Hisano, Hiroshi; Meints, Brigid; Moscou, Matthew J; Cistue, Luis; Echávarri, Begoña; Sato, Kazuhiro; Hayes, Patrick M
2017-04-01
The genetic substitution of transformation amenability alleles from 'Golden Promise' can facilitate the development of transformation-efficient lines from recalcitrant barley cultivars. Barley (Hordeum vulgare) cv. 'Golden Promise' is one of the most useful and well-studied cultivars for genetic manipulation. In a previous report, we identified several transformation amenability (TFA) loci responsible for Agrobacterium-mediated transformation using the F 2 generation of immature embryos, derived from 'Haruna Nijo' × 'Golden Promise,' as explants. In this report, we describe higher density mapping of these TFA regions with additional SNP markers using the same transgenic plants. To demonstrate the robustness of transformability alleles at the TFA loci, we genotyped 202 doubled haploid progeny from the cross 'Golden Promise' × 'Full Pint.' Based on SNP genotype, we selected lines having 'Golden Promise' alleles at TFA loci and used them for transformation. Of the successfully transformed lines, DH120366 came the closest to achieving a level of transformation efficiency comparable to 'Golden Promise.' The results validate that the genetic substitution of TFA alleles from 'Golden Promise' can facilitate the development of transformation-efficient lines from recalcitrant barley cultivars.
Highly Efficient Agrobacterium-Mediated Transformation of Wheat Via In Planta Inoculation
NASA Astrophysics Data System (ADS)
Risacher, Thierry; Craze, Melanie; Bowden, Sarah; Paul, Wyatt; Barsby, Tina
This chapter details a reproducible method for the transformation of spring wheat using Agrobacterium tumefaciens via the direct inoculation of bacteria into immature seeds in planta as described in patent WO 00/63398(1. Transformation efficiencies from 1 to 30% have been obtained and average efficiencies of at least 5% are routinely achieved. Regenerated plants are phenotypically normal with 30-50% of transformation events carrying introduced genes at single insertion sites, a higher rate than is typically reported for transgenic plants produced using biolistic transformation methods.
Snyman, S J; Meyer, G M; Richards, J M; Haricharan, N; Ramgareeb, S; Huckett, B I
2006-10-01
A rapid in vitro protocol using direct somatic embryogenesis and microprojectile bombardment was investigated to establish the developmental phases most suitable for efficient sugarcane transformation. Immature leaf roll disc explants with and without pre-emergent inflorescence tissue were compared. It was shown that for effective transformation to occur, explants should be cultured for several days to allow initiation of embryo development prior to bombardment. Leaf roll discs with pre-emergent inflorescences showed a higher degree of embryogenic competence than non-flowering explants, and transformation efficiency was higher when explants containing floral initials were bombarded. Despite the occurrence of high numbers of phenotypically negative plants, combining the use of inflorescent leaf roll discs with direct embryogenic regeneration has the potential to improve the speed and efficiency of transgenesis in sugarcane.
Optimization of Agrobacterium-Mediated Transformation in Soybean.
Li, Shuxuan; Cong, Yahui; Liu, Yaping; Wang, Tingting; Shuai, Qin; Chen, Nana; Gai, Junyi; Li, Yan
2017-01-01
High transformation efficiency is a prerequisite for study of gene function and molecular breeding. Agrobacterium tumefaciens -mediated transformation is a preferred method in many plants. However, the transformation efficiency in soybean is still low. The objective of this study is to optimize Agrobacterium -mediated transformation in soybean by improving the infection efficiency of Agrobacterium and regeneration efficiency of explants. Firstly, four factors affecting Agrobacterium infection efficiency were investigated by estimation of the rate of GUS transient expression in soybean cotyledonary explants, including Agrobacterium concentrations, soybean explants, Agrobacterium suspension medium, and co-cultivation time. The results showed that an infection efficiency of over 96% was achieved by collecting the Agrobacterium at a concentration of OD 650 = 0.6, then using an Agrobacterium suspension medium containing 154.2 mg/L dithiothreitol to infect the half-seed cotyledonary explants (from mature seeds imbibed for 1 day), and co-cultured them for 5 days. The Agrobacterium infection efficiencies for soybean varieties Jack Purple and Tianlong 1 were higher than the other six varieties. Secondly, the rates of shoot elongation were compared among six different concentration combinations of gibberellic acid (GA 3 ) and indole-3-acetic acid (IAA). The shoot elongation rate of 34 and 26% was achieved when using the combination of 1.0 mg/L GA 3 and 0.1 mg/L IAA for Jack Purple and Tianlong 1, respectively. This rate was higher than the other five concentration combinations of GA 3 and IAA, with an 18 and 11% increase over the original laboratory protocol (a combination of 0.5 mg/L GA 3 and 0.1 mg/L IAA), respectively. The transformation efficiency was 7 and 10% for Jack Purple and Tianlong 1 at this optimized hormone concentration combination, respectively, which was 2 and 6% higher than the original protocol, respectively. Finally, GUS histochemical staining, PCR, herbicide (glufosinate) painting, and QuickStix Kit for Liberty Link ( bar ) were used to verify the positive transgenic plants, and absolute quantification PCR confirmed the exogenous gene existed as one to three copies in the soybean genome. This study provides an improved protocol for Agrobacterium -mediated transformation in soybean and a useful reference to improve the transformation efficiency in other plant species.
Disc piezoelectric ceramic transformers.
Erhart, Jirií; Půlpán, Petr; Doleček, Roman; Psota, Pavel; Lédl, Vít
2013-08-01
In this contribution, we present our study on disc-shaped and homogeneously poled piezoelectric ceramic transformers working in planar-extensional vibration modes. Transformers are designed with electrodes divided into wedge, axisymmetrical ring-dot, moonie, smile, or yin-yang segments. Transformation ratio, efficiency, and input and output impedances were measured for low-power signals. Transformer efficiency and transformation ratio were measured as a function of frequency and impedance load in the secondary circuit. Optimum impedance for the maximum efficiency has been found. Maximum efficiency and no-load transformation ratio can reach almost 100% and 52 for the fundamental resonance of ring-dot transformers and 98% and 67 for the second resonance of 2-segment wedge transformers. Maximum efficiency was reached at optimum impedance, which is in the range from 500 Ω to 10 kΩ, depending on the electrode pattern and size. Fundamental vibration mode and its overtones were further studied using frequency-modulated digital holographic interferometry and by the finite element method. Complementary information has been obtained by the infrared camera visualization of surface temperature profiles at higher driving power.
Optimization of Agrobacterium-Mediated Transformation in Soybean
Li, Shuxuan; Cong, Yahui; Liu, Yaping; Wang, Tingting; Shuai, Qin; Chen, Nana; Gai, Junyi; Li, Yan
2017-01-01
High transformation efficiency is a prerequisite for study of gene function and molecular breeding. Agrobacterium tumefaciens-mediated transformation is a preferred method in many plants. However, the transformation efficiency in soybean is still low. The objective of this study is to optimize Agrobacterium-mediated transformation in soybean by improving the infection efficiency of Agrobacterium and regeneration efficiency of explants. Firstly, four factors affecting Agrobacterium infection efficiency were investigated by estimation of the rate of GUS transient expression in soybean cotyledonary explants, including Agrobacterium concentrations, soybean explants, Agrobacterium suspension medium, and co-cultivation time. The results showed that an infection efficiency of over 96% was achieved by collecting the Agrobacterium at a concentration of OD650 = 0.6, then using an Agrobacterium suspension medium containing 154.2 mg/L dithiothreitol to infect the half-seed cotyledonary explants (from mature seeds imbibed for 1 day), and co-cultured them for 5 days. The Agrobacterium infection efficiencies for soybean varieties Jack Purple and Tianlong 1 were higher than the other six varieties. Secondly, the rates of shoot elongation were compared among six different concentration combinations of gibberellic acid (GA3) and indole-3-acetic acid (IAA). The shoot elongation rate of 34 and 26% was achieved when using the combination of 1.0 mg/L GA3 and 0.1 mg/L IAA for Jack Purple and Tianlong 1, respectively. This rate was higher than the other five concentration combinations of GA3 and IAA, with an 18 and 11% increase over the original laboratory protocol (a combination of 0.5 mg/L GA3 and 0.1 mg/L IAA), respectively. The transformation efficiency was 7 and 10% for Jack Purple and Tianlong 1 at this optimized hormone concentration combination, respectively, which was 2 and 6% higher than the original protocol, respectively. Finally, GUS histochemical staining, PCR, herbicide (glufosinate) painting, and QuickStix Kit for Liberty Link (bar) were used to verify the positive transgenic plants, and absolute quantification PCR confirmed the exogenous gene existed as one to three copies in the soybean genome. This study provides an improved protocol for Agrobacterium-mediated transformation in soybean and a useful reference to improve the transformation efficiency in other plant species. PMID:28286512
How to harvest efficient laser from solar light
NASA Astrophysics Data System (ADS)
Zhao, Changming; Guan, Zhe; Zhang, Haiyang
2018-02-01
Solar Pumped Solid State Lasers (SPSSL) is a kind of solid state lasers that can transform solar light into laser directly, with the advantages of least energy transform procedure, higher energy transform efficiency, simpler structure, higher reliability, and longer lifetime, which is suitable for use in unmanned space system, for solar light is the only form of energy source in space. In order to increase the output power and improve the efficiency of SPSSL, we conducted intensive studies on the suitable laser material selection for solar pump, high efficiency/large aperture focusing optical system, the optimization of concave cavity as the second focusing system, laser material bonding and surface processing. Using bonded and grooved Nd:YAG rod as laser material, large aperture Fresnel lens as the first stage focusing element, concave cavity as the second stage focusing element, we finally got 32.1W/m2 collection efficiency, which is the highest collection efficiency in the world up to now.
Wang, Bo; Yu, Jianping
2015-01-01
Restriction digestion of foreign DNA is one of the key biological barriers against genetic transformation in microorganisms. To establish a high-efficiency transformation protocol in the model cyanobacterium, Synechocystis sp. strain PCC 6803 (Synechocystis 6803), we investigated the effects of premethylation of foreign DNA on the integrative transformation of this strain. In this study, two type II methyltransferase-encoding genes, i.e., sll0729 (gene M) and slr0214 (gene C), were cloned from the chromosome of Synechocystis 6803 and expressed in Escherichia coli harboring an integration plasmid. After premethylation treatment in E. coli, the integration plasmid was extracted and used for transformation of Synechocystis 6803. The results showed that although expression of methyltransferase M had little impact on the transformation of Synechocystis 6803, expression of methyltransferase C resulted in 11- to 161-fold-higher efficiency in the subsequent integrative transformation of Synechocystis 6803. Effective expression of methyltransferase C, which could be achieved by optimizing the 5′ untranslated region, was critical to efficient premethylation of the donor DNA and thus high transformation efficiency in Synechocystis 6803. Since premethylating foreign DNA prior to transforming Synechocystis avoids changing the host genetic background, the study thus provides an improved method for high-efficiency integrative transformation of Synechocystis 6803. PMID:26452551
High Efficiency Transformation of Cultured Tobacco Cells 1
An, Gynheung
1985-01-01
Tobacco calli were transformed at levels up to 50% by cocultivation of tobacco cultured cells with Agrobacterium tumefaciens harboring the binary transfer-DNA vector, pGA472, containing a kanamycin resistance marker. Transformation frequency was dependent on the physiological state of the tobacco cells, the nature of Agrobacterium strain and, less so, on the expression of the vir genes of the tumor-inducing plasmid. Maximum transformation frequency was obtained with exponentially growing plant cells, suggesting that rapid growth of plant cells is an essental factor for efficient transformation of higher plants. Images Fig. 1 PMID:16664453
Developing a reversible rapid coordinate transformation model for the cylindrical projection
NASA Astrophysics Data System (ADS)
Ye, Si-jing; Yan, Tai-lai; Yue, Yan-li; Lin, Wei-yan; Li, Lin; Yao, Xiao-chuang; Mu, Qin-yun; Li, Yong-qin; Zhu, De-hai
2016-04-01
Numerical models are widely used for coordinate transformations. However, in most numerical models, polynomials are generated to approximate "true" geographic coordinates or plane coordinates, and one polynomial is hard to make simultaneously appropriate for both forward and inverse transformations. As there is a transformation rule between geographic coordinates and plane coordinates, how accurate and efficient is the calculation of the coordinate transformation if we construct polynomials to approximate the transformation rule instead of "true" coordinates? In addition, is it preferable to compare models using such polynomials with traditional numerical models with even higher exponents? Focusing on cylindrical projection, this paper reports on a grid-based rapid numerical transformation model - a linear rule approximation model (LRA-model) that constructs linear polynomials to approximate the transformation rule and uses a graticule to alleviate error propagation. Our experiments on cylindrical projection transformation between the WGS 84 Geographic Coordinate System (EPSG 4326) and the WGS 84 UTM ZONE 50N Plane Coordinate System (EPSG 32650) with simulated data demonstrate that the LRA-model exhibits high efficiency, high accuracy, and high stability; is simple and easy to use for both forward and inverse transformations; and can be applied to the transformation of a large amount of data with a requirement of high calculation efficiency. Furthermore, the LRA-model exhibits advantages in terms of calculation efficiency, accuracy and stability for coordinate transformations, compared to the widely used hyperbolic transformation model.
Li, D D; Shi, W; Deng, X X
2003-12-01
Valencia sweet orange (Citrus sinensis (L.) Osbeck) calluses were used as explants to develop a new transformation system for citrus mediated by Agrobacterium tumefaciens. Factors affecting Agrobacterium-mediated transformation efficiency included mode of pre-cultivation, temperature of cocultivation and presence of acetosyringone (AS). The highest transformation efficiency was obtained with a 4-day pre-cultivation period in liquid medium. Transformation efficiency was higher when cocultivation was performed for 3 days at 19 degrees C than at 23 or 28 degrees C. Almost no resistant callus was obtained if the cocultivation medium lacked AS. The transformation procedure yielded transgenic Valencia plants containing the pTA29-barnase gene, as verified by PCR amplification and confirmed by Southern blotting. Because male sterility is a common factor leading to seedlessness in citrus cultivars with parthenocarpic characteristics, production of seedless citrus genotypes by Agrobacterium-mediated genetic transformation is a promising alternative to conventional breeding methods.
Beaudette, Kahlia; Hughes, Tia M; Marcus, Jeffrey M
2014-01-01
Germline transformation with transposon vectors is an important tool for insect genetics, but progress in developing transformation protocols for butterflies has been limited by high post-injection ova mortality. Here we present an improved glass injection needle design for injecting butterfly ova that increases survival in three Nymphalid butterfly species. Using the needles to genetically transform the common buckeye butterfly Junonia coenia, the hatch rate for injected Junonia ova was 21.7%, the transformation rate was 3%, and the overall experimental efficiency was 0.327%, a substantial improvement over previous results in other butterfly species. Improved needle design and a higher efficiency of transformation should permit the deployment of transposon-based genetic tools in a broad range of less fecund lepidopteran species.
Ren, Jun; Lee, Haram; Yoo, Seung Min; Yu, Myeong-Sang; Park, Hansoo; Na, Dokyun
2017-04-01
DNA transformation that delivers plasmid DNAs into bacterial cells is fundamental in genetic manipulation to engineer and study bacteria. Developed transformation methods to date are optimized to specific bacterial species for high efficiency. Thus, there is always a demand for simple and species-independent transformation methods. We herein describe the development of a chemico-physical transformation method that combines a rubidium chloride (RbCl)-based chemical method and sepiolite-based physical method, and report its use for the simple and efficient delivery of DNA into various bacterial species. Using this method, the best transformation efficiency for Escherichia coli DH5α was 4.3×10 6 CFU/μg of pUC19 plasmid, which is higher than or comparable to the reported transformation efficiencies to date. This method also allowed the introduction of plasmid DNAs into Bacillus subtilis (5.7×10 3 CFU/μg of pSEVA3b67Rb), Bacillus megaterium (2.5×10 3 CFU/μg of pSPAsp-hp), Lactococcus lactis subsp. lactis (1.0×10 2 CFU/μg of pTRKH3-ermGFP), and Lactococcus lactis subsp. cremoris (2.2×10 2 CFU/μg of pMSP3535VA). Remarkably, even when the conventional chemical and physical methods failed to generate transformed cells in Bacillus sp. and Enterococcus faecalis, E. malodoratus and E. mundtii, our combined method showed a significant transformation efficiency (2.4×10 4 , 4.5×10 2 , 2×10 1 , and 0.5×10 1 CFU/μg of plasmid DNA). Based on our results, we anticipate that our simple and efficient transformation method should prove usefulness for introducing DNA into various bacterial species without complicated optimization of parameters affecting DNA entry into the cell. Copyright © 2017. Published by Elsevier B.V.
Iida, Asako; Yamashita, Toshiya; Yamada, Yasuyuki; Morikawa, Hiromichi
1991-01-01
Plasmid DNA pB1221 harboring β-glucuronidase gene was delivered to synchronized cultured tobacco (Nicotiana tabacum L. cv Bright Yellow-2) cells of different cell cycle stages by a pneumatic particle gun. The cells bombarded at M and G2 phases gave 4 to 6 times higher transformation efficiency than those bombarded at the S and G1 phases. ImagesFigure 2 PMID:16668589
Besser, Daniel; Bromberg, Jacqueline F.; Darnell, James E.; Hanafusa, Hidesaburo
1999-01-01
The receptor tyrosine kinase Eyk, a member of the Axl/Tyro3 subfamily, activates the STAT pathway and transforms cells when constitutively activated. Here, we compared the potentials of the intracellular domains of Eyk molecules derived from c-Eyk and v-Eyk to transform rat 3Y1 fibroblasts. The v-Eyk molecule induced higher numbers of transformants in soft agar and stronger activation of Stat3; levels of Stat1 activation by the two Eyk molecules were similar. A mutation in the sequence Y933VPL, present in c-Eyk, to the v-Eyk sequence Y933VPQ led to increased activation of Stat3 and increased transformation efficiency. However, altering another sequence, Y862VNT, present in both Eyk molecules to F862VNT markedly decreased transformation without impairing Stat3 activation. These results indicate that activation of Stat3 enhances transformation efficiency and cooperates with another pathway to induce transformation. PMID:9891073
Precise and fast spatial-frequency analysis using the iterative local Fourier transform.
Lee, Sukmock; Choi, Heejoo; Kim, Dae Wook
2016-09-19
The use of the discrete Fourier transform has decreased since the introduction of the fast Fourier transform (fFT), which is a numerically efficient computing process. This paper presents the iterative local Fourier transform (ilFT), a set of new processing algorithms that iteratively apply the discrete Fourier transform within a local and optimal frequency domain. The new technique achieves 210 times higher frequency resolution than the fFT within a comparable computation time. The method's superb computing efficiency, high resolution, spectrum zoom-in capability, and overall performance are evaluated and compared to other advanced high-resolution Fourier transform techniques, such as the fFT combined with several fitting methods. The effectiveness of the ilFT is demonstrated through the data analysis of a set of Talbot self-images (1280 × 1024 pixels) obtained with an experimental setup using grating in a diverging beam produced by a coherent point source.
Leveraging gigawatt potentials by smart heat-pump technologies using ionic liquids.
Wasserscheid, Peter; Seiler, Matthias
2011-04-18
One of the greatest challenges to science in the 21 st century is the development of efficient energy production, storage, and transformation systems with minimal ecological footprints. Due to the lack of efficient heat-transformation technologies, industries around the world currently waste energy in the gigawatt range at low temperatures (40-80 °C). These energy potentials can be unlocked or used more efficiently through a new generation of smart heat pumps operating with novel ionic liquid (IL)-based working pairs. The new technology is expected to allow revolutionary technical progress in heat-transformation devices, for example, significantly higher potential efficiencies, lower specific investments, and broader possibilities to incorporate waste energy from renewable sources. Furthermore, due to drastically reduced corrosion rates and excellent thermal stabilities of the new, IL-based working pairs, the high driving temperatures necessary for multi-effect cycles such as double- or triple-effect absorption chillers, can also be realized. The details of this novel and innovative heat-transformation technology are described. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Frequency-dependent ultrasound-induced transformation in E. coli.
Deeks, Jeremy; Windmill, James; Agbeze-Onuma, Maduka; Kalin, Robert M; Argondizza, Peter; Knapp, Charles W
2014-12-01
Ultrasound-enhanced gene transfer (UEGT) is continuing to gain interest across many disciplines; however, very few studies investigate UEGT efficiency across a range of frequencies. Using a variable frequency generator, UEGT was tested in E. coli at six ultrasonic frequencies. Results indicate frequency can significantly influence UEGT efficiency positively and negatively. A frequency of 61 kHz improved UEGT efficiency by ~70 % higher, but 99 kHz impeded UEGT to an extent worse than no ultrasound exposure. The other four frequencies (26, 133, 174, and 190 kHz) enhanced transformation compared to no ultrasound, but efficiencies did not vary. The influence of frequency on UEGT efficiency was observed across a range of operating frequencies. It is plausible that frequency-dependent dynamics of mechanical and chemical energies released during cavitational-bubble collapse (CBC) are responsible for observed UEGT efficiencies.
Nai, Y S; Lee, M R; Kim, S; Lee, S J; Kim, J C; Yang, Y T; Kim, J S
2017-09-01
Agrobacterium tumefaciens-mediated transformation (AtMT) is an effective method for generation of entomopathogenic Beauveria bassiana transformants. However, some strains grow on the selective medium containing hygromycin B (HygB), which reduces the selection efficiency of the putative transformants. In this work, a relationship between HygB resistance gene promoter and AtMT efficiency was investigated to improve the transformant selection. Ten B. bassiana isolates were grown on 800 μg ml -1 HygB medium, but only JEF-006, -007 and -013 showed susceptibility to the antibiotics. Particularly, JEF-007 showed the most dose-dependent susceptibility. Two different Ti-Plasmids, pCeg (gpdA promoter based) and pCambia-egfp (CaMV 35S promoter based), were constructed to evaluate the promoters on the expression of HygB resistance gene (hph) at 100, 150 and 200 μg ml -1 HygB medium. Eight days after the transformation, wild type, AtMT/pCeg and AtMT/pCambia-egfp colonies were observed on 100 μg ml -1 HygB, but significantly larger numbers of colonies were counted on AtMT/pCeg plates. At higher HygB concentration (150 μg ml -1 ), only AtMT/pCeg colonies were further observed, but very few colonies were observed on the wild type and AtMT/pCambia-egfp plates. Putative transformants were subjected to PCR, RT-PCR and qRT-PCR to investigate the T-DNA insertion rate and gene expression level. Consequently, >80% of colonies showed successful AtMT transformation, and the hph expression level in AtMT/pCeg colonies was higher than that of AtMT/pCambia-egfp colonies. In the HygB-susceptible B. bassianaJEF-007, gpdA promoter works better than CaMV 35S promoter in the expression of HygB resistance gene at 150 μg ml -1 HygB, consequently improving the selection efficiency of putative transformants. These results provide useful information for determining AtMT effectiveness in B. bassiana isolates, particularly antibiotic susceptibility and the role of promoters. © 2017 The Society for Applied Microbiology.
Efficient and stable transformation of hop (Humulus lupulus L.) var. Eroica by particle bombardment.
Batista, Dora; Fonseca, Sandra; Serrazina, Susana; Figueiredo, Andreia; Pais, Maria Salomé
2008-07-01
To the best of our knowledge, this is the first accurate and reliable protocol for hop (Humulus lupulus L.) genetic transformation using particle bombardment. Based on the highly productive regeneration system previously developed by us for hop var. Eroica, two efficient transformation protocols were established using petioles and green organogenic nodular clusters (GONCs) bombarded with gusA reporter and hpt selectable genes. A total of 36 hygromycin B-resistant (hyg(r)) plants obtained upon continuous selection were successfully transferred to the greenhouse, and a first generation group of transplanted plants was followed after spending a complete vegetative cycle. PCR analysis showed the presence of one of both transgenes in 25 plants, corresponding to an integration frequency of 69.4% and an overall transformation efficiency of 7.5%. Although all final transformants were GUS negative, the integration frequency of gusA gene was higher than that of hpt gene. Petiole-derived transgenic plants showed a higher co-integration rate of 76.9%. Real-time PCR analysis confirmed co-integration in 86% of the plants tested and its stability until the first generation, and identified positive plants amongst those previously assessed as hpt (+) only by conventional PCR. Our results suggest that the integration frequencies presented here, as well as those of others, may have been underestimated, and that PCR results should be taken with precaution not only for false positives, but also for false negatives. The protocols here described could be very useful for future introduction of metabolic or resistance traits in hop cultivars even if slight modifications for other genotypes are needed.
Dong, Hao; Bi, Jun; Xia, Guang-Li; Zhou, Xun-Bo; Chen, Yu-Hai
2014-08-01
High-yield winter wheat cultivar Jimai 22 was used to study effects of irrigation and planting patterns on water consumption characteristics and photosynthetic characteristics of winter wheat in field from 2009 to 2011. Three different planting patterns (uniform row, wide-narrow row and furrow) and four irrigation schedules (W0, no irrigation; W1, irrigation at jointing stage; W2, irrigations at jointing and anthesis stages; W3, irrigation at jointing, anthesis and milking stages. Each irrigation rate was 60 mm) were designed in the experiment. Results showed that, with the increasing of irrigation amount, flag leaf area, net photosynthesis rate, maximum photochemical efficiency and actual light transformation efficiency at late growth stages of winter wheat increased. Compared with W0 treatment, the other irrigation treatments had higher grain yields, but lower water use efficiencies. Under the same irrigation condition, the flag leaf net photosynthesis, maximum photochemical efficiency and actual light transformation efficiency were much higher in furrow pattern. Grain yields of winter wheat under furrow pattern and W2 treatment were significantly higher than that of the other treatments. Taking grain yield and WUE into consideration, furrow pattern combined with irrigation at jointing and anthesis stages might be the optimal water-saving and planting mode for the winter wheat production in North China Plain.
Strategies of Higher Education Institutions Development in Great Britain
ERIC Educational Resources Information Center
Komochkova, Olga
2015-01-01
The current stage of higher education sector transformation in Ukraine has been indicated. The study of foreign experience, namely of Great Britain, and the use of positive aspects of such experience have been justified. Information sources of Universities UK (Universities UK Strategic Plan 2013-2018; Efficiency and Effectiveness in Higher…
Integrating Magnetics for On-Chip Power: A Perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, CR; Harburg, DV; Qiu, JZ
Integration of efficient power converters requires technology for efficient, high-power on-chip inductors and transformers. Increases in switching frequency, facilitated by advances in circuit designs and silicon or wide-bandgap semiconductors, can enable miniaturization, but only if the magnetics technology works well at the higher frequencies. Technologies, geometries, and scaling of air-core and magnetic-core inductors and transformers are examined, and their potential for integration is discussed. Air-core inductors can use simpler fabrication, and increasing frequency can always be used to decrease their size, but magnetic cores can decrease the required thickness without requiring as high a frequency.
Homeologous plastid DNA transformation in tobacco is mediated by multiple recombination events.
Kavanagh, T A; Thanh, N D; Lao, N T; McGrath, N; Peter, S O; Horváth, E M; Dix, P J; Medgyesy, P
1999-01-01
Efficient plastid transformation has been achieved in Nicotiana tabacum using cloned plastid DNA of Solanum nigrum carrying mutations conferring spectinomycin and streptomycin resistance. The use of the incompletely homologous (homeologous) Solanum plastid DNA as donor resulted in a Nicotiana plastid transformation frequency comparable with that of other experiments where completely homologous plastid DNA was introduced. Physical mapping and nucleotide sequence analysis of the targeted plastid DNA region in the transformants demonstrated efficient site-specific integration of the 7.8-kb Solanum plastid DNA and the exclusion of the vector DNA. The integration of the cloned Solanum plastid DNA into the Nicotiana plastid genome involved multiple recombination events as revealed by the presence of discontinuous tracts of Solanum-specific sequences that were interspersed between Nicotiana-specific markers. Marked position effects resulted in very frequent cointegration of the nonselected peripheral donor markers located adjacent to the vector DNA. Data presented here on the efficiency and features of homeologous plastid DNA recombination are consistent with the existence of an active RecA-mediated, but a diminished mismatch, recombination/repair system in higher-plant plastids. PMID:10388829
Han, Xue; Ma, Shurong; Kong, Xianghui; Takano, Tetsuo; Liu, Shenkui
2013-01-01
Poplar is a model organism for high in vitro regeneration in woody plants. We have chosen a hybrid poplar Populus davidiana Dode × Populus bollena Lauche. By optimizing the Murashige and Skoog medium with (0.3 mg/L) 6-benzylaminopurine and (0.08 mg/L) naphthaleneacetic acid, we have achieved the highest frequency (90%) for shoot regeneration from poplar leaves. It was also important to improve the transformation efficiency of poplar for genetic breeding and other applications. In this study, we found a significant improvement of the transformation frequency by controlling the leaf age. Transformation efficiency was enhanced by optimizing the Agrobacterium concentration (OD600 = 0.8–1.0) and an infection time (20–30 min). According to transmission electron microscopy observations, there were more Agrobacterium invasions in the 30-day-old leaf explants than in 60-day-old and 90-day-old explants. Using the green fluorescent protein (GFP) marker, the expression of MD–GFP fusion proteins in the leaf, shoot, and root of hybrid poplar P. davidiana Dode × P. bollena Lauche was visualized for confirmation of transgene integration. Southern and Northern blot analysis also showed the integration of T-DNA into the genome and gene expression of transgenic plants. Our results suggest that younger leaves had higher transformation efficiency (~30%) than older leaves (10%). PMID:23354481
Khripunov, Sergey; Kobtsev, Sergey; Radnatarov, Daba
2016-01-20
This work presents for the first time to the best of our knowledge a comparative efficiency analysis among various techniques of extra-cavity second harmonic generation (SHG) of continuous-wave single-frequency radiation in nonperiodically poled nonlinear crystals within a broad range of power levels. Efficiency of nonlinear radiation transformation at powers from 1 W to 10 kW was studied in three different configurations: with an external power-enhancement cavity and without the cavity in the case of single and double radiation pass through a nonlinear crystal. It is demonstrated that at power levels exceeding 1 kW, the efficiencies of methods with and without external power-enhancement cavities become comparable, whereas at even higher powers, SHG by a single or double pass through a nonlinear crystal becomes preferable because of the relatively high efficiency of nonlinear transformation and fairly simple implementation.
Learning to represent spatial transformations with factored higher-order Boltzmann machines.
Memisevic, Roland; Hinton, Geoffrey E
2010-06-01
To allow the hidden units of a restricted Boltzmann machine to model the transformation between two successive images, Memisevic and Hinton (2007) introduced three-way multiplicative interactions that use the intensity of a pixel in the first image as a multiplicative gain on a learned, symmetric weight between a pixel in the second image and a hidden unit. This creates cubically many parameters, which form a three-dimensional interaction tensor. We describe a low-rank approximation to this interaction tensor that uses a sum of factors, each of which is a three-way outer product. This approximation allows efficient learning of transformations between larger image patches. Since each factor can be viewed as an image filter, the model as a whole learns optimal filter pairs for efficiently representing transformations. We demonstrate the learning of optimal filter pairs from various synthetic and real image sequences. We also show how learning about image transformations allows the model to perform a simple visual analogy task, and we show how a completely unsupervised network trained on transformations perceives multiple motions of transparent dot patterns in the same way as humans.
A Silica-Supported Iron Oxide Catalyst Capable of Activating Hydrogen Peroxide at Neutral pH Values
Pham, Anh Le-Tuan; Lee, Changha; Doyle, Fiona M.; Sedlak, David L.
2009-01-01
Iron oxides catalyze the conversion of hydrogen peroxide (H2O2) into oxidants capable of transforming recalcitrant contaminants. Unfortunately, the process is relatively inefficient at circumneutral pH values due to competing reactions that decompose H2O2 without producing oxidants. Silica- and alumina-containing iron oxides prepared by sol-gel processing of aqueous solutions containing Fe(ClO4)3, AlCl3 and tetraethyl orthosilicate efficiently catalyzed the decomposition of H2O2 into oxidants capable of transforming phenol at circumneutral pH values. Relative to hematite, goethite and amorphous FeOOH, the silica-iron oxide catalyst exhibited a stoichiometric efficiency, defined as the number of moles of phenol transformed per mole of H2O2 consumed, that was 10 to 40 times higher than that of the iron oxides. The silica-alumina-iron oxide catalyst had a stoichiometric efficiency that was 50 to 80 times higher than that of the iron oxides. The significant enhancement in oxidant production is attributable to the interaction of Fe with Al and Si in the mixed oxides, which alters the surface redox processes, favoring the production of strong oxidants during H2O2 decomposition. PMID:19943668
An optical Fourier transform coprocessor with direct phase determination.
Macfaden, Alexander J; Gordon, George S D; Wilkinson, Timothy D
2017-10-20
The Fourier transform is a ubiquitous mathematical operation which arises naturally in optics. We propose and demonstrate a practical method to optically evaluate a complex-to-complex discrete Fourier transform. By implementing the Fourier transform optically we can overcome the limiting O(nlogn) complexity of fast Fourier transform algorithms. Efficiently extracting the phase from the well-known optical Fourier transform is challenging. By appropriately decomposing the input and exploiting symmetries of the Fourier transform we are able to determine the phase directly from straightforward intensity measurements, creating an optical Fourier transform with O(n) apparent complexity. Performing larger optical Fourier transforms requires higher resolution spatial light modulators, but the execution time remains unchanged. This method could unlock the potential of the optical Fourier transform to permit 2D complex-to-complex discrete Fourier transforms with a performance that is currently untenable, with applications across information processing and computational physics.
Sogutmaz Ozdemir, Bahar; Budak, Hikmet
2018-01-01
Brachypodium distachyon has recently emerged as a model plant species for the grass family (Poaceae) that includes major cereal crops and forage grasses. One of the important traits of a model species is its capacity to be transformed and ease of growing both in tissue culture and in greenhouse conditions. Hence, plant transformation technology is crucial for improvements in agricultural studies, both for the study of new genes and in the production of new transgenic plant species. In this chapter, we review an efficient tissue culture and two different transformation systems for Brachypodium using most commonly preferred gene transfer techniques in plant species, microprojectile bombardment method (biolistics) and Agrobacterium-mediated transformation.In plant transformation studies, frequently used explant materials are immature embryos due to their higher transformation efficiencies and regeneration capacity. However, mature embryos are available throughout the year in contrast to immature embryos. We explain a tissue culture protocol for Brachypodium using mature embryos with the selected inbred lines from our collection. Embryogenic calluses obtained from mature embryos are used to transform Brachypodium with both plant transformation techniques that are revised according to previously studied protocols applied in the grasses, such as applying vacuum infiltration, different wounding effects, modification in inoculation and cocultivation steps or optimization of bombardment parameters.
Bar piezoelectric ceramic transformers.
Erhart, Jiří; Pulpan, Půlpán; Rusin, Luboš
2013-07-01
Bar-shaped piezoelectric ceramic transformers (PTs) working in the longitudinal vibration mode (k31 mode) were studied. Two types of the transformer were designed--one with the electrode divided into two segments of different length, and one with the electrodes divided into three symmetrical segments. Parameters of studied transformers such as efficiency, transformation ratio, and input and output impedances were measured. An analytical model was developed for PT parameter calculation for both two- and three-segment PTs. Neither type of bar PT exhibited very high efficiency (maximum 72% for three-segment PT design) at a relatively high transformation ratio (it is 4 for two-segment PT and 2 for three-segment PT at the fundamental resonance mode). The optimum resistive loads were 20 and 10 kΩ for two- and three-segment PT designs for the fundamental resonance, respectively, and about one order of magnitude smaller for the higher overtone (i.e., 2 kΩ and 500 Ω, respectively). The no-load transformation ratio was less than 27 (maximum for two-segment electrode PT design). The optimum input electrode aspect ratios (0.48 for three-segment PT and 0.63 for two-segment PT) were calculated numerically under no-load conditions.
Plastid transformation for Rubisco engineering and protocols for assessing expression.
Whitney, Spencer M; Sharwood, Robert E
2014-01-01
The assimilation of CO2 within chloroplasts is catalyzed by the bi-functional enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase, Rubisco. Within higher plants the Rubisco large subunit gene, rbcL, is encoded in the plastid genome, while the Rubisco small subunit gene, RbcS is coded in the nucleus by a multi-gene family. Rubisco is considered a poor catalyst due to its slow turnover rate and its additional fixation of O2 that can result in wasteful loss of carbon through the energy requiring photorespiratory cycle. Improving the carboxylation efficiency and CO2/O2 selectivity of Rubisco within higher plants has been a long-term goal which has been greatly advanced in recent times using plastid transformation techniques. Here we present experimental methodologies for efficiently engineering Rubisco in the plastids of a tobacco master-line and analyzing leaf Rubisco content.
Cui, Yulin; Zhao, Jialin; Hou, Shichang; Qin, Song
2016-05-01
On the basis of fundamental genetic transformation technologies, the goal of this study was to optimize Tetraselmis subcordiformis chloroplast transformation through the use of endogenous regulators. The genes rrn16S, rbcL, psbA, and psbC are commonly highly expressed in chloroplasts, and the regulators of these genes are often used in chloroplast transformation. For lack of a known chloroplast genome sequence, the genome-walking method was used here to obtain full sequences of T. subcordiformis endogenous regulators. The resulting regulators, including three promoters, two terminators, and a ribosome combination sequence, were inserted into the previously constructed plasmid pPSC-R, with the egfp gene included as a reporter gene, and five chloroplast expression vectors prepared. These vectors were successfully transformed into T. subcordiformis by particle bombardment and the efficiency of each vector tested by assessing EGFP fluorescence via microscopy. The results showed that these vectors exhibited higher efficiency than the former vector pPSC-G carrying exogenous regulators, and the vector pRFA with Prrn, psbA-5'RE, and TpsbA showed the highest efficiency. This research provides a set of effective endogenous regulators for T. subcordiformis and will facilitate future fundamental studies of this alga.
Model based analysis of piezoelectric transformers.
Hemsel, T; Priya, S
2006-12-22
Piezoelectric transformers are increasingly getting popular in the electrical devices owing to several advantages such as small size, high efficiency, no electromagnetic noise and non-flammable. In addition to the conventional applications such as ballast for back light inverter in notebook computers, camera flash, and fuel ignition several new applications have emerged such as AC/DC converter, battery charger and automobile lighting. These new applications demand high power density and wide range of voltage gain. Currently, the transformer power density is limited to 40 W/cm(3) obtained at low voltage gain. The purpose of this study was to investigate a transformer design that has the potential of providing higher power density and wider range of voltage gain. The new transformer design utilizes radial mode both at the input and output port and has the unidirectional polarization in the ceramics. This design was found to provide 30 W power with an efficiency of 98% and 30 degrees C temperature rise from the room temperature. An electro-mechanical equivalent circuit model was developed to describe the characteristics of the piezoelectric transformer. The model was found to successfully predict the characteristics of the transformer. Excellent matching was found between the computed and experimental results. The results of this study will allow to deterministically design unipoled piezoelectric transformers with specified performance. It is expected that in near future the unipoled transformer will gain significant importance in various electrical components.
Volume and Mass Estimation of Three-Phase High Power Transformers for Space Applications
NASA Technical Reports Server (NTRS)
Kimnach, Greg L.
2004-01-01
Spacecraft historically have had sub-1kW(sub e), electrical requirements for GN&C, science, and communications: Galileo at 600W(sub e), and Cassini at 900W(sub e), for example. Because most missions have had the same order of magnitude power requirements, the Power Distribution Systems (PDS) use existing, space-qualified technology and are DC. As science payload and mission duration requirements increase, however, the required electrical power increases. Subsequently, this requires a change from a passive energy conversion (solar arrays and batteries) to dynamic (alternator, solar dynamic, etc.), because dynamic conversion has higher thermal and conversion efficiencies, has higher power densities, and scales more readily to higher power levels. Furthermore, increased power requirements and physical distribution lengths are best served with high-voltage, multi-phase AC to maintain distribution efficiency and minimize voltage drops. The generated AC-voltage must be stepped-up (or down) to interface with various subsystems or electrical hardware. Part of the trade-space design for AC distribution systems is volume and mass estimation of high-power transformers. The volume and mass are functions of the power rating, operating frequency, the ambient and allowable temperature rise, the types and amount of heat transfer available, the core material and shape, the required flux density in a core, the maximum current density, etc. McLyman has tabulated the performance of a number of transformers cores and derived a "cookbook" methodology to determine the volume of transformers, whereas Schawrze had derived an empirical method to estimate the mass of single-phase transformers. Based on the work of McLyman and Schwarze, it is the intent herein to derive an empirical solution to the volume and mass estimation of three-phase, laminated EI-core power transformers, having radiated and conducted heat transfer mechanisms available. Estimation of the mounting hardware, connectors, etc. is not included.
Konishi, Tatsunori; Harata, Masahiko
2014-01-01
We show here that the transformation efficiency of Saccharomyces cerevisiae is improved by altering carbon sources in media for pre-culturing cells prior to the transformation reactions. The transformation efficiency was increased up to sixfold by combination with existing transformation protocols. This method is widely applicable for yeast research since efficient transformation can be performed easily without changing any of the other procedures in the transformation.
Why Lean doesn't work for everyone.
Kaplan, Gary S; Patterson, Sarah H; Ching, Joan M; Blackmore, C Craig
2014-12-01
Popularisation of Lean in healthcare has led to emphasis on Lean quality improvement tools in isolation, with inconsistent results. We argue that delivery of safer, more efficient, and higher quality-patient focused care requires organisational transformation of which the Lean toolkit is only one component. To successfully facilitate system transformation toward higher quality care at lower cost, Lean tools must be part of a comprehensive management system, within a supportive institutional culture, and with committed leadership. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Efficient total synthesis of (S)-14-azacamptothecin.
Liu, Guan-Sai; Yao, Yuan-Shan; Xu, Peng; Wang, Shaozhong; Yao, Zhu-Jun
2010-06-01
An efficient total synthesis of (S)-14-azacamptothecin has been accomplished in 10 steps and 56% overall yield from 5H-pyrano[4,3-d]pyrimidine 8. A mild Hendrickson reagent-triggered intramolecular cascade cyclization, a highly enantioselective dihydroxylation, and an efficient palladium-catalyzed transformation of an O-allyl into N-allyl group are the key steps in the synthesis. This work provides a much higher overall yield than the previous achievement and shows sound flexibility for the further applications that will lead to new bioactive analogues.
An efficient laboratory workflow for environmental risk assessment of organic chemicals.
Zhu, Linyan; Santiago-Schübel, Beatrix; Xiao, Hongxia; Thiele, Björn; Zhu, Zhiliang; Qiu, Yanling; Hollert, Henner; Küppers, Stephan
2015-07-01
In this study, we demonstrate a fast and efficient workflow to investigate the transformation mechanism of organic chemicals and evaluate the toxicity of their transformation products (TPs) in laboratory scale. The transformation process of organic chemicals was first simulated by electrochemistry coupled online to mass spectrometry (EC-MS). The simulated reactions were scaled up in a batch EC reactor to receive larger amounts of a reaction mixture. The mixture sample was purified and concentrated by solid phase extraction (SPE) for the further ecotoxicological testing. The combined toxicity of the reaction mixture was evaluated in fish egg test (FET) (Danio rerio) compared to the parent compound. The workflow was verified with carbamazepine (CBZ). By using EC-MS seven primary TPs of CBZ were identified; the degradation mechanism was elucidated and confirmed by comparison to literature. The reaction mixture and one primary product (acridine) showed higher ecotoxicity in fish egg assay with 96 h EC50 values of 1.6 and 1.0 mg L(-1) than CBZ with the value of 60.8 mg L(-1). The results highlight the importance of transformation mechanism study and toxicological effect evaluation for organic chemicals brought into the environment since transformation of them may increase the toxicity. The developed process contributes a fast and efficient laboratory method for the risk assessment of organic chemicals and their TPs. Copyright © 2015 Elsevier Ltd. All rights reserved.
Qian, Yuanchao; Zhong, Lixia; Hou, Yunhua; Qu, Yinbo; Zhong, Yaohua
2016-01-01
The filamentous fungus Trichoderma reesei is a widely used strain for cellulolytic enzyme production. A hypercellulolytic T. reesei variant SN1 was identified in this study and found to be different from the well-known cellulase producers QM9414 and RUT-C30. The cellulose-degrading enzymes of T. reesei SN1 show higher endoglucanase (EG) activity but lower β-glucosidase (BGL) activity than those of the others. A uracil auxotroph strain, SP4, was constructed by pyr4 deletion in SN1 to improve transformation efficiency. The BGL1-encoding gene bgl1 under the control of a modified cbh1 promoter was overexpressed in SP4. A transformant, SPB2, with four additional copies of bgl1 exhibited a 17.1-fold increase in BGL activity and a 30.0% increase in filter paper activity. Saccharification of corncob residues with crude enzyme showed that the glucose yield of SPB2 is 65.0% higher than that of SP4. These results reveal the feasibility of strain improvement through the development of an efficient genetic transformation platform to construct a balanced cellulase system for biomass conversion.
Haldar, Justin P.; Leahy, Richard M.
2013-01-01
This paper presents a novel family of linear transforms that can be applied to data collected from the surface of a 2-sphere in three-dimensional Fourier space. This family of transforms generalizes the previously-proposed Funk-Radon Transform (FRT), which was originally developed for estimating the orientations of white matter fibers in the central nervous system from diffusion magnetic resonance imaging data. The new family of transforms is characterized theoretically, and efficient numerical implementations of the transforms are presented for the case when the measured data is represented in a basis of spherical harmonics. After these general discussions, attention is focused on a particular new transform from this family that we name the Funk-Radon and Cosine Transform (FRACT). Based on theoretical arguments, it is expected that FRACT-based analysis should yield significantly better orientation information (e.g., improved accuracy and higher angular resolution) than FRT-based analysis, while maintaining the strong characterizability and computational efficiency of the FRT. Simulations are used to confirm these theoretical characteristics, and the practical significance of the proposed approach is illustrated with real diffusion weighted MRI brain data. These experiments demonstrate that, in addition to having strong theoretical characteristics, the proposed approach can outperform existing state-of-the-art orientation estimation methods with respect to measures such as angular resolution and robustness to noise and modeling errors. PMID:23353603
Bilayer free-standing beam splitter for Fourier transform infrared spectrometry.
Rowell, N L; Wang, E A
1996-06-01
We describe the design, fabrication, testing, and performance of a two-layer free-standing beam splitter for use in far-infrared Fourier transform infrared spectrometers. This bilayer beam splitter, consisting of a low-index polymer layer in combination with a high-index semiconductor layer, has an efficiency that is higher than that of the best combination of four single-layer Mylar beam splitters currently in use for spectrometry from 50 to 550 cm(-1).
Trimethylamine (TMA) biofiltration and transformation in biofilters.
Ding, Ying; Shi, Ji-Yan; Wu, Wei-Xiang; Yin, Jun; Chen, Ying-Xu
2007-05-08
Bioremoval of trimethylamine (TMA) in two three-stage biofilters packed with compost (A) and sludge (B), respectively, was investigated. Both biofilters were operated with an influent TMA concentration of 19.2-57.2mgm(-3) for 67 days. Results showed that all of the inlet TMA could be removed by both biofilters. However, removal efficiency and transformation of TMA in each section of both biofilters was different. In the Introduction section, TMA removal efficiency and maximum elimination capacity of the compost medium were greater than those of sludge medium under higher inlet TMA concentration. In comparison with biofilter A, considerably higher NH(3) concentrations in effluent of all three sections in biofilter B were observed after day 19. Although, NO(2)(-)-N concentration in each section of biofilter A was relatively lower, NO(3)(-)-N content in each section of biofilter A increased after day 26, especially in the Materials and method section which increased remarkably due to a lesser amount of TMA and higher ammonia oxidation and nitrification in compost medium. In contrast, neither NO(2)(-)-N nor NO(3)(-)-N were detected in either section of biofilter B at any time throughout the course of the experiment. The cumulative results indicated that compost is more favorable for the growth of TMA-degrading and nitrifying bacteria as compared to the sludge and could be a highly suitable packing material for biodegradation and transformation of TMA.
Belide, Srinivas; Vanhercke, Thomas; Petrie, James Robertson; Singh, Surinder Pal
2017-01-01
Sorghum ( Sorghum bicolor L.) is one of the world's most important cereal crops grown for multiple applications and has been identified as a potential biofuel crop. Despite several decades of study, sorghum has been widely considered as a recalcitrant major crop for transformation due to accumulation of phenolic compounds, lack of model genotypes, low regeneration frequency and loss of regeneration potential through sub-cultures. Among different explants used for genetic transformation of sorghum, immature embryos are ideal over other explants. However, the continuous supply of quality immature embryos for transformation is labour intensive and expensive. In addition, transformation efficiencies are also influenced by environmental conditions (light and temperature). Despite these challenges, immature embryos remain the predominant choice because of their success rate and also due to non-availability of other dependable explants without compromising the transformation efficiency. We report here a robust genetic transformation method for sorghum (Tx430) using differentiating embryogenic calli (DEC) with nodular structures induced from immature embryos and maintained for more than a year without losing regeneration potential on modified MS media. The addition of lipoic acid (LA) to callus induction media along with optimized growth regulators increased callus induction frequency from 61.3 ± 3.2 to 79 ± 6.5% from immature embryos (1.5-2.0 mm in length) isolated 12-15 days after pollination. Similarly, the regeneration efficiency and the number of shoots from DEC tissue was enhanced by LA. The optimized regeneration system in combination with particle bombardment resulted in an average transformation efficiency (TE) of 27.2 or 46.6% based on the selection strategy, 25% to twofold higher TE than published reports in Tx430. Up to 100% putative transgenic shoots were positive for npt - II by PCR and 48% of events had < 3 copies of transgenes as determined by digital droplet PCR. Reproducibility of this method was demonstrated by generating ~ 800 transgenic plants using 10 different gene constructs. This protocol demonstrates significant improvements in both efficiency and ease of use over existing sorghum transformation methods using PDS, also enables quick hypothesis testing in the production of various high value products in sorghum.
Bastaki, Nasmah K.; Cullis, Christopher A.
2014-01-01
Agrobacterium-mediated plant transformation via floral-dip is a widely used technique in the field of plant transformation and has been reported to be successful for many plant species. However, flax (Linum usitatissimum) transformation by floral-dip has not been reported. The goal of this protocol is to establish that Agrobacterium and the floral-dip method can be used to generate transgenic flax. We show that this technique is simple, inexpensive, efficient, and more importantly, gives a higher transformation rate than the current available methods of flax transformation. In summary, inflorescences of flax were dipped in a solution of Agrobacterium carrying a binary vector plasmid (T-DNA fragment plus the Linum Insertion Sequence, LIS-1) for 1 - 2 min. The plants were laid flat on their side for 24 hr. Then, plants were maintained under normal growth conditions until the next treatment. The process of dipping was repeated 2 - 3 times, with approximately 10 - 14 day intervals between dipping. The T1 seeds were collected and germinated on soil. After approximately two weeks, treated progenies were tested by direct PCR; 2 - 3 leaves were used per plant plus the appropriate T-DNA primers. Positive transformants were selected and grown to maturity. The transformation rate was unexpectedly high, with 50 - 60% of the seeds from treated plants being positive transformants. This is a higher transformation rate than those reported for Arabidopsis thaliana and other plant species, using floral-dip transformation. It is also the highest, which has been reported so far, for flax transformation using other methods for transformation. PMID:25549243
Bastaki, Nasmah K; Cullis, Christopher A
2014-12-19
Agrobacterium-mediated plant transformation via floral-dip is a widely used technique in the field of plant transformation and has been reported to be successful for many plant species. However, flax (Linum usitatissimum) transformation by floral-dip has not been reported. The goal of this protocol is to establish that Agrobacterium and the floral-dip method can be used to generate transgenic flax. We show that this technique is simple, inexpensive, efficient, and more importantly, gives a higher transformation rate than the current available methods of flax transformation. In summary, inflorescences of flax were dipped in a solution of Agrobacterium carrying a binary vector plasmid (T-DNA fragment plus the Linum Insertion Sequence, LIS-1) for 1 - 2 min. The plants were laid flat on their side for 24 hr. Then, plants were maintained under normal growth conditions until the next treatment. The process of dipping was repeated 2 - 3 times, with approximately 10 - 14 day intervals between dipping. The T1 seeds were collected and germinated on soil. After approximately two weeks, treated progenies were tested by direct PCR; 2 - 3 leaves were used per plant plus the appropriate T-DNA primers. Positive transformants were selected and grown to maturity. The transformation rate was unexpectedly high, with 50 - 60% of the seeds from treated plants being positive transformants. This is a higher transformation rate than those reported for Arabidopsis thaliana and other plant species, using floral-dip transformation. It is also the highest, which has been reported so far, for flax transformation using other methods for transformation.
Leong, Colleen G; Boyd, Caroline M; Roush, Kaleb S; Tenente, Ricardo; Lang, Kristine M; Lostroh, C Phoebe
2017-10-01
Natural transformation is the acquisition of new genetic material via the uptake of exogenous DNA by competent bacteria. Acinetobacter baylyi is model for natural transformation. Here we focus on the natural transformation of A. baylyi ATCC 33305 grown in complex media and seek environmental conditions that appreciably affect transformation efficiency. We find that the transformation efficiency for A. baylyi is a resilient characteristic that remains high under most conditions tested. We do find several distinct conditions that alter natural transformation efficiency including addition of succinate, Fe 2+ (ferrous) iron chelation, and substitution of sodium ions with potassium ones. These distinct conditions could be useful to fine tune transformation efficiency for researchers using A. baylyi as a model organism to study natural transformation.
Factors affecting the efficient transformation of Colletotrichum species
Redman, Regina S.; Rodriguez, Rusty J.
1994-01-01
Factors affecting the efficient transformation of Colletotrichum species. Experimental Mycology, 18, 230-246. Twelve isolates representing four species of Colletotrichum were transformed either by enhanced protoplast, restriction enzyme-mediated integration (REMI), or electroporation-mediated protocols. The enhanced protoplast transformation protocol resulted in 100- and 50-fold increases in the transformation efficiencies of Colletotrichum lindemuthianum and C. magna , respectively. REMI transformation involved the use of Hin dIII and vector DNA linearized with HindIII to increase the number of integration events and potential gene disruptions in the fungal genome. Combining the enhanced protoplast and the REMI protocols resulted in a 22-fold increase in the number of hygromycin/nystatin-resistant mutants in C. lindemuthianum . Electroporation-mediated transformation was performed on mycelial fragments and spores of four Colletotrichum species, resulting in efficiencies of up to 1000 transformants/μg DNA. The pHA1.3 vector which confers hygromycin resistance contains telomeric sequences from Fusarium oxysporum , transforms by autonomous replication and genomic integration, and was essential for elevated transformation efficiencies of 100 to 10,000 transformants/μg DNA. Modifications of pHA1.3 occurred during bacterial amplification and post fungal transformation resulting in plasmids capable of significantly elevated transformation efficiencies in C. lindemuthianum.
Enhancing DNA electro-transformation efficiency on a clinical Staphylococcus capitis isolate.
Cui, Bintao; Smooker, Peter M; Rouch, Duncan A; Deighton, Margaret A
2015-02-01
Clinical staphylococcus isolates possess a stronger restriction-modification (RM) barrier than laboratory strains. Clinical isolates are therefore more resistant to acceptance of foreign genetic material than laboratory strains, as their restriction systems more readily recognize and destroy foreign DNA. This stronger barrier consequently restricts genetic studies to a small number of domestic strains that are capable of accepting foreign DNA. In this study, an isolate of Staphylococcus capitis, obtained from the blood of a very low birth-weight baby, was transformed with a shuttle vector, pBT2. Optimal conditions for electro-transformation were as follows: cells were harvested at mid-log phase, electro-competent cells were prepared; cells were pre-treated at 55°C for 1min; 3μg of plasmid DNA was mixed with 70-80μL of competent cells (3-4×10(10)cells/mL) at 20°C in 0.5M sucrose, 10% glycerol; and electroporation was conducted using 2.1kV/cm field strength with a 0.1cm gap. Compared to the conventional method, which involves DNA electroporation of Staphylococcus aureus RN4220 as an intermediate strain to overcome the restriction barrier, our proposed approach exhibits a higher level (3 log10 units) of transformation efficiency. Heat treatment was used to temporarily inactivate the recipient RM barrier. Other important parameters contributing to improved electro-transformation efficiency were growth stage for cell harvesting, the quantity of DNA, the transformation temperature and field strength. The approach described here may facilitate genetic manipulations of this opportunistic pathogen. Copyright © 2014 Elsevier B.V. All rights reserved.
Novel high-frequency, high-power, pulsed oscillator based on a transmission line transformer.
Burdt, R; Curry, R D
2007-07-01
Recent analysis and experiments have demonstrated the potential for transmission line transformers to be employed as compact, high-frequency, high-power, pulsed oscillators with variable rise time, high output impedance, and high operating efficiency. A prototype system was fabricated and tested that generates a damped sinusoidal wave form at a center frequency of 4 MHz into a 200 Omega load, with operating efficiency above 90% and peak power on the order of 10 MW. The initial rise time of the pulse is variable and two experiments were conducted to demonstrate initial rise times of 12 and 3 ns, corresponding to a spectral content from 4-30 and from 4-100 MHz, respectively. A SPICE model has been developed to accurately predict the circuit behavior and scaling laws have been identified to allow for circuit design at higher frequencies and higher peak power. The applications, circuit analysis, test stand, experimental results, circuit modeling, and design of future systems are all discussed.
Transforming fragments into candidates: small becomes big in medicinal chemistry.
de Kloe, Gerdien E; Bailey, David; Leurs, Rob; de Esch, Iwan J P
2009-07-01
Fragment-based drug discovery (FBDD) represents a logical and efficient approach to lead discovery and optimisation. It can draw on structural, biophysical and biochemical data, incorporating a wide range of inputs, from precise mode-of-binding information on specific fragments to wider ranging pharmacophoric screening surveys using traditional HTS approaches. It is truly an enabling technology for the imaginative medicinal chemist. In this review, we analyse a representative set of 23 published FBDD studies that describe how low molecular weight fragments are being identified and efficiently transformed into higher molecular weight drug candidates. FBDD is now becoming warmly endorsed by industry as well as academia and the focus on small interacting molecules is making a big scientific impact.
Content Based Image Retrieval based on Wavelet Transform coefficients distribution
Lamard, Mathieu; Cazuguel, Guy; Quellec, Gwénolé; Bekri, Lynda; Roux, Christian; Cochener, Béatrice
2007-01-01
In this paper we propose a content based image retrieval method for diagnosis aid in medical fields. We characterize images without extracting significant features by using distribution of coefficients obtained by building signatures from the distribution of wavelet transform. The research is carried out by computing signature distances between the query and database images. Several signatures are proposed; they use a model of wavelet coefficient distribution. To enhance results, a weighted distance between signatures is used and an adapted wavelet base is proposed. Retrieval efficiency is given for different databases including a diabetic retinopathy, a mammography and a face database. Results are promising: the retrieval efficiency is higher than 95% for some cases using an optimization process. PMID:18003013
Desfeux, Christine; Clough, Steven J.; Bent, Andrew F.
2000-01-01
The floral-dip method for Agrobacterium-mediated transformation of Arabidopsis allows efficient plant transformation without need for tissue culture. To facilitate use with other plant species, we investigated the mechanisms that underlie this method. In manual outcrossing experiments, application of Agrobacterium tumefaciens to pollen donor plants did not produce any transformed progeny, whereas application of Agrobacterium to pollen recipient plants yielded transformants at a rate of 0.48%. Agrobacterium strains with T-DNA carrying gusA (encoding β-glucuronidase [GUS]) under the control of 35S, LAT52, or ACT11 promoters revealed delivery of GUS activity to developing ovules, whereas no GUS staining of pollen or pollen tubes was observed. Transformants derived from the same seed pod contained independent T-DNA integration events. In Arabidopsis flowers, the gynoecium develops as an open, vase-like structure that fuses to form closed locules roughly 3 d prior to anthesis. In correlation with this fact, we found that the timing of Agrobacterium infection was critical. Transformants were obtained and GUS staining of ovules and embryo sacs was observed only if the Agrobacterium were applied 5 d or more prior to anthesis. A 6-fold higher rate of transformation was obtained with a CRABS-CLAW mutant that maintains an open gynoecium. Our results suggest that ovules are the site of productive transformation in the floral-dip method, and further suggest that Agrobacterium must be delivered to the interior of the developing gynoecium prior to locule closure if efficient transformation is to be achieved. PMID:10889238
Desfeux, C; Clough, S J; Bent, A F
2000-07-01
The floral-dip method for Agrobacterium-mediated transformation of Arabidopsis allows efficient plant transformation without need for tissue culture. To facilitate use with other plant species, we investigated the mechanisms that underlie this method. In manual outcrossing experiments, application of Agrobacterium tumefaciens to pollen donor plants did not produce any transformed progeny, whereas application of Agrobacterium to pollen recipient plants yielded transformants at a rate of 0.48%. Agrobacterium strains with T-DNA carrying gusA (encoding beta-glucuronidase [GUS]) under the control of 35S, LAT52, or ACT11 promoters revealed delivery of GUS activity to developing ovules, whereas no GUS staining of pollen or pollen tubes was observed. Transformants derived from the same seed pod contained independent T-DNA integration events. In Arabidopsis flowers, the gynoecium develops as an open, vase-like structure that fuses to form closed locules roughly 3 d prior to anthesis. In correlation with this fact, we found that the timing of Agrobacterium infection was critical. Transformants were obtained and GUS staining of ovules and embryo sacs was observed only if the Agrobacterium were applied 5 d or more prior to anthesis. A 6-fold higher rate of transformation was obtained with a CRABS-CLAW mutant that maintains an open gynoecium. Our results suggest that ovules are the site of productive transformation in the floral-dip method, and further suggest that Agrobacterium must be delivered to the interior of the developing gynoecium prior to locule closure if efficient transformation is to be achieved.
Electrosprayed chitosan nanoparticles: facile and efficient approach for bacterial transformation
NASA Astrophysics Data System (ADS)
Abyadeh, Morteza; Sadroddiny, Esmaeil; Ebrahimi, Ammar; Esmaeili, Fariba; Landi, Farzaneh Saeedi; Amani, Amir
2017-12-01
A rapid and efficient procedure for DNA transformation is a key prerequisite for successful cloning and genomic studies. While there are efforts to develop a facile method, so far obtained efficiencies for alternative methods have been unsatisfactory (i.e. 105-106 CFU/μg plasmid) compared with conventional method (up to 108 CFU/μg plasmid). In this work, for the first time, we prepared chitosan/pDNA nanoparticles by electrospraying methods to improve transformation process. Electrospray method was used for chitosan/pDNA nanoparticles production to investigate the non-competent bacterial transformation efficiency; besides, the effect of chitosan molecular weight, N/P ratio and nanoparticle size on non-competent bacterial transformation efficiency was evaluated too. The results showed that transformation efficiency increased with decreasing the molecular weight, N/P ratio and nanoparticles size. In addition, transformation efficiency of 1.7 × 108 CFU/μg plasmid was obtained with chitosan molecular weight, N/P ratio and nanoparticles size values of 30 kDa, 1 and 125 nm. Chitosan/pDNA electrosprayed nanoparticles were produced and the effect of molecular weight, N/P and size of nanoparticles on transformation efficiency was evaluated. In total, we present a facile and rapid method for bacterial transformation, which has comparable efficiency with the common method.
Xu, Kedong; Huang, Xiaohui; Wu, Manman; Wang, Yan; Chang, Yunxia; Liu, Kun; Zhang, Ju; Zhang, Yi; Zhang, Fuli; Yi, Liming; Li, Tingting; Wang, Ruiyue; Tan, Guangxuan; Li, Chengwei
2014-01-01
Transient transformation is simpler, more efficient and economical in analyzing protein subcellular localization than stable transformation. Fluorescent fusion proteins were often used in transient transformation to follow the in vivo behavior of proteins. Onion epidermis, which has large, living and transparent cells in a monolayer, is suitable to visualize fluorescent fusion proteins. The often used transient transformation methods included particle bombardment, protoplast transfection and Agrobacterium-mediated transformation. Particle bombardment in onion epidermis was successfully established, however, it was expensive, biolistic equipment dependent and with low transformation efficiency. We developed a highly efficient in planta transient transformation method in onion epidermis by using a special agroinfiltration method, which could be fulfilled within 5 days from the pretreatment of onion bulb to the best time-point for analyzing gene expression. The transformation conditions were optimized to achieve 43.87% transformation efficiency in living onion epidermis. The developed method has advantages in cost, time-consuming, equipment dependency and transformation efficiency in contrast with those methods of particle bombardment in onion epidermal cells, protoplast transfection and Agrobacterium-mediated transient transformation in leaf epidermal cells of other plants. It will facilitate the analysis of protein subcellular localization on a large scale.
Vinoth, S; Gurusaravanan, P; Jayabalan, N
2013-02-01
A simple and efficient protocol for Agrobacterium-mediated genetic transformation of tomato was developed using combination of non-tissue culture and micropropagation systems. Initially, ESAM region of 1-day-old germinated tomato seeds were microinjected for one to five times with Agrobacterium inoculums (OD(600) = 0.2-1.0). The germinated seeds were cocultivated in the MS medium fortified with (0-200 mM) acetosyringone and minimal concentrations of (0-20 mg L(-1)) kanamycin, and the antibiotic concentration was doubled during the second round of selection. Bacterial concentration of OD(600) = 0.6 served as an optimal concentration for infection and the transformation efficiency was significantly higher of about 46.28 %. In another set of experiment, an improved and stable regeneration system was adapted for the explants from the selection medium. Four-day-old double cotyledonary nodal explants were excised from the microinjected seedlings and cultured onto the MS medium supplemented with 1.5 mg L(-1) thidiazuron, 1.5 mg L(-1) indole-3-butyric acid, 30 mg L(-1) kanamycin, and 0-1.5 mg L(-1) adenine sulphate. Maximum of 9 out of 13 micropropagated shoots were shown positive to GUS assay. By this technique, the transformation efficiency was increased from 46.28 to 65.90 %. Thus, this paper reports the successful protocol for the mass production of transformants using microinjection and micropropagation techniques.
Haldar, Justin P; Leahy, Richard M
2013-05-01
This paper presents a novel family of linear transforms that can be applied to data collected from the surface of a 2-sphere in three-dimensional Fourier space. This family of transforms generalizes the previously-proposed Funk-Radon Transform (FRT), which was originally developed for estimating the orientations of white matter fibers in the central nervous system from diffusion magnetic resonance imaging data. The new family of transforms is characterized theoretically, and efficient numerical implementations of the transforms are presented for the case when the measured data is represented in a basis of spherical harmonics. After these general discussions, attention is focused on a particular new transform from this family that we name the Funk-Radon and Cosine Transform (FRACT). Based on theoretical arguments, it is expected that FRACT-based analysis should yield significantly better orientation information (e.g., improved accuracy and higher angular resolution) than FRT-based analysis, while maintaining the strong characterizability and computational efficiency of the FRT. Simulations are used to confirm these theoretical characteristics, and the practical significance of the proposed approach is illustrated with real diffusion weighted MRI brain data. These experiments demonstrate that, in addition to having strong theoretical characteristics, the proposed approach can outperform existing state-of-the-art orientation estimation methods with respect to measures such as angular resolution and robustness to noise and modeling errors. Copyright © 2013 Elsevier Inc. All rights reserved.
Sivanandhan, Ganeshan; Kapil Dev, Gnajothi; Theboral, Jeevaraj; Selvaraj, Natesan; Ganapathi, Andy; Manickavasagam, Markandan
2015-01-01
In the present study, we have established a stable transformation protocol via Agrobacterium tumafacines for the pharmaceutically important Withania somnifera. Six day-old nodal explants were used for 3 day co-cultivation with Agrobacterium tumefaciens strain LBA4404 harbouring the vector pCAMIBA2301. Among the different injury treatments, sonication, vacuum infiltration and their combination treatments tested, a vacuum infiltration for 10 min followed by sonication for 10 sec with A. tumefaciens led to a higher transient GUS expression (84% explants expressing GUS at regenerating sites). In order to improve gene integration, thiol compounds were added to co-cultivation medium. A combined treatment of L-Cys at 100 mg/l, STS at 125 mg/l, DTT at 75 mg/l resulted in a higher GUS expression (90%) in the nodal explants. After 3 days of co-cultivation, the explants were subjected to three selection cycles with increasing concentrations of kanamycin [100 to 115 mg/l]. The integration and expression of gusA gene in T0 and T1 transgenic plants were confirmed by polymerase chain reaction (PCR), and Southern blott analysis. These transformed plants (T0 and T1) were fertile and morphologically normal. From the present investigation, we have achieved a higher transformation efficiency of (10%). Withanolides (withanolide A, withanolide B, withanone and withaferin A) contents of transformed plants (T0 and T1) were marginally higher than control plants. PMID:25927703
ERIC Educational Resources Information Center
Olaskoaga-Larrauri, Jon; Barrenetxea-Ayesta, Miren; Cardona-Rodríguez, Antonio; Mijangos-Del Campo, Juan José; Barandiaran-Galdós, Marta
2016-01-01
The literature on quality management at higher education institutions has for some time been working on the basis of two issues: a) the diversity of ideas as to what "quality" means, which makes it harder to apply the principles of quality management in this context; and b) the idea that this diversity is in some way a response to the…
10 CFR 431.197 - Manufacturer's determination of efficiency for distribution transformers.
Code of Federal Regulations, 2011 CFR
2011-01-01
... distribution transformers. 431.197 Section 431.197 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Distribution Transformers Compliance and Enforcement § 431.197 Manufacturer's determination of efficiency for distribution transformers. When a...
Pandeya, Devendra; Campbell, LeAnne M; Nunes, Eugenia; Lopez-Arredondo, Damar L; Janga, Madhusudhana R; Herrera-Estrella, Luis; Rathore, Keerti S
2017-12-01
This report demonstrates the usefulness of ptxD/phosphite as a selection system that not only provides a highly efficient and simple means to generate transgenic cotton plants, but also helps address many of the concerns related to the use of antibiotic and herbicide resistance genes in the production of transgenic crops. Two of the most popular dominant selectable marker systems for plant transformation are based on either antibiotic or herbicide resistance genes. Due to concerns regarding their safety and in order to stack multiple traits in a single plant, there is a need for alternative selectable marker genes. The ptxD gene, derived from Pseudomonas stutzeri WM88, that confers to cells the ability to convert phosphite (Phi) into orthophosphate (Pi) offers an alternative selectable marker gene as demonstrated for tobacco and maize. Here, we show that the ptxD gene in combination with a protocol based on selection medium containing Phi, as the sole source of phosphorus (P), can serve as an effective and efficient system to select for transformed cells and generate transgenic cotton plants. Fluorescence microscopy examination of the cultures under selection and molecular analyses on the regenerated plants demonstrate the efficacy of the system in recovering cotton transformants following Agrobacterium-mediated transformation. Under the ptxD/Phi selection, an average of 3.43 transgenic events per 100 infected explants were recovered as opposed to only 0.41% recovery when bar/phosphinothricin (PPT) selection was used. The event recovery rates for nptII/kanamycin and hpt/hygromycin systems were 2.88 and 2.47%, respectively. Molecular analysis on regenerated events showed a selection efficiency of ~ 97% under the ptxD/Phi system. Thus, ptxD/Phi has proven to be a very efficient, positive selection system for the generation of transgenic cotton plants with equal or higher transformation efficiencies compared to the commonly used, negative selection systems.
Xu, Kedong; Huang, Xiaohui; Wu, Manman; Wang, Yan; Chang, Yunxia; Liu, Kun; Zhang, Ju; Zhang, Yi; Zhang, Fuli; Yi, Liming; Li, Tingting; Wang, Ruiyue; Tan, Guangxuan; Li, Chengwei
2014-01-01
Transient transformation is simpler, more efficient and economical in analyzing protein subcellular localization than stable transformation. Fluorescent fusion proteins were often used in transient transformation to follow the in vivo behavior of proteins. Onion epidermis, which has large, living and transparent cells in a monolayer, is suitable to visualize fluorescent fusion proteins. The often used transient transformation methods included particle bombardment, protoplast transfection and Agrobacterium-mediated transformation. Particle bombardment in onion epidermis was successfully established, however, it was expensive, biolistic equipment dependent and with low transformation efficiency. We developed a highly efficient in planta transient transformation method in onion epidermis by using a special agroinfiltration method, which could be fulfilled within 5 days from the pretreatment of onion bulb to the best time-point for analyzing gene expression. The transformation conditions were optimized to achieve 43.87% transformation efficiency in living onion epidermis. The developed method has advantages in cost, time-consuming, equipment dependency and transformation efficiency in contrast with those methods of particle bombardment in onion epidermal cells, protoplast transfection and Agrobacterium-mediated transient transformation in leaf epidermal cells of other plants. It will facilitate the analysis of protein subcellular localization on a large scale. PMID:24416168
Heuermann, D; Haas, R
1998-03-01
A versatile plasmid shuttle vector system was constructed, which is useful for genetic complementation of Helicobacter pylori strains or mutants with cloned genes of homologous or heterologous origin. The individual plasmid vectors consist of the minimal essential genetic elements, including an origin of replication for Escherichia coli, a H. pylori-specific replicon originally identified on a small cryptic H. pylori plasmid, an oriT sequence and a multiple cloning site. Shuttle plasmid pHel2 carries a chloramphenicol resistance cassette (catGC) and pHel3 contains a kanamycin resistance gene (aphA-3) as the selectable marker; both are functional in E. coli and H. pylori. The shuttle plasmids were introduced into the H. pylori strain P1 by natural transformation. A efficiency of 7.0 x 10(-7) and 4.7 x 10(-7) transformants per viable recipient was achieved with pHel2 and pHel3, respectively, and both vectors showed stable, autonomous replication in H. pylori. An approximately 100-fold higher H. pylori transformation rate was obtained when the shuttle vectors for transformation were isolated from the homologous H. pylori strain, rather than E. coli, indicating that DNA restriction and modification mechanisms play a crucial role in plasmid transformation. Interestingly, both shuttle vectors could also be mobilized efficiently from E. coli into different H. pylori recipients, with pHel2 showing an efficiency of 2.0 x 10(-5) transconjugants per viable H. pylori P1 recipient. Thus, DNA restriction seems to be strongly reduced or absent during conjugal transfer. The functional complementation of a recA-deficient H. pylori mutant by the cloned H. pylori recA+ gene, and the expression of the heterologous green fluorescent protein (GFP) in H. pylori demonstrate the general usefulness of this system, which will significantly facilitate the molecular analysis of H. pylori virulence factors in the future.
Business Model Innovation: A Blueprint for Higher Education
ERIC Educational Resources Information Center
Flanagan, Christine
2012-01-01
Business model innovation is one of the most challenging components of 21st-century leadership. Making incremental improvements to a business model--creating new efficiencies, expanding into adjacent markets--is hard enough. Developing and experimenting with new business models that truly transform how an institution delivers value (while…
Transformative Learning Factors to Enhance Integral Healthy Organizations
ERIC Educational Resources Information Center
Thavinpipatkul, Chanchai; Ratana-Ubol, Archanya; Charungkaittikul, Suwithida
2016-01-01
This article focuses on how organizations search for the key factors to develop integral changes and determine broader and higher transcendental learning skills in order to achieve healthy and sustainable organizational growth more effectively and efficiently. This study employed qualitative approaches. The research method used is an in-depth…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collier, Ray; Bragg, Jennifer; Hernandez, Bryan T.
In this study, the genetic transformation of monocot grasses is a resource intensive process, the quality and efficiency of which is dependent in part upon the method of DNA introduction, as well as the ability to effectively separate transformed from wildtype tissue. Agrobacterium-mediated transformation of Brachypodium has relied mainly on Agrobacterium tumefaciens strain AGL1. Currently the antibiotic hygromycin B has been the selective agent of choice for robust identification of transgenic calli in Brachypodium distachyon and Brachypodium sylvaticum but few other chemicals have been shown to work as well for selection of transgenic Brachypodium cells in tissue culture. This studymore » demonstrates that Agrobacterium rhizogenes strain 18r12v and paromomycin selection can be successfully used for the efficient generation of transgenic B. distachyon and B. sylvaticurn. Additionally we observed that the transformation rates were similar to or higher than those obtained with A. turnefaciens strain AGL1 and hygromycin selection. The A. rhizogenes strain 18r12v harboring the pARS1 binary vector and paromomycin selection is an effective means of generating transgenic Brachypodium plants. This novel approach will facilitate the transgenic complementation of T-DNA knockout mutants of B. distachyon which were created using hygromycin selection, as well as aid the implementation of more complex genome manipulation strategies which require multiple rounds of transformation.« less
Collier, Ray; Bragg, Jennifer; Hernandez, Bryan T.; ...
2016-05-24
In this study, the genetic transformation of monocot grasses is a resource intensive process, the quality and efficiency of which is dependent in part upon the method of DNA introduction, as well as the ability to effectively separate transformed from wildtype tissue. Agrobacterium-mediated transformation of Brachypodium has relied mainly on Agrobacterium tumefaciens strain AGL1. Currently the antibiotic hygromycin B has been the selective agent of choice for robust identification of transgenic calli in Brachypodium distachyon and Brachypodium sylvaticum but few other chemicals have been shown to work as well for selection of transgenic Brachypodium cells in tissue culture. This studymore » demonstrates that Agrobacterium rhizogenes strain 18r12v and paromomycin selection can be successfully used for the efficient generation of transgenic B. distachyon and B. sylvaticurn. Additionally we observed that the transformation rates were similar to or higher than those obtained with A. turnefaciens strain AGL1 and hygromycin selection. The A. rhizogenes strain 18r12v harboring the pARS1 binary vector and paromomycin selection is an effective means of generating transgenic Brachypodium plants. This novel approach will facilitate the transgenic complementation of T-DNA knockout mutants of B. distachyon which were created using hygromycin selection, as well as aid the implementation of more complex genome manipulation strategies which require multiple rounds of transformation.« less
Automatic variance reduction for Monte Carlo simulations via the local importance function transform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, S.A.
1996-02-01
The author derives a transformed transport problem that can be solved theoretically by analog Monte Carlo with zero variance. However, the Monte Carlo simulation of this transformed problem cannot be implemented in practice, so he develops a method for approximating it. The approximation to the zero variance method consists of replacing the continuous adjoint transport solution in the transformed transport problem by a piecewise continuous approximation containing local biasing parameters obtained from a deterministic calculation. He uses the transport and collision processes of the transformed problem to bias distance-to-collision and selection of post-collision energy groups and trajectories in a traditionalmore » Monte Carlo simulation of ``real`` particles. He refers to the resulting variance reduction method as the Local Importance Function Transform (LIFI) method. He demonstrates the efficiency of the LIFT method for several 3-D, linearly anisotropic scattering, one-group, and multigroup problems. In these problems the LIFT method is shown to be more efficient than the AVATAR scheme, which is one of the best variance reduction techniques currently available in a state-of-the-art Monte Carlo code. For most of the problems considered, the LIFT method produces higher figures of merit than AVATAR, even when the LIFT method is used as a ``black box``. There are some problems that cause trouble for most variance reduction techniques, and the LIFT method is no exception. For example, the author demonstrates that problems with voids, or low density regions, can cause a reduction in the efficiency of the LIFT method. However, the LIFT method still performs better than survival biasing and AVATAR in these difficult cases.« less
Shi, Nianci; Mao, Weian; He, Xiaoxia; Chi, Zhe; Chi, Zhenming; Liu, Guanglei
2018-05-01
Yarrowia lipolytica is a promising platform for the single cell oil (SCO) production. In this study, a transformant X+N8 in which exo- and endo-inulinase genes were co-expressed could produce an inulinase activity of 124.33 U/mL within 72 h. However, the inulinase activity of a transformant X2 carrying a single exo-inulinase gene was only 47.33 U/mL within 72 h. Moreover, the transformant X+N8 could accumulate 48.13% (w/w) SCO from inulin and the cell dry weight reached 13.63 g/L within 78 h, which were significantly higher than those of the transformant X2 (41.87% (w/w) and 11.23 g/L) under the same conditions. In addition, inulin hydrolysis and utilization of the transformant X+N8 were also more efficient than those of the transformant X2 during the fermentation process. These results demonstrated that the co-expression of the exo- and endo-inulinase genes significantly enhanced the SCO production from inulin due to the improvement of the inulinase activity and the synergistic action of exo- and endo-inulinase. Besides, over 95.01% of the fatty acids from the transformant X+N8 were C16-C18, especially C18:1 (53.10%), suggesting that the fatty acids could be used as feedstock for biodiesel production.
Electroencephalographic compression based on modulated filter banks and wavelet transform.
Bazán-Prieto, Carlos; Cárdenas-Barrera, Julián; Blanco-Velasco, Manuel; Cruz-Roldán, Fernando
2011-01-01
Due to the large volume of information generated in an electroencephalographic (EEG) study, compression is needed for storage, processing or transmission for analysis. In this paper we evaluate and compare two lossy compression techniques applied to EEG signals. It compares the performance of compression schemes with decomposition by filter banks or wavelet Packets transformation, seeking the best value for compression, best quality and more efficient real time implementation. Due to specific properties of EEG signals, we propose a quantization stage adapted to the dynamic range of each band, looking for higher quality. The results show that the compressor with filter bank performs better than transform methods. Quantization adapted to the dynamic range significantly enhances the quality.
Adaptive conversion of a high-order mode beam into a near-diffraction-limited beam.
Zhao, Haichuan; Wang, Xiaolin; Ma, Haotong; Zhou, Pu; Ma, Yanxing; Xu, Xiaojun; Zhao, Yijun
2011-08-01
We present a new method for efficiently transforming a high-order mode beam into a nearly Gaussian beam with much higher beam quality. The method is based on modulation of phases of different lobes by stochastic parallel gradient descent algorithm and coherent addition after phase flattening. We demonstrate the method by transforming an LP11 mode into a nearly Gaussian beam. The experimental results reveal that the power in the diffraction-limited bucket in the far field is increased by more than a factor of 1.5.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-29
... EERE-2010-BT-STD-0048] RIN 1904-AC04 Energy Efficiency Standards for Distribution Transformers; Notice...-type distribution transformers. The purpose of the subcommittee will be to discuss and, if possible, reach consensus on a proposed rule for the energy efficiency of distribution transformers, as authorized...
[A comparison study of hpt and bar as selection marker gene of transgenic rice].
Zhang, Chun-Yu; Li, Hong-Yu; Liu, Bin
2012-12-01
The decision of using selection marker is one of the key factors for success of plant genetic transformation and offspring screening. As two commonly used selection markers, hpt and bar genes are widely used in tissue culture-based rice transformation. To experimentally compare their performance, we investigated the efficiency of two transformation systems using Hygromycin and Bialaphos as the selection agents, respectively. The result indicated that the system using hpt gene as the selection marker saved 10 days and had double transformation efficiency and lower transgene copy number in comparison to the system using bar gene. Then, we assessed the feasibility of screening transgenic rice in the field by soaking the wild-type and transgenic seeds in a series of solutions containing step diluted hygromycin for two days. We targeted the suitable concentration for distinguishing the transgenic seeds from WT Kitaake seeds was 167 mg L(-1). However, the cost of screening by hygromycin is still much higher than that of Basta in field test. Therefore, this study experimentally demonstrated the advantages and disadvantages of the hpt and bar gene as the selection markers and thus provided a reference for choose of an appropriate selection marker according to the practical applications.
Wong, Jonathan W-C; Fung, Shun On; Selvam, Ammaiyappan
2009-07-01
To evaluate the use of coal fly ash (CFA) on the decomposition efficiency of food waste, synthetic food waste was mixed with lime at 1.5% and 3% (equivalent to 0.94% and 1.88% CaCO(3), respectively), CFA at 5%, 10% and 15% with lime so as to achieve CaCO(3) equivalent of 1.88% and composted for 42 days in a thermophilic 20 l composter with two replicates each. Alkaline materials at 1.88% CaCO(3) equivalent successfully buffered the pH during the composting and enhanced the decomposition efficiency. When these buffering was achieved with CFA+lime, the composting period could be shortened to approximately 28 days compared with approximately 42 days in 3% lime. Organic decomposition in terms of CO(2) loss, carbon turnover and nitrogen transformation were significantly higher for treatments with 1.88% CaCO(3) equivalent. Nutrient transformations and compost maturity parameters indicated that addition of CFA (5-10%) with lime at 1.88% CaCO(3) equivalent enhances the decomposition efficiency and shortens the composting period by 35%.
Nutrient supplements boost yeast transformation efficiency
Yu, Sheng-Chun; Dawson, Alexander; Henderson, Alyssa C.; Lockyer, Eloise J.; Read, Emily; Sritharan, Gayathri; Ryan, Marjah; Sgroi, Mara; Ngou, Pok M.; Woodruff, Rosie; Zhang, Ruifeng; Ren Teen Chia, Travis; Liu, Yu; Xiang, Yiyu; Spanu, Pietro D.
2016-01-01
Efficiency of yeast transformation is determined by the rate of yeast endocytosis. The aim of this study was to investigate the effect of introducing amino acids and other nutrients (inositol, adenine, or p-aminobenzoic acid) in the transformation medium to develop a highly efficient yeast transformation protocol. The target of rapamycin complex 1 (TORC1) kinase signalling complex influences the rate of yeast endocytosis. TORC signaling is induced by amino acids in the media. Here, we found that increasing the concentration of amino acids and other nutrients in the growth media lead to an increase yeast transformation efficiency up to 107 CFU per μg plasmid DNA and per 108 cells with a 13.8 kb plasmid DNA. This is over 130 times that of current published methods. This improvement may facilitate more efficient experimentation in which transformation efficiency is critical, such as yeast two-hybrid screening. PMID:27760994
Targeted Gene Deletion in Cordyceps militaris Using the Split-Marker Approach.
Lou, HaiWei; Ye, ZhiWei; Yun, Fan; Lin, JunFang; Guo, LiQiong; Chen, BaiXiong; Mu, ZhiXian
2018-05-01
The macrofungus Cordyceps militaris contains many kinds of bioactive ingredients that are regulated by functional genes, but the functions of many genes in C. militaris are still unknown. In this study, to improve the frequency of homologous integration, a genetic transformation system based on a split-marker approach was developed for the first time in C. militaris to knock out a gene encoding a terpenoid synthase (Tns). The linear and split-marker deletion cassettes were constructed and introduced into C. militaris protoplasts by PEG-mediated transformation. The transformation of split-marker fragments resulted in a higher efficiency of targeted gene disruption than the transformation of linear deletion cassettes did. The color phenotype of the Tns gene deletion mutants was different from that of wild-type C. militaris. Moreover, a PEG-mediated protoplast transformation system was established, and stable genetic transformants were obtained. This method of targeted gene deletion represents an important tool for investigating the role of C. militaris genes.
Establishment of an efficient transformation system for Pleurotus ostreatus.
Lei, Min; Wu, Xiangli; Zhang, Jinxia; Wang, Hexiang; Huang, Chenyang
2017-11-21
Pleurotus ostreatus is widely cultivated worldwide, but the lack of an efficient transformation system regarding its use restricts its genetic research. The present study developed an improved and efficient Agrobacterium tumefaciens-mediated transformation method in P. ostreatus. Four parameters were optimized to obtain the most efficient transformation method. The strain LBA4404 was the most suitable for the transformation of P. ostreatus. A bacteria-to-protoplast ratio of 100:1, an acetosyringone (AS) concentration of 0.1 mM, and 18 h of co-culture showed the best transformation efficiency. The hygromycin B phosphotransferase gene (HPH) was used as the selective marker, and EGFP was used as the reporter gene in this study. Southern blot analysis combined with EGFP fluorescence assay showed positive results, and mitotic stability assay showed that more than 75% transformants were stable after five generations. These results showed that our transformation method is effective and stable and may facilitate future genetic studies in P. ostreatus.
Isidoro, C; Demoz, M; De Stefanis, D; Baccino, F M; Bonelli, G
1995-12-11
The relationship between cell growth and intra- and extracellular accumulation of cathepsin D (CD), a lysosomal endopeptidase involved in cell protein breakdown, was examined in cultures of normal and transformed BALB/c mouse 3T3 fibroblasts grown at various cell densities. In crowded cultures of normal 3T3 cells (doubling time, Td, 53 hr) intracellular CD activity was 2-fold higher than in sparse, rapidly-growing (Td, 27 hr) cultures. In uncrowded (Td, 18 hr) and crowded (Td, 32 hr) cultures of benzo[a]pyrene-transformed cells intracellular CD levels were one third and two thirds, respectively, of those measured in hyperconfluent 3T3 cultures. Regardless of cell density, SV-40-virus-transformed cells (Td, 12 hr) contained one third of CD levels found in hyperconfluent 3T3 cells. Both transformed cell lines released into the medium a higher proportion of CD, compared with their untransformed counterpart, yet the amount secreted was not sufficient to account for the reduced intracellular level of the enzyme. Serum withdrawal induced a marked increase of both intra- and extracellular levels of CD activity. In both normal and virally or chemically transformed 3T3 cells CD comprised a precursor (52 kDa) and processed mature polypeptides; the latter were mostly represented by a 48-kDa peptide, but a minor part was in a double-chain form (31 and 16 kDa respectively). The proportion of mature enzyme vs. precursor was much higher in confluent, slowly-growing cells than in fast-growing cells, whether normal or transformed. In the latter, conversion of mature 48-kDa peptide into the double-chain form occurred more efficiently.
Wang, Binbin; Zhang, Huawei; Liang, Dongmei; Hao, Panlong; Li, Yanni; Qiao, Jianjun
2017-12-01
Lactococcus lactis is a gram-positive bacterium used extensively in the dairy industry and food fermentation, and its biological characteristics are usually improved through genetic manipulation. However, poor transformation efficiency was the main restriction factor for the construction of engineered strains. In this study, the transformation efficiency of L. lactis F44 showed a 56.1-fold increase in acid condition (pH 5.0); meanwhile, erythromycin stress (0.04 μg/mL) promoted the transformation efficiency more significantly (76.9-fold). Notably, the transformation efficiency of F44e (L. lactis F44 harboring empty pLEB124) increased up to 149.1-fold under the synergistic stresses of acid and erythromycin. In addition, the gene expression of some DNA binding proteins (DprA, RadA, RadC, RecA, RecQ, and SsbA) changed correspondingly. Especially for radA, 25.1-fold improvement was detected when F44e was exposed to pH 5.0. Overexpression of some DNA binding proteins could improve the transformation efficiency. The results suggested that acid or erythromycin stress could improve the transformation efficiency of L. lactis through regulating gene expression of DNA binding proteins. We have proposed a simple but promising strategy for improving the transformation efficiency of L. lactis and other hard-transformed microorganisms. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Dcm methylation is detrimental to plasmid transformation in Clostridium thermocellum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guss, Adam M; Olson, Daniel G.; Caiazza, Nicky
2012-01-01
BACKGROUND: Industrial production of biofuels and other products by cellulolytic microorganisms is of interest but hindered by the nascent state of genetic tools. Although a genetic system for Clostridium thermocellum DSM1313 has recently been developed, available methods achieve relatively low efficiency and similar plasmids can transform C. thermocellum at dramatically different efficiencies. RESULTS: We report an increase in transformation efficiency of C. thermocellum for a variety of plasmids by using DNA that has been methylated by Escherichia coli Dam but not Dcm methylases. When isolated from a dam+ dcm+ E. coli strain, pAMG206 transforms C. thermocellum 100-fold better than themore » similar plasmid pAMG205, which contains an additional Dcm methylation site in the pyrF gene. Upon removal of Dcm methylation, transformation with pAMG206 showed a four- to seven-fold increase in efficiency; however, transformation efficiency of pAMG205 increased 500-fold. Removal of the Dcm methylation site from the pAM205 pyrF gene via silent mutation resulted in increased transformation efficiencies equivalent to that of pAMG206. Upon proper methylation, transformation efficiency of plasmids bearing the pMK3 and pB6A origins of replication increased ca. three orders of magnitude. CONCLUSION: E. coli Dcm methylation decreases transformation efficiency in C. thermocellum DSM1313. The use of properly methylated plasmid DNA should facilitate genetic manipulation of this industrially relevant bacterium.« less
78 FR 1570 - Semiannual Regulatory Agenda
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-08
... Transformers (energy efficiency standards) Residential clothes washers (energy efficiency standards... Distribution Transformers (Reg Plan Seq No. 32). 263 Test Procedures for 1904-AC76 Residential Refrigerators... Efficiency Standards for Distribution Transformers Regulatory Plan: This entry is Seq. No. 32 in part II of...
Transformation of general binary MRF minimization to the first-order case.
Ishikawa, Hiroshi
2011-06-01
We introduce a transformation of general higher-order Markov random field with binary labels into a first-order one that has the same minima as the original. Moreover, we formalize a framework for approximately minimizing higher-order multi-label MRF energies that combines the new reduction with the fusion-move and QPBO algorithms. While many computer vision problems today are formulated as energy minimization problems, they have mostly been limited to using first-order energies, which consist of unary and pairwise clique potentials, with a few exceptions that consider triples. This is because of the lack of efficient algorithms to optimize energies with higher-order interactions. Our algorithm challenges this restriction that limits the representational power of the models so that higher-order energies can be used to capture the rich statistics of natural scenes. We also show that some minimization methods can be considered special cases of the present framework, as well as comparing the new method experimentally with other such techniques.
Zhao, Huimin; Tan, Zilong; Wen, Xuejing; Wang, Yucheng
2017-02-14
Syringe infiltration is an important transient transformation method that is widely used in many molecular studies. Owing to the wide use of syringe agroinfiltration, it is important and necessary to improve its transformation efficiency. Here, we studied the factors influencing the transformation efficiency of syringe agroinfiltration. The pCAMBIA1301 was transformed into Nicotiana benthamiana leaves for investigation. The effects of 5-azacytidine (AzaC), Ascorbate acid (ASC) and Tween-20 on transformation were studied. The β-glucuronidase ( GUS ) expression and GUS activity were respectively measured to determine the transformation efficiency. AzaC, ASC and Tween-20 all significantly affected the transformation efficiency of agroinfiltration, and the optimal concentrations of AzaC, ASC and Tween-20 for the transgene expression were identified. Our results showed that 20 μM AzaC, 0.56 mM ASC and 0.03% ( v / v ) Tween-20 is the optimal concentration that could significantly improve the transformation efficiency of agroinfiltration. Furthermore, a combined supplement of 20 μM AzaC, 0.56 mM ASC and 0.03% Tween-20 improves the expression of transgene better than any one factor alone, increasing the transgene expression by more than 6-fold. Thus, an optimized syringe agroinfiltration was developed here, which might be a powerful method in transient transformation analysis.
78 FR 44247 - Semiannual Regulatory Agenda
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-23
... (energy efficiency standards) Distribution Transformers (energy efficiency standards) Residential... Sequence No. Title Identifier No. 130 Energy Efficiency 1904-AC04 Standards for Distribution Transformers... Transformers Legal Authority: 42 U.S.C. 6317(a); 42 U.S.C. 6313(a)(6)(C) Abstract: The current distribution...
Sub-wavelength grating mode transformers in silicon slab waveguides.
Bock, Przemek J; Cheben, Pavel; Schmid, Jens H; Delâge, André; Xu, Dan-Xia; Janz, Siegfried; Hall, Trevor J
2009-10-12
We report on several new types of sub-wavelength grating (SWG) gradient index structures for efficient mode coupling in high index contrast slab waveguides. Using a SWG, an adiabatic transition is achieved at the interface between silicon-on-insulator waveguides of different geometries. The SWG transition region minimizes both fundamental mode mismatch loss and coupling to higher order modes. By creating the gradient effective index region in the direction of propagation, we demonstrate that efficient vertical mode transformation can be achieved between slab waveguides of different core thickness. The structures which we propose can be fabricated by a single etch step. Using 3D finite-difference time-domain simulations we study the loss, polarization dependence and the higher order mode excitation for two types (triangular and triangular-transverse) of SWG transition regions between silicon-on-insulator slab waveguides of different core thicknesses. We demonstrate two solutions to reduce the polarization dependent loss of these structures. Finally, we propose an implementation of SWG structures to reduce loss and higher order mode excitation between a slab waveguide and a phase array of an array waveguide grating (AWG). Compared to a conventional AWG, the loss is reduced from -1.4 dB to < -0.2 dB at the slab-array interface.
Transformation of Schwanniomyces occidentalis with an ADE2 gene cloned from S. occidentalis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, R.D.; Favreau, M.A.
1988-12-01
We have developed an efficient transformation system for the industrial yeast Schwanniomyces occidentalis (formerly Schwanniomyces castellii). The transformation system is based on ade2 mutants of S. occidentalis deficient for phosphoribosylaminoimidazole carboxylase that were generated by mutagenesis. As a selectable marker, we isolated and characterized the S. occidentalis ADE2 gene by complementation in an ade2 strain of Saccharomyces cerevisiae. S. occidentalis was transformed with the recombinant plasmid pADE, consisting of a 4.5-kilobase-pair (kbp) DNA fragment from S. occidentalis containing the ADE2 gene inserted into the S. cerevisiae expression vector pYcDE8 by a modification of the spheroplasting procedure of Beggs. Intact plasmidsmore » were recovered in Escherichia coli from whole-cell lysates of ADE+ transformants, indicating that plasmids were replicating autonomously. High-molecular-mass species of pADE2 were found by Southern hybridization analysis of intact genomic DNA preparations. The shift to higher molecular mass of these plasmids during electrophoresis in the presence ethidium bromide after exposure to shortwave UV suggests that they exist in a supercoiled form in the transformed host. Subclones of the 4.5-kbp insert indicated that ADE2-complementing activity and sequences conferring autonomous replication in S. occidentalis were located within a 2.7-kbp EcoRI-SphI fragment. Plasmids containing this region cloned into the bacterial vector pUC19 complemented ade2 mutants of S. occidentalis with efficiencies identical to those of the original plasmid pADE.« less
Overproduction of recombinant laccase using a homologous expression system in Coriolus versicolor.
Kajita, Shinya; Sugawara, Shinsuke; Miyazaki, Yasumasa; Nakamura, Masaya; Katayama, Yoshihiro; Shishido, Kazuo; Iimura, Yosuke
2004-12-01
One of the major extracellular enzymes of the white-rot fungus Coriolus versicolor is laccase, which is involved in the degradation of lignin. We constructed a homologous system for the expression of a gene for laccase III (cvl3) in C. versicolor, using a chimeric laccase gene driven by the promoter of a gene for glyceraldehyde-3-phosphate dehydrogenase (gpd) from this fungus. We transformed C. versicolor successfully by introducing both a gene for hygromycin B phosphotransferase (hph) and the chimeric laccase gene. In three independent experiments, we recovered 47 hygromycin-resistant transformants at a transformation frequency of 13 transformants microg(-1) of plasmid DNA. We confirmed the introduction of the chimeric laccase gene into the mycelia of transformants by a polymerase chain reaction in nine randomly selected transformants. Overproduction of extracellular laccase by the transformants was revealed by a colorimetric assay for laccase activity. We examined the transformant (T2) that had the highest laccase activity and found that its activity was significantly higher than that of the wild type, particularly in the presence of copper (II). Our transformation system should contribute to the efficient production of the extracellular proteins of C. versicolor for the accelerated degradation of lignin and aromatic pollutants.
Chan, Kamfai; Alter, Laura; Barthold, Stephen W.; Parveen, Nikhat
2015-01-01
Lyme disease is the most prevalent tick-borne disease in North America and Europe. The causative agent, Borrelia burgdorferi persists in the white-footed mouse. Infection with B. burgdorferi can cause acute to persistent multisystemic Lyme disease in humans. Some disease manifestations are also exhibited in the mouse model of Lyme disease. Genetic manipulation of B. burgdorferi remains difficult. First, B. burgdorferi contains a large number of endogenous plasmids with unique sequences encoding unknown functions. The presence of these plasmids needs to be confirmed after each genetic manipulation. Second, the restriction modification defense systems, including that encoded by bbe02 gene lead to low transformation efficiency in B. burgdorferi. Therefore, studying the molecular basis of Lyme pathogenesis is a challenge. Furthermore, investigation of the role of a specific B. burgdorferi protein throughout infection requires a large number of mice, making it labor intensive and expensive. To overcome the problems associated with low transformation efficiency and to reduce the number of mice needed for experiments, we disrupted the bbe02 gene of a highly infectious and pathogenic B. burgdorferi strain, N40 D10/E9 through insertion of a firefly luciferase gene. The bbe02 mutant shows higher transformation efficiency and maintains luciferase activity throughout infection as detected by live imaging of mice. Infectivity and pathogenesis of this mutant were comparable to the wild-type N40 strain. This mutant will serve as an ideal parental strain to examine the roles of various B. burgdorferi proteins in Lyme pathogenesis in the mouse model in the future. PMID:26069970
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeLaski, A.; Gauthier, J.; Shugars, J.
Distribution transformers offer a largely untapped opportunity for efficiency improvements in buildings. Application of energy-efficient equipment can reduce transformer losses by about 20%, substantially cutting a facility's total electricity bill and offering typical paybacks less than three years. Since nearly all of the electricity powering the commercial and industrial sectors is stepped down in voltage by facility-owned distribution transformers, broad application of energy-efficient equipment will lead to huge economy-wide energy and dollar savings as well as associated environmental benefits. This opportunity has led to a multi-party coordinated effort that offers a new model for national partnerships to pursue market transformation.more » The model, called the Informal Collaborative Model for the purposes of this paper, is characterized by voluntary commitments of multiple stakeholders to carry out key market interventions in a coordinated fashion, but without pooling resources or control. Collaborative participants are joined by a common interest in establishing and expanding the market for a new product, service, or practice that will yield substantial energy savings. This paper summarizes the technical efficiency opportunity available in distribution transformers; discusses the market barriers to widespread adoption of energy-efficient transformers; and details an overall market transformation strategy to address the identified market barriers. The respective roles of each of the diverse players--manufacturers, government agencies, and utility and regional energy efficiency programs--are given particular attention. Each of the organizations involved brings a particular set of tools and capabilities for addressing the market barriers to more efficient transformers.« less
Energy Transformations of Soil Organic Matter in a Changing World
NASA Astrophysics Data System (ADS)
Herrmann, A. M.; Coucheney, E.; Grice, S. M.; Ritz, K.; Harris, J.
2011-12-01
The role of soils in governing the terrestrial carbon balance is acknowledged as being important but remains poorly understood within the context of climate change. Soils exchange energy with their surroundings and are therefore open systems thermodynamically, but little is known how energy transformations of decomposition processes are affected by temperature. Soil organic matter and the soil biomass can be conceptualised as analogous to the 'fuel' and 'biological engine' of the earth, respectively, and are pivotal in driving the belowground carbon cycle. Thermodynamic principles of soil organic matter decomposition were evaluated by means of isothermal microcalorimetry (TAM Air, TA Instruments, Sollentuna Sweden: (i) Mineral forest soils from the Flakaliden long-term nitrogen fertilisation experiment (Sweden) were amended with a range of different substrates representing structurally simple to complex, ecologically pertinent organic matter and heat signatures were determined at temperatures between 5 and 25°C. (ii) Thermodynamic and resource-use efficiencies of the biomass were determined in arable soils which received contrasting long-term management regimes with respect to organic matter and nitrogen since 1956. The work showed that (i) structurally labile components have higher activation energy and temperature dependence than structurally more complex organic components. This is, however, in contrast to the thermodynamic argument which suggests the opposite that reactions metabolising structurally complex, aromatic components have higher temperature dependence than reactions metabolising structurally more labile components. (ii) Microbial communities exposed to long-term stress by heavy metal and low pH were less thermodynamic efficient and showed a decrease in resource-use efficiency in comparison with conventional input regimes. Differences in efficiencies were mirrored in both the phenotypic and functional profiles of the communities. We will present our findings illustrating the capacity of isothermal microcalorimetry to evaluate temperature dependencies of soil organic matter decomposition, associated energy transformations and thermodynamic principles in soil ecosystems.
Transformer Efficiency Assessment - Okinawa, Japan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas L. Baldwin; Robert J. Turk; Kurt S. Myers
The US Army Engineering & Support Center, Huntsville (USAESCH), and the US Marine Corps Base (MCB), Okinawa, Japan retained Idaho National Laboratory (INL) to conduct a Transformer Efficiency Assessment of “key” transformers located at multiple military bases in Okinawa, Japan. The purpose of this assessment is to support the Marine Corps Base, Okinawa in evaluating medium voltage distribution transformers for potential efficiency upgrades. The original scope of work included the MCB providing actual transformer nameplate data, manufacturer’s factory test sheets, electrical system data (kWh), demand data (kWd), power factor data, and electricity cost data. Unfortunately, the MCB’s actual data ismore » not available and therefore making it necessary to de-scope the original assessment. Note: Any similar nameplate data, photos of similar transformer nameplates, and basic electrical details from one-line drawings (provided by MCB) are not a replacement for actual load loss test data. It is recommended that load measurements are performed on the high and low sides of transformers to better quantify actual load losses, demand data, and power factor data. We also recommend that actual data, when available, be inserted by MCB Okinawa where assumptions have been made and then the LCC analysis updated. This report covers a generalized assessment of modern U.S. transformers in a three level efficiency category, Low-Level efficiency, Medium-Level efficiency, and High-Level efficiency.« less
Transformer Efficiency Assessment - Okinawa, Japan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas L. Baldwin; Robert J. Turk; Kurt S. Myers
2012-05-01
The US Army Engineering & Support Center, Huntsville (USAESCH), and the US Marine Corps Base (MCB), Okinawa, Japan retained Idaho National Laboratory (INL) to conduct a Transformer Efficiency Assessment of “key” transformers located at multiple military bases in Okinawa, Japan. The purpose of this assessment is to support the Marine Corps Base, Okinawa in evaluating medium voltage distribution transformers for potential efficiency upgrades. The original scope of work included the MCB providing actual transformer nameplate data, manufacturer’s factory test sheets, electrical system data (kWh), demand data (kWd), power factor data, and electricity cost data. Unfortunately, the MCB’s actual data ismore » not available and therefore making it necessary to de-scope the original assessment. Note: Any similar nameplate data, photos of similar transformer nameplates, and basic electrical details from one-line drawings (provided by MCB) are not a replacement for actual load loss test data. It is recommended that load measurements are performed on the high and low sides of transformers to better quantify actual load losses, demand data, and power factor data. We also recommend that actual data, when available, be inserted by MCB Okinawa where assumptions have been made and then the LCC analysis updated. This report covers a generalized assessment of modern U.S. transformers in a three level efficiency category, Low-Level efficiency, Medium-Level efficiency, and High-Level efficiency.« less
Radiolysis of paracetamol in dilute aqueous solution
NASA Astrophysics Data System (ADS)
Szabó, László; Tóth, Tünde; Homlok, Renáta; Takács, Erzsébet; Wojnárovits, László
2012-09-01
Using radiolytic experiments hydroxyl radical (main reactant in advanced oxidation processes) was shown to effectively destroy paracetamol molecules. The basic reaction is attachment to the ring. The hydroxy-cyclohexadienyl radical produced in the further reactions may transform to hydroxylated paracetamol derivatives or to quinone type molecules and acetamide. The initial efficiency of aromatic ring destruction in the absence of dissolved O2 is c.a. 10%. The efficiency is 2-3 times higher in the presence of O2 due to its reaction with intermediate hydroxy-cyclohexadienyl radical and the subsequent ring destruction reactions through peroxi radical. Upon irradiation the toxicity of solutions at low doses increases with the dose and then at higher doses it decreases. This is due to formation of compounds with higher toxicity than paracetamol (e.g. acetamide, hidroquinone). These products, however, are highly sensitive to irradiation and degrade easily.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-15
... Distribution Transformers AGENCY: Department of Energy, Office of Energy Efficiency and Renewable Energy... Rulemaking Working Group for Low-Voltage Dry-Type Distribution Transformers (hereafter ``LV Group''). The LV... proposed rule for regulating the energy efficiency of distribution transformers, as authorized by the...
Coupled Abiotic-Biotic Degradation of Bisphenol A
NASA Astrophysics Data System (ADS)
Im, J.; Prevatte, C.; Campagna, S. R.; Loeffler, F.
2014-12-01
Bisphenol A (BPA) is a ubiquitous environmental contaminant with weak estrogenic activity. BPA is readily biodegradable with oxygen available, but is recalcitrant to microbial degradation under anoxic conditions. However, BPA is susceptible to abiotic transformation under anoxic conditions. To better understand the fate of BPA in anoxic environments, the kinetics of BPA transformation by manganese oxide (d-MnO2) were investigated. BPA was rapidly transformed by MnO2 with a pseudo-first-order rate constant of 0.413 min-1. NMR and LC-MS analyses identified 4-hydroxycumyl alcohol (HCA) as a major intermediate. Up to 64% of the initial amount of BPA was recovered as HCA within 5 min, but the conversion efficiency decreased with time, suggesting that HCA was further degraded by MnO2. Further experiments confirmed that HCA was also susceptible to transformation by MnO2, albeit at 5-fold lower rates than BPA transformation. Mass balance approaches suggested that HCA was the major BPA transformation intermediate, but other compounds may also be formed. The abiotic transformation of BPA by MnO2 was affected by pH, and 10-fold higher transformation rates were observed at pH 4.5 than at pH 10. Compared to BPA, HCA has a lower octanol-water partitioning coefficient (Log Kow) of 0.76 vs 2.76 for BPA and a higher aqueous solubility of 2.65 g L-1 vs 0.31 g L-1 for BPA, suggesting higher mobility of HCA in the environment. Microcosms established with freshwater sediment materials collected from four geographically distinct locations and amended with HCA demonstrated rapid HCA biodegradation under oxic, but not under anoxic conditions. These findings suggest that BPA is not inert under anoxic conditions and abiotic reactions with MnO2 generate HCA, which has increased mobility and is susceptible to aerobic degradation. Therefore, coupled abiotic-biotic processes can affect the fate and longevity of BPA in terrestrial environments.
Design considerations for large space electric power systems
NASA Technical Reports Server (NTRS)
Renz, D. D.; Finke, R. C.; Stevens, N. J.; Triner, J. E.; Hansen, I. G.
1983-01-01
As power levels of spacecraft rise to the 50 to 100 kW range, it becomes apparent that low voltage (28 V) dc power distribution and management systems will not operate efficiently at these higher power levels. The concept of transforming a solar array voltage at 150 V dc into a 1000 V ac distribution system operating at 20 kHz is examined. The transformation is accomplished with series-resonant inverter by using a rotary transformer to isolate the solar array from the spacecraft. The power can then be distributed in any desired method such as three phase delta to delta. The distribution voltage can be easily transformed to any desired load voltage and operating frequency. The reasons for the voltage limitations on the solar array due to plasma interactions and the many advantages of a high voltage, high frequency at distribution system are discussed.
NASA Astrophysics Data System (ADS)
Zhu, Zhenyu; Wang, Jianyu
1996-11-01
In this paper, two compression schemes are presented to meet the urgent needs of compressing the huge volume and high data rate of imaging spectrometer images. According to the multidimensional feature of the images and the high fidelity requirement of the reconstruction, both schemes were devised to exploit the high redundancy in both spatial and spectral dimension based on the mature wavelet transform technology. Wavelet transform was applied here in two ways: First, with the spatial wavelet transform and the spectral DPCM decorrelation, a ratio up to 84.3 with PSNR > 48db's near-lossless result was attained. This is based ont he fact that the edge structure among all the spectral bands are similar while WT has higher resolution in high frequency components. Secondly, with the wavelet's high efficiency in processing the 'wideband transient' signals, it was used to transform the raw nonstationary signals in the spectral dimension. A good result was also attained.
O'Brien, Jeremy T.; Williams, Evan R.; Holman, Hoi-Ying N.
2017-10-31
A new experimental setup for spatially resolved ambient infrared laser ablation mass spectrometry (AIRLAB-MS) that uses an infrared microscope with an infinity-corrected reflective objective and a continuous flow solvent probe coupled to a Fourier transform ion cyclotron resonance mass spectrometer is described. The efficiency of material transfer from the sample to the electrospray ionization emitter was determined using glycerol/methanol droplets containing 1 mM nicotine and is .about.50%. This transfer efficiency is significantly higher than values reported for similar techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Philip
The research objective of this project is to design and demonstrate a low-cost, compact, easy-to-deploy, maintenance-free sensor node technology, and a network of such sensors, which enable the monitoring of multiphysical parameters and can transform today’s ordinary buildings into smart buildings with environmental awareness. We develop the sensor node and network via engineering and integration of existing technologies, including high-efficiency mechanical energy harvesting, and ultralow-power integrated circuits (ICs) for sensing and wireless communication. Through integration and innovative power management via specifically designed low-power control circuits for wireless sensing applications, and tailoring energy-harvesting components to indoor applications, the target products willmore » have smaller volume, higher efficiency, and much lower cost (in both manufacturing and maintenance) than the baseline technology. Our development and commercialization objective is to create prototypes for our target products under the CWRU-Intwine collaboration.« less
Vargas-Maya, Naurú Idalia; González-Hernández, Gloria Angélica; Padilla-Guerrero, Israel Enrique; Torres-Guzmán, Juan Carlos
2017-01-01
Fermentative processes are widely used to produce food, beverages and biofuels. Saccharomyces cerevisiae is an efficient ethanol-producing microorganism. However, a concentration of high ethanol and other metabolites can affect yeast viability and decrease the ethanol yield. Many studies have focused on improving the fermentative efficiency, mostly through the genetic engineering of genes that have a direct impact on specific metabolic pathways. In the present study, we characterized a small open reading frame encoding a protein with an unknown function and biological role termed YNR034W-A. We analyzed the expression profile of the YNR034W-A gene during growth and glucose treatment, finding that it is expressed during the diauxic shift and stationary phase and is negatively regulated by glucose. We overexpressed the YNR034W-A gene in the BY4741 laboratory strain and a wild-type yeast strain (AR5) isolated during the Tequila fermentation process. Transformant derivatives of the AR5 strain showed an improved fermentative efficiency during fermentation of Agave tequilana Weber juice. We suggest that the improved fermentative efficiency is the result of a higher stress tolerance response in the YNR034W-A overexpressing transformant.
ter Laak, Thomas L; Kooij, Pascal J F; Tolkamp, Harry; Hofman, Jan
2014-11-01
In the current study, 43 pharmaceuticals and 18 transformation products were studied in the river Meuse at the Belgian-Dutch border and four tributaries of the river Meuse in the southern part of the Netherlands. The tributaries originate from Belgian, Dutch and mixed Dutch and Belgian catchments. In total, 23 pharmaceuticals and 13 transformation products were observed in samples of river water collected from these rivers. Observed summed concentrations of pharmaceuticals and transformation products in river water ranged from 3.5 to 37.8 μg/L. Metformin and its transformation product guanylurea contributed with 53 to 80 % to this concentration, illustrating its importance on a mass basis. Data on the flow rate of different rivers and demographics of the catchments enabled us to calculate daily per capita loads of pharmaceuticals and transformation products. These loads were linked to sales data of pharmaceuticals in the catchment. Simple mass balance modelling accounting for human excretion and removal by sewage treatment plants revealed that sales could predict actual loads within a factor of 3 for most pharmaceuticals. Rivers that originated from Belgian and mixed Dutch and Belgian catchments revealed significantly higher per capita loads of pharmaceuticals (16.0 ± 2.3 and 15.7 ± 2.1 mg/inhabitant/day, respectively) than the Dutch catchment (8.7 ± 1.8 mg/inhabitant/day). Furthermore, the guanylurea/metformin ratio was significantly lower in waters originating from Belgium (and France) than in those from the Netherlands, illustrating that sewage treatment in the Belgian catchment is less efficient in transforming metformin into guanylurea. In summary, the current study shows that consumption-based modelling is suitable to predict environmental loads and concentrations. Furthermore, different consumption patterns and wastewater treatment efficiency are clearly reflected in the occurrence and loads of pharmaceuticals in regional rivers.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-12
... Intent to Negotiate Proposed Rule on Energy Efficiency Standards for Distribution Transformers AGENCY... transformers. The purpose of the subcommittee will be to discuss and, if possible, reach consensus on a proposed rule for the energy efficiency of distribution transformers, as authorized by the Energy Policy...
USE Efficiency: an innovative educational programme for energy efficiency in buildings
NASA Astrophysics Data System (ADS)
Papadopoulos, Theofilos A.; Christoforidis, Georgios C.; Papagiannis, Grigoris K.
2017-10-01
Power engineers are expected to play a pivotal role in transforming buildings into smart and energy-efficient structures, which is necessary since buildings are responsible for a considerable amount of the total energy consumption. To fulfil this role, a holistic approach in education is required, tackling subjects traditionally related to other engineering disciplines. In this context, USE Efficiency is an inter-institutional and interdisciplinary educational programme implemented in nine European Universities targeting energy efficiency in buildings. The educational programme effectively links professors, students, engineers and industry experts, creating a unique learning environment. The scope of the paper is to present the methodology and the general framework followed in the USE Efficiency programme. The proposed methodology can be adopted for the design and implementation of educational programmes on energy efficiency and sustainable development in higher education. End-of-course survey results showed positive feedback from the participating students, indicating the success of the programme.
ERIC Educational Resources Information Center
Mahalingam, Sheila; Abdollah, Faizal Mohd; Sahib, Shahrin
2014-01-01
M-Learning has a potential to improve efficiency in the education sector and has a tendency to grow advance and transform the learning environment in the future. Yet there are challenges in many areas faced when introducing and implementing m-learning. The learner centered attribute in mobile learning implies deployment in untrustworthy learning…
NASA Astrophysics Data System (ADS)
Wang, Qi-Qiang; Gonell, Sergio; Leenders, Stefan H. A. M.; Dürr, Maximilian; Ivanović-Burmazović, Ivana; Reek, Joost N. H.
2016-03-01
Tuning reagent and catalyst concentrations is crucial in the development of efficient catalytic transformations. In enzyme-catalysed reactions the substrate is bound—often by multiple non-covalent interactions—in a well-defined pocket close to the active site of the enzyme; this pre-organization facilitates highly efficient transformations. Here we report an artificial system that co-encapsulates multiple catalysts and substrates within the confined space defined by an M12L24 nanosphere that contains 24 endohedral guanidinium-binding sites. Cooperative binding means that sulfonate guests are bound much more strongly than carboxylates. This difference has been used to fix gold-based catalysts firmly, with the remaining binding sites left to pre-organize substrates. This strategy was applied to a Au(I)-catalysed cyclization of acetylenic acid to enol lactone in which the pre-organization resulted in much higher reaction rates. We also found that the encapsulated sulfonate-containing Au(I) catalysts did not convert neutral (acid) substrates, and so could have potential in the development of substrate-selective catalysis and base-triggered on/off switching of catalysis.
USDA-ARS?s Scientific Manuscript database
The biolistic method is reliable for delivering genes of interest into various species. Low transformation efficiency has been a limiting factor for its application. The DNA coating agent protamine was shown to improve transformation efficiency in rice, while a reduction of plasmid DNA in the bomb...
Mercurio, Philip; Eaglesham, Geoff; Parks, Stephen; Kenway, Matt; Beltran, Victor; Flores, Florita; Mueller, Jochen F; Negri, Andrew P
2018-03-19
The toxicity of herbicide degradation (transformation) products is rarely taken into account, even though these are commonly detected in the marine environment, sometimes at concentrations higher than the parent compounds. Here we assessed the potential contribution of toxicity by transformation products of five photosystem II herbicides to coral symbionts (Symbiodinium sp.), the green algae Dunaliella sp., and prawn (Penaeus monodon) larvae. Concentration-dependent inhibition of photosynthetic efficiency (∆F/F m ') was observed for all herbicides in both microalgal species. The toxicity of solutions of aged diuron solutions containing transformation products to Symbiodinium sp. and Dunaliella sp. was greater than could be explained by the concentrations of diuron measured, indicating transformation products contributed to the inhibition of ∆F/F m '. However, the toxicity of aged atrazine, simazine, hexazinone, and ametryn solutions could be explained by the concentration of parent herbicide, indicating no contribution by transformation products. Prawn larval metamorphosis was not sensitive to the herbicides, but preliminary results indicated some toxicity of the transformation products of atrazine and diuron. Risk assessments should take into account the contribution of herbicide transformation products; however, further studies are clearly needed to test the toxicity of a far wider range of transformation products to a representative diversity of relevant taxa.
Yang, Xiaoyi; Wang, Xin; Wang, Lei
2010-04-01
For a better sewage sludge disposal and more efficient energy reclamation, transforming of components and energy in sludge by thermal and WAO pretreatment followed by two-phase anaerobic UASB process were studied in the pilot scale. Biogas outputs and the qualities and quantities of the effluent and solid residue were compared with a traditional anaerobic sludge digestion. Sludge components, including carbon, nitrogen, phosphorus, sulphur, were observed and mass balances were discussed throughout the process. The input and output energy balance was also studied. Results showed different trait to compare with biogas outputs in terms of COD added and raw sludge added. Pretreatment improved the transformation of carbon substances into biogas production with higher carbon removal and higher VSS removal. Comparing the energy obtained from biogas production with energy inputs required for pretreatment, energy output in the whole process decreased with higher pretreatment temperature. Copyright 2009 Elsevier Ltd. All rights reserved.
Transformation of PRT6 RNAi construct into tomato (Solanum lycopersicum) cv. Micro-Tom
NASA Astrophysics Data System (ADS)
Suka, Intan Elya; Chew, Bee Lynn; Goh, Hoe-Han; Isa, Nurulhikma Md
2018-04-01
PROTEOLYSIS 6 plays major role in the N-end rule pathway as N-recognin which functions as E3 ligase enzyme. It mediates ubiquitin processes that lead to degradation of unstable substrate protein. The aim of the current study is to transform the PRT6 gene into tomato (Solanum lycopersicum) from the cultivar Micro-Tom and to investigate its function in regulating ripening in tomato fruits. The PRT6_RNAi construct was successfully transformed into Agrobacterium C58 via heat shock method and transformed into seven days old cotyledon explants. Factors affecting transformation efficiency such as co-cultivation time and type of plant growth regulator combination were evaluated. Results from this study found that pre-cultured cotyledons from seven days old seedlings incubated for 2 days in co-cultivation medium increased shoot regeneration. Plant growth hormones zeatin combine with auxin produced a higher number of callus formation but lower shoot proliferation and transformation frequency compared to treatments of single plant hormone in the selection medium. Polymerase chain reaction (PCR) was performed on the regenerated shoots to confirm the integration of PRT6 fragment into the genome of transgenic plants. Based on PCR analysis, all putative shoots were positive transformants.
Efficient transformer study: Analysis of manufacture and utility data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burkes, Klaehn; Cordaro, Joe; McIntosh, John
Distribution transformers convert power from the distribution system voltage to the end-customer voltage, which consists of residences, businesses, distributed generation, campus systems, and manufacturing facilities. Amorphous metal distribution transformers (AMDT) are also more expensive and heavier than conventional silicon steel distribution transformers. This and the difficulty to measure the benefit from energy efficiency and low awareness of the technology have hindered the adoption of AMDT. This report presents the cost savings for installing AMDT and the amount of energy saved based on the improved efficiency.
Quality factor concept in piezoceramic transformer performance description.
Mezheritsky, Alex V
2006-02-01
A new general approach based on the quality factor concept to piezoceramic transformer (PT) performance description is proposed. The system's quality factor, material elastic anisotropy, and coupling factors of the input and output sections of an electrically excited and electrically loaded PT fully characterize its resonance and near-resonance behavior. The PT efficiency, transformation ratio, and input and output power were analytically analyzed and simulated as functions of the load and frequency for the simplest classical Langevin-type and Rosen-type PT designs. A new formulation of the electrical input impedance allows one to separate the power consumed by PT from the power transferred into the load. The system's PT quality factor takes into account losses in each PT "input-output-load" functional components. The loading process is changing PT input electrical impedance on the way that under loading the minimum series impedance is increasing and the maximum parallel impedance is decreasing coincidentally. The quality-factors ratio, between the states of fully loaded and nonloaded PT, is one of the best measures of PTs dynamic performance--practically, the lower the ratio is, the better PT efficiency. A simple and effective method for the loaded PT quality factor determination is proposed. As was found, a piezoceramic with low piezoelectric anisotropy is required to provide maximum PT efficiency and higher corresponding voltage gain. Limitations on the PT output voltage and power, caused by nonlinear effects in piezoceramics, were established.
Fast restoration approach for motion blurred image based on deconvolution under the blurring paths
NASA Astrophysics Data System (ADS)
Shi, Yu; Song, Jie; Hua, Xia
2015-12-01
For the real-time motion deblurring, it is of utmost importance to get a higher processing speed with about the same image quality. This paper presents a fast Richardson-Lucy motion deblurring approach to remove motion blur which rotates blurred image under blurring paths. Hence, the computational time is reduced sharply by using one-dimensional Fast Fourier Transform in one-dimensional Richardson-Lucy method. In order to obtain accurate transformational results, interpolation method is incorporated to fetch the gray values. Experiment results demonstrate that the proposed approach is efficient and effective to reduce motion blur under the blur paths.
Hoffman, J S
1992-01-01
EPA's (Environmental Protection Agency) Green Lights Program for energy-efficient lighting illustrates the economic benefits and the market-transforming value of a pollution prevention philosophy. Using technologies available today, and assuming current prices, this program is expected to reduce air pollution 5%, while saving the nation's businesses up to 20 billion in electric bills every year. However, these pollution prevention and savings estimates may be low. As Green Lights transforms the market for lighting services by creating a higher demand for better technologies at lower costs, the program will likely achieve even larger pollution reductions and electricity savings. PMID:11607262
Seamless Insert-Plasmid Assembly at High Efficiency and Low Cost
Benoit, Roger M.; Ostermeier, Christian; Geiser, Martin; Li, Julia Su Zhou; Widmer, Hans; Auer, Manfred
2016-01-01
Seamless cloning methods, such as co-transformation cloning, sequence- and ligation-independent cloning (SLIC) or the Gibson assembly, are essential tools for the precise construction of plasmids. The efficiency of co-transformation cloning is however low and the Gibson assembly reagents are expensive. With the aim to improve the robustness of seamless cloning experiments while keeping costs low, we examined the importance of complementary single-stranded DNA ends for co-transformation cloning and the influence of single-stranded gaps in circular plasmids on SLIC cloning efficiency. Most importantly, our data show that single-stranded gaps in double-stranded plasmids, which occur in typical SLIC protocols, can drastically decrease the efficiency at which the DNA transforms competent E. coli bacteria. Accordingly, filling-in of single-stranded gaps using DNA polymerase resulted in increased transformation efficiency. Ligation of the remaining nicks did not lead to a further increase in transformation efficiency. These findings demonstrate that highly efficient insert-plasmid assembly can be achieved by using only T5 exonuclease and Phusion DNA polymerase, without Taq DNA ligase from the original Gibson protocol, which significantly reduces the cost of the reactions. We successfully used this modified Gibson assembly protocol with two short insert-plasmid overlap regions, each counting only 15 nucleotides. PMID:27073895
Jaganath, Balusamy; Subramanyam, Kondeti; Mayavan, Subramanian; Karthik, Sivabalan; Elayaraja, Dhandapani; Udayakumar, Rajangam; Manickavasagam, Markandan; Ganapathi, Andy
2014-05-01
An efficient and reproducible Agrobacterium-mediated in planta transformation was developed in Jatropha curcas. The various factors affecting J. curcas in planta transformation were optimized, including decapitation, Agrobacterium strain, pin-pricking, vacuum infiltration duration and vacuum pressure. Simple vegetative in vivo cleft grafting method was adopted in the multiplication of transformants without the aid of tissue culture. Among the various parameters evaluated, decapitated plants on pin-pricking and vacuum infiltrated at 250 mmHg for 3 min with the Agrobacterium strain EHA 105 harbouring the binary vector pGA 492 was proved to be efficient in all terms with a transformation efficiency of 62.66%. Transgene integration was evinced by the GUS histochemical analysis, and the GUS positive plants were subjected to grafting. Putatively transformed J. curcas served as "Scion" and the wild type J. curcas plant severed as "Stock". There was no occurrence of graft rejection and the plants were then confirmed by GUS histochemical analysis, polymerase chain reaction (PCR) and Southern hybridization. Genetic stability of the grafted plants was evaluated by using randomly amplified polymorphic DNA (RAPD), marker which showed 100% genetic stability between mother and grafted plants. Thus, an efficient in planta transformation and grafting based multiplication of J. curcas was established.
Norzagaray-Valenzuela, Claudia D; Germán-Báez, Lourdes J; Valdez-Flores, Marco A; Hernández-Verdugo, Sergio; Shelton, Luke M; Valdez-Ortiz, Angel
2018-05-16
Microalgae are photosynthetic microorganisms widely used for the production of highly valued compounds, and recently they have been shown to be promising as a system for the heterologous expression of proteins. Several transformation methods have been successfully developed, from which the Agrobacterium tumefaciens-mediated method remains the most promising. However, microalgae transformation efficiency by A. tumefaciens is shown to vary depending on several transformation conditions. The present study aimed to establish an efficient genetic transformation system in the green microalgae Dunaliella tertiolecta using the A. tumefaciens method. The parameters assessed were the infection medium, the concentration of the A. tumefaciens and co-culture time. As a preliminary screening, the expression of the gusA gene and the viability of transformed cells were evaluated and used to calculate a novel parameter called Transformation Efficiency Index (TEI). The statistical analysis of TEI values showed five treatments with the highest gusA gene expression. To ensure stable transformation, transformed colonies were cultured on selective medium using hygromycin B and the DNA of resistant colonies were extracted after five subcultures and molecularly analyzed by PCR. Results revealed that treatments which use solid infection medium, A. tumefaciens OD 600 = 0.5 and co-culture times of 72 h exhibited the highest percentage of stable gusA expression. Overall, this study established an efficient, optimized A. tumefaciens-mediated genetic transformation of D. tertiolecta, which represents a relatively easy procedure with no expensive equipment required. This simple and efficient protocol opens the possibility for further genetic manipulation of this commercially-important microalgae for biotechnological applications. Copyright © 2018 Elsevier B.V. All rights reserved.
Cast Coil Transformer Fire Susceptibility and Reliability Study
1991-04-01
transformers reduce risk to the user compared to liquid-filled units, eliminate environmental impacts, are more efficient than most transformer designs, and...filled units, eliminate environmental impacts, arc more efficient than most transformer designs, and add minimal risk to the facility in a fire situation...add minimal risk to the facility in a fire situation. Cast coil transformers have a long record of operation and have proven to be reliable and
Evaluation of a multi-Kw, high frequency transformer for space applications
NASA Astrophysics Data System (ADS)
Roth, Mary Ellen
1994-08-01
Various NASA studies have shown that high power (multi-kW and higher) electrical systems for various aerospace applications favor high frequency distribution systems, due to the improved safety and weight factors associated with those systems. Other favorable characteristics include low EMI, minimal wiring and ease of system parameter sensing and control of a single phase system. In aerospace power systems, as in terrestrial AC distribution systems, transformers are needed to provide voltage changes, isolation and the resetting of ground. Under NASA contract NAS3-21948 a multi-kW high frequency transformer was designed, fabricated and tested by Thermal Technology Lab, Inc. of Buffalo, New York. 'The goals of this program included the determination of the relationships between transformer weight, efficiency and operating frequency; low internal temperatures and reduced specific weight; and the validation of these new design concepts through experimentation and the fabrication and testing of transformers and their insulation systems.' The transformer was delivered to NASA-Lewis, where an evaluation program was conducted in Lewis' High Power High Frequency Component Test Facility. The transformer was tested in both atmosphere and under vacuum conditions. This paper will discuss the design of the transformer, the evaluation program and test results, the failures experienced and conclusions.
Evaluation of a Multi-kw, High Frequency Transformer for Space Applications
NASA Technical Reports Server (NTRS)
Roth, Mary Ellen
1994-01-01
Various NASA studies have shown that high power (multi-kW and higher) electrical systems for various aerospace applications favor high frequency distribution systems, due to the improved safety and weight factors associated with those systems. Other favorable characteristics include low EMI, minimal wiring and ease of system parameter sensing and control of a single phase system. In aerospace power systems, as in terrestrial AC distribution systems, transformers are needed to provide voltage changes, isolation and the resetting of ground. Under NASA contract NAS3-21948 a multi-kW high frequency transformer was designed, fabricated and tested by Thermal Technology Lab, Inc. of Buffalo, New York. 'The goals of this program included the determination of the relationships between transformer weight, efficiency and operating frequency; low internal temperatures and reduced specific weight; and the validation of these new design concepts through experimentation and the fabrication and testing of transformers and their insulation systems.' The transformer was delivered to NASA-Lewis, where an evaluation program was conducted in Lewis' High Power High Frequency Component Test Facility. The transformer was tested in both atmosphere and under vacuum conditions. This paper will discuss the design of the transformer, the evaluation program and test results, the failures experienced and conclusions.
Ibrahim, Evra Raunie
2014-01-01
Sago palm (Metroxylon sagu) is a perennial plant native to Southeast Asia and exploited mainly for the starch content in its trunk. Genetic improvement of sago palm is extremely slow when compared to other annual starch crops. Urgent attention is needed to improve the sago palm planting material and can be achieved through nonconventional methods. We have previously developed a tissue culture method for sago palm, which is used to provide the planting materials and to develop a genetic transformation procedure. Here, we report the genetic transformation of sago embryonic callus derived from suspension culture using Agrobacterium tumefaciens and gene gun systems. The transformed embryoids cells were selected against Basta (concentration 10 to 30 mg/L). Evidence of foreign genes integration and function of the bar and gus genes were verified via gene specific PCR amplification, gus staining, and dot blot analysis. This study showed that the embryogenic callus was the most suitable material for transformation as compared to the fine callus, embryoid stage, and initiated shoots. The gene gun transformation showed higher transformation efficiency than the ones transformed using Agrobacterium when targets were bombarded once or twice using 280 psi of helium pressure at 6 to 8 cm distance. PMID:25295258
Molecular transformation, gene cloning, and gene expression systems for filamentous fungi
Gold, Scott E.; Duick, John W.; Redman, Regina S.; Rodriguez, Rusty J.
2001-01-01
This chapter discusses the molecular transformation, gene cloning, and gene expression systems for filamentous fungi. Molecular transformation involves the movement of discrete amounts of DNA into cells, the expression of genes on the transported DNA, and the sustainable replication of the transforming DNA. The ability to transform fungi is dependent on the stable replication and expression of genes located on the transforming DNA. Three phenomena observed in bacteria, that is, competence, plasmids, and restriction enzymes to facilitate cloning, were responsible for the development of molecular transformation in fungi. Initial transformation success with filamentous fungi, involving the complementation of auxotrophic mutants by exposure to sheared genomic DNA or RNA from wt isolates, occurred with low transformation efficiencies. In addition, it was difficult to retrieve complementing DNA fragments and isolate genes of interest. This prompted the development of transformation vectors and methods to increase efficiencies. The physiological studies performed with fungi indicated that the cell wall could be removed to generate protoplasts. It was evident that protoplasts could be transformed with significantly greater efficiencies than walled cells.
Wei, Xiuyan; Song, Xinyue; Dong, Dong; Keyhani, Nemat O; Yao, Lindan; Zang, Xiangyun; Dong, Lili; Gu, Zijian; Fu, Delai; Liu, Xingzhong; Qiu, Junzhi; Guan, Xiong
2016-07-01
The insect pathogenic fungus Aschersonia placenta is a highly effective pathogen of whiteflies and scale insects. However, few genetic tools are currently available for studying this organism. Here we report on the conditions for the production of transformable A. placenta protoplasts using an optimized protocol based on the response surface method (RSM). Critical parameters for protoplast production were modelled by using a Box-Behnken design (BBD) involving 3 levels of 3 variables that was subsequently tested to verify its ability to predict protoplast production (R(2) = 0.9465). The optimized conditions resulted in the highest yield of protoplasts ((4.41 ± 0.02) × 10(7) cells/mL of culture, mean ± SE) when fungal cells were treated with 26.1 mg/mL of lywallzyme for 4 h of digestion, and subsequently allowed to recover for 64.6 h in 0.7 mol/L NaCl-Tris buffer. The latter was used as an osmotic stabilizer. The yield of protoplasts was approximately 10-fold higher than that of the nonoptimized conditions. Generated protoplasts were transformed with vector PbarGPE containing the bar gene as the selection marker. Transformation efficiency was 300 colonies/(μg DNA·10(7) protoplasts), and integration of the vector DNA was confirmed by PCR. The results show that rational design strategies (RSM and BBD methods) are useful to increase the production of fungal protoplasts for a variety of downstream applications.
2011-01-01
Background Following genome sequencing of crop plants, one of the main challenges today is determining the function of all the predicted genes. When gene validation approaches are used for woody species, the main obstacle is the low recovery rate of transgenic plants from elite or commercial cultivars. Embryogenic calli have frequently been the target tissue for transformation, but the difficulty in producing or maintaining embryogenic tissues is one of the main problems encountered in genetic transformation of many woody plants, including Coffea arabica. Results We identified the conditions required for successful long-term proliferation of embryogenic cultures in C. arabica and designed a highly efficient and reliable Agrobacterium tumefaciens-mediated transformation method based on these conditions. The transformation protocol with LBA1119 harboring pBin 35S GFP was established by evaluating the effect of different parameters on transformation efficiency by GFP detection. Using embryogenic callus cultures, co-cultivation with LBA1119 OD600 = 0.6 for five days at 20 °C enabled reproducible transformation. The maintenance conditions for the embryogenic callus cultures, particularly a high auxin to cytokinin ratio, the age of the culture (optimum for 7-10 months of proliferation) and the use of a yellow callus phenotype, were the most important factors for achieving highly efficient transformation (> 90%). At the histological level, successful transformation was related to the number of proembryogenic masses present. All the selected plants were proved to be transformed by PCR and Southern blot hybridization. Conclusion Most progress in increasing transformation efficiency in coffee has been achieved by optimizing the production conditions of embryogenic cultures used as target tissues for transformation. This is the first time that a strong positive effect of the age of the culture on transformation efficiency was demonstrated. Our results make Agrobacterium-mediated transformation of embryogenic cultures a viable and useful tool both for coffee breeding and for the functional analysis of agronomically important genes. PMID:21595964
Ahn, Yul-Kyun; Yoon, Moo-Kyoung; Jeon, Jong-Seong
2013-01-01
The genetic improvement of garlic plants (Allium sativum L.) with agronomical beneficial traits is rarely achieved due to the lack of an applicable transformation system. Here, we developed an efficient Agrobacterium-mediated transformation procedure with Danyang, an elite Korean garlic cultivar. Examination of sGFP (synthetic green fluorescence protein) expression revealed that treatment with 2-(N-morpholino) ethanesulfonic acid (MES), L-cysteine and/or dithiothreitol (DTT) gives the highest efficiency in transient gene transfer during Agrobacterium co-cultivation with calli derived from the roots of in vitro plantlets. To increase stable transformation efficiency, a two-step selection was employed on the basis of hygromycin resistance and sGFP expression. Of the hygromycin-resistant calli initially produced, only sGFP-expressing calli were subcultured for selection of transgenic calli. Transgenic plantlets produced from these calli were grown to maturity. The transformation efficiency increased up to 10.6% via our optimized procedure. DNA and RNA gel-blot analysis indicated that transgenic garlic plants stably integrated and expressed the phosphinothricin acetyltransferase (PAT) gene. A herbicide spraying assay demonstrated that transgenic plants of garlic conferred herbicide resistance, whilst non-transgenic plants and weeds died. These results indicate that our transformation system can be efficiently utilized to produce transgenic garlic plants with agronomic benefits. PMID:23832764
Ahn, Yul-Kyun; Yoon, Moo-Kyoung; Jeon, Jong-Seong
2013-08-01
The genetic improvement of garlic plants (Allium sativum L.) with agronomical beneficial traits is rarely achieved due to the lack of an applicable transformation system. Here, we developed an efficient Agrobacterium-mediated transformation procedure with Danyang, an elite Korean garlic cultivar. Examination of sGFP (synthetic green fluorescence protein) expression revealed that treatment with 2-(N-morpholino) ethanesulfonic acid (MES), L-cysteine and/or dithiothreitol (DTT) gives the highest efficiency in transient gene transfer during Agrobacterium co-cultivation with calli derived from the roots of in vitro plantlets. To increase stable transformation efficiency, a two-step selection was employed on the basis of hygromycin resistance and sGFP expression. Of the hygromycin-resistant calli initially produced, only sGFP-expressing calli were subcultured for selection of transgenic calli. Transgenic plantlets produced from these calli were grown to maturity. The transformation efficiency increased up to 10.6% via our optimized procedure. DNA and RNA gel-blot analysis indicated that transgenic garlic plants stably integrated and expressed the phosphinothricin acetyltransferase (PAT) gene. A herbicide spraying assay demonstrated that transgenic plants of garlic conferred herbicide resistance, whilst nontransgenic plants and weeds died. These results indicate that our transformation system can be efficiently utilized to produce transgenic garlic plants with agronomic benefits.
76 FR 70376 - Efficiency and Renewables Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-14
...-Voltage Dry-Type Distribution Transformers. The Liquid Immersed and Medium-Voltage Dry- Type Group (MV... of distribution transformers, as authorized by the Energy Policy Conservation Act (EPCA) of 1975, as... negotiated rulemaking process to develop proposed energy efficiency standards for distribution transformers...
Sweet Potato [Ipomoea batatas (L.) Lam].
Song, Guo-qing; Yamaguchi, Ken-ichi
2006-01-01
Among the available transformation methods reported on sweet potato, Agrobacterium tumefaciens-mediated transformation is more successful and desirable. Stem explants have shown to be ideal for the transformation of sweet potato because of their ready availability as explants, the simple transformation process, and high-frequency-regeneration via somatic embryogenesis. Under the two-step kanamycin-hygromycin selection method and using the appropriate explants type (stem explants), the efficiency of transformation can be considerably improved in cv. Beniazuma. The high efficiency in the transformation of stem explants suggests that the transformation protocol described in this chapter warrants testing for routine stable transformation of diverse varieties of sweet potato.
Boundary particle method for Laplace transformed time fractional diffusion equations
NASA Astrophysics Data System (ADS)
Fu, Zhuo-Jia; Chen, Wen; Yang, Hai-Tian
2013-02-01
This paper develops a novel boundary meshless approach, Laplace transformed boundary particle method (LTBPM), for numerical modeling of time fractional diffusion equations. It implements Laplace transform technique to obtain the corresponding time-independent inhomogeneous equation in Laplace space and then employs a truly boundary-only meshless boundary particle method (BPM) to solve this Laplace-transformed problem. Unlike the other boundary discretization methods, the BPM does not require any inner nodes, since the recursive composite multiple reciprocity technique (RC-MRM) is used to convert the inhomogeneous problem into the higher-order homogeneous problem. Finally, the Stehfest numerical inverse Laplace transform (NILT) is implemented to retrieve the numerical solutions of time fractional diffusion equations from the corresponding BPM solutions. In comparison with finite difference discretization, the LTBPM introduces Laplace transform and Stehfest NILT algorithm to deal with time fractional derivative term, which evades costly convolution integral calculation in time fractional derivation approximation and avoids the effect of time step on numerical accuracy and stability. Consequently, it can effectively simulate long time-history fractional diffusion systems. Error analysis and numerical experiments demonstrate that the present LTBPM is highly accurate and computationally efficient for 2D and 3D time fractional diffusion equations.
Jian, Bo; Hou, Wensheng; Wu, Cunxiang; Liu, Bin; Liu, Wei; Song, Shikui; Bi, Yurong; Han, Tianfu
2009-06-25
Transgenic approaches provide a powerful tool for gene function investigations in plants. However, some legumes are still recalcitrant to current transformation technologies, limiting the extent to which functional genomic studies can be performed on. Superroot of Lotus corniculatus is a continuous root cloning system allowing direct somatic embryogenesis and mass regeneration of plants. Recently, a technique to obtain transgenic L. corniculatus plants from Superroot-derived leaves through A. tumefaciens-mediated transformation was described. However, transformation efficiency was low and it took about six months from gene transfer to PCR identification. In the present study, we developed an A. rhizogenes-mediated transformation of Superroot-derived L. corniculatus for gene function investigation, combining the efficient A. rhizogenes-mediated transformation and the rapid regeneration system of Superroot. The transformation system using A. rhizogenes K599 harbouring pGFPGUSPlus was improved by validating some parameters which may influence the transformation frequency. Using stem sections with one node as explants, a 2-day pre-culture of explants, infection with K599 at OD(600) = 0.6, and co-cultivation on medium (pH 5.4) at 22 degrees C for 2 days enhanced the transformation frequency significantly. As proof of concept, Superroot-derived L. corniculatus was transformed with a gene from wheat encoding an Na+/H+ antiporter (TaNHX2) using the described system. Transgenic Superroot plants were obtained and had increased salt tolerance, as expected from the expression of TaNHX2. A rapid and efficient tool for gene function investigation in L. corniculatus was developed, combining the simplicity and high efficiency of the Superroot regeneration system and the availability of A. rhizogenes-mediated transformation. This system was improved by validating some parameters influencing the transformation frequency, which could reach 92% based on GUS detection. The combination of the highly efficient transformation and the regeneration system of Superroot provides a valuable tool for functional genomics studies in L. corniculatus.
1,2-diketones promoted degradation of poly(epsilon-caprolactone)
NASA Astrophysics Data System (ADS)
Danko, Martin; Borska, Katarina; Ragab, Sherif Shaban; Janigova, Ivica; Mosnacek, Jaroslav
2012-07-01
Photochemical reactions of Benzil and Camphorquinone were used for modification of poly(ɛ-caprolactone) polymer films. Photochemistry of dopants was followed by infrared spectroscopy, changes on polymer chains of matrix were followed by gel permeation chromatography. Benzoyl peroxide was efficiently photochemically generated from benzyl in solid polymer matrix in the presence of air. Following decomposition of benzoyl peroxide led to degradation of matrix. Photochemical transformation of benzil in vacuum led to hydrogen abstraction from the polymer chains in higher extent, which resulted to chains recombination and formation of gel. Photochemical transformation of camphorquinone to corresponding camphoric peroxide was not observed. Only decrease of molecular weight of polymer matrix doped with camphorquinone was observed during the irradiation.
Li, Hedan; Zhang, Lirong; Guo, Wei; Xu, Daqing
2016-12-01
Gene disruption and replacement in Corynebacterium glutamicum is dependent upon a high transformation efficiency. The cglIR-cgIIR restriction system is a major barrier to introduction of foreign DNA into Corynebacterium glutamicum cells. To improve the transformation efficiency of C. glutamicum, the cglIM gene encoding methyltransferase in the cglIR-cglIIR-cglIM restriction-modification system of C. glutamicum ATCC 13032 was chromosomally integrated and expressed in Escherichia coli, resulting in an engineered strain E. coli AU1. The electro-transformation experiments of C. glutamicum ATCC 13032 with the E. coli-C. glutamicum shuttle plasmid pAU4 showed that the transformation efficiency of C. glutamicum with pAU4 DNA extracted from E. coli TG1/pAU4 was 1.80±0.21×10 2 cfu/μg plasmid DNA, while using pAU4 DNA extracted from E. coli AU1/pAU4, the transformation efficiency reached up to 5.22±0.33×10 6 cfu/μg plasmid DNA. The results demonstrated that E. coli AU1 is able to confer the cglIM-specific DNA methylation pattern to its resident plasmid, which makes the plasmid resistant to the cglIR-cglIIR restriction and efficiently transferred into C. glutamicum. E. coli AU1 is a useful intermediate host for efficient transformation of C. glutamicum. Copyright © 2016. Published by Elsevier B.V.
Alam, Pravej; Khan, Zainul Abdeen; Abdin, Malik Zainul; Khan, Jawaid A; Ahmad, Parvaiz; Elkholy, Shereen F; Sharaf-Eldin, Mahmoud A
2017-05-01
Catharanthus roseus is an important medicinal plant known for its pharmacological qualities such as antimicrobial, anticancerous, antifeedant, antisterility, antidiabetic activities. More than 130 bioactive compounds like vinblastine, vindoline and vincristine have been synthesized in this plant. Extensive studies have been carried out for optimization regeneration and transformation protocols. Most of the protocol described are laborious and time-consuming. Due to sophisticated protocol of regeneration and genetic transformation, the production of these bioactive molecules is less and not feasible to be commercialized worldwide. Here we have optimized the efficient protocol for regeneration and transformation to minimize the time scale and enhance the transformation frequency through Agrobacterium and sonication-assisted transformation (SAAT) method. In this study, hypocotyl explants responded best for maximal production of transformed shoots. The callus percentage were recorded 52% with 1.0 mg L -1 (BAP) and 0.5 mg L -1 (NAA) while 80% shoot percentage obtained with 4.0 mg L -1 (BAP) and 0.05 mg L -1 (NAA). The microscopic studies revealed that the expression of GFP was clearly localized in leaf tissue of the C. roseus after transformation of pRepGFP0029 construct. Consequently, transformation efficiency was revealed on the basis of GFP localization. The transformation efficiency of SAAT method was 6.0% comparable to 3.5% as conventional method. Further, PCR analysis confirmed the integration of the nptII gene in the transformed plantlets of C. roseus.
Kubota, Akane; Ishizaki, Kimitsune; Hosaka, Masashi; Kohchi, Takayuki
2013-01-01
The thallus, the gametophyte body of the liverwort Marchantia polymorpha, develops clonal progenies called gemmae that are useful in the isolation and propagation of isogenic plants. Developmental timing is critical to Agrobacterium-mediated transformation, and high transformation efficiency has been achieved only with sporelings. Here we report an Agrobacterium-mediated transformation system for M. polymorpha using regenerating thalli. Thallus regeneration was induced by cutting the mature thallus across the apical-basal axis and incubating the basal portion of the thallus for 3 d. Regenerating thalli were infected with Agrobacterium carrying binary vector that contained a selection marker, the hygromycin phosphotransferase gene, and hygromycin-resistant transformants were obtained with an efficiency of over 60%. Southern blot analysis verified random integration of 1 to 4 copies of the T-DNA into the M. polymorpha genome. This Agrobacterium-mediated transformation system for M. polymorpha should provide opportunities to perform genetic transformation without preparing spores and to generate a sufficient number of transformants with isogenic background.
Shiraishi, Yasuhiro; Tsukamoto, Daijiro; Hirai, Takayuki
2008-11-04
Photocatalytic activity of microporous titanosilicate ETS-10 has been studied in water. The photoactivated ETS-10 shows catalytic activity driven by size and polarity of substrates. ETS-10 efficiently catalyzes a conversion of substrates with a size larger than the pore diameter of ETS-10. In contrast, the reactivity of small substrates depends strongly on substrate polarity; less polar substrates show higher reactivity on ETS-10. Electron spin resonance analysis reveals that large substrates or less polar substrates scarcely diffuse inside the highly polarized micropores of ETS-10 and, hence, react efficiently with hydroxyl radicals (*OH) formed on titanol (Ti-OH) groups exposed on the external surface of ETS-10. In contrast, small polar substrates diffuse easily inside the micropores of ETS-10 and scarcely react with *OH, resulting in low reactivity. The photocatalytic activity of ETS-10 is successfully applicable to selective transformations of large reactants or less polar reactants to small polar products, enabling highly selective dehalogenation and hydroxylation of aromatics.
Jo, Wan-Kuen; Eun, Sung-Soo; Shin, Seung-Ho
2011-01-01
Limited environmental pollutants have only been investigated for the feasibility of light-emitting diodes (LED) uses in photocatalytic decomposition (PD). The present study investigated the applicability of LEDs for annular photocatalytic reactors by comparing PD efficiencies of dimethyl sulfide (DMS), which has not been investigated with any LED-PD system, between photocatalytic systems utilizing conventional and various LED lamps with different wavelengths. A conventional 8 W UV/TiO(2) system exhibited a higher DMS PD efficiency as compared with UV-LED/TiO(2) system. Similarly, a conventional 8 W visible-lamp/N-enhanced TiO(2) (NET) system exhibited a higher PD efficiency as compared with six visible-LED/NET systems. However, the ratios of PD efficiency to the electric power consumption were rather high for the photocatalytic systems using UV- or visible-LED lamps, except for two LED lamps (yellow- and red-LED lamps), compared to the photocatalytic systems using conventional lamps. For the photocatalytic systems using LEDs, lower flow rates and input concentrations and shorter hydraulic diameters exhibited higher DMS PD efficiencies. An Fourier-transformation infrared analysis suggested no significant absorption of byproducts on the catalyst surface. Consequently, it was suggested that LEDs can still be energy-efficiently utilized as alternative light sources for the PD of DMS, under the operational conditions used in this study. © 2011 The Authors. Photochemistry and Photobiology © 2011 The American Society of Photobiology.
2012-01-01
Background Lactic acid bacteria (LAB) play an important role in agricultural as well as industrial biotechnology. Development of improved LAB strains using e.g. library approaches is often limited by low transformation efficiencies wherefore one reason could be differences in the DNA methylation patterns between the Escherichia coli intermediate host for plasmid amplification and the final LAB host. In the present study, we examined the influence of DNA methylation on transformation efficiency in LAB and developed a direct cloning approach for Lactobacillus plantarum CD033. Therefore, we propagated plasmid pCD256 in E. coli strains with different dam/dcm-methylation properties. The obtained plasmid DNA was purified and transformed into three different L. plantarum strains and a selection of other LAB species. Results Best transformation efficiencies were obtained using the strain L. plantarum CD033 and non-methylated plasmid DNA. Thereby we achieved transformation efficiencies of ~ 109 colony forming units/μg DNA in L. plantarum CD033 which is in the range of transformation efficiencies reached with E. coli. Based on these results, we directly transformed recombinant expression vectors received from PCR/ligation reactions into L. plantarum CD033, omitting plasmid amplification in E. coli. Also this approach was successful and yielded a sufficient number of recombinant clones. Conclusions Transformation efficiency of L. plantarum CD033 was drastically increased when non-methylated plasmid DNA was used, providing the possibility to generate expression libraries in this organism. A direct cloning approach, whereby ligated PCR-products where successfully transformed directly into L. plantarum CD033, obviates the construction of shuttle vectors containing E. coli-specific sequences, as e.g. a ColEI origin of replication, and makes amplification of these vectors in E. coli obsolete. Thus, plasmid constructs become much smaller and occasional structural instability or mutagenesis during E. coli propagation is excluded. The results of our study provide new genetic tools for L. plantarum which will allow fast, forward and systems based genetic engineering of this species. PMID:23098256
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-13
... Medium- and Low-Voltage Dry-Type Distribution Transformers AGENCY: Department of Energy, Office of Energy... Dry-Type and the second addressing Low-Voltage Dry-Type Distribution Transformers. The Liquid Immersed... proposed rule for regulating the energy efficiency of distribution transformers, as authorized by the...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-09
... Subcommittee/Working Group for Liquid-Immersed and Medium-Voltage Dry Type Transformers AGENCY: Department of... Medium-Voltage Dry Type Transformers (hereafter ``MV Group''). The MV Group is a working group within the... energy efficiency of distribution transformers, as authorized by the Energy Policy Conservation Act (EPCA...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-05
... Transformers AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice and... Transformers, OMB Control Number 1910-5130. The information collection is used by manufacturers or private labelers to report on and certify compliance with energy efficiency standards for distribution transformers...
Majumdar, Sukanya; Garai, Saraswati; Jha, Sumita
2011-05-01
We have developed an efficient transformation system for Bacopa monnieri, an important Indian medicinal plant, using Agrobacterium rhizogenes strains LBA 9402 and A4. Transformed roots induced by strain LBA 9402 spontaneously dedifferentiated to callus while excised roots induced by strain A4 spontaneously showed induction of shoot buds within 10 days. PCR and RT-PCR analysis revealed the presence and expression of the rolAB and rolC genes at the transcription level in pRi A4 transformed cultures indicating that the TL-DNA was integrated retained and expressed in the A4-Ri transformed shoots. Transformed calli showed the presence of rolAB or rol A, TR and ags genes. Transformed plants showed morphological features typically seen in transgenic plants produced by A. rhizogenes. Growth and biomass accumulation was significantly higher in the transformed shoots (twofold) and roots (fourfold) than in the non-transformed (WT) plants. In pRi A4-transformed plants, the content of bacopasaponin D, bacopasaponin F, bacopaside II and bacopaside V was enhanced significantly as compared to WT plants of similar age while bacoside A3 and bacopasaponin C content was comparable with that of WT plants. Significant increase in content of five bacopa saponins could be detected in pRi 9402-transformed callus cultures. There is an overall stimulatory effect on accumulation of bacopa saponins in transformed plants and cells of B. monnieri establishing the role of endogenous elicitation by Ri T-DNA of A. rhizogenes.
NASA Technical Reports Server (NTRS)
Rothschild, Lynn J.; Greenberg, Daniel T.; Takahashi, Jack R.; Thompson, Kirsten A.; Maheshwari, Akshay J.; Kent, Ryan E.; McCutcheon, Griffin; Shih, Joseph D.; Calvet, Charles; Devlin, Tyler D.;
2015-01-01
The CRISPR (Clustered, Regularly Interspaced, Short Palindromic Repeats)/Cas9 system has revolutionized genome editing by providing unprecedented DNA-targeting specificity. Here we demonstrate that this system can be also applied in vitro to fundamental cloning steps to facilitate efficient plasmid selection for transformation and selective gene insertion into plasmid vectors by cleaving unwanted plasmid byproducts with a single-guide RNA (sgRNA)-Cas9 nuclease complex. Using fluorescent and chromogenic proteins as reporters, we demonstrate that CRISPR/Cas9 cleavage excludes multiple plasmids as well as unwanted ligation byproducts resulting in an unprecedented increase in the transformation success rate from approximately 20% to nearly 100%. Thus, this CRISPR/Cas9-Assisted Transformation-Efficient Reaction (CRATER) protocol is a novel, inexpensive, and convenient application to conventional molecular cloning to achieve near-perfect selective transformation.
Unified transform architecture for AVC, AVS, VC-1 and HEVC high-performance codecs
NASA Astrophysics Data System (ADS)
Dias, Tiago; Roma, Nuno; Sousa, Leonel
2014-12-01
A unified architecture for fast and efficient computation of the set of two-dimensional (2-D) transforms adopted by the most recent state-of-the-art digital video standards is presented in this paper. Contrasting to other designs with similar functionality, the presented architecture is supported on a scalable, modular and completely configurable processing structure. This flexible structure not only allows to easily reconfigure the architecture to support different transform kernels, but it also permits its resizing to efficiently support transforms of different orders (e.g. order-4, order-8, order-16 and order-32). Consequently, not only is it highly suitable to realize high-performance multi-standard transform cores, but it also offers highly efficient implementations of specialized processing structures addressing only a reduced subset of transforms that are used by a specific video standard. The experimental results that were obtained by prototyping several configurations of this processing structure in a Xilinx Virtex-7 FPGA show the superior performance and hardware efficiency levels provided by the proposed unified architecture for the implementation of transform cores for the Advanced Video Coding (AVC), Audio Video coding Standard (AVS), VC-1 and High Efficiency Video Coding (HEVC) standards. In addition, such results also demonstrate the ability of this processing structure to realize multi-standard transform cores supporting all the standards mentioned above and that are capable of processing the 8k Ultra High Definition Television (UHDTV) video format (7,680 × 4,320 at 30 fps) in real time.
Institute for Atom-Efficient Chemical Transformations Energy Frontier
Synthesis Search Argonne ... Search Argonne Home > Institute for Atom-Efficient Chemical Transformations Synthesis Characterization Computational Studies Evaluation and Mechanisms/Catalytic Experimentation Using
Andrianov, Alexey; Szabo, Aron; Sergeev, Alexander; Kim, Arkady; Chvykov, Vladimir; Kalashnikov, Mikhail
2016-11-14
We developed an improved approach to calculate the Fourier transform of signals with arbitrary large quadratic phase which can be efficiently implemented in numerical simulations utilizing Fast Fourier transform. The proposed algorithm significantly reduces the computational cost of Fourier transform of a highly chirped and stretched pulse by splitting it into two separate transforms of almost transform limited pulses, thereby reducing the required grid size roughly by a factor of the pulse stretching. The application of our improved Fourier transform algorithm in the split-step method for numerical modeling of CPA and OPCPA shows excellent agreement with standard algorithms.
Complete chemical transformation of a molecular film by subexcitation electrons (<3 eV).
Balog, Richard; Illenberger, Eugen
2003-11-21
The potential of slow electrons to act as a soft tool to control a chemical reaction in the condensed phase is demonstrated. By setting the energy of a well defined electron beam to values below 3 eV, the surface of a thin film of 1,2-C(2)F(4)C(l2) molecules can completely be transformed into molecular chlorine (and by-products, possibly perfluorinated polymers). At higher energies (>6 eV) some equilibrium state between product and educt composition can be achieved, however, accompanied by a gradual overall degradation of the film. The effect of complete transformation is based on both the selectivity and particular energy dependence of the initial step of the reaction which is dissociative electron attachment to C(2)F(4)C(l2), but also the fact that the initial molecule is efficiently decomposed by subexcitation electrons while the product C(l2) is virtually unaffected.
de Oliveira, Dayane Carvalho Ramos Salles; Rocha, Mateus Garcia; Gatti, Alexandre; Correr, Americo Bortolazzo; Ferracane, Jack Liborio; Sinhoret, Mario Alexandre Coelho
2015-12-01
To evaluate the effect of photoinitiators and reducing agents on cure efficiency and color stability of resin-based composites using different LED wavelengths. Model resin-based composites were associated with diphenyl(2,4,6-trimethylbenzoyl) phosphine oxide (TPO), phenylbis(2,4,6-trimethylbenzoyl) phosphine oxide (BAPO) or camphorquinone (CQ) associated with 2-(dimethylamino) ethyl methacrylate (DMAEMA), ethyl 4-(dimethyamino) benzoate (EDMAB) or 4-(N,N-dimethylamino) phenethyl alcohol (DMPOH). A narrow (Smartlite, Dentisply) and a broad spectrum (Bluephase G2, Ivoclar Vivadent) LEDs were used for photo-activation (20 J/cm(2)). Fourier transform infrared spectroscopy (FT-IR) was used to evaluate the cure efficiency for each composite, and CIELab parameters to evaluated color stability (ΔE00) after aging. The UV-vis absorption spectrophotometric analysis of each photoinitiator and reducing agent was determined. Data were analyzed using two-way ANOVA and Tukey's test for multiple comparisons (α=0.05). Higher cure efficiency was found for type-I photoinitiators photo-activated with a broad spectrum light, and for CQ-systems with a narrow band spectrum light, except when combined with an aliphatic amine (DMAEMA). Also, when combined with aromatic amines (EDMAB and DMPOH), similar cure efficiency with both wavelength LEDs was found. TPO had no cure efficiency when light-cured exclusively with a blue narrowband spectrum. CQ-systems presented higher color stability than type-I photoinitiators, especially when combined with DMPOH. After aging, CQ-based composites became more yellow and BAPO and TPO lighter and less yellow. However, CQ-systems presented higher color stability than type-I photoinitiators, as BAPO- and TPO-, despite their higher cure efficiency when photo-activated with corresponding wavelength range. Color matching is initially important, but color change over time will be one of the major reasons for replacing esthetic restorations; despite the less yellowing of these alternative photoinitiators, camphorquinone presented higher color stability. Copyright © 2015 Elsevier Ltd. All rights reserved.
Efficient transformation and expression of gfp gene in Valsa mali var. mali.
Chen, Liang; Sun, Gengwu; Wu, Shujing; Liu, Huixiang; Wang, Hongkai
2015-01-01
Valsa mali var. mali, the causal agent of valsa canker of apple, causes great loss of apple production in apple producing regions. The pathogenic mechanism of the pathogen has not been studied extensively, thus a suitable gene marker for pathogenic invasion analysis and a random insertion of T-DNA for mutants are desirable. In this paper, we reported the construction of a binary vector pKO1-HPH containing a positive selective gene hygromycin phosphotransferase (hph), a reporter gene gfp conferring green fluorescent protein, and an efficient protocol for V. mali var. mali transformation mediated by Agrobacterium tumefaciens. A transformation efficiency up to about 75 transformants per 10(5) conidia was achieved when co-cultivation of V. mali var. mali and A. tumefaciens for 48 h in A. tumefaciens inductive medium agar plates. The insertions of hph gene and gfp gene into V. mali var. mali genome verified by polymerase chain reaction and southern blot analysis showed that 10 randomly-selected transformants exhibited a single, unique hybridization pattern. This is the first report of A. tumefaciens-mediated transformation of V. mali var mali carrying a 'reporter' gfp gene that stably and efficiently expressed in the transformed V. mali var. mali species.
Gelatin nanoparticles enhance delivery of hepatitis C virus recombinant NS2 gene
George, Marina A.; El-Shorbagy, Haidan M.; Bassiony, Heba; Farroh, Khaled Y.; Youssef, Tareq; Salaheldin, Taher A.
2017-01-01
Background Development of an effective non-viral vaccine against hepatitis C virus infection is of a great importance. Gelatin nanoparticles (Gel.NPs) have an attention and promising approach as a viable carrier for delivery of vaccine, gene, drug and other biomolecules in the body. Aim of work The present study aimed to develop stable Gel.NPs conjugated with nonstructural protein 2 (NS2) gene of Hepatitis C Virus genotype 4a (HCV4a) as a safe and an efficient vaccine delivery system. Methods and results Gel.NPs were synthesized and characterized (size: 150±2 nm and zeta potential +17.6 mv). NS2 gene was successfully cloned and expressed into E. coli M15 using pQE-30 vector. Antigenicity of the recombinant NS2 protein was confirmed by Western blotting to verify the efficiency of NS2 as a possible vaccine. Then NS2 gene was conjugated to gelatin nanoparticles and a successful conjugation was confirmed by labeling and imaging using Confocal Laser Scanning Microscope (CLSM). Interestingly, the transformation of the conjugated NS2/Gel.NPs complex into E. coli DH5-α was 50% more efficient than transformation with the gene alone. In addition, conjugated NS2/Gel.NPs with ratio 1:100 (w/w) showed higher transformation efficiency into E. coli DH5-α than the other ratios (1:50 and 2:50). Conclusion Gel.NPs effectively enhanced the gene delivery in bacterial cells without affecting the structure of NS2 gene and could be used as a safe, easy, rapid, cost-effective and non-viral vaccine delivery system for HCV. PMID:28746382
A hardware implementation of the discrete Pascal transform for image processing
NASA Astrophysics Data System (ADS)
Goodman, Thomas J.; Aburdene, Maurice F.
2006-02-01
The discrete Pascal transform is a polynomial transform with applications in pattern recognition, digital filtering, and digital image processing. It already has been shown that the Pascal transform matrix can be decomposed into a product of binary matrices. Such a factorization leads to a fast and efficient hardware implementation without the use of multipliers, which consume large amounts of hardware. We recently developed a field-programmable gate array (FPGA) implementation to compute the Pascal transform. Our goal was to demonstrate the computational efficiency of the transform while keeping hardware requirements at a minimum. Images are uploaded into memory from a remote computer prior to processing, and the transform coefficients can be offloaded from the FPGA board for analysis. Design techniques like as-soon-as-possible scheduling and adder sharing allowed us to develop a fast and efficient system. An eight-point, one-dimensional transform completes in 13 clock cycles and requires only four adders. An 8x8 two-dimensional transform completes in 240 cycles and requires only a top-level controller in addition to the one-dimensional transform hardware. Finally, through minor modifications to the controller, the transform operations can be pipelined to achieve 100% utilization of the four adders, allowing one eight-point transform to complete every seven clock cycles.
Zhang, Jin jing; Shi, Liang; Chen, Hui; Sun, Yun qi; Zhao, Ming wen; Ren, Ang; Chen, Ming jie; Wang, Hong; Feng, Zhi yong
2014-01-01
Hypsizygus marmoreus is one of the major edible mushrooms in East Asia. As no efficient transformation method, the molecular and genetics studies were hindered. The glyceraldehyde-3-phosphate dehydrogenase (GPD) gene of H. marmoreus was isolated and its promoter was used to drive the hygromycin B phosphotransferase (HPH) and enhanced green fluorescent protein (EGFP) in H. marmoreus. Agrobacterium tumefaciens-mediated transformation (ATMT) was successfully applied in H. marmoreus. The transformation parameters were optimized, and it was found that co-cultivation of bacteria with protoplast at a ratio of 1000:1 at a temperature of 26 °C in medium containing 0.3 mM acetosyringone resulted in the highest transformation efficiency for Agrobacterium strain. Besides, three plasmids, each carrying a different promoter (from H. marmoreus, Ganoderma lucidum and Lentinula edodes) driving the expression of an antibiotic resistance marker, were also tested. The construct carrying the H. marmoreus gpd promoter produced more transformants than other constructs. Our analysis showed that over 85% of the transformants tested remained mitotically stable even after five successive rounds of subculturing. Putative transformants were analyzed for the presence of hph gene by PCR and Southern blot. Meanwhile, the expression of EGFP in H. marmoreus transformants was detected by fluorescence imaging. This ATMT system increases the transformation efficiency of H. marmoreus and may represent a useful tool for molecular genetic studies in this mushroom species. Copyright © 2014 Elsevier GmbH. All rights reserved.
Improved electroporation procedure for genetic transformation of Dekkera/Brettanomyces bruxellensis.
Miklenić, Marina; Žunar, Bojan; Štafa, Anamarija; Svetec, Ivan-Krešimir
2015-12-01
Yeast Dekkera/Brettanomyces bruxellensis is one of the most common contaminants in wine industry, but also one of the most promising candidates for large-scale bioethanol production. Brettanomyces bruxellensis not only produces and tolerates high ethanol concentrations, but can also ferment cellobiose and adapt to lignocellulose hydrolasate. Furthermore, genome sequences of several B. bruxellensis strains are available, and efforts have been made to develop tools for genetic transformation of this yeast. Previously, we reported a successful transformation using lithium acetate/PEG method and electroporation, however, with very low transformation efficiency (10-20 transformants μg(-1)). Here we describe an optimization of electroporation procedure which resulted in a significant increase of transformation efficiency (2.8 × 10(3) transformants μg(-1)). Several key transformation parameters were optimized including cell growth phase, density of cells in the transformation sample and electroporation settings. We determined that treating the cells with both lithium acetate (100 mM) and dithiothreitol (35 mM) synergistically improves transformation efficiency. Using the described procedure around 500 transformants can be obtained per transformation sample with 180 ng of non-homologous linear transforming fragment. Additionally, several transformants were obtained with less than 1 ng of DNA demonstrating that this procedure is adequate even when very limited amount of DNA is available. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Dan, Yinghui; Baxter, Aaron; Zhang, Song; Pantazis, Christopher J; Veilleux, Richard E
2010-08-09
Impatiens (Impatiens walleriana) is a top selling floriculture crop. The potential for genetic transformation of Impatiens to introduce novel flower colors or virus resistance has been limited by its general recalcitrance to tissue culture and transformation manipulations. We have established a regeneration and transformation system for Impatiens that provides new alternatives to genetic improvement of this crop. In a first step towards the development of transgenic INSV-resistant Impatiens, we developed an efficient plant regeneration system using hypocotyl segments containing cotyledonary nodes as explants. With this regeneration system, 80% of explants produced an average of 32.3 elongated shoots per initial explant plated, with up to 167 elongated shoots produced per explant. Rooting efficiency was high, and 100% of shoots produced roots within 12 days under optimal conditions, allowing plant regeneration within approximately 8 weeks. Using this regeneration system, we developed an efficient Agrobacterium-mediated Impatiens transformation method using in vitro multiple bud cultures as explants and a binary plasmid (pHB2892) bearing gfp and nptII genes. Transgenic Impatiens plants, with a frequency up to 58.9%, were obtained within 12 to 16 weeks from inoculation to transfer of transgenic plants to soil. Transgenic plants were confirmed by Southern blot, phenotypic assays and T1 segregation analysis. Transgene expression was observed in leaves, stems, roots, flowers, and fruit. The transgenic plants were fertile and phenotypically normal. We report the development of a simple and efficient Agrobacterium-mediated transformation system for Impatiens. To the best of our knowledge, there have been no reports of Agrobacterium-mediated transformation of Impatiens with experimental evidence of stable integration of T-DNA and of Agrobacterium-mediated transformation method for plants using in vitro maintained multiple bud cultures as explants. This transformation system has the advantages of 1) efficient, simple and rapid regeneration and transformation (with no need for sterilization or a greenhouse to grow stock plants), 2) flexibility (available all the time) for in vitro manipulation, 3) uniform and desirable green tissue explants for both nuclear and plastid transformation using Agrobacterium-mediated and biolistics methods, 4) no somaclonal variation and 5) resolution of necrosis of Agrobacterium-inoculated tissues.
Structured Low-Density Parity-Check Codes with Bandwidth Efficient Modulation
NASA Technical Reports Server (NTRS)
Cheng, Michael K.; Divsalar, Dariush; Duy, Stephanie
2009-01-01
In this work, we study the performance of structured Low-Density Parity-Check (LDPC) Codes together with bandwidth efficient modulations. We consider protograph-based LDPC codes that facilitate high-speed hardware implementations and have minimum distances that grow linearly with block sizes. We cover various higher- order modulations such as 8-PSK, 16-APSK, and 16-QAM. During demodulation, a demapper transforms the received in-phase and quadrature samples into reliability information that feeds the binary LDPC decoder. We will compare various low-complexity demappers and provide simulation results for assorted coded-modulation combinations on the additive white Gaussian noise and independent Rayleigh fading channels.
Chowdhury, Supriyo; Basu, Arpita; Kundu, Surekha
2014-09-01
In spite of the economic importance of sesame (Sesamum indicum L.) and the recent availability of its genome sequence, a high-frequency transformation protocol is still not available. The only two existing Agrobacterium-mediated transformation protocols that are available have poor transformation efficiencies of less than 2%. In the present study, we report a high-frequency, simple, and reproducible transformation protocol for sesame. Transformation was done using de-embryonated cotyledons via somatic embryogenic stages. All the critical parameters of transformation, like incubation period of explants in pre-regeneration medium prior to infection by Agrobacterium tumefaciens, cocultivation period, concentrations of acetosyringone in cocultivation medium, kanamycin concentration, and concentration of plant hormones, including 6-benzylaminopurine, have been optimized. This protocol is superior to the two existing protocols in its high regeneration and transformation efficiencies. The transformed sesame lines have been tested by PCR, RT-PCR for neomycin phosphotransferase II gene expression, and β-glucuronidase (GUS) assay. The regeneration frequency and transformation efficiency are 57.33 and 42.66%, respectively. T0 and T1 generation transgenic plants were analyzed, and several T1 plants homozygous for the transgenes were obtained.
10 CFR 429.70 - Alternative methods for determining energy efficiency or energy use.
Code of Federal Regulations, 2013 CFR
2013-01-01
... of commercial HVAC and WH equipment, distribution transformers, and central air conditioners and heat... overrate the efficiency of a basic model. For each basic model of distribution transformer that has a... voltage at which the transformer is rated to operate. (b) Testing. Testing for each covered product or...
Efficient transformer for electromagnetic waves
Miller, R.B.
A transformer structure for efficient transfer of electromagnetic energy from a transmission line to an unmatched load provides voltage multiplication and current division by a predetermined constant. Impedance levels are transformed by the square of that constant. The structure includes a wave splitter, connected to an input transmission device and to a plurality of output transmission devices. The output transmission devices are effectively connected in parallel to the input transmission device. The output transmission devices are effectively series connected to provide energy to a load. The transformer structure is particularly effective in increasing efficiency of energy transfer through an inverting convolute structure by capturing and transferring energy losses from the inverter to the load.
Highly Efficient Electroporation-mediated Transformation into Edible Mushroom Flammulina velutipes
Kim, Jong Kun; Park, Young Jin; Kong, Won Sik
2010-01-01
In this study, we developed an efficient electroporation-mediated transformation system featuring Flammulina velutipes. The flammutoxin (ftx) gene of F. velutipes was isolated by reverse transcription-PCR. pFTXHg plasmid was constructed using the partial ftx gene (410 bp) along with the hygromycin B phosphotransferase gene (hygB) downstream of the glyceraldehydes-3-phosphate dehydrogenase (gpd) promoter. The plasmid was transformed into protoplasts of monokaryotic strain 4019-20 of F. velutipes by electroporation. High transformation efficiency was obtained with an electric-pulse of 1.25 kV/cm by using 177 transformants/µg of DNA in 1 × 107 protoplasts. PCR and Southern blot hybridization indicated that a single copy of the plasmid DNA was inserted at different locations in the F. velutipes genome by non-homologous recombination. Therefore, this transformation system could be used as a useful tool for gene function analysis of F. velutipes. PMID:23956676
Highly Efficient Electroporation-mediated Transformation into Edible Mushroom Flammulina velutipes.
Kim, Jong Kun; Park, Young Jin; Kong, Won Sik; Kang, Hee Wan
2010-12-01
In this study, we developed an efficient electroporation-mediated transformation system featuring Flammulina velutipes. The flammutoxin (ftx) gene of F. velutipes was isolated by reverse transcription-PCR. pFTXHg plasmid was constructed using the partial ftx gene (410 bp) along with the hygromycin B phosphotransferase gene (hygB) downstream of the glyceraldehydes-3-phosphate dehydrogenase (gpd) promoter. The plasmid was transformed into protoplasts of monokaryotic strain 4019-20 of F. velutipes by electroporation. High transformation efficiency was obtained with an electric-pulse of 1.25 kV/cm by using 177 transformants/µg of DNA in 1 × 10(7) protoplasts. PCR and Southern blot hybridization indicated that a single copy of the plasmid DNA was inserted at different locations in the F. velutipes genome by non-homologous recombination. Therefore, this transformation system could be used as a useful tool for gene function analysis of F. velutipes.
International Review of Standards and Labeling Programs for Distribution Transformers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Letschert, Virginie; Scholand, Michael; Carreño, Ana MarÃa
Transmission and distribution (T&D) losses in electricity networks represent 8.5% of final energy consumption in the world. In Latin America, T&D losses range between 6% and 20% of final energy consumption, and represent 7% in Chile. Because approximately one-third of T&D losses take place in distribution transformers alone, there is significant potential to save energy and reduce costs and carbon emissions through policy intervention to increase distribution transformer efficiency. A large number of economies around the world have recognized the significant impact of addressing distribution losses and have implemented policies to support market transformation towards more efficient distribution transformers. Asmore » a result, there is considerable international experience to be shared and leveraged to inform countries interested in reducing distribution losses through policy intervention. The report builds upon past international studies of standards and labeling (S&L) programs for distribution transformers to present the current energy efficiency programs for distribution transformers around the world.« less
An improved yeast transformation method for the generation of very large human antibody libraries.
Benatuil, Lorenzo; Perez, Jennifer M; Belk, Jonathan; Hsieh, Chung-Ming
2010-04-01
Antibody library selection by yeast display technology is an efficient and highly sensitive method to identify binders to target antigens. This powerful selection tool, however, is often hampered by the typically modest size of yeast libraries (approximately 10(7)) due to the limited yeast transformation efficiency, and the full potential of the yeast display technology for antibody discovery and engineering can only be realized if it can be coupled with a mean to generate very large yeast libraries. We describe here a yeast transformation method by electroporation that allows for the efficient generation of large antibody libraries up to 10(10) in size. Multiple components and conditions including CaCl(2), MgCl(2), sucrose, sorbitol, lithium acetate, dithiothreitol, electroporation voltage, DNA input and cell volume have been tested to identify the best combination. By applying this developed protocol, we have constructed a 1.4 x 10(10) human spleen antibody library essentially in 1 day with a transformation efficiency of 1-1.5 x 10(8) transformants/microg vector DNA. Taken together, we have developed a highly efficient yeast transformation method that enables the generation of very large and productive human antibody libraries for antibody discovery, and we are now routinely making 10(9) libraries in a day for antibody engineering purposes.
NASA Astrophysics Data System (ADS)
Cai, Jiaxiang; Liang, Hua; Zhang, Chun
2018-06-01
Based on the multi-symplectic Hamiltonian formula of the generalized Rosenau-type equation, a multi-symplectic scheme and an energy-preserving scheme are proposed. To improve the accuracy of the solution, we apply the composition technique to the obtained schemes to develop high-order schemes which are also multi-symplectic and energy-preserving respectively. Discrete fast Fourier transform makes a significant improvement to the computational efficiency of schemes. Numerical results verify that all the proposed schemes have satisfactory performance in providing accurate solution and preserving the discrete mass and energy invariants. Numerical results also show that although each basic time step is divided into several composition steps, the computational efficiency of the composition schemes is much higher than that of the non-composite schemes.
Han, Guomin; Shao, Qian; Li, Cuiping; Zhao, Kai; Jiang, Li; Fan, Jun; Jiang, Haiyang; Tao, Fang
2018-05-01
Aspergillus flavus often invade many important corps and produce harmful aflatoxins both in preharvest and during storage stages. The regulation mechanism of aflatoxin biosynthesis in this fungus has not been well explored mainly due to the lack of an efficient transformation method for constructing a genome-wide gene mutant library. This challenge was resolved in this study, where a reliable and efficient Agrobacterium tumefaciens-mediated transformation (ATMT) protocol for A. flavus NRRL 3357 was established. The results showed that removal of multinucleate conidia, to collect a homogenous sample of uninucleate conidia for use as the transformation material, is the key step in this procedure. A. tumefaciens strain AGL-1 harboring the ble gene for zeocin resistance under the control of the gpdA promoter from A. nidulans is suitable for genetic transformation of this fungus. We successfully generated A. flavus transformants with an efficiency of ∼ 60 positive transformants per 10 6 conidia using our protocol. A small-scale insertional mutant library (∼ 1,000 mutants) was constructed using this method and the resulting several mutants lacked both production of conidia and aflatoxin biosynthesis capacity. Southern blotting analysis demonstrated that the majority of the transformants contained a single T-DNA insert on the genome. To the best of our knowledge, this is the first report of genetic transformation of A. flavus via ATMT and our protocol provides an effective tool for construction of genome-wide gene mutant libraries for functional analysis of important genes in A. flavus.
1,2-diketones promoted degradation of poly(epsilon-caprolactone)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danko, Martin; Borska, Katarina; Ragab, Sherif Shaban
2012-07-11
Photochemical reactions of Benzil and Camphorquinone were used for modification of poly({epsilon}-caprolactone) polymer films. Photochemistry of dopants was followed by infrared spectroscopy, changes on polymer chains of matrix were followed by gel permeation chromatography. Benzoyl peroxide was efficiently photochemically generated from benzyl in solid polymer matrix in the presence of air. Following decomposition of benzoyl peroxide led to degradation of matrix. Photochemical transformation of benzil in vacuum led to hydrogen abstraction from the polymer chains in higher extent, which resulted to chains recombination and formation of gel. Photochemical transformation of camphorquinone to corresponding camphoric peroxide was not observed. Only decreasemore » of molecular weight of polymer matrix doped with camphorquinone was observed during the irradiation.« less
Dong, Xiaoya; Zhang, Ke; Gao, Yuqian; Qi, Yuancheng; Shen, Jinwen; Qiu, Liyou
2012-01-01
Three hygromycin B phosphotransferase (hph) gene expression systems for culinary-medicinal Oyster mushroom, Pleurotus ostreatus, plasmid pSHC, pAN7-1, and pBHt1 were evaluated through PEG/CaCl(2)-mediated protoplast transformation. Plasmid pSHC is a newly constructed hph gene expression system, composed of Escherichia coli hph gene, the P. ostreatus sdi promoter, and the CaMV35S terminator. The vector pAN7-1 was commonly used for integrative transformation in filamentous fungi. Plasmid pBHtl is a T-DNA binary vector, usually introduced into fungi by Agrobacterium-mediated transformation. The results showed that plasmids pSHC, pAN7-1, and pBHt1 were all integrated into the host chromosomes and expressed hygromycin B resistance in P. ostreatus. pAN7-1 had the highest transformation efficiency and hph gene expression level, pSHC the second, and pBHt1 the lowest. Growth rates of the transformants on plates containing hygromycin B were in correspondence with their hph gene expression levels. To our knowledge, this is the first report on integrated transformation of plasmid pAN7-1 and pBHt1 in P. ostreatus.
NASA Astrophysics Data System (ADS)
Yoshikawa, Choiku; Hattori, Kazuhiro; Jeong, Jongsoo; Saito, Kiyoshi; Kawai, Sunao
An ejector can transform the expansion energy of the driving flow into the pressure build-up energy of the suction flow. Therefore, by utilizing the ejector instead of the expansion valve for the vapor compression cycle, the performance of the cycle can be greatly improved. Until now, the performance of the vapor compression cycle with the ejector has not been examined sufficiently. Therefore, this paper constructs the simulation model of the vapor compression cycle with the ejector and investigates the performance of that cycle by the simulation. Working fluids are ammonia and CO2. As a result, in case of the ejector efficiency 90%, COP of the vapor compression cycle using ammonia with the ejector is 5% higher than that of the conventional cycle and COP using CO2 with the ejector is 22% higher than that of the conventional cycle.
Transformation of Escherichia coli with large DNA molecules by electroporation.
Sheng, Y; Mancino, V; Birren, B
1995-01-01
We have examined bacterial electroporation with a specific interest in the transformation of large DNA, i.e. molecules > 100 kb. We have used DNA from bacterial artificial chromosomes (BACs) ranging from 7 to 240 kb, as well as BAC ligation mixes containing a range o different sized molecules. The efficiency of electroporation with large DNA is strongly dependent on the strain of Escherichia coli used; strains which offer comparable efficiencies for 7 kb molecules differ in their uptake of 240 kb DNA by as much as 30-fold. Even with a host strain that transforms relatively well with large DNA, transformation efficiency drops dramatically with increasing size of the DNA. Molecules of 240 kb transform approximately 30-fold less well, on a molar basis, than molecules of 80 kb. Maximum transformation of large DNA occurs with different voltage gradients and with different time constants than are optimal for smaller DNA. This provides the opportunity to increase the yield of transformants which have taken up large DNA relative to the number incorporating smaller molecules. We have demonstrated that conditions may be selected which increase the average size of BAC clones generated by electroporation and compare the overall efficiency of each of the conditions tested. Images PMID:7596828
Maize, tropical (Zea mays L.).
Assem, Shireen K
2015-01-01
Maize (Zea mays L.) is the third most important food crop globally after wheat and rice. In sub-Saharan Africa, tropical maize has traditionally been the main staple of the diet; 95 % of the maize grown is consumed directly as human food and as an important source of income for the resource-poor rural population. The biotechnological approach to engineer biotic and abiotic traits implies the availability of an efficient plant transformation method. The production of genetically transformed plants depends both on the ability to integrate foreign genes into target cells and the efficiency with which plants are regenerated. Maize transformation and regeneration through immature embryo culture is the most efficient system to regenerate normal transgenic plants. However, this system is highly genotype dependent. Genotypes adapted to tropic areas are difficult to regenerate. Therefore, transformation methods used with model genotypes adapted to temperate areas are not necessarily efficient with tropical lines. Agrobacterium-mediated transformation is the method of choice since it has been first achieved in 1996. In this report, we describe a transformation method used successfully with several tropical maize lines. All the steps of transformation and regeneration are described in details. This protocol can be used with a wide variety of tropical lines. However, some modifications may be needed with recalcitrant lines.
Nanjareddy, Kalpana; Arthikala, Manoj-Kumar; Blanco, Lourdes; Arellano, Elizabeth S; Lara, Miguel
2016-06-24
Phaseolus vulgaris is one of the most extensively studied model legumes in the world. The P. vulgaris genome sequence is available; therefore, the need for an efficient and rapid transformation system is more imperative than ever. The functional characterization of P. vulgaris genes is impeded chiefly due to the non-amenable nature of Phaseolus sp. to stable genetic transformation. Transient transformation systems are convenient and versatile alternatives for rapid gene functional characterization studies. Hence, the present work focuses on standardizing methodologies for protoplast isolation from multiple tissues and transient transformation protocols for rapid gene expression analysis in the recalcitrant grain legume P. vulgaris. Herein, we provide methodologies for the high-throughput isolation of leaf mesophyll-, flower petal-, hypocotyl-, root- and nodule-derived protoplasts from P. vulgaris. The highly efficient polyethylene glycol-mannitol magnesium (PEG-MMG)-mediated transformation of leaf mesophyll protoplasts was optimized using a GUS reporter gene. We used the P. vulgaris SNF1-related protein kinase 1 (PvSnRK1) gene as proof of concept to demonstrate rapid gene functional analysis. An RT-qPCR analysis of protoplasts that had been transformed with PvSnRK1-RNAi and PvSnRK1-OE vectors showed the significant downregulation and ectopic constitutive expression (overexpression), respectively, of the PvSnRK1 transcript. We also demonstrated an improved transient transformation approach, sonication-assisted Agrobacterium-mediated transformation (SAAT), for the leaf disc infiltration of P. vulgaris. Interestingly, this method resulted in a 90 % transformation efficiency and transformed 60-85 % of the cells in a given area of the leaf surface. The constitutive expression of YFP further confirmed the amenability of the system to gene functional characterization studies. We present simple and efficient methodologies for protoplast isolation from multiple P. vulgaris tissues. We also provide a high-efficiency and amenable method for leaf mesophyll transformation for rapid gene functional characterization studies. Furthermore, a modified SAAT leaf disc infiltration approach aids in validating genes and their functions. Together, these methods help to rapidly unravel novel gene functions and are promising tools for P. vulgaris research.
NASA Astrophysics Data System (ADS)
Platt, P.; Frankel, P.; Gass, M.; Howells, R.; Preuss, M.
2014-11-01
Corrosion is a key limiting factor in the degradation of zirconium alloys in light water reactors. Developing a mechanistic understanding of the corrosion process offers a route towards improving safety and efficiency as demand increases for higher burn-up of fuel. Oxides formed on zirconium alloys are composed of both monoclinic and meta-stable tetragonal phases, and are subject to a number of potential mechanical degradation mechanisms. The work presented investigates the link between the tetragonal to monoclinic oxide phase transformation and degradation of the protective character of the oxide layer. To achieve this, Abaqus finite element analysis of the oxide phase transformation has been carried out. Study of the change in transformation strain energy shows how relaxation of oxidation induced stress and fast fracture at the metal-oxide interface could destabilise the tetragonal phase. Central to this is the identification of the transformation variant most likely to form, and understanding why twinning of the transformed grain is likely to occur. Development of transformation strain tensors and analysis of the strain components allows some separation of dilatation and shear effects. Maximum principal stress is used as an indication of fracture in the surrounding oxide layer. Study of the stress distributions shows the way oxide fracture is likely to occur and the differing effects of dilatation and shape change. Comparison with literature provides qualitative validation of the finite element simulations.
Tsai, Yung-Yu; Ohashi, Takao; Kanazawa, Takenori; Polburee, Pirapan; Misaki, Ryo; Limtong, Savitree; Fujiyama, Kazuhito
2017-05-01
Rhodosporidium toruloides DMKU3-TK16 (TK16), a basidiomycetous yeast isolated in Thailand, can produce a large amount of oil corresponding to approximately 70 % of its dry cell weight. However, lack of a sufficient and efficient transformation method makes further genetic manipulation of this organism difficult. We here developed a new transformation system for R. toruloides using a lithium acetate method with the Sh ble gene as a selective marker under the control of the R. toruloides ATCC 10657 GPD1 promoter. A linear DNA fragment containing the Sh ble gene expression cassette was integrated into the genome, and its integration was confirmed by colony PCR and Southern blot. Then, we further optimized the parameters affecting the transformation efficiency, such as the amount of linear DNA, the growth phase, the incubation time in the transformation mixture, the heat shock treatment temperature, the addition of DMSO and carrier DNA, and the recovery incubation time. With the developed method, the transformation efficiency of approximately 25 transformants/μg DNA was achieved. Compared with the initial trial, transformation efficiency was enhanced 417-fold. We further demonstrated the heterologous production of EGFP in TK16 by microscopic observation and immunoblot analysis, and use the technique to disrupt the endogenous URA3 gene. The newly developed method is thus simple and time saving, making it useful for efficient introduction of an exogenous gene into R. toruloides strains. Accordingly, this new practical approach should facilitate the molecular manipulation, such as target gene introduction and deletion, of TK16 and other R. toruloides strains as a major source of biodiesel.
NASA Astrophysics Data System (ADS)
Li, Jing; Kou, Liying; Wang, Duo; Zhang, Wei
2017-12-01
In this paper, we mainly focus on the unique normal form for a class of three-dimensional vector fields via the method of transformation with parameters. A general explicit recursive formula is derived to compute the higher order normal form and the associated coefficients, which can be achieved easily by symbolic calculations. To illustrate the efficiency of the approach, a comparison of our result with others is also presented.
Soybean (Glycine max) transformation using mature cotyledonary node explants.
Olhoft, Paula M; Donovan, Christopher M; Somers, David A
2006-01-01
Agrobacterium tumefaciens-mediated transformation of soybeans has been steadily improved since its development in 1988. Soybean transformation is now possible in a range of genotypes from different maturity groups using different explants as sources of regenerable cells, various selectable marker genes and selective agents, and different A. tumefaciens strains. The cotyledonary-node method has been extensively investigated and across a number of laboratories yields on average greater than 1% transformation efficiency (one Southern-positive, independent event per 100 cotyledonary-node explants). Continued improvements in the cotyledonary-node method concomitant with further increases in transformation efficiency will enhance broader adoption of this already productive transformation method for use in crop improvement and functional genomics research efforts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Young-Cheol; Kim, Hyun-Jun; Lee, Hyo-Chang
In a plasma discharge system, the power loss at powered line, matching network, and other transmission line can affect the discharge characteristics such as the power transfer efficiency, voltage and current at powered electrode, and plasma density. In this paper, we propose a method to reduce power loss by using a step down transformer mounted between the matching network and the powered electrode in a capacitively coupled argon plasma. This step down transformer decreases the power loss by reducing the current flowing through the matching network and transmission line. As a result, the power transfer efficiency was increased about 5%–10%more » by using a step down transformer. However, the plasma density was dramatically increased compared to no transformer. This can be understood by the increase in ohmic heating and the decrease in dc-self bias. By simply mounting a transformer, improvement of discharge efficiency can be achieved in capacitively coupled plasmas.« less
ERIC Educational Resources Information Center
Durant, Rita A.; Carlon, Donna M.; Downs, Alexis
2017-01-01
This article describes the results of the "Efficiency Challenge," a 10-week, Principles of Management course activity that uses reflection and goal setting to help students understand the concept of operational efficiency. With transformative learning theory as a lens, we base our report on 4 years' worth of student reflections regarding…
Transformation of medicinal plants using Agrobacterium tumefaciens.
Bandurska, Katarzyna; Berdowska, Agnieszka; Król, Małgorzata
2016-12-20
For many years attempts are made to develop efficient methods for transformation of medicinal plants via Agrobacterium tumefaciens. It is a soil bacteria which possess a natural ability to infect plants in places of injures which results in arise of cancerous growths (crown gall). This is possible thanks a transfer of fragment of Ti plasmid into plant cells and stable integration with a plant genome. Efficiency of medicinal plant transformation depends on many factors for example: Agrobacterium strain, methods and procedures of transformation as well as on plant species, type and age of the explants and regeneration conditions. The main goal of plant transformation is to increase the amount of naturally occurring bioactive compounds and the production of biopharmaceuticals. Genetic plant transformation via bacteria of the genus Agrobacterium is a complex process which requires detailed analysis of incorporated transgene expression and occurs only in the case when the plant cell acquires the ability to regenerate. In many cases, the regeneration efficiency observed in medicinal plants are inefficient after applied transformation procedures. To date there have been attempts of genetic transformation by using A. tumefaciens of medicinal plants belonging to the families: Apocynaceae, Araceae, Araliaceae, Asphodelaceae, Asteraceae, Begoniaceae, Crassulaceae, Fabaceae, Lamiaceae, Linaceae, Papaveraceae, Plantaginaceae, Scrophulariaceae and Solanaceae.
Designation of a polarization-converting system and its enhancement of double-frequency efficiency
NASA Astrophysics Data System (ADS)
Wang, Peng; Li, Xiao; Shang, YaPing; Xu, XiaoJun
2015-08-01
A polarization-converting system is designed by using axicons and wave plate transforming naturally polarized laser to linearly polarized laser at real time to resolve difficulties of generating high-power linearly polarized laser. The energy conversion efficiency reaches 96.9% with an enhancement of extinction ratio from 29.7% to 98%. The system also keeps excellent far field divergence. In the one-way SHG experiment the double frequency efficiency reached 4.32% using the generated linearly polarized laser, much higher than that of the naturally polarized laser but lower than that of the linearly polarized laser from PBS. And the phenomenon of the SHG experiment satisfies the principle of phase matching. The experiment proves that this polarization-converting system will not affect laser structure which controls easily and needs no feedback and controlling system with stable and reliable properties at the same time. It can absolutely be applied to the polarization-conversion of high power laser and enhance the SHG efficiency and the energy efficiency.
Study of Contactless Power Supply for Spindle Ultrasonic Vibrator
NASA Astrophysics Data System (ADS)
Chen, T. R.; Lee, Y. L.; Liu, H. T.; Chen, S. M.; Chang, H. Z.
2017-11-01
In this study, a contactless power supply for the ultrasonic motor on the spindle is proposed. The proposed power supply is composed of a series-parallel resonant circuit and a cylindrical contactless transformer. Based on the study and rotation experiments, it can be seen that the proposed power supply can both provide a stable ac power with 25 kHz / 70 V to the ultrasonic motor. When the output power is 250 W, the efficiency of the proposed supply is 89.8 % in respectively rotation tests. When the output power is more than 150 W, the efficiency of the proposed supply is higher than 80 % within the rated output power range.
Highly efficient and selective pressure-assisted photon-induced polymerization of styrene
NASA Astrophysics Data System (ADS)
Guan, Jiwen; Song, Yang
2016-06-01
The polymerization process of condensed styrene to produce polystyrene as an industrially important polymeric material was investigated using a novel approach by combining external compression with ultraviolet radiation. The reaction evolution was monitored as a function of time and the reaction products were characterized by in situ Fourier transform infrared spectroscopy. By optimizing the loading pressures, we observed highly efficient and selective production of polystyrene of different tacticities. Specifically, at relatively low loading pressures, infrared spectra suggest that styrene monomers transform to amorphous atactic polystyrene (APS) with minor crystalline isotactic polystyrene. In contrast, APS was found to be the sole product when polymerization occurs at relatively higher loading pressures. The time-dependent reaction profiles allow the examination of the polymerization kinetics by analyzing the rate constant and activation volume as a function of pressure. As a result, an optimized pressure condition, which allows a barrierless reaction to proceed, was identified and attributed to the very desirable reaction yield and kinetics. Finally, the photoinitiated reaction mechanism and the growth geometry of the polymer chains were investigated from the energy diagram of styrene and by the topology analysis of the crystal styrene. This study shows strong promise to produce functional polymeric materials in a highly efficient and controlled manner.
Tabatabaei, Iman; Ruf, Stephanie; Bock, Ralph
2017-02-01
A new selectable marker gene for stable transformation of the plastid genome was developed that is similarly efficient as the aadA, and produces no background of spontaneous resistance mutants. More than 25 years after its development for Chlamydomonas and tobacco, the transformation of the chloroplast genome still represents a challenging technology that is available only in a handful of species. The vast majority of chloroplast transformation experiments conducted thus far have relied on a single selectable marker gene, the spectinomycin resistance gene aadA. Although a few alternative markers have been reported, the aadA has remained unrivalled in efficiency and is, therefore, nearly exclusively used. The development of new marker genes for plastid transformation is of crucial importance to all efforts towards extending the species range of the technology as well as to those applications in basic research, biotechnology and synthetic biology that involve the multistep engineering of plastid genomes. Here, we have tested a bifunctional resistance gene for its suitability as a selectable marker for chloroplast transformation. The bacterial enzyme aminoglycoside acetyltransferase(6')-Ie/aminoglycoside phosphotransferase(2″)-Ia possesses an N-terminal acetyltransferase domain and a C-terminal phosphotransferase domain that can act synergistically and detoxify aminoglycoside antibiotics highly efficiently. We report that, in combination with selection for resistance to the aminoglycoside tobramycin, the aac(6')-Ie/aph(2″)-Ia gene represents an efficient marker for plastid transformation in that it produces similar numbers of transplastomic lines as the spectinomycin resistance gene aadA. Importantly, no spontaneous antibiotic resistance mutants appear under tobramycin selection.
Spiral Transformation for High-Resolution and Efficient Sorting of Optical Vortex Modes.
Wen, Yuanhui; Chremmos, Ioannis; Chen, Yujie; Zhu, Jiangbo; Zhang, Yanfeng; Yu, Siyuan
2018-05-11
Mode sorting is an essential function for optical multiplexing systems that exploit the orthogonality of the orbital angular momentum mode space. The familiar log-polar optical transformation provides a simple yet efficient approach whose resolution is, however, restricted by a considerable overlap between adjacent modes resulting from the limited excursion of the phase along a complete circle around the optical vortex axis. We propose and experimentally verify a new optical transformation that maps spirals (instead of concentric circles) to parallel lines. As the phase excursion along a spiral in the wave front of an optical vortex is theoretically unlimited, this new optical transformation can separate orbital angular momentum modes with superior resolution while maintaining unity efficiency.
Spiral Transformation for High-Resolution and Efficient Sorting of Optical Vortex Modes
NASA Astrophysics Data System (ADS)
Wen, Yuanhui; Chremmos, Ioannis; Chen, Yujie; Zhu, Jiangbo; Zhang, Yanfeng; Yu, Siyuan
2018-05-01
Mode sorting is an essential function for optical multiplexing systems that exploit the orthogonality of the orbital angular momentum mode space. The familiar log-polar optical transformation provides a simple yet efficient approach whose resolution is, however, restricted by a considerable overlap between adjacent modes resulting from the limited excursion of the phase along a complete circle around the optical vortex axis. We propose and experimentally verify a new optical transformation that maps spirals (instead of concentric circles) to parallel lines. As the phase excursion along a spiral in the wave front of an optical vortex is theoretically unlimited, this new optical transformation can separate orbital angular momentum modes with superior resolution while maintaining unity efficiency.
Celis, A M; Vos, A M; Triana, S; Medina, C A; Escobar, N; Restrepo, S; Wösten, H A B; de Cock, H
2017-03-01
Malassezia spp. are part of the normal human and animal mycobiota but are also associated with a variety of dermatological diseases. The absence of a transformation system hampered studies to reveal mechanisms underlying the switch from the non-pathogenic to pathogenic life style. Here we describe, a highly efficient Agrobacterium-mediated genetic transformation system for Malassezia furfur and M. pachydermatis. A binary T-DNA vector with the hygromycin B phosphotransferase (hpt) selection marker and the green fluorescent protein gene (gfp) was introduced in M. furfur and M. pachydermatis by combining the transformation protocols of Agaricus bisporus and Cryptococcus neoformans. Optimal temperature and co-cultivation time for transformation were 5 and 7days at 19°C and 24°C, respectively. Transformation efficiency was 0.75-1.5% for M. furfur and 0.6-7.5% for M. pachydermatis. Integration of the hpt resistance cassette and gfp was verified using PCR and fluorescence microscopy, respectively. The T-DNA was mitotically stable in approximately 80% of the transformants after 10 times sub-culturing in the absence of hygromycin. Improving transformation protocols contribute to study the biology and pathophysiology of Malassezia. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Daigle, Matthew John; Goebel, Kai Frank
2010-01-01
Model-based prognostics captures system knowledge in the form of physics-based models of components, and how they fail, in order to obtain accurate predictions of end of life (EOL). EOL is predicted based on the estimated current state distribution of a component and expected profiles of future usage. In general, this requires simulations of the component using the underlying models. In this paper, we develop a simulation-based prediction methodology that achieves computational efficiency by performing only the minimal number of simulations needed in order to accurately approximate the mean and variance of the complete EOL distribution. This is performed through the use of the unscented transform, which predicts the means and covariances of a distribution passed through a nonlinear transformation. In this case, the EOL simulation acts as that nonlinear transformation. In this paper, we review the unscented transform, and describe how this concept is applied to efficient EOL prediction. As a case study, we develop a physics-based model of a solenoid valve, and perform simulation experiments to demonstrate improved computational efficiency without sacrificing prediction accuracy.
Efficient material decomposition method for dual-energy X-ray cargo inspection system
NASA Astrophysics Data System (ADS)
Lee, Donghyeon; Lee, Jiseoc; Min, Jonghwan; Lee, Byungcheol; Lee, Byeongno; Oh, Kyungmin; Kim, Jaehyun; Cho, Seungryong
2018-03-01
Dual-energy X-ray inspection systems are widely used today for it provides X-ray attenuation contrast of the imaged object and also its material information. Material decomposition capability allows a higher detection sensitivity of potential targets including purposely loaded impurities in agricultural product inspections and threats in security scans for example. Dual-energy X-ray transmission data can be transformed into two basis material thickness data, and its transformation accuracy heavily relies on a calibration of material decomposition process. The calibration process in general can be laborious and time consuming. Moreover, a conventional calibration method is often challenged by the nonuniform spectral characteristics of the X-ray beam in the entire field-of-view (FOV). In this work, we developed an efficient material decomposition calibration process for a linear accelerator (LINAC) based high-energy X-ray cargo inspection system. We also proposed a multi-spot calibration method to improve the decomposition performance throughout the entire FOV. Experimental validation of the proposed method has been demonstrated by use of a cargo inspection system that supports 6 MV and 9 MV dual-energy imaging.
Plant Products for Pharmacology: Application of Enzymes in Their Transformations
Zarevúcka, Marie; Wimmer, Zdeněk
2008-01-01
Different plant products have been subjected to detailed investigations due to their increasing importance for improving human health. Plants are sources of many groups of natural products, of which large number of new compounds has already displayed their high impact in human medicine. This review deals with the natural products which may be found dissolved in lipid phase (phytosterols, vitamins etc.). Often subsequent convenient transformation of natural products may further improve the pharmacological properties of new potential medicaments based on natural products. To respect basic principles of sustainable and green procedures, enzymes are often employed as efficient natural catalysts in such plant product transformations. Transformations of lipids and other natural products under the conditions of enzyme catalysis show increasing importance in environmentally safe and sustainable production of pharmacologically important compounds. In this review, attention is focused on lipases, efficient and convenient biocatalysts for the enantio- and regioselective formation / hydrolysis of ester bond in a wide variety of both natural and unnatural substrates, including plant products, eg. plant oils and other natural lipid phase compounds. The application of enzymes for preparation of acylglycerols and transformation of other natural products provides big advantage in comparison with employing of conventional chemical methods: Increased selectivity, higher product purity and quality, energy conservation, elimination of heavy metal catalysts, and sustainability of the employed processes, which are catalyzed by enzymes. Two general procedures are used in the transformation of lipid-like natural products: (a) Hydrolysis/alcoholysis of triacylglycerols and (b) esterification of glycerol. The reactions can be performed under conventional conditions or in supercritical fluids/ionic liquids. Enzyme-catalyzed reactions in supercritical fluids combine the advantages of biocatalysts (substrate specificity under mild reaction conditions) and supercritical fluids (high mass-transfer rate, easy separation of reaction products from the solvent, environmental benefits based on excluding organic solvents from the production process). PMID:19330086
NASA Astrophysics Data System (ADS)
May, Matthias M.; Lewerenz, Hans-Joachim; Lackner, David; Dimroth, Frank; Hannappel, Thomas
2015-09-01
Photosynthesis is nature's route to convert intermittent solar irradiation into storable energy, while its use for an industrial energy supply is impaired by low efficiency. Artificial photosynthesis provides a promising alternative for efficient robust carbon-neutral renewable energy generation. The approach of direct hydrogen generation by photoelectrochemical water splitting utilizes customized tandem absorber structures to mimic the Z-scheme of natural photosynthesis. Here a combined chemical surface transformation of a tandem structure and catalyst deposition at ambient temperature yields photocurrents approaching the theoretical limit of the absorber and results in a solar-to-hydrogen efficiency of 14%. The potentiostatically assisted photoelectrode efficiency is 17%. Present benchmarks for integrated systems are clearly exceeded. Details of the in situ interface transformation, the electronic improvement and chemical passivation are presented. The surface functionalization procedure is widely applicable and can be precisely controlled, allowing further developments of high-efficiency robust hydrogen generators.
May, Matthias M.; Lewerenz, Hans-Joachim; Lackner, David; Dimroth, Frank; Hannappel, Thomas
2015-01-01
Photosynthesis is nature's route to convert intermittent solar irradiation into storable energy, while its use for an industrial energy supply is impaired by low efficiency. Artificial photosynthesis provides a promising alternative for efficient robust carbon-neutral renewable energy generation. The approach of direct hydrogen generation by photoelectrochemical water splitting utilizes customized tandem absorber structures to mimic the Z-scheme of natural photosynthesis. Here a combined chemical surface transformation of a tandem structure and catalyst deposition at ambient temperature yields photocurrents approaching the theoretical limit of the absorber and results in a solar-to-hydrogen efficiency of 14%. The potentiostatically assisted photoelectrode efficiency is 17%. Present benchmarks for integrated systems are clearly exceeded. Details of the in situ interface transformation, the electronic improvement and chemical passivation are presented. The surface functionalization procedure is widely applicable and can be precisely controlled, allowing further developments of high-efficiency robust hydrogen generators. PMID:26369620
Masani, Mat Yunus Abdul; Noll, Gundula A; Parveez, Ghulam Kadir Ahmad; Sambanthamurthi, Ravigadevi; Prüfer, Dirk
2014-01-01
Genetic engineering remains a major challenge in oil palm (Elaeis guineensis) because particle bombardment and Agrobacterium-mediated transformation are laborious and/or inefficient in this species, often producing chimeric plants and escapes. Protoplasts are beneficial as a starting material for genetic engineering because they are totipotent, and chimeras are avoided by regenerating transgenic plants from single cells. Novel approaches for the transformation of oil palm protoplasts could therefore offer a new and efficient strategy for the development of transgenic oil palm plants. We recently achieved the regeneration of healthy and fertile oil palms from protoplasts. Therefore, we focused on the development of a reliable PEG-mediated transformation protocol for oil palm protoplasts by establishing and validating optimal heat shock conditions, concentrations of DNA, PEG and magnesium chloride, and the transfection procedure. We also investigated the transformation of oil palm protoplasts by DNA microinjection and successfully regenerated transgenic microcalli expressing green fluorescent protein as a visible marker to determine the efficiency of transformation. We have established the first successful protocols for the transformation of oil palm protoplasts by PEG-mediated transfection and DNA microinjection. These novel protocols allow the rapid and efficient generation of non-chimeric transgenic callus and represent a significant milestone in the use of protoplasts as a starting material for the development of genetically-engineered oil palm plants.
Efficient Transformation of Oil Palm Protoplasts by PEG-Mediated Transfection and DNA Microinjection
Masani, Mat Yunus Abdul; Noll, Gundula A.; Parveez, Ghulam Kadir Ahmad; Sambanthamurthi, Ravigadevi; Prüfer, Dirk
2014-01-01
Background Genetic engineering remains a major challenge in oil palm (Elaeis guineensis) because particle bombardment and Agrobacterium-mediated transformation are laborious and/or inefficient in this species, often producing chimeric plants and escapes. Protoplasts are beneficial as a starting material for genetic engineering because they are totipotent, and chimeras are avoided by regenerating transgenic plants from single cells. Novel approaches for the transformation of oil palm protoplasts could therefore offer a new and efficient strategy for the development of transgenic oil palm plants. Methodology/Principal Findings We recently achieved the regeneration of healthy and fertile oil palms from protoplasts. Therefore, we focused on the development of a reliable PEG-mediated transformation protocol for oil palm protoplasts by establishing and validating optimal heat shock conditions, concentrations of DNA, PEG and magnesium chloride, and the transfection procedure. We also investigated the transformation of oil palm protoplasts by DNA microinjection and successfully regenerated transgenic microcalli expressing green fluorescent protein as a visible marker to determine the efficiency of transformation. Conclusions/Significance We have established the first successful protocols for the transformation of oil palm protoplasts by PEG-mediated transfection and DNA microinjection. These novel protocols allow the rapid and efficient generation of non-chimeric transgenic callus and represent a significant milestone in the use of protoplasts as a starting material for the development of genetically-engineered oil palm plants. PMID:24821306
Design of piezoelectric transformer for DC/DC converter with stochastic optimization method
NASA Astrophysics Data System (ADS)
Vasic, Dejan; Vido, Lionel
2016-04-01
Piezoelectric transformers were adopted in recent year due to their many inherent advantages such as safety, no EMI problem, low housing profile, and high power density, etc. The characteristics of the piezoelectric transformers are well known when the load impedance is a pure resistor. However, when piezoelectric transformers are used in AC/DC or DC/DC converters, there are non-linear electronic circuits connected before and after the transformer. Consequently, the output load is variable and due to the output capacitance of the transformer the optimal working point change. This paper starts from modeling a piezoelectric transformer connected to a full wave rectifier in order to discuss the design constraints and configuration of the transformer. The optimization method adopted here use the MOPSO algorithm (Multiple Objective Particle Swarm Optimization). We start with the formulation of the objective function and constraints; then the results give different sizes of the transformer and the characteristics. In other word, this method is looking for a best size of the transformer for optimal efficiency condition that is suitable for variable load. Furthermore, the size and the efficiency are found to be a trade-off. This paper proposes the completed design procedure to find the minimum size of PT in need. The completed design procedure is discussed by a given specification. The PT derived from the proposed design procedure can guarantee both good efficiency and enough range for load variation.
Self-perception of leadership styles and behaviour in primary health care.
Jodar I Solà, Glòria; Gené I Badia, Joan; Hito, Pilar Delgado; Osaba, M Antonia Campo; Del Val García, Jose Luís
2016-10-12
The concept of leadership has been studied in various disciplines and from different theoretical approaches. It is a dynamic concept that evolves over time. There are few studies in our field on managers' self-perception of their leadership style. There are no pure styles, but one or another style is generally favoured to a greater or lesser degree. In the primary health care (PHC) setting, managers' leadership style is defined as a set of attitudes, behaviours, beliefs and values. The objectives of this study were to describe and learn about the self-perception of behaviours and leadership styles among PHC managers; to determine the influence of the leadership style on job satisfaction, efficiency, and willingness to work in a team; and to determine the relationship between transformational and transactional styles according age, gender, profession, type of manager years of management experience, and the type of organization. To describe leadership styles as perceived by PHC managers, a cross sectional study was performed using an 82 items-self-administered Multifactor Leadership Questionnaire (MLQ). This questionnaire measures leadership styles, attitudes and behaviour of managers. The items are grouped into three first order variables (transformational, transactional and laissez-faire) and ten second order variables (which discriminate leader behaviours). Additionally, the questionnaire evaluates organizational consequences such as extra-effort, efficiency and satisfaction. One hundred forty responses from 258 managers of 133 PHC teams in the Barcelona Health Area (response rate: 54.26 %). Most participants were nurses (61.4 %), average age was 49 years and the gender predominantly female (75 %). Globally, managers assessed themselves as equally transactional and transformational leaders (average: 3.30 points). Grouped by profession, nurses (28.57 % of participants) showed a higher transactional leadership style, over transformational leadership style, compared to physicians (3.38 points, p < 0.003). Considering gender, men obtained the lowest results in transactional style (p < 0.015). Both transactional and transformational styles correlate with efficiency and job satisfaction (r = 0.724 and r = 0.710, respectively). PHC managers' self-perception of their leadership style was transactional, focused on the maintenance of the status quo, although there was a trend in some scores towards the transformational style, mainly among nurse managers. Both styles correlate with satisfaction and willingness to strive to work better.
Mao, Xuhui; Yuan, Songhu; Fallahpour, Noushin; Ciblak, Ali; Howard, Joniqua; Padilla, Ingrid; Loch-Caruso, Rita; Alshawabkeh, Akram N
2012-11-06
A novel reactive electrochemical flow system consisting of an iron anode and a porous cathode is proposed for the remediation of mixture of contaminants in groundwater. The system consists of a series of sequentially arranged electrodes, a perforated iron anode, a porous copper cathode followed by a mesh-type mixed metal oxide anode. The iron anode generates ferrous species and a chemically reducing environment, the porous cathode provides a reactive electrochemically reducing barrier, and the inert anode provides protons and oxygen to neutralize the system. The redox conditions of the electrolyte flowing through this system can be regulated by controlling the distribution of the electric current. Column experiments are conducted to evaluate the process and study the variables. The electrochemical reduction on a copper foam cathode produced an electrode-based reductive potential capable of reducing TCE and nitrate. Rational electrodes arrangement, longer residence time of electrolytes and higher surface area of the foam electrode improve the reductive transformation of TCE. More than 82.2% TCE removal efficiency is achieved for the case of low influent concentration (<7.5 mg/L) and high current (>45 mA). The ferrous species produced from the iron anode not only enhance the transformation of TCE on the cathode, but also facilitates transformation of other contaminants including dichromate, selenate and arsenite. Removal efficiencies greater than 80% are achieved for these contaminants in flowing contaminated water. The overall system, comprising the electrode-based and electrolyte-based barriers, can be engineered as a versatile and integrated remedial method for a relatively wide spectrum of contaminants and their mixtures.
NASA Astrophysics Data System (ADS)
Solimun, Fernandes, Adji Achmad Rinaldo; Arisoesilaningsih, Endang
2017-12-01
Research in various fields generally investigates systems and involves latent variables. One method to analyze the model representing the system is path analysis. The data of latent variables measured using questionnaires by applying attitude scale model yields data in the form of score, before analyzed should be transformation so that it becomes data of scale. Path coefficient, is parameter estimator, calculated from scale data using method of successive interval (MSI) and summated rating scale (SRS). In this research will be identifying which data transformation method is better. Path coefficients have smaller varieties are said to be more efficient. The transformation method that produces scaled data and used in path analysis capable of producing path coefficients (parameter estimators) with smaller varieties is said to be better. The result of analysis using real data shows that on the influence of Attitude variable to Intention Entrepreneurship, has relative efficiency (ER) = 1, where it shows that the result of analysis using data transformation of MSI and SRS as efficient. On the other hand, for simulation data, at high correlation between items (0.7-0.9), MSI method is more efficient 1.3 times better than SRS method.
Phase transformation strengthening of high-temperature superalloys
Smith, T. M.; Esser, B. D.; Antolin, N.; Carlsson, A.; Williams, R. E. A.; Wessman, A.; Hanlon, T.; Fraser, H. L.; Windl, W.; McComb, D. W.; Mills, M. J.
2016-01-01
Decades of research has been focused on improving the high-temperature properties of nickel-based superalloys, an essential class of materials used in the hot section of jet turbine engines, allowing increased engine efficiency and reduced CO2 emissions. Here we introduce a new ‘phase-transformation strengthening' mechanism that resists high-temperature creep deformation in nickel-based superalloys, where specific alloying elements inhibit the deleterious deformation mode of nanotwinning at temperatures above 700 °C. Ultra-high-resolution structure and composition analysis via scanning transmission electron microscopy, combined with density functional theory calculations, reveals that a superalloy with higher concentrations of the elements titanium, tantalum and niobium encourage a shear-induced solid-state transformation from the γ′ to η phase along stacking faults in γ′ precipitates, which would normally be the precursors of deformation twins. This nanoscale η phase creates a low-energy structure that inhibits thickening of stacking faults into twins, leading to significant improvement in creep properties. PMID:27874007
Blueberry (Vaccinium corymbosum L.).
Song, Guo-Qing; Sink, Kenneth C
2006-01-01
Recent advances in plant biotechnology have led to a reliable and reproductive method for genetic transformation of blueberry. These efforts built on previous attempts at transient and stable transformation of blueberry that demonstrated the potential of Agrobacterium tumefaciens-mediated transformation, and as well, the difficulties of selecting and regenerating transgenic plants. As a prerequisite for successful stable transformation, efficient regeneration systems were required despite many reports on factors controlling shoot regeneration from leaf explants. The A. tumefaciens-mediated transformation protocol described in this chapter is based on combining efficient regeneration methods and the results of A. tumefaciens-mediated transient transformation studies to optimize selected parameters for gene transfer. The protocol has led to successful regeneration of transgenic plants of four commercially important highbush blueberry cultivars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chao, Mark
This report summarizes activity conducted by the Institute for Market Transformation and a team of American and Chinese partners in development of a new building energy-efficiency code for the transitional climate zone in the People's Republic of China.
Off-resonance frequency operation for power transfer in a loosely coupled air core transformer
Scudiere, Matthew B
2012-11-13
A power transmission system includes a loosely coupled air core transformer having a resonance frequency determined by a product of inductance and capacitance of a primary circuit including a primary coil. A secondary circuit is configured to have a substantially same product of inductance and capacitance. A back EMF generating device (e.g., a battery), which generates a back EMF with power transfer, is attached to the secondary circuit. Once the load power of the back EMF generating device exceeds a certain threshold level, which depends on the system parameters, the power transfer can be achieved at higher transfer efficiency if performed at an operating frequency less than the resonance frequency, which can be from 50% to 95% of the resonance frequency.
Automatic drawing for traffic marking with MMS LIDAR intensity
NASA Astrophysics Data System (ADS)
Takahashi, G.; Takeda, H.; Shimano, Y.
2014-05-01
Upgrading the database of CYBER JAPAN has been strategically promoted because the "Basic Act on Promotion of Utilization of Geographical Information", was enacted in May 2007. In particular, there is a high demand for road information that comprises a framework in this database. Therefore, road inventory mapping work has to be accurate and eliminate variation caused by individual human operators. Further, the large number of traffic markings that are periodically maintained and possibly changed require an efficient method for updating spatial data. Currently, we apply manual photogrammetry drawing for mapping traffic markings. However, this method is not sufficiently efficient in terms of the required productivity, and data variation can arise from individual operators. In contrast, Mobile Mapping Systems (MMS) and high-density Laser Imaging Detection and Ranging (LIDAR) scanners are rapidly gaining popularity. The aim in this study is to build an efficient method for automatically drawing traffic markings using MMS LIDAR data. The key idea in this method is extracting lines using a Hough transform strategically focused on changes in local reflection intensity along scan lines. However, also note that this method processes every traffic marking. In this paper, we discuss a highly accurate and non-human-operator-dependent method that applies the following steps: (1) Binarizing LIDAR points by intensity and extracting higher intensity points; (2) Generating a Triangulated Irregular Network (TIN) from higher intensity points; (3) Deleting arcs by length and generating outline polygons on the TIN; (4) Generating buffers from the outline polygons; (5) Extracting points from the buffers using the original LIDAR points; (6) Extracting local-intensity-changing points along scan lines using the extracted points; (7) Extracting lines from intensity-changing points through a Hough transform; and (8) Connecting lines to generate automated traffic marking mapping data.
Towards the construction of high-quality mutagenesis libraries.
Li, Heng; Li, Jing; Jin, Ruinan; Chen, Wei; Liang, Chaoning; Wu, Jieyuan; Jin, Jian-Ming; Tang, Shuang-Yan
2018-07-01
To improve the quality of mutagenesis libraries in directed evolution strategy. In the process of library transformation, transformants which have been shown to take up more than one plasmid might constitute more than 20% of the constructed library, thereby extensively impairing the quality of the library. We propose a practical transformation method to prevent the occurrence of multiple-plasmid transformants while maintaining high transformation efficiency. A visual library model containing plasmids expressing different fluorescent proteins was used. Multiple-plasmid transformants can be reduced through optimizing plasmid DNA amount used for transformation based on the positive correlation between the occurrence frequency of multiple-plasmid transformants and the logarithmic ratio of plasmid molecules to competent cells. This method provides a simple solution for a seemingly common but often neglected problem, and should be valuable for improving the quality of mutagenesis libraries to enhance the efficiency of directed evolution strategies.
Microfabricated Bulk Piezoelectric Transformers
NASA Astrophysics Data System (ADS)
Barham, Oliver M.
Piezoelectric voltage transformers (PTs) can be used to transform an input voltage into a different, required output voltage needed in electronic and electro- mechanical systems, among other varied uses. On the macro scale, they have been commercialized in electronics powering consumer laptop liquid crystal displays, and compete with an older, more prevalent technology, inductive electromagnetic volt- age transformers (EMTs). The present work investigates PTs on smaller size scales that are currently in the academic research sphere, with an eye towards applications including micro-robotics and other small-scale electronic and electromechanical sys- tems. PTs and EMTs are compared on the basis of power and energy density, with PTs trending towards higher values of power and energy density, comparatively, indicating their suitability for small-scale systems. Among PT topologies, bulk disc-type PTs, operating in their fundamental radial extension mode, and free-free beam PTs, operating in their fundamental length extensional mode, are good can- didates for microfabrication and are considered here. Analytical modeling based on the Extended Hamilton Method is used to predict device performance and integrate mechanical tethering as a boundary condition. This model differs from previous PT models in that the electric enthalpy is used to derive constituent equations of motion with Hamilton's Method, and therefore this approach is also more generally applica- ble to other piezoelectric systems outside of the present work. Prototype devices are microfabricated using a two mask process consisting of traditional photolithography combined with micropowder blasting, and are tested with various output electri- cal loads. 4mm diameter tethered disc PTs on the order of .002cm. 3 , two orders smaller than the bulk PT literature, had the followingperformance: a prototype with electrode area ratio (input area / output area) = 1 had peak gain of 2.3 (+/- 0.1), efficiency of 33 (+/- 0.1)% and output power density of 51.3 (+/- 4.0)W cm. -3 (for output power of80 (+/- 6)mW) at 1M? load, for an input voltage range of 3V-6V (+/- one standard deviation). The gain results are similar to those of several much larger bulk devices in the literature, but the efficiencies of the present devices are lower. Rectangular topology, free-free beam devices were also microfabricated across 3 or- ders of scale by volume, with the smallest device on the order of .00002cm. 3 . These devices exhibited higher quality factorsand efficiencies, in some cases, compared to circular devices, but lower peak gain (by roughly 1/2 ). Limitations of the microfab- rication process are determined, and future work is proposed. Overall, the devices fabricated in the present work show promise for integration into small-scale engi- neered systems, but improvements can be made in efficiency, and potentially voltage gain, depending on the application.
Csbnd N bond formation in alicyclic and heterocyclic compounds by amine-modified nanoclay
NASA Astrophysics Data System (ADS)
Zarnegar, Zohre; Alizadeh, Roghayeh; Ahmadzadeh, Majid; Safari, Javad
2017-09-01
In the current protocol, amine functionalized montmorillonite K10 nanoclay (NH2-MMT) was applied to catalyze the formation of Csbnd N bonds in the synthesis of azines and 2-aminothiazoles at room temperature. In comparison with the current methods of Csbnd N bond formation, this approach displays specific advantages include atom economy, clean conversion, design for energy efficiency, the use of nontoxic and heterogeneous catalyst, higher purity and yields, safer solvent and reagents for this organic transformation.
Roles of Long and Short Replication Initiation Proteins in the Fate of IncP-1 Plasmids
Yano, Hirokazu; Deckert, Gail E.; Rogers, Linda M.
2012-01-01
Broad-host-range IncP-1 plasmids generally encode two replication initiation proteins, TrfA1 and TrfA2. TrfA2 is produced from an internal translational start site within trfA1. While TrfA1 was previously shown to be essential for replication in Pseudomonas aeruginosa, its role in other bacteria within its broad host range has not been established. To address the role of TrfA1 and TrfA2 in other hosts, efficiency of transformation, plasmid copy number (PCN), and plasmid stability were first compared between a mini-IncP-1β plasmid and its trfA1 frameshift variant in four phylogenetically distant hosts: Escherichia coli, Pseudomonas putida, Sphingobium japonicum, and Cupriavidus necator. TrfA2 was sufficient for replication in these hosts, but the presence of TrfA1 enhanced transformation efficiency and PCN. However, TrfA1 did not contribute to, and even negatively affected, long-term plasmid persistence. When trfA genes were cloned under a constitutive promoter in the chromosomes of the four hosts, strains expressing either both TrfA1 and TrfA2 or TrfA1 alone, again, generally elicited a higher PCN of an IncP1-β replicon than strains expressing TrfA2 alone. When a single species of TrfA was produced at different concentrations in E. coli cells, TrfA1 maintained a 3- to 4-fold higher PCN than TrfA2 at the same TrfA concentrations, indicating that replication mediated by TrfA1 is more efficient than that by TrfA2. These results suggest that the broad-host-range properties of IncP-1 plasmids are essentially conferred by TrfA2 and the intact replication origin alone but that TrfA1 is nonetheless important to efficiently establish plasmid replication upon transfer into a broad range of hosts. PMID:22228734
Rodríguez-Colón, Sol M.; He, Fan; Bixler, Edward O.; Fernandez-Mendoza, Julio; Vgontzas, Alexandros N.; Calhoun, Susan; Zheng, Zhi-Jie; Liao, Duanping
2015-01-01
Objective To investigate the effects of objectively measured habitual sleep patterns on cardiac autonomic modulation (CAM) in a population-based sample of adolescents. Methods We used data from 421 adolescents who completed the follow-up examination in the Penn State Children Cohort study. CAM was assessed by heart rate (HR) variability (HRV) analysis of beat-to-beat normal R-R intervals from a 39-h electrocardiogram, on a 30-min basis. The HRV indices included frequency domain (HF, LF, and LF/HF ratio), and time domain (SDNN, RMSSD, and heart rate or HR) variables. Actigraphy was used for seven consecutive nights to estimate nightly sleep duration and time in bed. The seven-night mean (SD) of sleep duration and sleep efficiency were used to represent sleep duration, duration variability, sleep efficiency, and efficiency variability, respectively. HF and LF were log-transformed for statistical analysis. Linear mixed-effect models were used to analyze the association between sleep patterns and CAM. Results After adjusting for major confounders, increased sleep duration variability and efficiency variability were significantly associated with lower HRV and higher HR during the 39-h, as well as separated by daytime and nighttime. For instance, a 1-h increase in sleep duration variability is associated with −0.14(0.04), −0.12(0.06), and −0.16(0.05) ms2 decrease in total, daytime, and nighttime HF, respectively. No associations were found between sleep duration, or sleep efficiency and HRV. Conclusion Higher habitual sleep duration variability and efficiency variability are associated with lower HRV and higher HR, suggesting that an irregular sleep pattern has an adverse impact on CAM, even in healthy adolescents. PMID:25555635
Dey, Prabuddha; Mall, Nikunj; Chattopadhyay, Atrayee; Chakraborty, Monami; Maiti, Mrinal K.
2014-01-01
Oleaginous fungi are of special interest among microorganisms for the production of lipid feedstocks as they can be cultured on a variety of substrates, particularly waste lingocellulosic materials, and few fungal strains are reported to accumulate inherently higher neutral lipid than bacteria or microalgae. Previously, we have characterized an endophytic filamentous fungus Colletotrichum sp. DM06 that can produce total lipid ranging from 34% to 49% of its dry cell weight (DCW) upon growing with various carbon sources and nutrient-stress conditions. In the present study, we report on the genetic transformation of this fungal strain with the CtDGAT2b gene, which encodes for a catalytically efficient isozyme of type-2 diacylglycerol acyltransferase (DGAT) from oleaginous yeast Candida troplicalis SY005. Besides the increase in size of lipid bodies, total lipid titer by the transformed Colletotrichum (lipid content ∼73% DCW) was found to be ∼1.7-fold more than the wild type (lipid content ∼38% DCW) due to functional activity of the CtDGAT2b transgene when grown under standard condition of growth without imposition of any nutrient-stress. Analysis of lipid fractionation revealed that the neutral lipid titer in transformants increased up to 1.8-, 1.6- and 1.5-fold compared to the wild type when grown under standard, nitrogen stress and phosphorus stress conditions, respectively. Lipid titer of transformed cells was further increased to 1.7-fold following model-based optimization of culture conditions. Taken together, ∼2.9-fold higher lipid titer was achieved in Colletotrichum fungus due to overexpression of a rate-limiting crucial enzyme of lipid biosynthesis coupled with prediction-based bioprocess optimization. PMID:25375973
Woods, J P; Heinecke, E L; Goldman, W E
1998-04-01
We developed an efficient electrotransformation system for the pathogenic fungus Histoplasma capsulatum and used it to examine the effects of features of the transforming DNA on transformation efficiency and fate of the transforming DNA and to demonstrate fungal expression of two recombinant Escherichia coli genes, hph and lacZ. Linearized DNA and plasmids containing Histoplasma telomeric sequences showed the greatest transformation efficiencies, while the plasmid vector had no significant effect, nor did the derivation of the selectable URA5 marker (native Histoplasma gene or a heterologous Podospora anserina gene). Electrotransformation resulted in more frequent multimerization, other modification, or possibly chromosomal integration of transforming telomeric plasmids when saturating amounts of DNA were used, but this effect was not observed with smaller amounts of transforming DNA. We developed another selection system using a hygromycin B resistance marker from plasmid pAN7-1, consisting of the E. coli hph gene flanked by Aspergillus nidulans promoter and terminator sequences. Much of the heterologous fungal sequences could be removed without compromising function in H. capsulatum, allowing construction of a substantially smaller effective marker fragment. Transformation efficiency increased when nonselective conditions were maintained for a time after electrotransformation before selection with the protein synthesis inhibitor hygromycin B was imposed. Finally, we constructed a readily detectable and quantifiable reporter gene by fusing Histoplasma URA5 with E. coli lacZ, resulting in expression of functional beta-galactosidase in H. capsulatum. Demonstration of expression of bacterial genes as effective selectable markers and reporters, together with a highly efficient electrotransformation system, provide valuable approaches for molecular genetic analysis and manipulation of H. capsulatum, which have proven useful for examination of targeted gene disruption, regulated gene expression, and potential virulence determinants in this fungus.
Efficient and heritable transformation of Phalaenopsis orchids.
Hsing, Hong-Xian; Lin, Yi-Jyun; Tong, Chii-Gong; Li, Min-Jeng; Chen, Yun-Jin; Ko, Swee-Suak
2016-12-01
Phalaenopsis orchid (Phal. orchid) is visually attractive and it is important economic floriculture species. Phal. orchids have many unique biological features. However, investigation of these features and validation on their biological functions are limited due to the lack of an efficient transformation method. We developed a heritable and efficient Agrobacterium- mediated transformation using protocorms derived from tetraploid or diploid Phal. orchids. A T-DNA vector construct containing eGFP driven by ubiquitin promoter was subjected to transformation. An approximate 1.2-5.2 % transformation rate was achieved. Genomic PCR confirmed that hygromycin selection marker, HptII gene and target gene eGFP were integrated into the orchid genome. Southern blotting indicated a low T-DNA insertion number in the orchid genome of the transformants. Western blot confirmed the expression of eGFP protein in the transgenic orchids. Furthermore, the GFP signal was detected in the transgenic orchids under microscopy. After backcrossing the pollinia of the transgenic plants to four different Phal. orchid varieties, the BC1 progenies showed hygromycin resistance and all surviving BC1 seedlings were HptII positive in PCR and expressed GFP protein as shown by western blot. This study demonstrated a stable transformation system was generated for Phal. orchids. This useful transformation protocol enables functional genomics studies and molecular breeding.
"Efficiency Space" - A Framework for Evaluating Joint Evaporation and Runoff Behavior
NASA Technical Reports Server (NTRS)
Koster, Randal
2014-01-01
At the land surface, higher soil moisture levels generally lead to both increased evaporation for a given amount of incoming radiation (increased evaporation efficiency) and increased runoff for a given amount of precipitation (increased runoff efficiency). Evaporation efficiency and runoff efficiency can thus be said to vary with each other, motivating the development of a unique hydroclimatic analysis framework. Using a simple water balance model fitted, in different experiments, with a wide variety of functional forms for evaporation and runoff efficiency, we transform net radiation and precipitation fields into fields of streamflow that can be directly evaluated against observations. The optimal combination of the functional forms the combination that produces the most skillful stream-flow simulations provides an indication for how evaporation and runoff efficiencies vary with each other in nature, a relationship that can be said to define the overall character of land surface hydrological processes, at least to first order. The inferred optimal relationship is represented herein as a curve in efficiency space and should be valuable for the evaluation and development of GCM-based land surface models, which by this measure are often found to be suboptimal.
Transformation of Morinda citrifolia via simple mature seed imbibition method.
Lee, J J; Ahmad, S; Roslan, H A
2013-12-15
Morinda citrifolia, is a valuable medicinal plant with a wide range of therapeutic properties and extensive transformation study on this plant has yet been known. Present study was conducted to establish a simple and reliable transformation protocol for M. citrifolia utilising Agrobacterium tumefaciens via direct seed exposure. In this study, the seeds were processed by tips clipping and dried and subsequently incubated in inoculation medium. Four different parameters during the incubation such as incubation period, bacterial density, temperature and binary vectors harbouring beta-glucuronidase (GUS) gene (pBI121 and pGSA1131), were tested to examine its effect on transformation efficiency. The leaves from the treated and germinated seedlings were analysed via Polymerase Chain Reaction (PCR), histochemical assay of the GUS gene and reverse transcription-PCR (RT-PCR). Results of the study showed that Agrobacterium strain LBA4404 with optical density of 1.0 and 2 h incubation period were optimum for M. citrifolia transformation. It was found that various co-cultivation temperatures tested and type of vector used did not affect the transformation efficiency. The highest transformation efficiency for M. citrifolia direct seed transformation harbouring pBI121 and pGSA1131 was determined to be 96.8% with 2 h co-cultivation treatment and 80.4% when using bacterial density of 1.0, respectively. The transformation method can be applied for future characterization study of M. citrifolia.
Biomolecular surface construction by PDE transform
Zheng, Qiong; Yang, Siyang; Wei, Guo-Wei
2011-01-01
This work proposes a new framework for the surface generation based on the partial differential equation (PDE) transform. The PDE transform has recently been introduced as a general approach for the mode decomposition of images, signals, and data. It relies on the use of arbitrarily high order PDEs to achieve the time-frequency localization, control the spectral distribution, and regulate the spatial resolution. The present work provides a new variational derivation of high order PDE transforms. The fast Fourier transform is utilized to accomplish the PDE transform so as to avoid stringent stability constraints in solving high order PDEs. As a consequence, the time integration of high order PDEs can be done efficiently with the fast Fourier transform. The present approach is validated with a variety of test examples in two and three-dimensional settings. We explore the impact of the PDE transform parameters, such as the PDE order and propagation time, on the quality of resulting surfaces. Additionally, we utilize a set of 10 proteins to compare the computational efficiency of the present surface generation method and the MSMS approach in Cartesian meshes. Moreover, we analyze the present method by examining some benchmark indicators of biomolecular surface, i.e., surface area, surface enclosed volume, solvation free energy and surface electrostatic potential. A test set of 13 protein molecules is used in the present investigation. The electrostatic analysis is carried out via the Poisson-Boltzmann equation model. To further demonstrate the utility of the present PDE transform based surface method, we solve the Poisson-Nernst-Planck (PNP) equations with a PDE transform surface of a protein. Second order convergence is observed for the electrostatic potential and concentrations. Finally, to test the capability and efficiency of the present PDE transform based surface generation method, we apply it to the construction of an excessively large biomolecule, a virus surface capsid. Virus surface morphologies of different resolutions are attained by adjusting the propagation time. Therefore, the present PDE transform provides a multiresolution analysis in the surface visualization. Extensive numerical experiment and comparison with an established surface model indicate that the present PDE transform is a robust, stable and efficient approach for biomolecular surface generation in Cartesian meshes. PMID:22582140
Optimizing the Four-Index Integral Transform Using Data Movement Lower Bounds Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajbhandari, Samyam; Rastello, Fabrice; Kowalski, Karol
The four-index integral transform is a fundamental and computationally demanding calculation used in many computational chemistry suites such as NWChem. It transforms a four-dimensional tensor from an atomic basis to a molecular basis. This transformation is most efficiently implemented as a sequence of four tensor contractions that each contract a four-dimensional tensor with a two-dimensional transformation matrix. Differing degrees of permutation symmetry in the intermediate and final tensors in the sequence of contractions cause intermediate tensors to be much larger than the final tensor and limit the number of electronic states in the modeled systems. Loop fusion, in conjunction withmore » tiling, can be very effective in reducing the total space requirement, as well as data movement. However, the large number of possible choices for loop fusion and tiling, and data/computation distribution across a parallel system, make it challenging to develop an optimized parallel implementation for the four-index integral transform. We develop a novel approach to address this problem, using lower bounds modeling of data movement complexity. We establish relationships between available aggregate physical memory in a parallel computer system and ineffective fusion configurations, enabling their pruning and consequent identification of effective choices and a characterization of optimality criteria. This work has resulted in the development of a significantly improved implementation of the four-index transform that enables higher performance and the ability to model larger electronic systems than the current implementation in the NWChem quantum chemistry software suite.« less
Displaying radiologic images on personal computers: image storage and compression--Part 2.
Gillespy, T; Rowberg, A H
1994-02-01
This is part 2 of our article on image storage and compression, the third article of our series for radiologists and imaging scientists on displaying, manipulating, and analyzing radiologic images on personal computers. Image compression is classified as lossless (nondestructive) or lossy (destructive). Common lossless compression algorithms include variable-length bit codes (Huffman codes and variants), dictionary-based compression (Lempel-Ziv variants), and arithmetic coding. Huffman codes and the Lempel-Ziv-Welch (LZW) algorithm are commonly used for image compression. All of these compression methods are enhanced if the image has been transformed into a differential image based on a differential pulse-code modulation (DPCM) algorithm. The LZW compression after the DPCM image transformation performed the best on our example images, and performed almost as well as the best of the three commercial compression programs tested. Lossy compression techniques are capable of much higher data compression, but reduced image quality and compression artifacts may be noticeable. Lossy compression is comprised of three steps: transformation, quantization, and coding. Two commonly used transformation methods are the discrete cosine transformation and discrete wavelet transformation. In both methods, most of the image information is contained in a relatively few of the transformation coefficients. The quantization step reduces many of the lower order coefficients to 0, which greatly improves the efficiency of the coding (compression) step. In fractal-based image compression, image patterns are stored as equations that can be reconstructed at different levels of resolution.
NASA Technical Reports Server (NTRS)
Cardoza, V.; Stewart, C. N.
2003-01-01
An efficient protocol for the production of transgenic Brassica napus cv. Westar plants was developed by optimizing two important parameters: preconditioning time and co-cultivation time. Agrobacterium tumefaciens-mediated transformation was performed using hypocotyls as explant tissue. Two variants of a green fluorescent protein (GFP)-encoding gene--mGFP5-ER and eGFP--both under the constitutive expression of the cauliflower mosaic virus 35S promoter, were used for the experiments. Optimizing the preconditioning time to 72 h and co-cultivation time with Agrobacterium to 48 h provided the increase in the transformation efficiency from a baseline of 4% to 25%. With mGFP5-ER, the transformation rate was 17% and with eGFP it was 25%. Transgenic shoots were selected on 200 mg/l kanamycin. Rooting efficiency was 100% on half-strength Murashige and Skoog medium with 10 g/l sucrose and 0.5 mg/l indole butyric acid in the presence of kanamycin.
Theoretical Comparison of Motional and Transformer EMF Device Damping Efficiency
NASA Astrophysics Data System (ADS)
GRAVES, K. E.; TONCICH, D.; IOVENITTI, P. G.
2000-06-01
In this paper, theoretical comparison between electromagnetic dampers based on a “motional emf” and “transformer emf” design is presented. Transformer emf devices are based on the generation of emf in a stationary circuit, in which the emf is generated by a time-varying magnetic field linking the circuit. Motional emf devices are based on the generation of emf due to a moving conductor within a stationary magnetic field. Both of these designs can be used as damping elements for applications such as semi-active and regenerative vehicle suspension systems. The findings herein are provided so as to evaluate the most efficient device for such applications. The analysis consists of comparing the damping coefficient of the electromagnetic devices for a given magnetic field and given volume of conducting material. It has been found that for a limited range of dimensions, the transformer emf devices can be more then 1·2 times as efficient as the motional emf devices. However, for most realistic situations, motional emf devices will have the highest efficiency.
Module Ten: Transformers; Basic Electricity and Electronics Individualized Learning System.
ERIC Educational Resources Information Center
Bureau of Naval Personnel, Washington, DC.
The module introduces a very important electrical device, the transformer. The module is divided into six lessons: transformer construction, transformer theory and operation, turns and voltage ratios, power and current, transformer efficiency, and semiconductor rectifiers. Each lesson consists of an overview, a list of study resources, lesson…
Ravanfar, Seyed Ali; Orbovic, Vladimir; Moradpour, Mahdi; Abdul Aziz, Maheran; Karan, Ratna; Wallace, Simon; Parajuli, Saroj
2017-04-01
Development of in vitro plant regeneration method from Brassica explants via organogenesis and somatic embryogenesis is influenced by many factors such as culture environment, culture medium composition, explant sources, and genotypes which are reviewed in this study. An efficient in vitro regeneration system to allow genetic transformation of Brassica is a crucial tool for improving its economical value. Methods to optimize transformation protocols for the efficient introduction of desirable traits, and a comparative analysis of these methods are also reviewed. Hence, binary vectors, selectable marker genes, minimum inhibitory concentration of selection agents, reporter marker genes, preculture media, Agrobacterium concentration and regeneration ability of putative transformants for improvement of Agrobacterium-mediated transformation of Brassica are discussed.
Yang, Jingli; Zhao, Bo; Kim, Yeon Bok; Zhou, Chenguang; Li, Chunyan; Chen, Yunlin; Zhang, Haizhen; Li, Cheng Hao
2013-01-01
An efficient transformation protocol was developed for Agrobacterium-mediated transformation of Phellodendron amurense Rupr. for using explants from mature seeds. The binary vector pCAMBIA1303, which contained hygromycin phosphotransferase (hptII) as a selectable marker gene and β-glucuronidase (GUS) as a reporter gene, was used for transformation studies. Different factors that affect survival of transformed buds, namely Agrobacterium infection method, bacterial strain, pre-culture duration, acetosyringone concentration, co-culture duration, and co-culture temperature were examined and optimized for transformation efficiency on the basis of GUS staining of hygromycin-resistant buds. Polymerase chain reaction (PCR), Southern blot and reverse transcription PCR confirmed the presence of the GUS gene. A transformation frequency of 13.1 % was achieved under optimized conditions for transformation (A. tumefaciens strain EHA105, 4 days co-cultivation at 4 °C, and infection of the pre-cultured mature-seed explants for 2 days). This is the first report of a successful genetic transformation protocol for P. amurense.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Jiaoping; Chen, Zexiang, E-mail: zxchen@uestc.edu.cn; Li, Jun
2015-02-15
A new titanium dioxide (TiO{sub 2}) slurry formulation is herein reported for the fabrication of TiO{sub 2} photoanode for use in dye-sensitized solar cells (DSSCs). The prepared TiO{sub 2} photoanode featured a highly uniform mesoporous structure with well-dispersed TiO{sub 2} nanoparticles. The energy conversion efficiency of the resulting TiO{sub 2} slurry-based DSSC was ∼63% higher than that achieved by a DSSC prepared using a commercial TiO{sub 2} slurry. Subsequently, the incorporation of acid-treated multi-walled carbon nanotubes (CNTs) into the TiO{sub 2} slurry was examined. More specifically, the effect of varying the concentration of the CNTs in this slurry on themore » performance of the resulting DSSCs was studied. The chemical state of the CNTs-incorporated TiO{sub 2} photoanode was investigated by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. A high energy conversion efficiency of 6.23% was obtained at an optimum CNT concentration of ∼0.06 wt.%. The obtained efficiency corresponds to a 63% enhancement when compared with that obtained from a DSSC based on a commercial TiO{sub 2} slurry. The higher efficiency was attributed to the improvement in the collection and transport of excited electrons in the presence of the CNTs.« less
2014-01-01
Background Trichloroethene and tetrachloroethene are the most common pollutants in groundwater and two of the priority pollutants listed by the U.S. Environmental Protection Agency. In previous studies on TCE and PCE photolysis and photochemical degradation, concentration ranges exceeding environmental levels by far with millimolar concentrations of TCE and PCE have been used, and it is not clear if the obtained results can be used to explain the degradation of these contaminants at more realistic environmental concentration levels. Methods Experiments with micromolar concentrations of TCE and PCE in aqueous solution using direct photolysis and UV/H2O2 have been conducted and product formation as well as transformation efficiency have been investigated. SPME/GC/MS, HPLC/UV and ion chromatography with conductivity detection have been used to determine intermediates of degradation. Results The results showed that chloride was a major end product in both TCE and PCE photodegradation. Several intermediates such as formic acid, dichloroacetic acid, dichloroacetaldehyede, chloroform, formaldehyde and glyoxylic acid were formed during both, UV and UV/H2O2 treatment of TCE. However chloroacetaldehyde and chloroacetic acid were only detected during direct UV photolysis of TCE and oxalic acid was only formed during the UV/H2O2 process. For PCE photodegradation, formic acid, di- and trichloroacetic acids were detected in both UV and UV/H2O2 systems, but formaldehyde and glyoxylic acid were only detected during direct UV photolysis. Conclusions For water treatment UV/H2O2 seems to be favorable over direct UV photolysis because of its higher degradation efficiency and lower risk for the formation of harmful intermediates. PMID:24401763
Dobaradaran, Sina; Lutze, Holger; Mahvi, Amir Hossein; Schmidt, Torsten C
2014-01-08
Trichloroethene and tetrachloroethene are the most common pollutants in groundwater and two of the priority pollutants listed by the U.S. Environmental Protection Agency. In previous studies on TCE and PCE photolysis and photochemical degradation, concentration ranges exceeding environmental levels by far with millimolar concentrations of TCE and PCE have been used, and it is not clear if the obtained results can be used to explain the degradation of these contaminants at more realistic environmental concentration levels. Experiments with micromolar concentrations of TCE and PCE in aqueous solution using direct photolysis and UV/H2O2 have been conducted and product formation as well as transformation efficiency have been investigated. SPME/GC/MS, HPLC/UV and ion chromatography with conductivity detection have been used to determine intermediates of degradation. The results showed that chloride was a major end product in both TCE and PCE photodegradation. Several intermediates such as formic acid, dichloroacetic acid, dichloroacetaldehyede, chloroform, formaldehyde and glyoxylic acid were formed during both, UV and UV/H2O2 treatment of TCE. However chloroacetaldehyde and chloroacetic acid were only detected during direct UV photolysis of TCE and oxalic acid was only formed during the UV/H2O2 process. For PCE photodegradation, formic acid, di- and trichloroacetic acids were detected in both UV and UV/H2O2 systems, but formaldehyde and glyoxylic acid were only detected during direct UV photolysis. For water treatment UV/H2O2 seems to be favorable over direct UV photolysis because of its higher degradation efficiency and lower risk for the formation of harmful intermediates.
Dedania, Samir R; Patel, Manisha J; Patel, Dijit M; Akhani, Rekha C; Patel, Darshan H
2017-12-01
D-Psicose (D-ribo-2-hexulose or D-allulose), an epimer of D-fructose is considered as a rare low-calorie sugar displaying important physiological functions. Enzymatic production using ketose 3-epimerases is the feasible process for the production of D-Psicose. However, major drawbacks in application of ketose 3-epimerases are bioconversion efficiency and reusability of the enzyme. We have attempted immobilization of ketose 3-epimerases from Agrobacterium tumefaciens (agtu) D-psicose 3-epimerase (DPEase) on graphene oxide. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and Thermo gravimetric analysis (TGA) showed that the enzyme was successfully immobilized on the graphene oxide. Graphene oxide immobilized agtu-DPEase (GO-agtu-DPEase) shows pH optima at 7.5 and 60°C as higher working temperature. Significant improvement in thermal stability was observed which showed half-life of 720min at 60°C whereas Agrobacterium tumefaciens (agtu) DPEase displayed 3.99min. At equilibrium, 40:60 (D-psicose: D-fructose) the bioconversion efficiency was accounted for Graphene oxide immobilized DPEase which is higher than the agtu-DPEase. Graphene oxide immobilized DPEase showed bioconversion efficiency up to 10 cycles of reusability. Copyright © 2017 Elsevier Inc. All rights reserved.
200 Deg C Demonstration Transformer Operates Efficiently at 50 kHz
NASA Technical Reports Server (NTRS)
Niedra, Janis M.; Schwarze, Gene E. (Technical Monitor)
2003-01-01
A compact, high temperature demonstration transformer was constructed, using a moly permalloy powder core and Teflon -insulated copper wire. At 50 kHz and 200 C, this 1:2 ratio transformer is capable of 98 percent efficiency when operating at a specific power of 6.1 kW/kg at 4 kW. This roughly 7 cm diameter transformer has a mass of 0.65 kg. Although Teflon is unstable above 200 C, about the same electrical performance was seen at 250 C. A plot of winding loss versus frequency illustrates the need to control these losses at high frequency.
Intermediary LEO propagation including higher order zonal harmonics
NASA Astrophysics Data System (ADS)
Hautesserres, Denis; Lara, Martin
2017-04-01
Two new intermediary orbits of the artificial satellite problem are proposed. The analytical solutions include higher order effects of the geopotential, and are obtained by means of a torsion transformation applied to the quasi-Keplerian system resulting after the elimination of the parallax simplification, for the first intermediary, and after the elimination of the parallax and perigee simplifications, for the second one. The new intermediaries perform notably well for low Earth orbits propagation, are free from special functions, and result advantageous, both in accuracy and efficiency, when compared to the standard Cowell integration of the J_2 problem, thus providing appealing alternatives for onboard, short-term, orbit propagation under limited computational resources.
Efficient Text Encryption and Hiding with Double-Random Phase-Encoding
Sang, Jun; Ling, Shenggui; Alam, Mohammad S.
2012-01-01
In this paper, a double-random phase-encoding technique-based text encryption and hiding method is proposed. First, the secret text is transformed into a 2-dimensional array and the higher bits of the elements in the transformed array are used to store the bit stream of the secret text, while the lower bits are filled with specific values. Then, the transformed array is encoded with double-random phase-encoding technique. Finally, the encoded array is superimposed on an expanded host image to obtain the image embedded with hidden data. The performance of the proposed technique, including the hiding capacity, the recovery accuracy of the secret text, and the quality of the image embedded with hidden data, is tested via analytical modeling and test data stream. Experimental results show that the secret text can be recovered either accurately or almost accurately, while maintaining the quality of the host image embedded with hidden data by properly selecting the method of transforming the secret text into an array and the superimposition coefficient. By using optical information processing techniques, the proposed method has been found to significantly improve the security of text information transmission, while ensuring hiding capacity at a prescribed level. PMID:23202003
Efficient Digital Implementation of The Sigmoidal Function For Artificial Neural Network
NASA Astrophysics Data System (ADS)
Pratap, Rana; Subadra, M.
2011-10-01
An efficient piecewise linear approximation of a nonlinear function (PLAN) is proposed. This uses simulink environment design to perform a direct transformation from X to Y, where X is the input and Y is the approximated sigmoidal output. This PLAN is then used within the outputs of an artificial neural network to perform the nonlinear approximation. In This paper, is proposed a method to implement in FPGA (Field Programmable Gate Array) circuits different approximation of the sigmoid function.. The major benefit of the proposed method resides in the possibility to design neural networks by means of predefined block systems created in System Generator environment and the possibility to create a higher level design tools used to implement neural networks in logical circuits.
75 FR 33445 - U.S. Citizenship and Immigration Services Fee Schedule
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-11
.... TPS--Temporary Protected Status. TPO--Transformation Program Office. TTPI--Trust Territory of the... Transformation Coordination for near- and long-term investments to strategically improve USCIS operations),\\6... transformation of USCIS operations under its transformation program. To improve operational efficiency, enhance...
Khang, Chang Hyun; Park, Sook-Young; Lee, Yong-Hwan; Kang, Seogchan
2005-06-01
Rapid progress in fungal genome sequencing presents many new opportunities for functional genomic analysis of fungal biology through the systematic mutagenesis of the genes identified through sequencing. However, the lack of efficient tools for targeted gene replacement is a limiting factor for fungal functional genomics, as it often necessitates the screening of a large number of transformants to identify the desired mutant. We developed an efficient method of gene replacement and evaluated factors affecting the efficiency of this method using two plant pathogenic fungi, Magnaporthe grisea and Fusarium oxysporum. This method is based on Agrobacterium tumefaciens-mediated transformation with a mutant allele of the target gene flanked by the herpes simplex virus thymidine kinase (HSVtk) gene as a conditional negative selection marker against ectopic transformants. The HSVtk gene product converts 5-fluoro-2'-deoxyuridine to a compound toxic to diverse fungi. Because ectopic transformants express HSVtk, while gene replacement mutants lack HSVtk, growing transformants on a medium amended with 5-fluoro-2'-deoxyuridine facilitates the identification of targeted mutants by counter-selecting against ectopic transformants. In addition to M. grisea and F. oxysporum, the method and associated vectors are likely to be applicable to manipulating genes in a broad spectrum of fungi, thus potentially serving as an efficient, universal functional genomic tool for harnessing the growing body of fungal genome sequence data to study fungal biology.
Quantization Distortion in Block Transform-Compressed Data
NASA Technical Reports Server (NTRS)
Boden, A. F.
1995-01-01
The popular JPEG image compression standard is an example of a block transform-based compression scheme; the image is systematically subdivided into block that are individually transformed, quantized, and encoded. The compression is achieved by quantizing the transformed data, reducing the data entropy and thus facilitating efficient encoding. A generic block transform model is introduced.
Benigni, Paolo; DeBord, J. Daniel; Thompson, Christopher J.; Gardinali, Piero; Fernandez-Lima, Francisco
2016-01-01
Thousands of chemically distinct compounds are encountered in fossil oil samples that require rapid screening and accurate identification. In the present paper, we show for the first time, the advantages of gas chromatography (GC) separation in combination with atmospheric-pressure laser ionization (APLI) and ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) for the screening of polyaromatic hydrocarbons (PAHs) in fossil oils. In particular, reference standards of organics in shale oil, petroleum crude oil, and heavy sweet crude oil were characterized by GC-APLI-FT-ICR MS and APLI-FT-ICR MS. Results showed that, while APLI increases the ionization efficiency of PAHs, when compared to other ionization sources, the complexity of the fossil oils reduces the probability of ionizing lower-concentration compounds during direct infusion. When gas chromatography precedes APLI-FT-ICR MS, an increase (more than 2-fold) in the ionization efficiency and an increase in the signal-to-noise ratio of lower-concentration fractions are observed, giving better molecular coverage in the m/z 100–450 range. That is, the use of GC prior to APLI-FT-ICR MS resulted in higher molecular coverage, higher sensitivity, and the ability to separate and characterize molecular isomers, while maintaining the ultrahigh resolution and mass accuracy of the FT-ICR MS separation. PMID:27212790
Parallel and pipeline computation of fast unitary transforms
NASA Technical Reports Server (NTRS)
Fino, B. J.; Algazi, V. R.
1975-01-01
The letter discusses the parallel and pipeline organization of fast-unitary-transform algorithms such as the fast Fourier transform, and points out the efficiency of a combined parallel-pipeline processor of a transform such as the Haar transform, in which (2 to the n-th power) -1 hardware 'butterflies' generate a transform of order 2 to the n-th power every computation cycle.
Sriskandarajah, Sridevy; Frello, Stefan; Jørgensen, Kirsten; Serek, Margrethe
2004-08-01
An efficient transformation system for Campanula carpatica was developed using Agrobacterium tumefaciens strains LBA4404 (harbouring the plasmid pBI121), and AGL0 (harbouring the plasmid pBEO210). This is the first report on the transformation of C. carpatica. Various factors affecting the transformation efficiency and subsequent regeneration were identified. The age of seedlings from which the explants for transformation studies were taken, and the growth conditions under which the seedlings were grown had a significant influence on the production of transformed shoots. Hypocotyls taken from 12-day-old seedlings grown in the dark were the most productive, with up to 25% of hypocotyls producing transformed shoots. Explants taken from 5-week-old seedlings produced only transformed callus. The medium used for co-cultivation and incubation also had a significant influence on transformation frequency and shoot regeneration. The cultivar "Blue Uniform" was more responsive than "White Uniform". Both bacterial strains and plasmids were equally effective in producing transformed tissue. Transformed shoots were selected on kanamycin medium, and the presence of the uidA and nptII genes in those selected shoots was confirmed by beta-glucuronidase and ELISA analyses, respectively.
Progress on genotyping and phenotyping recombinant inbred line populations of peanut
USDA-ARS?s Scientific Manuscript database
The biolistic method is reliable for delivering genes of interest into various species. Low transformation efficiency has been a limiting factor for its application. The DNA coating agent protamine was shown to improve transformation efficiency in rice, while a reduction of plasmid DNA in the bomb...
ERIC Educational Resources Information Center
Kirby, Sarah D.; Chilcote, Amy G.
2014-01-01
This article describes the Energy Transformation 4-H school enrichment curriculum. The curriculum addresses energy efficiency and conservation while meeting sixth-grade science essential standards requirements. Through experiential learning, including building and testing a model home, youth learn the relationship between various technologies and…
Improving the Efficiency of Free Energy Calculations in the Amber Molecular Dynamics Package.
Kaus, Joseph W; Pierce, Levi T; Walker, Ross C; McCammont, J Andrew
2013-09-10
Alchemical transformations are widely used methods to calculate free energies. Amber has traditionally included support for alchemical transformations as part of the sander molecular dynamics (MD) engine. Here we describe the implementation of a more efficient approach to alchemical transformations in the Amber MD package. Specifically we have implemented this new approach within the more computational efficient and scalable pmemd MD engine that is included with the Amber MD package. The majority of the gain in efficiency comes from the improved design of the calculation, which includes better parallel scaling and reduction in the calculation of redundant terms. This new implementation is able to reproduce results from equivalent simulations run with the existing functionality, but at 2.5 times greater computational efficiency. This new implementation is also able to run softcore simulations at the λ end states making direct calculation of free energies more accurate, compared to the extrapolation required in the existing implementation. The updated alchemical transformation functionality will be included in the next major release of Amber (scheduled for release in Q1 2014) and will be available at http://ambermd.org, under the Amber license.
Improving the Efficiency of Free Energy Calculations in the Amber Molecular Dynamics Package
Pierce, Levi T.; Walker, Ross C.; McCammont, J. Andrew
2013-01-01
Alchemical transformations are widely used methods to calculate free energies. Amber has traditionally included support for alchemical transformations as part of the sander molecular dynamics (MD) engine. Here we describe the implementation of a more efficient approach to alchemical transformations in the Amber MD package. Specifically we have implemented this new approach within the more computational efficient and scalable pmemd MD engine that is included with the Amber MD package. The majority of the gain in efficiency comes from the improved design of the calculation, which includes better parallel scaling and reduction in the calculation of redundant terms. This new implementation is able to reproduce results from equivalent simulations run with the existing functionality, but at 2.5 times greater computational efficiency. This new implementation is also able to run softcore simulations at the λ end states making direct calculation of free energies more accurate, compared to the extrapolation required in the existing implementation. The updated alchemical transformation functionality will be included in the next major release of Amber (scheduled for release in Q1 2014) and will be available at http://ambermd.org, under the Amber license. PMID:24185531
Crespo-Sempere, A; López-Pérez, M; Martínez-Culebras, P V; González-Candelas, L
2011-08-02
An enhanced green fluorescent protein has been used to tag an OTA-producing strain of Aspergillus carbonarius (W04-40) isolated from naturally infected grape berries. Transformation of the fungus was mediated by Agrobacterium tumefaciens. The most efficient transformation occurred when the co-cultivation was done with 10(4) conidia due to higher frequency of resistance colonies (894 per 10(4) conidia) and lower background obtained. To confirm the presence of the hph gene in hygromycin resistant colonies, 20 putative transformants were screened by PCR analysis. The hph gene was identified in all the transformants. Variation on the expression levels of the eGFP was detected among the transformants and 50% of them appeared bright green fluorescent under the microscope. Microscopic analysis of all the bright fluorescent transformants revealed homogeneity of the fluorescent signal, which was clearly visible in the hyphae as well as in the conidia. eGFP expression in A. carbonarius was shown to be stable in all transformants. Confocal Laser scanning microscopy images of grape berries infected with the eGFP transformant demonstrated fungal penetration into the berry tissues. OTA production was importantly increased in the eGFP transformant in comparison with the wild type strain and pathogenicity on grape berries was slightly decreased after four days of inoculation. However, no differences in virulence were found after seven days of inoculation, thus allowing utilization of this eGFP mutant for in situ analysis of A. carbonarius infection of grape berries. To our knowledge, this is the first report describing the construction of a GFP-tagged strain belonging to Aspergillus section Nigri for monitoring Aspergillus rot on grape berries. Copyright © 2011 Elsevier B.V. All rights reserved.
10 CFR 431.193 - Test procedures for measuring energy consumption of distribution transformers.
Code of Federal Regulations, 2011 CFR
2011-01-01
... distribution transformers. 431.193 Section 431.193 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Distribution Transformers Test Procedures § 431.193 Test procedures for measuring energy consumption of distribution transformers. The test...
10 CFR 431.193 - Test procedures for measuring energy consumption of distribution transformers.
Code of Federal Regulations, 2012 CFR
2012-01-01
... distribution transformers. 431.193 Section 431.193 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Distribution Transformers Test Procedures § 431.193 Test procedures for measuring energy consumption of distribution transformers. The test...
10 CFR 431.193 - Test procedures for measuring energy consumption of distribution transformers.
Code of Federal Regulations, 2014 CFR
2014-01-01
... distribution transformers. 431.193 Section 431.193 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Distribution Transformers Test Procedures § 431.193 Test procedures for measuring energy consumption of distribution transformers. The test...
10 CFR 431.193 - Test procedures for measuring energy consumption of distribution transformers.
Code of Federal Regulations, 2010 CFR
2010-01-01
... distribution transformers. 431.193 Section 431.193 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Distribution Transformers Test Procedures § 431.193 Test procedures for measuring energy consumption of distribution transformers. The test...
10 CFR 431.193 - Test procedures for measuring energy consumption of distribution transformers.
Code of Federal Regulations, 2013 CFR
2013-01-01
... distribution transformers. 431.193 Section 431.193 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Distribution Transformers Test Procedures § 431.193 Test procedures for measuring energy consumption of distribution transformers. The test...
Maize transformation technology development for commercial event generation.
Que, Qiudeng; Elumalai, Sivamani; Li, Xianggan; Zhong, Heng; Nalapalli, Samson; Schweiner, Michael; Fei, Xiaoyin; Nuccio, Michael; Kelliher, Timothy; Gu, Weining; Chen, Zhongying; Chilton, Mary-Dell M
2014-01-01
Maize is an important food and feed crop in many countries. It is also one of the most important target crops for the application of biotechnology. Currently, there are more biotech traits available on the market in maize than in any other crop. Generation of transgenic events is a crucial step in the development of biotech traits. For commercial applications, a high throughput transformation system producing a large number of high quality events in an elite genetic background is highly desirable. There has been tremendous progress in Agrobacterium-mediated maize transformation since the publication of the Ishida et al. (1996) paper and the technology has been widely adopted for transgenic event production by many labs around the world. We will review general efforts in establishing efficient maize transformation technologies useful for transgenic event production in trait research and development. The review will also discuss transformation systems used for generating commercial maize trait events currently on the market. As the number of traits is increasing steadily and two or more modes of action are used to control key pests, new tools are needed to efficiently transform vectors containing multiple trait genes. We will review general guidelines for assembling binary vectors for commercial transformation. Approaches to increase transformation efficiency and gene expression of large gene stack vectors will be discussed. Finally, recent studies of targeted genome modification and transgene insertion using different site-directed nuclease technologies will be reviewed.
Dekkers, A L M; Slob, W
2012-10-01
In dietary exposure assessment, statistical methods exist for estimating the usual intake distribution from daily intake data. These methods transform the dietary intake data to normal observations, eliminate the within-person variance, and then back-transform the data to the original scale. We propose Gaussian Quadrature (GQ), a numerical integration method, as an efficient way of back-transformation. We compare GQ with six published methods. One method uses a log-transformation, while the other methods, including GQ, use a Box-Cox transformation. This study shows that, for various parameter choices, the methods with a Box-Cox transformation estimate the theoretical usual intake distributions quite well, although one method, a Taylor approximation, is less accurate. Two applications--on folate intake and fruit consumption--confirmed these results. In one extreme case, some methods, including GQ, could not be applied for low percentiles. We solved this problem by modifying GQ. One method is based on the assumption that the daily intakes are log-normally distributed. Even if this condition is not fulfilled, the log-transformation performs well as long as the within-individual variance is small compared to the mean. We conclude that the modified GQ is an efficient, fast and accurate method for estimating the usual intake distribution. Copyright © 2012 Elsevier Ltd. All rights reserved.
Maize transformation technology development for commercial event generation
Que, Qiudeng; Elumalai, Sivamani; Li, Xianggan; Zhong, Heng; Nalapalli, Samson; Schweiner, Michael; Fei, Xiaoyin; Nuccio, Michael; Kelliher, Timothy; Gu, Weining; Chen, Zhongying; Chilton, Mary-Dell M.
2014-01-01
Maize is an important food and feed crop in many countries. It is also one of the most important target crops for the application of biotechnology. Currently, there are more biotech traits available on the market in maize than in any other crop. Generation of transgenic events is a crucial step in the development of biotech traits. For commercial applications, a high throughput transformation system producing a large number of high quality events in an elite genetic background is highly desirable. There has been tremendous progress in Agrobacterium-mediated maize transformation since the publication of the Ishida et al. (1996) paper and the technology has been widely adopted for transgenic event production by many labs around the world. We will review general efforts in establishing efficient maize transformation technologies useful for transgenic event production in trait research and development. The review will also discuss transformation systems used for generating commercial maize trait events currently on the market. As the number of traits is increasing steadily and two or more modes of action are used to control key pests, new tools are needed to efficiently transform vectors containing multiple trait genes. We will review general guidelines for assembling binary vectors for commercial transformation. Approaches to increase transformation efficiency and gene expression of large gene stack vectors will be discussed. Finally, recent studies of targeted genome modification and transgene insertion using different site-directed nuclease technologies will be reviewed. PMID:25140170
Accurate and efficient seismic data interpolation in the principal frequency wavenumber domain
NASA Astrophysics Data System (ADS)
Wang, Benfeng; Lu, Wenkai
2017-12-01
Seismic data irregularity caused by economic limitations, acquisition environmental constraints or bad trace elimination, can decrease the performance of the below multi-channel algorithms, such as surface-related multiple elimination (SRME), though some can overcome the irregularity defects. Therefore, accurate interpolation to provide the necessary complete data is a pre-requisite, but its wide applications are constrained because of its large computational burden for huge data volume, especially in 3D explorations. For accurate and efficient interpolation, the curvelet transform- (CT) based projection onto convex sets (POCS) method in the principal frequency wavenumber (PFK) domain is introduced. The complex-valued PF components can characterize their original signal with a high accuracy, but are at least half the size, which can help provide a reasonable efficiency improvement. The irregularity of the observed data is transformed into incoherent noise in the PFK domain, and curvelet coefficients may be sparser when CT is performed on the PFK domain data, enhancing the interpolation accuracy. The performance of the POCS-based algorithms using complex-valued CT in the time space (TX), principal frequency space, and PFK domains are compared. Numerical examples on synthetic and field data demonstrate the validity and effectiveness of the proposed method. With less computational burden, the proposed method can achieve a better interpolation result, and it can be easily extended into higher dimensions.
Recent Developments on Genetic Engineering of Microalgae for Biofuels and Bio-Based Chemicals.
Ng, I-Son; Tan, Shih-I; Kao, Pei-Hsun; Chang, Yu-Kaung; Chang, Jo-Shu
2017-10-01
Microalgae serve as a promising source for the production of biofuels and bio-based chemicals. They are superior to terrestrial plants as feedstock in many aspects and their biomass is naturally rich in lipids, carbohydrates, proteins, pigments, and other valuable compounds. Due to the relatively slow growth rate and high cultivation cost of microalgae, to screen efficient and robust microalgal strains as well as genetic modifications of the available strains for further improvement are of urgent demand in the development of microalgae-based biorefinery. In genetic engineering of microalgae, transformation and selection methods are the key steps to accomplish the target gene modification. However, determination of the preferable type and dosage of antibiotics used for transformant selection is usually time-consuming and microalgal-strain-dependent. Therefore, more powerful and efficient techniques should be developed to meet this need. In this review, the conventional and emerging genome-editing tools (e.g., CRISPR-Cas9, TALEN, and ZFN) used in editing the genomes of nuclear, mitochondria, and chloroplast of microalgae are thoroughly surveyed. Although all the techniques mentioned above demonstrate their abilities to perform gene editing and desired phenotype screening, there still need to overcome higher production cost and lower biomass productivity, to achieve efficient production of the desired products in microalgal biorefineries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Genetic transformation of carnation (Dianthus caryophylus L.).
Nontaswatsri, Chalermsri; Fukai, Seiichi
2010-01-01
This chapter describes a rapid and efficient protocol for explant preparation and genetic transformation of carnation. Node explants from greenhouse-grown plants and leaf explants from in vitro plants are infected with Agrobacterium tumefaciens AGL0 harboring pKT3 plasmid, consisting of GUS and NPTII genes. Explant preparation is an important factor to obtain the transformed plants. The GUS-staining area was located only on the cut end of explants and only explants with a cut end close to the connecting area between node and leaf, produced transformed shoots. The cocultivation medium is also an important factor for the successful genetic transformation of carnation node and leaf explants. High genetic transformation efficiency of node and leaf explants cocultured with Agrobacterium tumefaciens was achieved when the explants were cocultivated on a filter paper soaked with water or water and acetosyringone mixture (AS).
Insect transformation with piggyBac: getting the number of injections just right
Morrison, N. I.; Shimeld, S. M.
2016-01-01
Abstract The insertion of exogenous genetic cargo into insects using transposable elements is a powerful research tool with potential applications in meeting food security and public health challenges facing humanity. piggyBac is the transposable element most commonly utilized for insect germline transformation. The described efficiency of this process is variable in the published literature, and a comprehensive review of transformation efficiency in insects is lacking. This study compared and contrasted all available published data with a comprehensive data set provided by a biotechnology group specializing in insect transformation. Based on analysis of these data, with particular focus on the more complete observational data from the biotechnology group, we designed a decision tool to aid researchers' decision‐making when using piggyBac to transform insects by microinjection. A combination of statistical techniques was used to define appropriate summary statistics of piggyBac transformation efficiency by species and insect order. Publication bias was assessed by comparing the data sets. The bias was assessed using strategies co‐opted from the medical literature. The work culminated in building the Goldilocks decision tool, a Markov‐Chain Monte‐Carlo simulation operated via a graphical interface and providing guidance on best practice for those seeking to transform insects using piggyBac. PMID:27027400
Sun, Ningning; Qian, Yuanchao; Wang, Weiwei; Zhong, Yaohua; Dai, Meixue
2018-07-01
Improve the hydrolysis efficiency of the Trichoderma reesei cellulase system by heterologously expressing cellobiohydrolase Cel7A (Te-Cel7A) from the thermophilic fungus Talaromyces emersonii. Te-Cel7A was expressed in T. reesei under control of the cdna1 promoter and the generated transformant QTC14 could successfully secrete Te-Cel7A into the supernatant using glucose as carbon source. The recombinant Te-Cel7A had a temperature optimum at 65 °C and an optimal pH of 5, which were similar to those from the native host. The culture supernatant of QTC14 exhibited a 28.8% enhancement in cellobiohydrolase activity and a 65.2% increase in filter paper activity relative to that of the parental strain QP4. Moreover, the QTC14 cellulase system showed higher thermal stability than that of the parental strain QP4. In the saccharification of delignified corncob residue, the cellulose conversion of QTC14 showed 13.9% higher than that of QP4 at the end of reaction. The thermophilic fungus-derived cellulases could be efficiently expressed by T. reesei and the recombinant cellulases had potential applications for biomass conversion.
Electrotransformation of highly DNA-restrictive corynebacteria with synthetic DNA.
Ankri, S; Reyes, O; Leblon, G
1996-01-01
Highly DNA-restrictive Corynebacteria can be transformed with DNA made in vitro by PCR amplification of a sequence that contains the replication origin of pBL1, a plasmid common to many Corynebacteria. In all strains examined, the transformation efficiencies of PCR-synthetized DNA equal or improve the performances of heterologous DNA extracted from wild-type and dam(-)-dcm-strains of Escherichia coli. The transformation efficiencies obtained with PCR-made DNA may be high enough to permit its general application to experiments of gene integration.
Yamada, Shinya; Miyagawa, Taka-Aki; Yamada, Ren; Shiratori-Takano, Hatsumi; Sayo, Noboru; Saito, Takao; Takano, Hideaki; Beppu, Teruhiko; Ueda, Kenji
2013-07-01
To develop an efficient bioconversion process for amides, we screened our collection of Streptomyces strains, mostly obtained from soil, for effective transformers. Five strains, including the SY007 (NBRC 109343) and SY435 (NBRC 109344) of Streptomyces sp., exhibited marked conversion activities from the approximately 700 strains analyzed. These strains transformed diverse amide compounds such as N-acetyltetrahydroquinoline, N-benzoylpyrrolidine, and N-benzoylpiperidine into alcohols or N,O-acetals with high activity and regioselectivity. N,O-acetal was transformed into alcohol by serial tautomerization and reduction reactions. As such, Streptomyces spp. can potentially be used for the efficient preparation of hydroxy amides and aminoalcohols.
Energy-Efficient Cognitive Radio Sensor Networks: Parametric and Convex Transformations
Naeem, Muhammad; Illanko, Kandasamy; Karmokar, Ashok; Anpalagan, Alagan; Jaseemuddin, Muhammad
2013-01-01
Designing energy-efficient cognitive radio sensor networks is important to intelligently use battery energy and to maximize the sensor network life. In this paper, the problem of determining the power allocation that maximizes the energy-efficiency of cognitive radio-based wireless sensor networks is formed as a constrained optimization problem, where the objective function is the ratio of network throughput and the network power. The proposed constrained optimization problem belongs to a class of nonlinear fractional programming problems. Charnes-Cooper Transformation is used to transform the nonlinear fractional problem into an equivalent concave optimization problem. The structure of the power allocation policy for the transformed concave problem is found to be of a water-filling type. The problem is also transformed into a parametric form for which a ε-optimal iterative solution exists. The convergence of the iterative algorithms is proven, and numerical solutions are presented. The iterative solutions are compared with the optimal solution obtained from the transformed concave problem, and the effects of different system parameters (interference threshold level, the number of primary users and secondary sensor nodes) on the performance of the proposed algorithms are investigated. PMID:23966194
NASA Technical Reports Server (NTRS)
Wenck, A. R.; Quinn, M.; Whetten, R. W.; Pullman, G.; Sederoff, R.; Brown, C. S. (Principal Investigator)
1999-01-01
Agrobacterium-mediated gene transfer is the method of choice for many plant biotechnology laboratories; however, large-scale use of this organism in conifer transformation has been limited by difficult propagation of explant material, selection efficiencies and low transformation frequency. We have analyzed co-cultivation conditions and different disarmed strains of Agrobacterium to improve transformation. Additional copies of virulence genes were added to three common disarmed strains. These extra virulence genes included either a constitutively active virG or extra copies of virG and virB, both from pTiBo542. In experiments with Norway spruce, we increased transformation efficiencies 1000-fold from initial experiments where little or no transient expression was detected. Over 100 transformed lines expressing the marker gene beta-glucuronidase (GUS) were generated from rapidly dividing embryogenic suspension-cultured cells co-cultivated with Agrobacterium. GUS activity was used to monitor transient expression and to further test lines selected on kanamycin-containing medium. In loblolly pine, transient expression increased 10-fold utilizing modified Agrobacterium strains. Agrobacterium-mediated gene transfer is a useful technique for large-scale generation of transgenic Norway spruce and may prove useful for other conifer species.
Efficient and genotype-independent Agrobacterium--mediated tomato transformation.
Park, Sung Hun; Morris, Jay L; Park, Jung Eun; Hirschi, Kendal D; Smith, Roberta H
2003-10-01
An efficient method to transform five cultivars of tomato (Lycopersicon esculentum), Micro-Tom, Red Cherry, Rubion, Piedmont, and E6203 is reported. A comparison was made of leaf, cotyledon, and hypocotyl explants on 7 different regeneration media without Agrobacterium tumefaciens cocultivation and on 11 different media with cocultivation. Although all cultivars and explants formed callus and regenerated on the initial 7 media, cocultivation with A. tumefaciens significantly reduced the callus induction and regeneration. From these experiments, a transformation methodology using either hypocotyls or cotyledons cultured for one day on BA 1 mgL-1, NAA 0.1 mgL-1 and 3 days cocultivation with the Agrobacterium on this same medium followed by a transfer to a medium with zeatin 2 mgL-1 and IAA 0.1 mgL-1 for 4-6 weeks resulted in a greater than 20% transformation frequency for all five cultivars tested. In this transformation method, no feeder layers of tobacco, petunia or tomato suspension cultures were used, and the subculture media was minimal. Stable integration and transmission of the transgene in T1 generation plants were confirmed by Southern blot analysis. This procedure represents a simple, efficient and general means of transforming tomato.
A note on parallel and pipeline computation of fast unitary transforms
NASA Technical Reports Server (NTRS)
Fino, B. J.; Algazi, V. R.
1974-01-01
The parallel and pipeline organization of fast unitary transform algorithms such as the Fast Fourier Transform are discussed. The efficiency is pointed out of a combined parallel-pipeline processor of a transform such as the Haar transform in which 2 to the n minus 1 power hardware butterflies generate a transform of order 2 to the n power every computation cycle.
Shi, L; Fan, J Q; Hu, C G; Luo, J; Yao, J L
2012-02-03
The establishment of high-efficiency Agrobacterium-mediated transformation techniques could improve the production of Dioscorea zingiberensis, a medicinal species with a high diosgenin content. We co-cultivated embryogenic calli induced from mature seeds with A. tumefaciens strain EHA105. A binary vector, pCAMBIA1381, which contains the gfp and hpt genes under the control of the ubiquitin promoter and the CaMV 35S promoter, respectively, was used for transformation. Pre-culture, basic medium, acetosyringone, and bacterial density were evaluated to establish the most efficient protocol. The optimal conditions consisted of MS medium without CaCl(2) for pre- and co-cultivation, three days for pre-culture, addition of 200 μM AS, and an OD(600) of 0.5. The transgenic plants grown under selection were confirmed by PCR analysis and Southern blot analysis. This protocol produced transgenic D. zingiberensis plants in seven months, with a transformation efficiency of 6%.
Overexpression of a glutamine synthetase gene affects growth and development in sorghum.
Urriola, Jazmina; Rathore, Keerti S
2015-06-01
Nitrogen is a primary macronutrient in plants, and nitrogen fertilizers play a critical role in crop production and yield. In this study, we investigated the effects of overexpressing a glutamine synthetase (GS) gene on nitrogen metabolism, and plant growth and development in sorghum (Sorghum bicolor L., Moench). GS catalyzes the ATP dependent reaction between ammonia and glutamate to produce glutamine. A 1,071 bp long coding sequence of a sorghum cytosolic GS gene (Gln1) under the control of the maize ubiquitin (Ubq) promoter was introduced into sorghum immature embryos by Agrobacterium-mediated transformation. Progeny of the transformants exhibited higher accumulation of the Gln1 transcripts and up to 2.2-fold higher GS activity compared to the non-transgenic controls. When grown under optimal nitrogen conditions, these Gln1 transgenic lines showed greater tillering and up to 2.1-fold increase in shoot vegetative biomass. Interestingly, even under greenhouse conditions, we observed a seasonal component to both these parameters and the grain yield. Our results, showing that the growth and development of sorghum Gln1 transformants are also affected by N availability and other environmental factors, suggest complexity of the relationship between GS activity and plant growth and development. A better understanding of other control points and the ability to manipulate these will be needed to utilize the transgenic technology to improve nitrogen use efficiency of crop plants.
Benhammouda, Brahim
2016-01-01
Since 1980, the Adomian decomposition method (ADM) has been extensively used as a simple powerful tool that applies directly to solve different kinds of nonlinear equations including functional, differential, integro-differential and algebraic equations. However, for differential-algebraic equations (DAEs) the ADM is applied only in four earlier works. There, the DAEs are first pre-processed by some transformations like index reductions before applying the ADM. The drawback of such transformations is that they can involve complex algorithms, can be computationally expensive and may lead to non-physical solutions. The purpose of this paper is to propose a novel technique that applies the ADM directly to solve a class of nonlinear higher-index Hessenberg DAEs systems efficiently. The main advantage of this technique is that; firstly it avoids complex transformations like index reductions and leads to a simple general algorithm. Secondly, it reduces the computational work by solving only linear algebraic systems with a constant coefficient matrix at each iteration, except for the first iteration where the algebraic system is nonlinear (if the DAE is nonlinear with respect to the algebraic variable). To demonstrate the effectiveness of the proposed technique, we apply it to a nonlinear index-three Hessenberg DAEs system with nonlinear algebraic constraints. This technique is straightforward and can be programmed in Maple or Mathematica to simulate real application problems.
Zhao, Xu; Zhang, Baofeng; Liu, Huijuan; Chen, Fayuan; Li, Angzhen; Qu, Jiuhui
2012-05-01
The treatment of the plugboard wastewater was performed by an optimal electrocoagulation and electro-Fenton. The organic components with suspended fractions accounting for 30% COD were preferably removed via electrocoagulation at initial 5 min. In contrast, the removal efficiency was increased to 76% with the addition of H(2)O(2). The electrogenerated Fe(2+) reacts with H(2)O(2) and leads to the generation of (·)OH, which is responsible for the higher COD removal. However, overdosage H(2)O(2) will consume (·)OH generated in the electro-Fenton process and lead to the low COD removal. The COD removal efficiency decreased with the increased pH. The concentration of Fe(2+) ions was dependent on the solution pH, H(2)O(2) dosage and current density. The changes of organic characteristics in coagulation and oxidation process were differenced and evaluated using gel permeation chromatography, fluorescence excitation-emission scans and Fourier transform infrared spectroscopy. The fraction of the wastewater with aromatic structure and large molecular weight was decomposed into aliphatic structure and small molecular weight fraction in the electro-Fenton process. Copyright © 2012. Published by Elsevier Ltd.
Koltsakidou, Α; Antonopoulou, M; Sykiotou, M; Εvgenidou, Ε; Konstantinou, I; Lambropoulou, D A
2017-02-01
In the present study, photo-Fenton and Fenton-like processes were investigated for the degradation and mineralization of the antineoplastic drug 5-fluorouracil (5-FU). For the optimization of photo-Fenton treatment under simulated solar light (SSL) radiation, the effects of several operating parameters (i.e., 5-FU concentration, Fe 3+ , and oxidant concentration) on the treatment efficiency were studied. According to the results, SSL/[Fe(C 2 Ο 4 ) 3 ] 3- /Η 2 Ο 2 process was the most efficient, since faster degradation of 5-FU and higher mineralization percentages were achieved. All the applied processes followed quite similar transformation routes which include defluorination-hydroxylation as well as pyrimidine ring opening, as demonstrated by the transformation products identified by high resolution mass spectrometry analysis. The toxicity of the treated solutions was evaluated using the Microtox assay. In general, low toxicity was recorded for the initial solution and the solution at the end of the photocatalytic treatment, while an increase in the overall toxicity was observed only at the first stages of SSL/Fe 3+ /Η 2 Ο 2 and SSL/Fe 3+ /S 2 O 8 2- processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guan, Jiwen; Song, Yang, E-mail: yang.song@uwo.ca; Department of Chemistry, University of Western Ontario, London, Ontario N6A 5B7
The polymerization process of condensed styrene to produce polystyrene as an industrially important polymeric material was investigated using a novel approach by combining external compression with ultraviolet radiation. The reaction evolution was monitored as a function of time and the reaction products were characterized by in situ Fourier transform infrared spectroscopy. By optimizing the loading pressures, we observed highly efficient and selective production of polystyrene of different tacticities. Specifically, at relatively low loading pressures, infrared spectra suggest that styrene monomers transform to amorphous atactic polystyrene (APS) with minor crystalline isotactic polystyrene. In contrast, APS was found to be the solemore » product when polymerization occurs at relatively higher loading pressures. The time-dependent reaction profiles allow the examination of the polymerization kinetics by analyzing the rate constant and activation volume as a function of pressure. As a result, an optimized pressure condition, which allows a barrierless reaction to proceed, was identified and attributed to the very desirable reaction yield and kinetics. Finally, the photoinitiated reaction mechanism and the growth geometry of the polymer chains were investigated from the energy diagram of styrene and by the topology analysis of the crystal styrene. This study shows strong promise to produce functional polymeric materials in a highly efficient and controlled manner.« less
Ye, Shanwen; Cai, Changyang; Ren, Huibo; Wang, Wenjia; Xiang, Mengqi; Tang, Xiaoshan; Zhu, Caiping; Yin, Tengfei; Zhang, Li; Zhu, Qiang
2017-01-01
Genetic engineering technology has been successfully used in many plant species, but is limited in woody plants, especially in bamboos. Ma bamboo (Dendrocalamus latiflorus Munro) is one of the most important bamboo species in Asia, and its genetic improvement was largely restricted by the lack of an efficient regeneration and transformation method. Here we reported a plantlet regeneration and Agrobacterium-mediated transformation protocol by using Ma bamboo young shoots as explants. Under our optimized conditions, embryogenic calluses were successfully induced from the excised young shoots on callus induction medium and rapidly grew on callus multiplication medium. Shoots and roots were regenerated on shoot induction medium and root induction medium, respectively, with high efficiency. An Agrobacterium-mediated genetic transformation protocol of Ma bamboo was established, verified by PCR and GUS staining. Furthermore, the maize Lc gene under the control of the ubiquitin promoter was successfully introduced into Ma bamboo genome and generated an anthocyanin over-accumulation phenotype. Our methods established here will facilitate the basic research as well as genetic breeding of this important bamboo species. Key achievements: A stable and high efficiency regeneration and Agrobacterium-mediated transformation protocol for Ma bamboo from vegetative organ is established. PMID:28798758
Resource-use efficiency explains grassy weed invasion in a low-resource savanna in north Australia
Ens, Emilie; Hutley, Lindsay B.; Rossiter-Rachor, Natalie A.; Douglas, Michael M.; Setterfield, Samantha A.
2015-01-01
Comparative studies of plant resource use and ecophysiological traits of invasive and native resident plant species can elucidate mechanisms of invasion success and ecosystem impacts. In the seasonal tropics of north Australia, the alien C4 perennial grass Andropogon gayanus (gamba grass) has transformed diverse, mixed tree-grass savanna ecosystems into dense monocultures. To better understand the mechanisms of invasion, we compared resource acquisition and usage efficiency using leaf-scale ecophysiological and stand-scale growth traits of A. gayanus with a co-habiting native C4 perennial grass Alloteropsis semialata. Under wet season conditions, A. gayanus had higher rates of stomatal conductance, assimilation, and water use, plus a longer daily assimilation period than the native species A. semialata. Growing season length was also ~2 months longer for the invader. Wet season measures of leaf scale water use efficiency (WUE) and light use efficiency (LUE) did not differ between the two species, although photosynthetic nitrogen use efficiency (PNUE) was significantly higher in A. gayanus. By May (dry season) the drought avoiding native species A. semialata had senesced. In contrast, rates of A. gayanus gas exchange was maintained into the dry season, albeit at lower rates that the wet season, but at higher WUE and PNUE, evidence of significant physiological plasticity. High PNUE and leaf 15N isotope values suggested that A. gayanus was also capable of preferential uptake of soil ammonium, with utilization occurring into the dry season. High PNUE and fire tolerance in an N-limited and highly flammable ecosystem confers a significant competitive advantage over native grass species and a broader niche width. As a result A. gayanus is rapidly spreading across north Australia with significant consequences for biodiversity and carbon and retention. PMID:26300890
Biomolecular surface construction by PDE transform.
Zheng, Qiong; Yang, Siyang; Wei, Guo-Wei
2012-03-01
This work proposes a new framework for the surface generation based on the partial differential equation (PDE) transform. The PDE transform has recently been introduced as a general approach for the mode decomposition of images, signals, and data. It relies on the use of arbitrarily high-order PDEs to achieve the time-frequency localization, control the spectral distribution, and regulate the spatial resolution. The present work provides a new variational derivation of high-order PDE transforms. The fast Fourier transform is utilized to accomplish the PDE transform so as to avoid stringent stability constraints in solving high-order PDEs. As a consequence, the time integration of high-order PDEs can be done efficiently with the fast Fourier transform. The present approach is validated with a variety of test examples in two-dimensional and three-dimensional settings. We explore the impact of the PDE transform parameters, such as the PDE order and propagation time, on the quality of resulting surfaces. Additionally, we utilize a set of 10 proteins to compare the computational efficiency of the present surface generation method and a standard approach in Cartesian meshes. Moreover, we analyze the present method by examining some benchmark indicators of biomolecular surface, that is, surface area, surface-enclosed volume, solvation free energy, and surface electrostatic potential. A test set of 13 protein molecules is used in the present investigation. The electrostatic analysis is carried out via the Poisson-Boltzmann equation model. To further demonstrate the utility of the present PDE transform-based surface method, we solve the Poisson-Nernst-Planck equations with a PDE transform surface of a protein. Second-order convergence is observed for the electrostatic potential and concentrations. Finally, to test the capability and efficiency of the present PDE transform-based surface generation method, we apply it to the construction of an excessively large biomolecule, a virus surface capsid. Virus surface morphologies of different resolutions are attained by adjusting the propagation time. Therefore, the present PDE transform provides a multiresolution analysis in the surface visualization. Extensive numerical experiment and comparison with an established surface model indicate that the present PDE transform is a robust, stable, and efficient approach for biomolecular surface generation in Cartesian meshes. Copyright © 2012 John Wiley & Sons, Ltd.
Crystallization control for remediation of an FetO-rich CaO-SiO2-Al2O3-MgO EAF waste slag.
Jung, Sung Suk; Sohn, Il
2014-01-01
In this work, the crystallization behavior of synthesized FetO-rich electric arc furnace (EAF) waste slags with a basicity range of 0.7 to 1.08 was investigated. Crystal growth in the melts was observed in situ using a confocal laser scanning microscope, and a delayed crystallization for higher-basicity samples was observed in the continuous cooling transformation and time temperature transformation diagrams. This result is likely due to the polymerization of the melt structure as a result of the increased number of network-forming FeO4 and AlO4 units, as suggested by Raman analysis. The complex incorporation of Al and Fe ions in the form of AlO4 and FeO4 tetrahedral units dominant in the melt structure at a higher basicity constrained the precipitation of a magnetic, nonstoichiometric, and Fe-rich MgAlFeO4 primary phase. The growth of this spinel phase caused a clear compositional separation from amorphous phase during isothermal cooling at 1473 K leading to a clear separation between the primary and amorphous phases, allowing an efficient magnetic separation of Fe compounds from the slag for effective remediation and recycling of synthesized EAF waste slags for use in higher value-added ordinary Portland cement.
Li, Meng-Nan; Zheng, Guang-Hong; Wang, Lei; Xiao, Wei; Fu, Xiao-Hua; Le, Yi-Quan; Ren, Da-Ming
2009-01-01
The discharge of recombinant DNA waste from biological laboratories into the eco-system may be one of the pathways resulting in horizontal gene transfer or "gene pollution". Heating at 100 degrees C for 5-10 min is a common method for treating recombinant DNA waste in biological research laboratories in China. In this study, we evaluated the effectiveness and the safety of the thermo-treatment method in the disposal of recombinant DNA waste. Quantitative PCR, plasmid transformation and electrophoresis technology were used to evaluate the decay/denaturation efficiency during the thermo-treatment process of recombinant plasmid, pET-28b. Results showed that prolonging thermo-treatment time could improve decay efficiency of the plasmid, and its decay half-life was 2.7-4.0 min during the thermo-treatment at 100 degrees C. However, after 30 min of thermo-treatment some transforming activity remained. Higher ionic strength could protect recombinant plasmid from decay during the treatment process. These results indicate that thermo-treatment at 100 degrees C cannot decay and inactivate pET-28b completely. In addition, preliminary results showed that thermo-treated recombinant plasmids were not degraded completely in a short period when they were discharged into an aquatic environment. This implies that when thermo-treated recombinant DNAs are discharged into the eco-system, they may have enough time to re-nature and transform, thus resulting in gene diffusion.
10 CFR 431.196 - Energy conservation standards and their effective dates.
Code of Federal Regulations, 2014 CFR
2014-01-01
... CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Distribution Transformers Energy Conservation Standards § 431... Transformers. (1) The efficiency of a low-voltage, dry-type distribution transformer manufactured on or after... rating in the table below. Low-voltage dry-type distribution transformers with kVA ratings not appearing...
Pang, Cuiping; Cao, Yuting; Zhu, Xiangdong
2017-01-01
Nowadays, there are a few steroid drugs or intermediates that have been obtained via the transformation of microorganisms, and many strains of transformed steroids have not been found yet. Therefore, it is very significant to screen for the strains that have the abilities to transform steroids to produce valuable products. This study has focused on the screen and identification of strains, the structural identification of converted products, and the optimization of transformation conditions, as well as the establishment of transformation systems. A soil microbiota was screened for strain involved in the biotransformation of steroids. A new isolate IS547 is capable of converting a variety of steroids (such as cholesterol, ergosterol, hydrocortisone, progesterone, pregnenolone, and 16,17-alpha-epoxypregnenolone). Based on the 18S rDNA gene sequence comparison, the isolate IS547 has been demonstrated to be very closely related to Cladosporium sp. genus. Present paper is the first report regarding the microbial transformation by Cladosporium sp. to produce active intermediates, which include 7-hydroxy cholesterol, 20-droxyl-16α,17α-epoxypregna-4-dien-3-one, 7-ketocholesterol, and 7-droxyl-16α,17α-epoxypregna-4-dien-3,20-dione. Under the optimum conditions, the yields of product 3 and product 4 were 20.58 and 17.42%, respectively, higher than that prior to the optimization. The transformation rate increased significantly under the optimum fermentation conditions. This study describes an efficient, rapid, and inexpensive biotransformation system for the production of active pharmaceutical intermediates. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, X X; Lang, S R; Su, L Q; Liu, X; Wang, X F
2015-12-14
Rape seed (Brassica napus L.) is one of the most important oil seed crops in the world. Genetic manipulation of rapeseed requires a suitable tissue culture system and an efficient method for plant regeneration, as well as an efficient transformation procedure. However, development of transgenic B. napus has been problematic, and current studies are limited to cultivated varieties. In this study, we report a protocol for regeneration of transgenic rape after Agrobacterium-mediated transformation of hypocotyls from the spring B. napus 'Precocity' cultivar. We analyzed the effects of plant growth regulators in the medium on regeneration. Additionally, factors affecting the transformation efficiency, including seedling age, Agrobacterium concentration, infection time, and co-cultivation time, were assessed by monitoring GUS expression. Results from these experiments revealed that transformation was optimized when the meristematic parts of the hypocotyls were taken from 8 day-old seedlings, cultured on Murashinge and Skoog basal media containing 0.1 mg/L 1-naphthaleneacetic acid and 2.5 mg/L 6-benzylaminopurine, and incubated in Agrobacterium suspension (OD600 = 0.5) for 3 to 5 min, followed by 2 days of co-cultivation. Integration of T-DNA into the plant genome was confirmed by polymerase chain reaction (PCR), b-glucuronidase histochemical staining, and quantitative real-time PCR. The protocols developed for regeneration, transformation, and rooting described in this study could help to accelerate the development of transgenic spring rape varieties with novel features.
Huang, Xia; Huang, Xue-Lin; Xiao, Wang; Zhao, Jie-Tang; Dai, Xue-Mei; Chen, Yun-Feng; Li, Xiao-Ju
2007-10-01
A high efficient protocol of Agrobacterium-mediated transformation of Musa acuminata cv. Mas (AA), a major banana variety of the South East Asia region, was developed in this study. Male-flower-derived embryogenic cell suspensions (ECS) were co-cultivated in liquid medium with Agrobacterium strain EHA105 harboring a binary vector pCAMBIA2301 carrying nptII and gusA gene in the T-DNA. Depending upon conditions and duration of co-cultivation in liquid medium, 0-490 transgenic plants per 0.5 ml packed cell volume (PCV) of ECS were obtained. The optimum duration of inoculation was 2 h, and the highest transformation frequency was achieved when infected ECS were co-cultivated in liquid medium first for 12 h at 40 rpm and then for 156 h at 100 rpm on a rotary shaker. Co-cultivation for a shorter duration (72 h) or shaking constantly at 100 rpm at the same duration gave 1.6 and 1.8 folds lower transformation efficiency, respectively. No transgenic plants were obtained in parallel experiments carried on semi-solid media. Histochemical GUS assay and molecular analysis in several tissues of the transgenic plants demonstrated that foreign genes were stably integrated into the banana genome. Compared to semi-solid co-cultivation transformation in other banana species, it is remarkable that liquid co-cultivation was much more efficient for transformation of the Mas cultivar, and was at least 1 month faster for regenerating transgenic plants.
Srisungsitthisunti, Pornsak; Ersoy, Okan K; Xu, Xianfan
2009-01-01
Light diffraction by volume Fresnel zone plates (VFZPs) is simulated by the Hankel transform beam propagation method (Hankel BPM). The method utilizes circularly symmetric geometry and small step propagation to calculate the diffracted wave fields by VFZP layers. It is shown that fast and accurate diffraction results can be obtained with the Hankel BPM. The results show an excellent agreement with the scalar diffraction theory and the experimental results. The numerical method allows more comprehensive studies of the VFZP parameters to achieve higher diffraction efficiency.
Phase boundary of hot dense fluid hydrogen
Ohta, Kenji; Ichimaru, Kota; Einaga, Mari; Kawaguchi, Sho; Shimizu, Katsuya; Matsuoka, Takahiro; Hirao, Naohisa; Ohishi, Yasuo
2015-01-01
We investigated the phase transformation of hot dense fluid hydrogen using static high-pressure laser-heating experiments in a laser-heated diamond anvil cell. The results show anomalies in the heating efficiency that are likely to be attributed to the phase transition from a diatomic to monoatomic fluid hydrogen (plasma phase transition) in the pressure range between 82 and 106 GPa. This study imposes tighter constraints on the location of the hydrogen plasma phase transition boundary and suggests higher critical point than that predicted by the theoretical calculations. PMID:26548442
Agrobacterium-mediated transformation of protocorm-like bodies in Cymbidium.
Chin, Dong Poh; Mishiba, Kei-ichiro; Mii, Masahiro
2007-06-01
Genetically transformed plants of Cymbidium were regenerated after cocultivating protocorm-like bodies (PLB) with Agrobacterium tumefaciens strain EHA101 (pIG121Hm) that harbored genes for beta-glucuronidase (gus), hygromycin phosphotransferase (hpt) and neomycin phosphotransferase II (nptII). PLB of three genotypes maintained in liquid new Dogashima medium (NDM), were subjected to transformation experiments. The PLB inoculated with Agrobacterium produced secondary PLB, 4 weeks after transfer onto 2.5 g L(-1) gellan gum-solidified NDM containing 10 g L(-1) sucrose, 20 mg L(-1) hygromycin and 40 mg L(-1) meropenem. Transformation efficiency was affected by genotype and the presence of acetosyringone during cocultivation. The highest transformation efficiency was obtained when PLB from the genotype L4 were infected and cocultivated with Agrobacterium on medium containing 100 muM acetosyringone. Transformation of the hygromycin-resistant plantlets regenerated from different sites of inoculated PLB was confirmed by histochemical GUS assay, PCR analysis and Southern blot hybridization.
Transforming Higher Education through and for Democratic Civic Engagement: A Model for Change
ERIC Educational Resources Information Center
Saltmarsh, John; Janke, Emily M.; Clayton, Patti H.
2015-01-01
Twenty years ago, reflecting on the possibilities for service-learning (SL) to help re-envision higher education, Zlotkowski (1995) considered the question, "Does service-learning have a future?" and concluded "nothing less than a transformation of contemporary academic culture," a transformation of higher education…
Li, Xiang; Yao, Fan; Fan, Hang; Li, Ke; Sun, Liwei; Liu, Yujun
2018-03-26
Heating is a traditional method used in ginseng root processing, however, there aren't reports on differences resulting from baking and steaming. Moreover, ginseng flowers, with 5.06 times more total saponins than ginseng root, are not fully taken advantage of for their ginsenosides. Transformation mechanisms of ginsenosides in ginseng flowers upon baking and steaming were thus explored. HPLC using authentic standards of 20 ginsenosides and UPLC-QTOF-MS/MS were used to quantify and identify ginsenosides, respectively, in ginseng flowers baked or steamed at different temperatures and durations. Results show that baking and steaming caused a 3.2-fold increase in ginsenoside species existed in unheated ginseng flowers (20/64 ginsenosides) and transformation of a certain amount of polar ginsenosides into numerous less polar ginsenosides. Among the 20 ginsenosides with standards, polar ginsenosides were abundant in ginseng flowers baked or steamed at lower temperatures, whereas less polar ginsenosides occurred and were enriched at higher temperatures. Furthermore, the two types of heating treatments could generate mostly similar ginsenosides, but steaming was much efficient than baking in transforming polar- into less polar ginsenosides, with steaming at 120 °C being comparably equivalent to baking at 150 °C. Moreover, both the two heating methods triggered ginsenoside acetylation and thus caused formation of 16 acetylginsenosides. Finally, a new transformation mechanism concerning acetyl-ginsenosides formation was proposed.
Theoretical modeling of a thickness-shear mode circular cylinder piezoelectric transformer.
Yang, Jiashi; Chen, Ziguang; Hu, Yuantai
2007-03-01
We propose a piezoelectric transformer operating with thickness-shear modes of a circular cylinder and perform a theoretical analysis on the transformer. An exact solution from the three-dimensional equations of piezoelectricity is obtained. The output voltage, input admittance, and efficiency of the transformer are determined. The basic behaviors of the transformer are shown by numerical results.
Factors enhancing Agrobacterium tumefaciens-mediated gene transfer in peanut (Arachis hypogaea L.)
NASA Technical Reports Server (NTRS)
Egnin, M.; Mora, A.; Prakash, C. S.; Mortley, D. G. (Principal Investigator)
1998-01-01
Parameters enhancing Agrobacterium-mediated transfer of foreign genes to peanut (Arachis hypogaea L.) cells were investigated. An intron-containing beta-glucuronidase uidA (gusA) gene under the transcriptional control of CaMV 35S promoter served as a reporter. Transformation frequency was evaluated by scoring the number of sectors expressing GUS activity on leaf and epicotyl explants. The 'Valencia Select' market type cv. New Mexico was more amenable to Agrobacterium transformation than the 'runner' market type cultivars tested (Florunner, Georgia Runner, Sunrunner, or South Runner). The disarmed Agrobacterium tumefaciens strain EHA101 was superior in facilitating the transfer of uidA gene to peanut cells compared to the disarmed strain C58. Rinsing of explants in half-strength Murashige-Skoog (MS) media prior to infection by Agrobacterium significantly increased the transformation efficiency. The use of cocultivation media containing high auxin [1.0 or 2.5 mg/l (4.53 micromolar or 11.31 micromolar) 2,4-D] and low cytokinin [0.25 or 0.5 mg/l (1.0 micromolar or 2.0 micromolar) BA] promoted higher transformation than either hormone-free or thidiazuron-containing medium. The polarity of the epicotyl during cocultivation was important; explants incubated in an inverted (vertically) manner followed by a vertically upright position resulted in improved transformation and shoot regeneration frequencies. Preculture of explants in MS basal medium or with 2.5 mg thidiazuron per l prior to infection drastically decreased the number of transformed zones. The optimized protocol was used to obtain transient transformation frequencies ranging from 12% to 36% for leaf explants, 15% to 42% for epicotyls. Initial evidence of transformation was obtained by polymerase chain reaction and subsequently confirmed by Southern analysis of regenerated plants.
Hochmann, Jimena; Sobrinho, João S; Villa, Luisa L; Sichero, Laura
2016-05-01
Asian-American (AA) HPV-16 variants are associated with higher risk of cancer. Abnormal activation of intracellular signaling play a critical role in cancer development and progression. Our aim was to elucidate mechanisms underlying the higher oncogenic potential attributed to AA variant. We evaluated activation of MAPK and PI3K/AKT pathways in primary human keratinocytes (PHKs) transduced with E6/E7 of three HPV-16 variants: E-P, AA, E-350G. Phenotypes examined included migration, anchorage independent growth and invasion. AA PHKs presented the highest levels of active proteins involved in all cascades analyzed: MAPK-ERK, MAPK-p38 and PI3K-AKT. AA PHKs were more efficient in promoting anchorage independent growth, and in stimulating cell migration and invasion. MEK1 inhibition decreased migration. The mesenchymal phenotype marker vimentin was increased in AA PHKs. Our results suggest that MEK1, ERK2, AKT2 hyperactivation influence cellular behavior by means of GSK-3b inactivation and EMT induction prompting AA immortalized PHKs to more efficiently surpass carcinogenesis steps. Copyright © 2016 Elsevier Inc. All rights reserved.
Transformation of Saccharomyces cerevisiae with UV-irradiated single-stranded plasmid.
Zgaga, Z
1991-08-01
UV-irradiated single-stranded replicative plasmids were used to transform different yeast strains. The low doses of UV used in this study (10-75 J/m2) caused a significant decrease in the transforming efficiency of plasmid DNA in the Rad+ strain, while they had no effect on transformation with double-stranded plasmids of comparable size. Neither the rev3 mutation, nor the rad18 or rad52 mutations influenced the efficiency of transformation with irradiated single-stranded plasmid. However, it was found to be decreased in the double rev3 rad52 mutant. Extracellular irradiation of plasmid that contains both URA3 and LEU2 genes (psLU) gave rise to up to 5% Leu- transformants among selected Ura+ ones in the repair-proficient strain. Induction of Leu- transformants was dose-dependent and only partially depressed in the rev3 mutant. These results suggest that both mutagenic and recombinational repair processes operate on UV-damaged single-stranded DNA in yeast.
Porosev, V V; Shekhtman, L I; Zelikman, M I; Blinov, N N
2004-01-01
Theoretical and experimental research results related with the influence of correlation of signals in neighboring elements of digital X-ray receiver-transformer produced on the evaluation of the output ratio noise/signal and, as a consequence, on the evaluation of quantum registration efficiency are described in the paper.
Chen, Xi; Stone, Michelle; Schlagnhaufer, Carl; Romaine, C. Peter
2000-01-01
We describe a modified Agrobacterium-mediated method for the efficient transformation of Agaricus bisporus. Salient features of this procedure include cocultivation of Agrobacterium and fruiting body gill tissue and use of a vector with a homologous promoter. This method offers new prospects for the genetic manipulation of this commercially important mushroom species. PMID:11010906
Yang, Xiu-Jie; Chen, Bin; Li, Xu-Bing; Zheng, Li-Qiang; Wu, Li-Zhu; Tung, Chen-Ho
2014-06-25
We report the first application of layered double hydroxide as a photocatalyst in the transformation of primary aromatic amines to their corresponding imines with high efficiency and selectivity by using oxygen in an air atmosphere as a terminal oxidant under light irradiation.
Efficient matrix approach to optical wave propagation and Linear Canonical Transforms.
Shakir, Sami A; Fried, David L; Pease, Edwin A; Brennan, Terry J; Dolash, Thomas M
2015-10-05
The Fresnel diffraction integral form of optical wave propagation and the more general Linear Canonical Transforms (LCT) are cast into a matrix transformation form. Taking advantage of recent efficient matrix multiply algorithms, this approach promises an efficient computational and analytical tool that is competitive with FFT based methods but offers better behavior in terms of aliasing, transparent boundary condition, and flexibility in number of sampling points and computational window sizes of the input and output planes being independent. This flexibility makes the method significantly faster than FFT based propagators when only a single point, as in Strehl metrics, or a limited number of points, as in power-in-the-bucket metrics, are needed in the output observation plane.
Nyaboga, Evans; Tripathi, Jaindra N.; Manoharan, Rajesh; Tripathi, Leena
2014-01-01
Although genetic transformation of clonally propagated crops has been widely studied as a tool for crop improvement and as a vital part of the development of functional genomics resources, there has been no report of any existing Agrobacterium-mediated transformation of yam (Dioscorea spp.) with evidence of stable integration of T-DNA. Yam is an important crop in the tropics and subtropics providing food security and income to over 300 million people. However, yam production remains constrained by increasing levels of field and storage pests and diseases. A major constraint to the development of biotechnological approaches for yam improvement has been the lack of an efficient and robust transformation and regeneration system. In this study, we developed an Agrobacterium-mediated transformation of Dioscorea rotundata using axillary buds as explants. Two cultivars of D. rotundata were transformed using Agrobacterium tumefaciens harboring the binary vectors containing selectable marker and reporter genes. After selection with appropriate concentrations of antibiotic, shoots were developed on shoot induction and elongation medium. The elongated antibiotic-resistant shoots were subsequently rooted on medium supplemented with selection agent. Successful transformation was confirmed by polymerase chain reaction, Southern blot analysis, and reporter genes assay. Expression of gusA gene in transgenic plants was also verified by reverse transcription polymerase chain reaction analysis. Transformation efficiency varied from 9.4 to 18.2% depending on the cultivars, selectable marker genes, and the Agrobacterium strain used for transformation. It took 3–4 months from Agro-infection to regeneration of complete transgenic plant. Here we report an efficient, fast and reproducible protocol for Agrobacterium-mediated transformation of D. rotundata using axillary buds as explants, which provides a useful platform for future genetic engineering studies in this economically important crop. PMID:25309562
Mano, Hiroaki; Fujii, Tomomi; Sumikawa, Naomi; Hiwatashi, Yuji; Hasebe, Mitsuyasu
2014-01-01
The sensitive plant Mimosa pudica has long attracted the interest of researchers due to its spectacular leaf movements in response to touch or other external stimuli. Although various aspects of this seismonastic movement have been elucidated by histological, physiological, biochemical, and behavioral approaches, the lack of reverse genetic tools has hampered the investigation of molecular mechanisms involved in these processes. To overcome this obstacle, we developed an efficient genetic transformation method for M. pudica mediated by Agrobacterium tumefaciens (Agrobacterium). We found that the cotyledonary node explant is suitable for Agrobacterium-mediated transformation because of its high frequency of shoot formation, which was most efficiently induced on medium containing 0.5 µg/ml of a synthetic cytokinin, 6-benzylaminopurine (BAP). Transformation efficiency of cotyledonary node cells was improved from almost 0 to 30.8 positive signals arising from the intron-sGFP reporter gene by using Agrobacterium carrying a super-binary vector pSB111 and stabilizing the pH of the co-cultivation medium with 2-(N-morpholino)ethanesulfonic acid (MES) buffer. Furthermore, treatment of the explants with the detergent Silwet L-77 prior to co-cultivation led to a two-fold increase in the number of transformed shoot buds. Rooting of the regenerated shoots was efficiently induced by cultivation on irrigated vermiculite. The entire procedure for generating transgenic plants achieved a transformation frequency of 18.8%, which is comparable to frequencies obtained for other recalcitrant legumes, such as soybean (Glycine max) and pea (Pisum sativum). The transgene was stably integrated into the host genome and was inherited across generations, without affecting the seismonastic or nyctinastic movements of the plants. This transformation method thus provides an effective genetic tool for studying genes involved in M. pudica movements. PMID:24533121
Mano, Hiroaki; Fujii, Tomomi; Sumikawa, Naomi; Hiwatashi, Yuji; Hasebe, Mitsuyasu
2014-01-01
The sensitive plant Mimosa pudica has long attracted the interest of researchers due to its spectacular leaf movements in response to touch or other external stimuli. Although various aspects of this seismonastic movement have been elucidated by histological, physiological, biochemical, and behavioral approaches, the lack of reverse genetic tools has hampered the investigation of molecular mechanisms involved in these processes. To overcome this obstacle, we developed an efficient genetic transformation method for M. pudica mediated by Agrobacterium tumefaciens (Agrobacterium). We found that the cotyledonary node explant is suitable for Agrobacterium-mediated transformation because of its high frequency of shoot formation, which was most efficiently induced on medium containing 0.5 µg/ml of a synthetic cytokinin, 6-benzylaminopurine (BAP). Transformation efficiency of cotyledonary node cells was improved from almost 0 to 30.8 positive signals arising from the intron-sGFP reporter gene by using Agrobacterium carrying a super-binary vector pSB111 and stabilizing the pH of the co-cultivation medium with 2-(N-morpholino)ethanesulfonic acid (MES) buffer. Furthermore, treatment of the explants with the detergent Silwet L-77 prior to co-cultivation led to a two-fold increase in the number of transformed shoot buds. Rooting of the regenerated shoots was efficiently induced by cultivation on irrigated vermiculite. The entire procedure for generating transgenic plants achieved a transformation frequency of 18.8%, which is comparable to frequencies obtained for other recalcitrant legumes, such as soybean (Glycine max) and pea (Pisum sativum). The transgene was stably integrated into the host genome and was inherited across generations, without affecting the seismonastic or nyctinastic movements of the plants. This transformation method thus provides an effective genetic tool for studying genes involved in M. pudica movements.
Plant transformation via pollen tube-mediated gene transfer
USDA-ARS?s Scientific Manuscript database
Genetic transformation using foreign genes and the subsequent development of transgenic plants has been employed to develop enhanced elite germplasm. Although some skepticism exits regarding pollen tube-mediated gene transfer (PTT), reports demonstrating improved transformation efficiency with PTT ...
NASA Technical Reports Server (NTRS)
Guruswamy, G. P.; Goorjian, P. M.
1984-01-01
An efficient coordinate transformation technique is presented for constructing grids for unsteady, transonic aerodynamic computations for delta-type wings. The original shearing transformation yielded computations that were numerically unstable and this paper discusses the sources of those instabilities. The new shearing transformation yields computations that are stable, fast, and accurate. Comparisons of those two methods are shown for the flow over the F5 wing that demonstrate the new stability. Also, comparisons are made with experimental data that demonstrate the accuracy of the new method. The computations were made by using a time-accurate, finite-difference, alternating-direction-implicit (ADI) algorithm for the transonic small-disturbance potential equation.
Chaos-assisted broadband momentum transformation in optical microresonators
NASA Astrophysics Data System (ADS)
Jiang, Xuefeng; Shao, Linbo; Zhang, Shu-Xin; Yi, Xu; Wiersig, Jan; Wang, Li; Gong, Qihuang; Lončar, Marko; Yang, Lan; Xiao, Yun-Feng
2017-10-01
The law of momentum conservation rules out many desired processes in optical microresonators. We report broadband momentum transformations of light in asymmetric whispering gallery microresonators. Assisted by chaotic motions, broadband light can travel between optical modes with different angular momenta within a few picoseconds. Efficient coupling from visible to near-infrared bands is demonstrated between a nanowaveguide and whispering gallery modes with quality factors exceeding 10 million. The broadband momentum transformation enhances the device conversion efficiency of the third-harmonic generation by greater than three orders of magnitude over the conventional evanescent-wave coupling. The observed broadband and fast momentum transformation could promote applications such as multicolor lasers, broadband memories, and multiwavelength optical networks.
Genetic Transformation of Streptococcus mutans
Perry, Dennis; Kuramitsu, Howard K.
1981-01-01
Three strains of Streptococcus mutans belonging to serotypes a, c, and f were transformed to streptomycin resistance by deoxyribonucleic acids derived from homologous and heterologous streptomycin-resistant strains of S. mutans and Streptococcus sanguis strain Challis. Homologous transformation of S. mutans was less efficient than heterologous transformation by deoxyribonucleic acids from other strains of S. mutans. PMID:7251168
A collaboration of labs: The Institute for Atom-Efficient Chemical Transformations (IACT)
Lobo, Rodrigo; Marshall, Chris; Cheng, Lei; Stair, Peter; Wu, Tianpan; Ray, Natalie; O'Neil, Brandon; Dietrich, Paul
2018-06-08
The Institute for Atom-Efficient Chemical Transformations (IACT) is an Energy Frontier Research Center funded by the U.S. Department of Energy. IACT focuses on advancing the science of catalysis to improve the efficiency of producing fuels from biomass and coal. IACT is a collaborative effort that brings together a diverse team of scientists from Argonne National Laboratory, Brookhaven National Laboratory, Northwestern University, Purdue University and the University of Wisconsin. For more information, visit www.iact.anl.gov
Yu, Shan; Zhong, Yun-Qian; Yu, Bao-Quan; Cai, Shi-Yi; Wu, Li-Zhu; Zhou, Ying
2016-07-27
Hydrogen evolution through photocatalysis is promising with respect to the environmental problems and challenges of energy shortage that we encounter today. In this paper, we have combined graphene quantum dots (GQDs) and {001} faceted anatase TiO2 (with an exposed percentage of 65-75%) together for effective photocatalytic hydrogen evolution. A series of characterizations including X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy and UV-visible absorption spectroscopy have been carried out to study the structure of the as-prepared GQDs/{001}TiO2 composite. It turns out that GQDs could be effectively decorated on {001}TiO2 sheet without changing its intrinsic structure. With an optimum loading amount of GQDs (0.5 wt% to {001}TiO2), GQDs/{001}TiO2 exhibits a hydrogen evolution efficiency 8 times higher than that of bare {001}TiO2, which is a significantly more obvious improvement than many other photocatalytic systems relevant to GQDs and TiO2 hybrids. In addition, GQDs/{001}TiO2 could stand long-term photocatalytic experiments. Photocurrent tests show that such an improvement of the photocatalytic efficiency over GQDs/{001}TiO2 may originate from a higher charge separation efficiency. The present study could offer reference for the construction of photocatalytic hydrogen evolution systems with low cost and long term stability.
Radical Transformations in Higher Education: Where Do We Go from Here?
ERIC Educational Resources Information Center
Auxter, Thomas
2010-01-01
Since the time of the Reagan revolution in the nation's politics--a transformation dedicated to privatizing everything someone could make a profit on--higher education has undergone its own radical transformation. In higher education, within three decades of the Reagan presidency, a corporate model of organization and operation, set up to maximize…
ERIC Educational Resources Information Center
Breetzke, Gregory Dennis; Hedding, David William
2016-01-01
South Africa has undergone transformation since the end of apartheid governance in 1994. Legislatively enforced, this transformation has permeated most sectors of society, including higher education. Questions remain, however, about the extent to which transformation has occurred in Higher Education Institutions (HEIs) in general, and across the…
A Robust Zero-Watermarking Algorithm for Audio
NASA Astrophysics Data System (ADS)
Chen, Ning; Zhu, Jie
2007-12-01
In traditional watermarking algorithms, the insertion of watermark into the host signal inevitably introduces some perceptible quality degradation. Another problem is the inherent conflict between imperceptibility and robustness. Zero-watermarking technique can solve these problems successfully. Instead of embedding watermark, the zero-watermarking technique extracts some essential characteristics from the host signal and uses them for watermark detection. However, most of the available zero-watermarking schemes are designed for still image and their robustness is not satisfactory. In this paper, an efficient and robust zero-watermarking technique for audio signal is presented. The multiresolution characteristic of discrete wavelet transform (DWT), the energy compression characteristic of discrete cosine transform (DCT), and the Gaussian noise suppression property of higher-order cumulant are combined to extract essential features from the host audio signal and they are then used for watermark recovery. Simulation results demonstrate the effectiveness of our scheme in terms of inaudibility, detection reliability, and robustness.
Massively parallel X-ray holography
NASA Astrophysics Data System (ADS)
Marchesini, Stefano; Boutet, Sébastien; Sakdinawat, Anne E.; Bogan, Michael J.; Bajt, Saša; Barty, Anton; Chapman, Henry N.; Frank, Matthias; Hau-Riege, Stefan P.; Szöke, Abraham; Cui, Congwu; Shapiro, David A.; Howells, Malcolm R.; Spence, John C. H.; Shaevitz, Joshua W.; Lee, Joanna Y.; Hajdu, Janos; Seibert, Marvin M.
2008-09-01
Advances in the development of free-electron lasers offer the realistic prospect of nanoscale imaging on the timescale of atomic motions. We identify X-ray Fourier-transform holography as a promising but, so far, inefficient scheme to do this. We show that a uniformly redundant array placed next to the sample, multiplies the efficiency of X-ray Fourier transform holography by more than three orders of magnitude, approaching that of a perfect lens, and provides holographic images with both amplitude- and phase-contrast information. The experiments reported here demonstrate this concept by imaging a nano-fabricated object at a synchrotron source, and a bacterial cell with a soft-X-ray free-electron laser, where illumination by a single 15-fs pulse was successfully used in producing the holographic image. As X-ray lasers move to shorter wavelengths we expect to obtain higher spatial resolution ultrafast movies of transient states of matter.
Sun, Xianhua; Xue, Xianli; Li, Mengzhu; Gao, Fei; Hao, Zhenzhen; Huang, Huoqing; Luo, Huiying; Qin, Lina; Yao, Bin; Su, Xiaoyun
2017-12-20
Cellulase and mannanase are both important enzyme additives in animal feeds. Expressing the two enzymes simultaneously within one microbial host could potentially lead to cost reductions in the feeding of animals. For this purpose, we codon-optimized the Aspergillus niger Man5A gene to the codon-usage bias of Trichoderma reesei. By comparing the free energies and the local structures of the nucleotide sequences, one optimized sequence was finally selected and transformed into the T. reesei pyridine-auxotrophic strain TU-6. The codon-optimized gene was expressed to a higher level than the original one. Further expressing the codon-optimized gene in a mutated T. reesei strain through fed-batch cultivation resulted in coproduction of cellulase and mannanase up to 1376 U·mL -1 and 1204 U·mL -1 , respectively.
Zhang, Tingwei; Li, Wenzhi; An, Shengxin; Huang, Feng; Li, Xinzhe; Liu, Jingrong; Pei, Gang; Liu, Qiying
2018-05-24
In this work, p-hydroxybenzenesulfonic acid-formaldehyde resin acid catalyst (MSPFR), was synthesized by a hydrothermal method, and employed for the furfural production from raw corn stover. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), N 2 adsorption-desorption, elemental analysis (EA), thermogravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FT-IR) were used to characterize the MSPFR. The effects of reaction time, temperature, solvents and corn stover loading were investigated. The MSPFR presented high catalytic activity for the formation of furfural from corn stover. When the MSPFR/corn stover mass loading ratio was 0.5, a higher furfural yield of 43.4% could be achieved at 190 °C in 100 min with 30.7% 5-hydroxymethylfurfural (HMF) yield. Additionally, quite importantly, the recyclability of the MSPFR for xylose dehydration is good, and for the conversion of corn stover was reasonable. Copyright © 2018 Elsevier Ltd. All rights reserved.
The Acid Phosphatase-Encoding Gene GmACP1 Contributes to Soybean Tolerance to Low-Phosphorus Stress
Hao, Derong; Wang, Hui; Kan, Guizhen; Jin, Hangxia; Yu, Deyue
2014-01-01
Phosphorus (P) is essential for all living cells and organisms, and low-P stress is a major factor constraining plant growth and yield worldwide. In plants, P efficiency is a complex quantitative trait involving multiple genes, and the mechanisms underlying P efficiency are largely unknown. Combining linkage analysis, genome-wide and candidate-gene association analyses, and plant transformation, we identified a soybean gene related to P efficiency, determined its favorable haplotypes and developed valuable functional markers. First, six major genomic regions associated with P efficiency were detected by performing genome-wide associations (GWAs) in various environments. A highly significant region located on chromosome 8, qPE8, was identified by both GWAs and linkage mapping and explained 41% of the phenotypic variation. Then, a regional mapping study was performed with 40 surrounding markers in 192 diverse soybean accessions. A strongly associated haplotype (P = 10−7) consisting of the markers Sat_233 and BARC-039899-07603 was identified, and qPE8 was located in a region of approximately 250 kb, which contained a candidate gene GmACP1 that encoded an acid phosphatase. GmACP1 overexpression in soybean hairy roots increased P efficiency by 11–20% relative to the control. A candidate-gene association analysis indicated that six natural GmACP1 polymorphisms explained 33% of the phenotypic variation. The favorable alleles and haplotypes of GmACP1 associated with increased transcript expression correlated with higher enzyme activity. The discovery of the optimal haplotype of GmACP1 will now enable the accurate selection of soybeans with higher P efficiencies and improve our understanding of the molecular mechanisms underlying P efficiency in plants. PMID:24391523
Organogenesis from transformed tomato explants.
Frary, Anne; Van Eck, Joyce
2005-01-01
Tomato was one of the first crops for which a genetic transformation system was reported involving regeneration by organogenesis from Agrobacterium-transformed explants. Since the initial reports, various factors have been studied that affect the efficiency of tomato transformation and the technique has been useful for the isolation and identification of many genes involved in plant disease resistance, morphology and development. In this method, cotyledon explants from in vitro-grown seedlings are precultured overnight on a tobacco suspension feeder layer. The explants are then inoculated with Agrobacterium and returned to the feeder layer for a 2-d period of cocultivation. After cocultivation, the explants are transferred to an MS-based selective regeneration medium containing zeatin. Regenerated shoots are then rooted on a separate selective medium. This protocol has been used with several tomato cultivars and routinely yields transformation efficiencies of 10-15%.
Ayella, Allan K; Trick, Harold N; Wang, Weiqun
2007-12-01
Lignans are phenylpropane dimers that are biosynthesized via the phenylpropanoid pathway, in which pinoresinol lariciresinol reductase (PLR) catalyzes the last steps of lignan production. Our previous studies demonstrated that the contents of lignans in various wheat cultivars were significantly associated with anti-tumor activities in APC(Min) mice. To enhance lignan biosynthesis, this study was conducted to transform wheat cultivars ('Bobwhite', 'Madison', and 'Fielder', respectively) with the Forsythia intermedia PLR gene under the regulatory control of maize ubiquitin promoter. Of 24 putative transgenic wheat lines, we successfully obtained 3 transformants with the inserted ubiquitin-PLR gene as screened by PCR. Southern blot analysis further demonstrated that different copies of the PLR gene up to 5 were carried out in their genomes. Furthermore, a real-time PCR indicated approximately 17% increase of PLR gene expression over the control in 2 of the 3 positive transformants at T(0) generation. The levels of secoisolariciresinol diglucoside, a prominent lignan in wheat as determined by HPLC-MS, were found to be 2.2-times higher in one of the three positive transgenic sub-lines at T(2 )than that in the wild-type (117.9 +/- 4.5 vs. 52.9 +/- 19.8 mug/g, p <0.005). To the best of our knowledge, this is the first study that elevated lignan levels in a transgenic wheat line has been successfully achieved through genetic engineering of over-expressed PLR gene. Although future studies are needed for a stably expression and more efficient transformants, the new wheat line with significantly higher SDG contents obtained from this study may have potential application in providing additive health benefits for cancer prevention.
USDA-ARS?s Scientific Manuscript database
The genetic transformation of monocot grasses is a resource intensive process, the quality and efficiency of which is dependent in part upon the method of DNA introduction, as well as the ability to effectively separate transformed from wildtype tissue. Agrobacterium-mediated transformation of Brac...
Genetic transformation of the yeast Dekkera/Brettanomyces bruxellensis with non-homologous DNA.
Miklenić, Marina; Štafa, Anamarija; Bajić, Ana; Žunar, Bojan; Lisnić, Berislav; Svetec, Ivan-Krešimir
2013-05-01
Yeast Dekkera/Brettanomyces bruxellensis is probably the most common contaminant in wineries and ethanol production processes. The considerable economic losses caused by this yeast, but also its ability to produce and tolerate high ethanol concentrations, make it an attractive subject for research with potential for industrial applications. Unfortunately, efforts to understand the biology of D. bruxellensis and facilitate its broader use in industry are hampered by the lack of adequate procedures for delivery of exogenous DNA into this organism. Here we describe the development of transformation protocols (spheroplast transformation, LiAc/PEG method, and electroporation) and report the first genetic transformation of yeast D. bruxellensis. A linear heterologous DNA fragment carrying the kanMX4 sequence was used for transformation, which allowed transformants to be selected on plates containing geneticin. We found the spheroplast transformation method using 1M sorbitol as osmotic stabilizer to be inappropriate because sorbitol strikingly decreases the plating efficiency of both D. bruxellensis spheroplast and intact cells. However, we managed to modify the LiAc/ PEG transformation method and electroporation to accommodate D. bruxellensis transformation, achieving efficiencies of 0.6-16 and 10-20 transformants/microg DNA, respectively. The stability of the transformants ranged from 93.6% to 100%. All putative transformants were analyzed by Southern blot using the kanMX4 sequence as a hybridization probe, which confirmed that the transforming DNA fragment had integrated into the genome. The results of the molecular analysis were consistent with the expected illegitimate integration of a heterologous transforming fragment.
Johnston, Calum; Mortier-Barrière, Isabelle; Granadel, Chantal; Polard, Patrice; Martin, Bernard; Claverys, Jean-Pierre
2015-01-01
Homologous recombination (HR) is required for both genome maintenance and generation of diversity in eukaryotes and prokaryotes. This process initiates from single-stranded (ss) DNA and is driven by a universal recombinase, which promotes strand exchange between homologous sequences. The bacterial recombinase, RecA, is loaded onto ssDNA by recombinase loaders, RecBCD and RecFOR for genome maintenance. DprA was recently proposed as a third loader dedicated to genetic transformation. Here we assessed the role of RecFOR in transformation of the human pathogen Streptococcus pneumoniae. We firstly established that RecFOR proteins are not required for plasmid transformation, strongly suggesting that DprA ensures annealing of plasmid single-strands internalized in the process. We then observed no reduction in chromosomal transformation using a PCR fragment as donor, contrasting with the 10,000-fold drop in dprA - cells and demonstrating that RecFOR play no role in transformation. However, a ∼1.45-fold drop in transformation was observed with total chromosomal DNA in recFOR mutants. To account for this limited deficit, we hypothesized that transformation with chromosomal DNA stimulated unexpectedly high frequency (>30% of cells) formation of chromosome dimers as an intermediate in the generation of tandem duplications, and that RecFOR were crucial for dimer resolution. We validated this hypothesis, showing that the site-specific recombinase XerS was also crucial for dimer resolution. An even higher frequency of dimer formation (>80% of cells) was promoted by interspecies transformation with Streptococcus mitis chromosomal DNA, which contains numerous inversions compared to pneumococcal chromosome, each potentially promoting dimerization. In the absence of RecFOR and XerS, dimers persist, as confirmed by DAPI staining, and can limit the efficiency of transformation, since resulting in loss of transformant chromosome. These findings strengthen the view that different HR machineries exist for genome maintenance and transformation in pneumococci. These observations presumably apply to most naturally transformable species. PMID:25569614
Compiler-assisted multiple instruction rollback recovery using a read buffer
NASA Technical Reports Server (NTRS)
Alewine, N. J.; Chen, S.-K.; Fuchs, W. K.; Hwu, W.-M.
1993-01-01
Multiple instruction rollback (MIR) is a technique that has been implemented in mainframe computers to provide rapid recovery from transient processor failures. Hardware-based MIR designs eliminate rollback data hazards by providing data redundancy implemented in hardware. Compiler-based MIR designs have also been developed which remove rollback data hazards directly with data-flow transformations. This paper focuses on compiler-assisted techniques to achieve multiple instruction rollback recovery. We observe that some data hazards resulting from instruction rollback can be resolved efficiently by providing an operand read buffer while others are resolved more efficiently with compiler transformations. A compiler-assisted multiple instruction rollback scheme is developed which combines hardware-implemented data redundancy with compiler-driven hazard removal transformations. Experimental performance evaluations indicate improved efficiency over previous hardware-based and compiler-based schemes.
Modeling and analysis of circular flexural-vibration-mode piezoelectric transformer.
Huang, Yihua; Huang, Wei
2010-12-01
We propose a circular flexural-vibration-mode piezoelectric transformer and perform a theoretical analysis of the transformer. An equivalent circuit is derived from the equations of piezoelectricity and the Hamilton's principle. With this equivalent circuit, the voltage gain ratio, input impedance, and the efficiency of the circular flexural-vibration-mode piezoelectric transformer can be determined. The basic behavior of the transformer is shown by numerical results.
Yang, Jiashi; Liu, Jinjin; Li, Jiangyu
2007-04-01
A rectangular ceramic plate with appropriate electrical load and operating mode is analyzed for piezoelectric transformer application. An exact solution from the three-dimensional equations of linear piezoelectricity is obtained. The solution simulates the real operating situation of a transformer as a vibrating piezoelectric body connected to a circuit. Transforming ratio, input admittance, and efficiency of the transformer are obtained.
Yang, Xiaofang; Zhou, Zhongbo; Raju, Maddela Naga; Cai, Xiaoxuan; Meng, Fangang
2017-07-01
Effluent organic matter (EfOM) from municipal wastewater treatment plants potentially has a detrimental effect on both aquatic organisms and humans. This study evaluated the removal and transformation of chromophoric dissolved organic matter (CDOM) and fluorescent dissolved organic matter (FDOM) in a full-scale wastewater treatment plant under different seasons. The results showed that bio-treatment was found to be more efficient in removing bulk DOM (in term of dissolved organic carbon, DOC) than CDOM and FDOM, which was contrary to the disinfection process. CDOM and FDOM were selectively removed at various stages during the treatment. Typically, the low molecular weight fractions of CDOM and protein-like FDOM were more efficiently removed during bio-treatment process, whereas the humic-like FDOM exhibited comparable decreases in both bio-treatment and disinfection processes. Overall, the performance of the WWTP was weak in terms of CDOM and FDOM removal, resulting in enrichment of CDOM and FDOM in effluent. Moreover, the total removal of the bulk DOM (P<0.05) and the protein-like FDOM (P<0.05) displayed a significant seasonal variation, with higher removal efficiencies in summer, whereas removal of CDOM and the humic-like FDOM showed little differences between summer and winter. In all, the results provide useful information for understanding the fate and transformation of DOM, illustrating that sub-fractions of DOM could be selectively removed depending on treatment processes and seasonality. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Li, Chao; Sun, Jun-Jie; Chen, Duo; Han, Guang-Bing; Yu, Shu-Yun; Kang, Shi-Shou; Mei, Liang-Mo
2016-08-01
A facile step-by-step approach is developed for synthesizing the high-efficiency and magnetic recyclable Fe3O4@SiO2@Ag@Ni trepang-like nanocomposites. This method involves coating Fe2O3 nanorods with a uniform silica layer, reduction in 10% H2/Ar atmosphere to transform the Fe2O3 into magnetic Fe3O4, and finally depositing Ag@Ni core-shell nanoparticles on the L-lysine modified surface of Fe3O4@SiO2 nanorods. The fabricated nanocomposites are further characterized by x-ray diffraction, transmission electron microscopy, scanning electron microscope, Fourier transform infrared spectroscopy, and inductively coupled plasma mass spectroscopy. The Fe3O4@SiO2@Ag@Ni trepang-like nanocomposites exhibit remarkably higher catalytic efficiency than monometallic Fe3O4@SiO2@Ag nanocomposites toward the degradation of Rhodamine B (RhB) at room temperature, and maintain superior catalytic activity even after six cycles. In addition, these samples could be easily separated from the catalytic system by an external magnet and reused, which shows great potential applications in treating waste water. Project supported by the National Basic Research Program of China (Grant No. 2015CB921502), the National Natural Science Foundation of China (Grant Nos. 11474184 and 11174183), the 111 Project (Grant No. B13029), and the Fundamental Research Funds of Shandong University, China.
Brinkert, Katharina; Richter, Matthias H; Akay, Ömer; Giersig, Michael; Fountaine, Katherine T; Lewerenz, Hans-Joachim
2018-05-24
Photoelectrochemical (PEC) cells offer the possibility of carbon-neutral solar fuel production through artificial photosynthesis. The pursued design involves technologically advanced III-V semiconductor absorbers coupled via an interfacial film to an electrocatalyst layer. These systems have been prepared by in situ surface transformations in electrochemical environments. High activity nanostructured electrocatalysts are required for an efficiently operating cell, optimized in their optical and electrical properties. We demonstrate that shadow nanosphere lithography (SNL) is an auspicious tool to systematically create three-dimensional electrocatalyst nanostructures on the semiconductor photoelectrode through controlling their morphology and optical properties. First results are demonstrated by means of the photoelectrochemical production of hydrogen on p-type InP photocathodes where hitherto applied photoelectrodeposition and SNL-deposited Rh electrocatalysts are compared based on their J-V and spectroscopic behavior. We show that smaller polystyrene particle masks achieve higher defect nanostructures of rhodium on the photoelectrode which leads to a higher catalytic activity and larger short circuit currents. Structural analyses including HRSEM and the analysis of the photoelectrode surface composition by using photoelectron spectroscopy support and complement the photoelectrochemical observations. The optical performance is further compared to theoretical models of the nanostructured photoelectrodes on light scattering and propagation.
Zhou, Lu; Zhou, Linghong; Zhang, Shuxu; Zhen, Xin; Yu, Hui; Zhang, Guoqian; Wang, Ruihao
2014-01-01
Deformable image registration (DIR) was widely used in radiation therapy, such as in automatic contour generation, dose accumulation, tumor growth or regression analysis. To achieve higher registration accuracy and faster convergence, an improved 'diffeomorphic demons' registration algorithm was proposed and validated. Based on Brox et al.'s gradient constancy assumption and Malis's efficient second-order minimization (ESM) algorithm, a grey value gradient similarity term and a transformation error term were added into the demons energy function, and a formula was derived to calculate the update of transformation field. The limited Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm was used to optimize the energy function so that the iteration number could be determined automatically. The proposed algorithm was validated using mathematically deformed images and physically deformed phantom images. Compared with the original 'diffeomorphic demons' algorithm, the registration method proposed achieve a higher precision and a faster convergence speed. Due to the influence of different scanning conditions in fractionated radiation, the density range of the treatment image and the planning image may be different. In such a case, the improved demons algorithm can achieve faster and more accurate radiotherapy.
Transforming the Master's Degree in Human Development and Family Science
ERIC Educational Resources Information Center
Benson, Mark J.; Allen, Katherine R.; Few, April L.; Roberto, Karen A.; Blieszner, Rosemary; Meszaros, Peggy S.; Henderson, Tammy L.
2006-01-01
This study chronicles the transformation of a master's program from a traditional degree format to a more integrated, flexible, efficient, and relevant approach. The transformative strategies involve cohort learning, creative concentrations, portfolio documentation, and outreach presentation. Through integrating resources and goals, the new…
10 CFR 431.371 - Submission of data.
Code of Federal Regulations, 2011 CFR
2011-01-01
... transformer, traffic signal module, pedestrian module, and commercial prerinse spray valve shall file a... models. (i) For covered equipment that are subject to standards other than distribution transformers and... spray valves. (ii) For the least efficient basic model of distribution transformer within each “kilovolt...
Orchids (Cymbidium spp., Oncidium, and Phalaenopsis).
Chan, Ming-Tsair; Chan, Yuan-Li; Sanjaya
2006-01-01
Recent advances in genetic engineering have made the transformation and regeneration of plants into a powerful tool for orchid improvement. This chapter presents a simple and reproducible Agrobacterium tumefaciens-mediated transformation protocol and molecular screening technique of transgenics for two orchid species, Oncidium and Phalaenopsis. The target tissues for gene transfer were protocorm-like bodies (PLBs) derived from protocorms, into which constructed foreign genes were successfully introduced. To establish stable transformants, two stages of selection were applied on the PLBs co-cultivated with A. tumefaciens. About 10% transformation efficiency was achieved in Oncidium orchid, as 108 antibiotic resistant independent PLBs were proliferated from 1000 infected PLBs. In Phalaenopsis orchid about 11 to 12% of transformation efficiency was achieved by using the present protocol. Different molecular methods and GUS-staining used to screen putative transgenic plants to confirm the integration of foreign DNA into the orchid genome were also described in detail. The methods described would also be useful for transformation of desired genes into other orchid species.
Ma, Man; Wang, Jinping; Guo, Fang; Lei, Mingzhu; Tan, Fengping; Li, Nan
2015-06-01
The aim of the current investigation was to develop and statistically evaluate nanovesicular systems for dermal imiquimod delivery. To this purpose, transethosomes were prepared with phospholipid, ethanol and different permeation enhancers. Conventional ethosomes, with soy phospholipid and ethanol, were used as control. The prepared vesicles were characterized for size, zeta potential, stability and entrapment efficiency. The optimal transethosomal formulation with mean particle size of 82.3 ± 9.5 nm showed the higher entrapment efficiency (68.69 ± 1.7%). In vitro studies, permeation results of accumulated drug and local accumulation efficiency were significantly higher for transethosomes (24.64 µg/cm(2) and 6.70, respectively) than control (14.45 µg/cm(2) and 3.93, respectively). Confocal laser scanning microscopy of rhodamine 6G-loaded transethosomes revealed an enhanced retention into the deeper skin layers as compared to conventional ethosomes. Besides, Fourier-transform infra-red spectroscopy studies were also performed to understand the mechanism of interaction between skin and carriers. What's more, results of in vivo studies indicated the transethosomes of imiquimod providing the most effectiveness for dermal delivery among all of the formulations. These results suggested that transethosomes would be a promising dermal carrier for imiquimod in actinic keratose treatment.
Toroidal transformer design program with application to inverter circuitry
NASA Technical Reports Server (NTRS)
Dayton, J. A., Jr.
1972-01-01
Estimates of temperature, weight, efficiency, regulation, and final dimensions are included in the output of the computer program for the design of transformers for use in the basic parallel inverter. The program, written in FORTRAN 4, selects a tape wound toroidal magnetic core and, taking temperature, materials, core geometry, skin depth, and ohmic losses into account, chooses the appropriate wire sizes and number of turns for the center tapped primary and single secondary coils. Using the program, 2- and 4-kilovolt-ampere transformers are designed for frequencies from 200 to 3200 Hz and the efficiency of a basic transistor inverter is estimated.
Cho, Kangwoo; Hoffmann, Michael R
2014-10-07
This study investigated the transformation of urea by electrochemically generated reactive chlorine species (RCS). Solutions of urea with chloride ions were electrolyzed using a bismuth doped TiO2 (BiOx/TiO2) anode coupled with a stainless steel cathode at applied anodic potentials (Ea) of either +2.2 V or +3.0 V versus the normal hydrogen electrode. In NaCl solution, the current efficiency of RCS generation was near 30% at both potentials. In divided cell experiments, the pseudo-first-order rate of total nitrogen decay was an order of magnitude higher at Ea of +3.0 V than at +2.2 V, presumably because dichlorine radical (Cl2(-)·) ions facilitate the urea transformation primary driven by free chlorine. Quadrupole mass spectrometer analysis of the reactor headspace revealed that N2 and CO2 are the primary gaseous products of the oxidation of urea, whose urea-N was completely transformed into N2 (91%) and NO3(-) (9%). The higher reaction selectivity with respect to N2 production can be ascribed to a low operational ratio of free available chlorine to N. The mass-balance analysis recovered urea-C as CO2 at 77%, while CO generation most likely accounts for the residual carbon. In light of these results, we propose a reaction mechanism involving chloramines and chloramides as reaction intermediates, where the initial chlorination is the rate-determining step in the overall sequence of reactions.
Tan, Joanne Sh; Yeo, Chia-Rou; Popovich, David G
2017-07-01
Ginsenosides are believed to be the principal components behind the pharmacological actions of ginseng, and their bioactive properties are closely related to the type, position, and number of sugar moieties attached to the aglycone; thus, modification of the sugar chains may markedly change their biological activities. In this study, major protopanaxadiol type ginsenosides (PD) Rb1, Rc, and Rb2 were isolated from Panax ginseng and were transformed using two probiotic strains namely Bifidobacterium lactis Bi-07 and Lactobacillus rhamnosus HN001 to obtain specific deglycosylated ginsenosides. It was demonstrated that B. lactis transformed ginsenosides Rb1, Rc, and Rb2 to Rd within 1 h of fermentation and rare ginsenoside F2 by the conversion of Rd after 12-h fermentation. The maximum Rd concentration was 147.52 ± 1.45 μg/mL after 48-h fermentation as compared to 45.85 ± 0.71 μg/mL before fermentation. In contrast, L. rhamnosus transformed Rb1, Rc, and Rb2 into Rd as the final metabolite after 72-h fermentation. B. lactis displayed significantly (p < 0.05) higher β-glucosidase activity against p-nitrophenyl-β-glucopyranoside than L. rhamnosus and higher bioconversion efficiency during fermentation. The present study suggests that the fermentation of major PD type ginsenosides with B. lactis Bi-07 may serve as an effective means to afford bioactive deglycosylated ginsenosides and to create novel ginsenoside extracts.
García Iglesias, Daniel; Roqueñi Gutiérrez, Nieves; De Cos, Francisco Javier; Calvo, David
2018-02-12
Fragmentation and delayed potentials in the QRS signal of patients have been postulated as risk markers for Sudden Cardiac Death (SCD). The analysis of the high-frequency spectral content may be useful for quantification. Forty-two consecutive patients with prior history of SCD or malignant arrhythmias (patients) where compared with 120 healthy individuals (controls). The QRS complexes were extracted with a modified Pan-Tompkins algorithm and processed with the Continuous Wavelet Transform to analyze the high-frequency content (85-130 Hz). Overall, the power of the high-frequency content was higher in patients compared with controls (170.9 vs. 47.3 10³nV²Hz -1 ; p = 0.007), with a prolonged time to reach the maximal power (68.9 vs. 64.8 ms; p = 0.002). An analysis of the signal intensity (instantaneous average of cumulative power), revealed a distinct function between patients and controls. The total intensity was higher in patients compared with controls (137.1 vs. 39 10³nV²Hz -1 s -1 ; p = 0.001) and the time to reach the maximal intensity was also prolonged (88.7 vs. 82.1 ms; p < 0.001). The high-frequency content of the QRS complexes was distinct between patients at risk of SCD and healthy controls. The wavelet transform is an efficient tool for spectral analysis of the QRS complexes that may contribute to stratification of risk.
The extracellular nuclease Dns and its role in natural transformation of Vibrio cholerae.
Blokesch, Melanie; Schoolnik, Gary K
2008-11-01
Free extracellular DNA is abundant in many aquatic environments. While much of this DNA will be degraded by nucleases secreted by the surrounding microbial community, some is available as transforming material that can be taken up by naturally competent bacteria. One such species is Vibrio cholerae, an autochthonous member of estuarine, riverine, and marine habitats and the causative agent of cholera, whose competence program is induced after colonization of chitin surfaces. In this study, we investigate how Vibrio cholerae's two extracellular nucleases, Xds and Dns, influence its natural transformability. We show that in the absence of Dns, transformation frequencies are significantly higher than in its presence. During growth on a chitin surface, an increase in transformation efficiency was found to correspond in time with increasing cell density and the repression of dns expression by the quorum-sensing regulator HapR. In contrast, at low cell density, the absence of HapR relieves dns repression, leading to the degradation of free DNA and to the abrogation of the transformation phenotype. Thus, as cell density increases, Vibrio cholerae undergoes a switch from nuclease-mediated degradation of extracellular DNA to the uptake of DNA by bacteria induced to a state of competence by chitin. Taken together, these results suggest the following model: nuclease production by low-density populations of V. cholerae might foster rapid growth by providing a source of nucleotides for the repletion of nucleotide pools. In contrast, the termination of nuclease production by static, high-density populations allows the uptake of intact DNA and coincides with a phase of potential genome diversification.
The Extracellular Nuclease Dns and Its Role in Natural Transformation of Vibrio cholerae▿
Blokesch, Melanie; Schoolnik, Gary K.
2008-01-01
Free extracellular DNA is abundant in many aquatic environments. While much of this DNA will be degraded by nucleases secreted by the surrounding microbial community, some is available as transforming material that can be taken up by naturally competent bacteria. One such species is Vibrio cholerae, an autochthonous member of estuarine, riverine, and marine habitats and the causative agent of cholera, whose competence program is induced after colonization of chitin surfaces. In this study, we investigate how Vibrio cholerae's two extracellular nucleases, Xds and Dns, influence its natural transformability. We show that in the absence of Dns, transformation frequencies are significantly higher than in its presence. During growth on a chitin surface, an increase in transformation efficiency was found to correspond in time with increasing cell density and the repression of dns expression by the quorum-sensing regulator HapR. In contrast, at low cell density, the absence of HapR relieves dns repression, leading to the degradation of free DNA and to the abrogation of the transformation phenotype. Thus, as cell density increases, Vibrio cholerae undergoes a switch from nuclease-mediated degradation of extracellular DNA to the uptake of DNA by bacteria induced to a state of competence by chitin. Taken together, these results suggest the following model: nuclease production by low-density populations of V. cholerae might foster rapid growth by providing a source of nucleotides for the repletion of nucleotide pools. In contrast, the termination of nuclease production by static, high-density populations allows the uptake of intact DNA and coincides with a phase of potential genome diversification. PMID:18757542
NASA Astrophysics Data System (ADS)
Huang, Mingzhi; Zhang, Tao; Ruan, Jujun; Chen, Xiaohong
2017-01-01
A new efficient hybrid intelligent approach based on fuzzy wavelet neural network (FWNN) was proposed for effectively modeling and simulating biodegradation process of Dimethyl phthalate (DMP) in an anaerobic/anoxic/oxic (AAO) wastewater treatment process. With the self learning and memory abilities of neural networks (NN), handling uncertainty capacity of fuzzy logic (FL), analyzing local details superiority of wavelet transform (WT) and global search of genetic algorithm (GA), the proposed hybrid intelligent model can extract the dynamic behavior and complex interrelationships from various water quality variables. For finding the optimal values for parameters of the proposed FWNN, a hybrid learning algorithm integrating an improved genetic optimization and gradient descent algorithm is employed. The results show, compared with NN model (optimized by GA) and kinetic model, the proposed FWNN model have the quicker convergence speed, the higher prediction performance, and smaller RMSE (0.080), MSE (0.0064), MAPE (1.8158) and higher R2 (0.9851) values. which illustrates FWNN model simulates effluent DMP more accurately than the mechanism model.
Liquid-phase and solid-phase microwave irradiations for reduction of graphite oxide
NASA Astrophysics Data System (ADS)
Zhao, Na; Wen, Chen-Yu; Zhang, David Wei; Wu, Dong-Ping; Zhang, Zhi-Bin; Zhang, Shi-Li
2014-12-01
In this paper, two microwave irradiation methods: (i) liquid-phase microwave irradiation (MWI) reduction of graphite oxide suspension dissolved in de-ionized water and N, N-dimethylformamide, respectively, and (ii) solid-phase MWI reduction of graphite oxide powder have been successfully carried out to reduce graphite oxide. The reduced graphene oxide products are thoroughly characterized by scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectral analysis, Raman spectroscopy, UV-Vis absorption spectral analysis, and four-point probe conductivity measurements. The results show that both methods can efficiently remove the oxygen-containing functional groups attached to the graphite layers, though the solid-phase MWI reduction method can obtain far more efficiently a higher quality-reduced graphene oxide with fewer defects. The I(D)/I(G) ratio of the solid-phase MWI sample is as low as 0.46, which is only half of that of the liquid-phase MWI samples. The electrical conductivity of the reduced graphene oxide by the solid method reaches 747.9 S/m, which is about 25 times higher than that made by the liquid-phase method.
Huang, Mingzhi; Zhang, Tao; Ruan, Jujun; Chen, Xiaohong
2017-01-01
A new efficient hybrid intelligent approach based on fuzzy wavelet neural network (FWNN) was proposed for effectively modeling and simulating biodegradation process of Dimethyl phthalate (DMP) in an anaerobic/anoxic/oxic (AAO) wastewater treatment process. With the self learning and memory abilities of neural networks (NN), handling uncertainty capacity of fuzzy logic (FL), analyzing local details superiority of wavelet transform (WT) and global search of genetic algorithm (GA), the proposed hybrid intelligent model can extract the dynamic behavior and complex interrelationships from various water quality variables. For finding the optimal values for parameters of the proposed FWNN, a hybrid learning algorithm integrating an improved genetic optimization and gradient descent algorithm is employed. The results show, compared with NN model (optimized by GA) and kinetic model, the proposed FWNN model have the quicker convergence speed, the higher prediction performance, and smaller RMSE (0.080), MSE (0.0064), MAPE (1.8158) and higher R2 (0.9851) values. which illustrates FWNN model simulates effluent DMP more accurately than the mechanism model. PMID:28120889
Advances in biotechnology and genomics of switchgrass
2013-01-01
Switchgrass (Panicum virgatum L.) is a C4 perennial warm season grass indigenous to the North American tallgrass prairie. A number of its natural and agronomic traits, including adaptation to a wide geographical distribution, low nutrient requirements and production costs, high water use efficiency, high biomass potential, ease of harvesting, and potential for carbon storage, make it an attractive dedicated biomass crop for biofuel production. We believe that genetic improvements using biotechnology will be important to realize the potential of the biomass and biofuel-related uses of switchgrass. Tissue culture techniques aimed at rapid propagation of switchgrass and genetic transformation protocols have been developed. Rapid progress in genome sequencing and bioinformatics has provided efficient strategies to identify, tag, clone and manipulate many economically-important genes, including those related to higher biomass, saccharification efficiency, and lignin biosynthesis. Application of the best genetic tools should render improved switchgrass that will be more economically and environmentally sustainable as a lignocellulosic bioenergy feedstock. PMID:23663491
Pollack, R.; Risser, R.; Conlon, S.; Rifkin, D.
1974-01-01
We have isolated several lines of rat embryo cells transformed by simian virus 40. All these lines are fully transformed with regard to saturation density and serum sensitivity, but they differ greatly in their anchorage dependence, as assayed by efficiency of plating in methyl cellulose suspension. This set of lines reveals a consistent relation of plasminogen activator production to plating efficiency in methyl cellulose. T-antigen-positive transformed lines that synthesize activator grow in methyl cellulose suspension, while T-antigen-positive transformed lines that do not synthesize activator fail to form colonies in suspension. Normal rat embryo cells produce very little plasminogen activator and do not grow in methyl cellulose. Sera that permit high levels of plasmin formation and activity support growth in semi-solid medium better than sera whose plasminogen is activated poorly and/or sera that contain inhibitors to plasmin. PMID:4373730
NASA Astrophysics Data System (ADS)
Yoo, Juhyun; Yoon, Kwanghee; Lee, Yongwoo; Suh, Sungjae; Kim, Jongsun; Yoo, Chungsik
2000-05-01
Contour-vibration-mode Pb(Sb1/2Nb1/2)O3-Pb(Zr, Ti)O3 [PSN-PZT] piezoelectric transformers with different ring/dot electrode area ratios were fabricated to the size of 27.5× 27.5× 2.5 mm3 by cold isostatic pressing. The electrical properties and characteristic temperature rises caused by the vibration were measured at various load resistances. Efficiencies above 90% with load resistance were obtained from all the transformers. The voltage step-up ratio appeared to be proportional to the dot electrode area. A 14 W fluorescent lamp, T5, was successfully driven by all of the fabricated transformers. The transformer with ring/dot electrode area ratio of 4.85 exhibited the best properties in terms of output power, efficiency and characteristic temperature rise, 14.88 W, 98% and 5°C, respectively.
Pepper, sweet (Capsicum annuum).
Heidmann, Iris; Boutilier, Kim
2015-01-01
Capsicum (pepper) species are economically important crops that are recalcitrant to genetic transformation by Agrobacterium (Agrobacterium tumefaciens). A number of protocols for pepper transformation have been described but are not routinely applicable. The main bottleneck in pepper transformation is the low frequency of cells that are both susceptible for Agrobacterium infection and have the ability to regenerate. Here, we describe a protocol for the efficient regeneration of transgenic sweet pepper (C. annuum) through inducible activation of the BABY BOOM (BBM) AP2/ERF transcription factor. Using this approach, we can routinely achieve a transformation efficiency of at least 0.6 %. The main improvements in this protocol are the reproducibility in transforming different genotypes and the ability to produce fertile shoots. An added advantage of this protocol is that BBM activity can be induced subsequently in stable transgenic lines, providing a novel regeneration system for clonal propagation through somatic embryogenesis.
Miao, VPW.; Rountree, M. R.; Selker, E. U.
1995-01-01
In a variety of organisms, DNA-mediated transformation experiments commonly produce transformants with multiple copies of the transforming DNA, including both selected and unselected molecules. Such ``cotransformants'' are much more common than expected from the individual transformation frequencies, suggesting that subpopulations of cells, or nuclei, are particularly competent for transformation. We found that Neurospora crassa transformants selected for gene replacement at the am gene had not efficiently incorporated additional DNA, suggesting that nuclei that undergo transformation by homologous recombination are not highly competent at integration of DNA by illegitimate recombination. Spheroplasts were treated with DNA fragments homologous to am and with an Escherichia coli hph plasmid. Transformants were initially selected for hph (hygromycin(R)), allowed to conidiate to generate homokaryons and then selected for either Am(-) (gene replacements) or hph. Surprisingly, most am replacement strains were hygromycin(S) (124/140) and carried no extraneous DNA (116/140). Most transformants selected for hph also had ectopic copies of am DNA and/or multiple copies of hph sequences (32/35), generally at multiple sites, confirming that efficient cotransformation could occur. To test the implication that cotransformation involving gene replacement and ectopic integration is rare, we compared the yields of am replacement strains with or without prior selection for hph. The initial selection did not appreciably help (or hinder) recovery of strains with replacements. PMID:7789758
Simple and Efficient Numerical Evaluation of Near-Hypersingular Integrals
NASA Technical Reports Server (NTRS)
Fink, Patrick W.; Wilton, Donald R.; Khayat, Michael A.
2007-01-01
Recently, significant progress has been made in the handling of singular and nearly-singular potential integrals that commonly arise in the Boundary Element Method (BEM). To facilitate object-oriented programming and handling of higher order basis functions, cancellation techniques are favored over techniques involving singularity subtraction. However, gradients of the Newton-type potentials, which produce hypersingular kernels, are also frequently required in BEM formulations. As is the case with the potentials, treatment of the near-hypersingular integrals has proven more challenging than treating the limiting case in which the observation point approaches the surface. Historically, numerical evaluation of these near-hypersingularities has often involved a two-step procedure: a singularity subtraction to reduce the order of the singularity, followed by a boundary contour integral evaluation of the extracted part. Since this evaluation necessarily links basis function, Green s function, and the integration domain (element shape), the approach ill fits object-oriented programming concepts. Thus, there is a need for cancellation-type techniques for efficient numerical evaluation of the gradient of the potential. Progress in the development of efficient cancellation-type procedures for the gradient potentials was recently presented. To the extent possible, a change of variables is chosen such that the Jacobian of the transformation cancels the singularity. However, since the gradient kernel involves singularities of different orders, we also require that the transformation leaves remaining terms that are analytic. The terms "normal" and "tangential" are used herein with reference to the source element. Also, since computational formulations often involve the numerical evaluation of both potentials and their gradients, it is highly desirable that a single integration procedure efficiently handles both.
ERIC Educational Resources Information Center
Eckel, Peter; Hill, Barbara; Green, Madeleine
This paper explores transformation and change in American higher education. It begins by examining the debate over the type of change needed in higher education from the radical change suggested by some as necessary for survival to concepts of continual improvement urged by others. A definition of transformational change is offered which…
Improvement of Agrobacterium-mediated transformation and rooting of black cherry
Ying Wang; Paula M. Pijut
2014-01-01
An improved protocol for Agrobacterium-mediated transformation of an elite, mature black cherry genotype was developed. To increase transformation efficiency, vacuum infiltration, sonication, and a combination of the two treatments were applied during the cocultivation of leaf explants with Agrobacterium tumefaciens strain EHA105...
Novel narrow-host-range vectors for direct cloning of foreign DNA in Pseudomonas.
Boivin, R; Bellemare, G; Dion, P
1994-01-01
Narrow-host-range vectors, based on an indigenous replicon and containing a multiple cloning site, have been constructed in a Pseudomonas host capable of growth on unusual substrates. The new cloning vectors yield sufficient amounts of DNA for preparative purposes and belong to an incompatibility group different from that of the incP and incQ broad-host-range vectors. One of these vectors, named pDB47F, was used to clone, directly in Pseudomonas, DNA fragments from Agrobacterium, Pseudomonas, and Rhizobium. A clone containing Agrobacterium and KmR gene sequences was transformed with a higher efficiency than an RSF1010-derived vector (by as much as 1250-fold) in four out of five Pseudomonas strains tested. The considerable efficiency obtained with this system makes possible the direct cloning and phenotypic selection of foreign DNA in Pseudomonas.
Yin, Yanchen; Mao, Youzhi; Yin, Xiaolie; Gao, Bei; Wei, Dongzhi
2015-07-01
The filamentous fungus Aspergillus oryzae is a well-known expression host used to express homologous and heterologous proteins in a number of industrial applications. To facilitate higher yields of proteins of interest, we constructed the pAsOP vector to express heterologous proteins in A. oryzae. pAsOP carries a selectable marker, pyrG, derived from Aspergillus nidulans, and a strong promoter and a terminator of the amyB gene derived from A. oryzae. pAsOP transformed A. oryzae efficiently via the PEG-CaCl2-mediated transformation method. As proof of concept, green fluorescent protein (GFP) was successfully expressed in A. oryzae transformed by pAsOP-GFP. Additionally, we identified a novel fungal α-amylase (PcAmy) gene from Penicillium sp. and cloned the gene into the vector. After transformation by pAsOPPcAmy, the α-amylase PcAmy from Penicillium sp. was successfully expressed in a heterologous host system for the first time. The α-amylase activity in the A. oryzae transformant was increased by 62.3% compared with the untransformed A. oryzae control. The PcAmy protein produced in the system had an optimum pH of 5.0 and optimum temperature of 30°C. As a cold-adapted enzyme, PcAmy shows potential value in industrial applications because of its high catalytic activity at low temperature. Furthermore, the expression vector reported in this study provides promising utility for further scientific research and biotechnological applications.
Augustine, Sruthy Maria; Ashwin Narayan, J; Syamaladevi, Divya P; Appunu, C; Chakravarthi, M; Ravichandran, V; Tuteja, Narendra; Subramonian, N
2015-05-01
DNA helicases are motor proteins that play an essential role in nucleic acid metabolism, by providing a duplex-unwinding function. To improve the drought and salinity tolerance of sugarcane, a DEAD-box helicase gene isolated from pea with a constitutive promoter, Port Ubi 2.3 was transformed into the commercial sugarcane variety Co 86032 through Agrobacterium-mediated transformation, and the transgenics were screened for tolerance to soil moisture stress and salinity. The transgene integration was confirmed through polymerase chain reaction, and the V 0 transgenic events showed significantly higher cell membrane thermostability under normal irrigated conditions. The V 1 transgenic events were screened for tolerance to soil moisture stress and exhibited significantly higher cell membrane thermostability, transgene expression, relative water content, gas exchange parameters, chlorophyll content, and photosynthetic efficiency under soil moisture stress compared to wild-type (WT). The overexpression of PDH45 transgenic sugarcane also led to the upregulation of DREB2-induced downstream stress-related genes. The transgenic events demonstrated higher germination ability and better chlorophyll retention than WT under salinity stress. Our results suggest the possibility for development of increased abiotic stress tolerant sugarcane cultivars through overexpression of PDH45 gene. Perhaps this is the first report, which provides evidence for increased drought and salinity tolerance in sugarcane through overexpression of PDH45.
Apelfröjd, Senad; Eriksson, Sandra
2014-01-01
Results from experiments on a tap transformer based grid connection system for a variable speed vertical axis wind turbine are presented. The tap transformer based system topology consists of a passive diode rectifier, DC-link, IGBT inverter, LCL-filter, and tap transformer. Full range variable speed operation is enabled by using the different step-up ratios of a tap transformer. Simulations using MATLAB/Simulink have been performed in order to study the behavior of the system. A full experimental set up of the system has been used in the laboratory study, where a clone of the on-site generator was driven by an induction motor and the system was connected to a resistive load to better evaluate the performance. Furthermore, the system is run and evaluated for realistic wind speeds and variable speed operation. For a more complete picture of the system performance, a case study using real site Weibull parameters is done, comparing different tap selection options. The results show high system efficiency at nominal power and an increase in overall power output for full tap operation in comparison with the base case, a standard transformer. In addition, the loss distribution at different wind speeds is shown, which highlights the dominant losses at low and high wind speeds. Finally, means for further increasing the overall system efficiency are proposed.
2014-01-01
Results from experiments on a tap transformer based grid connection system for a variable speed vertical axis wind turbine are presented. The tap transformer based system topology consists of a passive diode rectifier, DC-link, IGBT inverter, LCL-filter, and tap transformer. Full range variable speed operation is enabled by using the different step-up ratios of a tap transformer. Simulations using MATLAB/Simulink have been performed in order to study the behavior of the system. A full experimental set up of the system has been used in the laboratory study, where a clone of the on-site generator was driven by an induction motor and the system was connected to a resistive load to better evaluate the performance. Furthermore, the system is run and evaluated for realistic wind speeds and variable speed operation. For a more complete picture of the system performance, a case study using real site Weibull parameters is done, comparing different tap selection options. The results show high system efficiency at nominal power and an increase in overall power output for full tap operation in comparison with the base case, a standard transformer. In addition, the loss distribution at different wind speeds is shown, which highlights the dominant losses at low and high wind speeds. Finally, means for further increasing the overall system efficiency are proposed. PMID:25258733
Wang, Yan; Xu, Yue; Chen, Yingjun; Tian, Chongguo; Feng, Yanli; Chen, Tian; Li, Jun; Zhang, Gan
2016-05-01
To evaluate the influence of coal property and stove efficiency on the emissions of parent polycyclic aromatic hydrocarbons (pPAHs) and oxygenated PAHs (oPAHs) during the combustion, fifteen coal/stove combinations were tested in this study, including five coals of different geological maturities in briquette and chunk forms burned in two residential stoves. The emission factors (EFs) of pPAHs and oPAHs were in the range of 0.129-16.7 mg/kg and 0.059-0.882 mg/kg, respectively. The geological maturity of coal significantly affected the emissions of pPAHs and oPAHs with the lower maturity coals yielding the higher emissions. The chunk-to-briquette transformation of coal dramatically increased the emissions of pPAHs and oPAHs during the combustion of anthracite, whereas this transformation only elevated the emissions of high molecular weight PAHs for bituminous coals. The influence of stove type on the emissions of pPAHs and oPAHs was also geological-maturity-dependent. High efficiency stove significantly reduced the emissions of PAHs from those relatively high-maturity coals, but its influences on low-maturity coals were inconstant. Copyright © 2016 Elsevier Ltd. All rights reserved.
Enhancing soybean photosynthetic CO2 assimilation using a cyanobacterial membrane protein, ictB.
Hay, William T; Bihmidine, Saadia; Mutlu, Nedim; Hoang, Khang Le; Awada, Tala; Weeks, Donald P; Clemente, Tom E; Long, Stephen P
2017-05-01
Soybean C 3 photosynthesis can suffer a severe loss in efficiency due to photorespiration and the lack of a carbon concentrating mechanism (CCM) such as those present in other plant species or cyanobacteria. Transgenic soybean (Glycine max cv. Thorne) plants constitutively expressing cyanobacterial ictB (inorganic carbon transporter B) gene were generated using Agrobacterium-mediated transformation. Although more recent data suggest that ictB does not actively transport HCO3-/CO 2 , there is nevertheless mounting evidence that transformation with this gene can increase higher plant photosynthesis. The hypothesis that expression of the ictB gene would improve photosynthesis, biomass production and seed yield in soybean was tested, in two independent replicated greenhouse and field trials. Results showed significant increases in photosynthetic CO 2 uptake (A net ) and dry mass in transgenic relative to wild type (WT) control plants in both the greenhouse and field trials. Transgenic plants also showed increased photosynthetic rates and biomass production during a drought mimic study. The findings presented herein demonstrate that ictB, as a single-gene, contributes to enhancement in various yield parameters in a major commodity crop and point to the significant role that biotechnological approaches to increasing photosynthetic efficiency can play in helping to meet increased global demands for food. Copyright © 2017 Elsevier GmbH. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Junjian; Wang, Jianhui; Liu, Hui
Abstract: In this paper, nonlinear model reduction for power systems is performed by the balancing of empirical controllability and observability covariances that are calculated around the operating region. Unlike existing model reduction methods, the external system does not need to be linearized but is directly dealt with as a nonlinear system. A transformation is found to balance the controllability and observability covariances in order to determine which states have the greatest contribution to the input-output behavior. The original system model is then reduced by Galerkin projection based on this transformation. The proposed method is tested and validated on a systemmore » comprised of a 16-machine 68-bus system and an IEEE 50-machine 145-bus system. The results show that by using the proposed model reduction the calculation efficiency can be greatly improved; at the same time, the obtained state trajectories are close to those for directly simulating the whole system or partitioning the system while not performing reduction. Compared with the balanced truncation method based on a linearized model, the proposed nonlinear model reduction method can guarantee higher accuracy and similar calculation efficiency. It is shown that the proposed method is not sensitive to the choice of the matrices for calculating the empirical covariances.« less
NASA Astrophysics Data System (ADS)
Huang, Niu; Xie, Yanan; Sebo, Bobby; Liu, Yumin; Sun, Xiaohua; Peng, Tao; Sun, Weiwei; Bu, Chenghao; Guo, Shishang; Zhao, Xingzhong
2013-11-01
The concentration of tetrabutyl titanate (TBT) and H2O influence on the reaction kinetics of TBT and acetic acid (AcOH) solvothermal system are systematically studied. It is found that TBT and H2O have greatly accelerated the hydrolysis-condensation process of the TBT-AcOH system. By adjusting those concentrations with reaction time, we prepare five kinds of sub-micron/micron precursors, which are hierarchical structures consisting of different primary building blocks. The morphology of these precursors varies from noninterlaced structures composed of flower-like microsphere and ellipsoid sphere to interlaced structures composed of flower-like microsphere interlaced nanofibers, ellipsoid spheres interlaced flower-like microsphere and nanoparticles interlaced flower-like microsphere. These interlaced structures are synthesized for the first time and are not ordinary mixtures of the noninterlaced structures. After heat treatment, these precursors are transformed to anatase TiO2. Shape-dependent photovoltaic performances of dye-sensitized solar cells (DSSCs) are also discussed. DSSCs based on these hierarchical sub-micron/micron TiO2 show 7.3%-7.9% energy conversion efficiencies, and the devices based on interlaced structures have higher efficiencies (7.4%-7.9%) than those of the devices based on noninterlaced structures (7.3%-7.6%).
Peptide chemistry toolbox - Transforming natural peptides into peptide therapeutics.
Erak, Miloš; Bellmann-Sickert, Kathrin; Els-Heindl, Sylvia; Beck-Sickinger, Annette G
2018-06-01
The development of solid phase peptide synthesis has released tremendous opportunities for using synthetic peptides in medicinal applications. In the last decades, peptide therapeutics became an emerging market in pharmaceutical industry. The need for synthetic strategies in order to improve peptidic properties, such as longer half-life, higher bioavailability, increased potency and efficiency is accordingly rising. In this mini-review, we present a toolbox of modifications in peptide chemistry for overcoming the main drawbacks during the transition from natural peptides to peptide therapeutics. Modifications at the level of the peptide backbone, amino acid side chains and higher orders of structures are described. Furthermore, we are discussing the future of peptide therapeutics development and their impact on the pharmaceutical market. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Moon, Sunghwan
2017-06-01
A Compton camera has been introduced for use in single photon emission computed tomography to improve the low efficiency of a conventional gamma camera. In general, a Compton camera brings about the conical Radon transform. Here we consider a conical Radon transform with the vertices on a rotation symmetric set with respect to a coordinate axis. We show that this conical Radon transform can be decomposed into two transforms: the spherical sectional transform and the weighted fan beam transform. After finding inversion formulas for these two transforms, we provide an inversion formula for the conical Radon transform.
Rapid DNA transformation in Salmonella Typhimurium by the hydrogel exposure method.
Elabed, Hamouda; Hamza, Rim; Bakhrouf, Amina; Gaddour, Kamel
2016-07-01
Even with advances in molecular cloning and DNA transformation, new or alternative methods that permit DNA penetration in Salmonella enterica subspecies enterica serovar Typhimurium are required in order to use this pathogen in biotechnological or medical applications. In this work, an adapted protocol of bacterial transformation with plasmid DNA based on the "Yoshida effect" was applied and optimized on Salmonella enterica serovar Typhimurium LT2 reference strain. The plasmid transference based on the use of sepiolite as acicular materials to promote cell piercing via friction forces produced by spreading on the surface of a hydrogel. The transforming mixture containing sepiolite nanofibers, bacterial cells to be transformed and plasmid DNA were plated directly on selective medium containing 2% agar. In order to improve the procedure, three variables were tested and the transformation of Salmonella cells was accomplished using plasmids pUC19 and pBR322. Using the optimized protocol on Salmonella LT2 strain, the efficiency was about 10(5) transformed cells per 10(9) subjected to transformation with 0.2μg plasmid DNA. In summary, the procedure is fast, offers opportune efficiency and promises to become one of the widely used transformation methods in laboratories. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wu, Jinxia; Hu, Zhangli; Wang, Chaogang; Li, Shuangfei; Lei, Anping
2008-08-01
To improve the expression efficiency of exogenous genes in Chlamydomonas reinhardtii, a high efficient expression vector was constructed. Green fluorescent protein (GFP) was expressed in C. reinhardtii under the control of promoters: RBCS2 and HSP70A-RBCS2. Efficiency of transformation and expression were compared between two transgenic algae: RBCS2 mediated strain Tran-I and HSP70A-RBCS2 mediated strain Tran-II. Results show that HSP70A-RBCS2 could improve greatly the transformation efficiency by approximately eightfold of RBCS2, and the expression efficiency of GFP in Tran-II was at least double of that in Tran-I. In addition, a threefold increase of GFP in Tran-II was induced by heat shock at 40°C. All of the results demonstrated that HSP70A-RBCS2 was more efficient than RBCS2 in expressing exogenous gene in C. reinhardtii.
Thuróczy, György; Jánossy, Gábor; Nagy, Noémi; Bakos, József; Szabó, Judit; Mezei, Gábor
2008-01-01
Exposure to 50 Hz magnetic field (MF) was evaluated in 31 multi-level apartment buildings with built-in step-down transformer stations. In each building, three apartments were selected: one apartment located immediately above the transformer room (index apartment), one located on the same floor and one on a higher floor. The mean value of measured MFs was 0.98 microT in apartments above transformers, 0.13 microT on the same floor, and 0.1 microT in on higher floors. The mean measured MF value was higher than 0.2 microT in 30 (97%) index apartments, 4 (14%) on the same floor as the index apartments and 4 (13%) on higher floors. The corresponding numbers were 25 (81%), 0 and 0, respectively, when 0.4 microT was used as cut-point. It is concluded that apartments in building with built-in transformers can be reliably classified into high and low-exposure categories based on their location in relation to transformers.
Effects of plant diversity on microbial nitrogen and phosphorus dynamics in soil
NASA Astrophysics Data System (ADS)
Prommer, Judith; Braun, Judith; Daly, Amanda; Gorka, Stefan; Hu, Yuntao; Kaiser, Christina; Martin, Victoria; Meyerhofer, Werner; Walker, Tom W. N.; Wanek, Wolfgang; Wasner, Daniel; Wiesenbauer, Julia; Zezula, David; Zheng, Qing; Richter, Andreas
2017-04-01
There is a general consensus that plant diversity affects many ecosystem functions. One example of such an effect is the enhanced aboveground and belowground plant biomass production with increasing species richness, with implications for carbon and nutrient distribution in soil. The Jena Experiment (http://www.the-jena-experiment.de/), a grassland biodiversity experiment established in 2002 in Germany, comprises different levels of plant species richness and different numbers of plant functional groups. It provides the opportunity to examine how changes in biodiversity impact on microbially-mediated nutrient cycling processes. We here report on plant diversity and plant functional composition effects on growth and nitrogen and phosphorus transformation rates, including nitrogen use efficiency, of microbial communities. Microbial growth rates and microbial biomass were positively affected by increasing plant species richness. Amino acid and ammonium concentrations in soil were also positively affected by plant species richness, while phosphate concentrations in contrast were negatively affected. The cycling of organic N in soils (estimated as gross protein depolymerization rates) increased about threefold with plant diversity, while gross N and P mineralization were not significantly affected by either species or functional richness. Microbial nitrogen use efficiency did not respond to different levels of plant diversity but was very high (0.96 and 0.98) across all levels of plant species richness, demonstrating a low N availability for microbes. Taken together this indicates that soil microbial communities were able to meet the well-documented increase in plant N content with species richness, and also the higher N demand of the microbial community by increasing the recycling of organic N such as proteins. In fact, the microbial community even overcompensated the increased plant and microbial N demand, as evidenced by increased levels of free amino acids and ammonium in the soil solution at higher species richness. A possible explanation for increased organic nitrogen transformation rates is the increased microbial biomass, which has previously been related to higher quantity and variety of plant derived compounds that are available to the microbial communities at higher plant diversity. Given that this explanation is right, it is interesting to note that the additional (plant-derived) microbial biomass at higher species richness, did not translate in higher soil P mineralization rates or phosphate availability.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-04
... Medium- and Low-Voltage Dry-Type Distribution Transformers AGENCY: Department of Energy, Office of Energy... Dry-Type Distribution Transformers and the second addressing Low-Voltage Dry-Type Distribution Transformers. The Liquid Immersed and Medium-Voltage Dry-Type Group (MV Group) and the Low-Voltage Dry-Type...
USDA-ARS?s Scientific Manuscript database
An efficient protocol for Agrobacterium-mediated transformation of Serbian potato cultivars Dragacevka and Jelica, enabling the introduction of oryzacystatin genes OCI and OCII, was established. Starting with leaf explants a two-stage transformation protocol combining procedures of Webb and Wenzler...
NASA Astrophysics Data System (ADS)
Jung, Tae-Uk; Kim, Myung-Hwan; Yoo, Jin-Hyung
2018-05-01
Current fed dual active bridge converters for photovoltaic generation may typically require a given leakage or extra inductance in order to provide proper control of the currents. Therefore, the many researches have been focused on the leakage inductance control of high frequency transformer to integrate an extra inductor. In this paper, an asymmetric winding arrangement to get the controlled leakage inductance for the high frequency transformer is proposed to improve the efficiency of the current fed dual active bridge converter. In order to accurate analysis, a coupled electromagnetic analysis model of transformer connected with high frequency switching circuit is used. A design optimization procedure for high efficiency is also presented using design analysis model, and it is verified by the experimental result.
Physical methods for genetic transformation of fungi and yeast
NASA Astrophysics Data System (ADS)
Rivera, Ana Leonor; Magaña-Ortíz, Denis; Gómez-Lim, Miguel; Fernández, Francisco; Loske, Achim M.
2014-06-01
The production of transgenic fungi is a routine process. Currently, it is possible to insert genes from other fungi, viruses, bacteria and even animals, albeit with low efficiency, into the genomes of a number of fungal species. Genetic transformation requires the penetration of the transgene through the fungal cell wall, a process that can be facilitated by biological or physical methods. Novel methodologies for the efficient introduction of specific genes and stronger promoters are needed to increase production levels. A possible solution to this problem is the recently discovered shock-wave-mediated transformation. The objective of this article is to review the state of the art of the physical methods used for genetic fungi transformation and to describe some of the basic physics and molecular biology behind them.
The morphing of geographical features by Fourier transformation.
Li, Jingzhong; Liu, Pengcheng; Yu, Wenhao; Cheng, Xiaoqiang
2018-01-01
This paper presents a morphing model of vector geographical data based on Fourier transformation. This model involves three main steps. They are conversion from vector data to Fourier series, generation of intermediate function by combination of the two Fourier series concerning a large scale and a small scale, and reverse conversion from combination function to vector data. By mirror processing, the model can also be used for morphing of linear features. Experimental results show that this method is sensitive to scale variations and it can be used for vector map features' continuous scale transformation. The efficiency of this model is linearly related to the point number of shape boundary and the interceptive value n of Fourier expansion. The effect of morphing by Fourier transformation is plausible and the efficiency of the algorithm is acceptable.
Qiao, Meng; Qi, Wei-xiao; Zhao, Xu; Liu, Hui-juan; Qu, Jiu-hui
2016-04-15
Substituted polycyclic aromatic hydrocarbons (SPAHs) can be emitted to the environment not only through the incomplete combustion, but also through the transformation from parent polycyclic aromatic hydrocarbons (PAHs) by photo chemical and biological processes. The toxicities of some SPAHs are higher than their corresponding PAHs. Samples were collected from the wastewater treatment plants in Beijing. Three types of SPAHs, including oxy-PAHs (OPAHs), methyl-PAHs (MPAHs) and nitro-PAHs (NPAHs), as well as 16 PAHs were analyzed, in order to study the occurrence and behavior of these compounds during the wastewater biological treatment process. MPAHs, OPAHs and PAHs were detected in the influent and effluent, but no NPAHs. The concentrations of PAHs in the influent in both the aquatic and particulate phases ranged from 1.94 to 4.34 µg · L⁻¹, and SPAHs from 1.16 to 2.20 µg · L⁻¹. The concentrations of PAHs in the effluent were between 0.77 and 0.98 µg · L⁻¹, and SPAHs from 0.39 to 0.45 µg · L⁻¹. The concentrations of the MPAHs were lower than their corresponding PAHs, while OPAHs were higher. The removal efficiencies of all the compounds ranged from 53% to 83%. PAHs and SPAHs were mainly removed by adsorption and biodegradation during the activated sludge treatment processes. Some OPAHs could be transformed from PAHs, and could be accumulated. The PAHs were mainly originated from incomplete combustion of wood and coal, and some from combustion of petroleum, while only a little from the discharge of petroleum. The concentrations of PAHs and SPAHs in the effluent were higher in autumn than summer and winter. Most of the SPAHs and PAHs were discharged to the agriculture area through the river-water irrigation, which might pose potential risk to the humans. As a result, it is necessary to upgrade the wastewater treatment process to improve the removal efficiency of PAHs and SPAHs.
NASA Astrophysics Data System (ADS)
Schwarz, Karsten; Rieger, Heiko
2013-03-01
We present an efficient Monte Carlo method to simulate reaction-diffusion processes with spatially varying particle annihilation or transformation rates as it occurs for instance in the context of motor-driven intracellular transport. Like Green's function reaction dynamics and first-passage time methods, our algorithm avoids small diffusive hops by propagating sufficiently distant particles in large hops to the boundaries of protective domains. Since for spatially varying annihilation or transformation rates the single particle diffusion propagator is not known analytically, we present an algorithm that generates efficiently either particle displacements or annihilations with the correct statistics, as we prove rigorously. The numerical efficiency of the algorithm is demonstrated with an illustrative example.
Magnetically Controlled Variable Transformer
NASA Technical Reports Server (NTRS)
Kleiner, Charles T.
1994-01-01
Improved variable-transformer circuit, output voltage and current of which controlled by use of relatively small current supplied at relatively low power to control windings on its magnetic cores. Transformer circuits of this type called "magnetic amplifiers" because ratio between controlled output power and power driving control current of such circuit large. This ratio - power gain - can be as large as 100 in present circuit. Variable-transformer circuit offers advantages of efficiency, safety, and controllability over some prior variable-transformer circuits.
NASA Technical Reports Server (NTRS)
Carazo, Alfredo V.; Wintucky, Edwin G.
2004-01-01
Improvements in individual piezoelectric transformer (PT) performance and the combination of these PTs in a unique modular topology under a Phase I contract with the NASA Glenn Research Center have enabled for the first time the simultaneous achievement of both high voltage and high power at much higher levels than previously obtained with any PT. Feasibility was demonstrated by a prototype transformer (called a Tap-Soner), which is shown in the preceding photograph as part of a direct-current to direct-current (dc-dc) converter having two outputs rated at 1.5 kV/5 W and 4.5 kV/20 W. The power density of 3.5 W/cm3 is significantly lower than for magnetic transformers with the same voltage and power output. This development, which is being done under a Small Business Innovation Research (SBIR) contract by Face Electronics, LC (Norfolk, VA), is based on improvements in the materials and design of Face's basic patented Transoner-T3 PT, shown in the left in the following figure. The T3 PT is most simply described as a resonant multilayer transducer where electrical energy at the input section is efficiently mechanically coupled to the output section, which then vibrates in a fundamental longitudinal mode to generate a high gain in voltage. The piezoelectric material used is a modified lead-zirconium-titanate-based ceramic. One of the significant improvements in PT design was the incorporation of a symmetrical double input layer, shown on the right in the following figure, which eliminated the lossy bending vibration modes characteristic of a single input layer. The performance of the improved PT was optimized to 1.5 kV/5 W. The next step was devising a way to combine the individual PTs in a modular circuit topology needed to achieve the desired high voltage and power output. Since the optimum performance of the individual PT occurs at resonance, the most efficient operation of the modular transformer was achieved by using a separate drive circuit for each PT. The output section consists of a separate output rectifier for each PT connected in series.
[Experimental study on carcinogenesis by human papillomavirus type 8 E7 gene].
Nishikawa, T
1994-05-01
Human papillomavirus (HPV) 5 and HPV8 are often detected in skin cancers developed in patients suffering from epidermodysplasia verruciformis, as well as in skin cancers developed in immunosuppressed patients. In the present study, in order to examine the transforming activity of the HPV8E7 gene, the HPV8E7 and HPV8E6/E7 genes were cloned into the expression vector (pcD2-Y), under the SV40 enhancer/promoter to construct pcD2-8E7 and pcD2-8E6/E7, respectively. The E7 and E6/E7 genes of genital high-risk HPV16 were also cloned into pcD2-Y to construct pcD2-16E7 and pcD2-16E6/E7, respectively. They were tested for their ability to collaboratively transform primary rat embryo fibroblasts (REFs) with activated H-ras gene. Transfection experiments of REFs having an activated H-ras gene revealed that pcD2-8E7, as well as pcD2-16E7 and pcD2-16E6/E7, induced transformation of cells in G418-resistant colonies at efficiencies of 11.9%, 43.0% and 53.0%, respectively. Transformed cell lines induced by activated H-ras gene and pcD2-8E7 or pcD2-16E7 were named 8RE and 16RE cell lines, respectively. Tumor induction in syngeneic newborn rats by injected the 8RE cells was higher than that of the 16RE cells. In cytological and histological examination, the 8RE cell lines and their induced tumors were different from the 16RE cell lines and their induced tumors. The 8RE cell lines showed the characteristic transformation with efficient growth ability on plastic and colony formation in 0.3% soft agar. These results support the hypothesis that the HPV8E7 gene plays an important role in the carcinogenesis of skin cancers.
Initial stages of ion beam-induced phase transformations in Gd2O3 and Lu2O3
NASA Astrophysics Data System (ADS)
Chen, Chien-Hung; Tracy, Cameron L.; Wang, Chenxu; Lang, Maik; Ewing, Rodney C.
2018-02-01
The atomic-scale evolution of lanthanide sesquioxides Gd2O3 and Lu2O3 irradiated with 1 MeV Kr ions at room temperature and 120 K, up to fluences of 1 × 1016 ions/cm2 (˜20 dpa), has been characterized by in situ transmission electron microscopy. At room temperature, both oxides exhibited high radiation tolerance. Irradiation did not cause any observable structural change in either material, likely due to the mobility of irradiation-induced point defects, causing efficient defect annihilation. For Gd2O3, having the larger cation ionic radius of the two materials, an irradiation-induced stacking fault structure appeared at low fluences in the low temperature irradiation. As compared with the cubic-to-monoclinic phase transformations known to result from higher energy (˜GeV) ion irradiation, Kr ions of lower energies (˜MeV) yield much lower rates of damage accumulation and thus less extensive structural modification. At a fluence of 2.5 × 1015 ions/cm2, only the initial stages of the cubic-to-monoclinic (C to B) phase transformation process, consisting of the formation and aggregation of defects, have been observed.
Braun, Kevin L; Hapuarachchi, Suminda; Fernandez, Facundo M; Aspinwall, Craig A
2007-08-01
Here, we report the first utilization of Hadamard transform CE (HTCE), a high-sensitivity, multiplexed CE technique, with photolytic optical gating sample injection of caged fluorescent labels for the detection of biologically important amines. Previous implementations of HTCE have relied upon photobleaching optical gating sample injection of fluorescent dyes. Photolysis of caged fluorescent labels reduces the fluorescence background, providing marked enhancements in sensitivity compared to photobleaching. Application of fast Hadamard transform CE (fHTCE) for fluorescein-based dyes yields a ten-fold higher sensitivity for photolytic injections compared to photobleaching injections, due primarily to the reduced fluorescent background provided by caged fluorescent dyes. Detection limits as low as 5 pM (ca. 18 molecules per injection event) were obtained with on-column LIF detection using fHTCE in less than 25 s, with the capacity for continuous, online separations. Detection limits for glutamate and aspartate below 150 pM (1-2 amol/injection event) were obtained using photolytic sample injection, with separation efficiencies exceeding 1 x 10(6) plates/m and total multiplexed separation times as low as 8 s. These results strongly support the feasibility of this approach for high-sensitivity dynamic chemical monitoring applications.
Nanooptics for high efficient photon managment
NASA Astrophysics Data System (ADS)
Wyrowski, Frank; Schimmel, Hagen
2005-09-01
Optical systems for photon management, that is the generation of tailored electromagnetic fields, constitute one of the keys for innovation through photonics. An important subfield of photon management deals with the transformation of an incident light field into a field of specified intensity distribution. In this paper we consider some basic aspects of the nature of systems for those light transformations. It turns out, that the transversal redistribution of energy (TRE) is of central concern to achieve systems with high transformation efficiency. Besides established techniques nanostructured optical elements (NOE) are demanded to implement transversal energy redistribution. That builds a bridge between the needs of photon management, optical engineering, and nanooptics.
Diffractive optical elements for transformation of modes in lasers
Sridharan, Arun K.; Pax, Paul H.; Heebner, John E.; Drachenberg, Derrek R.; Armstrong, James P.; Dawson, Jay W.
2015-09-01
Spatial mode conversion modules are described, with the capability of efficiently transforming a given optical beam profile, at one plane in space into another well-defined optical beam profile at a different plane in space, whose detailed spatial features and symmetry properties can, in general, differ significantly. The modules are comprised of passive, high-efficiency, low-loss diffractive optical elements, combined with Fourier transform optics. Design rules are described that employ phase retrieval techniques and associated algorithms to determine the necessary profiles of the diffractive optical components. System augmentations are described that utilize real-time adaptive optical techniques for enhanced performance as well as power scaling.
Diffractive optical elements for transformation of modes in lasers
Sridharan, Arun K; Pax, Paul H; Heebner, John E; Drachenberg, Derrek R.; Armstrong, James P.; Dawson, Jay W.
2016-06-21
Spatial mode conversion modules are described, with the capability of efficiently transforming a given optical beam profile, at one plane in space into another well-defined optical beam profile at a different plane in space, whose detailed spatial features and symmetry properties can, in general, differ significantly. The modules are comprised of passive, high-efficiency, low-loss diffractive optical elements, combined with Fourier transform optics. Design rules are described that employ phase retrieval techniques and associated algorithms to determine the necessary profiles of the diffractive optical components. System augmentations are described that utilize real-time adaptive optical techniques for enhanced performance as well as power scaling.
NASA Technical Reports Server (NTRS)
Moorthi, Shrinivas; Higgins, R. W.
1993-01-01
An efficient, direct, second-order solver for the discrete solution of a class of two-dimensional separable elliptic equations on the sphere (which generally arise in implicit and semi-implicit atmospheric models) is presented. The method involves a Fourier transformation in longitude and a direct solution of the resulting coupled second-order finite-difference equations in latitude. The solver is made efficient by vectorizing over longitudinal wave-number and by using a vectorized fast Fourier transform routine. It is evaluated using a prescribed solution method and compared with a multigrid solver and the standard direct solver from FISHPAK.
A study on thermal characteristics analysis model of high frequency switching transformer
NASA Astrophysics Data System (ADS)
Yoo, Jin-Hyung; Jung, Tae-Uk
2015-05-01
Recently, interest has been shown in research on the module-integrated converter (MIC) in small-scale photovoltaic (PV) generation. In an MIC, the voltage boosting high frequency transformer should be designed to be compact in size and have high efficiency. In response to the need to satisfy these requirements, this paper presents a coupled electromagnetic analysis model of a transformer connected with a high frequency switching DC-DC converter circuit while considering thermal characteristics due to the copper and core losses. A design optimization procedure for high efficiency is also presented using this design analysis method, and it is verified by the experimental result.
Basnayake, Shiromani W V; Moyle, Richard; Birch, Robert G
2011-03-01
Amenability to tissue culture stages required for gene transfer, selection and plant regeneration are the main determinants of genetic transformation efficiency via particle bombardment into sugarcane. The technique is moving from the experimental phase, where it is sufficient to work in a few amenable genotypes, to practical application in a diverse and changing set of elite cultivars. Therefore, we investigated the response to callus initiation, proliferation, regeneration and selection steps required for microprojectile-mediated transformation, in a diverse set of Australian sugarcane cultivars. 12 of 16 tested cultivars were sufficiently amenable to existing routine tissue-culture conditions for practical genetic transformation. Three cultivars required adjustments to 2,4-D levels during callus proliferation, geneticin concentration during selection, and/or light intensity during regeneration. One cultivar gave an extreme necrotic response in leaf spindle explants and produced no callus tissue under the tested culture conditions. It was helpful to obtain spindle explants for tissue culture from plants with good water supply for growth, especially for genotypes that were harder to culture. It was generally possible to obtain several independent transgenic plants per bombardment, with time in callus culture limited to 11-15 weeks. A caution with this efficient transformation system is that separate shoots arose from different primary transformed cells in more than half of tested calli after selection for geneticin resistance. The results across this diverse cultivar set are likely to be a useful guide to key variables for rapid optimisation of tissue culture conditions for efficient genetic transformation of other sugarcane cultivars.
3D printed magnetic polymer composite transformers
NASA Astrophysics Data System (ADS)
Bollig, Lindsey M.; Hilpisch, Peter J.; Mowry, Greg S.; Nelson-Cheeseman, Brittany B.
2017-11-01
The possibility of 3D printing a transformer core using fused deposition modeling methods is explored. With the use of additive manufacturing, ideal transformer core geometries can be achieved in order to produce a more efficient transformer. In this work, different 3D printed settings and toroidal geometries are tested using a custom integrated magnetic circuit capable of measuring the hysteresis loop of a transformer. These different properties are then characterized, and it was determined the most effective 3D printed transformer core requires a high fill factor along with a high concentration of magnetic particulate.
A fast discrete S-transform for biomedical signal processing.
Brown, Robert A; Frayne, Richard
2008-01-01
Determining the frequency content of a signal is a basic operation in signal and image processing. The S-transform provides both the true frequency and globally referenced phase measurements characteristic of the Fourier transform and also generates local spectra, as does the wavelet transform. Due to this combination, the S-transform has been successfully demonstrated in a variety of biomedical signal and image processing tasks. However, the computational demands of the S-transform have limited its application in medicine to this point in time. This abstract introduces the fast S-transform, a more efficient discrete implementation of the classic S-transform with dramatically reduced computational requirements.
Niklaus, Michael; Gruissem, Wilhelm; Vanderschuren, Hervé
2011-01-01
Cassava is one of the most important crops in the tropics. Its industrial use for starch and biofuel production is also increasing its importance for agricultural production in tropical countries. In the last decade cassava biotechnology has emerged as a valuable alternative to the breeding constraints of this highly heterozygous crop for improved trait development of cassava germplasm. Cassava transformation remains difficult and time-consuming because of limitations in selecting transgenic tissues and regeneration of transgenic plantlets. We have recently reported an efficient and robust cassava transformation protocol using the hygromycin phosphotransferase II (hptII) gene as selection marker and the aminoglycoside hygromycin at optimal concentrations to maximize the regeneration of transgenic plantlets. In the present work, we expanded the transformation protocol to the use of the neomycin phosphotransferase II (nptII) gene as selection marker. Several aminoglycosides compatible with the use of nptII were tested and optimal concentrations for cassava transformation were determined. Given its efficiency equivalent to hptII as selection marker with the described protocol, the use of nptII opens new possibilities to engineer transgenic cassava lines with multiple T-DNA insertions and to produce transgenic cassava with a resistance marker gene that is already deregulated in several commercial transgenic crops.
Nurse executive transformational leadership found in participative organizations.
Dunham-Taylor, J
2000-05-01
The study examined a national sample of 396 randomly selected hospital nurse executives to explore transformational leadership, stage of power, and organizational climate. Results from a few nurse executive studies have found nurse executives were transformational leaders. As executives were more transformational, they achieved better staff satisfaction and higher work group effectiveness. This study integrates Bass' transformational leadership model with Hagberg's power stage theory and Likert's organizational climate theory. Nurse executives (396) and staff reporting to them (1,115) rated the nurse executives' leadership style, staff extra effort, staff satisfaction, and work group effectiveness using Bass and Avolio's Multifactor Leadership Questionnaire. Executives' bosses (360) rated executive work group effectiveness. Executives completed Hagberg's Personal Power Profile and ranked their organizational climate using Likert's Profile of Organizational Characteristics. Nurse executives used transformational leadership fairly often; achieved fairly satisfied staff levels; were very effective according to bosses; were most likely at stage 3 (power by achievement) or stage 4 (power by reflection); and rated their hospital as a Likert System 3 Consultative Organization. Staff satisfaction and work group effectiveness decreased as nurse executives were more transactional. Higher transformational scores tended to occur with higher educational degrees and within more participative organizations. Transformational qualities can be enhanced by further education, by achieving higher power stages, and by being within more participative organizations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Tingzing Tim; Tomov, Stanimire Z; Luszczek, Piotr R
As modern hardware keeps evolving, an increasingly effective approach to developing energy efficient and high-performance solvers is to design them to work on many small size and independent problems. Many applications already need this functionality, especially for GPUs, which are currently known to be about four to five times more energy efficient than multicore CPUs. We describe the development of one-sided factorizations that work for a set of small dense matrices in parallel, and we illustrate our techniques on the QR factorization based on Householder transformations. We refer to this mode of operation as a batched factorization. Our approach ismore » based on representing the algorithms as a sequence of batched BLAS routines for GPU-only execution. This is in contrast to the hybrid CPU-GPU algorithms that rely heavily on using the multicore CPU for specific parts of the workload. But for a system to benefit fully from the GPU's significantly higher energy efficiency, avoiding the use of the multicore CPU must be a primary design goal, so the system can rely more heavily on the more efficient GPU. Additionally, this will result in the removal of the costly CPU-to-GPU communication. Furthermore, we do not use a single symmetric multiprocessor(on the GPU) to factorize a single problem at a time. We illustrate how our performance analysis, and the use of profiling and tracing tools, guided the development and optimization of our batched factorization to achieve up to a 2-fold speedup and a 3-fold energy efficiency improvement compared to our highly optimized batched CPU implementations based on the MKL library(when using two sockets of Intel Sandy Bridge CPUs). Compared to a batched QR factorization featured in the CUBLAS library for GPUs, we achieved up to 5x speedup on the K40 GPU.« less
Bhanot, Gyan V [Princeton, NJ; Chen, Dong [Croton-On-Hudson, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Steinmacher-Burow, Burkhard D [Mount Kisco, NY; Vranas, Pavlos M [Bedford Hills, NY
2012-01-10
The present in invention is directed to a method, system and program storage device for efficiently implementing a multidimensional Fast Fourier Transform (FFT) of a multidimensional array comprising a plurality of elements initially distributed in a multi-node computer system comprising a plurality of nodes in communication over a network, comprising: distributing the plurality of elements of the array in a first dimension across the plurality of nodes of the computer system over the network to facilitate a first one-dimensional FFT; performing the first one-dimensional FFT on the elements of the array distributed at each node in the first dimension; re-distributing the one-dimensional FFT-transformed elements at each node in a second dimension via "all-to-all" distribution in random order across other nodes of the computer system over the network; and performing a second one-dimensional FFT on elements of the array re-distributed at each node in the second dimension, wherein the random order facilitates efficient utilization of the network thereby efficiently implementing the multidimensional FFT. The "all-to-all" re-distribution of array elements is further efficiently implemented in applications other than the multidimensional FFT on the distributed-memory parallel supercomputer.
Bhanot, Gyan V [Princeton, NJ; Chen, Dong [Croton-On-Hudson, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Steinmacher-Burow, Burkhard D [Mount Kisco, NY; Vranas, Pavlos M [Bedford Hills, NY
2008-01-01
The present in invention is directed to a method, system and program storage device for efficiently implementing a multidimensional Fast Fourier Transform (FFT) of a multidimensional array comprising a plurality of elements initially distributed in a multi-node computer system comprising a plurality of nodes in communication over a network, comprising: distributing the plurality of elements of the array in a first dimension across the plurality of nodes of the computer system over the network to facilitate a first one-dimensional FFT; performing the first one-dimensional FFT on the elements of the array distributed at each node in the first dimension; re-distributing the one-dimensional FFT-transformed elements at each node in a second dimension via "all-to-all" distribution in random order across other nodes of the computer system over the network; and performing a second one-dimensional FFT on elements of the array re-distributed at each node in the second dimension, wherein the random order facilitates efficient utilization of the network thereby efficiently implementing the multidimensional FFT. The "all-to-all" re-distribution of array elements is further efficiently implemented in applications other than the multidimensional FFT on the distributed-memory parallel supercomputer.
The demodulated band transform
Kovach, Christopher K.; Gander, Phillip E.
2016-01-01
Background Windowed Fourier decompositions (WFD) are widely used in measuring stationary and non-stationary spectral phenomena and in describing pairwise relationships among multiple signals. Although a variety of WFDs see frequent application in electrophysiological research, including the short-time Fourier transform, continuous wavelets, band-pass filtering and multitaper-based approaches, each carries certain drawbacks related to computational efficiency and spectral leakage. This work surveys the advantages of a WFD not previously applied in electrophysiological settings. New Methods A computationally efficient form of complex demodulation, the demodulated band transform (DBT), is described. Results DBT is shown to provide an efficient approach to spectral estimation with minimal susceptibility to spectral leakage. In addition, it lends itself well to adaptive filtering of non-stationary narrowband noise. Comparison with existing methods A detailed comparison with alternative WFDs is offered, with an emphasis on the relationship between DBT and Thomson's multitaper. DBT is shown to perform favorably in combining computational efficiency with minimal introduction of spectral leakage. Conclusion DBT is ideally suited to efficient estimation of both stationary and non-stationary spectral and cross-spectral statistics with minimal susceptibility to spectral leakage. These qualities are broadly desirable in many settings. PMID:26711370
Furukawa, Tomoyuki; Angelis, Karel J.; Britt, Anne B.
2015-01-01
The DNA double-strand break (DSB) is a critical type of damage, and can be induced by both endogenous sources (e.g., errors of oxidative metabolism, transposable elements, programmed meiotic breaks, or perturbation of the DNA replication fork) and exogenous sources (e.g., ionizing radiation or radiomimetic chemicals). Although higher plants, like mammals, are thought to preferentially repair DSBs via nonhomologous end joining (NHEJ), much remains unclear about plant DSB repair pathways. Our reverse genetic approach suggests that DNA polymerase λ is involved in DSB repair in Arabidopsis. The Arabidopsis T-DNA insertion mutant (atpolλ-1) displayed sensitivity to both gamma-irradiation and treatment with radiomimetic reagents, but not to other DNA damaging treatments. The atpolλ-1 mutant showed a moderate sensitivity to DSBs, while Arabidopsis Ku70 and DNA ligase 4 mutants (atku70-3 and atlig4-2), both of which play critical roles in NHEJ, exhibited a hypersensitivity to these treatments. The atpolλ-1/atlig4-2 double mutant exhibited a higher sensitivity to DSBs than each single mutant, but the atku70/atpolλ-1 showed similar sensitivity to the atku70-3 mutant. We showed that transcription of the DNA ligase 1, DNA ligase 6, and Wee1 genes was quickly induced by BLM in several NHEJ deficient mutants in contrast to wild-type. Finally, the T-DNA transformation efficiency dropped in NHEJ deficient mutants and the lowest transformation efficiency was scored in the atpolλ-1/atlig4-2 double mutant. These results imply that AtPolλ is involved in both DSB repair and DNA damage response pathway. PMID:26074930
High-Efficiency, Low-Weight Power Transformer
NASA Technical Reports Server (NTRS)
Welsh, J. P.
1986-01-01
Technology for design and fabrication of radically new type of conductioncooled high-power (25 kVA) lightweight transformer having outstanding thermal and electrical characteristics. Fulfills longstanding need for conduction-cooled transformers and magnetics with low internal thermal resistances. Development techniques limited to conductive heat transfer, since other techniques such as liquid cooling, forced liquid cooling, and evaporative cooling of transformers impractical in zero-gravity space environment. Transformer uniquely designed: mechanical structure also serves as thermal paths for conduction cooling of magnetic core and windings.
NASA Technical Reports Server (NTRS)
Khayat, Michael A.; Wilton, Donald R.; Fink, Patrick W.
2007-01-01
Simple and efficient numerical procedures using singularity cancellation methods are presented for evaluating singular and near-singular potential integrals. Four different transformations are compared and the advantages of the Radial-angular transform are demonstrated. A method is then described for optimizing this integration scheme.
High-Performance Work Systems: American Models of Workplace Transformation.
ERIC Educational Resources Information Center
Appelbaum, Eileen; Batt, Rosemary
Rising competition in world and domestic markets for the past 2 decades has necessitated that U.S. companies undergo significant transformations to improve their performance with respect to a wide array of efficiency and quality indicators. Research on the transformations recently undertaken by some U.S. companies to boost performance revealed two…
Far-field radiation patterns of aperture antennas by the Winograd Fourier transform algorithm
NASA Technical Reports Server (NTRS)
Heisler, R.
1978-01-01
A more time-efficient algorithm for computing the discrete Fourier transform, the Winograd Fourier transform (WFT), is described. The WFT algorithm is compared with other transform algorithms. Results indicate that the WFT algorithm in antenna analysis appears to be a very successful application. Significant savings in cpu time will improve the computer turn around time and circumvent the need to resort to weekend runs.
Chaos-assisted broadband momentum transformation in optical microresonators.
Jiang, Xuefeng; Shao, Linbo; Zhang, Shu-Xin; Yi, Xu; Wiersig, Jan; Wang, Li; Gong, Qihuang; Lončar, Marko; Yang, Lan; Xiao, Yun-Feng
2017-10-20
The law of momentum conservation rules out many desired processes in optical microresonators. We report broadband momentum transformations of light in asymmetric whispering gallery microresonators. Assisted by chaotic motions, broadband light can travel between optical modes with different angular momenta within a few picoseconds. Efficient coupling from visible to near-infrared bands is demonstrated between a nanowaveguide and whispering gallery modes with quality factors exceeding 10 million. The broadband momentum transformation enhances the device conversion efficiency of the third-harmonic generation by greater than three orders of magnitude over the conventional evanescent-wave coupling. The observed broadband and fast momentum transformation could promote applications such as multicolor lasers, broadband memories, and multiwavelength optical networks. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
KSI's Cross Insulated Core Transformer Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uhmeyer, Uwe
2009-08-04
Cross Insulated Core Transformer (CCT) technology improves on Insulated Core Transformer (ICT) implementations. ICT systems are widely used in very high voltage, high power, power supply systems. In an ICT transformer ferrite core sections are insulated from their neighboring ferrite cores. Flux leakage is present at each of these insulated gaps. The flux loss is raised to the power of stages in the ICT design causing output voltage efficiency to taper off with increasing stages. KSI's CCT technology utilizes a patented technique to compensate the flux loss at each stage of an ICT system. Design equations to calculate the fluxmore » compensation capacitor value are presented. CCT provides corona free operation of the HV stack. KSI's CCT based High Voltage power supply systems offer high efficiency operation, high frequency switching, low stored energy and smaller size over comparable ICT systems.« less
The morphing of geographical features by Fourier transformation
Liu, Pengcheng; Yu, Wenhao; Cheng, Xiaoqiang
2018-01-01
This paper presents a morphing model of vector geographical data based on Fourier transformation. This model involves three main steps. They are conversion from vector data to Fourier series, generation of intermediate function by combination of the two Fourier series concerning a large scale and a small scale, and reverse conversion from combination function to vector data. By mirror processing, the model can also be used for morphing of linear features. Experimental results show that this method is sensitive to scale variations and it can be used for vector map features’ continuous scale transformation. The efficiency of this model is linearly related to the point number of shape boundary and the interceptive value n of Fourier expansion. The effect of morphing by Fourier transformation is plausible and the efficiency of the algorithm is acceptable. PMID:29351344
Maethner, Emanuel; Garcia-Cuellar, Maria-Paz; Breitinger, Constanze; Takacova, Sylvia; Divoky, Vladimir; Hess, Jay L.; Slany, Robert K.
2014-01-01
Summary Stimulation of transcriptional elongation is a key activity of leukemogenic MLL fusion proteins. Here we provide evidence that MLL-ENL also inhibits polycomb-mediated silencing as a prerequisite for efficient transformation. Biochemical studies identified ENL as scaffold that contacted the elongation machinery as well as the PRC1 (polycomb repressive complex 1) component CBX8. These interactions were mutually exclusive in vitro corresponding to an antagonistic behavior of MLL-ENL and CBX8 in vivo. CBX8 inhibited elongation in a specific reporter assay and this effect was neutralized by direct association with ENL. Correspondingly MLL-ENL defective in CBX8 binding could not fully activate gene loci necessary for transformation. Finally, we demonstrate dimerization of MLL-ENL as neomorphic activity that may augment polycomb inhibition and transformation. PMID:23623499
Steenackers, Bart; De Cooman, Luc; De Vos, Dirk
2015-04-01
The annual production of hops (Humulus lupulus L.) exceeds 100,000 mt and is almost exclusively consumed by the brewing industry. The value of hops is attributed to their characteristic secondary metabolites; these metabolites are precursors which are transformed during the brewing process into important bittering, aromatising and preservative components with rather low efficiency. By selectively transforming these components off-line, both their utilisation efficiency and functionality can be significantly improved. Therefore, the chemical transformations of these secondary metabolites will be considered with special attention to recent advances in the field. The considered components are the hop alpha-acids, hop beta-acids and xanthohumol, which are components unique to hops, and alpha-humulene and beta-caryophyllene, sesquiterpenes which are highly characteristic of hops. Copyright © 2014 Elsevier Ltd. All rights reserved.
Labbé, Geneviève M. C.; Nimmo, Derric D.; Alphey, Luke
2010-01-01
Background The Asian tiger mosquito, Aedes albopictus (Skuse), is a vector of several arboviruses including dengue and chikungunya. This highly invasive species originating from Southeast Asia has travelled the world in the last 30 years and is now established in Europe, North and South America, Africa, the Middle East and the Caribbean. In the absence of vaccine or antiviral drugs, efficient mosquito control strategies are crucial. Conventional control methods have so far failed to control Ae. albopictus adequately. Methodology/Principal Findings Germline transformation of Aedes albopictus was achieved by micro-injection of embryos with a piggyBac-based transgene carrying a 3xP3-ECFP marker and an attP site, combined with piggyBac transposase mRNA and piggyBac helper plasmid. Five independent transgenic lines were established, corresponding to an estimated transformation efficiency of 2–3%. Three lines were re-injected with a second-phase plasmid carrying an attB site and a 3xP3-DsRed2 marker, combined with PhiC31 integrase mRNA. Successful site-specific integration was observed in all three lines with an estimated transformation efficiency of 2–6%. Conclusions/Significance Both piggybac- and site-specific PhiC31-mediated germline transformation of Aedes albopictus were successfully achieved. This is the first report of Ae. albopictus germline transformation and engineering, a key step towards studying and controlling this species using novel molecular techniques and genetic control strategies. PMID:20808959
Methylation-dependent DNA discrimination in natural transformation of Campylobacter jejuni
Leveque, Rhiannon M.; Dawid, Suzanne; DiRita, Victor J.
2017-01-01
Campylobacter jejuni, a leading cause of bacterial gastroenteritis, is naturally competent. Like many competent organisms, C. jejuni restricts the DNA that can be used for transformation to minimize undesirable changes in the chromosome. Although C. jejuni can be transformed by C. jejuni-derived DNA, it is poorly transformed by the same DNA propagated in Escherichia coli or produced with PCR. Our work indicates that methylation plays an important role in marking DNA for transformation. We have identified a highly conserved DNA methyltransferase, which we term Campylobacter transformation system methyltransferase (ctsM), which methylates an overrepresented 6-bp sequence in the chromosome. DNA derived from a ctsM mutant transforms C. jejuni significantly less well than DNA derived from ctsM+ (parental) cells. The ctsM mutation itself does not affect transformation efficiency when parental DNA is used, suggesting that CtsM is important for marking transforming DNA, but not for transformation itself. The mutant has no growth defect, arguing against ongoing restriction of its own DNA. We further show that E. coli plasmid and PCR-derived DNA can efficiently transform C. jejuni when only a subset of the CtsM sites are methylated in vitro. A single methylation event 1 kb upstream of the DNA involved in homologous recombination is sufficient to transform C. jejuni, whereas otherwise identical unmethylated DNA is not. Methylation influences DNA uptake, with a slight effect also seen on DNA binding. This mechanism of DNA discrimination in C. jejuni is distinct from the DNA discrimination described in other competent bacteria. PMID:28855338
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, P.R.; Van Dyke, J.W.; McConnell, B.W.
It is estimated that electric utilities use about 40 million distribution transformers in supplying electricity to customers in the United States. Although utility distribution transformers collectively have a high average efficiency, they account for approximately 61 billion kWh of the 229 billion kWh of energy lost annually in the delivery of electricity. Distribution transformers are being replaced over time by new, more efficient, lower-loss units during routine utility maintenance of power distribution systems. Maintenance is typically not performed on units in service. However, units removed from service with appreciable remaining life are often refurbished and returned to stock. Distribution transformersmore » may be removed from service for many reasons, including failure, over- or underloading, or line upgrades such as voltage changes or rerouting. When distribution transformers are removed from service, a decision must be made whether to dispose of the transformer and purchase a lower-loss replacement or to refurbish the transformer and return it to stock for future use. This report contains findings and recommendations on replacing utility distribution transformers during routine maintenance, which is required by section 124(c) of the Energy Policy Act of 1992. The objectives of the study are to evaluate the practicability, cost-effectiveness, and potential energy savings of replacing or upgrading existing transformers during routine utility maintenance and to develop recommendations on was to achieve the potential energy savings.« less
[Transforming gene in human esophageal carcinoma tissue].
Jiang, W
1988-09-01
The transforming gene in human esophageal carcinoma (HEC) tissues collected from Lin-xian county, a high incidence area of esophageal cancer was studied. Eight primary HEC tissues were used as sources for the preparation of DNA. High molecular weight DNAs were separately added to NIH 3T3 cells by the calcium phosphate coprecipitation method. Of the 8 HEC tissues examined, 3 DNAs showed transforming activity and produced secondary transformants. The use of uncloned NIH 3T3 cells resulted in the appearances of non-transforming. The efficiency of primary transfection foci was low (0.025--0.05 focus per ug of DNA). In the secondary transfection, the efficiency was increased (0.30 focus per ug of DNA). The primary and secondary transformants were capable of forming colonies in soft agar (0.33%) in contrast to the control NIH 3T3 cells, which did not show any anchorage-independent growth. About 1 X 10(6) cells of the cloned secondary transformants were injected subcutaneously into athymic BALB/c nude mice. The mice developed large tumors (approximately 20-30 mm in diameter) within 5--15 days after injection. No tumor developed in mice injected with control NIH 3T3 cells even after 2 months. The transforming DNA had a linkage to the Alu sequence, indicating that a common human DNA fragment is conserved in the tumors. H-ras was found in the transforming DNA using Southern blot assay.
Transforming Higher Education or (NUTN and the Information Age).
ERIC Educational Resources Information Center
Grantham, J. O.
New values, economic necessity, computers, and telecommunications interacting on each other are transforming our personal lives and our institutions. These changes can be for the good if we transform ourselves to handle them properly as a new dimension in society. Higher education, by its very nature, should be affected profoundly as we move into…
Ravin, Arnold W.; Ma, Michael
1975-01-01
A mutation (ery-r8) conferring a high level of resistance to erythromycin in the Challis strain of Streptoccus sanguis can be transferred to wild-type erythromycin-sensitive recipients via single molecules of donor DNA. The transformants thus produced are of two types: (1) cells slightly more resistant to erythromycin than wild-type and capable of segregating (at a frequency of 2 x 10-4/bacterium/generation) either wild-type or highly-resistant cells like the original donor type; (2) cells phenotypically and genotypically identical to the original donor type. The unstable diploids (ery-r8/+) occur with a frequency equivalent to that obtained with high-efficiency (HE) markers, whereas the stable donor-type (ery-r8) transformants occur with about five hundred times lower frequency. Penetration of the wild-type recipient by more than one molecule of DNA bearing the ery-r8 marker increases by as much as seven times the incidence of stable transformants. UV-irradiation of molecules bearing the ery-r8 marker diminishes their ability to cooperate in producing a stable transformant, although the UV sensitivity of stable transformant production by a single DNA molecule is not different from that of diploid production. Hence, stable transformants do not appear to be produced by a process typical of low efficiency (LE) markers, which are generally highly sensitive to ultraviolet irradiation. Moreover, stable ery-r8 transformants are produced with equally low frequencies in strains of S. pneumoniae that discriminate (hex+) and fail to discriminate (hex -) between HE and LE markers. We postulate that all transformations by the ery-r8 marker result in ery-r8/+ diploids, and that segregation results in the infrequent stable transformants of the original donor type. This hypothesis is supported by the observations that rifampin treatment of ery-r8/+ populations increases the frequency of segregation and similar treatment of wild-type recipients undergoing transformation by the ery-r8 marker increases the frequency of stable transformants.—In producing the ery-r8/+ transformant the r8 allele is integrated close to the site of its wild-type homolog, since single molecules of DNA from this transformant can be shown to carry both alleles. Segregation of either the ery-r8 or + allele is not detectably enhanced by acridine orange or thymidine deprivation.—The ery-r8 marker occurs close to a site of mutation (ery-r2) which confers erythromycin resistance upon ribosomes. When the r2 and r8 markers are jointly transferred, ery-r2-r8/+ genomes are produced in which the r2 marker is stably integrated but the r8 marker is unstably adjoined to its wild-type homolog. Thus, the duplicated region can be quite short. When the ery-r8 marker is stably integrated, the region of the marker is refractory to subsequent transformation. Markers with properties like ery-r8 are not particularly rare, being found with a frequency of about 4% among spontaneous mutations to erythromycin resistance. PMID:1232022
Transforming Higher Education: Views from Leaders around the World. Series on Higher Education.
ERIC Educational Resources Information Center
Green, Madeleine F., Ed.
This collection of 16 essays examines forces transforming higher education around the world, including demands for greater access to higher education, funding problems, the conflicting requirements of various constituencies, and pressures to contribute to a country's economic and social development. The essays include: (1) "Forces for Change"…
Funding and the Attainment of Transformation Goals in South Africa's Higher Education
ERIC Educational Resources Information Center
Wangenge-Ouma, Gerald
2010-01-01
The link between the funding of higher education and the attainment of higher education transformation goals in South Africa, especially access by students from previously under-represented communities, is the main focus of this paper. Specifically, the paper examines three questions: (a) How does public funding of higher education encourage (or…
Comparison of Ultrasonic and CO2 Laser Pretreatment Methods on Enzyme Digestibility of Corn Stover
Tian, Shuang-Qi; Wang, Zhen-Yu; Fan, Zi-Luan; Zuo, Li-Li
2012-01-01
To decrease the cost of bioethanol production, biomass recalcitrance needs to be overcome so that the conversion of biomass to bioethanol becomes more efficient. CO2 laser irradiation can disrupt the lignocellulosic physical structure and reduce the average size of fiber. Analyses with Fourier transform infrared spectroscopy, specific surface area, and the microstructure of corn stover were used to elucidate the enhancement mechanism of the pretreatment process by CO2 laser irradiation. The present work demonstrated that the CO2 laser had potential to enhance the bioconversion efficiency of lignocellulosic waste to renewable bioethanol. The saccharification rate of the CO2 laser pretreatment was significantly higher than ultrasonic pretreatment, and reached 27.75% which was 1.34-fold of that of ultrasonic pretreatment. The results showed the impact of CO2 laser pretreatment on corn stover to be more effective than ultrasonic pretreatment. PMID:22605970
Comparison of ultrasonic and CO₂laser pretreatment methods on enzyme digestibility of corn stover.
Tian, Shuang-Qi; Wang, Zhen-Yu; Fan, Zi-Luan; Zuo, Li-Li
2012-01-01
To decrease the cost of bioethanol production, biomass recalcitrance needs to be overcome so that the conversion of biomass to bioethanol becomes more efficient. CO(2) laser irradiation can disrupt the lignocellulosic physical structure and reduce the average size of fiber. Analyses with Fourier transform infrared spectroscopy, specific surface area, and the microstructure of corn stover were used to elucidate the enhancement mechanism of the pretreatment process by CO(2) laser irradiation. The present work demonstrated that the CO(2) laser had potential to enhance the bioconversion efficiency of lignocellulosic waste to renewable bioethanol. The saccharification rate of the CO(2) laser pretreatment was significantly higher than ultrasonic pretreatment, and reached 27.75% which was 1.34-fold of that of ultrasonic pretreatment. The results showed the impact of CO(2) laser pretreatment on corn stover to be more effective than ultrasonic pretreatment.
Motorcyclists safety system to avoid rear end collisions based on acoustic signatures
NASA Astrophysics Data System (ADS)
Muzammel, M.; Yusoff, M. Zuki; Malik, A. Saeed; Mohamad Saad, M. Naufal; Meriaudeau, F.
2017-03-01
In many Asian countries, motorcyclists have a higher fatality rate as compared to other vehicles. Among many other factors, rear end collisions are also contributing for these fatalities. Collision detection systems can be useful to minimize these accidents. However, the designing of efficient and cost effective collision detection system for motorcyclist is still a major challenge. In this paper, an acoustic information based, cost effective and efficient collision detection system is proposed for motorcycle applications. The proposed technique uses the Short time Fourier Transform (STFT) to extract the features from the audio signal and Principal component analysis (PCA) has been used to reduce the feature vector length. The reduction of feature length, further increases the performance of this technique. The proposed technique has been tested on self recorded dataset and gives accuracy of 97.87%. We believe that this method can help to reduce a significant number of motorcycle accidents.
From Physics Model to Results: An Optimizing Framework for Cross-Architecture Code Generation
Blazewicz, Marek; Hinder, Ian; Koppelman, David M.; ...
2013-01-01
Starting from a high-level problem description in terms of partial differential equations using abstract tensor notation, the Chemora framework discretizes, optimizes, and generates complete high performance codes for a wide range of compute architectures. Chemora extends the capabilities of Cactus, facilitating the usage of large-scale CPU/GPU systems in an efficient manner for complex applications, without low-level code tuning. Chemora achieves parallelism through MPI and multi-threading, combining OpenMP and CUDA. Optimizations include high-level code transformations, efficient loop traversal strategies, dynamically selected data and instruction cache usage strategies, and JIT compilation of GPU code tailored to the problem characteristics. The discretization ismore » based on higher-order finite differences on multi-block domains. Chemora's capabilities are demonstrated by simulations of black hole collisions. This problem provides an acid test of the framework, as the Einstein equations contain hundreds of variables and thousands of terms.« less
ERIC Educational Resources Information Center
Hill, Barbara; Green, Madeleine; Eckel, Peter
This essay, part of a series on change in higher education stemming from the American Council on Education (ACE) Project on Leadership and Institutional Transformation, aims to help higher education governing boards at both public and private institutions understand the complexities of the change process and find practical advice about policies…
Fourier transform spectroscopy of cotton and cotton trash
USDA-ARS?s Scientific Manuscript database
Fourier Transform techniques have been shown to have higher signal-to-noise capabilities, higher throughput, negligible stray light, continuous spectra, and higher resolution. In addition, FT spectroscopy affords for frequencies in spectra to be measured all at once and more precise wavelength calib...
Natural Transformation of Campylobacter jejuni Occurs Beyond Limits of Growth
Vegge, Christina S.; Brøndsted, Lone; Ligowska-Marzęta, Małgorzata; Ingmer, Hanne
2012-01-01
Campylobacter jejuni is a human bacterial pathogen. While poultry is considered to be a major source of food borne campylobacteriosis, C. jejuni is frequently found in the external environment, and water is another well-known source of human infections. Natural transformation is considered to be one of the main mechanisms for mediating transfer of genetic material and evolution of the organism. Given the diverse habitats of C. jejuni we set out to examine how environmental conditions and physiological processes affect natural transformation of C. jejuni. We show that the efficiency of transformation is correlated to the growth conditions, but more importantly that transformation occurs at growth-restrictive conditions as well as in the late stationary phase; hence revealing that growth per se is not required for C. jejuni to be competent. Yet, natural transformation of C. jejuni is an energy dependent process, that occurs in the absence of transcription but requires an active translational machinery. Moreover, we show the ATP dependent ClpP protease to be important for transformation, which possibly could be associated with reduced protein glycosylation in the ClpP mutant. In contrast, competence of C. jejuni was neither found to be involved in DNA repair following DNA damage nor to provide a growth benefit. Kinetic studies revealed that several transformation events occur per cell cycle indicating that natural transformation of C. jejuni is a highly efficient process. Thus, our findings suggest that horizontal gene transfer by natural transformation takes place in various habitats occupied by C. jejuni. PMID:23049803
Wu, Dongliang; Navet, Natasha; Liu, Yingchao; Uchida, Janice; Tian, Miaoying
2016-09-06
As an agriculturally important oomycete genus, Phytophthora contains a large number of destructive plant pathogens that severely threaten agricultural production and natural ecosystems. Among them is the broad host range pathogen P. palmivora, which infects many economically important plant species. An essential way to dissect their pathogenesis mechanisms is genetic modification of candidate genes, which requires effective transformation systems. Four methods were developed for transformation of Phytophthora spp., including PEG(polyethylene glycol)/CaCl2 mediated protoplast transformation, electroporation of zoospores, microprojectile bombardment and Agrobacterium-mediated transformation (AMT). Among them, AMT has many advantages over the other methods such as easy handling and mainly generating single-copy integration in the genome. An AMT method previously reported for P. infestans and P. palmivora has barely been used in oomycete research due to low success and low reproducibility. In this study, we report a simple and efficient AMT system for P. palmivora. Using this system, we were able to reproducibly generate over 40 transformants using zoospores collected from culture grown in a single 100 mm-diameter petri dish. The generated GFP transformants constitutively expressed GFP readily detectable using a fluorescence microscope. All of the transformants tested using Southern blot analysis contained a single-copy T-DNA insertion. This system is highly effective and reproducible for transformation of P. palmivora and expected to be adaptable for transformation of additional Phytophthora spp. and other oomycetes. Its establishment will greatly accelerate their functional genomic studies.
Phosphorus speciation, transformation, and preservation in the coastal area of Rushan Bay.
Liu, Jun; Zang, Jiaye; Zhao, Chenying; Yu, Zhigang; Xu, Bochao; Li, Jingxi; Ran, Xiangbin
2016-09-15
Phosphorus (P) speciation, burial, and transformation are poorly constrained under low-oxygen conditions. Sequential chemical extraction techniques, in-situ incubation, and laboratory incubation were employed to explore P cycling in the low-oxygen area of coastal Rushan. The study determined that the total P concentrations in the coastal area of Rushan Bay were higher than those of other China shelf seas, and largely affected by anthropogenic activities. The phosphate (DRP) fluxes in the study area calculated using an incubation method (0-1960μmolm(-2)day(-)(1)) and measured based on pore water gradients (1.5-50.4μmolm(-2)day(-)(1)) were both highly correlated with oxygen conditions. Sediment incubations showed that DRP diffusion from the sediment mainly originates from Fe-P and Auth-P dissolution and that Org-P recycling contributed only a small portion of the total released P pool. The benthic phosphate flux can be 60 times higher under low bottom-water oxygen levels of 63-150μmolL(-1) than under oxygen levels exceeding 150μmolL(-1) in the study area. The P accumulation rates and burial efficiencies in this study area ranged from 16.5-33.3μmolcm(-2)year(-1) and 81.1-83.4%, respectively, and were regulated by the oxygen level and diffusive DRP flux. This study indicates that low oxygen levels between 63 and 150μmol significantly govern P transformation and preservation in the sediment and P pools in the water column. Copyright © 2016 Elsevier B.V. All rights reserved.
García Iglesias, Daniel; Roqueñi Gutiérrez, Nieves; De Cos, Francisco Javier; Calvo, David
2018-01-01
Background: Fragmentation and delayed potentials in the QRS signal of patients have been postulated as risk markers for Sudden Cardiac Death (SCD). The analysis of the high-frequency spectral content may be useful for quantification. Methods: Forty-two consecutive patients with prior history of SCD or malignant arrhythmias (patients) where compared with 120 healthy individuals (controls). The QRS complexes were extracted with a modified Pan-Tompkins algorithm and processed with the Continuous Wavelet Transform to analyze the high-frequency content (85–130 Hz). Results: Overall, the power of the high-frequency content was higher in patients compared with controls (170.9 vs. 47.3 103nV2Hz−1; p = 0.007), with a prolonged time to reach the maximal power (68.9 vs. 64.8 ms; p = 0.002). An analysis of the signal intensity (instantaneous average of cumulative power), revealed a distinct function between patients and controls. The total intensity was higher in patients compared with controls (137.1 vs. 39 103nV2Hz−1s−1; p = 0.001) and the time to reach the maximal intensity was also prolonged (88.7 vs. 82.1 ms; p < 0.001). Discussion: The high-frequency content of the QRS complexes was distinct between patients at risk of SCD and healthy controls. The wavelet transform is an efficient tool for spectral analysis of the QRS complexes that may contribute to stratification of risk. PMID:29439530
Methods for genetic transformation of filamentous fungi.
Li, Dandan; Tang, Yu; Lin, Jun; Cai, Weiwen
2017-10-03
Filamentous fungi have been of great interest because of their excellent ability as cell factories to manufacture useful products for human beings. The development of genetic transformation techniques is a precondition that enables scientists to target and modify genes efficiently and may reveal the function of target genes. The method to deliver foreign nucleic acid into cells is the sticking point for fungal genome modification. Up to date, there are some general methods of genetic transformation for fungi, including protoplast-mediated transformation, Agrobacterium-mediated transformation, electroporation, biolistic method and shock-wave-mediated transformation. This article reviews basic protocols and principles of these transformation methods, as well as their advantages and disadvantages.
Actigraphy-Derived Daily Rest-Activity Patterns and Body Mass Index in Community-Dwelling Adults.
Cespedes Feliciano, Elizabeth M; Quante, Mirja; Weng, Jia; Mitchell, Jonathan A; James, Peter; Marinac, Catherine R; Mariani, Sara; Redline, Susan; Kerr, Jacqueline; Godbole, Suneeta; Manteiga, Alicia; Wang, Daniel; Hipp, J Aaron
2017-12-01
To examine associations between 24-hour rest-activity patterns and body mass index (BMI) among community-dwelling US adults. Rest-activity patterns provide a field method to study exposures related to circadian rhythms. Adults (N = 578) wore an actigraph on their nondominant wrist for 7 days. Intradaily variability and interdaily stability (IS), M10 (most active 10-hours), L5 (least active 5-hours), and relative amplitude (RA) were derived using nonparametric rhythm analysis. Mesor, acrophase, and amplitude were calculated from log-transformed count data using the parametric cosinor approach. Participants were 80% female and mean (standard deviation) age was 52 (15) years. Participants with higher BMI had lower values for magnitude, RA, IS, total sleep time (TST), and sleep efficiency. In multivariable analyses, less robust 24-hour rest-activity patterns as represented by lower RA were consistently associated with higher BMI: comparing the bottom quintile (least robust) to the top quintile (most robust 24-hour rest-activity pattern) of RA, BMI was 3-kg/m2 higher (p = .02). Associations were similar in magnitude to an hour less of TST (1-kg/m2 higher BMI) or a 10% decrease in sleep efficiency (2-kg/m2 higher BMI), and independent of age, sex, race, education, and the duration of rest and/or activity. Lower RA, reflecting both higher night activity and lower daytime activity, was associated with higher BMI. Independent of the duration of rest or activity during the day or night, 24-hour rest, and activity patterns from actigraphy provide aggregated measures of activity that associate with BMI in community-dwelling adults. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Zhang, Honglei; Li, Longzhu; Liu, Changhai; Wang, Wenchang; Liang, Penghua; Mitsuzak, Naotoshi; Chen, Zhidong
2018-05-01
This work provides a facile anodic electrodeposition method for synthesizing carbon coated α-Fe2O3 photoanode followed by annealing treatment with argon atmosphere. Compared with bare hematite photoanode, the carbon coated α-Fe2O3 photoanodes annealed at lower temperature (Fe2O3/C-L) and higher temperature (Fe2O3/C-H) have higher photocurrent density as 0.3 and 0.5 mA cm-2 (at 1.23 V vs. RHE), respectively. The excellent PEC performance is attributed to the synergistic reaction of carbon and vacancy oxygen. The morphology and properties of the sample were characterized with scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, UV-Vis spectra, X-ray diffractometry, X-ray photoelectron spectra, and photoelectrical measurements.
A discrete Fourier transform for virtual memory machines
NASA Technical Reports Server (NTRS)
Galant, David C.
1992-01-01
An algebraic theory of the Discrete Fourier Transform is developed in great detail. Examination of the details of the theory leads to a computationally efficient fast Fourier transform for the use on computers with virtual memory. Such an algorithm is of great use on modern desktop machines. A FORTRAN coded version of the algorithm is given for the case when the sequence of numbers to be transformed is a power of two.
A practical approach to the degradation of polychlorinated biphenyls in transformer oil.
Wu, Wenhai; Xu, Jie; Zhao, Hongmei; Zhang, Qing; Liao, Shijian
2005-08-01
A practical and efficient disposal method for hydrodechlorination of polychlorinated biphenyls (PCBs) in transformer oil is reported. Transformer oil containing PCBs was treated by nanometric sodium hydride (nano-NaH) and transition metal catalysts. High destruction and removal efficiency (89.8%) can be attained by nano-NaH alone under mild conditions. The process exhibits apparent characteristics of a first order reaction. The reductive ability of nano-NaH was enhanced by the addition of transition metal catalysts. In the presence of TiCl4, 99.9% PCBs was hydrodechlorinated. The complex reducing reagents, Ni(OAc)2+i-PrONa, show extra hydrodechlorinating activity for di-chlorinated biphenyls.
Feature combinations and the divergence criterion
NASA Technical Reports Server (NTRS)
Decell, H. P., Jr.; Mayekar, S. M.
1976-01-01
Classifying large quantities of multidimensional remotely sensed agricultural data requires efficient and effective classification techniques and the construction of certain transformations of a dimension reducing, information preserving nature. The construction of transformations that minimally degrade information (i.e., class separability) is described. Linear dimension reducing transformations for multivariate normal populations are presented. Information content is measured by divergence.
Algorithm Diversity for Resilent Systems
2016-06-27
data structures. 15. SUBJECT TERMS computer security, software diversity, program transformation 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18...systematic method for transforming Datalog rules with general universal and existential quantification into efficient algorithms with precise complexity...worst case in the size of the ground rules. There are numerous choices during the transformation that lead to diverse algorithms and different
A green method of diaphragm spring's anti-rusting with high quality and efficiency
NASA Astrophysics Data System (ADS)
Huang, Xinming; Hua, Wenlin
2017-10-01
This paper introduces a green method of diaphragm spring's anti-rusting, which is of high quality, high efficiency and low consumption. It transforms the phosphating way of anti-rusting to physical anti-rusting that directly coat anti-rusting oil on the surface of the spring, and transforms the manual-oiling or oil-immersion to fully-automatically ultrasonic oiling. Hence, this method will completely change the way of diaphgragm spring's anti-rusting.
NASA Astrophysics Data System (ADS)
Chang, s.; Huang, F.; Li, B.; Qi, H.; Zhai, H.
2018-04-01
Water use efficiency is known as an important indicator of carbon and water cycle and reflects the transformation capacity of vegetation water and nutrients into biomass. In this study, we presented a new indicator of water use efficiency, soil water use level (SWUL), derived from satellite remote sensing based gross primary production and the Visible and Shortwave Infrared Drought Index (VSDI). SWUL based on MODIS data was calculated for the growing season of 2014 in Northeast China, and the spatial pattern and the variation trend were analyzed. Results showed that the highest SWUL was observed in forestland with the value of 36.65. In cropland and grassland, the average SWUL were 26.18 and 29.29, respectively. SWUL showed an increased trend in the first half period of the growing season and peaked around the 200th day. After the 220th day, SWUL presented a decreasing trend. Compared to the soil water use efficiency (SWUE), SWUL might depict the water use status at finer spatial resolution. The new indicator SWUL can help promote understanding the water use efficiency for regions of higher spatial heterogeneity.
Yan, Zhou; He, Huijun; Yang, Chunping; Zeng, Guangming; Luo, Le; Jiao, Panpan; Li, Huiru; Lu, Li
2017-07-01
In this study, the performance of 3,5-dimethyl-2,4-dichlorophenol (DCMX) degradation by a screened strain was investigated. 18S rDNA and the neighbor-joining method were used for identification of the isolated strain. The results of phylogenetic analysis and scanning electron micrographs showed that the most probable identity of the screened strain should be Penicillium sp. Growth characteristics of Penicillium sp. and degradation processes of DCMX were examined. Fourier transform infrared spectroscopy of the inoculated DCMX solution was recorded, which supported the capacity of DCMX degradation by the screened Penicillium sp. Under different salinity conditions, the highest growth rate and removal efficiency for DCMX were obtained at pH6.0. The removal efficiency decreased from 100% to 66% when the DCMX concentration increased from 5 to 60mg/L, respectively. Using a Box-Behnken design, the maximum DCMX removal efficiency was determined to be 98.4%. With acclimation to salinity, higher removal efficiency could be achieved. The results demonstrate that the screened Penicillium sp. has the capability for degradation of DCMX. Copyright © 2017. Published by Elsevier B.V.
Effects of recent energy system changes on CO2 projections for the United States.
Lenox, Carol S; Loughlin, Daniel H
2017-09-21
Recent projections of future United States carbon dioxide (CO 2 ) emissions are considerably lower than projections made just a decade ago. A myriad of factors have contributed to lower forecasts, including reductions in end-use energy service demands, improvements in energy efficiency, and technological innovations. Policies that have encouraged these changes include renewable portfolio standards, corporate vehicle efficiency standards, smart growth initiatives, revisions to building codes, and air and climate regulations. Understanding the effects of these and other factors can be advantageous as society evaluates opportunities for achieving additional CO 2 reductions. Energy system models provide a means to develop such insights. In this analysis, the MARKet ALlocation (MARKAL) model was applied to estimate the relative effects of various energy system changes that have happened since the year 2005 on CO 2 projections for the year 2025. The results indicate that transformations in the transportation and buildings sectors have played major roles in lowering projections. Particularly influential changes include improved vehicle efficiencies, reductions in projected travel demand, reductions in miscellaneous commercial electricity loads, and higher efficiency lighting. Electric sector changes have also contributed significantly to the lowered forecasts, driven by demand reductions, renewable portfolio standards, and air quality regulations.
Othman, Rahimah; Vladisavljević, Goran T; Thomas, Noreen L; Nagy, Zoltan K
2016-05-01
Paracetamol (PCM)-loaded composite nanoparticles (NPs) composed of a biodegradable poly(d,l-lactide) (PLA) polymer matrix filled with organically modified montmorillonite (MMT) nanoparticles were fabricated by antisolvent nanoprecipitation in a microfluidic co-flow glass capillary device. The incorporation of MMT in the polymer improved both the drug encapsulation efficiency and the drug loading, and extended the rate of drug release in simulated intestinal fluid (pH 7.4). The particle size increased on increasing both the drug loading and the concentration of MMT in the polymer matrix, and decreased on increasing the aqueous to organic flow rate ratio. The drug encapsulation efficiency in the NPs was higher at higher aqueous to organic flow rate ratio due to faster formation of the NPs. The PCM-loaded PLA NPs containing 2 wt% MMT in PLA prepared at an aqueous to organic flow rate ratio of 10 with an orifice size of 200 μm exhibited a spherical shape with a mean size of 296 nm, a drug encapsulation efficiency of 38.5% and a drug loading of 5.4%. The encapsulation of MMT and PCM in the NPs was confirmed by transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis and attenuated total reflection-Fourier transform infrared spectroscopy. Copyright © 2016 Elsevier B.V. All rights reserved.
Analysis, design, and control of a transcutaneous power regulator for artificial hearts.
Qianhong Chen; Siu Chung Wong; Tse, C K; Xinbo Ruan
2009-02-01
Based on a generic transcutaneous transformer model, a remote power supply using a resonant topology for use in artificial hearts is analyzed and designed for easy controllability and high efficiency. The primary and secondary windings of the transcutaneous transformer are positioned outside and inside the human body, respectively. In such a transformer, the alignment and gap may change with external positioning. As a result, the coupling coefficient of the transcutaneous transformer is also varying, and so are the two large leakage inductances and the mutual inductance. Resonant-tank circuits with varying resonant-frequency are formed from the transformer inductors and external capacitors. For a given range of coupling coefficients, an operating frequency corresponding to a particular coupling coefficient can be found, for which the voltage transfer function is insensitive to load. Prior works have used frequency modulation to regulate the output voltage under varying load and transformer coupling. The use of frequency modulation may require a wide control frequency range which may extend well above the load insensitive frequency. In this paper, study of the input-to-output voltage transfer function is carried out, and a control method is proposed to lock the switching frequency at just above the load insensitive frequency for optimized efficiency at heavy loads. Specifically, operation at above resonant of the resonant circuits is maintained under varying coupling-coefficient. Using a digital-phase-lock-loop (PLL), zero-voltage switching is achieved in a full-bridge converter which is also programmed to provide output voltage regulation via pulsewidth modulation (PWM). A prototype transcutaneous power regulator is built and found to to perform excellently with high efficiency and tight regulation under variations of the alignment or gap of the transcutaneous transformer, load and input voltage.
Wang, Yan-Cang; Yang, Gui-Jun; Zhu, Jin-Shan; Gu, Xiao-He; Xu, Peng; Liao, Qin-Hong
2014-07-01
For improving the estimation accuracy of soil organic matter content of the north fluvo-aquic soil, wavelet transform technology is introduced. The soil samples were collected from Tongzhou district and Shunyi district in Beijing city. And the data source is from soil hyperspectral data obtained under laboratory condition. First, discrete wavelet transform efficiently decomposes hyperspectral into approximate coefficients and detail coefficients. Then, the correlation between approximate coefficients, detail coefficients and organic matter content was analyzed, and the sensitive bands of the organic matter were screened. Finally, models were established to estimate the soil organic content by using the partial least squares regression (PLSR). Results show that the NIR bands made more contributions than the visible band in estimating organic matter content models; the ability of approximate coefficients to estimate organic matter content is better than that of detail coefficients; The estimation precision of the detail coefficients fir soil organic matter content decreases with the spectral resolution being lower; Compared with the commonly used three types of soil spectral reflectance transforms, the wavelet transform can improve the estimation ability of soil spectral fir organic content; The accuracy of the best model established by the approximate coefficients or detail coefficients is higher, and the coefficient of determination (R2) and the root mean square error (RMSE) of the best model for approximate coefficients are 0.722 and 0.221, respectively. The R2 and RMSE of the best model for detail coefficients are 0.670 and 0.255, respectively.
Transformation of University Organizations: Leadership and Managerial Implications
ERIC Educational Resources Information Center
Ulukan, Cemil
2005-01-01
Technology and globalization are forcing higher education institutions to transform themselves. This paper aims to contribute to a better understanding the leadership and managerial implications of recent developments for higher education. Reviewing unique characteristics and the fundamental changes shaping higher education, the paper examines the…
ERIC Educational Resources Information Center
Eckel, Peter D.; Kezar, Adrianna
2011-01-01
Peter Eckel and Adrianna Kezar have written this book to offer insight to campus leaders who face transformational change--to help them mount a proactive, rather than a reactive, process to effect transformation. They believe that most institutional leaders have little to no experience with implementing large-scale change and lack a solid…
ERIC Educational Resources Information Center
Pabian, Petr; Sima, Karel; Kyncilova, Lucie
2011-01-01
The Czech Republic is one of the post-communist countries where the transformation from late industrial to knowledge economies and knowledge societies was complicated by the simultaneous transformations from communist centrally planned economies to democratic regimes and market economies. Furthermore, the transformation of higher education itself…
Generalized Lie symmetry approach for fractional order systems of differential equations. III
NASA Astrophysics Data System (ADS)
Singla, Komal; Gupta, R. K.
2017-06-01
The generalized Lie symmetry technique is proposed for the derivation of point symmetries for systems of fractional differential equations with an arbitrary number of independent as well as dependent variables. The efficiency of the method is illustrated by its application to three higher dimensional nonlinear systems of fractional order partial differential equations consisting of the (2 + 1)-dimensional asymmetric Nizhnik-Novikov-Veselov system, (3 + 1)-dimensional Burgers system, and (3 + 1)-dimensional Navier-Stokes equations. With the help of derived Lie point symmetries, the corresponding invariant solutions transform each of the considered systems into a system of lower-dimensional fractional partial differential equations.
Synthesis of Resveratrol Tetramers via a Stereoconvergent Radical Equilibrium
Keylor, Mitchell H.; Matsuura, Bryan S.; Griesser, Markus; Chauvin, Jean-Philippe R.; Harding, Ryan A.; Kirillova, Mariia S.; Zhu, Xu; Fischer, Oliver J.; Pratt, Derek A.; Stephenson, Corey R. J.
2017-01-01
Persistent free radicals have become indispensable in the synthesis of organic materials by living radical polymerization. However, examples of their use in the synthesis of small molecules are rare. Herein, we report the application of persistent radical and quinone methide intermediates to the synthesis of the resveratrol tetramers nepalensinol B and vateriaphenol C. The spontaneous cleavage and reconstitution of exceptionally weak carbon-carbon bonds has enabled a stereoconvergent oxidative dimerization of racemic materials in a transformation that likely coincides with the biogenesis of these natural products. The efficient synthesis of higher-order oligomers of resveratrol will facilitate the biological studies necessary to elucidate their mechanism(s) of action. PMID:27940867
Beam manipulation for resonant plasma wakefield acceleration
NASA Astrophysics Data System (ADS)
Chiadroni, E.; Alesini, D.; Anania, M. P.; Bacci, A.; Bellaveglia, M.; Biagioni, A.; Bisesto, F. G.; Cardelli, F.; Castorina, G.; Cianchi, A.; Croia, M.; Gallo, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Filippi, F.; Giribono, A.; Marocchino, A.; Mostacci, A.; Petrarca, M.; Piersanti, L.; Pioli, S.; Pompili, R.; Romeo, S.; Rossi, A. R.; Scifo, J.; Shpakov, V.; Spataro, B.; Stella, A.; Vaccarezza, C.; Villa, F.
2017-09-01
Plasma-based acceleration has already proved the ability to reach ultra-high accelerating gradients. However the step towards the realization of a plasma-based accelerator still requires some effort to guarantee high brightness beams, stability and reliability. A significant improvement in the efficiency of PWFA has been demonstrated so far accelerating a witness bunch in the wake of a higher charge driver bunch. The transformer ratio, therefore the energy transfer from the driver to the witness beam, can be increased by resonantly exciting the plasma with a properly pre-shaped drive electron beam. Theoretical and experimental studies of beam manipulation for resonant PWFA will be presented here.
Kinetics and Efficiency of H2O2 Activation by Iron-Containing Minerals and Aquifer Materials
Pham, Anh Le-Tuan; Doyle, Fiona M.; Sedlak, David L.
2014-01-01
To gain insight into factors that control H2O2 persistence and ˙OH yield in H2O2-based in situ chemical oxidation systems, the decomposition of H2O2 and transformation of phenol were investigated in the presence of iron-containing minerals and aquifer materials. Under conditions expected during remediation of soil and groundwater, the stoichiometric efficiency, defined as the amount of phenol transformed per mole of H2O2 decomposed, varied from 0.005 to 0.28%. Among the iron-containing minerals, iron oxides were 2 to 10 times less efficient in transforming phenol than iron-containing clays and synthetic iron-containing catalysts. In both iron-containing mineral and aquifer materials systems, the stoichiometric efficiency was inversely correlated with the rate of H2O2 decomposition. In aquifer materials systems, the stoichiometric efficiency was also inversely correlated with the Mn content, consistent with the fact that the decomposition of H2O2 on manganese oxides does not produce ˙OH. Removal of iron and manganese oxide coatings from the surface of aquifer materials by extraction with citrate-bicarbonate-dithionite slowed the rate of H2O2 decomposition on aquifer materials and increased the stoichiometric efficiency. In addition, the presence of 2 mM of dissolved SiO2 slowed the rate of H2O2 decomposition on aquifer materials by over 80% without affecting the stoichiometric efficiency. PMID:23047055
Kinetics and efficiency of H2O2 activation by iron-containing minerals and aquifer materials.
Pham, Anh Le-Tuan; Doyle, Fiona M; Sedlak, David L
2012-12-01
To gain insight into factors that control H(2)O(2) persistence and ·OH yield in H(2)O(2)-based in situ chemical oxidation systems, the decomposition of H(2)O(2) and transformation of phenol were investigated in the presence of iron-containing minerals and aquifer materials. Under conditions expected during remediation of soil and groundwater, the stoichiometric efficiency, defined as the amount of phenol transformed per mole of H(2)O(2) decomposed, varied from 0.005 to 0.28%. Among the iron-containing minerals, iron oxides were 2-10 times less efficient in transforming phenol than iron-containing clays and synthetic iron-containing catalysts. In both iron-containing mineral and aquifer materials systems, the stoichiometric efficiency was inversely correlated with the rate of H(2)O(2) decomposition. In aquifer materials systems, the stoichiometric efficiency was also inversely correlated with the Mn content, consistent with the fact that the decomposition of H(2)O(2) on manganese oxides does not produce ·OH. Removal of iron and manganese oxide coatings from the surface of aquifer materials by extraction with citrate-bicarbonate-dithionite slowed the rate of H(2)O(2) decomposition on aquifer materials and increased the stoichiometric efficiency. In addition, the presence of 2 mM of dissolved SiO(2) slowed the rate of H(2)O(2) decomposition on aquifer materials by over 80% without affecting the stoichiometric efficiency. Copyright © 2012 Elsevier Ltd. All rights reserved.
Use of Natural Transformation To Establish an Easy Knockout Method in Riemerella anatipestifer.
Liu, MaFeng; Zhang, Li; Huang, Li; Biville, Francis; Zhu, DeKang; Wang, MingShu; Jia, RenYong; Chen, Shun; Sun, KunFeng; Yang, Qiao; Wu, Ying; Chen, XiaoYue; Cheng, AnChun
2017-05-01
Riemerella anatipestifer is a member of the family Flavobacteriaceae and a major causative agent of duck serositis. Little is known about its genetics and pathogenesis. Several bacteria are competent for natural transformation; however, whether R. anatipestifer is also competent for natural transformation has not been investigated. Here, we showed that R. anatipestifer strain ATCC 11845 can uptake the chromosomal DNA of R. anatipestifer strain RA-CH-1 in all growth phases. Subsequently, a natural transformation-based knockout method was established for R. anatipestifer ATCC 11845. Targeted mutagenesis gave transformation frequencies of ∼10 -5 transformants. Competition assay experiments showed that R. anatipestifer ATCC 11845 preferentially took up its own DNA rather than heterogeneous DNA, such as Escherichia coli DNA. Transformation was less efficient with the shuttle plasmid pLMF03 (transformation frequencies of ∼10 -9 transformants). However, the efficiency of transformation was increased approximately 100-fold using pLMF03 derivatives containing R. anatipestifer DNA fragments (transformation frequencies of ∼10 -7 transformants). Finally, we found that the R. anatipestifer RA-CH-1 strain was also naturally transformable, suggesting that natural competence is widely applicable for this species. The findings described here provide important tools for the genetic manipulation of R. anatipestifer IMPORTANCE Riemerella anatipestifer is an important duck pathogen that belongs to the family Flavobacteriaceae At least 21 different serotypes have been identified. Genetic diversity has been demonstrated among these serotypes. The genetic and pathogenic mechanisms of R. anatipestifer remain largely unknown because no genetic tools are available for this bacterium. At present, natural transformation has been found in some bacteria but not in R. anatipestifer For the first time, we showed that natural transformation occurred in R. anatipestifer ATCC 11845 and R. anatipestifer RA-CH-1. Then, we established an easy gene knockout method in R. anatipestifer based on natural transformation. This information is important for further studies of the genetic diversity and pathogenesis in R. anatipestifer . Copyright © 2017 American Society for Microbiology.
NASA Astrophysics Data System (ADS)
Harmanpreet, Singh, Sukhwinder; Kumar, Ashok; Kaur, Parneet
2010-11-01
Stability & security are main aspects in electrical power systems. Transformer protection is major issue of concern to system operation. There are many mall-trip cases of transformer protection are caused by inrush current problems. The phenomenon of transformer inrush current has been discussed in many papers since 1958. In this paper analytical analysis of inrush current in a transformer switched on dc and ac supply has been done. This analysis will help in design aspects of circuit breakers for better performance.
Irie, T; Honda, Y; Hirano, T; Sato, T; Enei, H; Watanabe, T; Kuwahara, M
2001-09-01
It was reported that Pleurotus ostreatus was transformed unstably using recombinant plasmids containing a hygromycin B phosphotransferase gene (hph) under the control of Aspergillus nidulans expression signals, and that the plasmids were maintained extrachromosomally in the transformants. Here we report a stable and integrative transformation of the fungus to hygromycin B resistance, using a recombinant hph fused with Lentinus edodes glyceraldehyde-3-phosphate dehydrogenase expression signals. Restriction-enzyme-mediated integration (REMI) was also tried and increased the transformation efficiency about ten-fold.
Huang, Yihua; Huang, Wenjin; Wang, Qinglei; Su, Xujian
2013-07-01
The equivalent circuit model of a piezoelectric transformer is useful in designing and optimizing the related driving circuits. Based on previous work, an equivalent circuit model for a circular flexural-vibration-mode piezoelectric transformer with moderate thickness is proposed and validated by finite element analysis. The input impedance, voltage gain, and efficiency of the transformer are determined through computation. The basic behaviors of the transformer are shown by numerical results.
Weyda, István; Yang, Lei; Vang, Jesper; Ahring, Birgitte K; Lübeck, Mette; Lübeck, Peter S
2017-04-01
In recent years, versatile genetic tools have been developed and applied to a number of filamentous fungi of industrial importance. However, the existing techniques have limitations when it comes to achieve the desired genetic modifications, especially for efficient gene targeting. In this study, we used Aspergillus carbonarius as a host strain due to its potential as a cell factory, and compared three gene targeting techniques by disrupting the ayg1 gene involved in the biosynthesis of conidial pigment in A. carbonarius. The absence of the ayg1 gene leads to phenotypic change in conidia color, which facilitated the analysis on the gene targeting frequency. The examined transformation techniques included Agrobacterium-mediated transformation (AMT) and protoplast-mediated transformation (PMT). Furthermore, the PMT for the disruption of the ayg1 gene was carried out with bipartite gene targeting fragments and the recently adapted CRISPR-Cas9 system. All three techniques were successful in generating Δayg1 mutants, but showed different efficiencies. The most efficient method for gene targeting was AMT, but further it was shown to be dependent on the choice of Agrobacterium strain. However, there are different advantages and disadvantages of all three gene targeting methods which are discussed, in order to facilitate future approaches for fungal strain improvements. Copyright © 2017 Elsevier B.V. All rights reserved.
Efficient processing of MPEG-21 metadata in the binary domain
NASA Astrophysics Data System (ADS)
Timmerer, Christian; Frank, Thomas; Hellwagner, Hermann; Heuer, Jörg; Hutter, Andreas
2005-10-01
XML-based metadata is widely adopted across the different communities and plenty of commercial and open source tools for processing and transforming are available on the market. However, all of these tools have one thing in common: they operate on plain text encoded metadata which may become a burden in constrained and streaming environments, i.e., when metadata needs to be processed together with multimedia content on the fly. In this paper we present an efficient approach for transforming such kind of metadata which are encoded using MPEG's Binary Format for Metadata (BiM) without additional en-/decoding overheads, i.e., within the binary domain. Therefore, we have developed an event-based push parser for BiM encoded metadata which transforms the metadata by a limited set of processing instructions - based on traditional XML transformation techniques - operating on bit patterns instead of cost-intensive string comparisons.
Development of efficient time-evolution method based on three-term recurrence relation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akama, Tomoko, E-mail: a.tomo---s-b-l-r@suou.waseda.jp; Kobayashi, Osamu; Nanbu, Shinkoh, E-mail: shinkoh.nanbu@sophia.ac.jp
The advantage of the real-time (RT) propagation method is a direct solution of the time-dependent Schrödinger equation which describes frequency properties as well as all dynamics of a molecular system composed of electrons and nuclei in quantum physics and chemistry. Its applications have been limited by computational feasibility, as the evaluation of the time-evolution operator is computationally demanding. In this article, a new efficient time-evolution method based on the three-term recurrence relation (3TRR) was proposed to reduce the time-consuming numerical procedure. The basic formula of this approach was derived by introducing a transformation of the operator using the arcsine function.more » Since this operator transformation causes transformation of time, we derived the relation between original and transformed time. The formula was adapted to assess the performance of the RT time-dependent Hartree-Fock (RT-TDHF) method and the time-dependent density functional theory. Compared to the commonly used fourth-order Runge-Kutta method, our new approach decreased computational time of the RT-TDHF calculation by about factor of four, showing the 3TRR formula to be an efficient time-evolution method for reducing computational cost.« less
A nanoscale piezoelectric transformer for low-voltage transistors.
Agarwal, Sapan; Yablonovitch, Eli
2014-11-12
A novel piezoelectric voltage transformer for low-voltage transistors is proposed. Placing a piezoelectric transformer on the gate of a field-effect transistor results in the piezoelectric transformer field-effect transistor that can switch at significantly lower voltages than a conventional transistor. The piezoelectric transformer operates by using one piezoelectric to squeeze another piezoelectric to generate a higher output voltage than the input voltage. Multiple piezoelectrics can be used to squeeze a single piezoelectric layer to generate an even higher voltage amplification. Coupled electrical and mechanical modeling in COMSOL predicts a 12.5× voltage amplification for a six-layer piezoelectric transformer. This would lead to more than a 150× reduction in the power needed for communications.
Efficient visible and UV generation by frequency conversion of a mode-filtered fiber amplifier
NASA Astrophysics Data System (ADS)
Kliner, Dahv A. V.; Di Teodoro, Fabio; Koplow, Jeffrey P.; Moore, Sean W.; Smith, Arlee V.
2003-07-01
We have generated the second, third, fourth, and fifth harmonics of the output of a Yb-doped fiber amplifier seeded by a passively Q-switched Nd:YAG microchip laser. The fiber amplifier employed multimode fiber (25 μm core diameter, V ~ 7.4) to provide high-peak-power pulses, but diffraction-limited beam quality was obtained by use of bend-loss-induced mode filtering. The amplifier output had a pulse duration of 0.97 ns and smooth, transform-limited temporal and spectral profiles (~500 MHz linewidth). We obtained high nonlinear conversion efficiencies using a simple optical arrangement and critically phase-matched crystals. Starting with 320 mW of average power at 1064 nm (86 ´J per pulse at a 3.7 kHz repetition rate), we generated 160 mW at 532 nm, 38 mW at 355 nm, 69 mW at 266 nm, and 18 mW at 213 nm. The experimental results are in excellent agreement with calculations. Significantly higher visible and UV powers will be possible by operating the fiber amplifier at higher repetition rates and pulse energies and by further optimizing the nonlinear conversion scheme.
NASA Astrophysics Data System (ADS)
Teddy Badai Samodra, FX; Defiana, Ima; Setyawan, Wahyu
2018-03-01
Many previous types of research have discussed the permeability of site cluster. Because of interaction and interconnected attribute, it will be better that there is its translation into lower context such as building and interior scale. In this paper, the sustainability design performance of both similar designs of courtyard and atrium are investigated continuing the recommendation of site space permeability. By researching related literature review and study through Ecotect Analysis and Ansys Fluent simulations, the pattern transformation and optimum courtyard and atrium design could comply the requirement. The results highlighted that the air movement from the site could be translated at the minimum of 50% higher to the building and indoor environment. Thus, it has potency for energy efficiency when grid, loop, and cul-de-sac site clusters, with 25% of ground coverage, have connectivity with building courtyard compared to the atrium. Energy saving is higher when using low thermal transmittance of transparent material and its lower area percentages for the courtyard walls. In general, it was more energy efficient option as part of a low rise building, while the courtyard building performed better with increasing irregular building height more than 90% of the difference.
NASA Astrophysics Data System (ADS)
Nada, Amr A.; Tantawy, Hesham R.; Elsayed, Mohamed A.; Bechelany, Mikhael; Elmowafy, Mohamed E.
2018-04-01
In this paper, magnetic nanocomposites are synthesized by loading reduced graphene oxide (RG) with two components of nanoparticles consisting of titanium dioxide (TiO2) and magnetite (Fe3O4) with varying amounts. The structural and magnetic features of the prepared composite photocatalysts were investigated by powder X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectra (UV-vis/DRS), Raman and vibrating sample magnetometer (VSM). The resulting TiO2/magnetite reduced graphene oxide (MRGT) composite demonstrated intrinsic visible light photocatalytic activity, on degradation of tartrazine (TZ) dye from a synthetic aqueous solution. Specifically, it exhibits higher photocatalytic activity than magnetite reduced graphene oxide (MRG) and TiO2 nanoparticles. The photocatalytic degradation of TZ dye when using MRG and TiO2 for 3 h under visible light was 35% and 10% respectively, whereas for MRGT it was more than 95%. The higher photocatalytic efficiency of MRGT is due to the existence of reduced graphene oxide and magnetite which enhances the photocatalytic efficiency of the composite in visible light towards the degradation of harmful soluble azo dye (tartrazine).
Agrobacterium tumefaciens-mediated transformation of Narcissus tazzeta var. chinensis.
Lu, Gang; Zou, Qingcheng; Guo, Deping; Zhuang, Xiaoying; Yu, Xiaolin; Xiang, Xun; Cao, Jiashu
2007-09-01
Phytoene synthase (PSY), as a key regulatory enzyme for carotene biosynthesis, plays an important role in regulating color formation in many species. In the present study, a protocol was developed for the transformation of Narcissus tazzeta var chinensis using Agrobacterium tumefaciens strain LBA4404 harboring a binary vector pCAMBIA1301 plasmid which contained an antisense phytoene synthase gene, a reporter beta-glucuronidase gene and a selectable marker hygromycin phosphotransferase gene. Effects of some factors on efficiency of transformation and regeneration were examined. Preculture of the explants for 6 days before inoculation enhanced the transient GUS expression. The addition of acetosyringone (AS) at 100 micromol l(-1) for inoculation and a period of 3 days co-cultivation yielded efficient transient GUS expression. Transformants were obtained through selection on MS medium containing 5 mg l(-1) 6-benzylaminopurine (BA), 0.1 mg l(-1)alpha-naphthalene acetic acid (NAA) and 40 mg l(-1) hygromycin. The transformation frequency was 1.24% based on PCR analysis of gus gene. One or two copies of transgene were demonstrated in different transformations by Southern blotting analyses. Northern blotting results confirmed that the transcription of the endogenous psy gene in transgenic plants was inhibited or silenced. The method reported here provides new opportunities for improvement of quality traits of Narcissus tazzeta via genetic transformation.
General entanglement-assisted transformation for bipartite pure quantum states
NASA Astrophysics Data System (ADS)
Song, Wei; Huang, Yan; Nai-LeLiu; Chen, Zeng-Bing
2007-01-01
We introduce the general catalysts for pure entanglement transformations under local operations and classical communications in such a way that we disregard the profit and loss of entanglement of the catalysts per se. As such, the possibilities of pure entanglement transformations are greatly expanded. We also design an efficient algorithm to detect whether a k × k general catalyst exists for a given entanglement transformation. This algorithm can also be exploited to witness the existence of standard catalysts.
Nguyen, Khuyen Thi; Ho, Quynh Ngoc; Do, Loc Thi Binh Xuan; Mai, Linh Thi Dam; Pham, Duc-Ngoc; Tran, Huyen Thi Thanh; Le, Diep Hong; Nguyen, Huy Quang; Tran, Van-Tuan
2017-06-01
Aspergillus oryzae is a filamentous fungus widely used in food industry and as a microbial cell factory for recombinant protein production. Due to the inherent resistance of A. oryzae to common antifungal compounds, genetic transformation of this mold usually requires auxotrophic mutants. In this study, we show that Agrobacterium tumefaciens-mediated transformation (ATMT) method is very efficient for deletion of the pyrG gene in different Aspergillus oryzae wild-type strains to generate uridine/uracil auxotrophic mutants. Our data indicated that all the obtained uridine/uracil auxotrophic transformants, which are 5- fluoroorotic acid (5-FOA) resistant, exist as the pyrG deletion mutants. Using these auxotrophic mutants and the pyrG selectable marker for genetic transformation via A. tumefaciens, we could get about 1060 transformants per 10 6 fungal spores. In addition, these A. oryzae mutants were also used successfully for expression of the DsRed fluorescent reporter gene under control of the A. oryzae amyB promoter by the ATMT method, which resulted in obvious red transformants on agar plates. Our work provides a new and effective approach for constructing the uridine/uracil auxotrophic mutants in the importantly industrial fungus A. oryzae. This strategy appears to be applicable to other filamentous fungi to develop similar genetic transformation systems based on auxotrophic/nutritional markers for food-grade recombinant applications.
Htwe, Nwe Nwe; Ling, Ho Chai; Zaman, Faridah Qamaruz; Maziah, Mahmood
2014-04-01
Rice is one of the most important cereal crops with great potential for biotechnology progress. In transformation method, antibiotic resistance genes are routinely used as powerful markers for selecting transformed cells from surrounding non-transformed cells. In this study, the toxicity level of hygromycin was optimized for two selected mutant rice lines, MR219 line 4 and line 9. The mature embryos were isolated and cultured on an MS medium with different hygromycin concentrations (0, 20, 40, 60, 80 and 100 mg L(-1)). Evidently, above 60 mg L(-1) was effective for callus formation and observed completely dead. Further there were tested for specific concentration (0-60). Although, 21.28% calli survived on the medium containing 45 mg L(-1) hygromycin, it seemed suitable for the identification of putative transformants. These findings indicated that a system for rice transformation in a relatively high frequency and the transgenes are stably expressed in the transgenic plants. Green shoots were regenerated from the explant under hygromycin stress. RT-PCR using hptII and gus sequence specific primer and Southern blot analysis were used to confirm the presence of the transgene and to determine the transformation efficiency for their stable integration in regenerated plants. This study demonstrated that the hygromycin resistance can be used as an effective marker for rice transformation.
Watanabe, Hisayuki; Hatakeyama, Makoto; Sakurai, Hiroshi; Uchimiya, Hirofumi; Sato, Toshitsugu
2008-11-01
Based on studies using laboratory strains, the efficiency of gene disruption in Aspergillus oryzae, commonly known as koji mold, is low; thus, gene disruption has rarely been applied to the breeding of koji mold. To evaluate the efficiency of gene disruption in industrial strains of A. oryzae, we produced ferrichrysin biosynthesis gene (dffA) disruptants using three different industrial strains as hosts. PCR analysis of 438 pyrithiamine-resistant transformants showed dffA gene disruption efficiency of 42.9%-64.1%, which is much higher than previously reported. Analysis of the physiological characteristics of the disruptants indicated that dffA gene disruption results in hypersensitivity to hydrogen peroxide. To investigate the industrial characteristics of dffA gene disruptants, two strains were used to make rice koji and their properties were compared to those of the host strains. No differences were found between the dffA gene disruptants and the host strains, except that the disruptants did not produce ferrichrysin. Thus, this gene disruption technique is much more effective than conventional mutagenesis for A. oryzae breeding.
Mund, Nitesh K; Dash, Debabrata; Barik, Chitta R; Goud, Vaibhav V; Sahoo, Lingaraj; Mishra, Prasannajit; Nayak, Nihar R
2017-07-01
Sesbania grandiflora (L.) Pers. is one of the fast growing tree legumes having the efficiency to produce around 50tha -1 above ground dry matters in a year. In this study, biomass of 2years old S. grandiflora was selected for the chemical composition, pretreatments and enzymatic hydrolysis studies. The stem biomass with a wood density of 3.89±0.01gmcm -3 contains about 38% cellulose, 12% hemicellulose and 28% lignin. Enzymatic hydrolysis of pretreated biomass revealed that phosphoric acid (H 3 PO 4 ) pretreated samples even at lower cellulase loadings [1 Filter Paper Units (FPU)], could efficiently convert about 86% glucose, while, even at higher cellulase loadings (60FPU) alkali pretreated biomass could convert only about 58% glucose. The effectiveness of phosphoric acid pretreatment was also supported by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and Fourier transform infrared spectroscopy (FTIR) analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Efficiency analysis for 3D filtering of multichannel images
NASA Astrophysics Data System (ADS)
Kozhemiakin, Ruslan A.; Rubel, Oleksii; Abramov, Sergey K.; Lukin, Vladimir V.; Vozel, Benoit; Chehdi, Kacem
2016-10-01
Modern remote sensing systems basically acquire images that are multichannel (dual- or multi-polarization, multi- and hyperspectral) where noise, usually with different characteristics, is present in all components. If noise is intensive, it is desirable to remove (suppress) it before applying methods of image classification, interpreting, and information extraction. This can be done using one of two approaches - by component-wise or by vectorial (3D) filtering. The second approach has shown itself to have higher efficiency if there is essential correlation between multichannel image components as this often happens for multichannel remote sensing data of different origin. Within the class of 3D filtering techniques, there are many possibilities and variations. In this paper, we consider filtering based on discrete cosine transform (DCT) and pay attention to two aspects of processing. First, we study in detail what changes in DCT coefficient statistics take place for 3D denoising compared to component-wise processing. Second, we analyze how selection of component images united into 3D data array influences efficiency of filtering and can the observed tendencies be exploited in processing of images with rather large number of channels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, Nihar K.; Wei, Max; Letschert, Virginie
Hydrofluorocarbons (HFCs) emitted from uses such as refrigerants and thermal insulating foam, are now the fastest growing greenhouse gases (GHGs), with global warming potentials (GWP) thousands of times higher than carbon dioxide (CO2). Because of the short lifetime of these molecules in the atmosphere,1 mitigating the amount of these short-lived climate pollutants (SLCPs) provides a faster path to climate change mitigation than control of CO2 alone. This has led to proposals from Africa, Europe, India, Island States, and North America to amend the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) to phase-down high-GWP HFCs. Simultaneously, energymore » efficiency market transformation programs such as standards, labeling and incentive programs are endeavoring to improve the energy efficiency for refrigeration and air conditioning equipment to provide life cycle cost, energy, GHG, and peak load savings. In this paper we provide an estimate of the magnitude of such GHG and peak electric load savings potential, for room air conditioning, if the refrigerant transition and energy efficiency improvement policies are implemented either separately or in parallel.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Dongsheng; Zhu, Jing, E-mail: jzhu@mail.tsinghua.edu.cn; Ma, Li
2015-07-27
Transport efficiency of pure spin current across the ferromagnetic films adjacent with a nonmagnetic metal is strongly dependent on the spin mixing conductance, which is very sensitive to atomic-level interface conditions. Here, by the means of advanced electron microscopy techniques, atomic structure, electronic structure, and magnetic properties at Y{sub 3}Fe{sub 5}O{sub 12} (YIG)/Pt interface are detailed characterized to correlate the microstructure and magnetic properties with interfacial transport properties. It is found that the order-disorder structure transformation at the interface is accompanied with oxygen deficiency, thus the reduced iron valence and the break of magnetic atom-O-magnetic atom bridges, which is responsiblemore » for superexchange interaction and magnetic order. It is also found that the magnetic moment of interfacial iron ions is decreased. The disorder interfacial layer with suppressed magnetism finally contributes to the declined spin transport efficiency. Our results provide the knowledge to control and manipulate the interfacial structure and properties in order to obtain higher spin transport efficiency.« less
NASA Astrophysics Data System (ADS)
Zhou, Zhenggan; Ma, Baoquan; Jiang, Jingtao; Yu, Guang; Liu, Kui; Zhang, Dongmei; Liu, Weiping
2014-10-01
Air-coupled ultrasonic testing (ACUT) technique has been viewed as a viable solution in defect detection of advanced composites used in aerospace and aviation industries. However, the giant mismatch of acoustic impedance in air-solid interface makes the transmission efficiency of ultrasound low, and leads to poor signal-to-noise (SNR) ratio of received signal. The utilisation of signal-processing techniques in non-destructive testing is highly appreciated. This paper presents a wavelet filtering and phase-coded pulse compression hybrid method to improve the SNR and output power of received signal. The wavelet transform is utilised to filter insignificant components from noisy ultrasonic signal, and pulse compression process is used to improve the power of correlated signal based on cross-correction algorithm. For the purpose of reasonable parameter selection, different families of wavelets (Daubechies, Symlet and Coiflet) and decomposition level in discrete wavelet transform are analysed, different Barker codes (5-13 bits) are also analysed to acquire higher main-to-side lobe ratio. The performance of the hybrid method was verified in a honeycomb composite sample. Experimental results demonstrated that the proposed method is very efficient in improving the SNR and signal strength. The applicability of the proposed method seems to be a very promising tool to evaluate the integrity of high ultrasound attenuation composite materials using the ACUT.
Compressed sensing reconstruction of cardiac cine MRI using golden angle spiral trajectories
NASA Astrophysics Data System (ADS)
Tolouee, Azar; Alirezaie, Javad; Babyn, Paul
2015-11-01
In dynamic cardiac cine Magnetic Resonance Imaging (MRI), the spatiotemporal resolution is limited by the low imaging speed. Compressed sensing (CS) theory has been applied to improve the imaging speed and thus the spatiotemporal resolution. The purpose of this paper is to improve CS reconstruction of under sampled data by exploiting spatiotemporal sparsity and efficient spiral trajectories. We extend k-t sparse algorithm to spiral trajectories to achieve high spatio temporal resolutions in cardiac cine imaging. We have exploited spatiotemporal sparsity of cardiac cine MRI by applying a 2D + time wavelet-Fourier transform. For efficient coverage of k-space, we have used a modified version of multi shot (interleaved) spirals trajectories. In order to reduce incoherent aliasing artifact, we use different random undersampling pattern for each temporal frame. Finally, we have used nonuniform fast Fourier transform (NUFFT) algorithm to reconstruct the image from the non-uniformly acquired samples. The proposed approach was tested in simulated and cardiac cine MRI data. Results show that higher acceleration factors with improved image quality can be obtained with the proposed approach in comparison to the existing state-of-the-art method. The flexibility of the introduced method should allow it to be used not only for the challenging case of cardiac imaging, but also for other patient motion where the patient moves or breathes during acquisition.
Yang, Ming; Fang, Yunting; Sun, Di; Shi, Yuanliang
2016-01-01
Dicyandiamide (DCD) and 3, 4-dimethypyrazole phosphate (DMPP) are often claimed to be efficient in regulating soil N transformations and influencing plant productivity, but the difference of their performances across field sites is less clear. Here we applied a meta-analysis approach to compare effectiveness of DCD and DMPP across field trials. Our results showed that DCD and DMPP were equally effective in altering soil inorganic N content, dissolve inorganic N (DIN) leaching and nitrous oxide (N2O) emissions. DCD was more effective than DMPP on increasing plant productivity. An increase of crop yield by DMPP was generally only observed in alkaline soil. The cost and benefit analysis (CBA) showed that applying fertilizer N with DCD produced additional revenues of $109.49 ha−1 yr−1 for maize farms, equivalent to 6.02% increase in grain revenues. In comparisons, DMPP application produced less monetary benefit of $15.67 ha−1 yr−1. Our findings showed that DCD had an advantage of bringing more net monetary benefit over DMPP. But this may be weakened by the higher toxicity of DCD than DMPP especially after continuous DCD application. Alternatively, an option related to net monetary benefit may be achieved through applying DMPP in alkaline soil and reducing the cost of purchasing DMPP products. PMID:26902689
Shi, Xunbei; Wu, Nan; Zhang, Yue; Guo, Weiwei; Lin, Chang; Yang, Shiming
2017-09-01
To investigate the expression of the miniature pig cochlea after AAV1 transfect into the cochlea via round window membrane (RWM). Twenty miniature pigs are equally divided into four experimental groups. Twelve miniature pigs are equally divided into four control groups. Each pig was transfected with the AAV1 in the experimental group via RWM and each pig was transduced with the artificial perilymph in the control group. The expression of green fluorescent protein (GFP) was observed at 2 weeks, 3 weeks and 4 weeks, respectively. Likewise, AAV1 was delivered into the guinea pigs cochleas using the same method, and the results were compared with that of the miniature pigs. The expression was mainly in the inner hair cells of the miniature pig. The expression of GFP began to appear at 2 weeks, reached the peak at 3 weeks. It also expressed in Hensen's cells, inner pillar cells, outer pillar cells, spiral limbus, and spiral ligament. In the meanwhile, AAV1 was delivered into guinea pig cochlea via the same method, and AAV1 was also expressed in the inner hair cells. But the expression peaked at 2 weeks, and the efficiency of the inner hair cell transfection was higher than that of the pig. AAV1 can be transformed into miniature pig cochlea via scala tympani by the RWM method efficiently.
Yang, Ming; Fang, Yunting; Sun, Di; Shi, Yuanliang
2016-02-23
Dicyandiamide (DCD) and 3, 4-dimethypyrazole phosphate (DMPP) are often claimed to be efficient in regulating soil N transformations and influencing plant productivity, but the difference of their performances across field sites is less clear. Here we applied a meta-analysis approach to compare effectiveness of DCD and DMPP across field trials. Our results showed that DCD and DMPP were equally effective in altering soil inorganic N content, dissolve inorganic N (DIN) leaching and nitrous oxide (N2O) emissions. DCD was more effective than DMPP on increasing plant productivity. An increase of crop yield by DMPP was generally only observed in alkaline soil. The cost and benefit analysis (CBA) showed that applying fertilizer N with DCD produced additional revenues of $109.49 ha(-1) yr(-1) for maize farms, equivalent to 6.02% increase in grain revenues. In comparisons, DMPP application produced less monetary benefit of $15.67 ha(-1) yr(-1). Our findings showed that DCD had an advantage of bringing more net monetary benefit over DMPP. But this may be weakened by the higher toxicity of DCD than DMPP especially after continuous DCD application. Alternatively, an option related to net monetary benefit may be achieved through applying DMPP in alkaline soil and reducing the cost of purchasing DMPP products.
Sriraam, N.
2012-01-01
Developments of new classes of efficient compression algorithms, software systems, and hardware for data intensive applications in today's digital health care systems provide timely and meaningful solutions in response to exponentially growing patient information data complexity and associated analysis requirements. Of the different 1D medical signals, electroencephalography (EEG) data is of great importance to the neurologist for detecting brain-related disorders. The volume of digitized EEG data generated and preserved for future reference exceeds the capacity of recent developments in digital storage and communication media and hence there is a need for an efficient compression system. This paper presents a new and efficient high performance lossless EEG compression using wavelet transform and neural network predictors. The coefficients generated from the EEG signal by integer wavelet transform are used to train the neural network predictors. The error residues are further encoded using a combinational entropy encoder, Lempel-Ziv-arithmetic encoder. Also a new context-based error modeling is also investigated to improve the compression efficiency. A compression ratio of 2.99 (with compression efficiency of 67%) is achieved with the proposed scheme with less encoding time thereby providing diagnostic reliability for lossless transmission as well as recovery of EEG signals for telemedicine applications. PMID:22489238
Sriraam, N
2012-01-01
Developments of new classes of efficient compression algorithms, software systems, and hardware for data intensive applications in today's digital health care systems provide timely and meaningful solutions in response to exponentially growing patient information data complexity and associated analysis requirements. Of the different 1D medical signals, electroencephalography (EEG) data is of great importance to the neurologist for detecting brain-related disorders. The volume of digitized EEG data generated and preserved for future reference exceeds the capacity of recent developments in digital storage and communication media and hence there is a need for an efficient compression system. This paper presents a new and efficient high performance lossless EEG compression using wavelet transform and neural network predictors. The coefficients generated from the EEG signal by integer wavelet transform are used to train the neural network predictors. The error residues are further encoded using a combinational entropy encoder, Lempel-Ziv-arithmetic encoder. Also a new context-based error modeling is also investigated to improve the compression efficiency. A compression ratio of 2.99 (with compression efficiency of 67%) is achieved with the proposed scheme with less encoding time thereby providing diagnostic reliability for lossless transmission as well as recovery of EEG signals for telemedicine applications.
Stratton, Gunnar R; Dai, Fei; Bellona, Christopher L; Holsen, Thomas M; Dickenson, Eric R V; Mededovic Thagard, Selma
2017-02-07
A process based on electrical discharge plasma was tested for the transformation of perfluorooctanoic acid (PFOA). The plasma-based process was adapted for two cases, high removal rate and high removal efficiency. During a 30 min treatment, the PFOA concentration in 1.4 L of aqueous solutions was reduced by 90% with the high rate process (76.5 W input power) and 25% with the high efficiency process (4.1 W input power). Both achieved remarkably high PFOA removal and defluorination efficiencies compared to leading alternative technologies. The high efficiency process was also used to treat groundwater containing PFOA and several cocontaminants including perfluorooctanesulfonate (PFOS), demonstrating that the process was not significantly affected by cocontaminants and that the process was capable of rapidly degrading PFOS. Preliminary investigation into the byproducts showed that only about 10% of PFOA and PFOS is converted into shorter-chain perfluoroalkyl acids (PFAAs). Investigation into the types of reactive species involved in primary reactions with PFOA showed that hydroxyl and superoxide radicals, which are typically the primary plasma-derived reactive species, play no significant role. Instead, scavenger experiments indicated that aqueous electrons account for a sizable fraction of the transformation, with free electrons and/or argon ions proposed to account for the remainder.
Rubisco small-subunit α-helices control pyrenoid formation in Chlamydomonas
Meyer, Moritz T.; Genkov, Todor; Skepper, Jeremy N.; Jouhet, Juliette; Mitchell, Madeline C.; Spreitzer, Robert J.; Griffiths, Howard
2012-01-01
The pyrenoid is a subcellular microcompartment in which algae sequester the primary carboxylase, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). The pyrenoid is associated with a CO2-concentrating mechanism (CCM), which improves the operating efficiency of carbon assimilation and overcomes diffusive limitations in aquatic photosynthesis. Using the model alga Chlamydomonas reinhardtii, we show that pyrenoid formation, Rubisco aggregation, and CCM activity relate to discrete regions of the Rubisco small subunit (SSU). Specifically, pyrenoid occurrence was shown to be conditioned by the amino acid composition of two surface-exposed α-helices of the SSU: higher plant-like helices knock out the pyrenoid, whereas native algal helices establish a pyrenoid. We have also established that pyrenoid integrity was essential for the operation of an active CCM. With the algal CCM being functionally analogous to the terrestrial C4 pathway in higher plants, such insights may offer a route toward transforming algal and higher plant productivity for the future. PMID:23112177
Robust Nonrigid Multimodal Image Registration using Local Frequency Maps*
Jian, Bing; Vemuri, Baba C.; Marroquin, José L.
2008-01-01
Automatic multi-modal image registration is central to numerous tasks in medical imaging today and has a vast range of applications e.g., image guidance, atlas construction, etc. In this paper, we present a novel multi-modal 3D non-rigid registration algorithm where in 3D images to be registered are represented by their corresponding local frequency maps efficiently computed using the Riesz transform as opposed to the popularly used Gabor filters. The non-rigid registration between these local frequency maps is formulated in a statistically robust framework involving the minimization of the integral squared error a.k.a. L2E (L2 error). This error is expressed as the squared difference between the true density of the residual (which is the squared difference between the non-rigidly transformed reference and the target local frequency representations) and a Gaussian or mixture of Gaussians density approximation of the same. The non-rigid transformation is expressed in a B-spline basis to achieve the desired smoothness in the transformation as well as computational efficiency. The key contributions of this work are (i) the use of Riesz transform to achieve better efficiency in computing the local frequency representation in comparison to Gabor filter-based approaches, (ii) new mathematical model for local-frequency based non-rigid registration, (iii) analytic computation of the gradient of the robust non-rigid registration cost function to achieve efficient and accurate registration. The proposed non-rigid L2E-based registration is a significant extension of research reported in literature to date. We present experimental results for registering several real data sets with synthetic and real non-rigid misalignments. PMID:17354721
Higher Education Transformation: Some Trends in California and Asia
ERIC Educational Resources Information Center
Hawkins, John N.
2008-01-01
This article discusses higher education transformation in California, the wider USA, and Asia. It touches on several sensitive topics, including the relationship between higher education and the public good versus commodification, privatization, and centralization versus decentralization, as well as others. In the USA and California, this has led…
Will the Internet Transform Higher Education?
ERIC Educational Resources Information Center
Baer, Walter S.
This analysis of the Internet and higher education focuses on two distinct models: one which is attempting to create "better, faster, cheaper" versions of today's courses and curricula through on-campus information infrastructure, and the other which envisions the Internet as the agent to transform higher education into student-centered learning…
Transformational Leadership Characteristics Necessary for Today's Leaders in Higher Education
ERIC Educational Resources Information Center
Basham, Lloyd Moman
2012-01-01
This study is concerned with the traits and characteristics of presidents of institutions of higher education who are considered transformational leaders. The study adds current data to the published and perceived characterization of leaders in higher education and their approaches to changing the learning environment at their institutions. This…
Queering Transformation in Higher Education
ERIC Educational Resources Information Center
Msibi, Thabo
2013-01-01
Transformation in higher education has tended to focus on race and sex, at the expense of other forms of discrimination. This article addresses the silencing of "queer" issues in higher education. Using queer theory as a framework, and drawing on current literature, popular media reports, two personal critical incidents and a project…
Transformations in Higher Education: Online Distance Learning
ERIC Educational Resources Information Center
Kobayashi, Victor
2002-01-01
Higher education is undergoing radical shifts that are part of the larger wave of changes taking place in the society. The transformation affects all sectors of higher education, especially distance learning and how it relates to the University's regular offerings. In this article, the author begins with clarifying the terms commonly associated…
Efficient Plastid Transformation in Arabidopsis.
Yu, Qiguo; Lutz, Kerry Ann; Maliga, Pal
2017-09-01
Plastid transformation is routine in tobacco ( Nicotiana tabacum ) but 100-fold less frequent in Arabidopsis ( Arabidopsis thaliana ), preventing its use in plastid biology. A recent study revealed that null mutations in ACC2 , encoding a plastid-targeted acetyl-coenzyme A carboxylase, cause hypersensitivity to spectinomycin. We hypothesized that plastid transformation efficiency should increase in the acc2 background, because when ACC2 is absent, fatty acid biosynthesis becomes dependent on translation of the plastid-encoded ACC β-carboxylase subunit. We bombarded ACC2 -defective Arabidopsis leaves with a vector carrying a selectable spectinomycin resistance ( aadA ) gene and gfp , encoding the green fluorescence protein GFP. Spectinomycin-resistant clones were identified as green cell clusters on a spectinomycin medium. Plastid transformation was confirmed by GFP accumulation from the second open reading frame of a polycistronic messenger RNA, which would not be translated in the cytoplasm. We obtained one to two plastid transformation events per bombarded sample in spectinomycin-hypersensitive Slavice and Columbia acc2 knockout backgrounds, an approximately 100-fold enhanced plastid transformation frequency. Slavice and Columbia are accessions in which plant regeneration is uncharacterized or difficult to obtain. A practical system for Arabidopsis plastid transformation will be obtained by creating an ACC2 null background in a regenerable Arabidopsis accession. The recognition that the duplicated ACCase in Arabidopsis is an impediment to plastid transformation provides a rational template to implement plastid transformation in related recalcitrant crops. © 2017 American Society of Plant Biologists. All Rights Reserved.
Karthik, Sivabalan; Pavan, Gadamchetty; Sathish, Selvam; Siva, Ramamoorthy; Kumar, Periyasamy Suresh; Manickavasagam, Markandan
2018-04-01
Agrobacterium infection and regeneration of the putatively transformed plant from the explant remains arduous for some crop species like peanut. Henceforth, a competent and reproducible in planta genetic transformation protocol is established for peanut cv. CO7 by standardizing various factors such as pre-culture duration, acetosyringone concentration, duration of co-cultivation, sonication and vacuum infiltration. In the present investigation, Agrobacterium tumefaciens strain EHA105 harboring the binary vector pCAMBIA1301- bar was used for transformation. The two-stage selection was carried out using 4 and 250 mg l -1 BASTA ® to completely eliminate the chimeric and non-transformed plants. The transgene integration into plant genome was evaluated by GUS histochemical assay, polymerase chain reaction (PCR), and Southern blot hybridization. Among the various combinations and concentrations analyzed, highest transformation efficiency was obtained when the 2-day pre-cultured explants were subjected to sonication for 6 min and vacuum infiltrated for 3 min in Agrobacterium suspension, and co-cultivated on MS medium supplemented with 150 µM acetosyringone for 3 days. The fidelity of the standardized in planta transformation method was assessed in five peanut cultivars and all the cultivars responded positively with a transformation efficiency ranging from minimum 31.3% (with cv. CO6) to maximum 38.6% (with cv. TMV7). The in planta transformation method optimized in this study could be beneficial to develop superior peanut cultivars with desirable genetic traits.
Performance measures for transform data coding.
NASA Technical Reports Server (NTRS)
Pearl, J.; Andrews, H. C.; Pratt, W. K.
1972-01-01
This paper develops performance criteria for evaluating transform data coding schemes under computational constraints. Computational constraints that conform with the proposed basis-restricted model give rise to suboptimal coding efficiency characterized by a rate-distortion relation R(D) similar in form to the theoretical rate-distortion function. Numerical examples of this performance measure are presented for Fourier, Walsh, Haar, and Karhunen-Loeve transforms.
Govender, Nisha; Wong, Mui-Yun
2017-04-01
A highly efficient and reproducible Agrobacterium-mediated transformation protocol for Ganoderma boninense was developed to facilitate observation of the early stage infection of basal stem rot (BSR). The method was proven amenable to different explants (basidiospore, protoplast, and mycelium) of G. boninense. The transformation efficiency was highest (62%) under a treatment combination of protoplast explant and Agrobacterium strain LBA4404, with successful expression of an hyg marker gene and gus-gfp fusion gene under the control of heterologous p416 glyceraldehyde 3-phosphate dehydrogenase promoter. Optimal transformation conditions included a 1:100 Agrobacterium/explant ratio, induction of Agrobacterium virulence genes in the presence of 250 μm acetosyringone, co-cultivation at 22°C for 2 days on nitrocellulose membrane overlaid on an induction medium, and regeneration of transformants on potato glucose agar prepared with 0.6 M sucrose and 20 mM phosphate buffer. Evaluated transformants were able to infect root tissues of oil palm plantlets with needle-like microhyphae during the penetration event. The availability of this model pathogen system for BSR may lead to a better understanding of the pathogenicity factors associated with G. boninense penetration into oil palm roots.
Schreiner, Sabrina; Wimmer, Peter; Groitl, Peter; Chen, Shuen-Yuan; Blanchette, Paola; Branton, Philip E.; Dobner, Thomas
2011-01-01
Early region 1B 55K (E1B-55K) from adenovirus type 5 (Ad5) is a multifunctional regulator of lytic infection and contributes in vitro to complete cell transformation of primary rodent cells in combination with Ad5 E1A. Inhibition of p53 activated transcription plays a key role in processes by which E1B-55K executes its oncogenic potential. Nevertheless, additional functions of E1B-55K or further protein interactions with cellular factors of DNA repair, transcription, and apoptosis, including Mre11, PML, and Daxx, may also contribute to the transformation process. In line with previous results, we performed mutational analysis to define a Daxx interaction motif within the E1B-55K polypeptide. The results from these studies showed that E1B-55K/Daxx binding is not required for inhibition of p53-mediated transactivation or binding and degradation of cellular factors (p53/Mre11). Surprisingly, these mutants lost the ability to degrade Daxx and showed reduced transforming potential in primary rodent cells. In addition, we observed that E1B-55K lacking the SUMO-1 conjugation site (SCS/K104R) was sufficient for Daxx interaction but no longer capable of E1B-55K-dependent proteasomal degradation of the cellular factor Daxx. These results, together with the observation that E1B-55K SUMOylation is required for efficient transformation, provides evidence for the idea that SUMO-1-conjugated E1B-55K-mediated degradation of Daxx plays a key role in adenoviral oncogenic transformation. We assume that the viral protein contributes to cell transformation through the modulation of Daxx-dependent pathways. This further substantiates the assumption that further mechanisms for efficient transformation of primary cells can be separated from functions required for the inhibition of p53-stimulated transcription. PMID:21697482
An Integrated Multilevel Converter with Sigma Delta Control for LED Lighting
NASA Astrophysics Data System (ADS)
Gerber, Daniel L.
High brightness LEDs have become a mainstream lighting technology due to their efficiency, life span, and environmental benefits. As such, the lighting industry values LED drivers with low cost, small form factor, and long life span. Additional specifications that define a high quality LED driver are high efficiency, high power factor, wide-range dimming, minimal flicker, and a galvanically isolated output. The flyback LED driver is a popular topology that satisfies all these specifications, but it requires a bulky and costly flyback transformer. In addition, its passive methods for cancelling AC power ripple require electrolytic capacitors, which have been known to have life span issues. This dissertation details the design, construction, and verification of a novel LED driver that satisfies all the specifications. In addition, it does not require a flyback transformer or electrolytic capacitors, thus marking an improvement over the flyback driver on size, cost, and life span. This dissertation presents an integrated circuit (IC) LED driver, which features a pair of generalized multilevel converters that are controlled via sigma-delta modulation. The first is a multilevel rectifier responsible for power factor correction (PFC) and dimming. The PFC rectifier employs a second order sigma-delta loop to precisely control the input current harmonics and amplitude. The second is a bidirectional multilevel inverter used to cancel AC power ripple from the DC bus. This ripple-cancellation module transfers energy to and from a storage capacitor. It uses a first order sigma-delta loop with a preprogrammed waveform to swing the storage capacitor voltage. The system also contains an output stage that powers the LEDs with DC and provides for galvanic isolation. The output stage consists of an H-bridge stack that connects to the output through a small toroid transformer. The IC LED driver was simulated and prototyped on an ABCD silicon test chip. Testing and verification indicates functional performance for all the modules in the LED driver. The driver exhibits moderate efficiency at half voltage. Although the part was only testable to half voltage, loss models predict that its efficiency would be much higher at full voltage. The driver also meets specifications on the line current harmonics and ripple cancellation. This dissertation introduces multilevel circuit techniques to the IC and LED research space. The prototype's functional performance indicates that integrated multilevel converters are a viable topology for lighting and other similar applications.
Aymerich, I; Acuña, V; Barceló, D; García, M J; Petrovic, M; Poch, M; Rodriguez-Mozaz, S; Rodríguez-Roda, I; Sabater, S; von Schiller, D; Corominas, Ll
2016-09-01
Pharmaceuticals are designed to improve human and animal health, but may also be a threat to freshwater ecosystems, particularly after receiving urban or wastewater treatment plant (WWTP) effluents. Knowledge on the fate and attenuation of pharmaceuticals in engineered and natural ecosystems is rather fragmented, and comparable methods are needed to facilitate the comprehension of those processes amongst systems. In this study the dynamics of 8 pharmaceuticals (acetaminophen, sulfapyridine, sulfamethoxazole, carbamazepine, venlafaxine, ibuprofen, diclofenac, diazepam) and 11 of their transformation products were investigated in a WWTP and the associated receiving river ecosystem. During 3 days, concentrations of these compounds were quantified at the influents, effluents, and wastage of the WWTP, and at different distances downstream the effluent at the river. Attenuation (net balance between removal and release from and to the water column) was estimated in both engineered and natural systems using a comparable model-based approach by considering different uncertainty sources (e.g. chemical analysis, sampling, and flow measurements). Results showed that pharmaceuticals load reduction was higher in the WWTP, but attenuation efficiencies (as half-life times) were higher in the river. In particular, the load of only 5 out of the 19 pharmaceuticals was reduced by more than 90% at the WWTP, while the rest were only partially or non-attenuated (or released) and discharged into the receiving river. At the river, only the load of ibuprofen was reduced by more than 50% (out of the 6 parent compounds present in the river), while partial and non-attenuation (or release) was observed for some of their transformation products. Linkages in the routing of some pharmaceuticals (venlafaxine, carbamazepine, ibuprofen and diclofenac) and their corresponding transformation products were also identified at both WWTP and river. Finally, the followed procedure showed that dynamic attenuation in the coupled WWTP-river system could be successfully predicted with simple first order attenuation kinetics for most modeled compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shen, Qi; Ma, Junwei; Fu, Jianrong; Zhao, Yuhua
2014-01-01
A genetic modification scheme was designed for Aspergillus oryzae A-4, a natural cellulosic lipids producer, to enhance its lipid production from biomass by putting the spotlight on improving cellulase secretion. Four cellulase genes were separately expressed in A-4 under the control of hlyA promoter, with the help of the successful development of a chromosomal genetic manipulation system. Comparison of cellulase activities of PCR-positive transformants showed that these transformants integrated with celA gene and with celC gene had significantly (p<0.05) higher average FPAase activities than those strains integrated with celB gene and with celD gene. Through the assessment of cellulosic lipids accumulating abilities, celA transformant A2-2 and celC transformant D1-B1 were isolated as promising candidates, which could yield 101%–133% and 35.22%–59.57% higher amount of lipids than the reference strain A-4 (WT) under submerged (SmF) conditions and solid-state (SSF) conditions, respectively. Variability in metabolism associated to the introduction of cellulase gene in A2-2 and D1-B1 was subsequently investigated. It was noted that cellulase expression repressed biomass formation but enhanced lipid accumulation; whereas the inhibitory effect on cell growth would be shielded during cellulosic lipids production owing to the essential role of cellulase in substrate utilization. Different metabolic profiles also existed between A2-2 and D1-B1, which could be attributed to not only different transgene but also biological impacts of different integration. Overall, both simultaneous saccharification and lipid accumulation were enhanced in A2-2 and D1-B1, resulting in efficient conversion of cellulose into lipids. A regulation of cellulase secretion in natural cellulosic lipids producers could be a possible strategy to enhance its lipid production from lignocellulosic biomass. PMID:25251435
Lin, Hui; Wang, Qun; Shen, Qi; Ma, Junwei; Fu, Jianrong; Zhao, Yuhua
2014-01-01
A genetic modification scheme was designed for Aspergillus oryzae A-4, a natural cellulosic lipids producer, to enhance its lipid production from biomass by putting the spotlight on improving cellulase secretion. Four cellulase genes were separately expressed in A-4 under the control of hlyA promoter, with the help of the successful development of a chromosomal genetic manipulation system. Comparison of cellulase activities of PCR-positive transformants showed that these transformants integrated with celA gene and with celC gene had significantly (p<0.05) higher average FPAase activities than those strains integrated with celB gene and with celD gene. Through the assessment of cellulosic lipids accumulating abilities, celA transformant A2-2 and celC transformant D1-B1 were isolated as promising candidates, which could yield 101%-133% and 35.22%-59.57% higher amount of lipids than the reference strain A-4 (WT) under submerged (SmF) conditions and solid-state (SSF) conditions, respectively. Variability in metabolism associated to the introduction of cellulase gene in A2-2 and D1-B1 was subsequently investigated. It was noted that cellulase expression repressed biomass formation but enhanced lipid accumulation; whereas the inhibitory effect on cell growth would be shielded during cellulosic lipids production owing to the essential role of cellulase in substrate utilization. Different metabolic profiles also existed between A2-2 and D1-B1, which could be attributed to not only different transgene but also biological impacts of different integration. Overall, both simultaneous saccharification and lipid accumulation were enhanced in A2-2 and D1-B1, resulting in efficient conversion of cellulose into lipids. A regulation of cellulase secretion in natural cellulosic lipids producers could be a possible strategy to enhance its lipid production from lignocellulosic biomass.
DNA Integrity and Shock Wave Transformation Efficiency of Bacteria and Fungi
NASA Astrophysics Data System (ADS)
Loske, Achim M.; Campos-Guillén, Juan; Fernández, Francisco; Pastrana, Xóchitl; Magaña-Ortíz, Denis; Coconi-Linares, Nancy; Ortíz-Vázquez, Elizabeth; Gómez-Lim, Miguel
Delivery of DNA into bacteria and fungi is essential in medicine and biotechnology to produce metabolites, enzymes, antibiotics and proteins. So far, protocols to genetically transform bacteria and fungi are inefficient and have low reproducibility.
ERIC Educational Resources Information Center
Njoku, Joy N.
2016-01-01
Access and quality of higher education are among the major criteria for assessing the product of any institution of higher learning. This paper discusses access and quality in Nigeria's higher education; need for a pragmatic approach for sustainable transformation. It discusses problems of access in the areas of carrying capacity of universities,…
Majerik, Viktor; Horváth, Géza; Szokonya, László; Charbit, Gérard; Badens, Elisabeth; Bosc, Nathalie; Teillaud, Eric
2007-09-01
The objective of this work was to improve the dissolution rate and aqueous solubility of oxeglitazar. Solid dispersions of oxeglitazar in PVP K17 (polyvinilpyrrolidone) and poloxamer 407 (polyoxyethylene-polyoxypropylene block copolymer) were prepared by supercritical antisolvent (SAS) and coevaporation (CoE) methods. Drug-carrier formulations were characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, gas chromatography, UV/VIS spectroscopy and in vitro dissolution tests. The highest dissolution rate (nearly 3-fold higher than raw drug) was achieved by preparation of drug/PVP K17 coevaporate. Oxeglitazar/PVP K17 solid dispersions were stabilized by hydrogen bonding but contained higher amount of residual dichloromethane (DCM) than poloxamer 407 formulations regardless of the method of preparation. SAS prepared oxeglitazar/poloxamer 407 dissolved more than two times faster than raw drug. However, unlike PVP K17, poloxamer 407 did not form a single phase amorphous solid solution with oxeglitazar which has been manifested in higher degrees of crystallinity, too. Among the two techniques, evaluated in this work, conventional coevaporation resulted in higher amorphous content but SAS reduced residual solvent content more efficiently.
Three-dimensional ideal theta(1)/theta(2) angular transformer and its uses in fiber optics.
Ning, X
1988-10-01
A 3-D ideal theta(1)/theta(2) angular transformer in nonimaging optics is introduced. The axially symmetric transformer, combining a portion of a hyperbolic concentrator with two lenses, transforms an input limited Lambertian over an angle theta(1) to an output limited Lambertian over an angle theta(2) without losing throughput. This is the first known transformer with such ideal properties. Results of computer simulations of a transformer with planospherical lenses are presented. Because of its ideal angular transforming property, the transformer offers an excellent solution for power launching and fiber-fiber coupling in optical fiber systems. In principle, the theoretical maximum coupling efficiency based on radiance conservation can be achieved with this transformer. Several conceptual designs of source-fiber and fiber-fiber couplers using the transformer are given.
Sabbadini, Silvia; Pandolfini, Tiziana; Girolomini, Luca; Molesini, Barbara; Navacchi, Oriano
2015-01-01
Until now, the application of genetic transformation techniques in peach has been limited by the difficulties in developing efficient regeneration and transformation protocols. Here we describe an efficient regeneration protocol for the commercial micropropagation of GF677 rootstock (Prunus persica × Prunus amygdalus). The method is based on the production, via organogenesis, of meristematic bulk tissues characterized by a high competence for shoot regeneration. This protocol has also been used to obtain GF677 plants genetically engineered with an empty hairpin cassette (hereafter indicated as hp-pBin19), through Agrobacterium tumefaciens-mediated transformation. After 7-8 months of selection on media containing kanamycin, we obtained two genetically modified GF677 lines. PCR and Southern blot analyses were performed to confirm the genetic status.
Genetic engineering of Ganoderma lucidum for the efficient production of ganoderic acids.
Xu, Jun-Wei; Zhong, Jian-Jiang
2015-01-01
Ganoderma lucidum is a well-known traditional medicinal mushroom that produces ganoderic acids with numerous interesting bioactivities. Genetic engineering is an efficient approach to improve ganoderic acid biosynthesis. However, reliable genetic transformation methods and appropriate genetic manipulation strategies remain underdeveloped and thus should be enhanced. We previously established a homologous genetic transformation method for G. lucidum; we also applied the established method to perform the deregulated overexpression of a homologous 3-hydroxy-3-methyl-glutaryl coenzyme A reductase gene in G. lucidum. Engineered strains accumulated more ganoderic acids than wild-type strains. In this report, the genetic transformation systems of G. lucidum are described; current trends are also presented to improve ganoderic acid production through the genetic manipulation of G. lucidum.
Zhu, Yun J; Fitch, Maureen M M; Moore, Paul H
2006-01-01
Transgenic papaya plants were initially obtained using particle bombardment, a method having poor efficiency in producing intact, single-copy insertion of transgenes. Single-copy gene insertion was improved using Agrobacterium tumefaciens. With progress being made in genome sequencing and gene discovery, there is a need for more efficient methods of transformation in order to study the function of these genes. We describe a protocol for Agrobacterium-mediated transformation using carborundum-wounded papaya embryogenic calli. This method should lead to high-throughput transformation, which on average produced at least one plant that was positive in polymerase chain reaction (PCR), histochemical staining, or by Southern blot hybridization from 10 to 20% of the callus clusters that had been co-cultivated with Agrobacterium. Plants regenerated from the callus clusters in 9 to 13 mo.
Arunkumar, Ranganathan; Prashanth, Keelara Veerappa Harish; Manabe, Yuki; Hirata, Takashi; Sugawara, Tatsuya; Dharmesh, Shylaja Mallaiah; Baskaran, Vallikannan
2015-06-01
Lutein bioavailability is limited because of its poor aqueous solubility. In this study, lutein-poly (lactic-co-glycolic acid) (PLGA)-polyethylene glycol (PEG) nanocapsules were prepared to improve the solubility, bioavailability, and anticancer property of lutein. The scanning electron microscopy and dynamic light scattering examination revealed that the nanocapsules are smooth and spherical with size ranging from 80 to 500 nm (mean = 200 nm). In vitro lutein release profile from nanocapsules showed controlled sustainable release (66%) up to 72 h. Aqueous solubility of lutein nanocapsules was much higher by 735-fold than the lutein. Fourier transform infrared spectroscopy analyses showed no chemical interaction among PLGA, PEG, and lutein, indicating possible weak intermolecular forces like hydrogen bonds. X-ray diffraction revealed lutein is distributed in a disordered amorphous state in nanocapsules. Postprandial plasma kinetics (area under the curve) of an oral dose of lutein from nanocapsules was higher by 5.4-fold compared with that of micellar lutein (control). The antiproliferative effect of lutein from nanocapsules (IC50 value, 10.9 μM) was higher (43.6%) than the lutein (IC50 value, 25 μM). Results suggest that PLGA-PEG nanocapsule is an efficient carrier for enhancing hydrophilicity, bioavailability, and anticancer property of lipophilic molecules such as lutein. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Libpsht - algorithms for efficient spherical harmonic transforms
NASA Astrophysics Data System (ADS)
Reinecke, M.
2011-02-01
Libpsht (or "library for performant spherical harmonic transforms") is a collection of algorithms for efficient conversion between spatial-domain and spectral-domain representations of data defined on the sphere. The package supports both transforms of scalars and spin-1 and spin-2 quantities, and can be used for a wide range of pixelisations (including HEALPix, GLESP, and ECP). It will take advantage of hardware features such as multiple processor cores and floating-point vector operations, if available. Even without this additional acceleration, the employed algorithms are among the most efficient (in terms of CPU time, as well as memory consumption) currently being used in the astronomical community. The library is written in strictly standard-conforming C90, ensuring portability to many different hard- and software platforms, and allowing straightforward integration with codes written in various programming languages like C, C++, Fortran, Python etc. Libpsht is distributed under the terms of the GNU General Public License (GPL) version 2 and can be downloaded from .
Libpsht: Algorithms for Efficient Spherical Harmonic Transforms
NASA Astrophysics Data System (ADS)
Reinecke, Martin
2010-10-01
Libpsht (or "library for Performing Spherical Harmonic Transforms") is a collection of algorithms for efficient conversion between spatial-domain and spectral-domain representations of data defined on the sphere. The package supports transforms of scalars as well as spin-1 and spin-2 quantities, and can be used for a wide range of pixelisations (including HEALPix, GLESP and ECP). It will take advantage of hardware features like multiple processor cores and floating-point vector operations, if available. Even without this additional acceleration, the employed algorithms are among the most efficient (in terms of CPU time as well as memory consumption) currently being used in the astronomical community. The library is written in strictly standard-conforming C90, ensuring portability to many different hard- and software platforms, and allowing straightforward integration with codes written in various programming languages like C, C++, Fortran, Python etc. Libpsht is distributed under the terms of the GNU General Public License (GPL) version 2. Development on this project has ended; its successor is libsharp (ascl:1402.033).
Flux transformers made of commercial high critical temperature superconducting wires.
Dyvorne, H; Scola, J; Fermon, C; Jacquinot, J F; Pannetier-Lecoeur, M
2008-02-01
We have designed flux transformers made of commercial BiSCCO tapes closed by soldering with normal metal. The magnetic field transfer function of the flux transformer was calculated as a function of the resistance of the soldered contacts. The performances of different kinds of wires were investigated for signal delocalization and gradiometry. We also estimated the noise introduced by the resistance and showed that the flux transformer can be used efficiently for weak magnetic field detection down to 1 Hz.
Muto, Masaki; Fukuda, Yorikane; Nemoto, Michiko; Yoshino, Tomoko; Matsunaga, Tadashi; Tanaka, Tsuyoshi
2013-02-01
A genetic transformation system for the marine pennate diatom, Fistulifera sp. JPCC DA0580, was established using microparticle bombardment methods. Strain JPCC DA0580 has been recently identified as the highest triglyceride (60 % w/w) producer from a culture collection of 1,393 strains of marine microalgae, and it is expected to be a feasible source of biodiesel fuel. The transformation conditions for strain JPCC DA0580 were optimised using the green fluorescent protein gene (gfp) and the gene encoding neomycin phosphotransferase II (nptII). The most efficient rate of transformation was attained when tungsten particles (0.6 μm in diameter) were used for microparticle bombardment. The effect of endogenous and exogenous promoters on the expression of nptII was examined. Endogenous promoters were more efficient for obtaining transformants compared with exogenous promoters. Southern hybridisation analysis suggested that nptII integrated into the nuclear genome. This genetic manipulation technique should allow us to understand the mechanisms of high triglyceride accumulation in this strain, thereby contributing to improving BDF production.
Rouge, Clémence; Lhémery, Alain; Ségur, Damien
2013-10-01
An electromagnetic acoustic transducer (EMAT) or a laser used to generate elastic waves in a component is often described as a source of body force confined in a layer close to the surface. On the other hand, models for elastic wave radiation more efficiently handle sources described as distributions of surface stresses. Equivalent surface stresses can be obtained by integrating the body force with respect to depth. They are assumed to generate the same field as the one that would be generated by the body force. Such an integration scheme can be applied to Lorentz force for conventional EMAT configuration. When applied to magnetostrictive force generated by an EMAT in a ferromagnetic material, the same scheme fails, predicting a null stress. Transforming body force into equivalent surface stresses therefore, requires taking into account higher order terms of the force moments, the zeroth order being the simple force integration over the depth. In this paper, such a transformation is derived up to the second order, assuming that body forces are localized at depths shorter than the ultrasonic wavelength. Two formulations are obtained, each having some advantages depending on the application sought. They apply regardless of the nature of the force considered.
Sutherland, B M; Cuomo, N C; Bennett, P V
2005-10-01
Travelers on space missions will be exposed to a complex radiation environment that includes protons and heavy charged particles. Since protons are present at much higher levels than are heavy ions, the most likely scenario for cellular radiation exposure will be proton exposure followed by a hit by a heavy ion. Although the effects of individual ion species on human cells are being investigated extensively, little is known about the effects of exposure to both radiation types. One useful measure of mammalian cell damage is induction of the ability to grow in a semi-solid agar medium highly inhibitory to the growth of normal human cells, termed neoplastic transformation. Using primary human cells, we evaluated induction of soft-agar growth and survival of cells exposed to protons only or to heavy charged particles (600 MeV/nucleon silicon) only as well as of cells exposed to protons followed after a 4-day interval by silicon ions. Both ions alone efficiently transformed the human cells to anchorage-independent growth. Initial experiments indicate that the dose responses for neoplastic transformation of cells exposed to protons and then after 4 days to silicon ions appear similar to that of cells exposed to silicon ions alone.
Kim, Cheolyong; Ahn, Jun-Young; Kim, Tae Yoo; Shin, Won Sik; Hwang, Inseong
2018-03-20
The mechanisms involved in the activation of persulfate by nanosized zero-valent iron (NZVI) were elucidated and the NZVI transformation products identified. Two distinct reaction stages, in terms of the kinetics and radical formation mechanism, were found when phenol was oxidized by the persulfate/NZVI system. In the initial stage, lasting 10 min, Fe 0 (s) was consumed rapidly and sulfate radicals were produced through activation by aqueous Fe 2+ . The second stage was governed by Fe catalyzed activation in the presence of aqueous Fe 3+ and iron (oxyhydr)oxides in the NZVI shells. The second stage was 3 orders of magnitude slower than the initial stage. An electron balance showed that the sulfate radical yield per mole of persulfate was more than two times higher in the persulfate/NZVI system than in the persulfate/Fe 2+ system. Radicals were believed to be produced more efficiently in the persulfate/NZVI system because aqueous Fe 2+ was supplied slowly, preventing sulfate radicals being scavenged by excess aqueous Fe 2+ . In the second stage, the multilayered shell conducted electrons, and magnetite in the shell provided electrons for the activation of persulfate. Iron speciation analysis (including X-ray absorption spectroscopy) results indicated that a shrinking core/growing shell model explained NZVI transformation during the persulfate/NZVI process.
Mendelev, M. I.; Underwood, T. L.; Ackland, G. J.
2016-10-17
New interatomic potentials describing defects, plasticity, and high temperature phase transitions for Ti are presented. Fitting the martensitic hcp-bcc phase transformation temperature requires an efficient and accurate method to determine it. We apply a molecular dynamics method based on determination of the melting temperature of competing solid phases, and Gibbs-Helmholtz integration, and a lattice-switch Monte Carlo method: these agree on the hcp-bcc transformation temperatures to within 2 K. We were able to develop embedded atom potentials which give a good fit to either low or high temperature data, but not both. The first developed potential (Ti1) reproduces the hcp-bcc transformationmore » and melting temperatures and is suitable for the simulation of phase transitions and bcc Ti. Two other potentials (Ti2 and Ti3) correctly describe defect properties and can be used to simulate plasticity or radiation damage in hcp Ti. The fact that a single embedded atom method potential cannot describe both low and high temperature phases may be attributed to neglect of electronic degrees of freedom, notably bcc has a much higher electronic entropy. As a result, a temperature-dependent potential obtained from the combination of potentials Ti1 and Ti2 may be used to simulate Ti properties at any temperature.« less
Wavelet processing techniques for digital mammography
NASA Astrophysics Data System (ADS)
Laine, Andrew F.; Song, Shuwu
1992-09-01
This paper introduces a novel approach for accomplishing mammographic feature analysis through multiresolution representations. We show that efficient (nonredundant) representations may be identified from digital mammography and used to enhance specific mammographic features within a continuum of scale space. The multiresolution decomposition of wavelet transforms provides a natural hierarchy in which to embed an interactive paradigm for accomplishing scale space feature analysis. Similar to traditional coarse to fine matching strategies, the radiologist may first choose to look for coarse features (e.g., dominant mass) within low frequency levels of a wavelet transform and later examine finer features (e.g., microcalcifications) at higher frequency levels. In addition, features may be extracted by applying geometric constraints within each level of the transform. Choosing wavelets (or analyzing functions) that are simultaneously localized in both space and frequency, results in a powerful methodology for image analysis. Multiresolution and orientation selectivity, known biological mechanisms in primate vision, are ingrained in wavelet representations and inspire the techniques presented in this paper. Our approach includes local analysis of complete multiscale representations. Mammograms are reconstructed from wavelet representations, enhanced by linear, exponential and constant weight functions through scale space. By improving the visualization of breast pathology we can improve the chances of early detection of breast cancers (improve quality) while requiring less time to evaluate mammograms for most patients (lower costs).
Fenton-like initiation of a toluene transformation mechanism
In Fenton-driven oxidation treatment systems, reaction intermediates derived from parent compounds can play a significant role in the overall treatment process. Fenton-like reactions in the presence of toluene or benzene, involved a transformation mechanism that was highly effici...
THE SOLAR TRANSFORMITY OF OIL AND PETROLEUM NATURAL GAS
This paper presents an emergy evaluation of the biogeochemical process of petroleum formation. Unlike the previous calculation, in which the transformity of crude oil was back calculated from the relative efficiency of electricity production and factors relating coal to transport...
Chitosan-microreactor: a versatile approach for heterogeneous organic synthesis in microfluidics.
Basavaraju, K C; Sharma, Siddharth; Singh, Ajay K; Im, Do Jin; Kim, Dong-Pyo
2014-07-01
Microreactors have been proven to be efficient tools for a variety of homogeneous organic transformations due to their mixing efficiency, which results in very fast reactions, better heat and mass transfer, and simple scale-up. However, in heterogeneous catalytic reactions each catalyst needs an individual substrate as support. Herein, a versatile approach to immobilize metal catalysts on chitosan as a common substrate is presented. Chitosan, accommodating many metal catalysts, is grafted onto the microchannel surface as nanobrush. The versatility, catalytic efficiency, and stability/durability of the microreactor are demonstrated for a number of organic transformations involving various metal compounds as catalysts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Inversion Of Jacobian Matrix For Robot Manipulators
NASA Technical Reports Server (NTRS)
Fijany, Amir; Bejczy, Antal K.
1989-01-01
Report discusses inversion of Jacobian matrix for class of six-degree-of-freedom arms with spherical wrist, i.e., with last three joints intersecting. Shows by taking advantage of simple geometry of such arms, closed-form solution of Q=J-1X, which represents linear transformation from task space to joint space, obtained efficiently. Presents solutions for PUMA arm, JPL/Stanford arm, and six-revolute-joint coplanar arm along with all singular points. Main contribution of paper shows simple geometry of this type of arms exploited in performing inverse transformation without any need to compute Jacobian or its inverse explicitly. Implication of this computational efficiency advanced task-space control schemes for spherical-wrist arms implemented more efficiently.
Citizens Utilities Company's successful residential new construction market transformation program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caulfield, T.O.; Shepherd, M.A.
1998-07-01
Citizens Utilities Company, Arizona Electric Division (CUC/AED) fielded a Residential New Construction Program (RNC) in the forth quarter of 1994 that had been designed from conception as a market transformation program. The CUC RNC Program encouraged builders to adopt energy efficient building practices for new homes by supplying builders estimates of energy savings, supplying inspections services to assist builders in applying energy efficient building practices while verifying compliance, and posting and promoting the home as energy efficient during the sales period. Measures generally required to qualify for the program were R-38 ceiling insulation, R-21 wall insulation, polysealing of all infiltrationmore » gaps during construction, well sealed air-conditioning ducts, and an air conditioner Seasonal Energy Efficiency Rating (SEER) of 11.0 or greater. In less than two years the program achieved over 17% market penetration without offering rebates to builders. This paper reviews the design of the program, including a discussion of the features felt to be primarily responsible for its success. It reviews the levels of penetration achieved, free-ridership, spillover, and market barriers encountered. Finally it proposes improvements to the program designed to carry it the next step toward a self-sustaining market transformation program.« less
American Higher Education Transformed, 1940-2005: Documenting the National Discourse
ERIC Educational Resources Information Center
Smith, Wilson, Ed.; Bender, Thomas, Ed.
2008-01-01
This long-awaited sequel to Richard Hofstadter and Wilson Smith's classic anthology "American Higher Education: A Documentary History" presents one hundred and seventy-two key edited documents that record the transformation of higher education over the past sixty years. The volume includes such seminal documents as Vannevar Bush's 1945…
The Transformation of Higher Education in Vietnam after DoiMoi: A Story of "Dualism"
ERIC Educational Resources Information Center
Tran, Hien
2009-01-01
This research was undertaken to investigate the transformation of higher education reform in Vietnam since "DoiMoi," which involves examining its rationale and practical implementation. The reform reveals an interesting picture of Vietnam's higher education system, in which two development visions--a "market-led" vision and a…
ERIC Educational Resources Information Center
Sataøen, Hogne Lerøy
2018-01-01
Higher education institutions (HEIs) in Norway have been subjected to several reforms in recent decades. There are transformed relationships between institutions and their environment, and higher educations' third mission is emphasized. To improve our understanding of HEIs' third mission, this paper employs boundary object theory, enabling us to…
Advances in Agrobacterium tumefaciens-mediated genetic transformation of graminaceous crops.
Singh, Roshan Kumar; Prasad, Manoj
2016-05-01
Steady increase in global population poses several challenges to plant science research, including demand for increased crop productivity, grain yield, nutritional quality and improved tolerance to different environmental factors. Transgene-based approaches are promising to address these challenges by transferring potential candidate genes to host organisms through different strategies. Agrobacterium-mediated gene transfer is one such strategy which is well known for enabling efficient gene transfer in both monocot and dicots. Due to its versatility, this technique underwent several advancements including development of improved in vitro plant regeneration system, co-cultivation and selection methods, and use of hyper-virulent strains of Agrobacterium tumefaciens harbouring super-binary vectors. The efficiency of this method has also been enhanced by the use of acetosyringone to induce the activity of vir genes, silver nitrate to reduce the Agrobacterium-induced necrosis and cysteine to avoid callus browning during co-cultivation. In the last two decades, extensive efforts have been invested towards achieving efficient Agrobacterium-mediated transformation in cereals. Though high-efficiency transformation systems have been developed for rice and maize, comparatively lesser progress has been reported in other graminaceous crops. In this context, the present review discusses the progress made in Agrobacterium-mediated transformation system in rice, maize, wheat, barley, sorghum, sugarcane, Brachypodium, millets, bioenergy and forage and turf grasses. In addition, it also provides an overview of the genes that have been recently transferred to these graminaceous crops using Agrobacterium, bottlenecks in this technique and future possibilities for crop improvement.
A Case Study in Market Transformation for Residential Energy Efficiency Programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Building Technologies Office
This case study describes how the Midwest Energy Efficiency Alliance (MEEA) partnered with gas and electric utilities in Iowa to establish the Iowa residential heating, ventilation, and air conditioning System Adjustment and Verified Efficiency (HVAC SAVE) program, taking it to scale improving the performance and energy efficiency of HVAC systems, growing businesses, and gaining consumer trust.
The African Renaissance and the Transformation of the Higher Education Curriculum in South Africa
ERIC Educational Resources Information Center
Higgs, Philip
2016-01-01
The curriculum is a critical element in the transformation of higher education, and as a result, I argue for the inclusion of what I refer to as an African epistemic in higher education curricula in South Africa. In so doing, attention is directed at the decolonisation of the curriculum in higher education in South Africa, which aims to give…
Speiseder, Thomas; Hofmann-Sieber, Helga; Rodríguez, Estefanía; Schellenberg, Anna; Akyüz, Nuray; Dierlamm, Judith; Spruss, Thilo; Lange, Claudia; Dobner, Thomas
2017-01-01
Previous observations that human amniotic fluid cells (AFC) can be transformed by human adenovirus type 5 (HAdV-5) E1A/E1B oncogenes prompted us to identify the target cells in the AFC population that are susceptible to transformation. Our results demonstrate that one cell type corresponding to mesenchymal stem/stroma cells (hMSCs) can be reproducibly transformed by HAdV-5 E1A/E1B oncogenes as efficiently as primary rodent cultures. HAdV-5 E1-transformed hMSCs exhibit all properties commonly associated with a high grade of oncogenic transformation, including enhanced cell proliferation, anchorage-independent growth, increased growth rate, and high telomerase activity as well as numerical and structural chromosomal aberrations. These data confirm previous work showing that HAdV preferentially transforms cells of mesenchymal origin in rodents. More importantly, they demonstrate for the first time that human cells with stem cell characteristics can be completely transformed by HAdV oncogenes in tissue culture with high efficiency. Our findings strongly support the hypothesis that undifferentiated progenitor cells or cells with stem cell-like properties are highly susceptible targets for HAdV-mediated cell transformation and suggest that virus-associated tumors in humans may originate, at least in part, from infections of these cell types. We expect that primary hMSCs will replace the primary rodent cultures in HAdV viral transformation studies and are confident that these investigations will continue to uncover general principles of viral oncogenesis that can be extended to human DNA tumor viruses as well. It is generally believed that transformation of primary human cells with HAdV-5 E1 oncogenes is very inefficient. However, a few cell lines have been successfully transformed with HAdV-5 E1A and E1B, indicating that there is a certain cell type which is susceptible to HAdV-mediated transformation. Interestingly, all those cell lines have been derived from human embryonic tissue, albeit the exact cell type is not known yet. We show for the first time the successful transformation of primary human mesenchymal stromal cells (hMSCs) by HAdV-5 E1A and E1B. Further, we show upon HAdV-5 E1A and E1B expression that these primary progenitor cells exhibit features of tumor cells and can no longer be differentiated into the adipogenic, chondrogenic, or osteogenic lineage. Hence, primary hMSCs represent a robust and novel model system to elucidate the underlying molecular mechanisms of adenovirus-mediated transformation of multipotent human progenitor cells. Copyright © 2016 American Society for Microbiology.
High-energy, 2µm laser transmitter for coherent wind LIDAR
NASA Astrophysics Data System (ADS)
Singh, Upendra N.; Yu, Jirong; Kavaya, Michael J.; Koch, Grady J.
2017-11-01
A coherent Doppler lidar at 2μm wavelength has been built with higher output energy (300 mJ) than previously available. The laser transmitter is based on the solid-state Ho:Tm:LuLiF, a NASA Langley Research Center invented laser material for higher extraction efficiency. This diode pumped injection seeded MOPA has a transform limited line width and diffraction limited beam quality. NASA Langley Research Center is developing coherent wind lidar transmitter technology at eye-safe wavelength for satellite-based observation of wind on a global scale. The ability to profile wind is a key measurement for understanding and predicting atmospheric dynamics and is a critical measurement for improving weather forecasting and climate modeling. We would describe the development and performance of an engineering hardened 2μm laser transmitter for coherent Doppler wind measurement from ground/aircraft/space platform.
Thwe, Aye; Valan Arasu, Mariadhas; Li, Xiaohua; Park, Chang Ha; Kim, Sun Ju; Al-Dhabi, Naif Abdullah; Park, Sang Un
2016-01-01
The development of an efficient protocol for successful hairy root induction by Agrobacterium rhizogenes is the key step toward an in vitro culturing method for the mass production of secondary metabolites. The selection of an effective Agrobacterium strain for the production of hairy roots is highly plant species dependent and must be determined empirically. Therefore, our goal was to investigate the transformation efficiency of different A. rhizogenes strains for the induction of transgenic hairy roots in Fagopyrum tataricum ‘Hokkai T10’ cultivar; to determine the expression levels of the polypropanoid biosynthetic pathway genes, such as ftpAL, FtC4H, Ft4CL, FrCHS, FrCH1, FrF3H, FtFLS1, FtFLS2, FtF3, H1, FtF3′H2, FtANS, and FtDFR; and to quantify the in vitro synthesis of phenolic compounds and anthocyanins. Among different strains, R1000 was the most promising candidate for hairy root stimulation because it induced the highest growth rate, root number, root length, transformation efficiency, and total anthocyanin and rutin content. The R1000, 15834, and A4 strains provided higher transcript levels for most metabolic pathway genes for the synthesis of rutin (22.31, 15.48, and 13.04 μg/mg DW, respectively), cyanidin 3-O-glucoside (800, 750, and 650 μg/g DW, respectively), and cyanidin 3-O-rutinoside (2410, 1530, and 1170 μg/g DW, respectively). A suitable A. rhizogenes strain could play a vital role in the fast growth of the bulk amount of hairy roots and secondary metabolites. Overall, R1000 was the most promising strain for hairy root induction in buckwheat. PMID:27014239
Liu, YuPing; Guo, Si-Xuan; Ding, Liang; Ohlin, C André; Bond, Alan M; Zhang, Jie
2015-08-05
A method has been developed for the efficient electrodeposition of cobalt and nickel nanostructures with the assistance of the Lindqvist ion [Nb6O19](8-). Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Raman spectroscopy, inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma optical emission spectrometry, and a range of electrochemical techniques have been used to characterize the morphology, composition, catalytic water oxidation activity and stability of the films in alkaline solution. SEM images show that films consisting of nanoparticles with diameters of ca. 30 to 40 nm are formed after 40-50 potential cycles of deposition. Nb and Co/Ni are detected in the films by EDX. ICP-MS results show an elemental ratio of 1:1 for Co:Nb and 1:3 for Ni:Nb, respectively. Raman spectra reveal the presence of both [Nb6O19](8-) and Co(OH)2/Ni(OH)2. The films exhibit excellent stability and efficiency for electrocatalytic water oxidation in alkaline solution. Turnover frequencies of 12.9 and 13.2 s(-1) were determined by rotating ring disk electrode voltammetry at an overpotential of 480 mV for Co and Ni films, respectively. Fourier transformed large amplitude alternating current (FTAC) voltammetry reveals an additional underlying oxidation process for Co under catalytic turnover conditions, which indicates that a Co(IV) species is involved in the efficient catalytic water oxidation reactions. FTAC voltammetric data also suggest that the Ni films undergoes a clear phase transformation upon aging in aqueous 1 M NaOH and the electrogenerated higher oxidation state Ni from β-NiOOH is the more active form of the catalyst.
Wang, Dan; Wu, Hui; Thakker, Chandresh; Beyersdorf, Jared; Bennett, George N; San, Ka-Yiu
2015-01-01
To be competitive with current petrochemicals, microbial synthesis of free fatty acids can be made to rely on a variety of renewable resources rather than on food carbon sources, which increase its attraction for governments and companies. Industrial waste soybean meal is an inexpensive feedstock, which contains soluble sugars such as stachyose, raffinose, sucrose, glucose, galactose, and fructose. Free fatty acids were produced in this report by introducing an acyl-ACP carrier protein thioesterase and (3R)-hydroxyacyl-ACP dehydratase into E. coli. Plasmid pRU600 bearing genes involved in raffinose and sucrose metabolism was also transformed into engineered E. coli strains, which allowed more efficient utilization of these two kinds of specific oligosaccharide present in the soybean meal extract. Strain ML103 (pRU600, pXZ18Z) produced ~1.60 and 2.66 g/L of free fatty acids on sucrose and raffinose, respectively. A higher level of 2.92 g/L fatty acids was obtained on sugar mixture. The fatty acid production using hydrolysate obtained from acid or enzyme based hydrolysis was evaluated. Engineered strains just produced ~0.21 g/L of free fatty acids with soybean meal acid hydrolysate. However, a fatty acid production of 2.61 g/L with a high yield of 0.19 g/g total sugar was observed on an enzymatic hydrolysate. The results suggest that complex mixtures of oligosaccharides derived from soybean meal can serve as viable feedstock to produce free fatty acids. Enzymatic hydrolysis acts as a much more efficient treatment than acid hydrolysis to facilitate the transformation of industrial waste from soybean processing to high value added chemicals. © 2015 American Institute of Chemical Engineers.