NASA Astrophysics Data System (ADS)
Chen, Zhuoqi; Chen, Jing M.; Zhang, Shupeng; Zheng, Xiaogu; Ju, Weiming; Mo, Gang; Lu, Xiaoliang
2017-12-01
The Global Carbon Assimilation System that assimilates ground-based atmospheric CO2 data is used to estimate several key parameters in a terrestrial ecosystem model for the purpose of improving carbon cycle simulation. The optimized parameters are the leaf maximum carboxylation rate at 25°C (Vmax25), the temperature sensitivity of ecosystem respiration (Q10), and the soil carbon pool size. The optimization is performed at the global scale at 1° resolution for the period from 2002 to 2008. The results indicate that vegetation from tropical zones has lower Vmax25 values than vegetation in temperate regions. Relatively high values of Q10 are derived over high/midlatitude regions. Both Vmax25 and Q10 exhibit pronounced seasonal variations at middle-high latitudes. The maxima in Vmax25 occur during growing seasons, while the minima appear during nongrowing seasons. Q10 values decrease with increasing temperature. The seasonal variabilities of Vmax25 and Q10 are larger at higher latitudes. Optimized Vmax25 and Q10 show little seasonal variabilities at tropical regions. The seasonal variabilities of Vmax25 are consistent with the variabilities of LAI for evergreen conifers and broadleaf evergreen forests. Variations in leaf nitrogen and leaf chlorophyll contents may partly explain the variations in Vmax25. The spatial distribution of the total soil carbon pool size after optimization is compared favorably with the gridded Global Soil Data Set for Earth System. The results also suggest that atmospheric CO2 data are a source of information that can be tapped to gain spatially and temporally meaningful information for key ecosystem parameters that are representative at the regional and global scales.
Yamazaki, Miho; Shimizu, Makiko; Uno, Yasuhiro; Yamazaki, Hiroshi
2014-07-15
Liver microsomal flavin-containing monooxygenases (FMO, EC 1.14.13.8) 1 and 3 were functionally characterized in terms of expression levels and molecular catalytic capacities in human, cynomolgus monkey, rat, and minipig livers. Liver microsomal FMO3 in humans and monkeys and FMO1 and FMO3 in rats and minipigs could be determined immunochemically with commercially available anti-human FMO3 peptide antibodies or rat FMO1 peptide antibodies. With respect to FMO-dependent N-oxygenation of benzydamine and tozasertib and S-oxygenation of methimazole and sulindac sulfide activities, rat and minipig liver microsomes had high maximum velocity values (Vmax) and high catalytic efficiency (Vmax/Km, Michaelis constant) compared with those for human or monkey liver microsomes. Apparent Km values for recombinantly expressed rat FMO3-mediated N- and S-oxygenations were approximately 10-100-fold those of rat FMO1, although these enzymes had similar Vmax values. The mean catalytic efficiencies (Vmax/Km, 1.4 and 0.4 min(-1)μM(-1), respectively) of recombinant human and monkey FMO3 were higher than those of FMO1, whereas Vmax/Km values for rat and minipig FMO3 were low compared with those of FMO1. Minipig liver microsomal FMO1 efficiently catalyzed N- and S-oxygenation reactions; in addition, the minipig liver microsomal FMO1 concentration was higher than the levels in rats, humans, and monkeys. These results suggest that liver microsomal FMO1 could contribute to the relatively high FMO-mediated drug N- and S-oxygenation activities in rat and minipig liver microsomes and that lower expression of FMO1 in human and monkey livers could be a determinant factor for species differences in liver drug N- and S-oxygenation activities between experimental animals and humans. Copyright © 2014 Elsevier Inc. All rights reserved.
Maximum shortening velocity of lymphatic muscle approaches that of striated muscle.
Zhang, Rongzhen; Taucer, Anne I; Gashev, Anatoliy A; Muthuchamy, Mariappan; Zawieja, David C; Davis, Michael J
2013-11-15
Lymphatic muscle (LM) is widely considered to be a type of vascular smooth muscle, even though LM cells uniquely express contractile proteins from both smooth muscle and cardiac muscle. We tested the hypothesis that LM exhibits an unloaded maximum shortening velocity (Vmax) intermediate between that of smooth muscle and cardiac muscle. Single lymphatic vessels were dissected from the rat mesentery, mounted in a servo-controlled wire myograph, and subjected to isotonic quick release protocols during spontaneous or agonist-evoked contractions. After maximal activation, isotonic quick releases were performed at both the peak and plateau phases of contraction. Vmax was 0.48 ± 0.04 lengths (L)/s at the peak: 2.3 times higher than that of mesenteric arteries and 11.4 times higher than mesenteric veins. In cannulated, pressurized lymphatic vessels, shortening velocity was determined from the maximal rate of constriction [rate of change in internal diameter (-dD/dt)] during spontaneous contractions at optimal preload and minimal afterload; peak -dD/dt exceeded that obtained during any of the isotonic quick release protocols (2.14 ± 0.30 L/s). Peak -dD/dt declined with pressure elevation or activation using substance P. Thus, isotonic methods yielded Vmax values for LM in the mid to high end (0.48 L/s) of those the recorded for phasic smooth muscle (0.05-0.5 L/s), whereas isobaric measurements yielded values (>2.0 L/s) that overlapped the midrange of values for cardiac muscle (0.6-3.3 L/s). Our results challenge the dogma that LM is classical vascular smooth muscle, and its unusually high Vmax is consistent with the expression of cardiac muscle contractile proteins in the lymphatic vessel wall.
Ramón, F; Castillón, M; De La Mata, I; Acebal, C
1998-01-01
The variation of kinetic parameters of d-amino acid oxidase from Rhodotorula gracilis with pH was used to gain information about the chemical mechanism of the oxidation of D-amino acids catalysed by this flavoenzyme. d-Alanine was the substrate used. The pH dependence of Vmax and Vmax/Km for alanine as substrate showed that a group with a pK value of 6.26-7.95 (pK1) must be unprotonated and a group with a pK of 10.8-9.90 (pK2) must be protonated for activity. The lower pK value corresponded to a group on the enzyme involved in catalysis and whose protonation state was not important for binding. The higher pK value was assumed to be the amino group of the substrate. Profiles of pKi for D-aspartate as competitive inhibitor showed that binding is prevented when a group on the enzyme with a pK value of 8.4 becomes unprotonated; this basic group was not detected in Vmax/Km profiles suggesting its involvement in binding of the beta-carboxylic group of the inhibitor. PMID:9461524
NASA Astrophysics Data System (ADS)
Chen, Z.; Chen, J.; Zhang, S.; Zheng, X.; Shangguan, W.
2016-12-01
A global carbon assimilation system (GCAS) that assimilates ground-based atmospheric CO2 data is used to estimate several key parameters in a terrestrial ecosystem model for the purpose of improving carbon cycle simulation. The optimized parameters are the leaf maximum carboxylation rate at 25° (Vmax25 ), the temperature sensitivity of ecosystem respiration (Q10), and the soil carbon pool size. The optimization is performed at the global scale at 1°resolution for the period from 2002 to 2008. Optimized multi-year average Vmax25 values range from 49 to 51 μmol m-2 s-1 over most regions of world. Vegetation from tropical zones has relatively lower values than vegetation in temperate regions. Optimized multi-year average Q10 values varied from 1.95 to 2.05 over most regions of the world. Relatively high values of Q10 are derived over high/mid latitude regions. Both Vmax25 and Q10 exhibit pronounced seasonal variations at mid-high latitudes. The maximum in occurs during the growing season, while the minima appear during non-growing seasons. Q10 values decreases with increasing temperature. The seasonal variabilities of and Q10 are larger at higher latitudes with tropical or low latitude regions showing little seasonal variabilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katsui, T.; Okuda, M.; Usuda, S.
The kinetics of 5-HT uptake by platelets was studied in cases of infantile autism and developmental language disorder (DLD) and normal subjects. Two patients of the autism group were twins, and the seven patients of the DLD group were members of four pairs of twins. The Vmax values (means +/- SD) for autism and DLD were 6.46 +/- .90 pmol 5-HT/10(7) cells/min and 4.85 +/- 1.50 pmol 5-HT/10(7) cells/min, respectively. These values were both significantly higher than that of 2.25 +/- .97 pmole 5-HT/10(7) cells/min for normal children. The Km values of the three groups were not significantly different. Datamore » on the five pairs of twins examined suggested that the elevated Vmax of 5-HT uptake by platelets was determined genetically.« less
Temperature Sensitivities of Extracellular Enzyme Vmax and Km Across Thermal Environments
NASA Astrophysics Data System (ADS)
Allison, S. D.; Romero-Olivares, A.; Lu, Y.; Taylor, J.; Treseder, K. K.
2017-12-01
The magnitude and direction of carbon cycle feedbacks under climate warming remain uncertain due to insufficient knowledge about the temperature sensitivity of microbial processes in soil. Enzymatic rates could increase at higher temperatures, but this response is determined by multiple parameters that may change over time if soil microbes adapt to warming. We used the Michaelis-Menten relationship, the Arrhenius relationship, and biochemical transition state theory to construct hypotheses about the responses of extracellular enzyme Vmax and Km to temperature. Based on the Arrhenius relationship, we hypothesized that Vmax and Km would show positive temperature sensitivities. For enzymes from warmer environments, we expected to find lower Vmax, Km, and Km temperature sensitivity but higher Vmax temperature sensitivity. We tested these hypotheses with enzymes from isolates of the filamentous fungus Neurospora discreta collected around the globe and from decomposing leaf litter in a warming experiment in Alaskan boreal forest. Vmax and Km of most Neurospora extracellular enzymes were temperature sensitive with average Vmax Q10 ranging from 1.48 to 2.25 and Km Q10 ranging from 0.71 to 2.80. For both Vmax and Km, there was a tendency for the parameter to correlate negatively with its temperature sensitivity, a pattern predicted by biochemical theory. Also in agreement with theory, Vmax and Km were positively correlated for some enzymes. In contrast, there was little support for biochemical theory when comparing Vmax and Km across thermal environments. There was no relationship between temperature sensitivity of Vmax or Km and mean annual temperature of the isolation site for Neurospora strains. There was some evidence for greater Vmax under experimental warming in Alaskan litter, but the temperature sensitivities of Vmax and Km did not vary with warming as expected. We conclude that relationships among Vmax, Km, and temperature are largely consistent with biochemical theory, and our enzyme data should be useful for parameterizing trait-based models of microbial processes. However, theoretical predictions about adaptation to thermal environment were not supported by our data, suggesting that covarying edaphic and ecological factors may play a dominant role in soil enzyme responses to climate warming.
Physiological pharmacokinetic/pharmacodynamic models require Vmax, Km values for the metabolism of OPs by tissue enzymes. Current literature values cannot be easily used in OP PBPK models (i.e., parathion and chlorpyrifos) because standard methodologies were not used in their ...
Physiological pharmacokinetic\\pharmacodynamic models require Vmax, Km values for the metabolism of OPs by tissue enzymes. Current literature values cannot be easily used in OP PBPK models (i.e., parathion and chlorpyrifos) because standard methodologies were not used in their ...
Yiyong, Zhou; Jianqiu, Li; Min, Zhang
2002-04-01
Monthly sediment and interstitial water samples were collected in a shallow Chinese freshwater lake (Lake Donghu) from three areas to determine if alkaline phosphatase activity (APA) plays an important role, in phosphorus cycling in sediment. The seasonal variability in the kinetics of APA and other relevant parameters were investigated from 1995-1996. The phosphatase hydrolyzable phosphorus (PHP) fluctuated seasonally in interstitial water, peaking in the spring. A synchronous pattern was observed in chlorophyll a contents in surface water in general. The orthophosphate (o-P) concentrations in the interstitial water increased during the spring. An expected negative relationship between PHP and Vmax of APA is not evident in interstitial water. The most striking feature of the two variables is their co-occurring, which can be explained in terms of an induction mechanism. It is argued that phosphatase activity mainly contributes to the driving force of o-P regeneration from PHP in interstitial water, supporting the development of phytoplankton biomass in spring. The Vmax values in sediment increased during the summer, in conjunction with lower Km values in interstitial water that suggest a higher affinity for the substrate. The accumulation of organic matter in the sediment could be traced back to the breakdown of the algal spring bloom, which may stimulate APA with higher kinetic efficiency, by a combination of the higher Vmax in sediments plus lower Km values in interstitial water, in summer. In summary, a focus on phosphatase and its substrate in annual scale may provide a useful framework for the development of novel P cycling, possible explanations for the absence of a clear relationship between PHP and APA were PHP released from the sediment which induced APA, and the presence of kinetically higher APA both in sediment and interstitial water which permitted summer mineralization of organic matter derived from the spring bloom to occur. The study highlighted the need for distinguishing functionally distinct extracellular enzymes between the sediment and interstitial water of lakes.
Javard, Romain; Bélanger, Marie-Claude; Côté, Etienne; Beauchamp, Guy; Pibarot, Philippe
2014-12-15
To evaluate the usefulness of Doppler-derived peak flow velocity through the left ventricular outflow tract (LVOT Vmax) and effective orifice area indexed to body surface area (EOAi) in puppies to predict development of subaortic stenosis (SAS) in the same dogs as adults. Prospective, longitudinal, observational study. 38 Golden Retrievers. Cardiac auscultation and echocardiography were performed on 2- to 6-month-old puppies, then repeated at 12 to 18 months. Subaortic stenosis was diagnosed when LVOT Vmax was ≥ 2.3 m/s in adult dogs with left basilar systolic murmurs. All puppies with EOAi < 1.46 cm(2)/m(2) had SAS as adults. All adults with EOAi < 1.29 cm(2)/m(2) had SAS. An LVOT Vmax > 2.3 m/s in puppyhood was 63% sensitive and 100% specific for SAS in adulthood. In puppies, LVOT Vmax was more strongly associated with a future diagnosis of SAS (area under the curve [AUC], 0.89) than was EOAi (AUC, 0.80). In puppies, the combination of LVOT Vmax and EOAi yielded slightly higher sensitivity (69%) and specificity (100%) for adult SAS than did LVOT Vmax alone. In unaffected and affected dogs, LVOT Vmax increased significantly from puppyhood to adulthood but EOAi did not. In Golden Retriever puppies, LVOT Vmax > 2.3 m/s and EOAi < 1.46 cm(2)/m(2) were both associated with a diagnosis of SAS at adulthood. The combination of these 2 criteria may result in higher sensitivity for SAS screening. Unlike LVOT Vmax, EOAi did not change during growth in either unaffected Golden Retrievers or those with SAS.
NASA Astrophysics Data System (ADS)
Hoang Thi Thu, Duyen; Razavi, Bahar S.
2016-04-01
Earthworms boost microbial activities and consequently form hotspots in soil. The distribution of enzyme activities inside the earthworm biopores is completely unknown. For the first time, we analyzed enzyme kinetics and visualized enzyme distribution inside and outside biopores by in situ soil zymography. Kinetic parameters (Vmax and Km) of 6 enzymes β-glucosidase (GLU), cellobiohydrolase (CBH), xylanase (XYL), chitinase (NAG), leucine aminopeptidase (LAP) and acid phosphatase (APT) were determined in biopores formed by Lumbricus terrestris L.. The spatial distributions of GLU, NAG and APT become visible via zymograms in comparison between earthworm-inhabited and earthworm-free soil. Zymography showed heterogeneous distribution of hotspots in the rhizosphere and biopores. The hotspot areas were 2.4 to 14 times larger in the biopores than in soil without earthworms. The significantly higher Vmax values for GLU, CBH, XYL, NAG and APT in biopores confirmed the stimulation of enzyme activities by earthworms. For CBH, XYL and NAG, the 2- to 3-fold higher Km values in biopores indicated different enzyme systems with lower substrate affinity compared to control soil. The positive effects of earthworms on Vmax were cancelled by the Km increase for CBH, XYL and NAG at a substrate concentration below 20 μmol g-1 soil. The change of enzyme systems reflected a shift in dominant microbial populations toward species with lower affinity to holo-celluloses and to N-acetylglucosamine, and with higher affinity to proteins as compared to the biopores-free soil. We conclude that earthworm biopores are microbial hotspots with much higher and dense distribution of enzyme activities compared to bulk soil. References Spohn M, Kuzyakov Y. (2014) Spatial and temporal dynamics of hotspots of enzyme activity in soil as affected by living and dead roots - a soil zymography analysis, Plant Soil 379: 67-77. Blagodatskaya, E., Kuzyakov, Y., 2013. Review paper: Active microorganisms in soil: Critical review of estimation criteria and approaches. Soil Biology & Biochemistry 67, 192-211.
Phenytoin pharmacokinetics in critically ill trauma patients.
Boucher, B A; Rodman, J H; Jaresko, G S; Rasmussen, S N; Watridge, C B; Fabian, T C
1988-12-01
Preliminary data have suggested that phenytoin systemic clearance may increase during initial therapy in critically ill patients. The objectives for this study were to model the time-variant phenytoin clearance and evaluate concomitant changes in protein binding and urinary metabolite elimination. Phenytoin was given as an intravenous loading dose of 15 mg/kg followed by an initial maintenance dose of 6 mg/kg/day in 10 adult critically ill trauma patients. Phenytoin bound and unbound plasma concentrations were determined in 10 patients and urinary excretion of the metabolite p-hydroxyphenyl phenylhydantoin (p-HPPH) was measured in seven patients for 7 to 14 days. A Michaelis-Menten one-compartment model incorporating a time-variant maximal velocity (Vmax) was sufficient to describe the data and superior to a conventional time-invariant Michaelis-Menten model. Vmax for the time-variant model was defined as V'max + Vmax delta (1 - e(-kindt)). Vmax infinity is the value for Vmax when t is large. The median values (ranges) for the parameters were Km = 4.8 (2.6 to 20) mg/L, Vmax infinity = 1348 (372 to 4741) mg/day, and kind = 0.0115 (0.0045 to 0.132) hr-1. Phenytoin free fraction increased in a majority of patients during the study period, with a binding ratio inversely related to albumin. Measured urinary p-HPPH data were consistent with the proposed model. A loading and constant maintenance dose of phenytoin frequently yielded a substantial, clinically significant fall in plasma concentrations with a pattern of apparently increasing clearance that may be a consequence of changes in protein binding, induction of metabolism, or the influence of stress on hepatic metabolic capacity.
Rico-Díaz, Agustín; Álvarez-Cao, María-Efigenia; Escuder-Rodríguez, Juan-José; González-Siso, María-Isabel; Cerdán, M. Esperanza; Becerra, Manuel
2017-01-01
Kluyveromyces lactis β-galactosidase (Kl-β-Gal) is one of the most important enzymes in the dairy industry. The poor stability of this enzyme limits its use in the synthesis of galactooligosaccharides (GOS) and other applications requiring high operational temperature. To obtain thermoresistant variants, a rational mutagenesis strategy by introducing disulphide bonds in the interface between the enzyme subunits was used. Two improved mutants, R116C/T270C and R116C/T270C/G818C, had increased half-lives at 45 °C compared to Kl-β-Gal (2.2 and 6.8 fold increases, respectively). Likewise, Tm values of R116C/T270C and R116C/T270C/G818C were 2.4 and 8.5 °C, respectively, higher than Kl-β-Gal Tm. Enrichment in enzymatically active oligomeric forms in these mutant variants also increased their catalytic efficiency, due to the reinforcement of the interface contacts. In this way, using an artificial substrate (p-nitrophenyl-β-D-galactopyranoside), the Vmax values of the mutants were ~1.4 (R116C/T270C) and 2 (R116C/T270C/G818C) fold higher than that of native Kl-β-Gal. Using the natural substrate (lactose) the Vmax for R116C/T270C/G818C almost doubled the Vmax for Kl-β-Gal. Validation of these mutant variants of the enzyme for their use in applications that depend on prolonged incubations at high temperatures was achieved at the laboratory scale by monitoring their catalytic activity in GOS synthesis. PMID:28361909
Rico-Díaz, Agustín; Álvarez-Cao, María-Efigenia; Escuder-Rodríguez, Juan-José; González-Siso, María-Isabel; Cerdán, M Esperanza; Becerra, Manuel
2017-03-31
Kluyveromyces lactis β-galactosidase (Kl-β-Gal) is one of the most important enzymes in the dairy industry. The poor stability of this enzyme limits its use in the synthesis of galactooligosaccharides (GOS) and other applications requiring high operational temperature. To obtain thermoresistant variants, a rational mutagenesis strategy by introducing disulphide bonds in the interface between the enzyme subunits was used. Two improved mutants, R116C/T270C and R116C/T270C/G818C, had increased half-lives at 45 °C compared to Kl-β-Gal (2.2 and 6.8 fold increases, respectively). Likewise, Tm values of R116C/T270C and R116C/T270C/G818C were 2.4 and 8.5 °C, respectively, higher than Kl-β-Gal Tm. Enrichment in enzymatically active oligomeric forms in these mutant variants also increased their catalytic efficiency, due to the reinforcement of the interface contacts. In this way, using an artificial substrate (p-nitrophenyl-β-D-galactopyranoside), the Vmax values of the mutants were ~1.4 (R116C/T270C) and 2 (R116C/T270C/G818C) fold higher than that of native Kl-β-Gal. Using the natural substrate (lactose) the Vmax for R116C/T270C/G818C almost doubled the Vmax for Kl-β-Gal. Validation of these mutant variants of the enzyme for their use in applications that depend on prolonged incubations at high temperatures was achieved at the laboratory scale by monitoring their catalytic activity in GOS synthesis.
Qiang, Wei; Xia, Ke; Zhang, Qiaozhuo; Zeng, Junlan; Huang, Yuanshe; Yang, Chunxian; Chen, Min; Liu, Xiaoqiang; Lan, Xiaozhong; Liao, Zhihua
2016-07-01
Brugmansia arborea is a woody plant species that produces tropane alkaloids (TAs). The gene encoding tropine-forming reductase or tropinone reductase I (BaTRI) in this plant species was functionally characterised. The full-length cDNA of BaTRI encoded a 272-amino-acid polypeptide that was highly similar to tropinone reductase I from TAs-producing herbal plant species. The purified 29kDa recombinant BaTRI exhibited maximum reduction activity at pH 6.8-8.0 when tropinone was used as substrate; it also exhibited maximum oxidation activity at pH 9.6 when tropine was used as substrate. The Km, Vmax and Kcat values of BaTRI for tropinone were 2.65mM, 88.3nkatmg(-1) and 2.93S(-1), respectively, at pH 6.4; the Km, Vmax and Kcat values of TRI from Datura stramonium (DsTRI) for tropinone were respectively 4.18mM, 81.20nkatmg(-1) and 2.40S(-1) at pH 6.4. At pH 6.4, 6.8 and 7.0, BaTRI had a significantly higher activity than DsTRI. Analogues of tropinone, 4-methylcyclohexanone and 3-quinuclidinone hydrochloride, were also used to investigate the enzymatic kinetics of BaTRI. The Km, Vmax and Kcat values of BaTRI for tropine were 0.56mM, 171.62nkat.mg(-1) and 5.69S(-1), respectively, at pH 9.6; the Km, Vmax and Kcat values of DsTRI for tropine were 0.34mM, 111.90nkatmg(-1) and 3.30S(-1), respectively, at pH 9.6. The tissue profiles of BaTRI differed from those in TAs-producing herbal plant species. BaTRI was expressed in all examined organs but was most abundant in secondary roots. Finally, tropane alkaloids, including hyoscyamine, anisodamine and scopolamine, were detected in various organs of B. arborea by HPLC. Interestingly, scopolamine constituted most of the tropane alkaloids content in B. arborea, which suggests that B. arborea is a scopolamine-rich plant species. The scopolamine content was much higher in the leaves and stems than in other organs. The gene expression and TAs accumulation suggest that the biosynthesis of hyoscyamine, especially scopolamine, occurred not only in the roots but also in the aerial parts of B. arborea. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tiffert, T; Etzion, Z; Bookchin, R M; Lew, V L
1993-01-01
1. The effects of deoxygenation on cytoplasmic Ca2+ buffering, saturated Ca2+ extrusion rate through the Ca2+ pump (Vmax), passive Ca2+ influx and physiological [Ca2+]i level were investigated in human red cells to assess whether or not their Ca2+ metabolism might be altered by deoxygenation in capillaries and venous circulation. 2. The study was performed in fresh human red cells maintained in a tonometer either fully oxygenated or deoxygenated. Cytoplasmic Ca2+ buffering was estimated from the equilibrium distribution of 45Ca2+ induced by the divalent cation ionophore A23187 and the Vmax of the Ca2+ pump was measured either by the Co(2+)-exposure method or following ionophore wash-out. The passive Ca2+ influx and physiological [Ca2+]i were determined in cells preloaded with the Ca2+ chelator benz-2 and resuspended in autologous plasma. 3. Deoxygenation increased the fraction of ionized Ca2+ in cell water by 34-74% and reduced the Vmax of the Ca2+ pump by 18-32%. 4. To elucidate whether or not these effects were secondary to deoxygenation-induced pH shifts, the effects of deoxygenation on cell and medium pH, and of pH on cytoplasmic Ca2+ binding and Ca2+ pump Vmax in oxygenated cells were examined in detail. 5. Deoxygenation generated large alkaline pH shifts that could be explained if the apparent isoelectric point (pI) of haemoglobin increased by 0.2-0.4 pH units in intact cells, consistently higher than the value of 0.15 reported for pure haemoglobin solutions. 6. In oxygenated cells, the fraction of ionized cell calcium, alpha, was little affected by pH within the 7.0-7.7 range. Ca2+ pump Vmax was maximal at a medium pH of about 7.55. Comparison between pH effects elicited by HCl-NaOH additions and by replacing Cl- with gluconate suggested that Vmax was inhibited by both internal acidification and external alkalinization. Since deoxygenation alkalinized cells and medium within a range stimulatory for Vmax, the inhibition observed was not due to pH. 7. There was no significant effect of deoxygenation on passive Ca2+ uptake, or steady-state physiological [Ca2+]i level. 8. The deoxygenation-induced reduction in Ca2+ binding capacity may result from the increased protonation of haemoglobin on deoxygenation and from binding of 2,3-diphosphoglyceric acid (2,3-DPG) and ATP to deoxyhaemoglobin; inhibition of the Ca2+ pump may result from shifts in the [Mg2+]i/[ATP]i ratio away from a near optimal stimulatory value in the oxygenated state. PMID:8229816
Pedagogical view of model metabolic cycles.
García-Herrero, Victor; Sillero, Antonio
2015-01-01
The main purpose of this study was to present a simplified view of model metabolic cycles. Although the models have been elaborated with the Mathematica Program, and using a system of differential equations, the main conclusions were presented in a rather intuitive way, easily understandable by students of general courses of Biochemistry, and without any need of mathematical support. A change in any kinetic constant (Km or Vmax) of only one enzyme affected the metabolic profile of all the substrates of the cycle. In addition, it is shown how an increase in the Km or a decrease in the Vmax values of any particular enzyme promoted an increase of its substrate; the contrary occurred decreasing the Km or increasing the Vmax values. © 2015 The International Union of Biochemistry and Molecular Biology.
Algül, Ali; Balci, Pinar; Seçil, Mustafa; Canda, Tülay
2003-06-01
To compare ability of detection of vascular structures by utilizing ultrasonographic contrast agent (Levovist) prior to and following power Doppler ultrasound (PDUS) and colour Doppler ultrasound (CDUS) and to determine useful parameters in the differentiation of malignant and benign breast masses by means of verified data. Vascularisation characteristics of 38 breast masses (22 malignant, 16 benign) which were confirmed by mammography and B-mode sonography were evaluated by both CDUS and PDUS following and prior to intravenous contrast application. In addition, Vmax and RI values of vascular structures were calculated by Doppler spectral evaluation. Malignant lesions showed more vascularity than benign lesions both with and without contrast enhancement. With both methods, by utilizing contrast agent, central, penetrating and tortuous vascular structures became more significant in malignant lesions when compared with benign lesions. PDUS was able to detect vascular structures better than CDUS; however, the difference was not statistically significant. Presence of peripheral vascularity was not useful in differentiating malignant from benign lesions. Vmax and RI values were higher in malignant lesions and the difference was statistically significant. In both methods, Vmax > 15 cm/sec and RI > 0.80 (CDUS), and RI > 0.70 (PDUS) were accepted as malignancy parameters. Vascular patterns of breast masses as determined with PDUS and CDUS with contrast enhancement and Doppler spectral examinations enabled differentiation of malignant and benign breast lesions. Thus, it is possible to decrease the number of unnecessary surgical interventions.
NASA Astrophysics Data System (ADS)
Brook, Chris B.
2015-12-01
Rotation curves of galaxies show a wide range of shapes, which can be paramaterized as scatter in Vrot(1 kpc)/Vmax , i.e. the ratio of the rotation velocity measured at 1 kpc and the maximum measured rotation velocity. We examine whether the observed scatter can be accounted for by combining scatters in disc scalelengths, the concentration-halo mass relation, and the M⋆-Mhalo relation. We use these scatters to create model galaxy populations; when housed within dark matter haloes that have universal, Navarro, Frenk & White density profiles, the model does not match the lowest observed values of Vrot(1 kpc)/Vmax and has too little scatter in Vrot(1 kpc)/Vmax compared to observations. By contrast, a model using a mass-dependent dark matter profile, where the inner slope is determined by the ratio of M⋆/Mhalo, produces galaxies with low values of Vrot(1 kpc)/Vmax and a much larger scatter, both in agreement with observation. We conclude that the large observed scatter in Vrot(1 kpc)/Vmax favours density profiles that are significantly affected by baryonic processes. Alternative dark matter core formation models such as self-interacting dark matter may also account for the observed variation in rotation curve shapes, but these observations may provide important constraints in terms of core sizes, and whether they vary with halo mass and/or merger history.
Control of speed during the double poling technique performed by elite cross-country skiers.
Lindinger, Stefan Josef; Stöggl, Thomas; Müller, Erich; Holmberg, Hans-Christer
2009-01-01
Double poling (DP) as a main technique in cross-country skiing has developed substantially over the last 15 yr. The purpose of the present study was to analyze the question, "How do modern elite skiers control DP speed?" Twelve male elite cross-country skiers roller skied using DP at 9, 15, 21, and 27 km.h(-1) and maximum velocity (V(max)). Cycle characteristics, pole and plantar forces, and elbow, hip, and knee joint angles were analyzed. Both poling frequency and cycle length increased up to 27 km.h (-1)(P < 0.05), with a further increase in poling frequency at V(max) (P < 0.05). Peak pole force, rate of force development, and rearfoot plantar force increased with submaximal velocities (V(sm)), whereas poling time and time-to-peak pole force gradually shortened (P < 0.05). Changes in elbow joint kinematics during the poling phase were characterized by a decreased angle minimum and an increased flexion and extension ranges of motion as well as angular velocities across V(sm) (P < 0.05), with no further changes at V(max). Hip and knee joint kinematics adapted across V(sm) by 1) decreasing angles at pole plant and angle minima during the poling phase, 2) increasing the ranges of motion and angular velocities during the flexion phases occurring around pole plant, and 3) increasing extension ranges of motion and angular velocities during the recovery phase (all P values <0.05), with no further changes at V(max). Elite skiers control DP speed by increasing both poling frequency and cycle length; the latter is achieved by increased pole force despite reduced poling time. Adaptation to higher speeds was assisted by an increased range of motion, smaller angle minima, and higher angular velocities in the elbow, the hip, and the knee joints.
Cyanide removal by Chinese vegetation--quantification of the Michaelis-Menten kinetics.
Yu, Xiaozhang; Zhou, Puhua; Zhou, Xishi; Liu, Yunda
2005-07-01
Little is known about metabolism rates of environmental chemicals by vegetation. A good model compound to study the variation of rates among plant species is cyanide. Vascular plants possess an enzyme system that detoxifies cyanide by converting it to the amino acid asparagine. Knowledge of the kinetic parameters, the half-saturation constant (Km) and the maximum metabolic capacity (vmax), is very useful for enzyme characterization and biochemical purposes. The goal of this study is to find the enzyme kinetics (K(M) and vmax) during cyanide metabolism in the presence of Chinese vegetation, to provide quantitative data for engineered phytoremediation, and to investigate the variation of metabolic rates of plants. Detached leaves (1.0 g fresh weight) from 12 species out of 9 families were kept in glass vessels with 100 mL of aqueous solution spiked with potassium cyanide at 23 degrees C for 28 h. Four different treatment concentrations of cyanide were used, ranging from 0.44 to 7.69 mg CN/L. The disappearance of cyanide from the aqueous solution was analyzed spectrophotometrically. Realistic values of the half-saturation constant (KM) and the maximum metabolic capacity (vmax) were estimated by a computer program using non-linear regression treatments. As a comparison, Lineweaver-Burk plots were also used to estimate the kinetic parameters. The values obtained for K(M) and vmax varied with plant species. Using non-linear regression treatments, values of vmax and K(M) were found in a range between 6.68 and 21.91 mg CN/kg/h and 0.90 to 3.15 mg CN/L, respectively. The highest vmax was by Chinese elder (Sambucus chinensis), followed by upright hedge-parsley (Torilis japonica). The lowest Vmax was demonstrated by the hybrid willow (Salix matssudana x alba). However, the highest K(M) was found in the water lily (Nymphea teragona), followed by the poplar (Populus deltoides Marsh). The lowest K(M) was demonstrated by corn (Zea mays L.). The values of vmax were normally distributed with a mean of 13 mg CN/kg/h. Significant removal of cyanide from aqueous solution was observed in the presence of plant materials without phytotoxicity, even at high doses of cyanide. This gives rise to the conclusion that the Chinese plant species used in this study are all able to efficiently metabolize cyanide, although with different maximum metabolic capacities. A second conclusion is that the variation of metabolism rates between species is small. All these plants had a similar K(M), indicating the same enzyme is active in all plants. Detoxification of cyanide with trees seems to be a feasible option for cleaning soils and water contaminated with cyanide. For phytoremediation projects, screening appropriate plant species adapted to local conditions should be seriously considered. More chemicals should be investigated to find common principles of the metabolism of environmental chemicals by plants.
Variable-period surface-wave magnitudes: A rapid and robust estimator of seismic moments
Bonner, J.; Herrmann, R.; Benz, H.
2010-01-01
We demonstrate that surface-wave magnitudes (Ms), measured at local, regional, and teleseismic distances, can be used as a rapid and robust estimator of seismic moment magnitude (Mw). We used the Russell (2006) variable-period surface-wave magnitude formula, henceforth called Ms(VMAX), to estimate the Ms for 165 North American events with 3.2
Effect of swim exercise training on human muscle fiber function
NASA Technical Reports Server (NTRS)
Fitts, R. H.; Costill, D. L.; Gardetto, P. R.
1989-01-01
The effect of swim exercise training on the human muscle fiber function was investigated in swimmers trained in a typical collegiate swim-training program followed by an intensified 10-day training period. The measured parameters included the peak tension (P0), negative log molar Ca(2+) concentration (pCa)-force, and maximal shortening speed (Vmax) of the slow-twitch type I and fast-twitch type II fibers obtained by biopsy from the deltoid muscle. The P0 values were found to be not altered after either the training or the 10-day intensive program. The type I fibers from the trained swimmers showed pCa-force curves shifted to the right, such that higher free Ca(2+) levels were required to elicit a given percent of P0. The training program significantly increased the Vmax in the type I fibers and decreased that of the type II fibers, and the 10-day intensive training produced a further significant decrease of the type II fibers.
Assessment of renal dopaminergic system activity during cyclosporine A administration in the rat.
Pestana, M.; Vieira-Coelho, M. A.; Pinto-do-O, P. C.; Fernandes, M. H.; Soares-da-Silva, P.
1995-01-01
1. Administration of cyclosporine A (CsA; 50 mg kg-1 day-1, s.c.) for 14 days produced an increase in both systolic (SBP) and diastolic (DBP) blood pressure by 60 and 25 mmHg, respectively. The urinary excretion of dopamine, DOPAC and HVA was reduced from day 5-6 of CsA administration onwards (dopamine from 19 to 46%, DOPAC from 16 to 48%; HVA from 18 to 42%). In vehicle-treated rats, the urinary excretion of dopamine and DOPAC increased (from 7 to 60%) from day 5 onwards; by contrast, the urinary excretion of HVA was reduced (from 27 to 60%) during the second week. 2. No significant difference was observed between the Vmax and Km values of renal aromatic L-amino acid decarboxylase (AAAD) in rats treated with CsA for 7 and 14 days or with vehicle. 3. Km and Vmax of monoamine oxidase types A and B did not differ significantly between rats treated with CsA for 7 and 14 days or with vehicle. 4. Maximal catechol-O-methyltransferase activity (Vmax) in homogenates of renal tissues obtained from rats treated with CsA for 7 or 14 days was significantly higher than that in vehicle-treated rats; Km (22.3 +/- 1.5 microM) values for COMT did not differ between the three groups of rats. 5. The accumulation of newly-formed dopamine and DOPAC in cortical tissues of rats treated with CsA for 14 days was three to four times higher than in controls. The outflow of both dopamine and DOPAC declined progressively with time and reflected the amine and amine metabolite tissue contents. No significant difference was observed between the DOPAC/dopamine ratios in the perifusate of renal tissues obtained from CsA- and vehicle-treated rats. In addition, no significant differences were observed in k values or in the slope of decline of both DA and DOPAC between experiments performed with CsA and vehicle-treated animals. 6. The Vmax for the saturable component of L-3,4-dihydroxyphenylalanine (L-DOPA) uptake in renal tubules from rats treated with CsA was twice that of vehicle-treated animals. Km in CsA- and vehicle-treated rats did not differ. 7. The decrease in the urinary excretion of sodium and an increase in blood pressure during CsA treatment was accompanied by a reduction in daily urinary excretion of dopamine. This appears to result from a reduction in the amount of L-DOPA made available to the kidney and does not involve changes in tubular AAAD, the availability of dopamine to leave the renal cells and dopamine metabolism.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:8564191
Permeability, transport, and metabolism of solutes in Caco-2 cell monolayers: a theoretical study.
Sun, Huadong; Pang, K Sandy
2008-01-01
We explored the properties of a catenary model that includes the basolateral (B), apical (A), and cellular compartments via simulations under linear and nonlinear conditions to understand the asymmetric observations arising from transporters, enzymes, and permeability in Caco-2 cells. The efflux ratio (EfR; P(app,B-->A)/P(app,A-->B)), obtained from the effective permeability from the A-->B and B-->A direction under linear conditions, was unity for passively permeable drugs whose transport does not involve transporters; the value was unaffected by cellular binding or metabolism, but increased with apical efflux. Metabolism was asymmetric, showing lesser metabolite accrual for the B-->A than A-->B direction because of inherent differences in the volumes for A and B. Moreover, the net flux (total - passive permeation) due to saturable apical efflux, absorption, or metabolism showed nonconformity to simple Michaelis-Menten kinetics against C(D,0), the loading donor concentration. EfR values differed with saturable apical efflux and metabolism (>1), as well as apical absorption (EfRs <1), but approached unity with high passive diffusive clearance (CL(d)) and increasing C(D,0) at a higher degree of saturation of the process. The J(max) (apparent V(max) estimated for the carrier system) and K(m)(') [or the K(m)('') based on a modified equation with the Hill coefficient (beta)] estimates from the Eadie-Hofstee plot revealed spurious correlations with the assigned V(max) and K(m). The sampling time, CL(d), and parameter space of K(m) and V(max) strongly influenced both the correlation and accuracy of estimates. Improved correlation was found for compounds with high CL(d). These observations showed that the catenary model is appropriate in the description of transport and metabolic data in Caco-2 cells.
Palmer, Katharina
2012-01-01
Palsa peats are characterized by elevated, circular frost heaves (peat soil on top of a permanently frozen ice lens) and are strong to moderate sources or even temporary sinks for the greenhouse gas nitrous oxide (N2O). Palsa peats are predicted to react sensitively to global warming. The acidic palsa peat Skalluvaara (approximate pH 4.4) is located in the discontinuous permafrost zone in northwestern Finnish Lapland. In situ N2O fluxes were spatially variable, ranging from 0.01 to −0.02 μmol of N2O m−2 h−1. Fertilization with nitrate stimulated in situ N2O emissions and N2O production in anoxic microcosms without apparent delay. N2O was subsequently consumed in microcosms. Maximal reaction velocities (vmax) of nitrate-dependent denitrification approximated 3 and 1 nmol of N2O per h per gram (dry weight [gDW]) in soil from 0 to 20 cm and below 20 cm of depth, respectively. vmax values of nitrite-dependent denitrification were 2- to 5-fold higher than the vmax nitrate-dependent denitrification, and vmax of N2O consumption was 1- to 6-fold higher than that of nitrite-dependent denitrification, highlighting a high N2O consumption potential. Up to 12 species-level operational taxonomic units (OTUs) of narG, nirK and nirS, and nosZ were retrieved. Detected OTUs suggested the presence of diverse uncultured soil denitrifiers and dissimilatory nitrate reducers, hitherto undetected species, as well as Actino-, Alpha-, and Betaproteobacteria. Copy numbers of nirS always outnumbered those of nirK by 2 orders of magnitude. Copy numbers of nirS tended to be higher, while copy numbers of narG and nosZ tended to be lower in 0- to 20-cm soil than in soil below 20 cm. The collective data suggest that (i) the source and sink functions of palsa peat soils for N2O are associated with denitrification, (ii) actinobacterial nitrate reducers and nirS-type and nosZ-harboring proteobacterial denitrifiers are important players, and (iii) acidic soils like palsa peats represent reservoirs of diverse acid-tolerant denitrifiers associated with N2O fluxes. PMID:22660709
Tian, Yuan; Knaak, James B.; Kostyniak, Paul J.; Olson, James R.
2012-01-01
Organophosphorus pesticides (OPs) are a public health concern due to their worldwide use and documented human exposures. Phosphorothioate OPs are metabolized by cytochrome P450s (P450s) through either a dearylation reaction to form an inactive metabolite, or through a desulfuration reaction to form an active oxon metabolite, which is a potent cholinesterase inhibitor. This study investigated the rate of desulfuration (activation) and dearylation (detoxification) of methyl parathion and diazinon in human liver microsomes. In addition, recombinant human P450s were used to determine the P450-specific kinetic parameters (Km and Vmax) for each compound for future use in refining human physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) models of OP exposure. The primary enzymes involved in bioactivation of methyl parathion were CYP2B6 (Km = 1.25 μM; Vmax = 9.78 nmol · min−1 · nmol P450−1), CYP2C19 (Km = 1.03 μM; Vmax = 4.67 nmol · min−1 · nmol P450−1), and CYP1A2 (Km = 1.96 μM; Vmax = 5.14 nmol · min−1 · nmol P450−1), and the bioactivation of diazinon was mediated primarily by CYP1A1 (Km = 3.05 μM; Vmax = 2.35 nmol · min−1 · nmol P450−1), CYP2C19 (Km = 7.74 μM; Vmax = 4.14 nmol · min−1 · nmol P450−1), and CYP2B6 (Km = 14.83 μM; Vmax = 5.44 nmol · min−1 · nmol P450−1). P450-mediated detoxification of methyl parathion only occurred to a limited extent with CYP1A2 (Km = 16.8 μM; Vmax = 1.38 nmol · min−1 · nmol P450−1) and 3A4 (Km = 104 μM; Vmax = 5.15 nmol · min−1 · nmol P450−1), whereas the major enzyme involved in diazinon detoxification was CYP2C19 (Km = 5.04 μM; Vmax = 5.58 nmol · min−1 · nmol P450−1). The OP- and P450-specific kinetic values will be helpful for future use in refining human PBPK/PD models of OP exposure. PMID:21969518
Addressing the too big to fail problem with baryon physics and sterile neutrino dark matter
NASA Astrophysics Data System (ADS)
Lovell, Mark R.; Gonzalez-Perez, Violeta; Bose, Sownak; Boyarsky, Alexey; Cole, Shaun; Frenk, Carlos S.; Ruchayskiy, Oleg
2017-07-01
N-body dark matter simulations of structure formation in the Λ cold dark matter (ΛCDM) model predict a population of subhaloes within Galactic haloes that have higher central densities than inferred for the Milky Way satellites, a tension known as the 'too big to fail' problem. Proposed solutions include baryonic effects, a smaller mass for the Milky Way halo and warm dark matter (WDM). We test these possibilities using a semi-analytic model of galaxy formation to generate luminosity functions for Milky Way halo-analogue satellite populations, the results of which are then coupled to the Jiang & van den Bosch model of subhalo stripping to predict the subhalo Vmax functions for the 10 brightest satellites. We find that selecting the brightest satellites (as opposed to the most massive) and modelling the expulsion of gas by supernovae at early times increases the likelihood of generating the observed Milky Way satellite Vmax function. The preferred halo mass is 6 × 1011 M⊙, which has a 14 per cent probability to host a Vmax function like that of the Milky Way satellites. We conclude that the Milky Way satellite Vmax function is compatible with a CDM cosmology, as previously found by Sawala et al. using hydrodynamic simulations. Sterile neutrino-WDM models achieve a higher degree of agreement with the observations, with a maximum 50 per cent chance of generating the observed Milky Way satellite Vmax function. However, more work is required to check that the semi-analytic stripping model is calibrated correctly for each sterile neutrino cosmology.
Dikshit, Pritam Kumar; Moholkar, Vijayanand S
2016-09-01
The present study has investigated kinetic features of bioconversion of biodiesel-derived crude glycerol to dihydroxyacetone with immobilized Gluconobacter oxydans cells using modified Haldane substrate-inhibition model. The results have been compared against free cells and pure glycerol. Relative variations in the kinetic parameters KS, KI, Vmax, n and X reveal that immobilized G. oxydans cells (on PU foam substrate) with crude glycerol as substrate give higher order of inhibition (n) and lower maximum reaction velocities (Vmax). These results are essentially implications of substrate transport restrictions across immobilization matrix, which causes retention of substrate in the matrix and reduction in fractional available substrate (X) for the cells. This causes reduction in both KS (substrate concentration at Vmax/2) and KI (inhibition constant) as compared to free cells. For immobilized cells, substrate concentration (Smax) corresponding to Vmax is practically same for both pure and crude glycerol as substrate. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Yan; Ujor, Victor; Wick, Macdonald; Ezeji, Thaddeus Chukwuemeka
2015-06-01
Generation of microbial inhibitory compounds such as furfural and 5-hydroxymethylfurfural (HMF) is a formidable roadblock to fermentation of lignocellulose-derived sugars to butanol. Bioabatement offers a cost effective strategy to circumvent this challenge. Although Clostridium beijerinckii NCIMB 8052 can transform 2-3 g/L of furfural and HMF to their less toxic alcohols, higher concentrations present in biomass hydrolysates are intractable to microbial transformation. To delineate the mechanism by which C. beijerinckii detoxifies furfural and HMF, an aldo/keto reductase (AKR) and a short-chain dehydrogenase/reductase (SDR) found to be over-expressed in furfural-challenged cultures of C. beijerinckii were cloned and over-expressed in Escherichia coli Rosetta-gami™ B(DE3)pLysS, and purified by histidine tag-assisted immobilized metal affinity chromatography. Protein gel analysis showed that the molecular weights of purified AKR and SDR are close to the predicted values of 37 kDa and 27 kDa, respectively. While AKR has apparent Km and Vmax values of 32.4 mM and 254.2 mM s(-1) respectively, using furfural as substrate, SDR showed lower Km (26.4 mM) and Vmax (22.6 mM s(-1)) values on the same substrate. However, AKR showed 7.1-fold higher specific activity on furfural than SDR. Further, both AKR and SDR were found to be active on HMF, benzaldehyde, and butyraldehyde. Both enzymes require NADPH as a cofactor for aldehydes reduction. Based on these results, it is proposed that AKR and SDR are involved in the biotransformation of furfural and HMF by C. beijerinckii. Copyright © 2015 Elsevier Ltd. All rights reserved.
Solyakov, L; Dobrota, D; Drany, O; Vachova, M; Machac, S; Mezesova, V; Bachurin, S; Lombardi, V
1995-01-01
Changes in the functioning of the glutamatergic system in rabbit brain were studied after partial brain ischemia and reperfusion. In vitro studies were conducted relating to the release of L-[14C]glutamate from cortical brain slices, L-[14C]glutamate uptake in synaptosomes, and 45Ca uptake in synaptosomes. It was found that basal release of L-[14C]glutamate from rabbit brain cortical slices after 30 min of partial ischemia and 1 d of reperfusion was essentially without change compared to the control values. After 3 d of reperfusion, there was an increase in basal release of L-[14C]glutamate from rabbit brain cortical slices. K+ stimulated release of L-[14C]glutamate in normal Krebs-Ringer medium was essentially the same in the control group and in the experimental group after 30 min of ischemia. The K+ stimulated release of L-[14C]glutamate independent of calcium was increased to 145% after 30 min of ischemia and 1 d of reperfusion. The decreased Km value at the glutamate transporter may have contributed to this difference. Kinetic parameters of the L-[14C]glutamate uptake (Km and Vmax) in synaptosomes from rabbit brain were significantly lower after 30 min of ischemia. The authors discovered that during the reperfusion period, Vmax was almost the same as in the control group. The activity of the Na+/Ca2+ exchanger in synaptosomes of rat brain was about 70% of the control values after 30 min of ischemia and 72 h of reperfusion. According to our results, increased L-[14C]glutamate release after 30 min of ischemia appears to be the result of higher intracellular calcium concentration and possibly also of a higher uptake of glutamate.
Watanabe, S M; Goodman, M F
1982-01-01
Enzyme kinetic measurements are presented showing that Km rather than maximum velocity (Vmax) discrimination governs the frequency of forming 2-aminopurine X cytosine base mispairs by DNA polymerase alpha. An in vitro system is used in which incorporation of dTMP or dCMP occurs opposite a template 2-aminopurine, and values for Km and Vmax are obtained. Results from a previous study in which dTTP and dCTP were competing simultaneously for insertion opposite 2-aminopurine indicated that dTMP is inserted 22 times more frequently than dCMP. We now report that the ratio of Km values KCm/KTm = 25 +/- 6, which agrees quantitatively with the dTMP/dCMP incorporation ratio obtained previously. We also report that VCmax is indistinguishable from VTmax. These Km and Vmax data are consistent with predictions from a model, the Km discrimination model, in which replication fidelity is determined by free energy differences between matched and mismatched base pairs. Central to this model is the prediction that the ratio of Km values for insertion of correct and incorrect nucleotides specifies the insertion fidelity, and the maximum velocities of insertion are the same for both nucleotides. PMID:6959128
In vivo and in vitro kinetics of ethylene oxide metabolism in rats and mice.
Brown, C D; Wong, B A; Fennell, T R
1996-01-01
Ethylene oxide (EO) is a direct-acting mutagen and animal carcinogen used as an industrial intermediate and sterilant with a high potential for human exposure. Kinetics of EO metabolism in rodents can be used to develop human EO dosimetry models. This study examined the kinetics of EO metabolism in vivo and in vitro in male and female F-344 rats and B6C3F1 mice. In vivo studies measured blood and tissue EO levels during and 2-20 min following whole-body inhalation exposure (4 hr, 100 or 330 ppm EO). At 100 ppm EO, the half-life of elimination (t1/2) in rats was 13.8 +/- 0.3 (mean +/- SD) and 10.8 +/- 2.4 min for males and females, respectively, compared to a t1/2 in mice of 3.12 +/- 0.2 and 2.4 +/- 0.2 min in males and females, respectively. On exposure to 330 ppm EO, the t1/2 in mice increased approx twofold, while no change in t1/2 was observed in rats. In vitro kinetic parameters (Vmax and KM) of EO metabolism were determined using tissue cytosol and microsomes. EO metabolism in vitro occurred primarily via cytosolic glutathione S-transferase-mediated EO-GSH conjugation (cGST-EO), with highest activity in the liver. Liver cGST-EO activity (Vmax) was 258 +/- 86.9 and 287 +/- 49.0 nmol/mg protein/min (mean +/- SD) in male and female mice, respectively, compared to 52.7 +/- 10.8 and 29.3 +/- 4.9 in male and female rats, respectively. In rats, but not mice, there was a statistically significant (p < 0.05) gender difference in the Vmax for liver cGST. The KM for liver cGST-EO was approximately 10 mM in both species. The higher Vmax values observed in mice are consistent with the more rapid elimination of EO observed for this species in vivo compared to rats.
Xia, Shenglan; Deng, Rubo; Liu, Caifeng; Shi, Gangrong
2017-01-01
Fe deficiency may increase Cd accumulation in peanuts. However, the mechanisms are not yet fully understood. In the present study, two contrasting peanut cultivars, Luhua 8 (low seed-Cd cultivar) and Zhenghong 3 (high seed-Cd cultivar) were used to investigate the effect of Fe deficiency on the uptake and accumulation of cadmium (Cd) by hydroponic experiments. Under Fe-sufficient conditions, compared with Luhua 8, Zhenghong 3 had higher specific root length (SRL) and proportion of fine roots with a lower Km for Cd and showed slightly higher expression of AhIRT1 and AhNRAMP1 in the roots. These traits may be responsible for high capacity for Cd accumulation in Zhenghong 3. Under Fe deficiency, the increase of Cd accumulation was much larger in Zhenghong 3 than in Luhua 8. Kinetics studies revealed that the Vmax for Cd influx was 1.56-fold higher in Fe-deficient plants than in Fe-sufficient plants for Zhenghong 3, versus 0.48-fold higher for Luhua 8. Moreover, the increased expression levels of AhIRT1 and AhNRAMP1 induced by Fe deficiency was higher in Zhenghong 3 than in Luhua 8. Yeast complementation assays suggested that the AhIRT1 and AhNRAMP1 may function as transporters involved in Cd uptake. In conclusion, the different Cd accumulation between the two cultivars under Fe deficiency may be correlated with Vmax value for Cd uptake and the expression levels of AhIRT1 and AhNRAMP1 in the roots. PMID:28981520
Influence of temperature on muscle recruitment and muscle function in vivo.
Rome, L C
1990-08-01
Temperature has a large influence on the maximum velocity of shortening (Vmax) and maximum power output of muscle (Q10 = 1.5-3). In some animals, maximum performance and maximum sustainable performance show large temperature sensitivities, because these parameters are dependent solely on mechanical power output of the muscles. The mechanics of locomotion (sarcomere length excursions and muscle-shortening velocities, V) at a given speed, however, are precisely the same at all temperatures. Animals compensate for the diminished power output of their muscles at low temperatures by compressing their recruitment order into a narrower range of locomotor speeds, that is, recruiting more muscle fibers and faster fiber types at a given speed. By examining V/Vmax, I calculate that fish at 10 degrees C must recruit 1.53-fold greater fiber cross section than at 20 degrees C. V/Vmax also appears to be an important design constraint in muscle. It sets the lowest V and the highest V over which a muscle can be used effectively. Because the Vmax of carp slow red muscle has a Q10 of 1.6 between 10 and 20 degrees C, the slow aerobic fibers can be used over a 1.6-fold greater range of swim speeds at the warmer temperature. In some species of fish, Vmax can be increased during thermal acclimation, enabling animals to swim at higher speeds.
NASA Astrophysics Data System (ADS)
Zhang, X.; Zhang, C.; Yang, Y.; Wang, H.; Chen, F.; Fu, X.; Fang, X.; Sun, X.
2016-12-01
Nitrogen (N) deposition and low soil phosphorus (P) content aggravate the P limitation in subtropical forest soils. However, the responses of soil organic matter related hydrolyase kinetics to N and P additions in subtropical plantations are still not clear. We tested the hypothesis that P application can improve the potential maximum activities of soil carbon (C) and N related hydrolayase but substrate demand (Km) may tradeoff the catalytic efficiency of the enzymes. Thirty 20m×20m plots were established in November 2011 and six different treatments were randomly distributed with five replicates in the Chinese fir plantations in subtropical China. The ongoing treatments are control (CK, no N and P application), low N addition (N1:50 kg N ha-1 yr-1), high N addition (N2: 100 kg N ha-1 yr-1), P addition (P: 50 kg P ha-1 yr-1), low N andP addition (N1P: 50 kg N ha-1 yr-1 and 50 kg P ha-1 yr-1) and high N and P addition (N2P: 100 kg N ha-1yr-1and 50 kg P ha-1 yr-1). Soil enzyme kinetic parameters for b-1,4-glucosidase (βG), β-1,4-N-acetylglucosaminidase (NAG), and acid phosphatase (aP) were measured in November 2015. The substrate affinities (Km) of βG and NAG were not affected by N or /and P additions. However, the substrate affinities of aP were decreased by N additions (N1, N2) with higher Km values than the other treatments. N additions (N1, N2) or higher N combined P additions (N2P) increased Vmax and catalytic efficiencies for βG, while with P addition treatments (N1P, N2P, and P) decreased Vmax and catalytic efficiencies for aP. The effects of N combined P treatments (N1P and N2P) on kinetic parameters (Vmax, Km) and catalytic efficiencies for AP were similar to P treatment, indicating that P had stronger effects on organic phosphorus hydrolysis than N in the research site. The N additions (N1 and N2) did not affect the catalytic efficiencies for NAG despite of their positive responses to Vmax for NAG compared with CK. The catalytic efficiencies of aP and NAG were negatively correlated with soil TP and available P contents, and both the enzyme kinetics for aP exhibited strong negative correlations with TP and available P contents. However, the Vmax for BG and NAG were positively correlated with SOC contents, but were negatively correlated with soil pH.
Phenytoin intoxication during concurrent diazepam therapy
Rogers, Howard J.; Haslam, Robert A.; Longstreth, James; Lietman, Paul S.
1977-01-01
Phenytoin elimination is a saturable process obeying Michaelis-Menten kinetics. Plasma phenytoin levels are not related linearly to dose, and small changes in enzyme activity produced by concurrent drug therapy could alter plasma levels. Two cases of phenytoin intoxication associated with simultaneous administration of diazepam are reported. Intravenous phenytoin infusions were given and the apparent Km and Vmax computed from the resulting plasma phenytoin levels. In one case `Km' and `Vmax' were 0.8 μmol/1 and 1.3 μmol/1/hour respectively during concurrent diazepam administration, and 50.3 μmol/1 and 4.4 μmol/1/hour after discontinuation of diazepam. In the second case phenytoin infusion with diazepam gave `Km' and `Vmax' values of 0.012 μmol/1 and 0.95 μmol/1/hour. Without diazepam these were 28.8 μmol/1 and 0.92 μmol/1/hour respectively. PMID:599366
Dai, Xiaorong; Karring, Henrik
2014-01-01
Ammonia emission from animal production is a major environmental problem and has impacts on the animal health and working environment inside production houses. Ammonia is formed in manure by the enzymatic degradation of urinary urea and catalyzed by urease that is present in feces. We have determined and compared the urease activity in feces and manure (a urine and feces mixture) from pigs and cattle at 25°C by using Michaelis-Menten kinetics. To obtain accurate estimates of kinetic parameters Vmax and K'm, we used a 5 min reaction time to determine the initial reaction velocities based on total ammoniacal nitrogen (TAN) concentrations. The resulting Vmax value (mmol urea hydrolyzed per kg wet feces per min) was 2.06±0.08 mmol urea/kg/min and 0.80±0.04 mmol urea/kg/min for pig feces and cattle feces, respectively. The K'm values were 32.59±5.65 mmol urea/l and 15.43±2.94 mmol urea/l for pig feces and cattle feces, respectively. Thus, our results reveal that both the Vmax and K'm values of the urease activity for pig feces are more than 2-fold higher than those for cattle feces. The difference in urea hydrolysis rates between animal species is even more significant in fresh manure. The initial velocities of TAN formation are 1.53 mM/min and 0.33 mM/min for pig and cattle manure, respectively. Furthermore, our investigation shows that the maximum urease activity for pig feces occurs at approximately pH 7, and in cattle feces it is closer to pH 8, indicating that the predominant fecal ureolytic bacteria species differ between animal species. We believe that our study contributes to a better understanding of the urea hydrolysis process in manure and provides a basis for more accurate and animal-specific prediction models for urea hydrolysis rates and ammonia concentration in manures and thus can be used to predict ammonia volatilization rates from animal production.
Dai, Xiaorong; Karring, Henrik
2014-01-01
Ammonia emission from animal production is a major environmental problem and has impacts on the animal health and working environment inside production houses. Ammonia is formed in manure by the enzymatic degradation of urinary urea and catalyzed by urease that is present in feces. We have determined and compared the urease activity in feces and manure (a urine and feces mixture) from pigs and cattle at 25°C by using Michaelis-Menten kinetics. To obtain accurate estimates of kinetic parameters Vmax and K'm, we used a 5 min reaction time to determine the initial reaction velocities based on total ammoniacal nitrogen (TAN) concentrations. The resulting Vmax value (mmol urea hydrolyzed per kg wet feces per min) was 2.06±0.08 mmol urea/kg/min and 0.80±0.04 mmol urea/kg/min for pig feces and cattle feces, respectively. The K'm values were 32.59±5.65 mmol urea/l and 15.43±2.94 mmol urea/l for pig feces and cattle feces, respectively. Thus, our results reveal that both the Vmax and K'm values of the urease activity for pig feces are more than 2-fold higher than those for cattle feces. The difference in urea hydrolysis rates between animal species is even more significant in fresh manure. The initial velocities of TAN formation are 1.53 mM/min and 0.33 mM/min for pig and cattle manure, respectively. Furthermore, our investigation shows that the maximum urease activity for pig feces occurs at approximately pH 7, and in cattle feces it is closer to pH 8, indicating that the predominant fecal ureolytic bacteria species differ between animal species. We believe that our study contributes to a better understanding of the urea hydrolysis process in manure and provides a basis for more accurate and animal-specific prediction models for urea hydrolysis rates and ammonia concentration in manures and thus can be used to predict ammonia volatilization rates from animal production. PMID:25397404
Krog, Anne; Heggeset, Tonje Marita Bjerkan; Ellingsen, Trond Erling
2013-01-01
Bacillus methanolicus wild-type strain MGA3 secretes 59 g/liter−1 of l-glutamate in fed-batch methanol cultivations at 50°C. We recently sequenced the MGA3 genome, and we here characterize key enzymes involved in l-glutamate synthesis and degradation. One glutamate dehydrogenase (GDH) that is encoded by yweB and two glutamate synthases (GOGATs) that are encoded by the gltAB operon and by gltA2 were found, in contrast to Bacillus subtilis, which has two different GDHs and only one GOGAT. B. methanolicus has a glutamine synthetase (GS) that is encoded by glnA and a 2-oxoglutarate dehydrogenase (OGDH) that is encoded by the odhAB operon. The yweB, gltA, gltB, and gltA2 gene products were purified and characterized biochemically in vitro. YweB has a low Km value for ammonium (10 mM) and a high Km value for l-glutamate (250 mM), and the Vmax value is 7-fold higher for l-glutamate synthesis than for the degradation reaction. GltA and GltA2 displayed similar Km values (1 to 1.4 mM) and Vmax values (4 U/mg) for both l-glutamate and 2-oxoglutarate as the substrates, and GltB had no effect on the catalytic activities of these enzymes in vitro. Complementation assays indicated that GltA and not GltA2 is dependent on GltB for GOGAT activity in vivo. To our knowledge, this is the first report describing the presence of two active GOGATs in a bacterium. In vivo experiments indicated that OGDH activity and, to some degree, GOGAT activity play important roles in regulating l-glutamate production in this organism. PMID:23811508
Krog, Anne; Heggeset, Tonje Marita Bjerkan; Ellingsen, Trond Erling; Brautaset, Trygve
2013-09-01
Bacillus methanolicus wild-type strain MGA3 secretes 59 g/liter(-1) of l-glutamate in fed-batch methanol cultivations at 50°C. We recently sequenced the MGA3 genome, and we here characterize key enzymes involved in l-glutamate synthesis and degradation. One glutamate dehydrogenase (GDH) that is encoded by yweB and two glutamate synthases (GOGATs) that are encoded by the gltAB operon and by gltA2 were found, in contrast to Bacillus subtilis, which has two different GDHs and only one GOGAT. B. methanolicus has a glutamine synthetase (GS) that is encoded by glnA and a 2-oxoglutarate dehydrogenase (OGDH) that is encoded by the odhAB operon. The yweB, gltA, gltB, and gltA2 gene products were purified and characterized biochemically in vitro. YweB has a low Km value for ammonium (10 mM) and a high Km value for l-glutamate (250 mM), and the Vmax value is 7-fold higher for l-glutamate synthesis than for the degradation reaction. GltA and GltA2 displayed similar Km values (1 to 1.4 mM) and Vmax values (4 U/mg) for both l-glutamate and 2-oxoglutarate as the substrates, and GltB had no effect on the catalytic activities of these enzymes in vitro. Complementation assays indicated that GltA and not GltA2 is dependent on GltB for GOGAT activity in vivo. To our knowledge, this is the first report describing the presence of two active GOGATs in a bacterium. In vivo experiments indicated that OGDH activity and, to some degree, GOGAT activity play important roles in regulating l-glutamate production in this organism.
Kelce, W R; Lubis, A M; Braun, W F; Youngquist, R S; Ganjam, V K
1990-01-01
A surgical technique to cannulate the rete testis of the goat was utilized to examine the effects of rete testis fluid (RTF) deprivation on the enzymatic activity of epididymal 5 alpha-reductase. Kinetic techniques were used to determine whether the regional enzymatic effect of RTF deprivation is to decrease the apparent number of 5 alpha-reductase active sites or the catalytic activity of each active site within the epididymal epithelium. Paired comparisons of (Vmax)app and (Km)app values between control and RTF-deprived epididymides indicated that RTF deprivation affected the value of (Vmax)app with no apparent change in the values of (Km)app in caput, corpus, and cauda epididymal regions. We conclude that RTF deprivation in the goat epididymis for 7 days results in a decreased number of apparent 5 alpha-reductase active sites within the epididymal epithelium.
Calcium alginate gel as encapsulation matrix for coimmobilized enzyme systems.
Blandino, A; Macías, M; Cantero, D
2003-07-01
Encapsulation within calcium alginate gel capsules was used to produce a coimmobilized enzyme system. Glucose oxidase (GOD) and catalase (CAT) were chosen as model enzymes. The same values of Vmax and Km app for the GOD encapsulated system and for the GOD-CAT coencapsulated system were calculated. When gel beads and capsules were compared, the same catalyst deactivation sequence for the two enzymes was observed. However, when capsules were employed as immobilization support, GOD efficiencies were higher than for the gel beads. These results were explained in terms of the structure of the capsules.
NASA Astrophysics Data System (ADS)
Goharshadi, Elaheh K.; Morsali, Ali; Mansoori, G. Ali
2007-01-01
Isotherms of experimental data of internal pressure of dense fluids versus molar volume, Vm are shown to have each a maximum point at a Vmax below the critical molar volume. In this study, we investigated the role of attractive and repulsive intermolecular energies on this behavior using a molecular dynamics simulation technique. In the simulation, we choose the Lennard-Jones (LJ) intermolecular potential energy function. The LJ potential is known to be an effective potential representing a statistical average of the true pair and many-body interactions in simple molecular systems. The LJ potential function is divided into attractive and repulsive parts. MD calculations have produced internal energy, potential energy, transitional kinetic energy, and radial distribution function (RDF) for argon at 180 K and 450 K using LJ potential, LJ repulsive, and LJ attractive parts. It is shown that the LJ potential function is well capable of predicting the inflection point in the internal energy-molar volume curve as well as maximum point in the internal pressure-molar volume curve. It is also shown that at molar volumes higher than Vmax, the attractive forces have strong influence on determination of internal energy and internal pressure. At volumes lower than Vmax, neither repulsive nor attractive forces are dominating. Also, the coincidence between RDFs resulting from LJ potential and repulsive parts of LJ potential improves as molar volume approaches Vmax from high molar volumes. The coincidence becomes complete at Vmax ⩾ V.
2016-01-01
Phospholipid nanogels enhance the stability and performance of the exoglycosidase enzyme neuraminidase and are used to create a fixed zone of enzyme within a capillary. With nanogels, there is no need to covalently immobilize the enzyme, as it is physically constrained. This enables rapid quantification of Michaelis–Menten constants (KM) for different substrates and ultimately provides a means to quantify the linkage (i.e., 2-3 versus 2-6) of sialic acids. The fixed zone of enzyme is inexpensive and easily positioned in the capillary to support electrophoresis mediated microanalysis using neuraminidase to analyze sialic acid linkages. To circumvent the limitations of diffusion during static incubation, the incubation period is reproducibly achieved by varying the number of forward and reverse passes the substrate makes through the stationary fixed zone using in-capillary electrophoretic mixing. A KM value of 3.3 ± 0.8 mM (Vmax, 2100 ± 200 μM/min) was obtained for 3′-sialyllactose labeled with 2-aminobenzoic acid using neuraminidase from Clostridium perfringens that cleaves sialic acid monomers with an α2-3,6,8,9 linkage, which is similar to values reported in the literature that required benchtop analyses. The enzyme cleaves the 2-3 linkage faster than the 2-6, and a KM of 2 ± 1 mM (Vmax, 400 ± 100 μM/min) was obtained for the 6′-sialyllactose substrate. An alternative neuraminidase selective for 2-3 sialic acid linkages generated a KM value of 3 ± 2 mM (Vmax, 900 ± 300 μM/min) for 3′-sialyllactose. With a knowledge of Vmax, the method was applied to a mixture of 2-3 and 2-6 sialyllactose as well as 2-3 and 2-6 sialylated triantennary glycan. Nanogel electrophoresis is an inexpensive, rapid, and simple alternative to current technologies used to distinguish the composition of 3′ and 6′ sialic acid linkages. PMID:27936604
Universal Dark Halo Scaling Relation for the Dwarf Spheroidal Satellites
NASA Astrophysics Data System (ADS)
Hayashi, Kohei; Ishiyama, Tomoaki; Ogiya, Go; Chiba, Masashi; Inoue, Shigeki; Mori, Masao
2017-07-01
Motivated by a recently found interesting property of the dark halo surface density within a radius, {r}\\max , giving the maximum circular velocity, {V}\\max , we investigate it for dark halos of the Milky Way’s and Andromeda’s dwarf satellites based on cosmological simulations. We select and analyze the simulated subhalos associated with Milky-Way-sized dark halos and find that the values of their surface densities, {{{Σ }}}{V\\max }, are in good agreement with those for the observed dwarf spheroidal satellites even without employing any fitting procedures. Moreover, all subhalos on the small scales of dwarf satellites are expected to obey the universal relation, irrespective of differences in their orbital evolutions, host halo properties, and observed redshifts. Therefore, we find that the universal scaling relation for dark halos on dwarf galaxy mass scales surely exists and provides us with important clues for understanding fundamental properties of dark halos. We also investigate orbital and dynamical evolutions of subhalos to understand the origin of this universal dark halo relation and find that most subhalos evolve generally along the {r}\\max \\propto {V}\\max sequence, even though these subhalos have undergone different histories of mass assembly and tidal stripping. This sequence, therefore, should be the key feature for understanding the nature of the universality of {{{Σ }}}{V\\max }.
Balasubramanian, Padhmini; Boopathy, Vinoth; Govindasamy, Ezhumalai; Venkatesh, Basavaiya Prabhu
2016-08-01
Non-Alcoholic Fatty Liver Disease (NAFLD) has various spectrums of liver diseases like isolated fatty liver, steatohepatitis and cirrhosis usually progressing in a linear fashion. In this process they are known to cause certain haemodynamic changes in the portal flow and hepatic artery flow. The aim of the study was to study these haemodynamic changes in patients with NAFLD and to correlate it with the disease severity. Ninety patients diagnosed to have NAFLD based on ultrasound abdomen (30 each in grade1, grade2 and grade3 NAFLD) and 30 controls (Normal liver on ultrasound abdomen) were subjected to portal vein and hepatic artery Doppler study. Peak maximum velocity (Vmax), Peak minimum velocity (Vmin), Mean flow velocity (MFV), and Vein pulsality index (VPI) of the portal vein and hepatic artery resistivity index (HARI) of the hepatic artery were the doppler parameters which were assessed. Liver span was also assessed both for the fatty liver and controls. The mean Vmax, Vmin, MFV and VPI of the portal vein in patients with NAFLD was 12.23±1.74cm/sec, 9.31±1.45cm/sec, 10.76±1.48cm/sec, and 0.24±0.04 as compared to 14.05±2.43cm/sec, 10.01±2.27cm/sec, 12.23±2.47cm/sec, 0.3±0.08 in controls respectively. All these differences were statistically significant except for Vmin. The Mean HARI in patients with fatty liver was 0.65±0.06 when compared to controls of 0.75±0.06 (p=0.001). HARI (r-value of -0.517) had a better negative correlation followed by VPI (r-value of -0.44) and Vmax (r-value of -0.293) with the severity of NAFLD. MFV had a very weak negative correlation (r-value of -0.182) with the severity of NAFLD. The Vmax, MFV, VPI and HARI were significantly less when compared to controls suggesting a reduced portal flow and an increased hepatic arterial flow in patients with NAFLD. Among the parameters, HARI correlated better with the severity of NAFLD followed by VPI.
Effects of CYP2C19 Variants on Fluoxetine Metabolism in vitro.
Fang, Ping; He, Jia-Yang; Han, Ai-Xia; Lan, Tian; Dai, Da-Peng; Cai, Jian-Ping; Hu, Guo-Xin
2017-01-01
CYP2C19 is an important member of the cytochrome P450 enzyme superfamily. We recently identified 31 CYP2C19 alleles in the Han Chinese population. The aim of this study was to assess the catalytic activities of these allelic isoforms and their effects on the metabolism of fluoxetine in vitro. The wild-type and 30 CYP2C19 variants were expressed in insect cells and each variant was characterized using fluoxetine as the substrate. Reactions were performed at 37°C with 20-1,000 µmol/L substrate for 30 min. By using ultra-high performance liquid chromatography-mass spectrometry to detect the products, the kinetic parameters Km, Vmax, and intrinsic clearance (Vmax/Km) of norfluoxetine were determined. Among the CYP2C19 variants tested, T130M showed similar intrinsic clearance (Vmax/Km) values with CYP2C19*1, while the intrinsic clearance values of other variants were significantly decreased (from 9.56 to 77.77%). In addition, CYP2C19*3 and *35FS could not be detected because they have no detectable enzyme activity. In China, the assessment of CYP2C19 variants in vitro offers valuable information relevant to the personalized medicine for CYP2C19-metabolized drug. © 2017 S. Karger AG, Basel.
Catalytical Properties of Free and Immobilized Aspergillus niger Tannase.
Flores-Maltos, Abril; Rodríguez-Durán, Luis V; Renovato, Jacqueline; Contreras, Juan C; Rodríguez, Raúl; Aguilar, Cristóbal N
2011-01-01
A fungal tannase was produced, recovered, and immobilized by entrapment in calcium alginate beads. Catalytical properties of the immobilized enzyme were compared with those of the free one. Tannase was produced intracellularly by the xerophilic fungus Aspergillus niger GH1 in a submerged fermentation system. Enzyme was recovered by cell disruption and the crude extract was partially purified. The catalytical properties of free and immobilized tannase were evaluated using tannic acid and methyl gallate as substrates. K(M) and V(max) values for free enzyme were very similar for both substrates. But, after immobilization, K(M) and V(max) values increased drastically using tannic acid as substrate. These results indicated that immobilized tannase is a better biocatalyst than free enzyme for applications on liquid systems with high tannin content, such as bioremediation of tannery or olive-mill wastewater.
Sañudo, Borja; Rueda, David; Pozo-Cruz, Borja Del; de Hoyo, Moisés; Carrasco, Luis
2016-10-01
Sañudo, B, Rueda, D, del Pozo-Cruz, B, de Hoyo, M, and Carrasco, L. Validation of a video analysis software package for quantifying movement velocity in resistance exercises. J Strength Cond Res 30(10): 2934-2941, 2016-The aim of this study was to establish the validity of a video analysis software package in measuring mean propulsive velocity (MPV) and the maximal velocity during bench press. Twenty-one healthy males (21 ± 1 year) with weight training experience were recruited, and the MPV and the maximal velocity of the concentric phase (Vmax) were compared with a linear position transducer system during a standard bench press exercise. Participants performed a 1 repetition maximum test using the supine bench press exercise. The testing procedures involved the simultaneous assessment of bench press propulsive velocity using 2 kinematic (linear position transducer and semi-automated tracking software) systems. High Pearson's correlation coefficients for MPV and Vmax between both devices (r = 0.473 to 0.993) were observed. The intraclass correlation coefficients for barbell velocity data and the kinematic data obtained from video analysis were high (>0.79). In addition, the low coefficients of variation indicate that measurements had low variability. Finally, Bland-Altman plots with the limits of agreement of the MPV and Vmax with different loads showed a negative trend, which indicated that the video analysis had higher values than the linear transducer. In conclusion, this study has demonstrated that the software used for the video analysis was an easy to use and cost-effective tool with a very high degree of concurrent validity. This software can be used to evaluate changes in velocity of training load in resistance training, which may be important for the prescription and monitoring of training programmes.
Endurance performance and nocturnal HRV indices.
Nummela, A; Hynynen, E; Kaikkonen, P; Rusko, H
2010-03-01
The effects of endurance training on endurance performance characteristics and cardiac autonomic modulation during night sleep were investigated. Twenty-four sedentary subjects trained over four weeks two hours per week at an average running intensity of 76+/-4% of their heart rate reserve. The R to R ECG-intervals were recorded and heart rate variability indices including high frequency power (HFP) were calculated for the nights following the training days every week. The subjects were divided into responders and non-responders according to the improvements in the maximal velocity of the incremental treadmill test (v(max)). The responders improved their v(max) by 10.9+/-46 % (p < 0.001) while no changes were observed in the non-responders (1.6+/-3.0%), although there were no differences in any training load variables between the groups. In the responders nocturnal HFP was significantly higher during the fourth training week compared to the first training week (p=0.036). Furthermore, a significant correlation was observed between the change in v(max) and the change in nocturnal HFP (r=0.482, p=0.042). It was concluded that after similar training, an increase in cardiac vagal modulation was related to improved v(max) in the sedentary subjects. Georg Thieme Verlag KG Stuttgart.New York.
pH regulation in barnacle muscle fibers: dependence on extracellular sodium and bicarbonate.
Boron, W F; McCormick, W C; Roos, A
1981-01-01
Intracellular pH (pHi) regulation was studied in barnacle muscle fibers with pH-sensitive microelectrodes. The cells were acid loaded, and the subsequent recovery of pHi was monitored. The rate of recovery was reduced by one-third when external Na+ ([Na+]o) was replaced by Li+, but recovery was completely abolished when Na+ was replaced by choline or N-methyl-D-glucamine. In other experiments, varying amounts of Na+ were replaced by choline, and the acid extrusion rate, derived from the recovery rate of pHi, was calculated at a single value of pHi, 6.80. The dependence of the acid extrusion rate on [Na+]o could be described by Michaelis-Menten kinetics; at pHo (extracellular) = 8.0 and [HCO3-]o (extracellular) = 10 mM, the apparent Km and Vmax were 59 mM and 1.3 mmol x l(-1) x min-1. When [HCO3-]o was reduced to 2.5 mM at the same pHo, Km did not change significantly, but Vmax was substantially reduced. On the other hand, when pHo was reduced to 7.4 at constant [HCO3-]o, Vmax changed only slightly, but Km increased substantially. In similar experiments, we examined the dependence of the acid extrusion rate on [HCO3-]o. At pHo = 8.0 and [Na+]o = 440 mM, the apparent Km and Vmax were 4.1 mM and 2.1 mmol x 1-1 x min-1. When pHo was reduced to 7.4, Vmax was not altered, but Km substantially increased. The kinetic data are discussed in terms of the role of pHo, [Na+]o, and [HCO3-]o in the pHi-regulating system.
Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance
NASA Astrophysics Data System (ADS)
Kuzyakov, Yakov; Xu, Xingliang
2014-05-01
Demand of all living organisms on the same nutrients forms the basis for interspecific competition between plants and microorganisms in soils. This competition is especially strong in the rhizosphere. To evaluate competitive and mutualistic interactions between plants and microorganisms and to analyse ecological consequences of these interactions, we analysed 424 data pairs from 41 15N-labelling studies that investigated 15N redistribution between roots and microorganisms. Calculated Michaelis-Menten kinetics based on Km (Michaelis constant) and Vmax (maximum uptake capacity) values from 77 studies on the uptake of nitrate, ammonia, and amino acids by roots and microorganisms clearly showed that, shortly after nitrogen (N) mobilization from soil organic matter and litter, microorganisms take up most N. Lower Km values of microorganisms suggest that they are especially efficient at low N concentrations, but can also acquire more N at higher N concentrations (Vmax) compared with roots. Because of the unidirectional flow of nutrients from soil to roots, plants are the winners for N acquisition in the long run. Therefore, despite strong competition between roots and microorganisms for N, a temporal niche differentiation reflecting their generation times leads to mutualistic relationships in the rhizosphere. This temporal niche differentiation is highly relevant ecologically because it: protects ecosystems from N losses by leaching during periods of slow or no root uptake; continuously provides roots with available N according to plant demand; and contributes to the evolutionary development of mutualistic interactions between roots and microorganisms.
Acuña-Argüelles, M E; Olguin-Lora, P; Razo-Flores, E
2003-04-01
A mixed culture aerobically metabolized phenol, cresol isomers (o-,m-,p-), 2-ethylphenol and xylenol isomers (2,5-DMP and 3,4-DMP) as the sole carbon and energy source. This culture had a high tolerance towards phenol with values of maximum degradation rate (Vmax) of 47 microM phenol mg-1 protein h-1 and inhibition substrate constant (Ki) of 10 mM. These kinetic parameters were considerably diminished and the toxicity increased with the alkylphenols. For example with 2,5-xylenol, Vmax and Ki values of 0.8 microM 2,5-xylenol mg-1 protein h-1 and 1.3 mM, respectively, were obtained. The cresols were 5-fold more toxic than phenol, whereas 2-ethylphenol and 3,4-xylenol were 11-fold more toxic, and 2,5-xylenol was 34-fold more toxic than phenol.
Matussek, K; Moritz, P; Brunner, N; Eckerskorn, C; Hensel, R
1998-11-01
Cyclic 2,3-diphosphoglycerate synthetase (cDPGS) catalyzes the synthesis of cyclic 2,3-diphosphoglycerate (cDPG) by formation of an intramolecular phosphoanhydride bond in 2,3-diphosphoglycerate. cDPG is known to be accumulated to high intracellular concentrations (>300 mM) as a putative thermoadapter in some hyperthermophilic methanogens. For the first time, we have purified active cDPGS from a methanogen, the hyperthermophilic archaeon Methanothermus fervidus, sequenced the coding gene, and expressed it in Escherichia coli. cDPGS purification resulted in enzyme preparations containing two isoforms differing in their electrophoretic mobility under denaturing conditions. Since both polypeptides showed the same N-terminal amino acid sequence and Southern analyses indicate the presence of only one gene coding for cDPGS in M. fervidus, the two polypeptides originate from the same gene but differ by a not yet identified modification. The native cDPGS represents a dimer with an apparent molecular mass of 112 kDa and catalyzes the reversible formation of the intramolecular phosphoanhydride bond at the expense of ATP. The enzyme shows a clear preference for the synthetic reaction: the substrate affinity and the Vmax of the synthetic reaction are a factor of 8 to 10 higher than the corresponding values for the reverse reaction. Comparison with the kinetic properties of the electrophoretically homogeneous, apparently unmodified recombinant enzyme from E. coli revealed a twofold-higher Vmax of the enzyme from M. fervidus in the synthesizing direction.
Furtado, G P; Ribeiro, L F; Lourenzoni, M R; Ward, R J
2013-01-01
A bifunctional enzyme has been created by fusing two Bacillus subtilis enzymes: the β-1,3-1,4-glucanase (BglS, EC 3.2.1.73) that hydrolyzes plant cell wall β-glucans and the copper-dependent oxidase laccase (CotA, EC 1.10.3.2) that catalyzes the oxidation of aromatic compounds with simultaneous reduction of oxygen to water. The chimeric laccase/β-1,3-1,4-glucanase was created by insertion fusion of the bglS and cotA genes, and expressed in Escherichia coli. The affinity-purified recombinant chimeric enzyme showed both laccase and glucanase activities, with a maximum laccase activity at pH 4.5 and 75°C that showed a V(max) 30% higher than observed for the parental laccase. The maximum glucanase activity in the chimeric enzyme was at pH 6.0 and 50°C, with a slight reduction in V(max) by ∼10% compared with the parental glucanase. A decreased K(M) resulted in an overall increase in the K(cat)/K(M) value for the glucanase activity of the chimeric enzyme. The hydrolytic activity of the chimera was 20% higher against natural milled sugarcane bagasse as compared with equimolar mixtures of the separate parental enzymes. Molecular dynamics simulations indicated the approximation of the two catalytic domains in the chimeric enzyme, and the formation of an inter-domain interface may underlie the improved catalytic function.
Examining the effect of galaxy evolution on the stellar-halo mass relation in the EAGLE simulation
NASA Astrophysics Data System (ADS)
Kulier, Andrea; Padilla, Nelson; Schaye, Joop; Crain, Robert; Schaller, Matthieu; Bower, Richard; Theuns, Tom; Paillas, Enrique
2018-01-01
The EAGLE hydrodynamical simulation was used in Matthee et al. 2016 to examine the scatter in the stellar mass-halo mass relation of central galaxies, finding that the stellar mass (M*) correlates well with the maximum circular velocity (Vmax) of the host halo, but with a substantial scatter that does not correlate significantly with other host halo properties. Here we further examine the scatter in the stellar mass-halo mass relation of central galaxies in EAGLE, its correlation with other properties, and its origin. We find that at fixed Vmax, galaxies with lower concentration have younger stellar populations, as expected from the relationship between concentration and halo assembly time. However, at fixed Vmax and halo concentration, galaxies with larger M* have younger stellar ages, so that combining the two effects, galaxies with younger stellar ages at fixed halo mass have higher stellar masses. The host halos of galaxies with larger M* at fixed Vmax and concentration also contain more gas than those with smaller stellar masses at z = 0.1, i.e. the baryon fraction of the halos is larger. There is an even stronger correlation between the scatter in M* at z = 0.1 and the scatter in the baryon fraction of the galaxy's progenitors at z ~ 1, such that the latter sets ~50% of the scatter in M* at z = 0.1. We conclude that most of the scatter between Vmax and M* at z = 0.1 is set at earlier redshifts by the scatter in the baryon fraction of halos, which in turn is primarily the result of differences in feedback strength within halos.
Halestrap, A P
1978-06-15
The effects of exchangeable ions and pH on the efflux of pyruvate from preloaded mitochondria are reported. Efflux obeys first-order kinetics, and the stimulation of efflux by exchangeable ions such as acetoacetate and lactate obeys Michaelis--Menten kinetics. The apparent Km value +/- S.E. for acetoacetate was 0.56 +/- 0.14 mM (n = 5) and that for lactate 12.3 +/- 2.3 mM (n = 6). The Vmax. values +/- S.E. at 0 degrees C were 16.2 +/- 2.0 and 21.9 +/- 2.7 nmol/min per mg of protein. The exchange of a variety of other substituted monocarboxylates was also studied. Efflux was also stimulated by increasing the external pH. The data gave a pK for the transport process of 8.35 and a Vmax. of 3.31 +/- 0.14 nmol/min per mg. The similarity of the Vmax. values for various exchangeable ions but the difference of this from the Vmax. in the absence of exchangeable ions may indicate that transport of pyruvate occurs with H+ and not in exchange for an OH- ion. The inhibition of transport by alpha-cyano-4-hydroxycinnamate took several seconds to reach completion at 0 degrees C. It is proposed that inhibition occurs by binding to the substrate site and subsequent reaction with an -SH group on the inside of the membrane. The inhibitor can be displaced by substrates that can also enter the mitochondria independently of the carrier and so compete with the inhibitor for the substrate-binding site on the inside of the membrane. A mechanism for transport is proposed that invokes a transition state of pyruvate involving addition of an -SH group to the 2-carbon of pyruvate. Evidence is presented that suggests that ketone bodies may cross the mitochondrial membrane either on the carrier or by free diffusion. The physiological involvement of the carrier in ketone-body metabolism is discussed. The role of ketone bodies and pH in the physiological regulation of pyruvate transport is considered.
Methylmercury-cholinesterase interactions in rats.
Hastings, F L; Lucier, G W; Klein, R
1975-01-01
The interaction of methylmercury hydroxide (MMH) and cholinesterases was studied in male and female rats. MMH administered subcutaneously in doses of 10 mg/kg for 2 days reduced the level of plasma cholinesterase (ButChE) by 68% in females and 47% in males while brain acetylcholinesterase (AChE) was unaffected. Normal females had higher but more variable ButChE levels than normal males. In a time-course experiment, a single dose of MMH (10 mg/kg) reduced ButChE levels when mercury levels reached 22 mug/ml in the blood. A 10% reduction in brain AChE was observed at 72 hours; however, mercury reached a concentration of only 2.0 mug/g in brain tissue. The determination of the Michaelis constant Km and maximum velocity value Vmax for butyrylcholine and ButChE in control and MMH-treated (1 mg/kg) animals indicated that MMH reduced Vmax only. Since no loss in ButChE activity occurred when MMH and control plasma were incubated in vitro, MMH is not a direct inhibitor of ButChE. Because only the inactive monomeric form of ButChE contains free sulfhydryl groups, it is postulated that MMH combines covalently with the sulfur, preventing formation of active enzyme. By analogy, it is believed this is also the case with AChE. PMID:1227853
Tunnel transport and interlayer excitons in bilayer fractional quantum Hall systems
NASA Astrophysics Data System (ADS)
Zhang, Yuhe; Jain, J. K.; Eisenstein, J. P.
2017-05-01
In a bilayer system consisting of a composite-fermion (CF) Fermi sea in each layer, the tunnel current is exponentially suppressed at zero bias, followed by a strong peak at a finite-bias voltage Vmax. This behavior, which is qualitatively different from that observed for the electron Fermi sea, provides fundamental insight into the strongly correlated non-Fermi-liquid nature of the CF Fermi sea and, in particular, offers a window into the short-distance high-energy physics of this highly nontrivial state. We identify the exciton responsible for the peak current and provide a quantitative account of the value of Vmax. The excitonic attraction is shown to be quantitatively significant, and its variation accounts for the increase of Vmax with the application of an in-plane magnetic field. We also estimate the critical Zeeman energy where transition occurs from a fully spin-polarized composite-fermion Fermi sea to a partially spin-polarized one, carefully incorporating corrections due to finite width and Landau level mixing, and find it to be in satisfactory agreement with the Zeeman energy where a qualitative change has been observed for the onset bias voltage [J. P. Eisenstein et al., Phys. Rev. B 94, 125409 (2016), 10.1103/PhysRevB.94.125409]. For fractional quantum Hall states, we predict a substantial discontinuous jump in Vmax when the system undergoes a transition from a fully spin-polarized state to a spin singlet or a partially spin-polarized state.
Leaf chlorophyll constraint on model simulated gross primary productivity in agricultural systems
NASA Astrophysics Data System (ADS)
Houborg, Rasmus; McCabe, Matthew F.; Cescatti, Alessandro; Gitelson, Anatoly A.
2015-12-01
Leaf chlorophyll content (Chll) may serve as an observational proxy for the maximum rate of carboxylation (Vmax), which describes leaf photosynthetic capacity and represents the single most important control on modeled leaf photosynthesis within most Terrestrial Biosphere Models (TBMs). The parameterization of Vmax is associated with great uncertainty as it can vary significantly between plants and in response to changes in leaf nitrogen (N) availability, plant phenology and environmental conditions. Houborg et al. (2013) outlined a semi-mechanistic relationship between Vmax25 (Vmax normalized to 25 °C) and Chll based on inter-linkages between Vmax25, Rubisco enzyme kinetics, N and Chll. Here, these relationships are parameterized for a wider range of important agricultural crops and embedded within the leaf photosynthesis-conductance scheme of the Community Land Model (CLM), bypassing the questionable use of temporally invariant and broadly defined plant functional type (PFT) specific Vmax25 values. In this study, the new Chll constrained version of CLM is refined with an updated parameterization scheme for specific application to soybean and maize. The benefit of using in-situ measured and satellite retrieved Chll for constraining model simulations of Gross Primary Productivity (GPP) is evaluated over fields in central Nebraska, U.S.A between 2001 and 2005. Landsat-based Chll time-series records derived from the Regularized Canopy Reflectance model (REGFLEC) are used as forcing to the CLM. Validation of simulated GPP against 15 site-years of flux tower observations demonstrate the utility of Chll as a model constraint, with the coefficient of efficiency increasing from 0.91 to 0.94 and from 0.87 to 0.91 for maize and soybean, respectively. Model performances particularly improve during the late reproductive and senescence stage, where the largest temporal variations in Chll (averaging 35-55 μg cm-2 for maize and 20-35 μg cm-2 for soybean) are observed. While prolonged periods of vegetation stress did not occur over the studied fields, given the usefulness of Chll as an indicator of plant health, enhanced GPP predictabilities should be expected in fields exposed to longer periods of moisture and nutrient stress. While the results support the use of Chll as an observational proxy for Vmax25, future work needs to be directed towards improving the Chll retrieval accuracy from space observations and developing consistent and physically realistic modeling schemes that can be parameterized with acceptable accuracy over spatial and temporal domains.
Cremer, J E; Teal, H M; Cunningham, V J
1982-09-01
Data are presented in support of the transport of (-)-D-3-hydroxybutyrate across the blood-brain barrier (BBB) being a carrier-mediated process. The kinetic parameters in 21-day-old pentobarbital-anaesthetized rats were Vmax 2.0 mumol.g-1.min-1, Km 29 mM, and KD 0.024 ml.g-1.min-1. The value for Vmax was the same as that for L-lactate and pyruvate transport in animals of the same age. The transport of all three substrates was sensitive to inhibition by low concentrations of either 2-oxo-3-methylbutanoate or 2-oxo-4-methylpentanoate, the 2-oxo acids that can accumulate in patients with maple-syrup-urine disease. The Ki values for the 2-oxo acids were severalfold lower than the respective Km values. 2-Oxo-3-phenylpropionate was a poor inhibitor. The relative affinities of the various monocarboxylic acids for the transport system of the BBB distinguished it from similar systems described in brain, heart, and liver mitochondria; human erythrocytes; and Ehrlich ascites-tumour cells.
Ethanol intake and sup 3 H-serotonin uptake I: A study in Fawn-Hooded rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daoust, M.; Compagnon, P.; Legrand, E.
1991-01-01
Ethanol intake and synaptosomal {sup 3}H-serotonin uptake were studied in male Fawn-Hooded and Sprague-Dawley rats. Fawn-Hooded rats consumed more alcohol and more water than Sprague-Dawley rats. Plasma alcohol levels of Sprague-Dawley rats were not detectable but were about 5 mg/dl in Fawn-Hooded rats. Ethanol intake increased the Vmax of serotonin uptake in Fawn-Hooded rats in hippocampus and cortex, but not in thalamus. In Fawn-Hooded rats, serotonin uptake (Vmax) was higher than in Sprague-Dawley rats cortex. Ethanol intake reduced the Vmax of serotonin uptake in Fawn-Hooded rats in hippocampus and cortex. In cortex, the carrier affinity for serotonin was increased inmore » alcoholized Fawn-Hooded rats. These results indicate that synaptosomal {sup 3}H-serotonin uptake is affected by ethanol intake. In Fawn-Hooded rats, high ethanol consumption is associated with high serotonin uptake. In rats presenting high serotonin uptake, alcoholization reduces {sup 3}H-serotonin internalization in synaptosomes, indicating a specific sensitivity to alcohol intake of serotonin uptake system.« less
Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance.
Kuzyakov, Yakov; Xu, Xingliang
2013-05-01
Demand of all living organisms on the same nutrients forms the basis for interspecific competition between plants and microorganisms in soils. This competition is especially strong in the rhizosphere. To evaluate competitive and mutualistic interactions between plants and microorganisms and to analyse ecological consequences of these interactions, we analysed 424 data pairs from 41 (15)N-labelling studies that investigated (15)N redistribution between roots and microorganisms. Calculated Michaelis-Menten kinetics based on K(m) (Michaelis constant) and V(max) (maximum uptake capacity) values from 77 studies on the uptake of nitrate, ammonia, and amino acids by roots and microorganisms clearly showed that, shortly after nitrogen (N) mobilization from soil organic matter and litter, microorganisms take up most N. Lower K(m) values of microorganisms suggest that they are especially efficient at low N concentrations, but can also acquire more N at higher N concentrations (V(max)) compared with roots. Because of the unidirectional flow of nutrients from soil to roots, plants are the winners for N acquisition in the long run. Therefore, despite strong competition between roots and microorganisms for N, a temporal niche differentiation reflecting their generation times leads to mutualistic relationships in the rhizosphere. This temporal niche differentiation is highly relevant ecologically because it: protects ecosystems from N losses by leaching during periods of slow or no root uptake; continuously provides roots with available N according to plant demand; and contributes to the evolutionary development of mutualistic interactions between roots and microorganisms. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Kohn, Tertius A; Noakes, Timothy D
2013-03-15
This study investigated for the first time maximum force production, shortening velocity (Vmax) and power output in permeabilised single muscle fibres at 12°C from lion, Panthera leo (Linnaeus 1758), and caracal, Caracal caracal (Schreber 1776), and compared the values with those from human cyclists. Additionally, the use and validation of previously frozen tissue for contractile experiments is reported. Only type IIx muscle fibres were identified in the caracal sample, whereas type IIx and only two type I fibres were found in the lion sample. Only pure type I and IIa, and hybrid type IIax fibres were identified in the human samples - there were no pure type IIx fibres. Nevertheless, compared with all the human fibre types, the lion and caracal fibres were smaller (P<0.01) in cross-sectional area (human: 6194±230 μm(2), lion: 3008±151 μm(2), caracal: 2583±221 μm(2)). On average, the felid type IIx fibres produced significantly greater force (191-211 kN m(-2)) and ~3 times more power (29.0-30.3 kN m(-2) fibre lengths s(-1)) than the human IIax fibres (100-150 kN m(-2), 4-11 kN m(-2) fibre lengths s(-1)). Vmax values of the lion type IIx fibres were also higher than those of human type IIax fibres. The findings suggest that the same fibre type may differ substantially between species and potential explanations are discussed.
Habibi-Moini, S; D'mello, A P
2001-03-14
Microencapsulated phenylalanine ammonia lyase (PAL) exhibits a marked reduction in activity compared to the activity of the free enzyme in pH 8.5 Tris buffer. The purpose of this investigation was to evaluate the contribution of incomplete entrapment, the internal environment of cellulose nitrate membrane microcapsules, the diffusional barrier of the membrane and the microcapsulation process to the low activity of encapsulated PAL. A solution of PAL and 10% w/v hemoglobin was incorporated into cellulose nitrate membrane microcapsules. Hemoglobin incorporation was used as a surrogate marker of PAL entrapment. Using 14C hemoglobin, the encapsulation efficiency was determined to be 70% and suggested that incomplete entrapment might partially account for the low activity of encapsulated PAL. The effect of the internal environment of the microcapsule (10% hemoglobin solution) on PAL activity was evaluated by comparing enzyme activity in 10% w/v hemoglobin solution and pH 8.5 Tris buffer. Similar K(M) and V(max) values of PAL in the two media indicated that the internal environment of the microcapsule did not contribute to the reduction in activity of the encapsulated enzyme. The contribution of a membrane diffusional barrier was determined by breaking the putative barrier and measuring PAL activity in intact and broken microcapsules. Similar activity of PAL in these two conditions is evidence for the lack of a diffusional barrier. The effect of the microencapsulation process on PAL activity was evaluated by comparing K(M) and V(max) of free and encapsulated PAL. Similar K(M) values in these two media suggested that the process did not affect the conformation of PAL. However, encapsulated PAL had a 50% lower V(max) value compared to free PAL, which showed that the microencapsulation process deactivated a substantial proportion of the enzyme.
Kinematic Modeling of Normal Voluntary Mandibular Opening and Closing Velocity-Initial Study.
Gawriołek, Krzysztof; Gawriołek, Maria; Komosa, Marek; Piotrowski, Paweł R; Azer, Shereen S
2015-06-01
Determination and quantification of voluntary mandibular velocity movement has not been a thoroughly studied parameter of masticatory movement. This study attempted to objectively define kinematics of mandibular movement based on numerical (digital) analysis of the relations and interactions of velocity diagram records in healthy female individuals. Using a computerized mandibular scanner (K7 Evaluation Software), 72 diagrams of voluntary mandibular velocity movements (36 for opening, 36 for closing) for women with clinically normal motor and functional activities of the masticatory system were recorded. Multiple measurements were analyzed focusing on the curve for maximum velocity records. For each movement, the loop of temporary velocities was determined. The diagram was then entered into AutoCad calculation software where movement analysis was performed. The real maximum velocity values on opening (Vmax ), closing (V0 ), and average velocity values (Vav ) as well as movement accelerations (a) were recorded. Additionally, functional (A1-A2) and geometric (P1-P4) analysis of loop constituent phases were performed, and the relations between the obtained areas were defined. Velocity means and correlation coefficient values for various velocity phases were calculated. The Wilcoxon test produced the following maximum and average velocity results: Vmax = 394 ± 102, Vav = 222 ± 61 for opening, and Vmax = 409 ± 94, Vav = 225 ± 55 mm/s for closing. Both mandibular movement range and velocity change showed significant variability achieving the highest velocity in P2 phase. Voluntary mandibular velocity presents significant variations between healthy individuals. Maximum velocity is obtained when incisal separation is between 12.8 and 13.5 mm. An improved understanding of the patterns of normal mandibular movements may provide an invaluable diagnostic aid to pathological changes within the masticatory system. © 2014 by the American College of Prosthodontists.
Pastoris, O; Dossena, M; Gorini, A; Vercesi, L; Benzi, G
1985-03-01
Muscular glycolytic fuels, intermediates and end-products (glycogen, glucose, glucose-6-phosphate, pyruvate, lactate), Krebs cycle intermediates (citrate, alpha-ketoglutarate, succinate, malate), related free amino acids (glutamate, alanine), ammonia, energy store (creatine phosphate), energy mediators (ATP, ADP, AMP) and energy charge potential were evaluated. Furthermore the maximum rate (Vmax) of the following muscular enzyme activities was evaluated in the crude extract and/or mitochondrial fraction: for the anaerobic glycolytic pathway: hexokinase, phosphofructokinase, pyruvate kinase, lactate dehydrogenase; for the tricarboxylic acid cycle: citrate synthase, malate dehydrogenase; for the electron transfer chain: total NADH cytochrome c reductase, cytochrome oxidase. The rat gastrocnemius muscles were analyzed in normoxia and after repeated, alternate hypoxic and normoxic exposures (12 hours of hypoxia daily; for 5 days). Naftidrofuryl was administered daily at three different doses: 10, 15 and 22.5 mg/kg i.m., 30 min before the beginning of the experimental hypoxia. The biochemical adaptation to intermittent normobaric hypoxic-normoxic exposures was characterized by the decrease of the muscular contents of creatine phosphate, citrate, alpha-ketoglutarate and glutamate. This adaptation occurred in absence of significant changes in the Vmax of the muscle enzymes tested. By naftidrofuryl treatment, in gastrocnemius muscle from hypoxic rats both alpha-ketoglutarate and creatine phosphate contents maintained normal values, while glutamate concentration remained reduced to subnormal values. With the exception of hexokinase, naftidrofuryl treatment did not modify the Vmax of marker enzymes related to energy transduction.
Fan, Jin-juan; Li, Dan-dan; Zhang, Xin-yu; He, Nian-peng; Bu, Jin-feng; Wang, Qing; Sun, Xiao-min; Wen, Xue-fa
2016-01-01
Soil samples, which were collected from three typical forests, i.e., Betula ermanii forest, coniferous mixed broad-leaved forest, and Pinus koraiensis forest, at different altitudes along the southern slope of Laotuding Mountain of Changbai Mountain range in Liaoning Province of China, were incubated over a temperature gradient in laboratory. Soil organic carbon mineralization rates (Cmin), soil β-1,4-glucosidase (βG) kinetics and their temperature sensitivity (Q₁₀) were measured. The results showed that both altitude and temperature had significant effects on Cmin · Cmin increased with temperature and was highest in the B. ermanii forest. The temperature sensitivity of Cmin [Q₁₀(Cmin)] ranked in order of B. ermanii forest > P. koraiensis forest > coniferous mixed broad-leaved forest, but did not differ significantly among the three forests. Both the maximum activity (Vmax) and the Michaelis constant (Km) of the βG responded positively to temperature for all the forests. The temperature sensitivity of Vmax [Q₁₀(Vmax)] ranged from 1.78 to 1.90, and the temperature sensitivity of Km [Q₁₀(Km)] ranged from 1.79 to 2.00. The Q₁₀(Vmax)/Q10(Km) ratios were significantly greater in the B. ermanii soil than in the other two forest soils, suggesting that the βG kinetics-dependent impacts of the global warming or temperature increase on the decomposition of soil organic carbon were temperature sensitive for the forests at the higher altitudes.
Wielgus-Kutrowska, B; Kulikowska, E; Wierzchowski, J; Bzowska, A; Shugar, D
1997-01-15
Nicotinamide 1-beta-D-riboside (Nir), the cationic, reducible moiety of the coenzyme NAD+, has been confirmed as an unusual substrate for purified purine-nucleoside phosphorylase (PNP) from a mammalian source (calf spleen). It is also a substrate of the enzyme from Escherichia coli. The Km values at pH 7, 1.48 mM and 0.62 mM, respectively, were 1-2 orders of magnitude higher than for the natural substrate inosine, but the Vmax values were comparable, 96% and 35% that for Ino. The pseudo first-order rate constants, Vmax/Km, were 1.1% and 2.5% for the calf spleen and E. coli enzymes. The aglycon, nicotinamide, was neither a substrate nor an inhibitor of PNP. Nir was a weak inhibitor of inosine phosphorolysis catalyzed by both enzymes, with Ki values close to the Km for its phosphorolysis, consistent with simple competitive inhibition; this was further confirmed by Dixon plots. Phosphorolysis of the fluorescent positively charged substrate 7-methylguanosine was also inhibited in a competitive manner by both Ino and Nir. Phosphorolysis of Nir by both enzymes was inhibited competitively by several specific inhibitors of calf spleen and E. coli PNP, with Ki values similar to those for inhibition of other natural substrates. The pH dependence of the kinetic constants for the phosphorolysis of Nir and of a variety of other substrates, was extensively investigated, particularly in the alkaline pH range, where Nir exhibited abnormally high substrate activity relative to the reduced reaction rates of both enzymes towards other anionic or neutral substrates. The overall results are discussed in relation to present concepts regarding binding and phosphorolysis of substrates by PNP based on crystallographic data of enzyme-inhibitor complexes, and current studies on enzymatic and nonenzymatic mechanisms of the cleavage of the Nir glycosidic bond.
Matussek, Karl; Moritz, Patrick; Brunner, Nina; Eckerskorn, Christoph; Hensel, Reinhard
1998-01-01
Cyclic 2,3-diphosphoglycerate synthetase (cDPGS) catalyzes the synthesis of cyclic 2,3-diphosphoglycerate (cDPG) by formation of an intramolecular phosphoanhydride bond in 2,3-diphosphoglycerate. cDPG is known to be accumulated to high intracellular concentrations (>300 mM) as a putative thermoadapter in some hyperthermophilic methanogens. For the first time, we have purified active cDPGS from a methanogen, the hyperthermophilic archaeon Methanothermus fervidus, sequenced the coding gene, and expressed it in Escherichia coli. cDPGS purification resulted in enzyme preparations containing two isoforms differing in their electrophoretic mobility under denaturing conditions. Since both polypeptides showed the same N-terminal amino acid sequence and Southern analyses indicate the presence of only one gene coding for cDPGS in M. fervidus, the two polypeptides originate from the same gene but differ by a not yet identified modification. The native cDPGS represents a dimer with an apparent molecular mass of 112 kDa and catalyzes the reversible formation of the intramolecular phosphoanhydride bond at the expense of ATP. The enzyme shows a clear preference for the synthetic reaction: the substrate affinity and the Vmax of the synthetic reaction are a factor of 8 to 10 higher than the corresponding values for the reverse reaction. Comparison with the kinetic properties of the electrophoretically homogeneous, apparently unmodified recombinant enzyme from E. coli revealed a twofold-higher Vmax of the enzyme from M. fervidus in the synthesizing direction. PMID:9811660
Renormalization-group study of the Nagel-Schreckenberg model
NASA Astrophysics Data System (ADS)
Teoh, Han Kheng; Yong, Ee Hou
2018-03-01
We study the phase transition from free flow to congested phases in the Nagel-Schreckenberg (NS) model by using the dynamically driven renormalization group (DDRG). The breaking probability p that governs the driving strategy is investigated. For the deterministic case p =0 , the dynamics remain invariant in each renormalization-group (RG) transformation. Two fully attractive fixed points, ρc*=0 and 1, and one unstable fixed point, ρc*=1 /(vmax+1 ) , are obtained. The critical exponent ν which is related to the correlation length is calculated for various vmax. The critical exponent appears to decrease weakly with vmax from ν =1.62 to the asymptotical value of 1.00. For the random case p >0 , the transition rules in the coarse-grained scale are found to be different from the NS specification. To have a qualitative understanding of the effect of stochasticity, the case p →0 is studied with simulation, and the RG flow in the ρ -p plane is obtained. The fixed points p =0 and 1 that govern the driving strategy of the NS model are found. A short discussion on the extension of the DDRG method to the NS model with the open-boundary condition is outlined.
Pozzi, Andrea G; Lantos, Carlos P; Ceballos, Nora R
2002-03-01
In amphibians, aldosterone (Aldo) is particularly important in the regulation of Na(+) exchange by skin and urinary bladder. In previous works we studied a key enzyme in Aldo biosynthesis, the 3 beta-hydroxysteroid dehydrogenase/isomerase (3 beta HSD/I), in the interrenals of Bufo arenarum. In those works a dual localization of the 3 beta HSD/I in both microsomes and mitochondria was described. The mitochondrial, but not the microsomal, enzyme prefers the immediate Aldo precursor, 3 beta-analogue of aldosterone, as substrate. In this order, the enzyme 3 beta HSD/I would be not only a key enzyme for the synthesis of Aldo but additionally, due to its microsomal and mitochondrial localization, a possible target for the regulation of Aldo biosynthesis. With this rationale in mind, we have used in vivo and in vitro approaches to study Aldo regulation. In the present investigation the levels of Aldo were determined in plasma of winter (W) and summer (S) toads subjected to different saline concentrations (0.125 and 0.15 M) or kept on wet land. Saline hyperosmotically treated toads had significantly lower levels than isoosmotically treated toads. These results are consistent with the response in mammals, in which salt loading provokes a reduction in Aldo secretion. In W toads, plasmatic corticosterone (B) concentration was higher than Aldo concentration, whereas in S toads, B/Aldo ratio approached unity. The reduction of Aldo levels after saline dehydration was due to a decline in its biosynthesis. K(m) and V(max) values for 3 beta HSD/I were calculated for mitochondrial and microsomal fractions obtained from animals acclimated to 0.15 M NaCl or kept on land. As previously described, V(max) differs between W and S toads. However, only mitochondrial V(max) changed as a consequence of saline adaptation, suggesting that the mitochondrial enzyme could be involved in the regulation of Aldo biosynthesis.
Invertase immobilization onto radiation-induced graft copolymerized polyethylene pellets
NASA Astrophysics Data System (ADS)
de Queiroz, Alvaro Antonio Alencar; Vitolo, Michele; de Oliveira, Rômulo Cesar; Higa, Olga Zazuco
1996-06-01
The graft copolymer poly(ethylene-g-acrylic acid) (LDPE-g-AA) was prepared by radiation-induced graft copolymerization of acrylic acid onto low density polyethylene (LDPE) pellets, and characterized by infrared photoacoustic spectroscopy and scanning electron microscopy (SEM). The presence of the grafted poly(acrylic acid) (PAA) was established. Invertase was immobilized onto the graft polymer and the thermodynamic parameters of the soluble and immobilized enzyme were determined. The Michaelis constant, Km, and the maximum reaction velocity, Vmax, were determined for the free and the immobilized invertase. The Michaelis constant, Km was larger for the immobilized invertase than for the free enzyme, whereas Vmax was smaller for the immobilized invertase. The thermal stability of the immobilized invertase was higher than that of the free enzyme.
Hara, A; Hayashibara, M; Nakayama, T; Hasebe, K; Usui, S; Sawada, H
1985-01-01
We have kinetically and immunologically demonstrated that testosterone 17 beta-dehydrogenase (NADP+) isoenzymes (EC 1.1.1.64) and aldehyde reductase (EC 1.1.1.2) from guinea-pig liver catalyse the oxidation of benzene dihydrodiol (trans-1,2-dihydroxycyclohexa-3,5-diene) to catechol. One isoenzyme of testosterone 17 beta-dehydrogenase, which has specificity for 5 beta-androstanes, oxidized benzene dihydrodiol at a 3-fold higher rate than 5 beta-dihydrotestosterone, and showed a more than 4-fold higher affinity for benzene dihydrodiol and Vmax. value than did another isoenzyme, which exhibits specificity for 5 alpha-androstanes, and aldehyde reductase. Immunoprecipitation of guinea-pig liver cytosol with antisera against the testosterone 17 beta-dehydrogenase isoenzymes and aldehyde reductase indicated that most of the benzene dihydrodiol dehydrogenase activity in the tissue is due to testosterone 17 beta-dehydrogenase. PMID:2983661
Korsrud, G O; Conacher, H B; Jarvis, G A; Beare-Rogers, J L
1977-02-01
The beta-oxidation of long chain fatty acids was investigated in a preparation of rat heart mitochondria. The acyl-CoA esters of the cis and trans isomers of delta9-hexadecenoic, delta9-octadecenoic, delta11-eicosenoic, and delta13-docosenoic acids were prepared. Rates of the acyl-CoA reaction were determined with an extract from rat heart mitochondria. The apparent Michaelis constant (Km) and maximum velocity (Vmax) were calculated for each substrate. In general, apparent Vmax values decreased with increasing chain length of the monoenoic substrates. Reduced activity of acyl-CoA dehydrogenase with long chain acyl-CoA esters could have contributed to accumulation of lipids in hearts of rats fed diets containing long chain fatty acids.
Stereospecificity of mushroom tyrosinase immobilized on a chiral and a nonchiral support.
Marín-Zamora, María Elisa; Rojas-Melgarejo, Francisco; García-Canovas, Francisco; García-Ruiz, Pedro Antonio
2007-05-30
Mushroom tyrosinase was immobilized from an extract onto glass beads covered with the cross-linked totally cinnamoylated derivates of d-sorbitol (sorbitol cinnamate) and glycerine (glycerine cinnamate). The enzyme was immobilized onto the support by direct adsorption, and the quantity of immobilized tyrosinase was higher for sorbitol cinnamate, the support with the higher number of esterified hydroxyls per unit of monosacharide, than for glycerine cinnamate. The results obtained from the stereospecificity study of the monophenolase and diphenolase activity of immobilized mushroom tyrosinase are reported. The enantiomers L-tyrosine, DL-tyrosine, D-tyrosine, L-dopa, DL-dopa, D-dopa, L-alpha-methyldopa, DL-alpha-methyldopa, L-isoprenaline, DL-isoprenaline, L-adrenaline, DL-adrenaline, L-noradrenaline, and D-noradrenaline were assayed with tyrosinase immobilized on a chiral support (sorbitol cinnamate), whereas L-tyrosine, DL-tyrosine, D-tyrosine, L-dopa, DL-dopa, D-dopa, L-alpha-methyldopa, and DL-alpha-methyldopa were assayed with tyrosinase immobilized on a nonchiral support (glycerine cinnamate). The same Vmax(app) values for each series of enantiomers were obtained. However, the Km(app) values were different, the l isomers showing lower values than the dl isomers, whereas the highest Km(app) value was obtained with d isomers. No difference was observed in the stereospecificity of tyrosinase immobilized on a chiral (sorbitol cinnamate) or nonchiral (glycerine cinnamate) support.
Absolute and Relative Training Load and Its Relation to Fatigue in Football
Zurutuza, Unai; Castellano, Julen; Echeazarra, Ibon; Casamichana, David
2017-01-01
The aim of the study was to assess the relationship of external and internal training load (TL) indicators with the objective and subjective fatigue experienced by 15 semi-professional football players, over eight complete weeks of the competition period in the 2015–2016 season, which covered microcycles from 34th to 41st. The maximum heart rate (HRmax) and maximum speed (Vmax) of all the players were previously measured in specific tests. The TL was monitored via questionnaires on rating of perceived exertion (RPE), pulsometers and GPS devices, registering the variables: total distance (TD), player load 2D (PL2D), TD at >80% of the Vmax (TD80), TD in deceleration at < -2 m⋅sec-2 (TDD <-2), TD in acceleration >2 m⋅sec-2 (TDA >2), Edwards (ED), time spent at between 50 and 80% (50–80% HRmax), 80–90% (80–90% HRmax), and >90% of the HRmax (>90% HRmax), and RPE both respiratory/thoracic (RPEres) and leg/muscular (RPEmus). All the variables were analyzed taking into account both the absolute values accumulated over the week and the normalized values in relation to individual mean competition values. Neuromuscular fatigue was measured objectively using the countermovement jump test and subjectively via the Total Quality Recovery (TQR) scale questionnaire. Analytical correlation techniques were later applied within the general linear model. There is a correlation between the fatigue experienced by the player, assessed objectively and subjectively, and the load accumulated over the week, this being assessed in absolute and relative terms. Specifically, the load relative to competition correlated with the physical variables TD (-0.279), PL2D (-0.272), TDD < -2 (-0.294), TDA >2 (-0.309), and sRPEmus (-0.287). The variables related to heart rate produced a higher correlation with TQR. There is a correlation between objectively and subjectively assessed fatigue and the accumulated TL of a player over the week, with a higher sensitivity being shown when compared to the values related to the demands of competition. Monitoring load and assessing fatigue, we are closer to knowing what the prescription of an adequate dose of training should be in order for a player to be as fresh as possible and in top condition for a match. Normalizing training demands with respect to competition could be an appropriate strategy for individualizing player TL. PMID:28634456
Heterotrophic Potential for Amino Acid Uptake in a Naturally Eutrophic Lake1
Burnison, B. Kent; Morita, Richard Y.
1974-01-01
The uptake of sixteen 14C-labeled amino acids by the indigenous heterotrophic microflora of Upper Klamath Lake, Oregon, was measured using the kinetic approach. The year-long study showed a seasonal variation in the maximum uptake velocity, Vmax, of all the amino acids which was proportional to temperature. The maximum total flux of amino acids by the heterotrophic microflora ranged from 1.2 to 11.9 μmol of C per liter per day (spring to summer). Glutamate, asparagine, aspartate, and serine had the highest Vmax values and were respired to the greatest extent. The percentages of the gross (net + respired) uptake of the amino acids which were respired to CO2 ranged from 2% for leucine to 63% for glutamate. Serine, lysine, and glycine were the most abundant amino acids found in Upper Klamath Lake surface water; at intermediate concentrations were alanine, aspartate, and threonine; and the remaining amino acids were always below 7.5 × 10-8 M (10 μg/liter). The amino acid concentrations determined chemically appear to be the sum of free and adsorbed amino acids, since the values obtained were usually greater than the (Kt + Sn) values obtained by the heterotrophic uptake experiments. PMID:4207581
Hopantenate interference on the adaptation of muscular energy metabolism to intermittent hypoxia.
Pastoris, O; Vercesi, L; Mazzocchi, A; Dossena, M; Benzi, G
1986-06-01
In rat gastrocnemius muscle, the concentrations of glycolytic fuels, intermediates and end-products; Krebs cycle intermediates and related free amino acids; ammonia; energy store and mediators; and the energy charge potential were evaluated in normoxia or after repeated, alternate hypoxic and normoxic exposures (12 hr of hypoxia daily; for 5 days) with or without treatment with hopantenate (HOPA). Furthermore, in the crude extract and/or mitochondrial fraction the maximum rate (Vmax) of some muscular enzymes related to the anaerobic glycolytic pathway; the tricarboxylic acid cycle; and the electron transfer chain were evaluated. Hopantenate was administered daily at the dose of 250 mg.kg-1 i.p., for 5 days, 30 min before the beginning of the experimental normobaric hypoxia. The biochemical adaptation to intermittent normobaric hypoxic-normoxic exposures was characterized by the decrease of the muscular concentrations of citrate, alpha-ketoglutarate and glutamate, in absence of changes in the Vmax of the muscle enzymes related to energy transduction. In gastrocnemius muscle from hypoxic rats, by HOPA treatment, both citrate and alpha-ketoglutarate maintained normal values, aspartate decreased, while glutamate remained reduced to subnormal values. In the muscle from hypoxic animals, by hopantenate treatment the Vmax of the mitochondrial enzymes tested (citrate synthase, malate dehydrogenase, total NADH cytochrome c reductase, cytochrome oxidase) decreased in comparison with both hypoxic and normoxic untreated animals. This behaviour could be tentatively related to a mitochondrial sparing action concomitant with an intervention of the glutamate group of amino acids, even if the results do not allow a clear interpretation of the mechanism of HOPA action.
Holt, Andrew; Wieland, Barbara; Baker, Glen B
2004-01-01
Evidence indicates that imidazoline I2 binding sites (I2BSs) are present on monoamine oxidase (MAO) and on soluble (plasma) semicarbazide-sensitive amine oxidase enzymes. The binding site on MAO has been described as a modulatory site, although no effects on activity are thought to have been observed as a result of ligands binding to these sites. We examined the effects in vitro of several imidazoline binding site ligands on activities of bovine plasma amine oxidase (BPAO) and porcine kidney diamine oxidase (PKDAO) in a spectrophotometric protocol. While both enzymes were inhibited at high concentrations of all ligands, clonidine, cirazoline and oxymetazoline were seen, at lower concentrations, to increase activity of BPAO versus benzylamine, but not of PKDAO versus putrescine. This effect was substrate dependent, with mixed or biphasic inhibition of spermidine, methylamine, p-tyramine and β-phenylethylamine oxidation observed at cirazoline concentrations that increased benzylamine oxidation. With benzylamine as substrate, clonidine decreased KM (EC50 8.82 μM, Emax 75.1% of control) and increased Vmax (EC50 164.6 μM, Emax 154.1% of control). Cirazoline decreased Vmax (EC50 2.15 μM, Emax 91.4% of control), then decreased KM (EC50 5.63 μM, Emax 42.6% of control) and increased Vmax (EC50 49.0 μM, Emax 114.4% of decreased Vmax value). Data for clonidine fitted a mathematical model for two-site nonessential activation plus linear intersecting noncompetitive inhibition. Data for cirazoline were consistent with involvement of a fourth site. These results reveal an ability of imidazoline ligands to modulate BPAO kinetics allosterically. The derived mechanism may have functional significance with respect to modulation of MAO by I2BS ligands. PMID:15451775
Characterization of deltamethrin metabolism by rat plasma and liver microsomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anand, Sathanandam S.; Bruckner, James V.; Haines, Wendy T.
2006-04-15
Deltamethrin, a widely used type II pyrethroid insecticide, is a relatively potent neurotoxicant. While the toxicity has been extensively examined, toxicokinetic studies of deltamethrin and most other pyrethroids are very limited. The aims of this study were to identify, characterize, and assess the relative contributions of esterases and cytochrome P450s (CYP450s) responsible for deltamethrin metabolism by measuring deltamethrin disappearance following incubation of various concentrations (2 to 400 {mu}M) in plasma (esterases) and liver microsomes (esterases and CYP450s) prepared from adult male rats. While the carboxylesterase metabolism in plasma and liver was characterized using an inhibitor, tetra isopropyl pyrophosphoramide (isoOMPA), CYP450more » metabolism was characterized using the cofactor, NADPH. Michaelis-Menten rate constants were calculated using linear and nonlinear regression as applicable. The metabolic efficiency of these pathways was estimated by calculating intrinsic clearance (Vmax/Km). In plasma, isoOMPA completely inhibited deltamethrin biotransformation at concentrations (2 and 20 {mu}M of deltamethrin) that are 2- to 10-fold higher than previously reported peak blood levels in deltamethrin-poisoned rats. For carboxylesterase-mediated deltamethrin metabolism in plasma, Vmax = 325.3 {+-} 53.4 nmol/h/ml and Km = 165.4 {+-} 41.9 {mu}M. Calcium chelation by EGTA did not inhibit deltamethrin metabolism in plasma or liver microsomes, indicating that A-esterases do not metabolize deltamethrin. In liver microsomes, esterase-mediated deltamethrin metabolism was completely inhibited by isoOMPA, confirming the role of carboxylesterases. The rate constants for liver carboxylesterases were Vmax = 1981.8 {+-} 132.3 nmol/h/g liver and Km = 172.5 {+-} 22.5 {mu}M. Liver microsomal CYP450-mediated biotransformation of deltamethrin was a higher capacity (Vmax = 2611.3 {+-} 134.1 nmol/h/g liver) and higher affinity (Km = 74.9 {+-} 5.9 {mu}M) process than carboxylesterase (plasma or liver) detoxification. Genetically engineered individual rat CYP450s (Supersomes) were used to identify specific CYP450 isozyme(s) involved in the deltamethrin metabolism. CYP1A2, CYP1A1, and CYP2C11 in decreasing order of importance quantitatively, metabolized deltamethrin. Intrinsic clearance by liver CYP450s (35.5) was more efficient than that by liver (12.0) or plasma carboxylesterases (2.4)« less
Wu, Baojian; Morrow, John Kenneth; Singh, Rashim; Zhang, Shuxing; Hu, Ming
2011-02-01
Glucuronidation is often recognized as one of the rate-determining factors that limit the bioavailability of flavonols. Hence, design and synthesis of more bioavailable flavonols would benefit from the establishment of predictive models of glucuronidation using kinetic parameters [e.g., K(m), V(max), intrinsic clearance (CL(int)) = V(max)/K(m)] derived for flavonols. This article aims to construct position (3-OH)-specific comparative molecular field analysis (CoMFA) models to describe UDP-glucuronosyltransferase (UGT) 1A9-mediated glucuronidation of flavonols, which can be used to design poor UGT1A9 substrates. The kinetics of recombinant UGT1A9-mediated 3-O-glucuronidation of 30 flavonols was characterized, and kinetic parameters (K(m), V(max), CL(int)) were obtained. The observed K(m), V(max), and CL(int) values of 3-O-glucuronidation ranged from 0.04 to 0.68 μM, 0.04 to 12.95 nmol/mg/min, and 0.06 to 109.60 ml/mg/min, respectively. To model UGT1A9-mediated glucuronidation, 30 flavonols were split into the training (23 compounds) and test (7 compounds) sets. These flavonols were then aligned by mapping the flavonols to specific common feature pharmacophores, which were used to construct CoMFA models of V(max) and CL(int), respectively. The derived CoMFA models possessed good internal and external consistency and showed statistical significance and substantive predictive abilities (V(max) model: q(2) = 0.738, r(2) = 0.976, r(pred)(2) = 0.735; CL(int) model: q(2) = 0.561, r(2) = 0.938, r(pred)(2) = 0.630). The contour maps derived from CoMFA modeling clearly indicate structural characteristics associated with rapid or slow 3-O-glucuronidation. In conclusion, the approach of coupling CoMFA analysis with a pharmacophore-based structural alignment is viable for constructing a predictive model for regiospecific glucuronidation rates of flavonols by UGT1A9.
Vetter, Roland; Rehfeld, Uwe; Reissfelder, Christoph; Fechner, Henry; Seppet, Enn; Kreutz, Reinhold
2011-03-01
The sarco/endoplasmic reticulum (SR) Ca(2+)-ATPase SERCA2a has a key role in controlling cardiac contraction and relaxation. In hypothyroidism, decreased expression of the thyroid hormone (TH)-responsive SERCA2 gene contributes to slowed SR Ca(2+) reuptake and relaxation. We investigated whether cardiac expression of a TH-insensitive SERCA2a cDNA minigene can rescue SR Ca(2+) handling and contractile function in female SERCA2a-transgenic rats (TG) with experimental hypothyroidism. Wild-type rats (WT) and TG were rendered hypothyroid by 6-N-propyl-2-thiouracil treatment for 6 wk; control rats received no treatment. In vivo measured left ventricular (LV) hemodynamic parameters were compared with SERCA2a expression and function in LV tissue. Hypothyroidism decreased LV peak systolic pressure, dP/dt(max), and dP/dt(min) in both WT and TG. However, loss of function was less in TG. Thus slowed relaxation in hypothyroidism was found to be 1.5-fold faster in TG compared with WT (P < 0.05). In parallel, a 1.4-fold higher V(max) value of homogenate SR Ca(2+) uptake was observed in hypothyroid TG (P < 0.05 vs. hypothyroid WT), and the hypothyroidism-caused decline of LV SERCA2a mRNA expression in TG by -24% was markedly less than the decrease of -49% in WT (P < 0.05). A linear relationship was observed between the SERCA2a/PLB mRNA ratio values and the V(max) values of SR Ca(2+) uptake when the respective data of all experimental groups were plotted together (r = 0.90). The data show that expression of the TH-insensitive SERCA2a minigene compensates for loss of expressional activity of the TH-responsive native SERCA2a gene in the female hypothyroid rat heart. However, SR Ca(2+) uptake and in vivo heart function were only partially rescued.
Rodriguez, Renata P; Zaiat, Marcelo
2011-04-01
This paper analyzes the influence of carbon source and inoculum origin on the dynamics of biomass adhesion to an inert support in anaerobic reactors fed with acid mine drainage. Formic acid, lactic acid and ethanol were used as carbon sources. Two different inocula were evaluated: one taken from an UASB reactor and other from the sediment of a uranium mine. The values of average colonization rates and the maximum biomass concentration (C(max)) were inversely proportional to the number of carbon atoms in each substrate. The highest C(max) value (0.35 g TVS g(-1) foam) was observed with formic acid and anaerobic sludge as inoculum. Maximum colonization rates (v(max)) were strongly influenced by the type of inoculum when ethanol and lactic acid were used. For both carbon sources, the use of mine sediment as inoculum resulted in a v(max) of 0.013 g TVS g(-1) foam day(-1), whereas 0.024 g TVS g(-1) foam day(-1) was achieved with anaerobic sludge. Copyright © 2011 Elsevier Ltd. All rights reserved.
Differential responses of targeted lung redox enzymes to rat exposure to 60 or 85% oxygen
Gan, Zhuohui; Roerig, David L.; Clough, Anne V.
2011-01-01
Rat exposure to 60% O2 (hyper-60) or 85% O2 (hyper-85) for 7 days confers susceptibility or tolerance, respectively, of the otherwise lethal effects of exposure to 100% O2. The objective of this study was to determine whether activities of the antioxidant cytosolic enzyme NAD(P)H:quinone oxidoreductase 1 (NQO1) and mitochondrial complex III are differentially altered in hyper-60 and hyper-85 lungs. Duroquinone (DQ), an NQO1 substrate, or its hydroquinone (DQH2), a complex III substrate, was infused into the arterial inflow of isolated, perfused lungs, and the venous efflux rates of DQH2 and DQ were measured. Based on inhibitor effects and kinetic modeling, capacities of NQO1-mediated DQ reduction (Vmax1) and complex III-mediated DQH2 oxidation (Vmax2) increased by ∼140 and ∼180% in hyper-85 lungs, respectively, compared with rates in lungs of rats exposed to room air (normoxic). In hyper-60 lungs, Vmax1 increased by ∼80%, with no effect on Vmax2. Additional studies revealed that mitochondrial complex I activity in hyper-60 and hyper-85 lung tissue homogenates was ∼50% lower than in normoxic lung homogenates, whereas mitochondrial complex IV activity was ∼90% higher in only hyper-85 lung tissue homogenates. Thus NQO1 activity increased in both hyper-60 and hyper-85 lungs, whereas complex III activity increased in hyper-85 lungs only. This increase, along with the increase in complex IV activity, may counter the effects the depression in complex I activity might have on tissue mitochondrial function and/or reactive oxygen species production and may be important to the tolerance of 100% O2 observed in hyper-85 rats. PMID:21551015
Differential responses of targeted lung redox enzymes to rat exposure to 60 or 85% oxygen.
Gan, Zhuohui; Roerig, David L; Clough, Anne V; Audi, Said H
2011-07-01
Rat exposure to 60% O(2) (hyper-60) or 85% O(2) (hyper-85) for 7 days confers susceptibility or tolerance, respectively, of the otherwise lethal effects of exposure to 100% O(2). The objective of this study was to determine whether activities of the antioxidant cytosolic enzyme NAD(P)H:quinone oxidoreductase 1 (NQO1) and mitochondrial complex III are differentially altered in hyper-60 and hyper-85 lungs. Duroquinone (DQ), an NQO1 substrate, or its hydroquinone (DQH(2)), a complex III substrate, was infused into the arterial inflow of isolated, perfused lungs, and the venous efflux rates of DQH(2) and DQ were measured. Based on inhibitor effects and kinetic modeling, capacities of NQO1-mediated DQ reduction (V(max1)) and complex III-mediated DQH(2) oxidation (V(max2)) increased by ∼140 and ∼180% in hyper-85 lungs, respectively, compared with rates in lungs of rats exposed to room air (normoxic). In hyper-60 lungs, V(max1) increased by ∼80%, with no effect on V(max2). Additional studies revealed that mitochondrial complex I activity in hyper-60 and hyper-85 lung tissue homogenates was ∼50% lower than in normoxic lung homogenates, whereas mitochondrial complex IV activity was ∼90% higher in only hyper-85 lung tissue homogenates. Thus NQO1 activity increased in both hyper-60 and hyper-85 lungs, whereas complex III activity increased in hyper-85 lungs only. This increase, along with the increase in complex IV activity, may counter the effects the depression in complex I activity might have on tissue mitochondrial function and/or reactive oxygen species production and may be important to the tolerance of 100% O(2) observed in hyper-85 rats.
Higashi, Kyohei; Imamura, Masataka; Fudo, Satoshi; Uemura, Takeshi; Saiki, Ryotaro; Hoshino, Tyuji; Toida, Toshihiko; Kashiwagi, Keiko; Igarashi, Kazuei
2014-01-01
Polyamine (putrescine, spermidine and spermine) and agmatine uptake by the human organic cation transporter 2 (hOCT2) was studied using HEK293 cells transfected with pCMV6-XL4/hOCT2. The Km values for putrescine and spermidine were 7.50 and 6.76 mM, and the Vmax values were 4.71 and 2.34 nmol/min/mg protein, respectively. Spermine uptake by hOCT2 was not observed at pH 7.4, although it inhibited both putrescine and spermidine uptake. Agmatine was also taken up by hOCT2, with Km value: 3.27 mM and a Vmax value of 3.14 nmol/min/mg protein. Amino acid residues involved in putrescine, agmatine and spermidine uptake by hOCT2 were Asp427, Glu448, Glu456, Asp475, and Glu516. In addition, Glu524 and Glu530 were involved in putrescine and spermidine uptake activity, and Glu528 and Glu540 were weakly involved in putrescine uptake activity. Furthermore, Asp551 was also involved in the recognition of spermidine. These results indicate that the recognition sites for putrescine, agmatine and spermidine on hOCT2 strongly overlap, consistent with the observation that the three amines are transported with similar affinity and velocity. A model of spermidine binding to hOCT2 was constructed based on the functional amino acid residues.
Is bacteriostatic saline superior to normal saline as an echocardiographic contrast agent?
Cardozo, Shaun; Gunasekaran, Prasad; Patel, Hena; McGorisk, Timothy; Toosi, Mehrdad; Faraz, Haroon; Zalawadiya, Sandip; Alesh, Issa; Kottam, Anupama; Afonso, Luis
2014-12-01
Objective data on the performance characteristics and physical properties of commercially available saline formulations [normal saline (NS) vs. bacteriostatic normal saline (bNS)] are sparse. This study sought to compare the in vitro physical properties and in vivo characteristics of two commonly employed echocardiographic saline contrast agents in an attempt to assess superiority. Nineteen patients undergoing transesophageal echocardiograms were each administered agitated regular NS and bNS injections in random order and in a blinded manner according to a standardized protocol. Video time-intensity (TI) curves were constructed from a representative region of interest, placed paraseptally within the right atrium, in the bicaval view. TI curves were analyzed for maximal plateau acoustic intensity (Vmax, dB) and dwell time (DT, s), defined as time duration between onset of Vmax and decay of video intensity below clinically useful levels, reflecting the duration of homogenous opacification of the right atrium. To further characterize the physical properties of the bubbles in vitro, fixed aliquots of similarly agitated saline were injected into a glass well slide-cover slip assembly and examined using an optical microscope to determine bubble diameter in microns (µm) and concentration [bubble count/high power field (hpf)]. A higher acoustic intensity (a less negative dB level), higher bubble concentration and longer DT were considered properties of a superior contrast agent. For statistical analysis, a paired t test was conducted to evaluate the differences in means of Vmax and DT. Compared to NS, bNS administration was associated with superior opacification (video intensity -8.69 ± 4.7 vs. -10.46 ± 4.1 dB, P = 0.002), longer DT (17.3 ± 6.1 vs. 10.2 ± 3.7 s) in vivo and smaller mean bubble size (43.4 vs. 58.6 μm) and higher bubble concentration (1,002 vs. 298 bubble/hpf) in vitro. bNS provides higher intensity and more sustained opacification of the right atrium compared to NS. Higher bubble concentration and stability appear to be additional desirable rheological characteristics favoring bNS as a contrast agent.
Hymenolepis diminuta (Cestoda): uptake of cycloleucine by metacestodes.
Jeffs, S A; Arme, C
1985-01-01
Cycloleucine uptake by metacestodes of H. diminuta of various ages was investigated. Absorption occurs by active mediated transport, mean Kt = 0.28 mM. Vmax values are age-related, and can be correlated to developmental changes. Cycloleucine uptake in the metacestode is very similar to that in the adult worm and the implications of this are discussed.
Direct Detection of Stereospecific Soman Hydrolysis by Wild-Type Human Serum Paraoxonase
2007-01-01
was used as Tc = (Ao/VmaA)(1 - (C/Co)( Kmc /KwA)(VmaxA/Vmac)) the carrier gas at a linear velocity of 45 crns-1. The oven + (B0/VmaxB)(1 - (C/Co)( Kmc ...KmB)(VmaxB/Vm.c)) temperature was held initially at 80 ’C for 14 min, pro- + (Co/Vmac)(1 - (C/Co)( Kmc / Kmc )(Vm.c/Vmac)) grammed from 80 to 90 ’C at 5...oC’min-1, and held at + (DO/VmaD)(1 - (C/Co)(K.C/KmD)(Vm.D1/V.aC)) 90 ’C for 3 min. Split injections of 1 tiL volume were made ( Kmc /VmaxC) Log(C/Co
Loesch, J; Siegers, C P; Younes, M
1987-06-01
The metabolism of halothane and methoxyflurane was measured in vitro by the vial equilibration method using the S-9-fraction from rat liver as source of enzymes. Kinetic values were measured for halothane: Vmax = 11.6 nmol/g.min, KM = 19.6 mumol/l and methoxyflurane: Vmax = 12.0 nmol/g.min, KM = 17.5 mumol/l. Dithiocarb showed strong inhibitory activity on halothane and methoxyflurane metabolism; inhibition constants were calculated as Ki = 0.051 mmol/l and Ki = 0.004 mmol/l, respectively. Cimetidine inhibited the metabolism of both anesthetics to a lesser extent. Inhibition constants were calculated as Ki = 16.2 mmol/l and Ki = 8.2 mmol/l for halothane and methoxyflurane, respectively. The observed inhibitory properties of dithiocarb and cimetidine on the metabolism of halothane and methoxyflurane may be of interest in connection with the problem of toxic liver and kidney injury after anesthesia with these agents.
Feng, Quan; Hou, Dayin; Zhao, Yong; Xu, Tao; Menkhaus, Todd J; Fong, Hao
2014-12-10
In this study, an electrospun regenerated cellulose (RC) nanofibrous membrane with fiber diameters of ∼200-400 nm was prepared first; subsequently, 2-hydroxyethyl methacrylate (HEMA), 2-dimethylaminoethyl methacrylate (DMAEMA), and acrylic acid (AA) were selected as the monomers for surface grafting of polymer chains/brushes via the atom transfer radical polymerization (ATRP) method. Thereafter, four nanofibrous membranes (i.e., RC, RC-poly(HEMA), RC-poly(DMAEMA), and RC-poly(AA)) were explored as innovative supports for immobilization of an enzyme of bovine liver catalase (CAT). The amount/capacity, activity, stability, and reusability of immobilized catalase were evaluated, and the kinetic parameters (Vmax and Km) for immobilized and free catalase were determined. The results indicated that the respective amounts/capacities of immobilized catalase on RC-poly(HEMA) and RC-poly(DMAEMA) nanofibrous membranes reached 78 ± 3.5 and 67 ± 2.7 mg g(-1), which were considerably higher than the previously reported values. Meanwhile, compared to that of free CAT (i.e., 18 days), the half-life periods of RC-CAT, RC-poly(HEMA)-CAT, RC-poly(DMAEMA)-CAT, and RC-poly(AA)-CAT were 49, 58, 56, and 60 days, respectively, indicating that the storage stability of immobilized catalase was also significantly improved. Furthermore, the immobilized catalase exhibited substantially higher resistance to temperature variation (tested from 5 to 70 °C) and lower degree of sensitivity to pH value (tested from 4.0 and 10.0) than the free catalase. In particular, according to the kinetic parameters of Vmax and Km, the nanofibrous membranes of RC-poly(HEMA) (i.e., 5102 μmol mg(-1) min(-1) and 44.89 mM) and RC-poly(DMAEMA) (i.e., 4651 μmol mg(-1) min(-1) and 46.98 mM) had the most satisfactory biocompatibility with immobilized catalase. It was therefore concluded that the electrospun RC nanofibrous membranes surface-grafted with 3-dimensional nanolayers of polymer chains/brushes would be suitable/ideal as efficient supports for high-density and reusable enzyme immobilization.
NASA Astrophysics Data System (ADS)
Sun, Fengxin; Wang, Jufeng; Cheng, Rongjun; Ge, Hongxia
2018-02-01
The optimal driving speeds of the different vehicles may be different for the same headway. In the optimal velocity function of the optimal velocity (OV) model, the maximum speed vmax is an important parameter determining the optimal driving speed. A vehicle with higher maximum speed is more willing to drive faster than that with lower maximum speed in similar situation. By incorporating the anticipation driving behavior of relative velocity and mixed maximum speeds of different percentages into optimal velocity function, an extended heterogeneous car-following model is presented in this paper. The analytical linear stable condition for this extended heterogeneous traffic model is obtained by using linear stability theory. Numerical simulations are carried out to explore the complex phenomenon resulted from the cooperation between anticipation driving behavior and heterogeneous maximum speeds in the optimal velocity function. The analytical and numerical results all demonstrate that strengthening driver's anticipation effect can improve the stability of heterogeneous traffic flow, and increasing the lowest value in the mixed maximum speeds will result in more instability, but increasing the value or proportion of the part already having higher maximum speed will cause different stabilities at high or low traffic densities.
Force interaction and 3D pole movement in double poling.
Stöggl, T; Holmberg, H-C
2011-12-01
The aim of this study was to analyze double poling using combined kinetic and 3D kinematic analysis at high skiing speeds as regards pole force components, pole angles and pole behavior during the poling and swing phase. The hypothesis was that a horizontal pole force is more predictive for maximal skiing speed (V(max)) than the resultant pole force. Sixteen elite skiers performed a double-poling V(max) test while treadmill roller skiing. Pole forces and 3D kinematics of pole movement at a speed of 30 km/h were analyzed and related to V(max). The duration of the "preparation phase" showed the strongest relationship with V(max) (r=0.87, P<0.001). Faster skiers generated longer cycle lengths with longer swing and poling times, had less inclined pole angles at pole plant and a later peak pole force. Horizontal pole forces were not more highly related to V(max) compared with the resultant pole force. Impact force was not related to V(max). At high skiing speeds, skiers should aim to combine high pole forces with appropriate timing of pole forces and appropriate pole and body positions during the swing and poling phase. The emphasis in training should be on the development of specific strength capacities for pole force production and the utilization of these capacities in double-poling training sessions. © 2011 John Wiley & Sons A/S.
The topology of large-scale structure. III - Analysis of observations
NASA Astrophysics Data System (ADS)
Gott, J. Richard, III; Miller, John; Thuan, Trinh X.; Schneider, Stephen E.; Weinberg, David H.; Gammie, Charles; Polk, Kevin; Vogeley, Michael; Jeffrey, Scott; Bhavsar, Suketu P.; Melott, Adrian L.; Giovanelli, Riccardo; Hayes, Martha P.; Tully, R. Brent; Hamilton, Andrew J. S.
1989-05-01
A recently developed algorithm for quantitatively measuring the topology of large-scale structures in the universe was applied to a number of important observational data sets. The data sets included an Abell (1958) cluster sample out to Vmax = 22,600 km/sec, the Giovanelli and Haynes (1985) sample out to Vmax = 11,800 km/sec, the CfA sample out to Vmax = 5000 km/sec, the Thuan and Schneider (1988) dwarf sample out to Vmax = 3000 km/sec, and the Tully (1987) sample out to Vmax = 3000 km/sec. It was found that, when the topology is studied on smoothing scales significantly larger than the correlation length (i.e., smoothing length, lambda, not below 1200 km/sec), the topology is spongelike and is consistent with the standard model in which the structure seen today has grown from small fluctuations caused by random noise in the early universe. When the topology is studied on the scale of lambda of about 600 km/sec, a small shift is observed in the genus curve in the direction of a 'meatball' topology.
The topology of large-scale structure. III - Analysis of observations. [in universe
NASA Technical Reports Server (NTRS)
Gott, J. Richard, III; Weinberg, David H.; Miller, John; Thuan, Trinh X.; Schneider, Stephen E.
1989-01-01
A recently developed algorithm for quantitatively measuring the topology of large-scale structures in the universe was applied to a number of important observational data sets. The data sets included an Abell (1958) cluster sample out to Vmax = 22,600 km/sec, the Giovanelli and Haynes (1985) sample out to Vmax = 11,800 km/sec, the CfA sample out to Vmax = 5000 km/sec, the Thuan and Schneider (1988) dwarf sample out to Vmax = 3000 km/sec, and the Tully (1987) sample out to Vmax = 3000 km/sec. It was found that, when the topology is studied on smoothing scales significantly larger than the correlation length (i.e., smoothing length, lambda, not below 1200 km/sec), the topology is spongelike and is consistent with the standard model in which the structure seen today has grown from small fluctuations caused by random noise in the early universe. When the topology is studied on the scale of lambda of about 600 km/sec, a small shift is observed in the genus curve in the direction of a 'meatball' topology.
Oliveira, Sabrina Feliciano; da Luz, José Maria Rodrigues; Kasuya, Maria Catarina Megumi; Ladeira, Luiz Orlando; Correa Junior, Ary
2018-05-01
The majority of the textile dyes are harmful to the environment and potentially carcinogenic. Among strategies for their exclusion, the treatment of dye contaminated wastewater with fungal extract, containing lignin peroxidase (LiP), may be useful. Two fungi isolates, Pleurotus ostreatus (PLO9) and Ganoderma lucidum (GRM117), produced the enzymatic extract by fermentation in the lignocellulosic residue, Jatropha curcas seed cake. The extracts from PLO9 and GRM117 were immobilized on carbon nanotubes and showed an increase of 18 and 27-fold of LiP specific activity compared to the free enzyme. Also, LiP from both fungi extracts showed higher Vmax and lower Km values. Only the immobilized extracts could be efficiently reused in the dye decolourization, contrary, the carbon nanotubes became saturated and they should be discarded over time. This device may offer a final biocatalyst with higher catalytic efficiency and capability to be reused in the dye decolourization process.
NASA Astrophysics Data System (ADS)
Böhm, Asmus; Ziegler, Bodo L.
2016-07-01
Aims: Galaxy scaling relations such as the Tully-Fisher relation (between the maximum rotation velocity Vmax and luminosity) and the velocity-size relation (between Vmax and the disk scale length) are powerful tools to quantify the evolution of disk galaxies with cosmic time. Methods: We took spatially resolved slit spectra of 261 field disk galaxies at redshifts up to z ≈ 1 using the FORS instruments of the ESO Very Large Telescope. The targets were selected from the FORS Deep Field and William Herschel Deep Field. Our spectroscopy was complemented with HST/ACS imaging in the F814W filter. We analyzed the ionized gas kinematics by extracting rotation curves from the two-dimensional spectra. Taking into account all geometrical, observational, and instrumental effects, these rotation curves were used to derive the intrinsic Vmax. Results: Neglecting galaxies with disturbed kinematics or insufficient spatial rotation curve extent, Vmax was reliably determined for 124 galaxies covering redshifts 0.05 < z < 0.97. This is one of the largest kinematic samples of distant disk galaxies to date. We compared this data set to the local B-band Tully-Fisher relation and the local velocity-size relation. The scatter in both scaling relations is a factor of ~2 larger at z ≈ 0.5 than at z ≈ 0. The deviations of individual distant galaxies from the local Tully-Fisher relation are systematic in the sense that the galaxies are increasingly overluminous toward higher redshifts, corresponding to an overluminosity ΔMB = -(1.2 ± 0.5) mag at z = 1. This luminosity evolution at given Vmax is probably driven by younger stellar populations of distant galaxies with respect to their local counterparts, potentially combined with modest changes in dark matter mass fractions. The analysis of the velocity-size relation reveals that disk galaxies of a given Vmax have grown in size by a factor of ~1.5 over the past ~8 Gyr, most likely through accretion of cold gas and/or small satellites. From scrutinizing the combined evolution in luminosity and size, we find that the galaxies that show the strongest evolution toward smaller sizes at z ≈ 1 are not those that feature the strongest evolution in luminosity, and vice versa. Based on observations with the European Southern Observatory Very Large Telescope (ESO-VLT), observing run IDs 65.O-0049, 66.A-0547, 68.A-0013, 69.B-0278B, 70.B-0251A and 081.B-0107A.The full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/592/A64
Higashi, Kyohei; Imamura, Masataka; Fudo, Satoshi; Uemura, Takeshi; Saiki, Ryotaro; Hoshino, Tyuji; Toida, Toshihiko; Kashiwagi, Keiko; Igarashi, Kazuei
2014-01-01
Polyamine (putrescine, spermidine and spermine) and agmatine uptake by the human organic cation transporter 2 (hOCT2) was studied using HEK293 cells transfected with pCMV6-XL4/hOCT2. The Km values for putrescine and spermidine were 7.50 and 6.76 mM, and the Vmax values were 4.71 and 2.34 nmol/min/mg protein, respectively. Spermine uptake by hOCT2 was not observed at pH 7.4, although it inhibited both putrescine and spermidine uptake. Agmatine was also taken up by hOCT2, with Km value: 3.27 mM and a Vmax value of 3.14 nmol/min/mg protein. Amino acid residues involved in putrescine, agmatine and spermidine uptake by hOCT2 were Asp427, Glu448, Glu456, Asp475, and Glu516. In addition, Glu524 and Glu530 were involved in putrescine and spermidine uptake activity, and Glu528 and Glu540 were weakly involved in putrescine uptake activity. Furthermore, Asp551 was also involved in the recognition of spermidine. These results indicate that the recognition sites for putrescine, agmatine and spermidine on hOCT2 strongly overlap, consistent with the observation that the three amines are transported with similar affinity and velocity. A model of spermidine binding to hOCT2 was constructed based on the functional amino acid residues. PMID:25019617
Methaneethorn, Janthima; Panomvana, Duangchit; Vachirayonstien, Thaveechai
2017-09-26
Therapeutic drug monitoring is essential for both phenytoin and phenobarbital therapy given their narrow therapeutic indexes. Nevertheless, the measurement of either phenytoin or phenobarbital concentrations might not be available in some rural hospitals. Information assisting individualized phenytoin and phenobarbital combination therapy is important. This study's objective was to determine the relationship between the maximum rate of metabolism of phenytoin (Vmax) and phenobarbital clearance (CLPB), which can serve as a guide to individualized drug therapy. Data on phenytoin and phenobarbital concentrations of 19 epileptic patients concurrently receiving both drugs were obtained from medical records. Phenytoin and phenobarbital pharmacokinetic parameters were studied at steady-state conditions. The relationship between the elimination parameters of both drugs was determined using simple linear regression. A high correlation coefficient between Vmax and CLPB was found [r=0.744; p<0.001 for Vmax (mg/kg/day) vs. CLPB (L/kg/day)]. Such a relatively strong linear relationship between the elimination parameters of both drugs indicates that Vmax might be predicted from CLPB and vice versa. Regression equations were established for estimating Vmax from CLPB, and vice versa in patients treated with combination of phenytoin and phenobarbital. These proposed equations can be of use in aiding individualized drug therapy.
Estimation of ground motion for Bhuj (26 January 2001; Mw 7.6 and for future earthquakes in India
Singh, S.K.; Bansal, B.K.; Bhattacharya, S.N.; Pacheco, J.F.; Dattatrayam, R.S.; Ordaz, M.; Suresh, G.; ,; Hough, S.E.
2003-01-01
Only five moderate and large earthquakes (Mw ???5.7) in India-three in the Indian shield region and two in the Himalayan arc region-have given rise to multiple strong ground-motion recordings. Near-source data are available for only two of these events. The Bhuj earthquake (Mw 7.6), which occurred in the shield region, gave rise to useful recordings at distances exceeding 550 km. Because of the scarcity of the data, we use the stochastic method to estimate ground motions. We assume that (1) S waves dominate at R < 100 km and Lg waves at R ??? 100 km, (2) Q = 508f0.48 is valid for the Indian shield as well as the Himalayan arc region, (3) the effective duration is given by fc-1 + 0.05R, where fc is the corner frequency, and R is the hypocentral distance in kilometer, and (4) the acceleration spectra are sharply cut off beyond 35 Hz. We use two finite-source stochastic models. One is an approximate model that reduces to the ??2-source model at distances greater that about twice the source dimension. This model has the advantage that the ground motion is controlled by the familiar stress parameter, ????. In the other finite-source model, which is more reliable for near-source ground-motion estimation, the high-frequency radiation is controlled by the strength factor, sfact, a quantity that is physically related to the maximum slip rate on the fault. We estimate ???? needed to fit the observed Amax and Vmax data of each earthquake (which are mostly in the far field). The corresponding sfact is obtained by requiring that the predicted curves from the two models match each other in the far field up to a distance of about 500 km. The results show: (1) The ???? that explains Amax data for shield events may be a function of depth, increasing from ???50 bars at 10 km to ???400 bars at 36 km. The corresponding sfact values range from 1.0-2.0. The ???? values for the two Himalayan arc events are 75 and 150 bars (sfact = 1.0 and 1.4). (2) The ???? required to explain Vmax data is, roughly, half the corresponding value for Amax, while the same sfact explains both sets of data. (3) The available far-field Amax and Vmax data for the Bhuj mainshock are well explained by ???? = 200 and 100 bars, respectively, or, equivalently, by sfact = 1.4. The predicted Amax and Vmax in the epicentral region of this earthquake are 0.80 to 0.95 g and 40 to 55 cm/sec, respectively.
Breakdown and Limit of Continuum Diffusion Velocity for Binary Gas Mixtures from Direct Simulation
NASA Astrophysics Data System (ADS)
Martin, Robert Scott; Najmabadi, Farrokh
2011-05-01
This work investigates the breakdown of the continuum relations for diffusion velocity in inert binary gas mixtures. Values of the relative diffusion velocities for components of a gas mixture may be calculated using of Chapman-Enskog theory and occur not only due to concentration gradients, but also pressure and temperature gradients in the flow as described by Hirschfelder. Because Chapman-Enskog theory employs a linear perturbation around equilibrium, it is expected to break down when the velocity distribution deviates significantly from equilibrium. This breakdown of the overall flow has long been an area of interest in rarefied gas dynamics. By comparing the continuum values to results from Bird's DS2V Monte Carlo code, we propose a new limit on the continuum approach specific to binary gases. To remove the confounding influence of an inconsistent molecular model, we also present the application of the variable hard sphere (VSS) model used in DS2V to the continuum diffusion velocity calculation. Fitting sample asymptotic curves to the breakdown, a limit, Vmax, that is a fraction of an analytically derived limit resulting from the kinetic temperature of the mixture is proposed. With an expected deviation of only 2% between the physical values and continuum calculations within ±Vmax/4, we suggest this as a conservative estimate on the range of applicability for the continuum theory.
Zlabek, Vladimir; Burkina, Viktoriia; Borrisser-Pairó, Francesc; Sakalli, Sidika; Zamaratskaia, Galia
2016-05-01
We studied the in vitro metabolism of 3-methylindole (3MI) in hepatic microsomes from fish. Hepatic microsomes from juvenile and adult carp (Cyprinus carpio) and rainbow trout (Oncorhynchus mykiss) were included in the study. Incubation of 3MI with hepatic microsomes revealed the time-dependent formation of two major metabolites, 3-methyloxindole (3MOI) and indole-3-carbinol (I3C). The rate of 3MOI production was similar in both species at both ages. No differences in kinetic parameters were observed (p = 0.799 for Vmax, and p = 0.809 for Km). Production of I3C was detected only in the microsomes from rainbow trout. Km values were similar in juvenile and adult fish (p = 0.957); Vmax was higher in juvenile rainbow trout compared with adults (p = 0.044). In rainbow trout and carp, ellipticine reduced formation of 3MOI up to 53.2% and 81.9% and ketoconazole up to 65.8% and 91.3%, respectively. The formation of I3C was reduced by 53.7% and 51.5% in the presence of the inhibitors ellipticine and ketoconazole, respectively. These findings suggest that the CYP450 isoforms CYP1A and CYP3A are at least partly responsible for 3MI metabolism. In summary, 3MI is metabolised in fish liver to 3MOI and I3C by CYP450, and formation of these metabolites might be species-dependent. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Suzumura, M.
2010-12-01
Phosphorus is an essential nutrient for marine organisms. In oligotrophic environments, concentrations of dissolved inorganic phosphate (SRP), the most bioavailable form of phosphorus, are low and have been hypothesized to constrain the primary productivity. Evidence has been found that dissolved organic phosphorus (DOP) supports a significant fraction of primary production through hydrolytic remineralization of DOP to SRP by alkaline phosphatase (APA). In this study, DOP biogeochemistry was investigated at three locations of the open-ocean environment in the Kuroshio region and at a semi-eutrophic coastal site of the western North Pacific. Concentrations of SRP, DOP and hydrolyzable ester-P were measured in the euphotic zone. Kinetic parameters of APA were determined using a fluorogenic substrate, including potential maximum velocity (Vmax), apparent Michaelis-Menten half-saturation constant (Km), and turnover time (TA) of APA hydrolyzable DOP. SRP concentrations were quite low (≤ 10 nM) in the surface seawater and rapidly increased below the chlorophyll a maximum layer (CML). DOP concentration ranged from 29 to 223 nM. Above the CML, DOP composed a major fraction accounting for 60-100% of dissolved total P. A significant linear relationship was found between the concentrations of SRP and hydrolyzable ester-P (R2 = 0.83, P < 0.01). This suggests active utilization of ester-P under phosphate-depleted conditions. In the Kuroshio region, Vmax of APA exhibited the highest value at the surface water (0 m) and decreased rapidly with depth, while at the coastal site the peak value was found at CML. TA of hydrolyzable DOP was quite variable among the locations and increased with depth especially below CML. The estimated values of in situ hydrolysis rate were much lower (2-34%) than the potential Vmax which was determined with the addition of an excess amount of the substrate. The results suggest that marine microbes can efficiently and rapidly utilize hydrolyzable DOP under phosphate-depleted conditions and that there is still room in the in situ APA activity. Utilization of DOP, however, is likely regulated by the ambient concentrations of hydrolyzable ester-P lower than the apparent Km.
Degradation kinetics of chlorpyrifos and 3,5,6-trichloro-2-pyridinol (TCP) by fungal communities.
Maya, K; Upadhyay, S N; Singh, R S; Dubey, Suresh K
2012-12-01
Fungal isolates obtained from soil were used for degrading chlorpyrifos (CP) and TCP. The percentage degradation ranged from 69.4 to 89.8 for CP and 62.2 to 92.6 for TCP after one week. The values of K(s) and V(max) were different for different isolates. The K(s) ranged from 66.66 to 169.5mg/L and V(max) from 6.56 to 40.4 mg/L/d for CP and from 53.19 to 163.9 mg/L and 3.41 to 40.40 mg/L/d, respectively, for TCP. Fungal community showed high affinity for both CP and TCP. The genetic relatedness of isolate F1 to Aspergillus sp., F2 and F3 to Penicillium sp., F4 to Eurotium sp. and F5 to Emericella sp. were confirmed. The degradation potential was in the order: F1>F2=F3>F4>F5. Copyright © 2012 Elsevier Ltd. All rights reserved.
Alizadeh, Ali; Talebi-Jahromi, Khalil; Hosseininaveh, Vahid; Ghadamyari, Mohammad
2014-01-01
Abstract The toxicological and biochemical characteristics of acetylcholinesterases (AChE) in nine populations of the common pistachio psyllid, Agonoscena pistaciae Burckhardt and Lauterer (Hemiptera: Psyllidae), were investigated in Kerman Province, Iran. Nine A. pistaciae populations were collected from pistachio orchards, Pistacia vera L. (Sapindales: Anacardiaceae), located in Rafsanjan, Anar, Bam, Kerman, Shahrbabak, Herat, Sirjan, Pariz, and Paghaleh regions of Kerman province. The previous bioassay results showed these populations were susceptible or resistant to phosalone, and the Rafsanjan population was most resistant, with a resistance ratio of 11.3. The specific activity of AChE in the Rafsanjan population was significantly higher than in the susceptible population (Bam). The affinity ( KM ) and hydrolyzing efficiency ( Vmax ) of AChE on acetylthiocholine iodide, butyrylthiocholine iodide, and propionylthiocholine odide as artificial substrates were clearly lower in the Bam population than that in the Rafsanjan population. These results indicated that the AChE of the Rafsanjan population had lower affinity to these substrates than that of the susceptible population. The higher Vmax value in the Rafsanjan population compared to the susceptible population suggests a possible over expression of AChE in the Rafsanjan population. The in vitro inhibitory effect of several organophosphates and carbamates on AChE of the Rafsanjan and Bam populations was determined. Based on I50, the results showed that the ratios of AChE insensitivity of the resistant to susceptible populations were 23 and 21.7-fold to monocrotophos and phosphamidon, respectively. Whereas, the insensitivity ratios for Rafsanjan population were 0.86, 0.8, 0.78, 0.46, and 0.43 for carbaryl, eserine, propoxur, m-tolyl methyl carbamate, and carbofuran, respectively, suggesting negatively correlated sensitivity to organophosphate-insensitive AChE. Therefore, AChE from the Rafsanjan population showed negatively correlated sensitivity, being insensitive to phosphamidon and monocrotophos and sensitive to N -methyl carbamates. PMID:25373165
The Core of Allosteric Motion in Thermus caldophilus l-Lactate Dehydrogenase*
Ikehara, Yoko; Arai, Kazuhito; Furukawa, Nayuta; Ohno, Tadashi; Miyake, Tatsuya; Fushinobu, Shinya; Nakajima, Masahiro; Miyanaga, Akimasa; Taguchi, Hayao
2014-01-01
For Thermus caldophilus l-lactate dehydrogenase (TcLDH), fructose 1,6-bisphosphate (FBP) reduced the pyruvate S0.5 value 103-fold and increased the Vmax value 4-fold at 30 °C and pH 7.0, indicating that TcLDH has a much more T state-sided allosteric equilibrium than Thermus thermophilus l-lactate dehydrogenase, which has only two amino acid replacements, A154G and H179Y. The inactive (T) and active (R) state structures of TcLDH were determined at 1.8 and 2.0 Å resolution, respectively. The structures indicated that two mobile regions, MR1 (positions 172–185) and MR2 (positions 211–221), form a compact core for allosteric motion, and His179 of MR1 forms constitutive hydrogen bonds with MR2. The Q4(R) mutation, which comprises the L67E, H68D, E178K, and A235R replacements, increased Vmax 4-fold but reduced pyruvate S0.5 only 5-fold in the reaction without FBP. In contrast, the P2 mutation, comprising the R173Q and R216L replacements, did not markedly increase Vmax, but 102-reduced pyruvate S0.5, and additively increased the FBP-independent activity of the Q4(R) enzyme. The two types of mutation consistently increased the thermal stability of the enzyme. The MR1-MR2 area is a positively charged cluster, and its center approaches another positively charged cluster (N domain cluster) across the Q-axis subunit interface by 5 Å, when the enzyme undergoes the T to R transition. Structural and kinetic analyses thus revealed the simple and unique allosteric machinery of TcLDH, where the MR1-MR2 area pivotally moves during the allosteric motion and mediates the allosteric equilibrium through electrostatic repulsion within the protein molecule. PMID:25258319
Csanády, György András; Kessler, Winfried; Klein, Dominik; Pankratz, Helmut; Pütz, Christian; Richter, Nadine; Filser, Johannes Georg
2011-01-01
Ethylene (ET) is metabolized in mammals to the carcinogenic ethylene oxide (EO). Although both gases are of high industrial relevance, only limited data exist on the toxicokinetics of ET in mice and of EO in humans. Metabolism of ET is related to cytochrome P450-dependent mono-oxygenase (CYP) and of EO to epoxide hydrolase (EH) and glutathione S-transferase (GST). Kinetics of ET metabolism to EO and of elimination of EO were investigated in headspace vessels containing incubations of subcellular fractions of mouse, rat, or human liver or of mouse or rat lung. CYP-associated metabolism of ET and GST-related metabolism of EO were found in microsomes and cytosol, respectively, of each species. EH-related metabolism of EO was not detectable in hepatic microsomes of rats and mice but obeyed saturation kinetics in hepatic microsomes of humans. In ET-exposed liver microsomes, metabolism of ET to EO followed Michaelis-Menten-like kinetics. Mean values of Vmax [nmol/(min·mg protein)] and of the apparent Michaelis constant (Km [mmol/l ET in microsomal suspension]) were 0.567 and 0.0093 (mouse), 0.401 and 0.031 (rat), and 0.219 and 0.013 (human). In lung microsomes, Vmax values were 0.073 (mouse) and 0.055 (rat). During ET exposure, the rate of EO production decreased rapidly. By modeling a suicide inhibition mechanism, rate constants for CYP-mediated catalysis and CYP inactivation were estimated. In liver cytosol, mean GST activities to EO expressed as Vmax/Km [μl/(min·mg protein)] were 27.90 (mouse), 5.30 (rat), and 1.14 (human). The parameters are most relevant for reducing uncertainties in the risk assessment of ET and EO. PMID:21785163
2005-01-01
An important but unresolved question is whether mammalian mitochondria metabolize arginine to agmatine by the ADC (arginine decarboxylase) reaction. 15N-labelled arginine was used as a precursor to address this question and to determine the flux through the ADC reaction in isolated mitochondria obtained from rat liver. In addition, liver perfusion system was used to examine a possible action of insulin, glucagon or cAMP on a flux through the ADC reaction. In mitochondria and liver perfusion, 15N-labelled agmatine was generated from external 15N-labelled arginine. The production of 15N-labelled agmatine was time- and dose-dependent. The time-course of [U-15N4]agmatine formation from 2 mM [U-15N4]arginine was best fitted to a one-phase exponential curve with a production rate of approx. 29 pmol·min−1·(mg of protein)−1. Experiments with an increasing concentration (0– 40 mM) of [guanidino-15N2]arginine showed a Michaelis constant Km for arginine of 46 mM and a Vmax of 3.7 nmol·min−1·(mg of protein)−1 for flux through the ADC reaction. Experiments with broken mitochondria showed little changes in Vmax or Km values, suggesting that mitochondrial arginine uptake had little effect on the observed Vmax or Km values. Experiments with liver perfusion demonstrated that over 95% of the effluent agmatine was derived from perfusate [guanidino-15N2]arginine regardless of the experimental condition. However, the output of 15N-labelled agmatine (nmol·min−1·g−1) increased by approx. 2-fold (P<0.05) in perfusions with cAMP. The findings of the present study provide compelling evidence that mitochondrial ADC is present in the rat liver, and suggest that cAMP may stimulate flux through this pathway. PMID:15656789
Adebayo, G I; Gaffney, P; Feely, J
1996-01-01
The effect of a single dose of alcohol (0.8 g/kg), given with "diet coke," on erythrocyte sodium-lithium countertransport (SLC) in relation to membrane cholesterol and phospholipids was assessed over 24 h in 10 healthy volunteers. Baseline passive lithium efflux (0.168 +/- 0.008 mmol l-1 Cell H-1) was increased 1 h (0.202 +/- 0.014 mmol l-1 cell h-1; p < 0.030), and 4 h (0.200 +/- 0.014 mmol l-1 cell h-1; p < 0.020), but similar to that at 24 h postalcohol (0.173 +/- 0.011 mmol l-1 cell h-1). These changes were not associated with any change in intracellular lithium. Control SLC VMAX of 0.387 +/- 0.054 mmol l-1 cell h-1 fell at 1 h (0.328 +/- 0.050 mmol l-1 cell h-1; p = 0.0012) and 4 h (0.312 +/- 0.048 mmol l-1 cell h-1; p < 0.0005). Its value 24 h postalcohol (0.371 +/- 0.047 mmol l-1 cell h-1) was comparable to that at baseline. There was no significant change in the affinity of the transporter for external sodium throughout the experimental period, suggesting that the reduction in VMAX 1 and 4 h after alcohol ingestion resulted from a noncompetitive inhibition. Intracellular sodium 4 h after alcohol was lower than at baseline, but returned to the control value within 24 h. In a control group (n = 5), pretreatment with "diet coke" alone did not alter any of the measured parameters. It is concluded that alcohol pretreatment increases passive lithium efflux and decreases SLC Vmax. Both effects are evident up to at least 4 h postdosing, but recover within 24 h in the absence of further alcohol intake.
Xu, S X; Qin, X; Liu, B; Zhang, D Q; Zhang, W; Wu, K; Zhang, Y H
2015-02-01
The pectin lyase gene pnl-zj5a from Aspergillus niger ZJ5 was identified and expressed in Pichia pastoris. PNL-ZJ5A was purified by ultrafiltration, anion exchange and gel chromatography. The Km and Vmax values determined using citrus pectin were 0.66 mg ml(-1) and 32.6 μmol min(-1) mg(-1) , respectively. PNL-ZJ5A exhibited optimal activity at 43°C and retained activity over 25-50°C. PNL-ZJ5A was optimally active at pH 5 and effective in apple juice clarification. Compared with controls, PNL-ZJ5A increased the fruit juice yield significantly. Furthermore, PNL-ZJ5A reduced the viscosity of apple juice by 38.8% and increased its transmittance by 86.3%. PNL-ZJ5A combined with a commercial pectin esterase resulted in higher juice volume. © 2014 The Society for Applied Microbiology.
Sonne-Hansen; Westermann; Ahring
1999-03-01
Half-saturation constants (Km), maximum uptake rates (Vmax), and threshold concentrations for sulfate and hydrogen were determined for two thermophilic sulfate-reducing bacteria (SRB) in an incubation system without headspace. Km values determined for the thermophilic SRB were similar to the constants described for mesophilic SRB isolated from environments with low sulfate concentrations.
Sonne-Hansen, Jacob; Westermann, Peter; Ahring, Birgitte K.
1999-01-01
Half-saturation constants (Km), maximum uptake rates (Vmax), and threshold concentrations for sulfate and hydrogen were determined for two thermophilic sulfate-reducing bacteria (SRB) in an incubation system without headspace. Km values determined for the thermophilic SRB were similar to the constants described for mesophilic SRB isolated from environments with low sulfate concentrations. PMID:10049897
1987-12-01
Metabolism (VMAX) Using Quantitative Structure- Activity Relationships (QSAR) 17 Directed Motion Doppler Shift Effects on Mitric Oxide (0,0) Gamma Band...chemiluminescence values were observed at characteristic times after adding glucose to the disks. We also produced virus-sized nanoparticles (Glucose...These nanoparticles were able to penetrate a .2 um filter,and they retained their enzymatic activity for weeks. They produced 20-fold greater
Mode of action of family 10 and 11 endoxylanases on water-unextractable arabinoxylan.
Vardakou, Maria; Katapodis, Petros; Samiotaki, Martina; Kekos, Dimitris; Panayotou, George; Christakopoulos, Paul
2003-11-01
Microbial endo-beta-1,4-xylanases (EXs, EC 3.2.1.8) belonging to glycanase families 10 and 11 differ in their action on water-unextractable arabinoxylan (WU-AX). WU-AX was incubated with different levels of a Thermoascus aurantiacus family 10 and a Sporotrichum thermophile family 11 endoxylanases. At 10 g l(-1) arabinoxylan, enzyme concentrations (KE values) needed to obtain half-maximal hydrolysis rates (V(max) values) were 4.4 nM for the xylanase from T. aurantiacus and 7.1 nM for the xylanase from S. thermophile. Determination of Vmax/KE revealed that the family 10 enzyme hydrolysed two times more efficiently WU-AX than the family 11 enzyme. Molecular weights of the products formed were assessed and separation of feruloyl-oligosaccharides was achieved by anion-exchange and size-exclusion chromatography (SEC). The main difference between the feruloylated products by xylanases of family 10 and 11 concerned the length of the products containing feruloyl-arabinosyl substitution. The xylanase from T. aurantiacus liberated from WU-AX a feruloyl arabinoxylodisaccharide (FAX2) as the shortest feruloylated fragment in contrast with the enzyme from S. thermophile, which liberated a feruloyl arabinoxylotrisaccharide (FAX3). These results indicated that different factors govern WU-AX breakdown by the two endoxylanases.
Mohan Kumar, N S; Manonmani, H K
2013-04-01
L-asparaginase from Cladosporium sp. grown on wheat bran by SSF was purified. Enzyme appeared to be a trimer with homodimer of 37 kDa and another 47 kDa amounting to total mass of 121 kDa as estimated by SDS-PAGE and 120 kDa on gel filtration column. The optimum temperature and pH of the enzyme were 30 °C and 6.3, respectively with Vmax of 4.44 μmol/mL/min and Km of 0.1 M. Substrate specificity studies indicated that, L-asparaginase has greater affinity towards L-asparagine with substrate hydrolysis efficiency (Vmax/Km ratio) eightfold higher than that of L-glutamine. L-asparaginase activity in presence of thiols studied showed decrease in Vmax and increase in Km, indicating nonessential mode of inactivation. Among the thiols tested, β-mercaptomethanol, exerted inhibitory effect, suggesting a critical role of disulphide linkages in maintaining a suitable conformation of the enzyme. Metal ions such as Ca(2+), Co(2+), Cu(2+), Mg(2+), Na(+), K(+) and Zn(2+) significantly affected enzyme activity whereas presence of Fe(3+), Pb(2+) and KI stimulated the activity. Detergents studied also enhanced L-asparaginase activity. In-vitro half-life of purified L-asparaginase in mammalian blood serum was 93.69 h. The enzyme inhibited acrylamide formation in potato chips by 96 % making it a potential candidate for food industry to reduce acrylamide content in starchy fried food commodities.
Prieto, R M; Stremmel, W; Sales, C; Tur, J A
1996-04-18
To test the effect of dietary fatty acids on fatty acid uptake, the influx kinetics of a representative long-chain fatty acid, 3H-oleic acid, in both the jejunum and ileum of rats has been studied using brush border membrane vesicles (BBMV). Animals were fed with semipurified diets containing 5 g fat/100 g diet, as corn oil (control group), safflower oil (unsaturated group) and coconut oil hydrogenated (saturated group). With increasing unbound oleate concentration in the medium, the three dietary groups showed saturable kinetics in both jejunal and ileal BBMV (controls: Vmax = 0.15 +/- 0.01 nmol x mg protein-1 x 5 min-1 and Km = 136 +/- 29.1 nmol for jejunum, and Vmax = 0.23 +/- 0.03 nmol x mg protein-1 x 5 min-1 and Km = 196 +/- 50.3 nmol for ileum; unsaturated: Vmax = 0.28 +/- 0.05 nmol x mg protein-1 x 5 min-1 and Km = 242.7 +/- 91.8 nmol for jejunum, and Vmax = 1.29 +/- 0.06 nmol x mg protein-1 x 5 min-1 and Km = 509.8 +/- 97.5 nmol for ileum; saturated: Vmax = 0.03 +/- 0.01 nmol x mg protein-1 x 5 min-1 and Km = 124.5 +/- 72.6 nmol for jejunum, and Vmax = 0.04 +/- 0.01 nmol x mg protein -1.5 min-1 and Km = 205.6 +/- 85.3 nmol for ileum). These results support the theory that feeding an isocaloric diet containing only unsaturated fatty acids enhanced oleic acid uptake, and feeding an isocaloric diet containing only saturated fatty acids decreased oleic acid uptake. The results obtained in the present work also show the adaptative ability of jejunum and ileum to the type of dietary fat.
Sharma, Kaveri; Venkatesh, B.P; Barman, Partho; Roy, Sumit Kumar; Jayagurunathan, Usha; Sellamuthu, Eswaramoorthy; Moidu, Fazil
2015-01-01
Introduction Adenomyosis and Leiomyoma are common disorders affecting females in their reproductive age. They mimic each other in clinical presentation. Due to similarities in clinical symptoms and signs, missing one diagnosis in favour of the other is not very uncommon. Accurate diagnosis of these two conditions is important for their management. In this study we evaluated role of 3D Ultrasound and Doppler in differentiating clinically suspected cases of leiomyoma and adenomyosis of uterus. Materials and Methods A total of 100 patients with symptoms of abnormal uterine bleeding (with or without dysmenorrhoea), lump abdomen, chronic pelvic pain or dysparaunia who were clinically diagnosed as leiomyoma of uterus and/or adenomyosis were enrolled in to the study. These patients underwent transvaginal sonography (TVS), trans abdominal sonography (TAS) along with color and spectral Doppler sonography. Scanning was done in follicular phase of the menstrual cycle to avoid bias due high vascularity of endometrium in secretory phase. The morphology of the lesion, its vascularity, and Pulsality Index (PI), Resistive Index (RI) and Vmax (maximum velocity) were measured. Only those patients who were chosen for operative treatment were included in the study. Radiological diagnosis was then correlated with intra-operative and histopathological diagnosis. Results On imaging, while using morphological criteria and Doppler for diagnosing leiomyoma, it was found that “peripheral vascularity” was seen in 52 (89%) cases, which was the highest. Similarly while diagnosing adenomyosis it was, the criteria “central vascularity” was seen in 28 cases (93%) and “ill defined junctional zone in 3D ultrasound” was seen in 26 cases (86%), which was also observed to be highest. With the cut off values taken for PI,RI and Vmax, diagnosis of leiomyoma was found to be 93.4% sensitive, 95.6% specific and with a positive predictive value of 97.6% and negative predictive value of 88.6%. Diagnosis of adenomyosis showed a sensitivity of 95.6%, specificity of 93.4% and a positive predictive value of 88.6% and negative predictive value of 97.6%. Imaging dignosed the co-existence of both the conditions correctly in 8 (66%) cases. Conclusion The parameters of blood flow impedance (that is PI, RI, and Vmax) of arteries within or around the uterine lesions revealed a consistent and significant difference between leiomyoma and adenomyosis. So apart from morphological criteria used in 3D TAS and TVS, aid of color Doppler can more accurately differentiate and diagnose these conditions. PMID:26023602
Nakata, Y; Kusaka, Y; Yajima, H; Segawa, T
1981-12-01
We previously reported that nerve terminals and glial cells lack an active uptake system capable of terminating transmitter action of substance P (SP). In the present study, we demonstrated the existence of an active uptake system for SP carboxy-terminal heptapeptide, (5-11)SP. When the slices from either rat brain or rabbit spinal cord were incubated with [3H](5-11)SP, the uptake of (5-11)SP into slices was observed. The uptake system has the properties of an active transport mechanism: it is dependent on temperature and sensitive to hypoosmotic treatment and is inhibited by ouabain and dinitrophenol (DNP). In the brain, (5-11)SP was accumulated by means of a high-affinity and a low-affinity uptake system. The Km and the Vmax values for the high-affinity system were 4.20 x 10(-8) M and 7.59 fmol/10 mg wet weight/min, respectively, whereas these values for the low-affinity system were 1.00 x 10(-6) M and 100 fmol/10 mg wet weight/min, respectively. In the spinal cord, there was only one uptake system, with a Km value of 2.16 x 10(-7) M and Vmax value of 26.2 fmol/10 mg wet weight/min. These results suggest that when SP is released from nerve terminals, it is hydrolysed into (5-11)SP before or after acting as a neurotransmitter, which is in turn accumulated into nerve terminals. Therefore, the uptake system may represent a possible mechanism for the inactivation of SP.
Models of disuse - A comparison of hindlimb suspension and immobilization
NASA Technical Reports Server (NTRS)
Fitts, R. H.; Metzger, J. M.; Riley, D. A.; Unsworth, B. R.
1986-01-01
The effects of 1 and 2 weeks of hindlimb suspension (HS) on the contractile properties of fast- and slow-twitch skeletal muscles of male Sprague Dawley rats are studied and compared with hindlimb immobilization (HI) data. The optimal length and contractile properties of the slow-twitch soleus, fast-twitch extensor digitorum longus, and the vastus lateralis are measured. It is observed that HS and HI affect slow-twitch muscles; isometric twitch duration in the slow-twitch soleus is decreased. Soleus muscle mass and peak tetanic tension declines with disuse. A major difference in the influence of HS and HI on the maximal speed of soleus muscle shortening, V(max) is detected; HS produced a twofold increase in V(max) compared to control data and HI had no significant effect on V(max). The relation between V(max) and myosin concentration is analyzed. The data reveal that HS modifies slow-twitch muscle yielding hybrid fibers with elevated shortening velocities and this change may be dependent on the elimination of load-bearing contractions.
NASA Astrophysics Data System (ADS)
Löppmann, Sebastian; Blagodatskaya, Evgenia; Kuzyakov, Yakov
2014-05-01
Rhizosphere and detritusphere are soil microsites with very high resource availability for microorganisms affecting their biomass, composition and functions. In the rhizosphere low molecular compounds occur with root exudates and low available polymeric compounds, as belowground plant senescence. In detritusphere the substrate for decomposition is mainly a polymeric material of low availability. We hypothesized that microorganisms adapted to contrasting quality and availability of substrates in the rhizosphere and detritusphere are strongly different in affinity of hydrolytic enzymes responsible for decomposition of organic compounds. According to common ecological principles easily available substrates are quickly consumed by microorganisms with enzymes of low substrate affinity (i.e. r-strategists). The slow-growing K-strategists with enzymes of high substrate affinity are better adapted for growth on substrates of low availability. Estimation of affinity of enzyme systems to the substrate is based on Michaelis-Menten kinetics, reflecting the dependency of decomposition rates on substrate amount. As enzymes-mediated reactions are substrate-dependent, we further hypothesized that the largest differences in hydrolytic activity between the rhizosphere and detritusphere occur at substrate saturation and that these differences are smoothed with increasing limitation of substrate. Affected by substrate limitation, microbial species follow a certain adaptation strategy. To achieve different depth gradients of substrate availability 12 plots on an agricultural field were established in the north-west of Göttingen, Germany: 1) 4 plots planted with maize, reflecting lower substrate availability with depth; 2) 4 unplanted plots with maize litter input (0.8 kg m-2 dry maize residues), corresponding to detritusphere; 3) 4 bare fallow plots as control. Maize litter was grubbed homogenously into the soil at the first 5 cm to ensure comparable conditions for the herbivore and detritivore communities in the soil. The kinetics (Km and Vmax) of four extracellular hydrolytic enzymes responsible for C- and phosphorous-cycle (β-glucosidase, β-xylosidase, β-cellobiohydrolase and acid phosphatase), microbial biomass, basal respiration (BR) and substrate-induced respiration (SIR) were measured in rhizosphere, detritusphere and control from 0 - 10 and 10 - 20 cm. The metabolic quotient (qCO2) was calculated as specific indicator for efficiency of microbial substrate utilization. We observed clear differences in enzymes activities at low and high concentrations of substrate. At substrate saturation enzyme activity rates of were significantly higher in rooted plots compared to litter amended plots, whereas at lower concentration no treatment effect could be found. The BR, SIR and qCO2 values were significantly higher at 0 - 10 cm of the planted treatment compared to litter and control plots, revealing a significantly higher respiration at lower efficiency of microbial substrate utilization in the rhizosphere. The Michaelis-Menten constant (Km) decreased with depth, especially for β-glucosidase, acid phosphatase and β-xylosidase, indicating higher substrate affinity of microorganisms in deeper soil and therefore different enzyme systems functioning. The substrate affinity factor (Vmax/Km) increased 2-fold with depth for various enzymes, reflecting a switch of predominantly occurring microbial strategies. Vmax/Km ratio indicated relative domination of zymogenous microbial communities (r-strategists) in 0 - 10 cm depth as compared with 10 - 20 cm depth where the K-strategists dominated.
The effects of a supportive knee brace on leg performance in healthy subjects.
Veldhuizen, J W; Koene, F M; Oostvogel, H J; von Thiel, T P; Verstappen, F T
1991-12-01
Eight healthy volunteers were fitted with a supportive knee brace (Push Brace 'Heavy') to one knee for a duration of four weeks wherein they were tested before, during and after the application to establish the effect of bracing on performance. The tests consisted of isokinetic strength measurement of knee flexion and extension, 60 meter dash, vertical jump height and a progressive horizontal treadmill test until exhaustion (Vmax) with determination of oxygen uptake, heart rate and plasma lactate concentration. Wearing the brace for one day, the performance indicators showed a decline compared with the test before application (base values). Sprint time was 4% longer (p less than 0.01) and Vmax 6% slower (p less than 0.01). Peak torque of knee flexion at 60 and 240 deg.sec-1 was 6% (p less than 0.05) respectively 9% (p less than 0.05) less. Peak extension torque at 60 deg.sec-1 was 9% less (p less than 0.05). While wearing the brace for four weeks, the test performances were practically identical to their base values. After removal of the brace, all test parameters were statistically similar to the base values. Heart rate at submaximal exercise levels was even lower (p less than 0.05). In conclusion, performance in sports with test-like exercise patterns is not affected by the brace tested. Bracing does not "weaken the knee" as it is widely believed in sports practice.
Michlmayr, Herbert; Brandes, Walter; Eder, Reinhard; Schümann, Christina; del Hierro, Andrés M.; Kulbe, Klaus D.
2011-01-01
α-l-Rhamnosidases play an important role in the hydrolysis of glycosylated aroma compounds (especially terpenes) from wine. Although several authors have demonstrated the enological importance of fungal rhamnosidases, the information on bacterial enzymes in this context is still limited. In order to fill this important gap, two putative rhamnosidase genes (ram and ram2) from Pediococcus acidilactici DSM 20284 were heterologously expressed, and the respective gene products were characterized. In combination with a bacterial β-glucosidase, both enzymes released the monoterpenes linalool and cis-linalool oxide from a muscat wine extract under ideal conditions. Additionally, Ram could release significant amounts of geraniol and citronellol/nerol. Nevertheless, the potential enological value of these enzymes is limited by the strong negative effects of acidity and ethanol on the activities of Ram and Ram2. Therefore, a direct application in winemaking seems unlikely. Although both enzymes are members of the same glycosyl hydrolase family (GH 78), our results clearly suggest the distinct functionalities of Ram and Ram2, probably representing two subclasses within GH 78: Ram could efficiently hydrolyze only the synthetic substrate p-nitrophenyl-α-l-rhamnopyranoside (Vmax = 243 U mg−1). In contrast, Ram2 displayed considerable specificity toward hesperidin (Vmax = 34 U mg−1) and, especially, rutinose (Vmax = 1,200 U mg−1), a disaccharide composed of glucose and rhamnose. Both enzymes were unable to hydrolyze the flavanone glycoside naringin. Interestingly, both enzymes displayed indications of positive substrate cooperativity. This study presents detailed kinetic data on two novel rhamnosidases, which could be relevant for the further study of bacterial glycosidases. PMID:21784921
Metabolism of ethylbenzene by human liver microsomes and recombinant human cytochrome P450s (CYP).
Sams, Craig; Loizou, George D; Cocker, John; Lennard, Martin S
2004-03-07
The enzyme kinetics of the initial hydroxylation of ethylbenzene to form 1-phenylethanol were determined in human liver microsomes. The individual cytochrome P450 (CYP) forms catalysing this reaction were identified using selective inhibitors and recombinant preparations of hepatic CYPs. Production of 1-phenylethanol in hepatic microsomes exhibited biphasic kinetics with a high affinity, low Km, component (mean Km = 8 microM; V(max) = 689 pmol/min/mg protein; n = 6 livers) and a low affinity, high Km, component (Km = 391 microM; V(max) = 3039 pmol/min/mg protein; n = 6). The high-affinity component was inhibited 79%-95% (mean 86%) by diethyldithiocarbamate, and recombinant CYP2E1 was shown to metabolise ethylbenzene with low Km (35 microM), but also low (max) (7 pmol/min/pmol P450), indicating that this isoform catalysed the high-affinity component. Recombinant CYP1A2 and CYP2B6 exhibited high V(max) (88 and 71 pmol/min/pmol P450, respectively) and high Km (502 and 219 microM, respectively), suggesting their involvement in catalysing the low-affinity component. This study has demonstrated that CYP2E1 is the major enzyme responsible for high-affinity side chain hydroxylation of ethylbenzene in human liver microsomes. Activity of this enzyme in the population is highly variable due to induction or inhibition by physiological factors, chemicals in the diet or some pharmaceuticals. This variability can be incorporated into the risk assessment process to improve the setting of occupational exposure limits and guidance values for biological monitoring.
Biotransformation rates (Vmax) extrapolated from in vitro data are used increasingly in human physiologically based pharmacokinetic (PBPK) models. Extrapolation of Vmax from in vitro data requires use of scaling factors, including mg of microsomal protein/g liver (MPPGL), nmol of...
Ozaita, Andrés; Olmos, Gabriel; Assumpció Boronat, M; Miguel Lizcano, José; Unzeta, Mercedes; García-Sevilla, Jesús A
1997-01-01
I2-Imidazoline sites ([3H]-idazoxan binding) have been identified on monoamine oxidase (MAO) and proposed to modulate the activity of the enzyme through an allosteric inhibitory mechanism (Tesson et al., 1995). The main aim of this study was to assess the inhibitory effects and nature of the inhibition of imidazol(ine)/guanidine drugs on rat liver MAO-A and MAO-B isoforms and to compare their inhibitory potencies with their affinities for the sites labelled by [3H]-clonidine in the same tissue. Competition for [3H]-clonidine binding in rat liver mitochondrial fractions by imidazol(ine)/guanidine compounds revealed that the pharmacological profile of the interaction (2 - styryl - 2 - imidazoline, LSL 61112>idazoxan>2 - benzofuranyl - 2 - imidazoline, 2-BFI=cirazoline>guanabenz>oxymetazoline>>clonidine) was typical of that for I2-sites. Clonidine inhibited rat liver MAO-A and MAO-B activities with very low potency (IC50s: 700 μM and 6 mM, respectively) and displayed the typical pattern of competitive enzyme inhibition (Lineweaver-Burk plots: increased Km and unchanged Vmax values). Other imidazol(ine)/guanidine drugs also were weak MAO inhibitors with the exception of guanabenz, 2-BFI and cirazoline on MAO-A (IC50s: 4–11 μM) and 2-benzofuranyl-2-imidazol (LSL 60101) on MAO-B (IC50: 16 μM). Idazoxan was a full inhibitor, although with rather low potency, on both MAO-A and MAO-B isoenzymes (IC50s: 280 μM and 624 μM, respectively). Kinetic analyses of MAO-A inhibition by these drugs revealed that the interactions were competitive. For the same drugs acting on MAO-B the interactions were of the mixed type inhibition (increased Km and decreased Vmax values), although the greater inhibitory effects on the apparent value of Vmax/Km than on the Vmax value indicated that the competitive element of the MAO-B inhibition predominated. Competition for [3H]-Ro 41-1049 binding to MAO-A or [3H]-Ro 19-6327 binding to MAO-B in rat liver mitochondrial fractions by imidazol(ine)/guanidine compounds revealed that the drug inhibition constants (Ki values) were similar to the IC50 values displayed for the inhibition of MAO-A or MAO-B activities. In fact, very good correlations were obtained when the affinities of drugs at MAO-A or MAO-B catalytic sites were correlated with their potencies in inhibiting MAO-A (r=0.92) or MAO-B (r=0.99) activity. This further suggested a direct drug interaction with the catalytic sites of MAO-A and MAO-B isoforms. No significant correlations were found when the potencies of imidazol(ine)/guanidine drugs at the high affinity site (pKiH, nanomolar range) or the low-affinity site (pKiL, micromolar range) of I2-imidazoline receptors labelled with [3H]-clonidine were correlated with the pIC50 values of the same drugs for inhibition of MAO-A or MAO-B activity. These discrepancies indicated that I2-imidazoline receptors are not directly related to the site of action of these drugs on MAO activity in rat liver mitochondrial fractions. Although these studies cannot exclude the presence of additional binding sites on MAO that do not affect the activity of the enzyme, they would suggest that I2-imidazoline receptors represent molecular species that are distinct from MAO. PMID:9222546
Störmer, Elke; Roots, Ivar; Brockmöller, Jürgen
2000-01-01
Aims The role of flavin containing monooxygenases (FMO) on the disposition of many drugs has been insufficiently explored. In vitro and in vivo tests are required to study FMO activity in humans. Benzydamine (BZD) N-oxidation was evaluated as an index reaction for FMO as was the impact of genetic polymorphisms of FMO3 on activity. Methods BZD was incubated with human liver microsomes (HLM) and recombinant enzymes. Human liver samples were genotyped using PCR-RFLP. Results BZD N-oxide formation rates in HLM followed Michaelis-Menten kinetics (mean Km = 64.0 μm, mean Vmax = 6.9 nmol mg−1 protein min−1; n = 35). N-benzylimidazole, a nonspecific CYP inhibitor, and various CYP isoform selective inhibitors did not affect BZD N-oxidation. In contrast, formation of BZD N-oxide was almost abolished by heat treatment of microsomes in the absence of NADPH and strongly inhibited by methimazole, a competitive FMO inhibitor. Recombinant FMO3 and FMO1 (which is not expressed in human liver), but not FMO5, showed BZD N-oxidase activity. Respective Km values for FMO3 and FMO1 were 40.4 μm and 23.6 μm, and respective Vmax values for FMO3 and FMO1 were 29.1 and 40.8 nmol mg−1 protein min−1. Human liver samples (n = 35) were analysed for six known FMO3 polymorphisms. The variants I66M, P135L and E305X were not detected. Samples homozygous for the K158 variant showed significantly reduced vmax values (median 2.7 nmol mg−1 protein min−1) compared to the carriers of at least one wild type allele (median 6.2 nmol mg−1 protein min−1) (P<0.05, Mann–Whitney- U-test). The V257M and E308G substitutions had no effect on enzyme activity. Conclusions BZD N-oxidation in human liver is mainly catalysed by FMO3 and enzyme activity is affected by FMO3 genotype. BZD may be used as a model substrate for human liver FMO3 activity in vitro and may be further developed as an in vivo probe reflecting FMO3 activity. PMID:11136294
Warming rate drives microbial limitation and enzyme expression during peat decomposition
NASA Astrophysics Data System (ADS)
Inglett, P.; Sihi, D.; Inglett, K. S.
2015-12-01
Recent developments of enzyme-based decomposition models highlight the importance of enzyme kinetics with warming, but most modeling exercises are based on studies with a step-wise warming. This approach may mask the effect of temperature in controlling in-situ activities as in most ecosystems soil temperature change more gradually than air temperature. We conducted an experiment to test the effects of contrasting warming rates on the kinetics of C, N, and P degradation enzymes in subtropical peat soils. We also wanted to evaluate if the stoichiometry of enzyme kinetics shifts under contrasting warming rates and if so, how does it relate to the stoichiometry in microbial biomass. Contrasting warming rates altered microbial biomass stoichiometry leading to differing patterns of enzyme expression and microbial nutrient limitation. Activity (higher Vmax) and efficiency (lower Km) of C acquisition enzymes were greater in the step treatment; however, expressions of nutrient (N and P) acquiring enzymes were enhanced in the ramp treatment at the end of the experiment. In the step treatment, there was a typical pattern of an initial peak in the Vmax and drop in the Km for all enzyme groups followed by later adjustments. On the other hand, a consistent increase in Vmax and decline in Km of all enzyme groups were observed in the slow warming treatment. These changes were sufficient to alter microbial identity (as indicated by enzyme Km and biomass stoichiometry) with two apparently stable endpoints under contrasting warming rates. This observation resembles the concept of alternate stable states and highlights a need for improved representation of warming in models.
In vitro metabolism of phenytoin in 36 CYP2C9 variants found in the Chinese population.
Chen, Lian-Guo; Wang, Zhe; Zhu, Yuan; Xiong, Jian-Hua; Sun, Li-Rong; Dai, Da-Peng; Cai, Jian-Ping; Hu, Guo-Xin
2016-06-25
Cytochrome P450 2C9 (CYP2C9) is an important member of the cytochrome P450 enzyme superfamily, with 57 CYP2C9 allelic variants being previously reported. Recently, we identified 22 novel alleles (*36 -*56 and N418T) in the Han Chinese population. This study aims to assess the catalytic activities of wild-type (CYP2C9*1) and 36 CYP2C9 allelic variants found in the Chinese population toward phenytoin (PHT) in vitro. Insect microsomes expressing CYP2C9*1 and 36 CYP2C9 variants were incubated with 1-200 μM phenytoin for 30 min at 37 °C. Then, these products were extracted and the signal detection was performed by HPLC-MS/MS. The intrinsic clearance (Vmax/Km) values of all variants, with the exception of CYP2C9*2, CYP2C9*11, CYP2C9*23, CYP2C9*29, CYP2C9*34, CYP2C9*38, CYP2C9*44, CYP2C9*46 and CYP2C9*48, were significantly different from CYP2C9*1. CYP2C9*27, *40, *41, *47, *49, *51, *53, *54, *56 and N418T variant exhibited markedly larger values than CYP2C9*1 (>152.8%), whereas 17 variants exhibited smaller values (from 48.6% to 99.9%) due to larger Km and/or smaller Vmax values than CYP2C9*1. The findings suggest that more attention should be paid on subjects carrying these infrequent CYP2C9 alleles when administering phenytoin in clinic. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Godoy, Liliana; Martínez, Claudio; Carrasco, Nelson; Ganga, María Angélica
2008-09-30
The presence of Brettanomyces bruxellensis has been correlated with an increase of phenolic aromas in wine. The production of these aromas results from the metabolization of cinnamic acids, present in the wine, to their ethyl derivatives. Hence, the participation of two enzymes has been proposed: a p-coumarate decarboxylase (CD) and a vinylphenol reductase (VR). Both enzymes were purified and characterized from B. bruxellensis. In denaturing conditions, the CD enzyme had a molecular mass of 21 kDa, while in native conditions its mass was 41 kDa. The optimal activity was obtained at a temperature of 40 degrees C and a pH of 6.0. For p-coumaric acid, the Km value and Vmax were 1.22+/-0.08 mM and 98+/-0.15 micromol/min mg, respectively. The VR enzyme had a molecular mass of 37 kDa in SDS-PAGE, while in natural conditions its mass was 118 kDa. The Km value was > 3.37+/-2.05 mM and its Vmax was 107.62+/-50.38 micromol/min mg for NADPH used as a cofactor. Both enzymatic activities were stable at pH 3.4, but in the presence of ethanol the CD activity decreased drastically while the VR activity was more stable. This is the first report that shows the presence of a CD and a VR enzyme in B. bruxellensis.
Nowka, Boris; Daims, Holger
2014-01-01
Nitrification has an immense impact on nitrogen cycling in natural ecosystems and in wastewater treatment plants. Mathematical models function as tools to capture the complexity of these biological systems, but kinetic parameters especially of nitrite-oxidizing bacteria (NOB) are lacking because of a limited number of pure cultures until recently. In this study, we compared the nitrite oxidation kinetics of six pure cultures and one enrichment culture representing three genera of NOB (Nitrobacter, Nitrospira, Nitrotoga). With half-saturation constants (Km) between 9 and 27 μM nitrite, Nitrospira bacteria are adapted to live under significant substrate limitation. Nitrobacter showed a wide range of lower substrate affinities, with Km values between 49 and 544 μM nitrite. However, the advantage of Nitrobacter emerged under excess nitrite supply, sustaining high maximum specific activities (Vmax) of 64 to 164 μmol nitrite/mg protein/h, contrary to the lower activities of Nitrospira of 18 to 48 μmol nitrite/mg protein/h. The Vmax (26 μmol nitrite/mg protein/h) and Km (58 μM nitrite) of “Candidatus Nitrotoga arctica” measured at a low temperature of 17°C suggest that Nitrotoga can advantageously compete with other NOB, especially in cold habitats. The kinetic parameters determined represent improved basis values for nitrifying models and will support predictions of community structure and nitrification rates in natural and engineered ecosystems. PMID:25398863
García-García, María Inmaculada; Hernández-García, Samanta; Sánchez-Ferrer, Álvaro; García-Carmona, Francisco
2013-06-26
Red Globe grape polyphenol oxidase, partially purified using phase partitioning with Triton-X114, was used to study the oxidation of hydroxytytosol (HT) and its related compounds tyrosol (TS), tyrosol acetate (TSA), and hydroxytyrosol acetate (HTA). The enzyme showed activity toward both monophenols (monophenolase activity) and o-diphenols (diphenolase activity) with a pH optimum (pH 6.5) that was independent of the phenol used. However, the optimal temperature for diphenolase activity was substrate-dependent, with a broad optimum of 25-65 °C for HT, compared with the maximum obtained for HTA (40 °C). Monophenolase activity showed the typical lag period, which was modulated by pH, substrate and enzyme concentrations, and the presence of catalytic amounts of o-diphenols. When the catalytic power (Vmax/K(M)) was determined for both activities, higher values were observed for o-diphenols than for monophenols: 9-fold higher for the HT/TS pair and 4-fold higher for HTA/TSA pair. Surprisingly, this ratio was equally higher for TSA (2.2-fold) compared with that of TS, whereas no such effect was observed for o-diphenols. This higher efficiency of TSA could be related to its greater hydrophobicity. Acetyl modification of these phenols not only changes the kinetic parameters of the enzyme but also affects their antioxidant activity (ORAC-FL assays), which is lower in HTA than in HT.
Assessment and kinetics of soil phosphatase in Brazilian Savanna systems.
Ferreira, Adão S; Espíndola, Suéllen P; Campos, Maria Rita C
2016-05-31
The activity and kinetics of soil phosphatases are important indicators to evaluate soil quality in specific sites such as the Cerrado (Brazilian Savanna). This study aimed to determine the activity and kinetic parameters of soil phosphatase in Cerrado systems. Soil phosphatase activity was assessed in samples of native Cerrado (NC), no-tillage (NT), conventional tillage (CT) and pasture with Brachiaria brizantha (PBb) and evaluated with acetate buffer (AB), tris-HCl buffer (TB), modified universal buffer (MUB) and low MUB. The Michaelis-Menten equation and Eadie-Hofstee model were applied to obtain the kinetic parameters of soil phosphatase using different concentrations of p-nitrophenol phosphate (p-NPP). MUB showed the lowest soil phosphatase activity in all soils whereas AB in NC and NT presented the highest. Low MUB decreased interferences in the assessment of soil phosphatase activity when compared to MUB, suggesting that organic acids interfere on the soil phosphatase activity. In NC and NT, soil phosphatase activity performed with TB was similar to AB and low MUB. Km values from the Michaels-Menten equation were higher in NC than in NT, which indicate a lower affinity of phosphatase activity for the substrate in NC. Vmax values were also higher in NC than in NT. The Eadie-Hofstee model suggests that NC had more phosphatase isoforms than NT. The study showed that buffer type is of fundamental importance when assessing soil phosphatase activity in Cerrado soils.
Saravanan, Sanjeev Rajagopalan; Paul, Vivek Daniel; George, Shilpa; Sundarrajan, Sudarson; Kumar, Nirmal; Hebbur, Madhavi; Kumar, Naveen; Veena, Ananda; Maheshwari, Uma; Appaiah, Chemira Biddappa; Chidambaran, Muralidharan; Bhat, Anuradha Gopal; Hariharan, Sukumar; Padmanabhan, Sriram
2013-01-01
P128 is a chimeric anti-staphylococcal protein having a catalytic domain from a Staphylococcus bacteriophage K tail associated structural protein and a cell wall targeting domain from the Staphylococcus bacteriocin-lysostaphin. In this study, we disclose additional properties of P128 and compared the same with lysostaphin. While lysostaphin was found to get inactivated by heat and was inactive on its parent strain S. simulans biovar staphylolyticus, P128 was thermostable and was lytic towards S. simulans biovar staphylolyticus demonstrating a difference in their mechanism of action. Selected mutation studies of the catalytic domain of P128 showed that arginine and cysteine, at 40th and 76th positions respectively, are critical for the staphylolytic activity of P128, although these amino acids are not conserved residues. In comparison to native P128, only the R40S mutant (P301) was catalytically active on zymogram gel and had a similar secondary structure, as assessed by circular dichroism analysis and in silico modeling with similar cell binding properties. Mutation of the arginine residue at 40th position of the P128 molecule caused dramatic reduction in the Vmax (∆OD600 [mg/min]) value (nearly 270 fold) and the recombinant lysostaphin also showed lesser Vmax value (nearly 1.5 fold) in comparison to the unmodified P128 protein. The kinetic parameters such as apparent Km (Km APP) and apparent Kcat (KcatAPP) of the native P128 protein also showed significant differences in comparison to the values observed for P301 and lysostaphin. PMID:24251076
Kumar, Ashok; Zhang, Shaowei; Wu, Gaobing; Wu, Cheng Chao; Chen, JunPeng; Baskaran, R; Liu, Ziduo
2015-12-01
A cbd gene was cloned into the C-terminal region of a lip gene from Geobacillus stearothermophilus. The native lipase (43.5 kDa) and CBD-Lip fusion protein (60.2 kDa) were purified to homogeneity by SDS-PAGE. A highly stable cellulosic nanogel was prepared by controlled hydrolysis of microcrystalline cellulose onto which the CBD-lip fusion protein was immobilized through bio-affinity based binding. The nanogel-bound lipase showed optimum activity at 55 °C, and it remains stable and active at pH 10-10.5. Furthermore, the immobilized lipase showed an over two-fold increase of relative activity in the presence of DMSO, isopropanol, isoamyl alcohol and n-butanol, but a mild activity decrease at a low concentration of methanol and ethanol. The immobilized biocatalyst retained ~50% activity after eight repetitive hydrolytic cycles. Enzyme kinetic studies of the immobilized lipase showed a 1.24 fold increase in Vmax and 5.25 fold increase in kcat towards p-NPP hydrolysis. Additionally, the nanogel bound lipase was tested to synthesize a biodiesel ester, ethyl oleate in DMSO. Kinetic analysis showed the km 100.5 ± 4.3 mmol and Vmax 0.19 ± 0.015 mmolmin(-1) at varied oleic acid concentration. Also, the values of km and Vmax at varying concentration of ethanol were observed to be 95.9 ± 13.9 mmol and 0.22 ± 0.013 mmolmin(-1) respectively. The maximum yield of ethyl oleate 111.2 ± 1.24 mM was obtained under optimized reaction conditions in organic medium. These results suggest that this immobilized biocatalyst can be used as an efficient tool for the biotransformation reactions on an industrial scale. Copyright © 2015 Elsevier B.V. All rights reserved.
Determinant Factors of the Squat Jump in Sprinting and Jumping Athletes
González-Badillo, Juan José; Jiménez-Reyes, Pedro; Ramírez-Lechuga, Jorge
2017-01-01
Abstract The aim of this study was to assess the relationship between strength variables and maximum velocity (Vmax) in the squat jump (SJ) in sprinting and jumping athletes. Thirty-two sprinting and jumping athletes of national level (25.4 ± 4.5 years; 79.4 ± 6.9 kg and 180.4 ± 6.0 cm) participated in the study. Vmax in the SJ showed significant relationships with peak force 1 (PF1) (r = 0.82, p ≤ 0.001), peak force 2 (PF2) (r = 0.68, p ≤ 0.001), PF2 by controlling for PF1 (r = 0.30, non-significant), the maximum rate of force development at peak force 1 (RFDmax1) (r = 0.62, p ≤ 0.001), mean RFD 1 (RFDmean1) (r = 0.48, p ≤ 0.01), mean RFD 2 (RFDmean2) (r = 0.70, p ≤ 0.001), force at RFDmax1 (r = 0.36, p ≤ 0.05), force at RFDmax2 (r = 0.83, p ≤ 0.001) and force at RFDmax2 by controlling for PF1 (r = 0.40, p ≤ 0.05). However, Vmax in the SJ was associated negatively with the ratio PF2/PF1 (r = -0.54, p ≤ 0.01), time at peak force 2 (Tp2) (r = -0.64, p ≤ 0.001) and maximum rate of force development at peak force 2 (RFDmax2) (r = -0.71, p ≤ 0.001). These findings indicate that the peak force achieved at the beginning of the movement (PF1) is the main predictor of performance in jumping, although the RFDmax values and the ratio PF2/PF1 are also variables to be taken into account when analyzing the determinant factors of vertical jumping. PMID:28828074
Hargrove, Tatiana Y; Wawrzak, Zdzislaw; Liu, Jialin; Nes, W David; Waterman, Michael R; Lepesheva, Galina I
2011-07-29
Leishmaniasis is a major health problem that affects populations of ∼90 countries worldwide, with no vaccine and only a few moderately effective drugs. Here we report the structure/function characterization of sterol 14α-demethylase (CYP51) from Leishmania infantum. The enzyme catalyzes removal of the 14α-methyl group from sterol precursors. The reaction is essential for membrane biogenesis and therefore has great potential to become a target for antileishmanial chemotherapy. Although L. infantum CYP51 prefers C4-monomethylated sterol substrates such as C4-norlanosterol and obtusifoliol (V(max) of ∼10 and 8 min(-1), respectively), it is also found to 14α-demethylate C4-dimethylated lanosterol (V(max) = 0.9 min(-1)) and C4-desmethylated 14α-methylzymosterol (V(max) = 1.9 min(-1)). Binding parameters with six sterols were tested, with K(d) values ranging from 0.25 to 1.4 μM. Thus, L. infantum CYP51 is the first example of a plant-like sterol 14α-demethylase, where requirements toward the composition of the C4 atom substituents are not strict, indicative of possible branching in the postsqualene portion of sterol biosynthesis in the parasite. Comparative analysis of three CYP51 substrate binding cavities (Trypanosoma brucei, Trypanosoma cruzi, and L. infantum) suggests that substrate preferences of plant- and fungal-like protozoan CYP51s largely depend on the differences in the enzyme active site topology. These minor structural differences are also likely to underlie CYP51 catalytic rates and drug susceptibility and can be used to design potent and specific inhibitors.
Anti-lipase and antioxidant properties of 30 medicinal plants used in Oaxaca, México.
Villa-Ruano, Nemesio; Zurita-Vásquez, Guilibaldo G; Pacheco-Hernández, Yesenia; Betancourt-Jiménez, Martha G; Cruz-Durán, Ramiro; Duque-Bautista, Horacio
2013-01-01
We report the results of in vitro anti-lipase and antioxidant assays using crude ethanolic extracts from 30 plants grown in Oaxaca, México. Anti-lipase tests were performed by using porcine pancreatic lipase (PPL) [EC 3.1.1.3] from Affymetrix/USB. The extracts of Solanum erianthum, Salvia microphylla, Brungmansia suaveolens and Cuphea aequipetala showed up to 60% PPL inhibition. The effect of these extracts on the kinetic parameters of PPL (Km= 0.36 mM, and Vmax=0.085 mM min -1) revealed that the alcoholic preparations of S. erianthum and C. aequipetala engendered a non-competitive inhibition (Vmax=0.055 mM min -1; Vmax= 0.053 mM min -1), whereas those of S. microphylla and B. suaveolens produced a mixed inhibition (Km= 0.567 mM, Vmax=0.051 mM min _1; Km=0.643 mM, Vmax= 0.042 mM min ¹). In addition to these findings, seven extracts from different plants were able to inhibit PPL in the range of 30-50%. Antioxidant tests against 2,2-Diphenyl-1-picryl hydrazyl (DPPH) confirmed that Arctostaphylos pungens, Gnaphalium roseum, Crotalaria pumila, Cuphea aequipetala, Rhus chondroloma, and Satureja laevigata possess relevant antioxidant activity (IC(5)0=50-80 μg mL¹). The general composition of the most effective ethanolic extracts was obtained in order to confirm their known chemistry reported by previous works. Comprehensive chemical analysis of the ethanolic extracts and their poisoning effects suggests that S. microphylla, C. aequipetala and A. pungens could be considered as the best sources with both desired properties.
Characterizing Isozymes of Chlorite Dismutase for Water Treatment
Mobilia, Kellen C.; Hutchison, Justin M.; Zilles, Julie L.
2017-01-01
This work investigated the potential for biocatalytic degradation of micropollutants, focusing on chlorine oxyanions as model contaminants, by mining biology to identify promising biocatalysts. Existing isozymes of chlorite dismutase (Cld) were characterized with respect to parameters relevant to this high volume, low-value product application: kinetic parameters, resistance to catalytic inactivation, and stability. Maximum reaction velocities (Vmax) were typically on the order of 104 μmol min-1 (μmol heme)-1. Substrate affinity (Km) values were on the order of 100 μM, except for the Cld from Candidatus Nitrospira defluvii (NdCld), which showed a significantly lower affinity for chlorite. NdCld also had the highest susceptibility to catalytic inactivation. In contrast, the Cld from Ideonella dechloratans was least susceptible to catalytic inactivation, with a maximum turnover number of approximately 150,000, more than sevenfold higher than other tested isozymes. Under non-reactive conditions, Cld was quite stable, retaining over 50% of activity after 30 days, and most samples retained activity even after 90–100 days. Overall, Cld from I. dechloratans was the most promising candidate for environmental applications, having high affinity and activity, a relatively low propensity for catalytic inactivation, and excellent stability. PMID:29312158
Effectiveness of Vegetated Drainage Ditches for Domestic Sewage Effluent Mitigation.
Kumwimba, Mathieu Nsenga; Zhu, Bo
2017-05-01
Plant species have an important role in eco-ditches; however, the Michaelis-Menten kinetic parameters of nutrient uptake, growth rate and purification efficiency of ditch plants and their influences on domestic sewage treatment efficiency are still unclear. Growth rates of all nine species, but especially Lemna gibba, Cladophora and Myriophyllum verticillatum were best in undiluted domestic sewage as opposed to a mixture of domestic sewage. Performance of species to accumulate nutrients was not only species-specific, but was also affected by both sewage treatments. Removal efficiency of nutrients was dependent on both plant species and treatment. Uptake kinetic parameters were significantly affected by both nutrient form and plant species. The maximum uptake rate (Vmax) of NH 4 -N was higher than NO 3 -N. Similarly, Km values for NH 4 -N were greater than NO 3 -N. These results could be used to identify plants for sewage treatment efficiency and enhance water quality in eco-ditch treatment systems.
Enhanced cellulase producing mutants developed from heterokaryotic Aspergillus strain.
Kaur, Baljit; Oberoi, H S; Chadha, B S
2014-03-01
A heterokaryon 28, derived through protoplast fusion between Aspergillus nidulans and Aspergillus tubingensis (Dal8), was subjected cyclic mutagenesis followed by selection on increasing levels of 2-deoxy glucose (2-DG) as selection marker. The derived deregulated cellulase hyper producing mutant '64', when compared to fusant 28, produced 9.83, 7.8, 3.2, 4.2 and 19.74 folds higher endoglucanase, β-glucosidase, cellobiohydrolase, FPase and xylanase, respectively, under shake cultures. The sequence analysis of PCR amplified β-glucosidase gene from wild and mutant showed nucleotide deletion/substitution. The mutants showed highly catalytic efficient β-glucosidase as evident from low Km and high Vmax values. The expression profiling through zymogram analysis also indicated towards over-expression of cellulases. The up/down regulated expressed proteins observed through SDS-PAGE were identified by Peptide mass fingerprinting The cellulase produced by mutants in conjunction with cellulase free xylanase derived from Thermomyces lanuginosus was used for efficient utilization of alkali treated rice straw for obtaining xylo-oligosaccharides and ethanol. Copyright © 2014 Elsevier Ltd. All rights reserved.
Vatan, Mehmet Bülent; Yılmaz, Sabiye; Ağaç, Mustafa Tarık; Çakar, Mehmet Akif; Erkan, Hakan; Aksoy, Murat; Demirtas, Saadet; Varım, Ceyhun; Akdemir, Ramazan; Gündüz, Hüseyin
2015-11-01
CHA2DS2-VASc score is the most widely preferred method for prediction of stroke risk in patients with atrial fibrillation. We hypothesized that CHA2DS2-VASc score may represent atrial remodeling status, and therefore echocardiographic evaluation of left atrial electromechanical remodeling can be used to identify patients with high risk. A total of 65 patients who had documented diagnosis of paroxysmal atrial fibrillation (PAF) were divided into three risk groups according to the CHA2DS2-VASc score: patients with low risk (score=0, group 1), with moderate risk (score=1, group 2), and with high risk score (score ≥2, group 3). We compared groups according to atrial electromechanical intervals and left atrium mechanical functions. Atrial electromechanical intervals including inter-atrial and intra-atrial electromechanical delay were not different between groups. However, parameters reflecting atrial mechanical functions including LA phasic volumes (Vmax, Vmin and Vp) were significantly higher in groups 2 and 3 compared with group 1. Likewise, LA passive emptying volume (LATEV) in the groups 2 and 3 was significantly higher than low-risk group (14.12±8.13ml/m(2), 22.36±8.78ml/m(2), 22.89±7.23ml/m(2), p: 0.031). Univariate analysis demonstrated that Vmax, Vmin and Vp were significantly correlated with CHA2DS2-VASc score (r=0.428, r=0.456, r=0.451 and p<0.001). Also, LATEV (r=0.397, p=0.016) and LA active emptying volume (LAAEV) (r=0.281, p=0.023) were positively correlated with CHA2DS2-VASc score. In the ROC analysis, Vmin≥11ml/m(2) has the highest predictive value for CHA2DS2-VASc score ≥2 (88% sensitivity and 89% specificity; ROC area 0.88, p<0.001, CI [0.76-0.99]). Echocardiographic evaluation of left atrial electromechanical function might represent a useful method to identify patients with high risk. Copyright © 2015 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.
Green, Howard J; Bombardier, Eric; Burnett, Margaret; Iqbal, Sobia; D'Arsigny, Christine L; O'Donnell, Dennis E; Ouyang, Jing; Webb, Katherine A
2008-09-01
The objective of this study was to determine whether patients with chronic obstructive lung disease (COPD) display differences in organization of the metabolic pathways and segments involved in energy supply compared with healthy control subjects. Metabolic pathway potential, based on the measurement of the maximal activity (V(max)) of representative enzymes, was assessed in tissue extracted from the vastus lateralis in seven patients with COPD (age 67 +/- 4 yr; FEV(1)/FVC = 44 +/- 3%, where FEV(1) is forced expiratory volume in 1 s and FVC is forced vital capacity; means +/- SE) and nine healthy age-matched controls (age 68 +/- 2 yr; FEV(1)/FVC = 75 +/- 2%). Compared with control, the COPD patients displayed lower (P < 0.05) V(max) (mol.kg protein(-1).h(-1)) for cytochrome c oxidase (COX; 21.2 +/- 2.0 vs. 28.7 +/- 2.2) and 3-hydroxyacyl-CoA dehydrogenase (HADH; 2.54 +/- 0.14 vs. 3.74 +/- 0.12) but not citrate synthase (CS; 2.20 +/- 0.16 vs. 3.19 +/- 0.5). While no differences between groups were observed in V(max) for creatine phosphokinase, phosphorylase (PHOSPH), phosphofructokinase (PFK), pyruvate kinase, and lactate dehydrogenase, hexokinase (HEX) was elevated in COPD (P < 0.05). Enzyme activity ratios were higher (P < 0.05) for HEX/CS, HEX/COX, PHOSPH/HADH and PFK/HADH in COPD compared with control. It is concluded that COPD patients exhibit a reduced potential for both the electron transport system and fat oxidation and an increased potential for glucose phosphorylation while the potential for glycogenolysis and glycolysis remains normal. A comparison of enzyme ratios indicated greater potentials for glucose phosphorylation relative to the citric acid cycle and the electron transport chain and glycogenolysis and glycolysis relative to beta-oxidation.
Passive and active floating torque during swimming.
Kjendlie, Per-Ludvik; Stallman, Robert Keig; Stray-Gundersen, James
2004-10-01
The purpose of this study was to examine the effect of passive underwater torque on active body angle with the horizontal during front crawl swimming and to assess the effect of body size on passive torque and active body angle. Additionally, the effects of passive torque, body angle and hydrostatic lift on maximal sprinting performance were addressed. Ten boys [aged 11.7 (0.8) years] and 12 male adult [aged 21.4 (3.7) years] swimmers volunteered to participate. Their body angle with the horizontal was measured at maximal velocity, and at two submaximal velocities using an underwater video camera system. Passive torque and hydrostatic lift were measured during an underwater weighing procedure, and the center of mass and center of volume were determined. The results showed that passive torque correlated significantly with the body angle at a velocity 63% of v(max) ( alpha(63) r=-0.57), and that size-normalized passive torque correlated significantly with the alpha(63) and alpha(77) (77% of v(max)) with r=-0.59 and r=-0.54 respectively. Hydrostatic lift correlated with alpha(63) with r=-0.45. The negative correlation coefficients are suggested to be due to the adults having learned to overcome passive torque when swimming at submaximal velocities by correcting their body angle. It is concluded that at higher velocities the passive torque and hydrostatic lift do not influence body angle during swimming. At a velocity of 63% of v(max), hydrostatic lift and passive torque influences body angle. Passive torque and size-normalized passive torque increases with body size. When corrected for body size, hydrostatic lift and passive torque did not influence the maximal sprinting velocity.
Thaden, Jeremy J; Nkomo, Vuyisile T; Lee, Kwang Je; Oh, Jae K
2015-07-01
Although the highest aortic valve velocity was thought to be obtained from imaging windows other than the apex in about 20% of patients with severe aortic stenosis (AS), its occurrence appears to be increasing as the age of patients has increased with the application of transcatheter aortic valve replacement. The aim of this study was to determine the frequency with which the highest peak jet velocity (Vmax) is found at each imaging window, the degree to which neglecting nonapical imaging windows underestimates AS severity, and factors influencing the location of the optimal imaging window in contemporary patients. Echocardiograms obtained in 100 consecutive patients with severe AS from January 3 to May 23, 2012, in which all imaging windows were interrogated, were retrospectively analyzed. AS severity (aortic valve area and mean gradient) was calculated on the basis of the apical imaging window alone and the imaging window with the highest peak jet velocity. The left ventricular-aortic root angle measured in the parasternal long-axis view as well as clinical variables were correlated with the location of highest peak jet velocity. Vmax was most frequently obtained in the right parasternal window (50%), followed by the apex (39%). Subjects with acute angulation more commonly had Vmax at the right parasternal window (65% vs 43%, P = .05) and less commonly had Vmax at the apical window (19% vs 48%, P = .005), but Vmax was still located outside the apical imaging window in 52% of patients with obtuse aortic root angles. If nonapical windows were neglected, 8% of patients (eight of 100) were misclassified from high-gradient severe AS to low-gradient severe AS, and another 15% (15 of 100) with severe AS (aortic valve area < 1.0 cm(2)) were misclassified as having moderate AS (aortic valve area > 1.0 cm(2)). In this contemporary cohort, Vmax was located outside the apical imaging window in 61% of patients, and neglecting the nonapical imaging windows resulted in the misclassification of AS severity in 23% of patients. Aortic root angulation as measured by two-dimensional echocardiography influences the location of Vmax modestly. Despite increasing time constraints on many echocardiography laboratories, these data confirm that routine Doppler interrogation from multiple imaging windows is critical to accurately determine the severity of AS in contemporary clinical practice. Copyright © 2015 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.
A spectral model for signal elements isolated from zebrafish photopic electroretinogram
Nelson, Ralph; Singla, Nirmish
2009-01-01
The zebrafish photopic ERG sums isolatable elements. In each element red, blue, green and UV (r, g, b, u) cone signals combine in a way that reflects retinal organization. ERG responses to monochromatic stimuli of different wavelengths and irradiances were recorded on a white, rod suppressing background using superfused eyecups. Onset elements were isolated with glutamatergic blockers and response subtractions. CNQX blocked ionotropic (AMPA/kainate) glutamate receptors; L-AP4 or CPPG blocked metabotropic (mGluR6) glutamate receptors; TBOA blocked glutamate transporters; and L-Aspartate inactivated all glutamatergic mechanisms. Seven elements emerged: photopic PIII, the L-Aspartate-isolated cone response; b1, a CNQX-sensitive early b-wave element of inner retinal origin; PII, a photopic, CNQX-insensitive, composite b-wave element from ON bipolar cells; PIIm, an L-AP4/CPPG-sensitive, CNQX-insensitive metabotropic sub-element of PII; PIInm, an L-AP4/CPPG/CNQX-insensitive, non-metabotropic sub-element of PII; a1nm, a TBOA-sensitive, CNQX/L-AP4/CPPG-insensitive, non-metabotropic, post-photoreceptor a-wave element; and a2, a CNQX-sensitive a-wave element linked to OFF bipolar cells. The first five elements were fit with a spectral model that demonstrates independence of cone color pathways. From this Vmax and half-saturation values (k) for the contributing r- g- b- and u-cone signals were calculated. Two signal patterns emerged. For PIII or PIInm the Vmax order was Vr > Vg ≫ Vb ≈ Vu. For b1, PII, and PIIm the Vmax order was Vr ≈ Vb > Vg > Vu. In either pattern u-cone amplitude (Vu) was smallest, but u-cone sensitivity (ku362) was greatest, some 10-30 times greater than r-cone (kr570). The spectra of b1/PII/PIIm elements peaked near b-cone and u-cone absorbance maxima regardless of criteria, but the spectra of PIII/PIInm elements shifted from b- towards r-cone absorbance maxima as criterion levels increased. The greatest gains in Vmax relative to PIII occurred for the b- and u-cone signals in the b1/PII/PIIm b-wave elements. This suggests a high-gain, prolific metabotropic circuitry for b- and u-cone bipolar cells. PMID:19723365
Dependence of renal (Na+ + k+)-adenosine triphosphatase activity on thyroid status.
Lo, S C; August, T R; Liberman, U A; Edelman, I S
1976-12-25
In thyroidectomized rats, a single injection of L-2,,5,2'-triiodothyronine (T3) (50mug/100 g body weight) elicited at 45% increase in (Na+ + k+)-dependent adenosine triphosphatase (NaK-ATPase) activity of the membrane-rich fraction of renal cortex at the optimal time of response, 48 h after injection. Three successive doses of T3 (50 mug/100 g body weight), given on alternate days, increased NaK-ATPase by 67% in the renal cortex but had no significant effect on the outer medulla or the papilla. Moreover, T3 had no effect on Mg2+-dependent adenosine trisphatase (MgATPase) in cortex, cedulla, or papilla. Three doses of T3 (50 mug/100 g body weight) given on alternate days to thyroidectomized rats elecited a 134, 79, and 46% increase in Vmax for ATP, Na4, and K+, respectively. There were no changes in the Km for ATP or the K1/2 values for Na+ and K+. Two methods were used to estimate the effect of T3 on the number of NaK-ATPase units (assumed to represent the number of Na+ pump sites); rat renal plasma membrane fractions were incubated with [gamma-32P]ATP, Mg2+, and Na+; the 32P-labeled membrane protein yeild was quantitatively dependent on Na+ and was hydrolyzed on addition of K+. There was a linear correlation between the specific activity of NaK-ATPase (Vmax) and the amount of phosphorylated intermediate formed, in renal cortical membrane fractions from thyroidectomized rats given T3 or the diluent. There was also a linear correlation between the specific activity of NaK-ATPase (Vmax) and the amount of [3H]ouabain specifically bound (Na+-, Mg2+-, APT-dependent) to the NaK-ATPase preparation. Injection of T3 resulted in a 70% increase in NaK-ATPase activity, a 79% increase in formation of the phosphorylated intermediate, and a 65% increase in the [H]ouabain specifically bound to the NaK-ATPase system. The T3-dependent increases in Vmax for ATP, Na+, and K+ and the proportionate increases in the phosphorylated intermediate and in the amount of [3H]ouabain bound indicate that T3 increases the number of NaK-ATPase units and that this increase accounts for the increase in NaK-ATPase activity.
[Effects of methomyl on acetylcholinesterase in erythrocyte membrane and various brain areas].
Zhao, Fei; Li, Tao; Zhang, Changchun; Xu, Yiping; Xu, Hangong; Shi, Nian
2015-06-01
To study the toxicity of methomyl to acetylcholinesterase (AChE) in different regions. The optimal temperature and time for measurement of AChE activity were determined in vitro. The dose- and time-response relationships of methomyl with AChE activity in human erythrocyte membrane, rat erythrocyte membrane, cortical synapses, cerebellar synapses, hippocampal synapses, and striatal synapses were evaluated. The half maximal inhibitory concentration (IC50) and bimolecular rate constant (K) of methomyl for AChE activity in different regions were calculated, and the type of inhibition of AChE activity by methomyl was determined. AChE achieved the maximum activity at 370 °C, and the optimal time to determine initial reaction velocity was 0-17 min. There were dose- and time-response relationships between methomyl and AChE activity in the erythrocyte membrane and various brain areas. The IC50 value of methomyl for AChE activity in human erythrocyte membrane was higher than that in rat erythrocyte membrane, while the Ki value of methomyl for AChE activity in rat erythrocyte membrane was higher than that in human erythrocyte membrane. Among synapses in various brain areas, the striatum had the highest IC50 value, followed by the cerebellum, cerebral cortex, and hippocampus, while the cerebral cortex had the highest Ki value, followed by the hippocampus, striatum, and cerebellum. Lineweaver-Burk diagram demonstrated that with increasing concentration of methomyl, the maximum reaction velocity (Vmax) of AChE decreased, and the Michaelis constant (Km) remained the same. Methomyl is a reversible non-competitive inhibitor of AChE. AChE of rat erythrocyte membrane is more sensitive to methomyl than that of human erythrocyte membrane; the cerebral cortical synapses have the most sensitive AChE to methomyl among synapses in various brain areas.
Knoshaug, Eric P; Vidgren, Virve; Magalhães, Frederico; Jarvis, Eric E; Franden, Mary Ann; Zhang, Min; Singh, Arjun
2015-10-01
Genes encoding L-arabinose transporters in Kluyveromyces marxianus and Pichia guilliermondii were identified by functional complementation of Saccharomyces cerevisiae whose growth on L-arabinose was dependent on a functioning L-arabinose transporter, or by screening a differential display library, respectively. These transporters also transport D-xylose and were designated KmAXT1 (arabinose-xylose transporter) and PgAXT1, respectively. Transport assays using L-arabinose showed that KmAxt1p has K(m) 263 mM and V(max) 57 nM/mg/min, and PgAxt1p has K(m) 0.13 mM and V(max) 18 nM/mg/min. Glucose, galactose and xylose significantly inhibit L-arabinose transport by both transporters. Transport assays using D-xylose showed that KmAxt1p has K(m) 27 mM and V(max) 3.8 nM/mg/min, and PgAxt1p has K(m) 65 mM and V(max) 8.7 nM/mg/min. Neither transporter is capable of recovering growth on glucose or galactose in a S. cerevisiae strain deleted for hexose and galactose transporters. Transport kinetics of S. cerevisiae Gal2p showed K(m) 371 mM and V(max) 341 nM/mg/min for L-arabinose, and K(m) 25 mM and V(max) 76 nM/mg/min for galactose. Due to the ability of Gal2p and these two newly characterized transporters to transport both L-arabinose and D-xylose, one scenario for the complete usage of biomass-derived pentose sugars would require only the low-affinity, high-throughput transporter Gal2p and one additional high-affinity general pentose transporter, rather than dedicated D-xylose or L-arabinose transporters. Additionally, alignment of these transporters with other characterized pentose transporters provides potential targets for substrate recognition engineering. Copyright © 2015 John Wiley & Sons, Ltd.
Low-Concentration Kinetics of Atmospheric CH4 Oxidation in Soil and Mechanism of NH4+ Inhibition
Gulledge, Jay; Schimel, Joshua P.
1998-01-01
NH4+ inhibition kinetics for CH4 oxidation were examined at near-atmospheric CH4 concentrations in three upland forest soils. Whether NH4+-independent salt effects could be neutralized by adding nonammoniacal salts to control samples in lieu of deionized water was also investigated. Because the levels of exchangeable endogenous NH4+ were very low in the three soils, desorption of endogenous NH4+ was not a significant factor in this study. The Km(app) values for water-treated controls were 9.8, 22, and 57 nM for temperate pine, temperate hardwood, and birch taiga soils, respectively. At CH4 concentrations of ≤15 μl liter−1, oxidation followed first-order kinetics in the fine-textured taiga soil, whereas the coarse-textured temperate soils exhibited Michaelis-Menten kinetics. Compared to water controls, the Km(app) values in the temperate soils increased in the presence of NH4+ salts, whereas the Vmax(app) values decreased substantially, indicating that there was a mixture of competitive and noncompetitive inhibition mechanisms for whole NH4+ salts. Compared to the corresponding K+ salt controls, the Km(app) values for NH4+ salts increased substantially, whereas the Vmax(app) values remained virtually unchanged, indicating that NH4+ acted by competitive inhibition. Nonammoniacal salts caused inhibition to increase with increasing CH4 concentrations in all three soils. In the birch taiga soil, this trend occurred with both NH4+ and K+ salts, and the slope of the increase was not affected by the addition of NH4+. Hence, the increase in inhibition resulted from an NH4+-independent mechanism. These results show that NH4+ inhibition of atmospheric CH4 oxidation resulted from enzymatic substrate competition and that additional inhibition that was not competitive resulted from a general salt effect that was independent of NH4+. PMID:9797279
Lethal effect of electric fields on isolated ventricular myocytes.
de Oliveira, Pedro Xavier; Bassani, Rosana Almada; Bassani, José Wilson Magalhães
2008-11-01
Defibrillator-type shocks may cause electric and contractile dysfunction. In this study, we determined the relationship between probability of lethal injury and electric field intensity (E in isolated rat ventricular myocytes, with emphasis on field orientation and stimulus waveform. This relationship was sigmoidal with irreversible injury for E > 50 V/cm . During both threshold and lethal stimulation, cells were twofold more sensitive to the field when it was applied longitudinally (versus transversally) to the cell major axis. For a given E, the estimated maximum variation of transmembrane potential (Delta V(max)) was greater for longitudinal stimuli, which might account for the greater sensitivity to the field. Cell death, however, occurred at lower maximum Delta V(max) values for transversal shocks. This might be explained by a less steep spatial decay of transmembrane potential predicted for transversal stimulation, which would possibly result in occurrence of electroporation in a larger membrane area. For the same stimulus duration, cells were less sensitive to field-induced injury when shocks were biphasic (versus monophasic). Ours results indicate that, although significant myocyte death may occur in the E range expected during clinical defibrillation, biphasic shocks are less likely to produce irreversible cell injury.
Kubitscheck, U; Pratsch, L; Passow, H; Peters, R
1995-07-01
The activity of the plasma membrane calcium pump was measured in single cells. Human red blood cell ghosts were loaded with a fluorescent calcium indicator and either caged calcium and ATP (protocol A) or caged ATP and calcium (protocol B). In a suitably modified laser scanning microscope either calcium or ATP were released by a short UV light pulse. The time-dependent fluorescence intensity of the calcium indicator was then followed in single ghosts by repetitive confocal imaging. The fluorescence intensity was converted into calcium concentration, which in turn was used to derive the kinetic parameters of the calcium pump, the Michaelis-Menten constant Km, and the maximal transport rate vmax. Km and vmax values derived in this manner were 24 +/- 14 microM and 1.0 +/- 0.6 microM/(ghost s) for protocol A, and 4 +/- 3 microM and 1.0 +/- 0.6 microM/(ghost s) for protocol B, respectively. The difference between A and B is presumably caused by calmodulin, which is inactive in the experiments with protocol A. The possibilities to extend the new method to living nucleus-containing cells transiently transfected with mutants of the plasma membrane calcium pump are discussed.
Nigam, Ashwini Kumar; Srivastava, Nidhi; Rai, Amita Kumari; Kumari, Usha; Mittal, Ajay Kumar; Mittal, Swati
2014-05-01
The presence of cholinesterase (ChE) activity in skin mucus of three carps, Cirrhinus mrigala, Labeo rohita, and Catla catla and its applicability as biomarker of the organophosphorus insecticide exposure were investigated. Biochemical characterization, using specific substrates and inhibitors, indicated that measured esterase activity in skin mucus was mainly owing to ChEs. Significant difference in the proportion of acetylcholinesterase and butyrylcholinesterase activities was observed in skin mucus of three carps. Enzyme kinetic analysis, using the substrate acetylthiocholine iodide revealed significantly high Vmax value in C. catla compared to that in L. rohita and C. mrigala. In contrast, Vmax value using the substrate butyrylthiocholine iodide was significantly high in C. mrigala than in L. rohita and C. catla. In vitro treatment of skin mucus of three carps, with the organophosphorus insecticide Nuvan®, showed strong inhibition of ChE activities. In vivo experiments conducted using C. mrigala and exposing the fish to the sublethal test concentrations (5 and 15 mg/L) of the insecticide also revealed significant inhibition of ChE activity in mucus. In C. mrigala, exposed to the sublethal test concentrations of the insecticide for 4 days and then kept for recovery for 16 days, mucus ChE activity recovered to the control level. Thus, ChE activity in skin mucus could be considered a good biomarker of the organophosphorus insecticide exposure to fish and a useful tool in monitoring environmental toxicity. Copyright © 2012 Wiley Periodicals, Inc., a Wiley company.
Significance of the enzymatic properties of yeast S39A enolase to the catalytic mechanism.
Brewer, J M; Glover, C V; Holland, M J; Lebioda, L
1998-04-02
The S39A mutant of yeast enolase (isozyme 1), prepared by site-directed mutagenesis, has a relative Vmax of 0.01% and an activation constant for Mg2+ ca. 10-fold higher, compared with native enzyme. It is correctly folded. There is little effect of solvent viscosity on activity. We think that the loop Ser36-His43 fails to move to the 'closed' position upon catalytic Mg2+ binding, weakening several electrostatic interactions involved in the mechanism.
Wu, Yue; Jiang, Ying; Jiao, Jiaguo; Liu, Manqiang; Hu, Feng; Griffiths, Bryan S; Li, Huixin
2014-02-01
Laccases play an important role in the degradation of soil phenol or phenol-like substance and can be potentially used in soil remediation through immobilization. Iron and aluminum minerals can adsorb extracellular enzymes in soil environment. In the present study, we investigated the adsorptive interaction of laccase, from the white-rot fungus Trametes versicolor, with soil iron and aluminum minerals and characterized the properties of the enzyme after adsorption to minerals. Results showed that both soil iron and aluminum minerals adsorbed great amount of laccase, independent of the mineral specific surface areas. Adsorbed laccases retained 26-64% of the activity of the free enzyme. Compared to the free laccase, all adsorbed laccases showed higher Km values and lower Vmax values, indicating a reduced enzyme-substrate affinity and a lower rate of substrate conversion in reactions catalyzed by the adsorbed laccase. Adsorbed laccases exhibited increased catalytic activities compared to the free laccase at low pH, implying the suitable application of iron and aluminum mineral-adsorbed T. versicolor laccase in soil bioremediation, especially in acid soils. In terms of the thermal profiles, adsorbed laccases showed decreased thermal stability and higher temperature sensitivity relative to the free laccase. Moreover, adsorption improved the resistance of laccase to proteolysis and extended the lifespan of laccase. Our results implied that adsorbed T. versicolor laccase on soil iron and aluminum minerals had promising potential in soil remediation. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
Single transporter for sulfate, selenate, and selenite in Escherichia coli K-12.
Lindblow-Kull, C; Kull, F J; Shrift, A
1985-01-01
A Michaelis-Menten kinetic analysis of the transport of sulfate, selenate, and selenite into Escherichia coli K-12 showed that the three dianions were transported by the same carrier. Km values, used as a measure of the affinity of each ligand for the carrier, showed that sulfate was bound 5 times more tightly than selenate and 37 times more tightly than selenite. The specificity ratio, Vmax/Km, also indicated that sulfate was the preferred ligand. There was little difference in the ratios for selenate and selenite. PMID:3897189
Enhanced catalysis of L-asparaginase from Bacillus licheniformis by a rational redesign.
Sudhir, Ankit P; Agarwaal, Viplove V; Dave, Bhaumik R; Patel, Darshan H; Subramanian, R B
2016-05-01
L-Asparaginase (3.5.1.1) being antineoplastic in nature are used in the treatment of acute lymphoblastic leukemia (ALL). However glutaminase activity is the cause of various side effects when used as a drug against acute lymphoblastic leukemia (ALL). Therefore, there is a need of a novel L-asparaginase (L-ASNase) with low or no glutaminase activity. Such a property has been observed with L-ASNase from B. licheniformis (BliA). The enzyme being glutaminase free in nature paved the way for its improvement to achieve properties similar to or near to the commercially available L-ASNases. Rational enzyme engineering approach resulted in four mutants: G238N, E232A, D103V and Q112H. Among these the mutant enzyme, D103V, had a specific activity of 597.7IU/mg, which is higher than native (rBliA) (407.65IU/mg). Moreover, when the optimum temperature and in vitro half life were studied and compared with native BliA, D103V mutant BliA was better, showing tolerance to higher temperatures and a 3 fold higher half life. Kinetic studies revealed that the mutant D103V L-ASNase has increased substrate affinity, with Km value of 0.42mM and Vmax of 2778.9μmolmin(-1). Copyright © 2016 Elsevier Inc. All rights reserved.
Carnosine: effect on aging-induced increase in brain regional monoamine oxidase-A activity.
Banerjee, Soumyabrata; Poddar, Mrinal K
2015-03-01
Aging is a natural biological process associated with several neurological disorders along with the biochemical changes in brain. Aim of the present investigation is to study the effect of carnosine (0.5-2.5μg/kg/day, i.t. for 21 consecutive days) on aging-induced changes in brain regional (cerebral cortex, hippocampus, hypothalamus and pons-medulla) mitochondrial monoamine oxidase-A (MAO-A) activity with its kinetic parameters. The results of the present study are: (1) The brain regional mitochondrial MAO-A activity and their kinetic parameters (except in Km of pons-medulla) were significantly increased with the increase of age (4-24 months), (2) Aging-induced increase of brain regional MAO-A activity including its Vmax were attenuated with higher dosages of carnosine (1.0-2.5μg/kg/day) and restored toward the activity that observed in young, though its lower dosage (0.5μg/kg/day) were ineffective in these brain regional MAO-A activity, (3) Carnosine at higher dosage in young rats, unlike aged rats significantly inhibited all the brain regional MAO-A activity by reducing their only Vmax excepting cerebral cortex, where Km was also significantly enhanced. These results suggest that carnosine attenuated the aging-induced increase of brain regional MAO-A activity by attenuating its kinetic parameters and restored toward the results of MAO-A activity that observed in corresponding brain regions of young rats. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Tang, Jiajie; Guo, Su; Wang, Wei; Wei, Wei; Wei, Dongzhi
2015-11-04
We expressed a novel alkaline-adapted beta-mannanase gene and characterized the enzyme for potential industrial applications. We obtained a mannanase gene (named man(B)) from Bacillus pumilus Nsic2 and expressed the gene man(B) in Escherichia coli and Bacillus subtilis. Furthermore, we characterized the enzyme. The gene man(B) had an open reading frame of 1104 bp that encoded a polypeptide of 367-amino-acid beta-mannanase (Man(B)). The protein sequence showed the highest identity with the beta-mannanase from B. pumilus CCAM080065. We expressed the gene man(B) in E. coli BL21 (DE3) with the enzyme activity of 11021.3 U/mL. Compared with other mannanases, Man(B) showed higher stability under alkaline conditions and was stable at pH6.0 -9.0. The specific activity of purified Man(B) was 4191 ± 107 U/mg. The K(m) and V(max) values of purified Man(B) were 35.7 mg/mL and 14.9 μmol/(mL x min), respectively. Meanwhile, we achieved recombinant protein secretion expression in B. subtilis WB800N. We achieved heterologous expression of the gene man(B) and characterized its enzyme. The alkaline-adapted Man(B) showed potential value in industrial applications due to its pH stability.
Miura, Hiroshi; Mogi, Tatsushi; Ano, Yoshitaka; Migita, Catharina T; Matsutani, Minenosuke; Yakushi, Toshiharu; Kita, Kiyoshi; Matsushita, Kazunobu
2013-06-01
Cyanide-insensitive terminal quinol oxidase (CIO) is a subfamily of cytochrome bd present in bacterial respiratory chain. We purified CIO from the Gluconobacter oxydans membranes and characterized its properties. The air-oxidized CIO showed some or weak peaks of reduced haemes b and of oxygenated and ferric haeme d, differing from cytochrome bd. CO- and NO-binding difference spectra suggested that haeme d serves as the ligand-binding site of CIO. Notably, the purified CIO showed an extraordinary high ubiquinol-1 oxidase activity with the pH optimum of pH 5-6. The apparent Vmax value of CIO was 17-fold higher than that of G. oxydans cytochrome bo3. In addition, compared with Escherichia coli cytochrome bd, the quinol oxidase activity of CIO was much more resistant to cyanide, but sensitive to azide. The Km value for O2 of CIO was 7- to 10-fold larger than that of G. oxydans cytochrome bo3 or E. coli cytochrome bd. Our results suggest that CIO has unique features attributable to the structure and properties of the O2-binding site, and thus forms a new sub-group distinct from cytochrome bd. Furthermore, CIO of acetic acid bacteria may play some specific role for rapid oxidation of substrates under acidic growth conditions.
Stuchal, Leah D; Kleinow, Kevin M; Stegeman, John J; James, Margaret O
2006-06-01
Exposure to the organochlorine pesticide methoxychlor (MXC) is associated with endocrine disruption in several species through biotransformation to mono-desmethyl-MXC (OH-MXC) and bis-desmethyl-MXC (HPTE), which interact with estrogen receptors. The biotransformation of [14C]methoxychlor was examined in channel catfish (Ictalurus punctatus), a freshwater species found in the southern United States. Hepatic microsomes formed OH-MXC and HPTE, assessed by comigration with authentic standards. The Km for OH-MXC formation by control liver microsomes was 3.8 +/- 1.3 microM (mean +/- S.D., n = 4), and Vmax was 131 +/- 53 pmol/min/mg protein. These values were similar to those of catfish pretreated with 2 mg/kg methoxychlor i.p. for 6 days (Km 3.3 +/- 0.8 microM and Vmax 99 +/- 17 pmol/min/mg) but less (p < 0.05) than the kinetic parameters for catfish treated with 3-methylcholanthrene (3-MC), which had Km of 6.0 +/- 1.1 microM and Vmax of 246 +/- 6 pmol/min/mg protein. Liver microsomes from 3-MC-treated fish produced significantly more of the secondary metabolite and more potent estrogen, HPTE. Intestinal microsomes formed OH-MXC at lower rates than liver. Methoxychlor pretreatment significantly reduced intestinal metabolite formation from 32 +/- 4 to 15 +/- 6 pmol/min/mg (mean +/- S.D., n = 4), whereas 3-MC treatment significantly increased OH-MXC production to 72 +/- 22 pmol/min/mg. Ketoconazole, clotrimazole, and alpha-naphthoflavone all decreased the production of OH-MXC in liver microsomes, whereas alpha-naphthoflavone stimulated HPTE formation, suggesting that CYP1 and CYP3 family isozymes demethylated methoxychlor. The results suggest that the formation of estrogenic metabolites from methoxychlor would be more rapid in catfish coexposed to CYP1 inducers.
Changes in calcium uptake rate by rat cardiac mitochondria during postnatal development.
Bassani, R A; Fagian, M M; Bassani, J W; Vercesi, A E
1998-10-01
Ca2+ uptake, transmembrane electrical potential (Deltapsim) and oxygen consumption were measured in isolated ventricular mitochondria of rats from 3 days to 5 months of age. Estimated values of ruthenium red-sensitive, succinate-supported maximal rate of Ca2+ uptake (Vmax, expressed as nmol Ca2+/min/mg protein) were higher in neonates and gradually fell during postnatal development (from 435+/-24 at 3-6 days, to 156+/-10 in adults,P<0.001), whereas K0.5 values (approximately 10 microM were not significantly affected by age. Under similar conditions, mitochondria from adults (5 months old) and neonates (4-6 days old) showed comparable state 4 (succinate and alpha-ketoglutarate as substrates) and state 3ADP (alpha-ketoglutarate-supported) respiration rates, as well as Deltapsim values (approximately-150 mV). Respiration-independent Deltapsim and Ca2+ uptake, supported by valinomycin-induced K+ efflux were also investigated at these ages. A transient Deltapsim (approximately -30 mV) was evoked by valinomycin in both neonatal and adult mitochondria. Respiration-independent Ca2+ uptake was also transient, but its initial rate was significantly higher in neonates than in adults (49. 4+/-10.0v 28.0+/-5.7 mmol Ca2+/min/mg protein,P<0.01). These results indicate that Ca2+ uptake capacity of rat cardiac mitochondria is remarkably high just after birth and declines over the first weeks of postnatal life, without change in apparent affinity of the transporter. Increased mitochondrial Ca2+ uptake rate in neonates appears to be related to the uniporter itself, rather than to modification of the driving force of the transport. Copyright 1998 Academic Press
Huang, D Y; Ichikawa, Y
1997-03-07
Rabbit liver cytosol exhibits very high retinol dehydrogenase activity. At least two retinol dehydrogenases were demonstrated to exist in rabbit liver cytosol, and the major one, a cytosolic NADP(H)-dependent retinol dehydrogenase (systematic name: retinol oxidoreductase) was purified about 1795-fold to electrophoretic and column chromatographic homogeneity by a procedure involving column chromatography on AF-Red Toyopearl twice and then hydroxyapatite. Its molecular mass was estimated to be 34 kDa by SDS-PAGE, and 144 kDa by HPLC gel filtration, suggesting that it is a homo-tetramer. The enzyme uses free retinol and retinal, and their complexes with CRBP as substrates in vitro. The optimum pH values for retinol oxidation of free retinol and CRBP-retinol were 8.8-9.2 and 8.0-9.0, respectively, and those for retinal reduction of free retinal and retinal-CRBP were the same, 7.0-7.6. Km for free retinol and Vmax for retinal formation were 2.8 microM and 2893 nmol/min per mg protein at 37 degrees C (pH 9.0) and the corresponding values with retinol-CRBP as a substrate were 2.5 microM and 2428 nmol/min per mg protein at 37 degrees C (pH 8.6); Km for free retinal and Vmax for retinol formation were 6.5 microM and 4108 nmol/min per mg protein, and the corresponding values with retinal-CRBP as a substrate were 5.1 microM and 3067 nmol/min per mg protein at 37 degrees C, pH 7.4. NAD(H) was not effective as a cofactor. 4-Methylpyrazole was a weak inhibitor (IC50 = 28 mM) of the enzyme, and ethanol was neither a substrate nor an inhibitor of the enzyme. This enzyme exhibits relatively broad aldehyde reductase activity and some ketone reductase activity, the activity for aromatic substitutive aldehydes being especially high and effective. Whereas, except in the case of retinol, oxidative activity toward the corresponding alcohols was not detected. This novel cytosolic enzyme may play an important role in vivo in maintaining the homeostasis of retinal, the substrate of retinoic acid synthesis, at least in rabbit liver, since a high concentration of retinol in liver and the lower Km of the enzyme for retinol force the oxidative reaction, while higher activity of retinal reductase at physiological pH forces the reductive reaction.
Predicting vertical jump height from bar velocity.
García-Ramos, Amador; Štirn, Igor; Padial, Paulino; Argüelles-Cienfuegos, Javier; De la Fuente, Blanca; Strojnik, Vojko; Feriche, Belén
2015-06-01
The objective of the study was to assess the use of maximum (Vmax) and final propulsive phase (FPV) bar velocity to predict jump height in the weighted jump squat. FPV was defined as the velocity reached just before bar acceleration was lower than gravity (-9.81 m·s(-2)). Vertical jump height was calculated from the take-off velocity (Vtake-off) provided by a force platform. Thirty swimmers belonging to the National Slovenian swimming team performed a jump squat incremental loading test, lifting 25%, 50%, 75% and 100% of body weight in a Smith machine. Jump performance was simultaneously monitored using an AMTI portable force platform and a linear velocity transducer attached to the barbell. Simple linear regression was used to estimate jump height from the Vmax and FPV recorded by the linear velocity transducer. Vmax (y = 16.577x - 16.384) was able to explain 93% of jump height variance with a standard error of the estimate of 1.47 cm. FPV (y = 12.828x - 6.504) was able to explain 91% of jump height variance with a standard error of the estimate of 1.66 cm. Despite that both variables resulted to be good predictors, heteroscedasticity in the differences between FPV and Vtake-off was observed (r(2) = 0.307), while the differences between Vmax and Vtake-off were homogenously distributed (r(2) = 0.071). These results suggest that Vmax is a valid tool for estimating vertical jump height in a loaded jump squat test performed in a Smith machine. Key pointsVertical jump height in the loaded jump squat can be estimated with acceptable precision from the maximum bar velocity recorded by a linear velocity transducer.The relationship between the point at which bar acceleration is less than -9.81 m·s(-2) and the real take-off is affected by the velocity of movement.Mean propulsive velocity recorded by a linear velocity transducer does not appear to be optimal to monitor ballistic exercise performance.
Predicting Vertical Jump Height from Bar Velocity
García-Ramos, Amador; Štirn, Igor; Padial, Paulino; Argüelles-Cienfuegos, Javier; De la Fuente, Blanca; Strojnik, Vojko; Feriche, Belén
2015-01-01
The objective of the study was to assess the use of maximum (Vmax) and final propulsive phase (FPV) bar velocity to predict jump height in the weighted jump squat. FPV was defined as the velocity reached just before bar acceleration was lower than gravity (-9.81 m·s-2). Vertical jump height was calculated from the take-off velocity (Vtake-off) provided by a force platform. Thirty swimmers belonging to the National Slovenian swimming team performed a jump squat incremental loading test, lifting 25%, 50%, 75% and 100% of body weight in a Smith machine. Jump performance was simultaneously monitored using an AMTI portable force platform and a linear velocity transducer attached to the barbell. Simple linear regression was used to estimate jump height from the Vmax and FPV recorded by the linear velocity transducer. Vmax (y = 16.577x - 16.384) was able to explain 93% of jump height variance with a standard error of the estimate of 1.47 cm. FPV (y = 12.828x - 6.504) was able to explain 91% of jump height variance with a standard error of the estimate of 1.66 cm. Despite that both variables resulted to be good predictors, heteroscedasticity in the differences between FPV and Vtake-off was observed (r2 = 0.307), while the differences between Vmax and Vtake-off were homogenously distributed (r2 = 0.071). These results suggest that Vmax is a valid tool for estimating vertical jump height in a loaded jump squat test performed in a Smith machine. Key points Vertical jump height in the loaded jump squat can be estimated with acceptable precision from the maximum bar velocity recorded by a linear velocity transducer. The relationship between the point at which bar acceleration is less than -9.81 m·s-2 and the real take-off is affected by the velocity of movement. Mean propulsive velocity recorded by a linear velocity transducer does not appear to be optimal to monitor ballistic exercise performance. PMID:25983572
Debnam, E S; Levin, R J
1975-01-01
The effects of dietary restriction on the kinetics of absorption in vivo of glucose, galactose and alpha-methyl glucoside were assessed by electrical and chemical methods in the rat jejunum. 2. The 'apparent Km', maximum absorption or Vmax (mu-mole/10 cm. 15 min) and maximum potential difference (p.d.max) were obtained for the jejunal electrogenic active transfer mechanism from the transfer p.d.s and the chemical absorption data corrected for diffusion using various graphical kinetic plots. 3. Fasting for 3 days greatly decreased the 'apparent Kms', obtained from electrical or chemical data, for all the sugars but had no effect on those for L-valine or L-methionine. Semistarvation caused a less pronounced reduction of the 'apparent Kms' for the sugars. The dietary-induced change in 'apparent Km' for glucose was also observed in the fasted hamster. One interpretation of these changes is that the affinity of the carriers for sugars increases during dietary restriction; the greater the level of restriction the greater the increase. 4. Fasting and semistarvation caused large reductions in the Vmax. These reductions were correlated with a reduced enterocyte population estimated by changes in enterocyte column size. 5. The reduction in the Vmax for galactose was mainly accounted for by the decrease in enterocyte population. In the case of glucose, other factors such as reduced enterocyte metabolism or changes in the carriers must be involved to explain the discrepancy between the large decrease in Vmax and the enterocyte column size. 6. Fasting and semi-starvation had complex, differential actions on the p.d.max for glucose, galactose and alpha-methyl glucoside. These changes did not correlate with those observed in the Vmax measured chemically. 7. A standard diet obtained from two commercial sources was found to differ greatly in its effect on the electrogenic transfer system for alpha-methyl glucoside but had no effect on those for galactose and glucose. PMID:1206572
Hata, H; Shimizu, S; Hattori, S; Yamada, H
1989-02-24
Ketopantoyl-lactone reductase (2-dehydropantoyl-lactone reductase, EC 1.1.1.168) was purified and crystallized from cells of Candida parapsilosis IFO 0708. The enzyme was found to be homogeneous on ultracentrifugation, high-performance gel-permeation liquid chromatography and SDS-polyacrylamide gel electrophoresis. The relative molecular mass of the native and SDS-treated enzyme is approximately 40,000. The isoelectric point of the enzyme is 6.3. The enzyme was found to catalyze specifically the reduction of a variety of natural and unnatural polyketones and quinones other than ketopantoyl lactone in the presence of NADPH. Isatin and 5-methylisatin are rapidly reduced by the enzyme, the Km and Vmax values for isatin being 14 microM and 306 mumol/min per mg protein, respectively. Ketopantoyl lactone is also a good substrate (Km = 333 microM and Vmax = 481 mumol/min per mg protein). Reverse reaction was not detected with pantoyl lactone and NADP+. The enzyme is inhibited by quercetin, several polyketones and SH-reagents. 3,4-Dihydroxy-3-cyclobutene-1,2-dione, cyclohexenediol-1,2,3,4-tetraone and parabanic acid are uncompetitive inhibitors for the enzyme, the Ki values being 1.4, 0.2 and 3140 microM, respectively, with isatin as substrate. Comparison of the enzyme with the conjugated polyketone reductase of Mucor ambiguus (S. Shimizu, H. Hattori, H. Hata and H. Yamada (1988) Eur. J. Biochem. 174, 37-44) and ketopantoyl-lactone reductase of Saccharomyces cerevisiae suggested that ketopantoyl-lactone reductase is a kind of conjugated polyketone reductase.
Kinetic characterization of arginine deiminase and carbamate kinase from Streptococcus pyogenes M49.
Hering, Silvio; Sieg, Antje; Kreikemeyer, Bernd; Fiedler, Tomas
2013-09-01
Streptococcus pyogenes (group A Streptococcus, GAS) is an important human pathogen causing mild superficial infections of skin and mucous membranes, but also life-threatening systemic diseases. S. pyogenes and other prokaryotic organisms use the arginine deiminase system (ADS) for survival in acidic environments. In this study, the arginine deiminase (AD), and carbamate kinase (CK) from S. pyogenes M49 strain 591 were heterologously expressed in Escherichia coli DH5α, purified, and kinetically characterized. AD and CK from S. pyogenes M49 share high amino acid sequence similarity with the respective enzymes from Lactococcus lactis subsp. lactis IL1403 (45.6% and 53.5% identical amino acids) and Enterococcus faecalis V583 (66.8% and 66.8% identical amino acids). We found that the arginine deiminase of S. pyogenes is not allosterically regulated by the intermediates and products of the arginine degradation (e.g., ATP, citrulline, carbamoyl phosphate). The Km and Vmax values for arginine were 1.13±0.12mM (mean±SD) and 1.51±0.07μmol/min/mg protein. The carbamate kinase is inhibited by ATP but unaffected by arginine and citrulline. The Km and Vmax values for ADP were 0.72±0.08mM and 1.10±0.10μmol/min/mg protein and the Km for carbamoyl phosphate was 0.65±0.07mM. The optimum pH and temperature for both enzymes were 6.5 and 37°C, respectively. Copyright © 2013 Elsevier Inc. All rights reserved.
Effect of saposins on acid sphingomyelinase.
Tayama, M; Soeda, S; Kishimoto, Y; Martin, B M; Callahan, J W; Hiraiwa, M; O'Brien, J S
1993-01-01
The effect of saposins (A, B, C and D) on acid sphingomyelinase activity was determined using a crude human kidney sphingomyelinase preparation and a purified sphingomyelinase preparation from human placenta. Saposin D stimulated the activity of the crude enzyme by increasing its apparent Km and Vmax. values for sphingomyelin hydrolysis. Unlike the crude enzyme, the activity of the purified enzyme was strongly inhibited by saposin D as well as other saposins. Saposin D decreased the apparent Km and Vmax values of purified sphingomyelinase activity. The effects of saposin D on the activity of different sphingomyelinase preparations appear to depend on Triton X-100, which is present in the crude enzyme but not in the purified enzyme. When the detergent was removed from the crude preparation, the effect of saposin D changed from being stimulatory to inhibitory. Conversely, when the detergent is added to the purified enzyme, the effect of saposin D on sphingomyelinase activity changed from being inhibitory to stimulatory. While other saposins were inhibitory or had no effect on sphingomyelinase activity in the above assay system, not only saposin D but also saposins A and C exhibited a stimulatory effect upon purified sphingomyelinase activity when the substrate, sphingomyelin, was added in the form of liposomes without detergent. Saposin B was not only inhibitory in the liposome system, but also reduced the stimulatory effect of saposins A, C and D. These observations indicate that the stimulatory effect of saposins A, C and D on acid sphingomyelinase activity is greatly influenced by the physical environment of the enzyme and suggest that similar effects by saposins may be exerted in lysosomal membranes. PMID:8452527
Mali, Aniket V; Bhise, Sunita S; Katyare, Surendra S; Hegde, Mahabaleshwar V
2018-01-01
Recent studies have been noted that the erythrocytes from Type II diabetic patients show significantly altered structural and functional characteristics along with the changed intracellular concentrations of glycolytic intermediates. More recent studies from our laboratory have shown that the activities of enzymes of glycolytic pathway changed significantly in RBCs from Type II diabetic patients. In particular the levels of lactate dehydrogenase (LDH) increased significantly. Lactic acidosis is an established feature of diabetes and LDH plays a crucial role in conversion of pyruvate to lactate and reportedly, the levels of lactate are significantly high which is consistent with our observation on increased levels of LDH. Owing to this background, we examined the role of erythrocyte LDH in lactic acidosis by studying its kinetics properties in Type II diabetic patients. Km, Vmax and apparent catalytic efficiency were determined using pyruvate and NADH as the substrates. With pyruvate as the substrate the Km values were comparable but Vmax increased significantly in the diabetic group. With NADH as the substrate the enzyme activity of the diabetic group resolved in two components as against a single component in the controls. The Apparent Kcat and Kcat/Km values for pyruvate increased in the diabetic group. The Ki for pyruvate increased by two fold for the enzyme from diabetic group with a marginal decrease in Ki for NADH. The observed changes in catalytic attributes are conducive to enable the enzyme to carry the reaction in forward direction towards conversion of pyruvate to lactate leading to lactic acidosis.
Gabriel, N E; Agman, N V; Roberts, M F
1987-11-17
Short-chain lecithin/long-chain phospholipid unilamellar vesicles (SLUVs), unlike pure long-chain lecithin vesicles, are excellent substrates for water-soluble phospholipases. Hemolysis assays show that greater than 99.5% of the short-chain lecithin is partitioned in the bilayer. In these binary component vesicles, the short-chain species is the preferred substrate, while the long-chain phospholipid can be treated as an inhibitor (phospholipase C) or poor substrate (phospholipase A2). For phospholipase C Bacillus cereus, apparent Km and Vmax values show that bilayer-solubilized diheptanoylphosphatidylcholine (diheptanoyl-PC) is nearly as good a substrate as pure micellar diheptanoyl-PC, although the extent of short-chain lecithin hydrolysis depends on the phase state of the long-chain lipid. For phospholipase A2 Naja naja naja, both Km and Vmax values show a greater range: in a gel-state matrix, diheptanoyl-PC is hydrolyzed with micellelike kinetic parameters; in a liquid-crystalline matrix, the short-chain lecithin becomes comparable to the long-chain component. Both enzymes also show an anomalous increase in specific activity toward diheptanoyl-PC around the phase transition temperature of the long-chain phospholipid. Since the short-chain lecithin does not exhibit a phase transition, this must reflect fluctuations in head-group area or vertical motions of the short-chain lecithin caused by surrounding long-chain lecithin molecules. These results are discussed in terms of a specific model for SLUV hydrolysis and a general explanation for the "interfacial activation" observed with water-soluble phospholipases.
Cytochrome P450 isoenzymes involved in rat liver microsomal metabolism of californine and protopine.
Paul, Liane D; Springer, Dietmar; Staack, Roland F; Kraemer, Thomas; Maurer, Hans H
2004-02-06
Studies are described on the cytochrome P450 (CYP) isoenzyme dependence of the main metabolic steps of the Eschscholtzia californica alkaloids californine and protopine using rat liver microsomes. Preparations of E. californica are in use as phytopharmaceuticals and as herbal drugs of abuse. CYP isoenzyme dependences were studied using specific chemical inhibitors for CYP1A2, CYP2D1, and CYP3A2 (alpha-naphthoflavone, quinine, and ketoconazole, respectively). CYP2C11 was inhibited by specific antibodies for lack of specific chemical inhibitors. Californine N-demethylation was mainly catalyzed by CYP3A2 and to a minor extent by CYP1A2 and CYP2D1, but not by CYP2C11. CYP2D1 and CYP2C11 were shown to be mainly involved in demethylenation of both, californine and protopine, while CYP1A2 and CYP3A2 showed only minor contribution. Kinetic parameters of the reactions were established. K(m) and V(max) values for the californine N-demethylation were 4.5+/-4.7 microM and 22.9+/-13.7 min/mg protein (high affinity) and 161.3+/-16.7 microM and 311.8+/-39.4 min/mg protein (low affinity), respectively. Californine demethylenation and protopine demethylenation showed substrate inhibition and K(m) and V(max) values were 5.0+/-0.5 and 7.1+/-0.6 microM and 83.3+/-2.6 and 160.7+/-4.0 min/mg protein, respectively.
Characteristics of butanol metabolism in alcohol dehydrogenase-deficient deermice.
Alderman, J A; Kato, S; Lieber, C S
1989-01-01
Deermice lacking the low-Km alcohol dehydrogenase eliminated butan-1-ol, a substrate for microsomal oxidation but not for catalase, at 117 mumol/min per kg body wt. Microsomal fractions and hepatocytes metabolized butan-1-ol also (Vmax. = 6.7 nmol/min per nmol of cytochrome P-450, Km = 0.85 mM; Vmax. = 5.3 nmol/min per 10(6) cells, Km = 0.71 mM respectively). These results are consistent with alcohol oxidation by the microsomal system in these deermice. PMID:2930472
Gonnelli, Margherita; Vestri, Stefano; Santinelli, Chiara
2013-12-01
This study reports the first information on extracellular enzymatic activity (EEA) combined with a study of DOM dynamics at the Arno River mouth. DOM dynamics was investigated from both a quantitative (dissolved organic carbon, DOC) and a qualitative (absorption and fluorescence of chromophoric DOM, CDOM) perspective. The data here reported highlight that the Arno River was an important source of both DOC and CDOM for this coastal area. CDOM optical properties suggested that terrestrial DOM did not undergo simple dilution at the river mouth but, other physical-chemical and biological processes were probably at work to change its molecular characteristics. This observation was further supported by the "potential" enzymatic activity of β-glucosidase (BG) and leucine aminopeptidase (LAP). Their Vmax values were markedly higher in the river water than in the seawater and their ratio suggested that most of the DOM used by microbes in the Arno River was polysaccharide-like, while in the seawater it was mainly protein-like. © 2013. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Blagodatskaya, Evgenia; Blagodatsky, Sergey; Khomyakov, Nikita; Myachina, Olga; Kuzyakov, Yakov
2016-02-01
Short-term acceleration of soil organic matter decomposition by increasing temperature conflicts with the thermal adaptation observed in long-term studies. Here we used the altitudinal gradient on Mt. Kilimanjaro to demonstrate the mechanisms of thermal adaptation of extra- and intracellular enzymes that hydrolyze cellulose, chitin and phytate and oxidize monomers (14C-glucose) in warm- and cold-climate soils. We revealed that no response of decomposition rate to temperature occurs because of a cancelling effect consisting in an increase in half-saturation constants (Km), which counteracts the increase in maximal reaction rates (Vmax with temperature). We used the parameters of enzyme kinetics to predict thresholds of substrate concentration (Scrit) below which decomposition rates will be insensitive to global warming. Increasing values of Scrit, and hence stronger canceling effects with increasing altitude on Mt. Kilimanjaro, explained the thermal adaptation of polymer decomposition. The reduction of the temperature sensitivity of Vmax along the altitudinal gradient contributed to thermal adaptation of both polymer and monomer degradation. Extrapolating the altitudinal gradient to the large-scale latitudinal gradient, these results show that the soils of cold climates with stronger and more frequent temperature variation are less sensitive to global warming than soils adapted to high temperatures.
Relationships between maximal anaerobic power of the arms and legs and javelin performance.
Bouhlel, E; Chelly, M S; Tabka, Z; Shephard, R
2007-06-01
The aim of this study was to examine relationships between maximal anaerobic power, as measured by leg and arm force-velocity tests, estimates of local muscle volume and javelin performance. Ten trained national level male javelin throwers (mean age 19.6+/- 2 years) participated in this study. Maximal anaerobic power, maximal force and maximal velocity were measured during leg (Wmax-L) and arm (Wmax-A) force-velocity tests, performed on appropriately modified forms of Monark cycle ergometer. Estimates of leg and arm muscle volume were made using a standard anthropometric kit. Maximal force of the leg (Fmax-L) was significantly correlated with estimated leg muscle volume (r=0.71, P<0.05). Wmax-L and Wmax-A were both significantly correlated with javelin performance (r=0.76, P<0.01; r=0.71, P <0.05, respectively). Maximal velocity of the leg (Vmax-L) was also significantly correlated with throwing performance (r=0.83; P<0.001). Wmax of both legs and arms were significantly correlated with javelin performance, the closest correlation being for Wmax-L; this emphasizes the importance of the leg muscles in this sport. Fmax-L and Vmax-L were related to muscle volume and to javelin performance, respectively. Force-velocity testing may have value in regulating conditioning and rehabilitation in sports involving throwing.
Kessler, W; Heilmaier, H; Kreuzer, P; Shen, J H; Filser, M; Filser, J G
1990-01-01
Male Wistar rats exposed to atmospheric n-hexane excreted in their urine substances which gave rise to absorption spectra like those of pyrroles after the reaction with Ehrlich's reagent. A simple spectrophotometric assay was developed to determine these "pyrrole-like substances" in urine. Their excretion kinetics were evaluated by exposing rats for 8 h to atmospheric n-hexane concentrations between 50 and 3000 ppm. The dose-response curve revealed saturation kinetics according to Michaelis-Menten, Vmax being 1.12 [delta E526.ml urine/8 h n-hexane exposure] and "Km", the atmospheric n-hexane concentration at Vmax/2, being 250 ppm. The excretion of pyrrole-like substances closely correlated with that of 2,5-hexanedione measured by Fedtke and Bolt (1987). Pyrrole-like substances were also found in the urine of a male volunteer. When exposing the person for 3 h to atmospheric n-hexane at a concentration of 146 ppm (equivalent to 55 ppm/8 h) the excreted amount was twice the background value. Due to the sensitivity of this assay it is possible to determine pyrrole-like substances in urine according to the present German MAK or US TLV conditions for n-hexane (50 ppm/8 h).
Universality and robustness of revivals in the transverse field XY model
NASA Astrophysics Data System (ADS)
Häppölä, Juho; Halász, Gábor B.; Hamma, Alioscia
2012-03-01
We study the structure of the revivals in an integrable quantum many-body system, the transverse field XY spin chain, after a quantum quench. The time evolutions of the Loschmidt echo, the magnetization, and the single-spin entanglement entropy are calculated. We find that the revival times for all of these observables are given by integer multiples of Trev≃L/vmax, where L is the linear size of the system and vmax is the maximal group velocity of quasiparticles. This revival structure is universal in the sense that it does not depend on the initial state and the size of the quench. Applying nonintegrable perturbations to the XY model, we observe that the revivals are robust against such perturbations: they are still visible at time scales much larger than the quasiparticle lifetime. We therefore propose a generic connection between the revival structure and the locality of the dynamics, where the quasiparticle speed vmax generalizes into the Lieb-Robinson speed vLR.
Casabar, Richard C T; Wallace, Andrew D; Hodgson, Ernest; Rose, Randy L
2006-10-01
Endosulfan-alpha is metabolized to a single metabolite, endosulfan sulfate, in pooled human liver microsomes (Km = 9.8 microM, Vmax = 178.5 pmol/mg/min). With the use of recombinant cytochrome P450 (P450) isoforms, we identified CYP2B6 (Km = 16.2 microM, Vmax = 11.4 nmol/nmol P450/min) and CYP3A4 (Km = 14.4 microM, Vmax = 1.3 nmol/nmol P450/min) as the primary enzymes catalyzing the metabolism of endosulfan-alpha, although CYP2B6 had an 8-fold higher intrinsic clearance rate (CL(int) = 0.70 microl/min/pmol P450) than CYP3A4 (CL(int) = 0.09 microl/min/pmol P450). Using 16 individual human liver microsomes (HLMs), a strong correlation was observed with endosulfan sulfate formation and S-mephenytoin N-demethylase activity of CYP2B6 (r(2) = 0.79), whereas a moderate correlation with testosterone 6 beta-hydroxylase activity of CYP3A4 (r(2) = 0.54) was observed. Ticlopidine (5 microM), a potent CYP2B6 inhibitor, and ketoconazole (10 microM), a selective CYP3A4 inhibitor, together inhibited approximately 90% of endosulfan-alpha metabolism in HLMs. Using six HLM samples, the percentage total normalized rate (% TNR) was calculated to estimate the contribution of each P450 in the total metabolism of endosulfan-alpha. In five of the six HLMs used, the percentage inhibition with ticlopidine and ketoconazole in the same incubation correlated with the combined % TNRs for CYP2B6 and CYP3A4. This study shows that endosulfan-alpha is metabolized by HLMs to a single metabolite, endosulfan sulfate, and that it has potential use, in combination with inhibitors, as an in vitro probe for CYP2B6 and 3A4 catalytic activities.
[Evaluation of the arterial blood flow parameters in the eye of myopic patients].
Mrugacz, Małgorzata; Bryl, Anna
2013-04-01
Myopia is a common refractive defect. Has a good vision from near and deterioration of vision with increasing distance. The main reason for its occurrence is too long axis of the eyeball. The consequence of elongation of the eyeball is the development of degenerative changes in the retina. Despite much research has failed to clearly identify the causes of degenerative changes in those short-sighted. The aim of the study was to evaluate the maximum and minimum speed in arterial blood vessels of the eye in people with myopia. The study included 70 patients (138 eyes), 53 women and 17 men, aged from 18 to 79 years, with myopia of -0.25 to -18.0 Dsph and length of the eyeball from 22.61 to 33.36 mm. Depending on the kind and the degree of the progress of degenerative changes, patients were divided in 4 groups: I - without degenerative changes on the fundus (n=32; K-23, M-9); II- with the short-sighted sickle (n=20; K-14, M-6); Ill - with the structure thinned down of the retina, accompanying the short-sighted sickle (n = 8; K-6, M-2); IV - with extensive choroidal-retina disappearances in the fundus (n = 10; K-7, M-3). In all individuals enrolled underwent Color Doppler ultrasound with apparatus SSA 770A Toshiba Aplio with linear probe frequency 12 MHz, judging maximum (Vmax) and minimum (Vmin) speed in the arteries of the eye: ophthalmic artery (OA), central retinal artery (CRA) and short posterior ciliary arteries (SPCA) located on the nasal and temporal side of the optic disc. The results were statistically analyzed. No statistically significant relationship between the nature of degenerative changes of the eye, and blood velocity in the OA. There was a increase in Vmax and Vmin blood in OA in Group IV, but these changes were not statistically significant. Statistically significant correlation was observed while in the CRA. With a decrease in Vmax and Vmin of blood flowing through a vessel exacerbation of retinal degeneration. Vmax and Vmin changes in the blood did not correlate significantly SPCA with retinal degeneration, although the results were much worse in the temporal vessels. With the deterioration of blood flow parameters of the central retinal artery and short posterior ciliary arteries comes to the severity of the retinal degeneration in myopic patients. More severe impairment of blood circulation in the temporal ciliary explain higher incidence of degenerative changes in the temporal side of the optic disc.
Current status of the thiol redox model for the regulation of hexose transport by insulin.
Czech, M P
1976-12-01
Data obtained over the last two years pertinent to the thiol redox model for the modulation of hexose transport activity by insulin is summarized. The model proposes that activation of hexose transport in fat cells involves sulfhydryl oxidation to the disulfide form in a key protein component of the fat cell surface membrane. Theoretically, the rapid activation of transport by insulin may involve either the conversion of inactive membrane carriers to the active form as originally proposed, or the conversion of a low Vmax transport system to a high Vmax form. The present experiments showed that the percent inhibition of insulin-activated transport rates by submaximal levels of cytochalasin B was decreased compared to its effects on basal transport. Treatment of fat cells with N-ethylmaleimide inhibited cytochalasin B action but not transport activity. When insulin or the oxidant vitamin K5 was added to cells 5 minutes before the N-ethylmaleimide, the elevated transport activity was also resistant to the sulfhydryl reagent, but cytochalasin B retained its potent inhibitory effect on transport. The data demonstrate that unique properties characterize basal versus insulin-activated transport activity with respect to the sensitivity of cytochalasin B action to sulfhydryl blockade in isolated fat cells. The data are consistent with the concept that activation of transport activity reflects the conversion of a reduced (sulfhydryl) system characterized by a low Vmax to an oxidized (disulfide), high Vmax transport system.
Crataegus extract prolongs action potential duration in guinea-pig papillary muscle.
Müller, A; Linke, W; Zhao, Y; Klaus, W
1996-11-01
Crataegus extract is used in cardiology for the treatment of moderate heart failure (NYHA II). Recently it was shown that Crataegus extract prolongs the refractory period in isolated perfused guinea pig hearts. In order to find out what mechanism is responsible for this prolongation of refractory period, we investigated the effects of Crataegus extract (LI 132) on the action potential of guinea pig papillary muscle with the help of conventional microelectrode techniques. Crataegus extract, when put in a concentration (10 mg/l) capable of inducing an inotropic effect of about 20%, significantly increased action potential duration at all investigated levels of repolarisation. Maximum prolongation was 8.5±2.3 ms, 12.5±2.6 ms and 11.7±2.9 ms at 20%, 50% and 90% repolarisation, respectively (control APD(90): 172±4 ms). Experiments on the time course of recovery of the maximum upstroke velocity (V(max)) of the action potential revealed that Crataegus extract increased the time constant of recovery of V(max) from 8.80±2.33 ms to 22.60±5.77 ms, indicating a weak Class I-like antiarrhythmic action. In addition, we observed a small reduction in V(max). In summary, our results show that Crataegus extract prolongs action potential duration and delays recovery of V(max). We, therefore, suggest that Crataegus extract possesses certain antiarrhythmic properties. Copyright © 1996 Gustav Fischer Verlag · Stuttgart · Jena · New York. Published by Elsevier GmbH.. All rights reserved.
Galaxy kinematics in the XMMU J2235-2557 cluster field at z 1.4
NASA Astrophysics Data System (ADS)
Pérez-Martínez, J. M.; Ziegler, B.; Verdugo, M.; Böhm, A.; Tanaka, M.
2017-09-01
Aims: The relationship between baryonic and dark components in galaxies varies with the environment and cosmic time. Galaxy scaling relations describe strong trends between important physical properties. A very important quantitative tool in case of spiral galaxies is the Tully-Fisher relation (TFR), which combines the luminosity of the stellar population with the characteristic rotational velocity (Vmax) taken as proxy for the total mass. In order to constrain galaxy evolution in clusters, we need measurements of the kinematic status of cluster galaxies at the starting point of the hierarchical assembly of clusters and the epoch when cosmic star formation peaks. Methods: We took spatially resolved slit FORS2 spectra of 19 cluster galaxies at z 1.4, and 8 additional field galaxies at 1 < z < 1.2 using the ESO Very Large Telescope. The targets were selected from previous spectroscopic and photometric campaigns as [OII] and Hα emitters. Our spectroscopy was complemented with HST/ACS imaging in the F775W and F850LP filters, which is mandatory to derive the galaxy structural parameters accurately. We analyzed the ionized gas kinematics by extracting rotation curves from the two-dimensional spectra. Taking into account all geometrical, observational, and instrumental effects, we used these rotation curves to derive the intrinsic maximum rotation velocity. Results: Vmax was robustly determined for six cluster galaxies and three field galaxies. Galaxies with sky contamination or insufficient spatial rotation curve extent were not included in our analysis. We compared our sample to the local B-band TFR and the local velocity-size relation (VSR), finding that cluster galaxies are on average 1.6 mag brighter and a factor 2-3 smaller. We tentatively divided our cluster galaxies by total mass (I.e., Vmax) to investigate a possible mass dependency in the environmental evolution of galaxies. The averaged deviation from the local TFR is ⟨ ΔMB ⟩ = -0.7 for the high-mass subsample (Vmax > 200 km s-1). This mild evolution may be driven by younger stellar populations (SP) of distant galaxies with respect to their local counterparts, and thus, an increasing luminosity is expected toward higher redshifts. However, the low-mass subsample (Vmax < 200 km s-1) is made of highly overluminous galaxies that show ⟨ ΔMB ⟩ = -2.4 mag. When we repeated a similar analysis with the stellar mass TFR, we did not find significant offsets in our subsamples with respect to recent results at similar redshift. While the B-band TFR is sensitive to recent episodes of star formation, the stellar mass TFR tracks the overall evolution of the underlying stellar population. In order to understand the discrepancies between these two incarnations of the TFR, the reported B-band offsets can no longer be explained only by the gradual evolution of stellar populations with lookback time. We suspect that we instead see compact galaxies whose star formation was enhanced during their infall toward the dense regions of the cluster through interactions with the intracluster medium. Based on observations with the European Southern Observatory Very Large Telescope (ESO-VLT), observing run ID 091.B-0778(B).
Koper, Teresa E; Stark, John M; Habteselassie, Mussie Y; Norton, Jeanette M
2010-11-01
An agricultural soil was treated with dairy-waste compost, ammonium-sulfate fertilizer or no added nitrogen (control) and planted to silage corn for 6 years. The kinetics of nitrification were determined in laboratory-shaken slurry assays with a range of substrate concentrations (0-20 mM NH(4)(+)) over a 24-h period for soils from the three treatments. Determined concentrations of substrate and product were fit to Michaelis-Menten and Haldane models. For all the treatments, the Haldane model was a better fit, suggesting that significant nitrification inhibition may occur in soils under high ammonium conditions similar to those found immediately after fertilization or waste applications. The maximum rate of nitrification (V(max)) was significantly higher for the fertilized and compost-treated soils (1.74 and 1.50 mmol N kg(-1) soil day(-1)) vs. control soil (0.98 mmol kg(-1) soil day(-1)). The K(m) and K(i) values were not significantly different, with average values of 0.02 and 27 mM NH(4)(+), respectively. Our results suggest that both N sources increased nitrifier community size, but did not shift the nitrifier community structure in ways that influenced enzyme affinity or sensitivity to ammonium. The K(m) values are comparable to those determined directly in other soils, but are substantially lower than those from most pure cultures of ammonia-oxidizing bacteria. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. No claim to original US government works.
Echinococcus granulosus: absorption of cycloleucine and alpha-aminoisobutyric acid by protoscoleces.
Jeffs, S A; Arme, C
1986-02-01
Protoscoleces of Echinococcus granulosus absorb the amino acids cycloleucine and alpha-aminoisobutyric acid (AIB) by a combination of mediated uptake and diffusion. After correcting for the latter, values for Kt and Vmax of 0.124 mM and 0.947 nmoles/mg protein/2 min for cycloleucine were calculated; corresponding values for AIB were 0.039 mM and 0.139 nmoles/mg protein/2 min. Both amino acids were accumulated against a concentration gradient and a comparison of Kt and Ki values determined in mutual inhibition experiments suggested that both cycloleucine and AIB share a common uptake locus (loci). Cycloleucine uptake was pH-dependent and could be inhibited by a variety of other amino acids. Neither D- nor L-proline inhibited cycloleucine absorption but D-methionine, D-alanine, D-leucine, D-valine and D-serine were much more effective inhibitors than their L-counterparts.
Nałecz, K A; Kamińska, J; Nałecz, M J; Azzi, A
1992-08-15
The pyruvate carrier, of molecular mass 34 kDa, was purified from mitochondria isolated from rat liver, rat brain, and bovine heart, by affinity chromatography on immobilized 2-cyano-4-hydroxycinnamate. Its activity after reconstitution in phosphatidylcholine vesicles was measured either as uptake of [1-14C]pyruvate or as exchange with different 2-oxoacids. All preparations exhibited similar apparent Km values for pyruvate, but somewhat different V(max) values. The ability to exchange different anions of physiological significance, including branched-chain 2-oxoacids, confirmed the known substrate specificity described for the pyruvate carrier in mitochondria. The sensitivity of pyruvate transport toward phenylglyoxal suggested an important role of arginyl residues in the transport activity, while a role of lysyl and histidyl residues was not confirmed.
Gadda, Giovanni; McAllister-Wilkins, Elien Elizabeth
2003-01-01
Choline dehydrogenase (EC 1.1.99.1) catalyzes the four-electron oxidation of choline to glycine-betaine via a betaine-aldehyde intermediate. Such a reaction is of considerable interest for biotechnological applications in that transgenic plants engineered with bacterial glycine-betaine-synthesizing enzymes have been shown to have enhanced tolerance towards various environmental stresses, such as hypersalinity, freezing, and high temperatures. To date, choline dehydrogenase has been poorly characterized in its biochemical and kinetic properties, mainly because its purification has been hampered by instability of the enzyme in vitro. In the present report, we cloned and expressed in Escherichia coli the betA gene from the moderate halophile Halomonas elongata which codes for a hypothetical choline dehydrogenase. The recombinant enzyme was purified to more than 70% homogeneity as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by treatment with 30 to 50% saturation of ammonium sulfate followed by column chromatography using DEAE-Sepharose. The purified enzyme showed similar substrate specificities with either choline or betaine-aldehyde as the substrate, as indicated by the apparent V/K values (where V is the maximal velocity and K is the Michaelis constant) of 0.9 and 0.6 μmol of O2 min−1 mg−1 mM−1 at pH 7 and 25°C, respectively. With 1 mM phenazine methosulfate as the primary electron acceptor, the apparent Vmax values for choline and betaine-aldehyde were 10.9 and 5.7 μmol of O2 min−1 mg−1, respectively. These Vmax values decreased four- to sevenfold when molecular oxygen was used as the electron acceptor. Altogether, the kinetic data are consistent with the conclusion that H. elongata betA codes for a choline dehydrogenase that can also act as an oxidase when electron acceptors other than molecular oxygen are not available. PMID:12676692
Optimal Protective Hypothermia in Arrested Mammalian Hearts
Villet, Outi M.; Ge, Ming; Sekhar, Laigam N.; Corson, Marshall A.; Tylee, Tracy S.; Fan, Lu-Ping; Yao, Lin; Zhu, Chun; Olson, Aaron K.; Buroker, Norman E.; Xu, Cheng-Su; Anderson, David L.; Soh, Yong-Kian; Wang, Elise; Chen, Shi-Han; Portman, Michael A.
2015-01-01
Many therapeutic hypothermia recommendations have been reported, but the information supporting them is sparse, and reveals a need for the data of target therapeutic hypothermia (TTH) from well-controlled experiments. The core temperature ≤35°C is considered as hypothermia, and 29°C is a cooling injury threshold in pig heart in vivo. Thus, an optimal protective hypothermia (OPH) should be in the range 29–35°C. This study was conducted with a pig cardiopulmonary bypass preparation to decrease the core temperature to 29–35°C range at 20 minutes before and 60 minutes during heart arrest. The left ventricular (LV) developed pressure, maximum of the first derivative of LV (dP/dtmax), cardiac power, heart rate, cardiac output, and myocardial velocity (Vmax) were recorded continuously via an LV pressure catheter and an aortic flow probe. At 20 minutes of off-pump during reperfusion after 60 minutes arrest, 17 hypothermic hearts showed that the recovery of Vmax and dP/dtmax established sigmoid curves that consisted of two plateaus: a good recovery plateau at 29–30.5°C, the function recovered to baseline level (BL) (Vmax=118.4%±3.9% of BL, LV dP/dtmax=120.7%±3.1% of BL, n=6); another poor recovery plateau at 34–35°C (Vmax=60.2%±2.8% of BL, LV dP/dtmax=28.0%±5.9% of BL, p<0.05, n=6; ), which are similar to the four normothermia arrest (37°C) hearts (Vmax=55.9%±4.8% of BL, LV dP/dtmax=24.5%±2.1% of BL, n=4). The 32–32.5°C arrest hearts showed moderate recovery (n=5). A point of inflection (around 30.5–31°C) existed at the edge of a good recovery plateau followed by a steep slope. The point presented an OPH that should be the TTH. The results are concordant with data in the mammalian hearts, suggesting that the TTH should be initiated to cool core temperature at 31°C. PMID:25514569
Lontoh, Sonny; Semrau, Jeremy D.
1998-01-01
Whole-cell assays of methane and trichloroethylene (TCE) consumption have been performed on Methylosinus trichosporium OB3b expressing particulate methane monooxygenase (pMMO). From these assays it is apparent that varying the growth concentration of copper causes a change in the kinetics of methane and TCE degradation. For M. trichosporium OB3b, increasing the copper growth concentration from 2.5 to 20 μM caused the maximal degradation rate of methane (Vmax) to decrease from 300 to 82 nmol of methane/min/mg of protein. The methane concentration at half the maximal degradation rate (Ks) also decreased from 62 to 8.3 μM. The pseudo-first-order rate constant for methane, Vmax/Ks, doubled from 4.9 × 10−3 to 9.9 × 10−3 liters/min/mg of protein, however, as the growth concentration of copper increased from 2.5 to 20 μM. TCE degradation by M. trichosporium OB3b was also examined with varying copper and formate concentrations. M. trichosporium OB3b grown with 2.5 μM copper was unable to degrade TCE in both the absence and presence of an exogenous source of reducing equivalents in the form of formate. Cells grown with 20 μM copper, however, were able to degrade TCE regardless of whether formate was provided. Without formate the Vmax for TCE was 2.5 nmol/min/mg of protein, while providing formate increased the Vmax to 4.1 nmol/min/mg of protein. The affinity for TCE also increased with increasing copper, as seen by a change in Ks from 36 to 7.9 μM. Vmax/Ks for TCE degradation by pMMO also increased from 6.9 × 10−5 to 5.2 × 10−4 liters/min/mg of protein with the addition of formate. From these whole-cell studies it is apparent that the amount of copper available is critical in determining the oxidation of substrates in methanotrophs that are expressing only pMMO. PMID:16349516
Saker, Safwan; Almousa Almaksour, Ziade; Chorin, Anne-Claire; Lebrihi, Ahmed; Mathieu, Florence
2014-01-01
Saccharothrix algeriensis NRRL B-24137 produces naturally different dithiolopyrrolone derivatives. The enzymatic activity of pyrrothine N-acyltransferase was determined to be responsible for the transfer of an acyl group from acyl-CoA to pyrrothine core. This activity was also reported to be responsible for the diversity of the dithiolopyrrolone derivatives. Based on this fact, nine dithiolopyrrolone derivatives were produced in vitro via the crude extract of Sa. algeriensis. Three of them have never been obtained before by natural fermentation: acetoacetyl-pyrrothine, hydroxybutyryl-pyrrothine, and dimethyl thiolutin (holomycin). Two acyltransferase activities, acetyltransferase and benzoyltransferase catalyzing the incorporation of linear and cyclic acyl groups to the pyrrothine core, respectively, were biochemically characterized in this crude extract. The first one is responsible for formation of acetyl-pyrrothine and the second for benzoyl-pyrrothine. Both enzymes were sensitive to temperature changes: For example, the loss of acetyltransferase and benzoyltransferase activity was 53% and 80% respectively after pre-incubation of crude extract for 60 min at 20°C. The two enzymes were more active in neutral and basal media (pH 7-10) than in the acidic one (pH 3-6). The optimum temperature and pH of acetyltransferase were 40°C and 7, with a Km value of 7.9 μM and a Vmax of 0.63 μM/min when acetyl-CoA was used as limited substrate. Benzoyltransferase had a temperature and a pH optimum at 55°C and 9, a Km value of 14.7 μM, and a Vmax of 0.67 μM/min when benzoyl- CoA was used as limited substrate.
Yan, Dong; Cheng, Lu-feng; Song, Hong-Yan; Turdi, Subat; Kerram, Parhat
2007-08-01
Overdoses of haloperidol are associated with major ventricular arrhythmias, cardiac conduction block, and sudden death. The aim of this experiment was to study the effect of haloperidol on the action potentials in cardiac Purkinje fibers and papillary muscles under normal and simulated ischemia conditions in rabbits and guinea pigs. Using the standard intracellular microelectrode technique, we examined the effects of haloperidol on the action potential parameters [action potential amplitude (APA), phase 0 maximum upstroke velocity (V(max)), action potential amplitude at 90% of repolarization (APD(90)), and effective refractory period (ERP)] in rabbit cardiac Purkinje fibers and guinea pig cardiac papillary cells, in which both tissues were under simulated ischemic conditions. Under ischemic conditions, different concentrations of haloperidol depressed APA and prolonged APD(90) in a concentration-dependent manner in rabbit Purkinje fibers. Haloperidol (3 micromol/L) significantly depressed APA and prolonged APD(90), and from 1 micromol/L, haloperidol showed significant depression on V(max); ERP was not significantly affected. In guinea pig cardiac papillary muscles, the thresholds of significant reduction in APA, V(max), EPR, and APD(90) were 10, 0.3, 1, and 1 mumol/L, respectively, for haloperidol. Compared with cardiac conductive tissues, papillary muscles were more sensitive to ischemic conditions. Under ischemia, haloperidol prolonged ERP and APD(90) in a concentration-dependent manner and precipitated the decrease in V(max) induced by ischemia. The shortening of ERP and APD(90) in papillary muscle action potentials may be inhibited by haloperidol.
Nafiu, Mikhail Olugbemiro; Ashafa, Anofi Omotayo Tom
2017-01-01
Dianthus basuticus is a plant of South African origin with various acclaimed pharmaceutical potentials. This study explored the antioxidant and antidiabetic activities of saponin extract from D. basuticus in vitro . Antioxidant activity of saponin was evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (*NO)-free radical scavenging activity while antidiabetic potentials were measured by the α-amylase and α-glucosidase inhibitory activities of the saponin extract. The results showed that the saponin extract, compared with quercetin, displayed better DPPH (IC 50 = 6.95 mg/ml) and NO (IC 50 = 3.31 mg/ml) radical scavenging capabilities. Similarly, the saponin extracts elicited stronger α-glucosidase (IC 50 = 3.80 mg/ml) and moderate α-amylase (IC 50 = 4.18 mg/ml) inhibitory activities as compared to acarbose. Saponin exhibited a competitive mode of inhibition on α-amylase with same maximum velocity (Vmax) of 0.0093 mM/min for saponin compared with control 0.0095 mM/min and different the Michaelis constant (Km) values of 2.6 × 10 -6 mM and 2.1 × 10 -5 mM, respectively, while for α-glucosidase, the inhibition was uncompetitive, Vmax of 0.027 mM/min compared with control 0.039 mM/min and Km values of 1.02 × 10 -6 mM and 1.38 × 10 -6 mM, respectively. The gas chromatography-mass spectrometric analysis revealed the presence of bioactive like β- and α-amyrin, 3-O-methyl-D-glucose, methyl commate, and olean-12-en-3-beta-ol. Overall, the data suggested that the saponin extract from D. basuticus has potentials as natural antioxidants and antidiabetics. Saponin extract from Dianthus basuticus displayed promising antidiabetic and antioxidant activitySaponin competitively and uncompetitively inhibited a-amylase and a-glucosidase, respectivelyThe stronger inhibition of α-glucosidase and moderate inhibition of α-amylase by saponin extract from D. basuticus is promising good antidiabetes compared with existing drugs with associated side effects. Abbreviations used: DPPH: 2,2-diphenyl-1-picrylhydrazyl, Km: The Michaelis constant, Vmax: Maximum velocity, ROS: Reactive oxygen species, NIDDM: Non-insulin-dependent diabetes mellitus, UFS: University of the Free State, GC-MS: Gas chromatography-mass spectrometric, MS: Mass spectrometry, NIST: National Institute of Standards and Technology, DNS: 3,5-dinitrosalicylic acid, NO: Nitric oxide, RNS: Reactive nitrogen species, PNPG: p-Nitrophenyl-α-D-glucopyranoside.
Nafiu, Mikhail Olugbemiro; Ashafa, Anofi Omotayo Tom
2017-01-01
Context: Dianthus basuticus is a plant of South African origin with various acclaimed pharmaceutical potentials. Aims: This study explored the antioxidant and antidiabetic activities of saponin extract from D. basuticus in vitro. Materials and Methods: Antioxidant activity of saponin was evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (*NO)-free radical scavenging activity while antidiabetic potentials were measured by the α-amylase and α-glucosidase inhibitory activities of the saponin extract. Results: The results showed that the saponin extract, compared with quercetin, displayed better DPPH (IC50 = 6.95 mg/ml) and NO (IC50 = 3.31 mg/ml) radical scavenging capabilities. Similarly, the saponin extracts elicited stronger α-glucosidase (IC50 = 3.80 mg/ml) and moderate α-amylase (IC50 = 4.18 mg/ml) inhibitory activities as compared to acarbose. Saponin exhibited a competitive mode of inhibition on α-amylase with same maximum velocity (Vmax) of 0.0093 mM/min for saponin compared with control 0.0095 mM/min and different the Michaelis constant (Km) values of 2.6 × 10-6 mM and 2.1 × 10-5 mM, respectively, while for α-glucosidase, the inhibition was uncompetitive, Vmax of 0.027 mM/min compared with control 0.039 mM/min and Km values of 1.02 × 10-6 mM and 1.38 × 10-6 mM, respectively. The gas chromatography-mass spectrometric analysis revealed the presence of bioactive like β- and α-amyrin, 3-O-methyl-D-glucose, methyl commate, and olean-12-en-3-beta-ol. Conclusion: Overall, the data suggested that the saponin extract from D. basuticus has potentials as natural antioxidants and antidiabetics. SUMMARY Saponin extract from Dianthus basuticus displayed promising antidiabetic and antioxidant activitySaponin competitively and uncompetitively inhibited a-amylase and a-glucosidase, respectivelyThe stronger inhibition of α-glucosidase and moderate inhibition of α-amylase by saponin extract from D. basuticus is promising good antidiabetes compared with existing drugs with associated side effects. Abbreviations used: DPPH: 2,2-diphenyl-1-picrylhydrazyl, Km: The Michaelis constant, Vmax: Maximum velocity, ROS: Reactive oxygen species, NIDDM: Non-insulin-dependent diabetes mellitus, UFS: University of the Free State, GC-MS: Gas chromatography-mass spectrometric, MS: Mass spectrometry, NIST: National Institute of Standards and Technology, DNS: 3,5-dinitrosalicylic acid, NO: Nitric oxide, RNS: Reactive nitrogen species, PNPG: p-Nitrophenyl-α-D-glucopyranoside. PMID:29200716
NASA Astrophysics Data System (ADS)
Sumardi; Agustrina, Rochmah; Nugroho Ekowati, Christina; Selvie Pasaribu, Yovita
2018-03-01
This purpose of this research is to determine the character of the protease enzymes from Bacillus sp. on media content of FeCl3 exposed to 0.2 mT magnetic field. The data obtained were analyzed descriptively. The result showed that protease enzyme without Fe resulted in the highest activity at pH 8, temperature. 30°C with the addition of activator Mn2+, and Vmax of 0.28 U/ml, and Km of 4.60 U/ml. The protease enzyme on media without magnetic field exposure and containing Fe yielded the highest activity at pH 8, temperature 30°C with the addition of activator Mn2+, and Vmax of 0.33 U/ml, and Km of 5.64 U/ml. The protease enzyme on medium with magnetic field exposure and use Fe as inductors have the highest activity at pH 9, the temperature of 55° C with the addition of activator Mn2+, and Vmax of 0.35 U/ml, and Km 10.04 U/ml.
Immobilization and kinetics of catalase on calcium carbonate nanoparticles attached epoxy support.
Preety; Hooda, Vinita
2014-01-01
A novel hybrid epoxy/nano CaCO3 composite matrix for catalase immobilization was prepared by polymerizing epoxy resin in the presence of CaCO3 nanoparticles. The hybrid support was characterized using scanning electron microscopy and Fourier transform infrared spectroscopy. Catalase was successfully immobilized onto epoxy/nano CaCO3 support with a conjugation yield of 0.67 ± 0.01 mg/cm(2) and 92.63 ± 0.80 % retention of activity. Optimum pH and optimum temperature of free and immobilized catalases were found to be 7.0 and 35 °C. The value of Km for H2O2 was higher for immobilized enzyme (31.42 mM) than native enzyme (27.73 mM). A decrease in Vmax value from 1,500 to 421.10 μmol (min mg protein)(-1) was observed after immobilization. Thermal and storage stabilities of catalase improved immensely after immobilization. Immobilized enzyme retained three times than the activity of free enzyme when kept at 75 °C for 1 h and the half-life of enzyme increased five times when stored in phosphate buffer (0.01 M, pH 7.0) at 5 °C. The enzyme could be reused 30 times without any significant loss of its initial activity. Desorption of catalase from the hybrid support was minimum at pH 7.0.
Thermodynamics and kinetic properties of halostable endoglucanase from Aspergillus fumigatus ABK9.
Das, Arpan; Jana, Arijit; Paul, Tanmay; Halder, Suman Kumar; Ghosh, Kuntal; Maity, Chiranjit; Mohapatra, Pradeep Kumar Das; Pati, Bikas Ranjan; Mondal, Keshab Chandra
2014-07-01
An endoglucanase from Aspergillus fumigatus ABK9 was purified from the culture extract of solid-state fermentation and its some characteristics were evaluated. The molecular weight of the purified enzyme (56.3 kDa) was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, zymogram analysis and confirmed by MALDI-TOF mass spectrometry. The enzyme was active optimally at 50 °C, pH 5.0 and stable over a broad range of pH (4.0-7.0) and NaCl concentration of 0-3.0 M. The pKa1 and pKa2 of the ionizable groups of the active sites were 2.94 and 6.53, respectively. The apparent Km , Vmax , and Kcat values for carboxymethyl cellulose were 6.7 mg ml(-1), 775.4 µmol min(-1) , and 42.84 × 10(4) s(-1), respectively. Thermostability of the enzyme was evidenced by the high activation energy (91.45 kJ mol(-1)), large enthalpy for activation of denaturation (88.77 kJ mol(-1)), longer half-life (T1/2) (433 min at 50 °C), higher melting temperature (Tm ) (73.5 °C), and Q10 (1.3) values. All the characteristics favors its suitability as halotolerant and thermostable enzyme during bioprocessing of lignocellulosic materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Search for Low-Luminosity BL Lacertae Objects
NASA Astrophysics Data System (ADS)
Rector, Travis A.; Stocke, John T.; Perlman, Eric S.
1999-05-01
Many properties of BL Lacs have become explicable in terms of the ``relativistic beaming'' hypothesis, whereby BL Lacs are FR 1 radio galaxies viewed nearly along the jet axis. However, a possible problem with this model is that a transition population between beamed BL Lacs and unbeamed FR 1 galaxies has not been detected. A transition population of ``low-luminosity BL Lacs'' was predicted to exist in abundance in X-ray-selected samples such as the Einstein Extended Medium Sensitivity Survey (EMSS) by Browne & Marcha. However, these BL Lacs may have been misidentified as clusters of galaxies. We have conducted a search for such objects in the EMSS with the ROSAT High-Resolution Imager (HRI) here we present ROSAT HRI images, optical spectra, and VLA radio maps for a small number of BL Lacs that were previously misidentified in the EMSS catalog as clusters of galaxies. While these objects are slightly lower in luminosity than other EMSS BL Lacs, their properties are too similar to the other BL Lacs in the EMSS sample to ``bridge the gap'' between BL Lacs and FR 1 radio galaxies. Also, the number of new BL Lacs found is too low to alter significantly the X-ray luminosity function or
Johnston, I A; Salamonski, J
1984-07-01
Single white fibres and small bundles (two to three) of red fibres were isolated from the trunk muscle of Pacific Blue Marlin (50-121 kg body weight). Fibres were chemically skinned with 1% Brij. Maximum Ca2+-activated force production (Po) was 57 kN m-2 for red fibres and 176 kN m-2 for white fibres at 25 degrees C. The force-velocity (P-V) characteristics of these fibres were determined at 15 and 25 degrees C. Points below 0.6 Po on the P-V curve could be fitted to a linear form of Hill's equation. The degree of curvature of the P-V curve was similar at 15 and 25 degrees C (Hill's constant a/Po = 0.24 and 0.12 for red and white fibres respectively). Extrapolated maximum contraction velocities (Vmax) were 2.5 muscle lengths s-1 (Lo S-1) (red fibres) and 5.3 Lo S-1 (white fibres) at 25 degrees C. Q10(15-25 degrees C) values for Vmax were 1.4 and 1.3 for red and white fibres respectively. Maximum power output had a similar low temperature dependence and amounted to 13 W kg-1 for red and 57 W kg-1 for white muscle at 25 degrees C. The results are briefly discussed in relation to the locomotion and ecology of marlin.
A Method for Multiplexed Measurement of Mitochondrial Pyruvate Carrier Activity*
Gray, Lawrence R.; Rauckhorst, Adam J.; Taylor, Eric B.
2016-01-01
The discovery that the MPC1 and MPC2 genes encode the protein components of the mitochondrial pyruvate carrier (MPC) has invigorated studies of mitochondrial pyruvate transport and its regulation in normal and disease states. Indeed, recent reports have demonstrated MPC involvement in the control of cell fate in cancer and gluconeogenesis in models of type 2 diabetes. Biochemical measurements of MPC activity are foundational for understanding the role of pyruvate transport in health and disease. We developed a 96-well scaled method of [14C]pyruvate uptake that markedly decreases sample requirements and increases throughput relative to previous techniques. This method was applied to determine the mouse liver MPC Km (28.0 ± 3.9 μm) and Vmax (1.08 ± 0.05 nmol/min/mg), which have not previously been reported. Km and Vmax of the rat liver MPC were found to be 71.2 ± 17 μm and 1.42 ± 0.14 nmol/min/mg, respectively. Additionally, we performed parallel pyruvate uptake and oxidation experiments with the same biological samples and show differential results in response to fasting, demonstrating the continued importance of a direct MPC activity assay. We expect this method will be of value for understanding the contribution of the MPC activity to health and disease states where pyruvate metabolism is expected to play a prominent role. PMID:26823462
A simple theory of motor protein kinetics and energetics. II.
Qian, H
2000-01-10
A three-state stochastic model of motor protein [Qian, Biophys. Chem. 67 (1997) pp. 263-267] is further developed to illustrate the relationship between the external load on an individual motor protein in aqueous solution with various ATP concentrations and its steady-state velocity. A wide variety of dynamic motor behavior are obtained from this simple model. For the particular case of free-load translocation being the most unfavorable step within the hydrolysis cycle, the load-velocity curve is quasi-linear, V/Vmax = (cF/Fmax-c)/(1-c), in contrast to the hyperbolic relationship proposed by A.V. Hill for macroscopic muscle. Significant deviation from the linearity is expected when the velocity is less than 10% of its maximal (free-load) value--a situation under which the processivity of motor diminishes and experimental observations are less certain. We then investigate the dependence of load-velocity curve on ATP (ADP) concentration. It is shown that the free load Vmax exhibits a Michaelis-Menten like behavior, and the isometric Fmax increases linearly with ln([ATP]/[ADP]). However, the quasi-linear region is independent of the ATP concentration, yielding an apparently ATP-independent maximal force below the true isometric force. Finally, the heat production as a function of ATP concentration and external load are calculated. In simple terms and solved with elementary algebra, the present model provides an integrated picture of biochemical kinetics and mechanical energetics of motor proteins.
Regulation of Nitrate Transport in Citrus Rootstocks Depending on Nitrogen Availability
Cerezo, Miguel; Camañes, Gemma; Flors, Víctor; Primo-Millo, Eduardo
2007-01-01
Previously, we reported that in Citrus plants, nitrate influx through the plasmalemma of roots cells follows a biphasic pattern, suggesting the existence of at least two different uptake systems, a high and low affinity transport system (HATS and LATS, respectively). Here, we describe a novel inducible high affinity transport system (iHATS). This new nitrate transport system has a high capacity to uptake nitrate in two different Citrus rootstocks (Cleopatra mandarin and Troyer citrange). The iHATS was saturable, showing higher affinity than constitutive high affinity transport system (cHATS) to the substrate NO3−. The Vmax for this saturable component iHATS was higher than cHATS, reaching similar values in both rootstocks. Additionally, we studied the regulation of root NO3− uptake mediated by both HATS (iHATS and cHATS) and LATS. In both rootstocks, cHATS is constitutive and independent of N-status. Concerning the regulation of iHATS, this system is upregulated by NO3− and down-regulated by the N status and by NO3− itself when plants are exposed to it for a longer period of time. LATS in Cleopatra mandarin and Troyer citrange rootstocks is repressed by the N-status. The use of various metabolic uncouplers or inhibitors indicated that NO3− net uptake mediated by iHATS and LATS was an active transport system in both rootstocks. PMID:19516998
Effects of genetic polymorphisms on the OCT1 and OCT2-mediated uptake of ranitidine.
Meyer, Marleen Julia; Seitz, Tina; Brockmöller, Jürgen; Tzvetkov, Mladen Vassilev
2017-01-01
Ranitidine (Zantac®) is a H2-receptor antagonist commonly used for the treatment of acid-related gastrointestinal diseases. Ranitidine was reported to be a substrate of the organic cation transporters OCT1 and OCT2. The hepatic transporter OCT1 is highly genetically variable. Twelve major alleles confer partial or complete loss of OCT1 activity. The effects of these polymorphisms are highly substrate-specific and therefore difficult to predict. The renal transporter OCT2 has a common polymorphism, Ala270Ser, which was reported to affect OCT2 activity. In this study we analyzed the effects of genetic polymorphisms in OCT1 and OCT2 on the uptake of ranitidine and on its potency to inhibit uptake of other drugs. We characterized ranitidine uptake using HEK293 and CHO cells stably transfected to overexpress wild type OCT1, OCT2, or their naturally occurring allelic variants. Ranitidine was transported by wild-type OCT1 with a Km of 62.9 μM and a vmax of 1125 pmol/min/mg protein. Alleles OCT1*5, *6, *12, and *13 completely lacked ranitidine uptake. Alleles OCT1*2, *3, *4, and *10 had vmax values decreased by more than 50%. In contrast, OCT1*8 showed an increase of vmax by 25%. The effects of OCT1 alleles on ranitidine uptake strongly correlated with the effects on morphine uptake suggesting common interaction mechanisms of both drugs with OCT1. Ranitidine inhibited the OCT1-mediated uptake of metformin and morphine at clinically relevant concentrations. The inhibitory potency for morphine uptake was affected by the OCT1*2 allele. OCT2 showed only a limited uptake of ranitidine that was not significantly affected by the Ala270Ser polymorphism. We confirmed ranitidine as an OCT1 substrate and demonstrated that common genetic polymorphisms in OCT1 strongly affect ranitidine uptake and modulate ranitidine's potential to cause drug-drug interactions. The effects of the frequent OCT1 polymorphisms on ranitidine pharmacokinetics in humans remain to be analyzed.
Effects of genetic polymorphisms on the OCT1 and OCT2-mediated uptake of ranitidine
Meyer, Marleen Julia; Seitz, Tina; Brockmöller, Jürgen
2017-01-01
Background Ranitidine (Zantac®) is a H2-receptor antagonist commonly used for the treatment of acid-related gastrointestinal diseases. Ranitidine was reported to be a substrate of the organic cation transporters OCT1 and OCT2. The hepatic transporter OCT1 is highly genetically variable. Twelve major alleles confer partial or complete loss of OCT1 activity. The effects of these polymorphisms are highly substrate-specific and therefore difficult to predict. The renal transporter OCT2 has a common polymorphism, Ala270Ser, which was reported to affect OCT2 activity. Aim In this study we analyzed the effects of genetic polymorphisms in OCT1 and OCT2 on the uptake of ranitidine and on its potency to inhibit uptake of other drugs. Methods and results We characterized ranitidine uptake using HEK293 and CHO cells stably transfected to overexpress wild type OCT1, OCT2, or their naturally occurring allelic variants. Ranitidine was transported by wild-type OCT1 with a Km of 62.9 μM and a vmax of 1125 pmol/min/mg protein. Alleles OCT1*5, *6, *12, and *13 completely lacked ranitidine uptake. Alleles OCT1*2, *3, *4, and *10 had vmax values decreased by more than 50%. In contrast, OCT1*8 showed an increase of vmax by 25%. The effects of OCT1 alleles on ranitidine uptake strongly correlated with the effects on morphine uptake suggesting common interaction mechanisms of both drugs with OCT1. Ranitidine inhibited the OCT1-mediated uptake of metformin and morphine at clinically relevant concentrations. The inhibitory potency for morphine uptake was affected by the OCT1*2 allele. OCT2 showed only a limited uptake of ranitidine that was not significantly affected by the Ala270Ser polymorphism. Conclusions We confirmed ranitidine as an OCT1 substrate and demonstrated that common genetic polymorphisms in OCT1 strongly affect ranitidine uptake and modulate ranitidine’s potential to cause drug-drug interactions. The effects of the frequent OCT1 polymorphisms on ranitidine pharmacokinetics in humans remain to be analyzed. PMID:29236753
Dobrowolski, Piotr; Lech, Agnieszka; Klisiewicz, Anna; Hoffman, Piotr
2016-08-11
INTRODUCTION The effect of asymptomatic severe aortic stenosis (ASAS) on N-terminal pro-B-type natriuretic peptide (NT-proBNP) levels ar rest and during exercise, as well as their relevance for clinical practice remain controversial. OBJECTIVES The aim of this study was to test the hypothesis of whether the evaluation of NT-proBNP concentrations during exercise provides additional information about the severity of aortic stenosis and left ventricular remodeling in patients with ASAS. PATIENTS AND METHODS A total of 50 patients with ASAS (mean age, 38.4 ±18.1 years) and 21 healthy subjects (mean age, 43.4 ±10.6 years) were enrolled. Rest and exercise echocardiography was performed to evaluate maximum velocity (Vmax), mean aortic gradient (AG), and aortic valve area (AVA). The left ventricular mass index (LVMI) was calculated. NT-proBNP concentrations at rest and during exercise were assessed, and the difference between the 2 values was calculated (ΔNT-proBNP). RESULTS NT-proBNP and ΔNT-proBNP levels at rest and during exercise were significantly higher in the ASAS group compared with the control group. In the ASAS group, NT-proBNP levels at rest significantly correlated with LVMI (r = 0.432; P <0.0001), AVA (r = -0.408; P <0.0001), Vmax (r = 0.375; P = 0.002), and mean AG (r = 0.257; P = 0.03). NT-proBNP levels during exercise significantly correlated with LVMI (r = 0.432; P <0.0001), mean AG (r = 0.401; P = 0.001), and AVA (r = -0.375; P = 0.001). In the multivariate logistic regression model, the factors independently associated with NT-proBNP both at rest and during exercise were age, AVA, and LVMI. CONCLUSIONS NT-proBNP levels at rest provide valuable information for identifying patients with more advanced left ventricular hypertrophy secondary to severe aortic stenosis. NT-proBNP levels during exercise do not provide new information on the severity of AS.
Is ADH1C genotype relevant for the cardioprotective effect of alcohol?
Høiseth, Gudrun; Magnus, Per; Knudsen, Gun Peggy; Jansen, Mona Dverdal; Næss, Oyvind; Tambs, Kristian; Mørland, Jørg
2013-03-01
The cardioprotective effect of ethanol has been suggested to be linked to one of the ethanol metabolizing enzymes (ADH1C), which constitutes a high V(max) and a low V(max) variant. This has been demonstrated in some studies, while others have not been able to replicate the findings. The aim of the present study was to investigate the relation between the different ADH1C genotypes, death from coronary heart disease (CHD) and alcohol in a material larger than the previously published studies. Eight hundred CHD deaths as well as 1303 controls were genotyped for the high V(max) (γ1) and the low V(max) (γ2) ADH1C variant. Information of alcohol use was available for all subjects. Multiple logistic regression analyses was used to study if the decreased risk of death from CHD in alcohol consuming subjects was more pronounced in subjects homozygous for the γ2 allele (γ2γ2 subjects) compared to γ1γ1 and γ1γ2 subjects. The odds ratio (OR) for death from CHD in alcohol consumers compared to abstainers was similar in the genotype groups, i.e., 0.62 (95% CI: 0.43-0.88) in γ1γ1 subjects and 0.62 (95% CI: 0.42-0.91) in γ2γ2 subjects. Also when stratifying the results by gender and when dividing alcohol consumers into different alcohol consumption groups, there was no difference in the OR between the different genotype groups. This study, which included the largest study group published so far, failed to find any link between the ADH1C genotype and the cardioprotective effects of alcohol. Copyright © 2013 Elsevier Inc. All rights reserved.
Another baryon miracle? Testing solutions to the `missing dwarfs' problem
NASA Astrophysics Data System (ADS)
Trujillo-Gomez, Sebastian; Schneider, Aurel; Papastergis, Emmanouil; Reed, Darren S.; Lake, George
2018-04-01
The dearth of dwarf galaxies in the local Universe is hard to reconcile with the large number of low-mass haloes expected within the concordance Λ cold dark matter (ΛCDM) paradigm. In this paper, we perform a systematic evaluation of the uncertainties affecting the measurement of dark matter halo abundance using galaxy kinematics. Using a large sample of dwarf galaxies with spatially resolved kinematics, we derive a correction to obtain the abundance of galaxies as a function of maximum circular velocity - a direct probe of halo mass - from the line-of-sight velocity function in the Local Volume. This method provides a direct means of comparing the predictions of theoretical models and simulations (including non-standard cosmologies and novel galaxy formation physics) to the observational constraints. The new `galactic Vmax' function is steeper than the line-of-sight velocity function but still shallower than the theoretical CDM expectation, implying that unaccounted baryonic physics may be necessary to reduce the predicted abundance of galaxies. Using the galactic Vmax function, we investigate the theoretical effects of feedback-powered outflows and photoevaporation of gas due to reionization. At the 3σ confidence level, we find that feedback and reionization are not effective enough to reconcile the disagreement. In the case of maximum baryonic effects, the theoretical prediction still deviates significantly from the observations for Vmax < 60 km s-1. CDM predicts at least 1.8 times more galaxies with Vmax = 50 km s-1 and 2.5 times more than observed at 30 km s-1. Recent hydrodynamic simulations seem to resolve the discrepancy but disagree with the properties of observed galaxies with spatially resolved kinematics. This abundance problem might point to the need to modify cosmological predictions at small scales.
Deed, Rebecca C.; Fedrizzi, Bruno; Gardner, Richard C.
2017-01-01
Low fermentation temperatures are of importance to food and beverage industries working with Saccharomyces cerevisiae. Therefore, the identification of genes demonstrating a positive impact on fermentation kinetics is of significant interest. A set of 121 mapped F1 progeny, derived from a cross between haploid strains BY4716 (a derivative of the laboratory yeast S288C) and wine yeast RM11-1a, were fermented in New Zealand Sauvignon Blanc grape juice at 12.5°. Analyses of five key fermentation kinetic parameters among the F1 progeny identified a quantitative trait locus (QTL) on chromosome I with a significant degree of linkage to maximal fermentation rate (Vmax) at low temperature. Independent deletions of two candidate genes within the region, FLO1 and SWH1, were constructed in the parental strains (with S288C representing BY4716). Fermentation of wild-type and deletion strains at 12.5 and 25° confirmed that the genetic linkage to Vmax corresponds to the S288C version of the FLO1 allele, as the absence of this allele reduced Vmax by ∼50% at 12.5°, but not at 25°. Reciprocal hemizygosity analysis (RHA) between S288C and RM11-1a FLO1 alleles did not confirm the prediction that the S288C version of FLO1 was promoting more rapid fermentation in the opposing strain background, suggesting that the positive effect on Vmax derived from S288C FLO1 may only provide an advantage in haploids, or is dependent on strain-specific cis or trans effects. This research adds to the growing body of evidence demonstrating the role of FLO1 in providing stress tolerance to S. cerevisiae during fermentation. PMID:28143947
Larsen, Ryan G; Befroy, Douglas E; Kent-Braun, Jane A
2013-03-01
Mitochondrial ATP production is vital for meeting cellular energy demand at rest and during periods of high ATP turnover. We hypothesized that high-intensity interval training (HIT) would increase ATP flux in resting muscle (VPi→ATP) in response to a single bout of exercise, whereas changes in the capacity for oxidative ATP production (Vmax) would require repeated bouts. Eight untrained men (27 ± 4 yr; peak oxygen uptake = 36 ± 4 ml·kg(-1)·min(-1)) performed six sessions of HIT (4-6 × 30-s bouts of all-out cycling with 4-min recovery). After standardized meals and a 10-h fast, VPi→ATP and Vmax of the vastus lateralis muscle were measured using phosphorus magnetic resonance spectroscopy at 4 Tesla. Measurements were obtained at baseline, 15 h after the first training session, and 15 h after completion of the sixth session. VPi→ATP was determined from the unidirectional flux between Pi and ATP, using the saturation transfer technique. The rate of phosphocreatine recovery (kPCr) following a maximal contraction was used to calculate Vmax. While kPCr and Vmax were unchanged after a single session of HIT, completion of six training sessions resulted in a ∼14% increase in muscle oxidative capacity (P ≤ 0.004). In contrast, neither a single nor six training sessions altered VPi→ATP (P = 0.74). This novel analysis of resting and maximal high-energy phosphate kinetics in vivo in response to HIT provides evidence that distinct aspects of human skeletal muscle metabolism respond differently to this type of training.
Zejda, J E; Pahwa, P; Dosman, J A
1992-01-01
Prospective study of 164 young men from the start of employment in grain elevators showed that of those seen at the initial evaluation of respiratory state only 30% were available for a complete four year follow up. The drop out of subjects could represent a health related selection leading to the underestimation of respiratory effects of exposure to grain dust as assessed in the survivor group. This hypothesis was examined by comparisons of longitudinal changes in lung function in four groups defined by the duration of follow up involving the initial examination and periodic evaluations after one, two, and four years of work. Sixty four men were tested only on the initial examination (group I), 18 underwent two (group II), 31 underwent three (group III), and 51 (group IV) all four examinations. The groups had similar mean ages (range: 19.4-20.1 years), mean duration of previous exposure to grain dust (range: 8-13 weeks), smoking habits, lung function, and prevalences of respiratory symptoms evaluated on the initial occasion. The average decline in lung function over the first year was associated with duration of follow up. The annual decline in FVC (ml) was 58 in group II, 41 in group III and -55 (increase) in group IV; the decline in FEV1 (ml) was 224, 130, and 70 respectively. The differences for the annual declines of FEV1, FEF25-759 Vmax509 and Vmax25 were significant between groups II and IV, and the FEF25-759 Vmax509 and Vmax25 differed significantly between groups II and III. The results show that the restriction of analysis to the survivors may underestimate the relation between work and respiratory impairment. PMID:1515349
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeh, H.R.; Cheng, T.C.; DeFrank, J.J.
1992-06-01
In the present studies, cholinesterase was used for monitoring the enzymatic activities of the JD6.5 organophosphorus acid anhydrase. The kinetic data indicated that: (1) the first order of kinetic constants (k) and Vmax values of the enzymatic reactions increased as the concentrations of the enzyme increased; (2) while the half-life (tl/2) of diisopropylfluorophosphate (DFP) hydrolysis decreased as the enzyme concentrations increased; (3) the minimum time required for hydrolysis of 9mM of DFP was 3 min at the concentrations of the enzyme present; Km values of DFP were found to be in range of 5mM; and (4) both MnCl2 and NaClmore » were found to be required for the optimal activity of the enzyme.« less
Vargiu, Romina; Perinu, Anna; De Lisa, Antonello; Tintrup, Frank; Manca, Francesco; Mancinelli, Rino
2012-01-01
Ureteral peristalsis is the result of coordinated mechanical motor performance of longitudinal and circular smooth muscle layer of the ureter wall. The main aim of this study was to characterize in smooth muscle of proximal segments of human ureter, the mechanical properties at level of muscle tissue and at level of myosin molecular motors. Ureteral samples were collected from 15 patients, who underwent nephrectomy for renal cancer. Smooth muscle strips longitudinally and circularly oriented from proximal segments of human ureter were used for the in vitro experiments. Mechanical indices including the maximum unloaded shortening velocity (Vmax), and the maximum isometric tension (P0) normalized per cross-sectional area, were determined in vitro determined in electrically evoked contractions of longitudinal and circular smooth muscle strips. Myosin cross-bridge (CB) number per mm2 (Ψ) the elementary force per single CB (Ψ) and kinetic parameters were calculated in muscle strips, using Huxley's equations adapted to nonsarcomeric muscles. Longitudinal smooth muscle strips exhibited a significantly (p<0.05) faster Vmax (63%) and a higher P0 (40%), if compared to circular strips. Moreover, longitudinal muscle strips showed a significantly higher unitary force (Ψ) per CB. However, no significant differences were observed in CB number, the attachment (f1) and the detachment (g2) rate constants between longitudinal and circular muscle strips. The main result obtained in the present work documents that the mechanical, energetic and unitary forces per CB of longitudinal layer of proximal ureter are better compared to the circular one; these preliminary findings suggested, unlike intestinal smooth muscle, a major role of longitudinal smooth muscle layer in the ureter peristalsis.
Satar, Rukhsana; Husain, Qayyum
2009-03-01
This paper demonstrates the direct immobilization of peroxidase from ammonium sulfate fractionated white radish proteins on an inorganic support, Celite 545. The adsorbed peroxidase was crosslinked by using glutaraldehyde. The activity yield for white radish peroxidase was adsorbed on Celite 545 was 70% and this activity was decreased and remained 60% of the initial activity after crosslinking by glutaraldehyde. The pH and temperature-optima for both soluble and immobilized peroxidase was at pH 5.5 and 40 degrees C. Immobilized peroxidase retained higher stability against heat and water-miscible organic solvents. In the presence of 5.0 mM mercuric chloride, immobilized white radish peroxidase retained 41% of its initial activity while the free enzyme lost 93% activity. Soluble enzyme lost 61% of its initial activity while immobilized peroxidase retained 86% of the original activity when exposed to 0.02 mM sodium azide for 1 h. The K(m) values were 0.056 and 0.07 mM for free and immobilized enzyme, respectively. Immobilized white radish peroxidase exhibited lower V(max) as compared to the soluble enzyme. Immobilized peroxidase preparation showed better storage stability as compared to its soluble counterpart.
Rodriguez Sanoja, R.; Morlon-Guyot, J.; Jore, J.; Pintado, J.; Juge, N.; Guyot, J. P.
2000-01-01
Two constructs derived from the α-amylase gene (amyA) of Lactobacillus amylovorus were expressed in Lactobacillus plantarum, and their expression products were purified, characterized, and compared. These products correspond to the complete (AmyA) and truncated (AmyAΔ) forms of α-amylase; AmyAΔ lacks the 66-kDa carboxyl-terminal direct-repeating-unit region. AmyA and AmyAΔ exhibit similar amylase activities towards a range of soluble substrates (amylose, amylopectin and α-cyclodextrin, and soluble starch). The specific activities of the enzymes towards soluble starch are similar, but the KM and Vmax values of AmyAΔ were slightly higher than those of AmyA, whereas the thermal stability of AmyAΔ was lower than that of AmyA. In contrast to AmyA, AmyAΔ is unable to bind to β-cyclodextrin and is only weakly active towards glycogen. More striking is the fact that AmyAΔ cannot bind or hydrolyze raw starch, demonstrating that the carboxyl-terminal repeating-unit domain of AmyA is required for raw-starch binding activity. PMID:10919790
Metabolic efficiency and turnover of soil microbial communities in biodegradation tests.
Shen, J; Bartha, R
1996-01-01
Biodegradability screening tests of soil commonly measure 14CO2 evolution from radiolabeled test compounds, and glucose has often served as a positive control. When constant amounts of radiolabel were added to soil in combination with increasing amounts of unlabeled substrates, glucose and some related hexoses behaved in an anomalous manner. In contrast to that of formate, benzoate, n-hexadecane, or bis(2-ethylhexyl) phthalate, dilution of glucose radiocarbon with unlabeled glucose increased rather than decreased the rate and extent of 14CO2 evolution. [14C]glucose incorporation into biomass and Vmax values were consistent with the interpretation that application of relatively high concentrations of glucose to soil shifts the balance of the soil microbial community from the autochthonous (humus-degrading) to the zymogeneous (opportunistic) segment. The higher growth and turnover rates that define zymogeneous microorganisms, combined with a lower level of carbon incorporation into their biomass, result in the evolution of disproportionate percentages of 14CO2. When used as positive controls, glucose and related hexoses may raise the expectations for percent 14CO2 evolution to levels that are not realistic for other biodegradable compounds. PMID:8779580
Glucose supplements increase human muscle in vitro Na+-K+-ATPase activity during prolonged exercise.
Green, H J; Duhamel, T A; Foley, K P; Ouyang, J; Smith, I C; Stewart, R D
2007-07-01
Regulation of maximal Na(+)-K(+)-ATPase activity in vastus lateralis muscle was investigated in response to prolonged exercise with (G) and without (NG) oral glucose supplements. Fifteen untrained volunteers (14 males and 1 female) with a peak aerobic power (Vo(2)(peak)) of 44.8 +/- 1.9 ml.kg(-1).min(-1); mean +/- SE cycled at approximately 57% Vo(2)(peak) to fatigue during both NG (artificial sweeteners) and G (6.13 +/- 0.09% glucose) in randomized order. Consumption of beverage began at 30 min and continued every 15 min until fatigue. Time to fatigue was increased (P < 0.05) in G compared with NG (137 +/- 7 vs. 115 +/- 6 min). Maximal Na(+)-K(+)-ATPase activity (V(max)) as measured by the 3-O-methylfluorescein phosphatase assay (nmol.mg(-1).h(-1)) was not different between conditions prior to exercise (85.2 +/- 3.3 or 86.0 +/- 3.9), at 30 min (91.4 +/- 4.7 vs. 91.9 +/- 4.1) and at fatigue (92.8 +/- 4.3 vs. 100 +/- 5.0) but was higher (P < 0.05) in G at 90 min (86.7 +/- 4.2 vs. 109 +/- 4.1). Na(+)-K(+)-ATPase content (beta(max)) measured by the vanadate facilitated [(3)H]ouabain-binding technique (pmol/g wet wt) although elevated (P < 0.05) by exercise (0<30, 90, and fatigue) was not different between NG and G. At 60 and 90 min of exercise, blood glucose was higher (P < 0.05) in G compared with NG. The G condition also resulted in higher (P < 0.05) serum insulin at similar time points to glucose and lower (P < 0.05) plasma epinephrine and norepinephrine at 90 min of exercise and at fatigue. These results suggest that G results in an increase in V(max) by mechanisms that are unclear.
Mehdi, Wesen Adel; Yusof, Faridah; Mehde, Atheer Awad; Zainulabdeen, Jwan Abdulmohsin; Raus, Raha Ahmed; Abdulbari, Alaa Shawqi
2015-01-01
Acute leukaemia is characterized by fast growth of abnormal clones of haemopoietic precursor cells inside bone marrow leading to undue accumulation in the bone marrow. Acute lymphoblastic leukemia (ALL) is the most common form of childhood cancer. The study concerned 50 children diagnosed with ALL (mean age, 8.55±2.54) compared to 40 healthy controls (mean age, 8.00±1.85). The Hb, serum copper, ceruloplasmin oxidase, advanced oxidation protein products (AOPPs), total antioxidant activity (TAA) and protein were measured in all groups. One proteinous component was isolated by gel filtration chromatography from the precipitate produced by polyethylene glycol. Significantly higher levels of AOPP, copper and decrease in total antioxidant activity were noted in the cases. Statistical analysis also showed a significant increase (p<0.01) in the activity of serum ceruloplasmin oxidase in patients with ALL compared to normal subjects. The maximum velocity (Vmax) and Michaelis constant had values of 104.2 U/L and 11.7 mM, respectively. The ΔH* values for ceruloplasmin oxidase in ALL patients were positive, confirming the reaction to be endothermic. The results from this study showed a significant increase in AOPP, ceruloplasmine oxidase and decrease in total antioxidant activity .These parameters may play a role in development of DNA damage in childhood patients with acute lymphoblastic leukemia (ALL). The ΔS* and ΔG* values were negative, these refer that the reaction of ES formation is spontaneous, but needs energy in a so-called endergonic reaction. Also the negative ΔS* value of ceruloplasmin oxidase indicates that the complex [ES*] is further modulated through increasing structure arrangement.
Patil, Ulhas; Mokashe, Narendra; Chaudhari, Ambalal
2016-01-01
Proteases are now recognized as the most indispensable industrial biocatalyst owing to their diverse microbial sources and innovative applications. In the present investigation, a thermostable, organic solvent-tolerant, alkaline serine protease from Bacillus circulans MTCC 7942, was purified and characterized. The protease was purified to 37-fold by a three-step purification scheme with 39% recovery. The optimum pH and temperature for protease was 10 and 60 °C, respectively. The apparent molecular mass of the purified enzyme was 43 kD as revealed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The Km and Vmax values using casein-substrate were 3.1 mg/mL and 1.8 µmol/min, respectively. The protease remained stable in the presence of organic solvents with higher (>3.2) log P value (cyclohexane, n-octane, n-hexadecane, n-decane, and n-dodecane), as compared to organic solvents with lower (<3.2) log P value (acetone, butanol, benzene, chloroform, toluene). Remarkably, the protease showed profound stability even in the presence of organic solvents with less log P values (glycerol, dimethyl sulfate [DMSO], p-xylene), indicating the possibility of nonaqueous enzymatic applications. Also, protease activity was improved in the presence of metal ions (Ca(2+), Mg(2+), Mn(2+)); enhanced by biosurfactants; hardly affected by bleaching agents, oxidizing agents, and chemical surfactants; and stable in commercial detergents. In addition, a protease-detergent formulation effectively washed out egg and blood stains as compared to detergent alone. The protease was suitable for various commercial applications like processing of gelatinous film and as a compatible additive to detergent formulation with its operative utility in hard water.
Chavanelle, Vivien; Boisseau, Nathalie; Otero, Yolanda F; Combaret, Lydie; Dardevet, Dominique; Montaurier, Christophe; Delcros, Geoffrey; Peltier, Sébastien L; Sirvent, Pascal
2017-03-16
Physical activity is known as an effective strategy for prevention and treatment of Type 2 Diabetes. The aim of this work was to compare the effects of a traditional Moderate Intensity Continuous Training (MICT) with a High Intensity Interval Training (HIIT) on glucose metabolism and mitochondrial function in diabetic mice. Diabetic db/db male mice (N = 25) aged 6 weeks were subdivided into MICT, HIIT or control (CON) group. Animals in the training groups ran on a treadmill 5 days/week during 10 weeks. MICT group ran for 80 min (0° slope) at 50-60% of maximal speed (Vmax) reached during an incremental test. HIIT group ran thirteen times 4 minutes (20° slope) at 85-90% of Vmax separated by 2-min-rest periods. HIIT lowered fasting glycaemia and HbA1c compared with CON group (p < 0.05). In all mitochondrial function markers assessed, no differences were noted between the three groups except for total amount of electron transport chain proteins, slightly increased in the HIIT group vs CON. Western blot analysis revealed a significant increase of muscle Glut4 content (about 2 fold) and higher insulin-stimulated Akt phosphorylation ratios in HIIT group. HIIT seems to improve glucose metabolism more efficiently than MICT in diabetic mice by mechanisms independent of mitochondrial adaptations.
Cortez, Ely Vieira; Pessoa, Adalberto; das Graças de Almeida Felipe, Maria; Roberto, Inês Conceição; Vitolo, Michele
2004-07-25
The intracellular enzymes xylose reductase (XR, EC 1.1.1.21) and xylitol dehydrogenase (XD, EC 1.1.1.9) from Candida guilliermondii, grown in sugar cane bagasse hydrolysate, were separated by reversed micelles of cetyl trimethyl ammonium bromide (CTAB) cationic surfactant. An experimental design was employed to optimize the extraction conditions of both enzymes. Under these conditions (temperature = 5 degree C, hexanol: isooctane proportion = 5% (v/v), 22 %, surfactant concentration = 0.15M, pH = 7.0 and electrical conductivity = 14 mScm(-1)) recovery values of about 100 and 80% were achieved for the enzymes XR and XD, respectively. The purity of XR and XD increased 5.6- and 1.8-fold, respectively. The extraction process caused some structural modifications in the enzymes molecules, as evidenced by the alteration of K(M) values determined before and after extraction, either in regard to the substrate (up 35% for XR and down 48% for XD) or cofactor (down 29% for XR and up 11% for XD). However, the average variation of V(max) values for both enzymes was not higher than 7%, indicating that the modified affinity of enzymes for their respective substrates and cofactors, as consequence of structural modifications suffered by them during the extraction, are compensated in some extension. This study demonstrated that liquid-liquid extraction by CTAB reversed micelles is an efficient process to separate the enzymes XR and XD present in the cell extract, and simultaneously increase the enzymatic activity and the purity of both enzymes produced by C. guilliermondii.
NASA Astrophysics Data System (ADS)
Urmann, Karina; Schroth, Martin H.; Noll, Matthias; Gonzalez-Gil, Graciela; Zeyer, Josef
2008-06-01
Emissions of the greenhouse gas CH4, which is often produced in contaminated aquifers, are reduced or eliminated by microbial CH4 oxidation in the overlying vadose zone. The aim of this field study was to estimate kinetic parameters and isotope fractionation factors for CH4 oxidation in situ in the vadose zone above a methanogenic aquifer in Studen, Switzerland, and to characterize the involved methanotrophic communities. To quantify kinetic parameters, several field tests, so-called gas push-pull tests (GPPTs), with CH4 injection concentrations ranging from 17 to 80 mL L-1 were performed. An apparent Vmax of 0.70 ± 0.15 mmol CH4 (L soil air)-1 h-1 and an apparent Km of 0.28 ± 0.09 mmol CH4 (L soil air)-1 was estimated for CH4 oxidation at 2.7 m depth, close to the groundwater table. At 1.1 m depth, Km (0.13 ± 0.02 mmol CH4 (L soil air)-1) was in a similar range, but Vmax (0.076 ± 0.006 mmol CH4 (L soil air)-1 h-1) was an order of magnitude lower. At 2.7 m, apparent first-order rate constants determined from a CH4 gas profile (1.9 h-1) and from a single GPPT (2.0 ± 0.03 h-1) were in good agreement. Above the groundwater table, a Vmax much higher than the in situ CH4 oxidation rate prior to GPPTs indicated a high buffer capacity for CH4. At both depths, known methanotrophic species affiliated with Methylosarcina and Methylocystis were detected by cloning and sequencing. Apparent stable carbon isotope fractionation factors α for CH4 oxidation determined during GPPTs ranged from 1.006 to 1.032. Variability was likely due to differences in methanotrophic activity and CH4 availability leading to different degrees of mass transfer limitation. This complicates the use of stable isotopes as an independent quantification method.
Risk factors for left ventricular hypertrophy: role of Na(+)-Li+ countertransport.
Neves, P L; Faisca, M; Gomes, V; Cacodcar, S; Bernardo, I; Anunciada, A I; Viegas, E; Martins, H; da Silva, A M
1996-06-01
Left ventricular hypertrophy (LVH) is associated with an increase in cardiovascular death in essential hypertension (EH). The factors involved in LVH are multiple and complex. We looked for risk factors of LVH in a group of 28 nonobese patients with EH (mean age = 45.3 years). We analyzed the activity of several erythrocyte ion transports (Vmax of NaLi countertransport, NaKCl cotransport and NaK-pump, and the Na-leak Kp Na), the intracellular Na and the insulin sensitivity index. All these parameters were used as independent variables whereas the left ventricular mass index (LVMI) was used as the dependent variable. Variables showing a significant univariate correlation (age, time of EH, mean blood pressure and Vmax of NaLi countertransport) were introduced in a stepwise multiple regression model. Only age (P = 0.014), time of EH (P = 0.038) and Vmax of NaLi countertransport (P = 0.032) were independently associated with LVMI (R2 = 0.581, P = 0.0001). The NaLi CT, an operating mode of the NaH exchanger that facilitates cellular growth, may be a marker of LVH, and consequently a marker of increased cardiovascular risk.
Small intestinal sulphoxidation of albendazole.
Villaverde, C; Alvarez, A I; Redondo, P; Voces, J; Del Estal, J L; Prieto, J G
1995-05-01
1. The in vitro sulphoxidation of Albendazole (ABZ) by rat intestinal microsomes has been examined. The results revealed intestinal sulphoxidation of ABZ by intestinal microsomes in a NADPH-dependent enzymatic system. The kinetic constants for sulphoxidase activity were Vmax = 46 pmol/min/mg protein and Michaelis constant Km = 6.8 microM. 2. The possible effect of inducers (Arochlor 1254 and ABZ pretreatment) and inhibitors (erythromycin, methimazole, carbon monoxide and fenbendazole), was also studied. In rat pretreated with Arochlor 1254, Vmax was 52 pmol/min/mg protein, whereas oral administration of ABZ increased the intestinal sulphoxidation of the drug, Vmax being 103 pmol/min/mg protein. 3. Erythromycin did not change the enzymatic bioconversion of ABZ, but methimazole and carbon monoxide inhibited the enzyme activity by approximately 60 and 30% respectively. Fenbendazole (a structural analogue of ABZ) was a competitive inhibitor of the sulphoxidation process, characterized by a Ki or 69 microM. 4. These data demonstrate that the intestinal enzymes contributing to the initial sulphoxidation of ABZ may be similar to the hepatic enzymes involved in the biotransformation process by the P450 and FMO systems, a conclusion that needs to be further established.
Temperature sensitivity of organic substrate decay varies with pH
NASA Astrophysics Data System (ADS)
Min, K.; Lehmeier, C.; Ballantyne, F.; Billings, S. A.
2012-12-01
Cellulose is the most abundant biopolymer in soils and globally ubiquitous. It serves as a primary carbon source for myriad microbes able to release cellulases which cleave the cellulose into smaller molecules. For example, β-glucosidase, one type of cellulase, breaks down a terminal β-glycosidic bond of cellulose. The carbon of the liberated glucose becomes available for microbial uptake, after which it can then be mineralized and returned to the atmosphere via heterotrophic respiration. Thus, exoenzymes play an important role in the global cycling of carbon. Numerous studies suggest that global warming potentially increases the rate at which β-glucosidase breaks down cellulose, but it is not known how pH of the soil solution influences the effect of temperature on cellulose decomposition rates; this is important given the globally wide range of soil pH. Using fluorescence enzyme assay techniques, we studied the effect of temperature and pH on the reaction rate at which purified β-Glucosidase decays β-D-cellobioside (a compound often employed to simulate cellulose). We evaluated the temperature sensitivity of this reaction at five temperatures (5, 10, 15, 20, and 25°C) and six pH values (3.5, 4.5, 5.5, 6.5, 7.5, and 8.5)encompassing the naturally occurring range in soils, in a full-factorial design. First, we determined Vmax at 25°C and pH 6.5, standard conditions for measuring enzyme activities in many studies. The Vmax was 858.65 μmol h-1mg-1and was achieved at substrate concentration of 270 μM. At all pH values, the reaction rate slowed down at lower temperatures; at a pH of 3.5, no enzymatic activity was detected. The enzyme activity was significantly different between pH 4.5 and higher pHs. For example, enzyme reactivity at pH 4.5 was significantly lower than that at 7.5 at 20 and 25°C (Bonferroni-corrected P =0.0006, 0.0004, respectively), but not at lower temperatures. Similarly, enzyme reactivity at pH 4.5 was lower than that at pH 8.5 at 10, 15, and 25°C (P=0.0009, 0.0007, 0.0005, respectively), with a near-significant trend at 20°C (P=0.0023), and exhibited a nearly significant depression in response to temperature at 25°C compared to that at pH 6.5 (P=0.0015). Our results suggest that exoenzymatic cellulose decomposition with warming may be more enhanced in soil systems exhibiting higher pH. This work highlights the importance of soil solution pH as a driver of temperature sensitivity of substrate decay, and adds a level of complexity for developing accurate predictions of soil carbon cycling with climate change.
Microbial activities at the benthic boundary layer in the Aegean Sea
NASA Astrophysics Data System (ADS)
Bianchi, A.; Tholosan, O.; Garcin, J.; Polychronaki, T.; Tselepides, A.; Buscail, R.; Duineveld, G.
2003-05-01
During the Aegean Sea component of the EU MTP-MATER project, benthic samples were acquired along a depth gradient from two continental margins in the Aegean Sea. Sampling was undertaken during spring and summer 1997 and the microbial metabolic activities measured (Vmax for aminopeptidase activity, 14C-glutamate respiration and assimilation) displayed seasonal variability even in deep-sea conditions. The metabolic rates encountered in the North Aegean (average depth 566±234 m), were approximately five-fold higher than in the deeper (1336±140 m) Southern part of the Aegean. The aminopeptidase rates, however, were the exception with higher values recorded in the more oligotrophic sediments of the Southern stations (1383±152 vs. 766±297 nmol MCA cm-2 h-1). A discrepancy in bacterial metabolism also appeared in the near bottom waters. In the Southern stations, 80% of the glutamate uptake was used for energy yielding processes and only 20% devoted to biomass production, while in the North Aegean, most of the used glutamate was incorporated into bacterial cells. During the early burial stages, bacterial mineralization rates estimated from 14C-glutamate respiration decreased drastically compared to the rates of biopolymer hydrolysis estimated by aminopeptidase assays. Thus, at the 2-cm depth layer, these rates were only 32 and up to 77% of the corresponding average values, respectively, in the superficial layer. Such a discrepancy between the evolution of these two metabolic activities is possibly due to the rapid removal of readily utilizable monomers in the surface deposits. The correlation between bacterial respiration and total organic carbon, or total organic nitrogen, is higher in the surficial sediment (0-2 and 2-4 cm) than in the underlying layer. Conversely, it is only at 4-cm depth layer that the hydrolysis rates appear correlated with organic carbon and nitrogen concentrations. This pattern confirms the drastic degradation of organic matter during the early burial stages.
Adem, Sevki; Ciftci, Mehmet
2016-06-01
The present study was aimed to investigate characterization and purification of glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and glutathione reductase from rat heart and the inhibitory effect of three drugs. The purification of the enzymes was performed using 2',5'-ADP sepharose 4B affinity material. The subunit and the natural molecular weights were analyzed by SDS-PAGE and gel filtration. Biochemical characteristics such as the optimum temperature, pH, stable pH, and salt concentration were examined for each enzyme. Types of product inhibition and Ki values with Km and Vmax values of the substrates and coenzymes were determined. According to the obtained Ki and IC50 values, furosemide, digoxin, and dopamine showed inhibitory effect on the enzyme activities at low millimolar concentrations in vitro conditions. Dopamine inhibited the activity of these enzymes as competitive, whereas furosemide and digoxin inhibited the activity of the enzyme as noncompetitive. © 2016 Wiley Periodicals, Inc.
Contractile properties of rat, rhesus monkey, and human type I muscle fibers
NASA Technical Reports Server (NTRS)
Widrick, J. J.; Romatowski, J. G.; Karhanek, M.; Fitts, R. H.
1997-01-01
It is well known that skeletal muscle intrinsic maximal shortening velocity is inversely related to species body mass. However, there is uncertainty regarding the relationship between the contractile properties of muscle fibers obtained from commonly studied laboratory animals and those obtained from humans. In this study we determined the contractile properties of single chemically skinned fibers prepared from rat, rhesus monkey, and human soleus and gastrocnemius muscle samples under identical experimental conditions. All fibers used for analysis expressed type I myosin heavy chain as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Allometric coefficients for type I fibers from each muscle indicated that there was little change in peak tension (force/fiber cross-sectional area) across species. In contrast, both soleus and gastrocnemius type I fiber maximal unloaded shortening velocity (Vo), the y-intercept of the force-velocity relationship (Vmax), peak power per unit fiber length, and peak power normalized for fiber length and cross-sectional area were all inversely related to species body mass. The present allometric coefficients for soleus fiber Vo (-0.18) and Vmax (-0.11) are in good agreement with published values for soleus fibers obtained from common laboratory and domesticated mammals. Taken together, these observations suggest that the Vo of slow fibers from quadrupeds and humans scale similarly and can be described by the same quantitative relationships. These findings have implications in the design and interpretation of experiments, especially those that use small laboratory mammals as a model of human muscle function.
Han, Dan; Zhao, Youcai; Xue, Binjie; Chai, Xiaoli
2010-01-01
An experimental bio-column composed of aged refuse was installed around the exhaust pipe as a new way to mitigate methane in refuse landfill. One of the objectives of this work was to assess the effect of aged refuse thickness in bio-column on reducing CH4 emissions. Over the study period, methane oxidation was observed at various thicknesses, 5 cm (small size), 10 cm (middle size) and 15 cm (large size), representing one to three times of pipeline diameters. The middle and large size both showed over 90% methane conversion, and the highest methane conversion rate of above 95% occurred in the middle-size column cell. Michaelis-Menten equation addressed the methanotrophs diffusion in different layers of the bio-columns. Maximum methanotrophic activity (Vmax) measured at the three thicknesses ranged from 6.4 x 10(-3) to 15.6 x 10(-3) units, and the half-saturation value (K(M)) ranged from 0.85% to 1.67%. Both the highest Vmax and K(M) were observed at the middle-size of the bio-column, as well as the largest methanotrophs population, suggesting a significant efficiency of methane mitigation happened in the optimum zone with greatest affinity and methanotrophic bacteria activities. Therefore, bio-column is a potential style for methane abatement in landfill, and the aged refuse both naturally formed and artificially placed in the column plays a critical role in CH4 emission.
Kudo, S; Okumura, H; Miyamoto, G; Ishizaki, T
1999-02-01
Cytochrome P-450 (CYP) isoforms responsible for the cleavage of Hantzsch pyridine ester at the 3-position of pranidipine were studied in vitro using cDNA-expressed human CYP enzymes. CYP1A1, 1A2, 2D6, and 3A4 cleaved the ester with a catalytic activity of 5.5, 0. 93, 13.1, and 22.4 nmol/30 min/nmol P-450, respectively. CYP2A6, 2B6, 2C8, 2C9, 2C19, and 2E1 were not involved in the de-esterification. The Km and Vmax values for the de-esterification were 11.8 microM and 0.47 nmol/min/nmol P-450 in the CYP2D6-catalyzed reaction and 8. 7 microM and 0.84 nmol/min/nmol P-450 in the CYP3A4-catalyzed reaction. The intrinsic clearance (Vmax/Km) of the de-esterification by CYP3A4 was 2-fold greater than that by CYP2D6. Quinidine almost completely inhibited the CYP2D6-mediated de-esterification at the concentration of 1 x 10(-6) M. Ketoconazole and troleandomycin inhibited the CYP3A4-mediated reaction in a dose-related manner. The results indicate that although the multiple CYP isoforms can catalyze the de-esterification, CYP3A4 and 2D6 are the major isoforms.
Burrier, R E; Brecher, P
1983-10-10
An acid lipase was purified from rat liver lysosomes. Lipase purification involved affinity chromatography, gel filtration, and stabilization of the purified preparation using ethylene glycol and Triton X-100. A molecular weight of 67,000-69,000 was determined independently using density gradient centrifugation, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and gel filtration. To study enzyme action, model substrates were prepared by incorporating radiolabeled triolein into either unilamellar vesicles or microemulsions. Substrates were prepared by cosonicating aqueous dispersions of lecithin and triolein. Formation of vesicles or emulsions depended on the relative amount of each lipid and on sonication conditions. Vesicles were prepared at molar ratios between 70:1 and 26:1 (lecithin:triolein) and the microemulsion preparation at a molar ratio of 1:1. The substrate particles were of similar size (220-250 A) as determined by Bio-Gel A-15m chromatography. Hydrolysis of triolein contained in vesicles or emulsions was similar with respect to pH, temperature, and reaction products. Kinetic studies on vesicles with increasing triolein content showed progressively greater Vmax values (0-0.6 mumol/min/mg), and Vmax for the emulsion was 3.1 mumol/min/mg. Addition of human very low or low density lipoprotein produced a dose-dependent inhibition with both substrates. The results show that synthetically prepared microemulsions are stable and effective substrates for the acid lipase and indicate that surface-oriented triolein is hydrolyzed in both preparations.
Asensi-Bernardi, Lucía; Martín-Biosca, Yolanda; Escuder-Gilabert, Laura; Sagrado, Salvador; Medina-Hernández, María José
2013-12-01
In this work, a capillary electrophoretic methodology for the enantioselective in vitro evaluation of drugs metabolism is applied to the evaluation of fluoxetine (FLX) metabolism by cytochrome 2D6 (CYP2D6). This methodology comprises the in-capillary enzymatic reaction and the chiral separation of FLX and its major metabolite, norfluoxetine enantiomers employing highly sulfated β-CD and the partial filling technique. The methodology employed in this work is a fast way to obtain a first approach of the enantioselective in vitro metabolism of racemic drugs, with the additional advantage of an extremely low consumption of enzymes, CDs and all the reagents involved in the process. Michaelis-Menten kinetic parameters (Km and Vmax ) for the metabolism of FLX enantiomers by CYP2D6 have been estimated by nonlinear fitting of experimental data to the Michaelis-Menten equation. Km values have been found to be 30 ± 3 μM for S-FLX and 39 ± 5 μM for R-FLX. Vmax estimations were 28.6 ± 1.2 and 34 ± 2 pmol·min(-1) ·(pmol CYP)(-1) for S- and R-FLX, respectively. Similar results were obtained using a single enantiomer (R-FLX), indicating that the use of the racemate is a good option for obtaining enantioselective estimations. The results obtained show a slight enantioselectivity in favor of R-FLX. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Björkman, Karin; Duhamel, Solange; Karl, David M.
2012-01-01
We investigated the concentration dependent uptake of inorganic phosphate (Pi) and adenosine-5′-triphosphate (ATP) in microbial populations in the North Pacific Subtropical Gyre (NPSG). We used radiotracers to measure substrate uptake into whole water communities, differentiated microbial size classes, and two flow sorted groups; Prochlorococcus (PRO) and non-pigmented bacteria (NPB). The Pi concentrations, uptake rates, and Pi pool turnover times (Tt) were (mean, ±SD); 54.9 ± 35.0 nmol L−1 (n = 22), 4.8 ± 1.9 nmol L−1 day−1 (n = 19), and 14.7 ± 10.2 days (n = 19), respectively. Pi uptake into >2 μm cells was on average 12 ± 7% (n = 15) of the total uptake. The kinetic response to Pi (10–500 nmol L−1) was small, indicating that the microorganisms were close to their maximum uptake velocity (Vmax). Vmax averaged 8.0 ± 3.6 nmol L−1 day−1 (n = 19) in the >0.2 μm group, with half saturation constants (Km) of 40 ± 28 nmol L−1 (n = 19). PRO had three times the cell specific Pi uptake rate of NPB, at ambient concentrations, but when adjusted to cells L−1 the rates were similar, and these two groups were equally competitive for Pi. The Tt of γ-P-ATP in the >0.2 μm group were shorter than for the Pi pool (4.4 ± 1.0 days; n = 6), but this difference diminished in the larger size classes. The kinetic response to ATP was large in the >0.2 μm class with Vmax exceeding the rates at ambient concentrations (mean 62 ± 27 times; n = 6) with a mean Vmax for γ-P-ATP of 2.8 ± 1.0 nmol L−1 day−1, and Km at 11.5 ± 5.4 nmol L−1 (n = 6). The NPB contribution to γ-P-ATP uptake was high (95 ± 3%, n = 4) at ambient concentrations but decreased to ∼50% at the highest ATP amendment. PRO had Km values 5–10 times greater than NPB. The above indicates that PRO and NPB were in close competition in terms of Pi acquisition, whereas P uptake from ATP could be attributed to NPB. This apparent resource partitioning may be a niche separating strategy and an important factor in the successful co-existence within the oligotrophic upper ocean of the NPSG. PMID:22701449
DOE Office of Scientific and Technical Information (OSTI.GOV)
Attia, R.M.; Gamal, R.F.
The enzymatic properties of cellulase Cx (B-14-glucan 4-glucano hydrolase, 3.2.1.4) were studied. The enzyme was obtained from a local isolate of Aspergillus niger R-1237. The reaction followed first order kinetics. The apparent temperature optimum fell at about 60 degrees Centigrade. The enthalpy of activiation of the ES-complex was calculated as about 2600 cal/mole. The Arrhenius equation is valid, and the energy of activation of the forward reaction (E) was calculated to be 12600 cal/mole. The standard free energy change (delta G) and the standard entropy change (delta G) were found to be - 102.7 cal/mole and plus 39.3 cal/mole/degree atmore » 50 degrees Centigrade. The values of thermodynamic quantities at other temperatures ranging from 30 degrees to 60 degrees Centigrade were also studied. The effect of temperatures on the two parameters, i.e. Vmax and Km values were discussed.« less
NASA Astrophysics Data System (ADS)
Patel, Sanjay K. S.; Choi, Seung Ho; Kang, Yun Chan; Lee, Jung-Kul
2016-03-01
Multiple-shelled Fe2O3 yolk-shell particles were synthesized using the spray drying method and intended as a suitable support for the immobilization of commercial enzymes such as glucose oxidase (GOx), horseradish peroxidase (HRP), and laccase as model enzymes. Yolk-shell particles have an average diameter of 1-3 μm with pore diameters in the range of 16 to 28 nm. The maximum immobilization of GOx, HRP, and laccase resulted in the enzyme loading of 292, 307 and 398 mg per g of support, respectively. After cross-linking of immobilized laccase by glutaraldehyde, immobilization efficiency was improved from 83.5% to 90.2%. Km and Vmax values were 41.5 μM and 1722 μmol min-1 per mg protein for cross-linked laccase and those for free laccase were 29.3 μM and 1890 μmol min-1 per mg protein, respectively. The thermal stability of the enzyme was enhanced up to 18-fold upon cross-linking, and the enzyme retained 93.1% of residual activity after ten cycles of reuse. The immobilized enzyme has shown up to 32-fold higher stability than the free enzyme towards different solvents and it showed higher efficiency than free laccase in the decolorization of dyes and degradation of bisphenol A. The synthesized yolk-shell particles have 3-fold higher enzyme loading efficiency and lower acute toxicity than the commercial Fe2O3 spherical particles. Therefore, the use of unique yolk-shell structure Fe2O3 particles with multiple-shells will be promising for the immobilization of various enzymes in biotechnological applications with improved electrochemical properties. To the best of our knowledge, this is the first report on the use of one pot synthesized Fe2O3 yolk-shell structure particles for the immobilization of enzymes.Multiple-shelled Fe2O3 yolk-shell particles were synthesized using the spray drying method and intended as a suitable support for the immobilization of commercial enzymes such as glucose oxidase (GOx), horseradish peroxidase (HRP), and laccase as model enzymes. Yolk-shell particles have an average diameter of 1-3 μm with pore diameters in the range of 16 to 28 nm. The maximum immobilization of GOx, HRP, and laccase resulted in the enzyme loading of 292, 307 and 398 mg per g of support, respectively. After cross-linking of immobilized laccase by glutaraldehyde, immobilization efficiency was improved from 83.5% to 90.2%. Km and Vmax values were 41.5 μM and 1722 μmol min-1 per mg protein for cross-linked laccase and those for free laccase were 29.3 μM and 1890 μmol min-1 per mg protein, respectively. The thermal stability of the enzyme was enhanced up to 18-fold upon cross-linking, and the enzyme retained 93.1% of residual activity after ten cycles of reuse. The immobilized enzyme has shown up to 32-fold higher stability than the free enzyme towards different solvents and it showed higher efficiency than free laccase in the decolorization of dyes and degradation of bisphenol A. The synthesized yolk-shell particles have 3-fold higher enzyme loading efficiency and lower acute toxicity than the commercial Fe2O3 spherical particles. Therefore, the use of unique yolk-shell structure Fe2O3 particles with multiple-shells will be promising for the immobilization of various enzymes in biotechnological applications with improved electrochemical properties. To the best of our knowledge, this is the first report on the use of one pot synthesized Fe2O3 yolk-shell structure particles for the immobilization of enzymes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00346j
Sari, Müfrettin Murat
2011-04-01
Cupric ion-chelated poly(hydroxyethyl methacrylate-n-vinyl imidazole) (poly(HEMA-VIM)) microspheres prepared by suspension polymerization were investigated as a specific adsorbent for immobilization of yeast invertase in a batch system. They were characterized by scanning electron microscopy, surface area, and pore size measurements. They have spherical shape and porous structure. The specific surface area of the p(HEMA-VIM) spheres was found to be 81.2 m²/g with a size range of 70-120 μm in diameter, and the swelling ratio was 86.9%. Then, Cu(II) ion chelated on the microspheres (546 μmol Cu(II)/g), and they were used in the invertase adsorption. Maximum invertase adsorption was 51.2 mg/g at pH 4.5. Cu(II) chelation increases the tendency from Freundlich-type to Langmuir-type adsorption model. The optimum activity for both free and adsorbed invertase was observed at pH 4.5. The optimum temperature for the poly(HEMA-VIM)/Cu(II)-invertase system was found to be at 55 °C, 10 °C higher than that of the free enzyme at 45 °C. V(max) values were determined as 342 and 304 U/mg enzyme, for free and adsorbed invertase, respectively. K(m) values were found to be same for free and adsorbed invertase (20 mM). Thermal and pH stability and reusability of invertase increased with immobilization.
Design of epoxy-functionalized Fe3O4@MCM-41 core-shell nanoparticles for enzyme immobilization.
Ulu, Ahmet; Ozcan, Imren; Koytepe, Suleyman; Ates, Burhan
2018-05-01
The scope of our research was to prepare the organosilane-modified Fe 3 O 4 @MCM-41 core-shell magnetic nanoparticles, used for L-ASNase immobilization and explored screening of immobilization conditions such as pH, temperature, thermal stability, kinetic parameters, reusability and storage stability. In this content, Fe 3 O 4 core-shell magnetic nanoparticles were prepared via co-precipitation method and coated with MCM-41. Then, Fe 3 O 4 @MCM-41 magnetic nanoparticles were functionalized by (3-glycidyloxypropyl) trimethoxysilane (GPTMS) as an organosilane compound. Subsequently, L-ASNase was covalently immobilized on epoxy-functionalized Fe 3 O 4 @MCM-41 magnetic nanoparticles. The immobilized L-ASNase had greater activity at high pH and temperature values. It also maintained >92% of the initial activity after incubation at 55 °C for 3 h. Regarding kinetic values, immobilized L-ASNase showed a higher Vmax and lower Km compared to native L-ASNase. In addition, it displayed excellent reusability for 12 successive cycles. After 30 days of storage at 4 °C and 25 °C, immobilized L-ASNase retained 54% and 26% of its initial activities while native L-ASNase lost about 68% and 84% of its initial activity, respectively. As a result, the immobilization of L-ASNase onto magnetic nanoparticles may provide an advantage in terms of removal of L-ASNase from reaction media. Copyright © 2018. Published by Elsevier B.V.
Libardi, Nelson; Gern, Regina Maria Miranda; Furlan, Sandra Aparecida; Schlosser, Dietmar
2012-07-01
This work aimed to study the production of laccase from Pleurotus ostreatus DSM 1833 and Phoma sp. UHH 5-1-03 using banana peels as alternative carbon source, the subsequent partial purification and characterization of the enzyme, as well the applicability to degrade endocrine disruptors. The laccase stability with pH and temperature, the optimum pH, the K (m) and V(max) parameters, and the molar mass were determined. Tests were conducted for assessing the ability of degradation of the endocrine disruptors t-nonylphenol, bisphenol A, and 17α-ethinylestradiol. Laccase production of 752 and 1,117 U L⁻¹ was obtained for Phoma sp. and P. ostreatus, respectively. Phoma sp. laccase showed higher stability with temperature and pH. The laccase from both species showed higher affinity by syringaldazine. The culture broth with banana peels induced the production of two isoforms of P. ostreatus (58.7 and 21 kDa) and one of Phoma sp. laccase (72 kDa). In the first day of incubation, the concentrations of bisphenol A and 17α-ethinylestradiol were reduced to values close to zero and after 3 days the concentration of t-nonylphenol was reduced in 90% by the P. ostreatus laccase, but there was no reduction in its concentration by the Phoma sp. laccase.
The Star Formation Demographics of Galaxies in the Local Volume
NASA Astrophysics Data System (ADS)
Lee, Janice C.; Kennicutt, Robert C.; Funes, S. J., José G.; Sakai, Shoko; Akiyama, Sanae
2007-12-01
We examine the connections between the current global star formation activity, luminosity, dynamical mass, and morphology of galaxies in the Local Volume, using Hα data from the 11 Mpc Hα and Ultraviolet Galaxy Survey (11HUGS). Taking the equivalent width (EW) of the Hα emission line as a tracer of the specific star formation rate, we analyze the distribution of galaxies in the MB-EW and rotational velocity (Vmax)-EW planes. Star-forming galaxies show two characteristic transitions in these planes. A narrowing of the galaxy locus occurs at MB~-15 and Vmax~50 km s-1, where the scatter in the logarithmic EWs drops by a factor of 2 as the luminosities/masses increase, and galaxy morphologies shift from predominately irregular to late-type spiral. Another transition occurs at MB~-19 and Vmax~120 km s-1, above which the sequence turns off toward lower EWs and becomes mostly populated by intermediate- and early-type bulge-prominent spirals. Between these two transitions, the mean logarithmic EW appears to remain constant at 30 Å. We comment on how these features reflect established empirical relationships, and provide clues for identifying the large-scale physical processes that both drive and regulate star formation, with emphasis on the low-mass galaxies which dominate our approximately volume-limited sample.
Sengupta, Shinjinee; Lahiri, Sagar; Banerjee, Shakri; Bashistha, Bipasha; Ghosh, Anil K
2011-12-01
Trehalose is the most important multifunctional, non-reducing disaccharide found in nature. It is synthesized in yeast by an enzyme complex: trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP). In the present study TPS is purified using a new methodology from Candida utilis cells by inclusion of 100mM l-arginine during cell lysis and in the mobile phase of high performance gel filtration liquid chromatography (HPGFLC). An electrophoretically homogenous TPS that was purified was a 60 kDa protein with 22.1 fold purification having a specific activity of 2.03 U/mg. Alignment of the N-terminal sequence with TPS from Saccharomyces cerevisiae confirmed the 60 kDa protein to be TPS. Optimum activity of TPS was observed at a protein concentration of 1 μg, at a temperature of 37°C and pH 8.5. Aggregation mediated enzyme regulation was indicated. Metal cofactors, especially MnCl₂, MgCl₂ and ZnSO₄, acted as stimulators. Metal chelators like CDTA and EGTA stimulated enzyme activity. Among the four glucosyl donors, the highest V(max) and lowest K(m) values were calculated as 2.96 U/mg and 1.36 mM when adenosine di phosphate synthase (ADPG) was used as substrate. Among the glucosyl acceptors, glucose-6-phosphate (G-6-P) showed maximum activity followed by fructose-6-phosphate (F-6-P). Polyanions heparin and chondroitin sulfate were seen to stimulate TPS activity with different glucosyl donors. Substrate specificity, V(max) and K(m) values provided an insight into an altered trehalose metabolic pathway in the C. utilis strain where ADPG is the preferred substrate rather than the usual substrate uridine diphosphaphate glucose (UDPG). The present work employs a new purification strategy as well as highlights an altered pathway in C. utilis. 2011 Elsevier B.V. All rights reserved.
Sujiwattanarat, Penporn; Pongsanarakul, Parinya; Temsiripong, Yosapong; Temsiripong, Theeranan; Thawornkuno, Charin; Uno, Yoshinobu; Unajak, Sasimanas; Matsuda, Yoichi; Choowongkomon, Kiattawee; Srikulnath, Kornsorn
2016-01-01
Superoxide dismutase (SOD, EC 1.15.1.1) is an antioxidant enzyme found in all living cells. It regulates oxidative stress by breaking down superoxide radicals to oxygen and hydrogen peroxide. A gene coding for Cu,Zn-SOD was cloned and characterized from Siamese crocodile (Crocodylus siamensis; CSI). The full-length expressed sequence tag (EST) of this Cu,Zn-SOD gene (designated as CSI-Cu,Zn-SOD) contained 462bp encoding a protein of 154 amino acids without signal peptides, indicated as intracellular CSI-Cu,Zn-SOD. This agreed with the results from the phylogenetic tree, which indicated that CSI-Cu,Zn-SOD belonged to the intracellular Cu,Zn-SOD. Chromosomal location determined that the CSI-Cu,Zn-SOD was localized to the proximal region of the Siamese crocodile chromosome 1p. Several highly conserved motifs, two conserved signature sequences (GFHVHEFGDNT and GNAGGRLACGVI), and conserved amino acid residues for binding copper and zinc (His(47), His(49), His(64), His(72), His(81), Asp(84), and His(120)) were also identified in CSI-Cu,Zn-SOD. Real-time PCR analysis showed that CSI-Cu,Zn-SOD mRNA was expressed in all the tissues examined (liver, pancreas, lung, kidney, heart, and whole blood), which suggests a constitutively expressed gene in these tissues. Expression of the gene in Escherichia coli cells followed by purification yielded a recombinant CSI-Cu,Zn-SOD, with Km and Vmax values of 6.075mM xanthine and 1.4×10(-3)mmolmin(-1)mg(-1), respectively. This Vmax value was 40 times lower than native Cu,Zn-SOD (56×10(-3)mmolmin(-1)mg(-1)), extracted from crocodile erythrocytes. This suggests that cofactors, protein folding properties, or post-translational modifications were lost during the protein purification process, leading to a reduction in the rate of enzyme activity in bacterial expression of CSI-Cu,Zn-SOD. Copyright © 2015 Elsevier Inc. All rights reserved.
Hurtado, Felipe K.; Weber, Benjamin; Derendorf, Hartmut; Hochhaus, Guenther
2014-01-01
Levofloxacin is a broad-spectrum fluoroquinolone used in the treatment of both acute and chronic bacterial prostatitis. Currently, the treatment of bacterial prostatitis is still difficult, especially due to the poor distribution of many antimicrobials into the prostate, thus preventing the drug to reach effective interstitial concentrations at the infection site. Newer fluoroquinolones show a greater penetration into the prostate. In the present study, we compared the unbound levofloxacin prostate concentrations measured by microdialysis to those in plasma after a 7-mg/kg intravenous bolus dose to Wistar rats. Plasma and dialysate samples were analyzed using a validated high-pressure liquid chromatography-fluorescence method. Both noncompartmental analysis (NCA) and population-based compartmental modeling (NONMEM 6) were performed. Unbound prostate tissue concentrations represented 78% of unbound plasma levels over a period of 12 h by comparing the extent of exposure (unbound AUC0–∞) of 6.4 and 4.8 h·μg/ml in plasma and tissue, respectively. A three-compartment model with simultaneous passive diffusion and saturable distribution kinetics from the prostate to the central compartment gave the best results in terms of curve fitting, precision of parameter estimates, and model stability. The following parameter values were estimated by the population model: V1 (0.38 liter; where V1 represents the volume of the central compartment), CL (0.22 liter/h), k12 (2.27 h−1), k21 (1.44 h−1), k13 (0.69 h−1), Vmax (7.19 μg/h), kM (0.35 μg/ml), V3/fuprostate (0.05 liter; where fuprostate represents the fraction unbound in the prostate), and k31 (3.67 h−1). The interindividual variability values for V1, CL, Vmax, and kM were 21, 37, 42, and 76%, respectively. Our results suggest that levofloxacin is likely to be substrate for efflux transporters in the prostate. PMID:24217697
Skaterna, T D; Kharchenko, O V
2008-01-01
Influence of anionogenic phospholipid of phosphatidic acid (PA) on oxidation of linoleic acid by 5-lipoxygenase (5-LO) from Solanum tuberosum was studied. The influence of PA was studied in micellar system which consisted of mixed micelles of linolenic acid (LK), Lubrol PX and different quantity of enzyme effector PA. The reaction was initiated by addition of 5-LO. It was established that 5-LO had two pHopt. in the presence of 50 microM phosphatidic acid: pH 5.0 and 6.9. In concentration of 50 microM PA was able to activate 5-LO 15 times at pH 5.0. The reaction maximum velocity (Vmax) coincided with Vmax of lipoxygenase reaction without the effector at pH 6.9 under such conditions. It was found that 30-50 microM phospholipid in the reaction mixture decreased the concentration of half saturation by the substrate by 43-67%. The enzyme demonstrated positive cooperation in respect of the substrate, the reaction is described by the Hill equation. Hill coefficient value (h) of the substrate was 3.34 +/- 0.22 (pH 6.9) and 5.61 +/- 0.88 (pH 5.0), that is with the change of pH to acidic region the number of substrate molecules increased and they could interact with the enzyme molecule. In case of substrate insufficiency the enzyme demonstrated positive cooperation of PA, it added from 4 to 3 effectors' molecules at pH 5.0, that is the phospholipid acted as the allosteric regulator of 5-LO. A comparative analysis of the influence of 4-hydroxy-TEMPO displayed, that the level of nonenzymatic processes in the case of physiological pH values was lower by 15-50% in the presence of PA in the range of 30-80 microM than without the effector.
Greaves, Alana K; Su, Guanyong; Letcher, Robert J
2016-10-01
The in vitro biotransformation and kinetics of six organophosphate triester (OPE) flame retardants were investigated in herring gulls (Larus argentatus) from the Great Lakes using a hepatic microsomal metabolism assay. Administration of each individual OPE (tri-n-butyl phosphate (TNBP), tris(2-butoxyethyl) phosphate (TBOEP), triphenyl phosphate (TPHP), triethyl phosphate (TEP), tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and tris(2-chloroisopropyl) phosphate (TCIPP)) to the in vitro assay (concentration range 0.01 to 10μM) resulted in rapid depletion with the exception of TEP. Following the Michaelis-Menten enzyme kinetics model, a preliminary 2-minute incubation period was used to estimate the Vmax (±SE) values (i.e., the maximal rate of reaction for a saturated enzyme system), which ranged from 5.0±0.4 (TPHP) to 29±18pmol/min/mg protein (TBOEP), as well as the KM (±SE) values (i.e., the OPE concentration corresponding to one half of the Vmax), which ranged from 9.8±1 (TPHP) to 189±135nM (TBOEP). Biotransformation assays over a 100-minute incubation period revealed that TNBP was metabolized most rapidly (with a depletion rate of 73±4pmol/min/mg protein), followed by TBOEP (53±8pmol/min/mg), TCIPP (27±1pmol/min/mg), TPHP (22±2pmol/min/mg) and TDCIPP (8±1pmol/min/mg). In vitro biotransformation of OP triesters was clearly structure-dependent where non-halogenated alkyl OP triesters were metabolized more rapidly than halogenated alkyl triesters. Halogenated OP triesters were transformed to their respective diesters more efficiently relative to non-halogenated OP triesters. To our knowledge, this is the first study to investigate OP triester metabolism and OP diester formation in an avian or wildlife model system, which is important to understand the fate and biological activity of OPEs in an exposed organism. Copyright © 2016 Elsevier Inc. All rights reserved.
Monkey liver cytochrome P450 2C19 is involved in R- and S-warfarin 7-hydroxylation.
Hosoi, Yoshio; Uno, Yasuhiro; Murayama, Norie; Fujino, Hideki; Shukuya, Mitsunori; Iwasaki, Kazuhide; Shimizu, Makiko; Utoh, Masahiro; Yamazaki, Hiroshi
2012-12-15
Cynomolgus monkeys are widely used as primate models in preclinical studies. However, some differences are occasionally seen between monkeys and humans in the activities of cytochrome P450 enzymes. R- and S-warfarin are model substrates for stereoselective oxidation in humans. In this current research, the activities of monkey liver microsomes and 14 recombinantly expressed monkey cytochrome P450 enzymes were analyzed with respect to R- and S-warfarin 6- and 7-hydroxylation. Monkey liver microsomes efficiently mediated both R- and S-warfarin 7-hydroxylation, in contrast to human liver microsomes, which preferentially catalyzed S-warfarin 7-hydroxylation. R-Warfarin 7-hydroxylation activities in monkey liver microsomes were not inhibited by α-naphthoflavone or ketoconazole, and were roughly correlated with P450 2C19 levels and flurbiprofen 4-hydroxylation activities in microsomes from 20 monkey livers. In contrast, S-warfarin 7-hydroxylation activities were not correlated with the four marker drug oxidation activities used. Among the 14 recombinantly expressed monkey P450 enzymes tested, P450 2C19 had the highest activities for R- and S-warfarin 7-hydroxylations. Monkey P450 3A4 and 3A5 slowly mediated R- and S-warfarin 6-hydroxylations. Kinetic analysis revealed that monkey P450 2C19 had high V(max) and low K(m) values for R-warfarin 7-hydroxylation, comparable to those for monkey liver microsomes. Monkey P450 2C19 also mediated S-warfarin 7-hydroxylation with V(max) and V(max)/K(m) values comparable to those for recombinant human P450 2C9. R-warfarin could dock favorably into monkey P450 2C19 modeled. These results collectively suggest high activities for monkey liver P450 2C19 toward R- and S-warfarin 6- and 7-hydroxylation in contrast to the saturation kinetics of human P450 2C9-mediated S-warfarin 7-hydroxylation. Copyright © 2012 Elsevier Inc. All rights reserved.
Comparison of two laccases from Trametes versicolor for application in the decolorization of dyes.
Li, Qi; Ge, Lin; Cai, Junli; Pei, Jianjun; Xie, Jingcong; Zhao, Linguo
2014-04-01
It has been previously demonstrated that laccases exhibit great potential for use in several industrial and environmental applications. In this paper, two laccase isoenzyme genes, lccB and lccC, were cloned and expressed in Pichia pastoris GS115. The sequence analysis indicated that the lccB and lccC genes consisted of 1,563 and 1,584 bp, and their open reading frames encoded 520 and 527 amino acids, respectively. They had 72.7% degree of identity in nucleotides and 86.7% in amino acids. The expression levels of LccB and LccC were up to 32,479 and 34,231 U/l, respectively. The recombinant laccases were purified by ultrafiltration and (NH4)2SO4 precipitation, showing a single band on SDS-PAGE, which had a molecular mass of 58 kDa. The optimal pH and temperature for LccB were 2.0 and 55°C with 2,2'-azino-bis-[3-ethylbenzthiazolinesulfonic acid (ABTS) as a substrate, whereas LccC exhibited optimal pH and temperature at 3.0 and 60°C. The apparent kinetic parameters of LccB were 0.43 mM for ABTS with a Vmax value of 51.28 U/mg, and the Km and Vmax values for LccC were 0.29 mM and 62.89 U/mg. The recombinant laccases were able to decolorize five types of dyes. Acid Violet 43 (100 g/ml) was completely decolorized by LccB or LccC (2 U/ml), and the decolorization of Reactive Blue KN-R (100 g/ml) was 91.6% by LccC (2 U/ml). Thus, the study characterizes useful laccase isoenzymes from T. versicolor that have the capability of being incorporated into the treatment of similar azo and anthraquinone dyes from dyeing industries.
do Nascimento, Lucas Francisco R; da Silveira, Lilian Cristina; Nisembaum, Laura Gabriela; Colquhoun, Alison; Abe, Agusto S; Mandarim-de-Lacerda, Carlos Alberto; de Souza, Silvia Cristina R
2016-05-01
Seasonal plasticity in the small intestine of neonatal tegu lizards was investigated using morphometry and analysis of enzymes involved in supplying energy to the intestinal tissue. In the autumn, the intestinal mass (Mi) was 1.0% of body mass and the scaling exponent b=0.92 indicated that Mi was larger in smaller neonates. During arousal from dormancy Mi was 23% smaller; later in spring, Mi increased 60% in relation to the autumn and the exponent b=0.14 indicated that the recovery was disproportionate in smaller tegus. During the autumn, the intestinal villi were greatly elongated; by midwinter, the Hv, SvEp, and VvEp were smaller than during the autumn (59%, 54%, 29%) and were restored to autumn levels during spring. In the active tegus, the maximum activity (Vmax) of enzymes indicated that the enterocytes can obtain energy from different sources, and possess gluconeogenic capacity. During winter, the Vmax of CS, HOAD, GDH, PEPCK was 40-50% lower in relation to the autumn and spring, while the Vmax of HK, PK, LDH, AST was unchanged. The hypoglycemia and the mucosal atrophy/ischemia during winter would prevent the enterocytes from using glucose, whereas they could slowly oxidize fatty acids released from body stores and amino acids from the tissue proteolysis to satisfy their needs of energy. Contrastingly, starvation during spring caused severe mass loss (50%); the tissue protein and the VvEp and VvLP did not change while the thickness of the muscular layer increased 51%, which suggested different effects along the length of the organ. In addition, the Vmax of the glycolytic enzymes was lower, indicating that a regulatory mechanism would spare blood glucose for vital organs during unanticipated food restriction. Copyright © 2016 Elsevier Inc. All rights reserved.
Does oxidative stress affect the activity of the sodium-proton exchanger?
Bober, Joanna; Kedzierska, Karolina; Kwiatkowska, Ewa; Stachowska, Ewa; Gołembiewska, Edyta; Mazur, Olech; Staniewicz, Zdzisław; Ciechanowski, Kazimierz; Chlubek, Dariusz
2010-01-01
Accumulation of reactive oxygen species (ROS) takes place in patients with chronic renal failure (CRF). Oxidative stress causes disorders in the activity of the sodium-proton exchanger (NHE). Studies on NHE in CRF produced results that are discrepant and difficult to interpret. The aim of this study was to demonstrate that oxidative stress had an effect on the activity of NHE. We enrolled 87 subjects divided into 4 groups: patients with CRF treated conservatively; patients with CRF hemodialyzed without glucose--HD-g(-); patients with CRF hemodialyzed with glucose--HD-g(+); controls (C). The activity of NHE, the rate of proton efflux V(max), Michaelis constant (Km), and the concentration of thiobarbituric acid-reactive substances (TBARS, an indicator of oxidative stress) in plasma, as well as the concentration of reduced glutathione in blood were determined. The concentration of TBARS was significantly higher in hemodialyzed patients before and after dialysis and in patients with CRF on conservative treatment in comparison with group C. TBARS in plasma correlated negatively with VpH(i)6.4 in group C and with V(max) and VpH(i)6.4 after HD in group HD-g(-). We found that the concentration of creatinine correlated with TBARS (p < 0.0001; r = +0.51) in the conservatively treated group. We observed a marked oxidative stress and decreased NHE activity when dialysis was done without glucose, whereas patients dialyzed with glucose demonstrated a relatively low intensity of oxidative stress.
Izawa, Norimitsu; Suzuki, Takeshi; Watanabe, Masakatsu; Takeda, Makio
2009-04-01
Arylalkylamine N-acetyltransferase (AANAT), constituting a large family of enzymes, catalyzes the transacetylation from acetyl-CoA to monoamine substrates, although homology among species is not very high. AANAT in vertebrates is photosensitive and mediates circadian regulation. Here, we analyzed AANAT of the cricket, Dianemobius nigrofasciatus. The central nervous system contained AANAT activity. The optimum pHs were 6.0 (a minor peak) and 10.5 (a major peak) with crude enzyme solution. We analyzed the kinetics at pH 10.5 using the sample containing collective AANAT activities, which we term AANAT. Lineweaver-Burk plot and secondary plot yielded a K(m) for tryptamine as substrate of 0.42 microM, and a V(max) of 9.39 nmol/mg protein/min. The apparent K(m) for acetyl-CoA was 59.9 microM and the V(max) was 8.14 nmol/mg protein/min. AANAT of D. nigrofasciatus was light-sensitive. The activity was higher at night-time than at day-time as in vertebrates. To investigate most effective wavelengths on AANAT activity, a series of monochromatic lights was applied (350, 400, 450, 500, 550, 600 and 650 nm). AANAT showed the highest sensitivity to around 450 nm and 550 nm. 450 nm light was more effective than 550 nm light. Therefore, the most effective light affecting AANAT activity is blue light, which corresponds to the absorption spectrum of blue wave (BW)-opsin.
Nałecz, M J; Nałecz, K A; Azzi, A
1991-08-09
Isolated yeast mitochondria were subjected to solubilization by Triton X-114 and the detergent extract was subsequently chromatrographed on dry hydroxyapatite. Purification of the yeast monocarboxylate (pyruvate) carrier was achieved by affinity chromatography on immobilized 2-cyano-4-hydroxycinnamate, as described previously for bovine heart mitochondria (Bolli, R., Nałecz K.A. and Azzi, A. (1989) J. Biol. Chem. 264 18024-18030). The final preparation contained two polypeptides of apparent molecular mass 26 and 50 kDa. The yeast carrier appeared to be less abundant, but more active, than the analogous protein from higher eukaryotes. The carrier was able to catalyse the pyruvate / pyruvate and pyruvate / acetoacetate exchange reactions, both reactions being sensitive to cyanocinnamate and its derivatives, to phenylpyruvate and to mersalyl and p-chloromercuribenzoate. In the pyruvate / acetoacetate exchange reaction (200 mM internal acetoacetate, enzymatic assay), the Km value for external pyruvate was found to be 0.8 mM and the Vmax 135 mumol/min per mg protein. Among other substrates of the yeast carrier, all transported with similar affinity and identical maximal velocity against acetoacetate, we identified 2-oxoisocaproate, 2-oxoisovalerate and 2-oxo-3-methylvalerate. Lactate was not translocated by this carrier with a measurable rate, neither were di- or tricarboxylates.
Lahiri, Sagar; Basu, Arghya; Sengupta, Shinjinee; Banerjee, Shakri; Dutta, Trina; Soren, Dhananjay; Chattopadhyay, Krishnananda; Ghosh, Anil K
2012-06-15
Trehalose and sucrose, two important anti-stress non-reducing natural disaccharides, are catabolized by two enzymes, namely trehalase and invertase respectively. In this study, a 175 kDa enzyme protein active against both substrates was purified from wild type Candida utilis and characterized in detail. Substrate specificity assay and activity staining revealed the enzyme to be specific for both sucrose and trehalose. The ratio between trehalase and invertase activity was found to be constant at 1:3.5 throughout the entire study. Almost 40-fold purification and 30% yield for both activities were achieved at the final step of purification. The presence of common enzyme inhibitors, thermal and pH stress had analogous effects on its trehalase and invertase activity. Km values for two activities were similar while Vmax and Kcat also differed by a factor of 3.5. Competition plot for both substrates revealed the two activities to be occurring at the single active site. N-terminal sequencing and MALDI-TOF data analysis revealed higher similarity of the purified protein to previously known neutral trehalases. While earlier workers mentioned independent purification of neutral trehalase or invertase from different sources, the present study reports the purification of a single protein showing dual activity. Copyright © 2012 Elsevier Inc. All rights reserved.
Production of epoxide hydrolases in batch fermentations of Botryosphaeria rhodina.
Melzer, Guido; Junne, Stefan; Wohlgemuth, Roland; Hempel, Dietmar C; Götz, Peter
2008-06-01
The filamentous fungus Botryosphaeria rhodina (ATCC 9055) was investigated related to its ability for epoxide hydrolase (EH) production. Epoxide hydrolase activity is located at two different sites of the cells. The larger part is present in the cytosol (70%), while the smaller part is associated to membranes (30%). In media optimization experiments, an activity of 3.5 U/gDW for aromatic epoxide hydrolysis of para-nitro-styrene oxide (pNSO) could be obtained. Activity increased by 30% when pNSO was added to the culture during exponential growth. An increase of enzyme activity up to 6 U/gDW was achieved during batch-fermentations in a bioreactor with 2.7 l working volume. Evaluation of fermentations with 30 l working volume revealed a relation of oxygen uptake rate to EH expression. Oxygen limitation resulted in a decreased EH activity. Parameter estimation by the linearization method of Hanes yielded Km values of 2.54 and 1.00 mM for the substrates S-pNSO and R-pNSO, respectively. vmax was 3.4 times higher when using R-pNSO. A protein purification strategy leading to a 47-fold increase in specific activity (940 U/mgProtein) was developed as a first step to investigate molecular and structural characteristics of the EH.
El-Serafi, I; Fares, M; Abedi-Valugerdi, M; Afsharian, P; Moshfegh, A; Terelius, Y; Potácová, Z; Hassan, M
2015-10-01
The role of cytochrome P450 2J2 (CYP2J2) in cyclophosphamide (Cy) bioactivation was investigated in patients, cells and microsomes. Gene expression analysis showed that CYP2J2 mRNA expression was significantly (P<0.01) higher in 20 patients with hematological malignancies compared with healthy controls. CYP2J2 expression showed significant upregulation (P<0.05) during Cy treatment before stem cell transplantation. Cy bioactivation was significantly correlated to CYP2J2 expression. Studies in HL-60 cells expressing CYP2J2 showed reduced cell viability when incubated with Cy (half maximal inhibitory concentration=3.6 mM). Inhibition of CYP2J2 using telmisartan reduced Cy bioactivation by 50% and improved cell survival. Cy incubated with recombinant CYP2J2 microsomes has resulted in apparent Km and Vmax values of 3.7-6.6 mM and 2.9-10.3 pmol/(min·pmol) CYP, respectively. This is the first study demonstrating that CYP2J2 is equally important to CYP2B6 in Cy metabolism. The heart, intestine and urinary bladder express high levels of CYP2J2; local Cy bioactivation may explain Cy-treatment-related toxicities in these organs.
Characterization of Aspartate Kinase from Corynebacterium pekinense and the Critical Site of Arg169
Min, Weihong; Li, Huiying; Li, Hongmei; Liu, Chunlei; Liu, Jingsheng
2015-01-01
Aspartate kinase (AK) is the key enzyme in the biosynthesis of aspartate-derived amino acids. Recombinant AK was efficiently purified and systematically characterized through analysis under optimal conditions combined with steady-state kinetics study. Homogeneous AK was predicted as a decamer with a molecular weight of ~48 kDa and a half-life of 4.5 h. The enzymatic activity was enhanced by ethanol and Ni2+. Moreover, steady-state kinetic study confirmed that AK is an allosteric enzyme, and its activity was inhibited by allosteric inhibitors, such as Lys, Met, and Thr. Theoretical results indicated the binding mode of AK and showed that Arg169 is an important residue in substrate binding, catalytic domain, and inhibitor binding. The values of the kinetic parameter Vmax of R169 mutants, namely, R169Y, R169P, R169D, and R169H AK, with l-aspartate as the substrate, were 4.71-, 2.25-, 2.57-, and 2.13-fold higher, respectively, than that of the wild-type AK. Furthermore, experimental and theoretical data showed that Arg169 formed a hydrogen bond with Glu92, which functions as the entrance gate. This study provides a basis to develop new enzymes and elucidate the corresponding amino acid production. PMID:26633359
Echinococcus granulosus (Cestoda): uptake of L-amino acids by secondary hydatid cysts.
Jeffs, S A; Arme, C
1988-02-01
The uptake of cycloleucine, L-proline, L-alanine and L-threonine by secondary hydatid cysts of Echinococcus granulosus (U.K. horse strain 3-8 mm in diameter, derived from Balb/c mice infected 300-400 days previously) occurs by passive diffusion into the cyst wall (laminated layer plus germinal layer) and by mediated mechanisms into the fluid-filled interior. The maximal concentrations of these compounds are achieved after incubation for 2 h in vitro and approach those in vivo. Kt and Vmax values describing the uptake of these compounds are given. The flux rates for these compounds are extremely slow compared to those obtained with the protoscolex. A rationale for standardizing the experimental method for uptake studies with hydatid cysts is described.
Echinococcus granulosus: specificity of amino acid transport systems in protoscoleces.
Jeffs, S A; Arme, C
1987-08-01
Protoscoleces of Echinococcus granulosus absorb the L-amino acids proline, methionine, leucine, alanine, serine, phenylalanine, lysine and glutamic acid by a combination of mediated transport and diffusion. All eight amino acids were accumulated against a concentration gradient. Comparison of Kt and Vmax values suggests that a low affinity for a particular compound is compensated for by a relatively larger number of transport sites for that compound. Four systems serve for the transport of the eight substrates studied: 2 for neutral (EgN1, EgN2) and 1 each for acidic (EgA) and basic (EgB) amino acids. All eight amino acids are incorporated into protein to varying degrees and substantial portions of absorbed L-alanine and L-methionine are metabolized into other compounds.
Brenner, Stefan; Riha, Juliane; Giessrigl, Benedikt; Thalhammer, Theresia; Grusch, Michael; Krupitza, Georg; Stieger, Bruno; Jäger, Walter
2015-01-01
The contribution of organic anion transporting polypeptides (OATPs) to the cellular uptake of flavopiridol was investigated in OATP1B1-, OATP1B3- and OATP2B1-expressing Chinese hamster ovary (CHO) cells. Uptake of flavopiridol into these cells showed typical Michaelis-Menten kinetics with much higher transport capacity for OATP1B3 compared to OATP1B1 and OATP2B1 (Vmax/Km, 33.9 vs. 8.84 and 2.41 µl/mg/min, respectively). The predominant role of OATPs was further supported by a dramatic inhibition of flavopiridol uptake in the presence of the OATP substrate rifampicin. Uptake of flavopiridol by OATPs also seems to be an important determinant in breast cancer cells. The much higher mRNA level for OATP1B1 found in wild-type compared to ZR-75-1 OATP1B1 knockdown cells correlated with higher flavopiridol initial uptake leading to 4.6-fold decreased IC50 values in the cytotoxicity assay (IC50, 1.45 vs. 6.64 µM). Cell cycle profile also showed a clear incidence for a stronger cell cycle arrest in the G2/M phase for ZR-75-1 wild-type cells compared to OATP1B1 knockdown cells, further indicating an active uptake via OATP1B1. In conclusion, our results revealed OATP1B1, OATP1B3 and OATP2B1 as uptake transporters for flavopiridol in cancer cells, which may also apply in patients during cancer therapy.
A GUI-based Tool for Bridging the Gap between Models and Process-Oriented Studies
NASA Astrophysics Data System (ADS)
Kornfeld, A.; Van der Tol, C.; Berry, J. A.
2014-12-01
Models used for simulation of photosynthesis and transpiration by canopies of terrestrial plants typically have subroutines such as STOMATA.F90, PHOSIB.F90 or BIOCHEM.m that solve for photosynthesis and associated processes. Key parameters such as the Vmax for Rubisco and temperature response parameters are required by these subroutines. These are often taken from the literature or determined by separate analysis of gas exchange experiments. It is useful to note however that subroutines can be extracted and run as standalone models to simulate leaf responses collected in gas exchange experiments. Furthermore, there are excellent non-linear fitting tools that can be used to optimize the parameter values in these models to fit the observations. Ideally the Vmax fit in this way should be the same as that determined by a separate analysis, but it may not because of interactions with other kinetic constants and the temperature dependence of these in the full subroutine. We submit that it is more useful to fit the complete model to the calibration experiments rather as disaggregated constants. We designed a graphical user interface (GUI) based tool that uses gas exchange photosynthesis data to directly estimate model parameters in the SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes) model and, at the same time, allow researchers to change parameters interactively to visualize how variation in model parameters affect predicted outcomes such as photosynthetic rates, electron transport, and chlorophyll fluorescence. We have also ported some of this functionality to an Excel spreadsheet, which could be used as a teaching tool to help integrate process-oriented and model-oriented studies.
Singh, Vandana; Ahmed, Shakeel
2012-03-01
An effective carrier matrix for diastase alpha amylase immobilization has been fabricated by gum acacia-gelatin dual templated polymerization of tetramethoxysilane. Silver nanoparticle (AgNp) doping to this hybrid could significantly enhance the shelf life of the impregnated enzyme while retaining its full bio-catalytic activity. The doped nanohybrid has been characterized as a thermally stable porous material which also showed multipeak photoluminescence under UV excitation. The immobilized diastase alpha amylase has been used to optimize the conditions for soluble starch hydrolysis in comparison to the free enzyme. The optimum pH for both immobilized and free enzyme hydrolysis was found to be same (pH=5), indicating that the immobilization made no major change in enzyme conformation. The immobilized enzyme showed good performance in wide temperature range (from 303 to 323 K), 323 K being the optimum value. The kinetic parameters for the immobilized, (K(m)=10.30 mg/mL, V(max)=4.36 μmol mL(-1)min(-1)) and free enzyme (K(m)=8.85 mg/mL, V(max)=2.81 μmol mL(-1)min(-1)) indicated that the immobilization improved the overall stability and catalytic property of the enzyme. The immobilized enzyme remained usable for repeated cycles and did not lose its activity even after 30 days storage at 40°C, while identically synthesized and stored silver undoped hybrid lost its ~31% activity in 48 h. Present study revealed the hybrids to be potentially useful for biomedical and optical applications. Copyright © 2011 Elsevier B.V. All rights reserved.
Hostrup, M; Kalsen, A; Ørtenblad, N; Juel, C; Mørch, K; Rzeppa, S; Karlsson, S; Backer, V; Bangsbo, J
2014-01-01
The aim of the present study was to examine the effect of β2-adrenergic stimulation on skeletal muscle contractile properties, sarcoplasmic reticulum (SR) rates of Ca2+ release and uptake, and Na+–K+-ATPase activity before and after fatiguing exercise in trained men. The study consisted of two experiments (EXP1, n = 10 males, EXP2, n = 20 males), where β2-adrenoceptor agonist (terbutaline) or placebo was randomly administered in double-blinded crossover designs. In EXP1, maximal voluntary isometric contraction (MVC) of m. quadriceps was measured, followed by exercise to fatigue at 120% of maximal oxygen uptake (). A muscle biopsy was taken after MVC (non-fatigue) and at time of fatigue. In EXP2, contractile properties of m. quadriceps were measured with electrical stimulations before (non-fatigue) and after two fatiguing 45 s sprints. Non-fatigued MVCs were 6 ± 3 and 6 ± 2% higher (P < 0.05) with terbutaline than placebo in EXP1 and EXP2, respectively. Furthermore, peak twitch force was 11 ± 7% higher (P < 0.01) with terbutaline than placebo at non-fatigue. After sprints, MVC declined (P < 0.05) to the same levels with terbutaline as placebo, whereas peak twitch force was lower (P < 0.05) and half-relaxation time was prolonged (P < 0.05) with terbutaline. Rates of SR Ca2+ release and uptake at 400 nm [Ca2+] were 15 ± 5 and 14 ± 5% (P < 0.05) higher, respectively, with terbutaline than placebo at non-fatigue, but declined (P < 0.05) to similar levels at time of fatigue. Na+–K+-ATPase activity was unaffected by terbutaline compared with placebo at non-fatigue, but terbutaline counteracted exercise-induced reductions in maximum rate of activity (Vmax) at time of fatigue. In conclusion, increased contractile force induced by β2-adrenergic stimulation is associated with enhanced rate of Ca2+ release in humans. While β2-adrenergic stimulation elicits positive inotropic and lusitropic effects on non-fatigued m. quadriceps, these effects are blunted when muscles fatigue. PMID:25344552
Wu, Jianmei; Shaw, Jiajiu; Dubaisi, Sarah; Valeriote, Frederick; Li, Jing
2014-12-01
N-(2,4-dichlorophenyl)-5-methyl-1,2-oxazole-3-carboxamide (UTL-5g), a potential chemo- and radioprotective agent, acts as a prodrug requiring bioactivation to the active metabolite 5-methylisoxazole-3-carboxylic acid (ISOX). UTL-5g hydrolysis to ISOX and 2,4-dichloroaniline (DCA) has been identified in porcine and rabbit liver esterases. The purpose of this study was to provide insights on the metabolism and drug interaction potential of UTL-5g in humans. The kinetics of UTL-5g hydrolysis was determined in human liver microsomes (HLM) and recombinant human carboxylesterases (hCE1b and hCE2). The potential of UTL-5g and its metabolites for competitive inhibition and time-dependent inhibition of microsomal cytochrome P450 (P450) was examined in HLM. UTL-5g hydrolysis to ISOX and DCA in HLM were NADPH-independent, with a maximum rate of reaction (Vmax) of 11.1 nmol/min per mg and substrate affinity (Km) of 41.6 µM. Both hCE1b and hCE2 effectively catalyzed UTL-5g hydrolysis, but hCE2 exhibited ∼30-fold higher catalytic efficiency (Vmax/Km) than hCE1b. UTL-5g and DCA competitively inhibited microsomal CYP1A2, CYP2B6, and CYP2C19 (IC50 values <50 µM), and exhibited time-dependent inhibition of microsomal CYP1A2 with the inactivation efficiency (kinact/KI) of 0.68 and 0.51 minute(-1)·mM(-1), respectively. ISOX did not inhibit or inactivate any tested microsomal P450. In conclusion, hCE1b and hCE2 play a key role in the bioactivation of UTL-5g. Factors influencing carboxylesterase activities may have a significant impact on the pharmacological and therapeutic effects of UTL-5g. UTL-5g has the potential to inhibit P450-mediated metabolism through competitive inhibition or time-dependent inhibition. Caution is particularly needed for potential drug interactions involving competitive inhibition or time-dependent inhibition of CYP1A2 in the future clinical development of UTL-5g. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.
Wu, Jianmei; Shaw, Jiajiu; Dubaisi, Sarah; Valeriote, Frederick
2014-01-01
N-(2,4-dichlorophenyl)-5-methyl-1,2-oxazole-3-carboxamide (UTL-5g), a potential chemo- and radioprotective agent, acts as a prodrug requiring bioactivation to the active metabolite 5-methylisoxazole-3-carboxylic acid (ISOX). UTL-5g hydrolysis to ISOX and 2,4-dichloroaniline (DCA) has been identified in porcine and rabbit liver esterases. The purpose of this study was to provide insights on the metabolism and drug interaction potential of UTL-5g in humans. The kinetics of UTL-5g hydrolysis was determined in human liver microsomes (HLM) and recombinant human carboxylesterases (hCE1b and hCE2). The potential of UTL-5g and its metabolites for competitive inhibition and time-dependent inhibition of microsomal cytochrome P450 (P450) was examined in HLM. UTL-5g hydrolysis to ISOX and DCA in HLM were NADPH-independent, with a maximum rate of reaction (Vmax) of 11.1 nmol/min per mg and substrate affinity (Km) of 41.6 µM. Both hCE1b and hCE2 effectively catalyzed UTL-5g hydrolysis, but hCE2 exhibited ∼30-fold higher catalytic efficiency (Vmax/Km) than hCE1b. UTL-5g and DCA competitively inhibited microsomal CYP1A2, CYP2B6, and CYP2C19 (IC50 values <50 µM), and exhibited time-dependent inhibition of microsomal CYP1A2 with the inactivation efficiency (kinact/KI) of 0.68 and 0.51 minute−1·mM−1, respectively. ISOX did not inhibit or inactivate any tested microsomal P450. In conclusion, hCE1b and hCE2 play a key role in the bioactivation of UTL-5g. Factors influencing carboxylesterase activities may have a significant impact on the pharmacological and therapeutic effects of UTL-5g. UTL-5g has the potential to inhibit P450-mediated metabolism through competitive inhibition or time-dependent inhibition. Caution is particularly needed for potential drug interactions involving competitive inhibition or time-dependent inhibition of CYP1A2 in the future clinical development of UTL-5g. PMID:25249693
Active Recovery After High-Intensity Interval-Training Does Not Attenuate Training Adaptation.
Wiewelhove, Thimo; Schneider, Christoph; Schmidt, Alina; Döweling, Alexander; Meyer, Tim; Kellmann, Michael; Pfeiffer, Mark; Ferrauti, Alexander
2018-01-01
Objective: High-intensity interval training (HIIT) can be extremely demanding and can consequently produce high blood lactate levels. Previous studies have shown that lactate is a potent metabolic stimulus, which is important for adaptation. Active recovery (ACT) after intensive exercise, however, enhances blood lactate removal in comparison with passive recovery (PAS) and, consequently, may attenuate endurance performance improvements. Therefore, the aim of this study was to examine the influence of regular ACT on training adaptations during a HIIT mesocycle. Methods: Twenty-six well-trained male intermittent sport athletes (age: 23.5 ± 2.5 years; O 2 max: 55.36 ± 3.69 ml min kg -1 ) participated in a randomized controlled trial consisting of 4 weeks of a running-based HIIT mesocycle with a total of 12 HIIT sessions. After each training session, participants completed 15 min of either moderate jogging (ACT) or PAS. Subjects were matched to the ACT or PAS groups according to age and performance. Before the HIIT program and 1 week after the last training session, the athletes performed a progressive incremental exercise test on a motor-driven treadmill to determine O 2 max, maximum running velocity (vmax), the running velocity at which O 2 max occurs (vO 2 max), and anaerobic lactate threshold (AT). Furthermore, repeated sprint ability (RSA) were determined. Results: In the whole group the HIIT mesocycle induced significant or small to moderate changes in vmax ( p < 0.001, effect size [ES] = 0.65,), vO 2 max ( p < 0.001, ES = 0.62), and AT ( p < 0.001, ES = 0.56) compared with the values before the intervention. O 2 max and RSA remained unchanged throughout the study. In addition, no significant differences in the changes were noted in any of the parameters between ACT and PAS except for AT ( p < 0.05, ES = 0.57). Conclusion: Regular use of individualized ACT did not attenuate training adaptations during a HIIT mesocycle compared to PAS. Interestingly, we found that the ACT group obtained a significantly higher AT following the training program compared to the PAS group. This could be because ACT allows a continuation of the training at a low intensity and may activate specific adaptive mechanisms that are not triggered during PAS.
Active Recovery After High-Intensity Interval-Training Does Not Attenuate Training Adaptation
Wiewelhove, Thimo; Schneider, Christoph; Schmidt, Alina; Döweling, Alexander; Meyer, Tim; Kellmann, Michael; Pfeiffer, Mark; Ferrauti, Alexander
2018-01-01
Objective: High-intensity interval training (HIIT) can be extremely demanding and can consequently produce high blood lactate levels. Previous studies have shown that lactate is a potent metabolic stimulus, which is important for adaptation. Active recovery (ACT) after intensive exercise, however, enhances blood lactate removal in comparison with passive recovery (PAS) and, consequently, may attenuate endurance performance improvements. Therefore, the aim of this study was to examine the influence of regular ACT on training adaptations during a HIIT mesocycle. Methods: Twenty-six well-trained male intermittent sport athletes (age: 23.5 ± 2.5 years; O2max: 55.36 ± 3.69 ml min kg-1) participated in a randomized controlled trial consisting of 4 weeks of a running-based HIIT mesocycle with a total of 12 HIIT sessions. After each training session, participants completed 15 min of either moderate jogging (ACT) or PAS. Subjects were matched to the ACT or PAS groups according to age and performance. Before the HIIT program and 1 week after the last training session, the athletes performed a progressive incremental exercise test on a motor-driven treadmill to determine O2max, maximum running velocity (vmax), the running velocity at which O2max occurs (vO2max), and anaerobic lactate threshold (AT). Furthermore, repeated sprint ability (RSA) were determined. Results: In the whole group the HIIT mesocycle induced significant or small to moderate changes in vmax (p < 0.001, effect size [ES] = 0.65,), vO2max (p < 0.001, ES = 0.62), and AT (p < 0.001, ES = 0.56) compared with the values before the intervention. O2max and RSA remained unchanged throughout the study. In addition, no significant differences in the changes were noted in any of the parameters between ACT and PAS except for AT (p < 0.05, ES = 0.57). Conclusion: Regular use of individualized ACT did not attenuate training adaptations during a HIIT mesocycle compared to PAS. Interestingly, we found that the ACT group obtained a significantly higher AT following the training program compared to the PAS group. This could be because ACT allows a continuation of the training at a low intensity and may activate specific adaptive mechanisms that are not triggered during PAS. PMID:29720949
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Dale N; Bonner, Jessie L; Stroujkova, Anastasia
Our objective is to improve seismic event screening using the properties of surface waves, We are accomplishing this through (1) the development of a Love-wave magnitude formula that is complementary to the Russell (2006) formula for Rayleigh waves and (2) quantifying differences in complexities and magnitude variances for earthquake and explosion-generated surface waves. We have applied the M{sub s} (VMAX) analysis (Bonner et al., 2006) using both Love and Rayleigh waves to events in the Middle East and Korean Peninsula, For the Middle East dataset consisting of approximately 100 events, the Love M{sub s} (VMAX) is greater than the Rayleighmore » M{sub s} (VMAX) estimated for individual stations for the majority of the events and azimuths, with the exception of the measurements for the smaller events from European stations to the northeast. It is unclear whether these smaller events suffer from magnitude bias for the Love waves or whether the paths, which include the Caspian and Mediterranean, have variable attenuation for Love and Rayleigh waves. For the Korean Peninsula, we have estimated Rayleigh- and Love-wave magnitudes for 31 earthquakes and two nuclear explosions, including the 25 May 2009 event. For 25 of the earthquakes, the network-averaged Love-wave magnitude is larger than the Rayleigh-wave estimate. For the 2009 nuclear explosion, the Love-wave M{sub s} (VMAX) was 3.1 while the Rayleigh-wave magnitude was 3.6. We are also utilizing the potential of observed variances in M{sub s} estimates that differ significantly in earthquake and explosion populations. We have considered two possible methods for incorporating unequal variances into the discrimination problem and compared the performance of various approaches on a population of 73 western United States earthquakes and 131 Nevada Test Site explosions. The approach proposes replacing the M{sub s} component by M{sub s} + a* {sigma}, where {sigma} denotes the interstation standard deviation obtained from the stations in the sample that produced the M{sub s} value. We replace the usual linear discriminant a* M{sub s}+b*{sub m{sub b}} with a* M{sub s}+b*{sub m{sub b}} + C*{sigma}. In the second approach, we estimate the optimum hybrid linear-quadratic discriminant function resulting from the unequal variance assumption. We observed slight improvement for the discriminant functions resulting from the theoretical interpretations of the unequal variance function. We have also studied the complexity of the ''magnitude spectra'' at each station. Our hypothesis is that explosion spectra should have fewer focal mechanism-produced complexities in the magnitude spectra than earthquakes. We have developed an intrastation ''complexity'' metric {Delta}M{sub s}, where {Delta}M{sub s} = M{sub s}(i)-M{sub s}(i+1) at periods, i, which are between 9 and 25 seconds. The complexity by itself has discriminating power but does not add substantially to the conditional hybrid discriminant that incorporates the differing spreads of the earthquake and explosion standard deviations.« less
Alhonen-Hongisto, L; Levin, V A; Marton, L J
1985-02-01
Uptake characteristics and growth-inhibitory effects of methylglyoxal bis(guanylhydrazone) (MGBG), a competitive inhibitor of S-adenosylmethionine decarboxylase, were investigated in 9L rat brain tumor cells and in V79 hamster lung cells. Proliferation of 9L cells was only slightly inhibited by treatment with 40 microM MGBG alone, but when used in combination with 0.5 mM alpha-difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase, proliferation was much more effectively inhibited. The intracellular concentration of MGBG was approximately 2-fold higher 4 days after cells were treated with both DFMO and MGBG, either simultaneously or when MGBG was added after a 48-hr DFMO pretreatment, than that in cells treated with MGBG alone. Polyamine levels in DFMO- and MGBG-treated cells correlated with the antiproliferative effects of the drugs. Used either alone or in combination with 1 mM DFMO, 0.5 microM MGBG inhibited the growth of and eventually killed V79 cells. Simultaneous or sequential treatment with DFMO and MGBG increased intracellular concentrations of MGBG at 4 days by 2- and 3-fold, respectively, compared to treatment with MGBG alone. Intracellular polyamine levels did not correlate with the antiproliferative effect of the two drugs in V79 cells. In both cell lines, polyamines and MGBG share a common transport system. The net transport of polyamines and MGBG was more temperature dependent and up to 10-fold more active in V79 cells than in 9L cells. The Km and Vmax values for spermidine and MGBG measured 10 sec after addition (initial permeation) were not affected by DFMO pretreatment in either cell line. However, 1 hr after administration, the Vmax values for spermidine and MGBG uptake were doubled in V79 cells pretreated for 48 hr with DFMO; no significant change occurred in 9L cells. Mitochondrial function, assessed by pyruvate oxidation, was substantially impaired by MGBG in V79 cells but not in 9L cells when the intracellular concentrations of MGBG were equal in each cell line. Pretreatment with DFMO did not increase MGBG-induced inhibition of pyruvate oxidation in V79 cells. These results show that, compared with V79 cells, the decreased sensitivity of 9L cells to MGBG may be related to decreased intracellular MGBG accumulation but not to cellular permeation such as carrier transport. Results of measurements of both polyamine levels and mitochondrial function indicate that V79 cells may be more susceptible to nonpolyamine-dependent effects of MGBG than are 9L cells.
Aljalloud, Ali; Shoaib, Mohamed; Egron, Sandrine; Arias, Jessica; Tewarie, Lachmandath; Schnoering, Heike; Lotfi, Shahram; Goetzenich, Andreas; Hatam, Nima; Pott, Desiree; Zhong, Zhaoyang; Steinseifer, Ulrich; Zayat, Rachad; Autschbach, Ruediger
2018-05-17
Sutureless aortic valve prostheses are gaining popularity due to the substantial reduction in cross-clamp time. In this study, we report our observations on the cusp-fluttering phenomenon of the Perceval bioprosthesis (LivaNova, London, UK) using a combination of technical and medical perspectives. Between August 2014 and December 2016, a total of 108 patients (69% women) with a mean age of 78 years had aortic valve replacement using the Perceval bioprosthesis (34 combined procedures). All patients underwent transoesophageal echocardiography (TOE) intraoperatively. TOE was performed postoperatively to detect paravalvular leakage and to measure gradients, acceleration time, Doppler velocity indices (Vmax and LVOT/Vmax AV) and effective orifice area indices. In addition, a TOE examination was performed in 21 patients postoperatively. Data were collected retrospectively from our hospital database. The retrospective evaluation of the intraoperative TOE examinations revealed consistent fluttering in all patients with the Perceval bioprosthesis. The echocardiographic postoperative measurements showed a mean effective orifice area index of 0.91 ± 0.12 cm2/m2. The overall mean pressure and peak pressure gradients were in a higher range (13.5 ± 5.1 mmHg and 25.5 ± 8.6 mmHg, respectively), whereas acceleration time (62.8 ± 16.4 ms) and Doppler velocity indices (0.43 ± 0.11) were within the normal range according to the American Society of Echocardiography or european association of echocardiography (EAE) guidelines. The 2-dimensional TOE in Motion Mode (M-Mode) that was performed in patients with elevated lactate dehydrogenase (LDH) levels revealed remarkable fluttering of the cusps of the Perceval bioprosthesis. In our study cohort, we observed the fluttering phenomenon in all patients who received the Perceval bioprosthesis, which was correlated with elevated LDH levels and higher pressure gradients.
Coirault, C; Blanc, F X; Chemla, D; Salmeron, S; Lecarpentier, Y
2000-06-01
Mechanical studies of isolated muscle and analysis of molecular actomyosin interactions have improved our understanding of the pathophysiology of airway smooth muscle. Mechanical properties of airway smooth muscle are similar to those of other smooth muscles. Airway smooth muscle exhibits spontaneous intrinsic tone and its maximum shortening velocity (Vmax) is 10-30 fold lower than in striated muscle. Smooth muscle myosin generates step size and elementary force per crossbridge interaction approximately similar to those of skeletal muscle myosin. Special slow cycling crossbridges, termed latch-bridges, have been attributed to myosin light chain dephosphorylation. From a mechanical point of view, it has been shown that airway hyperresponsiveness is characterized by an increased Vmax and an increased shortening capacity, with no significant change in the force-generating capacity.
Purification and properties of trimethylamine oxide reductase from Salmonella typhimurium.
Kwan, H S; Barrett, E L
1983-01-01
The major inducible trimethylamine oxide reductase was purified from Salmonella typhimurium LT2. The molecular weights of the native enzyme were estimated to be 332,000 by gel filtration and 170,000 by nondenaturing disc gel electrophoresis. In sodium dodecyl sulfate-gel electrophoresis, the enzyme formed a single band of molecular weight 84,000. The isoelectric point was 4.28. Maximum activity was at pH 5.65 and 45 degrees C. Reduced flavin mononucleotide, but not reduced flavin adenine dinucleotide, served as an electron donor. The Km for trimethylamine oxide was 0.89 mM and Vmax was 1,450 U/mg of protein. The enzyme reduced chlorate with a Km of 2.2 mM and a Vmax of 350 U/mg of protein. Images PMID:6350272
In vitro metabolism of brucine by human liver microsomes and its interactions with CYP substrates.
Li, Xin; Wang, Kai; Wei, Wei; Liu, Yong-yu; Gong, Lu
2013-08-25
Brucine, one of the main active ingredients in semen Strychni, has been included in many oral prescriptions of traditional Chinese medicine. In this study, we investigated the in vitro metabolism of brucine by human liver microsomes (HLMs) and the metabolic interactions of brucine with the substrates of cytochrome P450 (CYP450). Brucine was incubated with HLMs or CYP3A4 and then analysed by Liquid chromatography/mass spectrometry. The Km and Vmax values for HLMs were 30.53±3.14μM and 0.08±0.0029nmol/mg protein/min, respectively, while the corresponding values for CYP3A4 were 20.12±3.05μM and 6.40±0.21nmol/nmol P450/min. CYP3A4 may be the major enzyme responsible for brucine metabolism in HLMs, other human isoforms of CYP showed minimal or no effect on brucine metabolism. The inhibitory action of brucine was observed in CYP3A4 for the 1'-hydroxylation of midazolam, with inhibitory concentration 50 (IC50) of 8.4-fold higher than specific inhibitors in HLMs. Furthermore, brucine significantly inhibited the CYP3A4-catalyzed midazolam 1'-hydroxylation (Ki=2.14μM) at a concentration lower than 10μM, but no obvious inhibitory effects were observed on other CYP substrates (IC50>50μM). These results suggest that brucine has the potential to interact with a wide range of xenobiotics and endogenous chemicals especially CYP3A4 substrates. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Wang, Xiao-Ting; Zong, Min-Hua; Lou, Wen-Yong
2014-01-01
A novel carbonyl reductase (AcCR) catalyzing the asymmetric reduction of ketones to enantiopure alcohols with anti-Prelog stereoselectivity was found in Acetobacter sp. CCTCC M209061 and enriched 27.5-fold with an overall yield of 0.4% by purification. The enzyme showed a homotetrameric structure with an apparent molecular mass of 104 kDa and each subunit of 27 kDa. The gene sequence of AcCR was cloned and sequenced, and a 762 bp gene fragment was obtained. Either NAD(H) or NADP(H) can be used as coenzyme. For the reduction of 4′-chloroacetophenone, the Km value for NADH was around 25-fold greater than that for NADPH (0.66 mM vs 0.026 mM), showing that AcCR preferred NADPH over NADH. However, when NADH was used as cofactor, the response of AcCR activity to increasing concentration of 4′-chloroacetophenone was clearly sigmoidal with a Hill coefficient of 3.1, suggesting that the enzyme might possess four substrate-binding sites cooperating with each other The Vmax value for NADH-linked reduction was higher than that for NADPH-linked reduction (0.21 mM/min vs 0.17 mM/min). For the oxidation of isopropanol, the similar enzymological properties of AcCR were found using NAD+ or NADP+ as cofactor. Furthermore, a broad range of ketones such as aryl ketones, α-ketoesters and aliphatic ketones could be enantioselectively reduced into the corresponding chiral alcohols by this enzyme with high activity. PMID:24740089
Mita, Sachiko; Suzuki, Hiroshi; Akita, Hidetaka; Stieger, Bruno; Meier, Peter J; Hofmann, Alan F; Sugiyama, Yuichi
2005-01-01
Bile salts are predominantly taken up by hepatocytes via the basolateral Na(+)-taurocholate cotransporting polypeptide (NTCP/SLC10A1) and secreted into the bile by the bile salt export pump (BSEP/ABCB11). In the present study, we transfected rat Ntcp and rat Bsep into polarized Madin-Darby canine kidney cells and characterized the transport properties of these cells for eight bile salts. Immunohistochemical staining demonstrated that Ntcp was expressed at the basolateral domains, whereas Bsep was expressed at the apical domains. Basal-to-apical transport of taurocholate across the monolayer expressing only Ntcp and that coexpressing Ntcp/Bsep was observed, whereas the flux across the monolayer of control and Bsep-expressing cells was symmetrical. Basal-to-apical transport of taurocholate across Ntcp/Bsep-coexpressing monolayers was significantly higher than that across monolayers expressing only Ntcp. Kinetic analysis of this vectorial transport of taurocholate gave an apparent K(m) value of 13.9 +/- 4.7 microM for cells expressing Ntcp alone, which is comparable with 22.2 +/- 4.5 microM for cells expressing both Ntcp and Bsep and V(max) values of 15.8 +/- 4.2 and 60.8 +/- 9.0 pmol.min(-1).mg protein(-1) for Ntcp alone and Ntcp and Bsep-coexpressing cells, respectively. Transcellular transport of cholate, glycocholate, taurochenodeoxycholate, chenodeoxycholate, glycochenodeoxycholate, tauroursodeoxycholate, ursodeoxycholate, and glycoursodeoxycholate, but not that of lithocholate was also observed across the double transfectant. This double-expressing system can be used as a model to clarify vectorial transport of bile salts across hepatocytes under physiological conditions.
Carmo, A; Cunha-Vaz, J G; Carvalho, A P; Lopes, M C
1999-11-01
Several evidences suggest that the pro-inflammatory cytokines IL-1 beta and the radical NO are implicated as effectors molecules in the pancreatic beta-cells dysfunction; an event preceding the pathogenesis of diabetes. IL-1 beta induces the expression of the inducible isoform of NO synthase (iNOS), which use L-arginine as substrate to overproduce NO. However, it is not known whether these events may participate in the development of diabetic retinopathy, which is the main cause of blindness. In this work, we found an increased level of IL-1 beta in retinas from streptozotocin-induced (STZ) diabetic rats. We also observed that the activity of the NO synthase (NOS) and the L-arginine uptake are enhanced in retinas from STZ-induced diabetic rats as compared to retinas from control rats. We found that the uptake of L-arginine in retinas from control and diabetic rats occurs through a transporter resembling the Y + system, i.e. it is saturable, not affected over the pH range 6.5 to 7.4, and is independent of the extracellular Na+. Nevertheless, the L-arginine transport in retinas from diabetic rats occurs through a carrier with lower affinity (K(m) = 25 microM) and higher capacity (Vmax = 295 +/- 22.4 pmol L-arginine/mg protein) than in retinas from control rats (K(m) = 5 microM and Vmax = 158 +/- 12.8 pmol L-arginine/mg protein) which is correlated with the increased NOS activity and consequent depletion of the intracellular pool of L-arginine.
Johnston, I A; Altringham, J D
1985-09-01
Single fast fibres were isolated from the myotomal muscles of icefish (Chaenocephalus aceratus Lönnberg, Antarctica), North Sea Cod (Gadus morhua L.) and Pacific Blue Marlin (Makaira nigricans Wakiya, Hawaii). Fibres were chemically skinned with the non-ionic detergent Brij-58. Maximum tensions (Po, kN m-2) developed at the characteristic body temperature of each species are 231 for icefish (-1 degree C), 187 for cod (8 degrees C) and 156 for marlin (20 degrees C). At 0 degree C Po is 7 times higher for fibres from the icefish than from the marlin. Fibres from icefish and cod failed to relax completely following activations at temperatures above approximately 12 degrees C. The resultant post-contraction force is associated with a proportional increase in stiffness, suggesting the formation of a population of Ca-insensitive cross bridges. At 10 degrees C there is little interspecific variation in unloaded contraction velocity (Vmax) among the three species. Vmax (muscle lengths s-1) at normal body temperatures are 0.9 for icefish (-1 degree C), 1.0 for cod (8 degrees C) and 3.4 for marlin (20 degrees C). The force-velocity (P-V) relationship becomes progressively more curved with increasing temperature for all three species. Maximum power output for the fast muscle fibres from the Antarctic species at -1 degree C is around 60% of that of the tropical fish at 20 degrees C. Evolutionary temperature compensation of muscle power output appears largely to involve differences in the ability of cross bridges to generate force.
Change of heart dimensions and function during pregnancy in goats.
Szaluś-Jordanow, Olga; Czopowicz, Michał; Witkowski, Lucjan; Moroz, Agata; Mickiewicz, Marcin; Frymus, Tadeusz; Markowska-Daniel, Iwona; Bagnicka, Emilia; Kaba, Jarosław
2018-03-08
The study aimed to evaluate the effect of pregnancy on heart diameters and function in goats. Transthoracic echocardiography of 12 female dairy goats of two Polish regional breeds was performed. A Mindray M7 diagnostic ultrasound system with Phased Array transducer was used. Simultaneously, electrocardiography was recorded. All animals were examined four times - at mating season, at the end of the first trimester, at the end of the second trimester and just before kidding. Eleven measurements were taken each time: aortic and left atrial diameter (AoD and LAD), right and left ventricular internal diameter in diastole (RVIDd and LVIDd), left ventricular internal diameter in systole (LVIDs), inter-ventricular septum thickness in diastole and systole (IVSd and IVSd) and left ventricular posterior wall in diastole and systole (LVPWd and LVPWs), maximum left and right ventricular outflow tract velocity (RVOT Vmax and LVOT Vmax). Nine consecutive measurements were derived: the ratio of the left atrial diameter to the aortic diameter (AoD/LAD), left ventricular fractional shortening (FS%), left ventricular ejection fraction (EF%), maximum outflow tract pressure gradients (RVOT PGmax and LVOT PGmax), left ventricular end-diastolic volume (LVEDV) and left ventricular end-systolic volume (LVESV), stroke volume (SV) and cardiac output (CO). HR, LAD, LVPWs, IVSs increased significantly in the first trimester. AoD and RVIDd were significantly higher around parturition. LVIDd, FS%, EF%, SV and CO rose both in the first and third trimester. No measurement decreased during pregnancy. The study confirms that pregnancy causes changes in the heart size and functioning. Copyright © 2018. Published by Elsevier Ltd.
Toward development of an in vitro model of methamphetamine-induced dopamine nerve terminal toxicity.
Kim, S; Westphalen, R; Callahan, B; Hatzidimitriou, G; Yuan, J; Ricaurte, G A
2000-05-01
To develop an in vitro model of methamphetamine (METH)-induced dopamine (DA) neurotoxicity, striatal synaptosomes were incubated at 37 degrees C with METH for different periods of time (10-80 min), washed once, then tested for DA transporter function at 37 degrees C. METH produced time- and dose-dependent reductions in the V(max) of DA uptake, without producing any change in K(m). Incubation of synaptosomes with the DA neurotoxins 1-methyl-4-phenyl-pyridinium ion, 6-hydroxydopamine, and amphetamine under similar conditions produced comparable effects. In contrast, incubation with fenfluramine, a serotonin neurotoxin, did not. METH-induced decreases in DA uptake were selective, insofar as striatal glutamate uptake was unaffected. Various DA transporter blockers (cocaine, methylphenidate, and bupropion) afforded complete protection against METH-induced decreases in DA uptake, without producing any effect themselves. METH's effects were also temperature dependent, with greater decreases in DA uptake occurring at higher temperatures. Tests for residual drug revealed small amounts (0.1-0.2 microM) of remaining METH, but kinetic studies indicated that decreases in DA uptake were not likely to be due to METH acting as a competitive inhibitor of DA uptake. Decreases in the V(max) of DA uptake were not accompanied by decreases in B(max) of [(3)H]WIN 35,428 binding, possibly because there is no mechanism for removing damaged DA nerve endings from the in vitro preparation Collectively, these results give good support to the development of a valid in vitro model that may prove helpful for elucidating the mechanisms underlying METH-induced DA neurotoxicity.
Basal glycogenolysis in mouse skeletal muscle: in vitro model predicts in vivo fluxes
NASA Technical Reports Server (NTRS)
Lambeth, Melissa J.; Kushmerick, Martin J.; Marcinek, David J.; Conley, Kevin E.
2002-01-01
A previously published mammalian kinetic model of skeletal muscle glycogenolysis, consisting of literature in vitro parameters, was modified by substituting mouse specific Vmax values. The model demonstrates that glycogen breakdown to lactate is under ATPase control. Our criteria to test whether in vitro parameters could reproduce in vivo dynamics was the ability of the model to fit phosphocreatine (PCr) and inorganic phosphate (Pi) dynamic NMR data from ischemic basal mouse hindlimbs and predict biochemically-assayed lactate concentrations. Fitting was accomplished by optimizing four parameters--the ATPase rate coefficient, fraction of activated glycogen phosphorylase, and the equilibrium constants of creatine kinase and adenylate kinase (due to the absence of pH in the model). The optimized parameter values were physiologically reasonable, the resultant model fit the [PCr] and [Pi] timecourses well, and the model predicted the final measured lactate concentration. This result demonstrates that additional features of in vivo enzyme binding are not necessary for quantitative description of glycogenolytic dynamics.
Mercado, R; Hernández, J
1994-08-01
Axonal growth cones (AGC) isolated from fetal rat brain have an important specific activity of N+/K(+)-ATPase. Kinetic assays of the enzyme in AGC showed that Km values for ATP or K+ are similar to those reported for the adult brain enzyme. For Na+ the affinity (Km) was lower. Vmax for the three substrates was several times lower in AGC as compared to the adult value. We also observed two apparent inhibition constants of Na+/K(+)-ATPase by ouabain, one of low affinity, possibly corresponding to the alpha 1 isoform and another of high affinity which is different to that described for the alpha 2 isoform of the enzyme. These results support an important role for the sodium pump in the maintainance of volume and cationic balance in neuronal differentiating structures. The functional differences observed also suggest that the enzymatic complex of Na+/K(+)-ATPase in AGC is in a transitional state towards the adult configuration.
Studies on the metabolism of benoxinate by human pseudocholinesterase.
Dubbels, R; Schloot, W
1983-01-01
The local anesthetic drug benoxinate (oxybuprocaine, Novesine) is hydrolyzed to 3-butoxy-4-aminobenzoic acid. A rapid and simple spectrophotometric method for benoxinate hydrolysis by human plasma was developed. Benoxinate is hydrolyzed enzymatically by an esterase present in the serum. Heat stability characteristics and apparent affinity values of the benoxinate metabolizing enzyme were in the same range compared to benzoylcholine chloride hydrolysis. Apparent Vmax-values differ by a mean factor of about 18 between the hydrolysis of both substrates. Considerable interindividual variability of benoxinate hydrolysis and inhibition of the enzymatic reaction by dibucaine and sodium fluoride has been observed. Furthermore, enzyme activity with benoxinate as substrate is positively correlated (P less than 0.001) with benzoylcholine chloride hydrolysis. Therefore, we assume that benoxinate is metabolized by human pseudocholinesterase (PCHE, E.C. 3.1.1.8) and that ocular side effects after benoxinate application may be caused by altered metabolism of this drug, depending on genetically determined variants of pseudocholinesterase.
Kimura, Osamu; Ohta, Chiho; Koga, Nobuyuki; Haraguchi, Koichi; Kato, Yoshihisa; Endo, Tetsuya
2014-07-01
The mechanism of intestinal absorption of nobiletin (NBL) was investigated using Caco-2 cells. The uptake of NBL from the apical membranes of Caco-2 cells was rapid and temperature-dependent and the presence of metabolic inhibitors, NaN3 and carbonylcyanide p-trifluoromethoxyphenylhydrazone, did not cause a decrease in NBL uptake. The relationship between the initial uptake of NBL and its concentration was saturable, suggesting the involvement of a carrier-mediated process. The Km and uptake clearance (Vmax/Km) values for NBL were 50.6 and 168.1μl/mg protein/min, respectively. This clearance value was about 9-fold greater than that of the non-saturable uptake clearance (Kd: 18.5μl/mg protein/min). The presence of structurally similar compounds, such as quercetin and luteolin, competitively inhibited NBL uptake. These results suggest that uptake of NBL from the apical membranes of Caco-2 cells is mainly mediated by an energy-independent facilitated diffusion process. Copyright © 2013 Elsevier Ltd. All rights reserved.
A cGMP kinase mutant with increased sensitivity to the protein kinase inhibitor peptide PKI(5-24).
Ruth, P; Kamm, S; Nau, U; Pfeifer, A; Hofmann, F
1996-01-01
Synthetic peptides corresponding to the active domain of the heat-stable inhibitor protein PKI are very potent inhibitors of cAMP-dependent protein kinase, but are extremely weak inhibitors of cGMP-dependent protein kinase. In this study, we tried to confer PKI sensitivity to cGMP kinase by site-directed mutagenesis. The molecular requirements for high affinity inhibition by PKI were deduced from the crystal structure of the cAMP kinase/PKI complex. A prominent site of interaction are residues Tyr235 and Phe239 in the catalytic subunit, which from a sandwich-like structure with Phe10 of the PKI(5-24) peptide. To increase the sensitivity for PKI, the cGMP kinase codons at the corresponding sites, Ser555 and Ser559, were changed to Tyr and Phe. The mutant cGMP kinase was stimulated half maximally by cGMP at 3-fold higher concentrations (240 nM) than the wild type (77 nM). Wild type and mutant cGMP kinase did not differ significantly in their Km and Vmax for three different substrate peptides. The PKI(5-24) peptide inhibited phosphotransferase activity of the mutant cGMP kinase with higher potency than that of wild type, with Ki values of 42 +/- .3 microM and 160 +/- .7 microM, respectively. The increased affinity of the mutant cGMP kinase was specific for the PKI(5-24) peptide. Mutation of the essential Phe10 in the PKI(5-24) sequence to an Ala yielded a peptide that inhibited mutant and wild type cGMP kinase with similar potency, with Ki values of 160 +/- 11 and 169 +/- 27 microM, respectively. These results suggest that the mutations Ser555Tyr and Ser559Phe are required, but not sufficient, for high affinity inhibition of cGMP kinase by PKI.
Cellular assessment of muscle in COPD: case studies of two males.
Green, Howard J; Bombardier, Eric; Burnett, Margaret E; D'Arsigny, Christine L; Iqbal, Sobia; Webb, Katherine A; Ouyang, Jing; O'Donnell, Denis E
2009-12-29
The objective of this paper is to provide an overview of the recent developments in muscle physiology and biochemistry in general, and with respect to chronic obstructive pulmonary disease (COPD) specifically. As a way of illustration, we have presented data on the remodeling that occurs in vastus lateralis in two patients with COPD (COPD #1, forced expiratory volume in one second/forced vital capacity [FEV(1)/FVC] = 63%; COPD #2, FEV(1)/FVC = 41%) exhibiting differences in muscle wasting as compared to healthy controls (CON; FEV(1)/FVC = 111 +/- 2.2%, n = 4). Type I fibers percentages were lower in both COPD #1 (16.7) and COPD #2 (24.9) compared to CON (57.3 +/- 5.2). Cross sectional area of the type I fibers of the patients ranged between 65%-68% of CON and for the type II subtypes (IIA, IIAX, IIX) between 74% and 89% (COPD #1) and 17%-32% (COPD #2). A lower number of capillary contacts were observed for all fiber types in COPD #1 but not COPD #2. Lower concentrations of adenosine triphosphate (ATP) (24%-26%) and phosphocreatine (18%-20%), but not lactate occurred in COPD. In contrast to COPD #1, who displayed normal glucose transporter content, GLUT1 and GLUT4 were only 71% and 54%, respectively of CON in COPD #2. Lower monocarboxylate contents were found for MCT1 in both COPD #1 (63%) and COPD #2 (41%) and for MCT4 (78%) in COPD #1. Maximal oxidative enzyme activities (V(max)) for COPD #2 ranged between 37% (succinic dehydrogenase) and 70% (cytochrome C oxidase) of CON. For the cytosolic enzymes, V(max) ranged between 89% (hexokinase) to 31% (pyruvate kinase) of CON. Depressions were also observed in V(max) of the Na(+)-K(+)-ATPase for COPD #1 (66% of CON) but not COPD #2 (92% of CON) while V(max) of the Ca(2+)-ATPase was near normal in COPD #1 (84% CON). It is concluded that disturbances can occur in muscle to a wide range of excitation, contraction and metabolic processes in COPD.
β-Glucoside Activators of Mung Bean UDP-Glucose: β-Glucan Synthase 1
Callaghan, Theresa; Ross, Peter; Weinberger-Ohana, Patricia; Benziman, Moshe
1988-01-01
n-Alkyl (C6-C12) β-d-monoglucopyranosides have been found to be highly potent activators of mung bean β-glucan synthase in vitro, increasing the Vmax of the enzyme as much as 60-fold and with Ka values as low as 10 micromolar. Activation is highly specific for the β-linked terminal glucose residue; other alkyl glycosides such as, octyl-α-glucoside, dodecyl β-maltoside, 6-lauryl sucrose, 6-lauryl glucose, which lack this structure, are ineffective as activators. Based on the similarities in their structure and effects on β-glucan synthesis under a variety of conditions, it is proposed that the alkyl β-glucosides are structural analogs of the native glucolipid activator of β-glucan synthase isolated from mung bean extracts. PMID:16666039
L-asparaginase activity in Aeromonas sp. isolated from freshwater mussel.
Pattnaik, S; Kabi, R; Janaki Ram, K; Bhanot, K K
2000-11-01
Aeromonas sp. from Lamellidens marginalis produced L-asparaginase when grown at 37 degrees C. The optimum enzyme activity was at pH 9 when temperature was 45 degrees C. Half-life of partially purified enzyme at 50 degrees C and 55 degrees C was 35 and 20 min, respectively. Activation and deactivation energies of partially purified enzyme were 17.48 and 24.86 kcal mol-1 respectively. The enzyme exhibited a Km (L-asparagine) value of 4.9 x 10(-6) mol l-1 and a Vmax of 9.803 IU ml-1. Three metal ions inhibited the enzyme activity at 10-20 mumol l-1 concentrations. Catalytic activity was also inhibited by EDTA, iodoacetic acid, parachloromercuribenzoic acid and phenylmethylsulphonyl fluoride at 0.1 mumol l-1.
Substrate specificity and kinetic properties of alpha-galactosidases from Vicia faba.
Dey, P M; Pridham, J B
1969-10-01
1. The hydrolysis of a variety of galactosides and other glycosides by alpha-galactosidases I and II of Vicia faba was studied. 2. The effect of temperature on kinetic parameters was also examined. 3. Both enzymes are inhibited by excess of substrate (p-nitrophenyl alpha-d-galactoside); with enzyme I this is competitive and is caused by the galactosyl moiety. 4. Enzyme I is inhibited by oligosaccharides possessing terminal non-reducing galactose residues and to a smaller extent by l-arabinose and d-fucose. 5. The effect of pH on K(m) and V(max.) values suggests that carboxyl and imidazole groups are involved in the catalytic activity of enzyme I. 6. Photo-oxidation experiments with enzyme I also suggest that an imidazole group is present at the active site.
Pre and post cloning characterization of a beta-1,4-endoglucanase from Bacillus sp.
Afzal, Sumra; Saleem, Mahjabeen; Yasmin, Riffat; Naz, Mamoona; Imran, Muhammad
2010-04-01
Consistent with its precloning characterization from the cellulolytic Bacillus sp., beta-1,4-endoglucanase purified from the recombinant E. coli exhibited maximum activity at 60 degrees C and pH 7.0. It was highly specific for CMC hydrolysis, with stability up to 70 degrees C and over a pH range of 6.0-8.0. The K(m) and V(max) values for CMCase activity of the enzyme were 4.1 mg/ml and 25 micromole/ml min(-1), respectively. The purified enzyme was a monomer of 65 kDa, as determined by SDS-PAGE. The presence of sucrose and IPTG in fermentation media increased the endoglucanase activity of the recombinant enzyme to 5.2-folds as compared with that of the actual one.
New Tool to Control and Monitor Weighted Vest Training Load for Sprinting and Jumping in Soccer.
Carlos-Vivas, Jorge; Freitas, Tomás T; Cuesta, Miguel; Perez-Gomez, Jorge; De Hoyo, Moisés; Alcaraz, Pedro E
2018-04-26
Carlos-Vivas, J, Freitas, TT, Cuesta, M, Perez-Gomez, J, De Hoyo, M, and Alcaraz, PE. New tool to control and monitor weighted vest training load for sprinting and jumping in soccer. J Strength Cond Res XX(X): 000-000, 2018-The purpose of this study was to develop 2 regression equations that accurately describe the relationship between weighted vest loads and performance indicators in sprinting (i.e., maximum velocity, Vmax) and jumping (i.e., maximum height, Hmax). Also, this study aimed to investigate the effects of increasing the load on spatio-temporal variables and power development in soccer players and to determine the "optimal load" for sprinting and jumping. Twenty-five semiprofessional soccer players performed the sprint test, whereas a total of 46 completed the vertical jump test. Two different regression equations were developed for calculating the load for each exercise. The following equations were obtained: % body mass (BM) = -2.0762·%Vmax + 207.99 for the sprint and % BM = -0.7156·%Hmax + 71.588 for the vertical jump. For both sprinting and jumping, when the load increased, Vmax and Hmax decreased. The "optimal load" for resisted training using weighted vest was unclear for sprinting and close to BM for vertical jump. This study presents a new tool to individualize the training load for resisted sprinting and jumping using weighted vest in soccer players and to develop the whole force-velocity spectrum according to the objectives of the different periods of the season.
Tidal stripping and the structure of dwarf galaxies in the Local Group
NASA Astrophysics Data System (ADS)
Fattahi, Azadeh; Navarro, Julio F.; Frenk, Carlos S.; Oman, Kyle A.; Sawala, Till; Schaller, Matthieu
2018-05-01
The shallow faint-end slope of the galaxy mass function is usually reproduced in Λ cold dark matter (ΛCDM) galaxy formation models by assuming that the fraction of baryons that turn into stars drops steeply with decreasing halo mass and essentially vanishes in haloes with maximum circular velocities Vmax < 20-30 km s-1. Dark-matter-dominated dwarfs should therefore have characteristic velocities of about that value, unless they are small enough to probe only the rising part of the halo circular velocity curve (i.e. half-mass radii, r1/2 ≪ 1 kpc). Many dwarfs have properties in disagreement with this prediction: they are large enough to probe their halo Vmax but their characteristic velocities are well below 20 km s-1. These `cold faint giants' (an extreme example is the recently discovered Crater 2 Milky Way satellite) can only be reconciled with our ΛCDM models if they are the remnants of once massive objects heavily affected by tidal stripping. We examine this possibility using the APOSTLE cosmological hydrodynamical simulations of the Local Group. Assuming that low-velocity-dispersion satellites have been affected by stripping, we infer their progenitor masses, radii, and velocity dispersions, and find them in remarkable agreement with those of isolated dwarfs. Tidal stripping also explains the large scatter in the mass discrepancy-acceleration relation in the dwarf galaxy regime: tides remove preferentially dark matter from satellite galaxies, lowering their accelerations below the amin ˜ 10-11 m s-2 minimum expected for isolated dwarfs. In many cases, the resulting velocity dispersions are inconsistent with the predictions from Modified Newtonian Dynamics, a result that poses a possibly insurmountable challenge to that scenario.
Dibdin, G H; Dawes, C
1998-01-01
Urea diffusing from saliva into dental plaque is converted to ammonia and carbon dioxide by bacterial ureases. The influence of normal salivary urea levels on the pH of fasted plaque and on the depth and duration of a Stephan curve is uncertain. A numerical model which simulates a cariogenic challenge (a 10% sucrose rinse alone or one followed by use of chewing-gum with or without sugar) was modified to include salivary urea levels from 0 to 30 mmol/l. It incorporated: site-dependent exchange between bulk saliva and plaque surfaces via a salivary film; sugar and urea diffusion into plaque; pH-dependent rates of acid formation and urea breakdown; diffusion and dissociation of end-products and other buffers (acetate, lactate, phosphate, ammonia and carbonate); diffusion of protons and other ions; equilibration with fixed and mobile buffers; and charge-coupling between ionic flows. The Km (2.12 mmol/l) and Vmax (0.11 micromol urea/min/mg dry weight) values for urease activity and the pH dependence of Vmax were taken from the literature. From the results, it is predicted that urea concentrations normally present in saliva (3-5 mmol/l) will increase the pH at the base of a 0.5-mm-thick fasted plaque by up to 1 pH unit, and raise the pH minimum after a sucrose rinse or sugar-containing chewing-gum by at least half a pH unit. The results suggest that plaque cariogenicity may be inversely related to salivary urea concentrations, not only when the latter are elevated because of disease, but even when they are in the normal range.
Administration of progesterone after trauma and hemorrhagic shock prevents hepatocellular injury.
Kuebler, Joachim F; Yokoyama, Yukihiro; Jarrar, Doraid; Toth, Balazs; Rue, Loring W; Bland, Kirby I; Wang, Ping; Chaudry, Irshad H
2003-07-01
Administration of a single dose of progesterone following trauma and hemorrhage in progesterone-deficient rats would ameliorate the inflammatory response and hepatocellular damage. A university laboratory. Ovariectomized female Sprague-Dawley rats (250-350 g; Charles River Laboratories, Wilmington, Mass) underwent a 5-cm midline laparotomy (ie, induction of soft tissue trauma), were bled to a mean arterial blood pressure of 35 mm Hg for about 90 minutes, and then were resuscitated using Ringer lactate solution. Progesterone (25 mg/kg of body weight) or vehicle was administered subcutaneously at the end of resuscitation. In additional animals, Kupffer cells were isolated following trauma, hemorrhage, and resuscitation and treated in vitro with progesterone, lipopolysaccharide, or both. Six hours following resuscitation, plasma tumor necrosis factor alpha (TNF-alpha) and interleukin 6 (IL-6) levels and liver myeloperoxidase activity were determined. Hepatocellular function (maximum velocity of indocyanine green clearance [Vmax] and the efficiency of the active transport or Michaelis-Menten constant [Km]) and plasma levels of transaminases were measured 20 hours after resuscitation. Kupffer cell IL-6 and TNF-alpha production were assessed. Plasma levels of TNF-alpha, IL-6, aspartate aminotransferase, and alanine aminotransferase, as well as hepatic myeloperoxidase activity were increased, whereas indocyanine green clearance was depressed in vehicle-treated rats following trauma-hemorrhage. Animals treated with progesterone showed significantly reduced levels of the TNF-alpha, IL-6, and transaminases as well as reduced myeloperoxidase activity in the liver. Progesterone-treated animals showed increased Vmax and Kmax values for indocyanine green. In vitro treatment of Kupffer cells with progesterone decreased TNF-alpha production but did not affect the production of IL-6. Progesterone administration following trauma-hemorrhage ameliorates the proinflammatory response and, subsequently, the hepatocellular injury via direct action on immunocompetent cells.
Katragadda, Suresh; Talluri, Ravi Sankar; Pal, Dhananjay; Mitra, Ashim K
2005-11-01
The aim of this study was to investigate the presence of a Na+-dependent neutral amino acid transporter, ASCT1, in rabbit primary corneal epithelial cell culture and rabbit cornea. Uptake studies were carried out on rabbit primary corneal epithelial culture (rPCEC) cells using 12-well plates. Transport studies were conducted with isolated rabbit corneas at 34 degrees C. Uptake and transport of L-alanine was determined at various concentrations. Inhibition studies were conducted in presence of various L- and D-amino acids, metabolic inhibitors like ouabain and sodium azide, and in the absence of sodium to delineate the functional characteristics of L-alanine uptake and transport. Reverse transcription-polymerase chain reaction (RT-PCR) was performed on total RNA harvested from rabbit cornea and rPCEC cells for identification of ASCT1. Uptake of L-Ala was found to be saturable with a Km of 0.71 mM and a Vmax value of 0.84 micromoles min(-1) mg(-1) protein. Uptake was independent of pH and energy but depends on sodium. It was inhibited by serine, threonine, cysteine, and glutamine but did not respond to BCH (2-aminobicyclo [2,2,1] heptane-2-carboxylic acid) and MeAIB (alpha -methylaminoisobutyric acid). Transport of L-Ala across rabbit cornea was also saturable (Km 6.52 mM and Vmax 1.09 x 10(-2) micromoles min(-1) cm(-2)), energy independent, and subject to similar competitive inhibition. Presence of ASCT1 on rPCEC and on rabbit cornea was identified by RT-PCR. L-Alanine, the chosen model substrate, was actively transported by Na+-dependent, neutral amino acid exchanger ASCT1, which was identified and functionally characterized on rPCEC cells and rabbit cornea.
NASA Astrophysics Data System (ADS)
Widowati, E.; Utami, R.; Kalistyatika, K.
2017-11-01
Use of thermostable enzyme from bacilli for industrial application is significant. This research aimed to isolate thermophilic pectinolytic bacteria from orange peel and vegetable waste which produced thermostable polygalacturonase, to investigate the polygalacturonase ability in clarifying keprok Garut orange juice, and to characterize polygalacturonase based on pH optimum, temperature optimum, enzyme stability, enzyme kinetics KM, and Vmax. Obtained, 14 isolates that further selected to 4 best isolates based on highest polygalacturonase activity and keprok Garut orange juice clarification ability. Four selected enzyme isolates were AR 2, AR 4, KK 4, and KK 5 had ability to increase juice transmittance, decrease juice viscosity and also reduce total soluble solid. Furthermore 4 selected isolates were partially purified by ammonium sulphate precipitation and dialysis method. Four partially purified enzymes were known that enzyme character of AR 2 optimum at pH 6; AR 4 optimum at pH 5.5; KK 4 optimum at pH 6; and KK 5 optimum at pH 4.5. Four enzymes were optimum at temperature 60°C thus stable at temperature 50-60°C, this characteristic indicate that enzymes were thermostable. AR 2 showed active activity stable at pH 4-7; AR 4 showed active activity stable at pH 6-7; KK 4 showed active activity stable at pH 4-6; however KK 5 stable at pH 4-5. Enzyme AR 2 and KK 4 was getting inactive at pH 11, thus AR 4 and KK 5 inactive at pH 12. KM value of AR 2, AR 4, KK 4, and KK 5 was 0.0959; 0.0974; 0.0966; and 0.178 mg/ml respectively. Vmax of AR 2, AR 4, KK 4, and KK 5 was 0.0203; 0.0202; 0.0185; and 0.0229 U/ml respectively. Enzyme AR 2 was the most compatible enzyme to be applied in keprok Garut orange juice clarification for it had the lowest KM value.
Kozak, Barbara U.; van Rossum, Harmen M.; Niemeijer, Matthijs S.; van Dijk, Marlous; Benjamin, Kirsten; Wu, Liang; Daran, Jean-Marc G.; Pronk, Jack T.
2016-01-01
In Saccharomyces cerevisiae ethanol dissimilation is initiated by its oxidation and activation to cytosolic acetyl-CoA. The associated consumption of ATP strongly limits yields of biomass and acetyl-CoA-derived products. Here, we explore the implementation of an ATP-independent pathway for acetyl-CoA synthesis from ethanol that, in theory, enables biomass yield on ethanol that is up to 40% higher. To this end, all native yeast acetaldehyde dehydrogenases (ALDs) were replaced by heterologous acetylating acetaldehyde dehydrogenase (A-ALD). Engineered Ald− strains expressing different A-ALDs did not immediately grow on ethanol, but serial transfer in ethanol-grown batch cultures yielded growth rates of up to 70% of the wild-type value. Mutations in ACS1 were identified in all independently evolved strains and deletion of ACS1 enabled slow growth of non-evolved Ald− A-ALD strains on ethanol. Acquired mutations in A-ALD genes improved affinity—Vmax/Km for acetaldehyde. One of five evolved strains showed a significant 5% increase of its biomass yield in ethanol-limited chemostat cultures. Increased production of acetaldehyde and other by-products was identified as possible cause for lower than theoretically predicted biomass yields. This study proves that the native yeast pathway for conversion of ethanol to acetyl-CoA can be replaced by an engineered pathway with the potential to improve biomass and product yields. PMID:26818854
Radosinska, J; Mezesova, L; Okruhlicova, L; Frimmel, K; Breierova, E; Bartekova, M; Vrbjar, N
2016-11-25
Measurements of red blood cell (RBC) deformability together with estimation of NO-synthase activity and Na,K-ATPase activity were used for characterization of RBC functionality in rats subjected to single dose of Escherichia coli lipopolysaccharides (LPS) at a dose of 1 mg/kg. We hypothesized that LPS might initiate a malfunction of RBC. We also investigated the potential effect of carotenoids (10 mg/kg/day) produced in red yeast biomass of Rhodotorula glutinis on RBC in LPS-challenged rats. LPS significantly reduced the deformability of RBC (by 14%) together with decrease of NO-synthase activity by 20%. Daily supplementation of carotenoids for 10 days attenuated the LPS-induced injury, as observed by 22% increase of RBC deformability and 23% increase of NO-synthase activity. The activity of Na,K-ATPase was also improved probably due to increased number of active enzyme molecules as indicated by 66% enhancement of Vmax value, hence maintaining the activity of erythrocyte Na,K-ATPase to the level even higher as compared with healthy control animals. It may be concluded that administration of yeast biomass with high content of carotenoids resulted in advanced function of erythrocytes as concerns their ability to squeeze through narrow capillaries of the circulation, better intrinsic production of NO and improvement of intracellular homeostasis of sodium.
El-Refai, Heba A; Shafei, Mona S; Mostafa, Hanan; El-Refai, Abdel-Monem H; Araby, Eman M; El-Beih, Fawkia M; Easa, Saadia M; Gomaa, Sanaa K
2016-01-01
Gamma irradiation is used on Penicillium cyclopium in order to obtain mutant cells of high L-asparaginase productivity. Using gamma irradiation dose of 4 KGy, P. cyclopium cells yielded L-asparaginase with extracellular enzyme activity of 210.8 ± 3 U/ml, and specific activity of 752.5 ± 1.5 U/mg protein, which are 1.75 and 1.53 times, respectively, the activity of the wild strain. The enzyme was partially purified by 40-60% acetone precipitation. L-asparaginase was immobilized onto Amberlite IR-120 by ionic binding. Both free and immobilized enzymes exhibited maximum activity at pH 8 and 40 degrees C. The immobilization process improved the enzyme thermal stability significantly. The immobilized enzyme remained 100% active at temperatures up to 60 degrees C, while the free asparaginase was less tolerant to high temperatures. The immobilized enzyme was more stable at pH 9.0 for 50 min, retaining 70% of its relative activity. The maximum reaction rate (V(max)) and Michaelis-Menten constant (K(m)) of the free form were significantly changed after immobilization. The K(m) value for immobilized L-asparaginase was about 1.3 times higher than that of free enzyme. The ions K+, Ba2+ and Na+ showed stimulatory effect on enzyme activity with percentages of 110%, 109% and 106% respectively.
Cole, M.
1969-01-01
1. A method is given for the preparation of penicillin acylase by using Escherichia coli N.C.I.B. 8743 and a strain selected for higher yield. The enzyme is associated with the bacterial cells and removes the side chains of penicillins to give 6-amino-penicillanic acid and a carboxylic acid. 2. The rates of penicillin deacylation indicated that p-hydroxybenzylpenicillin was the best substrate, followed in diminishing order by benzyl-, dl-α-hydroxybenzyl-, 2-furylmethyl-, 2-thienylmethyl-, d-α-aminobenzyl-, n-propoxymethyl- and isobutoxymethyl-penicillin. Phenylpenicillin and dl-α-carboxybenzylpenicillin were not substrates and phenoxymethyl-penicillin was very poor. 3. Amides and esters of the above penicillins were also substrates for the deacylation reaction, as were cephalosporins with a thienylmethyl side chain. 4. For the deacylation of 2-furylmethylpenicillin at 21° the optimum pH was 8·2. The optimum temperature was 60° at pH7. 5. By using selection A of N.C.I.B. 8743 and determining reaction velocities by assaying yields of 6-amino-penicillanic acid in a 10min. reaction at 50° and pH8·2, the Km for benzylpenicillin was found to be about 30mm and the Km for 2-furylmethylpenicillin, about 10mm. The Vmax. values were 0·6 and 0·24μmole/min./mg. of bacterial cells respectively. PMID:4982417
Prevention of enzymatic browning of Chinese yam (Dioscorea spp.) using electrolyzed oxidizing water.
Jia, Guo-Liang; Shi, Jing-Ying; Song, Zhan-Hua; Li, Fa-De
2015-04-01
In this study, the effects of electrolyzed oxidizing water (EOW) on the prevention of enzymatic browning of fresh-cut "Jiu Jinhuang" Chinese yam were investigated. The yams were immersed in the inhibitors for 25 min at 20 °C. Compared with the tap water (TW) treatment, the chromatic attributes were significantly different after 72 h of storage (P < 0.05). The activities of polyphenol oxidase (PPO, EC 1.10.3.1), peroxidase (POD, EC 1.11.1.7), and L -phenylalanine ammonia lyase (PAL, EC 4.3.1.5) were inhibited when measured at 24 h. The contents of phenolic acids, including gallic and chlorogenic acid, in the group treated with the slightly acidic electrolyzed water (SAEW) were higher than those treated with TW and neutral electrolyzed water (NEW). The group treated with NEW had the highest total phenol content (P < 0.05, at 24 h), while the group treated with SAEW had the highest flavonoid content (P < 0.05) during storage. Without being treated with inhibitors, the Km and Vmax values of yam PPO were 0.0044 mol/L and 0.02627 U/min, respectively, and the Ki of samples treated with SAEW and citric acid (CA) were 15.6607 and 2.3969 μmol/L, respectively. These results indicate that EOW is beneficial as a browning inhibitor. © 2015 Institute of Food Technologists®
Scaling Factor Variability and Toxicokinetic Outcomes in Children
Abstract title: Scaling Factor Variability and Toxicokinetic Outcomes in ChildrenBackgroundBiotransformation rates (Vmax) extrapolated from in vitro data are used increasingly in human physiologically based pharmacokinetic (PBPK) models. PBPK models are widely used in human hea...
Hidden Risks of Erectile Dysfunction "Treatments" Sold Online
... screen and stop these shipments from entering U.S. commerce," says Huascar Batista, team leader of OOC's Import- ... Free Rhino V Max V.Max True Man Energy Max HS Joy of Love NaturalUp Blue Steel ...
Matsumoto-Akanuma, Akiko; Akanuma, Satoshi; Motoi, Masuro; Yamagishi, Akihiko; Ohno, Naohito
2011-01-01
The Royal Sun mushroom, the Himematsutake culinary-medicinal mushroom, Agaricus brasiliensis has several polyphenoloxidase activities in a broad sense. Here we report the partial purification of tyrosinase-type polyphenoloxidase (PPO). PPO is purified from A. brasiliensis without browning using a two-phase partitioning with Triton X-114 and ammonium sulfate fractionation. Partially denaturing SDS-PAGE (sodium dodecyl sulfate-polyacrylamide electrophoresis) staining with L-3,4-dihydroxyphenylalanine was performed and the indicated molecular sizes were approximately 70 kDa and 45 kDa. The purified enzyme is in its latent state and can be activated maximally in the presence of 1.6 mM sodium dodecyl sulfate (SDS). This enzyme catalyzes two distinct reactions, monophenolase and diphenolase activity, and the monophenolase activity showed a lag time typical of polyphenoloxidase. The K(m) value for 4-tert-butylcatechol was quite similar in the presence and absence of SDS, but the apparent V(max) value was increased 2.0-fold by SDS. Mimosine was a typical competitive inhibitor with K(i) values of 138.2 microM and 281.0 microM n the presence and absence of SDS, respectively.
Chiang, Tzu-An; Che, Z H; Cui, Zhihua
2014-01-01
This study designed a cross-stage reverse logistics course for defective products so that damaged products generated in downstream partners can be directly returned to upstream partners throughout the stages of a supply chain for rework and maintenance. To solve this reverse supply chain design problem, an optimal cross-stage reverse logistics mathematical model was developed. In addition, we developed a genetic algorithm (GA) and three particle swarm optimization (PSO) algorithms: the inertia weight method (PSOA_IWM), V(Max) method (PSOA_VMM), and constriction factor method (PSOA_CFM), which we employed to find solutions to support this mathematical model. Finally, a real case and five simulative cases with different scopes were used to compare the execution times, convergence times, and objective function values of the four algorithms used to validate the model proposed in this study. Regarding system execution time, the GA consumed more time than the other three PSOs did. Regarding objective function value, the GA, PSOA_IWM, and PSOA_CFM could obtain a lower convergence value than PSOA_VMM could. Finally, PSOA_IWM demonstrated a faster convergence speed than PSOA_VMM, PSOA_CFM, and the GA did.
Simple predictions of maximum transport rate in unsaturated soil and rock
Nimmo, John R.
2007-01-01
In contrast with the extreme variability expected for water and contaminant fluxes in the unsaturated zone, evidence from 64 field tests of preferential flow indicates that the maximum transport speed Vmax, adjusted for episodicity of infiltration, deviates little from a geometric mean of 13 m/d. A model based on constant‐speed travel during infiltration pulses of actual or estimated duration can predict Vmax with approximate order‐of‐magnitude accuracy, irrespective of medium or travel distance, thereby facilitating such problems as the prediction of worst‐case contaminant traveltimes. The lesser variability suggests that preferential flow is subject to rate‐limiting mechanisms analogous to those that impose a terminal velocity on objects in free fall and to rate‐compensating mechanisms analogous to Le Chatlier's principle. A critical feature allowing such mechanisms to dominate may be the presence of interfacial boundaries confined by neither solid material nor capillary forces.
Relations of enzymes inAspergillus repens grown under sodium chloride stress.
Kelavkar, U P; Chhatpar, H S
1993-09-01
Aspergillus repens, a salt-pan isolate, was halotolerant. When grown for 72 h (log phase) and 144 h (beginning of stationary phase) in a medium containing 2M sodium chloride, the activities of invertase, malate dehydrogenase (MDH), glucose-6-phosphate dehydrogenase (G6PDH), and glutamate dehydrogenase (GDH) were found to have increased. Control cultures grown in a medium devoid of 2M NaCl failed to show such changes. The activities of MDH, G6PDH, and GDH increased with rising concentrations of Na(+) (as NaCl) when added up to 100MM in vitro. At higher concentrations they decreased. Changes in kinetic constants, Km and Vmax of these enzymes, as well as their de novo synthesis, were found to be some of the responses to NaCl stress-mediated changes.
Dissociable roles of dopamine and serotonin transporter function in a rat model of negative urgency.
Yates, Justin R; Darna, Mahesh; Gipson, Cassandra D; Dwoskin, Linda P; Bardo, Michael T
2015-09-15
Negative urgency is a facet of impulsivity that reflects mood-based rash action and is associated with various maladaptive behaviors in humans. However, the underlying neural mechanisms of negative urgency are not fully understood. Several brain regions within the mesocorticolimbic pathway, as well as the neurotransmitters dopamine (DA) and serotonin (5-HT), have been implicated in impulsivity. Extracellular DA and 5-HT concentrations are regulated by DA transporters (DAT) and 5-HT transporters (SERT); thus, these transporters may be important molecular mechanisms underlying individual differences in negative urgency. The current study employed a reward omission task to model negative urgency in rats. During reward trials, a cue light signaled the non-contingent delivery of one sucrose pellet; immediately following the non-contingent reward, rats responded on a lever to earn sucrose pellets (operant phase). Omission trials were similar to reward trials, except that non-contingent sucrose was omitted following the cue light prior to the operant phase. As expected, contingent responding was higher following omission of expected reward than following delivery of expected reward, thus reflecting negative urgency. Upon completion of behavioral training, Vmax and Km were obtained from kinetic analysis of [(3)H]DA and [(3)H]5-HT uptake using synaptosomes prepared from nucleus accumbens (NAc), dorsal striatum (Str), medial prefrontal cortex (mPFC), and orbitofrontal cortex (OFC) isolated from individual rats. Vmax for DAT in NAc and for SERT in OFC were positively correlated with negative urgency scores. The current findings suggest that mood-based impulsivity (negative urgency) is associated with enhanced DAT function in NAc and SERT function in OFC. Copyright © 2015 Elsevier B.V. All rights reserved.
Jacobson Meyers, Myrna E; Sylvan, Jason B; Edwards, Katrina J
2014-08-01
Seafloor basalts are widely distributed and host diverse prokaryotic communities, but no data exist concerning the metabolic rates of the resident microbial communities. We present here potential extracellular enzyme activities of leucine aminopeptidase (LAP) and alkaline phosphatase (AP) measured on basalt samples from different locations on Loihi Seamount, HI, coupled with analysis of prokaryotic biomass and pyrosequencing of the bacterial 16S rRNA gene. The community maximum potential enzyme activity (Vmax) of LAP ranged from 0.47 to 0.90 nmol (g rock)(-1) h(-1); the Vmax for AP was 28 to 60 nmol (g rock)(-1) h(-1). The Km of LAP ranged from 26 to 33 μM, while the Km for AP was 2 to 7 μM. Bacterial communities on Loihi basalts were comprised primarily of Alpha-, Delta-, andGammaproteobacteria, Bacteroidetes, and Planctomycetes. The putative ability to produce LAP is evenly distributed across the most commonly detected bacterial orders, but the ability to produce AP is likely dominated by bacteria in the orders Xanthomonadales, Flavobacteriales, and Planctomycetales. The enzyme activities on Loihi basalts were compared to those of other marine environments that have been studied and were found to be similar in magnitude to those from continental shelf sediments and orders of magnitude higher than any measured in the water column, demonstrating that the potential for exposed basalts to transform organic matter is substantial. We propose that microbial communities on basaltic rock play a significant, quantifiable role in benthic biogeochemical processes. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Byeon, Yeong; Lee, Hyoung Yool; Back, Kyoungwhan
2016-09-01
The penultimate enzyme in melatonin synthesis is serotonin N-acetyltransferase (SNAT), which exists as a single copy in mammals and plants. Our recent studies of the Arabidopsis snat-knockout mutant and SNAT RNAi rice (Oryza sativa) plants predicted the presence of at least one other SNAT isogene in plants; that is, the snat-knockout mutant of Arabidopsis and the SNAT RNAi rice plants still produced melatonin, even in the absence or the suppression of SNAT expression. Here, we report a molecular cloning of an SNAT isogene (OsSNAT2) from rice. The mature amino acid sequences of SNAT proteins indicated that OsSNAT2 and OsSNAT1 proteins had 39% identity values and 60% similarity. The Km and Vmax values of the purified recombinant OsSNAT2 were 371 μm and 4700 pmol/min/mg protein, respectively; the enzyme's optimal activity temperature was 45°C. Confocal microscopy showed that the OsSNAT2 protein was localized to both the cytoplasm and chloroplasts. The in vitro enzyme activity of OsSNAT2 was severely inhibited by melatonin, but the activities of sheep SNAT (OaSNAT) and rice OsSNAT1 proteins were not. The enzyme activity of OsSNAT2 was threefold higher than that of OsSNAT1, but 232-fold lower than that of OaSNAT. The OsSNAT1 and OsSNAT2 transcripts were similarly suppressed in rice leaves during the melatonin induction after cadmium treatment. Phylogenetic analyses indicated that OsSNAT1 and OsSNAT2 are distantly related, suggesting that they evolved independently from Cyanobacteria prior to the endosymbiosis event. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Paradies, G; Ruggiero, F M
1990-04-05
The effect of aging on the activity of the pyruvate translocator and on the lipid composition in rat-heart mitochondria has been investigated. It has been found that the rate of pyruvate transport in mitochondria from aged rats (28 months old) is markedly reduced (38%) as compared with that obtained with mitochondria from young adults rats (4 months old). Kinetic analysis of the pyruvate transport shows that only the Vmax of this process is decreased, while there is no change in the Km values. The age-related decrement in the activity of the pyruvate carrier is not due to a decrease in the transmembrane delta pH value, neither does it depend on a decrease in the total number of the pyruvate carrier molecules, titrated with radioactive alpha-cyanocinnamate. The lower activity of the pyruvate translocator in mitochondria from aged rats is associated to a parallel decrement of the rate of pyruvate-dependent oxygen uptake. There is, however no appreciable difference in either the respiratory control ratios or in the ADP/O ratios between these two types of mitochondrion. The Arrhenius plot characteristics differ for pyruvate transport activity in mitochondria from aged rats as compared with young rats in that the break point of the biphasic plot is shifted to a higher temperature. The heart mitochondrial lipid composition is significantly altered in aged rats. The total cholesterol increases (43%), the phospholipids decrease (15%) and the cholesterol/phospholipid molar ratio increases (68%). Among phospholipids, cardiolipin shows the greatest alteration (28% decrease in aged rats). The lower activity of the pyruvate carrier in mitochondria from aged rats may be ascribed to changes in the lipid domain surrounding the carrier molecule in the membrane.
Pollex, Erika K; Anger, Gregory; Hutson, Janine; Koren, Gideon; Piquette-Miller, Micheline
2010-05-01
The antidiabetic agent glyburide (glibenclamide) is frequently used for the treatment of type II diabetes and is increasingly being used for the treatment of gestational diabetes. Evidence suggests that breast cancer resistance protein/ATP-binding cassette, subfamily G, member 2 (ABCG2) expressed in the placenta protects the fetus against the accumulation of glyburide. A number of studies have investigated the significance of several single-nucleotide polymorphisms (SNPs) in the ABCG2 gene. Associations between the Q141K (C421A) SNP and ABCG2 protein expression, membrane surface translocation, efflux activity, or ATPase activity have been shown. Therefore, alterations in glyburide transport across the placenta, resulting in increased fetal glyburide exposure, may be seen in individuals carrying the C421A allele. The purpose of this study is to investigate whether the Q141K SNP causes alterations in ABCG2-mediated glyburide transport. Glyburide accumulation assays were carried out with stably transfected human embryonic kidney (HEK)-293 cells expressing wild-type ABCG2 (Arg482) and polymorphic ABCG2 (Q141K). Glyburide kinetic parameters were determined for comparison of wild-type and SNP ABCG2 activity by simultaneously fitting data for ABCG2-expressing cells (saturable transport) and empty vector-expressing cells (nonsaturable transport) by nonlinear regression analysis. The apparent K(t) and V(max) values for the transfected HEK-293 cells expressing the polymorphic variant (Q141K) of ABCG2 were significantly higher than those values determined for the wild-type ABCG2-expressing cells (p < 0.05). Our results indicate that the Q141K variant of ABCG2 may have the potential to alter the placental pharmacokinetics of glyburide used in pregnancy.
Hostrup, M; Kalsen, A; Ortenblad, N; Juel, C; Mørch, K; Rzeppa, S; Karlsson, S; Backer, V; Bangsbo, J
2014-12-15
The aim of the present study was to examine the effect of β2-adrenergic stimulation on skeletal muscle contractile properties, sarcoplasmic reticulum (SR) rates of Ca(2+) release and uptake, and Na(+)-K(+)-ATPase activity before and after fatiguing exercise in trained men. The study consisted of two experiments (EXP1, n = 10 males, EXP2, n = 20 males), where β2-adrenoceptor agonist (terbutaline) or placebo was randomly administered in double-blinded crossover designs. In EXP1, maximal voluntary isometric contraction (MVC) of m. quadriceps was measured, followed by exercise to fatigue at 120% of maximal oxygen uptake (V̇O2, max ). A muscle biopsy was taken after MVC (non-fatigue) and at time of fatigue. In EXP2, contractile properties of m. quadriceps were measured with electrical stimulations before (non-fatigue) and after two fatiguing 45 s sprints. Non-fatigued MVCs were 6 ± 3 and 6 ± 2% higher (P < 0.05) with terbutaline than placebo in EXP1 and EXP2, respectively. Furthermore, peak twitch force was 11 ± 7% higher (P < 0.01) with terbutaline than placebo at non-fatigue. After sprints, MVC declined (P < 0.05) to the same levels with terbutaline as placebo, whereas peak twitch force was lower (P < 0.05) and half-relaxation time was prolonged (P < 0.05) with terbutaline. Rates of SR Ca(2+) release and uptake at 400 nm [Ca(2+)] were 15 ± 5 and 14 ± 5% (P < 0.05) higher, respectively, with terbutaline than placebo at non-fatigue, but declined (P < 0.05) to similar levels at time of fatigue. Na(+)-K(+)-ATPase activity was unaffected by terbutaline compared with placebo at non-fatigue, but terbutaline counteracted exercise-induced reductions in maximum rate of activity (Vmax) at time of fatigue. In conclusion, increased contractile force induced by β2-adrenergic stimulation is associated with enhanced rate of Ca(2+) release in humans. While β2-adrenergic stimulation elicits positive inotropic and lusitropic effects on non-fatigued m. quadriceps, these effects are blunted when muscles fatigue. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.
Isolation, Fractionation and Characterization of Catalase from Neurospora crassa (InaCC F226)
NASA Astrophysics Data System (ADS)
Suryani; Ambarsari, L.; Lindawati, E.
2017-03-01
Catalase from Indigenous isolate Neurospora crassa InaCC F226 has been isolated, fractionated and characterized. Production of catalase by Neurospora crassa was done by using PDA medium (Potato Dextrosa Agar) and fractionated with ammonium sulphate with 20-80% saturation. Fraction 60% was optimum saturation of ammonium sulphate and had highest specific activity 3339.82 U/mg with purity 6.09 times, total protein 0.920 mg and yield 88.57%. The optimum pH and temperature for catalase activity were at 40°C and pH 7.0, respectively. The metal ions that stimulated catalase activity acted were Ca2+, Mn2+ and Zn2+, and inhibitors were EDTA, Mg2+ and Cu2+. Based on Km and Vmax values were 0.2384 mM and 13.3156 s/mM.
Parameters for the Operation of Bacterial Thiosalt Oxidation Ponds
Silver, M.
1985-01-01
Shake flask and pH-controlled reactor tests were used to determine the mathematical parameters for a mixed-culture bacterial thiosalt treatment pond. Values determined were as follows: Km and Vmax (thiosulfate), 9.83 g/liter and 243.9 mg/liter per h, respectively; Ki (lead), 3.17 mg/liter; Ki (copper), 1.27 mg/liter; Q10 between 10 and 30°C, 1.95. From these parameters, the required bioxidation pond volume and residence time could be calculated. Soluble zinc (0.2 g/liter) and particulate mill products and by-products (0.25 g/liter) were not inhibitory. Correlation with an operating thiosalt biooxidation pond showed the parameters used to be valid for thiosalt concentrations up to at least 2 g/liter, lead concentrations of at least 10 mg/liter, and temperatures of >2°C. PMID:16346885
Lee, Hyoung Yool; Byeon, Yeong; Lee, Kyungjin; Lee, Hye-Jung; Back, Kyoungwhan
2014-11-01
Serotonin N-acetyltransferase (SNAT) is the penultimate enzyme in melatonin biosynthesis. We cloned SNAT from Arabidopsis thaliana (AtSNAT) and functionally characterized this enzyme for the first time from dicotyledonous plants. Similar to rice SNAT, AtSNAT was found to localize to chloroplasts with peak enzyme activity at 45 °C (Km , 309 μm; Vmax , 1400 pmol/min/mg protein). AtSNAT also catalyzed 5-methoxytryptamine (5-MT) into melatonin with high catalytic activity (Km , 51 μm; Vmax , 5300 pmol/min/mg protein). In contrast, Arabidopsis caffeic acid O-methyltransferase (AtCOMT) localized to the cytoplasm. Interestingly, AtCOMT can methylate serotonin into 5-MT with low catalytic activity (Km , 3.396 mm; Vmax , 528 pmol/min/mg protein). These data suggest that serotonin can be converted into either N-acetylserotonin by SNAT or into 5-MT by COMT, after which it is metabolized into melatonin by COMT or SNAT, respectively. To support this hypothesis, serotonin was incubated in the presence of both AtSNAT and AtCOMT enzymes. In addition to melatonin production, the production of major intermediates depended on incubation temperatures; N-acetylserotonin was predominantly produced at high temperatures (45 °C), while low temperatures (37 °C) favored the production of 5-MT. Our results provide biochemical evidence for the presence of a serotonin O-methylation pathway in plant melatonin biosynthesis. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Matusovsky, Oleg S; Kachmar, Linda; Ijpma, Gijs; Bates, Genevieve; Zitouni, Nedjma; Benedetti, Andrea; Lavoie, Jean-Pierre; Lauzon, Anne-Marie
2016-05-01
Heaves is a naturally occurring equine disease that shares many similarities with human asthma, including reversible antigen-induced bronchoconstriction, airway inflammation, and remodeling. The purpose of this study was to determine whether the trachealis muscle is mechanically representative of the peripheral airway smooth muscle (ASM) in an equine model of asthma. Tracheal and peripheral ASM of heaves-affected horses under exacerbation, or under clinical remission of the disease, and control horses were dissected and freed of epithelium to measure unloaded shortening velocity (Vmax), stress (force/cross-sectional area), methacholine effective concentration at which 50% of the maximum response is obtained, and stiffness. Myofibrillar Mg(2+)-ATPase activity, actomyosin in vitro motility, and contractile protein expression were also measured. Horses with heaves had significantly greater Vmax and Mg(2+)-ATPase activity in peripheral airway but not in tracheal smooth muscle. In addition, a significant correlation was found between Vmax and the time elapsed since the end of the corticosteroid treatment for the peripheral airways in horses with heaves. Maximal stress and stiffness were greater in the peripheral airways of the horses under remission compared with controls and the horses under exacerbation, potentially due to remodeling. Actomyosin in vitro motility was not different between controls and horses with heaves. These data demonstrate that peripheral ASM is mechanically and biochemically altered in heaves, whereas the trachealis behaves as in control horses. It is therefore conceivable that the trachealis muscle may not be representative of the peripheral ASM in human asthma either, but this will require further investigation.
Electrophysiological mechanisms of sophocarpine as a potential antiarrhythmic agent.
Yang, Zhi-fang; Li, Ci-zhen; Wang, Wei; Chen, Ying-min; Zhang, Ying; Liu, Yuan-mou; Wang, Hong-wei
2011-03-01
To examine the electrophysiological effects of sophocarpine on action potentials (AP) and ionic currents of cardiac myocytes and to compare some of these effects with those of amiodarone. Langendorff perfusion set-up was used in isolated guinea pig heart, and responses to sophocarpine were monitored using electrocardiograph. Conventional microelectrode, voltage clamp technique and perforated patch were employed to record fast response AP (fAP), slow response AP (sAP) and ionic currents in guinea pig papillary muscle or rabbit sinus node cells. Tachyarrhythmia produced by isoprenaline (15 μmol/L) could be reversed by sophocarpine (300 μmol/L). Sophocarpine (10 μmol/L) decreased the amplitude by 4.0%, maximal depolarization velocity (V(max)) of the fAP by 24.4%, and Na(+) current (I(Na)) by 18.0%, while it prolonged the effective refractory period (ERP) by 21.1%. The same concentration of sophocarpine could also decrease the amplitude and V(max) of the sAP, by 26.8% and 25.7%, respectively, and attenuated the Ca(2+) current (I(CaL)) and the K(+) tail current substantially. Comparison of sophocarpine with amiodarone demonstrated that both prolonged the duration and the ERP of fAP and sAP, both decreased the amplitude and V(max) of the fAP and sAP, and both slowed the automatic heart rate. Sophocarpine could reverse isoprenaline-induced arrhythmia and inhibit I(Na), I(CaL), and I(Kr) currents. The electrophysiological effects of sophocarpine are similar to those of amiodarone, which might be regarded as a prospective antiarrhythmic agent.
Differences in energy capacities between tennis players and runners.
Novak, Dario; Vucetić, Vlatko; Zugaj, Sanja
2013-05-01
The primary purpose of this study was to determine differences between elite athletes and tennis players in order to provide a clearer picture regarding the energy demands in modern tennis. Forty-eight (48) athletes and 24 tennis players from Croatian national leagues were compared in morphological and physiological parameters of an all-out incremental treadmill test with gas exchange measurements. Tennis players' HRmax (192.96+/-7.75 bpm) shows values that are most different to 400-meters sprinters (200.13+/-6.95 bpm). Maximum running speed of tennis players on the treadmill (vmax) is no different with the speed achieved by sprinters, while there are significant differences among other athletes. Values in running speed at anaerobic threshold (vAnT) show no statistically significant difference with the values for athlete sprinters and 400-m sprinters. Values of RvO2max for tennis players indicate significant similarities with athlete sprinters and 400-m sprinters while the values of RvO2AnT are nearly identical with the values for sprinters and show no statistically significant differences (p<0.05). The results indicate that values achieved by tennis players approximate most different those of the middle and long distance runners. This singles out the possible importance of the anaerobic capacity and the high level of sprint endurance in tennis players. Knowing these characteristics is the basis for planning and implementing training systems that will enable the increase and optimal usage of energy capacities of tennis players in possibly improving sports results.
Bashari, Mohanad; Abbas, Shabbar; Xu, Xueming; Jin, Zhengyu
2014-07-01
In this research work, dextranase was immobilized onto calcium alginate beads by the combination of ultrasonic irradiation and high hydrostatic pressure (US/HHP) treatments. Effects of US/HHP treatments on loading efficiency and immobilization yield of dextranase enzyme onto calcium alginate beads were investigated. Furthermore, the activities of immobilized enzymes prepared with and without US/HHP treatments and that prepared with ultrasonic irradiation (US) and high hydrostatic pressure (HHP), as a function of pH, temperature, recyclability and enzyme kinetic parameters, were compared with that for free enzyme. The maximum loading efficiency and the immobilization yield were observed when the immobilized dextranase was prepared with US (40 W at 25 kHz for 15 min) combined with HHP (400 MPa for 15 min), under which the loading efficiency and the immobilization yield increased by 88.92% and 80.86%, respectively, compared to immobilized enzymes prepared without US/HHP treatment. On the other hand, immobilized enzyme prepared with US/HHP treatment showed Vmax, KM, catalytic and specificity constants values higher than that for the immobilized enzyme prepared with HHP treatment, indicated that, this new US/HHP method improved the catalytic kinetics activity of immobilized dextranase at all the reaction conditions studied. Compared to immobilized enzyme prepared either with US or HHP, the immobilized enzymes prepared with US/HHP method exhibited a higher: pH optimum, optimal reaction temperature, thermal stability and recyclability, and lower activation energy, which, illustrating the effectiveness of the US/HHP method. These results indicated that, the combination of US and HHP treatments could be an effective method for improving the immobilization of enzymes in polymers. Copyright © 2014 Elsevier B.V. All rights reserved.
Duhamel, T A; Green, H J; Perco, J G; Ouyang, J
2005-07-01
This study investigated the effects of prolonged exercise on muscle sarcoplasmic reticulum (SR) Ca2+ cycling properties and the metabolic responses with and without a session of exercise designed to reduce muscle glycogen reserves while on a normal carbohydrate (CHO) diet. Eight untrained males (VO(2peak) = 3.81 +/- 0.12 L/min, mean +/- SE) performed a standardized cycle-to-fatigue at 55% VO(2peak) while on a normal CHO diet (Norm CHO) and 4 days following prolonged exercise while on a normal CHO diet (Ex+Norm CHO). Compared to rest, exercise in Norm CHO to fatigue resulted in significant reductions (p < 0.05) in Ca2+ uptake (3.17 +/- 0.21 vs. 2.47 +/- 0.12 micromol.(g protein)-1.min-1), maximal Ca2+ ATPase activity (Vmax, 152 +/- 12 vs. 119 +/- 9 micromol.(g protein)-1.min-1) and both phase 1 (15.1 +/- 0.98 vs. 13.1 +/- 0.28 micromol.(g protein)-1.min-1) and phase 2 (6.56 +/- 0.33 vs. 4.91 +/- 0.28 micromol.(g protein)-1.min-1) Ca2+ release in vastus lateralis muscle. No differences were observed between Norm CHO and Ex-Norm CHO in the response of these properties to exercise. Compared with Norm CHO, Ex+Norm CHO resulted in higher (p < 0.05) resting Ca2+ uptake (3.17 +/- 0.21 vs. 3.49 +/- 0.24 micromol.(g protein).min-1 and higher ionophore ratio, defined as the ratio of Vmax measured with and without the Ca2+-ionophore A23187, (2.3 +/- 0.3 vs. 4.4 +/- 0.3 micromol.(g protein).min-1) at fatigue. No differences were observed between conditions in the concentration of muscle glycogen, the high-energy phosphates (ATP and PCr), or metabolites (Pi, Cr, and lactate). Ex+Norm CHO also failed to modify the exercise-induced changes in CHO and fat oxidation. We conclude that prolonged exercise to fatigue performed 4 days following glycogen-depleting exercise while on a normal CHO diet elevates resting Ca2+ uptake and prevents increases in SR membrane permeability to Ca2+ as measured by the ionophore ratio.
Visualization of enzyme activities inside earthworm biopores by in situ soil zymography
NASA Astrophysics Data System (ADS)
Thu Duyen Hoang, Thi; Razavi, Bahar. S.; Blagodatskaya, Evgenia; Kuzyakov, Yakov
2015-04-01
Earthworms can strongly activate microorganisms, increase microbial and enzyme activities and consequently the turnover of native soil organic matter. In extremely dynamic microhabitats and hotspots as biopores made by earthworms, the in situ enzyme activities are a footprint of complex biotic interactions. The effect of earthworms on the alteration of enzyme activities inside biopores and the difference between bio-pores and earthworm-free soil was visualized by in situ soil zymography (Spohn and Kuzyakov, 2014). For the first time, we prepared quantitative imaging of enzyme activities in biopores. Furthermore, we developed the zymography technique by direct application of a substrate saturated membrane to the soil to obtain better spatial resolution. Lumbricus terrestris L. was placed into transparent box (15×20×15cm). Simultaneously, maize seed was sown in the soil. Control soil box with maize and without earthworm was prepared in the same way. After two weeks when bio-pore systems were formed by earthworm, we visualized in situ enzyme activities of five hydrolytic enzymes (β-glucosidase, cellobiohydrolase, chitinase, xylanase, leucine aminopeptidase) and phosphatase. Followed by non-destructive zymography, biopore samples and control soil were destructively collected to assay enzyme kinetics by fluorogenically labeled substrates method. Zymography showed higher activity of β-glucosidase, chitinase, xylanase and phosphatase in biopores comparing to bulk soil. These differences were further confirmed by fluorimetric microplate enzyme assay detected significant difference of Vmax in four above mentioned enzymes. Vmax of β-glucosidase, chitinase, xylanase and phosphatase in biopores is 68%, 108%, 50% and 49% higher than that of control soil. However, no difference in cellobiohydrolase and leucine aminopeptidase kinetics between biopores and control soil were detected. This indicated little effect of earthworms on protein and cellulose transformation in soil. In conclusion, earthworms contribute to the decomposition of carbohydrates through promoting enzyme activities involved in the C-cycle except for leucine aminopeptidase and cellobiohydrolase. References Spohn M, Kuzyakov Y. (2014) Spatial and temporal dynamics of hotspots of enzyme activity in soil as affected by living and dead roots - a soil zymography analysis, Plant Soil 379: 67-77
Adem, Sevki; Ciftci, Mehmet
2016-12-01
G6PD, 6PGD and GR have been purified separately in the single step from rat lung using 2', 5'-ADP Sepharose 4B affinity chromatography. The purified enzymes showed a single band on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weights of the enzymes were estimated to be 134 kDa for G6PD, 107 kDa for 6PGD and 121 kDa for GR by Sephadex G-150 gel filtration chromatography, and the subunit molecular weights was respectively found to be 66, 52 and 63 kDa by SDS-PAGE. Optimum pH, stable pH, optimum ionic strength, optimum temperature, KM and Vmax values for substrates were determined. Product inhibition studies were also performed. The enzymes were inhibited by levofloxacin, furosemide, ceftazidime, cefuroxime and gentamicin as in vitro with IC50 values in the range of 0.07-30.13 mM. In vivo studies demonstrated that lung GR was inhibited by furosemide and lung 6PGD was inhibited by levofloxacin.
Characterization of polyphenol oxidase from Cape gooseberry (Physalis peruviana L.) fruit.
Bravo, Karent; Osorio, Edison
2016-04-15
Cape gooseberry (Physalis peruviana) is an exotic fruit highly valued, however it is a very rich source of polyphenol oxidase (PPO). In this study, Cape gooseberry PPO was isolated and biochemically characterized. The enzyme was extracted and purified using acetone and aqueous two-phase systems. The data indicated that PPO had the highest substrate affinity for chlorogenic acid, 4-methylcatechol and catechol. Chlorogenic acid was the most suitable substrate (Km=0.56±0.07 mM and Vmax=53.15±2.03 UPPO mL(-1) min(-1)). The optimal pH values were 5.5 for catechol and 4-methylcatechol and 5.0 for chlorogenic acid. Optimal temperatures were 40°C for catechol, 25°C for 4-methylcatechol and 20°C for chlorogenic acid. In inhibition tests, the most potent inhibitor was found to be ascorbic acid followed by L-cysteine and quercetin. This study shows possible treatments that can be implemented during the processing of Cape gooseberry fruits to prevent browning. Copyright © 2015 Elsevier Ltd. All rights reserved.
Adenosine transport systems on dissociated brain cells from mouse, guinea-pig, and rat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, M.E.; Geiger, J.D.
1990-09-01
The kinetics and sodium dependence of adenosine transport were determined using an inhibitor-stop method on dissociated cell body preparations obtained from mouse, guinea-pig and rat brain. Transport affinity (KT) values for the high affinity adenosine transport systems KT(H) were significantly different between these three species; mean +/- SEM values were 0.34 +/- 0.1 in mouse, 0.9 +/- 0.2 in rat, and 1.5 +/- 0.5 microM in guinea-pig. The KT values for the low affinity transport system KT(L) were not different between the three species. Brain cells from rat displayed a significantly greater maximal capacity to accumulate (3H)adenosine (Vmax) than didmore » mouse or guinea-pig for the high affinity system, or than did mouse for the low affinity system. When sodium chloride was replaced in the transport medium with choline chloride, the KT(H) values for guinea-pig and rat were both increased by approximately 100%; only in rat did the change reach statistical significance. The sodium-dependence of adenosine transport in mouse brain was clearly absent. The differences between KT(H) values in mouse and those in guinea-pig or rat were accentuated in the absence of sodium. The differences in kinetic values, ionic requirements, and pharmacological characteristics between adenosine transporters in CNS tissues of mouse, guinea-pig and rat may help account for some of the variability noted among species in terms of their physiological responses to adenosine.« less
Beta-Lactamases Produced by a Pseudomonas aeruginosa Strain Highly Resistant to Carbenicillin
Labia, Roger; Guionie, Marlène; Masson, Jean-Michel; Philippon, Alain; Barthelemy, Michel
1977-01-01
A Pseudomonas aeruginosa strain isolated at Besançon Hospital, France, proved to be highly resistant to carbenicillin and showed a high hydrolytic activity toward this antibiotic. We clearly demonstrated that two β-lactamases were synthetized: one of them, constitutive, has its enzymatic activity directed mainly toward penicillins, and carbenicillin appears to be its best substrate (higher Vmax); thus, this β-lactamase is a “carbenicillinase” that differs from the well-known “TEM-like” enzymes. The isoelectric point of this carbenicillinase is 5.30 ± 0.03. The other one is an inducible cephalosporinase, very similar to the cephalosporinases usually found in these organisms. Its isoelectric point is 8.66 ± 0.04. These two enzymes have been separated by affinity chromatography and isoelectric focusing. The kinetic constants were measured by computerized microacidimetry. Images PMID:406828
Gravitropism in higher plant shoots. V - Changing sensitivity to auxin
NASA Technical Reports Server (NTRS)
Salisbury, Frank B.; Gillespie, Linda; Rorabaugh, Patricia
1988-01-01
The relationship in plants between the sensitivity to auxin and differential growth and bending was investigated experimentally. Decapitated and marked sunflower hypocotyl sections were immersed in buffered auxin solutions of different concentrations (0, 10 to the -8th, or 0.001 molar) and were photographed at 1/2 hr intervals; the negatives were analyzed with a digitizer/computer to evaluate surface-length changes in terms of Michaelis-Menten enzyme kinetics. It was found that bending decreased with increasing concentration of auxin. Increasing the auxin concentration inhibits the elongation growth of lower surfaces but promotes upper-surface growth, indicating that the lower surfaces have a greater Km sensitivity to applied auxin than the upper surfaces. At optimum auxin levels (maximum growth), the growth of bottom surfaces exceeded that of top surfaces, indicating that bottom tissues had a greater Vmax sensitivity.
King, D K; Shapiro, B H
1981-09-01
1 Normal males of the testicular feminized strain of mice (Tfm) had longer hexobarbitone-induced sleeping times than females, and hepatic hexobarbitone hydroxylase activity different in that the Km was higher and the Vmax lower in the male. 2 Castration and androgen replacement studies indicated that testicular androgens were responsible for the sexual differences in drug metabolism found in this mouse strain. 3 Hepatic hexobarbitone metabolism and action were feminized in the intact, androgen-insensitive, genetically male Tfm mouse. Furthermore, hexobarbitone hydroxylase activities were less responsive to large doses of testosterone in Tfm mice than in normal males. 4 The Tfm mouse with a deficiency in androgen receptors responded to the enzyme-inductive effects of phenobarbitone and softwood bedding, indicating that these inducers do not act through the androgen receptors.
Sympathomimetic effects of MIBG: comparison with tyramine.
Graefe, K H; Bossle, F; Wölfel, R; Burger, A; Souladaki, M; Bier, D; Dutschka, K; Farahati, J; Bönisch, H
1999-08-01
Because nothing is known about whether metaiodobenzylguanidine (MIBG) has tyramine-like actions, the sympathomimetic effects of MIBG were determined in the isolated rabbit heart and compared with those of tyramine. Spontaneously beating rabbit hearts were perfused with Tyrode's solution (Langendorff technique; 37 degrees C; 26 mL/min), and the heart rate as well as the norepinephrine and dopamine overflow into the perfusate was measured before and after doses of MIBG or tyramine (0.03-10 micromol) given as bolus injections (100 microL) into the aortic cannula. Km and Vmax values for the neuronal uptake (uptake1) of 125I-MIBG and 14C-tyramine were obtained in human neuroblastoma (SK-N-SH) cells. The Ki of MIBG for inhibition of the 3H-catecholamine uptake mediated by the vesicular monoamine transporter was determined in membrane vesicles obtained from bovine chromaffin granules and compared with the previously reported Ki value for tyramine determined under identical experimental conditions. By producing increases in heart rate and norepinephrine overflow, both compounds had dose-dependent sympathomimetic effects in the rabbit heart. MIBG was much less effective than tyramine in increasing heart rate (maximum effect 59 versus 156 beats/min) and norepinephrine overflow (maximum effect 35 versus 218 pmol/g). Tyramine also caused increases in dopamine overflow, whereas MIBG was a poor dopamine releaser. At a dose of 10 micromol, the increase in heart rate lasted more than 60 min after MIBG and about 20 min after tyramine injection. Accordingly, the norepinephrine overflow caused by 10 micromol MIBG and tyramine declined with half-lives of 57.8 and 2.2 min, respectively. The effects of both drugs were drastically reduced in hearts exposed to 2 micromol/L desipramine. The kinetic parameters characterizing the saturation of neuronal uptake by 125I-MIBG and 14C-tyramine were similar for the two compounds: Km values of MIBG and tyramine were 1.6 and 1.7 micromol/L, respectively, and Vmax values of MIBG and tyramine were 43 and 37 pmol/mg protein/min, respectively. However, in inhibiting the vesicular 3H-catecholamine uptake, MIBG was eight times less potent than tyramine. MIBG is much less effective than tyramine as an indirect sympathomimetic agent. This is probably a result of its relatively low affinity for the vesicular monoamine transporter and explains the relatively poor ability of the drug to mobilize norepinephrine stored in synaptic vesicles. The long duration of MIBG action results primarily from the drug not being metabolized by monoamine oxidase. The sympathomimetic effects of MIBG described here are not likely to come into play in patients given diagnostic or common therapeutic doses of radioiodinated MIBG.
Comparative study of invertases of Streptococcus mutans.
Tanzer, J M; Brown, A T; McInerney, M F; Woodiel, F N
1977-04-01
Sucrase activity was studied in 13 strains of Streptococcus mutans representing the five Bratthall serotypes. Sucrose-adapted cells have sucrase activity in the 37,000 x g-soluble fraction of all strains. The enzyme was identified as invertase (beta-d-fructofuranoside fructohydrolase; EC 3.2.1.26) because it hydrolyzed the beta-fructofuranoside trisaccharide raffinose, giving fructose and melibiose as its products, and because it hydrolyzed the beta-fructofuranoside dissacharide sucrose, giving equimolar glucose and fructose as its products. Invertases of c and e strains exhibit two activity peaks by molecular exclusion chromatography with molecular weights of 45,000 to 50,000 and about 180,000; those of serotypes a, b, and d strains exhibit only a single component of 45,000 to 50,000 molecular weight. The electrophoretic mobility of invertases is different between the serotypes and the same within them. Inorganic orthophosphate (P(i)) has a weak positive effect on the V(max) of invertases of serotypes c and e cells but a strong positive effect on the invertases of serotype b cells; P(i) has a strong positive effect on the apparent K(m) of the invertases of serotype d cells, but has no effect on the V(max); P(i) has a strong positive effect on both the apparent K(m) and V(max) of the invertases of serotype a cells. Thus, the invertases were different between all of the serotypes but similar within the serotypes. These findings support the taxonomic schemes of Coykendall and of Bratthall. It was additionally noted that 37,000 x g-soluble fractions of only serotypes b and c but not serotypes a, d, and e cells have melibiase activity, and it could be deduced that serotype d cells lack an intact raffinose permease system.
Thaveau, Fabien; Zoll, Joffrey; Bouitbir, Jamal; N'guessan, Benoît; Plobner, Philippe; Chakfe, Nabil; Kretz, Jean-Georges; Richard, Ruddy; Piquard, François; Geny, Bernard
2010-06-01
Impaired skeletal muscle energetic participates in peripheral arterial disease (PAD) patient's morbidity and mortality. Angiotensin converting enzyme inhibition (ACEi), cornerstone for pharmacologic risk factor management in PAD patients, might also be interesting by protecting skeletal muscle energetic. We therefore determined whether chronic ACEi might reduce ischemia-induced mitochondrial respiratory chain dysfunction in the frequent setting of hindlimb ischemia-reperfusion. Ischemic legs of rats submitted to 5 h ischemia induced by a rubber band tourniquet applied on the root of the hindlimb followed by reperfusion without (IR, n = 11) or after ACEi (n = 14; captopril 40 mg/kg per day during 28 days before surgery) were studied and compared to that of sham-operated animals (n = 11). The effect of ACEi on the non-ischemic contralateral leg was also determined in the ACEi group. Maximal oxidative capacities (V(max)) and complexes I, II and IV activities of the mitochondrial respiratory chain of the gastrocnemius muscle were determined using glutamate-malate, succinate and TMPD-ascorbate substrates. Arterial blood pressure was significantly decreased after ACEi (124 +/- 2.8 vs. 108 +/- 4.19 mmHg; P = 0.01). Ischemia-reperfusion reduced V(max) (4.4 +/- 0.4 vs. 8.7 +/- 0.5 micromol O2/min/g dry weight, -49%, P < 0.001), affecting mitochondrial complexes I, II and IV activities. ACEi failed to modulate ischemia-induced dysfunction (V(max) 5.1 +/- 0.7 micromol O2/min/g dry weight) or the non-ischemic contralateral muscle respiratory rate. Ischemia-reperfusion significantly impaired the mitochondrial respiratory chain I, II and IV complexes of skeletal muscle. Pharmacologic pre-treatment with ACEi did not prevent or increase such alterations. Further studies might be useful to improve the pharmacologic conditioning of PAD patients needing arterial revascularization.
Effect of Calcium on the Oxidative Phosphorylation Cascade in Skeletal Muscle Mitochondria
Glancy, Brian; Willis, Wayne T; Chess, David J; Balaban, Robert S
2014-01-01
Calcium is believed to regulate mitochondrial oxidative phosphorylation, thereby contributing to the maintenance of cellular energy homeostasis. Skeletal muscle, with an energy conversion dynamic range of up to 100-fold, is an extreme case for evaluating the cellular balance of ATP production and consumption. This study examined the role of Ca2+ on the entire oxidative phosphorylation reaction network in isolated skeletal muscle mitochondria and attempted to extrapolate these results back to the muscle, in vivo. Kinetic analysis was conducted to evaluate the dose response effect of Ca2+ on the maximum velocity of oxidative phosphorylation (VmaxO) and the ADP affinity. Force-flow analysis evaluated the interplay between energetic driving forces and flux to determine the conductance, or effective activity, of individual steps within oxidative phosphorylation. Measured driving forces (extramitochondrial phosphorylation potential (ΔGATP), membrane potential, and redox states of NADH and cytochromes bH, bL, c1, c, and a,a3) were compared with flux (oxygen consumption) at 37°C. 840 nM Ca2+ generated a ∼2 fold increase in VmaxO with no change in ADP affinity (∼43 μM). Force-flow analysis revealed that Ca2+ activation of VmaxO was distributed throughout the oxidative phosphorylation reaction sequence. Specifically, Ca2+ increased the conductance of Complex IV (2.3-fold), Complexes I+III (2.2-fold), ATP production/transport (2.4-fold), and fuel transport/dehydrogenases (1.7-fold). These data support the notion that Ca2+ activates the entire muscle oxidative phosphorylation cascade, while extrapolation of these data to the exercising muscle predicts a significant role of Ca2+ in maintaining cellular energy homeostasis. PMID:23547908
NASA Astrophysics Data System (ADS)
Yamamoto, Masaru; Takahashi, Masaaki
2018-03-01
We derive simple dynamical relationships between wind speed magnitude and meridional temperature contrast. The relationship explains scatter plot distributions of time series of three variables (maximum zonal wind speed UMAX, meridional wind speed VMAX, and equator-pole temperature contrast dTMAX), which are obtained from a Venus general circulation model with equatorial Kelvin-wave forcing. Along with VMAX and dTMAX, UMAX likely increases with the phase velocity and amplitude of a forced wave. In the scatter diagram of UMAX versus dTMAX, points are plotted along a linear equation obtained from a thermal-wind relationship in the cloud layer. In the scatter diagram of VMAX versus UMAX, the apparent slope is somewhat steep in the high UMAX regime, compared with the low UMAX regime. The scatter plot distributions are qualitatively consistent with a quadratic equation obtained from a diagnostic equation of the stream function above the cloud top. The plotted points in the scatter diagrams form a linear cluster for weak wave forcing, whereas they form a small cluster for strong wave forcing. An interannual oscillation of the general circulation forming the linear cluster in the scatter diagram is apparent in the experiment of weak 5.5-day wave forcing. Although a pair of equatorial Kelvin and high-latitude Rossby waves with a same period (Kelvin-Rossby wave) produces equatorward heat and momentum fluxes in the region below 60 km, the equatorial wave does not contribute to the long-period oscillation. The interannual fluctuation of the high-latitude jet core leading to the time variation of UMAX is produced by growth and decay of a polar mixed Rossby-gravity wave with a 14-day period.
Krueger, R D; Harper, S H; Campbell, J W; Fahrney, D E
1986-01-01
The archaebacterium Methanobacterium thermoautotrophicum was grown in continuous culture at 65 degrees C in a phosphate-limited medium at specific growth rates from 0.06 to 0.28 h-1 (maximum growth rate [mu max] = 0.36 h-1). Cyclic-2,3-diphosphoglycerate (cyclic DPG) levels ranged from 2 to 20 mM in Pi-limited cells, compared with about 30 mM in batch-grown cells. The Monod constant for Pi-limited growth was 5 nM. Pi uptake rates were determined by following the disappearance of 32Pi from the medium. Interrupting the H2 supply stopped the uptake of Pi and the release of organic phosphates. Little or no efflux of Pi occurred in the presence or absence of H2. Pi uptake of cells adapted to nanomolar Pi concentrations could be accounted for by the operation of one uptake system with an apparent Km of about 25 nM and a Vmax of 58 nmol of Pi per min per g (dry weight). Uptake curves at 30 microM Pi or above were biphasic due to a sevenfold decrease in Vmax after an initial phase of rapid movement of Pi into the cell. Under these conditions the growth rate slowed to zero and the cyclic DPG pool expanded before growth resumed. Thus, three properties of M. thermoautotrophicum make it well adapted to live in a low-P environment: the presence of a low-Km, high-Vmax uptake system for Pi; the ability to accumulate cyclic DPG rapidly; and a growth strategy in which accumulation of Pi and cyclic DPG takes precedence over a shift-up in growth rate when excess Pi becomes available. PMID:3722128
Krueger, R D; Harper, S H; Campbell, J W; Fahrney, D E
1986-07-01
The archaebacterium Methanobacterium thermoautotrophicum was grown in continuous culture at 65 degrees C in a phosphate-limited medium at specific growth rates from 0.06 to 0.28 h-1 (maximum growth rate [mu max] = 0.36 h-1). Cyclic-2,3-diphosphoglycerate (cyclic DPG) levels ranged from 2 to 20 mM in Pi-limited cells, compared with about 30 mM in batch-grown cells. The Monod constant for Pi-limited growth was 5 nM. Pi uptake rates were determined by following the disappearance of 32Pi from the medium. Interrupting the H2 supply stopped the uptake of Pi and the release of organic phosphates. Little or no efflux of Pi occurred in the presence or absence of H2. Pi uptake of cells adapted to nanomolar Pi concentrations could be accounted for by the operation of one uptake system with an apparent Km of about 25 nM and a Vmax of 58 nmol of Pi per min per g (dry weight). Uptake curves at 30 microM Pi or above were biphasic due to a sevenfold decrease in Vmax after an initial phase of rapid movement of Pi into the cell. Under these conditions the growth rate slowed to zero and the cyclic DPG pool expanded before growth resumed. Thus, three properties of M. thermoautotrophicum make it well adapted to live in a low-P environment: the presence of a low-Km, high-Vmax uptake system for Pi; the ability to accumulate cyclic DPG rapidly; and a growth strategy in which accumulation of Pi and cyclic DPG takes precedence over a shift-up in growth rate when excess Pi becomes available.
A spectrophotometric assay for fatty acid amide hydrolase suitable for high-throughput screening.
De Bank, Paul A; Kendall, David A; Alexander, Stephen P H
2005-04-15
Signalling via the endocannabinoids anandamide and 2-arachidonylglycerol appears to be terminated largely through the action of the enzyme fatty acid amide hydrolase (FAAH). In this report, we describe a simple spectrophotometric assay to detect FAAH activity in vitro using the ability of the enzyme to hydrolyze oleamide and measuring the resultant production of ammonia with a NADH/NAD+-coupled enzyme reaction. This dual-enzyme assay was used to determine Km and Vmax values of 104 microM and 5.7 nmol/min/mgprotein, respectively, for rat liver FAAH-catalyzed oleamide hydrolysis. Inhibitor potency was determined with the resultant rank order of methyl arachidonyl fluorophosphonate>phenylmethylsulphonyl fluoride>anandamide. This assay system was also adapted for use in microtiter plates and its ability to detect a known inhibitor of FAAH demonstrated, highlighting its potential for use in high-throughput screening.
Rachiplusia nu larva as a biofactory to achieve high level expression of horseradish peroxidase.
Romero, Lucía Virginia; Targovnik, Alexandra Marisa; Wolman, Federico Javier; Cascone, Osvaldo; Miranda, María Victoria
2011-05-01
A process based on orally-infected Rachiplusia nu larvae as biological factories for expression and one-step purification of horseradish peroxidase isozyme C (HRP-C) is described. The process allows obtaining high levels of pure HRP-C by membrane chromatography purification. The introduction of the partial polyhedrin homology sequence element in the target gene increased HRP-C expression level by 2.8-fold whereas it increased 1.8-fold when the larvae were reared at 27 °C instead of at 24 °C, summing up a 4.6-fold overall increase in the expression level. Additionally, HRP-C purification by membrane chromatography at a high flow rate greatly increase D the productivity without affecting the resolution. The V(max) and K(m) values of the recombinant HRP-C were similar to those of the HRP from Armoracia rusticana roots. © Springer Science+Business Media B.V. 2011
Raja, K. B.; Duane, P.; Peters, T. J.
1990-01-01
Chronic subcutaneous turpentine administration (weekly for 6 weeks) induced a mild normocytic anaemia in mice. In-vitro and in-vivo intestinal Fe3+ absorption parameters were, however, not significantly altered from values in saline-treated or untreated mice. Normal mice, when exposed to 3 days hypoxia demonstrated a 2-3-fold increase in iron absorption in vivo, mainly due to changes in the amount of iron transferred from the mucosa to the plasma and thence to the carcass. A 2-3-fold increase in Vmax was also observed in in-vitro uptake experiments using isolated duodenal fragments. In contrast, turpentine-treated animals, though demonstrating an enhanced in-vitro maximal uptake capacity, failed to elicit an adaptive response in vivo following hypoxic exposure. These findings suggest that a circulating (humoral) factor may be responsible for the inhibition in absorption in vivo in this turpentine-induced inflammatory model. PMID:2278822
NASA Astrophysics Data System (ADS)
Prostomolotov, A. I.; Verezub, N. A.; Voloshin, A. E.
2014-09-01
A thermo-gravitational convection and impurity transfer in the melt were investigated using a simplified numerical model for Bridgman GaSb(Te) crystal growth in microgravity conditions. Simplifications were as follows: flat melt/crystal interface, fixed melt sizes and only lateral ampoule heating. Calculations were carried out by Ansys®Fluent® code employing a two-dimensional Navier-Stokes-Boussinesq and heat and mass transfer equations in a coordinate system moving with the melt/crystal interface. The parametric dependence of the effective segregation coefficient Keff at the melt/crystal interface was studied for various ampoule sizes and for microgravity conditions. For the uprising one-vortex flow, the resulting dependences were presented as Keff vs. Vmax-the maximum velocity value. These dependences were compared with the formulas by Burton-Prim-Slichter's, Ostrogorsky-Muller's, as well as with the semi-analytical solutions.
Enhancing Activity and Stability of Uricase from Lactobacillus plantarum by Zeolite immobilization
NASA Astrophysics Data System (ADS)
Iswantini, D.; Nurhidayat, N.; Sarah
2017-03-01
Lactobacillus plantarum has been known be able to produce uricase for uric acid biosensor. Durability and stability of L. plantarum in generating uricase enzyme was low. Hence, we tried to enhance its durability and stability by immobilizing it onto activated 250 mg zeolite at room temperature using 100 μL L.plantarum suspension and 2.87 mM uric acid, while Michaelis-Menten constant (KM) and Vmax were obtained at 6.7431 mM and 0.9171 µA consecutively, and the linearity range was 0.1-3.3 mM (R2 = 0.9667). Limit of detection (LOD) and limit of quantification (LOQ) value of the measurement were 0.4827 mM and 1.6092 mM respectively. Biosensor stability treatment was carried out in two different treatments, using the same electrode and using disposable electrode. The disposable electrode stability showed better result based on repeated measurements, but stability was still need improvement.
Lee, Seung Ho; Cho, Jaiesoon; Bok, Jinduck; Kang, Seungha; Choi, Yunjaie; Lee, Peter C W
2015-01-01
A phytase from Penicillium oxalicum PJ3, PhyA, was purified near to homogeneity with 427-fold increase in specific phytase activity by ammonium sulfate precipitation, gel filtration, and ion-exchange chromatographies. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and zymogram analysis of the purified enzyme indicated an estimated molecular mass of 65 kD. The optimal pH and temperature of the purified enzyme were pH 4.5 and 55°C, respectively. The enzyme activity was strongly inhibited by Ca(2+), Cu(2+), Zn(2+), and phenylmethylsulfonyl fluoride (PMSF). The Km value for sodium phytate was 0.545 mM with a Vmax of 600 U/mg of protein. The phyA gene was cloned, and it contains an open reading frame of 1,383 with a single intron (118 bp), and encodes a protein of 461 amino acids.
Keller, Frieder; Hartmann, Bertram; Czock, David
2009-12-01
To describe nonlinear, saturable pharmacokinetics, the Michaelis-Menten equation is frequently used. However, the Michaelis-Menten equation has no integrated solution for concentrations but only for the time factor. Application of the Lambert W function was proposed recently to obtain an integrated solution of the Michaelis-Menten equation. As an alternative to the Michaelis-Menten equation, a 1 - exp equation has been used to describe saturable kinetics, with the advantage that the integrated 1 - exp equation has an explicit solution for concentrations. We used the integrated 1 - exp equation to predict the accumulation kinetics and the nonlinear concentration decline for a proposed fictive drug. In agreement with the recently proposed method, we found that for the integrated 1 - exp equation no steady state is obtained if the maximum rate of change in concentrations (Vmax) within interval (Tau) is less than the difference between peak and trough concentrations (Vmax x Tau < C peak - C trough).
Beyond Vmax and Km: How details of enzyme function influence geochemical cycles
NASA Astrophysics Data System (ADS)
Steen, A. D.
2015-12-01
Enzymes catalyze the vast majority of chemical reactions relevant to geomicrobiology. Studies of the activities of enzymes in environmental systems often report Vmax (the maximum possible rate of reaction; often proportional to the concentration of enzymes in the system) and sometimes Km (a measure of the affinity between enzymes and their substrates). However, enzyme studies - particularly those related to enzymes involved in organic carbon oxidation - are often limited to only those parameters, and a relatively limited and mixed set of enzymes. Here I will discuss some novel methods to assay and characterize the specific sets of enzymes that may be important to the carbon cycle in aquatic environments. First, kinetic experiments revealed the collective properties of the complex mixtures of extracellular peptidases that occur where microbial communities are diverse. Crystal structures combined with biochemical characterization of specific enzymes can yield more detailed information about key steps in organic carbon transformations. These new techniques have the potential to provide mechanistic grounding to geomicrobiological models.
Influence of lifestyle habits, nutritional status and insulin resistance in NAFLD.
Malavolti, Marcella; Battistini, Nino Carlo; Miglioli, Lucia; Bagni, Ilaria; Borelli, Luca; Marino, Mariano; Scaglioni, Federica; Bellentani, Stefano
2012-01-01
Non alcoholic fatty liver disease (NAFLD) is associated with obesity, diabetes and insulin resistance (IR). The aim of our study was to assess the relationship between IR, anthropometry, lifestyle habits, resting energy expenditure (REE) and degree of fatty liver at ultrasound in 48 overweight patients with NAFLD as compared to 24 controls without fatty liver, matched for age. Nutritional status, alcohol intake and physical activity were assessed by skinfold thickness measurements, a 7-day diary, and SenseWear armband (SWA). REE was assessed by both SWA (REE-SWA) and a Vmax metabolic cart (REE-Vmax). Fatty liver was measured by US and the Doppler Power Index was calculated. IR was assessed using the HOMA index. There was significant correlation between waist circumference, HOMA, Doppler power index and fatty liver grade at US. Multivariate analysis showed that alteration of waist circumference, Doppler power index, and HOMA were the major significant predictors of fatty liver. Our data demonstrated a significant association between NAFLD and central adiposity and IR.
Jung, Se-Hui; Ji, Su-Hyun; Han, Eun-Taek; Park, Won Sun; Hong, Seok-Ho; Kim, Young-Myeong; Ha, Kwon-Soo
2016-05-15
Glucose-6-phosphate dehydrogenase (G6PD) regulates nicotinamide adenine dinucleotide phosphate (NADPH) levels and is related to the pathogenesis of various diseases, including G6PD deficiency, type 2 diabetes, aldosterone-induced endothelial dysfunction, and cancer. Therefore, a highly sensitive array-based assay for determining quantitative G6PD activity is required. Here, we developed an on-chip G6PD activity assay using liquid droplet fluorescence arrays. Quantitative G6PD activity was determined by calculating reduced resorufin concentrations in liquid droplets. The limit of detection (LOD) of this assay was 0.162 mU/ml (2.89 pM), which is much more sensitive than previous assays. We used our activity assay to determine kinetic parameters, including Michaelis-Menten constants (Km) and maximum rates of enzymatic reaction (Vmax) for NADP(+) and G6P, and half-maximal inhibitory concentrations (IC50). We successfully applied this new assay to determine G6PD activity in human plasma from normal healthy individuals (n=30) and patients with inflammation (n=30). The inflammatory group showed much higher G6PD activities than did the normal group (p<0.001), with a high area under the curve value of 0.939. Therefore, this new activity assay has the potential to be used for diagnosis of G6PD-associated diseases and utilizing kinetic studies. Copyright © 2016 Elsevier B.V. All rights reserved.
Kim, Donggiun; Lee, Gunsup; Chang, Man; Park, Jongbum; Chung, Youngjae; Lee, Sukchan; Lee, Taek-Kyun
2011-10-26
Invertase (EC 3.2.1.26) catalyzes the hydrolysis of sucrose into D-glucose and D-fructose. Insoluble acid invertase (INAC-INV) was purified from pea (Pisum sativum L.) by sequential procedures entailing ammonium sulfate precipitation, ion exchange chromatography, absorption chromatography, reactive green-19 affinity chromatography, and gel filtration. The purified INAC-INV had a pH optimum of 4.0 and a temperature optimum of 45 °C. The effects of various concentrations of Tris-HCl, HgCl(2), and CuSO(4) on the activities of the purified invertase were examined. INAC-INV was not affected by Tris-HCl and HgCl(2). INAC-INV activity was inhibited by 6.2 mM CuSO(4) up to 50%. The enzymes display typical hyperbolic saturation kinetics for sucrose hydrolysis. The K(m) and V(max) values of INAC-INV were determined to be 4.41 mM and 8.41 U (mg protein)(-1) min(-1), respectively. INAC-INV is a true member of the β-fructofuranosidases, which can react with sucrose and raffinose as substrates. SDS-PAGE and immunoblotting were used to determine the molecular mass of INAC-INV to be 69 kDa. The isoelectric point of INAC-INV was estimated to be about pH 8.0. Taken together, INAC-INV is a pea seedling invertase with a stable and optimum activity at lower acid pH and at higher temperature than other invertases.
Bertolini, Alberto; Peresson, Carlo; Petrussa, Elisa; Braidot, Enrico; Passamonti, Sabina; Macrì, Francesco; Vianello, Angelo
2009-01-01
A homologue of the mammalian bilirubin transporter bilitranslocase (BTL) (TCDB 2.A.65.1.1), able to perform an apparent secondary active transport of flavonoids, has previously been found in carnation petals and red grape berries. In the present work, a BTL homologue was also shown in white berries from Vitis vinifera L. cv. Tocai/Friulano, using anti-sequence antibodies specific for rat liver BTL. This transporter, similarly to what found in red grape, was localized in the first layers of the epidermal tissue and in the vascular bundle cells of the mesocarp. In addition, a strong immunochemical reaction was detected in the placental tissue and particularly in peripheral integuments of the seed. The protein was expressed during the last maturation stages in both skin and pulp tissues and exhibited an apparent molecular mass of c. 31 kDa. Furthermore, the transport activity of such a carrier, measured as bromosulphophthalein (BSP) uptake, was detected in berry pulp microsomes, where it was inhibited by specific anti-BTL antibodies. The BTL homologue activity exhibited higher values, for both Km and Vmax, than those found in the red cultivar. Moreover, two non-pigmented flavonoids, such as quercetin (a flavonol) and eriodictyol (a flavanone), inhibited the uptake of BSP in an uncompetitive manner. Such results strengthen the hypothesis that this BTL homologue acts as a carrier involved also in the membrane transport of colourless flavonoids and demonstrate the presence of such a carrier in different organs and tissues. PMID:19596699
Barata, Ricardo Andrade; Andrade, Milton Hercules Guerra; Rodrigues, Roberta Dias; Castro, Ieso Miranda
2002-01-01
An alkaline serineprotease, capable of hydrolyzing Nalpha-benzoyl- dl arginine p-nitroanilide, was secreted by Fusarium oxysporum var. lini grown in the presence of gelatin as the sole nitrogen and carbon source. The protease was purified 65-fold to electrophoretic homogenity from the culture supernatant in a three-step procedure comprising QSepharose chromatography, affinity chromatography, and FPLC on a MonoQ column. SDS-PAGE analysis of the purified protein indicated an estimated molecular mass of 41 kDa. The protease had optimum activity at a reaction temperature of 45 degrees C and showed a rapid decrease of activity at 48 degrees C. The optimum pH was around 8.0. Characterization of the protease showed that Ca2+ and Mg2+ cations increased the activity, which was not inhibited by EDTA or 1,10-phenanthroline. The enzyme activity on Nalpha-benzoyl-DL arginine p-nitroanilide was inhibited by 4-(2-aminoethyl)-benzenesulfonyl fluoride hydrochloride, p-aminobenzamidine dihydrochloride, aprotinin, 3-4 dichloroisocoumarin, and N-tosyl-L-lysine chloromethyl ketone. The enzyme is also inhibited by substrate concentrations higher than 2.5 x 10(-4)M. The protease had a Michaelis-Menten constant of 0.16 mM and a V(max) of 0.60 mumol released product.min(-1).mg(-1) enzyme when assayed in a non-inhibiting substrate concentration. The activity on Nalpha-benzoyl- dl arginine p-nitroanilide was competitively inhibited by p-aminobenzamidine dihydrochoride. A K(i) value of 0.04 mM was obtained.
Single-step purification and characterization of recombinant aspartase of Aeromonas media NFB-5.
Singh, Ram Sarup; Yadav, Mukesh
2012-07-01
Aspartase (L-aspartate ammonia-lyase; EC 4.3.1.1) catalyzes the reversible amination of fumaric acid to produce L-aspartic acid. Aspartase coding gene (aspA) of Aeromonas media NFB-5 was cloned, sequenced, and expressed with His tag using pET-21b⁺ expression vector in Escherichia coli BL21. Higher expression was obtained with IPTG (1.5 mM) induction for 5 h at 37 °C in LB medium supplemented with 0.3% K₂HPO₄ and 0.3% KH₂PO₄. Recombinant His tagged aspartase was purified using Ni-NTA affinity chromatography and characterized for various biochemical and kinetic parameters. The purified aspartase showed optimal activity at pH 8.5 and 8.0 in the presence and absence of magnesium ions, respectively. The optimum temperature was determined to be 35 °C. The enzyme showed apparent K(m) and V(max) values for L-aspartate as 2.01 mM and 114 U/mg, respectively. The enzyme was stable in pH range of 6.5-9.5 and temperature up to 45 °C. Divalent metal ion requirement of enzyme was efficiently fulfilled by Mg²⁺, Mn²⁺, and Ca²⁺ ions. The cloned gene (aspA) product showed molecular weight of approximately 51 kDa by SDS-PAGE, which is in agreement with the molecular weight calculated from putative amino acid sequence. This is the first report on expression and characterization of recombinant aspartase from A. media.
Raseda, Nasrin; Hong, Soonho; Kwon, O Yul; Ryu, Keungarp
2014-12-28
The interactive inhibitory effects of pH and chloride on the catalysis of laccase from Trametes versicolor were investigated by studying the alteration of inhibition characteristics of sodium chloride at different pHs for the oxidation of 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid). At pH 3.0, the addition of sodium chloride (50 mM) brought about a 40-fold increase in Km(app) and a 4-fold decrease in Vmax(app). As the pH increased to 7.0, the inhibitory effects of sodium chloride became significantly weakened. The mixed-inhibition mechanism was successfully used to quantitatively estimate the competitive and uncompetitive inhibition strengths by chloride at two different pHs (pH 3.0 and 6.0). At pH 3.0, the competitive inhibition constant, Ki, was 0.35 mM, whereas the uncompetitive inhibition constant, Ki', was 18.1 mM, indicating that the major cause of the laccase inhibition by chloride is due to the competitive inhibition step. At a higher pH of 6.0, where the inhibition of the laccase by hydroxide ions takes effect, the inhibition of the laccase by chloride diminished to a great extent, showing increased values of both the competitive inhibition constant (Ki= 23.7 mM) and uncompetitive inhibition constant (Ki' = 324 mM). These kinetic results evidenced that the hydroxide anion and chloride share a common mechanism to inhibit the laccase activity.
Enzyme Activity Experiments Using a Simple Spectrophotometer
ERIC Educational Resources Information Center
Hurlbut, Jeffrey A.; And Others
1977-01-01
Experimental procedures for studying enzyme activity using a Spectronic 20 spectrophotometer are described. The experiments demonstrate the effect of pH, temperature, and inhibitors on enzyme activity and allow the determination of Km, Vmax, and Kcat. These procedures are designed for teaching large lower-level biochemistry classes. (MR)
Morrish, Glynn A; Foster, David J R; Somogyi, Andrew A
2006-01-01
Aims To determine the in vitro kinetics of morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G) formation and the inhibition potential by methadone enantiomers and structurally related opioids. Methods M3G and M6G formation kinetics from morphine were determined using microsomes from five human livers. Inhibition of glucuronide formation was investigated with eight inhibitors (100 µm) and the mechanism of inhibition determined for (R)- and (S)-methadone (70–500 µm) using three microsomal samples. Results Glucuronide formation displayed single enzyme kinetics. The M3G Vmax (mean ± SD) was 4.8-fold greater than M6G Vmax (555 ± 110 vs. 115 ± 19 nmol mg−1 protein h−1; P = 0.006, mean of difference 439; 95% confidence interval 313, 565 nmol mg−1 protein h−1). Km values for M3G and M6G formation were not significantly different (1.12 ± 0.37 vs. 1.11 ± 0.31 mm; P = 0.89, 0.02; −0.29, 0.32 mm). M3G and M6G formation was inhibited (P < 0.01) with a significant increase in the M3G/M6G ratio (P < 0.01) for all compounds tested. Detailed analysis with (R)- and (S)-methadone revealed noncompetitive inhibition with (R)-methadone Ki of 320 ± 42 µm and 192 ± 12 µm for M3G and M6G, respectively, and (S)-methadone Ki of 226 ± 30 µm and 152 ± 20 µm for M3G and M6G, respectively. Ki values for M3G inhibition were significantly greater than for M6G for (R)-methadone (P = 0.017, 128; 55, 202 µm) and (S)-methadone (P = 0.026, 75; 22, 128 µm). Conclusions Both methadone enantiomers noncompetitively inhibited the formation of morphine's primary metabolites, with greater inhibition of M6G formation compared with M3G. These findings indicate a mechanism for reduced morphine clearance in methadone-maintained patients and reduced relative formation of the opioid active M6G compared with M3G. PMID:16487227
Leite, V P; Zanotto, F P
2013-10-01
Crustaceans show discontinuous growth and have been used as a model system for studying cellular mechanisms of calcium transport, which is the main mineral found in their exoskeleton. Ucides cordatus, a mangrove crab, is naturally exposed to fluctuations in calcium and salinity. To study calcium transport in this species during isosmotic conditions, dissociated gill cells were marked with fluo-3 and intracellular Ca(2+) change was followed by adding extracellular Ca(2+) as CaCl2 (0, 0.1, 0.25, 0.50, 1.0 and 5mM), together with different inhibitors. For control gill cells, Ca(2+) transport followed Michaelis-Menten kinetics with Vmax=0.137±0.001 ∆Ca(2+)i (μM×22.10(4)cells(-1)×180s(-1); N=4; r(2)=0.99); Km=0.989±0.027mM. The use of different inhibitors for gill cells showed that amiloride (Na(+)/Ca(2+) exchange inhibitor) inhibited 80% of Ca(2+) transport in gill cells (Vmax). KB-R, an inhibitor of Ca influx in vertebrates, similarly caused a decrease in Ca(2+) transport and verapamil (Ca(2+) channel inhibitor) had no effect on Ca(2+) transport, while nifedipine (another Ca(2+) channel inhibitor) caused a 20% decrease in Ca(2+) affinity compared to control values. Ouabain, on the other hand, caused no change in Ca(2+) transport, while vanadate increased the concentration of intracellular calcium through inhibition of Ca(2+) efflux probably through the plasma membrane Ca(2+)-ATPase. Results show that transport kinetics for Ca(2+) in these crabs under isosmotic conditions is lower compared to a hyper-regulator freshwater crab Dilocarcinus pagei studied earlier using fluorescent Ca(2+) probes. These kinds of studies will help understanding the comparative mechanisms underlying the evolution of Ca transport in crabs living in different environments. © 2013.
Renal functional reserve and renal hemodynamics in hypertensive patients.
Gaipov, Abduzhappar; Solak, Yalcin; Zhampeissov, Nurlan; Dzholdasbekova, Aliya; Popova, Nadezhda; Molnar, Miklos Z; Tuganbekova, Saltanat; Iskandirova, Elmira
2016-10-01
The renal functional reserve (RFR) is the ability of the kidneys to increase renal plasma flow and glomerular filtration rate (GFR) in response to protein intake. It is a measure of functional and anatomic integrity of nephrons. It is not known what relation between RFR and kidney Doppler parameters. We aimed to study the relation between the RFR and renal hemodynamic parameters in hypertensive patients with and without nephropathy who had normal kidney function. Twenty-four hypertensive subjects with nephropathy (HTN-n, n = 10) and hypertension without nephropathy (HTN, n = 14) were included in the study. Control group included 11 healthy subjects. Baseline GFR (GFR1) and GFR after intake of egg protein 1 mg/kg of body weight were determined (GFR2). RFR was calculated by the following formula: (GFR2-GFR1)/GFR1 × 100%. Doppler ultrasonography was performed. Arterial blood pressure (BP), body mass index (BMI), and estimated GFR were also recorded. HTN and HTN-n groups had impaired levels of RFR compared with controls (p < 0.05), significantly decreased value of flow velocity parameters (Vmax, Vmin), and increased RRI compared with controls. There was significant negative correlation of RFR with blood pressure levels (sBP, r = -0.435, p = 0.009; dBP, r = -0.504, p = 0.002), RRI (r = -0.456, p = 0.008), micro albuminuria (MAU, r = -0.366, p = 0.031) and positive correlation with Vmax and Vmin (r = 0.556, p = 0.001 and r = 0.643, respectively, p < 0.001). Linear regression showed that RRI and MAU were independent predictors of decreased RFR. RFR is lower in hypertensive patients despite near-normal level of kidney function and is related to particular level of BP. RRI and MAU were independent predictors of decreased RFR.
Spear, John R.; Figueroa, Linda A.; Honeyman, Bruce D.
2000-01-01
The kinetics for the reduction of sulfate alone and for concurrent uranium [U(VI)] and sulfate reduction, by mixed and pure cultures of sulfate-reducing bacteria (SRB) at 21 ± 3°C were studied. The mixed culture contained the SRB Desulfovibrio vulgaris along with a Clostridium sp. determined via 16S ribosomal DNA analysis. The pure culture was Desulfovibrio desulfuricans (ATCC 7757). A zero-order model best fit the data for the reduction of sulfate from 0.1 to 10 mM. A lag time occurred below cell concentrations of 0.1 mg (dry weight) of cells/ml. For the mixed culture, average values for the maximum specific reaction rate, Vmax, ranged from 2.4 ± 0.2 μmol of sulfate/mg (dry weight) of SRB · h−1) at 0.25 mM sulfate to 5.0 ± 1.1 μmol of sulfate/mg (dry weight) of SRB · h−1 at 10 mM sulfate (average cell concentration, 0.52 mg [dry weight]/ml). For the pure culture, Vmax was 1.6 ± 0.2 μmol of sulfate/mg (dry weight) of SRB · h−1 at 1 mM sulfate (0.29 mg [dry weight] of cells/ml). When both electron acceptors were present, sulfate reduction remained zero order for both cultures, while uranium reduction was first order, with rate constants of 0.071 ± 0.003 mg (dry weight) of cells/ml · min−1 for the mixed culture and 0.137 ± 0.016 mg (dry weight) of cells/ml · min−1 (U0 = 1 mM) for the D. desulfuricans culture. Both cultures exhibited a faster rate of uranium reduction in the presence of sulfate and no lag time until the onset of U reduction in contrast to U alone. This kinetics information can be used to design an SRB-dominated biotreatment scheme for the removal of U(VI) from an aqueous source. PMID:10966381
Hotfiel, Thilo; Swoboda, Bernd; Krinner, Sebastian; Grim, Casper; Engelhardt, Martin; Uder, Michael; Heiss, Rafael U
2017-04-01
Hotfiel, T, Swoboda, B, Krinner, S, Grim, C, Engelhardt, M, Uder, M, and Heiss, R. Acute effects of lateral thigh foam rolling on arterial tissue perfusion determined by spectral Doppler and power Doppler ultrasound. J Strength Cond Res 31(4): 893-900, 2017-Foam rolling has been developed as a popular intervention in training and rehabilitation. However, evidence on its effects on the cellular and physiological level is lacking. The aim of this study was to assess the effect of foam rolling on arterial blood flow of the lateral thigh. Twenty-one healthy participants (age, 25 ± 2 years; height, 177 ± 9 cm; body weight, 74 ± 9 kg) were recruited from the medical and sports faculty. Arterial tissue perfusion was determined by spectral Doppler and power Doppler ultrasound, represented as peak flow (Vmax), time average velocity maximum (TAMx), time average velocity mean (TAMn), and resistive index (RI), and with semiquantitative grading that was assessed by 4 blindfolded investigators. Measurement values were assessed under resting conditions and twice after foam rolling exercises of the lateral thigh (0 and 30 minutes after intervention). The trochanteric region, mid portion, and distal tibial insertion of the lateral thigh were representative for data analysis. Arterial blood flow of the lateral thigh increased significantly after foam rolling exercises compared with baseline (p ≤ 0.05). We detected a relative increase in Vmax of 73.6% (0 minutes) and 52.7% (30 minutes) (p < 0.001), in TAMx of 53.2% (p < 0.001) and 38.3% (p = 0.002), and in TAMn of 84.4% (p < 0.001) and 68.2% (p < 0.001). Semiquantitative power Doppler scores at all portions revealed increased average grading of 1.96 after intervention and 2.04 after 30 minutes compared with 0.75 at baseline. Our results may contribute to the understanding of local physiological reactions to self-myofascial release.
Purification, substrate specificity, and classification of tripeptidyl peptidase II.
Bålöw, R M; Tomkinson, B; Ragnarsson, U; Zetterqvist, O
1986-02-15
An extralysosomal tripeptide-releasing aminopeptidase was recently discovered in rat liver (Bålöw, R.-M., Ragnarsson, U., and Zetterqvist, O. (1983) J. Biol. Chem. 258, 11622-11628). In the present work this tripeptidyl peptidase is shown to occur in several rat tissues and in human erythrocytes. The erythrocyte enzyme was purified about 80,000-fold from a hemolysate while the rat liver enzyme was purified about 4,000-fold from a homogenate. Upon polyacrylamide gel electrophoresis in sodium dodecyl sulfate under reducing conditions more than 90% of the protein was represented by a polypeptide of Mr 135,000 in both cases. In addition, the two enzymes eluted at similar positions in the various chromatographic steps, showed similar specific activity, and had a pH optimum around 7.5. A tryptic pentadecapeptide from the alpha-chain of human hemoglobin, Val-Gly-Ala-His-Ala-Gly-Glu-Tyr-Gly-Ala-Glu-Ala-Leu-Glu-Arg, i.e. residues 17-31, was found to be sequentially cleaved by the erythrocyte enzyme into five tripeptides, beginning from the NH2 terminus. Chromogenic tripeptidylamides showed various rates of hydrolysis at pH 7.5. With Ala-Ala-Phe-4-methyl-7-coumarylamide, Km was 16 microM and Vmax 13 mumol min-1 . mg-1, comparable to the standard substrate Arg-Arg-Ala-Ser(32P)-Val-Ala values (Km 13 microM and Vmax 24 mumol . min-1 . mg-1). The tripeptidyl peptidase of human erythrocytes was classified as a serine peptidase from its irreversible inhibition by phenylmethanesulfonyl fluoride and diisopropyl fluorophosphate. The rate of inhibition was decreased by the presence of an efficient competitive inhibitor, Val-Leu-Arg-Arg-Ala-Ser-Val-Ala (Ki 1.5 microM). [3H]Diisopropylphosphate was incorporated to the extent of 0.7-0.9 mol/mol of Mr 135,000 subunit, which confirms the high purity of the enzyme.
Detoxification of Acetylcholinesterase Inhibitors.
1987-02-19
IIB:HB-o Mvse three machanisms can be distinguished by appropriate labelling experiments in oxygen-18 H.O. If mechanism C is operating, hydrolysis...enzyue reveals that there is a single break at pa 6.2 relative to both Vmax and Vfax/Km. This would appear to represent the titration of the basic residue
Satellite retrievals of leaf chlorophyll and photosynthetic capacity for improved modeling of GPP
USDA-ARS?s Scientific Manuscript database
This study investigates the utility of in-situ and satellite-based leaf chlorophyll (Chl) estimates for quantifying leaf photosynthetic capacity and for constraining model simulations of Gross Primary Productivity (GPP) over a corn field in Maryland, U.S.A. The maximum rate of carboxylation (Vmax) r...
Bevers, Loes E.; Bol, Emile; Hagedoorn, Peter-Leon; Hagen, Wilfred R.
2005-01-01
WOR5 is the fifth and last member of the family of tungsten-containing oxidoreductases purified from the hyperthermophilic archaeon Pyrococcus furiosus. It is a homodimeric protein (subunit, 65 kDa) that contains one [4Fe-4S] cluster and one tungstobispterin cofactor per subunit. It has a broad substrate specificity with a high affinity for several substituted and nonsubstituted aliphatic and aromatic aldehydes with various chain lengths. The highest catalytic efficiency of WOR5 is found for the oxidation of hexanal (Vmax = 15.6 U/mg, Km = 0.18 mM at 60°C). Hexanal-incubated enzyme exhibits S = 1/2 electron paramagnetic resonance signals from [4Fe-4S]1+ (g values of 2.08, 1.93, and 1.87) and W5+ (g values of 1.977, 1.906, and 1.855). Cyclic voltammetry of ferredoxin and WOR5 on an activated glassy carbon electrode shows a catalytic wave upon addition of hexanal, suggesting that ferredoxin can be a physiological redox partner. The combination of WOR5, formaldehyde oxidoreductase, and aldehyde oxidoreductase forms an efficient catalyst for the oxidation of a broad range of aldehydes in P. furiosus. PMID:16199576
Evaluation of the nature of camel retinal acetylcholinesterase: inhibition by hexamethonium.
Alhomida, A S; Kamal, M A; al-Jafari, A A
1997-12-01
Acetylcholinesterase (AChE, EC 3.1.1.7) has been demonstrated in retinas of several species, however, the nature of the interaction of AChE with specific inhibitors are very limited in the literature and the mode of inhibition of camel retinal AChE by hexamethonium has been studied. Hexamethonium reversibly inhibited AChE in a concentration dependent manner, the IC50 value being c. 2.52 mM. The Km for the hydrolysis of acetylthiocholine iodide was found to be 0.087 mM and the Vmax was 0.63 mumol/min/mg protein. Dixon, as well as Lineweaver-Burk, plots and their secondary replots indicated that the nature of the inhibition is of the hyperbolic (partial) mixed type, which is considered to be a partial competitive and non-competitive mixture. The values of Ki(slope) and KI(intercept) from a Lineweaver-Burk plot were estimated as 0.30 mM and 0.17 mM, respectively, while Ki from a Dixon plot was estimated as 0.725 mM. The Ki was greater than KI indicating that hexamethonium has a greater affinity of binding for the active site than the peripheral site of the camel retina AChE.
Purified reconstituted lac carrier protein from Escherichia coli is fully functional.
Viitanen, P; Garcia, M L; Kaback, H R
1984-03-01
Proteoliposomes reconstituted with lac carrier protein purified from the plasma membrane of Escherichia coli catalyze each of the translocation reactions typical of the beta-galactoside transport system (i.e., active transport, counterflow, facilitated influx and efflux) with turnover numbers and apparent Km values comparable to those observed in right-side-out membrane vesicles. Furthermore, detailed kinetic studies show that the reconstituted system exhibits properties analogous to those observed in membrane vesicles. Imposition of a membrane potential (delta psi, interior negative) causes a marked decrease in apparent Km (by a factor of 7 to 10) with a smaller increase in Vmax (approximately equal to 3-fold). At submaximal values of delta psi, the reconstituted carrier exhibits biphasic kinetics, with one component manifesting the kinetic parameters of active transport and the other exhibiting the characteristics of facilitated diffusion. Finally, at low lactose concentrations, the initial velocity of influx varies linearly with the square of the proton electro-chemical gradient. The results provide quantitative support for the contention that a single polypeptide species, the product of the lac y gene, is responsible for each of the transport reactions typical of the beta-galactoside transport system.
Fratebianchi, Dante; Cavello, Ivana Alejandra; Cavalitto, Sebastián Fernando
2017-01-01
An endo-polygalacturonase secreted by Aspergillus sojae was characterized after being purified to homogeneity from submerged cultures with orange peel as the sole carbon source by gel filtration and ion-exchange chromatographies. According to SDS-PAGE and analytical isoelectric focusing analyses, the enzyme presents a molecular weight of 47 kDa and pI value of 4.2. This enzyme exhibits considerable stability under highly acidic to neutral conditions (pH 1.5-6.5) and presents a half-life of 2 h at 50°C. Besides its activity towards pectin and polygalacturonic acid, the enzyme displays pectin-releasing activity, acting best in a pH range of 3.3-5.0. Thin-layer chromatographic analysis revealed that tri-galacturonate is the main enzymatic end product of polygalacturonic acid hydrolysis, indicating that it is an endo-polygalacturonase. The enzyme exhibits Michaelis-Menten kinetics, with KM and VMAX values of 0.134 mg/mL and 9.6 µmol/mg/min, respectively, and remained stable and active in the presence of SO2, ethanol, and various cations assayed except Hg2+. © 2017 S. Karger AG, Basel.
Alkaline pH activates the transport activity of GLUT1 in L929 fibroblast cells.
Gunnink, Stephen M; Kerk, Samuel A; Kuiper, Benjamin D; Alabi, Ola D; Kuipers, David P; Praamsma, Riemer C; Wrobel, Kathryn E; Louters, Larry L
2014-04-01
The widely expressed mammalian glucose transporter, GLUT1, can be acutely activated in L929 fibroblast cells by a variety of conditions, including glucose deprivation, or treatment with various respiration inhibitors. Known thiol reactive compounds including phenylarsine oxide and nitroxyl are the fastest acting stimulators of glucose uptake, implicating cysteine biochemistry as critical to the acute activation of GLUT1. In this study, we report that in L929 cells glucose uptake increases 6-fold as the pH of the uptake solution is increased from 6 to 9 with the half-maximal activation at pH 7.5; consistent with the pKa of cysteine residues. This pH effect is essentially blocked by the pretreatment of the cells with either iodoacetamide or cinnamaldehyde, compounds that form covalent adducts with reduced cysteine residues. In addition, the activation by alkaline pH is not additive at pH 8 with known thiol reactive activators such as phenylarsine oxide or hydroxylamine. Kinetic analysis in L929 cells at pH 7 and 8 indicate that alkaline conditions both increases the Vmax and decreases the Km of transport. This is consistent with the observation that pH activation is additive to methylene blue, which activates uptake by increasing the Vmax, as well as to berberine, which activates uptake by decreasing the Km. This suggests that cysteine biochemistry is utilized in both methylene blue and berberine activation of glucose uptake. In contrast a pH increase from 7 to 8 in HCLE cells does not further activate glucose uptake. HCLE cells have a 25-fold higher basal glucose uptake rate than L929 cells and the lack of a pH effect suggests that the cysteine biochemistry has already occurred in HCLE cells. The data are consistent with pH having a complex mechanism of action, but one likely mediated by cysteine biochemistry. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Left Atrial Mechanical Functions in Professional Soccer Players: A Pilot Study
ERIC Educational Resources Information Center
Kartal, Alper; Güngör, Hasan; Kartal, Resat; Ergin, Esin
2017-01-01
Long-term regular exercise is associated with physiologic and morphologic alterations in the heart chambers. The aim of this study to evaluate left atrium (LA) phasic functions in professional football players and compare with control subjects. Left atrial volume was calculated at end-systole (Vmax), end-diastole and pre-atrial contraction by…
Ho, Y C; Ho, K J
1988-04-01
Our purpose is to develop a standard method for preparing the bile for beta-glucuronidase determination by removal of bile acids and conjugated bilirubin which interfere with its activity. The bile acids and conjugated bilirubin in their purified solutions and in the diluted gallbladder biles could be extracted completely with cholestyramine in powder form or tetrahexylammonium chloride (THAC) in chloroform or ethyl acetate. The enzyme was, however, partially precipitated with cholestyramine and denatured by chloroform but not by ethyl acetate. A standard procedure, therefore, includes extraction of the diluted gallbladder bile with THAC in ethyl acetate, followed by determination of the maximal velocity (Vmax) of the enzyme by a kinetic method employing phenolphthalein glucuronide as the substrate. The average Vmax of beta-glucuronidase in the 20 normal gallbladder biles was 165 +/- 86 nmol/min/ml (mean +/- SD), a 23.5-fold increase over the activity before extraction. The measured activity represented the true activity of the enzyme in the bile for recovery of activity of the enzyme added to the bile was practically complete.
Masola, B; Zvinavashe, E
2003-06-01
The effects of ammonium and other ions on phosphate dependent glutaminase (PDG) activity in intact rat enterocyte mitochondria were investigated. Sulphate and bicarbonate activated the enzyme in absence and presence of added phosphate. In presence of 10 mM phosphate, ammonium at concentrations <1 mM inhibited the enzyme. This inhibition was reversed by increased concentration of phosphate or sulphate. The inhibition of PDG by ammonium in presence of 10 mM phosphate was biphasic with respect to glutamine concentration, its effect being through a lowering of V(max) at glutamine concentration of =5 mM, and increased K(m) for substrate concentration above 5 mM. The activation of the enzyme by bicarbonate was through an increase in V(max). Ammonium and bicarbonate ions may therefore be important physiological regulators of PDG. It is suggested that phosphate and other polyvalent ions may function by preventing product inhibition of the enzyme through promotion of PDG dimer formation. The dimerized enzyme may have a high affinity for glutamine and reduced sensitivity to inhibition by ammonium ions.
NASA Astrophysics Data System (ADS)
Beeston, R. A.; Wright, A. H.; Maddox, S.; Gomez, H. L.; Dunne, L.; Driver, S. P.; Robotham, A.; Clark, C. J. R.; Vinsen, K.; Takeuchi, T. T.; Popping, G.; Bourne, N.; Bremer, M. N.; Phillipps, S.; Moffett, A. J.; Baes, M.; Bland-Hawthorn, J.; Brough, S.; De Vis, P.; Eales, S. A.; Holwerda, B. W.; Loveday, J.; Liske, J.; Smith, M. W. L.; Smith, D. J. B.; Valiante, E.; Vlahakis, C.; Wang, L.
2018-06-01
We present the dust mass function (DMF) of 15,750 galaxies with redshift z < 0.1, drawn from the overlapping area of the GAMA and H-ATLAS surveys. The DMF is derived using the density corrected Vmax method, where we estimate Vmax using: (i) the normal photometric selection limit (pVmax) and (ii) a bivariate brightness distribution (BBD) technique, which accounts for two selection effects. We fit the data with a Schechter function, and find M^{*}=(4.65 ± 0.18)× 107 h^2_{70} M_{⊙ }, α = ( - 1.22 ± 0.01), φ ^{*}=(6.26 ± 0.28)× 10^{-3} h^3_{70} Mpc^{-3} dex^{-1}. The resulting dust mass density parameter integrated down to 104 M⊙ is Ωd = (1.11 ± 0.02) × 10-6 which implies the mass fraction of baryons in dust is f_{m_b}=(2.40± 0.04)× 10^{-5}; cosmic variance adds an extra 7-17 per cent uncertainty to the quoted statistical errors. Our measurements have fewer galaxies with high dust mass than predicted by semi-analytic models. This is because the models include too much dust in high stellar mass galaxies. Conversely, our measurements find more galaxies with high dust mass than predicted by hydrodynamical cosmological simulations. This is likely to be from the long timescales for grain growth assumed in the models. We calculate DMFs split by galaxy type and find dust mass densities of Ωd = (0.88 ± 0.03) × 10-6 and Ωd = (0.060 ± 0.005) × 10-6 for late-types and early-types respectively. Comparing to the equivalent galaxy stellar mass functions (GSMF) we find that the DMF for late-types is well matched by the GMSF scaled by (8.07 ± 0.35) × 10-4.
Movement velocity as a measure of exercise intensity in three lower limb exercises.
Conceição, Filipe; Fernandes, Juvenal; Lewis, Martin; Gonzaléz-Badillo, Juan José; Jimenéz-Reyes, Pedro
2016-01-01
The purpose of this study was to investigate the relationship between movement velocity and relative load in three lower limbs exercises commonly used to develop strength: leg press, full squat and half squat. The percentage of one repetition maximum (%1RM) has typically been used as the main parameter to control resistance training; however, more recent research has proposed movement velocity as an alternative. Fifteen participants performed a load progression with a range of loads until they reached their 1RM. Maximum instantaneous velocity (Vmax) and mean propulsive velocity (MPV) of the knee extension phase of each exercise were assessed. For all exercises, a strong relationship between Vmax and the %1RM was found: leg press (r(2)adj = 0.96; 95% CI for slope is [-0.0244, -0.0258], P < 0.0001), full squat (r(2)adj = 0.94; 95% CI for slope is [-0.0144, -0.0139], P < 0.0001) and half squat (r(2)adj = 0.97; 95% CI for slope is [-0.0135, -0.00143], P < 0.0001); for MPV, leg press (r(2)adj = 0.96; 95% CI for slope is [-0.0169, -0.0175], P < 0.0001, full squat (r(2)adj = 0.95; 95% CI for slope is [-0.0136, -0.0128], P < 0.0001) and half squat (r(2)adj = 0.96; 95% CI for slope is [-0.0116, 0.0124], P < 0.0001). The 1RM was attained with a MPV and Vmax of 0.21 ± 0.06 m s(-1) and 0.63 ± 0.15 m s(-1), 0.29 ± 0.05 m s(-1) and 0.89 ± 0.17 m s(-1), 0.33 ± 0.05 m s(-1) and 0.95 ± 0.13 m s(-1) for leg press, full squat and half squat, respectively. Results indicate that it is possible to determine an exercise-specific %1RM by measuring movement velocity for that exercise.
Gururaj, P; Ramalingam, Subramanian; Nandhini Devi, Ganesan; Gautam, Pennathur
2016-01-01
The purpose of this study was to isolate, purify and optimize the production conditions of an organic solvent tolerant and thermostable lipase from Acinetobacter sp. AU07 isolated from distillery waste. The lipase production was optimized by response surface methodology, and a maximum production of 14.5U/mL was observed at 30°C and pH 7, using a 0.5% (v/v) inoculum, 2% (v/v) castor oil (inducer), and agitation 150rpm. The optimized conditions from the shake flask experiments were validated in a 3L lab scale bioreactor, and the lipase production increased to 48U/mL. The enzyme was purified by ammonium sulfate precipitation and ion exchange chromatography and the overall yield was 36%. SDS-PAGE indicated a molecular weight of 45kDa for the purified protein, and Matrix assisted laser desorption/ionization time of flight analysis of the purified lipase showed sequence similarity with GDSL family of lipases. The optimum temperature and pH for activity of the enzyme was found to be 50°C and 8.0, respectively. The lipase was completely inhibited by phenylmethylsulfonyl fluoride but minimal inhibition was observed when incubated with ethylenediaminetetraacetic acid and dithiothreitol. The enzyme was stable in the presence of non-polar hydrophobic solvents. Detergents like SDS inhibited enzyme activity; however, there was minimal loss of enzyme activity when incubated with hydrogen peroxide, Tween 80 and Triton X-100. The kinetic constants (Km and Vmax) revealed that the hydrolytic activity of the lipase was specific to moderate chain fatty acid esters. The Vmax, Km and Vmax/Km ratio of the enzyme were 16.98U/mg, 0.51mM, and 33.29, respectively when 4-nitrophenyl palmitate was used as a substrate. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
Chairin, Thanunchanok; Nitheranont, Thitinard; Watanabe, Akira; Asada, Yasuhiko; Khanongnuch, Chartchai; Lumyong, Saisamorn
2014-01-01
Laccase from Trametes polyzona WR710-1 was produced under solid-state fermentation using the peel from the Tangerine orange (Citrus reticulata Blanco) as substrate, and purified to homogeneity. This laccase was found to be a monomeric protein with a molecular mass of about 71 kDa estimated by SDS-PAGE. The optimum pH was 2.0 for ABTS, 4.0 for L-DOPA, guaiacol, and catechol, and 5.0 for 2,6-DMP. The K(m) value of the enzyme for the substrate ABTS was 0.15 mM, its corresponding V(max) value was 1.84 mM min(-1), and the k(cat)/K(m) value was about 3960 s(-1) mM(-1). The enzyme activity was stable between pH 6.0 and 8.0, at temperatures of up to 40 °C. The laccase was inhibited by more than 50% in the presence of 20 mM NaCl, by 95% at 5 mM of Fe(2+), and it was completely inhibited by 0.1 mM NaN(3). The N-terminal amino acid sequence of this laccase is AVTPVADLQISNAGISPDTF, which is highly similar to those of laccases from other white-rot basidiomycetes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Eroğlu, Hüseyin; Senel, Omer; Güzel, Nevin A
2008-04-01
Purpose of this study is to research the effects of acute L-Carnitine intake on badminton players' metabolic and blood lactate values. A total of 16 Turkish national badminton players (8 male, 8 female) were voluntarily participated into study. MaxVO2, MET, energy consumption, HR (heart rate), VE (minute ventilation), R (respiratory exchange ratio), AT (anaerobic threshold), oxygen pulse and blood lactate (LA) of subjects were measured by Sensormedics VmaxST and Accutrend Lactate Analyzer. The participants were subjected to the test protocol twice before and after 2g of L-Carnitine intake. The data were evaluated by the use of SPSS 13.0 for Windows. No significant differences were found between 1st. (without L-Carnitine intake) and 2nd. (with L-Carnitine intake) measurements of female participants as regards to all measured parameters. There was a significant difference in EMHR (exercise maximum heart rate) of males between two measurements (p<0.05). However the differences in other parameters were not significant. AT values of female subjects were not significant difference (p>0.05). Respiratory exchange ratio of males was significantly different at anaerobic threshold (p<0.05). Results of this study show that L-carnitine intake one hour prior to the exercise has no effect on the metabolic and blood lactate values of badminton players.
Huizer, Daan; Huijbregts, Mark A J; van Rooij, Joost G M; Ragas, Ad M J
2014-08-01
The coherence between occupational exposure limits (OELs) and their corresponding biological limit values (BLVs) was evaluated for 2-propanol and acetone. A generic human PBPK model was used to predict internal concentrations after inhalation exposure at the level of the OEL. The fraction of workers with predicted internal concentrations lower than the BLV, i.e. the 'false negatives', was taken as a measure for incoherence. The impact of variability and uncertainty in input parameters was separated by means of nested Monte Carlo simulation. Depending on the exposure scenario considered, the median fraction of the population for which the limit values were incoherent ranged from 2% to 45%. Parameter importance analysis showed that body weight was the main factor contributing to interindividual variability in blood and urine concentrations and that the metabolic parameters Vmax and Km were the most important sources of uncertainty. This study demonstrates that the OELs and BLVs for 2-propanol and acetone are not fully coherent, i.e. enforcement of BLVs may result in OELs being violated. In order to assess the acceptability of this "incoherence", a maximum population fraction at risk of exceeding the OEL should be specified as well as a minimum level of certainty in predicting this fraction. Copyright © 2014 Elsevier Inc. All rights reserved.
2004-01-01
Mb (myoglobin) plus H2O2 catalyses the oxidation of various substrates via a peroxidase-like activity. A Y103F (Tyr103→Phe) variant of human Mb has been constructed to assess the effect of exchanging an electron-rich oxidizable amino acid on the peroxidase activity of human Mb. Steady-state analyses of reaction mixtures containing Y103F Mb, purified linoleic acid and H2O2 revealed a lower total yield of lipid oxidation products than mixtures containing the wild-type protein, consistent with the reported decrease in the rate constant for reaction of Y103F Mb with H2O2 [Witting, Mauk and Lay (2002) Biochemistry 41, 11495–11503]. Irrespective of the Mb employed, lipid oxidation yielded 9(R/S)-HODE [9(R,S)-hydroxy-10E,12Z-octadecadienoic acid] in preference to 13(R/S)-HODE [13(R,S)-hydroxy-9Z,11E-octadecadienoic acid], while 9- and 13-keto-octadecadienoic acid were formed in trace amounts. However, lipid oxidation by the Y103F variant of Mb proceeded with a lower Vmax value and an increased Km value relative to the wild-type control. Consistent with the increased Km, the product distribution from reactions with Y103F Mb showed decreased selectivity compared with the wild-type protein, as judged by the decreased yield of 9(S)-relative to 9(R)-HODE. Together, these data verify that Tyr103 plays a significant role in substrate binding and orientation in the haem pocket of human Mb. Also, the midpoint potential for the Fe(III)/(II) one-electron reduction was shifted slightly, but significantly, to a higher potential, confirming the importance of Tyr103 to the hydrogen-bonding network involving residues that line the haem crevice of human Mb. PMID:15035657
Sharifloo, Ali; Zibaee, Arash; Sendi, Jalal J.; Jahroumi, Khalil Talebi
2016-01-01
The current study deals with a digestive α-amylase in the larvae of Pieris brassicae L. through purification, enzymatic characterization, gene expression, and in vivo effect of a specific inhibitor, Acarbose. Although α-amylase activity was the highest in the whole gut homogenate of larvae but compartmentalization of amylolytic activity showed an equal activity in posterior midgut (PM) and anterior midgut (AM). A three step purification using ammonium sulfate, Sepharyl G-100 and DEAE-Cellulose Fast flow revealed an enzyme with a specific activity of 5.18 U/mg, recovery of 13.20, purification fold of 19.25 and molecular weight of 88 kDa. The purified α-amylase had the highest activity at optimal pH and temperature of 8 and 35°C. Also, the enzyme had Vmax values of 4.64 and 3.02 U/mg protein and Km values of 1.37 and 1.74% using starch and glycogen as substrates, respectively. Different concentrations of acarbose, ethylenediamine tetraacetic acid, and ethylene glycol-bis (β-aminoethylether) N, N, N′, N′-tetraacetic acid significantly decreased activity of the purified α-amylase. The 4th instar larvae of P. brassicae were fed on the treated leaves of Raphanus sativus L. with 0.22 mM of Acarbose to find in vivo effects on nutritional indices, α-amylase activity, and gene expression. The significant differences were only found in conversion efficiency of digested food, relative growth rate, and metabolic cost of control and fed larvae on Acarbose. Also, amylolytic activity significantly decreased in the treated larvae by both biochemical and native-PAGE experiments. Results of RT-PCR revealed a gene with 621 bp length responsible for α-amylase expression that had 75% identity with Papilio xuthus and P. polytes. Finally, qRT-PCR revealed higher expression of α-amylase in control larvae compared to acarbose-fed ones. PMID:27014094
Ouabain-sensitive Rb+ uptake in mouse eggs and preimplantation conceptuses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Winkle, L.J.; Campione, A.L.
1991-07-01
The results of histochemical and immunocytochemical studies have been used elsewhere to support the hypothesis that Na+/K(+)-ATPase expression is initiated or increases dramatically in preimplantation mouse conceptuses just before they begin to cavitate. Moreover, localization of the enzyme in the inner membrane of the mural trophoblast is thought to be involved directly in formation and maintenance of the blastocyst cavity. Presumably, Na+/K(+)-ATPase extrudes the cation, Na+, and therefore water into the cavity. The cation transporting activity of the enzyme can be determined by measuring ouabain-sensitive Rb+ uptake by cells. Therefore, we measured Rb+ uptake in mouse eggs and preimplantation conceptusesmore » at various stages of development. 86Rb+ uptake by conceptuses increased linearly with time for at least 60 min in medium containing 0.7 mM total Rb+ plus K+ in the absence or presence of 1.0 mM ouabain, and ouabain inhibited more than 70% of 86Rb+ uptake. The ouabain concentration at 1/2 of maximum inhibition of the ouabain-sensitive component of 86Rb+ uptake was about 10-20 microM in eggs and conceptuses at all stages of preimplantation development. Moreover, ouabain-sensitive Rb+ uptake had a twofold higher Vmax value in blastocysts than in eggs or conceptuses at earlier stages of development (i.e., approximately 173 vs 70-100 fmole.conceptus-1.min-1), although the total cell surface area also was probably about two times greater in blastocysts than in eggs or other conceptuses. Ouabain-sensitive Rb+ transport in eggs and conceptuses may have occurred via a single ouabain-sensitive Rb+ transporter with a Hill coefficient of 1.5-1.8 (Hill plots). When it was assumed that the Hill coefficient had a value of 2.0, however, eggs and conceptuses appeared to contain at least two forms of Na+/K(+)-ATPase activity.« less
Bhaskaran, Natarajan; Gupta, Sanjay
2014-01-01
Oxidative stress has been linked to prostate carcinogenesis as human prostate tissue is vulnerable to oxidative DNA damage. Apigenin, a dietary plant flavone, possesses anti-proliferative and anticancer effects; however, its antioxidant properties have not been fully elucidated. We investigated sub-cellular distribution of apigenin, it’s binding to DNA and protective effects against H2O2-induced DNA damage using transformed human prostate epithelial RWPE-1 cells and prostate cancer LNCaP, PC-3 and DU145 cells. Exposure of cells to apigenin exhibited higher accumulation in RWPE-1 and LNCaP cells, compared to PC-3 and DU145 cells. The kinetics of apigenin uptake in LNCaP cells was estimated with a Km value of 5 µmole/L and Vmax of 190 pmoles/million cells/h. Sub-cellular fractionation demonstrated that nuclear matrix retains the highest concentration of apigenin (45.3%), followed by cytosol (23.9%), nuclear membranes (17.9%) and microsomes (12.9%), respectively. Spectroscopic analysis of apigenin with calf-thymus DNA exhibited intercalation as the dominant binding mode to DNA duplex. Apigenin exposure resulted in significant genoprotective effects in H2O2-stressed RWPE-1 cells by reduction in reactive oxygen species levels. In addition, apigenin exposure suppressed the formation of 8-hydroxy-2′ deoxyguanosine and protected exposed cells from apoptosis. Our studies demonstrate that apigenin is readily taken up by normal prostatic epithelial cells and prostate cancer cells, and is incorporated into their nuclei, where its intercalation with nucleic acid bases may account for its antioxidant and chemopreventive activities. PMID:24614817
Sharma, Haripaul; Kanwal, Rajnee; Bhaskaran, Natarajan; Gupta, Sanjay
2014-01-01
Oxidative stress has been linked to prostate carcinogenesis as human prostate tissue is vulnerable to oxidative DNA damage. Apigenin, a dietary plant flavone, possesses anti-proliferative and anticancer effects; however, its antioxidant properties have not been fully elucidated. We investigated sub-cellular distribution of apigenin, it's binding to DNA and protective effects against H2O2-induced DNA damage using transformed human prostate epithelial RWPE-1 cells and prostate cancer LNCaP, PC-3 and DU145 cells. Exposure of cells to apigenin exhibited higher accumulation in RWPE-1 and LNCaP cells, compared to PC-3 and DU145 cells. The kinetics of apigenin uptake in LNCaP cells was estimated with a Km value of 5 µmole/L and Vmax of 190 pmoles/million cells/h. Sub-cellular fractionation demonstrated that nuclear matrix retains the highest concentration of apigenin (45.3%), followed by cytosol (23.9%), nuclear membranes (17.9%) and microsomes (12.9%), respectively. Spectroscopic analysis of apigenin with calf-thymus DNA exhibited intercalation as the dominant binding mode to DNA duplex. Apigenin exposure resulted in significant genoprotective effects in H2O2-stressed RWPE-1 cells by reduction in reactive oxygen species levels. In addition, apigenin exposure suppressed the formation of 8-hydroxy-2' deoxyguanosine and protected exposed cells from apoptosis. Our studies demonstrate that apigenin is readily taken up by normal prostatic epithelial cells and prostate cancer cells, and is incorporated into their nuclei, where its intercalation with nucleic acid bases may account for its antioxidant and chemopreventive activities.
Sontag, Timothy J; Parker, Robert S
2007-05-01
Human cytochrome P450 4F2 (CYP4F2) catalyzes the initial omega-hydroxylation reaction in the metabolism of tocopherols and tocotrienols to carboxychromanols and is, to date, the only enzyme shown to metabolize vitamin E. The objective of this study was to characterize this activity, particularly the influence of key features of tocochromanol substrate structure. The influence of the number and positions of methyl groups on the chromanol ring, and of stereochemistry and saturation of the side chain, were explored using HepG2 cultures and microsomal reaction systems. Human liver microsomes and microsomes selectively expressing recombinant human CYP4F2 exhibited substrate activity patterns similar to those of HepG2 cells. Although activity was strongly associated with substrate accumulation by cells or microsomes, substantial differences in specific activities between substrates remained under conditions of similar microsomal membrane substrate concentration. Methylation at C5 of the chromanol ring was associated with markedly low activity. Tocotrienols exhibited much higher Vmax values than their tocopherol counterparts. Side chain stereochemistry had no effect on omega-hydroxylation of alpha-tocopherol (alpha-TOH) by any system. Kinetic analysis of microsomal CYP4F2 activity revealed Michaelis-Menten kinetics for alpha-TOH but allosteric cooperativity for other vitamers, especially tocotrienols. Additionally, alpha-TOH was a positive effector of omega-hydroxylation of other vitamers. These results indicate that CYP4F2-mediated tocopherol-omega-hydroxylation is a central feature underlying the different biological half-lives, and therefore biopotencies, of the tocopherols and tocotrienols.
Studies on induction of lamotrigine metabolism in transgenic UGT1 mice
Argikar, U. A.; Senekeo-Effenberger, K.; Larson, E. E.; Tukey, R. H.; Remmel, R. P.
2010-01-01
A transgenic ‘knock-in’ mouse model expressing a human UGT1 locus (Tg-UGT1) was recently developed and validated. Although these animals express mouse UGT1A proteins, UGT1A4 is a pseudo-gene in mice. Therefore, Tg-UGT1 mice serve as a ‘humanized’ UGT1A4 animal model.Lamotrigine (LTG) is primarily metabolized to its N-glucuronide (LTGG) by hUGT1A4. This investigation aimed at examining the impact of pregnane X receptor (PXR), constitutive androstane receptor (CAR) and peroxisome proliferator-activated receptor (PPAR) activators on LTG glucuronidation in vivo and in vitro. Tg-UGT1 mice were administered the inducers phenobarbital (CAR), pregnenolone-16α-carbonitrile (PXR), WY-14643 (PPAR-α), ciglitazone (PPAR-γ), or L-165041 (PPAR-β), once daily for 3 or 4 days. Thereafter, LTG was administered orally and blood samples were collected over 24 h. LTG was measured in blood and formation of LTGG was measured in pooled microsomes made from the livers of treated animals.A three-fold increase in in vivo LTG clearance was seen after phenobarbital administration. In microsomes prepared from phenobarbital-treated Tg-UGT1 animals, 13-fold higher CLint (Vmax/Km) value was observed as compared with the untreated transgenic mice. A trend toward induction of catalytic activity in vitro and in vivo was also observed following pregnenolone-16α-carbonitrile and WY-14643 treatment. This study demonstrates the successful application of Tg-UGT1 mice as a novel tool to study the impact of induction and regulation on metabolism of UGT1A4 substrates. PMID:19845433
Oxygen tension limits nitric oxide synthesis by activated macrophages.
McCormick, C C; Li, W P; Calero, M
2000-01-01
Previous studies have established that constitutive calcium-dependent ('low-output') nitric oxide synthase (NOS) is regulated by oxygen tension. We have investigated the role of oxygen tension in the synthesis of NO by the 'high-output' calcium-independent NOS in activated macrophages. Hypoxia increased macrophage NOS gene expression in the presence of one additional activator, such as lipopolysaccharide or interferon-gamma, but not in the presence of both. Hypoxia markedly reduced the synthesis of NO by activated macrophages (as measured by accumulation of nitrite and citrulline), such that, at 1% oxygen tension, NO accumulation was reduced by 80-90%. The apparent K(m) for oxygen calculated from cells exposed to a range of oxygen tensions was found to be 10.8%, or 137 microM, O(2) This value is considerably higher than the oxygen tension in tissues, and is virtually identical to that reported recently for purified recombinant macrophage NOS. The decrease in NO synthesis did not appear to be due to diminished arginine or cofactor availability, since arginine transport and NO synthesis during recovery in normoxia were normal. Analysis of NO synthesis during hypoxia as a function of extracellular arginine indicated that an altered V(max), but not K(m)(Arg), accounted for the observed decrease in NO synthesis. We conclude that oxygen tension regulates the synthesis of NO in macrophages by a mechanism similar to that described previously for the calcium-dependent low-output NOS. Our data suggest that oxygen tension may be an important physiological regulator of macrophage NO synthesis in vivo. PMID:10970783
Evidence for an Angiotensin-(1–7) Neuropeptidase Expressed in the Brain Medulla and CSF of Sheep
Marshall, Allyson C.; Pirro, Nancy T.; Rose, James C.; Diz, Debra I.; Chappell, Mark C.
2014-01-01
Angiotensin-(1–7) [Ang-(1–7)] is an alternative product of the brain renin-angiotensin system (RAS) that exhibits central actions to lower blood pressure and improve baroreflex sensitivity. We previously identified a peptidase that metabolizes Ang-(1–7) to the inactive metabolite product Ang-(1–4) in CSF of adult sheep. The current study purified the peptidase 1445-fold from sheep brain medulla and characterized this activity. The peptidase was sensitive to the chelating agents o-phenanthroline and EDTA, as well as the mercury compound p-chloromercuribenzoic acid (PCMB). Selective inhibitors to angiotensin-converting enzyme, neprilysin, neurolysin, and thimet oligopeptidase did not attenuate activity; however, the metallopeptidase agent JMV-390 was a potent inhibitor of Ang-(1–7) hydrolysis (Ki = 0.8 nM). Kinetic studies using 125I-labeled Ang-(1–7), Ang II, and Ang I revealed comparable apparent Km values (2.6, 2.8 and 4.3 µM, respectively), but a higher apparent Vmax for Ang-(1–7) (72 vs. 30 and 6 nmol/min/mg, respectively; P<0.01). HPLC analysis of the activity confirmed the processing of unlabeled Ang-(1–7) to Ang-(1–4) by the peptidase, but revealed <5% hydrolysis of Ang II or Ang I, and no hydrolysis of neurotensin, bradykinin or apelin-13. The unique characteristics of the purified neuropeptidase may portend a novel pathway to influence actions of Ang-(1–7) within the brain. PMID:24661079
Fu, Guang-Qing; Xu, Sheng; Xie, Yan-Jie; Han, Bin; Nie, Li; Shen, Wen-Biao; Wang, Ren
2011-07-01
It has been documented that plant heme oxygenase-1 (HO-1; EC 1.14.99.3) is both development- and stress-regulated, thus it plays a vital role in light signalling and stress responses. In this study, an alfalfa (Medica sativa L.) HO-1 gene MsHO1 was isolated and sequenced. It contains four exons and three introns within genomic DNA sequence and encodes a polypeptide with 283 amino acids. MsHO1 had a conserved HO signature sequence and showed high similarity to other HOs in plants, especially HO-1 isoform. The MsHO1:GFP fusion protein was localized in the chloroplast. Further biochemical activity analysis of mature MsHO1, which was expressed in Escherichia coli, showed that the Vmax was 48.78 nmol biliverdin-IXα (BV) h⁻¹ nmol⁻¹ protein with an apparent Km value for hemin of 2.33 μM, and the optimum Tm and pH were 37 °C and 7.2, respectively. Results of semi-quantitative RT-PCR and western blot showed that the expressions of MsHO1 were higher in alfalfa stems and leaves than those in germinating seeds and roots. Importantly, MsHO1 gene expression and protein level were induced significantly by some pro-oxidant compounds, including hemin and nitric oxide (NO) donor sodium nitroprusside (SNP). In conclusion, MsHO1 may play an important role in oxidative responses. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
A multipurpose immobilized biocatalyst with pectinase, xylanase and cellulase activities
Dalal, Sohel; Sharma, Aparna; Gupta, Munishwar Nath
2007-01-01
Background The use of immobilized enzymes for catalyzing various biotransformations is now a widely used approach. In recent years, cross-linked enzyme aggregates (CLEAs) have emerged as a novel and versatile biocatalyst design. The present work deals with the preparation of a CLEA from a commercial preparation, Pectinex™ Ultra SP-L, which contains pectinase, xylanase and cellulase activities. The CLEA obtained could be used for any of the enzyme activities. The CLEA was characterized in terms of kinetic parameters, thermal stability and reusability in the context of all the three enzyme activities. Results Complete precipitation of the three enzyme activities was obtained with n-propanol. When resulting precipitates were subjected to cross-linking with 5 mM glutaraldehyde, the three activities initially present (pectinase, xylanase and cellulase) were completely retained after cross-linking. The Vmax/Km values were increased from 11, 75 and 16 to 14, 80 and 19 in case of pectinase, xylanase and cellulase activities respectively. The thermal stability was studied at 50°C, 60°C and 70°C for pectinase, xylanase and cellulase respectively. Half-lives were improved from 17, 22 and 32 minutes to 180, 82 and 91 minutes for pectinase, xylanase and cellulase respectively. All three of the enzymes in CLEA could be reused three times without any loss of activity. Conclusion A single multipurpose biocatalyst has been designed which can be used for carrying out three different and independent reactions; 1) hydrolysis of pectin, 2) hydrolysis of xylan and 3) hydrolysis of cellulose. The preparation is more stable at higher temperatures as compared to the free enzymes. PMID:17880745
El-Bessoumy, Ashraf A; Sarhan, Mohamed; Mansour, Jehan
2004-07-31
The L-asparaginase (E. C. 3. 5. 1. 1) enzyme was purified to homogeneity from Pseudomonas aeruginosa 50071 cells that were grown on solid-state fermentation. Different purification steps (including ammonium sulfate fractionation followed by separation on Sephadex G-100 gel filtration and CM-Sephadex C50) were applied to the crude culture filtrate to obtain a pure enzyme preparation. The enzyme was purified 106-fold and showed a final specific activity of 1900 IU/mg with a 43% yield. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of the purified enzyme revealed it was one peptide chain with M(r) of 160 kDa. A Lineweaver-Burk analysis showed a K(m) value of 0.147 mM and V(max) of 35.7 IU. The enzyme showed maximum activity at pH 9 when incubated at 37 degrees C for 30 min. The amino acid composition of the purified enzyme was also determined.
Passage of delta sleep-inducing peptide (DSIP) across the blood-cerebrospinal fluid barrier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zlokovic, B.V.; Segal, M.B.; Davson, H.
1988-05-01
Unidirectional flux of /sup 125/I-labeled DSIP at the blood-tissue interface of the blood-cerebrospinal fluid (CSF) barrier was studied in the perfused in situ choroid plexuses of the lateral ventricles of the sheep. Arterio-venous loss of /sup 125/I-radioactivity suggested a low-to-moderate permeability of the choroid epithelium to the intact peptide from the blood side. A saturable mechanism with Michaelis-Menten type kinetics with high affinity and very low capacity (approximate values: Kt = 5.0 +/- 0.4 nM; Vmax = 272 +/- 10 fmol.min-1) was demonstrated at the blood-tissue interface of the choroid plexus. The clearance of DSIP from the ventricles during ventriculo-cisternalmore » perfusion in the rabbit indicated no significant flux of the intact peptide out of the CSF. The results suggest that DSIP crosses the blood-CSF barrier, while the system lacks the specific mechanisms for removal from the CSF found with most, if not all, amino acids and several peptides.« less
Can, Zehra; Dincer, Barbaros; Sahin, Huseyin; Baltas, Nimet; Yildiz, Oktay; Kolayli, Sevgi
2014-12-01
In this study, firstly, antioxidant and polyphenol oxidase (PPO) properties of Yomra apple were investigated. Seventeen phenolic constituents were measured by reverse phase-high-performance liquid chromatography (RP-HPLC). Total phenolic compounds (TPCs), ferric reducing antioxidant power (FRAP) and 2, 2-diphenyl-1-picrylhydrazyl radical (DPPH) scavenging activities were performed to measure antioxidant capacity. Some kinetic parameters (Km, Vmax), and inhibition behaviors against five different substrates were measured in the crude extract. Catechin and chlorogenic acid were found as the major components in the methanolic extract, while ferulic acid, caffeic acid, p-hydroxybenzoic acid, quercetin and p-coumaric acid were small quantities. Km values ranged from 0.70 to 10.10 mM in the substrates, and also 3-(4-hydroxyphenyl) propanoic acid (HPPA) and L-DOPA showed the highest affinity. The inhibition constant of Ki were ranged from 0.05 to 14.90 mM against sodium metabisulphite, ascorbic acid, sodium azide and benzoic acid, while ascorbic acid and sodium metabisulphite were the best inhibitors.
Yuan, Jipei; Yin, Jianyuan; Wang, Erkang
2007-06-22
Capillary electrophoresis with electrochemiluminescene detection was used to characterize procaine hydrolysis as a probe for butyrylcholinesterase by in vitro procaine metabolism in plasma with butyrylcholinesterase acting as bioscavenger. Procaine and its metabolite N,N-diethylethanolamine were separated at 16 kV and then detected at 1.25 V in the presence of 5.0 mM Ru(bpy)(3)2+, with the detection limits of 2.4x10(-7) and 2.0x10(-8) mol/L (S/N=3), respectively. The Michaelis constant Km value was 1.73x10(-4) mol/L and the maximum velocity Vmax was 1.62x10(-6) mol/L/min. Acetylcholine bromide and choline chloride presented inhibition effects on the enzymatic cleavage of procaine, with the 50% inhibition concentration (IC50) of 6.24x10(-3) and 2.94x10(-4) mol/L.
Villa, R F; Gorini, A; Hoyer, S
2006-11-01
The effect of ageing on the activity of enzymes linked to Krebs' cycle, electron transfer chain and glutamate metabolism was studied in three different types of mitochondria of cerebral cortex of 1-year old and 2-year old male Wistar rats. We assessed the maximum rate (V(max)) of the mitochondrial enzyme activities in non-synaptic perikaryal mitochondria, and in two populations of intra-synaptic mitochondria. The results indicated that: (i) in normal, steady-state cerebral cortex the values of the catalytic activities of the enzymes markedly differed in the various populations of mitochondria; (ii) in intra-synaptic mitochondria, ageing affected the catalytic properties of the enzymes linked to Krebs' cycle, electron transfer chain and glutamate metabolism; (iii) these changes were more evident in intra-synaptic "heavy" than "light" mitochondria. These results indicate a different age-related vulnerability of subpopulations of mitochondria in vivo located into synapses than non-synaptic ones.
Jiang, X Y; Zhou, C M; Li, D M; Zhang, K J
1996-01-01
The effects of DSPM-Cl on ECG in rats, on the dose-effect curve in guinea pig left atria and on the fast action potential (AP), high-K+ depolarized slow action potential (SAP) in guinea pigs papillary muscle were examined electrophysiologically. DSPM-Cl (2 mg.kg-1) showed significant nagative frequency, negative conductivity effect, and prolonged the PP and PR interval. DSPM-CI (30-50 mumol.L-1) was shown to inhibit left atria contractility and shift the concentration-response curve of Iso and CaCl2 to the right with PD2' values of 4.60 and 4.13, respectively. In addition, DSPM-Cl was found to prolong the duration of action potential 90 (APD90) and effective refractory period (ERP), and decrease the maximal upstroke velocity (Vmax) in K(+)-depolarized guinea pigs papillary muscles. The results suggest that, like verpamil, DSPM-Cl might be a calcium antagonist.
Mahn, Andrea; Angulo, Alejandro; Cabañas, Fernanda
2014-12-03
Myrosinase (β-thioglucosidase glucohydrolase, EC 3.2.1.147) from broccoli (Brassica oleracea var. italica) was purified by ammonium sulfate precipitation followed by concanavalin A affinity chromatography, with an intermediate dialysis step, resulting in 88% recovery and 1318-fold purification. These are the highest values reported for the purification of any myrosinase. The subunits of broccoli myrosinase have a molecular mass of 50-55 kDa. The native molecular mass of myrosinase was 157 kDa, and accordingly, it is composed of three subunits. The maximum activity was observed at 40 °C and at pH below 5.0. Kinetic assays demonstrated that broccoli myrosinase is subjected to substrate (sinigrin) inhibition. The Michaelis-Menten model, considering substrate inhibition, gave Vmax equal to 0.246 μmol min(-1), Km equal to 0.086 mM, and K(I) equal to 0.368 mM. This is the first study about purification and characterization of broccoli myrosinase.
Substrate specificity and pH dependence of homogeneous wheat germ acid phosphatase.
Van Etten, R L; Waymack, P P
1991-08-01
The broad substrate specificity of a homogeneous isoenzyme of wheat germ acid phosphatase (WGAP) was extensively investigated by chromatographic, electrophoretic, NMR, and kinetic procedures. WGAP exhibited no divalent metal ion requirement and was unaffected upon incubation with EDTA or o-phenanthroline. A comparison of two catalytically homogeneous isoenzymes revealed little difference in substrate specificity. The specificity of WGAP was established by determining the Michaelis constants for a wide variety of substrates. p-Nitrophenyl phosphate, pyrophosphate, tripolyphosphate, and ATP were preferred substrates while lesser activities were seen toward sugar phosphates, trimetaphosphate, phosphoproteins, and (much less) phosphodiesters. An extensive table of Km and Vmax values is given. The pathway for the hydrolysis of trimetaphosphate was examined by colorimetric and 31P NMR methods and it was found that linear tripolyphosphate is not a free intermediate in the enzymatic reaction. In contrast to literature reports, homogeneous wheat germ acid phosphatase exhibits no measurable carboxylesterase activity, nor does it hydrolyze phenyl phosphonothioate esters or phytic acid at significant rates.
Laidler, P M; Steczko, J
1986-01-01
Arylsulphatase A (EC 3.1.6.1.) from urine was inactivated with potassium ferrate, a strong oxidizing agent. The inhibition could be prevented by competitive inhibitors, tetraborate and orthophosphate. Tetraborate which was shown to be a powerful competitive inhibitor (determined Ki = 4 X 10(-5) M) gave more efficient protection. The partially inactivated enzyme exhibited a Km value similar to that of the unmodified arylsulphatase A, and its Vmax decreased in proportion to the loss of enzymatic activity. The partially modified enzyme did not lose its ability to catalyse hydrolysis of p-nitrocatechol sulphate according to the "anomalous kinetics" exhibited towards this substrate and characteristic for arylsulphatase A. The immunochemical properties of arylsulphatase A either fully or partially inactivated were similar to those of the native enzyme. The results allow to conclude that ferrate reacts with arylsulphatase A in its active site. Thus ferrate seems to be a very sensitive probe for amino acid residues essential for catalytic activity of arylsulphatase A.
Intelligent Hybrid Vehicle Power Control - Part 1: Machine Learning of Optimal Vehicle Power
2012-06-30
time window ),[ tWt DT : vave, vmax, vmin, ac, vst and vend, where the first four parameters are, respectively, the average speed, maximum speed...minimum speed and average acceleration, during the time period ),[ tWt DT , vst is the vehicle speed at )( DTWt , and vend is the vehicle
Lech, Agnieszka K; Dobrowolski, Piotr P; Klisiewicz, Anna; Hoffman, Piotr
2017-01-01
The management of patients with asymptomatic severe aortic stenosis (ASAS) is still under discussion. Therefore, it is advisable to search for the parameters of early damage to left ventricular (LV) function. The aim of the study was to assess exercise-induced changes in LV global longitudinal strain (GLS) in ASAS. The ASAS group consisted of 50 patients (26 women and 24 men, aged 38.4 ± 18.1 years) meeting the echocardiographic criteria of severe aortic stenosis (AVA < 1 cm², AVAI < 0.6 cm²/m², Vmax > 4 m/s, mean aortic gradient > 40 mm Hg), with normal LV ejection fraction (LVEF ≥ 55%) and sinus rhythm on electrocardiogram, and without significant concomitant valvular heart diseases. The control group consisted of 21 people matched for age and sex. Echocardiographic examinations and echocardiographic stress tests with the assessment of GLS using the speckle tracking imaging were performed. The ASAS group was characterised by statistically significantly higher LV mass index (LVMI) and higher LVEF. GLS values at rest in both groups were within normal limits but were significantly higher in the control group (-18.9 ± 2.4% vs. -20.7 ± 1.7%, p = 0.006). An increase in GLS at peak exercise in both groups was observed, lower in the ASAS group (the difference was not statistically significant: -0.8 ± 3.0% vs. -2.2 ± 3.1%, p = 0.086). Changes in GLS during exercise (ΔGLS) did not correlate with the parameters of the severity of aortic stenosis. In the multivariate model, LVMI proved to be a factor associated with GLS at rest and during exercise. In patients with ASAS, GLS is a non-invasive marker of an early stage of LV myocardial damage associated with myocardial hypertrophy. An increase in GLS during exercise in the ASAS group, smaller than in the control group, indicates a preserved functional reserve of the LV myocardium but smaller than in healthy individuals. The assessment of the clinical usefulness of exercise-induced changes in GLS requires further research.
Kröplin, T; Fischer, C; Iven, H
1999-06-01
Thiopurine S-methyltransferase (TPMT) activity, when measured in red blood cells (RBC) with a recently published TPMT activity assay using 6-thioguanine (6-TG) as substrate, could not be reproduced in another laboratory. We investigated factors which could influence the results of the TPMT activity measurement. We tested twelve 6-TG and four 6-mercaptopurine (6-MP) compounds from different suppliers as substrates and determined the enzyme kinetic parameters Km and Vmax. Furthermore, we studied the influence of different 6-TG compounds on the affinity of the methyl donor S-adenosyl-L-methionine (SAM) to the TPMT enzyme. All 6-TG products were of equal purity (declared >98% by the supplier): this was ascertained by HPLC. However, the rate of methylation obtained following incubation with 6-TG from different suppliers ranged from 10% to 100% when incubated with the same RBC lysate. The lowest apparent Km value for a 6-TG was 22.3 micromol x l(-1), while the product with the highest methylation rate showed a Km of 156 micromol x l(-1). From these results we assume that there is a contaminant in some 6-TG products, which acts as a strong inhibitor of TPMT activity. Compounds possibly used for the synthesis of 6-TG (guanine, pyridine, 6-chloroguanine) did not affect the methylation rate. Thioxanthine, which is known to be a strong inhibitor of TPMT when added to the assay system to give a 2% contamination, reduced TPMT activity from 100% to 72%. Using 6-MP from different suppliers as substrate resulted in Km values ranging from 110 to 162 micromol x l(-1) and Vmox values ranging from 54 to 68 nmol 6-MMP x g(-1)Hb x h(-1). The Km value for the methyl donor SAM was similar to and independent from the thiopurine substrates tested (range 4.9-11 micromol-l(-1) SAM). In contrast to other investigators, we found non-enzymatic S-methylation, which was negligible under our assay conditions (3% with 128 micromol x l(-1) SAM), but could become relevant in experiments using higher SAM concentrations. TPMT enzyme activity determined with 6-TG as substrate may be strongly inhibited by a contaminant in some of the 6-TG lots distributed.
Gao, Na; Qi, Bing; Liu, Fang-jun; Fang, Yan; Zhou, Jun; Jia, Lin-jing; Qiao, Hai-ling
2014-01-01
Baicalin has been used as mainly bioactive constituent of about 100 kinds of traditional Chinese medicines in Chinese pharmacopoeia. The effect of baicalin on cytochrome P450 should be paid more attention because baicalin was used widely. The aim of this study was to investigate whether baicalin could inhibit CYP1A2 in pooled human liver microsomes (HLMs) and in rats in vivo and the gene polymorphisms could affect inter-individual variation in IC50 in 28 human livers. Phenacetin was used as probe of CYP1A2. Kinetic parameter of CYP1A2 and IC50 of baicalin on CYP1A2 to each sample were measured and the common CYP1A2 polymorphisms (−3860G>A and −163C>A) were genotyped. The results showed that baicalin exhibited a mixed-type inhibition in pooled HLMs, with a Ki value of 25.4 µM. There was substantial variation in Km, Vmax, CLint of CYP1A2 and IC50 of baicalin on CYP1A2 (3∼10-fold). The range was from 26.6 to 114.8 µM for Km, from 333 to 1330 pmol·min−1·mg−1protein for Vmax and from 3.8 to 45.3 µL·min−1·mg−1 protein for CLint in HLMs (n = 28). The Mean (range) value of IC50 in 28 HLMs was 36.3 (18.9 to 56.1) µM. The genotypes of −3860G>A and −163C>A had no significant effect on the inhibition of baicalin on CYP1A2. The animal experiment results showed that baicalin (450 mg/kg, i.v.) significantly decreased the Cmax and CL of phenacetin, and increased C60 min, t1/2, Vd and AUC (P<0.05). There were significant correlations between percentage of control in C60 min, t1/2, CL, AUC of phenacetin and Cmax of baicalin in 11 rats (P<0.05). Protein binding experiments in vitro showed that baicalin (0–2000 mg/L) increased the unbound phenacetin from 14.5% to 28.3%. In conclusion, baicalin can inhibit the activity of CYP1A2 in HLMs and exhibit large inter-individual variation that has no relationship with gene polymorphism. Baicalin can change the pharmacokinetics of phenacetin in rats. PMID:24587011
Denari, Daniela; Ceballos, Nora R
2005-09-01
In rat Leydig cells, glucocorticoids (GC) inhibit testosterone (T) synthesis via glucocorticoid receptor (GR). However, GC access to GR is regulated by the local expression of 11beta-hydroxysteroid dehydrogenase (11beta-HSD). Two isoforms were identified in mammals: type 1, a NADP+-preferring enzyme with K(m) in the muM range for GC and type 2, NAD+-dependent, with K(m) in the nM range for GC. In amphibians, a seasonal rhythm in baseline GC levels was described. However, a shift in the amount of deactivating 11beta-HSD activity could alter GC effects. The purpose of this work is to describe seasonal changes in testicular activity of 11beta-HSD in Bufo arenarum as well as the annual and seasonal patterns of plasma corticosterone (B) and T. The activity of 11beta-HSD was assayed in homogenate and subcellular fractions in pre-reproductive (Pre-R), reproductive (R) and post-reproductive (Post-R) periods, using [3H]B. Plasma B and T were determined by RIA. Testicular 11beta-HSD is a microsomal NAD+-dependent enzyme with a K(m) in the nM order, its activity being strongly reduced by glycyrrhetinic acid. These results indicate that toad testes express an 11beta-HSD similar to mammalian type 2. Although 11beta-HSD activity is higher in the Post-R than in the R and Pre-R seasons (V(max): Pre-R: 0.26+/-0.10, R: 0.14+/-0.01, Post-R: 1.37+/-0.45, pmol/minmg protein), K(m) value remains constant throughout the year. A seasonal rhythm in baseline GC concentrations inversely correlated with plasma T was also described. T concentration is lower in the R season than in the other periods (Pre-R: 90+/-6; R: 12+/-1; Post-R: 56+/-3, nM) while total B concentration is higher in the breeding than in the other seasons (Pre-R: 62+/-10; R: 145+/-18; Post-R: 96+/-10, nM). Furthermore, free B (Pre-R: 51+/-8; R: 94+/-12; Post-R: 70+/-7, nM) was always below K(m) values. In conclusion, this work shows that the activity of 11beta-HSD in toad testes could modulate GC action by transforming active hormones in the corresponding inactive steroid.
Estimating Tropical Cyclone Surface Wind Field Parameters with the CYGNSS Constellation
NASA Astrophysics Data System (ADS)
Morris, M.; Ruf, C. S.
2016-12-01
A variety of parameters can be used to describe the wind field of a tropical cyclone (TC). Of particular interest to the TC forecasting and research community are the maximum sustained wind speed (VMAX), radius of maximum wind (RMW), 34-, 50-, and 64-kt wind radii, and integrated kinetic energy (IKE). The RMW is the distance separating the storm center and the VMAX position. IKE integrates the square of surface wind speed over the entire storm. These wind field parameters can be estimated from observations made by the Cyclone Global Navigation Satellite System (CYGNSS) constellation. The CYGNSS constellation consists of eight small satellites in a 35-degree inclination circular orbit. These satellites will be operating in standard science mode by the 2017 Atlantic TC season. CYGNSS will provide estimates of ocean surface wind speed under all precipitating conditions with high temporal and spatial sampling in the tropics. TC wind field data products can be derived from the level-2 CYGNSS wind speed product. CYGNSS-based TC wind field science data products are developed and tested in this paper. Performance of these products is validated using a mission simulator prelaunch.
Napoli, R; Hirshman, M F; Horton, E S
1995-01-01
Skeletal muscle glucose transport is altered in diabetes in humans, as well as in rats. To investigate the mechanisms of this abnormality, we measured glucose transport Vmax, the total transporter number, their average intrinsic activity, GLUT4 and GLUT1 contents in skeletal muscle plasma membrane vesicles from basal or insulin-stimulated streptozocin diabetic rats with different duration of diabetes, treated or not with phlorizin. The glucose transport Vmax progressively decreased with the duration of diabetes. In the basal state, this decrease was primarily associated with the reduction of transporter intrinsic activity, which appeared earlier than any change in transporter number or GLUT4 and GLUT1 content. In the insulin-stimulated state, the decrease of transport was mainly associated with severe defects in transporter translocation. Phlorizin treatment partially increased the insulin-stimulated glucose transport by improving the transporter translocation defects. In conclusion, in streptozocin diabetes (a) reduction of intrinsic activity plays a major and early role in the impairment of basal glucose transport; (b) a defect in transporter translocation is the mechanism responsible for the decrease in insulin-stimulated glucose transport; and (c) hyperglycemia per se affects the insulin-stimulated glucose transport by altering the transporter translocation. PMID:7615815
Petit, T; Herrero, P; Gancedo, C
1998-10-29
Alignment of amino acids of the region implicated in glucose binding from a series of hexokinases showed that Schizosaccharomyces pombe hexokinase 1 had a Ser residue in a place where all other kinases had an Asn. We changed an AGT codon to AAT to place an Asn in the Ser213 position. This mutation decreased Km for glucose from 9.4 mM to 1.6 mM and the ratio Vmax (Fructose)/Vmax (Glucose) from 5 to 2.5. Also the Km for 2-deoxyglucose decreased from 2.7 mM to 0.8 mM. A mutation in the similar position of S. pombe hexokinase 2 (Asn196/Ser) increased the Km for glucose from 0.16 mM to 0.56 mM. Fermentation of glucose is not detectable in a S. pombe mutant with only hexokinase 1 activity but expression of the hxk1(S213/N) gene conferred ability to ferment the sugar. While the mutated hexokinase 1 partially mimicked S. cerevisiae hexokinase II in catabolite repression of invertase, the wild type one could not substitute for it. Copyright 1998 Academic Press.
Huang, Mei-Ping; Wu, Min; Xu, Qiang-Sheng; Mo, De-Jiao; Feng, Jia-Xun
2016-08-24
In this work, Aspergillus aculeatus M105 was obtained to produce high extracellular fructooligosaccharide-producing enzyme activity. The maximum yields of fructooligosaccharides produced by its extracellular enzymes and immobilized cells were 67.54 and 65.47% (w/w), respectively. A fructosyltransferase (FTase), AaFT32A, was purified from M105. The optimal pH and temperature of AaFT32A were pH 5.0-6.0 and 65 °C, respectively. The Km, Vmax, and kcat values for the transfructosylating activity of AaFT32A were 2267 mM, 1347 μmol/min/mg protein, and 1550.2 s(-1), respectively, and those values for the hydrolytic activity of AaFT32A were 6.10 mM, 32.44 μmol/min/mg protein, and 37.3 s(-1), respectively. The sequence of AaFT32A deduced from the cloned gene shared 99.4% identity with a FTase from Aspergillus japonicus CB05 and a fructofuranosidase from Aspergillus niger and 96.5% identity with a FTase (Aspacl_37092) from A. aculeatus ATCC 16872. The fungal strain and its FTase may have potential applications in the prebiotics industry.
Kajala, Ilkka; Shi, Qiao; Nyyssölä, Antti; Maina, Ndegwa Henry; Hou, Yaxi; Katina, Kati; Tenkanen, Maija; Juvonen, Riikka
2015-01-01
Wheat bran offers health benefits as a baking ingredient, but is detrimental to bread textural quality. Dextran production by microbial fermentation improves sourdough bread volume and freshness, but extensive acid production during fermentation may negate this effect. Enzymatic production of dextran in wheat bran was tested to determine if dextran-containing bran could be used in baking without disrupting bread texture. The Weissella confusa VTT E-90392 dextransucrase gene was sequenced and His-tagged dextransucrase Wc392-rDSR was produced in Lactococcus lactis. Purified enzyme was characterized using (14)C-sucrose radioisotope and reducing value-based assays, the former yielding K(m) and V(max) values of 14.7 mM and 8.2 μmol/(mg ∙ min), respectively, at the pH optimum of 5.4. The structure and size of in vitro dextran product was similar to dextran produced in vivo. Dextran (8.1% dry weight) was produced in wheat bran in 6 h using Wc392-rDSR. Bran with and without dextran was used in wheat baking at 20% supplementation level. Dextran presence improved bread softness and neutralized bran-induced volume loss, clearly demonstrating the potential of using dextransucrases in bran bioprocessing for use in baking.
Lim, Ju-Hyeon; Lee, Chang-Ro; Dhakshnamoorthy, Vijayalakshmi; Park, Jae Seon; Hong, Soon-Kwang
2016-02-01
Genomic sequencing analysis and previous studies have shown that there are eight genes in Streptomyces coelicolor A3(2) encoding putative cellulases. One of these genes, sco6548, was cloned into the Streptomyces/Escherichia coli shuttle vector pUWL201PW. The recombinant protein was successfully overexpressed in S. lividans TK24 under the control of the strong ermE promoter. Sco6548 was 1740 bp in length, and encoded a 579-amino acid-, 60.8-kDa protein with strong hydrolyzing activity toward Avicel and filter paper, yielding cellobiose as the final product. SCO6548 showed optimal activity at 50°C and pH 5. The Km values of SCO6548 toward Avicel and filter paper were 15.38 and 16.1 mg/mL, respectively. The Vmax values toward Avicel and filter paper were 0.432 and 0.084 μM/min, respectively. EDTA did not affect cellulase activity; however, several divalent cations, including Co(2+), Cu(2+), Ni(2+) and Mn(2+) (at 10 mM) had severe inhibitory effects on enzyme activity. Our analysis showed that SCO6548 is a cellulose 1,4-β-cellobiosidase that hydrolyzes cellulose into cellobiose. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Nucleoside pyrophosphatase activity associated with pig kidney alkaline phosphatase
Wass, Milica; Butterworth, P. J.
1971-01-01
1. A study was made of the hydrolysis, at pH9.0, of ATP and ADP catalysed by pig kidney alkaline phosphatase. Both of these nucleoside pyrophosphates are substrates for the enzyme; Km values are 4×10−5m for ATP and 6.3×10−5m for ADP. Vmax. for ADP is approximately double that of ATP. 2. Above 0.1mm approximately, both ATP and ADP are inhibitory, but the inhibition is reversible by the addition of Mg2+ ions to form MgATP2− or MgADP− complexes. The complexes, besides being non-inhibitory, are also substrates for the enzyme with Km values identical with those of the respective free nucleotides. 3. Mg2+ ions are inhibitory when present in excess of ATP or ADP. The degree of inhibition is greater with ATP as substrate, but with both ATP and ADP a mixed competitive–non-competitive type of inhibition is observed. 4. It is suggested that under normal conditions the enzyme is inhibited by cellular concentrations of ATP plus ADP but that an increase in the concentration of Mg2+ ions stimulates activity by relieving nucleoside pyrophosphate inhibition. The properties may be of importance in the regulation of the transport of bivalent cations. PMID:4331861
Nonlinear pharmacokinetics of visnagin in rats after intravenous bolus administration.
Haug, Karin G; Weber, Benjamin; Hochhaus, Guenther; Butterweck, Veronika
2012-01-23
Ammi visnaga L. (syn. Khella, Apiaceae) preparations have traditionally been used in the Middle East for the treatment of kidney stone disease. Visnagin, a furanocoumarin derivative, is one of the main compounds of Ammi visnaga with potential effects on kidney stone prevention. To date, no information is available about the pharmacokinetic (PK) properties of visnagin. It was the aim of the study to characterize the PK properties of visnagin after intravenous (i.v.) bolus administration in rats and to develop an adequate model for the description of the observed data, including model parameter estimates. Therefore, three doses of visnagin (1.25, 2.5, and 5mg/kg) solubilized in 25% Captisol® were administered by i.v. bolus injection to male Sprague-Dawley rats. Plasma samples were extracted and subsequently analyzed using a validated LC-MS/MS method. Both non-compartmental and compartmental PK analyses were performed. A stepwise model building approach was applied including nonlinear mixed effect modeling for final model selection and to obtain final model estimates in NONMEM VI. The average areas under the curve (AUC(0-last)) after doses of 1.25, 2.5, and 5mg/kg were 1.03, 3.61, and 12.6 mg *h/l, respectively. The shape of the plasma concentration-time profiles and the observed disproportionate increase in AUC(0-last) with increasing dose suggested nonlinearity in the elimination of visnagin. A two-compartment Michaelis-Menten model provided the best fit with following typical values of the parameter estimates: 2.09 mg/(l*h) (V(max)), 0.08 mg/l (K(M)), 0.175 l (V(C)), 1.0 h⁻¹ (k₁₂), and 1.22 h⁻¹ (k₂₁). Associated inter-subject variability estimates (% CV) for V(max), K(M) and V(C) were 21.8, 70.9, and 9.2, respectively. Intra-subject variability (constant CV error model) was estimated to be 7.0%. The results suggest the involvement of a saturable process in the elimination of visnagin, possibly an enzyme or transporter system. Copyright © 2011 Elsevier B.V. All rights reserved.
Kinetic and crystallographic studies of Escherichia coli UDP-N-acetylmuramate:L-alanine ligase.
Emanuele, J. J.; Jin, H.; Jacobson, B. L.; Chang, C. Y.; Einspahr, H. M.; Villafranca, J. J.
1996-01-01
Uridine diphosphate-N-acetylmuramate:L-alanine ligase (EC 6.3.2.8, UNAM:L-Ala ligase or MurC gene product) catalyzes the ATP-dependent ligation of the first amino acid to the sugar moiety of the peptidoglycan precursor. This is an essential step in cell wall biosynthesis for both gram-positive and gram-negative bacteria. Optimal assay conditions for initial velocity studies have been established. Steady-state assays were carried out to determine the effect of various parameters on enzyme activity. Factors studies included: cation specificity, ionic strength, buffer composition and pH. At 37 degrees C and pH 8.0, kcat was equal to 980 +/- 40 min-1, while K(m) values for ATP, UNAM, and L-alanine were, 130 +/- 10, 44 +/- 3, and 48 +/- 6 microM, respectively. Of the metals tested only Mn, Mg, and Co were able to support activity. Sodium chloride, potassium chloride, ammonium chloride, and ammonium sulfate had no effect on activity up to 75 mM levels. The enzyme, in appropriate buffer, was stable enough to be assayed over the pH range of 5.6 to 10.1. pH profiles of Vmax/K(m) for the three substrates and of Vmax were obtained. Crystallization experiments with the enzyme produced two crystal forms. One of these has been characterized by X-ray diffraction as monoclinic, space group C2, with cell dimensions a = 189.6, b = 92.1, c = 75.2 A, beta = 105 degrees, and two 54 kDa molecules per asymmetric unit. It was discovered that the enzyme will hydrolyze ATP in the absence of L-alanine. This L-alanine independent activity is dependent upon the concentrations of both ATP and UNAM; kcat for this activity is less than 4% of the biosynthetic activity measured in the presence of saturating levels of L-alanine. Numerous L-alanine analogs tested were shown to stimulate ATP hydrolysis. A number of these L-alanine analogs produced novel products as accessed by HPLC and mass spectral analysis. All of the L-alanine analogs tested as inhibitors were competitive versus L-alanine. PMID:8976565
( sup 3 H)Dopamine uptake by platelet storage granules in schizophrenia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabey, J.M.; Graff, E.; Oberman, Z.
1992-01-01
({sup 3}H)Dopamine (DA) uptake by platelet storage granules was determined in 26 schizophrenic male patients, paranoid type (14 acute stage; 12 in remission) and 20 age-matched, normal controls. maximum velocity (Vmax) of DA uptake was significantly higher in acute patients, than patients in remission or controls (p>0.05). The apparent Michaelis constant (kM) of DA uptake in acute patients was also significantly different from chronic patients a substantial diminution of DA uptake, while haloperidol produced a substantial diminution of DA uptake, while haloperidol (10{sup {minus}4}, 10{sup {minus}5} M) did not affect the assay. Considering that a DA disequilibrium in schizophrenia maymore » be expressed not only in the brain, but also in the periphery and that an increased amount of DA accumulated in the vesicles, implies that an increased quantity of catecholamine is available for release, our findings suggest additional evidence for the role of DA overactivity in the pathophysiology of this disorder.« less
Spolarics, Z; Bond, J S
1989-11-01
Arginase activity is elevated in livers of diabetic animals compared to controls and there is evidence that this is due in part to increased specific activity (activity/mg arginase protein). To investigate the molecular basis of this increased activity, the physicochemical and kinetic properties of hepatic arginase from diabetic and control mice were compared. Two types of arginase subunits with molecular weights of 35,000 and 38,000 were found in both the diabetic and control animals and the subunits in these animals had similar, multiple ionic forms. Kinetic parameters of purified preparations of arginase for arginine (apparent Km and Vmax values) and the thermal stability of these preparations from diabetics and controls were also similar. Furthermore, no difference was found in the distribution of arginase activity among different subcellular liver fractions. Separation of basic and acidic oligomeric forms of arginase by fast-protein liquid chromatography resulted in a slightly different distribution of activity among the forms in the normal and diabetic group. The apparent Km values for Mn2+ of the basic form of the enzyme were 25 and 33 microM for the enzyme from normal and diabetic animals, respectively; for acidic forms, for which two apparent Km values were measured, the values were 8 and 197 microM for arginase from controls and 35 and 537 microM from diabetics. These results indicate that in diabetes, while no marked changes in the physicochemical characteristics of arginase are obvious, some changes are found in the interaction of arginase with its cofactor Mn.
A Quantitative Description of Suicide Inhibition of Dichloroacetic Acid in Rats and Mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keys, Deborah A.; Schultz, Irv R.; Mahle, Deirdre A.
Dichloroacetic acid (DCA), a minor metabolite of trichloroethylene (TCE) and water disinfection byproduct, remains an important risk assessment issue because of its carcinogenic potency. DCA has been shown to inhibit its own metabolism by irreversibly inactivating glutathione transferase zeta (GSTzeta). To better predict internal dosimetry of DCA, a physiologically based pharmacokinetic (PBPK) model of DCA was developed. Suicide inhibition was described dynamically by varying the rate of maximal GSTzeta mediated metabolism of DCA (Vmax) over time. Resynthesis (zero-order) and degradation (first-order) of metabolic activity were described. Published iv pharmacokinetic studies in native rats were used to estimate an initial Vmaxmore » value, with Km set to an in vitro determined value. Degradation and resynthesis rates were set to estimated values from a published immunoreactive GSTzeta protein time course. The first-order inhibition rate, kd, was estimated to this same time course. A secondary, linear non-GSTzeta-mediated metabolic pathway is proposed to fit DCA time courses following treatment with DCA in drinking water. The PBPK model predictions were validated by comparing predicted DCA concentrations to measured concentrations in published studies of rats pretreated with DCA following iv exposure to 0.05 to 20 mg/kg DCA. The same model structure was parameterized to simulate DCA time courses following iv exposure in native and pretreated mice. Blood and liver concentrations during and postexposure to DCA in drinking water were predicted. Comparisons of PBPK model predicted to measured values were favorable, lending support for the further development of this model for application to DCA or TCE human health risk assessment.« less
Inhibition of purified enolases from oral bacteria by fluoride.
Guha-Chowdhury, N; Clark, A G; Sissons, C H
1997-04-01
Enolase activity in strains of oral streptococci previously has been found to be inhibited by 50% (Ki) by fluoride concentrations ranging from 50 to 300 microM or more in the presence of 0.5 to 1.0 mM inorganic phosphate ions. In this study, enolase was extracted and partly purified by a two-step process from five oral bacterial species and the effect of fluoride on the kinetics of enolase examined. The molecular weight of the putative enolase proteins was 46-48 kDa. The Vmax values ranged from 20 to 323 IU/mg and K(m) for glycerate-2-phosphate from 0.22 to 0.74 mM. Enolase activity was inhibited competitively by fluoride, with Ki values ranging from 16 to 54 microM in the presence of 5 mM inorganic phosphate ions. Ki values for phosphate ranged from 2 to 8 mM. The enolase from Streptococcus sanguis ATCC 10556 was more sensitive to fluoride (Ki = 16 +/- 2) than was enolase from Streptococcus salivarius ATCC 10575 (Ki = 19 +/- 2) or Streptococcus mutans NCTC 10449 (Ki = 40 +/- 4) and all three streptococcal strains were more sensitive to fluoride than either Actinomyces naeslundii WVU 627 (Ki = 46 +/- 6) or Lactobacillus rhamnosus ATCC 7469 (Ki = 54 +/- 6) enolases. The levels of fluoride found to inhibit the streptococcal enolases in this study are much lower than previously reported and are likely to be present in plaque, especially during acidogenesis, and could exert an anti-glycolytic effect.
Polymeric amylase nanoparticles as a new semi-synthetic enzyme system for hydrolysis of starch.
Say, R; Şenay, R Hilal; Biçen, Özlem; Ersöz, Arzu; Şişman Yılmaz, Filiz; Akgöl, Sinan; Denizli, Adil
2013-05-01
α-Amylase (EC 3.2.1.1; α-D-1,4,glucan glucanohydrolase) catalyzes the hydrolysis of α-D-(1,4)-glucosidic linkages in starch, glycogen, and various malto-oligosaccharides, by releasing α-anomeric products. In this study, a novel method has been developed to prepare nanoprotein particles that carry α-amylase as a monomer by using a photosensitive microemulsion polymerization process. The nanostructured α-amylase with photosensitive features have been characterized by fluorescence spectroscopy, transmission electron microscopy (TEM) and Zeta Sizer. The fluorescence intensity of amylase nanoparticles was determined to be 658 a.u. at 610 nm and the average particle size of nanoamylase was found to be about 71.8 nm. Both free α-amylase and nanoparticles were used in the hydrolysis of starch under varying reaction conditions such as pH and temperature that affect enzyme activity and the results were compared to each other. Km values were 0.26 and 0.87 mM and Vmax values were 0.36 IU mg(-1) and 22.32 IU mg(-1) for nanoenzyme and free enzyme, respectively. Then, thermal stability, storage stability and reusability were investigated and according to the results, activity was preserved 60% at 60 °C; 20% at 70-80 °C temperature values and 80% after 105 days storage. Finally after 10 cycles, the activity was preserved 90% and this novel enzymatic polymeric amylase nanoparticle has showed considerable potential as reusable catalyst. Copyright © 2012 Elsevier B.V. All rights reserved.
Canceling effect leads temperature insensitivity of hydrolytic enzymes in soil
NASA Astrophysics Data System (ADS)
Razavi, Bahar S.; Blagodatskaya, Evgenia; Kuzyakov, Yakov
2015-04-01
Extracellular enzymes are important for decomposition of many macromolecules abundant in soil such as cellulose, hemicelluloses and proteins (Allison et al., 2010; Chen et al., 2012). The temperature sensitivity of enzymes responsible for organic matter decomposition is the most crucial parameter for prediction of the effects of global warming on carbon cycle. Temperature responses of biological systems are often expressed as a Q10 functions; The Q10 describes how the rate of a chemical reaction changes with a temperature increase for 10 °C The aim of this study was to test how the canceling effect will change with variation in temperature interval, during short-term incubation. We additionally investigated, whether canceling effect occurs in a broad range of concentrations (low to high) and whether it is similar for the set of hydrolytic enzymes within broad range of temperatures. To this end, we performed soil incubation over a temperature range of 0-40°C (with 5°C steps). We determined the activities of three enzymes involved in plant residue decomposition: β-glucosidase and cellobiohydrolase, which are commonly measured as enzymes responsible for degrading cellulose (Chen et al., 2012), and xylanase, which degrades xylooligosaccharides (short xylene chain) in to xylose, thus being responsible for breaking down hemicelluloses (German et al., 2011). Michaelis-Menten kinetics measured at each temperature allowed to calculate Q10 values not only for the whole reaction rates, but specifically for maximal reaction rate (Vmax) and substrate affinity (Km). Subsequently, the canceling effect - simultaneous increase of Vmax and Km with temperature was analyzed within 10 and 5 degree of temperature increase. Three temperature ranges (below 10, between 15 and 25, and above 30 °C) clearly showed non-linear but stepwise increase of temperature sensitivity of all three enzymes and allowed to conclude for predominance of psychrophilic, mesophilic and thermophilic microorganisms in soil at these temperature ranges. We conclude that the temperature sensitivity (Q10) of enzyme activity declines at higher temperature and lower concentration of substrates in soil. Overall, our results suggest that the fine-scale (five degree) temperature resolution level needs to be considered in global earth system models especially at temperature thresholds for physiological groups of soil microorganisms. Refcences: Allison, S.D., Wallenstein, M.D., Bradford, M.A., 2010. Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336-340. doi:10.1038/ngeo846 Chen, R., Blagodatskaya, E., Senbayram, M., Blagodatsky, S., Myachina, O., Dittert, K., Kuzyakov, Y., 2012. Decomposition of biogas residues in soil and their effects on microbial growth kinetics and enzyme activities. Biomass Bioenergy 45, 221-229. doi:10.1016/j.biombioe.2012.06.014 German, D.P., Weintraub, M.N., Grandy, A.S., Lauber, C.L., Rinkes, Z.L., Allison, S.D., 2011. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biol. Biochem. 43, 1387-1397. doi:10.1016/j.soilbio.2011.03.017
Thermodynamics of gas and steam-blast eruptions
Mastin, L.G.
1995-01-01
Eruptions of gas or steam and non-juvenile debris are common in volcanic and hydrothermal areas. From reports of non-juvenile eruptions or eruptive sequences world-wide, at least three types (or end-members) can be identified: (1) those involving rock and liquid water initially at boiling-point temperatures ('boiling-point eruptions'); (2) those powered by gas (primarily water vapor) at initial temperatures approaching magmatic ('gas eruptions'); and (3) those caused by rapid mixing of hot rock and ground- or surface water ('mixing eruptions'). For these eruption types, the mechanical energy released, final temperatures, liquid water contents and maximum theoretical velocities are compared by assuming that the erupting mixtures of rock and fluid thermally equilibrate, then decompress isentropically from initial, near-surface pressure (???10 MPa) to atmospheric pressure. Maximum mechanical energy release is by far greatest for gas eruptions (??????1.3 MJ/kg of fluid-rock mixture)-about one-half that of an equivalent mass of gunpowder and one-fourth that of TNT. It is somewhat less for mixing eruptions (??????0.4 MJ/kg), and least for boiling-point eruptions (??????0.25 MJ/kg). The final water contents of crupted boiling-point mixtures are usually high, producing wet, sloppy deposits. Final erupted mixtures from gas eruptions are nearly always dry, whereas those from mixing eruptions vary from wet to dry. If all the enthalpy released in the eruptions were converted to kinetic energy, the final velocity (vmax) of these mixtures could range up to 670 m/s for boiling-point eruptions and 1820 m/s for gas eruptions (highest for high initial pressure and mass fractions of rock (mr) near zero). For mixing eruptions, vmax ranges up to 1150 m/s. All observed eruption velocities are less than 400 m/s, largely because (1) most solid material is expelled when mr is high, hence vmax is low; (2) observations are made of large blocks the velocities of which may be less than the average for the mixture; (3) heat from solid particles is not efficiently transferred to the fluid during the eruptions; and (4) maximum velocities are reduced by choked flow or friction in the conduit. ?? 1995 Springer-Verlag.
Koch, Katherine S; Moran, Tom; Shier, W Thomas; Leffert, Hyam L
2018-05-01
N-acetyl-2-aminofluorene (AAF) is a procarcinogen used widely in physiological investigations of chemical hepatocarcinogenesis. Its metabolic pathways have been described extensively, yet little is known about its biochemical processing, growth cycle expression, and pharmacological properties inside living hepatocytes-the principal cellular targets of this hepatocarcinogen. In this report, primary monolayer adult rat hepatocyte cultures and high specific-activity [ring G-3 H]-N-acetyl-2-aminofluorene were used to extend previous observations of metabolic activation of AAF by highly differentiated, proliferation-competent hepatocytes in long-term cultures. AAF metabolism proceeded by zero-order kinetics. Hepatocytes processed significant amounts of procarcinogen (≈12 μg AAF/106 cells/day). Five ring-hydroxylated and one deacetylated species of AAF were secreted into the culture media. Extracellular metabolite levels varied during the growth cycle (days 0-13), but their rank quantitative order was time invariant: 5-OH-AAF > 7-OH-AAF > 3-OH-AAF > N-OH-AAF > aminofluorene (AF) > 1-OH-AAF. Lineweaver-Burk analyses revealed two principal classes of metabolism: System I (high-affinity and low-velocity), Km[APPARENT] = 1.64 × 10-7 M and VMAX[APPARENT] = 0.1 nmol/106 cells/day and System II (low-affinity and high-velocity), Km[APPARENT] = 3.25 × 10-5 M and VMAX[APPARENT] = 1000 nmol/106 cells/day. A third system of metabolism of AAF to AF, with Km[APPARENT] and VMAX[APPARENT] constants of 9.6 × 10-5 M and 4.7 nmol/106 cells/day, was also observed. Evidence provided in this report and its companion paper suggests selective roles and intracellular locations for System I- and System II-mediated AAF metabolite formation during hepatocarcinogenesis, although some of the molecules and mechanisms responsible for multi-system processing remain to be fully defined.
Schweigmann, H; Sánchez-Guijo, A; Ugele, B; Hartmann, K; Hartmann, M F; Bergmann, M; Pfarrer, C; Döring, B; Wudy, S A; Petzinger, E; Geyer, J; Grosser, G
2014-09-01
16α-Hydroxy-dehydroepiandrosterone sulfate (16α-OH-DHEAS) mainly originates from the fetus and serves as precursor for placental estriol biosynthesis. For conversion of 16α-OH-DHEAS to estriol several intracellular enzymes are required. However, prior to enzymatic conversion, 16α-OH-DHEAS must enter the cells by carrier mediated transport. To identify these carriers, uptake of 16α-OH-DHEAS by the candidate carriers organic anion transporter OAT4, sodium-dependent organic anion transporter SOAT, Na(+)-taurocholate cotransporting polypeptide NTCP, and organic anion transporting polypeptide OATP2B1 was measured in stably transfected HEK293 cells by LC-MS-MS. Furthermore, the study aimed to localize SOAT in the human placenta. Stably transfected OAT4-HEK293 cells revealed a partly sodium-dependent transport for 16α-OH-DHEAS with an apparent Km of 23.1 ± 5.1 μM and Vmax of 485.0 ± 39.1 pmol/mg protein/min, while stably transfected SOAT- and NTCP-HEK293 cells showed uptake only under sodium conditions with Km of 319.0 ± 59.5 μM and Vmax of 1465.8 ± 118.8 pmol/mg protein/min for SOAT and Km of 51.4 ± 9.9 μM and Vmax of 1423.3 ± 109.6 pmol/mg protein/min for NTCP. In contrast, stably transfected OATP2B1-HEK293 cells did not transport 16α-OH-DHEAS at all. Immunohistochemical studies and in situ hybridization of formalin fixed and paraffin embedded sections of human late term placenta showed expression of SOAT in syncytiotrophoblasts, predominantly at the apical membrane as well as in the vessel endothelium. In conclusion, OAT4, SOAT, and NTCP were identified as carriers for the estriol precursor 16α-OH-DHEAS. At least SOAT and OAT4 seem to play a functional role for the placental estriol synthesis as both are expressed in the syncytiotrophoblast of human placenta. Copyright © 2014 Elsevier Ltd. All rights reserved.
Moffett, J; Englesberg, E
1984-01-01
Chinese hamster ovary cells (CHO-K1) starved for 24 h for amino acids show a severalfold increase in velocity of proline transport through the A system (Vmax is five times that of unstarved cells). This increase is inhibited by cycloheximide, actinomycin D, N-methyl-alpha-amino isobutyric acid (MeAIB, a non-metabolizable specific A system amino acid analog), and by other amino acids that are generally transported by the A system. However, transport by the A system is not a prerequisite for this repression, and all compounds that have affinity for the A system do not necessarily act as "co-repressors." The addition of proline, MeAIB, or other amino acids, as described above, to derepressed cells results in a rapid decrease in A system activity. As shown with proline and MeAIB, this decrease in activity is in part due to a rapid trans-inhibition and a slow, irreversible inactivation of the A system. Neither process is inhibited by cycloheximide or actinomycin D. Alanine antagonizes the growth of CHO-K1 pro cells by preventing proline transport, and alanine-resistant mutants (alar) have been isolated (Moffett et al., Somatic Cell Genet. 9:189-213, 1983). alar2 and alar4 are partial and full constitutive mutants for the A system and have two and six times the Vmax for proline uptake by the A system, respectively. The A system in alar4 is also immune to the co-repressor-induced inactivation. Both alar2 and alar4 phenotypes are recessive. Alar3 shows an increase in Vmax and Km for proline transport through the A system, and this phenotype is codominant. All three mutants have a pleiotropic effect, producing increases in activity of the ASC and P systems of amino acid transport. This increase is not due to an increase in the Na+ gradient. The ASC and P phenotypes behave similarly to the A system in hybrids. A model has been proposed incorporating these results. PMID:6538929
Castellano, Julen; Puente, Asier; Echeazarra, Ibon; Usabiaga, Oidui; Casamichana, David
2016-01-01
The aim of the present study is to analyse the influence of different large-sided games (LSGs) on the physical and physiological variables in under-12s (U12) and -13s (U13) soccer players. The effects of the combination of different number of players per team, 7, 9, and 11 (P7, P9, and P11, respectively) with three relative pitch areas, 100, 200, and 300 m(2) (A100, A200, and A300, respectively), were analysed in this study. The variables analysed were: 1) global indicator such as total distance (TD); work:rest ratio (W:R); player-load (PL) and maximal speed (Vmax); 2) heart rate (HR) mean and time spent in different intensity zones of HR (<75%, 75-84%, 84-90% and >90%), and; 3) five absolute (<8, 8-13, 13-16 and >16 Km h(-1)) and three relative speed categories (<40%, 40-60% and >60% Vmax). The results support the theory that a change in format (player number and pitch dimensions) affects no similarly in the two players categories. Although it can seem that U13 players are more demanded in this kind of LSG, when the work load is assessed from a relative point of view, great pitch dimensions and/or high number of player per team are involved in the training task to the U12 players. The results of this study could alert to the coaches to avoid some types of LSGs for the U12 players such as: P11 played in A100, A200 or A300, P9 played in A200 or A300 and P7 played in A300 due to that U13>U12 in several physical and physiological variables (W:R, time spent in 84-90%HRmax, distance in 8-13 and 13-16 Km h(-1) and time spent in 40-60%Vmax). These results may help youth soccer coaches to plan the progressive introduction of LSGs so that task demands are adapted to the physiological and physical development of participants.
Iskandar, Irma; Walters, John D
2011-03-01
Clarithromycin inhibits several periodontal pathogens and is concentrated inside gingival fibroblasts and epithelial cells by an active transporter. We hypothesized that polymorphonuclear leukocytes (PMNs) and less mature myeloid cells possess a similar transporter for clarithromycin. It is feasible that clarithromycin accumulation inside PMNs could enhance their ability to kill Aggregatibacter actinomycetemcomitans (previously Actinobacillus actinomycetemcomitans). To test the first hypothesis, purified PMNs and cultured HL-60 cells were incubated with [(3)H]-clarithromycin. Clarithromycin transport was assayed by measuring changes in cell-associated radioactivity over time. The second hypothesis was examined with PMNs loaded by incubation with clarithromycin (5 μg/ml). Opsonized bacteria were incubated at 37°C with control and clarithromycin-loaded PMNs. Mature human PMNs, HL-60 cells differentiated into granulocytes, and undifferentiated HL-60 cells all took up clarithromycin in a saturable manner. The kinetics of uptake by all yielded linear Lineweaver-Burk plots. HL-60 granulocytes transported clarithromycin with a K(m) of ≈250 μg/ml and a V(max) of 473 ng/min/10(6) cells, which were not significantly different from the values obtained with PMNs. At steady state, clarithromycin levels inside HL-60 granulocytes and PMNs were 28- to 71-fold higher than extracellular levels. Clarithromycin-loaded PMNs killed significantly more A. actinomycetemcomitans and achieved shorter half-times for killing than control PMNs when assayed at a bacteria-to-PMN ratio of 100:1 (P <0.04). At a ratio of 30:1, these differences were not consistently significant. PMNs and less mature myeloid cells possess a transporter that takes up and concentrates clarithromycin. This system could help PMNs cope with an overwhelming infection by A. actinomycetemcomitans.
Selvakumar, Karuthapandi; Shah, Poonam; Singh, Harkesh B; Butcher, Ray J
2011-11-04
The synthesis of some ebselen analogues and diaryl diselenides, which have amino acid functions as an intramolecularly coordinating group (Se···O) has been achieved by the DCC coupling procedure. The reaction of 2,2'-diselanediylbis(5-tert-butylisophthalic acid) or the activated ester tetrakis(2,5-dioxopyrrolidin-1-yl) 2,2'-diselanediylbis(5-tert-butylisophthalate) with different C-protected amino acids (Gly, L-Phe, L-Ala, and L-Trp) afforded the corresponding ebselen analogues. The used precursor diselenides have been found to undergo facile intramolecular cyclization during the amide bond formation reaction. In contrast, the DCC coupling of 2,2'-diselanediyldibenzoic acid with C-protected amino acids (Gly, L/D-Ala and L-Phe) affords the corresponding amide derivatives and not the ebselen analogues. Some of the representative compounds have been structurally characterized by single-crystal X-ray crystallography. The glutathione peroxidase (GPx)-like activities of the ebselen analogues and the diaryl diselenides have been evaluated by using the coupled reductase assay method. Intramolecularly stabilized ebselen analogues show slightly higher maximal velocity (V(max)) than ebselen. However, they do not show any GPx-like activity at low GSH concentrations at which ebselen and related diselenides are active. This could be attributed to the peroxide-mediated intramolecular cyclization of the corresponding selenenyl sulfide and diaryl diselenide intermediates generated during the catalytic cycle. Interestingly, the diaryl diselenides with alanine (L,L or D,D) amide moieties showed excellent catalytic efficiency (k(cat)/K(M)) with low K(M) values in comparison to the other compounds. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Castellano, Julen; Puente, Asier; Echeazarra, Ibon; Casamichana, David
2015-06-01
The aim of this study was to analyze the influence of different large-sided games on the physical and physiological variables in under-13 soccer players. The effects on heart rate (HR) and physical demands of different number of players (NP) (7, 9, and 11) together with the relative pitch area (RPA) (100, 200, and 300 m) during two 12-minute repetitions were analyzed in this study. The variables analyzed were mean, maximum and different intensity zones of HR; total distance (TD); work:rest ratio (W:R); player load (PL); 5 absolute and 3 relative speed categories. The results support the hypothesis that a change in pitch dimensions affects locomotor activity more than the NP does but also refute the hypothesis that the change in the NP has a greater effect on HR. To be more specific, an increase in the RPA per player (300/200/100 m2) was associated with higher values of the following variables: TD (2,250-2,314/2,003-2,148/1,766-1,845 m), W:R (0.5-0.6/0.4-0.5/0.3 arbitrary unit [AU]), PL (271-306/246-285/229-267 AU), %HRmean (85-88/85-89/81-83%), %HRmax (95-100/97-100/95-98%), and affected the percentage of time spent in both absolute (above 8 km·h(-1)) and relative speed (above 40% Vmax) categories (p ≤ 0.05, effect size: 0.31-0.85). These results may help youth soccer coaches to plan the progressive introduction of large-sided games so that task demands are adapted to the physiological and physical development of participants.
Inhibition by enflurane and methoxyflurane of postdrive hyperpolarization in canine Purkinje fibers.
Pratila, M; Vogel, S; Sperelakis, N
1984-05-01
When a pacemaker cell is driven with a train of stimuli at a rate faster than its own, the termination of the drive is followed by a transient hyperpolarization, due to the activity of an electrogenic Na+-K+ pump. In this study, the effect of the halogenated ethers, enflurane and methoxyflurane, on postdrive hyperpolarization (PDH) was determined in cardiac Purkinje fibers. The fibers were removed from freshly excised canine hearts and superfused with a Tyrode's solution (containing 2.7 or 3.5 mM K+). The preparation was paced at 0.2 Hz before and after drives, and at 2 Hz during drives. Under control conditions, drives of 2 min produced a PDH of 5.5 +/- 0.2 mV. Enflurane (1.5-5%) significantly reduced the PDH. At 4 to 5%, enflurane reduced the PDH to a mean value of 42% of the control. Methoxyflurane was more potent than enflurane in affecting the PDH. At 0.5 to 0.75%, methoxyflurane reduced the PDH to 5% of the control. At higher (1-1.5%) concentrations of methoxyflurane, the PDH was converted to a depolarization, which varied between 0.5 and 8.0 mV. The PDH was restored to control levels within 10 to 20 min after washout of either anesthetic agent. Methoxyflurane (0.5 or 1%) enhanced the automaticity of spontaneously firing cells (2.35 mM K+ Tyrode's solution used). This positive chronotropic action coincided with a depolarization of 2 to 8 mV. Enflurane, at concentrations of 3 to 5%, gave similar results. On the action potential, methoxyflurane, at 1%, reduced the amplitude and duration (measured at 50% repolarization) of the plateau, and also the maximal upstroke velocity (+Vmax) of the rising phase.(ABSTRACT TRUNCATED AT 250 WORDS)
Probing BL Lac and Cluster Evolution via a Wide-angle, Deep X-ray Selected Sample
NASA Astrophysics Data System (ADS)
Perlman, E.; Jones, L.; White, N.; Angelini, L.; Giommi, P.; McHardy, I.; Wegner, G.
1994-12-01
The WARPS survey (Wide-Angle ROSAT Pointed Survey) has been constructed from the archive of all public ROSAT PSPC observations, and is a subset of the WGACAT catalog. WARPS will include a complete sample of >= 100 BL Lacs at F_x >= 10(-13) erg s(-1) cm(-2) . A second selection technique will identify ~ 100 clusters at 0.15
Arredondo, Miguel; Kloosterman, Janneke; Núñez, Sergio; Segovia, Fabián; Candia, Valeria; Flores, Sebastián; Le Blanc, Solange; Olivares, Manuel; Pizarro, Fernando
2008-11-01
It is known that heme iron and inorganic iron are absorbed differently. Heme iron is found in the diet mainly in the form of hemoglobin and myoglobin. The mechanism of iron absorption remains uncertain. This study focused on the heme iron uptake by Caco-2 cells from a hemoglobin digest and its response to different iron concentrations. We studied the intracellular Fe concentration and the effect of time, K+ depletion, and cytosol acidification on apical uptake and transepithelial transport in cells incubated with different heme Fe concentrations. Cells incubated with hemoglobin-digest showed a lower intracellular Fe concentration than cells grown with inorganic Fe. However, uptake and transepithelial transport of Fe was higher in cells incubated with heme Fe. Heme Fe uptake had a low Vmax and Km as compared to inorganic Fe uptake and did not compete with non-heme Fe uptake. Heme Fe uptake was inhibited in cells exposed to K+ depletion or cytosol acidification. Heme oxygenase 1 expression increased and DMT1 expression decreased with higher heme Fe concentrations in the media. The uptake of heme iron is a saturable and temperature-dependent process and, therefore, could occur through a mechanism involving both a receptor and the endocytic pathway.
de Lima Damásio, Andre Ricardo; da Silva, Tony Márcio; Maller, Alexandre; Jorge, João Atílio; Terenzi, Hector Francisco; Polizeli, Maria de Lourdes Teixeira de Moraes
2010-03-01
An extracellular polygalacturonase (PG) produced from Paecilomyces variotii was purified to homogeneity through two chromatography steps using DEAE-Fractogel and Sephadex G-100. The molecular weight of P. variotii PG was 77,300 Da by gel filtration and SDS-PAGE. PG had isoelectric point of 4.37 and optimum pH 4.0. PG was very stable from pH 3.0 to 6.0. The extent of hydrolysis of different pectins by the purified enzyme was decreased with an increase in the degree of esterification. PG had no activity toward non-pectic polysaccharides. The apparent K(m) and V(max) values for hydrolyzing sodium polypectate were 1.84 mg/mL and 432 micromol/min/mg, respectively. PG was found to have temperature optimum at 65 degrees Celsius and was totally stable at 45 degrees Celsius for 90 min. Half-life at 55 degrees Celsius was 50.6 min. Almost all the examined metal cations showed partial inhibitory effects under enzymatic activity, except for Na(+1), K(+1), and Co(+2) (1 mM) and Cu(+2) (1 and 10 mM).
Enzymes loaded chitosan/coconut fibre/zinc oxide nanoparticles strip for polyamine determination.
Hooda, Vinita; Archita
2018-01-15
Most often, the immobilized enzyme based quantification is an attractive alternative to other chromatographic, electrochemical and mass spectrometry based methods due to its specificity and simplicity. In the present study, polyamine oxidase specific for spermine and spermidine and diamine oxidase specific for putrescine, were co-immobilized onto a novel chitosan/coconut fibre/zinc oxide nanoparticles (CS/CF/nZnO) hybrid support to yield a polyamine sensing strip. The strip worked optimally at pH 7.0, temperature 25°C and 6min of incubation time. Pretty good values for kinetic constants Km app (6.60mM), Vmax (17.69μmol/min mg protein) and kcat app (1987.64s -1 ) as well as for thermal (<50 % activity retained at 40°C), storage (half life-40days) and operational stabilities (<90 % activity retained after 20 reuses) were obtained. The strip was employed for polyamine determination in some of the locally grown fruit and vegetables and the results were found to be comparable, reliable and reproducible. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nirala, Narsingh R; Pandey, Shobhit; Bansal, Anushka; Singh, Vijay K; Mukherjee, Bratindranath; Saxena, Preeti S; Srivastava, Anchal
2015-12-15
In the present study, we manifest that traditionally used gold nanoparticles when supported on molybdenum disulfide nanoribbons matrix (MoS2 NRs-Au NPs) show synergistically enhanced intrinsic peroxidase like catalytic activity and can catalyze the oxidation of 3,3',5,5' tetramethyl benzidine by H2O2 to produce a highly sensitive blue shade product depending on level of free cholesterol, when tested on complex system of human serum. Further the system attests appreciable kinetics, owing to Km value as low as 0.015 mM and better loading capacity (Vmax=6.7×10(-6) M s(-1)). Additionally, the proposed system is stable for weeks with ability to perform appreciably in wide pH (3-6) and temperature range (25-60 °C). Utilizing this potential, the present work proposes a cholesterol detection color wheel which is used along with cost effective cholesterol detection strips fabricated out of proposed MoS2 NRs-Au NPs system for quick and reliable detection of free cholesterol using unaided eye. Copyright © 2015 Elsevier B.V. All rights reserved.
Inhibitory effect of chlorogenic acid on digestion of potato starch.
Karim, Zida; Holmes, Melvin; Orfila, Caroline
2017-02-15
The effect of the chlorogenic acid isomer 5-O-caffeoylquinic acid (5-CQA) on digestion of potato starch by porcine pancreatic alpha amylase (PPAA) was investigated using isolated starch and cooked potato tuber as substrates. In vitro digestion was performed on five varieties of potato with varying phenolic content. Co- and pre-incubation of PPAA with 5-CQA significantly reduced PPAA activity in a dose dependent manner with an IC50 value of about 2mgmL(-1). Lineweaver-Burk plots indicated that 5-CQA exerts a mixed type inhibition as km increased and Vmax decreased. The total polyphenol content (TPC) of peeled tuber tissue ranged from 320.59 to 528.94mg 100g(-1)dry weight (DW) in raw tubers and 282.03-543.96mg 100g(-1)DW in cooked tubers. With the exception of Désirée, TPC and 5-CQA levels decreased after cooking. Principle component analysis indicated that digestibility is affected by multiple factors including phenolic, dry matter and starch content. Copyright © 2016 Elsevier Ltd. All rights reserved.
Classical Michaelis-Menten and system theory approach to modeling metabolite formation kinetics.
Popović, Jovan
2004-01-01
When single doses of drug are administered and kinetics are linear, techniques, which are based on the compartment approach and the linear system theory approach, in modeling the formation of the metabolite from the parent drug are proposed. Unlike the purpose-specific compartment approach, the methodical, conceptual and computational uniformity in modeling various linear biomedical systems is the dominant characteristic of the linear system approach technology. Saturation of the metabolic reaction results in nonlinear kinetics according to the Michaelis-Menten equation. The two compartment open model with Michaelis-Menten elimination kinetics is theorethicaly basic when single doses of drug are administered. To simulate data or to fit real data using this model, one must resort to numerical integration. A biomathematical model for multiple dosage regimen calculations of nonlinear metabolic systems in steady-state and a working example with phenytoin are presented. High correlation between phenytoin steady-state serum levels calculated from individual Km and Vmax values in the 15 adult epileptic outpatients and the observed levels at the third adjustment of phenytoin daily dose (r=0.961, p<0.01) were found.
Jain, Ira; Kumar, Vikash; Satyanarayana, T
2014-10-01
The β-xylosidase encoding gene (XsidB) of the extremely thermophilic bacterium Geobacillus thermodenitrificans has been cloned and expressed in Escherichia coli. The homotrimeric recombinant XsidB is of 204.0kDa, which is optimally active at 60°C and pH 7.0 with T1/2 of 58min at 70°C. The β-xylosidase remains unaffected in the presence of most metal ions and organic solvents. The Km [p-nitrophenyl β-xyloside (pNPX)], Vmax and kcat values of the enzyme are 2×10(-3)M, 1250μmolesmg(-1)min(-1) and 13.20×10(5)min(-1), respectively. The enzyme catalyzes transxylosylation reactions in the presence of alcohols as acceptors. The pharmaceutically important β-methyl-d-xylosides could be produced using pNPX as the donor and methanol as acceptor. The products of transxylosylation were identified by TLC and HPLC, and the structure was confirmed by (1)H NMR analysis. The enzyme is also useful in synthesizing transxylosylation products from the wheat bran hydrolysate. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Baig, Mirza Saqib; Kumar, Ashutosh; Siddiqi, Mohammad Imran; Goyal, Neena
2010-01-01
Leishmania donovani dipeptidylcarboxypeptidsae (LdDCP), an angiotensin converting enzyme (ACE) related metallopeptidase has been identified and characterized as a putative drug target for antileishmanial chemotherapy. The kinetic parameters for LdDCP with substrate, Hip-His-Leu were determined as, Km, 4 mM and Vmax, 1.173 μmole/ml/min. Inhibition studies revealed that known ACE inhibitors (captopril and bradykinin potentiating peptide; BPP1) were weak inhibitors for LdDCP as compared to human testicular ACE (htACE) with Ki values of 35.8 nM and 3.9 μM, respectively. Three dimensional model of LdDCP was generated based on crystal structure of Escherichia coli DCP (EcDCP) by means of comparative modeling and assessed using PROSAII, PROCHECK and WHATIF. Captopril docking with htACE, LdDCP and EcDCP and analysis of molecular electrostatic potentials (MEP) suggested that the active site domain of three enzymes has several minor but potentially important structural differences. These differences could be exploited for designing selective inhibitor of LdDCP thereby antileishmanial compounds either by denovo drug design or virtual screening of small molecule databases.
Kinetics study of invertase covalently linked to a new functional nanogel.
Raj, Lok; Chauhan, Ghanshyam S; Azmi, Wamik; Ahn, J-H; Manuel, James
2011-02-01
Nanogels are promising materials as supports for enzyme immobilization. A new hydrogel comprising of methacrylic acid (MAAc) and N-vinyl pyrrolidone (N-VP) and ethyleneglycol dimethacrylate (EGDMA) was synthesized and converted to nanogel by an emulsification method. Nanogel was further functionalized by Curtius azide reaction for use as support for the covalent immobilization of invertase (Saccharomyces cerevisiae). As-prepared or invertase-immobilized nanogel was characterized by FTIR, XRD, TEM and nitrogen analysis. The characterization of both free and the immobilized-invertase were performed using a spectrophotometric method at 540 nm. The values of V(max), maximum reaction rate, (0.123 unit/mg), k(m), Michaelis constant (7.429 mol/L) and E(a), energy of activation (3.511 kj/mol) for the immobilized-invertase are comparable with those of the free invertase at optimum conditions (time 70 min, pH 6.0 and temperature 45°C). The covalent immobilization enhanced the pH and thermal stability of invertase. The immobilized biocatalyst was efficiently reused up to eight cycles. Copyright © 2010 Elsevier Ltd. All rights reserved.
Mai, Zhimao; Su, Hongfei; Zhang, Si
2016-01-01
A mangrove soil metagenomic library was constructed and a β-agarase gene designated as AgaML was isolated by functional screening. The gene encoded for a 659-amino-acids polypeptide with an estimated molecular mass of 71.6 kDa. The deduced polypeptide sequences of AgaML showed the highest identity of 73% with the glycoside hydrolase family 16 β-agarase from Microbulbifer agarilyticus in the GenBank database. AgaML was cloned and highly expressed in Escherichia coli BL21(DE3). The purified recombinant protein, AgaML, showed optimal activity at 50 °C and pH 7.0. The kinetic parameters of Km and Vmax values toward agarose were 4.6 mg·mL−1 and 967.5 μM·min−1·mg−1, respectively. AgaML hydrolyzed the β-1,4-glycosidic linkages of agar to generate neoagarotetraose (NA4) and neoagarohexaose (NA6) as the main products. These characteristics suggest that AgaML has potential application in cosmetic, pharmaceuticals and food industries. PMID:27548158
An efficient ribitol-specific dehydrogenase from Enterobacter aerogenes.
Singh, Ranjitha; Singh, Raushan; Kim, In-Won; Sigdel, Sujan; Kalia, Vipin C; Kang, Yun Chan; Lee, Jung-Kul
2015-05-01
An NAD(+)-dependent ribitol dehydrogenase from Enterobacter aerogenes KCTC 2190 (EaRDH) was cloned and successfully expressed in Escherichia coli. The complete 729-bp gene was amplified, cloned, expressed, and subsequently purified in an active soluble form using nickel affinity chromatography. The enzyme had an optimal pH and temperature of 11.0 and 45°C, respectively. Among various polyols, EaRDH exhibited activity only toward ribitol, with Km, Vmax, and kcat/Km values of 10.3mM, 185Umg(-1), and 30.9s(-1)mM(-1), respectively. The enzyme showed strong preference for NAD(+) and displayed no detectable activity with NADP(+). Homology modeling and sequence analysis of EaRDH, along with its biochemical properties, confirmed that EaRDH belongs to the family of NAD(+)-dependent ribitol dehydrogenases, a member of short-chain dehydrogenase/reductase (SCOR) family. EaRDH showed the highest activity and unique substrate specificity among all known RDHs. Homology modeling and docking analysis shed light on the molecular basis of its unusually high activity and substrate specificity. Copyright © 2015 Elsevier Inc. All rights reserved.
Murakami, Keiko; Yamanaka, Naoki; Ohnishi, Katsunori; Fukayama, Minoru; Yoshino, Masataka
2012-06-01
Angiotensin I converting enzyme (ACE) was inhibited by the culture medium of Bacillus subtilis subsp. natto, which ferments boiled soy beans to natto, a Japanese traditional food. Subtilisin NAT (nattokinase) produced by B. subtilis also inhibited ACE, and the inhibition was markedly stimulated by heat treatment of subtilisin at 120 °C for 15 min. Inhibition of ACE by subtilisin was of a mixed type: the decrease in V(max) and the increase in K(m) value. SDS-polyacrylamide gel electrophoresis showed that heat treatment of subtilisin caused inactivation with fragmentation of the enzyme protein into small peptides. The inhibitory action of subtilisin was not due to an enzymatic action of protease, but may be ascribed to the potent ACE-inhibitory peptides such as LY and FY, amino acid sequences in subtilisin. HPLC-MS analysis of heat-inactivated subtilisin confirmed that LY and FY were liberated by fragmentation of the enzyme. Inhibition of ACE by subtilisin and its degradation peptides such as LY and FY may participate in the suppression of blood pressure by ingestion of natto.
Sundaram, Smita; Thakur, Indu Shekhar
2018-04-01
The thermo-alkalotolerant bacterium exhibiting heightened extracellular carbonic anhydrase (CA) activity, survived at 100 mM sodium bicarbonateand 5% gaseous CO 2 was identified as Bacillus sp. by 16S rRNA sequencing. Extracellular carbonic anhydrase was purified by ammonium sulfate precipitation, gel filtration chromatography and affinity chromatography with a yield of 46.61% and specific activity of 481.66 U/mg. The size of purified carbonic anhydrase was approximately 28 kDa in SDS-PAGE gel filtration and further their role in calcium carbonate production was correlated. The purified enzyme was stable with half-life of 25.36 min at 90 °C and pH 8. K M and Vmax values of the enzyme were 1.77 mg/mL and 385.69 U/mg respectively. The production of calcite was confirmed by Scanning Electron Microscopy (SEM) analysis, FTIR, and Energy-Dispersive X-ray (EDX) analysis. Carbonic anhydrase and calcite deposition coupled with CO 2 fixingbacteria is a significant approach for CO 2 sequestration. Copyright © 2018 Elsevier Ltd. All rights reserved.
Olivera, M; Martínez, C; Gervasini, G; Carrillo, J A; Ramos, S; Benítez, J; García-Martin, E; Agúndez, J A G
2007-01-01
We investigated the role of NAT2 on clonazepam acetylation, using transiently expressed human NAT2 alleles. The NAT25*B and the NAT2*6A variant alleles cause a 20 and 22-fold reduction in the Vmax, respectively. We conclude that NAT2 is responsible for 7-aminoclonazepam acetylation and that NAT2 gene polymorphisms impair such metabolic pathway.
NASA Technical Reports Server (NTRS)
Karuppiah, N.; Vadlamudi, B.; Kaufman, P. B.
1989-01-01
Three different isoforms of invertases have been detected in the developing internodes of barley (Hordeum vulgare). Based on substrate specificities, the isoforms have been identified to be invertases (beta-fructosidases EC 3.2.1.26). The soluble (cytosolic) invertase isoform can be purified to apparent homogeneity by diethylaminoethyl cellulose, Concanavalin-A Sepharose, organo-mercurial Sepharose, and Sephacryl S-300 chromatography. A bound (cell wall) invertase isoform can be released by 1 molar salt and purified further by the same procedures as above except omitting the organo-mercurial Sepharose affinity chromatography step. A third isoform of invertase, which is apparently tightly associated with the cell wall, cannot be isolated yet. The soluble and bound invertase isoforms were purified by factors of 60- and 7-fold, respectively. The native enzymes have an apparent molecular weight of 120 kilodaltons as estimated by gel filtration. They have been identified to be dimers under denaturing and nondenaturing conditions. The soluble enzyme has a pH optimum of 5.5, Km of 12 millimolar, and a Vmax of 80 micromole per minute per milligram of protein compared with cell wall isozyme which has a pH optimum of 4.5, Km of millimolar, and a Vmax of 9 micromole per minute per milligram of protein.
Brusov, O S; Dikaia, V I; Zlobina, G P; Faktor, M I; Pavlova, O A; Bologov, P V; Korenev, A N
2000-01-01
45 women with different manifestations of schizoaffective psychosis (SAP) were examined. The diagnosis corresponded to ICD-10 (F25). According to the classification elaborated in Mental Health Research Centre of Russian Academy of Medical Sciences, groups of patients were identified with different variants of the psychoses course: a nuclear SAP type; a borderline SAP variation with phasic-recurrent course; SAP with progredient variation (schizoaffective variation of schizophrenia). The patients were examined both during the attack and remission. A rate of serotonine uptake (Vmax) in blood platelets, a specific imipramine binding (Bmax) and the level of serotonin in blood platelets were evaluated. It was found that dynamics of both Vmax and the level of serotonin in different SAP types were different, that was related to clinical and biological SAP heterogeneity. A tendency to decreasing of serotonin system functional activity was found in progredient SAP variations, especially during the remission, which was of low quality in these cases. On the contrary, in the borderline variations the indices of the decreased function of serotonin system corresponded well to those of acute psychosis. In nuclear type--a type with the most favourable course of psychosis--any significant changes weren't revealed as compared with the normal parameters.
Ghanem, C; Ghisolfi, C; Marabotto, L; Ouviña, G; Rubio, M; Perazzo, J; Lemberg, A; Bengochea, L
1997-10-01
The liver is responsible for the most important metabolic pathway of non polar compounds. The aim of the present work was to study the p-nitrophenol glucuronidation and its relationship with lipidic composition of microsomal membrane in a model of hepatic portal hypertension and hepatocellular damage induced by monocrotaline. A global increment in liver microsomal phospholipids as well as changes in the phospholipid pattern (phosphatidylethanolamine and sphingomyelin increased up to 156 +/- 13 and 195 +/- 14% respectively) were detected in monocrotaline intoxicated rats when it were compared to control rats. The microsomal cholesterol content showed a decrease in monocrotaline intoxicated rats. (4.1 +/- 0.7 against 6.6 +/- 1.5 micrograms/mg of microsomal protein, in control rats). When p-nitrophenol activity was measured, Km from monocrotaline intoxicated rats was 0.137 mM, and Vmax was 2.9 nmol of p-nitrophenol/mg microsomal protein since in control group Km was 0.322 mM, and Vmax was 4.5 nmol of p-nitrophenol/mg microsomal protein. It is concluded that monocrotaline intoxicated rats showed a different behavior in the kinetics of p-nitrophenol UDP-glucuronyltransferase, as well as a different microsomal lipidic profile, when compared to control group.
Yun, Hyungdon; Lim, Seongyop; Cho, Byung-Kwan; Kim, Byung-Gee
2004-04-01
Alcaligenes denitrificans Y2k-2 was obtained by selective enrichment followed by screening from soil samples, which showed omega-amino acid:pyruvate transaminase activity, to kinetically resolve aliphatic beta-amino acid, and the corresponding structural gene (aptA) was cloned. The gene was functionally expressed in Escherichia coli BL21 by using an isopropyl-beta-D-thiogalactopyranoside (IPTG)-inducible pET expression system (9.6 U/mg), and the recombinant AptA was purified to show a specific activity of 77.2 U/mg for L-beta-amino-n-butyric acid (L-beta-ABA). The enzyme converts various beta-amino acids and amines to the corresponding beta-keto acids and ketones by using pyruvate as an amine acceptor. The apparent K(m) and V(max) for L-beta-ABA were 56 mM and 500 U/mg, respectively, in the presence of 10 mM pyruvate. In the presence of 10 mM L-beta-ABA, the apparent K(m) and V(max) for pyruvate were 11 mM and 370 U/mg, respectively. The enzyme exhibits high stereoselectivity (E > 80) in the kinetic resolution of 50 mM D,L-beta-ABA, producing optically pure D-beta-ABA (99% enantiomeric excess) with 53% conversion.
Yun, Hyungdon; Lim, Seongyop; Cho, Byung-Kwan; Kim, Byung-Gee
2004-01-01
Alcaligenes denitrificans Y2k-2 was obtained by selective enrichment followed by screening from soil samples, which showed ω-amino acid:pyruvate transaminase activity, to kinetically resolve aliphatic β-amino acid, and the corresponding structural gene (aptA) was cloned. The gene was functionally expressed in Escherichia coli BL21 by using an isopropyl-β-d-thiogalactopyranoside (IPTG)-inducible pET expression system (9.6 U/mg), and the recombinant AptA was purified to show a specific activity of 77.2 U/mg for l-β-amino-n-butyric acid (l-β-ABA). The enzyme converts various β-amino acids and amines to the corresponding β-keto acids and ketones by using pyruvate as an amine acceptor. The apparent Km and Vmax for l-β-ABA were 56 mM and 500 U/mg, respectively, in the presence of 10 mM pyruvate. In the presence of 10 mM l-β-ABA, the apparent Km and Vmax for pyruvate were 11 mM and 370 U/mg, respectively. The enzyme exhibits high stereoselectivity (E > 80) in the kinetic resolution of 50 mM d,l-β-ABA, producing optically pure d-β-ABA (99% enantiomeric excess) with 53% conversion. PMID:15066855
Characterization and regulation of glycine transport in Fusarium oxysporum var. lini.
Castro, I M; Lima, A A; Nascimento, A F; Ruas, M M; Nicoli, J R; Brandão, R L
1996-08-01
Glycine was transported in Fusarium oxysporum cells, grown on glycine as the sole source of carbon and nitrogen, by a facilitated diffusion transport system with a half-saturation constant (Ks) of 11 mM and a maximum velocity (Vmax) of 1.2 mM (g dry weight)-1 h-1 at pH 5.0 and 26 degrees C. Under conditions of nitrogen starvation, the same system was present together with a high-affinity one (Ks) of about 47 microM and Vmax of about 60 microM (g dry weight)-1 h-1). The low-affinity system was more specific than the high-affinity system. Cells grown on gelatine showed the same behavior. In cells grown on glucose-gelatine medium, the low-affinity system was poorly expressed even after carbon and nitrogen starvation. Moreover, addition of glucose to cells grown on glycine and resuspended in mineral medium caused an increase of the glycine transport probably due to a boost in protein synthesis. This stimulation did not affect the Ks of the low-affinity system. These results demonstrate that, as is the case for other eukaryotic systems, F. oxysporum glycine transport is under control of nitrogen sources but its regulation by carbon sources appears to be more complex.
NASA Technical Reports Server (NTRS)
Subramanyam, Guru; VanKeuls, Fred; Miranda, Felix A.
1998-01-01
We report on YBa2Cu3O(7-delta) (YBCO) thin film/SrTiO3 (STO) thin film K-band tunable bandpass filters on LaAlO3 (LAO) dielectric substrates. The 2 pole filter has a center frequency of 19 GHz and a 4% bandwidth. Tunability is achieved through the non-linear dc electric field dependence of the relative dielectric constant of STO(epsilon(sub rSTO). A large tunability ((Delta)f/f(sub 0) = (f(sub Vmax) - f(sub 0)/f(sub 0), where f(sub 0) is the center frequency of the filter at no bias and f(sub Vmax) is the center frequency of the filter at the maximum applied bias) of greater than 10% was obtained in YBCO/STO/LAO microstrip bandpass filters operating below 77 K. A center frequency shift of 2.3 GHz (i.e., a tunability factor of approximately 15%) was obtained at a 400 V bipolar dc bias, and 30 K, with minimal degradation in the insertion loss of the filter. This paper addresses design, fabrication and testing of tunable filters based on STO ferroelectric thin films. The performance of the YBCO/STO/LAO filters is compared to that of gold/STO/LAO counterparts.
Gao, Qiong; Zhang, Yufeng; Wo, Siukwan; Zuo, Zhong
2013-04-01
The phenylpropanoid dibenzylbutyrolactone lignan arctigenin, a key component found in Arctium lappa, or burdock, has been reported with a variety of therapeutic effects including anticancer, anti-inflammation, and antivirus effects. Using LC/MS/MS, three novel metabolites of arctigenin, namely, arctigenic acid, arctigenin-4-O'-glucuronide, and 4-O-demethylarctigenin were identified after oral administration of arctigenin in rats for the first time. Another potential metabolite of arctigenin, arctigenin-4'-O-sulfate, was identified in vitro but not in vivo. Structure of arctigenic acid, the major metabolite of arctigenin, was confirmed by 13C-NMR and 1H-NMR. Rapid hydrolysis in plasma was identified as the major metabolic pathway of arctigenin after its oral administration, with Vmax, Km, and Clint in rat plasma determined to be 2.21 ± 0.12 nmol/min/mg, 89.12 ± 9.44 µM, and 24.74 µL/min/mg, respectively. Paraoxonase 1 was further confirmed to be the enzyme responsible for arctigenin hydrolysis, with Vmax, Km, and Clint determined to be 55.39 ± 1.49 nmol/min/mg, 300.3 ± 10.86 µM, and 184.45 µL/min/mg, respectively. Georg Thieme Verlag KG Stuttgart · New York.
The impact of variation in scaling factors on the estimation of ...
Many physiologically based pharmacokinetic (PBPK) models include values for metabolic rate parameters extrapolated from in vitro metabolism studies using scaling factors such as mg of microsomal protein per gram of liver (MPPGL) and liver mass (FVL). Variation in scaling factor values impacts metabolic rate parameter estimates (Vmax) and hence estimates of internal dose used in dose response analysis. The impacts of adult human variation in MPPGL and FVL on estimates of internal dose were assessed using a human PBPK model for BDCM for several internal dose metrics for two exposure scenarios (single 0.25 liter drink of water or 10 minute shower) under plausible (5 micrograms/L) and high level (20 micrograms/L) water concentrations. For both concentrations, all internal dose metrics were changed less than 5% for the showering scenario (combined inhalation and dermal exposure). In contrast, a 27-fold variation in area under the curve for BDCM in venous blood was observed at both oral exposure concentrations, whereas total amount of BDCM metabolized in liver was relatively unchanged. This analysis demonstrates that variability in the scaling factors used for in vitro to in vivo extrapolation (IVIVE) for metabolic rate parameters can have a significant route-dependent impact on estimates of internal dose under environmentally relevant exposure scenarios. This indicates the need to evaluate both uncertainty and variability for scaling factors used for IVIVE. Sca
A novel tannase from the xerophilic fungus Aspergillus niger GH1.
Mata-Gomez, Marco; Rodriguez, Luis V; Ramos, Erika L; Renovato, Jacqueline; Cruz-Hernandez, Mario A; Rodriguez, Raul; Contreras, Juan; Aguilar, Cristobal N
2009-09-01
Aspergillus niger GH1 previously isolated and identified by our group as a wild tannase producer was grown under solid-state (SSC) and submerged culture (SmC) conditions to select the enzyme production system. For tannase purification, extracellular tannase was produced under SSC using polyurethane foam as the inert support. Tannase was purified to apparent homogeneity by ultrafiltration, anion-exchange chromatography, and gel filtration that led to a purified enzyme with a specific activity of 238.14 IU/mg protein with a final yield of 0.3% and a purification fold of 46. Three bands were found on the SDS-PAG with molecular masses of 50, 75, and 100 kDa. PI of 3.5 and 7.1% Nglycosylation were noted. Temperature and pH optima were 60 degrees and 6.0 [methyl 3,4,5-trihydroxybenzoate (MTB) as substrate], respectively. Tannase was found with a KM value of 0.41 x 10-4 M and the value of Vmax was 11.03 micromoL/min at 60 degrees for MTB. Effects of several metal salts, solvents, surfactants, and typical enzyme inhibitors on tannase activity were evaluated to establish the novelty of the enzyme. Finally, the tannase from A. niger GH1 was significantly inhibited by PMSF (phenylmethylsulfonyl fluoride), and therefore, it is possible to consider the presence of a serine or cysteine residue in the catalytic site.
Borkar, Prita S.; Bodade, Ragini G.; Rao, Srinivasa R.; Khobragade, C.N.
2009-01-01
An extra cellular lipase was isolated and purified from the culture broth of Pseudomonas aeruginosa SRT 9 to apparent homogeneity using ammonium sulfate precipitation followed by chromatographic techniques on phenyl Sepharose CL- 4B and Mono Q HR 5/5 column, resulting in a purification factor of 98 fold with specific activity of 12307.8 U/mg. The molecular weight of the purified lipase was estimated by SDS-PAGE to be 29 kDa with isoelectric point of 4.5. Maximum lipase activity was observed in a wide range of temperature and pH values with optimum temperature of 55ºC and pH 6.9. The lipase preferably acted on triacylglycerols of long chain (C14-C16) fatty acids. The lipase was inhibited strongly by EDTA suggesting the enzyme might be metalloprotein. SDS and metal ions such as Hg2+, Zn2+, Cu2+, Ag2+ and Fe2+ decreased the lipase activity remarkedly. Its marked stability and activity in organic solvents suggest that this lipase is highly suitable as a biotechnological tool with a variety of applications including organo synthetic reactions and preparation of enantiomerically pure pharmaceuticals. The Km and Vmax value of the purified enzyme for triolein hydrolysis were calculated to be 1.11 mmol/L and 0.05 mmol/L/min respectively. PMID:24031373
Ashida, Kayoko; Katsura, Toshiya; Saito, Hideyuki; Inui, Ken-ichi
2004-06-01
To examine the effect of thyroid hormone status on PEPT1 in vivo, the activity and expression of PEPT1 in the small intestine were examined in euthyroid and hyperthyroid rats. Hyperthyroidism was induced by treating rats with L-thyroxine (12 mg/L) in the drinking water for 21 days. Transport activity was measured by everted small intestinal preparations and in situ intestinal loop technique. Expressions of PEPT1 mRNA and protein were evaluated by competitive polymerase chain reaction and Western blotting, respectively. The uptake of [14C]glycylsarcosine by everted small intestinal preparations was significantly decreased in hyperthyroid rats, whereas that of methyl-alpha-D-[14C(U)]-glucopyranoside was not altered. Kinetic analysis showed that the Vmax value for [14C]glycylsarcosine uptake was significantly decreased in hyperthyroid rats, whereas the Km value was not affected. The mean portal vein concentrations after intrajejunal administration of [14C]glycylsarcosine were also decreased in hyperthyroid rats. Moreover, hyperthyroidism caused a significant decrease in the expression of PEPT1 mRNA in the small intestine, whereas the expression of Na+/glucose cotransporter (SGLT1) mRNA was not changed. The level of PEPT1 protein was also decreased in the small intestine of hyperthyroid rats. These results indicate that in hyperthyroid rats, the activity and expression of PEPT1 were decreased in the small intestine.
Díaz-Rincón, Dennis J.; Duque, Ivonne; Osorio, Erika; Rodríguez-López, Alexander; Espejo-Mojica, Angela; Parra-Giraldo, Claudia M.
2017-01-01
Cellulase is a family of at least three groups of enzymes that participate in the sequential hydrolysis of cellulose. Recombinant expression of cellulases might allow reducing their production times and increasing the low proteins concentrations obtained with filamentous fungi. In this study, we describe the production of Trichoderma reesei cellobiohydrolase II (CBHII) in a native strain of Wickerhamomyces anomalus. Recombinant CBHII was expressed in W. anomalus 54-A reaching enzyme activity values of up to 14.5 U L−1. The enzyme extract showed optimum pH and temperature of 5.0–6.0 and 40°C, respectively. Enzyme kinetic parameters (KM of 2.73 mM and Vmax of 23.1 µM min−1) were between the ranges of values reported for other CBHII enzymes. Finally, the results showed that an enzymatic extract of W. anomalus 54-A carrying the recombinant T. reesei CBHII allows production of reducing sugars similar to that of a crude extract from cellulolytic fungi. These results show the first report on the use of W. anomalus as a host to produce recombinant proteins. In addition, recombinant T. reesei CBHII enzyme could potentially be used in the degradation of lignocellulosic residues to produce bioethanol, based on its pH and temperature activity profile. PMID:28951785
Grabowski, G A; Dinur, T; Osiecki, K M; Kruse, J R; Legler, G; Gatt, S
1985-01-01
To elucidate the genetic heterogeneity in Gaucher disease, the residual beta-glucosidase in cultured fibroblasts from affected patients with each of the major phenotypes was investigated in vitro and/or in viable cells by inhibitor studies using the covalent catalytic site inhibitors, conduritol B epoxide or its bromo derivative, and the reversible cationic inhibitor, sphingosine. These studies delineated three distinct groups (designated A, B, and C) of residual activities with characteristic responses to these inhibitors. Group A residual enzymes had normal I50 values (i.e., the concentration of inhibitor that results in 50% inhibition) for the inhibitors and normal or nearly normal t1/2 values for conduritol B epoxide. All neuronopathic (types 2 and 3) and most non-Jewish nonneuronopathic (type 1) patients had group A residual activities and, thus, could not be distinguished by these inhibitor studies. Group B residual enzymes had about four- to fivefold increased I50 values for the inhibitors and similarly increased t1/2 values for conduritol B epoxide. All Ashkenazi Jewish type 1 and only two non-Jewish type 1 patients had group B residual activities. The differences in I50 values between groups A and B also were confirmed by determining the uninhibited enzyme activity after culturing the cells in the presence of bromo-conduritol B epoxide. Group C residual activity had intermediate I50 values for the inhibitors and represented a single Afrikaner type 1 patient: this patient was a genetic compound for the group A (type 2) and group B (type 1) mutations. These inhibition studies indicated that: Gaucher disease type 1 is biochemically heterogeneous, neuronopathic and non-Jewish nonneuronopathic phenotypes cannot be reliably distinguished by these inhibitor studies, and the Ashkenazi Jewish form of Gaucher disease type 1 results from a unique mutation in a specific active site domain of acid beta-glucosidase that leads to a defective enzyme with a decreased Vmax. PMID:4003396
Colombini, S; Broderick, G A; Clayton, M K
2011-04-01
The aim of this work was to compare use of an o-phthaldialdehyde (OPA) colorimetric assay (OPA-C), which responds to both free AA and peptides, with an OPA fluorimetric assay (OPA-F), which is insensitive to peptides, to quantify rates of ruminal protein degradation in the inhibitor in vitro system using Michaelis-Menten saturation kinetics. Four protein concentrates (expeller-extracted soybean meal, ESBM; 2 solvent-extracted soybean meals, SSBM1 and SSBM2; and casein) were incubated in a ruminal in vitro system treated with hydrazine and chloramphenicol to inhibit microbial uptake of protein degradation products. Proteins were weighed to give a range of N concentrations (from 0.15 to 3 mg of N/mL of inoculum) and incubated with 10 mL of ruminal inoculum and 5 mL of buffer; fermentations were stopped after 2 h by adding trichloroacetic acid (TCA). Proteins were analyzed for buffer-soluble N and buffer extracts were treated with TCA to determine N degraded at t=0 (FD0). The TCA supernatants were analyzed for ammonia (phenol-hypochlorite assay), total AA (TAA; OPA-F), and TAA plus oligopeptides (OPA-C) by flow injection analysis. Velocity of protein degradation was computed from extent of release of 1) ammonia plus free TAA or 2) ammonia plus free TAA and peptides. Rate of degradation (kd) was quantified using nonlinear regression of the integrated Michaelis-Menten equation. The parameters Km (Michaelis constant) and kd (Vmax/Km), where Vmax=maximum velocity, were estimated directly; kd values were adjusted (Akd) for the fraction FD0 using the equation Akd=kd-FD0/2. The OPA-C assay yielded faster degradation rates due to the contribution of peptides to the fraction degraded (overall mean=0.280/h by OPA-C and 0.219/h by OPA-F). Degradation rates for SSBM samples (0.231/h and 0.181/h) and ESBM (0.086/h) obtained by the OPA-C assay were more rapid than rates reported by the National Research Council (NRC). Both assays indicated that the 2 SSBM differed in rumen-undegradable protein (RUP) content; the more slowly degraded SSBM had RUP content (35% by OPA-C) similar to that reported by the NRC. The RUP content of ESBM (42% by OPA-C) was lower than the NRC value. Preliminary studies with 4 additional protein concentrates confirmed that accounting for peptide formation increased degradation rate; however, a trend for an interaction between assay and protein source suggested that peptide release made a smaller contribution to rate for more slowly degraded proteins. The OPA-C assay is a simple and reliable method to quantify formation of small peptides. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van den Berg, G.J.; de Goeij, J.J.; Bock, I.
1991-08-01
Copper uptake and retention were studied in primary cultures of liver parenchymal cells isolated from copper-deficient rats. Male Sprague-Dawley rats were fed a copper-deficient diet (less than 1 mg Cu/kg) for 10 wk. Copper-deficient rats were characterized by low copper concentrations in plasma and liver, anemia, low plasma ceruloplasmin oxidase activity and increased 64Cu whole-body retention. Freshly isolated liver parenchymal cells from copper-deficient rats showed a higher 64Cu influx, which was associated with a higher apparent Vmax of 45 {plus minus} 4 pmol Cu.mg protein-1.min-1 as compared with 30 {plus minus} 3 pmol Cu.mg protein-1.min-1 for cells isolated from copper-sufficientmore » rats. No significant difference in the apparent Km (approximately 30 mumol/L) was observed. Relative 64Cu efflux from cells from copper-deficient rats was significantly smaller than the efflux from cells from copper-sufficient rats after prelabeling as determined by 2-h efflux experiments. Analysis of the medium after efflux from cells from copper-deficient rats showed elevated protein-associated 64Cu, suggesting a higher incorporation of radioactive copper during metalloprotein synthesis. Effects of copper deficiency persist in primary cultures of parenchymal cells derived from copper-deficient rats, and short-term cultures of these cells offer a prospect for the study of cell biological aspects of the metabolic adaptation of the liver to copper deficiency.« less
Mahapatra, Sebabrata; Crick, Dean C.; Brennan, Patrick J.
2000-01-01
In the peptidoglycan of Mycobacterium leprae, l-alanine of the side chain is replaced by glycine. When expressed in Escherichia coli, MurC (UDP-N-acetyl-muramate:l-alanine ligase) of M. leprae showed Km and Vmax for l-alanine and glycine similar to those of Mycobacterium tuberculosis MurC, suggesting that another explanation should be sought for the presence of glycine. PMID:11073931
VizieR Online Data Catalog: Luminosity and redshift of galaxies from WISE/SDSS (Toba+, 2014)
NASA Astrophysics Data System (ADS)
Toba, Y.; Oyabu, S.; Matsuhara, H.; Malkan, M. A.; Gandhi, P.; Nakagawa, T.; Isobe, N.; Shirahata, M.; Oi, N.; Ohyama, Y.; Takita, S.; Yamauchi, C.; Yano, K.
2017-07-01
We selected 12 and 22 um flux-limited galaxies based on the WISE (Cat. II/311) and SDSS (Cat. II/294) catalogs, and these galaxies were then classified into five types according to their optical spectroscopic information in the SDSS catalog. For spectroscopically classified galaxies, we constructed the luminosity functions using the 1/Vmax method, considering the detection limit of the WISE and SDSS catalogs. (1 data file).
Computer program for the reservoir model of metabolic crossroads.
Ribeiro, J M; Juzgado, D; Crespo, E; Sillero, A
1990-01-01
A program containing 344 sentences, written in BASIC and adapted to run in personal computers (PC) has been developed to simulate the reservoir model of metabolic crossroads. The program draws the holes of the reservoir with shapes reflecting the Vmax, Km (S0.5) and cooperativity coefficients (n) of the enzymes and calculates both the actual velocities and the percentage of contribution of every enzyme to the overall removal of their common substrate.
14 CFR Appendix D to Part 23 - Wheel Spin-Up and Spring-Back Loads
Code of Federal Regulations, 2014 CFR
2014-01-01
... (0.80 may be used); F Vmax=maximum vertical force on wheel (pounds)=n j W e, where W e and n j are... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Wheel Spin-Up and Spring-Back Loads D.... D Appendix D to Part 23—Wheel Spin-Up and Spring-Back Loads D23.1 Wheel spin-up loads. (a) The...
14 CFR Appendix D to Part 23 - Wheel Spin-Up and Spring-Back Loads
Code of Federal Regulations, 2013 CFR
2013-01-01
... (0.80 may be used); F Vmax=maximum vertical force on wheel (pounds)=n j W e, where W e and n j are... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Wheel Spin-Up and Spring-Back Loads D.... D Appendix D to Part 23—Wheel Spin-Up and Spring-Back Loads D23.1 Wheel spin-up loads. (a) The...
14 CFR Appendix D to Part 23 - Wheel Spin-Up and Spring-Back Loads
Code of Federal Regulations, 2011 CFR
2011-01-01
... (0.80 may be used); F Vmax=maximum vertical force on wheel (pounds)=n j W e, where W e and n j are... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Wheel Spin-Up and Spring-Back Loads D.... D Appendix D to Part 23—Wheel Spin-Up and Spring-Back Loads D23.1 Wheel spin-up loads. (a) The...
14 CFR Appendix D to Part 23 - Wheel Spin-Up and Spring-Back Loads
Code of Federal Regulations, 2010 CFR
2010-01-01
... (0.80 may be used); F Vmax=maximum vertical force on wheel (pounds)=n j W e, where W e and n j are... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Wheel Spin-Up and Spring-Back Loads D.... D Appendix D to Part 23—Wheel Spin-Up and Spring-Back Loads D23.1 Wheel spin-up loads. (a) The...
14 CFR Appendix D to Part 23 - Wheel Spin-Up and Spring-Back Loads
Code of Federal Regulations, 2012 CFR
2012-01-01
... (0.80 may be used); F Vmax=maximum vertical force on wheel (pounds)=n j W e, where W e and n j are... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Wheel Spin-Up and Spring-Back Loads D.... D Appendix D to Part 23—Wheel Spin-Up and Spring-Back Loads D23.1 Wheel spin-up loads. (a) The...
Organic Nitrogen Utilization by Phytoplankton: The Role of Cell-Surface Deaminases
1989-06-01
Pleurochrysis carterae (Coccoll-N) is a coccolithless clone isolated by the authors from Coccoll. Emiliania huxleyi (12-1) was isolated from the Sargasso Sea...another coccolithophorid, Emiliania huxleyi from the Sargasso Sea (now 12-1, CCMP) for L-amino acid oxidase activity. No activity was found under log...acid oxidase regulation. Saturated oxidase rate constants (Vmax) are shown for Pleurochrysis isolates and one Emiliania huxleyi isolate (12-1). Nlim
Osorio, Edison; Aguilera, Carolina; Naranjo, Nelson; Marín, Marcel; Muskus, Carlos
2013-01-01
Dihydrofolate reductase (DHFR) has been used successfully as a drug target in the area of anti-bacterial, anti-cancer and anti-malarial therapy. Although this bifunctional enzyme is also a potential drug target for treatment of leishmaniasis, there have been no reports on its efficacy against Leishmania (Viannia) species. The gene encoding the bifunctional DHFR and thymidylate synthase (TS) of Le. (V.) braziliensis was isolated and expressed in E. coli. The enzyme was purified and characterized. The inhibitory effects of antifolates and four aporphine alkaloids on its activity were evaluated. The full-length gene consists of a 1560-bp open reading frame encoding a 58 kDa translated peptide containing DHFR and TS domains linked together in a single polypeptide chain. The recombinant DHFR-TS enzyme revealed Km and Vmax values of 55.35 ± 4.02 µ M (mean ± SE) and 0.02 ± 5.34 x 10 -4 µ M/min respectively for dihydrofolic acid (H₂F). The Le. braziliensis rDHFR-TS have Ki values for antimicrobial antifolates in the µM range. Methotrexate (MTX) was a more-potent inhibitor of enzymatic activity (Ki = 22.0 µM) than trimethoprim (Ki = 33 µM) and pyrimethamine (Ki = 68 µM). These Ki values are significantly lower than those obtained for the aporphine alkaloids. The results of the study show the inhibitory effect of antifolate drugs on enzymatic activity, indicating that Le. braziliensis rDHFR-TS could be a model to studying antifolate compounds as potential antiprotozoal drugs.
Boonvitthya, Nassapat; Tanapong, Phatrapan; Kanngan, Patcharaporn; Burapatana, Vorakan; Chulalaksananukul, Warawut
2012-10-01
The glucan 1,3-beta-glucosidase A gene (exgA) from Aspergillus oryzae and fused to the Saccharomyces cerevisiae signal peptide (α-factor) was expressed under the control of either a constitutive (GAP) or an inducible (AOX1) promoter in Pichia pastoris. A 1.4-fold higher extracellular enzyme activity (2 U/ml) was obtained using the AOX1 inducible expression system than with the GAP constitutive promoter (1.4 U/ml). The purified recombinant ExgA enzyme, with a yield of 10 mg protein/l culture supernatant, was about 40 kDa by SDS-PAGE analysis with a specific activity of 289 U/mg protein. The enzyme was optimally active at 35 °C and pH 5.0 and displayed a K(M) and V(max) of 0.56 mM and 10,042 μmol/(min mg protein), respectively, with p-nitrophenyl-β-D-glucopyranoside as the substrate. Moreover, it was tolerant to glucose inhibition with a K(i) of 365 mM.
NASA Astrophysics Data System (ADS)
Stock, Svenja; Köster, Moritz; Dippold, Michaela; Boy, Jens; Matus, Francisco; Merino, Carolina; Nájera, Francisco; Spielvogel, Sandra; Gorbushina, Anna; Kuzyakov, Yakov
2017-04-01
The Chilean ecosystems provide a unique study area to investigate biotic controls on soil organic matter (SOM) decomposition and mineral weathering depending on climate (from hyper arid to temperate humid). Microorganisms play a crucial role in the SOM decomposition, nutrient release and cycling. By means of extracellular enzymes microorganisms break down organic compounds and provide nutrients for plants. Soil moisture (abiotic factor) and root carbon (biotic factor providing easily available energy source for microorganisms), are important factors for microbial decomposition of SOM and show strong gradients along the investigated climatic gradient. A high input of root carbon increases microbial activity and enzyme production, and facilitates SOM breakdown and nutrient release The aim of this study was to determine the potential enzymatic SOM decomposition and nutrient release depending on root proximity and precipitation. C and N contents, δ13C and δ15N values, and kinetics (Vmax, Km) of six extracellular enzymes, responsible for C, N, and P cycles, were quantified in vertical (soil depth) and horizontal (from roots to bulk soil) gradients in two climatic regions: within a humid temperate forest and a semiarid open forest. The greater productivity of the temperate forest was reflected by higher C and N contents compared to the semiarid forest. Regression lines between δ13C and -[ln(%C)] showed a stronger isotopic fractionation from top- to subsoil at the semiarid open forest, indicating a faster SOM turnover compared to the humid temperate forest. This is the result of more favorable soil conditions (esp. temperature and smaller C/N ratios) in the semiarid forest. Depth trends of δ15N values indicated N limitation in both soils, though the limitation at the temperate site was stronger. The activity of enzymes degrading cellulose and hemicellulose increased with C content. Activity of enzymes involved in C, N and P cycles decreased from top- to subsoil and with distance to roots. Chitinase and acid phosphatase activities increased with increasing C contents and indicated a faster substrate turnover in soil under the temperate forest compared to the semiarid forest. In contrast, Tyrosin-aminopeptidase activities indicated a faster substrate turnover under semiarid forest than the temperate forest, and strongly increased with increasing N content. We conclude that the N availability and SOM turnover under semiarid open forest is higher than under humid temperate forest. The enzyme activities are depending on depth only indirectly and are driven mainly by soil C content, which is directly affected by root carbon input.
Castellano, Julen; Puente, Asier; Echeazarra, Ibon; Usabiaga, Oidui; Casamichana, David
2016-01-01
The aim of the present study is to analyse the influence of different large-sided games (LSGs) on the physical and physiological variables in under-12s (U12) and -13s (U13) soccer players. The effects of the combination of different number of players per team, 7, 9, and 11 (P7, P9, and P11, respectively) with three relative pitch areas, 100, 200, and 300 m2 (A100, A200, and A300, respectively), were analysed in this study. The variables analysed were: 1) global indicator such as total distance (TD); work:rest ratio (W:R); player-load (PL) and maximal speed (Vmax); 2) heart rate (HR) mean and time spent in different intensity zones of HR (<75%, 75–84%, 84–90% and >90%), and; 3) five absolute (<8, 8–13, 13–16 and >16 Km h-1) and three relative speed categories (<40%, 40–60% and >60% Vmax). The results support the theory that a change in format (player number and pitch dimensions) affects no similarly in the two players categories. Although it can seem that U13 players are more demanded in this kind of LSG, when the work load is assessed from a relative point of view, great pitch dimensions and/or high number of player per team are involved in the training task to the U12 players. The results of this study could alert to the coaches to avoid some types of LSGs for the U12 players such as: P11 played in A100, A200 or A300, P9 played in A200 or A300 and P7 played in A300 due to that U13>U12 in several physical and physiological variables (W:R, time spent in 84–90%HRmax, distance in 8–13 and 13–16 Km h-1 and time spent in 40–60%Vmax). These results may help youth soccer coaches to plan the progressive introduction of LSGs so that task demands are adapted to the physiological and physical development of participants. PMID:26752422
Energetic aspects of skeletal muscle contraction: implications of fiber types.
Rall, J A
1985-01-01
In this chapter fundamental energetic properties of skeletal muscles as elucidated from isolated muscle preparations are described. Implications of these intrinsic properties for the energetic characterization of different fiber types and for the understanding of locomotion have been considered. Emphasis was placed on the myriad of physical and chemical techniques that can be employed to understand muscle energetics and on the interrelationship of results from different techniques. The anaerobic initial processes which liberate energy during contraction and relaxation are discussed in detail. The high-energy phosphate (approximately P) utilized during contraction and relaxation can be distributed between actomyosin ATPase or cross-bridge cycling (70%) and the Ca2+ ATPase of the sacroplasmic reticulum (30%). Muscle shortening increases the rate of approximately P hydrolysis, and stretching a muscle during contraction suppresses the rate of approximately P hydrolysis. The economy of an isometric contraction is defined as the ratio of isometric mechanical response to energetic cost and is shown to be a fundamental intrinsic parameter describing muscle energetics. Economy of contraction varies across the animal kingdom by over three orders of magnitude and is different in different mammalian fiber types. In mammalian skeletal muscles differences in economy of contraction can be attributed mainly to differences in the specific actomyosin and Ca2+ ATPase of muscles. Furthermore, there is an inverse relationship between economy of contraction and maximum velocity of muscle shortening (Vmax) and maximum power output. This is a fundamental relationship. Muscles cannot be economical at developing and maintaining force and also exhibit rapid shortening. Interestingly, there appears to be a subtle system of unknown nature that modulates the Vmax and economy of contraction. Efficiency of a work-producing contraction is defined and contrasted to the economy of contraction. Unlike economy, maximum efficiency of work production varies little across the animal kingdom. There are difficulties associated with the measurement of maximum efficiency of contraction, and it has yet to be determined unequivocally if the maximum efficiency of contraction varies in different fiber types. The intrinsic properties of force per cross-sectional area, economy, and Vmax determine the basic energetic properties of skeletal muscles. Nonetheless, the mechanics and energetics of skeletal muscles in the body are profoundly influenced by muscle architecture, attachment of muscles to the skeleton, and motor unit organization.(ABSTRACT TRUNCATED AT 400 WORDS)
Santos-López, Gerardo; Borraz-Argüello, María T; Márquez-Domínguez, Luis; Flores-Alonso, Juan Carlos; Ramírez-Mendoza, Humberto; Priem, Bernard; Fort, Sébastien; Vallejo-Ruiz, Verónica; Reyes-Leyva, Julio; Herrera-Camacho, Irma
2017-10-01
Porcine rubulavirus (PorPV), also known as La Piedad Michoacan Virus (LPMV) causes encephalitis and reproductive failure in newborn and adult pigs, respectively. The hemagglutinin-neuraminidase (HN) glycoprotein is the most exposed and antigenic of the virus proteins. HN plays central roles in PorPV infection; i.e., it recognizes sialic acid-containing cell receptors that mediate virus attachment and penetration; in addition, its neuraminidase (sialic acid releasing) activity has been proposed as a virulence factor. This work describes the purification and characterization of PorPV HN protein (isolate PAC1). The specificity of neuraminidase is restricted to sialyl(α2,3)lactose (3SL). HN showed typical Michaelis-Menten kinetics with fetuin as substrate (km=0.029μM, Vmax=522.8nmolmin -1 mg -1 ). When 3SL was used as substrate, typical cooperative kinetics were found (S 50 =0.15μM, Vmax=154.3nmolmin -1 mg -1 ). The influenza inhibitor zanamivir inhibited the PorPV neuraminidase with IC 50 of 0.24μM. PorPV neuraminidase was activated by Ca 2+ and inhibited by nucleoside triphosphates with the level of inhibition depending on phosphorylation level. The present results open possibilities to study the role of neuraminidase in the pathogenicity of PorPV infection and its potential inhibitors. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yates, J R; Darna, M; Beckmann, J S; Dwoskin, L P; Bardo, M T
2016-01-28
Impulsivity, which can be subdivided into impulsive action and impulsive choice, is implicated as a factor underlying drug abuse vulnerability. Although previous research has shown that dopamine (DA) systems in prefrontal cortex are involved in impulsivity and substance abuse, it is not known if inherent variation in DA transporter (DAT) function contributes to impulsivity. The current study determined if individual differences in either impulsive action or impulsive choice are related to DAT function in orbitofrontal (OFC) and/or medial prefrontal cortex (mPFC). Rats were first tested both for impulsive action in a cued go/no-go task and for impulsive choice in a delay-discounting task. Following behavioral evaluation, in vitro [(3)H]DA uptake assays were performed in OFC and mPFC isolated from individual rats. Vmax in OFC, but not mPFC, was correlated with performance in the cued go/no-go task, with decreased OFC DAT function being associated with high impulsive action. In contrast, Vmax in OFC and mPFC was not correlated with performance in the delay-discounting task. The current results demonstrate that impulsive behavior in cued go/no-go performance is associated with decreased DAT function in OFC, suggesting that hyperdopaminergic tone in this prefrontal subregion mediates, at least in part, increased impulsive action. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Carvajal, Ana Karina; Rustad, Turid; Mozuraityte, Revilija; Storrø, Ivar
2009-09-09
The effect of hemoglobin (Hb) and lipid concentration, pH, temperature, and different antioxidants on heme-mediated lipid oxidation of liposomes from marine phospholipids was studied. The rate of lipid oxidation was measured by consumption of dissolved oxygen. Heme-mediated lipid oxidation at different Hb and lipid concentrations was modeled by Michaelis-Menten kinetics. The maximum rate (V(max)) for the reaction with cod and bovine Hb as a pro-oxidant was 66.2 +/- 3.4 and 56.6 +/- 3.4 microM/min, respectively. The Michaelis-Menten constant (K(m)) for the reaction with cod and bovine Hb was 0.67 +/- 0.09 and 1.2 +/- 0.2 microM, respectively. V(max) for the relationship between the oxygen uptake rate and lipid concentration was 43.2 +/- 1.5 microM/min, while the K(m) was 0.93 +/- 0.14 mg/mL. The effect of the temperature followed Arrhenius kinetics, and there was no significant difference in activation energy between cod and bovine Hb. The rate of lipid oxidation induced by bovine Hb was highest around pH 6. Ethylenediaminetetraacetic acid (EDTA) had no significant effect on heme-mediated lipid oxidation, but alpha-tocopherol and astaxanthin worked well as antioxidants. Kinetic differences were found between iron and Hb as pro-oxidants, and the efficacy of the antioxidants depended upon the pro-oxidant in the system.
Effects of metal ions on the catalytic degradation of dicofol by cellulase.
Zhai, Zihan; Yang, Ting; Zhang, Boya; Zhang, Jianbo
2015-07-01
A new technique whereby cellulase immobilized on aminated silica was applied to catalyze the degradation of dicofol, an organochlorine pesticide. In order to evaluate the performance of free and immobilized cellulase, experiments were carried out to measure the degradation efficiency. The Michaelis constant, Km, of the reaction catalyzed by immobilized cellulase was 9.16 mg/L, and the maximum reaction rate, Vmax, was 0.40 mg/L/min, while that of free cellulase was Km=8.18 mg/L, and Vmax=0.79 mg/L/min, respectively. The kinetic constants of catalytic degradation were calculated to estimate substrate affinity. Considering that metal ions may affect enzyme activity, the effects of different metal ions on the catalytic degradation efficiency were explored. The results showed that the substrate affinity decreased after immobilization. Monovalent metal ions had no effect on the reaction, while divalent metal ions had either positive or inhibitory effects, including activation by Mn2+, reversible competition with Cd2+, and irreversible inhibition by Pb2+. Ca2+ promoted the catalytic degradation of dicofol at low concentrations, but inhibited it at high concentrations. Compared with free cellulase, immobilized cellulase was affected less by metal ions. This work provided a basis for further studies on the co-occurrence of endocrine-disrupting chemicals and heavy metal ions in the environment. Copyright © 2015. Published by Elsevier B.V.
Debnam, E S; Denholm, E E; Grimble, G K
1998-08-01
The intestinal handling of dextran, an alpha-1,6-linked glucose polymer, is poor compared with starch, and some ingested dextran might therefore reach the lower small intestine. As luminal sugar up-regulates SGLT1 (sodium-dependent glucose transporter) locally, we report the effects of a dextran-enriched diet on jejunal and ileal brush border membrane (BBM) glucose uptake. Rats were maintained on a diet containing 65% maltodextrin or 32.5% maltodextrin + 32.5% dextran (10 kD or 40 kD) for 8-10 days, and the kinetics of phlorizin-sensitive [3H]-glucose uptake by purified BBM vesicles was determined. Ingestion of 40-kD but not 10-kD dextran increased Vmax for jejunal and ileal glucose uptake (+64.3% and +61.8% respectively, both P < 0.02). The transport response to 40-kD dextran was in keeping with lower levels of expired H2 at the end of the feeding period. High-performance liquid chromatography (HPLC) analysis of luminal contents indicated extensive hydrolysis of ingested dextran. Finally, 3-h jejunal exposure to 40-kD dextran in vivo increased the Vmax for glucose uptake by jejunal BBM. It is likely that increased SGLT1-mediated glucose uptake after short or longer term mucosal exposure to dextran results from luminal dextran per se or a hydrolysis product. The clinical implications of this up-regulation are discussed.
Hallifax, D; Houston, J B
2009-03-01
Mechanistic prediction of unbound drug clearance from human hepatic microsomes and hepatocytes correlates with in vivo clearance but is both systematically low (10 - 20 % of in vivo clearance) and highly variable, based on detailed assessments of published studies. Metabolic capacity (Vmax) of commercially available human hepatic microsomes and cryopreserved hepatocytes is log-normally distributed within wide (30 - 150-fold) ranges; Km is also log-normally distributed and effectively independent of Vmax, implying considerable variability in intrinsic clearance. Despite wide overlap, average capacity is 2 - 20-fold (dependent on P450 enzyme) greater in microsomes than hepatocytes, when both are normalised (scaled to whole liver). The in vitro ranges contrast with relatively narrow ranges of clearance among clinical studies. The high in vitro variation probably reflects unresolved phenotypical variability among liver donors and practicalities in processing of human liver into in vitro systems. A significant contribution from the latter is supported by evidence of low reproducibility (several fold) of activity in cryopreserved hepatocytes and microsomes prepared from the same cells, between separate occasions of thawing of cells from the same liver. The large uncertainty which exists in human hepatic in vitro systems appears to dominate the overall uncertainty of in vitro-in vivo extrapolation, including uncertainties within scaling, modelling and drug dependent effects. As such, any notion of quantitative prediction of clearance appears severely challenged.
Smith, R.L.; Ceazan, M.L.; Brooks, M.H.
1994-01-01
Addition of hydrogen or formate significantly enhanced the rate of consumption of nitrate in slurried core samples obtained from an active zone of denitrification in a nitrate-contaminated sand and gravel aquifer (Cape Cod, Mass.). Hydrogen uptake by the core material was immediate and rapid, with an apparent K(m) of 0.45 to 0.60 ??M and a V(max) of 18.7 nmol cm-3 h-1 at 30??C. Nine strains of hydrogen-oxidizing denitrifying bacteria were subsequently isolated from the aquifer. Eight of the strains grew autotrophically on hydrogen with either oxygen or nitrate as the electron acceptor. One strain grew mixotrophically. All of the isolates were capable of heterotrophic growth, but none were similar to Paracoccus denitrificans, a well-characterized hydrogen-oxidizing denitrifier. The kinetics for hydrogen uptake during denitrification were determined for each isolate with substrate depletion progress curves; the K(m)s ranged from 0.30 to 3.32 ??M, with V(max)s of 1.85 to 13.29 fmol cell-1 h-1. Because these organisms appear to be common constituents of the in situ population of the aquifer, produce innocuous end products, and could be manipulated to sequentially consume oxygen and then nitrate when both were present, these results suggest that these organisms may have significant potential for in situ bioremediation of nitrate contamination in groundwater.
Accurate mass and velocity functions of dark matter haloes
NASA Astrophysics Data System (ADS)
Comparat, Johan; Prada, Francisco; Yepes, Gustavo; Klypin, Anatoly
2017-08-01
N-body cosmological simulations are an essential tool to understand the observed distribution of galaxies. We use the MultiDark simulation suite, run with the Planck cosmological parameters, to revisit the mass and velocity functions. At redshift z = 0, the simulations cover four orders of magnitude in halo mass from ˜1011M⊙ with 8783 874 distinct haloes and 532 533 subhaloes. The total volume used is ˜515 Gpc3, more than eight times larger than in previous studies. We measure and model the halo mass function, its covariance matrix w.r.t halo mass and the large-scale halo bias. With the formalism of the excursion-set mass function, we explicit the tight interconnection between the covariance matrix, bias and halo mass function. We obtain a very accurate (<2 per cent level) model of the distinct halo mass function. We also model the subhalo mass function and its relation to the distinct halo mass function. The set of models obtained provides a complete and precise framework for the description of haloes in the concordance Planck cosmology. Finally, we provide precise analytical fits of the Vmax maximum velocity function up to redshift z < 2.3 to push for the development of halo occupation distribution using Vmax. The data and the analysis code are made publicly available in the Skies and Universes data base.
Xiao, Qiaobin; Jiang, Xiaoxu; Moore, Kyle J.; Shao, Yi; Pi, Hualiang; Dubail, Iharilalao; Charbit, Alain; Newton, Salete M.; Klebba, Phillip E.
2011-01-01
Summary We studied three Fur-regulated systems of Listeria monocytogenes: the srtB region, that encodes sortase-anchored proteins and a putative ABC transporter, and the fhu and hup operons, that produce putative ABC transporters for ferric hydroxamates and haemin (Hn)/haemoglobin (Hb), respectively. Deletion of lmo2185 in the srtB region reduced listerial [59Fe]-Hn transport, and purified Lmo2185 bound [59Fe]-Hn (KD = 12 nM), leading to its designation as a Hn/Hb binding protein (hbp2). Purified Hbp2 also acted as a hemophore, capturing and supplying Hn from the environment. Nevertheless, Hbp2 only functioned in [59Fe]-Hn transport at external concentrations less than 10 nM: at higher Hn levels its uptake occurred with equivalent affinity and rate without Hbp2. Similarly, deletion of sortase A had no effect on ferric siderophore or Hn/Hb transport at any concentration, and the srtA-independence of listerial Hn/Hb uptake distinguished it from comparable systems of Staphylococcus aureus. In the cytoplasmic membrane, the Hup transporter was specific for Hn: its lipoprotein (HupD) only showed high affinity for the iron porphyrin (KD = 26 nM). Conversely, the FhuD lipoprotein encoded by the fhu operon had broad specificity: it bound both ferric siderophores and Hn, with the highest affinity for ferrioxamine B (KD = 123 nM). Deletions of Hup permease components hupD, hupG, or hupDGC reduced Hn/Hb uptake, and complementation of ΔhupC and ΔhupG by chromosomal integration of hupC+ and hupG+ alleles on pPL2 restored growth promotion by Hn/Hb. However, ΔhupDGC did not completely eliminate [59Fe]-Hn transport, implying the existence of another cytoplasmic membrane Hn transporter. The overall KM of Hn uptake by wild-type strain EGD-e was 1 nM, and it occurred at similar rates (Vmax = 23 pMol/109 cells/min) to those of ferric siderophore transporters. In the ΔhupDBGC strain uptake occurred at a 3-fold lower rate (Vmax = 7 pMol/109 cells/min). The results show that at low (< 50 nM) levels of Hn, SrtB-dependent peptidoglycan-anchored proteins (e.g., Hbp2) bind the porphyrin, and HupDGC or another transporter completes its uptake into the cytoplasm. However, at higher concentrations Hn uptake is SrtB-independent: peptidoglycan-anchored binding proteins are dispensable because HupDGC directly absorbs and internalizes Hn. Finally, ΔhupDGC increased the LD50 of L. monocytogenes 100-fold in the mouse infection model, reiterating the importance of this system in listerial virulence. PMID:21545655
Crow, V L; Thomas, T D
1982-01-01
Two D-ketohexose 1,6-diphosphate aldolases are present in Streptococcus cremoris E8 and S. lactis C10. One aldolase, which was induced by growth on either lactose or galactose, was active with both tagatose 1,6-diphosphate (TDP) and fructose 1,6-diphosphate (FDP), having a lower Km and a higher Vmax with TDP as the substrate. This enzyme, named TDP aldolase, had properties typical of a class I aldolase, being insensitive to EDTA and showing substrate-dependent inactivation by sodium borohydride. Sodium dodecyl sulfate-gel electrophoresis indicated a subunit molecular weight of 34,500. The amino acid composition of TDP aldolase is reported. When the enzyme was incubated with either triose phosphates or FDP, the equilibrium mixture contained an FDP/TDP ratio of 6.9:1. The other aldolase, which had properties typical of a class II aldolase, showed activity with FDP but not with TDP. The intracellular TDP concentration, measured with the purified TDP aldolase, was 0.4 to 4.0 mM in cells growing on lactose or galactose and was lower (0 to 1.0 mM) in cells growing on glucose. The intracellular concentration of FDP was always higher than that of TDP. The role of ketohexose diphosphates in the regulation of end product fermentation by lactic streptococci is discussed. PMID:6807956
Effect of complete protein 4.1R deficiency on ion transportproperties of murine erythrocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivera, Alicia; De Franceschi, Lucia; Peters, Luanne L.
2006-06-02
Moderate hemolytic anemia, abnormal erythrocyte morphology(spherocytosis), and decreased membrane stability are observed in micewith complete deficiency of all erythroid protein 4.1 protein isoforms(4.1-/-; Shi TS et al., J. Clin. Invest. 103:331,1999). We have examinedthe effects of erythroid protein 4.1 (4.1R) deficiency on erythrocytecation transport and volume regulation. 4.1-/- mice exhibited erythrocytedehydration that was associated with reduced cellular K and increased Nacontent. Increased Na permeability was observed in these mice, mostlymediated by Na/H exchange with normal Na-K pump and Na-K-2Cl cotransportactivities. The Na/H exchange of 4.1-/- erythrocytes was markedlyactivated by exposure to hypertonic conditions (18.2+- 3.2 in 4.1 -/- vs.9.8 +-more » 1.3 mmol/1013 cell x h in control mice), with an abnormaldependence on osmolarity, (K0.5=417 +- 42 in 4.1 -/- vs. 460 +- 35 mOsmin control mice) suggestive of an up-regulated functional state. Whilethe affinity for internal protons was not altered (K0.5= 489.7 +- 0.7 vs.537.0+- 0.56 nM in control mice), the Vmax of the H-induced Na/H exchangeactivity was markedly elevated in 4.1-/- erythrocytes (Vmax 91.47Moderatehemolytic anemia, abnormal erythrocyte morphology (spherocytosis), anddecreased membrane stability are observed in mice with completedeficiency of all erythroid protein 4.1 protein isoforms (4.1-/-; Shi TSet al., J. Clin. Invest. 103:331,1999). We have examined the effects oferythroid protein 4.1 (4.1R) deficiency on erythrocyte cation transportand volume regulation. 4.1-/- mice exhibited erythrocyte dehydration thatwas associated with reduced cellular K and increased Na content.Increased Na permeability was observed in these mice, mostly mediated byNa/H exchange with normal Na-K pump and Na-K-2Cl cotransport activities.The Na/H exchange of 4.1-/- erythrocytes was markedly activated byexposure to hypertonic conditions (18.2 +- 3.2 in 4.1 -/- vs. 9.8 +- 1.3mmol/1013 cell x h in control mice), with an abnormal dependence onosmolarity, (K0.5=417 +- 42 in 4.1 -/- vs. 460 +- 35 mOsm in controlmice) suggestive of an up-regulated functional state. While the affinityfor internal protons was not altered (K0.5= 489.7 +- 0.7 vs. 537.0 +-0.56 nM in control mice), the Vmax of the H-induced Na/H exchangeactivity was markedly elevated in 4.1-/- erythrocytes (Vmax 91.47+-7.2compared to 46.52+-5.4 mmol/1013 cell x h in control mice). Na/H exchangeactivation by okadaic acid was absent in 4.1-/- erythrocytes. Altogether,these results suggest that erythroid protein 4.1 plays a major role involume regulation and physiologically down-regulates Na/H exchange inmouse erythrocytes. Up-regulation of the Na/H exchange is an importantcontributor to the elevated cell Na content of 4.1 -/- erythrocytes.-7.2compared to 46.52+-5.4 mmol/1013 cell x h in control mice). Na/H exchangeactivation by okadaic acid was absent in 4.1-/- erythrocytes. Altogether,these results suggest that erythroid protein 4.1 plays a major role involume regulation and physiologically down-regulates Na/H exchange inmouse erythrocytes. Up-regulation of the Na/H exchange is an importantcontributor to the elevated cell Na content of 4.1 -/-erythrocytes.« less
Bexten, Maria; Oswald, Stefan; Grube, Markus; Jia, Jia; Graf, Tanja; Zimmermann, Uwe; Rodewald, Kathrin; Zolk, Oliver; Schwantes, Ulrich; Siegmund, Werner; Keiser, Markus
2015-01-05
The cationic, water-soluble quaternary trospium chloride (TC) is incompletely absorbed from the gut and undergoes wide distribution but does not pass the blood-brain barrier. It is secreted by the kidneys, liver, and intestine. To evaluate potential transport mechanisms for TC, we measured affinity of the drug to the human uptake and efflux transporters known to be of pharmacokinetic relevance. Affinity of TC to the uptake transporters OATP1A2, -1B1, -1B3, -2B1, OCT1, -2, -3, OCTN2, NTCP, and ASBT and the efflux carriers P-gp, MRP2 and MRP3 transfected in HEK293 and MDCK2 cells was measured. To identify relevant pharmacokinetic mechanisms in the bladder urothelium, mRNA expression of multidrug transporters, drug metabolizing enzymes, and nuclear receptors, and the uptake of TC into primary human bladder urothelium (HBU) cells were measured. TC was shown to be a substrate of OATP1A2 (Km = 6.9 ± 1.3 μmol/L; Vmax = 41.6 ± 1.8 pmol/mg·min), OCT1 (Km = 106 ± 16 μmol/L; Vmax = 269 ± 18 pmol/mg·min), and P-gp (Km = 34.9 ± 7.5 μmol/L; Vmax = 105 ± 9.1 pmol/mg·min, lipovesicle assay). The genetic OATP1A2 variants *2 and *3 were loss-of-function transporters for TC. The mRNA expression analysis identified the following transporter proteins in the human urothelium: ABCB1 (P-gp), ABCC1-5 (MRP1-5), ABCG2 (BCRP), SLCO2B1 (OATP2B1), SLCO4A1 (OATP4A1), SLC22A1 (OCT1), SLC22A3 (OCT3), SLC22A4 (OCTN1), SLC22A5 (OCTN2), and SLC47A1 (MATE1). Immuno-reactive P-gp and OATP1A2 were localized to the apical cell layers. Drug metabolizing enzymes CYP3A5, -2B6, -2B7 -2E1, SULT1A1-4, UGT1A1-10, and UGT2B15, and nuclear receptors NR1H3 and NR1H4 were also expressed on mRNA level. TC was taken up into HBU cells (Km = 18.5 ± 4.8 μmol/L; Vmax = 106 ± 11.3 pmol/mg·min) by mechanisms that could be synergistically inhibited by naringin (IC50 = 10.8 (8.4; 13.8) μmol/L) and verapamil (IC50 = 4.6 (2.8; 7.5) μmol/L), inhibitors of OATP1A2 and OCT1, respectively. Affinity of TC to OCT1 and P-glycoprotein may be the reason for incomplete oral absorption, wide distribution into liver and kidneys, and substantial intestinal and renal secretions. Absence of brain distribution may result from affinity to P-gp and a low affinity to OATP1A2. The human urothelium expresses many drug transporters and drug metabolizing enzymes that may interact with TC and other drugs eliminated into the urine.
Enhanced root-to-shoot translocation of cadmium in the hyperaccumulating ecotype of Sedum alfredii
Lu, Ling-li; Tian, Sheng-ke; Yang, Xiao-e; Wang, Xiao-chang; Brown, Patrick; Li, Ting-qiang; He, Zhen-li
2008-01-01
Sedum alfredii (Crasulaceae) is the only known Cd-hyperaccumulating species that are not in the Brassica family; the mechanism of Cd hyperaccumulation in this plant is, however, little understood. Here, a combination of radioactive techniques, metabolic inhibitors, and fluorescence imaging was used to contrast Cd uptake and translocation between a hyperaccumulating ecotype (HE) and a non-hyperaccumulating ecotype (NHE) of S. alfredii. The Km of 109Cd influx into roots was similar in both ecotypes, while the Vmax was 2-fold higher in the HE. Significant inhibition of Cd uptake by low temperature or metabolic inhibitors was observed in the HE, whereas the effect was less pronounced in the NHE. 109Cd influx into roots was also significantly decreased by high Ca in both ecotypes. The rate of root-to-shoot translocation of 109Cd in the HE was >10 times higher when compared with the NHE, and shoots of the HE accumulated dramatically higher 109Cd concentrations those of the NHE. The addition of the metabolic inhibitor carbonyl cyanide m-chlorophenylhydrazone (CCCP) resulted in a significant reduction in Cd contents in the shoots of the HE, and in the roots of the NHE. Cd was distributed preferentially to the root cylinder of the HE but not the NHE, and there was a 3–5 times higher Cd concentration in xylem sap of the HE in contrast to the NHE. These results illustrate that a greatly enhanced rate of root-to-shoot translocation, possibly as a result of enhanced xylem loading, rather than differences in the rate of root uptake, was the pivotal process expressed in the Cd hyperaccumulator HE S. alfredii. PMID:18603654
Enhanced root-to-shoot translocation of cadmium in the hyperaccumulating ecotype of Sedum alfredii.
Lu, Ling-li; Tian, Sheng-ke; Yang, Xiao-e; Wang, Xiao-chang; Brown, Patrick; Li, Ting-qiang; He, Zhen-li
2008-01-01
Sedum alfredii (Crasulaceae) is the only known Cd-hyperaccumulating species that are not in the Brassica family; the mechanism of Cd hyperaccumulation in this plant is, however, little understood. Here, a combination of radioactive techniques, metabolic inhibitors, and fluorescence imaging was used to contrast Cd uptake and translocation between a hyperaccumulating ecotype (HE) and a non-hyperaccumulating ecotype (NHE) of S. alfredii. The K(m) of (109)Cd influx into roots was similar in both ecotypes, while the V(max) was 2-fold higher in the HE. Significant inhibition of Cd uptake by low temperature or metabolic inhibitors was observed in the HE, whereas the effect was less pronounced in the NHE. (109)Cd influx into roots was also significantly decreased by high Ca in both ecotypes. The rate of root-to-shoot translocation of (109)Cd in the HE was >10 times higher when compared with the NHE, and shoots of the HE accumulated dramatically higher (109)Cd concentrations those of the NHE. The addition of the metabolic inhibitor carbonyl cyanide m-chlorophenylhydrazone (CCCP) resulted in a significant reduction in Cd contents in the shoots of the HE, and in the roots of the NHE. Cd was distributed preferentially to the root cylinder of the HE but not the NHE, and there was a 3-5 times higher Cd concentration in xylem sap of the HE in contrast to the NHE. These results illustrate that a greatly enhanced rate of root-to-shoot translocation, possibly as a result of enhanced xylem loading, rather than differences in the rate of root uptake, was the pivotal process expressed in the Cd hyperaccumulator HE S. alfredii.
Renosto, F; Patel, H C; Martin, R L; Thomassian, C; Zimmerman, G; Segel, I H
1993-12-01
Two forms of ATP sulfurylase were purified from spinach leaf. The major (chloroplast) form accounts for 85 to 90% of the total leaf activity (0.03 +/- 0.01 adenosine-5'-phosphosulfate (APS) synthesis units x gram fresh weight-1). Both enzyme forms appear to be tetramers composed of 49- to 50-kDa subunits with the minor (cytosolic) form being slightly larger than the chloroplast form. The specific activities (units x milligram protein-1) of the chloroplast form at pH 8.0, 30 degrees C, were as follows: APS synthesis, 16; molybdolysis, 229; ATP synthesis, 267; selenolysis, 4.1; fluorophosphate activation, 11. Kinetic constants for the physiological reaction were as follows: KmA = 0.046 mM, K(ia) = 0.85 mM, KmB = 0.25 mM, KmQ = 0.37 microM, K(iq) = 64-85 nM, and KmP = 10 microM, where A = MgATP, B = SO4(2-), P = total PPi at 5 mM Mg2+, and Q = APS. The kinetic constants for molybdolysis were similar to those of the APS synthesis reaction. The kinetic constants of the minor (cytosol) form were similar to those of the major form with two exceptions: (a) The molybdolysis activity was 120 units x milligram protein-1, yielding a Vmax (ATP synthesis)/Vmax (molybdolysis) ratio close to 2 (compared to about unity for the chloroplast form) and (b) KmA was greater (0.24 and 0.15 mM for APS synthesis and molybdolysis, respectively). Initial velocity measurements (made over an extended range of MgATP and SO4(2-) concentrations), product inhibition studies (by initial velocity methods and by reaction progress curve analyses), dead end inhibition studies (with monovalent and divalent oxyanions), and kcat/Km comparisons (for SO4(2-) and MoO4(2-) support a random AB-ordered PQ kinetic mechanism in which MgATP and SO4(2-) bind in a highly synergistic manner. Equilibrium binding studies indicated the presence of one APS site per subunit. HPLC elution profiles of chymotryptic and tryptic peptides were essentially the same for both enzyme forms. The N-terminal sequence of residues 5-20 of the cytosol enzyme was identical to residues 1-16 of the chloroplast enzyme.
Lee, Su-Jun; Usmani, Khawja A; Chanas, Brian; Ghanayem, Burhan; Xi, Tina; Hodgson, Ernest; Mohrenweiser, Harvey W; Goldstein, Joyce A
2003-08-01
Genetic polymorphisms of cytochromes P450 (CYPs) are a principal reason for inter-individual variations in the metabolism of therapeutic drugs and environmental chemicals in humans. The present study identifies 34 single nucleotide polymorphisms (SNPs) of CYP3A5 including 27 previously unidentified SNPs by direct sequencing of the exons, intron-exon junctions and 5'-upstream region of CYP3A5 from 92 racially diverse individuals (24 Caucasians, 24 Africans, 24 Asians, and 20 individuals of unknown racial origin). Four new CYP3A5 SNPs produced coding changes: R28C, L82R, A337T, and F446S. CYP3A5 R28C occurred in African populations (allelic frequency of 4%). CYP3A5 A337T occurred in Asians (2% allelic frequency), CYP3A5 L82R (occurred in the racially unidentified group) and CYP3A5 F446S (identified in Caucasians with a 2% allelic frequency) were on an allele containing the splice change g.6986A>G known as CYP3A5*3. The newly identified allelic proteins were constructed by site-directed mutagenesis, expressed in Escherichia coli and purified. CYP3A5 L82R was expressed only as denatured CYP420, suggesting it may be unstable. CYP3A5*1 exhibited the highest maximal clearance for testosterone followed by CYP3A5 A337T > CYP3A5 R28C > CYP3A5 F446S. CYP3A5*1 exhibited a higher V(max) for nifedipine oxidation than CYP3A5 A337T > CYP3A5 R28C > CYP3A5 F446S. CYP3A5 A337T and CYP3A5 R28C exhibited a 42-64% lower V(max) for nifedipine oxidation than CYP3A5*1. CYP3A5 F446S exhibited a > 95% decrease in the intrinsic clearance for both 6beta-hydroxytestosterone and nifedipine oxidation. This study identifies four new potentially defective coding alleles. CYP3A5 F446S is predicted to be more catalytically defective than the splice change alone.
Dale, W E; Tsai, Y S; Jung, C Y; Hale, C C; Rovetto, M J; Kim, H D; Yung, C Y
1988-08-18
Stereospecific glucose transport was assayed and characterized in bovine cardiac sarcolemmal vesicles. Sarcolemmal vesicles were incubated with D-[3H]glucose or L-[3H]glucose at 25 degrees C. The reaction was terminated by rapid addition of 4 mM HgCl2 and vesicles were immediately collected on glass fiber filters for quantification of accumulated [3H]glucose. Non-specific diffusion of L-[3H]glucose was never more than 11% of total D-[3H]glucose transport into the vesicles. Stereospecific uptake of D-[3H]glucose reached a maximum level by 20 s. Cytochalasin B (50 microM) inhibited specific transport of D-[3H]glucose to the level of that for non-specific diffusion. The vesicles exhibited saturable transport (Km = 9.3 mM; Vmax = 2.6 nmol/mg per s) and the transporter turnover number was 197 glucose molecules per transporter per s. The molecular sizes of the cytochalasin B binding protein and the D-glucose transport protein in sarcolemmal vesicles were estimated by radiation inactivation. These values were 77 and 101 kDa, respectively, and by the Wilcoxen Rank Sum Test were not significantly different from each other.
Köksal, Ekrem; Gülçin, Ilhami
2008-01-01
Peroxidases (EC 1.11.1.7; donor: hydrogen peroxide oxidoreductase) are part of a large group of enzymes. In this study, peroxidase, a primer antioxidant enzyme, was purified with 19.3 fold and 0.2% efficiency from cauliflower (Brassica oleracea L.) by ammonium sulphate precipitation, dialysis, CM-Sephadex ion-exchange chromatography and Sephadex G-25 purification steps. The substrate specificity of peroxidase was investigated using 2,2'-azino-bis(3-ethylbenz-thiazoline-6-sulphonic acid) (ABTS), 2-methoxyphenol (guaiacol), 1,2-dihydroxybenzene (catechol), 1,2,3-trihyidroxybenzene (pyrogallol) and 4-methylcatechol. Also, optimum pH, optimum temperature, optimum ionic strength, stable pH, stable temperature, thermal inactivation conditions were determined for guaiacol/H(2)O(2), pyrogallol/H(2)O(2), ABTS/H(2)O(2), catechol/H(2)O(2) and 4-methyl catechol/H(2)O(2) substrate patterns. The molecular weight (M(w)) of this enzyme was found to be 44 kDa by gel filtration chromatography method. Native polyacrylamide gel electrophoresis (PAGE) was performed for isoenzyme determination and a single band was observed. K(m) and V(max) values were calculated from Lineweaver-Burk graph for each substrate patterns.
[Antibacterial activity of sulopenem, a new parenteral penem antibiotic].
Inoue, E; Komoto, E; Taniyama, Y; Mitsuhashi, S
1996-04-01
Sulopenem, a new penem antibiotic, was compared with other antibiotics with regard to in vitro antibacterial and bactericidal activities, stabilization against beta-lactamases, and effect on the release of lipopolysaccharide from Gram-negative bacteria. The results are summarized as follows. 1. Sulopenem showed more potent activities than other antibiotics against both Gram-positive and Gram-negative bacteria except Pseudomonas aeruginosa. 2. Sulopenem showed potent bactericidal activities (MIC/MBC) against both Gram-positive and Gram-negative bacteria. Time kill studies against Staphylococcus aureus, Escherichia coli, Enterobacter cloacae and Citrobacter freundii showed potent bactericidal activities of sulopenem. 3. Sulopenem was found to possess a stronger activity than other antibiotics against beta-lactamase-producing strains except P. aeruginosa and Stenotrophomonas maltophilia. 4. In particular, sulopenem was found to be more stable to the hydrolysis by various beta-lactamases produced by Gram-negative bacteria than any other antibiotics tested. Vmax/Km values of sulopenem were smaller than those of cefotiam for all tested beta-lactamases, which reflected a broad antibacterial spectrum of sulopenem. 5. E. coli ML4707 exposed to sulopenem and imipenem released less endotoxin than did controls at all concentration ranges tested. In contrast, the strain exposed to ceftazidime at bacteriostatic concentrations released a large amount of endotoxin.
The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane.
Scheller, Silvan; Goenrich, Meike; Boecher, Reinhard; Thauer, Rudolf K; Jaun, Bernhard
2010-06-03
Large amounts (estimates range from 70 Tg per year to 300 Tg per year) of the potent greenhouse gas methane are oxidized to carbon dioxide in marine sediments by communities of methanotrophic archaea and sulphate-reducing bacteria, and thus are prevented from escaping into the atmosphere. Indirect evidence indicates that the anaerobic oxidation of methane might proceed as the reverse of archaeal methanogenesis from carbon dioxide with the nickel-containing methyl-coenzyme M reductase (MCR) as the methane-activating enzyme. However, experiments showing that MCR can catalyse the endergonic back reaction have been lacking. Here we report that purified MCR from Methanothermobacter marburgensis converts methane into methyl-coenzyme M under equilibrium conditions with apparent V(max) (maximum rate) and K(m) (Michaelis constant) values consistent with the observed in vivo kinetics of the anaerobic oxidation of methane with sulphate. This result supports the hypothesis of 'reverse methanogenesis' and is paramount to understanding the still-unknown mechanism of the last step of methanogenesis. The ability of MCR to cleave the particularly strong C-H bond of methane without the involvement of highly reactive oxygen-derived intermediates is directly relevant to catalytic C-H activation, currently an area of great interest in chemistry.
Choi, Jun-Hui; Kim, Dae-Won; Park, Se-Eun; Choi, Bong-Suk; Sapkota, Kumar; Kim, Seung; Kim, Sung-Jun
2014-10-01
A thrombolytic protease named kitamase possessing anticoagulant property was purified from edible and medicinal plant Aster yomena (Kitam.) Honda. Kitamase showed a molecular weight of 50 kDa by SDS-PAGE and displayed a strong fibrin zymogram lysis band corresponding to the similar molecular mass. The enzyme was active at high temperatures (50°C). The fibrinolytic activity of kitamase was strongly inhibited by EDTA, EGTA, TPCK and PMSF, inhibited by Zn(2+). The Km and Vmax values for substrate S-2251 were determined as 4.31 mM and 23.81 mM/mg respectively. It dissolved fibrin clot directly and specifically cleaved the α, Aα and γ-γ chains of fibrin and fibrinogen. In addition, kitamase delayed the coagulation time and increased activated partial thromboplastin time and prothrombin time. Kitamase exerted a significant protective effect against collagen and epinephrine induced pulmonary thromboembolism in mice. These results suggest that kitamase may have the property of metallo-protease like enzyme, novel fibrino(geno)lytic enzyme and a potential to be a therapeutic agent for thrombosis. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Marquez-Rios, E; Pacheco-Aguilar, R; Castillo-Yañez, F J; Figueroa-Soto, C G; Ezquerra-Brauer, J M; Gollas-Galvan, T
2008-09-01
Adenosine monophosphate (AMP) deaminase was purified from jumbo squid mantle muscle by chromatography in cellulose phosphate, Q-Fast and 5'-AMP sepharose. Specific activity of 2.5U/mg protein, 4.5% recovery and 133.68 purification fold were obtained at the end of the experiment. SDS-PAGE showed a single band with 87kDa molecular mass, native PAGE proved a band of 178kDa, whereas gel filtration detected a 180kDa protein, suggesting the homodimeric nature of this enzyme, in which subunits are not linked by covalent forces. Isoelectric focusing of this enzyme showed a pI of 5.76, which agrees with pI values of AMP deaminase from other invertebrate organisms. AMP deaminase presented a kinetic sigmoidal plot with Vmax of 1.16μM/min/mg, Km of 13mM, Kcat of 3.48μM.s(-1) and a Kcat/Km of 267 (mol/L)(-1).s(-1). The apparent relative low catalytic activity of jumbo squid muscle AMP deaminase in the absence of positive effectors is similar to that reported for homologous enzymes in other invertebrate organisms. Copyright © 2008 Elsevier Ltd. All rights reserved.
Sivaprakasam, Senthilkumar; Dhandapani, Balaji; Mahadevan, Surianarayanan
2011-01-01
Treatment and safe disposal of tannery saline wastewater, a primary effluent stream that is generated by soaking salt-laden hides and skin is one of the major problems faced by the leather manufacturing industries. Conventional treatment methods like solar evaporation ponds and land composting are not eco-friendly as they deteriorate the ground water quality. Though, this waste stream is comprised of high concentration of dissolved proteins the presence of high salinity (1–6 % NaCl by wt) makes it non-biodegradable. Enzymatic treatment is one of the positive alternatives for management of such kind of waste streams. A novel salt-tolerant alkaline protease obtained from P.aeruginosa (isolated from tannery saline wastewater) was used for enzymatic degradation studies. The effect of various physical factors including pH, temperature, incubation time, protein source and salinity on the activity of identified protease were investigated. Kinetic parameters (Km , Vmax) were calculated for the identified alkaline protease at varying substrate concentrations. Tannery saline wastewater treated with identified salt tolerant protease showed 75 % protein removal at 6 h duration and 2 % (v/v) protease addition was found to be the optimum dosage value. PMID:24031785
Nishibori, Naoyoshi; Kishibuchi, Reina; Morita, Kyoji
2017-05-04
Soy pulp, called "okara" in Japanese, is known as a by-product of the production of bean curd (tofu), and expected to contain a variety of biologically active substances derived from soybean. However, the biological activities of okara ingredients have not yet been fully understood, and the effectiveness of okara as a functional food seems necessary to be further evaluated. Then the effect of okara extract on angiotensin I-converting enzyme (ACE) activity was examined in vitro, and the extract was shown to cause the inhibition of ACE activity in a manner depending on its concentration. Kinetic analysis indicated that this enzyme inhibition was accompanied by an increase in the Km value without any change in Vmax. Further studies suggested that putative inhibitory substances contained in the extract might be heat stable and dialyzable, and recovered mostly in the peptide fraction obtained by a spin-column separation and a high performance liquid chromatography (HPLC) fractionation. Therefore, the extract was speculated to contain small-size peptides responsible for the inhibitory effect of okara extract on ACE activity, and could be expected to improve the hypertensive conditions by reducing the production of hypertensive peptide.
A novel xylan degrading β-D-xylosidase: purification and biochemical characterization.
Michelin, Michele; Peixoto-Nogueira, Simone C; Silva, Tony M; Jorge, João A; Terenzi, Héctor F; Teixeira, José A; Polizeli, Maria de Lourdes T M
2012-11-01
Aspergillus ochraceus, a thermotolerant fungus isolated in Brazil from decomposing materials, produced an extracellular β-xylosidase that was purified using DEAE-cellulose ion exchange chromatography, Sephadex G-100 and Biogel P-60 gel filtration. β-xylosidase is a glycoprotein (39 % carbohydrate content) and has a molecular mass of 137 kDa by SDS-PAGE, with optimal temperature and pH at 70 °C and 3.0-5.5, respectively. β-xylosidase was stable in acidic pH (3.0-6.0) and 70 °C for 1 h. The enzyme was activated by 5 mM MnCl₂ (28 %) and MgCl₂ (20 %) salts. The β-xylosidase produced by A. ochraceus preferentially hydrolyzed p-nitrophenyl-β-D-xylopyranoside, exhibiting apparent K(m) and V(max) values of 0.66 mM and 39 U (mg protein)⁻¹ respectively, and to a lesser extent p-nitrophenyl-β-D-glucopyranoside. The enzyme was able to hydrolyze xylan from different sources, suggesting a novel β-D-xylosidase that degrades xylan. HPLC analysis revealed xylans of different compositions which allowed explaining the differences in specificity observed by β-xylosidase. TLC confirmed the capacity of the enzyme in hydrolyzing xylan and larger xylo-oligosaccharides, as xylopentaose.
de Queiroz Brito Cunha, Carolina Cândida; Gama, Aline Rodrigues; Cintra, Lorena Cardoso; Bataus, Luiz Artur Mendes; Ulhoa, Cirano José
2018-01-01
Xylanases (EC 3.2.1.8) are hydrolytic enzymes, which randomly cleave the β-1,4-linked xylose residues from xylan. The synthetic gene xynBS27 from Streptomyces sp. S27 was successfully cloned and expressed in Pichia pastoris. The full-length gene consists of 729 bp and encodes 243 amino acids including 51 residues of a putative signal peptide. This enzyme was purified in two steps and was shown to have a molecular weight of 20 kDa. The purified r-XynBS27 was active against beechwood xylan and oat spelt xylan as expected for GH 11 family. The optimum pH and temperature values for the enzyme were 6.0 and 75 °C, respectively. The Km and Vmax were 12.38 mg/mL and 13.68 μmol min/mg, respectively. The r-XynBS27 showed high xylose tolerance and was inhibited by some metal ions and by SDS. r-XynBS27 was employed as an additive in the bread making process. A decrease in firmness, stiffness and consistency, and improvements in specific volume and reducing sugar content were recorded.
Pillinger, M H; Volker, C; Stock, J B; Weissmann, G; Philips, M R
1994-01-14
Signal transduction in human neutrophils requires prenylcysteine-directed carboxyl methylation of ras-related low molecular weight GTP-binding proteins. We now report the subcellular localization and characterization of a neutrophil prenylcysteine alpha carboxyl methyltransferase. The highest carboxyl methyltransferase activity copurified with biotinylated neutrophil surface membranes, supporting a plasma membrane localization of the enzyme. Neutrophil nuclear fractions contained little or no methyltransferase activity. Methyltransferase activity was detergent-sensitive but could be reconstituted by removal of detergent in the presence of phosphatidyl choline and an anionic phospholipid. N-Acetyl-S-trans,trans-farnesyl-L-cysteine (AFC) and N-acetyl-S-all-trans-geranylgeranyl-L-cysteine (AGGC) were effective substrates for neutrophil prenylcysteine-directed methyltransferase; Vmax values for AFC and AGGC (16.4 and 22.1 pmol of methylated/mg protein/min, respectively) are among the highest yet reported. Although both GTP gamma S and the chemoattractant fMet-Leu-Phe stimulated methylation of ras-related proteins, neither affected methylation of AFC. These data suggest that neutrophil plasma membranes contain a phospholipid-dependent, prenylcysteine-directed carboxyl methyltransferase of relatively high specific activity that modifies ras-related protein substrates in the GTP-bound, activated state.
The dark side of galaxy colour
NASA Astrophysics Data System (ADS)
Hearin, Andrew P.; Watson, Douglas F.
2013-10-01
We present age distribution matching, a theoretical formalism for predicting how galaxies of luminosity L and colour C occupy dark matter haloes. Our model supposes that there are just two fundamental properties of a halo that determine the colour and brightness of the galaxy it hosts: the maximum circular velocity Vmax and the redshift zstarve that correlates with the epoch at which the star formation in the galaxy ceases. The halo property zstarve is intended to encompass physical characteristics of halo mass assembly that may deprive the galaxy of its cold gas supply and, ultimately, quench its star formation. The new, defining feature of the model is that, at fixed luminosity, galaxy colour is in monotonic correspondence with zstarve, with the larger values of zstarve being assigned redder colours. We populate an N-body simulation with a mock galaxy catalogue based on age distribution matching and show that the resulting mock galaxy distribution accurately describes a variety of galaxy statistics. Our model suggests that halo and galaxy assembly are indeed correlated. We make publicly available our low-redshift, Sloan Digital Sky Survey Mr < -19 mock galaxy catalogue, and main progenitor histories of all z = 0 haloes, at http://logrus.uchicago.edu/~aphearin
Branched-chain amino acid transport in Streptococcus mutans Ingbritt.
Dashper, S G; Reynolds, E C
1993-06-01
Leucine transport in glucose-energized cells of Streptococcus mutans exhibited Michaelis-Menten-type kinetics at low extracellular concentrations, with a K1 of 15.3 microM and a Vmax of 6.1 nmol/mg dry weight/min. At high extracellular leucine concentrations, the transmembrane diffusion of leucine was not saturable, indicating that passive diffusion becomes a significant mechanism of leucine transmembrane movement under these conditions. The proton motive force (PMF) was measured in glucose-energized cells of S. mutans and was found to have a maximum value of 126 mV at an extracellular pH (pH0) of 5.0; this decreased to 45 mV at pH0 8.0. The intracellular accumulation of leucine was significantly correlated with the magnitude of the PMF. The addition of excess isoleucine or valine caused a marked decrease in the leucine transport rate. Maximal rates of leucine transport occurred at pH0 6.0, and the rate of leucine transport was independent of the growth medium. The results suggest that there is a PMF-driven, branched-chain amino acid carrier in S. mutans with a proton: substrate stoichiometry of 1.
NASA Astrophysics Data System (ADS)
Bento, H. B. S.; de Castro, H. F.; de Oliveira, P. C.; Freitas, L.
2017-03-01
Magnetized hydrophobic polymeric particles were prepared by suspension polymerization of styrene and divinylbenzene with the addition of magnetite (Fe3O4) functionalized with oleic acid (OA). The magnetic poly(STY-co-DVB) particles were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that the magnetic polymer particles fulfill the requirements for being used as matrix in the immobilization of microbial lipase from Candida rugosa by physical adsorption. The resulted immobilized derivative presented high catalytic activity in both aqueous and non-aqueous media. A comparative study between free and immobilized lipases showed a similar biochemical behavior, but with better hydrolytic activity at a pH range of 8.0-8.5. The patterns of heat stability indicated that the immobilization process also stabilizes the enzyme by a 50-fold improvement of thermal stability parameters (thermal deactivation and half-life time). Data on olive oil hydrolytic activities indicated that the Michaelis-Menten equation can be used to adjust data so as to calculate Km and Vmax, which attained values of 1766 mM and 5870 μM g-1 min-1, respectively. Such values indicated that the immobilized system was subjected to mass transfer limitations. High operational stability (t ½=1014 h) was achieved under repetitive batch runs in ester synthesis. The results indicated that the magnetized support particles can be very promising carriers for immobilizing enzymes in biotransformation reactions.
Kalita, Bhargab; Patra, Aparup; Jahan, Shagufta; Mukherjee, Ashis K
2018-05-01
A novel apyrase from Russell's viper venom (RVV) was purified and characterized, and it was named Ruviapyrase (Russell's viper apyrase). It is a high molecular weight (79.4 kDa) monomeric glycoprotein that contains 2.4% neutral sugars and 58.4% N-linked oligosaccharides and strongly binds to Concanavalin A. The LC-MS/MS analysis did not identify any protein in NCBI protein database, nevertheless some de novo sequences of Ruviapyrase showed putative conserved domain of apyrase superfamily. Ruviapyrase hydrolysed adenosine triphosphate (ATP) to a significantly greater extent (p < .05) as compared to adenosine diphosphate (ADP); however, it was devoid of 5'-nucleotidase and phosphodiesterase activities. The Km and Vmax values for Ruviapyrase towards ATP were 2.54 μM and 615 μM of Pi released min -1 , respectively with a turnover number (Kcat) of 24,600 min -1 . Spectrofluorometric analysis demonstrated interaction of Ruviapyrase with ATP and ADP at Kd values of 0.92 nM and 1.25 nM, respectively. Ruviapyrase did not show cytotoxicity against breast cancer (MCF-7) cells and haemolytic activity, it exhibited marginal anticoagulant and strong antiplatelet activity, and dose-dependently reversed the ADP-induced platelet aggregation. The catalytic activity and platelet deaggregation property of Ruviapyrase was significantly inhibited by EDTA, DTT and IAA, and neutralized by commercial monovalent and polyvalent antivenom. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kester, M.; Ekholm, J.; Kumar, R.
1986-03-01
The modulation by exogenous inositol phosphates of the membrane Ca/sup 2 +//Mg/sup 2 +/ ATPase from saponin/EGTA lysed human erythrocytes was determined in a buffer (pH 7.6) containing histidine, 80 mM, MgCl/sub 2/, 3.3 mM, NaCl, 74 mM, KCl, 30 mM, Na/sub 2/ATP, 2.3 mM, ouabain, 0.83 mM, with variable amounts of CaCl/sub 2/ and EGTA. The ATPase assay was linear with time at 44/sup 0/C. The inositol phosphates were commercially obtained and were also prepared from /sup 32/P labeled rabbit platelet inositol phospholipids. Inositol triphosphate (IP/sub 3/) elevated the Ca/sup 2 +//Mg/sup 2 +/ ATPase activity over basal levelsmore » in a dose, time, and calcium dependent manner and were increased up to 85% of control values. Activities for the Na/sup +//K/sup +/-ATPase and a Mg/sup 2 +/ ATPase were not effected by IP/sub 3/. Ca/sup 2 +//Mg/sup 2 +/APTase activity with IP/sub 2/ or IP/sub 3/ could be synergistically elevated with calmodulin addition. The activation of the ATPase with IP/sub 3/ was calcium dependent in a range from .001 to .02 mM. The apparent Km and Vmax values were determined for IP/sub 3/ stimulated Ca/sup 2 +//Mg/sup 2 +/ ATPase.« less
Kancirová, Ivana; Jašová, Magdaléna; Waczulíková, Iveta; Ravingerová, Táňa; Ziegelhöffer, Attila; Ferko, Miroslav
2016-01-01
Objective(s): Investigation of acute effect on cellular bioenergetics provides the opportunity to characterize the possible adverse effects of drugs more comprehensively. This study aimed to investigate the changes in biochemical and biophysical properties of heart mitochondria induced by captopril and nifedipine antihypertensive treatment. Materials and Methods: Male, 12-week-old Wistar rats in two experimental models (in vivo and in vitro) were used. In four groups, the effects of escalating doses of captopril, nifedipine and combination of captopril + nifedipine added to the incubation medium (in vitro) or administered per os to rat (in vivo) on mitochondrial ATP synthase activity and membrane fluidity were monitored. Results: In the in vitro model we observed a significant inhibitory effect of treatment on the ATP synthase activity (P<0.05) with nonsignificant differences in membrane fluidity. Decrease in the value of maximum reaction rate Vmax (P<0.05) without any change in the value of Michaelis-Menten constant Km, indicative of a noncompetitive inhibition, was presented. At the in vivo level, we did not demonstrate any significant changes in the ATP synthase activity and the membrane fluidity in rats receiving captopril, nifedipine, and combined therapy. Conclusion: In vitro kinetics study revealed that antihypertensive drugs (captopril and nifedipine) directly interact with mitochondrial ATP synthase. In vivo experiment did not prove any acute effect on myocardial bioenergetics and suggest that drugs do not enter cardiomyocyte and have no direct effect on mitochondria. PMID:27482342
Ahn, Seong Kyu; Cho, Pyo Yun; Na, Byoung-Kuk; Hong, Sung-Jong; Nam, Ho-Woo; Sohn, Woon-Mok; Ardelli, Bernadette F; Park, Yun-Kyu; Kim, Tong-Soo; Cha, Seok Ho
2016-01-01
A complementary DNA (cDNA) encoding a glucose transporter of Clonorchis sinensis (CsGLUT) was isolated from the adult C. sinensis cDNA library. The open reading frame of CsGLUT cDNA consists of 1653 base pairs that encode a 550-amino acid residue protein. Hydropathy analysis suggested that CsGLUT possess 12 putative membrane-spanning domains. The Northern blot analysis result using poly(A)(+)RNA showed a strong band at ~2.1 kb for CsGLUT. When expressed in Xenopus oocytes, CsGLUT mediated the transport of radiolabeled deoxy-D-glucose in a time-dependent but sodium-independent manner. Concentration-dependency results showed saturable kinetics and followed the Michaelis-Menten equation. Nonlinear regression analyses yielded a Km value of 588.5 ± 53.0 μM and a Vmax value of 1500.0 ± 67.5 pmol/oocyte/30 min for [1,2-(3)H]2-deoxy-D-glucose. No trans-uptakes of bile acid (taurocholic acid), amino acids (tryptophan and arginine), or p-aminohippuric acid were observed. CsGLUT-mediated transport of deoxyglucose was significantly and concentration-dependently inhibited by radio-unlabeled deoxyglucose and D-glucose. 3-O-Methylglucose at 10 and 100 μM inhibited deoxyglucose uptake by ~50 % without concentration dependence. No inhibitory effects by galactose, mannose, and fructose were observed. This work may contribute to the molecular biological study of carbohydrate metabolism and new drug development of C. sinensis.
Bekler, Fatma Matpan; Pirinççioğlu, Hemşe; Güven, Reyhan Gül; Güven, Kemal
2016-01-01
Summary A thermostable and detergent-stable α-amylase from a newly isolated Anoxybacillus sp. AH1 was purified and characterized. Maximum enzyme production (1874.8 U/mL) was obtained at 24 h of incubation. The amylase was purified by using Sephadex G-75 gel filtration, after which an 18-fold increase in specific activity and a yield of 9% were achieved. The molecular mass of the purified enzyme was estimated at 85 kDa by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The optimum pH and temperature values of the enzyme were 7.0 and 60 °C, respectively. The enzyme was highly stable in the presence of 30% glycerol, retaining 85% of its original activity at 60 °C within 120 min. Km and vmax values were 0.102 µmol and 0.929 µmol/min, respectively, using Lineweaver-Burk plot. The enzyme activity was increased by various detergents, but it was significantly inhibited in the presence of urea. Mg2+ and Ca2+ also significantly activated α-amylase, while Zn2+, Cu2+ and metal ion chelators ethylenediaminetetraacetic acid (EDTA) and 1,10-phenanthroline (phen) greatly inhibited the enzyme activity. α-Amylase activity was enhanced by β-mercaptoethanol (β-ME) and dithiothreitol (DTT) to a great extent, but inhibited by p-chloromercuribenzoic acid (PCMB). Iodoacetamide (IAA) and N-ethylmaleimide (NEM) had a slight, whereas phenylmethylsulfonyl fluoride (PMSF) had a strong inhibitory effect on the amylase activity. PMID:27904395
Biochemical characterization of recombinant mevalonate kinase from Bacopa monniera.
Kumari, Uma; Vishwakarma, Rishi K; Sonawane, Prashant; Abbassi, Shakeel; Khan, Bashir M
2015-01-01
Mevalonate kinase (MK; ATP: mevalonate 5-phosphotransferase; EC 2.7.1.36) plays a key role in isoprenoid biosynthetic pathway in plants. MK catalyzes the phosphorylation of mevalonate to form mevalonate-5-phosphate. The recombinant BmMK was cloned and over-expressed in E. coli BL21 (DE3), and purified to homogeneity by affinity chromatography followed by gel filtration. Optimum pH and temperature for forward reaction was found to be 7.0 and 30 °C, respectively. The enzyme was most stable at pH 8 at 25 °C with deactivation rate constant (Kd*) 1.398 × 10(-4) and half life (t1/2) 49 h. pH activity profile of BmMK indicates the involvement of carboxylate ion, histidine, lysine, arginine or aspartic acid at the active site of enzyme. Activity of recombinant BmMK was confirmed by phosphorylation of RS-mevalonate in the presence of Mg(2+), having Km and Vmax 331.9 μM and 719.1 pKat μg(-1), respectively. The values of kcat and kcat/Km for RS-mevalonate were determined to be 143.82 s(-1) and 0.43332 M(-1) s(-1) and kcat and kcat/Km values for ATP were found 150.9 s(-1) and 1.023 M(-1) s(-1). The metal ion studies suggested that BmMK is a metal dependent enzyme and highly active in the presence of MgCl2. Copyright © 2014 Elsevier B.V. All rights reserved.
Bacopa monniera recombinant mevalonate diphosphate decarboxylase: Biochemical characterization.
Abbassi, Shakeel J; Vishwakarma, Rishi K; Patel, Parth; Kumari, Uma; Khan, Bashir M
2015-08-01
Mevalonate diphosphate decarboxylase (MDD; EC 4.1.1.33) is an important enzyme in the mevalonic acid pathway catalyzing the Mg(2+)-ATP dependant decarboxylation of mevalonate 5-diphosphate (MVAPP) to isopentenyl diphosphate (IPP). Bacopa monniera recombinant MDD (BmMDD) protein was overexpressed in Escherichia coli BL21 (DE3) strain and purified to apparent homogeneity. Km and Vmax for MVAPP were 144 μM and 52 U mg(-1) respectively. The values of turnover (kcat) and kcat/Km for mevalonate 5-diphosphate were determined to be 40s(-1) and 2.77×10(5) M(-1) s(-1) and kcat and kcat/Km values for ATP were found to be 30 s(-1) and 2.20×10(4) M(-1) s(-1), respectively. pH activity profile indicated the involvement of carboxylate ion, lysine and arginine for the activity of enzyme. The apparent activation energy for the BmMDD catalyzed reaction was 12.7 kJ mol(-1). Optimum pH and temperature for the forward reaction was found to be 8.0 and 45 °C. The enzyme was most stable at pH 7 at 20 °C with the deactivation rate constant (Kd(*)) of 1.69×10(-4) and half life (t1/2) of 68 h. The cation studies suggested that BmMDD is a cation dependant enzyme and optimum activity was achieved in the presence of Mg(2+). Copyright © 2015 Elsevier B.V. All rights reserved.