and transmission of vibrational forces in the endothelium. PMID:14724194

  20. Effects of sound intensity on temporal properties of inhibition in the pallid bat auditory cortex.

    PubMed

    Razak, Khaleel A

    2013-01-01

    Auditory neurons in bats that use frequency modulated (FM) sweeps for echolocation are selective for the behaviorally-relevant rates and direction of frequency change. Such selectivity arises through spectrotemporal interactions between excitatory and inhibitory components of the receptive field. In the pallid bat auditory system, the relationship between FM sweep direction/rate selectivity and spectral and temporal properties of sideband inhibition have been characterized. Of note is the temporal asymmetry in sideband inhibition, with low-frequency inhibition (LFI) exhibiting faster arrival times compared to high-frequency inhibition (HFI). Using the two-tone inhibition over time (TTI) stimulus paradigm, this study investigated the interactions between two sound parameters in shaping sideband inhibition: intensity and time. Specifically, the impact of changing relative intensities of the excitatory and inhibitory tones on arrival time of inhibition was studied. Using this stimulation paradigm, single unit data from the auditory cortex of pentobarbital-anesthetized cortex show that the threshold for LFI is on average ~8 dB lower than HFI. For equal intensity tones near threshold, LFI is stronger than HFI. When the inhibitory tone intensity is increased further from threshold, the strength asymmetry decreased. The temporal asymmetry in LFI vs. HFI arrival time is strongest when the excitatory and inhibitory tones are of equal intensities or if excitatory tone is louder. As inhibitory tone intensity is increased, temporal asymmetry decreased suggesting that the relative magnitude of excitatory and inhibitory inputs shape arrival time of inhibition and FM sweep rate and direction selectivity. Given that most FM bats use downward sweeps as echolocation calls, a similar asymmetry in threshold and strength of LFI vs. HFI may be a general adaptation to enhance direction selectivity while maintaining sweep-rate selective responses to downward sweeps.

  1. A comparison between temporal and subband minimum variance adaptive beamforming

    NASA Astrophysics Data System (ADS)

    Diamantis, Konstantinos; Voxen, Iben H.; Greenaway, Alan H.; Anderson, Tom; Jensen, Jørgen A.; Sboros, Vassilis

    2014-03-01

    This paper compares the performance between temporal and subband Minimum Variance (MV) beamformers for medical ultrasound imaging. Both adaptive methods provide an optimized set of apodization weights but are implemented in the time and frequency domains respectively. Their performance is evaluated with simulated synthetic aperture data obtained from Field II and is quantified by the Full-Width-Half-Maximum (FWHM), the Peak-Side-Lobe level (PSL) and the contrast level. From a point phantom, a full sequence of 128 emissions with one transducer element transmitting and all 128 elements receiving each time, provides a FWHM of 0.03 mm (0.14λ) for both implementations at a depth of 40 mm. This value is more than 20 times lower than the one achieved by conventional beamforming. The corresponding values of PSL are -58 dB and -63 dB for time and frequency domain MV beamformers, while a value no lower than -50 dB can be obtained from either Boxcar or Hanning weights. Interestingly, a single emission with central element #64 as the transmitting aperture provides results comparable to the full sequence. The values of FWHM are 0.04 mm and 0.03 mm and those of PSL are -42 dB and -46 dB for temporal and subband approaches. From a cyst phantom and for 128 emissions, the contrast level is calculated at -54 dB and -63 dB respectively at the same depth, with the initial shape of the cyst being preserved in contrast to conventional beamforming. The difference between the two adaptive beamformers is less significant in the case of a single emission, with the contrast level being estimated at -42 dB for the time domain and -43 dB for the frequency domain implementation. For the estimation of a single MV weight of a low resolution image formed by a single emission, 0.44 * 109 calculations per second are required for the temporal approach. The same numbers for the subband approach are 0.62 * 109 for the point and 1.33 * 109 for the cyst phantom. The comparison demonstrates similar resolution but slightly lower side-lobes and higher contrast for the subband approach at the expense of increased computation time.

  2. Detection frequency of human herpesviruses-6A, -6B, and -7 genomic sequences in central nervous system DNA samples from post-mortem individuals with unspecified encephalopathy.

    PubMed

    Chapenko, Svetlana; Roga, Silvija; Skuja, Sandra; Rasa, Santa; Cistjakovs, Maksims; Svirskis, Simons; Zaserska, Zane; Groma, Valerija; Murovska, Modra

    2016-08-01

    In this autopsy-based study, human herpesvirus-6 (HHV-6) and -7 (HHV-7) genomic sequence frequency, HHV-6 variants, HHV-6 load and the expression of HHV-6 antigens in brain samples from the individuals, with and without unspecified encephalopathy (controls), using nested and real-time polymerase chain reactions, restriction endonuclease, and immunohistochemical analysis were examined. GraphPad Prism 6.0 Mann-Whitney nonparametric and chi-square test and Fisher's exact test were used for statistical analysis. The encephalopathy diagnoses were shown by magnetic resonance imaging made during their lifetime and macro- and microscopically studied autopsy tissue materials. Widespread HHV-6 and/or HHV-7 positivity was detected in the brain tissue of various individuals with encephalopathy, as well as in controls (51/57, 89.4 % and 35/51, 68.6 %, respectively; p = 0.009). Significantly higher detection frequency of single HHV-6 and concurrent HHV-6 + HHV-7 DNA was found in pia mater meninges, frontal lobe, temporal lobe, and olfactory tract DNAs in individuals with encephalopathy compared to the control group. HHV-6 load and higher frequency of the viral load >10 copies/10(6) cells significantly differed in samples from individuals with and without encephalopathy. The expression of HHV-6 antigens was revealed in different neural cell types with strong predominance in the encephalopathy group. In all HHV-6-positive autopsy samples of individuals with and without encephalopathy, HHV-6B was revealed. Significantly higher detection frequency of beta-herpesvirus DNA, more often detected HHV-6 load >10 copies/10(6) cells, as well as the expression of HHV-6 antigens in different brain tissue samples from individuals with encephalopathy in comparison with control group indicate on potential involvement of these viruses in encephalopathy development.

  3. Enhanced speed in fluorescence imaging using beat frequency multiplexing

    NASA Astrophysics Data System (ADS)

    Mikami, Hideharu; Kobayashi, Hirofumi; Wang, Yisen; Hamad, Syed; Ozeki, Yasuyuki; Goda, Keisuke

    2016-03-01

    Fluorescence imaging using radiofrequency-tagged emission (FIRE) is an emerging technique that enables higher imaging speed (namely, temporal resolution) in fluorescence microscopy compared to conventional fluorescence imaging techniques such as confocal microscopy and wide-field microscopy. It works based on the principle that it uses multiple intensity-modulated fields in an interferometric setup as excitation fields and applies frequency-division multiplexing to fluorescence signals. Unfortunately, despite its high potential, FIRE has limited imaging speed due to two practical limitations: signal bandwidth and signal detection efficiency. The signal bandwidth is limited by that of an acousto-optic deflector (AOD) employed in the setup, which is typically 100-200 MHz for the spectral range of fluorescence excitation (400-600 nm). The signal detection efficiency is limited by poor spatial mode-matching between two interfering fields to produce a modulated excitation field. Here we present a method to overcome these limitations and thus to achieve higher imaging speed than the prior version of FIRE. Our method achieves an increase in signal bandwidth by a factor of two and nearly optimal mode matching, which enables the imaging speed limited by the lifetime of the target fluorophore rather than the imaging system itself. The higher bandwidth and better signal detection efficiency work synergistically because higher bandwidth requires higher signal levels to avoid the contribution of shot noise and amplifier noise to the fluorescence signal. Due to its unprecedentedly high-speed performance, our method has a wide variety of applications in cancer detection, drug discovery, and regenerative medicine.

  4. Population responses in primary auditory cortex simultaneously represent the temporal envelope and periodicity features in natural speech.

    PubMed

    Abrams, Daniel A; Nicol, Trent; White-Schwoch, Travis; Zecker, Steven; Kraus, Nina

    2017-05-01

    Speech perception relies on a listener's ability to simultaneously resolve multiple temporal features in the speech signal. Little is known regarding neural mechanisms that enable the simultaneous coding of concurrent temporal features in speech. Here we show that two categories of temporal features in speech, the low-frequency speech envelope and periodicity cues, are processed by distinct neural mechanisms within the same population of cortical neurons. We measured population activity in primary auditory cortex of anesthetized guinea pig in response to three variants of a naturally produced sentence. Results show that the envelope of population responses closely tracks the speech envelope, and this cortical activity more closely reflects wider bandwidths of the speech envelope compared to narrow bands. Additionally, neuronal populations represent the fundamental frequency of speech robustly with phase-locked responses. Importantly, these two temporal features of speech are simultaneously observed within neuronal ensembles in auditory cortex in response to clear, conversation, and compressed speech exemplars. Results show that auditory cortical neurons are adept at simultaneously resolving multiple temporal features in extended speech sentences using discrete coding mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Neural correlates of abnormal sensory discrimination in laryngeal dystonia.

    PubMed

    Termsarasab, Pichet; Ramdhani, Ritesh A; Battistella, Giovanni; Rubien-Thomas, Estee; Choy, Melissa; Farwell, Ian M; Velickovic, Miodrag; Blitzer, Andrew; Frucht, Steven J; Reilly, Richard B; Hutchinson, Michael; Ozelius, Laurie J; Simonyan, Kristina

    2016-01-01

    Aberrant sensory processing plays a fundamental role in the pathophysiology of dystonia; however, its underpinning neural mechanisms in relation to dystonia phenotype and genotype remain unclear. We examined temporal and spatial discrimination thresholds in patients with isolated laryngeal form of dystonia (LD), who exhibited different clinical phenotypes (adductor vs. abductor forms) and potentially different genotypes (sporadic vs. familial forms). We correlated our behavioral findings with the brain gray matter volume and functional activity during resting and symptomatic speech production. We found that temporal but not spatial discrimination was significantly altered across all forms of LD, with higher frequency of abnormalities seen in familial than sporadic patients. Common neural correlates of abnormal temporal discrimination across all forms were found with structural and functional changes in the middle frontal and primary somatosensory cortices. In addition, patients with familial LD had greater cerebellar involvement in processing of altered temporal discrimination, whereas sporadic LD patients had greater recruitment of the putamen and sensorimotor cortex. Based on the clinical phenotype, adductor form-specific correlations between abnormal discrimination and brain changes were found in the frontal cortex, whereas abductor form-specific correlations were observed in the cerebellum and putamen. Our behavioral and neuroimaging findings outline the relationship of abnormal sensory discrimination with the phenotype and genotype of isolated LD, suggesting the presence of potentially divergent pathophysiological pathways underlying different manifestations of this disorder.

  6. Optimized temporal pattern of brain stimulation designed by computational evolution

    PubMed Central

    Brocker, David T.; Swan, Brandon D.; So, Rosa Q.; Turner, Dennis A.; Gross, Robert E.; Grill, Warren M.

    2017-01-01

    Brain stimulation is a promising therapy for several neurological disorders, including Parkinson’s disease. Stimulation parameters are selected empirically and are limited to the frequency and intensity of stimulation. We used the temporal pattern of stimulation as a novel parameter of deep brain stimulation to ameliorate symptoms in a parkinsonian animal model and in humans with Parkinson’s disease. We used model-based computational evolution to optimize the stimulation pattern. The optimized pattern produced symptom relief comparable to that from standard high-frequency stimulation (a constant rate of 130 or 185 Hz) and outperformed frequency-matched standard stimulation in the parkinsonian rat and in patients. Both optimized and standard stimulation suppressed abnormal oscillatory activity in the basal ganglia of rats and humans. The results illustrate the utility of model-based computational evolution to design temporal pattern of stimulation to increase the efficiency of brain stimulation in Parkinson’s disease, thereby requiring substantially less energy than traditional brain stimulation. PMID:28053151

  7. Processing F0 with cochlear implants: Modulation frequency discrimination and speech intonation recognition.

    PubMed

    Chatterjee, Monita; Peng, Shu-Chen

    2008-01-01

    Fundamental frequency (F0) processing by cochlear implant (CI) listeners was measured using a psychophysical task and a speech intonation recognition task. Listeners' Weber fractions for modulation frequency discrimination were measured using an adaptive, 3-interval, forced-choice paradigm: stimuli were presented through a custom research interface. In the speech intonation recognition task, listeners were asked to indicate whether resynthesized bisyllabic words, when presented in the free field through the listeners' everyday speech processor, were question-like or statement-like. The resynthesized tokens were systematically manipulated to have different initial-F0s to represent male vs. female voices, and different F0 contours (i.e. falling, flat, and rising) Although the CI listeners showed considerable variation in performance on both tasks, significant correlations were observed between the CI listeners' sensitivity to modulation frequency in the psychophysical task and their performance in intonation recognition. Consistent with their greater reliance on temporal cues, the CI listeners' performance in the intonation recognition task was significantly poorer with the higher initial-F0 stimuli than with the lower initial-F0 stimuli. Similar results were obtained with normal hearing listeners attending to noiseband-vocoded CI simulations with reduced spectral resolution.

  8. Processing F0 with Cochlear Implants: Modulation Frequency Discrimination and Speech Intonation Recognition

    PubMed Central

    Chatterjee, Monita; Peng, Shu-Chen

    2008-01-01

    Fundamental frequency (F0) processing by cochlear implant (CI) listeners was measured using a psychophysical task and a speech intonation recognition task. Listeners’ Weber fractions for modulation frequency discrimination were measured using an adaptive, 3-interval, forced-choice paradigm: stimuli were presented through a custom research interface. In the speech intonation recognition task, listeners were asked to indicate whether resynthesized bisyllabic words, when presented in the free field through the listeners’ everyday speech processor, were question-like or statement-like. The resynthesized tokens were systematically manipulated to have different initial F0s to represent male vs. female voices, and different F0 contours (i.e., falling, flat, and rising) Although the CI listeners showed considerable variation in performance on both tasks, significant correlations were observed between the CI listeners’ sensitivity to modulation frequency in the psychophysical task and their performance in intonation recognition. Consistent with their greater reliance on temporal cues, the CI listeners’ performance in the intonation recognition task was significantly poorer with the higher initial-F0 stimuli than with the lower initial-F0 stimuli. Similar results were obtained with normal hearing listeners attending to noiseband-vocoded CI simulations with reduced spectral resolution. PMID:18093766

  9. Differential trends in weight-related health behaviors among American young adults by gender, race/ethnicity, and socioeconomic status: 1984-2006.

    PubMed

    Clarke, Philippa J; O'Malley, Patrick M; Johnston, Lloyd D; Schulenberg, John E; Lantz, Paula

    2009-10-01

    We investigated temporal patterns from 1984 to 2006 in 6 weight-related health behaviors by using longitudinal data for multiple cohorts of young adults (aged 19-26 years) from the nationally representative Monitoring the Future Study. We used growth curve models to examine historical trends in 6 health behaviors: frequency of eating breakfast, eating green vegetables, eating fruit, exercising, watching television, and sleeping 7 hours each night. Variations across gender, race/ethnicity, and socioeconomic status were investigated. Frequency of exercising was consistently lower among young adult women than young adult men over this 23-year period. Compared with White women, Hispanic women, and women from other race/ethnic groups, Black women showed declines in the frequency of exercise since 1984. In general, young adult women showed a marked increase in the frequency of eating breakfast over this period, although Black women did not show any net gains. Social disparities in body weight may increase because Black women, Hispanic women, and men with lower socioeconomic status show declining trends in positive weight-related health behaviors compared with White young adults with higher socioeconomic status.

  10. The influence of cochlear spectral processing on the timing and amplitude of the speech-evoked auditory brain stem response

    PubMed Central

    Nuttall, Helen E.; Moore, David R.; Barry, Johanna G.; Krumbholz, Katrin

    2015-01-01

    The speech-evoked auditory brain stem response (speech ABR) is widely considered to provide an index of the quality of neural temporal encoding in the central auditory pathway. The aim of the present study was to evaluate the extent to which the speech ABR is shaped by spectral processing in the cochlea. High-pass noise masking was used to record speech ABRs from delimited octave-wide frequency bands between 0.5 and 8 kHz in normal-hearing young adults. The latency of the frequency-delimited responses decreased from the lowest to the highest frequency band by up to 3.6 ms. The observed frequency-latency function was compatible with model predictions based on wave V of the click ABR. The frequency-delimited speech ABR amplitude was largest in the 2- to 4-kHz frequency band and decreased toward both higher and lower frequency bands despite the predominance of low-frequency energy in the speech stimulus. We argue that the frequency dependence of speech ABR latency and amplitude results from the decrease in cochlear filter width with decreasing frequency. The results suggest that the amplitude and latency of the speech ABR may reflect interindividual differences in cochlear, as well as central, processing. The high-pass noise-masking technique provides a useful tool for differentiating between peripheral and central effects on the speech ABR. It can be used for further elucidating the neural basis of the perceptual speech deficits that have been associated with individual differences in speech ABR characteristics. PMID:25787954

  11. Human sperm steer with second harmonics of the flagellar beat.

    PubMed

    Saggiorato, Guglielmo; Alvarez, Luis; Jikeli, Jan F; Kaupp, U Benjamin; Gompper, Gerhard; Elgeti, Jens

    2017-11-10

    Sperm are propelled by bending waves traveling along their flagellum. For steering in gradients of sensory cues, sperm adjust the flagellar waveform. Symmetric and asymmetric waveforms result in straight and curved swimming paths, respectively. Two mechanisms causing spatially asymmetric waveforms have been proposed: an average flagellar curvature and buckling. We image flagella of human sperm tethered with the head to a surface. The waveform is characterized by a fundamental beat frequency and its second harmonic. The superposition of harmonics breaks the beat symmetry temporally rather than spatially. As a result, sperm rotate around the tethering point. The rotation velocity is determined by the second-harmonic amplitude and phase. Stimulation with the female sex hormone progesterone enhances the second-harmonic contribution and, thereby, modulates sperm rotation. Higher beat frequency components exist in other flagellated cells; therefore, this steering mechanism might be widespread and could inspire the design of synthetic microswimmers.

  12. Three-way ROC validation of rs-fMRI visual information propagation transfer functions used to differentiate between RRMS and CIS optic neuritis patients.

    PubMed

    Farahani, Ehsan Shahrabi; Choudhury, Samiul H; Cortese, Filomeno; Costello, Fiona; Goodyear, Bradley; Smith, Michael R

    2017-07-01

    Resting-state fMRI (rs-fMRI) measures the temporal synchrony between different brain regions while the subject is at rest. We present an investigation using visual information propagation transfer functions as potential optic neuritis (ON) markers for the pathways between the lateral geniculate nuclei, the primary visual cortex, the lateral occipital cortex and the superior parietal cortex. We investigate marker reliability in differentiating between healthy controls and ON patients with clinically isolated syndrome (CIS), and relapsing-remitting multiple sclerosis (RRMS) using a three-way receiver operating characteristics analysis. We identify useful and reliable three-way ON related metrics in the rs-fMRI low-frequency band 0.0 Hz to 0.1 Hz, with potential markers associated with the higher frequency harmonics of these signals in the 0.1 Hz to 0.2 Hz and 0.2 Hz to 0.3 Hz bands.

  13. ASE-1: an autoantigen in systemic lupus erythematosus.

    PubMed

    Edworthy, S; Fritzler, M; Whitehead, C; Martin, L; Rattner, J B

    2000-01-01

    ASE-1 is a 55 kDa nucleolar autoantigen. We show that autoantibodies to this antigen occur at a higher frequency in the sera of patients with SLE than in other systemic rheumatic diseases and that the specificity of ASE-1 as a serum marker of SLE increases as the number of epitopes recognized by the sera increases. Autoantibodies to ASE-1 were temporally associated with autoantibodies to HsEg5 but were not found in conjunction with other known serum markers of SLE. The frequency of antibodies to ASE-1 epitopes in a SLE cohort was approximately the same as anti-dsDNA. However, anti-dsDNA is associated with renal involvement, whereas ASE-1 reactivity shows an association with a history of serositis. We conclude that ASE-1 is correlated with serositis and that ASE-1 should be added to a list of autoantigens that are considered important serological features of SLE.

  14. Propagation effects on radio range and noise in earth-space telecommunications

    NASA Technical Reports Server (NTRS)

    Flock, W. L.; Slobin, S. D.; Smith, E. K.

    1982-01-01

    Attention is given to the propagation effects on radio range and noise in earth-space telecommunications. The use of higher frequencies minimizes ionospheric effects on propagation, but tropospheric effects often increase or dominate. For paths of geostationary satellites, and beyond, the excess range delay caused by the ionosphere and plasmasphere is proportional to the total electron content along the path and inversely proportional to frequency squared. The delay due to dry air is usually of the order of a few meters while the delay due to water vapor (a few tens of centimeters) is responsible for most of the temporal variation in the range delay for clean air. For systems such as that of the Voyager spacecraft, and for attenuation values up to about 10 dB, increased sky noise degrades the received signal-to-noise ratio more than does the reduction in signal level due to attenuation.

  15. Pattern reversal responses in man and cat: a comparison.

    PubMed

    Schuurmans, R P; Berninger, T

    1984-01-01

    In 42 enucleated and arterially perfused cat eyes, graded potentials were recorded from the retina (ERG) and from the optic nerve ( ONR ) in response to checker-board stimuli, reversing at a low temporal frequency in a square wave mode. The ERG and ONR responses show an almost perfect duplication of the response to each reversal of the pattern and exhibit, in contrast to luminance responses, striking similarities in response characteristics such as amplitude, wave shape and time course. Furthermore, the amplitude versus check size plots coincide in both responses. In cat, pattern reversal responses can be recorded from 74 to 9 min of arc, correlating to the cat's visual resolution. In man, almost identical responses can be recorded for the pattern ERG. However, in accordance with the difference in visual resolution in man and cat, a parallel shift for the human pattern reversal ERG response to higher spatial frequencies is observed.

  16. A generalized time-frequency subtraction method for robust speech enhancement based on wavelet filter banks modeling of human auditory system.

    PubMed

    Shao, Yu; Chang, Chip-Hong

    2007-08-01

    We present a new speech enhancement scheme for a single-microphone system to meet the demand for quality noise reduction algorithms capable of operating at a very low signal-to-noise ratio. A psychoacoustic model is incorporated into the generalized perceptual wavelet denoising method to reduce the residual noise and improve the intelligibility of speech. The proposed method is a generalized time-frequency subtraction algorithm, which advantageously exploits the wavelet multirate signal representation to preserve the critical transient information. Simultaneous masking and temporal masking of the human auditory system are modeled by the perceptual wavelet packet transform via the frequency and temporal localization of speech components. The wavelet coefficients are used to calculate the Bark spreading energy and temporal spreading energy, from which a time-frequency masking threshold is deduced to adaptively adjust the subtraction parameters of the proposed method. An unvoiced speech enhancement algorithm is also integrated into the system to improve the intelligibility of speech. Through rigorous objective and subjective evaluations, it is shown that the proposed speech enhancement system is capable of reducing noise with little speech degradation in adverse noise environments and the overall performance is superior to several competitive methods.

  17. Optic nerve signals in a neuromorphic chip I: Outer and inner retina models.

    PubMed

    Zaghloul, Kareem A; Boahen, Kwabena

    2004-04-01

    We present a novel model for the mammalian retina and analyze its behavior. Our outer retina model performs bandpass spatiotemporal filtering. It is comprised of two reciprocally connected resistive grids that model the cone and horizontal cell syncytia. We show analytically that its sensitivity is proportional to the space-constant-ratio of the two grids while its half-max response is set by the local average intensity. Thus, this outer retina model realizes luminance adaptation. Our inner retina model performs high-pass temporal filtering. It features slow negative feedback whose strength is modulated by a locally computed measure of temporal contrast, modeling two kinds of amacrine cells, one narrow-field, the other wide-field. We show analytically that, when the input is spectrally pure, the corner-frequency tracks the input frequency. But when the input is broadband, the corner frequency is proportional to contrast. Thus, this inner retina model realizes temporal frequency adaptation as well as contrast gain control. We present CMOS circuit designs for our retina model in this paper as well. Experimental measurements from the fabricated chip, and validation of our analytical results, are presented in the companion paper [Zaghloul and Boahen (2004)].

  18. Crop Frequency Mapping for Land Use Intensity Estimation During Three Decades

    NASA Astrophysics Data System (ADS)

    Schmidt, Michael; Tindall, Dan

    2016-08-01

    Crop extent and frequency maps are an important input to inform the debate around land value and competitive land uses, food security and sustainability of agricultural practices. Such spatial datasets are likely to support decisions on natural resource management, planning and policy. The complete Landsat Time Series (LTS) archive for 23 Landsat footprints in western Queensland from 1987 to 2015 was used in a multi-temporal mapping approach. Spatial, spectral and temporal information were combined in multiple crop-modelling steps, supported by on ground training data sampled across space and time for the classes Crop and No-Crop. Temporal information within summer and winter growing seasons for each year were summarised, and combined with various vegetation indices and band ratios computed from a mid-season spectral-composite image. All available temporal information was spatially aggregated to the scale of image segments in the mid- season composite for each growing season and used to train a random forest classifier for a Crop and No- Crop classification. Validation revealed that the predictive accuracy varied by growing season and region to be within k = 0.88 to 0.97 and are thus suitable for mapping current and historic cropping activity. Crop frequency maps were produced for all regions at different time intervals. The crop frequency maps were validated separately with a historic crop information time series. Different land use intensities and conversions e.g. from agricultural to pastures are apparent and potential drivers of these conversions are discussed.

  19. Seizure frequency correlates with loss of dentate gyrus GABAergic neurons in a mouse model of temporal lobe epilepsy

    PubMed Central

    Buckmaster, Paul S.; Abrams, Emily; Wen, Xiling

    2018-01-01

    Epilepsy occurs in one of 26 people. Temporal lobe epilepsy is common and can be difficult to treat effectively. It can develop after brain injuries that damage the hippocampus. Multiple pathophysiological mechanisms involving the hippocampal dentate gyrus have been proposed. This study evaluated a mouse model of temporal lobe epilepsy to test which pathological changes in the dentate gyrus correlate with seizure frequency and help prioritize potential mechanisms for further study. FVB mice (n = 127) that had experienced status epilepticus after systemic treatment with pilocarpine 31–61 days earlier were video-monitored for spontaneous, convulsive seizures 9 hr/day every day for 24–36 days. Over 4,060 seizures were observed. Seizure frequency ranged from an average of one every 3.6 days to one every 2.1 hr. Hippocampal sections were processed for Nissl stain, Prox1-immunocytochemistry, GluR2-immunocytochemistry, Timm stain, glial fibrillary acidic protein-immunocytochemistry, glutamic acid decarboxylase in situ hybridization, and parvalbumin-immunocytochemistry. Stereological methods were used to measure hilar ectopic granule cells, mossy cells, mossy fiber sprouting, astrogliosis, and GABAergic interneurons. Seizure frequency was not significantly correlated with the generation of hilar ectopic granule cells, the number of mossy cells, the extent of mossy fiber sprouting, the extent of astrogliosis, or the number of GABAergic interneurons in the molecular layer or hilus. Seizure frequency significantly correlated with the loss of GABAergic interneurons in or adjacent to the granule cell layer, but not with the loss of parvalbumin-positive interneurons. These findings prioritize the loss of granule cell layer interneurons for further testing as a potential cause of temporal lobe epilepsy. PMID:28425097

  20. Seizure frequency correlates with loss of dentate gyrus GABAergic neurons in a mouse model of temporal lobe epilepsy.

    PubMed

    Buckmaster, Paul S; Abrams, Emily; Wen, Xiling

    2017-08-01

    Epilepsy occurs in one of 26 people. Temporal lobe epilepsy is common and can be difficult to treat effectively. It can develop after brain injuries that damage the hippocampus. Multiple pathophysiological mechanisms involving the hippocampal dentate gyrus have been proposed. This study evaluated a mouse model of temporal lobe epilepsy to test which pathological changes in the dentate gyrus correlate with seizure frequency and help prioritize potential mechanisms for further study. FVB mice (n = 127) that had experienced status epilepticus after systemic treatment with pilocarpine 31-61 days earlier were video-monitored for spontaneous, convulsive seizures 9 hr/day every day for 24-36 days. Over 4,060 seizures were observed. Seizure frequency ranged from an average of one every 3.6 days to one every 2.1 hr. Hippocampal sections were processed for Nissl stain, Prox1-immunocytochemistry, GluR2-immunocytochemistry, Timm stain, glial fibrillary acidic protein-immunocytochemistry, glutamic acid decarboxylase in situ hybridization, and parvalbumin-immunocytochemistry. Stereological methods were used to measure hilar ectopic granule cells, mossy cells, mossy fiber sprouting, astrogliosis, and GABAergic interneurons. Seizure frequency was not significantly correlated with the generation of hilar ectopic granule cells, the number of mossy cells, the extent of mossy fiber sprouting, the extent of astrogliosis, or the number of GABAergic interneurons in the molecular layer or hilus. Seizure frequency significantly correlated with the loss of GABAergic interneurons in or adjacent to the granule cell layer, but not with the loss of parvalbumin-positive interneurons. These findings prioritize the loss of granule cell layer interneurons for further testing as a potential cause of temporal lobe epilepsy. © 2017 Wiley Periodicals, Inc.

  1. Characterization of Tissue Structure at Varying Length Scales Using Temporal Diffusion Spectroscopy

    PubMed Central

    Gore, John C.; Xu, Junzhong; Colvin, Daniel C.; Yankeelov, Thomas E.; Parsons, Edward C.; Does, Mark D.

    2011-01-01

    The concepts, theoretical behavior and experimental applications of temporal diffusion spectroscopy are reviewed and illustrated. Temporal diffusion spectra are obtained by using oscillating gradient waveforms in diffusion-weighted measurements, and represent the manner in which various spectral components of molecular velocity correlations vary in different geometrical structures that restrict or hinder free movements. Measurements made at different gradient frequencies reveal information on the scale of restrictions or hindrances to free diffusion, and the shape of a spectrum reveals the relative contributions of spatial restrictions at different distance scales. Such spectra differ from other so-called diffusion spectra which depict spatial frequencies and are defined at a fixed diffusion time. Experimentally, oscillating gradients at moderate frequency are more feasible for exploring restrictions at very short distances, which in tissues correspond to structures smaller than cells. We describe the underlying concepts of temporal diffusion spectra and provide analytical expressions for the behavior of the diffusion coefficient as a function of gradient frequency in simple geometries with different dimensions. Diffusion in more complex model media that mimic tissues has been simulated using numerical methods. Experimental measurements of diffusion spectra have been obtained in suspensions of particles and cells, as well as in vivo in intact animals. An observation of particular interest is the increased contrast and heterogeneity observed in tumors using oscillating gradients at moderate frequency compared to conventional pulse gradient methods, and the potential for detecting changes in tumors early in their response to treatment. Computer simulations suggest that diffusion spectral measurements may be sensitive to intracellular structures such as nuclear size, and that changes in tissue diffusion properties may be measured before there are changes in cell density. PMID:20677208

  2. Ocean time-series near Bermuda: Hydrostation S and the US JGOFS Bermuda Atlantic time-series study

    NASA Technical Reports Server (NTRS)

    Michaels, Anthony F.; Knap, Anthony H.

    1992-01-01

    Bermuda is the site of two ocean time-series programs. At Hydrostation S, the ongoing biweekly profiles of temperature, salinity and oxygen now span 37 years. This is one of the longest open-ocean time-series data sets and provides a view of decadal scale variability in ocean processes. In 1988, the U.S. JGOFS Bermuda Atlantic Time-series Study began a wide range of measurements at a frequency of 14-18 cruises each year to understand temporal variability in ocean biogeochemistry. On each cruise, the data range from chemical analyses of discrete water samples to data from electronic packages of hydrographic and optics sensors. In addition, a range of biological and geochemical rate measurements are conducted that integrate over time-periods of minutes to days. This sampling strategy yields a reasonable resolution of the major seasonal patterns and of decadal scale variability. The Sargasso Sea also has a variety of episodic production events on scales of days to weeks and these are only poorly resolved. In addition, there is a substantial amount of mesoscale variability in this region and some of the perceived temporal patterns are caused by the intersection of the biweekly sampling with the natural spatial variability. In the Bermuda time-series programs, we have added a series of additional cruises to begin to assess these other sources of variation and their impacts on the interpretation of the main time-series record. However, the adequate resolution of higher frequency temporal patterns will probably require the introduction of new sampling strategies and some emerging technologies such as biogeochemical moorings and autonomous underwater vehicles.

  3. Clinico-pathological factors influencing surgical outcome in drug resistant epilepsy secondary to mesial temporal sclerosis.

    PubMed

    Savitr Sastri, B V; Arivazhagan, A; Sinha, Sanjib; Mahadevan, Anita; Bharath, R D; Saini, J; Jamuna, R; Kumar, J Keshav; Rao, S L; Chandramouli, B A; Shankar, S K; Satishchandra, P

    2014-05-15

    Mesial temporal sclerosis (MTS) is the most common cause of drug resistant epilepsy amenable for surgical treatment and seizure control. This study analyzed the outcome of patients with MTS following anterior temporal lobectomy and amygdalohippocampectomy (ATL-AH) over 10 years and correlated the electrophysiological and radiological factors with the post operative seizure outcome. Eighty seven patients were included in the study. Sixty seven (77.2%) patients had an Engel Class 1 outcome, 9 (11.4%) had Class 2 outcome. Engel's class 1 outcome was achieved in 89.9% at 1 year, while it reduced slightly to 81.9% at 2 years and 76.2% at 5 year follow up. Seventy seven (88.5%) patients had evidence of hippocampal sclerosis on histopathology. Dual pathology was observed in 19 of 77 specimens with hippocampal sclerosis, but did not influence the outcome. Factors associated with an unfavorable outcome included male gender (p=0.04), and a higher frequency of pre-operative seizures (p=0.005), whereas the presence of febrile seizures (p=0.048) and loss of hippocampal neurons in CA4 region on histopathology (p=0.040) were associated with favorable outcome. The effect of CA4 loss on outcome is probably influenced by neuronal loss in other subfields as well since isolated CA4 loss was rare. Abnormal post operative EEG at the end of 1 week was found to be a significant factor predicting unfavorable outcome (p=0.005). On multivariate analysis, the pre-operative seizure frequency was the only significant factor affecting outcome. The present study observed excellent seizure free outcome in a carefully selected cohort of patients with MTS with refractory epilepsy. The presence of dual pathology did not influence the outcome. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Standardizing procedures to study sensitization of human spinal nociceptive processes: comparing parameters for temporal summation of the nociceptive flexion reflex (TS-NFR).

    PubMed

    Terry, Ellen L; France, Christopher R; Bartley, Emily J; Delventura, Jennifer L; Kerr, Kara L; Vincent, Ashley L; Rhudy, Jamie L

    2011-09-01

    Temporal summation of pain (TS-pain) is the progressive increase in pain ratings during a series of noxious stimulations. TS-pain has been used to make inferences about sensitization of spinal nociceptive processes; however, pain report can be biased thereby leading to problems with this inference. Temporal summation of the nociceptive flexion reflex (TS-NFR, a physiological measure of spinal nociception) can potentially overcome report bias, but there have been few attempts (generally with small Ns) to standardize TS-NFR procedures. In this study, 50 healthy participants received 25 series of noxious electric stimulations to evoke TS-NFR and TS-pain. Goals were to: 1) determine the stimulation frequency that best elicits TS-NFR and reduces electromyogram (EMG) contamination from muscle tension, 2) determine the minimum number of stimulations per series before NFR summation asymptotes, 3) compare NFR definition intervals (90-150ms vs. 70-150ms post-stimulation), and 4) compare TS-pain and TS-NFR when different stimulation frequencies are used. Results indicated TS-NFR should be elicited by a series of three stimuli delivered at 2.0Hz and TS-NFR should be defined from a 70-150ms post-stimulation scoring interval. Unfortunately, EMG contamination from muscle tension was greatest during 2.0Hz series. Discrepancies were noted between TS-NFR and TS-pain which raise concerns about using pain ratings to infer changes in spinal nociceptive processes. And finally, some individuals did not have reliable NFRs when the stimulation intensity was set at NFR threshold during TS-NFR testing; therefore, a higher intensity is needed. Implications of findings are discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Short-time windowed covariance: A metric for identifying non-stationary, event-related covariant cortical sites

    PubMed Central

    Blakely, Timothy; Ojemann, Jeffrey G.; Rao, Rajesh P.N.

    2014-01-01

    Background Electrocorticography (ECoG) signals can provide high spatio-temporal resolution and high signal to noise ratio recordings of local neural activity from the surface of the brain. Previous studies have shown that broad-band, spatially focal, high-frequency increases in ECoG signals are highly correlated with movement and other cognitive tasks and can be volitionally modulated. However, significant additional information may be present in inter-electrode interactions, but adding additional higher order inter-electrode interactions can be impractical from a computational aspect, if not impossible. New method In this paper we present a new method of calculating high frequency interactions between electrodes called Short-Time Windowed Covariance (STWC) that builds on mathematical techniques currently used in neural signal analysis, along with an implementation that accelerates the algorithm by orders of magnitude by leveraging commodity, off-the-shelf graphics processing unit (GPU) hardware. Results Using the hardware-accelerated implementation of STWC, we identify many types of event-related inter-electrode interactions from human ECoG recordings on global and local scales that have not been identified by previous methods. Unique temporal patterns are observed for digit flexion in both low- (10 mm spacing) and high-resolution (3 mm spacing) electrode arrays. Comparison with existing methods Covariance is a commonly used metric for identifying correlated signals, but the standard covariance calculations do not allow for temporally varying covariance. In contrast STWC allows and identifies event-driven changes in covariance without identifying spurious noise correlations. Conclusions: STWC can be used to identify event-related neural interactions whose high computational load is well suited to GPU capabilities. PMID:24211499

  6. PubMed Central

    DI NARDO, W.; GIANNANTONIO, S.; DI GIUDA, D.; DE CORSO, E.; SCHINAIA, L.; PALUDETTI, G.

    2013-01-01

    SUMMARY Pre-surgery evaluation, indications for cochlear implantation and expectations in terms of post-operative functional results remain challenging topics in pre-lingually deaf adults. Our study has the purpose of determining the benefits of Single Photon Emission Tomography (SPECT) assessment in pre-surgical evaluation of pre-lingually deaf adults who are candidates for cochlear implantation. In 7 pre-lingually profoundly deaf patients, brain SPECT was performed at baseline conditions and in bilateral simultaneous multi-frequency acoustic stimulation. Six sagittal tomograms of both temporal cortices were used for semi-quantitative analysis in each patient. Percentage increases in cortical perfusion resulting from auditory stimulation were calculated. The results showed an inter-hemispherical asymmetry of the activation extension and intensity in the stimulated temporal areas. Consistent with the obtained brain activation data, patients were implanted preferring the side that showed higher activation after acoustic stimulus. Considering the increment in auditory perception performances, it was possible to point out a relationship between cortical brain activity shown by SPECT and hearing performances, and, even more significant, a correlation between post-operative functional performances and the activation of the most medial part of the sagittal temporal tomograms, corresponding to medium-high frequencies. In light of these findings, we believe that brain SPECT could be considered in the evaluation of deaf patients candidate for cochlear implantation, and that it plays a major role in functional assessment of the auditory cortex of pre-lingually deaf subjects, even if further studies are necessary to conclusively establish its utility. Further developments of this technique are possible by using trans-tympanic electrical stimulation of the cochlear promontory, which could give the opportunity to study completely deaf patients, whose evaluation is objectively difficult with current audiological methods. PMID:23620636

  7. Nonlinear Behavior of the Geomagnetic Fluctuations Recorded in Different Geomagnetic Latitudes

    NASA Astrophysics Data System (ADS)

    Kovacs, P.; Heilig, B.; Koppan, A.; Vadasz, G.; Echim, M.

    2014-12-01

    The paper concerns with the nonlinear properties of geomagnetic variations recorded in different geomagnetic latitudes, in the years of solar maximum and minimum. For the study, we use the geomagnetic time-series recorded by some of the stations of the EMMA quasi-meridional magnetometer network, established for pulsation study, in September 2001. The stations are located approx. along the magnetic meridian of 100 degree, and the sampling frequency of the series is 1 Hz. It is argued that the geomagnetic field exhibits nonlinear intermittent fluctuations in certain temporal scale range. For quantitatively investigating the scaling ranges and the variation of intermittent properties with latitude and time, we analyse the higher order moments of the time records (probability density function or structure function analyses). The multifractal or self-similar scaling of the fluctuations is investigated via the fitting of the P model to structure function scaling exponents. We also study the power-law behaviour of the power-spectral density functions of the series in order to evaluate the possible inertial frequency (and temporal) range of the geomagnetic field and compare them with the scaling ranges of structure functions. The range where intermittent geomagnetic variation is found falls typically between 100 and 20.000 s, i.e. covers the temporal range of the main phases of geomagnetic storms. It is shown that the intensity of intermittent fluctuations increases from solar minimum to solar maximum. The expected increase in the level of intermittency with the geomagnetic latitude can be evidenced only in the years of solar minimum. The research leading to these results has received funding from the European Community's Seventh Framework Programme ([FP7/2007-2013]) under grant agreement n° 313038/STORM.

  8. Similar resilience attributes in lakes with different management practices

    USGS Publications Warehouse

    Baho, Didier L.; Drakare, Stina; Johnson, Richard K.; Allen, Craig R.; Angeler, David G.

    2014-01-01

    Liming has been used extensively in Scandinavia and elsewhere since the 1970s to counteract the negative effects of acidification. Communities in limed lakes usually return to acidified conditions once liming is discontinued, suggesting that liming is unlikely to shift acidified lakes to a state equivalent to pre-acidification conditions that requires no further management intervention. While this suggests a low resilience of limed lakes, attributes that confer resilience have not been assessed, limiting our understanding of the efficiency of costly management programs. In this study, we assessed community metrics (diversity, richness, evenness, biovolume), multivariate community structure and the relative resilience of phytoplankton in limed, acidified and circum-neutral lakes from 1997 to 2009, using multivariate time series modeling. We identified dominant temporal frequencies in the data, allowing us to track community change at distinct temporal scales. We assessed two attributes of relative resilience (cross-scale and within-scale structure) of the phytoplankton communities, based on the fluctuation frequency patterns identified. We also assessed species with stochastic temporal dynamics. Liming increased phytoplankton diversity and richness; however, multivariate community structure differed in limed relative to acidified and circum-neutral lakes. Cross-scale and within-scale attributes of resilience were similar across all lakes studied but the contribution of those species exhibiting stochastic dynamics was higher in the acidified and limed compared to circum-neutral lakes. From a resilience perspective, our results suggest that limed lakes comprise a particular condition of an acidified lake state. This explains why liming does not move acidified lakes out of a “degraded” basin of attraction. In addition, our study demonstrates the potential of time series modeling to assess the efficiency of restoration and management outcomes through quantification of the attributes contributing to resilience in ecosystems.

  9. Photonic generation of low phase noise arbitrary chirped microwave waveforms with large time-bandwidth product.

    PubMed

    Xie, Weilin; Xia, Zongyang; Zhou, Qian; Shi, Hongxiao; Dong, Yi; Hu, Weisheng

    2015-07-13

    We present a photonic approach for generating low phase noise, arbitrary chirped microwave waveforms based on heterodyne beating between high order correlated comb lines extracted from frequency-agile optical frequency comb. Using the dual heterodyne phase transfer scheme, extrinsic phase noises induced by the separate optical paths are efficiently suppressed by 42-dB at 1-Hz offset frequency. Linearly chirped microwave waveforms are achieved within 30-ms temporal duration, contributing to a large time-bandwidth product. The linearity measurement leads to less than 90 kHz RMS frequency error during the entire chirp duration, exhibiting excellent linearity for the microwave and sub-THz waveforms. The capability of generating arbitrary waveforms up to sub-THz band with flexible temporal duration, long repetition period, broad bandwidth, and large time-bandwidth product is investigated and discussed.

  10. Temporal resolution of orientation-defined texture segregation: a VEP study.

    PubMed

    Lachapelle, Julie; McKerral, Michelle; Jauffret, Colin; Bach, Michael

    2008-09-01

    Orientation is one of the visual dimensions that subserve figure-ground discrimination. A spatial gradient in orientation leads to "texture segregation", which is thought to be concurrent parallel processing across the visual field, without scanning. In the visual-evoked potential (VEP) a component can be isolated which is related to texture segregation ("tsVEP"). Our objective was to evaluate the temporal frequency dependence of the tsVEP to compare processing speed of low-level features (e.g., orientation, using the VEP, here denoted llVEP) with texture segregation because of a recent literature controversy in that regard. Visual-evoked potentials (VEPs) were recorded in seven normal adults. Oriented line segments of 0.1 degrees x 0.8 degrees at 100% contrast were presented in four different arrangements: either oriented in parallel for two homogeneous stimuli (from which were obtained the low-level VEP (llVEP)) or with a 90 degrees orientation gradient for two textured ones (from which were obtained the texture VEP). The orientation texture condition was presented at eight different temporal frequencies ranging from 7.5 to 45 Hz. Fourier analysis was used to isolate low-level components at the pattern-change frequency and texture-segregation components at half that frequency. For all subjects, there was lower high-cutoff frequency for tsVEP than for llVEPs, on average 12 Hz vs. 17 Hz (P = 0.017). The results suggest that the processing of feature gradients to extract texture segregation requires additional processing time, resulting in a lower fusion frequency.

  11. A comparison of auditory evoked potentials to acoustic beats and to binaural beats.

    PubMed

    Pratt, Hillel; Starr, Arnold; Michalewski, Henry J; Dimitrijevic, Andrew; Bleich, Naomi; Mittelman, Nomi

    2010-04-01

    The purpose of this study was to compare cortical brain responses evoked by amplitude modulated acoustic beats of 3 and 6 Hz in tones of 250 and 1000 Hz with those evoked by their binaural beats counterparts in unmodulated tones to indicate whether the cortical processes involved differ. Event-related potentials (ERPs) were recorded to 3- and 6-Hz acoustic and binaural beats in 2000 ms duration 250 and 1000 Hz tones presented with approximately 1 s intervals. Latency, amplitude and source current density estimates of ERP components to beats-evoked oscillations were determined and compared across beat types, beat frequencies and base (carrier) frequencies. All stimuli evoked tone-onset components followed by oscillations corresponding to the beat frequency, and a subsequent tone-offset complex. Beats-evoked oscillations were higher in amplitude in response to acoustic than to binaural beats, to 250 than to 1000 Hz base frequency and to 3 Hz than to 6 Hz beat frequency. Sources of the beats-evoked oscillations across all stimulus conditions located mostly to left temporal lobe areas. Differences between estimated sources of potentials to acoustic and binaural beats were not significant. The perceptions of binaural beats involve cortical activity that is not different than acoustic beats in distribution and in the effects of beat- and base frequency, indicating similar cortical processing. Copyright 2010 Elsevier B.V. All rights reserved.

  12. Perceptual weighting of the envelope and fine structure across frequency bands for sentence intelligibility: Effect of interruption at the syllabic-rate and periodic-rate of speech

    PubMed Central

    Fogerty, Daniel

    2011-01-01

    Listeners often only have fragments of speech available to understand the intended message due to competing background noise. In order to maximize successful speech recognition, listeners must allocate their perceptual resources to the most informative acoustic properties. The speech signal contains temporally-varying acoustics in the envelope and fine structure that are present across the frequency spectrum. Understanding how listeners perceptually weigh these acoustic properties in different frequency regions during interrupted speech is essential for the design of assistive listening devices. This study measured the perceptual weighting of young normal-hearing listeners for the envelope and fine structure in each of three frequency bands for interrupted sentence materials. Perceptual weights were obtained during interruption at the syllabic rate (i.e., 4 Hz) and the periodic rate (i.e., 128 Hz) of speech. Potential interruption interactions with fundamental frequency information were investigated by shifting the natural pitch contour higher relative to the interruption rate. The availability of each acoustic property was varied independently by adding noise at different levels. Perceptual weights were determined by correlating a listener’s performance with the availability of each acoustic property on a trial-by-trial basis. Results demonstrated similar relative weights across the interruption conditions, with emphasis on the envelope in high-frequencies. PMID:21786914

  13. Frequency tuning of synaptic inhibition underlying duration-tuned neurons in the mammalian inferior colliculus

    PubMed Central

    Valdizón-Rodríguez, Roberto

    2017-01-01

    Inhibition plays an important role in creating the temporal response properties of duration-tuned neurons (DTNs) in the mammalian inferior colliculus (IC). Neurophysiological and computational studies indicate that duration selectivity in the IC is created through the convergence of excitatory and inhibitory synaptic inputs offset in time. We used paired-tone stimulation and extracellular recording to measure the frequency tuning of the inhibition acting on DTNs in the IC of the big brown bat (Eptesicus fuscus). We stimulated DTNs with pairs of tones differing in duration, onset time, and frequency. The onset time of a short, best-duration (BD), probe tone set to the best excitatory frequency (BEF) was varied relative to the onset of a longer-duration, nonexcitatory (NE) tone whose frequency was varied. When the NE tone frequency was near or within the cell’s excitatory bandwidth (eBW), BD tone-evoked spikes were suppressed by an onset-evoked inhibition. The onset of the spike suppression was independent of stimulus frequency, but both the offset and duration of the suppression decreased as the NE tone frequency departed from the BEF. We measured the inhibitory frequency response area, best inhibitory frequency (BIF), and inhibitory bandwidth (iBW) of each cell. We found that the BIF closely matched the BEF, but the iBW was broader and usually overlapped the eBW measured from the same cell. These data suggest that temporal selectivity of midbrain DTNs is created and preserved by having cells receive an onset-evoked, constant-latency, broadband inhibition that largely overlaps the cell’s excitatory receptive field. We conclude by discussing possible neural sources of the inhibition. NEW & NOTEWORTHY Duration-tuned neurons (DTNs) arise from temporally offset excitatory and inhibitory synaptic inputs. We used single-unit recording and paired-tone stimulation to measure the spectral tuning of the inhibitory inputs to DTNs. The onset of inhibition was independent of stimulus frequency; the offset and duration of inhibition systematically decreased as the stimulus departed from the cell’s best excitatory frequency. Best inhibitory frequencies matched best excitatory frequencies; however, inhibitory bandwidths were more broadly tuned than excitatory bandwidths. PMID:28100657

  14. Research on Frequency Transposition for Hearing Aids. Final Report.

    ERIC Educational Resources Information Center

    Gengel, Roy W.; Pickett, J. M.

    Reported were studies measuring residual auditory capacities of deaf persons and investigating hearing aids which transpose speech to lower frequencies where deaf persons may have better hearing. Studies on temporal and frequency discrimination indicated that the duration of a signal may have a differential effect on its detectability by…

  15. Discernible rhythm in the spatio/temporal distributions of transatlantic dust

    NASA Astrophysics Data System (ADS)

    Ben-Ami, Y.; Koren, I.; Altaratz, O.; Kostinski, A. B.; Lehahn, Y.

    2011-08-01

    The differences in North African dust emission regions and transport routes, between the boreal winter and summer are thoroughly documented. Here we re-examine the spatial and temporal characteristics of dust transport over the tropical and subtropical North Atlantic Ocean, using 10 years of satellite data, in order to determine better the different dust transport periods and their characteristics. We see a robust annual triplet: a discernible rhythm of "transatlantic dust weather". The proposed annual partition is composed of two heavy loading periods, associated here with a northern-route period and southern-route period, and one clean, light-loading period, accompanied by unusually low average optical depth of dust. The two dusty periods are quite different in character: their duration, transport routes, characteristic aerosol loading and frequency of pronounced dust episodes. The southern route period lasts about ~4 months, from the end of November to end of March. It is characterized by a relatively steady southern positioning, low frequency of dust events, low background values and high variance in dust loading. The northern-route period lasts ~6.5 months, from the end of March to mid October, and is associated with a steady drift northward of ~0.1 latitude day-1, reaching ~1500 km north of the southern route. The northern period is characterized by higher frequency of dust events, higher (and variable) background and smaller variance in dust loading. It is less episodic than the southern period. Transitions between the periods are brief. Separation between the southern and northern periods is marked by northward latitudinal shift in dust transport and by moderate reduction in the overall dust loading. The second transition between the northern and southern periods commences with an abrupt reduction in dust loading (thereby initiating the clean period) and rapid shift southward of ~0.2 latitude day-1, and 1300 km in total. These rates of northward advance and southern retreat of the dust transport route are in accordance with the simultaneous shift of the Inter Tropical Front. Based on cross-correlation analyses, we attribute the observed rhythm to the contrast between the northwestern and southern Saharan dust source spatial distributions. Despite the vast difference in areas, the Bodélé Depression, located in Chad, appears to modulate transatlantic dust patterns about half the time. The proposed partition captures the essence of transatlantic dust climatology and may, therefore, supply a natural temporal framework for dust analysis via models and observations.

  16. Sex differences in the relationships between parasympathetic activity and pain modulation.

    PubMed

    Nahman-Averbuch, Hadas; Dayan, Lior; Sprecher, Elliot; Hochberg, Uri; Brill, Silviu; Yarnitsky, David; Jacob, Giris

    2016-02-01

    Higher parasympathetic activity is related to lower pain perception in healthy subjects and pain patients. We aimed to examine whether this relationship depends on sex, in healthy subjects. Parasympathetic activity was assessed using time- and frequency-domain heart rate variability indices and deep breathing ratio. Pain perception parameters, consisting of heat pain thresholds and pain ratings of supra-thresholds stimuli, as well as pain modulation parameters of mechanical temporal summation, pain adaptation, offset analgesia and conditioned pain modulation (CPM) response were examined. Forty healthy subjects were examined (20 men). Women demonstrated higher parasympathetic activity compared to men (high frequency power of 0.55±0.2 and 0.40±0.2, respectively, p=0.02) and less pain reduction in the offset analgesia paradigm (-35.4±29.1 and -55.0±31.2, respectively, p=0.046). Separate slopes models analyses revealed sex differences such that a significant negative correlation was observed between higher rMSSD (the root mean square of successive differences) and higher pain adaptation in men (r=-0.649, p=0.003) but not in women (r=0.382, p=0.106). Similarly, a significant negative correlation was found between higher rMSSD and higher efficiency of the CPM response in men (r=-0.510, p=0.026) but not in women (r=0.406, p=0.085). Sex hormones levels, psychological factors or baseline autonomic activity can be possible explanations for these sex differences. Future autonomic interventions destined to change pain modulation should consider sex as an important intervening factor. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Combined photoacoustic and ultrasonic diagnosis of early bone loss and density variations

    NASA Astrophysics Data System (ADS)

    Lashkari, Bahman; Mandelis, Andreas

    2012-02-01

    Over the past two decades, osteoporosis has been recognized among the most serious public health problems. Fortunately with the growing awareness of osteoporosis, new treatments have been developed for the prevention of fracture. At the same time, there is a rapid improvement in diagnostic methods. In this study biomedical photoacoustics (PA) is applied to the analysis of bone mineral concentration. The PA signal depends on optical as well as mechanical properties of the object and therefore has the potential to provide higher sensitivity to density variations compared with standard diagnostic methods, like ultrasound. A laser source with 800 nm wavelength and different ultrasonic transducers with resonance frequencies in the range 1 to 5 MHz were employed. The CW or frequency-domain (FD) PA radar method was utilized with linear frequency modulation chirps to provide temporal gating control over the transmitted signal and higher sensitivity in the detected signal. The laser intensity was set below the safety standards for skin exposure. The preliminary studies showed adequate optical absorption by cortical bone to generate measurable PA signals and the transmission of laser light through this layer. Experiments are focused on detection and evaluation of PA signals from in-vitro animal cortical bones with and without a trabecular sublayer. The trabecular layer is then diluted by chemical etching and differences in the PA signals are discussed.

  18. Comparison of Southern Hemisphere radiosonde and LIMS temperatures at 100 mb. [limb infrared monitor of stratosphere

    NASA Technical Reports Server (NTRS)

    Miles, T.; Grose, W. L.; Russell, J. M., III; Remsberg, E. E.

    1987-01-01

    Radiosonde (RS)and satellite-derived (Nimbus-7 LIMS) 100-mb temperatures over New Zealand at 12 GMT are compared for the 1978-79 summer. The colocated LIMS temperature information consists of synoptically mapped values (for 12 GMT), as well as the primary nighttime orbital retrievals valid at about 1030 GMT. The RS time series of temperature is dominated by temporal fluctuations associated mainly with the eastward passage of waves which have characteristic periods of 4-5 and 11-12 days and peak-to-peak amplitudes of 10-15 K. The LIMS temperatures and the corresponding temperature time series are also found to exhibit quite close agreement (in terms of temporal phase for the latter) with the RS data. However, the LIMS-mapped temperature fluctuations suffer from a noticeable attenuation in amplitude (approaching 50 percent for higher-frequency fluctuations), which will affect the accuracy of LIMS-derived estimates of dynamical quantities such as wind velocity and relative vorticity in the lower stratosphere.

  19. Switch between Morphospecies of Pocillopora Corals.

    PubMed

    Paz-García, David A; Hellberg, Michael E; García-de-León, Francisco J; Balart, Eduardo F

    2015-09-01

    Pocillopora corals are the main reef builders in the eastern tropical Pacific. The validity of Pocillopora morphospecies remains under debate because of disagreements between morphological and genetic data. To evaluate the temporal stability of morphospecies in situ, we monitored the shapes of individual colonies in three communities in the southern Gulf of California for 44 months. Twenty-three percent of tagged colonies of Pocillopora damicornis changed to Pocillopora inflata morphology during this time. This switch in identity coincided with a shift to a higher frequency of storms and lower water turbidity (i.e., lower chlorophyll a levels). Seven months after the switch, P. inflata colonies were recovering their original P. damicornis morphology. All colonies of both morphospecies shared a common mitochondrial identity, but most P. damicornis colonies undergoing change were at a site with low-flow conditions. This is the first in situ study to document switching between described morphospecies, and it elucidates the influence of temporal shifts in environmental conditions on morphologically plastic responses.

  20. Proportional spike-timing precision and firing reliability underlie efficient temporal processing of periodicity and envelope shape cues

    PubMed Central

    Zheng, Y.

    2013-01-01

    Temporal sound cues are essential for sound recognition, pitch, rhythm, and timbre perception, yet how auditory neurons encode such cues is subject of ongoing debate. Rate coding theories propose that temporal sound features are represented by rate tuned modulation filters. However, overwhelming evidence also suggests that precise spike timing is an essential attribute of the neural code. Here we demonstrate that single neurons in the auditory midbrain employ a proportional code in which spike-timing precision and firing reliability covary with the sound envelope cues to provide an efficient representation of the stimulus. Spike-timing precision varied systematically with the timescale and shape of the sound envelope and yet was largely independent of the sound modulation frequency, a prominent cue for pitch. In contrast, spike-count reliability was strongly affected by the modulation frequency. Spike-timing precision extends from sub-millisecond for brief transient sounds up to tens of milliseconds for sounds with slow-varying envelope. Information theoretic analysis further confirms that spike-timing precision depends strongly on the sound envelope shape, while firing reliability was strongly affected by the sound modulation frequency. Both the information efficiency and total information were limited by the firing reliability and spike-timing precision in a manner that reflected the sound structure. This result supports a temporal coding strategy in the auditory midbrain where proportional changes in spike-timing precision and firing reliability can efficiently signal shape and periodicity temporal cues. PMID:23636724

  1. Enhancement of Signal-to-noise Ratio in Natural-source Transient Magnetotelluric Data with Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Paulson, K. V.

    For audio-frequency magnetotelluric surveys where the signals are lightning-stroke transients, the conventional Fourier transform method often fails to produce a high quality impedance tensor. An alternative approach is to use the wavelet transform method which is capable of localizing target information simultaneously in both the temporal and frequency domains. Unlike Fourier analysis that yields an average amplitude and phase, the wavelet transform produces an instantaneous estimate of the amplitude and phase of a signal. In this paper a complex well-localized wavelet, the Morlet wavelet, has been used to transform and analyze audio-frequency magnetotelluric data. With the Morlet wavelet, the magnetotelluric impedance tensor can be computed directly in the wavelet transform domain. The lightning-stroke transients are easily identified on the dilation-translation plane. Choosing those wavelet transform values where the signals are located, a higher signal-to-noise ratio estimation of the impedance tensor can be obtained. In a test using real data, the wavelet transform showed a significant improvement in the signal-to-noise ratio over the conventional Fourier transform.

  2. Using conditional probability to identify trends in intra-day high-frequency equity pricing

    NASA Astrophysics Data System (ADS)

    Rechenthin, Michael; Street, W. Nick

    2013-12-01

    By examining the conditional probabilities of price movements in a popular US stock over different high-frequency intra-day timespans, varying levels of trend predictability are identified. This study demonstrates the existence of predictable short-term trends in the market; understanding the probability of price movement can be useful to high-frequency traders. Price movement was examined in trade-by-trade (tick) data along with temporal timespans between 1 s to 30 min for 52 one-week periods for one highly-traded stock. We hypothesize that much of the initial predictability of trade-by-trade (tick) data is due to traditional market dynamics, or the bouncing of the price between the stock’s bid and ask. Only after timespans of between 5 to 10 s does this cease to explain the predictability; after this timespan, two consecutive movements in the same direction occur with higher probability than that of movements in the opposite direction. This pattern holds up to a one-minute interval, after which the strength of the pattern weakens.

  3. Long-range propagation of nonlinear infrasound waves through an absorbing atmosphere.

    PubMed

    de Groot-Hedlin, C D

    2016-04-01

    The Navier-Stokes equations are solved using a finite-difference, time-domain (FDTD) approach for axi-symmetric environmental models, allowing three-dimensional acoustic propagation to be simulated using a two-dimensional Cylindrical coordinate system. A method to stabilize the FDTD algorithm in a viscous medium at atmospheric densities characteristic of the lower thermosphere is described. The stabilization scheme slightly alters the governing equations but results in quantifiable dispersion characteristics. It is shown that this method leaves sound speeds and attenuation unchanged at frequencies that are well resolved by the temporal sampling rate but strongly attenuates higher frequencies. Numerical experiments are performed to assess the effect of source strength on the amplitudes and spectral content of signals recorded at ground level at a range of distances from the source. It is shown that the source amplitudes have a stronger effect on a signal's dominant frequency than on its amplitude. Applying the stabilized code to infrasound propagation through realistic atmospheric profiles shows that nonlinear propagation alters the spectral content of low amplitude thermospheric signals, demonstrating that nonlinear effects are significant for all detectable thermospheric returns.

  4. Evidence for degraded low frequency verbal concepts in left resected temporal lobe epilepsy patients.

    PubMed

    Visser, M; Forn, C; Lambon Ralph, M A; Hoffman, P; Gómez Ibáñez, A; Sunajuán, Ana; Rosell Negre, P; Villanueva, V; Ávila, C

    2018-06-01

    According to a large neuropsychological and neuroimaging literature, the bilateral anterior temporal lobe (ATL) is a core region for semantic processing. It seems therefore surprising that semantic memory appears to be preserved in temporal lobe epilepsy (TLE) patients with unilateral ATL resection. However, recent work suggests that the bilateral semantic system is relatively robust against unilateral damage and semantic impairments under these circumstances only become apparent with low frequency specific concepts. In addition, neuroimaging studies have shown that the function of the left and right ATLs differ and therefore left or right ATL resection should lead to a different pattern of impairment. The current study investigated hemispheric differences in the bilateral semantic system by comparing left and right resected TLE patients during verbal semantic processing of low frequency concepts. Picture naming and semantic comprehension tasks with varying word frequencies were included to investigate the pattern of impairment. Left but not right TLE patients showed impaired semantic processing, which was particularly apparent on low frequency items. This indicates that, for verbal information, the bilateral semantic system is more sensitive to damage in the left compared to the right ATL, which is in line with theories that attribute a more prominent role to the left ATL due to connections with pre-semantic verbal regions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Theta frequency decreases throughout the hippocampal formation in a focal epilepsy model.

    PubMed

    Kilias, Antje; Häussler, Ute; Heining, Katharina; Froriep, Ulrich P; Haas, Carola A; Egert, Ulrich

    2018-06-01

    Mesial temporal lobe epilepsy is characterized by focal, recurrent spontaneous seizures, sclerosis and granule cell dispersion (GCD) in the hippocampal formation. Changes in theta rhythm properties have been correlated with the severity of hippocampal restructuring and were suggested as a cause of memory deficits accompanying epilepsy. For severe sclerosis, it has even been questioned whether theta band oscillations persist. We asked how theta oscillations change with graded restructuring along the longitudinal hippocampal axis and whether these changes correlate with the overall severity of temporal lobe epilepsy. We recorded local field potentials in the medial entorhinal cortex and along the septo-temporal axis of the dentate gyrus at sites with different degrees of GCD in freely behaving epileptic mice. Theta frequency was decreased at all recording positions throughout the dentate gyrus and in the medial entorhinal cortex, irrespective of the extent of GCD or the rate of severe epileptic events. The frequency reduction by up to 1.7 Hz, corresponding to 1/3 octaves within the theta range, was present during rest, exploration and running. Despite the frequency reduction, theta oscillations remained coherent across the hippocampal formation and were modulated by running speed as in controls. The reduction in theta frequency thus is likely not a consequence of the local restructuring but rather a global phenomenon affecting the hippocampal formation as a whole. © 2018 Wiley Periodicals, Inc.

  6. Sound Frequency Representation in the Auditory Cortex of the Common Marmoset Visualized Using Optical Intrinsic Signal Imaging

    PubMed Central

    Tani, Toshiki; Abe, Hiroshi; Hayami, Taku; Banno, Taku; Kitamura, Naohito; Mashiko, Hiromi

    2018-01-01

    Abstract Natural sound is composed of various frequencies. Although the core region of the primate auditory cortex has functionally defined sound frequency preference maps, how the map is organized in the auditory areas of the belt and parabelt regions is not well known. In this study, we investigated the functional organizations of the core, belt, and parabelt regions encompassed by the lateral sulcus and the superior temporal sulcus in the common marmoset (Callithrix jacchus). Using optical intrinsic signal imaging, we obtained evoked responses to band-pass noise stimuli in a range of sound frequencies (0.5–16 kHz) in anesthetized adult animals and visualized the preferred sound frequency map on the cortical surface. We characterized the functionally defined organization using histologically defined brain areas in the same animals. We found tonotopic representation of a set of sound frequencies (low to high) within the primary (A1), rostral (R), and rostrotemporal (RT) areas of the core region. In the belt region, the tonotopic representation existed only in the mediolateral (ML) area. This representation was symmetric with that found in A1 along the border between areas A1 and ML. The functional structure was not very clear in the anterolateral (AL) area. Low frequencies were mainly preferred in the rostrotemplatal (RTL) area, while high frequencies were preferred in the caudolateral (CL) area. There was a portion of the parabelt region that strongly responded to higher sound frequencies (>5.8 kHz) along the border between the rostral parabelt (RPB) and caudal parabelt (CPB) regions. PMID:29736410

  7. Characteristics of seismic noises excited from three typhoons in the western Pacific

    NASA Astrophysics Data System (ADS)

    Park, S.; Choi, E.; Hong, T. K.

    2017-12-01

    Typhoons play an important role in the atmospheric circulation. Strong winds from typhoons excite ocean waves that accompany seismic noises. The primary and double frequency microseisms are dominant in frequencies of 0.05-0.1 Hz and 0.1-0.4 Hz. We investigate the characteristics of seismic noises from three typhoons that include Son-tinh in October 2012, Bopha in November 2012, and Soulik in July 2013. The peak wind speeds were 148-184 km/h, and the central atmospheric pressures reached 925-955 hPa. The typhoons passed through the western Pacific to South China Sea. We analyzed the temporal changes in spectral amplitudes of seismic noises during typhoon periods. The amplitude of seismic noises increases with decreasing distance between typhoon and seismic station. We observe large spectral amplitudes in frequencies of 0.1-0.4 Hz, which corresponds to the dominant frequencies of the double frequency microseism. The seismic energy in the frequency band of the primary frequency microseism was relatively weak. The seismic-noise amplitudes displays high correlation with the equivalent pressures on ocean bottom from Wave Watch III model. The observation suggests that the seismic noises may be originated from the ocean waves. The dominant frequency of seismic noises generally increases after passage across the stations due to the dispersion of ocean waves. Also, the dominant frequencies of seismic noises from the typhoons in the South China Sea appear to be higher than those from the typhoons in the Pacific. This feature may allow us to identify the origin of seismic noises and the nature of typhoons.

  8. Sources of high frequency seismic noise: insights from a dense network of ~250 stations in northern Alsace (France)

    NASA Astrophysics Data System (ADS)

    Vergne, Jerome; Blachet, Antoine; Lehujeur, Maximilien

    2015-04-01

    Monitoring local or regional seismic activity requires stations having a low level of background seismic noise at frequencies higher than few tenths of Hertz. Network operators are well aware that the seismic quality of a site depends on several aspects, among them its geological setting and the proximity of roads, railways, industries or trees. Often, the impact of each noise source is only qualitatively known which precludes estimating the quality of potential future sites before they are tested or installed. Here, we want to take advantage of a very dense temporary network deployed in Northern Alsace (France) to assess the effect of various kinds of potential sources on the level of seismic noise observed in the frequency range 0.2-50 Hz. In September 2014, more than 250 seismic stations (FairfieldNodal@ Zland nodes with 10Hz vertical geophone) have been installed every 1.5 km over a ~25km diameter disc centred on the deep geothermal sites of Soultz-sous-Forêts and Rittershoffen. This region exhibits variable degrees of human imprints from quite remote areas to sectors with high traffic roads and big villages. It also encompasses both the deep sedimentary basin of the Rhine graben and the piedmont of the Vosges massif with exposed bedrock. For each site we processed the continuous data to estimate probability density functions of the power spectral densities. At frequencies higher than 1 Hz most sites show a clear temporal modulation of seismic noise related to human activity with the well-known variations between day and night and between weekdays and weekends. Moreover we observe a clear evolution of the spatial distribution of seismic noise levels with frequency. Basically, between 0.5 and 4 Hz the geological setting modulates the level of seismic noise. At higher frequencies, the amplitude of seismic noise appears mostly related to the distance to nearby roads. Based on road maps and traffic estimation, a forward approach is performed to model the induced seismic noise. Effects of other types of seismic sources, such as industries or wind, are also observed but usually have a more limited spatial extension and a specific signature in the spectrograms.

  9. A modeling approach for aerosol optical depth analysis during forest fire events

    NASA Astrophysics Data System (ADS)

    Aube, Martin P.; O'Neill, Normand T.; Royer, Alain; Lavoue, David

    2004-10-01

    Measurements of aerosol optical depth (AOD) are important indicators of aerosol particle behavior. Up to now the two standard techniques used for retrieving AOD are; (i) sun photometry which provides measurements of high temporal frequency and sparse spatial frequency, and (ii) satellite based approaches such as DDV (Dense Dark Vegetation) based inversion algorithms which yield AOD over dark targets in remotely sensed imagery. Although the latter techniques allow AOD retrieval over appreciable spatial domains, the irregular spatial pattern of dark targets and the typically low repeat frequencies of imaging satellites exclude the acquisition of AOD databases on a continuous spatio-temporal basis. We attempt to fill gaps in spatio-temporal AOD measurements using a new assimilation methodology that links AOD measurements and the predictions of a particulate matter Transport Model. This modelling package (AODSEM V2.0 for Aerosol Optical Depth Spatio-temporal Evolution Model) uses a size and aerosol type segregated semi-Lagrangian trajectory algorithm driven by analysed meteorological data. Its novelty resides in the fact that the model evolution may be tied to both ground based and satellite level AOD measurement and all physical processes have been optimized to track this important and robust parameter. We applied this methodology to a significant smoke event that occurred over the eastern part of North America in July 2002.

  10. Effect of spectral sampling on the temporal coherence analysis of a broadband source in a SFG interferometer.

    PubMed

    Darré, Pascaline; Szemendera, Ludovic; Grossard, Ludovic; Delage, Laurent; Reynaud, François

    2015-10-05

    In the frame of sum frequency generation of a broadband infrared source, we aim to enlarge the converted bandwidth by using a pump frequency comb while keeping a high conversion efficiency. The nonlinear effects are simultaneously induced in the same nonlinear medium. In this paper, we investigate the spectral filtering effect on the temporal coherence behavior with a Mach-Zehnder interferometer using two pump lines. We show that joined effects of quasi-phase matching and spectral sampling lead to an original coherence behavior.

  11. Descriptors of natural thermal regimes in streams and their responsiveness to change in the Pacific Northwest of North America

    USGS Publications Warehouse

    Arismendi, Ivan; Johnson, Sherri L.; Dunham, Jason B.; Haggerty, Roy

    2013-01-01

    1. Temperature is a major driver of ecological processes in stream ecosystems, yet the dynamics of thermal regimes remain poorly described. Most work has focused on relatively simple descriptors that fail to capture the full range of conditions that characterise thermal regimes of streams across seasons or throughout the year. 2. To more completely describe thermal regimes, we developed several descriptors of magnitude, variability, frequency, duration and timing of thermal events throughout a year. We evaluated how these descriptors change over time using long-term (1979–2009), continuous temperature data from five relatively undisturbed cold-water streams in western Oregon, U.S.A. In addition to trends for each descriptor, we evaluated similarities among them, as well as patterns of spatial coherence, and temporal synchrony. 3. Using different groups of descriptors, we were able to more fully capture distinct aspects of the full range of variability in thermal regimes across space and time. A subset of descriptors showed both higher coherence and synchrony and, thus, an appropriate level of responsiveness to examine evidence of regional climatic influences on thermal regimes. Most notably, daily minimum values during winter–spring were the most responsive descriptors to potential climatic influences. 4. Overall, thermal regimes in streams we studied showed high frequency and low variability of cold temperatures during the cold-water period in winter and spring, and high frequency and high variability of warm temperatures during the warm-water period in summer and autumn. The cold and warm periods differed in the distribution of events with a higher frequency and longer duration of warm events in summer than cold events in winter. The cold period exhibited lower variability in the duration of events, but showed more variability in timing. 5. In conclusion, our results highlight the importance of a year-round perspective in identifying the most responsive characteristics or descriptors of thermal regimes in streams. The descriptors we provide herein can be applied across hydro-ecological regions to evaluate spatial and temporal patterns in thermal regimes. Evaluation of coherence and synchrony of different components of thermal regimes can facilitate identification of impacts of regional climate variability or local human or natural influences.

  12. Temporal masking of multidimensional tactual stimuli

    NASA Astrophysics Data System (ADS)

    Tan, Hong Z.; Reed, Charlotte M.; Delhorne, Lorraine A.; Durlach, Nathaniel I.; Wan, Natasha

    2003-12-01

    Experiments were performed to examine the temporal masking properties of multidimensional tactual stimulation patterns delivered to the left index finger. The stimuli consisted of fixed-frequency sinusoidal motions in the kinesthetic (2 or 4 Hz), midfrequency (30 Hz), and cutaneous (300 Hz) frequency ranges. Seven stimuli composed of one, two, or three spectral components were constructed at each of two signal durations (125 or 250 ms). Subjects identified target signals under three different masking paradigms: forward masking, backward masking, and sandwiched masking (in which the target is presented between two maskers). Target identification was studied as a function of interstimulus interval (ISI) in the range 0 to 640 ms. For both signal durations, percent-correct scores increased with ISI for each of the three masking paradigms. Scores with forward and backward masking were similar and significantly higher than scores obtained with sandwiched masking. Analyses of error trials revealed that subjects showed a tendency to respond, more often than chance, with the masker, the composite of the masker and target, or the combination of the target and a component of the masker. The current results are compared to those obtained in previous studies of tactual recognition masking with brief cutaneous spatial patterns. The results are also discussed in terms of estimates of information transfer (IT) and IT rate, are compared to previous studies with multidimensional tactual signals, and are related to research on the development of tactual aids for the deaf.

  13. Assessing the quality of bottom water temperatures from the Finite-Volume Community Ocean Model (FVCOM) in the Northwest Atlantic Shelf region

    NASA Astrophysics Data System (ADS)

    Li, Bai; Tanaka, Kisei R.; Chen, Yong; Brady, Damian C.; Thomas, Andrew C.

    2017-09-01

    The Finite-Volume Community Ocean Model (FVCOM) is an advanced coastal circulation model widely utilized for its ability to simulate spatially and temporally evolving three-dimensional geophysical conditions of complex and dynamic coastal regions. While a body of literature evaluates model skill in surface fields, independent studies validating model skill in bottom fields over large spatial and temporal scales are scarce because these fields cannot be remotely sensed. In this study, an evaluation of FVCOM skill in modeling bottom water temperature was conducted by comparison to hourly in situ observed bottom temperatures recorded by the Environmental Monitors on Lobster Traps (eMOLT), a program that attached thermistors to commercial lobster traps from 2001 to 2013. Over 2 × 106 pairs of FVCOM-eMOLT records were evaluated by a series of statistical measures to quantify accuracy and precision of the modeled data across the Northwest Atlantic Shelf region. The overall comparison between modeled and observed data indicates reliable skill of FVCOM (r2 = 0.72; root mean squared error = 2.28 °C). Seasonally, the average absolute errors show higher model skill in spring, fall and winter than summer. We speculate that this is due to the increased difficulty of modeling high frequency variability in the exact position of the thermocline and frontal zones. The spatial patterns of the residuals suggest that there is improved similarity between modeled and observed data at higher latitudes. We speculate that this is due to increased tidal mixing at higher latitudes in our study area that reduces stratification in winter, allowing improved model accuracy. Modeled bottom water temperatures around Cape Cod, the continental shelf edges, and at one location at the entrance to Penobscot Bay were characterized by relatively high errors. Constraints for future uses of FVCOM bottom water temperature are provided based on the uncertainties in temporal-spatial patterns. This study is novel as it is the first skill assessment of a regional ocean circulation model in bottom fields at high spatial and temporal scales in the Northwest Atlantic Shelf region.

  14. Raman dissipative soliton fiber laser pumped by an ASE source.

    PubMed

    Pan, Weiwei; Zhang, Lei; Zhou, Jiaqi; Yang, Xuezong; Feng, Yan

    2017-12-15

    The mode locking of a Raman fiber laser with an amplified spontaneous emission (ASE) pump source is investigated for performance improvement. Raman dissipative solitons with a compressed pulse duration of 1.05 ps at a repetition rate of 2.47 MHz are generated by utilizing nonlinear polarization rotation and all-fiber Lyot filter. A signal-to-noise ratio as high as 85 dB is measured in a radio-frequency spectrum, which suggests excellent temporal stability. Multiple-pulse operation with unique random static distribution is observed for the first time, to the best of our knowledge, at higher pump power in mode-locked Raman fiber lasers.

  15. CNV amplitude as a neural correlate for stuttering frequency: A case report of acquired stuttering.

    PubMed

    Vanhoutte, Sarah; Van Borsel, John; Cosyns, Marjan; Batens, Katja; van Mierlo, Pieter; Hemelsoet, Dimitri; Van Roost, Dirk; Corthals, Paul; De Letter, Miet; Santens, Patrick

    2014-11-01

    A neural hallmark of developmental stuttering is abnormal articulatory programming. One of the neurophysiological substrates of articulatory preparation is the contingent negative variation (CNV). Unfortunately, CNV tasks are rarely performed in persons who stutter and mainly focus on the effect of task variation rather than on interindividual variation in stutter related variables. However, variations in motor programming seem to be related to variation in stuttering frequency. The current study presents a case report of acquired stuttering following stroke and stroke related surgery in the left superior temporal gyrus. A speech related CNV task was administered at four points in time with differences in stuttering severity and frequency. Unexpectedly, CNV amplitudes at electrode sites approximating bilateral motor and left inferior frontal gyrus appeared to be inversely proportional to stuttering frequency. The higher the stuttering frequency, the lower the activity for articulatory preparation. Thus, the amount of disturbance in motor programming seems to determine stuttering frequency. At right frontal electrodes, a relative increase in CNV amplitude was seen at the test session with most severe stuttering. Right frontal overactivation is cautiously suggested to be a compensation strategy. In conclusion, late CNV amplitude elicited by a relatively simple speech task seems to be able to provide an objective, neural correlate of stuttering frequency. The present case report supports the hypothesis that motor preparation has an important role in stuttering. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. High prevalence of brain pathology in violent prisoners: a qualitative CT and MRI scan study.

    PubMed

    Schiltz, Kolja; Witzel, Joachim G; Bausch-Hölterhoff, Josef; Bogerts, Bernhard

    2013-10-01

    The aim of this study was to determine the frequency and extent of brain anomalies in a large sample of incarcerated violent offenders not previously considered neuropsychiatrically ill, in comparison with non-violent offenders and non-offending controls. MRI and CT brain scans from 287 male prison inmates (162 violent and 125 non-violent) not diagnosed as mentally ill before that were obtained due to headache, vertigo or psychological complaints during imprisonment were assessed and compared to 52 non-criminal controls. Brain scans were rated qualitatively with respect to evidence of structural brain damage. Each case received a semiquantitative rating of "normal" (=0), "questionably abnormal" (=1) or "definitely abnormal" (=2) for the lateral ventricles, frontal/parietal cortex and medial temporal structures bilaterally as well as third ventricle. Overall, offenders displayed a significantly higher rate of morphological abnormality, with the violent offenders scoring significantly higher than non-violent offenders and controls. This difference was statistically detectable for frontal/parietal cortex, medial temporal structures, third ventricle and the left but not the right lateral ventricle. The remarkable prevalence of brain pathology in convicted violent prisoners detectable by neuroradiological routine assessment not only highlights the importance of frontal and temporal structures in the control of social, and specifically of violent behaviour, but also raises questions on the legal culpability of violent offenders with brain abnormalities. The high proportion of undetected presence of structural brain damage emphasizes the need that in violent criminals, the comprehensive routine neuropsychiatric assessment usually performed in routine forensic psychiatric expertises should be complemented with brain imaging.

  17. Spectral analysis of temporal non-stationary rainfall-runoff processes

    NASA Astrophysics Data System (ADS)

    Chang, Ching-Min; Yeh, Hund-Der

    2018-04-01

    This study treats the catchment as a block box system with considering the rainfall input and runoff output being a stochastic process. The temporal rainfall-runoff relationship at the catchment scale is described by a convolution integral on a continuous time scale. Using the Fourier-Stieltjes representation approach, a frequency domain solution to the convolution integral is developed to the spectral analysis of runoff processes generated by temporal non-stationary rainfall events. It is shown that the characteristic time scale of rainfall process increases the runoff discharge variability, while the catchment mean travel time constant plays the role in reducing the variability of runoff discharge. Similar to the behavior of groundwater aquifers, catchments act as a low-pass filter in the frequency domain for the rainfall input signal.

  18. Noise-induced hearing loss alters the temporal dynamics of auditory-nerve responses

    PubMed Central

    Scheidt, Ryan E.; Kale, Sushrut; Heinz, Michael G.

    2010-01-01

    Auditory-nerve fibers demonstrate dynamic response properties in that they adapt to rapid changes in sound level, both at the onset and offset of a sound. These dynamic response properties affect temporal coding of stimulus modulations that are perceptually relevant for many sounds such as speech and music. Temporal dynamics have been well characterized in auditory-nerve fibers from normal-hearing animals, but little is known about the effects of sensorineural hearing loss on these dynamics. This study examined the effects of noise-induced hearing loss on the temporal dynamics in auditory-nerve fiber responses from anesthetized chinchillas. Post-stimulus time histograms were computed from responses to 50-ms tones presented at characteristic frequency and 30 dB above fiber threshold. Several response metrics related to temporal dynamics were computed from post-stimulus-time histograms and were compared between normal-hearing and noise-exposed animals. Results indicate that noise-exposed auditory-nerve fibers show significantly reduced response latency, increased onset response and percent adaptation, faster adaptation after onset, and slower recovery after offset. The decrease in response latency only occurred in noise-exposed fibers with significantly reduced frequency selectivity. These changes in temporal dynamics have important implications for temporal envelope coding in hearing-impaired ears, as well as for the design of dynamic compression algorithms for hearing aids. PMID:20696230

  19. Primitive Auditory Memory Is Correlated with Spatial Unmasking That Is Based on Direct-Reflection Integration

    PubMed Central

    Li, Huahui; Kong, Lingzhi; Wu, Xihong; Li, Liang

    2013-01-01

    In reverberant rooms with multiple-people talking, spatial separation between speech sources improves recognition of attended speech, even though both the head-shadowing and interaural-interaction unmasking cues are limited by numerous reflections. It is the perceptual integration between the direct wave and its reflections that bridges the direct-reflection temporal gaps and results in the spatial unmasking under reverberant conditions. This study further investigated (1) the temporal dynamic of the direct-reflection-integration-based spatial unmasking as a function of the reflection delay, and (2) whether this temporal dynamic is correlated with the listeners’ auditory ability to temporally retain raw acoustic signals (i.e., the fast decaying primitive auditory memory, PAM). The results showed that recognition of the target speech against the speech-masker background is a descending exponential function of the delay of the simulated target reflection. In addition, the temporal extent of PAM is frequency dependent and markedly longer than that for perceptual fusion. More importantly, the temporal dynamic of the speech-recognition function is significantly correlated with the temporal extent of the PAM of low-frequency raw signals. Thus, we propose that a chain process, which links the earlier-stage PAM with the later-stage correlation computation, perceptual integration, and attention facilitation, plays a role in spatially unmasking target speech under reverberant conditions. PMID:23658664

  20. Effect of pulsed discharge on the ignition of pulse modulated radio frequency glow discharge at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Qiu, Shenjie; Guo, Ying; Han, Qianhan; Bao, Yun; Zhang, Jing; Shi, J. J.

    2018-01-01

    A pulsed discharge is introduced between two sequential pulse-modulated radio frequency glow discharges in atmospheric helium. The dependence of radio frequency discharge ignition on pulsed discharge intensity is investigated experimentally with the pulse voltage amplitudes of 650, 850, and 1250 V. The discharge characteristics and dynamics are studied in terms of voltage and current waveforms, and spatial-temporal evolution of optical emission. With the elevated pulsed discharge intensity of two orders of magnitude, the ignition of radio frequency discharge is enhanced by reducing the ignition time and achieving the stable operation with a double-hump spatial profile. The ignition time of radio frequency discharge is estimated to be 2.0 μs, 1.5 μs, and 1.0 μs with the pulse voltage amplitudes of 650, 850, and 1250 V, respectively, which is also demonstrated by the spatial-temporal evolution of optical emission at 706 and 777 nm.

  1. Temporal and Cross Correlations in Business News

    NASA Astrophysics Data System (ADS)

    Mizuno, T.; Takei, K.; Ohnishi, T.; Watanabe, T.

    We empirically investigate temporal and cross correlations inthe frequency of news reports on companies, using a dataset of more than 100 million news articles reported in English by around 500 press agencies worldwide for the period 2003--2009. Our first finding is that the frequency of news reports on a company does not follow a Poisson process, but instead exhibits long memory with a positive autocorrelation for longer than one year. The second finding is that there exist significant correlations in the frequency of news across companies. Specifically, on a daily time scale or longer the frequency of news is governed by external dynamics, while on a time scale of minutes it is governed by internal dynamics. These two findings indicate that the frequency of news reports on companies has statistical properties similar to trading volume or price volatility in stock markets, suggesting that the flow of information through company news plays an important role in price dynamics in stock markets.

  2. Noise, air pollutants and traffic: continuous measurement and correlation at a high-traffic location in New York City.

    PubMed

    Ross, Zev; Kheirbek, Iyad; Clougherty, Jane E; Ito, Kazuhiko; Matte, Thomas; Markowitz, Steven; Eisl, Holger

    2011-11-01

    Epidemiological studies have linked both noise and air pollution to common adverse health outcomes such as increased blood pressure and myocardial infarction. In urban settings, noise and air pollution share important sources, notably traffic, and several recent studies have shown spatial correlations between noise and air pollution. The temporal association between these exposures, however, has yet to be thoroughly investigated despite the importance of time series studies in air pollution epidemiology and the potential that correlations between these exposures could at least partly confound statistical associations identified in these studies. An aethelometer, for continuous elemental carbon measurement, was co-located with a continuous noise monitor near a major urban highway in New York City for six days in August 2009. Hourly elemental carbon measurements and hourly data on overall noise levels and low, medium and high frequency noise levels were collected. Hourly average concentrations of fine particles and nitrogen oxides, wind speed and direction and car, truck and bus traffic were obtained from nearby regulatory monitors. Overall temporal patterns, as well as day-night and weekday-weekend patterns, were characterized and compared for all variables. Noise levels were correlated with car, truck, and bus traffic and with air pollutants. We observed strong day-night and weekday-weekend variation in noise and air pollutants and correlations between pollutants varied by noise frequency. Medium and high frequency noise were generally more strongly correlated with traffic and traffic-related pollutants than low frequency noise and the correlation with medium and high frequency noise was generally stronger at night. Correlations with nighttime high frequency noise were particularly high for car traffic (Spearman rho=0.84), nitric oxide (0.73) and nitrogen dioxide (0.83). Wind speed and direction mediated relationships between pollutants and noise. Noise levels are temporally correlated with traffic and combustion pollutants and correlations are modified by the time of day, noise frequency and wind. Our results underscore the potential importance of assessing temporal variation in co-exposures to noise and air pollution in studies of the health effects of these urban pollutants. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. A new source process for evolving repetitious earthquakes at Ngauruhoe volcano, New Zealand

    NASA Astrophysics Data System (ADS)

    Jolly, A. D.; Neuberg, J.; Jousset, P.; Sherburn, S.

    2012-02-01

    Since early 2005, Ngauruhoe volcano has produced repeating low-frequency earthquakes with evolving waveforms and spectral features which become progressively enriched in higher frequency energy during the period 2005 to 2009, with the trend reversing after that time. The earthquakes also show a seasonal cycle since January 2006, with peak numbers of events occurring in the spring and summer period and lower numbers of events at other times. We explain these patterns by the excitation of a shallow two-phase water/gas or water/steam cavity having temporal variations in volume fraction of bubbles. Such variations in two-phase systems are known to produce a large range of acoustic velocities (2-300 m/s) and corresponding changes in impedance contrast. We suggest that an increasing bubble volume fraction is caused by progressive heating of melt water in the resonant cavity system which, in turn, promotes the scattering excitation of higher frequencies, explaining both spectral shift and seasonal dependence. We have conducted a constrained waveform inversion and grid search for moment, position and source geometry for the onset of two example earthquakes occurring 17 and 19 January 2008, a time when events showed a frequency enrichment episode occurring over a period of a few days. The inversion and associated error analysis, in conjunction with an earthquake phase analysis show that the two earthquakes represent an excitation of a single source position and geometry. The observed spectral changes from a stationary earthquake source and geometry suggest that an evolution in both near source resonance and scattering is occurring over periods from days to months.

  4. Excitation of H+2 with one-cycle laser pulses: shaped post-laser-field electronic oscillations, generation of higher- and lower-order harmonics

    NASA Astrophysics Data System (ADS)

    Paramonov, Guennaddi K.; Kühn, Oliver; Bandrauk, André D.

    2017-08-01

    Non-Born-Oppenheimer quantum dynamics of H+2 excited by shaped one-cycle laser pulses linearly polarised along the molecular axis have been studied by the numerical solution of the time-dependent Schrödinger equation within a three-dimensional model, including the internuclear separation, R, and the electron coordinates z and ρ. Laser carrier frequencies corresponding to the wavelengths λl = 25 nm through λl = 400 nm were used and the amplitudes of the pulses were chosen such that the energy of H+2 was close to its dissociation threshold at the end of any laser pulse applied. It is shown that there exists a characteristic oscillation frequency ωosc ≃ 0.2265 au (corresponding to the period of τosc ≃ 0.671 fs and the wavelength of λosc ≃ 201 nm) that manifests itself as a 'carrier' frequency of temporally shaped oscillations of the time-dependent expectation values ⟨z ⟩ and ⟨∂V/∂z ⟩ that emerge at the ends of the laser pulses and exist on a timescale of at least 50 fs. Time-dependent expectation values ⟨ρ⟩ and ⟨∂V /∂ρ⟩ of the optically passive degree of freedom, ρ, demonstrate post-laser-field oscillations at two basic frequencies ωρ1 ≈ ωosc and ωρ2 ≈ 2ωosc. Power spectra associated with the electronic motion show higher- and lower-order harmonics with respect to the driving field.

  5. The topography of frequency and time representation in primate auditory cortices

    PubMed Central

    Baumann, Simon; Joly, Olivier; Rees, Adrian; Petkov, Christopher I; Sun, Li; Thiele, Alexander; Griffiths, Timothy D

    2015-01-01

    Natural sounds can be characterised by their spectral content and temporal modulation, but how the brain is organized to analyse these two critical sound dimensions remains uncertain. Using functional magnetic resonance imaging, we demonstrate a topographical representation of amplitude modulation rate in the auditory cortex of awake macaques. The representation of this temporal dimension is organized in approximately concentric bands of equal rates across the superior temporal plane in both hemispheres, progressing from high rates in the posterior core to low rates in the anterior core and lateral belt cortex. In A1 the resulting gradient of modulation rate runs approximately perpendicular to the axis of the tonotopic gradient, suggesting an orthogonal organisation of spectral and temporal sound dimensions. In auditory belt areas this relationship is more complex. The data suggest a continuous representation of modulation rate across several physiological areas, in contradistinction to a separate representation of frequency within each area. DOI: http://dx.doi.org/10.7554/eLife.03256.001 PMID:25590651

  6. The influence of lexical statistics on temporal lobe cortical dynamics during spoken word listening

    PubMed Central

    Cibelli, Emily S.; Leonard, Matthew K.; Johnson, Keith; Chang, Edward F.

    2015-01-01

    Neural representations of words are thought to have a complex spatio-temporal cortical basis. It has been suggested that spoken word recognition is not a process of feed-forward computations from phonetic to lexical forms, but rather involves the online integration of bottom-up input with stored lexical knowledge. Using direct neural recordings from the temporal lobe, we examined cortical responses to words and pseudowords. We found that neural populations were not only sensitive to lexical status (real vs. pseudo), but also to cohort size (number of words matching the phonetic input at each time point) and cohort frequency (lexical frequency of those words). These lexical variables modulated neural activity from the posterior to anterior temporal lobe, and also dynamically as the stimuli unfolded on a millisecond time scale. Our findings indicate that word recognition is not purely modular, but relies on rapid and online integration of multiple sources of lexical knowledge. PMID:26072003

  7. Quantitative EEG and LORETA: valuable tools in discerning FTD from AD?

    PubMed

    Caso, Francesca; Cursi, Marco; Magnani, Giuseppe; Fanelli, Giovanna; Falautano, Monica; Comi, Giancarlo; Leocani, Letizia; Minicucci, Fabio

    2012-10-01

    Drawing a clinical distinction between frontotemporal dementia (FTD) and Alzheimer's disease (AD) is tricky, particularly at the early stages of disease. This study evaluates the possibility in differentiating 39 FTD, 39 AD, and 39 controls (CTR) by means of power spectral analysis and standardized low resolution brain electromagnetic tomography (sLORETA) within delta, theta, alpha 1 and 2, beta 1, 2, and 3 frequency bands. Both analyses revealed in AD patients, relative to CTR, higher expression of diffuse delta/theta and lower central/posterior fast frequency (from alpha1 to beta2) bands. FTD patients showed diffuse increased theta power compared with CTR and lower delta relative to AD patients. Compared with FTD, AD patients showed diffuse higher theta power at spectral analysis and, at sLORETA, decreased alpha2 and beta1 values in central/temporal regions. Spectral analysis and sLORETA provided complementary information that might help characterizing different patterns of electroencephalogram (EEG) oscillatory activity in AD and FTD. Nevertheless, this differentiation was possible only at the group level because single patients could not be discerned with sufficient accuracy. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Assessing the role of spectral and intensity cues in spectral ripple detection and discrimination in cochlear-implant users.

    PubMed

    Anderson, Elizabeth S; Oxenham, Andrew J; Nelson, Peggy B; Nelson, David A

    2012-12-01

    Measures of spectral ripple resolution have become widely used psychophysical tools for assessing spectral resolution in cochlear-implant (CI) listeners. The objective of this study was to compare spectral ripple discrimination and detection in the same group of CI listeners. Ripple detection thresholds were measured over a range of ripple frequencies and were compared to spectral ripple discrimination thresholds previously obtained from the same CI listeners. The data showed that performance on the two measures was correlated, but that individual subjects' thresholds (at a constant spectral modulation depth) for the two tasks were not equivalent. In addition, spectral ripple detection was often found to be possible at higher rates than expected based on the available spectral cues, making it likely that temporal-envelope cues played a role at higher ripple rates. Finally, spectral ripple detection thresholds were compared to previously obtained speech-perception measures. Results confirmed earlier reports of a robust relationship between detection of widely spaced ripples and measures of speech recognition. In contrast, intensity difference limens for broadband noise did not correlate with spectral ripple detection measures, suggesting a dissociation between the ability to detect small changes in intensity across frequency and across time.

  9. Integrated nanophotonic frequency shifter on the silicon-organic hybrid (SOH) platform for laser vibrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lauermann, M.; Weimann, C.; Palmer, R.

    2014-05-27

    We demonstrate a waveguide-based frequency shifter on the silicon photonic platform, enabling frequency shifts up to 10 GHz. The device is realized by silicon-organic hybrid (SOH) integration. Temporal shaping of the drive signal allows the suppression of spurious side-modes by more than 23 dB.

  10. Dual Coding of Frequency Modulation in the Ventral Cochlear Nucleus.

    PubMed

    Paraouty, Nihaad; Stasiak, Arkadiusz; Lorenzi, Christian; Varnet, Léo; Winter, Ian M

    2018-04-25

    Frequency modulation (FM) is a common acoustic feature of natural sounds and is known to play a role in robust sound source recognition. Auditory neurons show precise stimulus-synchronized discharge patterns that may be used for the representation of low-rate FM. However, it remains unclear whether this representation is based on synchronization to slow temporal envelope (ENV) cues resulting from cochlear filtering or phase locking to faster temporal fine structure (TFS) cues. To investigate the plausibility of those encoding schemes, single units of the ventral cochlear nucleus of guinea pigs of either sex were recorded in response to sine FM tones centered at the unit's best frequency (BF). The results show that, in contrast to high-BF units, for modulation depths within the receptive field, low-BF units (<4 kHz) demonstrate good phase locking to TFS. For modulation depths extending beyond the receptive field, the discharge patterns follow the ENV and fluctuate at the modulation rate. The receptive field proved to be a good predictor of the ENV responses for most primary-like and chopper units. The current in vivo data also reveal a high level of diversity in responses across unit types. TFS cues are mainly conveyed by low-frequency and primary-like units and ENV cues by chopper and onset units. The diversity of responses exhibited by cochlear nucleus neurons provides a neural basis for a dual-coding scheme of FM in the brainstem based on both ENV and TFS cues. SIGNIFICANCE STATEMENT Natural sounds, including speech, convey informative temporal modulations in frequency. Understanding how the auditory system represents those frequency modulations (FM) has important implications as robust sound source recognition depends crucially on the reception of low-rate FM cues. Here, we recorded 115 single-unit responses from the ventral cochlear nucleus in response to FM and provide the first physiological evidence of a dual-coding mechanism of FM via synchronization to temporal envelope cues and phase locking to temporal fine structure cues. We also demonstrate a diversity of neural responses with different coding specializations. These results support the dual-coding scheme proposed by psychophysicists to account for FM sensitivity in humans and provide new insights on how this might be implemented in the early stages of the auditory pathway. Copyright © 2018 the authors 0270-6474/18/384123-15$15.00/0.

  11. Limit on the present temporal variation of the fine structure constant.

    PubMed

    Peik, E; Lipphardt, B; Schnatz, H; Schneider, T; Tamm, Chr; Karshenboim, S G

    2004-10-22

    The comparison of different atomic transition frequencies over time can be used to determine the present value of the temporal derivative of the fine structure constant alpha in a model-independent way without assumptions on constancy or variability of other parameters, allowing tests of the consequences of unification theories. We have measured an optical transition frequency at 688 THz in 171Yb+ with a cesium atomic clock at 2 times separated by 2.8 yr and find a value for the fractional variation of the frequency ratio f(Yb)/f(Cs) of (-1.2+/-4.4)x10(-15) yr(-1), consistent with zero. Combined with recently published values for the constancy of other transition frequencies this measurement sets an upper limit on the present variability of alpha at the level of 2.0x10(-15) yr(-1) (1sigma), corresponding so far to the most stringent limit from laboratory experiments.

  12. Pyramidal cell-interneuron interactions underlie hippocampal ripple oscillations.

    PubMed

    Stark, Eran; Roux, Lisa; Eichler, Ronny; Senzai, Yuta; Royer, Sebastien; Buzsáki, György

    2014-07-16

    High-frequency ripple oscillations, observed most prominently in the hippocampal CA1 pyramidal layer, are associated with memory consolidation. The cellular and network mechanisms underlying the generation, frequency control, and spatial coherence of the rhythm are poorly understood. Using multisite optogenetic manipulations in freely behaving rodents, we found that depolarization of a small group of nearby pyramidal cells was sufficient to induce high-frequency oscillations, whereas closed-loop silencing of pyramidal cells or activation of parvalbumin- (PV) or somatostatin-immunoreactive interneurons aborted spontaneously occurring ripples. Focal pharmacological blockade of GABAA receptors abolished ripples. Localized PV interneuron activation paced ensemble spiking, and simultaneous induction of high-frequency oscillations at multiple locations resulted in a temporally coherent pattern mediated by phase-locked interneuron spiking. These results constrain competing models of ripple generation and indicate that temporally precise local interactions between excitatory and inhibitory neurons support ripple generation in the intact hippocampus. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Pyramidal Cell-Interneuron Interactions Underlie Hippocampal Ripple Oscillations

    PubMed Central

    Stark, Eran; Roux, Lisa; Eichler, Ronny; Senzai, Yuta; Royer, Sebastien; Buzsáki, György

    2015-01-01

    SUMMARY High-frequency ripple oscillations, observed most prominently in the hippocampal CA1 pyramidal layer, are associated with memory consolidation. The cellular and network mechanisms underlying the generation, frequency control, and spatial coherence of the rhythm are poorly understood. Using multisite optogenetic manipulations in freely behaving rodents, we found that depolarization of a small group of nearby pyramidal cells was sufficient to induce high-frequency oscillations, whereas closed-loop silencing of pyramidal cells or activation of parvalbumin-(PV) or somatostatin-immunoreactive interneurons aborted spontaneously occurring ripples. Focal pharmacological blockade of GABAA receptors abolished ripples. Localized PV inter-neuron activation paced ensemble spiking, and simultaneous induction of high-frequency oscillations at multiple locations resulted in a temporally coherent pattern mediated by phase-locked inter-neuron spiking. These results constrain competing models of ripple generation and indicate that temporally precise local interactions between excitatory and inhibitory neurons support ripple generation in the intact hippocampus. PMID:25033186

  14. Reduction in menopause-related symptoms associated with use of a noninvasive neurotechnology for autocalibration of neural oscillations.

    PubMed

    Tegeler, Charles H; Tegeler, Catherine L; Cook, Jared F; Lee, Sung W; Pajewski, Nicholas M

    2015-06-01

    Increased amplitudes in high-frequency brain electrical activity are reported with menopausal hot flashes. We report outcomes associated with the use of High-resolution, relational, resonance-based, electroencephalic mirroring--a noninvasive neurotechnology for autocalibration of neural oscillations--by women with perimenopausal and postmenopausal hot flashes. Twelve women with hot flashes (median age, 56 y; range, 46-69 y) underwent a median of 13 (range, 8-23) intervention sessions for a median of 9.5 days (range, 4-32). This intervention uses algorithmic analysis of brain electrical activity and near real-time translation of brain frequencies into variable tones for acoustic stimulation. Hot flash frequency and severity were recorded by daily diary. Primary outcomes included hot flash severity score, sleep, and depressive symptoms. High-frequency amplitudes (23-36 Hz) from bilateral temporal scalp recordings were measured at baseline and during serial sessions. Self-reported symptom inventories for sleep and depressive symptoms were collected. The median change in hot flash severity score was -0.97 (range, -3.00 to 1.00; P = 0.015). Sleep and depression scores decreased by -8.5 points (range, -20 to -1; P = 0.022) and -5.5 points (range, -32 to 8; P = 0.015), respectively. The median sum of amplitudes for the right and left temporal high-frequency brain electrical activity was 8.44 μV (range, 6.27-16.66) at baseline and decreased by a median of -2.96 μV (range, -11.05 to -0.65; P = 0.0005) by the final session. Hot flash frequency and severity, symptoms of insomnia and depression, and temporal high-frequency brain electrical activity decrease after High-resolution, relational, resonance-based, electroencephalic mirroring. Larger controlled trials with longer follow-up are warranted.

  15. Accelerated cognitive decline in a rodent model for temporal lobe epilepsy.

    PubMed

    Schipper, Sandra; Aalbers, Marlien W; Rijkers, Kim; Lagiere, Melanie; Bogaarts, Jan G; Blokland, Arjan; Klinkenberg, Sylvia; Hoogland, Govert; Vles, Johan S H

    2016-12-01

    Cognitive impairment is frequently observed in patients with temporal lobe epilepsy. It is hypothesized that cumulative seizure exposure causes accelerated cognitive decline in patients with epilepsy. We investigated the influence of seizure frequency on cognitive decline in a rodent model for temporal lobe epilepsy. Neurobehavioral assessment was performed before and after surgery, after the induction of self-sustaining limbic status epilepticus (SSLSE), and in the chronic phase in which rats experienced recurrent seizures. Furthermore, we assessed potential confounders of memory performance. Rats showed a deficit in spatial working memory after the induction of the SSLSE, which endured in the chronic phase. A progressive decline in recognition memory developed in SSLSE rats. Confounding factors were absent. Seizure frequency and also the severity of the status epilepticus were not correlated with the severity of cognitive deficits. The effect of the seizure frequency on cognitive comorbidity in epilepsy has long been debated, possibly because of confounders such as antiepileptic medication and the heterogeneity of epileptic etiologies. In an animal model of temporal lobe epilepsy, we showed that a decrease in spatial working memory does not relate to the seizure frequency. This suggests for other mechanisms are responsible for memory decline and potentially a common pathophysiology of cognitive deterioration and the occurrence and development of epileptic seizures. Identifying this common denominator will allow development of more targeted interventions treating cognitive decline in patients with epilepsy. The treatment of interictal symptoms will increase the quality of life of many patients with epilepsy. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Two-channel recording of auditory-evoked potentials to detect age-related deficits in temporal processing.

    PubMed

    Parthasarathy, Aravindakshan; Bartlett, Edward

    2012-07-01

    Auditory brainstem responses (ABRs), and envelope and frequency following responses (EFRs and FFRs) are widely used to study aberrant auditory processing in conditions such as aging. We have previously reported age-related deficits in auditory processing for rapid amplitude modulation (AM) frequencies using EFRs recorded from a single channel. However, sensitive testing of EFRs along a wide range of modulation frequencies is required to gain a more complete understanding of the auditory processing deficits. In this study, ABRs and EFRs were recorded simultaneously from two electrode configurations in young and old Fischer-344 rats, a common auditory aging model. Analysis shows that the two channels respond most sensitively to complementary AM frequencies. Channel 1, recorded from Fz to mastoid, responds better to faster AM frequencies in the 100-700 Hz range of frequencies, while Channel 2, recorded from the inter-aural line to the mastoid, responds better to slower AM frequencies in the 16-100 Hz range. Simultaneous recording of Channels 1 and 2 using AM stimuli with varying sound levels and modulation depths show that age-related deficits in temporal processing are not present at slower AM frequencies but only at more rapid ones, which would not have been apparent recording from either channel alone. Comparison of EFRs between un-anesthetized and isoflurane-anesthetized recordings in young animals, as well as comparison with previously published ABR waveforms, suggests that the generators of Channel 1 may emphasize more caudal brainstem structures while those of Channel 2 may emphasize more rostral auditory nuclei including the inferior colliculus and the forebrain, with the boundary of separation potentially along the cochlear nucleus/superior olivary complex. Simultaneous two-channel recording of EFRs help to give a more complete understanding of the properties of auditory temporal processing over a wide range of modulation frequencies which is useful in understanding neural representations of sound stimuli in normal, developmental or pathological conditions. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Segmentation of the thalamus based on BOLD frequencies affected in temporal lobe epilepsy.

    PubMed

    Morgan, Victoria L; Rogers, Baxter P; Abou-Khalil, Bassel

    2015-11-01

    Temporal lobe epilepsy is associated with functional changes throughout the brain, particularly including a putative seizure propagation network involving the hippocampus, insula, and thalamus. We identified a specified frequency range where functional connectivity in this network was related to duration of disease. Then, to identify specific thalamic nuclei involved in seizure propagation, we determined the subregions of the thalamus that have increased resting functional oscillations in this frequency range. Resting-state functional magnetic resonance imaging (fMRI) was acquired from 20 patients with unilateral temporal lobe epilepsy (TLE; 14 right and 6 left) and 20 healthy controls who were each age and gender matched to a specific patient. Wavelet-based fMRI connectivity mapping across the network was computed at each frequency to determine those frequencies where connectivity significantly decreases with duration of disease consistent with impairment due to repeated seizures. The voxel-wise power of the spontaneous blood oxygenation fluctuations of this frequency band was computed in the thalamus of each subject. Functional connectivity was impaired in the proposed seizure propagation network over a specific range (0.0067-0.013 Hz and 0.024-0.032 Hz) of blood oxygenation oscillations. Increased power in this frequency band (<0.032 Hz) was detected bilaterally in the pulvinar and anterior nucleus of the thalamus of healthy controls, and was increased over the ipsilateral thalamus compared to the contralateral thalamus in TLE. This study identified frequencies of impaired connectivity in a TLE seizure propagation network and used them to localize the anterior nucleus and pulvinar of the thalamus as subregions most susceptible to TLE seizures. Further examinations of these frequencies in healthy and TLE subjects may provide unique information relating to the mechanism of seizure propagation and potential treatment using electrical stimulation. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.

  18. Improvements in force variability and structure from vision- to memory-guided submaximal isometric knee extension in subacute stroke.

    PubMed

    Chow, John W; Stokic, Dobrivoje S

    2018-03-01

    We examined changes in variability, accuracy, frequency composition, and temporal regularity of force signal from vision-guided to memory-guided force-matching tasks in 17 subacute stroke and 17 age-matched healthy subjects. Subjects performed a unilateral isometric knee extension at 10, 30, and 50% of peak torque [maximum voluntary contraction (MVC)] for 10 s (3 trials each). Visual feedback was removed at the 5-s mark in the first two trials (feedback withdrawal), and 30 s after the second trial the subjects were asked to produce the target force without visual feedback (force recall). The coefficient of variation and constant error were used to quantify force variability and accuracy. Force structure was assessed by the median frequency, relative spectral power in the 0-3-Hz band, and sample entropy of the force signal. At 10% MVC, the force signal in subacute stroke subjects became steadier, more broadband, and temporally more irregular after the withdrawal of visual feedback, with progressively larger error at higher contraction levels. Also, the lack of modulation in the spectral frequency at higher force levels with visual feedback persisted in both the withdrawal and recall conditions. In terms of changes from the visual feedback condition, the feedback withdrawal produced a greater difference between the paretic, nonparetic, and control legs than the force recall. The overall results suggest improvements in force variability and structure from vision- to memory-guided force control in subacute stroke despite decreased accuracy. Different sensory-motor memory retrieval mechanisms seem to be involved in the feedback withdrawal and force recall conditions, which deserves further study. NEW & NOTEWORTHY We demonstrate that in the subacute phase of stroke, force signals during a low-level isometric knee extension become steadier, more broadband in spectral power, and more complex after removal of visual feedback. Larger force errors are produced when recalling target forces than immediately after withdrawing visual feedback. Although visual feedback offers better accuracy, it worsens force variability and structure in subacute stroke. The feedback withdrawal and force recall conditions seem to involve different memory retrieval mechanisms.

  19. Simulating the effects of soil organic nitrogen and grazing on arctic tundra vegetation dynamics on the Yamal Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Yu, Q.; Epstein, H. E.; Walker, D. A.

    2009-12-01

    Sustainability of tundra vegetation under changing climate on the Yamal Peninsula, northwestern Siberia, home to the world’s largest area of reindeer husbandry, is of crucial importance to the local native community. An integrated investigation is needed for better understanding of the effects of soils, climate change and grazing on tundra vegetation in the Yamal region. In this study we applied a nutrient-based plant community model (ArcVeg) to evaluate how two factors (soil organic nitrogen [SON] levels and grazing) interact to affect tundra responses to climate warming across a latitudinal climatic gradient on the Yamal Peninsula. Model simulations were driven by field-collected soil data and expected grazing patterns along the Yamal Arctic Transect (YAT), within bioclimate subzones C (High Arctic), D (northern Low Arctic) and E (southern Low Arctic). Plant biomass and NPP (net primary productivity) were significantly increased with warmer bioclimate subzones, greater soil nutrient levels and temporal climate warming, while they declined with higher grazing frequency. Temporal climate warming of 2 °C caused an increase of 665 g/m2 in total biomass at the high SON site in subzone E, while only 298 g/m2 in the low SON site. When grazing frequency was also increased, total biomass increased by only 369 g/m2 in the high SON site in contrast to 184 g/m2 in the low SON site in subzone E. When comparing low grazing to high grazing effects on soil organic nitrogen pools over time (Figure 1), higher grazing frequency led to either slower SON accumulation rates or more rapid SON depletion rates. Warming accentuated these differences caused by grazing, suggesting the interaction between grazing and warming may yield greater differences in SON levels across sites. Our results suggest that low SON and grazing may limit plant response to climate change. Interactions among bioclimate subzones, soils, grazing and warming significantly affect plant biomass and productivity in the arctic tundra and should not be ignored in regional scale studies.

  20. Continuous Sub-daily Rainfall Simulation for Regional Flood Risk Assessment - Modelling of Spatio-temporal Correlation Structure of Extreme Precipitation in the Austrian Alps

    NASA Astrophysics Data System (ADS)

    Salinas, J. L.; Nester, T.; Komma, J.; Bloeschl, G.

    2017-12-01

    Generation of realistic synthetic spatial rainfall is of pivotal importance for assessing regional hydroclimatic hazard as the input for long term rainfall-runoff simulations. The correct reproduction of observed rainfall characteristics, such as regional intensity-duration-frequency curves, and spatial and temporal correlations is necessary to adequately model the magnitude and frequency of the flood peaks, by reproducing antecedent soil moisture conditions before extreme rainfall events, and joint probability of flood waves at confluences. In this work, a modification of the model presented by Bardossy and Platte (1992), where precipitation is first modeled on a station basis as a multivariate autoregressive model (mAr) in a Normal space. The spatial and temporal correlation structures are imposed in the Normal space, allowing for a different temporal autocorrelation parameter for each station, and simultaneously ensuring the positive-definiteness of the correlation matrix of the mAr errors. The Normal rainfall is then transformed to a Gamma-distributed space, with parameters varying monthly according to a sinusoidal function, in order to adapt to the observed rainfall seasonality. One of the main differences with the original model is the simulation time-step, reduced from 24h to 6h. Due to a larger availability of daily rainfall data, as opposite to sub-daily (e.g. hourly), the parameters of the Gamma distributions are calibrated to reproduce simultaneously a series of daily rainfall characteristics (mean daily rainfall, standard deviations of daily rainfall, and 24h intensity-duration-frequency [IDF] curves), as well as other aggregated rainfall measures (mean annual rainfall, and monthly rainfall). The calibration of the spatial and temporal correlation parameters is performed in a way that the catchment-averaged IDF curves aggregated at different temporal scales fit the measured ones. The rainfall model is used to generate 10.000 years of synthetic precipitation, fed into a rainfall-runoff model to derive the flood frequency in the Tirolean Alps in Austria. Given the number of generated events, the simulation framework is able to generate a large variety of rainfall patterns, as well as reproduce the variograms of relevant extreme rainfall events in the region of interest.

  1. Mining and Integration of Environmental Data

    NASA Astrophysics Data System (ADS)

    Tran, V.; Hluchy, L.; Habala, O.; Ciglan, M.

    2009-04-01

    The project ADMIRE (Advanced Data Mining and Integration Research for Europe) is a 7th FP EU ICT project aims to deliver a consistent and easy-to-use technology for extracting information and knowledge. The project is motivated by the difficulty of extracting meaningful information by data mining combinations of data from multiple heterogeneous and distributed resources. It will also provide an abstract view of data mining and integration, which will give users and developers the power to cope with complexity and heterogeneity of services, data and processes. The data sets describing phenomena from domains like business, society, and environment often contain spatial and temporal dimensions. Integration of spatio-temporal data from different sources is a challenging task due to those dimensions. Different spatio-temporal data sets contain data at different resolutions (e.g. size of the spatial grid) and frequencies. This heterogeneity is the principal challenge of geo-spatial and temporal data sets integration - the integrated data set should hold homogeneous data of the same resolution and frequency. Thus, to integrate heterogeneous spatio-temporal data from distinct source, transformation of one or more data sets is necessary. Following transformation operation are required: • transformation to common spatial and temporal representation - (e.g. transformation to common coordinate system), • spatial and/or temporal aggregation - data from detailed data source are aggregated to match the resolution of other resources involved in the integration process, • spatial and/or temporal record decomposition - records from source with lower resolution data are decomposed to match the granularity of the other data source. This operation decreases data quality (e.g. transformation of data from 50km grid to 10 km grid) - data from lower resolution data set in the integrated schema are imprecise, but it allows us to preserve higher resolution data. We can decompose the spatio-temporal data integration to following phases: • pre-integration data processing - different data set can be physically stored in different formats (e.g. relational databases, text files); it might be necessary to pre-process the data sets to be integrated, • identification of transformation operations necessary to integrate data in spatio-temporal dimensions, • identification of transformation operations to be performed on non-spatio-temporal attributes and • output data schema and set generation - given prepared data and the set of transformation, operations, the final integrated schema is produces. Spatio-temporal dimension brings its specifics also to the problem of mining spatio-temporal data sets. Spatio-temporal relationships exist among records in (s-t) data sets and those relationships should be considered in mining operation. This means that when analyzing a record in spatio-temporal data set, the records in its spatial and/or temporal proximity should be taken into account. In addition, the relationships discovered in spatio-temporal data can be different when mining the same data on different scales (e.g. mining the same data sets on 50 km grid with daily data vs. 10 km grid with hourly data). To be able to do effective data mining, we first needed to gather a sufficient amount of environmental data covering similar area and time span. For this purpose we have engaged in cooperation with several organizations working in the environmental domain in Slovakia, some of which are also our partners from previous research efforts. The organizations which volunteered some of their data are the Slovak Hydro-meteorological Institute (SHMU), the Slovak Water Enterprise (SVP), the Soil Science and Conservation Institute (VUPOP), and the Institute of Hydrology of the Slovak Academy of Sciences (UHSAV). We have prepared scenarios from general meteorology, as well as specialized in hydrology and soil protection.

  2. Climate Change and Macro-Economic Cycles in Pre-Industrial Europe

    PubMed Central

    Pei, Qing; Zhang, David D.; Lee, Harry F.; Li, Guodong

    2014-01-01

    Climate change has been proven to be the ultimate cause of social crisis in pre-industrial Europe at a large scale. However, detailed analyses on climate change and macro-economic cycles in the pre-industrial era remain lacking, especially within different temporal scales. Therefore, fine-grained, paleo-climate, and economic data were employed with statistical methods to quantitatively assess the relations between climate change and agrarian economy in Europe during AD 1500 to 1800. In the study, the Butterworth filter was adopted to filter the data series into a long-term trend (low-frequency) and short-term fluctuations (high-frequency). Granger Causality Analysis was conducted to scrutinize the associations between climate change and macro-economic cycle at different frequency bands. Based on quantitative results, climate change can only show significant effects on the macro-economic cycle within the long-term. In terms of the short-term effects, society can relieve the influences from climate variations by social adaptation methods and self-adjustment mechanism. On a large spatial scale, temperature holds higher importance for the European agrarian economy than precipitation. By examining the supply-demand mechanism in the grain market, population during the study period acted as the producer in the long term, whereas as the consumer in the short term. These findings merely reflect the general interactions between climate change and macro-economic cycles at the large spatial region with a long-term study period. The findings neither illustrate individual incidents that can temporarily distort the agrarian economy nor explain some specific cases. In the study, the scale thinking in the analysis is raised as an essential methodological issue for the first time to interpret the associations between climatic impact and macro-economy in the past agrarian society within different temporal scales. PMID:24516601

  3. Hue shifts produced by temporal asymmetries in chromatic signals depend on the alignment of the first and second harmonics.

    PubMed

    Stockman, Andrew; Henning, G Bruce; West, Peter; Rider, Andrew T; Ripamonti, Caterina

    2017-08-01

    When M- or L-cone-isolating sawtooth waveforms flicker at frequencies between 4 and 13.3 Hz, there is a mean hue shift in the direction of the shallower sawtooth slope. Here, we investigate how this shift depends on the alignment of the first and second harmonics of sawtooth-like waveforms. Below 4 Hz, observers can follow hue variations caused by both harmonics, and reliably match reddish and greenish excursions. At higher frequencies, however, the hue variations appear as chromatic flicker superimposed on a steady light, the mean hue of which varies with second-harmonic alignment. Observers can match this mean hue against a variable-duty-cycle rectangular waveform and, separately, set the alignment at which the mean hue flips between reddish and greenish. The maximum hue shifts were approximately frequency independent and occurred when the peaks or troughs of the first and second harmonics roughly aligned at the visual input-consistent with the hue shift's being caused by an early instantaneous nonlinearity that saturates larger hue excursions. These predictions, however, ignore phase delays introduced within the chromatic pathway between its input and the nonlinearity that produces the hue shifts. If the nonlinearity follows the substantial filtering implied by the chromatic temporal contrast-sensitivity function, phase delays will alter the alignment of the first and second harmonics such that at the nonlinearity, the waveforms that produce the maximum hue shifts might well be those with the largest differences in rising and falling slopes-consistent with the hue shift's being caused by a central nonlinearity that limits the rate of hue change.

  4. Climate change and macro-economic cycles in pre-industrial europe.

    PubMed

    Pei, Qing; Zhang, David D; Lee, Harry F; Li, Guodong

    2014-01-01

    Climate change has been proven to be the ultimate cause of social crisis in pre-industrial Europe at a large scale. However, detailed analyses on climate change and macro-economic cycles in the pre-industrial era remain lacking, especially within different temporal scales. Therefore, fine-grained, paleo-climate, and economic data were employed with statistical methods to quantitatively assess the relations between climate change and agrarian economy in Europe during AD 1500 to 1800. In the study, the Butterworth filter was adopted to filter the data series into a long-term trend (low-frequency) and short-term fluctuations (high-frequency). Granger Causality Analysis was conducted to scrutinize the associations between climate change and macro-economic cycle at different frequency bands. Based on quantitative results, climate change can only show significant effects on the macro-economic cycle within the long-term. In terms of the short-term effects, society can relieve the influences from climate variations by social adaptation methods and self-adjustment mechanism. On a large spatial scale, temperature holds higher importance for the European agrarian economy than precipitation. By examining the supply-demand mechanism in the grain market, population during the study period acted as the producer in the long term, whereas as the consumer in the short term. These findings merely reflect the general interactions between climate change and macro-economic cycles at the large spatial region with a long-term study period. The findings neither illustrate individual incidents that can temporarily distort the agrarian economy nor explain some specific cases. In the study, the scale thinking in the analysis is raised as an essential methodological issue for the first time to interpret the associations between climatic impact and macro-economy in the past agrarian society within different temporal scales.

  5. Sheep as a large animal ear model: Middle-ear ossicular velocities and intracochlear sound pressure.

    PubMed

    Péus, Dominik; Dobrev, Ivo; Prochazka, Lukas; Thoele, Konrad; Dalbert, Adrian; Boss, Andreas; Newcomb, Nicolas; Probst, Rudolf; Röösli, Christof; Sim, Jae Hoon; Huber, Alexander; Pfiffner, Flurin

    2017-08-01

    Animals are frequently used for the development and testing of new hearing devices. Dimensions of the middle ear and cochlea differ significantly between humans and commonly used animals, such as rodents or cats. The sheep cochlea is anatomically more like the human cochlea in size and number of turns. This study investigated the middle-ear ossicular velocities and intracochlear sound pressure (ICSP) in sheep temporal bones, with the aim of characterizing the sheep as an experimental model for implantable hearing devices. Measurements were made on fresh sheep temporal bones. Velocity responses of the middle ear ossicles at the umbo, long process of the incus and stapes footplate were measured in the frequency range of 0.25-8 kHz using a laser Doppler vibrometer system. Results were normalized by the corresponding sound pressure level in the external ear canal (P EC ). Sequentially, ICSPs at the scala vestibuli and tympani were then recorded with custom MEMS-based hydrophones, while presenting identical acoustic stimuli. The sheep middle ear transmitted most effectively around 4.8 kHz, with a maximum stapes velocity of 0.2 mm/s/Pa. At the same frequency, the ICSP measurements in the scala vestibuli and tympani showed the maximum gain relative to the P EC (24 dB and 5 dB, respectively). The greatest pressure difference across the cochlear partition occurred between 4 and 6 kHz. A comparison between the results of this study and human reference data showed middle-ear resonance and best cochlear sensitivity at higher frequencies in sheep. In summary, sheep can be an appropriate large animal model for research and development of implantable hearing devices. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Hawkmoth flight stability in turbulent vortex streets.

    PubMed

    Ortega-Jimenez, Victor Manuel; Greeter, Jeremy S M; Mittal, Rajat; Hedrick, Tyson L

    2013-12-15

    Shedding of vortices is a common phenomenon in the atmosphere over a wide range of spatial and temporal scales. However, it is unclear how these vortices of varying scales affect the flight performance of flying animals. In order to examine these interactions, we trained seven hawkmoths (Manduca sexta) (wingspan ~9 cm) to fly and feed in a wind tunnel under steady flow (controls) and in the von Kármán vortex street of vertically oriented cylinders (two different cylinders with diameters of 10 and 5 cm) at speeds of 0.5, 1 and 2 m s(-1). Cylinders were placed at distances of 5, 25 and 100 cm upstream of the moths. Moths exhibited large amplitude yaw oscillations coupled with modest oscillations in roll and pitch, and slight increases in wingbeat frequency when flying in both the near (recirculating) and middle (vortex dominated) wake regions. Wingbeat amplitude did not vary among treatments, except at 1 m s(-1) for the large cylinder. Yaw and roll oscillations were synchronized with the vortex shedding frequencies in moths flying in the wake of the large cylinder at all speeds. In contrast, yaw and pitch were synchronized with the shedding frequency of small vortices at speeds ≤1 m s(-1). Oscillations in body orientation were also substantially smaller in the small cylinder treatment when compared with the large cylinder, regardless of temporal or non-dimensional spatial scale. Moths flying in steady conditions reached a higher air speed than those flying into cylinder wakes. In general, flight effects produced by the cylinder wakes were qualitatively similar among the recirculating and vortex-dominated wake regions; the magnitude of those effects, however, declined gradually with downstream distance.

  7. Towards a High Temporal Frequency Grass Canopy Thermal IR Model for Background Signatures

    NASA Technical Reports Server (NTRS)

    Ballard, Jerrell R., Jr.; Smith, James A.; Koenig, George G.

    2004-01-01

    In this paper, we present our first results towards understanding high temporal frequency thermal infrared response from a dense plant canopy and compare the application of our model, driven both by slowly varying, time-averaged meteorological conditions and by high frequency measurements of local and within canopy profiles of relative humidity and wind speed, to high frequency thermal infrared observations. Previously, we have employed three-dimensional ray tracing to compute the intercepted and scattered radiation fluxes and for final scene rendering. For the turbulent fluxes, we employed simple resistance models for latent and sensible heat with one-dimensional profiles of relative humidity and wind speed. Our modeling approach has proven successful in capturing the directional and diurnal variation in background thermal infrared signatures. We hypothesize that at these scales, where the model is typically driven by time-averaged, local meteorological conditions, the primary source of thermal variance arises from the spatial distribution of sunlit and shaded foliage elements within the canopy and the associated radiative interactions. In recent experiments, we have begun to focus on the high temporal frequency response of plant canopies in the thermal infrared at 1 second to 5 minute intervals. At these scales, we hypothesize turbulent mixing plays a more dominant role. Our results indicate that in the high frequency domain, the vertical profile of temperature change is tightly coupled to the within canopy wind speed In the results reported here, the canopy cools from the top down with increased wind velocities and heats from the bottom up at low wind velocities. .

  8. Relative importance of temporal information in various frequency regions for consonant identification in quiet and in noise

    NASA Astrophysics Data System (ADS)

    Apoux, Frédéric; Bacon, Sid P.

    2004-09-01

    The relative importance of temporal information in broad spectral regions for consonant identification was assessed in normal-hearing listeners. For the purpose of forcing listeners to use primarily temporal-envelope cues, speech sounds were spectrally degraded using four-noise-band vocoder processing. Frequency-weighting functions were determined using two methods. The first method consisted of measuring the intelligibility of speech with a hole in the spectrum either in quiet or in noise. The second method consisted of correlating performance with the randomly and independently varied signal-to-noise ratio within each band. Results demonstrated that all bands contributed equally to consonant identification when presented in quiet. In noise, however, both methods indicated that listeners consistently placed relatively more weight upon the highest frequency band. It is proposed that the explanation for the difference in results between quiet and noise relates to the shape of the modulation spectra in adjacent frequency bands. Overall, the results suggest that normal-hearing listeners use a common listening strategy in a given condition. However, this strategy may be influenced by the competing sounds, and thus may vary according to the context. Some implications of the results for cochlear implantees and hearing-impaired listeners are discussed.

  9. Reduced variability of auditory alpha activity in chronic tinnitus.

    PubMed

    Schlee, Winfried; Schecklmann, Martin; Lehner, Astrid; Kreuzer, Peter M; Vielsmeier, Veronika; Poeppl, Timm B; Langguth, Berthold

    2014-01-01

    Subjective tinnitus is characterized by the conscious perception of a phantom sound which is usually more prominent under silence. Resting state recordings without any auditory stimulation demonstrated a decrease of cortical alpha activity in temporal areas of subjects with an ongoing tinnitus perception. This is often interpreted as an indicator for enhanced excitability of the auditory cortex in tinnitus. In this study we want to further investigate this effect by analysing the moment-to-moment variability of the alpha activity in temporal areas. Magnetoencephalographic resting state recordings of 21 tinnitus subjects and 21 healthy controls were analysed with respect to the mean and the variability of spectral power in the alpha frequency band over temporal areas. A significant decrease of auditory alpha activity was detected for the low alpha frequency band (8-10 Hz) but not for the upper alpha band (10-12 Hz). Furthermore, we found a significant decrease of alpha variability for the tinnitus group. This result was significant for the lower alpha frequency range and not significant for the upper alpha frequencies. Tinnitus subjects with a longer history of tinnitus showed less variability of their auditory alpha activity which might be an indicator for reduced adaptability of the auditory cortex in chronic tinnitus.

  10. Comparison of level discrimination, increment detection, and comodulation masking release in the audio- and envelope-frequency domains

    PubMed Central

    Nelson, Paul C.; Ewert, Stephan D.; Carney, Laurel H.; Dau, Torsten

    2008-01-01

    In general, the temporal structure of stimuli must be considered to account for certain observations made in detection and masking experiments in the audio-frequency domain. Two such phenomena are (1) a heightened sensitivity to amplitude increments with a temporal fringe compared to gated level discrimination performance and (2) lower tone-in-noise detection thresholds using a modulated masker compared to those using an unmodulated masker. In the current study, translations of these two experiments were carried out to test the hypothesis that analogous cues might be used in the envelope-frequency domain. Pure-tone carrier amplitude-modulation (AM) depth-discrimination thresholds were found to be similar using both traditional gated stimuli and using a temporally modulated fringe for a fixed standard depth (ms=0.25) and a range of AM frequencies (4-64 Hz). In a second experiment, masked sinusoidal AM detection thresholds were compared in conditions with and without slow and regular fluctuations imposed on the instantaneous masker AM depth. Release from masking was obtained only for very slow masker fluctuations (less than 2 Hz). A physiologically motivated model that effectively acts as a first-order envelope change detector accounted for several, but not all, of the key aspects of the data. PMID:17471731

  11. Rate discrimination at low pulse rates in normal-hearing and cochlear implant listeners: Influence of intracochlear stimulation site.

    PubMed

    Stahl, Pierre; Macherey, Olivier; Meunier, Sabine; Roman, Stéphane

    2016-04-01

    Temporal pitch perception in cochlear implantees remains weaker than in normal hearing listeners and is usually limited to rates below about 300 pulses per second (pps). Recent studies have suggested that stimulating the apical part of the cochlea may improve the temporal coding of pitch by cochlear implants (CIs), compared to stimulating other sites. The present study focuses on rate discrimination at low pulse rates (ranging from 20 to 104 pps). Two experiments measured and compared pulse rate difference limens (DLs) at four fundamental frequencies (ranging from 20 to 104 Hz) in both CI and normal-hearing (NH) listeners. Experiment 1 measured DLs in users of the (Med-El CI, Innsbruck, Austria) device for two electrodes (one apical and one basal). In experiment 2, DLs for NH listeners were compared for unresolved harmonic complex tones filtered in two frequency regions (lower cut-off frequencies of 1200 and 3600 Hz, respectively) and for different bandwidths. Pulse rate discrimination performance was significantly better when stimulation was provided by the apical electrode in CI users and by the lower-frequency tone complexes in NH listeners. This set of data appears consistent with better temporal coding when stimulation originates from apical regions of the cochlea.

  12. Temporal-spatial evolution of the hydrologic drought characteristics of the karst drainage basins in South China

    NASA Astrophysics Data System (ADS)

    He, Zhonghua; Liang, Hong; Yang, Chaohui; Huang, Fasu; Zeng, Xinbo

    2018-02-01

    Hydrologic drought, as a typical natural phenomenon in the context of global climate change, is the extension and development of meteorological and agricultural droughts, and it is an eventual and extreme drought. This study selects 55 hydrological control basins in Southern China as research areas. The study analyzes features, such as intensity and occurrence frequency of hydrologic droughts, and explores the spatial-temporal evolution patterns in the karst drainage basins in Southern China by virtue of Streamflow Drought Index. Results show that (1) the general hydrologic droughts from 1970s to 2010s exhibited ;an upward trend after having experienced a previous decline; in the karst drainage basins in Southern China; the trend was mainly represented by the gradual alleviation of hydrologic droughts from 1970s to 1990s and the gradual aggravation from 2000s to 2010s. (2) The spatial-temporal evolution pattern of occurrence frequency in the karst drainage basins in Southern China was consistent with the intensity of hydrologic droughts. The periods of 1970s and 2010s exhibited the highest occurrence frequency. (3) The karst drainage basins in Southern China experienced extremely complex variability of hydrologic droughts from 1970s to 2010s. Drought intensity and occurrence frequency significantly vary for different types of hydrology.

  13. Spatial resolution dependence on spectral frequency in human speech cortex electrocorticography.

    PubMed

    Muller, Leah; Hamilton, Liberty S; Edwards, Erik; Bouchard, Kristofer E; Chang, Edward F

    2016-10-01

    Electrocorticography (ECoG) has become an important tool in human neuroscience and has tremendous potential for emerging applications in neural interface technology. Electrode array design parameters are outstanding issues for both research and clinical applications, and these parameters depend critically on the nature of the neural signals to be recorded. Here, we investigate the functional spatial resolution of neural signals recorded at the human cortical surface. We empirically derive spatial spread functions to quantify the shared neural activity for each frequency band of the electrocorticogram. Five subjects with high-density (4 mm center-to-center spacing) ECoG grid implants participated in speech perception and production tasks while neural activity was recorded from the speech cortex, including superior temporal gyrus, precentral gyrus, and postcentral gyrus. The cortical surface field potential was decomposed into traditional EEG frequency bands. Signal similarity between electrode pairs for each frequency band was quantified using a Pearson correlation coefficient. The correlation of neural activity between electrode pairs was inversely related to the distance between the electrodes; this relationship was used to quantify spatial falloff functions for cortical subdomains. As expected, lower frequencies remained correlated over larger distances than higher frequencies. However, both the envelope and phase of gamma and high gamma frequencies (30-150 Hz) are largely uncorrelated (<90%) at 4 mm, the smallest spacing of the high-density arrays. Thus, ECoG arrays smaller than 4 mm have significant promise for increasing signal resolution at high frequencies, whereas less additional gain is achieved for lower frequencies. Our findings quantitatively demonstrate the dependence of ECoG spatial resolution on the neural frequency of interest. We demonstrate that this relationship is consistent across patients and across cortical areas during activity.

  14. Spatial resolution dependence on spectral frequency in human speech cortex electrocorticography

    NASA Astrophysics Data System (ADS)

    Muller, Leah; Hamilton, Liberty S.; Edwards, Erik; Bouchard, Kristofer E.; Chang, Edward F.

    2016-10-01

    Objective. Electrocorticography (ECoG) has become an important tool in human neuroscience and has tremendous potential for emerging applications in neural interface technology. Electrode array design parameters are outstanding issues for both research and clinical applications, and these parameters depend critically on the nature of the neural signals to be recorded. Here, we investigate the functional spatial resolution of neural signals recorded at the human cortical surface. We empirically derive spatial spread functions to quantify the shared neural activity for each frequency band of the electrocorticogram. Approach. Five subjects with high-density (4 mm center-to-center spacing) ECoG grid implants participated in speech perception and production tasks while neural activity was recorded from the speech cortex, including superior temporal gyrus, precentral gyrus, and postcentral gyrus. The cortical surface field potential was decomposed into traditional EEG frequency bands. Signal similarity between electrode pairs for each frequency band was quantified using a Pearson correlation coefficient. Main results. The correlation of neural activity between electrode pairs was inversely related to the distance between the electrodes; this relationship was used to quantify spatial falloff functions for cortical subdomains. As expected, lower frequencies remained correlated over larger distances than higher frequencies. However, both the envelope and phase of gamma and high gamma frequencies (30-150 Hz) are largely uncorrelated (<90%) at 4 mm, the smallest spacing of the high-density arrays. Thus, ECoG arrays smaller than 4 mm have significant promise for increasing signal resolution at high frequencies, whereas less additional gain is achieved for lower frequencies. Significance. Our findings quantitatively demonstrate the dependence of ECoG spatial resolution on the neural frequency of interest. We demonstrate that this relationship is consistent across patients and across cortical areas during activity.

  15. Fractal Analysis and Hurst Parameter for Intrapartum Fetal Heart Rate Variability Analysis: A Versatile Alternative to Frequency Bands and LF/HF Ratio

    PubMed Central

    Doret, Muriel; Spilka, Jiří; Chudáček, Václav; Gonçalves, Paulo; Abry, Patrice

    2015-01-01

    Background The fetal heart rate (FHR) is commonly monitored during labor to detect early fetal acidosis. FHR variability is traditionally investigated using Fourier transform, often with adult predefined frequency band powers and the corresponding LF/HF ratio. However, fetal conditions differ from adults and modify spectrum repartition along frequencies. Aims This study questions the arbitrariness definition and relevance of the frequency band splitting procedure, and thus of the calculation of the underlying LF/HF ratio, as efficient tools for characterizing intrapartum FHR variability. Study Design The last 30 minutes before delivery of the intrapartum FHR were analyzed. Subjects Case-control study. A total of 45 singletons divided into two groups based on umbilical cord arterial pH: the Index group with pH ≤ 7.05 (n = 15) and Control group with pH > 7.05 (n = 30). Outcome Measures Frequency band-based LF/HF ratio and Hurst parameter. Results This study shows that the intrapartum FHR is characterized by fractal temporal dynamics and promotes the Hurst parameter as a potential marker of fetal acidosis. This parameter preserves the intuition of a power frequency balance, while avoiding the frequency band splitting procedure and thus the arbitrary choice of a frequency separating bands. The study also shows that extending the frequency range covered by the adult-based bands to higher and lower frequencies permits the Hurst parameter to achieve better performance for identifying fetal acidosis. Conclusions The Hurst parameter provides a robust and versatile tool for quantifying FHR variability, yields better acidosis detection performance compared to the LF/HF ratio, and avoids arbitrariness in spectral band splitting and definitions. PMID:26322889

  16. Event-related alpha synchronization/desynchronization in a memory-search task in adolescent survivors of childhood cancer.

    PubMed

    Lähteenmäki, P M; Krause, C M; Sillanmäki, L; Salmi, T T; Lang, A H

    1999-12-01

    Event-related desynchronization (ERD) and synchronization (ERS) of the 8-10 and 10-12 Hz frequency bands of the background EEG were studied in 19 adolescent survivors of childhood cancer (11 leukemias, 8 solid tumors) and in 10 healthy control subjects performing an auditory memory task. The stimuli were auditory Finnish words presented as a Sternberg-type memory-scanning paradigm. Each trial started with the presentation of a 4 word set for memorization whereafter a probe word was presented to be identified by the subject as belonging or not belonging to the memorized set. Encoding of the memory set elicited ERS and retrieval ERD at both frequency bands. However, in the survivors of leukemia, ERS was turned to ERD during encoding at the lower alpha frequency band. ERD was lasting longer at the lower frequency band than at the higher frequency band, in each study group. At both frequency bands, the maximum of ERD was achieved later in the cancer survivors than in the control group. The previously reported type of ERD/ERS during an auditory memory task was reproducible also in the survivors of childhood cancer, at different alpha frequency bands. However, the temporal deviance in ERD/ERS magnitudes, in the cancer survivors, was interpreted to indicate that both survivor groups had prolonged information processing time and/or they used ineffective cognitive strategies. This finding was more pronounced in the group of leukemia survivors, at the lower alpha frequency band, suggesting that the main problem of this patient group might be in the field of attention.

  17. Efferent control of temporal response properties of the Limulus lateral eye

    PubMed Central

    1990-01-01

    The sensitivity of the Limulus lateral eye exhibits a pronounced circadian rhythm. At night a circadian oscillator in the brain activates efferent fibers in the optic nerve, inducing multiple changes in the physiological and anatomical characteristics of retinal cells. These changes increase the sensitivity of the retina by about five orders of magnitude. We investigated whether this increase in retinal sensitivity is accompanied by changes in the ability of the retina to process temporal information. We measured the frequency transfer characteristic (FTC) of single receptors (ommatidia) by recording the response of their optic nerve fibers to sinusoidally modulated light. We first measured the FTC in the less sensitive daytime state and then after converting the retina to the more sensitive nighttime state by electrical stimulation of the efferent fibers. The activation of these fibers shifted the peak of the FTC to lower frequencies and reduced the slope of the low-frequency limb. These changes reduce the eye's ability to detect rapid changes in light intensity but enhance its ability to detect dim flashes of light. Apparently Limulus sacrifices temporal resolution for increased visual sensitivity at night. PMID:2307958

  18. Differential neural responses to acupuncture revealed by MEG using wavelet-based time-frequency analysis: a pilot study.

    PubMed

    You, Youbo; Bai, Lijun; Dai, Ruwei; Xue, Ting; Zhong, Chongguang; Feng, Yuanyuan; Wang, Hu; Liu, Zhenyu; Tian, Jie

    2011-01-01

    Acupoint specificity, lying at the core of the Traditional Chinese Medicine, still faces many controversies. As previous neuroimaging studies on acupuncture mainly adopted relatively low time-resolution functional magnetic resonance imaging (fMRI) technology and inappropriate block-designed experimental paradigm due to sustained effect, in the current study, we employed a single block-designed paradigm together with high temporal-resolution magnetoencephalography (MEG) technology. We applied time-frequency analysis based upon Morlet wavelet transforming approach to detect differential oscillatory brain dynamics induced by acupuncture at Stomach Meridian 36 (ST36) using a nearby nonacupoint (NAP) as control condition. We observed that frequency power changes were mainly restricted to delta band for both ST36 group and NAP group. Consistently increased delta band power in contralateral temporal regions and decreased power in the counterparts of ipsilateral hemisphere were detected following stimulation at ST36 on the right leg. Compared with ST36, no significant delta ranges were found in temporal regions in NAP group, illustrating different oscillatory brain patterns. Our results may provide additional evidence to support the specificity of acupuncture modulation effects.

  19. The Temporal Association Between Executive Function and Life-Space Mobility in Old Age.

    PubMed

    Poranen-Clark, Taina; von Bonsdorff, Mikaela B; Rantakokko, Merja; Portegijs, Erja; Eronen, Johanna; Pynnönen, Katja; Eriksson, Johan G; Viljanen, Anne; Rantanen, Taina

    2018-05-09

    Life-space mobility, an indicator of community mobility, describes person's movements in terms of the distance from home, the frequency of movement, and the need of assistance for movement. Executive function (EF) is a higher-order cognitive function that supervises motor control and plays a key role in a person's ability to function independently. Cognitive impairment often co-occurs with restricted life-space mobility; however, the direction of the longitudinal associations between EF and life-space mobility is unclear. The aim of this study was to investigate the temporal associations between EF and life-space mobility among community-dwelling older people. One hundred eight community-dwelling persons aged 76 to 91 years participated in the 2 year follow-up study. EF was measured with the Trail Making Test. The Life-Space Assessment (range 0-120, higher scores indicate more mobility) was used to assess life-space mobility. Cross-lagged model design was used to examine longitudinal relationship between EF and life-space mobility. The model was adjusted for age and gender. Average age of participants at baseline was 82.2 (SD 4.1) years and 59% were women. Better EF at baseline predicted higher life-space mobility at follow-up (path coefficient = 3.81, 95% confidential interval; 0.84, 6.78, p = .012), whereas baseline life-space mobility did not predict EF at follow-up. EF was a determinant of life-space mobility. Supporting EF may enhance maintaining independence and active participation in old age.

  20. Temporality of Features in Near-Death Experience Narratives

    PubMed Central

    Martial, Charlotte; Cassol, Héléna; Antonopoulos, Georgios; Charlier, Thomas; Heros, Julien; Donneau, Anne-Françoise; Charland-Verville, Vanessa; Laureys, Steven

    2017-01-01

    Background: After an occurrence of a Near-Death Experience (NDE), Near-Death Experiencers (NDErs) usually report extremely rich and detailed narratives. Phenomenologically, a NDE can be described as a set of distinguishable features. Some authors have proposed regular patterns of NDEs, however, the actual temporality sequence of NDE core features remains a little explored area. Objectives: The aim of the present study was to investigate the frequency distribution of these features (globally and according to the position of features in narratives) as well as the most frequently reported temporality sequences of features. Methods: We collected 154 French freely expressed written NDE narratives (i.e., Greyson NDE scale total score ≥ 7/32). A text analysis was conducted on all narratives in order to infer temporal ordering and frequency distribution of NDE features. Results: Our analyses highlighted the following most frequently reported sequence of consecutive NDE features: Out-of-Body Experience, Experiencing a tunnel, Seeing a bright light, Feeling of peace. Yet, this sequence was encountered in a very limited number of NDErs. Conclusion: These findings may suggest that NDEs temporality sequences can vary across NDErs. Exploring associations and relationships among features encountered during NDEs may complete the rigorous definition and scientific comprehension of the phenomenon. PMID:28659779

  1. Decrease in gamma-band activity tracks sequence learning

    PubMed Central

    Madhavan, Radhika; Millman, Daniel; Tang, Hanlin; Crone, Nathan E.; Lenz, Fredrick A.; Tierney, Travis S.; Madsen, Joseph R.; Kreiman, Gabriel; Anderson, William S.

    2015-01-01

    Learning novel sequences constitutes an example of declarative memory formation, involving conscious recall of temporal events. Performance in sequence learning tasks improves with repetition and involves forming temporal associations over scales of seconds to minutes. To further understand the neural circuits underlying declarative sequence learning over trials, we tracked changes in intracranial field potentials (IFPs) recorded from 1142 electrodes implanted throughout temporal and frontal cortical areas in 14 human subjects, while they learned the temporal-order of multiple sequences of images over trials through repeated recall. We observed an increase in power in the gamma frequency band (30–100 Hz) in the recall phase, particularly in areas within the temporal lobe including the parahippocampal gyrus. The degree of this gamma power enhancement decreased over trials with improved sequence recall. Modulation of gamma power was directly correlated with the improvement in recall performance. When presenting new sequences, gamma power was reset to high values and decreased again after learning. These observations suggest that signals in the gamma frequency band may play a more prominent role during the early steps of the learning process rather than during the maintenance of memory traces. PMID:25653598

  2. Reference frames for spatial frequency in face representation differ in the temporal visual cortex and amygdala.

    PubMed

    Inagaki, Mikio; Fujita, Ichiro

    2011-07-13

    Social communication in nonhuman primates and humans is strongly affected by facial information from other individuals. Many cortical and subcortical brain areas are known to be involved in processing facial information. However, how the neural representation of faces differs across different brain areas remains unclear. Here, we demonstrate that the reference frame for spatial frequency (SF) tuning of face-responsive neurons differs in the temporal visual cortex and amygdala in monkeys. Consistent with psychophysical properties for face recognition, temporal cortex neurons were tuned to image-based SFs (cycles/image) and showed viewing distance-invariant representation of face patterns. On the other hand, many amygdala neurons were influenced by retina-based SFs (cycles/degree), a characteristic that is useful for social distance computation. The two brain areas also differed in the luminance contrast sensitivity of face-responsive neurons; amygdala neurons sharply reduced their responses to low luminance contrast images, while temporal cortex neurons maintained the level of their responses. From these results, we conclude that different types of visual processing in the temporal visual cortex and the amygdala contribute to the construction of the neural representations of faces.

  3. Temporality of Features in Near-Death Experience Narratives.

    PubMed

    Martial, Charlotte; Cassol, Héléna; Antonopoulos, Georgios; Charlier, Thomas; Heros, Julien; Donneau, Anne-Françoise; Charland-Verville, Vanessa; Laureys, Steven

    2017-01-01

    Background: After an occurrence of a Near-Death Experience (NDE), Near-Death Experiencers (NDErs) usually report extremely rich and detailed narratives. Phenomenologically, a NDE can be described as a set of distinguishable features. Some authors have proposed regular patterns of NDEs, however, the actual temporality sequence of NDE core features remains a little explored area. Objectives: The aim of the present study was to investigate the frequency distribution of these features (globally and according to the position of features in narratives) as well as the most frequently reported temporality sequences of features. Methods: We collected 154 French freely expressed written NDE narratives (i.e., Greyson NDE scale total score ≥ 7/32). A text analysis was conducted on all narratives in order to infer temporal ordering and frequency distribution of NDE features. Results: Our analyses highlighted the following most frequently reported sequence of consecutive NDE features: Out-of-Body Experience, Experiencing a tunnel, Seeing a bright light, Feeling of peace. Yet, this sequence was encountered in a very limited number of NDErs. Conclusion: These findings may suggest that NDEs temporality sequences can vary across NDErs. Exploring associations and relationships among features encountered during NDEs may complete the rigorous definition and scientific comprehension of the phenomenon.

  4. Combining Temporal and Spectral Information with Spatial Mapping to Identify Differences between Phonological and Semantic Networks: A Magnetoencephalographic Approach.

    PubMed

    McNab, Fiona; Hillebrand, Arjan; Swithenby, Stephen J; Rippon, Gina

    2012-01-01

    Early, lesion-based models of language processing suggested that semantic and phonological processes are associated with distinct temporal and parietal regions respectively, with frontal areas more indirectly involved. Contemporary spatial brain mapping techniques have not supported such clear-cut segregation, with strong evidence of activation in left temporal areas by both processes and disputed evidence of involvement of frontal areas in both processes. We suggest that combining spatial information with temporal and spectral data may allow a closer scrutiny of the differential involvement of closely overlapping cortical areas in language processing. Using beamforming techniques to analyze magnetoencephalography data, we localized the neuronal substrates underlying primed responses to nouns requiring either phonological or semantic processing, and examined the associated measures of time and frequency in those areas where activation was common to both tasks. Power changes in the beta (14-30 Hz) and gamma (30-50 Hz) frequency bands were analyzed in pre-selected time windows of 350-550 and 500-700 ms In left temporal regions, both tasks elicited power changes in the same time window (350-550 ms), but with different spectral characteristics, low beta (14-20 Hz) for the phonological task and high beta (20-30 Hz) for the semantic task. In frontal areas (BA10), both tasks elicited power changes in the gamma band (30-50 Hz), but in different time windows, 500-700 ms for the phonological task and 350-550 ms for the semantic task. In the left inferior parietal area (BA40), both tasks elicited changes in the 20-30 Hz beta frequency band but in different time windows, 350-550 ms for the phonological task and 500-700 ms for the semantic task. Our findings suggest that, where spatial measures may indicate overlapping areas of involvement, additional beamforming techniques can demonstrate differential activation in time and frequency domains.

  5. Right Fronto-Temporal EEG can Differentiate the Affective Responses to Award-Winning Advertisements.

    PubMed

    Wang, Regina W Y; Huarng, Shy-Peih; Chuang, Shang-Wen

    2018-04-01

    Affective engineering aims to improve service/product design by translating the customer's psychological feelings. Award-winning advertisements (AAs) were selected on the basis of the professional standards that consider creativity as a prerequisite. However, it is unknown if AA is related to satisfactory advertising performance among customers or only to the experts' viewpoints towards the advertisements. This issue in the field of affective engineering and design merits in-depth evaluation. We recruited 30 subjects and performed an electroencephalography (EEG) experiment while watching AAs and non-AAs (NAAs). The event-related potential (ERP) data showed that AAs evoked larger positive potentials 250-1400 [Formula: see text]ms after stimulus onset, particularly in the right fronto-temporal regions. The behavioral results were consistent with the professional recognition given to AAs by experts. The perceived levels of creativity and "product-like" quality were higher for the AAs than for the NAAs. Event-related spectral perturbation (ERSP) analysis further revealed statistically significant differences in the theta, alpha, beta, and gamma band activity in the right fronto-temporal regions between the AAs and NAAs. Our results confirm that EEG features from the time/frequency domains can differentiate affective responses to AAs at a neural circuit level, and provide scientific evidence to support the identification of AAs.

  6. Spatial-temporal ultrasound imaging of residual cavitation bubbles around a fluid-tissue interface in histotripsy.

    PubMed

    Hu, Hong; Xu, Shanshan; Yuan, Yuan; Liu, Runna; Wang, Supin; Wan, Mingxi

    2015-05-01

    Cavitation is considered as the primary mechanism of soft tissue fragmentation (histotripsy) by pulsed high-intensity focused ultrasound. The residual cavitation bubbles have a dual influence on the histotripsy pulses: these serve as nuclei for easy generation of new cavitation, and act as strong scatterers causing energy "shadowing." To monitor the residual cavitation bubbles in histotripsy, an ultrafast active cavitation imaging method with relatively high signal-to-noise ratio and good spatial-temporal resolution was proposed in this paper, which combined plane wave transmission, minimum variance beamforming, and coherence factor weighting. The spatial-temporal evolutions of residual cavitation bubbles around a fluid-tissue interface in histotripsy under pulse duration (PD) of 10-40 μs and pulse repetition frequency (PRF) of 0.67-2 kHz were monitored by this method. The integrated bubble area curves inside the tissue interface were acquired from the bubble image sequence, and the formation process of histotripsy damage was estimated. It was observed that the histotripsy efficiency decreased with both longer PDs and higher PRFs. A direct relationship with a coefficient of 1.0365 between histotripsy lesion area and inner residual bubble area was found. These results can assist in monitoring and optimization of the histotripsy treatment further.

  7. The Temporal Tuning of the Drosophila Motion Detectors Is Determined by the Dynamics of Their Input Elements.

    PubMed

    Arenz, Alexander; Drews, Michael S; Richter, Florian G; Ammer, Georg; Borst, Alexander

    2017-04-03

    Detecting the direction of motion contained in the visual scene is crucial for many behaviors. However, because single photoreceptors only signal local luminance changes, motion detection requires a comparison of signals from neighboring photoreceptors across time in downstream neuronal circuits. For signals to coincide on readout neurons that thus become motion and direction selective, different input lines need to be delayed with respect to each other. Classical models of motion detection rely on non-linear interactions between two inputs after different temporal filtering. However, recent studies have suggested the requirement for at least three, not only two, input signals. Here, we comprehensively characterize the spatiotemporal response properties of all columnar input elements to the elementary motion detectors in the fruit fly, T4 and T5 cells, via two-photon calcium imaging. Between these input neurons, we find large differences in temporal dynamics. Based on this, computer simulations show that only a small subset of possible arrangements of these input elements maps onto a recently proposed algorithmic three-input model in a way that generates a highly direction-selective motion detector, suggesting plausible network architectures. Moreover, modulating the motion detection system by octopamine-receptor activation, we find the temporal tuning of T4 and T5 cells to be shifted toward higher frequencies, and this shift can be fully explained by the concomitant speeding of the input elements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Temporal variation and scaling of parameters for a monthly hydrologic model

    NASA Astrophysics Data System (ADS)

    Deng, Chao; Liu, Pan; Wang, Dingbao; Wang, Weiguang

    2018-03-01

    The temporal variation of model parameters is affected by the catchment conditions and has a significant impact on hydrological simulation. This study aims to evaluate the seasonality and downscaling of model parameter across time scales based on monthly and mean annual water balance models with a common model framework. Two parameters of the monthly model, i.e., k and m, are assumed to be time-variant at different months. Based on the hydrological data set from 121 MOPEX catchments in the United States, we firstly analyzed the correlation between parameters (k and m) and catchment properties (NDVI and frequency of rainfall events, α). The results show that parameter k is positively correlated with NDVI or α, while the correlation is opposite for parameter m, indicating that precipitation and vegetation affect monthly water balance by controlling temporal variation of parameters k and m. The multiple linear regression is then used to fit the relationship between ε and the means and coefficient of variations of parameters k and m. Based on the empirical equation and the correlations between the time-variant parameters and NDVI, the mean annual parameter ε is downscaled to monthly k and m. The results show that it has lower NSEs than these from model with time-variant k and m being calibrated through SCE-UA, while for several study catchments, it has higher NSEs than that of the model with constant parameters. The proposed method is feasible and provides a useful tool for temporal scaling of model parameter.

  9. Characteristics of cloud occurrence using ceilometer measurements and its relationship to precipitation over Seoul

    NASA Astrophysics Data System (ADS)

    Lee, Sanghee; Hwang, Seung-On; Kim, Jhoon; Ahn, Myoung-Hwan

    2018-03-01

    Clouds are an important component of the atmosphere that affects both climate and weather, however, their contributions can be very difficult to determine. Ceilometer measurements can provide high resolution information on atmospheric conditions such as cloud base height (CBH) and vertical frequency of cloud occurrence (CVF). This study presents the first comprehensive analysis of CBH and CVF derived using Vaisala CL51 ceilometers at two urban stations in Seoul, Korea, during a three-year period from January 2014 to December 2016. The average frequency of cloud occurrence detected by the ceilometers is 54.3%. It is found that the CL51 is better able to capture CBH as compared to another ceilometer CL31 at a nearby meteorological station because it could detect high clouds more accurately. Frequency distributions for CBH up to 13,000 m providing detailed vertical features with 500-m interval show 55% of CBHs below 2 km for aggregated CBHs. A bimodal frequency distribution was observed for three-layers CBHs. A monthly variation of CVF reveals that frequency concentration of lower clouds is found in summer and winter, and higher clouds more often detected in spring and autumn. Monthly distribution features of cloud occurrence and precipitation are depending on seasons and it might be easy to define their relationship due to higher degree of variability of precipitation than cloud occurrence. However, a fluctuation of cloud occurrence frequency in summer is similar to precipitation in trend, whereas clouds in winter are relatively frequent but precipitation is not accompanied. In addition, recent decrease of summer precipitation could be mostly explained by a decrease of cloud occurrence. Anomalous precipitation recorded sometimes is considerably related to corresponding cloud occurrence. The diurnal and daily variations of CBH and CVF from ceilometer observations and the analysis of microwave radiometer measurements for two typical cloudiness cases are also reviewed in parallel. This analysis in finer temporal scale exhibits that utilization of ground-based observations together could help to analyze the cloud behaviors.

  10. Long-term modifications of synaptic efficacy in the human inferior and middle temporal cortex

    NASA Technical Reports Server (NTRS)

    Chen, W. R.; Lee, S.; Kato, K.; Spencer, D. D.; Shepherd, G. M.; Williamson, A.

    1996-01-01

    The primate temporal cortex has been demonstrated to play an important role in visual memory and pattern recognition. It is of particular interest to investigate whether activity-dependent modification of synaptic efficacy, a presumptive mechanism for learning and memory, is present in this cortical region. Here we address this issue by examining the induction of synaptic plasticity in surgically resected human inferior and middle temporal cortex. The results show that synaptic strength in the human temporal cortex could undergo bidirectional modifications, depending on the pattern of conditioning stimulation. High frequency stimulation (100 or 40 Hz) in layer IV induced long-term potentiation (LTP) of both intracellular excitatory postsynaptic potentials and evoked field potentials in layers II/III. The LTP induced by 100 Hz tetanus was blocked by 50-100 microM DL-2-amino-5-phosphonovaleric acid, suggesting that N-methyl-D-aspartate receptors were responsible for its induction. Long-term depression (LTD) was elicited by prolonged low frequency stimulation (1 Hz, 15 min). It was reduced, but not completely blocked, by DL-2-amino-5-phosphonovaleric acid, implying that some other mechanisms in addition to N-methyl-DL-aspartate receptors were involved in LTD induction. LTD was input-specific, i.e., low frequency stimulation of one pathway produced LTD of synaptic transmission in that pathway only. Finally, the LTP and LTD could reverse each other, suggesting that they can act cooperatively to modify the functional state of cortical network. These results suggest that LTP and LTD are possible mechanisms for the visual memory and pattern recognition functions performed in the human temporal cortex.

  11. In-vivo animation of midazolam-induced electrocorticographic changes in humans.

    PubMed

    Nishida, Masaaki; Sood, Sandeep; Asano, Eishi

    2009-12-15

    Previous human studies have demonstrated that midazolam-induced signal changes on scalp EEG recording include widespread augmentation of sigma-oscillations and that the amplitude of such oscillations is correlated to the severity of midazolam-induced amnesia. Still unanswered questions include whether midazolam-induced sigma-augmentation also involves the medial temporal region, which plays a role in memory encoding. Taking advantage of rare and unique opportunities to monitor neuronal activities using intracranial electrocorticography (ECoG) recording, we determined how intravenous administration of midazolam elicited spectral frequency changes in the human cerebral cortex, including the medial temporal region. We studied three children with focal epilepsy who underwent subdural electrode placement and extraoperative ECoG recording for subsequent resection of the seizure focus; an intravenous bolus of midazolam was given to abort an ongoing simple partial seizure or to provide sedation prior to induction of general anesthesia. 'Midazolam-induced ECoG frequency alteration' in sites distant from the seizure focus was sequentially animated on their individual three-dimensional MR images. The common ECoG changes induced by midazolam included gradual augmentation of sigma-oscillations (12-16 Hz) in the widespread non-epileptic regions, including the medial temporal region. The spatial and temporal alteration of ECoG spectral frequency pattern can be appreciated via animation movies. Midazolam-induced sigma-augmentation was observed in the medial temporal region in our relatively small cohort of human subjects. In-vivo animation of ECoG spectral measures provided a unique situation to study the effect of midazolam on neuronal processing in the deep brain regions.

  12. In-vivo animation of midazolam-induced electrocorticographic changes in humans

    PubMed Central

    Nishida, Masaaki; Sood, Sandeep; Asano, Eishi

    2009-01-01

    Previous human studies have demonstrated that midazolam-induced signal changes on scalp EEG recording include widespread augmentation of sigma-oscillations and that the amplitude of such oscillations is correlated to the severity of midazolam-induced amnesia. Still unanswered questions include whether midazolam-induced sigma-augmentation also involves the medial temporal region, which plays a role in memory encoding. Taking advantage of rare and unique opportunities to monitor neuronal activities using intracranial electrocorticography (ECoG) recording, we determined how intravenous administration of midazolam induced spectral frequency changes in the human cerebral cortex, including the medial temporal region. We studied three children with focal epilepsy who underwent subdural electrode placement and extraoperative ECoG recording for subsequent resection of the seizure focus; an intravenous bolus of midazolam was given to abort an ongoing simple-partial seizure or to provide sedation prior to induction of general anesthesia. ‘Midazolam-induced ECoG frequency alteration’ in sites distant from the seizure focus was sequentially animated on their individual three-dimensional MR images. The common ECoG changes induced by midazolam included gradual augmentation of sigma-oscillations (12-16 Hz) in the widespread non-epileptic regions, including the medial temporal region. The spatial and temporal alteration of ECoG spectral frequency pattern can be appreciated via animation movies. Midazolam-induced sigma-augmentation was observed in the medial temporal region in our relatively small cohort of human subjects. In-vivo animation of ECoG spectral measures provided a unique situation to study the effect of midazolam on neuronal processing in the deep brain regions. PMID:19733366

  13. Stimulus features underlying reduced tremor suppression with temporally patterned deep brain stimulation

    PubMed Central

    Birdno, Merrill J.; Kuncel, Alexis M.; Dorval, Alan D.; Turner, Dennis A.; Gross, Robert E.

    2012-01-01

    Deep brain stimulation (DBS) provides dramatic tremor relief when delivered at high-stimulation frequencies (more than ∼100 Hz), but its mechanisms of action are not well-understood. Previous studies indicate that high-frequency stimulation is less effective when the stimulation train is temporally irregular. The purpose of this study was to determine the specific characteristics of temporally irregular stimulus trains that reduce their effectiveness: long pauses, bursts, or irregularity per se. We isolated these characteristics in stimulus trains and conducted intraoperative measurements of postural tremor in eight volunteers. Tremor varied significantly across stimulus conditions (P < 0.015), and stimulus trains with pauses were significantly less effective than stimulus trains without (P < 0.002). There were no significant differences in tremor between trains with or without bursts or between trains that were irregular or periodic. Thus the decreased effectiveness of temporally irregular DBS trains is due to long pauses in the stimulus trains, not the degree of temporal irregularity alone. We also conducted computer simulations of neuronal responses to the experimental stimulus trains using a biophysical model of the thalamic network. Trains that suppressed tremor in volunteers also suppressed fluctuations in thalamic transmembrane potential at the frequency associated with cerebellar burst-driver inputs. Clinical and computational findings indicate that DBS suppresses tremor by masking burst-driver inputs to the thalamus and that pauses in stimulation prevent such masking. Although stimulation of other anatomic targets may provide tremor suppression, we propose that the most relevant neuronal targets for effective tremor suppression are the afferent cerebellar fibers that terminate in the thalamus. PMID:21994263

  14. Brainstem Correlates of Temporal Auditory Processing in Children with Specific Language Impairment

    ERIC Educational Resources Information Center

    Basu, Madhavi; Krishnan, Ananthanarayan; Weber-Fox, Christine

    2010-01-01

    Deficits in identification and discrimination of sounds with short inter-stimulus intervals or short formant transitions in children with specific language impairment (SLI) have been taken to reflect an underlying temporal auditory processing deficit. Using the sustained frequency following response (FFR) and the onset auditory brainstem responses…

  15. Near-Term Fetuses Process Temporal Features of Speech

    ERIC Educational Resources Information Center

    Granier-Deferre, Carolyn; Ribeiro, Aurelie; Jacquet, Anne-Yvonne; Bassereau, Sophie

    2011-01-01

    The perception of speech and music requires processing of variations in spectra and amplitude over different time intervals. Near-term fetuses can discriminate acoustic features, such as frequencies and spectra, but whether they can process complex auditory streams, such as speech sequences and more specifically their temporal variations, fast or…

  16. Moments of click-evoked otoacoustic emissions in human ears: group delay and spread, instantaneous frequency and bandwidth.

    PubMed

    Keefe, Douglas H

    2012-11-01

    A click-evoked otoacoustic emission (CEOAE) has group delay and spread as first- and second-order temporal moments varying over frequency, and instantaneous frequency and bandwidth as first- and second-order spectral moments varying over time. Energy-smoothed moments were calculated from a CEOAE database over 0.5-15 kHz bandwidth and 0.25-20 ms duration. Group delay and instantaneous frequency were calculated without phase unwrapping using a coherence synchrony measure that accurately classified ears with hearing loss. CEOAE moment measurements were repeatable in individual ears. Group delays were similar for CEOAEs and stimulus-frequency OAEs. Group spread is a frequency-specific measure of temporal spread in an emission, related to spatial spread across tonotopic generation sites along the cochlea. In normal ears, group delay and spread increased with frequency and decreased with level. A direct measure of cochlear tuning above 4 kHz was analyzed using instantaneous frequency and bandwidth. Synchronized spontaneous OAEs were present in most ears below 4 kHz, and confounded interpretation of moments. In ears with sensorineural hearing loss, group delay and spread varied with audiometric classification and amount of hearing loss; group delay differed between older males and females. CEOAE moments reveal clinically relevant information on cochlear tuning in ears with normal and impaired hearing.

  17. Effect of water depth and water velocity upon the surfacing frequency of the bimodally respiring freshwater turtle, Rheodytes leukops.

    PubMed

    Gordos, Matthew A; Franklin, Craig E; Limpus, Colin J

    2004-08-01

    This study examines the effect of increasing water depth and water velocity upon the surfacing behaviour of the bimodally respiring turtle, Rheodytes leukops. Surfacing frequency was recorded for R. leukops at varying water depths (50, 100, 150 cm) and water velocities (5, 15, 30 cm s(-1)) during independent trials to provide an indirect cost-benefit analysis of aquatic versus pulmonary respiration. With increasing water velocity, R. leukops decreased its surfacing frequency twentyfold, thus suggesting a heightened reliance upon aquatic gas exchange. An elevated reliance upon aquatic respiration, which presumably translates into a decreased air-breathing frequency, may be metabolically more efficient for R. leukops compared to the expenditure (i.e. time and energy) associated with air-breathing within fast-flowing riffle zones. Additionally, R. leukops at higher water velocities preferentially selected low-velocity microhabitats, presumably to avoid the metabolic expenditure associated with high water flow. Alternatively, increasing water depth had no effect upon the surfacing frequency of R. leukops, suggesting little to no change in the respiratory partitioning of the species across treatment settings. Routinely long dives (>90 min) recorded for R. leukops indicate a high reliance upon aquatic O2 uptake regardless of water depth. Moreover, metabolic and temporal costs attributed to pulmonary gas exchange within a pool-like environment were likely minimal for R. leukops, irrespective of water depth.

  18. Novel Stimulation Paradigms with Temporally-Varying Parameters to Reduce Synchronous Activity at the Onset of High Frequency Stimulation in Rat Hippocampus

    PubMed Central

    Cai, Ziyan; Feng, Zhouyan; Guo, Zheshan; Zhou, Wenjie; Wang, Zhaoxiang; Wei, Xuefeng

    2017-01-01

    Deep brain stimulation (DBS) has shown wide applications for treating various disorders in the central nervous system by using high frequency stimulation (HFS) sequences of electrical pulses. However, upon the onset of HFS sequences, the narrow pulses could induce synchronous firing of action potentials among large populations of neurons and cause a transient phase of “onset response” that is different from the subsequent steady state. To investigate the transient onset phase, the antidromically-evoked population spikes (APS) were used as an electrophysiological marker to evaluate the synchronous neuronal reactions to axonal HFS in the hippocampal CA1 region of anesthetized rats. New stimulation paradigms with time-varying intensity and frequency were developed to suppress the “onset responses”. Results show that HFS paradigms with ramp-up intensity at the onset phase could suppress large APS potentials. In addition, an intensity ramp with a slower ramp-up rate or with a higher pulse frequency had greater suppression on APS amplitudes. Therefore, to reach a desired pulse intensity rapidly, a stimulation paradigm combining elevated frequency and ramp-up intensity was used to shorten the transition phase of initial HFS without evoking large APS potentials. The results of the study provide important clues for certain transient side effects of DBS and for development of new adaptive stimulation paradigms. PMID:29066946

  19. Geospace ionosphere research with a MF/HF radio instrument on a cubesat

    NASA Astrophysics Data System (ADS)

    Kallio, E. J.; Aikio, A. T.; Alho, M.; Fontell, M.; van Gijlswijk, R.; Kauristie, K.; Kestilä, A.; Koskimaa, P.; Makela, J. S.; Mäkelä, M.; Turunen, E.; Vanhamäki, H.

    2016-12-01

    Modern technology provides new possibilities to study geospace and its ionosphere, using spacecraft and and computer simulations. A type of nanosatellites, CubeSats, provide a cost effective possibility to provide in-situ measurements in the ionosphere. Moreover, combined CubeSat observations with ground-based observations gives a new view on auroras and associated electromagnetic phenomena. Especially joint and active CubeSat - ground based observation campaigns enable the possibility of studying the 3D structure of the ionosphere. Furthermore using several CubeSats to form satellite constellations enables much higher temporal resolution. At the same time, increasing computation capacity has made it possible to perform simulations where properties of the ionosphere, such as propagation of the electromagnetic waves in the medium frequency, MF (0.3-3 MHz) and high frequency, HF (3-30 MHz), ranges is based on a 3D ionospheric model and on first-principles modelling. Electromagnetic waves at those frequencies are strongly affected by ionospheric electrons and, consequently, those frequencies can be used for studying the plasma. On the other hand, even if the ionosphere originally enables long-range telecommunication at MF and HF frequencies, the frequent occurrence of spatiotemporal variations in the ionosphere disturbs communication channels, especially at high latitudes. Therefore, study of the MF and HF waves in the ionosphere has both a strong science and technology interests. We present computational simulation results and measuring principles and techniques to investigate the arctic ionosphere by a polar orbiting CubeSat whose novel AM radio instrument measures HF and MF waves. The cubesat, which contains also a white light aurora camera, is planned to be launched in 2017 (http://www.suomi100satelliitti.fi/eng). We have modelled the propagation of the radio waves, both ground generated man-made waves and space formed space weather related waves, through the 3D arctic ionosphere with (1) a new 3D ray tracing model and (2) a new 3D full kinetic electromagnetic simulation. These simulations are used to analyse the origin of the radio waves observed by the MH/HF radio instrument and, consequently, to derive information about the 3D ionosphere and its spatial and temporal variations.

  20. A new visually evoked cerebral blood flow response analysis using a low-frequency estimation.

    PubMed

    Rey, Beatriz; Naranjo, Valery; Parkhutik, Vera; Tembl, José; Alcañiz, Mariano

    2010-03-01

    Transcranial Doppler (TCD) has been widely used to monitor cerebral blood flow velocity (BFV) during the performance of cognitive tasks compared with repose periods. Although one of its main advantages is its high temporal resolution, only some of the previous functional TCD studies have focused on the analysis of the temporal evolution of the BFV signal and none of them has performed a spectral analysis of the signal. In this study, maximum BFV data in both posterior cerebral arteries was monitored during a visual perception task (10 cycles of alternating darkness and illumination) for 23 subjects. A peak was located in the low-frequency band of the spectrum of the maximum BFV of each subject both during visual stimulation and repose periods. The frequency of this peak was in the range between 0.037 and 0.098Hz, depending on the subject, the vessel and the experimental condition. The component of the signal at this frequency, which is associated with the slow variations caused by the visual stimuli, was estimated. That way, the variations in BFV caused by the experimental stimuli were isolated from the variations caused by other factors. This low-frequency estimation signal was used to obtain parameters about the temporal evolution and the magnitude variations of the BFV in a reliable way, thus, characterizing the neurovascular coupling of the participants. Copyright 2010 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

Top