Upstream proton cyclotron waves at Venus near solar maximum
NASA Astrophysics Data System (ADS)
Delva, M.; Bertucci, C.; Volwerk, M.; Lundin, R.; Mazelle, C.; Romanelli, N.
2015-01-01
magnetometer data of Venus Express are analyzed for the occurrence of waves at the proton cyclotron frequency in the spacecraft frame in the upstream region of Venus, for conditions of rising solar activity. The data of two Venus years up to the time of highest sunspot number so far (1 Mar 2011 to 31 May 2012) are studied to reveal the properties of the waves and the interplanetary magnetic field (IMF) conditions under which they are observed. In general, waves generated by newborn protons from exospheric hydrogen are observed under quasi- (anti)parallel conditions of the IMF and the solar wind velocity, as is expected from theoretical models. The present study near solar maximum finds significantly more waves than a previous study for solar minimum, with an asymmetry in the wave occurrence, i.e., mainly under antiparallel conditions. The plasma data from the Analyzer of Space Plasmas and Energetic Atoms instrument aboard Venus Express enable analysis of the background solar wind conditions. The prevalence of waves for IMF in direction toward the Sun is related to the stronger southward tilt of the heliospheric current sheet for the rising phase of Solar Cycle 24, i.e., the "bashful ballerina" is responsible for asymmetric background solar wind conditions. The increase of the number of wave occurrences may be explained by a significant increase in the relative density of planetary protons with respect to the solar wind background. An exceptionally low solar wind proton density is observed during the rising phase of Solar Cycle 24. At the same time, higher EUV increases the ionization in the Venus exosphere, resulting in higher supply of energy from a higher number of newborn protons to the wave. We conclude that in addition to quasi- (anti)parallel conditions of the IMF and the solar wind velocity direction, the higher relative density of Venus exospheric protons with respect to the background solar wind proton density is the key parameter for the higher number of observable proton cyclotron waves near solar maximum.
Rogue wave solutions for the infinite integrable nonlinear Schrödinger equation hierarchy.
Ankiewicz, A; Akhmediev, N
2017-07-01
We present rogue wave solutions of the integrable nonlinear Schrödinger equation hierarchy with an infinite number of higher-order terms. The latter include higher-order dispersion and higher-order nonlinear terms. In particular, we derive the fundamental rogue wave solutions for all orders of the hierarchy, with exact expressions for velocities, phase, and "stretching factors" in the solutions. We also present several examples of exact solutions of second-order rogue waves, including rogue wave triplets.
The electrocardiogram of athletes Comparison with untrained subjects1
Van Ganse, W.; Versee, L.; Eylenbosch, W.; Vuylsteek, K.
1970-01-01
The resting electrocardiograms of 30 cyclists currently involved in competitive sport were compared with those of an equal number of healthy controls matched for age, height, and weight. The cyclists had significantly lower heart rates, longer PQ,QRS, and QTc intervals, higher T waves in lead II, left axis deviation of the T wave, higher R waves in the right and deeper S waves in the left praecordial leads, and deeper S waves in the right and higher R waves in the left praecordial leads. The possible significance of these findings should be assessed by prolonged prospective studies in athletes and untrained control subjects. PMID:4245411
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Woo-Pyo; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180–3590
The influence of electron spin-interaction on the propagation of the electrostatic space-charge quantum wave is investigated in a cylindrically bounded quantum plasma. The dispersion relation of the space-charge quantum electrostatic wave is derived including the influence of the electron spin-current in a cylindrical waveguide. It is found that the influence of electron spin-interaction enhances the wave frequency for large wave number regions. It is shown that the wave frequencies with higher-solution modes are always smaller than those with lower-solution modes in small wave number domains. In addition, it is found that the wave frequency increases with an increase of themore » radius of the plasma cylinder as well as the Fermi wave number. We discuss the effects due to the quantum and geometric on the variation of the dispersion properties of the space-charge plasma wave.« less
Experimental investigation of the Peregrine Breather of gravity waves on finite water depth
NASA Astrophysics Data System (ADS)
Dong, G.; Liao, B.; Ma, Y.; Perlin, M.
2018-06-01
A series of laboratory experiments were performed to study the Peregrine Breather (PB) evolution in a wave flume of finite depth and deep water. Experimental cases were selected with water depths k0h (k0 is the wave number and h is the water depth) varying from 3.11 to 8.17 and initial steepness k0a0 (a0 is the background wave amplitude) in the range 0.06 to 0.12, and the corresponding initial Ursell number in the range 0.03 to 0.061. Experimental results indicate that the water depth plays an important role in the formation of the extreme waves in finite depth; the maximum wave amplification of the PB packets is also strongly dependent on the initial Ursell number. For experimental cases with the initial Ursell number larger than 0.05, the maximum crest amplification can exceed three. If the initial Ursell number is nearly 0.05, a shorter propagation distance is needed for maximum amplification of the height in deeper water. A time-frequency analysis using the wavelet transform reveals that the energy of the higher harmonics is almost in-phase with the carrier wave. The contribution of the higher harmonics to the extreme wave is significant for the cases with initial Ursell number larger than 0.05 in water depth k0h < 5.0. Additionally, the experimental results are compared with computations based on both the nonlinear Schrödinger (NLS) equation and the Dysthe equation, both with a dissipation term. It is found that both models with a dissipation term can predict the maximum amplitude amplification of the primary waves. However, the Dysthe equation also can predict the group horizontal asymmetry.
The elevation, slope, and curvature spectra of a wind roughened sea surface
NASA Technical Reports Server (NTRS)
Pierson, W. J., Jr.; Stacy, R. A.
1973-01-01
The elevation, slope and curvature spectra are defined as a function of wave number and depend on the friction velocity. There are five wave number ranges of definition called the gravity wave-gravity equilibrium range, the isotropic turbulence range, the connecting range due to Leykin Rosenberg, the capillary range, and the viscous cutoff range. The higher wave number ranges are strongly wind speed dependent, and there is no equilibrium (or saturated) capillary range, at least for winds up to 30 meters/sec. Some properties of the angular variation of the spectra are also found. For high wave numbers, especially in the capillary range, the results are shown to be consistent with the Rayleigh-Rice backscattering theory (Bragg scattering), and certain properties of the angular variation are deduced from backscatter measurements.
Magnetic dynamo action in two-dimensional turbulent magneto-hydrodynamics
NASA Technical Reports Server (NTRS)
Fyfe, D.; Joyce, G.; Montgomery, D.
1976-01-01
Two-dimensional magnetohydrodynamic turbulence is explored by means of numerical simulation. Previous analytical theory, based on non-dissipative constants of the motion in a truncated Fourier representation, is verified by following the evolution of highly non-equilibrium initial conditions numerically. Dynamo action (conversion of a significant fraction of turbulent kinetic energy into long-wavelength magnetic field energy) is observed. It is conjectured that in the presence of dissipation and external forcing, a dual cascade will be observed for zero-helicity situations. Energy will cascade to higher wave numbers simultaneously with a cascade of mean square vector potential to lower wave numbers, leading to an omni-directional magnetic energy spectrum which varies as 1/k 3 at lower wave numbers, simultaneously with a buildup of magnetic excitation at the lowest wave number of the system. Equipartition of kinetic and magnetic energies is expected at the highest wave numbers in the system.
Damping of quasi-two-dimensional internal wave attractors by rigid-wall friction
NASA Astrophysics Data System (ADS)
Beckebanze, F.; Brouzet, C.; Sibgatullin, I. N.; Maas, L. R. M.
2018-04-01
The reflection of internal gravity waves at sloping boundaries leads to focusing or defocusing. In closed domains, focusing typically dominates and projects the wave energy onto 'wave attractors'. For small-amplitude internal waves, the projection of energy onto higher wave numbers by geometric focusing can be balanced by viscous dissipation at high wave numbers. Contrary to what was previously suggested, viscous dissipation in interior shear layers may not be sufficient to explain the experiments on wave attractors in the classical quasi-2D trapezoidal laboratory set-ups. Applying standard boundary layer theory, we provide an elaborate description of the viscous dissipation in the interior shear layer, as well as at the rigid boundaries. Our analysis shows that even if the thin lateral Stokes boundary layers consist of no more than 1% of the wall-to-wall distance, dissipation by lateral walls dominates at intermediate wave numbers. Our extended model for the spectrum of 3D wave attractors in equilibrium closes the gap between observations and theory by Hazewinkel et al. (2008).
Anisotropy in MHD turbulence due to a mean magnetic field
NASA Technical Reports Server (NTRS)
Shebalin, J. V.; Matthaeus, W. H.; Montgomery, D.
1982-01-01
The development of anisotropy in an initially isotropic spectrum is studied numerically for two-dimensional magnetohydrodynamic turbulence. The anisotropy develops due to the combined effects of an externally imposed dc magnetic field and viscous and resistive dissipation at high wave numbers. The effect is most pronounced at high mechanical and magnetic Reynolds numbers. The anisotropy is greater at the higher wave numbers.
Self-injection of electrons in a laser-wakefield accelerator by using longitudinal density ripple
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahiya, Deepak; Sharma, A. K.; Sajal, Vivek
By introducing a longitudinal density ripple (periodic modulation in background plasma density), we demonstrate self-injection of electrons in a laser-wakefield accelerator. The wakefield driven plasma wave, in presence of density ripple excites two side band waves of same frequency but different wave numbers. One of these side bands, having smaller phase velocity compared to wakefield driven plasma wave, preaccelerates the background plasma electrons. Significant number of these preaccelerated electrons get trapped in the laser-wakefield and further accelerated to higher energies.
Heat Wave Changes in the Eastern Mediterranean since 1960
NASA Astrophysics Data System (ADS)
Kuglitsch, Franz G.; Toreti, Andrea; Xoplaki, Elena; Della-Marta, Paul M.; Zerefos, Christos S.; Türkes, Murat; Luterbacher, Jürg
2010-05-01
Heat waves have discernible impacts on mortality and morbidity, infrastructure, agricultural resources, the retail industry, ecosystem and tourism and consequently affect human societies. A new definition of socially relevant heat waves is presented and applied to new data sets of high-quality homogenized daily maximum and minimum summer air temperature series from 246 stations in the eastern Mediterranean region (including Albania, Bosnia-Herzegovina, Bulgaria, Croatia, Cyprus, Greece, Israel, Romania, Serbia, Slovenia, Turkey). Changes in heat wave number, length and intensity between 1960 and 2006 are quantified. Daily temperature homogeneity analysis suggest that many instrumental measurements in the 1960s are warm-biased, correcting for these biases regionally averaged heat wave trends are up to 8% higher. We find significant changes across the western Balkans, southwestern and western Turkey, and along the southern Black Sea coastline. Since the 1960s, the mean heat wave intensity, heat wave length and heat wave number across the eastern Mediterranean region have increased by a factor 7.6 ±1.3, 7.5 ±1.3 and 6.2 ±1.1, respectively. These findings suggest that the heat wave increase in this region is higher than previously reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588
The dispersion relation and the dissipation process of the space-charge wave propagating in a bounded plasma such as a cylindrical waveguide are investigated by employing the longitudinal dielectric permittivity that contains the diffusivity based on the Dupree theory of turbulent plasma. We derived the dispersion relation for space-charge wave in terms of the radius of cylindrical waveguide and the roots of the Bessel function of the first kind which appears as the boundary condition. We find that the wave frequency for a lower-order root of the Bessel function is higher than that of a higher-order root. We also find thatmore » the dissipation is greatest for the lowest-order root, but it is suppressed significantly as the order of the root increases. The wave frequency and the dissipation process are enhanced as the radius of cylindrical waveguide increases. However, they are always smaller than the case of bulk plasma. We find that the diffusivity of turbulent plasma would enhance the damping of space-charge waves, especially, in the range of small wave number. For a large wave number, the diffusivity has little effect on the damping.« less
Bifurcation of space-charge wave in a plasma waveguide including the wake potential effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr
The wake potential effects on the propagation of the space-charge dust ion-acoustic wave are investigated in a cylindrically bounded dusty plasma with the ion flow. The results show that the wake potential would generate the double frequency modes in a cylindrically bounded dusty plasma. It is found that the upper mode of the wave frequency with the root of higher-order is smaller than that with the root of lower-order in intermediate wave number domains. However, the lower mode of the scaled wave frequency with the root of higher-order is found to be greater than that with the root of lower-order.more » It is found that the influence in the order of the root of the Bessel function on the wave frequency of the space-charge dust-ion-acoustic wave in a cylindrically confined dusty plasma decreases with an increase in the propagation wave number. It is also found that the double frequency modes increase with increasing Mach number due to the ion flow in a cylindrical dusty plasma. In addition, it is found that the upper mode of the group velocity decreases with an increase in the scaled radius of the plasma cylinder. However, it is shown that the lower mode of the scaled group velocity of the space-charge dust ion acoustic wave increases with an increase in the radius of the plasma cylinder. The variation of the space-charge dust-ion-acoustic wave due to the wake potential and geometric effects is also discussed.« less
NASA Astrophysics Data System (ADS)
Mishra, Rinku; Dey, M.
2018-04-01
An analytical model is developed that explains the propagation of a high frequency electrostatic surface wave along the interface of a plasma system where semi-infinite electron-ion plasma is interfaced with semi-infinite dusty plasma. The model emphasizes that the source of such high frequency waves is inherent in the presence of ion acoustic and dust ion acoustic/dust acoustic volume waves in electron-ion plasma and dusty plasma region. Wave dispersion relation is obtained for two distinct cases and the role of plasma parameters on wave dispersion is analyzed in short and long wavelength limits. The normalized surface wave frequency is seen to grow linearly for lower wave number but becomes constant for higher wave numbers in both the cases. It is observed that the normalized frequency depends on ion plasma frequencies when dust oscillation frequency is neglected.
One-Hertz Waves at Mars: MAVEN Observations
NASA Astrophysics Data System (ADS)
Ruhunusiri, Suranga; Halekas, J. S.; Espley, J. R.; Eparvier, F.; Brain, D.; Mazelle, C.; Harada, Y.; DiBraccio, G. A.; Thiemann, E. M. B.; Larson, D. E.; Mitchell, D. L.; Jakosky, B. M.; Sulaiman, A. H.
2018-05-01
We perform a survey of 1-Hz waves at Mars utilizing Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft observations for a Martian year. We find that the 1-Hz wave occurrence rate shows an apparent variation caused by masking of the waves by background turbulence during the times when the background turbulence levels are high. To correct for this turbulence masking, we select waves that occur in time intervals where the background turbulence levels are low. We find that the extreme ultraviolet flux does not affect the wave occurrence rate significantly, suggesting that the newly born pickup ions originating in the Mars's exosphere contribute minimally to the 1-Hz wave generation. We find that the wave occurrence rates are higher for low Mach numbers and low beta values than for high Mach numbers and high beta values. Further, we find that a high percentage of 1-Hz waves satisfy the group-standing condition, which suggests that a high percentage of the waves seen as monochromatic waves in the spacecraft frame can be broadband waves in the solar wind frame that have group velocities nearly equal and opposite to the solar wind velocity. We infer that the wave occurrence rate trends with the Mach number and proton beta are a consequence of how the Mach numbers and beta values influence the wave generation and damping or how those parameters affect the group-standing condition. Finally, we find that the 1-Hz waves are equally likely to be found in both the quasi-parallel and the quasi-perpendicular foreshock regions.
NASA Astrophysics Data System (ADS)
Guryanov, V. V.; Eliseev, A. V.; Mokhov, I. I.; Perevedentsev, Yu. P.
2018-03-01
An analysis of spectra of wave disturbances with zonal wave numbers 1 ≤ k ≤ 10 is carried out using winter (November to March) ERA-Interim reanalysis geopotential data in the troposphere and stratosphere for 1979-2016. Contributions of eastward-traveling ( E), westward-traveling ( W), and stationary ( S) waves are estimated. The intensification of wave activity is observed in the tropical troposphere and stratosphere and in the upper stratosphere of the entire Northern Hemisphere. The intensification of wave activity in the tropics and subtropics is noted for waves of all types ( E, W, and S), while in the middle and higher latitudes it is related mainly to stationary and eastward waves. Near the subtropical tropopause, the energy of stationary waves has increased in recent decades. In addition, in the tropical and subtropical troposphere and in the subtropical lower stratosphere, the energy of the eastward-traveling waves in El Niño years may be one and a half times or twice the energy in La Niña years. The spectrally weighted zonal wave numbers for waves of all types ( E, W, and S) are the largest in the upper subtropical troposphere. The spectrally weighted zonal wave number for W and S waves is correlated with the Atlantic Multidecadal Oscillation index and varies by 15% in 1979-2016 (on an interdecadal time scale). The spectrally weighted wave period is larger in the stratosphere than in the troposphere. It is maximal in the middle extratropical stratosphere. The spectrally weighted wave periods correlate with the activity of sudden stratospheric warmings. The sign of this correlation depends on the latitude, atmospheric layer, and zonal wave number.
NASA Astrophysics Data System (ADS)
Misra, A. P.; Chowdhury, A. Roy; Paul, S. N.
2004-09-01
Characteristic features of low frequency transverse wave propagating in a magnetised dusty plasma have been analysed considering the effect of dust-charge fluctu- ation. The distinctive behaviours of both the left circularly polarised and right circularly polarised waves have been exhibited through the analysis of linear and non-linear disper- sion relations. The phase velocity, group velocity, and group travel time for the waves have been obtained and their propagation characteristics have been shown graphically with the variations of wave frequency, dust density and amplitude of the wave. The change in non-linear wave number shift and Faraday rotation angle have also been exhibited with respect to the plasma parameters. It is observed that the effects of dust particles are significant only when the higher order contributions are considered. This may be referred to as the `dust regime' in plasma.
NASA Astrophysics Data System (ADS)
Zammert, Stefan; Eckhardt, Bruno
2017-02-01
The transition to turbulence in plane Poiseuille flow (PPF) is connected with the presence of exact coherent structures. We here discuss a variety of different structures that are relevant for the transition, compare the critical Reynolds numbers and optimal wavelengths for their appearance, and explore the differences between flows operating at constant mass flux or at constant pressure drop. The Reynolds numbers quoted here are based on the mean flow velocity and refer to constant mass flux. Reynolds numbers based on constant pressure drop are always higher. The Tollmien-Schlichting (TS) waves bifurcate subcritically from the laminar profile at Re = 5772 at wavelength 6.16 and reach down to Re = 2610 at a different optimal wave length of 4.65. Their streamwise localised counter part bifurcates at the even lower value Re = 2334. Three-dimensional exact solutions appear at much lower Reynolds numbers. We describe one exact solutions that has a critical Reynolds number of 316. Streamwise localised versions of this state require higher Reynolds numbers, with the lowest bifurcation occurring near Re = 1018. The analysis shows that the various branches of TS-waves cannot be connected with transition observed near Re ≈ 1000 and that the exact coherent structures related to downstream vortices come in at lower Reynolds numbers and prepare for the transition.
2012-01-01
Background To simplify clinical scale lymphocyte expansions, we investigated the use of the WAVE®, a closed system bioreactor that utilizes active perfusion to generate high cell numbers in minimal volumes. Methods We have developed an optimized rapid expansion protocol for the WAVE bioreactor that produces clinically relevant numbers of cells for our adoptive cell transfer clinical protocols. Results TIL and genetically modified PBL were rapidly expanded to clinically relevant scales in both static bags and the WAVE bioreactor. Both bioreactors produced comparable numbers of cells; however the cultures generated in the WAVE bioreactor had a higher percentage of CD4+ cells and had a less activated phenotype. Conclusions The WAVE bioreactor simplifies the process of rapidly expanding tumor reactive lymphocytes under GMP conditions, and provides an alternate approach to cell generation for ACT protocols. PMID:22475724
Smoothed-particle-hydrodynamics modeling of dissipation mechanisms in gravity waves.
Colagrossi, Andrea; Souto-Iglesias, Antonio; Antuono, Matteo; Marrone, Salvatore
2013-02-01
The smoothed-particle-hydrodynamics (SPH) method has been used to study the evolution of free-surface Newtonian viscous flows specifically focusing on dissipation mechanisms in gravity waves. The numerical results have been compared with an analytical solution of the linearized Navier-Stokes equations for Reynolds numbers in the range 50-5000. We found that a correct choice of the number of neighboring particles is of fundamental importance in order to obtain convergence towards the analytical solution. This number has to increase with higher Reynolds numbers in order to prevent the onset of spurious vorticity inside the bulk of the fluid, leading to an unphysical overdamping of the wave amplitude. This generation of spurious vorticity strongly depends on the specific kernel function used in the SPH model.
Hindmarsh, Mark
2018-02-16
A model for the acoustic production of gravitational waves at a first-order phase transition is presented. The source of gravitational radiation is the sound waves generated by the explosive growth of bubbles of the stable phase. The model assumes that the sound waves are linear and that their power spectrum is determined by the characteristic form of the sound shell around the expanding bubble. The predicted power spectrum has two length scales, the average bubble separation and the sound shell width when the bubbles collide. The peak of the power spectrum is at wave numbers set by the sound shell width. For a higher wave number k, the power spectrum decreases to k^{-3}. At wave numbers below the inverse bubble separation, the power spectrum goes to k^{5}. For bubble wall speeds near the speed of sound where these two length scales are distinguished, there is an intermediate k^{1} power law. The detailed dependence of the power spectrum on the wall speed and the other parameters of the phase transition raises the possibility of their constraint or measurement at a future space-based gravitational wave observatory such as LISA.
NASA Astrophysics Data System (ADS)
Hindmarsh, Mark
2018-02-01
A model for the acoustic production of gravitational waves at a first-order phase transition is presented. The source of gravitational radiation is the sound waves generated by the explosive growth of bubbles of the stable phase. The model assumes that the sound waves are linear and that their power spectrum is determined by the characteristic form of the sound shell around the expanding bubble. The predicted power spectrum has two length scales, the average bubble separation and the sound shell width when the bubbles collide. The peak of the power spectrum is at wave numbers set by the sound shell width. For a higher wave number k , the power spectrum decreases to k-3. At wave numbers below the inverse bubble separation, the power spectrum goes to k5. For bubble wall speeds near the speed of sound where these two length scales are distinguished, there is an intermediate k1 power law. The detailed dependence of the power spectrum on the wall speed and the other parameters of the phase transition raises the possibility of their constraint or measurement at a future space-based gravitational wave observatory such as LISA.
Flow of a falling liquid curtain onto a moving substrate
NASA Astrophysics Data System (ADS)
Liu, Yekun; Itoh, Masahiro; Kyotoh, Harumichi
2017-10-01
In this study, we investigate a low-Weber-number flow of a liquid curtain bridged between two vertical edge guides and the upper surface of a moving substrate. Surface waves are observed on the liquid curtain, which are generated due to a large pressure difference between the inner and outer region of the meniscus on the substrate, and propagate upstream. They are categorized as varicose waves that propagate upstream on the curtain and become stationary because of the downstream flow. The Kistler’s equation, which governs the flow in thin liquid curtains, is solved under the downstream boundary conditions, and the numerical solutions are studied carefully. The solutions are categorized into three cases depending on the boundary conditions. The stability of the varicose waves is also discussed as wavelets were observed on these waves. The two types of modes staggered and peak-valley patterns are considered in the present study, and they depend on the Reynolds number, the Weber number, and the amplitude of the surface waves. The former is observed in our experiment, while the latter is predicted by our calculation. Both the types of modes can be derived using the equations with periodic coefficients that originated from the periodic base flow due to the varicose waves. The stability analysis of the waves shows that the appearance of the peak-valley pattern requires a significantly greater amplitude of the waves, and a significantly higher Weber number and Reynolds number compared to the condition in which the staggered pattern is observed.
Evolution and transition mechanisms of internal swirling flows with tangential entry
NASA Astrophysics Data System (ADS)
Wang, Yanxing; Wang, Xingjian; Yang, Vigor
2018-01-01
The characteristics and transition mechanisms of different states of swirling flow in a cylindrical chamber have been numerically investigated using the Galerkin finite element method. The effects of the Reynolds number and swirl level were examined, and a unified theory connecting different flow states was established. The development of each flow state is considered as a result of the interaction and competition between basic mechanisms: (1) the centrifugal effect, which drives an axisymmetric central recirculation zone (CRZ); (2) flow instabilities, which develop at the free shear layer and the central solid-body rotating flow; (3) the bouncing and restoring effects of the injected flow, which facilitate the convergence of flow on the centerline and the formation of bubble-type vortex breakdown; and (4) the damping effect of the end-induced flow, which suppresses the development of the instability waves. The results show that the CRZ, together with the free shear layer on its surface, composes the basic structure of swirling flow. The development of instability waves produces a number of discrete vortex cores enclosing the CRZ. The azimuthal wave number is primarily determined by the injection angle. Generally, the wave number is smaller at a higher injection angle, due to the reduction of the perimeter of the free shear layer. At the same time, the increase in the Reynolds number facilitates the growth of the wave number. The end-induced flow tends to reduce the wave number near the head end and causes a change in wave number from the head end to the downstream region. Spiral-type vortex breakdown can be considered as a limiting case at a high injection angle, with a wave number equal to 0 near the head end and equal to 1 downstream. At lower Reynolds numbers, the bouncing and restoring effect of the injected flow generates bubble-type vortex breakdown.
The Use of Steady and Unsteady Detonation Waves for Propulsion Systems
NASA Technical Reports Server (NTRS)
Adelman, Henry G.; Menees, Gene P.; Cambier, Jean-Luc; Bowles, Jeffrey V.; Cavolowsky, John A. (Technical Monitor)
1995-01-01
Detonation wave enhanced supersonic combustors such as the Oblique Detonation Wave Engine (ODWE) are attractive propulsion concepts for hypersonic flight. These engines utilize detonation waves to enhance fuel-air mixing and combustion. The benefits of wave combustion systems include shorter and lighter engines which require less cooling and generate lower internal drag. These features allow air-breathing operation at higher Mach numbers than the diffusive burning scramjet delaying the need for rocket engine augmentation. A comprehensive vehicle synthesis code has predicted the aerodynamic characteristics and structural size and weight of a typical single-stage-to-orbit vehicle using an ODWE. Other studies have focused on the use of unsteady or pulsed detonation waves. For low speed applications, pulsed detonation engines (PDE) have advantages in low weight and higher efficiency than turbojets. At hypersonic speeds, the pulsed detonations can be used in conjunction with a scramjet type engine to enhance mixing and provide thrust augmentation.
Theoretical Calculations of Supersonic Wave Drag at Zero Lift for a Particular Store Arrangement
NASA Technical Reports Server (NTRS)
Margolis, Kenneth; Malvestuto, Frank S , Jr; Maxie, Peter J , Jr
1958-01-01
An analysis, based on the linearized thin-airfoil theory for supersonic speeds, of the wave drag at zero lift has been carried out for a simple two-body arrangement consisting of two wedgelike surfaces, each with a rhombic lateral cross section and emanating from a common apex. Such an arrangement could be used as two stores, either embedded within or mounted below a wing, or as auxiliary bodies wherein the upper halves could be used as stores and the lower halves for bomb or missile purposes. The complete range of supersonic Mach numbers has been considered and it was found that by orienting the axes of the bodies relative to each other a given volume may be redistributed in a manner which enables the wave drag to be reduced within the lower supersonic speed range (where the leading edge is substantially subsonic). At the higher Mach numbers, the wave drag is always increased. If, in addition to a constant volume, a given maximum thickness-chord ratio is imposed, then canting the two surfaces results in higher wave drag at all Mach numbers. For purposes of comparison, analogous drag calculations for the case of two parallel winglike bodies with the same cross-sectional shapes as the canted configuration have been included. Consideration is also given to the favorable (dragwise) interference pressures acting on the blunt bases of both arrangements.
A Robust Definition for the Turbulent Langmuir Number
NASA Astrophysics Data System (ADS)
Christensen, K. H.; Breivik, O.; Sutherland, G.; Belcher, S. E.; Gargett, A.
2016-02-01
The turbulent Langmuir number combines the water side friction velocity and the surface value of the Stokes drift, and is central to parameterizations of mixing by Langmuir turbulence. Making a direct comparison between such parameterizations and observations is difficult since the surface Stokes drift is sensitive to both the spectral tail and the directional spread of the waves. We propose a new definition for the turbulent Langmuir number based on low order moments of the one-dimensional frequency spectrum, hence eliminating most of the uncertainties associated with the diagnostic spectral tail. Comparison is made between the old and the new definitions using both observed and modeled wave spectra. The new definition has a higher variation around the mean and is better at resolving typical oceanic conditions. In addition, it is backwards compatible with the old definition for monochromatic waves, which means that scalings based on large eddy simulations with monochromatic wave forcing are still valid.
NASA Astrophysics Data System (ADS)
Malik, O. P.; Singh, Sukhmander; Malik, Hitendra K.; Kumar, A.
2015-01-01
An explosion-generated-plasma is explored for low and high frequency instabilities by taking into account the drift of all the plasma species together with the dust particles which are charged. The possibility of wave triplet is also discussed based on the solution of dispersion equation and synchronism conditions. High frequency instability (HFI) and low frequency instability (LFI) are found to occur in this system. LFI grows faster with the higher concentration of dust particles, whereas its growth rate goes down if the mass of the dust is higher. The ion and electron temperatures affect its growth in opposite manner and the electron temperature causes this instability to grow. In addition to the instabilities, a simple wave is also observed to propagate, whose velocity is larger for larger wave number, smaller mass of the dust and higher ion temperature.
Medan, Mohamed S; Takedom, Toshiro; Aoyagi, Yoshito; Konishi, Masato; Yazawa, Shigeto; Watanabe, Gen; Taya, Kazuyoshi
2006-02-01
The hypothesis of the present study is that active immunization of cows against inhibin would neutralize endogenous inhibin, increase circulating levels of follicle stimulating hormone, and subsequently affect follicular dynamics and the ovulation rate during the estrous cycle. Thirteen cows were immunized against inhibin alpha-subunit and, 6 cows were immunized with a placebo. Both groups were given 4 booster immunizations 7, 14, 21, and 34 weeks after the primary injection. Ovaries were examined daily after the 2nd, 3rd, and 4th booster immunizations by transrectal ultrasonography for 25 days. After the 4th booster immunization, blood samples were collected daily for one complete estrous cycle to measure FSH and LH. The results showed that the immunized cows generated antibodies against inhibin, and that they had higher FSH levels compared with the controls. The number of follicular waves during the estrous cycle was higher in the immunized cows (3 or 4 waves) than in the controls (2 or 3 waves). Moreover, the immunized cows had a greater number of follicles during the estrous cycle compared with the control cows. The maximum number of follicles was 14.8 +/- 1.7 vs 5.4 +/- 0.2 in inhibin-immunized and control cows, respectively, during the first follicular wave and 13.9 +/- 1.9 vs 5.6 +/- 0.7, respectively, during the ovulatory wave. Multiple ovulations were increased in the immunized cows. However, the ovulation rate varied greatly in the immunized animals. In conclusion, immunization against inhibin increased FSH secretions during the estrous cycle in the cows. Moreover, the immunized cows had a greater number of follicular waves during the estrous cycle and a greater number of follicles, and this could be used as a potential source of oocytes for use in IVF/embryo transfer programs.
Numerical study of shock-wave/boundary layer interactions in premixed hydrogen-air hypersonic flows
NASA Technical Reports Server (NTRS)
Yungster, Shaye
1991-01-01
A computational study of shock wave/boundary layer interactions involving premixed combustible gases, and the resulting combustion processes is presented. The analysis is carried out using a new fully implicit, total variation diminishing (TVD) code developed for solving the fully coupled Reynolds-averaged Navier-Stokes equations and species continuity equations in an efficient manner. To accelerate the convergence of the basic iterative procedure, this code is combined with vector extrapolation methods. The chemical nonequilibrium processes are simulated by means of a finite-rate chemistry model for hydrogen-air combustion. Several validation test cases are presented and the results compared with experimental data or with other computational results. The code is then applied to study shock wave/boundary layer interactions in a ram accelerator configuration. Results indicate a new combustion mechanism in which a shock wave induces combustion in the boundary layer, which then propagates outwards and downstream. At higher Mach numbers, spontaneous ignition in part of the boundary layer is observed, which eventually extends along the entire boundary layer at still higher values of the Mach number.
Numerical study of shock-wave/boundary layer interactions in premixed hydrogen-air hypersonic flows
NASA Technical Reports Server (NTRS)
Yungster, Shaye
1990-01-01
A computational study of shock wave/boundary layer interactions involving premixed combustible gases, and the resulting combustion processes is presented. The analysis is carried out using a new fully implicit, total variation diminishing (TVD) code developed for solving the fully coupled Reynolds-averaged Navier-Stokes equations and species continuity equations in an efficient manner. To accelerate the convergence of the basic iterative procedure, this code is combined with vector extrapolation methods. The chemical nonequilibrium processes are simulated by means of a finite-rate chemistry model for hydrogen-air combustion. Several validation test cases are presented and the results compared with experimental data or with other computational results. The code is then applied to study shock wave/boundary layer interactions in a ram accelerator configuration. Results indicate a new combustion mechanism in which a shock wave induces combustion in the boundary layer, which then propagates outwards and downstream. At higher Mach numbers, spontaneous ignition in part of the boundary layer is observed, which eventually extends along the entire boundary layer at still higher values of the Mach number.
Study of Liquid Breakup Process in Solid Rocket Motor Nozzle
2016-02-16
liquid film flow with the gas flow. The rate of the wave breakup was characterized by introducing Breakup-length, Ohnesorge Number (Oh) and Weber Number... liquid film that flows along the wall of a strraight test channel while a relatively higher-speed gas moves over it. We have used an unsteady-flow...Reynolds- Averaged Navier-Stokes code (URANS) to investigate the interaction of the liquid film flow with the gas flow. The rate of the wave breakup was
NASA Technical Reports Server (NTRS)
Zhou, YE; Vahala, George
1993-01-01
The advection of a passive scalar by incompressible turbulence is considered using recursive renormalization group procedures in the differential sub grid shell thickness limit. It is shown explicitly that the higher order nonlinearities induced by the recursive renormalization group procedure preserve Galilean invariance. Differential equations, valid for the entire resolvable wave number k range, are determined for the eddy viscosity and eddy diffusivity coefficients, and it is shown that higher order nonlinearities do not contribute as k goes to 0, but have an essential role as k goes to k(sub c) the cutoff wave number separating the resolvable scales from the sub grid scales. The recursive renormalization transport coefficients and the associated eddy Prandtl number are in good agreement with the k-dependent transport coefficients derived from closure theories and experiments.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-13
... Sound travels in waves, the basic components of which are frequency, wavelength, velocity, and amplitude. Frequency is the number of pressure waves that pass by a reference point per unit of time and is measured in... frequency sounds have longer wavelengths than higher frequency sounds, and attenuate (decrease) more rapidly...
NASA Astrophysics Data System (ADS)
Winters, Caroline; Petrishchev, Vitaly; Yin, Zhiyao; Lempert, Walter R.; Adamovich, Igor V.
2015-10-01
The present work provides insight into surface charge dynamics and kinetics of radical species reactions in nanosecond pulse discharges sustained at a liquid-vapor interface, above a distilled water surface. The near-surface plasma is sustained using two different discharge configurations, a surface ionization wave discharge between two exposed metal electrodes and a double dielectric barrier discharge. At low discharge pulse repetition rates (~100 Hz), residual surface charge deposition after the discharge pulse is a minor effect. At high pulse repetition rates (~10 kHz), significant negative surface charge accumulation over multiple discharge pulses is detected, both during alternating polarity and negative polarity pulse trains. Laser induced fluorescence (LIF) and two-photon absorption LIF (TALIF) line imaging are used for in situ measurements of spatial distributions of absolute OH and H atom number densities in near-surface, repetitive nanosecond pulse discharge plasmas. Both in a surface ionization wave discharge and in a double dielectric barrier discharge, peak measured H atom number density, [H] is much higher compared to peak OH number density, due to more rapid OH decay in the afterglow between the discharge pulses. Higher OH number density was measured near the regions with higher plasma emission intensity. Both OH and especially H atoms diffuse out of the surface ionization wave plasma volume, up to several mm from the liquid surface. Kinetic modeling calculations using a quasi-zero-dimensional H2O vapor / Ar plasma model are in qualitative agreement with the experimental data. The results demonstrate the experimental capability of in situ radical species number density distribution measurements in liquid-vapor interface plasmas, in a simple canonical geometry that lends itself to the validation of kinetic models.
NASA Astrophysics Data System (ADS)
Rani, Monika; Bhatti, Harbax S.; Singh, Vikramjeet
2017-11-01
In optical communication, the behavior of the ultrashort pulses of optical solitons can be described through nonlinear Schrodinger equation. This partial differential equation is widely used to contemplate a number of physically important phenomena, including optical shock waves, laser and plasma physics, quantum mechanics, elastic media, etc. The exact analytical solution of (1+n)-dimensional higher order nonlinear Schrodinger equation by He's variational iteration method has been presented. Our proposed solutions are very helpful in studying the solitary wave phenomena and ensure rapid convergent series and avoid round off errors. Different examples with graphical representations have been given to justify the capability of the method.
Winske, D.; Daughton, W.
2015-02-02
We present results of three-dimensional electromagnetic particle-in-cell simulations of the lower hybrid ion ring instability, similar to our earlier results [D. Winske and W. Daughton, Phys. Plasma, 19, 072109, 2012], but at higher electron beta (βe = ratio of electron thermal pressure to magnetic pressure = 0.06, rather than at 0.006) with Ti = Te. At higher electron beta the level of lower hybrid waves at saturation normalized to the ion thermal energy (βi = 0.06 also) is only slightly smaller, but the corresponding magnetic fluctuations are about an order of magnitude larger, consistent with linear theory. After saturation, themore » waves evolve into whistler waves, through a number of possible mechanisms, with an average growth rate considerably smaller than the linear growth rate of the lower hybrid waves, to a peak fluctuation level that is about 20% above the lower hybrid wave saturation level. The ratio of the peak magnetic fluctuations associated with the whistler waves relative to those of the saturated lower hybrid waves, the ratio of the nonlinear growth rate of whistlers relative to the linear growth rate of lower hybrid waves, the amount of energy extracted from the ring and the amount of heating of the background ions and electrons are comparable to those in the lower electron beta 3-D simulation. This suggests that even at higher electron beta, the linear and nonlinear physics of the lower hybrid ion ring instability is dominated by electrostatic, wave-particle rather than wave-wave interactions.« less
Ultrasonic nonlinear guided wave inspection of microscopic damage in a composite structure
NASA Astrophysics Data System (ADS)
Zhang, Li; Borigo, Cody; Owens, Steven; Lissenden, Clifford; Rose, Joseph; Hakoda, Chris
2017-02-01
Sudden structural failure is a severe safety threat to many types of military and industrial composite structures. Because sudden structural failure may occur in a composite structure shortly after macroscale damage initiates, reliable early diagnosis of microdamage formation in the composite structure is critical to ensure safe operation and to reduce maintenance costs. Ultrasonic guided waves have been widely used for long-range defect detection in various structures. When guided waves are generated under certain excitation conditions, in addition to the traditional linear wave mode (known as the fundamental harmonic wave mode), a number of nonlinear higher-order harmonic wave modes are also be generated. Research shows that the nonlinear parameters of a higher-order harmonic wave mode could have excellent sensitivity to microstructural changes in a material. In this work, we successfully employed a nonlinear guided wave structural health monitoring (SHM) method to detect microscopic impact damage in a 32-layer carbon/epoxy fiber-reinforced composite plate. Our effort has demonstrated that, utilizing appropriate transducer design, equipment, excitation signals, and signal processing techniques, nonlinear guided wave parameter measurements can be reliably used to monitor microdamage initiation and growth in composite structures.
Quezada-Casasola, Andrés; Avendaño-Reyes, Leonel; Macías-Cruz, Ulises; Ramírez-Godínez, José Alejandro; Correa-Calderón, Abelardo
2014-04-01
In beef and dairy cattle, the number of follicular waves affects endocrine, ovarian, and behavioral events during a normal estrous cycle. However, in Mexican-native Criollo cattle, a shortly and recently domesticated breed, the association between wave patterns and follicular development has not been studied. The objective of this study was to evaluate the effect of number of follicular waves in an estrous cycle on development of anovulatory and ovulatory follicles, corpus luteum (CL) development and functionality, as well as estrual behavior in Criollo cows. Ovarian follicular activities of 22 cycling multiparous Criollo cows were recorded daily by transrectal ultrasound examinations during a complete estrous cycle. Additionally, blood samples were collected daily to determine serum progesterone concentrations. Only two- (n = 17, 77.3%) and three-wave follicular (n = 5, 22.7%) patterns were observed. Duration of estrus, length of estrous cycle, and length of follicular and luteal phases were similar (P > 0.05) between cycles of two and three waves. Two-wave cows ovulated earlier (P < 0.05) after detection of estrus than three-wave cows. Detected day and maximum diameter of first anovulatory follicle were not affected (P > 0.05) by number of waves. Growth rate of first dominant follicle was higher (P < 0.05) in three-wave cycles. Onset of regression of the first dominant follicle was earlier (P < 0.01) in cycles with three waves than in those with two waves. In two-wave cycles, ovulatory follicles were detected earlier (P < 0.01) and had lower (P < 0.01) growth rate than in three-wave cycles. Development (i.e., maximum diameter and volume) and functionality (minimum and maximum progesterone concentration) of CL were similar (P > 0.05) between two- and three-wave patterns. In conclusion, Criollo cows have two or three follicular waves per estrous cycle, which alters partially ovulatory follicle development and ovulation time after detection of estrus. Length of estrous cycle, as well as CL development and functionality, was not affected by number of follicular waves.
Huang, Shi-Wei; Tsai, Chung-You; Wang, Jui; Pu, Yeong-Shiau; Chen, Pei-Chun; Huang, Chao-Yuan; Chien, Kuo-Liong
2017-10-01
Although shock wave lithotripsy is minimally invasive, earlier studies argued that it may increase patients' subsequent risk of hypertension and diabetes mellitus. This study evaluated the association between shock wave lithotripsy and new-onset hypertension or diabetes mellitus. The Taiwanese National Health Insurance Research Database was used to identify 20 219 patients aged 18 to 65 years who underwent the first stone surgical treatment (shock wave lithotripsy or ureterorenoscopic lithotripsy) between January 1999 and December 2011. A Cox proportional model was applied to evaluate associations. Time-varying Cox models were applied to evaluate the association between the number of shock wave lithotripsy sessions and the incidence of hypertension or diabetes mellitus. After a median follow-up of 74.9 and 82.6 months, 2028 and 688 patients developed hypertension in the shock wave lithotripsy and ureterorenoscopic lithotripsy groups, respectively. Patients who underwent shock wave lithotripsy had a higher probability of developing hypertension than patients who underwent ureterorenoscopic lithotripsy, with a hazard ratio of 1.20 (95% confidence interval, 1.10-1.31) after adjusting for covariates. The risk increased as the number of shock wave lithotripsy sessions increased. However, the diabetes mellitus risk was similar in the shock wave lithotripsy and ureterorenoscopic lithotripsy groups. Furthermore, the hazard ratio did not increase as the number of shock wave lithotripsy sessions increased. Shock wave lithotripsy consistently increased the incidence of hypertension on long-term follow-up. Therefore, alternatives to urolithiasis treatment (eg, endoscopic surgery or medical expulsion therapy) could avoid the hypertension risk. Furthermore, avoiding multiple sessions of shock wave lithotripsy could also evade the hypertension risk. © 2017 American Heart Association, Inc.
Warm-Core Intensification Through Horizontal Eddy Heat Transports into the Eye
NASA Technical Reports Server (NTRS)
Braun, Scott A.; Montgomery, Michael T.; Fulton, John; Nolan, David S.; Starr, David OC (Technical Monitor)
2001-01-01
A simulation of Hurricane Bob (1991) using the PSU/NCAR MM5 mesoscale model with a finest mesh spacing of 1.3 km is used to diagnose the heat budget of the hurricane. Heat budget terms, including latent and radiative heating, boundary layer forcing, and advection terms were output directly from the model for a 6-h period with 2-min frequency. Previous studies of warm core formation have emphasized the warming associated with gentle subsidence within the eye. The simulation of Hurricane Bob confirms subsidence warming as a major factor for eye warming, but also shows a significant contribution from horizontal advective terms. When averaged over the area of the eye, subsidence is found to strongly warm the mid-troposphere (2-9 km) while horizontal advection warms the mid to upper troposphere (5-13 km) with about equal magnitude. Partitioning of the horizontal advective terms into azimuthal mean and eddy components shows that the mean radial circulation does not, as expected, generally contribute to this warming, but that it is produced almost entirely by the horizontal eddy transport of heat into the eye. A further breakdown of the eddy components into azimuthal wave numbers 1, 2, and higher indicates that the warming is dominated by wave number 1 asymmetries, with smaller coming from higher wave numbers. Warming by horizontal eddy transport is consistent with idealized modeling of vortex Rossby waves and work is in progress to identify and clarify the role of vortex Rossby waves in warm-core intensification in both the full-physics model and idealized models.
Evidence for a continuous spectrum of equatorial waves in the Indian Ocean
NASA Astrophysics Data System (ADS)
Eriksen, Charles C.
1980-06-01
Seven-month records of current and temperature measurements from a moored array centered at 53°E on the equator in the Indian Ocean are consistent with a continuous spectrum of equatorially trapped internal inertial-gravity, mixed Rossby-gravity, and Kelvin waves. A model spectrum of free linear waves analogous to those for mid-latitude internal gravity waves is used to compute spectra of observed quantities at depths greater than about 2000 m. Model parameters are adjusted to fit general patterns in the observed spectra over periods from roughly 2 days to 1 month. Measurements at shallower depths presumably include forced motions which we have not attempted to model. This `straw-person' spectrum is consistent with the limited data available. The model spectru Ē (n, m, ω) = K · B(m) · C(n, ω), where Ē is an average local energy density in the equatorial wave guide which has amplitude K, wave number shape B(m) ∝ (1 + m/m*)-3, where m is vertical mode number and the bandwidth parameter m* is between 4 and 8, and frequency shape C(n, ω) ∝ [(2n + 1 + s2)½ · σ3]-1 where n is meridional mode number, and s and σ are dimensionless zonal wave number and frequency related by the usual dispersion relation. The scales are (β/cm)½ and (β · cm)½ for horizontal wave number and frequency, where cm is the Kelvin wave speed of the vertical mode m. At each frequency and vertical wave number, energy is partitioned equally among the available inertial gravity modes so that the field tends toward horizontal isotropy at high frequency. The transition between Kelvin and mixed Rossby-gravity motion at low frequency and inertial-gravity motion at high frequency occurs at a period of roughly 1 week. At periods in the range 1-3 weeks, the model spectrum which fits the observations suggests that mixed Rossby-gravity motion dominates; at shorter periods gravity motion dominates. The model results are consistent with the low vertical coherence lengths observed (roughly 80 m). Horizontal coherence over 2 km is consistent with isotropic energy flux. Evidence for net zontal energy flux is not found in this data, and the presence of a red wave number shape suggests that net flux will be difficult to observe from modest moored arrays. The equatorial wave spectrum does not match across the diurnal and semidiurnal tides to the high-frequency internal wave spectrum (the latter is roughly 1 decade higher).
NASA Astrophysics Data System (ADS)
Gültekin, Ö.; Gürcan, Ö. D.
2018-02-01
Basic, local kinetic theory of ion temperature gradient driven (ITG) mode, with adiabatic electrons is reconsidered. Standard unstable, purely oscillating as well as damped solutions of the local dispersion relation are obtained using a bracketing technique that uses the argument principle. This method requires computing the plasma dielectric function and its derivatives, which are implemented here using modified plasma dispersion functions with curvature and their derivatives, and allows bracketing/following the zeros of the plasma dielectric function which corresponds to different roots of the ITG dispersion relation. We provide an open source implementation of the derivatives of modified plasma dispersion functions with curvature, which are used in this formulation. Studying the local ITG dispersion, we find that near the threshold of instability the unstable branch is rather asymmetric with oscillating solutions towards lower wave numbers (i.e. drift waves), and damped solutions toward higher wave numbers. This suggests a process akin to inverse cascade by coupling to the oscillating branch towards lower wave numbers may play a role in the nonlinear evolution of the ITG, near the instability threshold. Also, using the algorithm, the linear wave diffusion is estimated for the marginally stable ITG mode.
Yada, Norihisa; Tamaki, Nobuhura; Koizumi, Yohei; Hirooka, Masashi; Nakashima, Osamu; Hiasa, Yoichi; Izumi, Namiki; Kudo, Masatoshi
2017-01-01
Performing shear wave imaging is simple, but can be difficult when inflammation, jaundice, and congestion are present. Therefore, the correct diagnosis of liver fibrosis using shear wave imaging alone might be difficult in mild-to-moderate fibrosis cases. Strain imaging can diagnose liver fibrosis without the influence of inflammation. Therefore, the combined use of strain and shear wave imaging (combinational elastography) for cases without jaundice and congestion might be useful for evaluating fibrosis and inflammation. We enrolled consecutive patients with liver disease, without jaundice or liver congestion. Strain and shear wave imaging, blood tests, and liver biopsy were performed on the same day. The liver fibrosis index (LF index) was calculated by strain imaging; real-time tissue elastography, and the shear wave velocity (Vs) was calculated by shear wave imaging. Fibrosis index (F index) and activity index (A index) were calculated as a multiple regression equation for determining hepatic fibrosis and inflammation using histopathological diagnosis as the gold standard. The diagnostic ability of F index for fibrosis and A index for inflammation were compared using LF index and Vs. The total number of enrolled cases was 388. The area under the receiver operating characteristic (AUROC) was 0.87, 0.80, 0.83, and 0.80, at diagnosis of fibrosis stage with an F index of F1 or higher, F2 or higher, F3 or higher, and F4, respectively. The AUROC was 0.94, 0.74, and 0.76 at diagnosis of activity grade with an A index of A1 or higher, A2 or higher, and A3, respectively. The diagnostic ability of F index for liver fibrosis and A index for inflammation was higher than for other conventional diagnostic values. The combined use of strain and shear wave imaging (combinational elastography) might increase the positive diagnosis of liver fibrosis and inflammation. © 2017 S. Karger AG, Basel.
Elnaghy, A M; Elsaka, S E
2017-10-01
To compare the cyclic fatigue resistance of WaveOne Gold (Dentsply Tulsa Dental Specialties, Tulsa, OK, USA) and Reciproc (VDW, Munich, Germany) reciprocating instruments during immersion in sodium hypochlorite (NaOCl) and saline solutions at body temperature. A total of 180 new WaveOne Gold primary size 25, .07 taper, and Reciproc size 25, .08 taper were randomly divided into three groups: group 1: no immersion (control, air); group 2: immersion in saline at 37 ± 1 °C; and group 3: immersion in 5% NaOCl at 37 ± 1 °C. The instruments were reciprocated in the test solution until fracture, and the number of cycles to failure was recorded. The data were analysed statistically using t-tests and one-way analysis of variance (anova) with the significance level set at P < 0.05. A Weibull analysis was performed on number of cycles to failure data. WaveOne Gold instruments had significantly greater number of cycles to failure than Reciproc instruments in all groups (P < 0.001). Fatigue resistance for both instruments tested in air was significantly higher than that in saline and NaOCl solutions (P < 0.001). For both instruments, there was no significant difference in the fatigue resistance between saline and NaOCl solutions (P > 0.05). The Weibull analysis showed that the predicted cycles of WaveOne Gold in air was 1027 cycles for 99% survival. However, Reciproc instruments tested in NaOCl solution had the lowest predicted cycles (613 cycles) among the groups. Immersion of WaveOne Gold and Reciproc reciprocating instruments in saline and NaOCl solutions decreased considerably their cyclic fatigue resistance. The fatigue resistance of WaveOne Gold instruments was higher than that of Reciproc instruments. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.
The nature of noise wavefield and its applications for site effects studies: A literature review
NASA Astrophysics Data System (ADS)
Bonnefoy-Claudet, Sylvette; Cotton, Fabrice; Bard, Pierre-Yves
2006-12-01
The aim of this paper is to discuss the existing scientific literature in order to gather all the available information dealing with the origin and the nature of the ambient seismic noise wavefield. This issue is essential as the use of seismic noise is more and more popular for seismic hazard purposes with a growing number of processing techniques based on the assumption that the noise wavefield is predominantly consisting of fundamental mode Rayleigh waves. This survey reveals an overall agreement about the origin of seismic noise and its frequency dependence. At frequencies higher than 1 Hz, seismic noise systematically exhibits daily and weekly variations linked to human activities, whereas at lower frequencies (between 0.005 and 0.3 Hz) the variation of seismic noise is correlated to natural activities (oceanic, meteorological…). Such a surface origin clearly supports the interpretation of seismic noise wavefield consisting primarily of surface waves. However, the further, very common (though hidden) assumption according which almost all the noise energy would be carried by fundamental mode Rayleigh waves is not supported by the few available data: no "average" number can though be given concerning the actual proportion between surface and body waves, Love and Rayleigh waves (horizontal components), fundamental and higher modes (vertical components), since the few available investigations report a significant variability, which might be related with site conditions and noise source properties.
Damping of transient energy growth of three-dimensional perturbations in hydromagnetic pipe flow
NASA Astrophysics Data System (ADS)
Åkerstedt, Hans O.
1995-05-01
The stability of infinitesimal three-dimensional perturbations in hydromagnetic pipe flow where the applied magnetic field is in the streamwise direction is considered. The study is limited to the case of small magnetic Reynolds numbers and the main objective of the paper is to study the transient evolution of the kinetic energy. A general effect of the magnetic field is to increase the damping of the eigenvalues of the individual perturbation modes. For the case of infinitely long perturbations, which in the non-magnetic case has been found to have the largest transient growth, the magnetic field perturbations are decoupled from the flow and there is no effect on the stability properties of the flow. For shorter waves, and for moderate values of the interaction parameter ( I = RmA2 ≈ 1-3) the hydromagnetic damping effect on the transient energy growth is, however, substantial, especially for small azimuthal mode numbers n. (Here Rm is the magnetic Reynolds number and A is the Alfvén number.) This parameter range has been found in experiments to give significantly higher transitional Reynolds numbers (Fraim and Heiser, 1968). Since the hydromagnetic damping effect is weak for long waves and large for shorter waves, the implications of the results to ordinary pipe flow is that the energy growth found for short waves may be more crucial as a mechanism for transition than the corresponding growth for longer waves.
Higher-Order Statistical Correlations and Mutual Information Among Particles in a Quantum Well
NASA Astrophysics Data System (ADS)
Yépez, V. S.; Sagar, R. P.; Laguna, H. G.
2017-12-01
The influence of wave function symmetry on statistical correlation is studied for the case of three non-interacting spin-free quantum particles in a unidimensional box, in position and in momentum space. Higher-order statistical correlations occurring among the three particles in this quantum system is quantified via higher-order mutual information and compared to the correlation between pairs of variables in this model, and to the correlation in the two-particle system. The results for the higher-order mutual information show that there are states where the symmetric wave functions are more correlated than the antisymmetric ones with same quantum numbers. This holds in position as well as in momentum space. This behavior is opposite to that observed for the correlation between pairs of variables in this model, and the two-particle system, where the antisymmetric wave functions are in general more correlated. These results are also consistent with those observed in a system of three uncoupled oscillators. The use of higher-order mutual information as a correlation measure, is monitored and examined by considering a superposition of states or systems with two Slater determinants.
Warm-Core Intensification of a Hurricane Through Horizontal Eddy Heat Transports Inside the Eye
NASA Technical Reports Server (NTRS)
Braun, Scott A.; Montgomery, Michael T.; Fulton, John; Nolan, David S.
2001-01-01
A simulation of Hurricane Bob (1991) using the PSU/NCAR MM5 mesoscale model with a finest mesh spacing of 1.3 km is used to diagnose the heat budget of the hurricane. Heat budget terms, including latent and radiative heating, boundary layer forcing, and advection terms were output directly from the model for a 6-h period with 2-min frequency. Previous studies of warm core formation have emphasized the warming associated with gentle subsidence within the eye. The simulation of Hurricane Bob also identifies subsidence warming as a major factor for eye warming, but also shows a significant contribution from horizontal advective terms. When averaged over the area of the eye, excluding the eyewall (at least in an azimuthal mean sense), subsidence is found to strongly warm the mid-troposphere (2-9 km) while horizontal advection warms the mid to upper troposphere (5-13 km) with about equal magnitude. Partitioning of the horizontal advective terms into azimuthal mean and eddy components shows that the mean radial circulation cannot, as expected, generally contribute to this warming, but that it is produced almost entirely by the horizontal eddy transport of heat into the eye. A further breakdown of the eddy components into azimuthal wave numbers 1, 2, and higher indicates that the warming is dominated by wave number 1 asymmetries, with smaller contributions coming from higher wave numbers. Warming by horizontal eddy transport is consistent with idealized modeling of vortex Rossby waves and work is in progress to identify and clarify the role of vortex Rossby waves in warm-core intensification in both the full-physics model and idealized models.
The Influence of Trapped Particles on the Parametric Decay Instability of Near-Acoustic Waves
NASA Astrophysics Data System (ADS)
Affolter, M.; Anderegg, F.; Dubin, D. H. E.; Driscoll, C. F.
2017-10-01
We present quantitative measurements of a decay instability to lower frequencies of near-acoustic waves. These experiments are conducted on pure ion plasmas confined in a cylindrical Penning-Malmberg trap. The axisymmetric, standing plasma waves have near-acoustic dispersion, discretized by the axial wave number kz =mz(π /Lp) . The nonlinear coupling rates are measured between large amplitude mz = 2 (pump) waves and small amplitude mz = 1 (daughter) waves, which have a small frequency detuning Δω = 2ω1 -ω2 . Classical 3-wave parametric coupling rates are proportional to pump wave amplitude as Γ (δn2 /n0) , with oscillatory energy exchange for Γ < Δω / 2 and decay instability for Γ > Δω / 2 . Experiments on cold plasmas agree quantitatively for oscillatory energy exchange, and agree within a factor-of-two for decay instability rates. However, nascent theory suggest that this latter agreement is merely fortuitous, and that the instability mechanism is trapped particles. Experiments at higher temperatures show that trapped particles reduce the instability threshold below classical 3-wave theory predictions. Supported by NSF Grant PHY-1414570, and DOE Grants DE-SC0002451 and DE-SC0008693. M. Affolter is supported by the DOE FES Postdoctoral Research Program administered by ORISE for the DOE. ORISE is managed by ORAU under DOE Contract Number DE-SC0014664.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandes, Justin L.; Rappaport, Carey M.; Sheen, David M.
2011-05-01
The cylindrical millimeter-wave imaging technique, developed at Pacific Northwest National Laboratory (PNNL) and commercialized by L-3 Communications/Safeview in the ProVision system, is currently being deployed in airports and other high security locations to meet person-borne weapon and explosive detection requirements. While this system is efficient and effective in its current form, there are a number of areas in which the detection performance may be improved through using different reconstruction algorithms and sensing configurations. PNNL and Northeastern University have teamed together to investigate higher-order imaging artifacts produced by the current cylindrical millimeter-wave imaging technique using full-wave forward modeling and laboratory experimentation.more » Based on imaging results and scattered field visualizations using the full-wave forward model, a new imaging system is proposed. The new system combines a multistatic sensor configuration with the generalized synthetic aperture focusing technique (GSAFT). Initial results show an improved ability to image in areas of the body where target shading, specular and higher-order reflections cause images produced by the monostatic system difficult to interpret.« less
Development of smart wave mitigation structure using array of poles (Conference Presentation)
NASA Astrophysics Data System (ADS)
Asanuma, Hiroshi
2017-05-01
This paper describes reduction of water flow velocity by array of poles as a new wave mitigation structure. This structure is based on tsunami mitigation coastal forest. As natural forests have many problems such as low fraction of trees, low visibility of ocean waves, low strength, long of time to grow, and so on. To cope with these problems, a new wave mitigation structure has been developed, which are intended to add better capability of high wave or tsunami mitigation effect to actual ones by optimizing various parameters such as configuration, distribution density and material properties. In this study, the effect of type of material and its combination were mainly investigated. According to the results, reduction rate of the flow velocity increases with increasing number of rows for each material up to a certain level, and that of poles having lower Young's modulus is generally higher than that of those having higher Young's modulus. The effect of combination of materials was also investigated and drastic increase of mitigation effect was found when soft and hard poles were combined.
Studies in nonlinear problems of energy. Progress report, October 1, 1993--September 30, 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matkowsky, B.J.
1994-09-01
The authors concentrate on modeling, analysis and large scale scientific computation of combustion and flame propagation phenomena, with emphasis on the transition from laminar to turbulent combustion. In the transition process a flame passed through a stages exhibiting increasingly complex spatial and temporal patterns which serve as signatures identifying each stage. Often the transitions arise via bifurcation. The authors investigate nonlinear dynamics, bifurcation and pattern formation in the successive stage of transition. They describe the stability of combustion waves, and transitions to combustion waves exhibiting progressively higher degrees of spatio-temporal complexity. One aspect of this research program is the systematicmore » derivation of appropriate, approximate models from the original models governing combustion. The approximate models are then analyzed. The authors are particularly interested in understanding the basic mechanisms affecting combustion, which is a prerequisite to effective control of the process. They are interested in determining the effects of varying various control parameters, such as Nusselt number, Lewis number, heat release, activation energy, Damkohler number, Reynolds number, Prandtl number, Peclet number, etc. The authors have also considered a number of problems in self-propagating high-temperature synthesis (SHS), in which combustion waves are employed to synthesize advanced materials. Efforts are directed toward understanding fundamental mechanisms. 167 refs.« less
Surface gravity waves and their acoustic signatures, 1-30 Hz, on the mid-Pacific sea floor.
Farrell, W E; Munk, Walter
2013-10-01
In 1999, Duennebier et al. deployed a hydrophone and geophone below the conjugate depth in the abyssal Pacific, midway between Hawaii and California. Real time data were transmitted for 3 yr over an abandoned ATT cable. These data have been analyzed in the frequency band 1 to 30 Hz. Between 1 and 6 Hz, the bottom data are interpreted as acoustic radiation from surface gravity waves, an extension to higher frequencies of a non-linear mechanism proposed by Longuet-Higgins in 1950 to explain microseisms. The inferred surface wave spectrum for wave lengths between 6 m and 17 cm is saturated (wind-independent) and roughly consistent with the traditional Phillips κ(-4) wave number spectrum. Shorter ocean waves have a strong wind dependence and a less steep wave number dependence. Similar features are found in the bottom record between 6 and 30 Hz. But this leads to an enigma: The derived surface spectrum inferred from the Longuet-Higgins mechanism with conventional assumptions for the dispersion relation is associated with mean square slopes that greatly exceed those derived from glitter. Regardless of the generation mechanism, the measured bottom intensities between 10 and 30 Hz are well below minimum noise standards reported in the literature.
NASA Astrophysics Data System (ADS)
Zhang, Shuhui; Rong, Jianhong; Wang, Huan; Wang, Dong; Zhang, Lei
2018-01-01
We have investigated the dependence of spin-wave resonance(SWR) frequency on the surface anisotropy, the interlayer exchange coupling, the ferromagnetic layer thickness, the mode number and the external magnetic field in a ferromagnetic superlattice film by means of the linear spin-wave approximation and Green's function technique. The SWR frequency of the ferromagnetic thin film is shifted to higher values corresponding to those of above factors, respectively. It is found that the linear behavior of SWR frequency curves of all modes in the system is observed as the external magnetic field is increasing, however, SWR frequency curves are nonlinear with the lower and the higher modes for different surface anisotropy and interlayer exchange coupling in the system. In addition, the SWR frequency of the lowest (highest) mode is shifted to higher (lower) values when the film thickness is thinner. The interlayer exchange coupling is more important for the energetically higher modes than for the energetically lower modes. The surface anisotropy has a little effect on the SWR frequency of the highest mode, when the surface anisotropy field is further increased.
Investigation of statistical parameters of the evolving wind wave field using a laser slope gauge
NASA Astrophysics Data System (ADS)
Zavadsky, A.; Shemer, L.
2017-05-01
Statistical parameters of water waves generated by wind in a small scale facility are studied using extensively a Laser Slope Gauge (LSG), in addition to conventional measuring instruments such as a wave gauge and Pitot tube. The LSG enables direct measurements of two components of the instantaneous surface slope. Long sampling duration in a relatively small experimental facility allowed accumulating records of the measured parameters containing a large number of waves. Data were accumulated for a range of wind velocities at multiple fetches. Frequency spectra of the surface elevation and of the instantaneous local slope variation measured under identical conditions are compared. Higher moments of the surface slope are presented. Information on the waves' asymmetry is retrieved from the computed skewness of the surface slope components.
Metachronal wave of artificial cilia array actuated by applied magnetic field
NASA Astrophysics Data System (ADS)
Tsumori, Fujio; Marume, Ryuma; Saijou, Akinori; Kudo, Kentaro; Osada, Toshiko; Miura, Hideshi
2016-06-01
In this paper, a biomimetic microstructure related to cilia, which are effective fluidic and conveying systems in nature, is described. Authors have already reported that a magnetic elastomer pillar actuated by a rotating magnetic field can work like a natural cilium. In the present work, we show examples of a cilia array with a metachronal wave as the next step. A metachronal wave is a sequential action of a number of cilia. It is theoretically known that a metachronal wave gives a higher fluidic efficiency; however, there has been no report on a metachronal wave by artificial cilia. We prepared magnetic elastomer pillars that contain chainlike clusters of magnetic particles. The orientation of chains was set to be different in each pillar so that each pillar will deform with a different phase.
NASA Astrophysics Data System (ADS)
Pallares, Elena; Espino, Manuel; Sánchez-Arcilla, Agustín
2013-04-01
The Catalan Coast is located in the North Western Mediterranean Sea. It is a region with highly heterogeneous wind and wave conditions, characterized by a microtidal environment, and economically very dependent from the sea and the coastal zone activities. Because some of the main coastal conflicts and management problems occur within a few kilometers of the land-ocean boundary, the level of resolution and accuracy from meteo-oceanographic predictions required is not currently available. The current work is focused on improving high resolution wave forecasting very near the coast. The SWAN wave model is used to simulate the waves in the area, and various buoy data and field campaigns are used to validate the results. The simulations are structured in four different domains covering all the North Western Mediterranean Sea, with a grid resolution from 9 km to 250 meters in coastal areas. Previous results show that the significant wave height is almost always underpredicted in this area, and the underprediction is higher during storm events. However, the error in the peak period and the mean period is almost always constantly under predicted with a bias between one and two seconds, plus some residual error. This systematic error represents 40% of the total error. To improve the initial results, the whiteccaping dissipation term is studied and modified. In the SWAN model, the whitecapping is mainly controlled by the steepness of the waves. Although the by default parameter is not depending on the wave number, there is a new formulation in the last SWAN version (40.81) to include it in the calculations. Previous investigations show that adjusting the dependence for the wave number improved the predictions for the wave energy at lower frequencies, solving the underprediction of the period mentioned before. In the present work different simulations are developed to calibrate the new formulation, obtaining important improvements in the results. For the significant wave height, the results are only modified during the storm events, when the wave height is higher. The main improvement is shown in the period, with a reduction of the bias mentioned before from -1.45 to 0.19 seconds on average for the more coastal locations.
Emission of dispersive waves from a train of dark solitons in optical fibers.
Marest, T; Mas Arabí, C; Conforti, M; Mussot, A; Milián, C; Skryabin, D V; Kudlinski, A
2016-06-01
We report the experimental observation of multiple dispersive waves (DWs) emitted in the anomalous dispersion region of an optical fiber from a train of dark solitons. Each DW can be associated to one dark soliton of the train, using phase-matching arguments involving higher-order dispersion and soliton velocity. For a large number of dark solitons (>10), we observe the formation of a continuum associated with the efficient emission of DWs.
Short-Period Surface Wave Based Seismic Event Relocation
NASA Astrophysics Data System (ADS)
White-Gaynor, A.; Cleveland, M.; Nyblade, A.; Kintner, J. A.; Homman, K.; Ammon, C. J.
2017-12-01
Accurate and precise seismic event locations are essential for a broad range of geophysical investigations. Superior location accuracy generally requires calibration with ground truth information, but superb relative location precision is often achievable independently. In explosion seismology, low-yield explosion monitoring relies on near-source observations, which results in a limited number of observations that challenges our ability to estimate any locations. Incorporating more distant observations means relying on data with lower signal-to-noise ratios. For small, shallow events, the short-period (roughly 1/2 to 8 s period) fundamental-mode and higher-mode Rayleigh waves (including Rg) are often the most stable and visible portion of the waveform at local distances. Cleveland and Ammon [2013] have shown that teleseismic surface waves are valuable observations for constructing precise, relative event relocations. We extend the teleseismic surface wave relocation method, and apply them to near-source distances using Rg observations from the Bighorn Arche Seismic Experiment (BASE) and the Earth Scope USArray Transportable Array (TA) seismic stations. Specifically, we present relocation results using short-period fundamental- and higher-mode Rayleigh waves (Rg) in a double-difference relative event relocation for 45 delay-fired mine blasts and 21 borehole chemical explosions. Our preliminary efforts are to explore the sensitivity of the short-period surface waves to local geologic structure, source depth, explosion magnitude (yield), and explosion characteristics (single-shot vs. distributed source, etc.). Our results show that Rg and the first few higher-mode Rayleigh wave observations can be used to constrain the relative locations of shallow low-yield events.
NASA Astrophysics Data System (ADS)
Chao, Gabriel; Smeulders, D. M. J.; van Dongen, M. E. H.
2006-05-01
Acoustic experiments on the propagation of guided waves along water-filled boreholes in water-saturated porous materials are reported. The experiments were conducted using a shock tube technique. An acoustic funnel structure was placed inside the tube just above the sample in order to enhance the excitation of the surface modes. A fast Fourier transform-Prony-spectral ratio method is implemented to transform the data from the time-space domain to the frequency-wave-number domain. Frequency-dependent phase velocities and attenuation coefficients were measured using this technique. The results for a Berea sandstone material show a clear excitation of the fundamental surface mode, the pseudo-Stoneley wave. The comparison of the experimental results with numerical predictions based on Biot's theory of poromechanics [J. Acoust. Soc. Am. 28, 168 (1956)], shows that the oscillating fluid flow at the borehole wall is the dominant loss mechanism governing the pseudo-Stoneley wave and it is properly described by the Biot's model at frequencies below 40 kHz. At higher frequencies, a systematic underestimation of the theoretical predictions is found, which can be attributed to the existence of other losses mechanisms neglected in the Biot formulation. Higher-order guided modes associated with the compressional wave in the porous formation and the cylindrical geometry of the shock tube were excited, and detailed information was obtained on the frequency-dependent phase velocity and attenuation in highly porous and permeable materials. The measured attenuation of the guided wave associated with the compressional wave reveals the presence of regular oscillatory patterns that can be attributed to radial resonances. This oscillatory behavior is also numerically predicted, although the measured attenuation values are one order of magnitude higher than the corresponding theoretical values. The phase velocities of the higher-order modes are generally well predicted by theory.
NASA Technical Reports Server (NTRS)
Ibrahim, E. A.; Przekwas, A. J.
1991-01-01
An analysis of the characteristics of the spray produced by an impinging-jet injector is presented. Predictions of the spray droplet size and distribution are obtained through studying the formation and disintegration of the liquid sheet formed by the impact of two cylindrical jets of the same diameter and momentum. Two breakup regimes of the sheet are considered depending on Weber number, with transition occurring at Weber numbers between 500 and 2000. In the lower Weber number regime, the breakup is due to Taylor cardioidal waves, while at Weber number higher than 2000, the sheet disintegration is by the growth of Kelvin-Helmholtz instability waves. Theoretical expressions to predict the sheet thickness and shape are derived for the low Weber number breakup regime. An existing mathematical analysis of Kelvin-Helmholtz instability of radially moving liquid sheets is adopted in the predictions of resultant drop sizes by sheet breakup at Weber numbers greater than 2000. Comparisons of present theoretical results with experimental measurements and empirical correlations reported in the literature reveal favorable agreement.
On the Convection of a Binary Mixture in a Horizontal Layer Under High-frequency Vibrations
NASA Astrophysics Data System (ADS)
Smorodin, B. L.; Ishutov, S. M.; Myznikova, B. I.
2018-02-01
The convective instability and non-linear flows are considered in a horizontal, binary-mixture layer with negative Soret coupling, subjected to the high-frequency vibration whose axis is directed at an arbitrary angle to the layer boundaries. The limiting case of long-wave disturbances is studied using the perturbation method. The influence of the intensity and direction of vibration on the spatially-periodic traveling wave solution is analyzed. It is shown that the shift in the Rayleigh number range, in which the traveling wave regime exists, toward higher values is a response to a horizontal-to-vertical transition in the vibration axis orientation. The characteristics of amplitude- and phase-modulated traveling waves are obtained and discussed.
Shabalin, A V; Tret'iakova, T V; Kuznetsov, A A; Motorin, S V; Golyshev, N V
2002-01-01
To compare possibilities of magnetocardiography (MCG) and electrocardiography for assessment of regional dispersion of ventricular recovery time using parameters of corrected and uncorrected QT-interval dispersion (DQTs and DQT). Twenty three patients with class II angina pectoris including 11 patients with history of myocardial infarction (MI) and 13 practically healthy subjects. Mean DQT and DQTc were significantly higher (p<0.005) in patients than in healthy subjects according to both techniques. Values of DQT and DQTc obtained by MCG were higher in patients with history of MI compared with those without MI (p=0.006 and 0.02, respectively). There was a significant positive correlation between age and DQT and DQTc determined by electrocardiography. Mean number of T-wave dipoles was significantly higher in patients than in healthy subjects. Substantial positive correlation was found between number of T-wave dipoles on isomagnetic maps and age in both patients and healthy people. The method of MCG gave supplementary information on the state of ventricular depolarization in patients with ischemic heart disease.
Growth rates of the buoyancy-driven instability of an autocatalytic reaction front in a narrow cell
Bockmann; Muller
2000-09-18
Experimental studies were performed on the buoyancy-driven instability of an autocatalytic reaction front in a quasi-2D cell. The unstable density stratification at an ascending front leads to convection that results in a fingerlike front deformation. The growth rates of the spatial modes of the instability are determined at the initial stage. A stabilization is found at higher wave numbers, while the system is unstable against low wave number perturbations. Whereas comparison with a reported model governed by Hele-Shaw flow fails, a two-dimensional Navier-Stokes model yields more satisfactory results. Still, present deviations suggest the presence of an additional mechanism that suppresses the growth.
Investigation of the phase velocities of guided acoustic waves in soft porous layers.
Boeckx, L; Leclaire, P; Khurana, P; Glorieux, C; Lauriks, W; Allard, J F
2005-02-01
A new experimental method for measuring the phase velocities of guided acoustic waves in soft poroelastic or poroviscoelastic plates is proposed. The method is based on the generation of standing waves in the material and on the spatial Fourier transform of the displacement profile of the upper surface. The plate is glued on a rigid substrate so that it has a free upper surface and a nonmoving lower surface. The displacement is measured with a laser Doppler vibrometer along a line corresponding to the direction of propagation of plane surface waves. A continuous sine with varying frequencies was chosen as excitation signal to maximize the precision of the measurements. The spatial Fourier transform provides the wave numbers, and the phase velocities are obtained from the relationship between wave number and frequency. The phase velocities of several guided modes could be measured in a highly porous foam saturated by air. The modes were also studied theoretically and, from the theoretical results, the experimental results, and a fitting procedure, it was possible to determine the frequency behavior of the complex shear modulus and of the complex Poisson ratio from 200 Hz to 1.4 kHz, in a frequency range higher than the traditional methods.
NASA Astrophysics Data System (ADS)
Pecho, J.; Výberči, D.; Jarošová, M.; Å¥Astný, P. Å.
2010-09-01
Analysis of long-term changes and temporal variability of heat waves incidence in the region of southern Slovakia within the 1901-2009 periods is a goal of the presented contribution. It is expected that climate change in terms of global warming would amplify temporal frequency and spatial extension of extreme heat wave incidence in region of central Europe in the next few decades. The frequency of occurrence and amplitude of heat waves may be impacted by changes in the temperature regime. Heat waves can cause severe thermal environmental stress leading to higher hospital admission rates, health complications, and increased mortality. These effects arise because of one or more meteorology-related factors such as higher effective temperatures, sunshine, more consecutive hot days and nights, stagnation, increased humidity, increased pollutant emissions, and accelerated photochemical smog and particulate formation. Heat waves bring about higher temperatures, increased solar heating of buildings, inhibited ventilation, and a larger number of consecutive warm days and nights. All of these effects increase the thermal loads on buildings, reduce their ability to cool down, and increase indoor temperatures. The paper is focused to analysis of long-term and inter-decadal temporal variability of heat waves occurrence at meteorological station Hurbanovo (time-series of daily maximum air temperature available from at least 1901). We can characterize the heat waves by its magnitude and duration, hence both of these characteristics need to be investigated together using sophisticated statistical methods developed particularly for the analysis of extreme hydrological events. We investigated particular heat wave periods either from the severity point of view using HWI index. In the paper we also present the results of statistical analysis of daily maximum air temperature within 1901-2009 period. Apart from these investigation efforts we also focused on synoptic causes of heat wave incidence in connection with macro scale circulation patterns in central European region.
NASA Astrophysics Data System (ADS)
Ishisaka, K.; Okada, T.; Tsuruda, K.; Hayakawa, H.; Mukai, T.; Matsumoto, H.
2001-04-01
The spacecraft potential has been used to derive the electron number density surrounding the spacecraft in the magnetosphere and solar wind. We have investigated the correlation between the spacecraft potential of the Geotail spacecraft and the electron number density derived from the plasma waves in the solar wind and almost all the regions of the magnetosphere, except for the high-density plasmasphere, and obtained an empirical formula to show their relation. The new formula is effective in the range of spacecraft potential from a few volts up to 90 V, corresponding to the electron number density from 0.001 to 50 cm-3. We compared the electron number density obtained by the empirical formula with the density obtained by the plasma wave and plasma particle measurements. On occasions the density determined by plasma wave measurements in the lobe region is different from that calculated by the empirical formula. Using the difference in the densities measured by two methods, we discuss whether or not the lower cutoff frequency of the plasma waves, such as continuum radiation, indicates the local electron density near the spacecraft. Then we applied the new relation to the spacecraft potential measured by the Geotail spacecraft during the period from October 1993 to December 1995, and obtained the electron spatial distribution in the solar wind and magnetosphere, including the distant tail region. Higher electron number density is clearly observed on the dawnside than on the duskside of the magnetosphere in the distant tail beyond 100RE.
Interaction of a shock wave with multiple spheres suspended in different arrangements
NASA Astrophysics Data System (ADS)
Zhang, Li-Te; Sui, Zhen-Zhen; Shi, Hong-Hui
2018-03-01
In this study, the unsteady drag force, Fd, drag coefficient, Cd, and the relevant dynamic behaviors of waves caused by the interaction between a planar incident shock wave and a multi-sphere model are investigated by using imbedded accelerometers and a high-speed Schlieren system. The shock wave is produced in a horizontal 200 mm inner diameter circular shock tube with a 2000 mm × 200 mm × 200 mm transparent test section. The time history of Cd is obtained based on band-block and low-pass Fast Fourier Transformation filtering combined with Savitzky-Golay polynomial smoothing for the measured acceleration. The effects of shock Mach number, Ms, geometry of multi-sphere model, nondimensional distance between sphere centers, H, and channel blockage are analyzed. We find that all time histories of Cd have a similar double-peak shaped main structure. It is due to wave reflection, diffraction, interference, and convergence at different positions of the spheres. The peak Fd increases, whereas the peak Cd decreases monotonically with increasing Ms. The increase of shock strength due to shock focusing by upstream spheres increases the peak Fd of downstream spheres. Both the increase in sphere number and the decrease in distance between spheres promote wave interference between neighboring spheres. As long as the wave interference times are shorter than the peak times, the peak Fd and Cd are higher compared to a single sphere.
Koshka, Yaroslav; Perera, Dilina; Hall, Spencer; Novotny, M A
2017-07-01
The possibility of using a quantum computer D-Wave 2X with more than 1000 qubits to determine the global minimum of the energy landscape of trained restricted Boltzmann machines is investigated. In order to overcome the problem of limited interconnectivity in the D-Wave architecture, the proposed RBM embedding combines multiple qubits to represent a particular RBM unit. The results for the lowest-energy (the ground state) and some of the higher-energy states found by the D-Wave 2X were compared with those of the classical simulated annealing (SA) algorithm. In many cases, the D-Wave machine successfully found the same RBM lowest-energy state as that found by SA. In some examples, the D-Wave machine returned a state corresponding to one of the higher-energy local minima found by SA. The inherently nonperfect embedding of the RBM into the Chimera lattice explored in this work (i.e., multiple qubits combined into a single RBM unit were found not to be guaranteed to be all aligned) and the existence of small, persistent biases in the D-Wave hardware may cause a discrepancy between the D-Wave and the SA results. In some of the investigated cases, introduction of a small bias field into the energy function or optimization of the chain-strength parameter in the D-Wave embedding successfully addressed difficulties of the particular RBM embedding. With further development of the D-Wave hardware, the approach will be suitable for much larger numbers of RBM units.
Self-propelled swimming simulations of bio-inspired smart structures.
Daghooghi, Mohsen; Borazjani, Iman
2016-08-09
This paper presents self-propelled swimming simulations of a foldable structure, whose folded configuration is a box. For self-locomotion through water the structure unfolds and undulates. To guide the design of the structure and understand how it should undulate to achieve either highest speed or maximize efficiency during locomotion, several kinematic parameters were systematically varied in the simulations: the wave type (standing wave versus traveling wave), the smoothness of undulations (smooth undulations versus undulations of rigid links), the mode of undulations (carangiform: mackerel-like versus anguilliform: eel-like undulations), and the maximum amplitude of undulations. We show that the swimmers with standing wave are slow and inefficient because they are not able to produce thrust using the added-mass mechanism. Among the tested types of undulation at low Reynolds number (Re) regime of [Formula: see text] (Strouhal number of about 1.0), structures that employ carangiform undulations can swim faster, whereas anguilliform swimmers are more economic, i.e., using less power they can swim a longer distance. Another finding of our simulations is that structures which are made of rigid links are typically less efficient (lower propulsive and power efficiencies and also lower swimming speed) compared with smoothly undulating ones because a higher added-mass force is generated by smooth undulations. The wake of all the swimmers bifurcated at the low Re regime because of the higher lateral relative to the axial velocity (high Strouhal number) that advects the vortices laterally creating a double row of vortices in the wake. In addition, we show that the wake cannot be used to predict the performance of the swimmers because the net force in each cycle is zero for self-propelled bodies and the pressure term is not negligible compared to the other terms.
Wang, Tzu-Yin; Hall, Timothy L; Xu, Zhen; Fowlkes, J Brian; Cain, Charles A
2014-07-01
Our previous study indicated that shear waves decay and propagate at a lower speed as they propagate into a tissue volume mechanically fractionated by histotripsy. In this paper, we hypothesize that the change in the shear dynamics is related to the degree of tissue fractionation, and can be used to predict histotripsy treatment outcomes. To test this hypothesis, lesions with different degrees of tissue fractionation were created in agar-graphite tissue phantoms and ex vivo kidneys with increasing numbers of therapy pulses, from 0 to 2000 pulses per treatment location. The therapy pulses were 3-cycle 750-kHz focused ultrasound delivered at a peak negative/positive pressure of 17/108 MPa and a repetition rate of 50 Hz. The shear waves were excited by acoustic radiation force impulse (ARFI) focused at the center of the lesion. The spatial and temporal behavior of the propagating shear waves was measured with ultrasound plane wave imaging. The temporal displacement profile at a lateral location 10 mm offset to the shear excitation region was detected with M-mode imaging. The decay and delay of the shear waves were quantitatively characterized on the temporal displacement profile. Results showed significant changes in two characteristics on the temporal displacement profile: the peak-to-peak displacement decayed exponentially with increasing numbers of therapy pulses; the relative time-to-peak displacement increased with increasing numbers of therapy pulses, and appeared to saturate at higher numbers of pulses. Correspondingly, the degree of tissues fractionation, as indicated by the percentage of structurally intact cell nuclei, decreased exponentially with increasing numbers of therapy pulses. Strong linear correlations were found between the two characteristics and the degree of tissue fractionation. These results suggest that the characteristics of the shear temporal displacement profile may provide useful feedback information regarding the treatment outcomes.
Nonlinear whistler wave model for lion roars in the Earth's magnetosheath
NASA Astrophysics Data System (ADS)
Dwivedi, N. K.; Singh, S.
2017-09-01
In the present study, we construct a nonlinear whistler wave model to explain the magnetic field spectra observed for lion roars in the Earth's magnetosheath region. We use two-fluid theory and semi-analytical approach to derive the dynamical equation of whistler wave propagating along the ambient magnetic field. We examine the magnetic field localization of parallel propagating whistler wave in the intermediate beta plasma applicable to the Earth's magnetosheath. In addition, we investigate spectral features of the magnetic field fluctuations and the spectral slope value. The magnetic field spectrum obtained by semi-analytical approach shows a spectral break point and becomes steeper at higher wave numbers. The observations of IMP 6 plasma waves and magnetometer experiment reveal the existence of short period magnetic field fluctuations in the magnetosheath. The observation shows the broadband spectrum with a spectral slope of -4.5 superimposed with a narrow band peak. The broadband fluctuations appear due to the energy cascades attributed by low-frequency magnetohydrodynamic modes, whereas, a narrow band peak is observed due to the short period lion roars bursts. The energy spectrum predicted by the present theoretical model shows a similar broadband spectrum in the wave number domain with a spectral slope of -3.2, however, it does not show any narrow band peak. Further, we present a comparison between theoretical energy spectrum and the observed spectral slope in the frequency domain. The present semi-analytical model provides exposure to the whistler wave turbulence in the Earth's magnetosheath.
Glimpses of Kolmogorov's spectral energy dynamics in nonlinear acoustic waves
NASA Astrophysics Data System (ADS)
Gupta, Prateek; Scalo, Carlo
2017-11-01
Gupta, Lodato, and Scalo (AIAA 2017) have demonstrated the existence of an equilibrium spectral energy cascade in shock waves formed as a result of continued modal thermoacoustic amplification consistent with Kolmogorov's theory for high-Reynolds-number hydrodynamic turbulence. In this talk we discuss the derivation of a perturbation energy density norm that guarantees energy conservation during the nonlinear wave steepening process, analogous to inertial subrange turbulent energy cascade dynamics. The energy cascade is investigated via a bi-spectral analysis limited to wave-numbers and frequencies lower than the ones associated with the shock, analogous to the viscous dissipation length scale in turbulence. The proposed norm is derived by recombining second-order nonlinear acoustic equations and is positive definite; moreover, it decays to zero in the presence of viscous dissipation and is hence classifiable as a Lyapunov function of acoustic perturbation variables. The cumulative energy spectrum wavenumber distribution demonstrates a -3/2 decay law in the inertial range. The governing equation for the thus-derived energy norm highlights terms responsible for energy cascade towards higher harmonics, analogous to vortex stretching terms in hydrodynamic turbulence.
EEG slow waves in traumatic brain injury: Convergent findings in mouse and man
Modarres, Mo; Kuzma, Nicholas N.; Kretzmer, Tracy; Pack, Allan I.; Lim, Miranda M.
2016-01-01
Objective Evidence from previous studies suggests that greater sleep pressure, in the form of EEG-based slow waves, accumulates in specific brain regions that are more active during prior waking experience. We sought to quantify the number and coherence of EEG slow waves in subjects with mild traumatic brain injury (mTBI). Methods We developed a method to automatically detect individual slow waves in each EEG channel, and validated this method using simulated EEG data. We then used this method to quantify EEG-based slow waves during sleep and wake states in both mouse and human subjects with mTBI. A modified coherence index that accounts for information from multiple channels was calculated as a measure of slow wave synchrony. Results Brain-injured mice showed significantly higher theta:alpha amplitude ratios and significantly more slow waves during spontaneous wakefulness and during prolonged sleep deprivation, compared to sham-injured control mice. Human subjects with mTBI showed significantly higher theta:beta amplitude ratios and significantly more EEG slow waves while awake compared to age-matched control subjects. We then quantified the global coherence index of slow waves across several EEG channels in human subjects. Individuals with mTBI showed significantly less EEG global coherence compared to control subjects while awake, but not during sleep. EEG global coherence was significantly correlated with severity of post-concussive symptoms (as assessed by the Neurobehavioral Symptom Inventory scale). Conclusion and implications Taken together, our data from both mouse and human studies suggest that EEG slow wave quantity and the global coherence index of slow waves may represent a sensitive marker for the diagnosis and prognosis of mTBI and post-concussive symptoms. PMID:28018987
EEG slow waves in traumatic brain injury: Convergent findings in mouse and man.
Modarres, Mo; Kuzma, Nicholas N; Kretzmer, Tracy; Pack, Allan I; Lim, Miranda M
2016-07-01
Evidence from previous studies suggests that greater sleep pressure, in the form of EEG-based slow waves, accumulates in specific brain regions that are more active during prior waking experience. We sought to quantify the number and coherence of EEG slow waves in subjects with mild traumatic brain injury (mTBI). We developed a method to automatically detect individual slow waves in each EEG channel, and validated this method using simulated EEG data. We then used this method to quantify EEG-based slow waves during sleep and wake states in both mouse and human subjects with mTBI. A modified coherence index that accounts for information from multiple channels was calculated as a measure of slow wave synchrony. Brain-injured mice showed significantly higher theta:alpha amplitude ratios and significantly more slow waves during spontaneous wakefulness and during prolonged sleep deprivation, compared to sham-injured control mice. Human subjects with mTBI showed significantly higher theta:beta amplitude ratios and significantly more EEG slow waves while awake compared to age-matched control subjects. We then quantified the global coherence index of slow waves across several EEG channels in human subjects. Individuals with mTBI showed significantly less EEG global coherence compared to control subjects while awake, but not during sleep. EEG global coherence was significantly correlated with severity of post-concussive symptoms (as assessed by the Neurobehavioral Symptom Inventory scale). Taken together, our data from both mouse and human studies suggest that EEG slow wave quantity and the global coherence index of slow waves may represent a sensitive marker for the diagnosis and prognosis of mTBI and post-concussive symptoms.
Parsons, Sean P; Huizinga, Jan D
2015-02-15
Waves of contraction in the small intestine correlate with slow waves generated by the myenteric network of interstitial cells of Cajal. Coupled oscillator theory has been used to explain steplike gradients in the frequency (frequency plateaux) of contraction waves along the length of the small intestine. Inhibition of gap junction coupling between oscillators should lead to predictable effects on these plateaux and the wave dislocation (wave drop) phenomena associated with their boundaries. It is these predictions that we wished to test. We used a novel multicamera diameter-mapping system to measure contraction along 25- to 30-cm lengths of murine small intestine. There were typically two to three plateaux per length of intestine. Dislocations could be limited to the wavefronts immediately about the terminated wave, giving the appearance of a three-pronged fork, i.e., a fork dislocation; additionally, localized decreases in velocity developed across a number of wavefronts, ending with the terminated wave, which could appear as a fork, i.e., slip dislocations. The gap junction inhibitor carbenoxolone increased the number of plateaux and dislocations and decreased contraction wave velocity. In some cases, the usual frequency gradient was reversed, with a plateau at a higher frequency than its proximal neighbor; thus fork dislocations were inverted, and the direction of propagation was reversed. Heptanol had no effect on the frequency or velocity of contractions but did reduce their amplitude. To understand intestinal motor patterns, the pacemaker network of the interstitial cells of Cajal is best evaluated as a system of coupled oscillators. Copyright © 2015 the American Physiological Society.
Thermal noise from optical coatings in gravitational wave detectors.
Harry, Gregory M; Armandula, Helena; Black, Eric; Crooks, D R M; Cagnoli, Gianpietro; Hough, Jim; Murray, Peter; Reid, Stuart; Rowan, Sheila; Sneddon, Peter; Fejer, Martin M; Route, Roger; Penn, Steven D
2006-03-01
Gravitational waves are a prediction of Einstein's general theory of relativity. These waves are created by massive objects, like neutron stars or black holes, oscillating at speeds appreciable to the speed of light. The detectable effect on the Earth of these waves is extremely small, however, creating strains of the order of 10(-21). There are a number of basic physics experiments around the world designed to detect these waves by using interferometers with very long arms, up to 4 km in length. The next-generation interferometers are currently being designed, and the thermal noise in the mirrors will set the sensitivity over much of the usable bandwidth. Thermal noise arising from mechanical loss in the optical coatings put on the mirrors will be a significant source of noise. Achieving higher sensitivity through lower mechanical loss coatings, while preserving the crucial optical and thermal properties, is an area of active research right now.
A space-time discretization procedure for wave propagation problems
NASA Technical Reports Server (NTRS)
Davis, Sanford
1989-01-01
Higher order compact algorithms are developed for the numerical simulation of wave propagation by using the concept of a discrete dispersion relation. The dispersion relation is the imprint of any linear operator in space-time. The discrete dispersion relation is derived from the continuous dispersion relation by examining the process by which locally plane waves propagate through a chosen grid. The exponential structure of the discrete dispersion relation suggests an efficient splitting of convective and diffusive terms for dissipative waves. Fourth- and eighth-order convection schemes are examined that involve only three or five spatial grid points. These algorithms are subject to the same restrictions that govern the use of dispersion relations in the constructions of asymptotic expansions to nonlinear evolution equations. A new eighth-order scheme is developed that is exact for Courant numbers of 1, 2, 3, and 4. Examples are given of a pulse and step wave with a small amount of physical diffusion.
NASA Technical Reports Server (NTRS)
Gedzelman, S. D.
1983-01-01
Gravity waves for the one year period beginning 19 October 1976 around Palisades, New York, are investigated to determine their statistical properties and sources. The waves have typical periods of 10 min, pressure amplitudes of 3 Pa and velocities of 30 m/s. In general, the largest, amplitude waves occur during late fall and early winter when the upper tropospheric winds directly overhead are fastest and the static stability of the lower troposphere is greatest. Mean wave amplitudes correlate highly with the product of the mean maximum wind speed and the mean low level stratification directly aloft. A distinct diurnal variation of wave amplitudes with the largest waves occurring in the pre-dawn hours is also observed as a result of the increased static stability then. The majority of waves are generated by shear instability; however, a number of waves are generated by distant sources such as nuclear detonations or large thunderstorms. The waves with distant sources can be distinguished on the basis of their generally much higher coherency across the grid and velocities that depart markedly from the wind velocity at any point in the sounding.
Previsic, Mirko; Karthikeyan, Anantha; Lewis, Tony; McCarthy, John
2017-07-26
Capex numbers are in $/kW, Opex numbers in $/kW-yr. Cost Estimates provided herein are based on concept design and basic engineering data and have high levels of uncertainties embedded. This reference economic scenario was done for a very large device version of the OE Buoy technology, which is not presently on Ocean Energy's technology development pathway but will be considered in future business plan development. The DOE reference site condition is considered a low power-density site, compared with many of the planned initial deployment locations for the OE Buoy. Many of the sites considered for the initial commercial deployment of the OE buoy feature much higher wave power densities and shorter period waves. Both of these characteristics will improve the OE buoy's commercial viability.
Phillips, A C; Jiang, C Q; Thomas, G N; Lin, J M; Yue, X J; Cheng, K K; Jin, Y L; Zhang, W S; Lam, T H
2012-08-01
Cross-sectional associations between white blood cell (WBC) count, lymphocyte and granulocyte numbers, and carotid intima-media thickness (IMT) and brachial-ankle pulse wave velocity (PWV) were examined in a novel older Chinese community sample. A total of 817 men and 760 women from a sub-study of the Guangzhou Biobank Cohort Study had a full blood count measured by an automated hematology analyzer, carotid IMT by B-mode ultrasonography and brachial-ankle PWV by a non-invasive automatic waveform analyzer. Following adjustment for confounders, WBC count (β=0.07, P<0.001) and granulocyte (β=0.07, P<0.001) number were significantly positively related to PWV, but not lymphocyte number. Similarly, WBC count (β=0.08, P=0.03), lymphocyte (β=0.08, P=0.002) and granulocyte (β=0.03, P=0.04) number were significantly positively associated with carotid IMT, but only the association with lymphocyte count survived correction for other cardiovascular risk factors. In conclusion, higher WBC, particularly lymphocyte and granulocyte, count could be used, respectively, as markers of cardiovascular disease risk, measured through indicators of atherosclerosis and arterial stiffness. The associations for WBC count previously observed by others were likely driven by higher granulocytes; an index of systemic inflammation.
Combined effects of drift waves and neoclassical transport on density profiles in tokamaks
NASA Astrophysics Data System (ADS)
Houlberg, W. A.; Strand, P.
2005-10-01
The relative importance of neoclassical and anomalous particle transport depends on the charge number of the species being studied. The detailed particle balance including the EDWM [1] drift wave model for anomalous transport that includes ITG, TEM and in some cases ETG modes, and the neoclassical model NCLASS [2], are illustrated by simulations with the DEA particle transport code. DEA models the evolution of all ion species, and can be run in a mode to evaluate dynamic responses to perturbations or to conditions far from equilibrium by perturbing the profiles from the experimental measurements. The perturbations allow the fluxes to be decomposed into diffusive and convective (pinch) terms. The different scaling with charge number between drift wave and neoclassical models favors a stronger component of neoclassical transport for higher Z impurities through the effective pinch term. Although trace impurities illustrate a simple Ficks Law form, the main ions as well as higher concentrations of intrinsic impurities exhibit non-linear responses to the density gradients as well as off-diagonal gradient dependencies, leading to a more complicated response for the particle fluxes.[1] H. Nordman, et al., Plasma Phys. Control. Fusion 47 (2005) L11. [2] W.A. Houlberg, et al., Phys. Plasmas 4 (1997) 3230.
NASA Astrophysics Data System (ADS)
Bandyopadhyay, P.; Prasad, G.; Sen, A.; Kaw, P. K.
2007-09-01
The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and MnO2 dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of ∂ω/∂k<0 are identified as signatures of dust dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects.
Nonlinear bounce resonances between magnetosonic waves and equatorially mirroring electrons
NASA Astrophysics Data System (ADS)
Chen, Lunjin; Maldonado, Armando; Bortnik, Jacob; Thorne, Richard M.; Li, Jinxing; Dai, Lei; Zhan, Xiaoya
2015-08-01
Equatorially mirroring energetic electrons pose an interesting scientific problem, since they generally cannot resonate with any known plasma waves and hence cannot be scattered down to lower pitch angles. Observationally it is well known that the flux of these equatorial particles does not simply continue to build up indefinitely, and so a mechanism must necessarily exist that transports these particles from an equatorial pitch angle of 90° down to lower values. However, this mechanism has not been uniquely identified yet. Here we investigate the mechanism of bounce resonance with equatorial noise (or fast magnetosonic waves). A test particle simulation is used to examine the effects of monochromatic magnetosonic waves on the equatorially mirroring energetic electrons, with a special interest in characterizing the effectiveness of bounce resonances. Our analysis shows that bounce resonances can occur at the first three harmonics of the bounce frequency (nωb, n = 1, 2, and 3) and can effectively reduce the equatorial pitch angle to values where resonant scattering by whistler mode waves becomes possible. We demonstrate that the nature of bounce resonance is nonlinear, and we propose a nonlinear oscillation model for characterizing bounce resonances using two key parameters, effective wave amplitude à and normalized wave number k~z. The threshold for higher harmonic resonance is more strict, favoring higher à and k~z, and the change in equatorial pitch angle is strongly controlled by k~z. We also investigate the dependence of bounce resonance effects on various physical parameters, including wave amplitude, frequency, wave normal angle and initial phase, plasma density, and electron energy. It is found that the effect of bounce resonance is sensitive to the wave normal angle. We suggest that the bounce resonant interaction might lead to an observed pitch angle distribution with a minimum at 90°.
2013-09-30
Tripolar Wave Model Grid: NAVGEM / WaveWatch III / HYCOM W. Erick Rogers Naval Research Laboratory, Code 7322 Stennis Space Center, MS 39529...Parameterizations and Tripolar Wave Model Grid: NAVGEM / WaveWatch III / HYCOM 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6
Görtler instability of the axisymmetric boundary layer along a cone
NASA Astrophysics Data System (ADS)
ITOH, Nobutake
2014-10-01
Exact partial differential equations are derived to describe Görtler instability, caused by a weakly concave wall, of axisymmetric boundary layers with similar velocity profiles that are decomposed into a sequence of ordinary differential systems on the assumption that the solution can be expanded into inverse powers of local Reynolds number. The leading terms of the series solution are determined by solving a non-parallel version of Görtler’s eigenvalue problem and lead to a neutral stability curve and finite values of critical Görtler number and wave number for stationary and longitudinal vortices. Higher-order terms of the series solution indicate Reynolds-number dependence of Görtler instability and a limited validity of Görtler’s approximation based on the leading terms only. The present formulation is simply applicable to two-dimensional boundary layers of similar profiles, and critical Görtler number and wave number of the Blasius boundary layer on a flat plate are given by G2c = 1.23 and β2c = 0.288, respectively, if the momentum thickness is chosen as the reference length.
Komurcu, Hatice Ferhan; Kilic, Selim; Anlar, Omer
2015-01-01
The clinical importance of F-wave inversion in the diagnosis of Carpal Tunnel Syndrome (CTS) is not yet well known. This study aims to investigate the value of F-wave inversion in diagnosing CTS, and to evaluate the relationship of F-wave inversion with age, gender, diabetes mellitus, body mass index (BMI), wrist or waist circumferences. Patients (n=744) who were considered to have CTS with clinical findings were included in the study. In order to confirm the diagnosis of CTS, standard electrophysiological parameters were studied with electroneuromyography. In addition, median nerve F-wave measurements were done and we determined if F-wave inversion was present or not. Sensitivity and specificity of F-wave inversion were investigated for its value in showing CTS diagnosed by electrophysiological examination. CTS diagnosis was confirmed by routine electrophysiological parameters in 307 (41.3%) patients. The number of the patients with the presence of F-wave inversion was 243 (32.7%). Sensitivity of F-wave inversion was found as 56% and specificity as 83.8%. BMI and wrist circumference values were significantly higher in patients with F-wave inversion present than those with F-wave inversion absent (p=0.0033, p=0.025 respectively). F-wave inversion can be considered as a valuable electrophysiological measurement for screening of CTS.
NASA Astrophysics Data System (ADS)
Hassnain Jaffari, G.; Tahir, Adnan; Ali, Naveed Zafar; Ali, Awais; Qurashi, Umar S.
2018-04-01
Noncompensated cation-anion codoping in TiO2 nanoparticles has been achieved by a chemical synthesis route. Significant reduction in the optical bandgap and enhancement in the absorption of visible light have been observed. Structural phase transformation has been tracked in detail as a function of doping and heat treatment temperature. Anatase to rutile phase transition temperature for doped samples was higher in comparison to the pure TiO2 nanoparticles. Nitrogen and chromium addition increases the phase transformation barrier, where the effect of the former dopant is of more significance. The Raman results showed an increase in the oxygen content with higher post annealing temperatures. With Cr incorporation, the peak associated with the Eg mode has been found to shift towards a higher wave number, while with nitrogen incorporation, the shift was towards a lower wave number. A decrease in reflectance with N co-doping for all samples, irrespective of phase and annealing temperatures, has been observed. In compositions with nitrogen of the same content, bandgap reduction was higher in the rutile phase in comparison to the anatase phase. In general, overall results revealed that with a higher loading fraction of ammonia, the N content increases, while Cr addition prevents nitrogen loss even up to high post annealing temperatures, i.e., 850 °C.
Yokoyama, Naoto; Takaoka, Masanori
2014-12-01
A single-wave-number representation of a nonlinear energy spectrum, i.e., a stretching-energy spectrum, is found in elastic-wave turbulence governed by the Föppl-von Kármán (FvK) equation. The representation enables energy decomposition analysis in the wave-number space and analytical expressions of detailed energy budgets in the nonlinear interactions. We numerically solved the FvK equation and observed the following facts. Kinetic energy and bending energy are comparable with each other at large wave numbers as the weak turbulence theory suggests. On the other hand, stretching energy is larger than the bending energy at small wave numbers, i.e., the nonlinearity is relatively strong. The strong correlation between a mode a(k) and its companion mode a(-k) is observed at the small wave numbers. The energy is input into the wave field through stretching-energy transfer at the small wave numbers, and dissipated through the quartic part of kinetic-energy transfer at the large wave numbers. Total-energy flux consistent with energy conservation is calculated directly by using the analytical expression of the total-energy transfer, and the forward energy cascade is observed clearly.
Parametric Decay Instability of Near-Acoustic Waves in Fluid and Kinetic Regimes
NASA Astrophysics Data System (ADS)
Affolter, M.; Anderegg, F.; Driscoll, C. F.; Valentini, F.
2016-10-01
We present quantitative measurements of parametric wave-wave coupling rates and decay instabilities in the range 10 meV
NASA Astrophysics Data System (ADS)
Liao, Sunmin
2018-04-01
Based on the data of CHAMP occultation measurements, this paper makes a preliminary analysis of the longitudinal variations of ES irregular structure by using Fourier decomposition and reconstruction technique. It is found that the longitudinal variations of the ES irregular structure show the features of multiple wave-numbers, which is dominated by the wave number 1 to the wave number 5 components, and decrease from the amplitudes of the wave number 6 components. The features of wave number structures are very different in different DIP latitude and different seasons. The number of crests in summer and autumn is mostly 3 or 4 crest structures, while the number of crests in spring achieves 5 at DIP 15°N with small fluctuates, the crests number of winter is the least. In the multiple wave-numbers structure, the wave number 4 component shows a significant dependence on the season, mainly in the summer and autumn, particularly obvious from July to October.
NASA Astrophysics Data System (ADS)
Khan, Md. Abdul
2014-09-01
In this paper, energies of the low-lying bound S-states (L = 0) of exotic three-body systems, consisting a nuclear core of charge +Ze (Z being atomic number of the core) and two negatively charged valence muons, have been calculated by hyperspherical harmonics expansion method (HHEM). The three-body Schrödinger equation is solved assuming purely Coulomb interaction among the binary pairs of the three-body systems XZ+μ-μ- for Z = 1 to 54. Convergence pattern of the energies have been checked with respect to the increasing number of partial waves Λmax. For available computer facilities, calculations are feasible up to Λmax = 28 partial waves, however, calculation for still higher partial waves have been achieved through an appropriate extrapolation scheme. The dependence of bound state energies has been checked against increasing nuclear charge Z and finally, the calculated energies have been compared with the ones of the literature.
Snakes mimic earthworms: propulsion using rectilinear travelling waves
Marvi, Hamidreza; Bridges, Jacob; Hu, David L.
2013-01-01
In rectilinear locomotion, snakes propel themselves using unidirectional travelling waves of muscular contraction, in a style similar to earthworms. In this combined experimental and theoretical study, we film rectilinear locomotion of three species of snakes, including red-tailed boa constrictors, Dumeril's boas and Gaboon vipers. The kinematics of a snake's extension–contraction travelling wave are characterized by wave frequency, amplitude and speed. We find wave frequency increases with increasing body size, an opposite trend than that for legged animals. We predict body speed with 73–97% accuracy using a mathematical model of a one-dimensional n-linked crawler that uses friction as the dominant propulsive force. We apply our model to show snakes have optimal wave frequencies: higher values increase Froude number causing the snake to slip; smaller values decrease thrust and so body speed. Other choices of kinematic variables, such as wave amplitude, are suboptimal and appear to be limited by anatomical constraints. Our model also shows that local body lifting increases a snake's speed by 31 per cent, demonstrating that rectilinear locomotion benefits from vertical motion similar to walking. PMID:23635494
Hyperfast Numerical Integration of Ocean Surface Wave Dynamics Extensions to Higher Order
2008-09-30
Osborne Dipartimento di Fisica Generale, Università di Torino Via Pietro Giuria 1 10125 Torino, Italy Phone: (+39) 11-670-7451 or (+39) 11-329...Universit?i Torino,Dipartimento di Fisica Generale,Via Pietro Giuria 1,10125 Torino, Italy, , 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING
NASA Technical Reports Server (NTRS)
Lina, Lindsay J.; Maglieri, Domenic J.
1960-01-01
The intensity of shock-wave noise at the ground resulting from flights at Mach numbers to 2.0 and altitudes to 60,000 feet was measured. Meagurements near the ground track for flights of a supersonic fighter and one flight of a supersonic bomber are presented. Level cruising flight at an altitude of 60,000 feet and a Mach number of 2.0 produced sonic booms which were considered to be tolerable, and it is reasonable t o expect that cruising flight at higher altitudes will produce booms of tolerable intensity for airplanes of the size and weight of the test airplanes. The measured variation of sonic-boom intensity with altitude was in good agreement with the variation calculated by an equation given in NASA Technical Note D-48. The effect of Mach number on the ground overpressure is small between Mach numbers of 1.4 and 2.0, a result in agreement with the theory. No amplification of the shock-wave overpressures due to refraction effects was apparent near the cutoff Mach number. A method for estimating the effect of fligh-path angle on cutoff Mach number is shown. Experimental results indicate agreement with the method, since a climb maneuver produced booms of a much decreased intensity as compared with the intensity of those measured in level flight at about the same altitude and Mach number. Comparison of sound pressure levels for the fighter and bomber airp lanes indicated little effect of either airplane size or weight at an altitude of 40,000 feet.
Pedullà, Eugenio; Lo Savio, Fabio; Boninelli, Simona; Plotino, Gianluca; Grande, Nicola M; La Rosa, Guido; Rapisarda, Ernesto
2016-01-01
The purpose of this study was to evaluate the torsional and cyclic fatigue resistance of the new Hyflex EDM OneFile (Coltene/Whaledent AG, Altstatten, Switzerland) manufactured by electrical discharge machining and compare the findings with the ones of Reciproc R25 (VDW, Munich, Germany) and WaveOne Primary (Dentsply Maillefer, Ballaigues, Switzerland). One hundred-twenty new Hyflex EDM OneFile (#25/0.08), Reciproc R25, and WaveOne Primary files were used. Torque and angle of rotation at failure of new instruments (n = 20) were measured according to ISO 3630-1 for each brand. Cyclic fatigue resistance was tested measuring the number of cycles to failure in an artificial stainless steel canal with a 60° angle and a 3-mm radius of curvature. Data were analyzed using the analysis of variance test and the Student-Newman-Keuls test for multiple comparisons. The fracture surface of each fragment was examined with a scanning electron microscope. The cyclic fatigue of Hyflex EDM was significantly higher than the one of Reciproc R25 and WaveOne Primary (P < .05 and P < .001, respectively). Hyflex EDM showed a lower maximum torque load (P < .05) but a significantly higher angular rotation (P < .0001) to fracture than Reciproc R25 and WaveOne Primary. No significant difference was found comparing the maximum torque load, angular rotation, and cyclic fatigue of Reciproc R25 and WaveOne Primary (P > .05). The new Hyflex EDM instruments (controlled memory wire) have higher cyclic fatigue resistance and angle of rotation to fracture but lower torque to failure than Reciproc R25 and WaveOne Primary files (M-wire for both files). Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zerdali, M.; Bechiri, F.; Hamzaoui, S.; Teherani, F. H.; Rogers, D. J.; Sandana, V. E.; Bove, P.; Djemia, P.; Roussigné, Y.
2017-03-01
Brillouin light scattering (BLS) was conducted on melt-grown ZnO bulk crystals and ZnO thin films grown by pulsed laser deposition. The bulk ZnO crystals presented both longitudinal and transverse bulk acoustic waves. Theoretical calculations agreed well with there being one piezoelectric longitudinal branch and two transverse branches. BLS measurements conducted on ZnO thin films also revealed Rayleigh surface acoustic waves (R-SAW) guided by only the surface of the layer and Sezawa modes, guided by the film thickness. Measurements were conducted for three incidence angles in order to investigate different SAW wave numbers. Higher frequency features were identified as being related to a new class of guided longitudinal (LG) SAW modes which are not usually detected for ZnO thin films. The LG-SAW modes were observed for two incidence angles (θ=45° and 55°) corresponding to frequencies of 17.88 and 20.75 GHz, respectively. BLS measurements enable us to estimate the LG-SAW velocity as 6500 m/s. This value is three times higher than that of the currently used R-SAW. Theoretical simulations were coherent with the presence of LG modes in the ZnO layers. Such LG-SAW modes are promising for the development of novel, higher-speed SAW devices operating in the GHz-band and which could be readily incorporated in Si-based integrated circuitry.
Analysis OpenMP performance of AMD and Intel architecture for breaking waves simulation using MPS
NASA Astrophysics Data System (ADS)
Alamsyah, M. N. A.; Utomo, A.; Gunawan, P. H.
2018-03-01
Simulation of breaking waves by using Navier-Stokes equation via moving particle semi-implicit method (MPS) over close domain is given. The results show the parallel computing on multicore architecture using OpenMP platform can reduce the computational time almost half of the serial time. Here, the comparison using two computer architectures (AMD and Intel) are performed. The results using Intel architecture is shown better than AMD architecture in CPU time. However, in efficiency, the computer with AMD architecture gives slightly higher than the Intel. For the simulation by 1512 number of particles, the CPU time using Intel and AMD are 12662.47 and 28282.30 respectively. Moreover, the efficiency using similar number of particles, AMD obtains 50.09 % and Intel up to 49.42 %.
The role of coherent structures in the generation of noise for subsonic jets
NASA Technical Reports Server (NTRS)
Morrison, G. L.
1982-01-01
The coherent structure in high Reynolds number (184,000 to 262,000), Mach number 0.6 to 0.8 axisymmetric cold air jets exhausting at atmospheric pressure was studied. The mean flow and the statistical time averaged turbulence properties were measured. Spectra showed a very broad frequency content which shifted towards the lower frequencies as the flow progressed downstream. Axial wave number measurements indicate that the axial wave number-frequency relationship was the same for a wide range of Mach (0.3 to 2.5) and Reynolds (3,700 to over 200,000) numbers. Measurements of the azimuthal mode numbers show that several modes from n = -3 to +3 exist simultaneously in various quantities that the different frequencies studied. Acoustic measurements were made in the near field of the Mach number 0.6 jet. Sound pressure level contours showed that noise appeared to be radiated from a location near the end of the potential core. Directivity plots revealed that the spectra of this noise shifted towards higher frequencies as the angle from the jet axis increased. It was also found that mid-band excitation frequencies produced an increase in full spectrum noise.
Inversion of high frequency surface waves with fundamental and higher modes
Xia, J.; Miller, R.D.; Park, C.B.; Tian, G.
2003-01-01
The phase velocity of Rayleigh-waves of a layered earth model is a function of frequency and four groups of earth parameters: compressional (P)-wave velocity, shear (S)-wave velocity, density, and thickness of layers. For the fundamental mode of Rayleigh waves, analysis of the Jacobian matrix for high frequencies (2-40 Hz) provides a measure of dispersion curve sensitivity to earth model parameters. S-wave velocities are the dominant influence of the four earth model parameters. This thesis is true for higher modes of high frequency Rayleigh waves as well. Our numerical modeling by analysis of the Jacobian matrix supports at least two quite exciting higher mode properties. First, for fundamental and higher mode Rayleigh wave data with the same wavelength, higher modes can "see" deeper than the fundamental mode. Second, higher mode data can increase the resolution of the inverted S-wave velocities. Real world examples show that the inversion process can be stabilized and resolution of the S-wave velocity model can be improved when simultaneously inverting the fundamental and higher mode data. ?? 2002 Elsevier Science B.V. All rights reserved.
Modification of 2-D Time-Domain Shallow Water Wave Equation using Asymptotic Expansion Method
NASA Astrophysics Data System (ADS)
Khairuman, Teuku; Nasruddin, MN; Tulus; Ramli, Marwan
2018-01-01
Generally, research on the tsunami wave propagation model can be conducted by using a linear model of shallow water theory, where a non-linear side on high order is ignored. In line with research on the investigation of the tsunami waves, the Boussinesq equation model underwent a change aimed to obtain an improved quality of the dispersion relation and non-linearity by increasing the order to be higher. To solve non-linear sides at high order is used a asymptotic expansion method. This method can be used to solve non linear partial differential equations. In the present work, we found that this method needs much computational time and memory with the increase of the number of elements.
NASA Astrophysics Data System (ADS)
Isnen, M.; Nasution, T. I.; Perangin-angin, B.
2016-08-01
The identification of changes in oil quality has been conducted by indicating the change of dielectric constant which was showed by sensor voltage. Sensor was formed from two parallel flats that worked by electromagnetic wave propagation principle. By measuring its amplitude of electromagnetic wave attenuation caused by interaction between edible oil samples and the sensor, dielectric constant could be identified and estimated as well as peroxide number. In this case, the parallel flats were connected to an electric oscillator 700 kHz. Furthermore, sensor system could showed measurable voltage differences for each different samples. The testing carried out to five oil samples after undergoing an oxidation treatment at fix temperature of 235oC for 0, 5, 10, 15 and 20 minutes. Iodometry method testing showed peroxide values about 1.99, 9.95, 5.96, 11.86, and 15.92 meq/kg respectively with rising trend. Besides that, the testing result by sensor system showed voltages values 1.139, 1.147, 1.165, 1.173, and 1.176 volts with rising trend, respectively. It means that the higher sensor voltages showed the higher damage rate of edible oil when the change in sensor voltage was caused by the change in oil dielectric constant in which heating process caused damage in edible oil molecules structure. The more damage of oil structure caused the more difficulties of oil molecules to polarize and it is indicated by smaller dielectric constant. Therefore electric current would be smaller when sensor voltage was higher. On the other side, the higher sensor voltage means the smaller dielectric constant and the higher peroxide number.
Response of a hypersonic boundary layer to freestream pulse acoustic disturbance.
Wang, Zhenqing; Tang, Xiaojun; Lv, Hongqing
2014-01-01
The response of hypersonic boundary layer over a blunt wedge to freestream pulse acoustic disturbance was investigated. The stability characteristics of boundary layer for freestream pulse wave and continuous wave were analyzed comparatively. Results show that freestream pulse disturbance changes the thermal conductivity characteristics of boundary layer. For pulse wave, the number of main disturbance clusters decreases and the frequency band narrows along streamwise. There are competition and disturbance energy transfer among different modes in boundary layer. The dominant mode of boundary layer has an inhibitory action on other modes. Under continuous wave, the disturbance modes are mainly distributed near fundamental and harmonic frequencies, while under pulse wave, the disturbance modes are widely distributed in different modes. For both pulse and continuous waves, most of disturbance modes slide into a lower-growth or decay state in downstream, which is tending towards stability. The amplitude of disturbance modes in boundary layer under continuous wave is considerably larger than pulse wave. The growth rate for the former is also considerably larger than the later the disturbance modes with higher growth are mainly distributed near fundamental and harmonic frequencies for the former, while the disturbance modes are widely distributed in different frequencies for the latter.
Response of a Hypersonic Boundary Layer to Freestream Pulse Acoustic Disturbance
Wang, Zhenqing; Tang, Xiaojun; Lv, Hongqing
2014-01-01
The response of hypersonic boundary layer over a blunt wedge to freestream pulse acoustic disturbance was investigated. The stability characteristics of boundary layer for freestream pulse wave and continuous wave were analyzed comparatively. Results show that freestream pulse disturbance changes the thermal conductivity characteristics of boundary layer. For pulse wave, the number of main disturbance clusters decreases and the frequency band narrows along streamwise. There are competition and disturbance energy transfer among different modes in boundary layer. The dominant mode of boundary layer has an inhibitory action on other modes. Under continuous wave, the disturbance modes are mainly distributed near fundamental and harmonic frequencies, while under pulse wave, the disturbance modes are widely distributed in different modes. For both pulse and continuous waves, most of disturbance modes slide into a lower-growth or decay state in downstream, which is tending towards stability. The amplitude of disturbance modes in boundary layer under continuous wave is considerably larger than pulse wave. The growth rate for the former is also considerably larger than the later the disturbance modes with higher growth are mainly distributed near fundamental and harmonic frequencies for the former, while the disturbance modes are widely distributed in different frequencies for the latter. PMID:24737993
Turbulent swirling jets with excitation
NASA Technical Reports Server (NTRS)
Taghavi, Rahmat; Farokhi, Saeed
1988-01-01
An existing cold-jet facility at NASA Lewis Research Center was modified to produce swirling flows with controllable initial tangential velocity distribution. Two extreme swirl profiles, i.e., one with solid-body rotation and the other predominated by a free-vortex distribution, were produced at identical swirl number of 0.48. Mean centerline velocity decay characteristics of the solid-body rotation jet flow exhibited classical decay features of a swirling jet with S - 0.48 reported in the literature. However, the predominantly free-vortex distribution case was on the verge of vortex breakdown, a phenomenon associated with the rotating flows of significantly higher swirl numbers, i.e., S sub crit greater than or equal to 0.06. This remarkable result leads to the conclusion that the integrated swirl effect, reflected in the swirl number, is inadequate in describing the mean swirling jet behavior in the near field. The relative size (i.e., diameter) of the vortex core emerging from the nozzle and the corresponding tangential velocity distribution are also controlling factors. Excitability of swirling jets is also investigated by exciting a flow with a swirl number of 0.35 by plane acoustic waves at a constant sound pressure level and at various frequencies. It is observed that the cold swirling jet is excitable by plane waves, and that the instability waves grow about 50 percent less in peak r.m.s. amplitude and saturate further upstream compared to corresponding waves in a jet without swirl having the same axial mass flux. The preferred Strouhal number based on the mass-averaged axial velocity and nozzle exit diameter for both swirling and nonswirling flows is 0.4.
Cox, Brian J; Clara, Ian P; Worobec, Lydia M; Grant, Bridget F
2012-12-01
Individual personality disorders (PD) are grouped into three clusters in the DSM-IV (A, B, and C). There is very little empirical evidence available concerning the validity of this model in the general population. The current study included all 10 of the DSM-IV PD assessed in Wave 1 and Wave 2 of the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC). Confirmatory factor analysis was used to evaluate three plausible models of the structure of Axis II personality disorders (the current hierarchical DSM-IV three-factor model in which individual PD are believed to load on their assigned clusters, which in turn load onto a single Axis II factor; a general single-factor model; and three independent factors). Each of these models was tested in both the total and also separately for gender. The higher order DSM-IV model demonstrated good fit to the data on a number of goodness-of-fit indices. The results for this model were very similar across genders. A model of PD based on the current DSM-IV hierarchical conceptualization of a higher order classification scheme received strong empirical support through confirmatory factor analysis using a number of goodness-of-fit indices in a nationally representative sample. Other models involving broad, higher order personality domains such as neuroticism in relation to personality disorders have yet to be tested in epidemiologic surveys and represent an important avenue for future research.
P-wave dispersion: relationship to left ventricular function in sickle cell anaemia.
Oguanobi, N I; Onwubere, B J; Ike, S O; Anisiuba, B C; Ejim, E C; Ibegbulam, O G
2011-01-01
The prognostic implications of P-wave dispersion in patients with a variety of cardiac disease conditions are increasingly being recognised. The relationship between P-wave dispersion and left ventricular function in sickle cell anaemia is unknown. This study was aimed at evaluating the relationship between P-wave dispersion and left ventricular function in adult Nigerian sickle cell anaemia patients. Between February and August 2007, a total of 62 sickle cell anaemia patients (aged 18-44 years; mean 28.27 ± 5.58) enrolled in the study. These were drawn from patients attending the adult sickle cell clinic of the University of Nigeria Teaching Hospital, Ituku-Ozalla, Enugu. An equal number of age- and gender-matched normal subjects served as controls. All the participants were evaluated with electrocardiography and echocardiography. P-wave dispersion was defined as the difference between the maximum and minimum P-wave duration measured in a 12-lead electrocardiogram. P-wave duration and P-wave dispersion were significantly higher in patients than in controls. Significant correlation was demonstrated between P-wave dispersion and age in the patients (r = 0.387; p = 0.031). A comparison of subsets of sickle cell anaemia patients and controls with comparable haematocrit values (30-35%) showed significantly higher P-wave duration and P-wave dispersion in the patients than in the controls. The P-wave duration in patients and controls, respectively, was 111.10 ± 14.53 ms and 89.14 ± 16.45 ms (t = 3.141; p = 0.006). P-wave dispersion was 64.44 ± 15.86 ms in the patients and 36.43 ± 10.35 ms in the controls (t = 2.752; p = 0.013). Significant negative correlation was found between P-wave dispersion and left ventricular transmitral E/A ratio (r = -0.289; p = 0.023). These findings suggest that P-wave dispersion could be useful in the evaluation of sickle cell patients with left ventricular diastolic dysfunction. Further prospective studies are recommended to evaluate its prognostic implication on the long-term disease outcome in sickle cell disease patients.
Chen, Yeh-Hsin; Schwartz, Joel D.; Rood, Richard B.; O’Neill, Marie S.
2014-01-01
Background: Heat wave and health warning systems are activated based on forecasts of health-threatening hot weather. Objective: We estimated heat–mortality associations based on forecast and observed weather data in Detroit, Michigan, and compared the accuracy of forecast products for predicting heat waves. Methods: We derived and compared apparent temperature (AT) and heat wave days (with heat waves defined as ≥ 2 days of daily mean AT ≥ 95th percentile of warm-season average) from weather observations and six different forecast products. We used Poisson regression with and without adjustment for ozone and/or PM10 (particulate matter with aerodynamic diameter ≤ 10 μm) to estimate and compare associations of daily all-cause mortality with observed and predicted AT and heat wave days. Results: The 1-day-ahead forecast of a local operational product, Revised Digital Forecast, had about half the number of false positives compared with all other forecasts. On average, controlling for heat waves, days with observed AT = 25.3°C were associated with 3.5% higher mortality (95% CI: –1.6, 8.8%) than days with AT = 8.5°C. Observed heat wave days were associated with 6.2% higher mortality (95% CI: –0.4, 13.2%) than non–heat wave days. The accuracy of predictions varied, but associations between mortality and forecast heat generally tended to overestimate heat effects, whereas associations with forecast heat waves tended to underestimate heat wave effects, relative to associations based on observed weather metrics. Conclusions: Our findings suggest that incorporating knowledge of local conditions may improve the accuracy of predictions used to activate heat wave and health warning systems. Citation: Zhang K, Chen YH, Schwartz JD, Rood RB, O’Neill MS. 2014. Using forecast and observed weather data to assess performance of forecast products in identifying heat waves and estimating heat wave effects on mortality. Environ Health Perspect 122:912–918; http://dx.doi.org/10.1289/ehp.1306858 PMID:24833618
Influences on water-hammer wave shape: an experimental study
NASA Astrophysics Data System (ADS)
Traudt, T.; Bombardieri, C.; Manfletti, C.
2016-09-01
Water-hammer phenomena are of strong interest in a number of different industrial fields, amongst which the space industry. Here the priming of feedlines during start-up of an engine as well as the rapid closing of valves upon shutdown may lead to pressure peaks symptomatic of a water-hammer wave. Test benches used to conduct tests on future as well as current engines are also sensitive to water-hammer waves traveling along their feedlines. To enhance the understanding of water-hammer, we investigated different configurations and their influence on the wave shape in the frequency domain. The configurations feature a coiled pipe setup with a support structure and without a support structure. Two other phenomena will be presented. We found a beat phenomenon which is likely to be the so called Poisson-coupling beat. Finally we will show that the second water-hammer peak can reach pressures a lot higher than the first peak by additive interference of the primary and secondary water-hammer wave.
Differential effects of cigarette price changes on adult smoking behaviours.
Cavazos-Rehg, Patricia A; Krauss, Melissa J; Spitznagel, Edward L; Chaloupka, Frank J; Luke, Douglas A; Waterman, Brian; Grucza, Richard A; Bierut, Laura Jean
2014-03-01
Raising cigarette prices through taxation is an important policy approach to reduce smoking. Yet, cigarette price increases may not be equally effective in all subpopulations of smokers. To examine differing effects of state cigarette price changes with individual changes in smoking among smokers of different intensity levels. Data were derived from the National Epidemiologic Survey on Alcohol and Related Conditions, a nationally representative sample of US adults originally interviewed in 2001-2002 (Wave 1) and re-interviewed in 2004-2005 (Wave 2): 34 653 were re-interviewed in Wave 2, and 7068 smokers defined at Wave 1 were included in our study. Mixed effects linear regression models were used to assess whether the effects of changes in state cigarette prices on changes in daily smoking behaviour differed by level of daily smoking. In the multivariable model, there was a significant interaction between change in price per pack of cigarettes from Wave 1 to Wave 2 and the number of cigarettes smoked per day (p=0.044). The more cigarettes smoked per day at baseline, the more responsive the smokers were to increases in price per pack of cigarettes (ie, number of cigarettes smoked per day was reduced in response to price increases). Our findings that heavier smokers successfully and substantially reduced their cigarette smoking behaviours in response to state cigarette price increases provide fresh insight to the evidence on the effectiveness of higher cigarette prices in reducing smoking.
Computation of airfoil buffet boundaries
NASA Technical Reports Server (NTRS)
Levy, L. L., Jr.; Bailey, H. E.
1981-01-01
The ILLIAC IV computer has been programmed with an implicit, finite-difference code for solving the thin layer compressible Navier-Stokes equation. Results presented for the case of the buffet boundaries of a conventional and a supercritical airfoil section at high Reynolds numbers are found to be in agreement with experimentally determined buffet boundaries, especially at the higher freestream Mach numbers and lower lift coefficients where the onset of unsteady flows is associated with shock wave-induced boundary layer separation.
Zhang, Zhen; Koroleva, I; Manevitch, L I; Bergman, L A; Vakakis, A F
2016-09-01
We study the dynamics and acoustics of a nonlinear lattice with fixed boundary conditions composed of a finite number of particles coupled by linear springs, undergoing in-plane oscillations. The source of the strongly nonlinearity of this lattice is geometric effects generated by the in-plane stretching of the coupling linear springs. It has been shown that in the limit of low energy the lattice gives rise to a strongly nonlinear acoustic vacuum, which is a medium with zero speed of sound as defined in classical acoustics. The acoustic vacuum possesses strongly nonlocal coupling effects and an orthogonal set of nonlinear standing waves [or nonlinear normal modes (NNMs)] with mode shapes identical to those of the corresponding linear lattice; in contrast to the linear case, however, all NNMs except the one with the highest wavelength are unstable. In addition, the lattice supports two types of waves, namely, nearly linear sound waves (termed "L waves") corresponding to predominantly axial oscillations of the particles and strongly nonlinear localized propagating pulses (termed "NL pulses") corresponding to predominantly transverse oscillating wave packets of the particles with localized envelopes. We show the existence of nonlinear nonreciprocity phenomena in the dynamics and acoustics of the lattice. Two opposite cases are examined in the limit of low energy. The first gives rise to nonreciprocal dynamics and corresponds to collective, spatially extended transverse loading of the lattice leading to the excitation of individual, predominantly transverse NNMs, whereas the second case gives rise to nonreciprocal acoutics by considering the response of the lattice to spatially localized, transverse impulse or displacement excitations. We demonstrate intense and recurring energy exchanges between a directly excited NNM and other NNMs with higher wave numbers, so that nonreciprocal energy exchanges from small-to-large wave numbers are established. Moreover, we show the existence of nonreciprocal wave interaction phenomena in the form of irreversible targeted energy transfers from L waves to NL pulses during collisions of these two types of waves. Additional nonreciprocal acoustics are found in the form of complex "cascading processes, as well as nonreciprocal interactions between L waves and stationary discrete breathers. The computational studies confirm the theoretically predicted transition of the lattice dynamics to a low-energy state of nonlinear acoustic vacum with strong nonlocality.
NASA Astrophysics Data System (ADS)
Karami, Behrouz; Shahsavari, Davood; Li, Li
2018-03-01
A size-dependent model is developed for the hygrothermal wave propagation analysis of an embedded viscoelastic single layer graphene sheet (SLGS) under the influence of in-plane magnetic field. The bi-Helmholtz nonlocal strain gradient theory involving three small scale parameters is introduced to account for the size-dependent effects. The size-dependent model is deduced based on Hamilton's principle. The closed-form solution of eigenfrequency relation between wave number and phase velocity is achieved. By studying the size-dependent effects on the flexural wave of SLGS, the dispersion relation predicted by the developed size-dependent model can show a good match with experimental data. The influence of in-plane magnetic field, temperature and moisture of environs, structural damping, damped substrate, lower and higher order nonlocal parameters and the material characteristic parameter on the phase velocity of SLGS is explored.
Investigation of passive shock wave-boundary layer control for transonic airfoil drag reduction
NASA Technical Reports Server (NTRS)
Nagamatsu, H. T.; Brower, W. B., Jr.; Bahi, L.; Ross, J.
1982-01-01
The passive drag control concept, consisting of a porous surface with a cavity beneath it, was investigated with a 12-percent-thick circular arc and a 14-percent-thick supercritical airfoil mounted on the test section bottom wall. The porous surface was positioned in the shock wave/boundary layer interaction region. The flow circulating through the porous surface, from the downstream to the upstream of the terminating shock wave location, produced a lambda shock wave system and a pressure decrease in the downstream region minimizing the flow separation. The wake impact pressure data show an appreciably drag reduction with the porous surface at transonic speeds. To determine the optimum size of porosity and cavity, tunnel tests were conducted with different airfoil porosities, cavities and flow Mach numbers. A higher drag reduction was obtained by the 2.5 percent porosity and the 1/4-inch deep cavity.
How wind turbines affect the performance of seismic monitoring stations and networks
NASA Astrophysics Data System (ADS)
Neuffer, Tobias; Kremers, Simon
2017-12-01
In recent years, several minor seismic events were observed in the apparently aseismic region of the natural gas fields in Northern Germany. A seismic network was installed in the region consisting of borehole stations with sensor depths up to 200 m and surface stations to monitor induced seismicity. After installation of the network in 2012, an increasing number of wind turbines was established in proximity (<5 km) to several stations, thereby influencing the local noise conditions. This study demonstrates the impact of wind turbines on seismic noise level in a frequency range of 1-10 Hz at the monitoring sites with correlation to wind speed, based on the calculation of power spectral density functions and I95 values of waveforms over a time period of 4 yr. It could be shown that higher wind speeds increase the power spectral density amplitudes at distinct frequencies in the considered frequency band, depending on height as well as number and type of influencing wind turbines. The azimuthal direction of incoming Rayleigh waves at a surface station was determined to identify the noise sources. The analysis of the perturbed wave field showed that Rayleigh waves with backazimuths pointing to wind turbines in operation are dominating the wave field in a frequency band of 3-4 Hz. Additional peaks in a frequency range of 1-4 Hz could be attributed to turbine tower eigenfrequencies of various turbine manufactures with the hub height as defining parameter. Moreover, the influence of varying noise levels at a station on the ability to automatically detect seismic events was investigated. The increased noise level in correlation to higher wind speeds at the monitoring sites deteriorates the station's recording quality inhibiting the automatic detection of small seismic events. As a result, functionality and task fulfilment of the seismic monitoring network is more and more limited by the increasing number of nearby wind turbines.
Adenosine A1 receptor: A neuroprotective target in light induced retinal degeneration.
Soliño, Manuel; López, Ester María; Rey-Funes, Manuel; Loidl, César Fabián; Larrayoz, Ignacio M; Martínez, Alfredo; Girardi, Elena; López-Costa, Juan José
2018-01-01
Light induced retinal degeneration (LIRD) is a useful model that resembles human retinal degenerative diseases. The modulation of adenosine A1 receptor is neuroprotective in different models of retinal injury. The aim of this work was to evaluate the potential neuroprotective effect of the modulation of A1 receptor in LIRD. The eyes of rats intravitreally injected with N6-cyclopentyladenosine (CPA), an A1 agonist, which were later subjected to continuous illumination (CI) for 24 h, showed retinas with a lower number of apoptotic nuclei and a decrease of Glial Fibrillary Acidic Protein (GFAP) immunoreactive area than controls. Lower levels of activated Caspase 3 and GFAP were demonstrated by Western Blot (WB) in treated animals. Also a decrease of iNOS, TNFα and GFAP mRNA was demonstrated by RT-PCR. A decrease of Iba 1+/MHC-II+ reactive microglial cells was shown by immunohistochemistry. Electroretinograms (ERG) showed higher amplitudes of a-wave, b-wave and oscillatory potentials after CI compared to controls. Conversely, the eyes of rats intravitreally injected with dipropylcyclopentylxanthine (DPCPX), an A1 antagonist, and subjected to CI for 24 h, showed retinas with a higher number of apoptotic nuclei and an increase of GFAP immunoreactive area compared to controls. Also, higher levels of activated Caspase 3 and GFAP were demonstrated by Western Blot. The mRNA levels of iNOS, nNOS and inflammatory cytokines (IL-1β and TNFα) were not modified by DPCPX treatment. An increase of Iba 1+/MHC-II+ reactive microglial cells was shown by immunohistochemistry. ERG showed that the amplitudes of a-wave, b-wave, and oscillatory potentials after CI were similar to control values. A single pharmacological intervention prior illumination stress was able to swing retinal fate in opposite directions: CPA was neuroprotective, while DPCPX worsened retinal damage. In summary, A1 receptor agonism is a plausible neuroprotective strategy in LIRD.
NASA Astrophysics Data System (ADS)
Yavari Ramsheh, S.; Ataie-Ashtiani, B.
2017-12-01
Recent studies revealed that landslide-generated waves (LGWs) impose the largest tsunami hazard to our shorelines although earthquake-generated waves (EGWs) occur more often. Also, EGWs are commonly followed by a large number of landslide hazards. Dam reservoirs are more vulnerable to landslide events due to being located in mountainous areas. Accurate estimation of such hazards and their destructive consequences help authorities to reduce their risks by constructive measures. In this regard, a two-layer two-phase Coulomb mixture flow (2LCMFlow) model is applied to investigate the effects of landslide characteristics on LGWs for a real-sized simplification of the Maku dam reservoir, located in the North of Iran. A sensitivity analysis is performed on the role of landslide rheological and constitutive parameters and its initial submergence in LGW characteristics and formation patterns. The numerical results show that for a subaerial (SAL), a semi-submerged (SSL), and a submarine landslide (SML) with the same initial geometry, the SSLs can create the largest wave crest, up to 60% larger than SALs, for dense material. However, SMLs generally create the largest wave troughs and SALs travel the maximum runout distances beneath the water. Regarding the two-phase (solid-liquid) nature of the landslide, when interestial water is isolated from the water layer along the water/landslide interface, a LGW with up to 30% higher wave crest can be created. In this condition, increasing the pore water pressure within the granular layer results in up to 35% higher wave trough and 40% lower wave crest at the same time. These results signify the importance of appropriate description of two-phase nature and rheological behavior of landslides in accurate estimation of LGWs which demands further numerical, physical, and field studies about such phenomena.
Instability waves and transition in adverse-pressure-gradient boundary layers
NASA Astrophysics Data System (ADS)
Bose, Rikhi; Zaki, Tamer A.; Durbin, Paul A.
2018-05-01
Transition to turbulence in incompressible adverse-pressure-gradient (APG) boundary layers is investigated by direct numerical simulations. Purely two-dimensional instability waves develop on the inflectional base velocity profile. When the boundary layer is perturbed by isotropic turbulence from the free stream, streamwise elongated streaks form and may interact with the instability waves. Subsequent mechanisms that trigger transition depend on the intensity of the free-stream disturbances. All evidence from the present simulations suggest that the growth rate of instability waves is sufficiently high to couple with the streaks. Under very low levels of free-stream turbulence (˜0.1 % ), transition onset is highly sensitive to the inlet disturbance spectrum and is accelerated if the spectrum contains frequency-wave-number combinations that are commensurate with the instability waves. Transition onset and completion in this regime is characterized by formation and breakdown of Λ vortices, but they are more sporadic than in natural transition. Beneath free-stream turbulence with higher intensity (1-2 % ), bypass transition mechanisms are dominant, but instability waves are still the most dominant disturbances in wall-normal and spanwise perturbation spectra. Most of the breakdowns were by disturbances with critical layers close to the wall, corresponding to inner modes. On the other hand, the propensity of an outer mode to occur increases with the free-stream turbulence level. Higher intensity free-stream disturbances induce strong streaks that favorably distort the boundary layer and suppress the growth of instability waves. But the upward displacement of high amplitude streaks brings them to the outer edge of the boundary layer and exposes them to ambient turbulence. Consequently, high-amplitude streaks exhibit an outer-mode secondary instability.
NASA Astrophysics Data System (ADS)
Tellmann, Silvia; Häusler, Bernd; Hinson, David P.; Tyler, G. Leonard; Andert, Thomas P.; Bird, Michael K.; Imamura, Takeshi; Pätzold, Martin; Remus, Stefan
2015-04-01
Atmospheric waves on all spatial scales play a crucial role in the redistribution of energy, momentum, and atmospheric constituent in planetary atmosphere and are thought to be involved in the development and maintenance of the atmospheric superrotation on Venus. The Venus Express Radio-Science Experiment VeRa sounded the Venus neutral atmosphere and ionosphere in Earth occultation geometry using the spacecraft radio subsystem at two coherent frequencies. Radial profiles of neutral number density, covering the altitude range 40-90 km, are then converted to vertical profiles of temperature and pressure, assuming hydrostatic equilibrium. The extensive VeRa data set enables us to study global scale atmospheric wave phenomena like thermal tides in the mesosphere and troposphere. A pronounced local time dependency of the temperature is found in the mesosphere at different altitude levels. Wave-2 structures dominate the low latitude range in the upper mesosphere while the higher latitudes show a strong wave-1 structure at the top of the cloud layer. The investigation of these wave structures provides valuable information about the energy transport in the atmosphere.
Influence of optical activity on rogue waves propagating in chiral optical fibers.
Temgoua, D D Estelle; Kofane, T C
2016-06-01
We derive the nonlinear Schrödinger (NLS) equation in chiral optical fiber with right- and left-hand nonlinear polarization. We use the similarity transformation to reduce the generalized chiral NLS equation to the higher-order integrable Hirota equation. We present the first- and second-order rational solutions of the chiral NLS equation with variable and constant coefficients, based on the modified Darboux transformation method. For some specific set of parameters, the features of chiral optical rogue waves are analyzed from analytical results, showing the influence of optical activity on waves. We also generate the exact solutions of the two-component coupled nonlinear Schrödinger equations, which describe optical activity effects on the propagation of rogue waves, and their properties in linear and nonlinear coupling cases are investigated. The condition of modulation instability of the background reveals the existence of vector rogue waves and the number of stable and unstable branches. Controllability of chiral optical rogue waves is examined by numerical simulations and may bring potential applications in optical fibers and in many other physical systems.
Analytical and experimental investigations of the oblique detonation wave engine concept
NASA Technical Reports Server (NTRS)
Menees, Gene P.; Adelman, Henry G.; Cambier, Jean-Luc
1990-01-01
Wave combustors, which include the oblique detonation wave engine (ODWE), are attractive propulsion concepts for hypersonic flight. These engines utilize oblique shock or detonation waves to rapidly mix, ignite, and combust the air-fuel mixture in thin zones in the combustion chamber. Benefits of these combustion systems include shorter and lighter engines which require less cooling and can provide thrust at higher Mach numbers than conventional scramjets. The wave combustor's ability to operate at lower combustor inlet pressures may allow the vehicle to operate at lower dynamic pressures which could lessen the heating loads on the airframe. The research program at NASA-Ames includes analytical studies of the ODWE combustor using Computational Fluid Dynamics (CFD) codes which fully couple finite rate chemistry with fluid dynamics. In addition, experimental proof-of-concept studies are being performed in an arc heated hypersonic wind tunnel. Several fuel injection design were studied analytically and experimentally. In-stream strut fuel injectors were chosen to provide good mixing with minimal stagnation pressure losses. Measurements of flow field properties behind the oblique wave are compared to analytical predictions.
Analytical and experimental investigations of the oblique detonation wave engine concept
NASA Technical Reports Server (NTRS)
Menees, Gene P.; Adelman, Henry G.; Cambier, Jean-Luc
1991-01-01
Wave combustors, which include the Oblique Detonation Wave Engine (ODWE), are attractive propulsion concepts for hypersonic flight. These engines utilize oblique shock or detonation waves to rapidly mix, ignite, and combust the air-fuel mixture in thin zones in the combustion chamber. Benefits of these combustion systems include shorter and lighter engines which will require less cooling and can provide thrust at higher Mach numbers than conventional scramjets. The wave combustor's ability to operate at lower combustor inlet pressures may allow the vehicle to operate at lower dynamic pressures which could lessen the heating loads on the airframe. The research program at NASA-Ames includes analytical studies of the ODWE combustor using CFD codes which fully couple finite rate chemistry with fluid dynamics. In addition, experimental proof-of-concept studies are being carried out in an arc heated hypersonic wind tunnel. Several fuel injection designs were studied analytically and experimentally. In-stream strut fuel injectors were chosen to provide good mixing with minimal stagnation pressure losses. Measurements of flow field properties behind the oblique wave are compared to analytical predictions.
NASA Astrophysics Data System (ADS)
Patel, Namu; Patankar, Neelesh A.
2017-11-01
Aquatic locomotion relies on feedback loops to generate the flexural muscle moment needed to attain the reference shape. Experimentalists have consistently reported a difference between the electromyogram (EMG) and curvature wave speeds. The EMG wave speed has been found to correlate with the cross-sectional moment wave. The correlation, however, remains unexplained. Using feedback dependent controller models, we demonstrate two scenarios - one at higher passive elastic stiffness and another at lower passive elastic stiffness of the body. The former case becomes equivalent to the penalty type mathematical model for swimming used in prior literature and it does not reproduce neuromechanical wave speed discrepancy. The latter case at lower elastic stiffness does reproduce the wave speed discrepancy and appears to be biologically most relevant. These findings are applied to develop testable hypotheses about control mechanisms that animals might be using at during low and high Reynolds number swimming. This work is supported by NSF Grants DMS-1547394, CBET-1066575, ACI-1460334, and IOS-1456830. Travel for NP is supported by Institute for Defense Analyses.
NASA Astrophysics Data System (ADS)
Zhen, Ya-Xin
2017-02-01
In this paper, the transverse wave propagation in fluid-conveying viscoelastic single-walled carbon nanotubes is investigated based on nonlocal elasticity theory with consideration of surface effect. The governing equation is formulated utilizing nonlocal Euler-Bernoulli beam theory and Kelvin-Voigt model. Explicit wave dispersion relation is developed and wave phase velocities and frequencies are obtained. The effect of the fluid flow velocity, structural damping, surface effect, small scale effects and tube diameter on the wave propagation properties are discussed with different wave numbers. The wave frequency increases with the increase of fluid flow velocity, but decreases with the increases of tube diameter and wave number. The effect of surface elasticity and residual surface tension is more significant for small wave number and tube diameter. For larger values of wave number and nonlocal parameters, the real part of frequency ratio raises.
A plane wave generation method by wave number domain point focusing.
Chang, Ji-Ho; Choi, Jung-Woo; Kim, Yang-Hann
2010-11-01
A method for generation of a wave-field that is a plane wave is described. This method uses an array of loudspeakers phased so that the field in the wave-number domain is nearly concentrated at a point, this point being at the wave-number vector of the desired plane wave. The method described here for such a wave-number concentration makes use of an expansion in spherical harmonics, and requires a relatively small number of measurement points for a good approximate achievement of a plane wave. The measurement points are on a spherical surface surrounding the array of loudspeakers. The input signals for the individual loudspeakers can be derived without a matrix inversion or without explicit assumptions about the loudspeakers. The mathematical development involves spherical harmonics and three-dimensional Fourier transforms. Some numerical examples are given, with various assumptions concerning the nature of the loudspeakers, that support the premise that the method described in the present paper may be useful in applications.
Modularization of gradient-index optical design using wavefront matching enabled optimization.
Nagar, Jogender; Brocker, Donovan E; Campbell, Sawyer D; Easum, John A; Werner, Douglas H
2016-05-02
This paper proposes a new design paradigm which allows for a modular approach to replacing a homogeneous optical lens system with a higher-performance GRadient-INdex (GRIN) lens system using a WaveFront Matching (WFM) method. In multi-lens GRIN systems, a full-system-optimization approach can be challenging due to the large number of design variables. The proposed WFM design paradigm enables optimization of each component independently by explicitly matching the WaveFront Error (WFE) of the original homogeneous component at the exit pupil, resulting in an efficient design procedure for complex multi-lens systems.
Liu, Gang; Jayathilake, Pahala Gedara; Khoo, Boo Cheong
2014-02-01
Two nonlinear models are proposed to investigate the focused acoustic waves that the nonlinear effects will be important inside the liquid around the scatterer. Firstly, the one dimensional solutions for the widely used Westervelt equation with different coordinates are obtained based on the perturbation method with the second order nonlinear terms. Then, by introducing the small parameter (Mach number), a dimensionless formulation and asymptotic perturbation expansion via the compressible potential flow theory is applied. This model permits the decoupling between the velocity potential and enthalpy to second order, with the first potential solutions satisfying the linear wave equation (Helmholtz equation), whereas the second order solutions are associated with the linear non-homogeneous equation. Based on the model, the local nonlinear effects of focused acoustic waves on certain volume are studied in which the findings may have important implications for bubble cavitation/initiation via focused ultrasound called HIFU (High Intensity Focused Ultrasound). The calculated results show that for the domain encompassing less than ten times the radius away from the center of the scatterer, the non-linear effect exerts a significant influence on the focused high intensity acoustic wave. Moreover, at the comparatively higher frequencies, for the model of spherical wave, a lower Mach number may result in stronger nonlinear effects. Copyright © 2013 Elsevier B.V. All rights reserved.
Kelvin-Helmholtz instability in an active region jet observed with Hinode
NASA Astrophysics Data System (ADS)
Zhelyazkov, I.; Chandra, R.; Srivastava, A. K.
2016-02-01
Over past ten years a variety of jet-like phenomena were detected in the solar atmosphere, including plasma ejections over a range of coronal temperatures being observed as extreme ultraviolet (EUV) and X-ray jets. We study the possibility for the development of Kelvin-Helmholtz (KH) instability of transverse magnetohydrodynamic (MHD) waves traveling along an EUV jet situated on the west side of NOAA AR 10938 and observed by three instruments on board Hinode on 2007 January 15/16 (Chifor et al. in Astron. Astrophys. 481:L57, 2008b). The jet was observed around log Te = 6.2 with up-flow velocities exceeded 150 km s^{-1}. Using Fe xii λ186 and λ195 line ratios, the measured densities were found to be above log Ne = 11. We have modeled that EUV jet as a vertically moving magnetic flux tube (untwisted and weakly twisted) and have studied the propagation characteristics of the kink (m = 1) mode and the higher m modes with azimuthal mode numbers m = 2, 3, 4. It turns out that all these MHD waves can become unstable at flow velocities in the range of 112-114.8 km s^{-1}. The lowest critical jet velocity of 112 km s^{-1} is obtained when modeling the jet as compressible plasma contained in an untwisted magnetic flux tube. When the jet and its environments are treated as incompressible media, the critical jet velocity becomes higher, namely 114.8 km s^{-1}. A weak twist of the equilibrium magnetic field in the same approximation of incompressible plasmas slightly decreases the threshold Alfvén Mach number, MA^{cr}, and consequently the corresponding critical velocities, notably to 114.4 km s^{-1} for the kink mode and to 112.4 km s^{-1} for the higher m modes. We have also compared two analytically found criteria for predicting the threshold Alfvén Mach number for the onset of KH instability and have concluded that one of them yields reliable values for MA^{cr}. Our study of the nature of stable and unstable MHD modes propagating on the jet shows that in a stable regime all the modes are pure surface waves, while the unstable kink (m = 1) mode in untwisted compressible plasma flux tube becomes a leaky wave. In the limit of incompressible media (for the jet and its environment) all unstable modes are non-leaky surface waves.
Rogue waves and W-shaped solitons in the multiple self-induced transparency system.
Wang, Xin; Liu, Chong; Wang, Lei
2017-09-01
We study localized nonlinear waves on a plane wave background in the multiple self-induced transparency (SIT) system, which describes an important enhancement of the amplification and control of optical waves compared to the single SIT system. A hierarchy of exact multiparametric rational solutions in a compact determinant representation is presented. We demonstrate that this family of solutions contain known rogue wave solutions and unusual W-shaped soliton solutions. State transitions between the fundamental rogue waves and W-shaped solitons as well as higher-order nonlinear superposition modes are revealed in the zero-frequency perturbation region by the suitable choice for the background wavenumber of the electric field component. Particularly, it is found that the multiple SIT system can admit both stationary and nonstationary W-shaped solitons in contrast to the stationary results in the single SIT system. Moreover, the W-shaped soliton complex which is formed by a certain number of fundamental W-shaped solitons with zero phase parameters and its decomposition mechanism in the case of the nonzero phase parameters are shown. Meanwhile, some important characteristics of the nonlinear waves including trajectories and spectrum are discussed through the numerical and analytical methods.
Hitchman, Sara C; Fong, Geoffrey T; Zanna, Mark P; Thrasher, James F; Laux, Fritz L
2014-12-01
Smokers who inhabit social contexts with a greater number of smokers may be exposed to more positive norms toward smoking and more cues to smoke. This study examines the relation between number of smoking friends and changes in number of smoking friends, and smoking cessation outcomes. Data were drawn from Wave 1 (2002) and Wave 2 (2003) of the International Tobacco Control (ITC) Project Four Country Survey, a longitudinal cohort survey of nationally representative samples of adult smokers in Australia, Canada, United Kingdom, and United States (N = 6,321). Smokers with fewer smoking friends at Wave 1 were more likely to intend to quit at Wave 1 and were more likely to succeed in their attempts to quit at Wave 2. Compared with smokers who experienced no change in their number of smoking friends, smokers who lost smoking friends were more likely to intend to quit at Wave 2, attempt to quit between Wave 1 and Wave 2, and succeed in their quit attempts at Wave 2. Smokers who inhabit social contexts with a greater number of smokers may be less likely to successfully quit. Quitting may be particularly unlikely among smokers who do not experience a loss in the number of smokers in their social context.
Experimental and numerical investigations of temporally and spatially periodic modulated wave trains
NASA Astrophysics Data System (ADS)
Houtani, H.; Waseda, T.; Tanizawa, K.
2018-03-01
A number of studies on steep nonlinear waves were conducted experimentally with the temporally periodic and spatially evolving (TPSE) wave trains and numerically with the spatially periodic and temporally evolving (SPTE) ones. The present study revealed that, in the vicinity of their maximum crest height, the wave profiles of TPSE and SPTE modulated wave trains resemble each other. From the investigation of the Akhmediev-breather solution of the nonlinear Schrödinger equation (NLSE), it is revealed that the dispersion relation deviated from the quadratic dependence of frequency on wavenumber and became linearly dependent instead. Accordingly, the wave profiles of TPSE and SPTE breathers agree. The range of this agreement is within the order of one wave group of the maximum crest height and persists during the long-term evolution. The findings extend well beyond the NLSE regime and can be applied to modulated wave trains that are highly nonlinear and broad-banded. This was demonstrated from the numerical wave tank simulations with a fully nonlinear potential flow solver based on the boundary element method, in combination with the nonlinear wave generation method based on the prior simulation with the higher-order spectral model. The numerical wave tank results were confirmed experimentally in a physical wave tank. The findings of this study unravel the fundamental nature of the nonlinear wave evolution. The deviation of the dispersion relation of the modulated wave trains occurs because of the nonlinear phase variation due to quasi-resonant interaction, and consequently, the wave geometry of temporally and spatially periodic modulated wave trains coincides.
Interaction of grid generated turbulence with expansion waves
NASA Astrophysics Data System (ADS)
Xanthos, Savvas Steliou
2004-11-01
The interaction of traveling expansion waves with grid-generated turbulence was investigated in a large-scale shock tube research facility. The incident shock and the induced flow behind it passed through a rectangular grid, which generated a nearly homogeneous and nearly isotropic turbulent flow. As the shock wave exited the open end of the shock tube, a system of expansion waves was generated which traveled upstream and interacted with the grid-generated turbulence. The Mach number of the incoming flows investigated was about 0.3 hence interactions are considered as interactions with an almost incompressible flow. Mild interactions with expansion waves, which generated expansion ratios of the order of 1.8, were achieved in the present investigations. In that respect the compressibility effects started to become important during the interaction. A custom designed vorticity probe was used to measure for the first time the rate-of-strain, the rate-of-rotation and the velocity-gradient tensors in several of the present flows. Custom made x-hotwire probes were initially used to measure the flow quantities simultaneously at different locations inside the flow field. Although the strength of the generated expansion waves was mild, S = 6U6x EW = 50 to 100 s-1, the effect on damping fluctuations of turbulence was clear. Vorticity fluctuations were reduced dramatically more than velocity or pressure fluctuations. Attenuation of longitudinal velocity fluctuations has been observed in all experiments. It appears that the attenuation increases in interactions with higher Reynolds number. The data of velocity fluctuations in the lateral directions show no consistent behavior change or some minor attenuation through the interaction. The present results clearly show that in most of the cases, attenuation occurs at large xM distances where length scales of the incoming flow are high and turbulence intensities are low. Thus large in size eddies with low velocity fluctuations are affected the most by the interaction with the expansion waves. Spectral analysis indicated that spectral energy is shifted after the interaction to lower wave numbers suggesting that the typical length scales of turbulence are increased after the interaction.
NASA Astrophysics Data System (ADS)
Ishak, D.; Zhu, Z. Q.; Howe, D.
2005-05-01
The electromagnetic performance of fault-tolerant three-phase permanent magnet brushless dc motors, in which the wound teeth are wider than the unwound teeth and their tooth tips span approximately one pole pitch and which have similar numbers of slots and poles, is investigated. It is shown that they have a more trapezoidal phase back-emf wave form, a higher torque capability, and a lower torque ripple than similar fault-tolerant machines with equal tooth widths. However, these benefits gradually diminish as the pole number is increased, due to the effect of interpole leakage flux.
Moderately nonlinear ultrasound propagation in blood-mimicking fluid.
Kharin, Nikolay A; Vince, D Geoffrey
2004-04-01
In medical diagnostic ultrasound (US), higher than-in-water nonlinearity of body fluids and tissue usually does not produce strong nonlinearly distorted waves because of the high absorption. The relative influence of absorption and nonlinearity can be characterized by the Gol'dberg number Gamma. There are two limiting cases in nonlinear acoustics: weak waves (Gamma < 1) or strong waves (Gamma > 1). However, at diagnostic frequencies in tissue and body fluids, the nonlinear effects and effects of absorption more likely are comparable (Gol'dberg number Gamma approximately 1). The aim of this work was to study the nonlinear propagation of a moderately nonlinear US second harmonic signal in a blood-mimicking fluid. Quasilinear solutions to the KZK equation are presented, assuming radiation from a flat and geometrically focused circular Gaussian source. The solutions are expressed in a new simplified closed form and are in very good agreement with those of previous studies measuring and modeling Gaussian beams. The solutions also show good agreement with the measurements of the beams produced by commercially available transducers, even without special Gaussian shading.
Linear modeling of turbulent skin-friction reduction due to spanwise wall motion
NASA Astrophysics Data System (ADS)
Duque-Daza, Carlos; Baig, Mirza; Lockerby, Duncan; Chernyshenko, Sergei; Davies, Christopher; University of Warwick Team; Imperial College Team; Cardiff University Team
2012-11-01
We present a study on the effect of streamwise-travelling waves of spanwise wall velocity on the growth of near-wall turbulent streaks using a linearized formulation of the Navier-Stokes equations. The changes in streak amplification due to the travelling waves induced by the wall velocity are compared to published results of direct numerical simulation (DNS) predictions of the turbulent skin-friction reduction over a range of parameters; a clear correlation between these two sets of results is observed. Additional linearized simulations but at a much higher Reynolds numbers, more relevant to aerospace applications, produce results that show no marked differences to those obtained at low Reynolds number. It is also observed that a close correlation exists between DNS data of drag reduction and a very simple characteristic of the ``generalized'' Stokes layer generated by the streamwise-travelling waves. Carlos.Duque-Daza@warwick.ac.uk - School of Engineering, University of Warwick, Coventry CV4 7AL, UK caduqued@unal.edu.co - Department of Mechanical and Mechatronics Engineering, Universidad Nacional de Colombia.
Pressure-sensing performance of upright cylinders in a Mach 10 boundary-layer
NASA Technical Reports Server (NTRS)
Johnson, Steven; Murphy, Kelly
1994-01-01
An experimental research program to provide basic knowledge of the pressure-sensing performance of upright, flushported cylinders in a hypersonic boundary layer is described. Three upright cylinders of 0.25-, 0.5- and l.0-in. diameters and a conventional rake were placed in the test section sidewall boundary layer of the 31 Inch Mach 10 Wind Tunnel at NASA Langley Research Center, Hampton, Virginia. Boundary-layer pressures from these cylinders were compared to those measured with a conventional rake. A boundary-layer thickness-to-cylinder-diameter ratio of 8 proved sufficient to accurately measure an overall pressure profile and ascertain the boundary-layer thickness. Effects of Reynolds number, flow angularity, and shock wave impingement on pressure measurement were also investigated. Although Reynolds number effects were negligible at the conditions studied, flow angularity above 10 deg significantly affects the measured pressures. Shock wave impingement was used to investigate orifice-to-orifice pressure crosstalk. No crosstalk was measured. The lower pressure measured above the oblique shock wave impingement showed no influence of the higher pressure generated at the lower port locations.
Effects of Nose Radius and Aerodynamic Loading on Leading Edge Receptivity
NASA Technical Reports Server (NTRS)
Hammerton, P. W.; Kerschen, E. J.
1998-01-01
An analysis is presented of the effects of airfoil thickness and mean aerodynamic loading on boundary-layer receptivity in the leading-edge region. The case of acoustic free-stream disturbances, incident on a thin cambered airfoil with a parabolic leading edge in a low Mach number flow, is considered. An asymptotic analysis based on large Reynolds number is developed, supplemented by numerical results. The airfoil thickness distribution enters the theory through a Strouhal number based on the nose radius of the airfoil, S = (omega)tau(sub n)/U, where omega is the frequency of the acoustic wave and U is the mean flow speed. The influence of mean aerodynamic loading enters through an effective angle-of-attack parameter ti, related to flow around the leading edge from the lower surface to the upper. The variation of the receptivity level is analyzed as a function of S, mu, and characteristics of the free-stream acoustic wave. For an unloaded leading edge, a finite nose radius dramatically reduces the receptivity level compared to that for a flat plate, the amplitude of the instability waves in the boundary layer being decreased by an order of magnitude when S = 0.3. Modest levels of aerodynamic loading are found to further decrease the receptivity level for the upper surface of the airfoil, while an increase in receptivity level occurs for the lower surface. For larger angles of attack close to the critical angle for boundary layer separation, a local rise in the receptivity level occurs for the upper surface, while for the lower surface the receptivity decreases. The effects of aerodynamic loading are more pronounced at larger values of S. Oblique acoustic waves produce much higher receptivity levels than acoustic waves propagating downstream parallel to the airfoil chord.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-22
... components of which are frequency, wavelength, velocity, and amplitude. Frequency is the number of pressure.... Wavelength is the distance between two peaks of a sound wave; lower frequency sounds have longer wavelengths than higher frequency sounds and attenuate more rapidly in shallower water. Amplitude is the height of...
High Harmonic Fast Wave Damping on an Ion Beam: NSTX and DIII-D Regimes Compared
NASA Astrophysics Data System (ADS)
Pinsker, R. I.; Choi, C. C.; Petty, C. C.; Porkolab, M.; Wilson, J. R.; Murakami, M.; Harvey, R. W.
2004-11-01
Both NSTX and DIII-D use the combination of fast Alfven waves (FW) and neutral beam injection (NBI) for central electron heating and current drive. Damping of the fast wave on the beam ions at moderate to high harmonics (4th--20th) of the beam ion cyclotron frequency represents a loss process. In DIII-D current drive experiments at low density in which 4th and 8th harmonics were compared, damping at the 8th harmonic damping was much weaker than at the 4th [1]. However, recent simulations have predicted that in higher density and higher beam power regimes (of interest to the Advanced Tokamak program) the beam ion absorption will transition to the unmagnetized ion regime, where the damping is significant and essentially independent of harmonic number. In the present work, the transition from magnetized to unmagnetized ion regimes for the NSTX and DIII-D HHFW experiments is studied theoretically, with a combination of simple semi-analytic models and numerical models. \\vspace0.25 em [1] C.C. Petty, et al., Plasma Phys. and Contr. Fusion 43, 1747 (2001).
Cyclic Fatigue Resistance of Reciproc, WaveOne, and WaveOne Gold Nickel-Titanium Instruments.
Özyürek, Taha
2016-10-01
The purpose of this study was to compare the cyclic fatigue resistance of Reciproc R25 (VDW, Munich, Germany), WaveOne Primary (Dentsply Maillefer, Ballaigues, Switzerland), and WaveOne Gold Primary files (Dentsply Maillefer). Twenty Reciproc R25, 20 WaveOne Primary, and 20 WaveOne Gold Primary instruments were included in this study. The cyclic fatigue tests were performed using a cyclic fatigue testing device, which has an artificial stainless steel canal with a 60° angle of curvature and a 5-mm radius of curvature. The files were randomly divided into 3 groups (group 1: Reciproc R25; group 2: WaveOne Primary; and group 3: WaveOne Gold Primary). All the instruments were rotated until fracture occurred, and the time to fracture was recorded in seconds using a digital chronometer. The number of cycles to failure (NCF) was calculated. The data were analyzed statistically (P < .05). There was a significant difference among the groups (P < .05). The WaveOne Gold Primary showed the greatest mean of NCF (1628 ± 107), and the WaveOne Primary showed the lowest mean of NCF (1153 ± 119.2). Within the limitations of this in vitro study, the cyclic fatigue resistance of the WaveOne Gold Primary single-file system was higher than the WaveOne Primary and Reciproc R25 single-file instruments. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Thejappa, G.; MacDowall, R. J.; Bergamo, M.
2012-01-01
The four wave interaction process, known as the oscillating two stream instability (OTSI) is considered as one of the mechanisms responsible for stabilizing the electron beams associated with solar type III radio bursts. It has been reported that (1) an intense localized Langmuir wave packet associated with a type III burst contains the spectral characteristics of the OTSI: (a) a resonant peak at the local electron plasma frequency, f(sub pe), (b) a Stokes peak at a frequency slightly lower than f(sub pe), (c) anti-Stokes peak at a frequency slightly higher than f(sub pe), and (d) a low frequency enhancement below a few hundred Hz, (2) the frequencies and wave numbers of these spectral components satisfy the resonance conditions of the OTSI, and (3) the peak intensity of the wave packet is well above the thresholds for the OTSI as well as spatial collapse of envelope solitons. Here, for the first time, applying the trispectral analysis on this wave packet, we show that the tricoherence, which measures the degree of coherent four-wave coupling amongst the observed spectral components exhibits a peak. This provides an additional evidence for the OTSI and related spatial collapse of Langmuir envelope solitons in type III burst sources.
NASA Astrophysics Data System (ADS)
Gardner, Patrick J.; Roggemann, Michael C.; Welsh, Byron M.; Bowersox, Rodney D.; Luke, Theodore E.
1997-04-01
A lateral shearing interferometer was used to measure the slope of perturbed wave fronts after they propagated through a He N 2 mixing layer in a rectangular channel. Slope measurements were used to reconstruct the phase of the turbulence-corrupted wave front. The random phase fluctuations induced by the mixing layer were captured in a large ensemble of wave-front measurements. Phase structure functions, computed from the reconstructed phase surfaces, were stationary in first increments. A five-thirds power law is shown to fit streamwise and cross-stream slices of the structure function, analogous to the Kolmogorov model for isotropic turbulence, which describes the structure function with a single parameter. Strehl ratios were computed from the phase structure functions and compared with a measured experiment obtained from simultaneous point-spread function measurements. Two additional Strehl ratios were calculated by using classical estimates that assume statistical isotropy throughout the flow. The isotropic models are a reasonable estimate of the optical degradation only within a few centimeters of the initial mixing, where the Reynolds number is low. At higher Reynolds numbers, Strehl ratios calculated from the structure functions match the experiment much better than Strehl ratio calculations that assume isotropic flow.
Nonlinear dead water resistance at subcritical speed
NASA Astrophysics Data System (ADS)
Grue, John
2015-08-01
The dead water resistance F 1 = /1 2 C d w ρ S U 2 (ρ fluid density, U ship speed, S wetted body surface, Cdw resistance coefficient) on a ship moving at subcritical speed along the upper layer of a two-layer fluid is calculated by a strongly nonlinear method assuming potential flow in each layer. The ship dimensions correspond to those of the Polar ship Fram. The ship draught, b0, is varied in the range 0.25h0-0.9h0 (h0 the upper layer depth). The calculations show that Cdw/(b0/h0)2 depends on the Froude number only, in the range close to critical speed, Fr = U/c0 ˜ 0.875-1.125 (c0 the linear internal long wave speed), irrespective of the ship draught. The function Cdw/(b0/h0)2 attains a maximum at subcritical Froude number depending on the draught. Maximum Cdw/(b0/h0)2 becomes 0.15 for Fr = 0.76, b0/h0 = 0.9, and 0.16 for Fr = 0.74, b0/h0 = 1, where the latter extrapolated value of the dead water resistance coefficient is about 60 times higher than the frictional drag coefficient and relevant for the historical dead water observations. The nonlinear Cdw significantly exceeds linear theory (Fr < 0.85). The ship generated waves have a wave height comparable to the upper layer depth. Calculations of three-dimensional wave patterns at critical speed compare well to available laboratory experiments. Upstream solitary waves are generated in a wave tank of finite width, when the layer depths differ, causing an oscillation of the force. In a wide ocean, a very wide wave system develops at critical speed. The force approaches a constant value for increasing time.
Yokotsuka, Mayumi; Iwaya, Keiichi; Saito, Tsuyoshi; Pandiella, Atanasio; Tsuboi, Ryoji; Kohno, Norio; Matsubara, Osamu; Mukai, Kiyoshi
2011-04-01
The final signal for triggering the formation of lamellipodia that initiate directional migration of mammalian cells is binding of the Wiskott-Aldrich syndrome (WASP)/WASP family verproline-homologous protein 2 (WAVE2) to the actin-related protein 2 and 3 (Arp2/3) complex. This WAVE2-Arp2/3 signal is suggested to be enhanced in some breast cancers, facilitating invasion, and/or metastasis. Here, we demonstrated one cause of the enhanced signal using four breast cancer cell lines (SKBR3, AU565, MCF7, and MDA-MB-231). The WAVE2-Arp2/3 signal was estimated semi-quantitatively by counting the number of lamellipodia expressing both WAVE2 and Arp2 using high-power confocal laser microscopy. Higher expression of the WAVE2-Arp2/3 signal was detected in SKBR3 and AU565, which have HER2 gene amplification, than in the other two cell lines that lack HER2 gene amplification. Trastuzumab suppressed both the formation of lamellipodia and migration in a Boyden chamber experiment in SKBR3 and AU565. When the HER2 gene was transfected into MCF7, the number of both lamellipodia and migrated cells was increased. This enhancement of migration did not occur in the presence of extracellular matrix, and zymographic analysis showed no clear difference between HER2 gene-transfected cells and MCF7 cells. Immunohistochemical analysis of 115 cases of breast cancer revealed that coexpression of WAVE2 and Arp2 was significantly correlated with HER2-overexpression (P < 0.0001). These data indicate that an abnormal signal resulting from HER2 gene amplification activates lamellipodia formation in breast cancer cells, which initiates their metalloproteinase-independent migration.
Measurements of the power spectrum and dispersion relation of self-excited dust acoustic waves
NASA Astrophysics Data System (ADS)
Nosenko, V.; Zhdanov, S. K.; Kim, S.-H.; Heinrich, J.; Merlino, R. L.; Morfill, G. E.
2009-12-01
The spectrum of spontaneously excited dust acoustic waves was measured. The waves were observed with high temporal resolution using a fast video camera operating at 1000 frames per second. The experimental system was a suspension of micron-size kaolin particles in the anode region of a dc discharge in argon. Wave activity was found at frequencies as high as 450 Hz. At high wave numbers, the wave dispersion relation was acoustic-like (frequency proportional to wave number). At low wave numbers, the wave frequency did not tend to zero, but reached a cutoff frequency instead. The cutoff value declined with distance from the anode. We ascribe the observed cutoff to the particle confinement in this region.
NASA Astrophysics Data System (ADS)
Nandi, S.; Jana, Y. M.; Gupta, H. C.
2018-04-01
A short-range electrostatic forcefield model has been applied for the first time to investigate the Raman and infrared wave numbers in pyrochlore zirconates R2Zr2O7 (R3+ = La, Nd, Sm, Eu). The calculations of phonons involve five stretching and four bending force constants in the Wilson GF matrix method. The calculated phonon wave numbers are in reasonable agreement with the observed spectra in infrared and Raman excitation zones for all of these isomorphous compounds. The contributions of force constants to each mode show a similar trend of variation for all of these compounds. Furthermore, to validate the established forcefield model, we calculated the standard thermodynamic functions, e.g., molar heat capacity, entropy and enthalpy, and compared the results with the previous experimental data for each compound. Using the derived wave numbers for the acoustic and optical modes, the total phonon contribution to the heat capacity was calculated for all these zirconate compounds. The Schottky heat capacity contributions were also calculated for the magnetic compounds, Nd2Zr2O7, Sm2Zr2O7 and Eu2Zr2O7, taking account of crystal-field level schemes of the lanthanide ions. The derived total heat capacity and the integrated values of molar entropy and molar enthalpy showed satisfactory correlations at low temperatures with the experimental results available in the literature for these compounds. At higher temperatures, the discrepancies may be caused by the anharmonic effects of vibrations, phonon dispersion, distribution of phonon density of states, etc.
Coriolis-coupled wave packet dynamics of H + HLi reaction.
Padmanaban, R; Mahapatra, S
2006-05-11
We investigated the effect of Coriolis coupling (CC) on the initial state-selected dynamics of H+HLi reaction by a time-dependent wave packet (WP) approach. Exact quantum scattering calculations were obtained by a WP propagation method based on the Chebyshev polynomial scheme and ab initio potential energy surface of the reacting system. Partial wave contributions up to the total angular momentum J=30 were found to be necessary for the scattering of HLi in its vibrational and rotational ground state up to a collision energy approximately 0.75 eV. For each J value, the projection quantum number K was varied from 0 to min (J, K(max)), with K(max)=8 until J=20 and K(max)=4 for further higher J values. This is because further higher values of K do not have much effect on the dynamics and also because one wishes to maintain the large computational overhead for each calculation within the affordable limit. The initial state-selected integral reaction cross sections and thermal rate constants were calculated by summing up the contributions from all partial waves. These were compared with our previous results on the title system, obtained within the centrifugal sudden and J-shifting approximations, to demonstrate the impact of CC on the dynamics of this system.
First Observation of Lion Roar Emission in Saturn's Magnetosheath
NASA Astrophysics Data System (ADS)
Píša, D.; Sulaiman, A. H.; Santolík, O.; Hospodarsky, G. B.; Kurth, W. S.; Gurnett, D. A.
2018-01-01
We present an observation of intense emissions in Saturn's magnetosheath as detected by the Cassini spacecraft. The emissions are observed in the dawn sector (magnetic local time ˜06:45) of the magnetosheath over a time period of 11 h before the spacecraft crossed the bow shock and entered the unshocked solar wind. They are found to be narrow-banded with a peak frequency of about 0.16 fce, where fce is the local electron gyrofrequency. Using plane wave propagation analysis, we show that the waves are right hand circularly polarized in the spacecraft frame and propagate at small wave normal angles (<10∘) with respect to the ambient magnetic field. Electromagnetic waves with the same properties known as "lion roars" have been reported by numerous missions in the terrestrial magnetosheath. Here we show the first evidence such emission outside the terrestrial environment. Our observations suggest that lion roars are a solar-system-wide phenomenon and capable of existing in a broad range of parameter space. This also includes 1 order of magnitude difference in frequencies. We anticipate our result to provide new insight into such emissions in a new parameter regime characterized by a higher plasma beta (owing to the substantially higher Mach number bow shock) compared to Earth.
Using earthquake clusters to identify fracture zones at Puna geothermal field, Hawaii
NASA Astrophysics Data System (ADS)
Lucas, A.; Shalev, E.; Malin, P.; Kenedi, C. L.
2010-12-01
The actively producing Puna geothermal system (PGS) is located on the Kilauea East Rift Zone (ERZ), which extends out from the active Kilauea volcano on Hawaii. In the Puna area the rift trend is identified as NE-SW from surface expressions of normal faulting with a corresponding strike; at PGS the surface expression offsets in a left step, but no rift perpendicular faulting is observed. An eight station borehole seismic network has been installed in the area of the geothermal system. Since June 2006, a total of 6162 earthquakes have been located close to or inside the geothermal system. The spread of earthquake locations follows the rift trend, but down rift to the NE of PGS almost no earthquakes are observed. Most earthquakes located within the PGS range between 2-3 km depth. Up rift to the SW of PGS the number of events decreases and the depth range increases to 3-4 km. All initial locations used Hypoinverse71 and showed no trends other than the dominant rift parallel. Double difference relocation of all earthquakes, using both catalog and cross-correlation, identified one large cluster but could not conclusively identify trends within the cluster. A large number of earthquake waveforms showed identifiable shear wave splitting. For five stations out of the six where shear wave splitting was observed, the dominant polarization direction was rift parallel. Two of the five stations also showed a smaller rift perpendicular signal. The sixth station (located close to the area of the rift offset) displayed a N-S polarization, approximately halfway between rift parallel and perpendicular. The shear wave splitting time delays indicate that fracture density is higher at the PGS compared to the surrounding ERZ. Correlation co-efficient clustering with independent P and S wave windows was used to identify clusters based on similar earthquake waveforms. In total, 40 localized clusters containing ten or more events were identified. The largest cluster was located in the production area for the power plant. Most of the clusters had linear features when their Hypoinverse locations were plotted. The concentration of individual linear features was higher in the PGS than the surrounding ERZ. The resolution of the features was resolved further by relocating each individual cluster through the catalog double difference method. Mapping of the linear features showed that a number of the larger features ran rift parallel. However a large number of rift perpendicular features were also identified. In the area where the anomalous (N-S) shear wave polarization was observed, a number of linear features with a similar orientation were identified. We assume that events occurring on the same fracture zone have similar source mechanisms and thus similar waveforms. It is concluded that the linear features identified by earthquake clustering are fracture zones. The orientation and concentration of the fracture zones is consistent with that of the shear wave splitting polarizations.
Hitchman, Sara C.; Fong, Geoffrey T.; Zanna, Mark P.; Thrasher, James F.; Laux, Fritz L.
2014-01-01
Smokers who inhabit social contexts with a greater number of smokers may be exposed to more positive norms towards smoking and more cues to smoke. This study examines the relation between number of smoking friends and changes in number of smoking friends, and smoking cessation outcomes. Data were drawn from Wave 1 (2002) and Wave 2 (2003) of the International Tobacco Control (ITC) Project Four Country Survey, a longitudinal cohort survey of nationally representative samples of adult smokers in Australia, Canada, United Kingdom, and United States (N=6,321). Smokers with fewer smoking friends at Wave 1 were more likely to intend to quit at Wave 1 and were more likely to succeed in their attempts to quit at Wave 2. Compared to smokers who experienced no change in their number of smoking friends, smokers who lost smoking friends were more likely to intend to quit at Wave 2, attempt to quit between Wave 1 and Wave 2, and succeed in their quit attempts at Wave 2. Smokers who inhabit social contexts with a greater number of smokers may be less likely to successfully quit. Quitting may be particularly unlikely among smokers who do not experience a loss in the number of smokers in their social context. PMID:24841185
Modeling Study of Planetary Waves in the Mesosphere Lower Thermosphere (MLT)
NASA Technical Reports Server (NTRS)
Mengel, J. G.; Mayr, H. g.; Drob, D.; Porter, H. S.; Hines, C. O.
2003-01-01
For comparison with measurements from the TIMED satellite and coordinated ground based observations, we present results from our Numerical Spectral Model (NSM) that incorporates the Doppler Spread Parameterization (Hines, 1997) for small-scale gravity waves (GWs). We discuss the planetary waves (PWs) that are purely generated by dynamical interactions, i.e., without explicitly specifying excitation sources related for example to tropospheric convection or topography. With tropospheric heating that reproduces the observed zonal jets near the tropopause and the accompanying reversal in the latitudinal temperature variation, which is conducive to baroclinic instability, long period PWs are produced that propagate up into the stratosphere to affect the wave driven equatorial oscillations (QBO and SAO) extending into the upper mesosphere. The PWs in the model that dominate higher up in the MLT region, however, are to a large extent produced by instabilities under the influence of the zonal circulation and temperature variations in the middle atmosphere and they are amplified by GW interactions. Three classes of PWs are generated there. (1) Rossby waves that slowly propagate westward but are carried by the zonal mean (m = 0) winds to produce eastward and westward propagating PWs respectively in the winter and summer hemispheres below 80 km. Depending on the zonal wave number and magnitudes of the zonal winds under the influence of the equatorial oscillations, the PWs typically have periods between 2 and 20 days and their horizontal wind amplitudes can exceed 40 m/s in the lower mesosphere. (2) Rossby gravity waves that propagate westward at low latitudes, having periods around 2 days for zonal wave numbers m = 2 to 4. (3) Eastward propagating equatorial Kelvin waves generated in the upper mesosphere with periods between 2 and 3 days for m = 1 & 2. The seasonal variations of the PWs reveal that the largest wind amplitudes tend to occur below 80 km in the winter hemisphere, but above that altitude in the summer hemisphere to approach magnitudes as large as 50 m/s.
NASA Astrophysics Data System (ADS)
Bonoli, Paul
2014-10-01
This paper presents a fresh physics perspective on the onerous problem of coupling and successfully utilizing ion cyclotron range of frequencies (ICRF) and lower hybrid range of frequencies (LHRF) actuators in the harsh environment of a nuclear fusion reactor. The ICRF and LH launchers are essentially first wall components in a fusion reactor and as such will be subjected to high heat fluxes. The high field side (HFS) of the plasma offers a region of reduced heat flux together with a quiescent scrape off layer (SOL). Placement of the ICRF and LHRF launchers on the tokamak HFS also offers distinct physics advantages: The higher toroidal magnetic field makes it possible to couple faster phase velocity LH waves that can penetrate farther into the plasma core and be absorbed by higher energy electrons, thereby increasing the current drive efficiency. In addition, re-location of the LH launcher off the mid-plane (i.e., poloidal ``steering'') allows further control of the deposition location. Also ICRF waves coupled from the HFS couple strongly to mode converted ion Bernstein waves and ion cyclotron waves waves as the minority density is increased, thus opening the possibility of using this scheme for flow drive and pressure control. Finally the quiescent nature of the HFS scrape off layer should minimize the effects of RF wave scattering from density fluctuations. Ray tracing / Fokker Planck simulations will be presented for LHRF applications in devices such as the proposed Advanced Divertor Experiment (ADX) and extending to ITER and beyond. Full-wave simulations will also be presented which demonstrate the possible combinations of electron and ion heating via ICRF mode conversion. Work supported by the US DoE under Contract Numbers DE-FC02-01ER54648 and DE-FC02-99ER54512.
Quantification and assessment of heat and cold waves in Novi Sad, Northern Serbia
NASA Astrophysics Data System (ADS)
Basarin, Biljana; Lukić, Tin; Matzarakis, Andreas
2016-01-01
Physiologically equivalent temperature (PET) has been applied to the analysis of heat and cold waves and human thermal conditions in Novi Sad, Serbia. A series of daily minimum and maximum air temperature, relative humidity, wind, and cloud cover was used to calculate PET for the investigated period 1949-2012. The heat and cold wave analysis was carried out on days with PET values exceeding defined thresholds. Additionally, the acclimatization approach was introduced to evaluate human adaptation to interannual thermal perception. Trend analysis has revealed the presence of increasing trend in summer PET anomalies, number of days above defined threshold, number of heat waves, and average duration of heat waves per year since 1981. Moreover, winter PET anomaly as well as the number of days below certain threshold and number of cold waves per year until 1980 was decreasing, but the decrease was not statistically significant. The highest number of heat waves during summer was registered in the last two decades, but also in the first decade of the investigated period. On the other hand, the number of cold waves during six decades is quite similar and the differences are very small.
Quantification and assessment of heat and cold waves in Novi Sad, Northern Serbia.
Basarin, Biljana; Lukić, Tin; Matzarakis, Andreas
2016-01-01
Physiologically equivalent temperature (PET) has been applied to the analysis of heat and cold waves and human thermal conditions in Novi Sad, Serbia. A series of daily minimum and maximum air temperature, relative humidity, wind, and cloud cover was used to calculate PET for the investigated period 1949-2012. The heat and cold wave analysis was carried out on days with PET values exceeding defined thresholds. Additionally, the acclimatization approach was introduced to evaluate human adaptation to interannual thermal perception. Trend analysis has revealed the presence of increasing trend in summer PET anomalies, number of days above defined threshold, number of heat waves, and average duration of heat waves per year since 1981. Moreover, winter PET anomaly as well as the number of days below certain threshold and number of cold waves per year until 1980 was decreasing, but the decrease was not statistically significant. The highest number of heat waves during summer was registered in the last two decades, but also in the first decade of the investigated period. On the other hand, the number of cold waves during six decades is quite similar and the differences are very small.
NASA Astrophysics Data System (ADS)
Ding, Yang; Ming, Tingyu
2016-11-01
In undulatory locomotion, torque (bending moment) is required along the body to overcome the external forces from environments and bend the body. Previous observations on animals using less than two wavelengths on the body showed such torque has a single traveling wave pattern. Using resistive force theory model and considering the torque generated by external force in a resistive force dominated media, we found that as the wave number (number of wavelengths on the locomotor's body) increases from 0.5 to 1.8, the speed of the traveling wave of torque decreases. When the wave number increases to 2 and greater, the torque pattern transits from a single traveling wave to a two traveling waves and then a complex pattern that consists two wave-like patterns. By analyzing the force distribution and its contribution to the torque, we explain the speed decrease of the torque wave and the pattern transition. This research is partially supported by the Recruitment Program of Global Young Experts (China).
Observation of frequency cutoff for self-excited dust acoustic waves
NASA Astrophysics Data System (ADS)
Nosenko, V.; Zhdanov, S. K.; Morfill, G. E.; Kim, S.-H.; Heinrich, J.; Merlino, R. L.
2009-11-01
Complex (dusty) plasmas consist of fine solid particles suspended in a weakly ionized gas. Complex plasmas are excellent model systems to study wave phenomena down to the level of individual ``atoms''. Spontaneously excited dust acoustic waves were observed with high temporal resolution in a suspension of micron-size kaolin particles in a dc discharge in argon. Wave activity was found at frequencies as high as 400 Hz. At high wave numbers, the wave dispersion relation was acoustic-like (frequency proportional to wave number). At low wave numbers, the wave frequency did not tend to zero, but reached a cutoff frequency fc instead. The value of fc declined with distance from the anode. We propose a simple model that explains the observed cutoff by particle confinement in plasma. The existence of a cutoff frequency is very important for the propagation of waves: the waves excited above fc are propagating, and those below fc are evanescent.
Simple analytical relations for ship bow waves
NASA Astrophysics Data System (ADS)
Noblesse, Francis; Delhommeau, G.?Rard; Guilbaud, Michel; Hendrix, Dane; Yang, Chi
Simple analytical relations for the bow wave generated by a ship in steady motion are given. Specifically, simple expressions that define the height of a ship bow wave, the distance between the ship stem and the crest of the bow wave, the rise of water at the stem, and the bow wave profile, explicitly and without calculations, in terms of the ship speed, draught, and waterline entrance angle, are given. Another result is a simple criterion that predicts, also directly and without calculations, when a ship in steady motion cannot generate a steady bow wave. This unsteady-flow criterion predicts that a ship with a sufficiently fine waterline, specifically with waterline entrance angle 2, may generate a steady bow wave at any speed. However, a ship with a fuller waterline (25E) can only generate a steady bow wave if the ship speed is higher than a critical speed, defined in terms of αE by a simple relation. No alternative criterion for predicting when a ship in steady motion does not generate a steady bow wave appears to exist. A simple expression for the height of an unsteady ship bow wave is also given. In spite of their remarkable simplicity, the relations for ship bow waves obtained in the study (using only rudimentary physical and mathematical considerations) are consistent with experimental measurements for a number of hull forms having non-bulbous wedge-shaped bows with small flare angle, and with the authors' measurements and observations for a rectangular flat plate towed at a yaw angle.
Continuous-wave stimulated Raman scattering
NASA Astrophysics Data System (ADS)
Bryant, C. H.; Golombok, M.
1991-04-01
The first observation of continuous-wave stimulated Raman scattering (SRS) is reported. Both forward and enhanced backward SRS were observed in liquids, and the large spectral frequency shift between pump and probe makes signal detection easy. No separate collection optics are necessary for the backscattered SRS, whose signal-to-noise ratio is much improved compared with that measured by forward or side scatter. This is attributed to the existence of a phase-conjugate beam. Higher orders of Stokes scattering are also observed in return. Contrary to theoretical expectation, both forward-scattered and backscattered signals have identical gains owing to saturation effects in a number of the high-gain liquids studied.
NASA Astrophysics Data System (ADS)
Hudson, M. K.; Brito, T.; Elkington, S. R.; Kress, B. T.; Liang, Y.
2011-12-01
CME-shock and CIR-driven geomagnetic storms are characterized by enhanced ULF wave activity in the magnetosphere. This enhanced ULF wave power produces both coherent and diffusive transport and energization, as well as pitch angle modification of radiation belt electrons in drift resonance with azimuthally propagating ULF waves. Recent observations of two CME-driven storms1,2 have suggested that poloidal mode waves with both low and high azimuthal mode number may be efficient at accelerating radiation belt electrons. We extend up to m = 50 the analysis of Ozeke and Mann3 who examined drift resonance for poloidal modes up to m = 40. We calculate radial diffusion coefficients for source population electrons in the 50 -500 keV range, and continued resonance with lower m-numbers at higher energies for ULF waves in the Pc 5, 0.4 - 10 mHz range. We use an analytic model for ULF waves superimposed on a compressed dipole, developed for equatorial plane studies by Elkington et al.4 and extended to 3D by Perry et al.4 Assuming a power spectrum which varies as ω-2, consistent with earlier observations, we find greater efficiency for radial transport and acceleration at lower m number where there is greater power for drift resonance at a given frequency. This assumption is consistent with 3D global MHD simulations using the Lyon-Fedder-Mobarry code which we have carried out for realistic solar wind driving conditions during storms. Coherent interaction with ULF waves can also occur at a rate which exceeds nominal radial diffusion estimates but is slower than prompt injection on a drift time scale. Depending on initial electron drift phase, some electrons are accelerated due to the westward azimuthal electric field Eφ, while others are decelerated by eastward Eφ, decreasing their pitch angle. A subset of trapped electrons are seen to precipitate to the atmosphere in 3D LFM simulations, showing modulation at the coherent poloidal mode ULF wave frequency in both simulations and MINIS balloon observations for the January 21, 2005 CME-driven storm. Thus Pc 5 poloidal mode ULF waves cause competing increase and decrease in relativistic electron flux. The relative efficiencies of both coherent and diffusive processes will be examined. 1Zong et al., JGR, doi:10.1029/2009JA014393, 2009. 2Tan et al., JGR, doi:10.1029/2010JA016226, 2011. 3Ozeke and Mann, JGR, doi:10.1029/2007JA012468, 2008. 4Elkington et al., doi:10.1029/2001JA009202, 2003, 2003. 5Perry et al., doi:10.1029/2004JA010760, 2005.
Recrudescent wave of pandemic A/H1N1 influenza in Mexico, winter 2011-2012: Age shift and severity.
Chowell, Gerardo; Echevarría-Zuno, Santiago; Viboud, Cecile; Simonsen, Lone; Grajales Muñiz, Concepcion; Rascón Pacheco, Ramón Alberto; González León, Margot; Borja Aburto, Víctor Hugo
2012-02-24
A substantial recrudescent wave of pandemic influenza A/H1N1 that began in December 2011 is ongoing and has not yet peaked in Mexico, following a 2-year period of sporadic transmission. Mexico previously experienced three pandemic waves of A/H1N1 in 2009, associated with higher excess mortality rates than those reported in other countries, and prompting a large influenza vaccination campaign. Here we describe changes in the epidemiological patterns of the ongoing 4th pandemic wave in 2011-12, relative to the earlier waves in 2009. The analysis is intended to guide public health intervention strategies in near real time. We analyzed demographic and geographic data on all hospitalizations with acute respiratory infection (ARI) and laboratory-confirmed A/H1N1 influenza, and inpatient deaths, from a large prospective surveillance system maintained by the Mexican Social Security medical system during 01-April 2009 to 10-Feb 2012. We characterized the age and regional patterns of A/H1N1-positive hospitalizations and inpatient-deaths relative to the 2009 A/H1N1 influenza pandemic. We also estimated the reproduction number (R) based on the growth rate of the daily case incidence by date of symptoms onset. A total of 5,795 ARI hospitalizations and 186 inpatient-deaths (3.2%) were reported between 01-December 2011 and 10-February 2012 (685 A/H1N1-positive inpatients and 75 A/H1N1-positive deaths). The nationwide peak of daily ARI hospitalizations in early 2012 has already exceeded the peak of ARI hospitalizations observed during the major fall pandemic wave in 2009. The mean age was 34.3 y (SD=21.3) among A/H1N1 inpatients and 43.5 y (SD=21) among A/H1N1 deaths in 2011-12. The proportion of laboratory-confirmed A/H1N1 hospitalizations and deaths was higher among seniors >=60 years of age (Chi-square test P<0.001) and lower among younger age groups (Chi-square test, P<0.03) for the 2011-2012 pandemic wave, compared to the earlier waves in 2009. The reproduction number of the winter 2011-12 wave in central Mexico was estimated at 1.2-1.3, similar to that reported for the fall 2009 wave, but lower than that of spring 2009. We have documented a substantial and ongoing increase in the number of ARI hospitalizations during the period December 2011-February 2012 and an older age distribution of laboratory-confirmed A/H1N1 influenza hospitalizations and deaths, relative to 2009 A/H1N1 pandemic patterns. The gradual change in the age distribution of A/H1N1 infections in the post-pandemic period is reminiscent of historical pandemics and indicates either a gradual drift in the A/H1N1 virus, and/or a build-up of immunity among younger populations.
NASA Astrophysics Data System (ADS)
Shin, D. K.; Lee, D. Y.; Noh, S. J.; Cho, J.; Choi, C.; Hwang, J.; Lee, J.
2017-12-01
Statistical significance of the efficiency of electron loss into the atmosphere by EMIC waves has yet not been quantified through observations. To better understand the dynamics of the radiation belt particle, its quantification through observations is indispensable. In this study, we used a large number of the EMIC wave events identified near the equator for which we determined relativistic electron precipitation (REP) events using the observations at low earth orbit satellites (POES satellite series).We focused on the difference between the wave properties, geomagnetic conditions and background states during the EMIC waves between the event group (EMIC wave with REP) and non-event group (EMIC wave without REP). First, for 11.5 % of the EMIC wave events we were able to identify the REP events within an hour of MLT separation from the EMIC wave location. The majority ( 80 %) of the precipitation-inducing EMIC waves were found in 11 - 17 MLT. Second, geomagnetic conditions (most notably AE) are more often stronger for the event group than non-event group. Third, the EMIC waves of a stronger power and/or a longer duration are on average preferred for event group. Lastly, the majority of the EMIC waves with REP lie outside the plasmapause, most often at L being higher by 2 than the plasmapause locations. In conclusion, this is the first time report on a statistical assessment about the extent to which the EMIC waves directly measured in the equator can be responsible for REP and about their distinguishing features.
NASA Astrophysics Data System (ADS)
Hu, Jun; Hadid, Hamda Ben; Henry, Daniel; Mojtabi, Abdelkader
Temporal and spatio-temporal instabilities of binary liquid films flowing down an inclined uniformly heated plate with Soret effect are investigated by using the Chebyshev collocation method to solve the full system of linear stability equations. Seven dimensionless parameters, i.e. the Kapitza, Galileo, Prandtl, Lewis, Soret, Marangoni, and Biot numbers (Ka, G, Pr, L, ) are used to control the flow system. In the case of pure spanwise perturbations, thermocapillary S- and P-modes are obtained. It is found that the most dangerous modes are stationary for positive Soret numbers (0), and oscillatory for =0 remains so for >0 and even merges with the long-wave S-mode. In the case of streamwise perturbations, a long-wave surface mode (H-mode) is also obtained. From the neutral curves, it is found that larger Soret numbers make the film flow more unstable as do larger Marangoni numbers. The increase of these parameters leads to the merging of the long-wave H- and S-modes, making the situation long-wave unstable for any Galileo number. It also strongly influences the short-wave P-mode which becomes the most critical for large enough Galileo numbers. Furthermore, from the boundary curves between absolute and convective instabilities (AI/CI) calculated for both the long-wave instability (S- and H-modes) and the short-wave instability (P-mode), it is shown that for small Galileo numbers the AI/CI boundary curves are determined by the long-wave instability, while for large Galileo numbers they are determined by the short-wave instability.
HRDI Observations of Inertia-Gravity Waves in the Mesosphere and Lower Thermosphere
NASA Technical Reports Server (NTRS)
Lieberman, Ruth S.
1999-01-01
Vertical profiles of High-resolution Doppler imager (HRDI) mesospheric winds have small-scale structure (vertical wavelengths between 10 and 20 km) that is virtually always present. Fourier analysis of HRDI zonal and meridional wind profiles have been carried out, and the spectral characteristics are sorted by latitude, month and local time. Power spectral density (PSD) exhibits a universal exp(-km) structure in the 10-20km wavelength regime, with K lying between 2 and 3. The observed PSD for wavelengths between 10 and 20 km is a factor of 3 higher than a null spectrum constructed from HRDI reported error bars multiplied by randomly varying numbers between -1 and +1. Stokes parameters were consolidated by month into Northern and Southern hemisphere middle and high latitudes belts (40-72 degrees), tidal belts (32-16 degrees) and a tropical belt (8S-8N). Vertical waves between 10 and 15 km in wavelength are about 10-15% polarized everywhere. The inferred propagation direction in the middle and high latitude Southern hemisphere is predominantly meridional during solstice, and significantly more zonal during equinoxes. In the tropical belt, the wave orientations are nearly North-South during solstices, with a slightly higher east-west component during equinox. In the tidal belts where the background wind includes a strong meridional tidal wind, the preferred wave orientation has a significant zonal component during equinox. These findings are consistent with the interpretation of wave filtering by the background wind.
Acoustics of a Mixed Porosity Felt Airfoil
2016-06-06
higher Reynolds numbers. 15. SUBJECT TERMS wings, hydrofoils, propulsor blade , stall, shed vortices, trailing edge scattering, owl, mixed...hydrofoils, and propulsor blades produce noise in operation. This noise has several potential sources, including stall, shed vortices, and trailing edge...that are concerned primarily with cooling high-temperature turbine blades [10] or mitigating shock waves [11] [12]. Theoretical work on a poroelastic
What's Next for Student Veterans? Moving from Transition to Academic Success
ERIC Educational Resources Information Center
Diramio, David, Ed.
2017-01-01
With the passage of the Post-9/11 GI Bill in 2008, more than 1.4 million service members and their families became eligible for higher education benefits, and veterans from the wars in Iraq and Afghanistan enrolled in colleges and universities in record numbers. The first wave of research about these new student veterans focused primarily on…
ERIC Educational Resources Information Center
Vauterin, Johanna Julia; Michelsen, Karl-Erik; Linnanen, Lassi
2013-01-01
To be prepared for changing student talent pools in emerging geographical markets, and to remain attractive to the coming waves of student mobility, the European higher education sector must improve its ability to absorb international student talent in greater numbers. This paper presents an analysis of the nature and value of university-industry…
Mustelin, Linda; Kaprio, Jaakko; Keski-Rahkonen, Anna
2018-06-14
Binge eating disorder (BED) is a clinical eating disorder that is strongly and bidirectionally related to overweight and obesity. Little is known about how subclinical features of BED relate to weight development in adolescence and young adulthood. Women (n = 2825) and men (n = 2423) from the community-based longitudinal FinnTwin16 cohort participated. Seven eating-related cognitions and behaviors similar to the defining features of BED were extracted from the Eating Disorder Inventory-2 and were assessed at a mean age of 24. We used linear mixed models to assess the association of features of BED with BMI trajectories across four waves of data collection (mean ages 16, 17, 18, and 24). The number of features of BED at wave 4 (age 24) was significantly associated with BMI from age 16 years onwards. Those reporting more features of BED had gained more weight throughout adolescence and into their twenties. Features of BED in young adulthood were preceded by steeper BMI trajectories in adolescence. A higher number of features were consistently associated with higher BMI and more weight gain. Copyright © 2018 Elsevier Ltd. All rights reserved.
Deterministic quantum nonlinear optics with single atoms and virtual photons
NASA Astrophysics Data System (ADS)
Kockum, Anton Frisk; Miranowicz, Adam; Macrı, Vincenzo; Savasta, Salvatore; Nori, Franco
2017-06-01
We show how analogs of a large number of well-known nonlinear-optics phenomena can be realized with one or more two-level atoms coupled to one or more resonator modes. Through higher-order processes, where virtual photons are created and annihilated, an effective deterministic coupling between two states of such a system can be created. In this way, analogs of three-wave mixing, four-wave mixing, higher-harmonic and -subharmonic generation (i.e., up- and down-conversion), multiphoton absorption, parametric amplification, Raman and hyper-Raman scattering, the Kerr effect, and other nonlinear processes can be realized. In contrast to most conventional implementations of nonlinear optics, these analogs can reach unit efficiency, only use a minimal number of photons (they do not require any strong external drive), and do not require more than two atomic levels. The strength of the effective coupling in our proposed setups becomes weaker the more intermediate transition steps are needed. However, given the recent experimental progress in ultrastrong light-matter coupling and improvement of coherence times for engineered quantum systems, especially in the field of circuit quantum electrodynamics, we estimate that many of these nonlinear-optics analogs can be realized with currently available technology.
Higher Order Bases in a 2D Hybrid BEM/FEM Formulation
NASA Technical Reports Server (NTRS)
Fink, Patrick W.; Wilton, Donald R.
2002-01-01
The advantages of using higher order, interpolatory basis functions are examined in the analysis of transverse electric (TE) plane wave scattering by homogeneous, dielectric cylinders. A boundary-element/finite-element (BEM/FEM) hybrid formulation is employed in which the interior dielectric region is modeled with the vector Helmholtz equation, and a radiation boundary condition is supplied by an Electric Field Integral Equation (EFIE). An efficient method of handling the singular self-term arising in the EFIE is presented. The iterative solution of the partially dense system of equations is obtained using the Quasi-Minimal Residual (QMR) algorithm with an Incomplete LU Threshold (ILUT) preconditioner. Numerical results are shown for the case of an incident wave impinging upon a square dielectric cylinder. The convergence of the solution is shown versus the number of unknowns as a function of the completeness order of the basis functions.
Sexual Identity Mobility and Depressive Symptoms: A Longitudinal Analysis of Sexual Minority Women
Everett, Bethany; Talley, Amelia; Hughes, Tonda; Wilsnack, Sharon; Johnson, Timothy P.
2016-01-01
Sexual minority identity (bisexual, lesbian) is a known risk factor for depression in women. This study examines a facet of minority stress prevalent among women—sexual identity mobility—as an identity-related contributor to higher levels of depressive symptoms. We used three waves of data from the Chicago Health and Life Experiences of Women (CHLEW) study, a longitudinal study of sexual minority women (N = 306). Random effects OLS regression models were constructed to examine the effect of sexual-identity changes on depressive symptoms. We found that 25.6% of the sample reported a sexual-identity change between Wave I and Wave II, and 24.91% reported a sexual identity change between Waves II and III. Women who reported a change in sexual identity also reported more depressive symptoms subsequent to identity change. This effect was moderated by the number of years participants’ had reported their baseline identity and by whether the participant had initiated a romantic relationship with a male partner. PMID:27255306
NASA Astrophysics Data System (ADS)
Flanigan, D.; McCarrick, H.; Jones, G.; Johnson, B. R.; Abitbol, M. H.; Ade, P.; Araujo, D.; Bradford, K.; Cantor, R.; Che, G.; Day, P.; Doyle, S.; Kjellstrand, C. B.; Leduc, H.; Limon, M.; Luu, V.; Mauskopf, P.; Miller, A.; Mroczkowski, T.; Tucker, C.; Zmuidzinas, J.
2016-02-01
We report photon-noise limited performance of horn-coupled, aluminum lumped-element kinetic inductance detectors at millimeter wavelengths. The detectors are illuminated by a millimeter-wave source that uses an active multiplier chain to produce radiation between 140 and 160 GHz. We feed the multiplier with either amplified broadband noise or a continuous-wave tone from a microwave signal generator. We demonstrate that the detector response over a 40 dB range of source power is well-described by a simple model that considers the number of quasiparticles. The detector noise-equivalent power (NEP) is dominated by photon noise when the absorbed power is greater than approximately 1 pW, which corresponds to NEP≈2 ×10-17 W Hz-1 /2 , referenced to absorbed power. At higher source power levels, we observe the relationships between noise and power expected from the photon statistics of the source signal: NEP∝P for broadband (chaotic) illumination and NEP∝P1 /2 for continuous-wave (coherent) illumination.
NASA Astrophysics Data System (ADS)
Bertie, John E.; Michaelian, Kirk H.
1998-10-01
This paper is concerned with the peak wave number of very strong absorption bands in infrared spectra of molecular liquids. It is well known that the peak wave number can differ depending on how the spectrum is measured. It can be different, for example, in a transmission spectrum and in an attenuated total reflection spectrum. This difference can be removed by transforming both spectra to the real, n, and imaginary, k, refractive index spectra, because both spectra yield the same k spectrum. However, the n and k spectra can be transformed to spectra of any other intensity quantity, and the peak wave numbers of strong bands may differ by up to 6 cm-1 in the spectra of the different quantities. The question which then arises is "which infrared peak wave number is the correct one to use in the comparison of infrared wave numbers of molecular liquids with wave numbers in other spectra?" For example, infrared wave numbers in the gas and liquid phase are compared to observe differences between the two phases. Of equal importance, the wave numbers of peaks in infrared and Raman spectra of liquids are compared to determine whether the infrared-active and Raman-active vibrations coincide, and thus are likely to be the same, or are distinct. This question is explored in this paper by presenting the experimental facts for different intensity quantities. The intensity quantities described are macroscopic properties of the liquid, specifically the absorbance, attenuated total reflectance, imaginary refractive index, k, imaginary dielectric constant, ɛ″, and molar absorption coefficient, Em, and one microscopic property of a molecule in the liquid, specifically the imaginary molar polarizability, αm″, which is calculated under the approximation of the Lorentz local field. The main experimental observations are presented for the strongest band in the infrared spectrum of each of the liquids methanol, chlorobenzene, dichloromethane, and acetone. Particular care was paid to wave number calibration of both infrared and Raman spectra. Theoretical arguments indicate that the peak wave number in the αm″ spectrum is the correct one to use, because it is the only one that reflects the properties of molecules in their local environment in the liquid free from predictable long-range resonant dielectric effects. However, it is found that the comparison with Raman wave numbers is confused when the anisotropic local intermolecular forces and configuration in the liquid are significant. In these cases, the well known noncoincidence of the isotropic and anisotropic Raman scattering is observed, and the same factors lead to noncoincidence of the infrared and Raman bands.
NASA Astrophysics Data System (ADS)
Sun, Jicheng; Gao, Xinliang; Lu, Quanming; Chen, Lunjin; Liu, Xu; Wang, Xueyi; Tao, Xin; Wang, Shui
2017-05-01
In this paper, we perform a 1-D particle-in-cell (PIC) simulation model consisting of three species, cold electrons, cold ions, and energetic ion ring, to investigate spectral structures of magnetosonic waves excited by ring distribution protons in the Earth's magnetosphere, and dynamics of charged particles during the excitation of magnetosonic waves. As the wave normal angle decreases, the spectral range of excited magnetosonic waves becomes broader with upper frequency limit extending beyond the lower hybrid resonant frequency, and the discrete spectra tends to merge into a continuous one. This dependence on wave normal angle is consistent with the linear theory. The effects of magnetosonic waves on the background cold plasma populations also vary with wave normal angle. For exactly perpendicular magnetosonic waves (parallel wave number k|| = 0), there is no energization in the parallel direction for both background cold protons and electrons due to the negligible fluctuating electric field component in the parallel direction. In contrast, the perpendicular energization of background plasmas is rather significant, where cold protons follow unmagnetized motion while cold electrons follow drift motion due to wave electric fields. For magnetosonic waves with a finite k||, there exists a nonnegligible parallel fluctuating electric field, leading to a significant and rapid energization in the parallel direction for cold electrons. These cold electrons can also be efficiently energized in the perpendicular direction due to the interaction with the magnetosonic wave fields in the perpendicular direction. However, cold protons can be only heated in the perpendicular direction, which is likely caused by the higher-order resonances with magnetosonic waves. The potential impacts of magnetosonic waves on the energization of the background cold plasmas in the Earth's inner magnetosphere are also discussed in this paper.
Wave-current generated turbulence over hemisphere bottom roughness
NASA Astrophysics Data System (ADS)
Barman, Krishnendu; Roy, Sayahnya; Debnath, Koustuv
2018-03-01
The present paper explores the effect of wave-current interaction on the turbulence characteristics and the distribution of eddy structure over artificially crammed rough bed prepared with hemispheres. The effect of the surface wave on temporal and spatial-averaged mean velocity, intensity, Reynolds shear stress over, within cavity and above the hemispherical bed are discussed. Detailed three-dimensional time series velocity components were measured in a tilting flume using 3-D Micro-Acoustic Doppler Velocimeter (ADV) at a Reynolds number, 62 × 103. This study reports the fractional contributions of burst-sweep cycles dominating the total shear stress near hemispherical rough surface both for current only flow as well as for wave-induced cases. Wavelet analysis of the fluctuating velocity signal shows that the superimposed wave of frequency 1 Hz is capable of modulating the energy containing a range of velocity fluctuations at the mid-depth of the cavity region (formed due to the crammed arrangement of the hemispheres). As a result, the large-scale eddies (with large values of wavelet coefficients) are concentrated at a pseudo-frequency which is equal to the wave oscillating frequency. On the other hand, it is observed that the higher wave frequency (2 Hz) is incapable of modulating the eddy structures at that particular region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugimoto, Norihiko, E-mail: nori@phys-h.keio.ac.jp
Inertia-gravity wave radiation from the merging of two co-rotating vortices is investigated numerically in a rotating shallow water system in order to focus on cyclone–anticyclone asymmetry at different values of the Rossby number (Ro). A numerical study is conducted on a model using a spectral method in an unbounded domain to estimate the gravity wave flux with high accuracy. Continuous gravity wave radiation is observed in three stages of vortical flows: co-rotating of the vortices, merging of the vortices, and unsteady motion of the merged vortex. A cyclone–anticyclone asymmetry appears at all stages at smaller Ro (≤20). Gravity waves frommore » anticyclones are always larger than those from cyclones and have a local maximum at smaller Ro (∼2) compared with that for an idealized case of a co-rotating vortex pair with a constant rotation rate. The source originating in the Coriolis acceleration has a key role in cyclone–anticyclone asymmetry in gravity waves. An additional important factor is that at later stages, the merged axisymmetric anticyclone rotates faster than the elliptical cyclone due to the effect of the Rossby deformation radius, since a rotation rate higher than the inertial cutoff frequency is required to radiate gravity waves.« less
NASA Astrophysics Data System (ADS)
Rapaka, Narsimha R.; Sarkar, Sutanu
2016-10-01
A sharp-interface Immersed Boundary Method (IBM) is developed to simulate density-stratified turbulent flows in complex geometry using a Cartesian grid. The basic numerical scheme corresponds to a central second-order finite difference method, third-order Runge-Kutta integration in time for the advective terms and an alternating direction implicit (ADI) scheme for the viscous and diffusive terms. The solver developed here allows for both direct numerical simulation (DNS) and large eddy simulation (LES) approaches. Methods to enhance the mass conservation and numerical stability of the solver to simulate high Reynolds number flows are discussed. Convergence with second-order accuracy is demonstrated in flow past a cylinder. The solver is validated against past laboratory and numerical results in flow past a sphere, and in channel flow with and without stratification. Since topographically generated internal waves are believed to result in a substantial fraction of turbulent mixing in the ocean, we are motivated to examine oscillating tidal flow over a triangular obstacle to assess the ability of this computational model to represent nonlinear internal waves and turbulence. Results in laboratory-scale (order of few meters) simulations show that the wave energy flux, mean flow properties and turbulent kinetic energy agree well with our previous results obtained using a body-fitted grid (BFG). The deviation of IBM results from BFG results is found to increase with increasing nonlinearity in the wave field that is associated with either increasing steepness of the topography relative to the internal wave propagation angle or with the amplitude of the oscillatory forcing. LES is performed on a large scale ridge, of the order of few kilometers in length, that has the same geometrical shape and same non-dimensional values for the governing flow and environmental parameters as the laboratory-scale topography, but significantly larger Reynolds number. A non-linear drag law is utilized in the large-scale application to parameterize turbulent losses due to bottom friction at high Reynolds number. The large scale problem exhibits qualitatively similar behavior to the laboratory scale problem with some differences: slightly larger intensification of the boundary flow and somewhat higher non-dimensional values for the energy fluxed away by the internal wave field. The phasing of wave breaking and turbulence exhibits little difference between small-scale and large-scale obstacles as long as the important non-dimensional parameters are kept the same. We conclude that IBM is a viable approach to the simulation of internal waves and turbulence in high Reynolds number stratified flows over topography.
NASA Technical Reports Server (NTRS)
Holdaway, George H.; Mellenthin, Jack A.
1960-01-01
The models had aspect-ratio-2 diamond, delta, and arrow wings with the leading edges swept 45.00 deg, 59.04 deg, and 70.82 deg, respectively. The wing sections were computed by varying the section shape along with the body radii (blending process) to match the prescribed area distribution and wing plan form. The wing sections had an average value of maximum thickness ratio of about 4 percent of the local chords in a streamwise direction. The models were tested with transition fixed at Reynolds numbers of about 4,000,000 to 9,000,0000, based on the mean aerodynamic chord of the wings. The effect of varying Reynolds number was checked at both subsonic and supersonic speeds. The diamond model was superior to the other plan forms at transonic speeds ((L/D)max = 11.00 to 9.52) because of its higher lift-curve slope and near optimum wave drag due to the blending process. For the wing thickness tested with the diamond model, the marked body and wing contouring required for transonic conditions resulted in a large wave-drag penalty at the higher supersonic Mach numbers where the leading and trailing edges of the wing were supersonic. Because of the low sweep of the trailing edge of the delta model, this configuration was less adaptable to the blending process. Removing a body bump prescribed by the Mach number 1.00 design resulted in a good supersonic design. This delta model with 10 percent less volume was superior to the other plan forms at Mach numbers of 1.55 to 2.35 ((L/D)max = 8.65 to 7.24), but it and the arrow model were equally good at Mach numbers of 2.50 to 3.50 ((L/D)max - 6.85 to O.39). At transonic speeds the arrow model was inferior because of the reduced lift-curve slope associated with its increased sweep and also because of the wing base drag. The wing base-drag coefficients of the arrow model based on the wing planform area decreased from a peak value of 0.0029 at Mach number 1.55 to 0.0003 at Mach number 3.50. Linear supersonic theory was satisfactory for predicting the aerodynamic trends at Mach numbers from 1.55 to 3.50 of lift-curve slope, wave drag, drag due to lift, aerodynamic-center location, and maximum lift-drag ratios for each of the models.
Kim, Jeong Rye; Suh, Chong Hyun; Yoon, Hee Mang; Lee, Jin Seong; Cho, Young Ah; Jung, Ah Young
2018-03-01
To assess the diagnostic performance of shear-wave elastography for determining the severity of liver fibrosis in children and adolescents. An electronic literature search of PubMed and EMBASE was conducted. Bivariate modelling and hierarchical summary receiver-operating-characteristic modelling were performed to evaluate the diagnostic performance of shear-wave elastography. Meta-regression and subgroup analyses according to the modality of shear-wave imaging and the degree of liver fibrosis were also performed. Twelve eligible studies with 550 patients were included. Shear-wave elastography showed a summary sensitivity of 81 % (95 % CI: 71-88) and a specificity of 91 % (95 % CI: 83-96) for the prediction of significant liver fibrosis. The number of measurements of shear-wave elastography performed was a significant factor influencing study heterogeneity. Subgroup analysis revealed shear-wave elastography to have an excellent diagnostic performance according to each degree of liver fibrosis. Supersonic shear imaging (SSI) had a higher sensitivity (p<.01) and specificity (p<.01) than acoustic radiation force impulse imaging (ARFI). Shear-wave elastography is an excellent modality for the evaluation of the severity of liver fibrosis in children and adolescents. Compared with ARFI, SSI showed better diagnostic performance for prediction of significant liver fibrosis. • Shear-wave elastography is beneficial for determining liver fibrosis severity in children. • Shear-wave elastography showed summary sensitivity of 81 %, specificity of 91 %. • SSI showed better diagnostic performance than ARFI for significant liver fibrosis.
Fast Ion and Thermal Plasma Transport in Turbulent Waves in the Large Plasma Device (LAPD)
NASA Astrophysics Data System (ADS)
Zhou, Shu
2011-10-01
The transport of fast ions and thermal plasmas in electrostatic microturbulence is studied. Strong density and potential fluctuations (δn / n ~ δϕ / kTe ~ 0 . 5 , f ~5-50 kHz) are observed in the LAPD in density gradient regions produced by obstacles with slab or cylindrical geometry. Wave characteristics and the associated plasma transport are modified by driving sheared E ×B drift through biasing the obstacle, and by modification of the axial magnetic fields (Bz) and the plasma species. Cross-field plasma transport is suppressed with small bias and large Bz, and is enhanced with large bias and small Bz. Suppressed cross-field thermal transport coincides with a 180° phase shift between the density and potential fluctuations in the radial direction, while the enhanced thermal transport is associated with modes having low mode number (m = 1) and long radial correlation length. Large gyroradius lithium ions (ρfast /ρs ~ 10) orbit through the turbulent region. Scans with a collimated analyzer and with Langmuir probes give detailed profiles of the fast ion spatial-temporal distribution and of the fluctuating fields. Fast-ion transport decreases rapidly with increasing fast-ion gyroradius. Background waves with different scale lengths also alter the fast ion transport: Beam diffusion is smaller in waves with smaller structures (higher mode number); also, coherent waves with long correlation length cause less beam diffusion than turbulent waves. Experimental results agree well with gyro-averaging theory. When the fast ion interacts with the wave for most of a wave period, a transition from super-diffusive to sub-diffusive transport is observed, as predicted by diffusion theory. A Monte Carlo trajectory-following code simulates the interaction of the fast ions with the measured turbulent fields. Good agreement between observation and modeling is observed. Work funded by DOE and NSF and performed at the Basic Plasma Science Facility.
NASA Astrophysics Data System (ADS)
Marston, Philip L.
2002-05-01
The coupling of sound to buried targets can be associated with acoustic evanescent waves when the sea bottom is smooth. To understand the excitation of flexural waves on buried shells by acoustic evanescent waves, the partial wave series for the scattering is found for cylindrical shells at normal incidence in an unbounded medium. The formulation uses the simplifications of thin-shell dynamics. In the case of ordinary waves incident on a shell, a ray formulation is available to describe the coupling to subsonic flexural waves [P. L. Marston and N. H. Sun, J. Acoust. Soc. Am. 97, 777-783 (1995)]. When the incident wave is evanescent, the distance between propagating plane wavefronts is smaller than the ordinary acoustical wavelength at the same frequency and the coupling condition for the excitation of flexural waves on shells or plates is modified. Instead of matching the flexural wave number with the propagating part of the acoustic wave number only at the coincidence frequency, a second low-frequency wave number matching condition is found for highly evanescent waves. Numerical evaluation of the modified partial-wave-series appropriate for an evanescent wave is used to investigate the low-frequency coupling of evanescent waves with flexural wave resonances of shells.
Projection of heat waves over China for eight different global warming targets using 12 CMIP5 models
NASA Astrophysics Data System (ADS)
Guo, Xiaojun; Huang, Jianbin; Luo, Yong; Zhao, Zongci; Xu, Ying
2017-05-01
Simulation and projection of the characteristics of heat waves over China were investigated using 12 CMIP5 global climate models and the CN05.1 observational gridded dataset. Four heat wave indices (heat wave frequency, longest heat wave duration, heat wave days, and high temperature days) were adopted in the analysis. Evaluations of the 12 CMIP5 models and their ensemble indicated that the multi-model ensemble could capture the spatiotemporal characteristics of heat wave variation over China. The inter-decadal variations of heat waves during 1961-2005 can be well simulated by multi-model ensemble. Based on model projections, the features of heat waves over China for eight different global warming targets (1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0 °C) were explored. The results showed that the frequency and intensity of heat waves would increase more dramatically as the global mean temperature rise attained higher warming targets. Under the RCP8.5 scenario, the four China-averaged heat wave indices would increase from about 1.0 times/year, 2.5, 5.4, and 13.8 days/year to about 3.2 times/year, 14.0, 32.0, and 31.9 days/year for 1.5 and 5.0 °C warming targets, respectively. Those regions that suffer severe heat waves in the base climate would experience the heat waves with greater frequency and severity following global temperature rise. It is also noteworthy that the areas in which a greater number of severe heat waves occur displayed considerable expansion. Moreover, the model uncertainties exhibit a gradual enhancement with projected time extending from 2006 to 2099.
NASA Astrophysics Data System (ADS)
de Figueiredo, J. J. S.; Schleicher, J.; Stewart, R. R.; Dayur, N.; Omoboya, B.; Wiley, R.; William, A.
2013-04-01
To understand their influence on elastic wave propagation, anisotropic cracked media have been widely investigated in many theoretical and experimental studies. In this work, we report on laboratory ultrasound measurements carried out to investigate the effect of source frequency on the elastic parameters (wave velocities and the Thomsen parameter γ) and shear wave attenuation) of fractured anisotropic media. Under controlled conditions, we prepared anisotropic model samples containing penny-shaped rubber inclusions in a solid epoxy resin matrix with crack densities ranging from 0 to 6.2 per cent. Two of the three cracked samples have 10 layers and one has 17 layers. The number of uniform rubber inclusions per layer ranges from 0 to 100. S-wave splitting measurements have shown that scattering effects are more prominent in samples where the seismic wavelength to crack aperture ratio ranges from 1.6 to 1.64 than in others where the ratio varied from 2.72 to 2.85. The sample with the largest cracks showed a magnitude of scattering attenuation three times higher compared with another sample that had small inclusions. Our S-wave ultrasound results demonstrate that elastic scattering, scattering and anelastic attenuation, velocity dispersion and crack size interfere directly in shear wave splitting in a source-frequency dependent manner, resulting in an increase of scattering attenuation and a reduction of shear wave anisotropy with increasing frequency.
Potential to kinetic energy conversion in wave number domain for the Southern Hemisphere
NASA Technical Reports Server (NTRS)
Huang, H.-J.; Vincent, D. G.
1984-01-01
Preliminary results of a wave number study conducted for the South Pacific Convergence Zone (SPCZ) using FGGE data for the period January 10-27, 1979 are reported. In particular, three variables (geomagnetic height, z, vertical p-velocity, omega, and temperature, T) and one energy conversion quantity, omega-alpha (where alpha is the specific volume), are shown. It is demonstrated that wave number 4 plays an important role in the conversion from available potential energy to kinetic energy in the Southern Hemisphere tropics, particularly in the vicinity of the SPCZ. It is therefore suggested that the development and movement of wave number 4 waves be carefully monitored in making forecasts for the South Pacific region.
An Artificial Particle Precipitation Technique Using HAARP-Generated VLF Waves
2006-11-02
AFRL-VS-HA-TR-2007-1021 An Artificial Particle Precipitation Technique Using HAARP -Generated VLF Waves O o o r- Q M. J. Kosch T. Pedersen J...Artificial Particle Precipitation Technique Using HAARP Generated VLF Waves. 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62101F...model. The frequency-time modulated VLF wave patterns have been successfully implemented at the HAARP ionospheric modification facility in Alaska
Comparison of fine structures of electron cyclotron harmonic emissions in aurora
NASA Astrophysics Data System (ADS)
LaBelle, J.; Dundek, M.
2015-10-01
Recent discoveries of higher harmonic cyclotron emissions in aurora occurring under daylight conditions motivated the modification of radio receivers at South Pole Station, Antarctica, to measure fine structure of such emissions during two consecutive austral summers, 2013-2014 and 2014-2015. The experiment recorded 347 emission events over 376 days of observation. The seasonal distribution of these events reveals that successively higher harmonics require higher solar zenith angles for occurrence, as expected if they are generated at the matching condition fuh = Nfce, which for higher N requires higher electron densities which are associated with higher solar zenith angles. This result implies that generation of higher harmonics from lower harmonics via wave-wave processes explains only a minority of events. Detailed examination of 21 cases in which two harmonics occur simultaneously shows that in almost all events the higher harmonic comes from higher altitudes, and only for a small fraction of events is it plausible that the frequencies of the fine structures of the emissions are correlated and in exact integer ratio. This observation puts an upper bound of 15-20% on the fraction of emissions which can be explained by wave-wave interactions involving Z mode waves at fce and, combined with consideration of source altitudes, puts an upper bound of 75% on the fraction explained by coalescence of Z mode waves at 2fce. Taken together, these results suggest that the dominant mechanism for the higher harmonics is independent generation at the matching points fuh = Nfce and that the wave-wave interaction mechanisms explain a relatively small fraction of events.
Chowell, Gerardo; Viboud, Cécile; Simonsen, Lone; Miller, Mark A.; Acuna-Soto, Rodolfo
2010-01-01
Background While the mortality burden of the devastating 1918 influenza pandemic has been carefully quantified in the US, Japan, and European countries, little is known about the pandemic experience elsewhere. Here, we compiled extensive archival records to quantify the pandemic mortality patterns in two Mexican cities, Mexico City and Toluca. Methods We applied seasonal excess mortality models to age-specific respiratory mortality rates for 1915–1920 and quantified the reproduction number from daily data. Results We identified 3 pandemic waves in Mexico City in spring 1918, fall 1918, and winter 1920, characterized by unusual excess mortality in 25–44 years old. Toluca experienced 2-fold higher excess mortality rates than Mexico City, but did not have a substantial 3rd wave. All age groups including those over 65 years experienced excess mortality during 1918–20. Reproduction number estimates were below 2.5 assuming a 3-day generation interval. Conclusion Mexico experienced a herald pandemic wave with elevated young adult mortality in spring 1918, similar to the US and Europe. In contrast to the US and Europe, there was no mortality sparing in Mexican seniors, highlighting potential geographical differences in pre-existing immunity to the 1918 virus. We discuss the relevance of our findings to the 2009 pandemic mortality patterns. PMID:20594109
Effects of wave energy converters on the surrounding soft-bottom macrofauna (west coast of Sweden).
Langhamer, O
2010-06-01
Offshore wave energy conversion is expected to develop, thus contributing to an increase in submerged constructions on the seabed. An essential concern related to the deployment of wave energy converters (WECs) is their possible impact on the surrounding soft-bottom habitats. In this study, the macrofaunal assemblages in the seabed around the wave energy converters in the Lysekil research site on the Swedish west coast and a neighbouring reference site were examined yearly during a period of 5 years (2004-2008). Macrobenthic communities living in the WECs' surrounding seabed were mainly composed by organisms typical for the area and depth off the Swedish west coast. At both sites the number of individuals, number of species and biodiversity were low, and were mostly small, juvenile organisms. The species assemblages during the first years of sampling were significantly different between the Lysekil research site and the nearby reference site with higher species abundance in the research site. The high contribution to dissimilarities was mostly due to polychaetes. Sparse macrofaunal densities can be explained by strong hydrodynamic forces and/or earlier trawling. WECs may alter the surrounding seabed with an accumulation of organic matter inside the research area. This indicates that the deployment of WECs in the Lysekil research site tends to have rather minor direct ecological impacts on the surrounding benthic community relative to the natural high variances.
Acoustic Wave Filter Technology-A Review.
Ruppel, Clemens C W
2017-09-01
Today, acoustic filters are the filter technology to meet the requirements with respect to performance dictated by the cellular phone standards and their form factor. Around two billion cellular phones are sold every year, and smart phones are of a very high percentage of approximately two-thirds. Smart phones require a very high number of filter functions ranging from the low double-digit range up to almost triple digit numbers in the near future. In the frequency range up to 1 GHz, surface acoustic wave (SAW) filters are almost exclusively employed, while in the higher frequency range, bulk acoustic wave (BAW) and SAW filters are competing for their shares. Prerequisites for the success of acoustic filters were the availability of high-quality substrates, advanced and highly reproducible fabrication technologies, optimum filter techniques, precise simulation software, and advanced design tools that allow the fast and efficient design according to customer specifications. This paper will try to focus on innovations leading to high volume applications of intermediate frequency (IF) and radio frequency (RF) acoustic filters, e.g., TV IF filters, IF filters for cellular phones, and SAW/BAW RF filters for the RF front-end of cellular phones.
NASA Astrophysics Data System (ADS)
Mi, Binbin; Xia, Jianghai; Shen, Chao; Wang, Limin
2018-03-01
High-frequency surface-wave analysis methods have been effectively and widely used to determine near-surface shear (S) wave velocity. To image the dispersion energy and identify different dispersive modes of surface waves accurately is one of key steps of using surface-wave methods. We analyzed the dispersion energy characteristics of Rayleigh and Love waves in near-surface layered models based on numerical simulations. It has been found that if there is a low-velocity layer (LVL) in the half-space, the dispersion energy of Rayleigh or Love waves is discontinuous and ``jumping'' appears from the fundamental mode to higher modes on dispersive images. We introduce the guided waves generated in an LVL (LVL-guided waves, a trapped wave mode) to clarify the complexity of the dispersion energy. We confirm the LVL-guided waves by analyzing the snapshots of SH and P-SV wavefield and comparing the dispersive energy with theoretical values of phase velocities. Results demonstrate that LVL-guided waves possess energy on dispersive images, which can interfere with the normal dispersion energy of Rayleigh or Love waves. Each mode of LVL-guided waves having lack of energy at the free surface in some high frequency range causes the discontinuity of dispersive energy on dispersive images, which is because shorter wavelengths (generally with lower phase velocities and higher frequencies) of LVL-guided waves cannot penetrate to the free surface. If the S wave velocity of the LVL is higher than that of the surface layer, the energy of LVL-guided waves only contaminates higher mode energy of surface waves and there is no interlacement with the fundamental mode of surface waves, while if the S wave velocity of the LVL is lower than that of the surface layer, the energy of LVL-guided waves may interlace with the fundamental mode of surface waves. Both of the interlacements with the fundamental mode or higher mode energy may cause misidentification for the dispersion curves of surface waves.
Rogue waves in the multicomponent Mel'nikov system and multicomponent Schrödinger-Boussinesq system
NASA Astrophysics Data System (ADS)
Sun, Baonan; Lian, Zhan
2018-02-01
By virtue of the bilinear method and the KP hierarchy reduction technique, exact explicit rational solutions of the multicomponent Mel'nikov equation and the multicomponent Schrödinger-Boussinesq equation are constructed, which contain multicomponent short waves and single-component long wave. For the multicomponent Mel'nikov equation, the fundamental rational solutions possess two different behaviours: lump and rogue wave. It is shown that the fundamental (simplest) rogue waves are line localised waves which arise from the constant background with a line profile and then disappear into the constant background again. The fundamental line rogue waves can be classified into three: bright, intermediate and dark line rogue waves. Two subclasses of non-fundamental rogue waves, i.e., multirogue waves and higher-order rogue waves are discussed. The multirogue waves describe interaction of several fundamental line rogue waves, in which interesting wave patterns appear in the intermediate time. Higher-order rogue waves exhibit dynamic behaviours that the wave structures start from lump and then retreat back to it. Moreover, by taking the parameter constraints further, general higher-order rogue wave solutions for the multicomponent Schrödinger-Boussinesq system are generated.
Wave Journal Bearing. Part 1: Analysis
NASA Technical Reports Server (NTRS)
Dimofte, Florin
1995-01-01
A wave journal bearing concept features a waved inner bearing diameter of the non-rotating bearing side and it is an alternative to the plain journal bearing. The wave journal bearing has a significantly increased load capacity in comparison to the plain journal bearing operating at the same eccentricity. It also offers greater stability than the plain circular bearing under all operating conditions. The wave bearing's design is relatively simple and allows the shaft to rotate in either direction. Three wave bearings are sensitive to the direction of an applied stationary side load. Increasing the number of waves reduces the wave bearing's sensitivity to the direction of the applied load relative to the wave. However, the range in which the bearing performance can be varied decreases as the number of waves increases. Therefore, both the number and the amplitude of the waves must be properly selected to optimize the wave bearing design for a specific application. It is concluded that the stiffness of an air journal bearing, due to hydrodynamic effect, could be doubled and made to run stably by using a six or eight wave geometry with a wave amplitude approximately half of the bearing radial clearance.
NASA Astrophysics Data System (ADS)
Tamrakar, Radha; Varma, P.; Tiwari, M. S.
2018-01-01
The kinetic Alfven waves in the presence of homogeneous magnetic field plasma with multi-ions effect are investigated. The dispersion relation and normalised damping rate are derived for low-β plasma using kinetic theory. The effect of density variation of H+, He+ and O+ ions is observed on frequency and damping rate of the wave. The variation of frequency (ω) and normalised damping rate (γ / Ω_{H^{ +}} ) of the wave are studied with respect to k_{ \\bot} ρj, where k_{ \\bot} is the perpendicular wave number, ρj is the ion gyroradius and j denotes H+, He+ and O+ ions. The variation with k_{ \\bot} ρj is considered over wide range. The parameters appropriate to cusp region are used for the explanation of results. It is found that with hydrogen and helium ions gyration, the frequency of wave is influenced by the density variation of H+ and He+ ions but remains insensitive to the change in density of O+ ions. For oxygen ion gyration, the frequency of wave varies over a short range only for O+ ion density variation. The wave shows damping at lower altitude due to variation in density of lighter H+ and He+ ions whereas at higher altitude only heavy O+ ions contribute in wave damping. The damping of wave may be due to landau damping or energy transfer from wave to particles. The present study signifies that the both lighter and heavier ions dominate differently to change the characteristics of kinetic Alfven wave and density variation is also an important parameter to understand wave phenomena in cusp region.
Melnikov, Alexander; Chen, Liangjie; Ramirez Venegas, Diego; Sivagurunathan, Koneswaran; Sun, Qiming; Mandelis, Andreas; Rodriguez, Ignacio Rojas
2018-04-01
Single-Frequency Thermal Wave Radar Imaging (SF-TWRI) was introduced and used to obtain quantitative thickness images of coatings on an aluminum block and on polyetherketone, and to image blind subsurface holes in a steel block. In SF-TWR, the starting and ending frequencies of a linear frequency modulation sweep are chosen to coincide. Using the highest available camera frame rate, SF-TWRI leads to a higher number of sampled points along the modulation waveform than conventional lock-in thermography imaging because it is not limited by conventional undersampling at high frequencies due to camera frame-rate limitations. This property leads to large reduction in measurement time, better quality of images, and higher signal-noise-ratio across wide frequency ranges. For quantitative thin-coating imaging applications, a two-layer photothermal model with lumped parameters was used to reconstruct the layer thickness from multi-frequency SF-TWR images. SF-TWRI represents a next-generation thermography method with superior features for imaging important classes of thin layers, materials, and components that require high-frequency thermal-wave probing well above today's available infrared camera technology frame rates.
NASA Astrophysics Data System (ADS)
Melnikov, Alexander; Chen, Liangjie; Ramirez Venegas, Diego; Sivagurunathan, Koneswaran; Sun, Qiming; Mandelis, Andreas; Rodriguez, Ignacio Rojas
2018-04-01
Single-Frequency Thermal Wave Radar Imaging (SF-TWRI) was introduced and used to obtain quantitative thickness images of coatings on an aluminum block and on polyetherketone, and to image blind subsurface holes in a steel block. In SF-TWR, the starting and ending frequencies of a linear frequency modulation sweep are chosen to coincide. Using the highest available camera frame rate, SF-TWRI leads to a higher number of sampled points along the modulation waveform than conventional lock-in thermography imaging because it is not limited by conventional undersampling at high frequencies due to camera frame-rate limitations. This property leads to large reduction in measurement time, better quality of images, and higher signal-noise-ratio across wide frequency ranges. For quantitative thin-coating imaging applications, a two-layer photothermal model with lumped parameters was used to reconstruct the layer thickness from multi-frequency SF-TWR images. SF-TWRI represents a next-generation thermography method with superior features for imaging important classes of thin layers, materials, and components that require high-frequency thermal-wave probing well above today's available infrared camera technology frame rates.
Disentangling the triadic interactions in Navier-Stokes equations.
Sahoo, Ganapati; Biferale, Luca
2015-10-01
We study the role of helicity in the dynamics of energy transfer in a modified version of the Navier-Stokes equations with explicit breaking of the mirror symmetry. We select different set of triads participating in the dynamics on the basis of their helicity content. In particular, we remove the negative helically polarized Fourier modes at all wave numbers except for those falling on a localized shell of wave number, |k| ~ k(m). Changing k(m) to be above or below the forcing scale, k(f), we are able to assess the energy transfer of triads belonging to different interaction classes. We observe that when the negative helical modes are present only at a wave number smaller than the forced wave numbers, an inverse energy cascade develops with an accumulation of energy on a stationary helical condensate. Vice versa, when negative helical modes are present only at a wave number larger than the forced wave numbers, a transition from backward to forward energy transfer is observed in the regime when the minority modes become energetic enough.
Motion and Seasickness of Fast Warships
2004-10-01
Motion and Seasickness of Fast Warships Riola J.M. (1), Esteban S. (2), Giron-Sierra J.M. (2) & Aranda J. (3) (1) Canal de Experiencias ...5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Canal de Experiencias Hidrodinámicas de ...Bretschneider Sp bability Density of Waves /λ, with H being the wave height (twice the wave a in a seakeeping basin Canal de Experiencias Hid r waves with
A generalized invariant imbedding for wave propagation
NASA Astrophysics Data System (ADS)
Ayoubi, I. S.; Nelson, P.
1984-04-01
The initial-value problems for reflection and transmission coefficients (imbeddings) obtained by Bellman and Wing are critically reviewed. It is shown in detail how the two reduce to a common form when both are valid. A simultaneous generalization of these two imbeddings is obtained. The generalized imbedding involves incidence onto an intermediate region of continuous wave number, from a region of smooth wave number, but with no requirement concerning the manner in which the wave numbers join at the interface.
Three-dimensional waveform sensitivity kernels
NASA Astrophysics Data System (ADS)
Marquering, Henk; Nolet, Guust; Dahlen, F. A.
1998-03-01
The sensitivity of intermediate-period (~10-100s) seismic waveforms to the lateral heterogeneity of the Earth is computed using an efficient technique based upon surface-wave mode coupling. This formulation yields a general, fully fledged 3-D relationship between data and model without imposing smoothness constraints on the lateral heterogeneity. The calculations are based upon the Born approximation, which yields a linear relation between data and model. The linear relation ensures fast forward calculations and makes the formulation suitable for inversion schemes; however, higher-order effects such as wave-front healing are neglected. By including up to 20 surface-wave modes, we obtain Fréchet, or sensitivity, kernels for waveforms in the time frame that starts at the S arrival and which includes direct and surface-reflected body waves. These 3-D sensitivity kernels provide new insights into seismic-wave propagation, and suggest that there may be stringent limitations on the validity of ray-theoretical interpretations. Even recently developed 2-D formulations, which ignore structure out of the source-receiver plane, differ substantially from our 3-D treatment. We infer that smoothness constraints on heterogeneity, required to justify the use of ray techniques, are unlikely to hold in realistic earth models. This puts the use of ray-theoretical techniques into question for the interpretation of intermediate-period seismic data. The computed 3-D sensitivity kernels display a number of phenomena that are counter-intuitive from a ray-geometrical point of view: (1) body waves exhibit significant sensitivity to structure up to 500km away from the source-receiver minor arc; (2) significant near-surface sensitivity above the two turning points of the SS wave is observed; (3) the later part of the SS wave packet is most sensitive to structure away from the source-receiver path; (4) the sensitivity of the higher-frequency part of the fundamental surface-wave mode is wider than for its faster, lower-frequency part; (5) delayed body waves may considerably influence fundamental Rayleigh and Love waveforms. The strong sensitivity of waveforms to crustal structure due to fundamental-mode-to-body-wave scattering precludes the use of phase-velocity filters to model body-wave arrivals. Results from the 3-D formulation suggest that the use of 2-D and 1-D techniques for the interpretation of intermediate-period waveforms should seriously be reconsidered.
NASA Astrophysics Data System (ADS)
Kong, Qinqin; Ge, Quansheng; Xi, Jianchao; Zheng, Jingyun
2017-11-01
Summertime extreme heat events, defined by the Universal Thermal Climate Index (UTCI), have shown increasing trends in Shanghai from 1973 to 2015. There is a clear shift to higher temperatures for the daily maximum UTCI values, and the number of days with daily maximum UTCI exceeding 38 °C significantly increased by 4.34 days/10a. An upward trend of 3.67 days/10a was detected for the number of hot days which also displays an abrupt increase around 1998. Both the frequency and total duration of heat waves have significantly increased by 0.77 times/10a and 3.51 days/10a respectively. Their inter-decadal variations indicate a three-part division of the study period showing more and more heat waves and longer total duration, which are 1.0 times/a and 4.13 days/a for 1973-1987, 1.71 times/a and 7.64 days/a for 1988-2001, and 3.57 times/a and 16.0 days/a for 2002-2015. In addition to that are more occurrences of long-lasting heat waves. Compared with the UTCI, air temperature-based definitions have indicated substantially higher increases in extreme heat events, especially for hot nights. The relatively low humidity and strong wind speeds in the twenty-first century are considered to be responsible for this difference. Our study provides a more in-depth case to monitor extreme heat events under the combining effects of air temperature, humidity, wind speeds, total cloud cover, etc. and can support studies over other regions.
NASA Astrophysics Data System (ADS)
Venkat Ratnam, Madineni; Karanam, Kishore Kumar; Sunkara, Eswaraiah; Vijaya Bhaskara Rao, S.; Subrahmanyam, K. V.; Ramanjaneyulu, L.
2016-07-01
Mesosphere and Lower Thermosphere (MLT) mean winds, gravity waves, tidal and planetary wave characteristics are investigated using two years (2013-2015) of advanced meteor radar installed at Tirupathi (13.63oN, 79.4oE), India. The observations reveal the presence of high frequency gravity waves (30-120 minutes), atmospheric tides (diurnal, semi-diurnal and terr-diurnal) along with long period oscillations in both zonal and meridional winds. Background mean zonal winds show clear semi-annual oscillation in the mesosphere, whereas meridional winds are characterized by annual oscillation as expected. Diurnal tide amplitudes are significantly larger (60-80 m/s) than semi-diurnal (10-20 m/s) and terr-diurnal (5-8 m/s) tides and larger in meridional than zonal winds. The measured meridional components are in good agreement with Global Scale Wave Model (GSWM-09) predictions than zonal up to ~90 km in all the seasons, except fall equinox. Diurnal tidal phase matches well than the amplitudes between observations and model predictions. However, no similarity is being found in the semi-diurnal tides between observations and model. The measurements are further compared with nearby Thumba meteor radar (8.5oN, 77oE) observations. Some differences do exist between the measurements from Tirupati and Thumba meteor radar and model outputs at greater heights and the possible reasons are discussed. SVU meteor radar observations clearly showed the dominance of well-known ultra-fast kelvin waves (3.5 days), 5-8 day, 16 day, 27 day, and 30-40 day oscillations. Due to higher meteor count extending up to 110 km, we could investigate the variability of these PWs and oscillations covering wider range (70-110 km) for the first time. Significant change above 100 km is noticed in all the above mentioned PW activity and oscillations. We also used ERA-Interim reanalysis data sets available at 0.125x0.125 degree grids for investigating the characteristics of these PW right from surface to 1 hPa. The presence of these waves and oscillations right from upper troposphere to lower thermosphere simultaneously is noticed. Though these waves are expected to have higher wave number (higher horizontal wave lengths) few important differences are noticed between Tirupati and Thumba, that are separated by only 500 km. The implication of these waves and oscillations on the background atmosphere and vice versa are discussed. Thus, installation of SVU meteor radar made good complementary observations that can be effectively used to investigate vertical and lateral coupling. Role of these tides in modulating the mesopause altitude is further investigated using the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) on-board Thermosphere Ionosphere Mesosphere Energetics Dynamics (TIMED) satellite. It is found that mesopause altitude is always close to 100 km and is strongly affected by gravity waves, tides and planetary waves.
Integrated analysis of energy transfers in elastic-wave turbulence.
Yokoyama, Naoto; Takaoka, Masanori
2017-08-01
In elastic-wave turbulence, strong turbulence appears in small wave numbers while weak turbulence does in large wave numbers. Energy transfers in the coexistence of these turbulent states are numerically investigated in both the Fourier space and the real space. An analytical expression of a detailed energy balance reveals from which mode to which mode energy is transferred in the triad interaction. Stretching energy excited by external force is transferred nonlocally and intermittently to large wave numbers as the kinetic energy in the strong turbulence. In the weak turbulence, the resonant interactions according to the weak turbulence theory produce cascading net energy transfer to large wave numbers. Because the system's nonlinearity shows strong temporal intermittency, the energy transfers are investigated at active and moderate phases separately. The nonlocal interactions in the Fourier space are characterized by the intermittent bundles of fibrous structures in the real space.
NASA Astrophysics Data System (ADS)
McKechan, David J. A.
2010-11-01
This thesis concerns the use, in gravitational wave data analysis, of higher order wave form models of the gravitational radiation emitted by compact binary coalescences. We begin with an introductory chapter that includes an overview of the theory of general relativity, gravitational radiation and ground-based interferometric gravitational wave detectors. We then discuss, in Chapter 2, the gravitational waves emitted by compact binary coalescences, with an explanation of higher order waveforms and how they differ from leading order waveforms we also introduce the post-Newtonian formalism. In Chapter 3 the method and results of a gravitational wave search for low mass compact binary coalescences using a subset of LIGO's 5th science run data are presented and in the subsequent chapter we examine how one could use higher order waveforms in such analyses. We follow the development of a new search algorithm that incorporates higher order waveforms with promising results for detection efficiency and parameter estimation. In Chapter 5, a new method of windowing time-domain waveforms that offers benefit to gravitational wave searches is presented. The final chapter covers the development of a game designed as an outreach project to raise public awareness and understanding of the search for gravitational waves.
Naruse, Yoshihisa; Nogami, Akihiko; Harimura, Yoshie; Ishibashi, Mayu; Noguchi, Yuichi; Sekiguchi, Yukio; Sato, Akira; Aonuma, Kazutaka
2015-08-01
We recently showed that the presence of J waves increases the risk of ventricular fibrillation (VF) occurrence in the early phase of an acute myocardial infarction (AMI). This study aimed to evaluate the clinical characteristics of VF occurrences in the early phase of an AMI between patients with and without J waves. This retrospective, observational study included 281 consecutive patients with an AMI (69 ± 12 years; 207 men) in whom 12-lead ECGs before AMI onset could be evaluated. The patients were classified based on a VF occurrence <48 hours after AMI onset and the presence of J waves. J waves were electrocardiographically defined as an elevation of the terminal portion of the QRS complex of >0.1 mV from baseline in at least 2 contiguous inferior or lateral leads. VF occurred in 24 patients, and J waves were present in 37. VF occurrence was more prevalent in the patients with than without J waves (27% vs. 6%; P < 0.001). Among the 244 patients without J waves, peak creatine kinase level (P < 0.01), number of diseased coronary arteries (P < 0.01), and male sex (P < 0.05) were higher in the patients with than without VF occurrence. However, among the 37 patients with J waves, there was no significant difference in these variables. There was no association between the location of J waves and the infarct area. In patients with AMI, those with J waves were more likely to develop VF and less likely to have high-risk clinical characteristics than those without J waves. © 2015 Wiley Periodicals, Inc.
Analysis of group-velocity dispersion of high-frequency Rayleigh waves for near-surface applications
Luo, Y.; Xia, J.; Xu, Y.; Zeng, C.
2011-01-01
The Multichannel Analysis of Surface Waves (MASW) method is an efficient tool to obtain the vertical shear (S)-wave velocity profile using the dispersive characteristic of Rayleigh waves. Most MASW researchers mainly apply Rayleigh-wave phase-velocity dispersion for S-wave velocity estimation with a few exceptions applying Rayleigh-wave group-velocity dispersion. Herein, we first compare sensitivities of fundamental surface-wave phase velocities with group velocities with three four-layer models including a low-velocity layer or a high-velocity layer. Then synthetic data are simulated by a finite difference method. Images of group-velocity dispersive energy of the synthetic data are generated using the Multiple Filter Analysis (MFA) method. Finally we invert a high-frequency surface-wave group-velocity dispersion curve of a real-world example. Results demonstrate that (1) the sensitivities of group velocities are higher than those of phase velocities and usable frequency ranges are wider than that of phase velocities, which is very helpful in improving inversion stability because for a stable inversion system, small changes in phase velocities do not result in a large fluctuation in inverted S-wave velocities; (2) group-velocity dispersive energy can be measured using single-trace data if Rayleigh-wave fundamental-mode energy is dominant, which suggests that the number of shots required in data acquisition can be dramatically reduced and the horizontal resolution can be greatly improved using analysis of group-velocity dispersion; and (3) the suspension logging results of the real-world example demonstrate that inversion of group velocities generated by the MFA method can successfully estimate near-surface S-wave velocities. ?? 2011 Elsevier B.V.
Effects of heat waves on mortality: effect modification and confounding by air pollutants.
Analitis, Antonis; Michelozzi, Paola; D'Ippoliti, Daniela; De'Donato, Francesca; Menne, Bettina; Matthies, Franziska; Atkinson, Richard W; Iñiguez, Carmen; Basagaña, Xavier; Schneider, Alexandra; Lefranc, Agnès; Paldy, Anna; Bisanti, Luigi; Katsouyanni, Klea
2014-01-01
Heat waves and air pollution are both associated with increased mortality. Their joint effects are less well understood. We explored the role of air pollution in modifying the effects of heat waves on mortality, within the EuroHEAT project. Daily mortality, meteorologic, and air pollution data from nine European cities for the years 1990-2004 were assembled. We defined heat waves by taking both intensity and duration into account. The city-specific effects of heat wave episodes were estimated using generalized estimating equation models, adjusting for potential confounders with and without inclusion of air pollutants (particles, ozone, nitrogen dioxide, sulphur dioxide, carbon monoxide). To investigate effect modification, we introduced an interaction term between heat waves and each single pollutant in the models. Random effects meta-analysis was used to summarize the city-specific results. The increase in the number of daily deaths during heat wave episodes was 54% higher on high ozone days compared with low, among people age 75-84 years. The heat wave effect on high PM10 days was increased by 36% and 106% in the 75-84 year and 85+ year age groups, respectively. A similar pattern was observed for effects on cardiovascular mortality. Effect modification was less evident for respiratory mortality, although the heat wave effect itself was greater for this cause of death. The heat wave effect was smaller (15-30%) after adjustment for ozone or PM10. The heat wave effect on mortality was larger during high ozone or high PM10 days. When assessing the effect of heat waves on mortality, lack of adjustment for ozone and especially PM10 overestimates effect parameters. This bias has implications for public health policy.
Assessment of the National Transonic Facility for Laminar Flow Testing
NASA Technical Reports Server (NTRS)
Crouch, Jeffrey D.; Sutanto, Mary I.; Witkowski, David P.; Watkins, A. Neal; Rivers, Melissa B.; Campbell, Richard L.
2010-01-01
A transonic wing, designed to accentuate key transition physics, is tested at cryogenic conditions at the National Transonic Facility at NASA Langley. The collaborative test between Boeing and NASA is aimed at assessing the facility for high-Reynolds number testing of configurations with significant regions of laminar flow. The test shows a unit Reynolds number upper limit of 26 M/ft for achieving natural transition. At higher Reynolds numbers turbulent wedges emanating from the leading edge bypass the natural transition process and destroy the laminar flow. At lower Reynolds numbers, the transition location is well correlated with the Tollmien-Schlichting-wave N-factor. The low-Reynolds number results suggest that the flow quality is acceptable for laminar flow testing if the loss of laminar flow due to bypass transition can be avoided.
M-wave, H- and V-reflex recruitment curves during maximal voluntary contraction.
Racinais, Sebastien; Maffiuletti, Nicola A; Girard, Olivier
2013-08-01
To investigate whether the H reflex-M wave recruitment curves obtained during maximal voluntary contraction (MVC) differ from rest and to determine the stimulation intensities allowing to record stable reflex responses. Full recruitment curves (precision, 2 mA) were obtained from the soleus muscle in 14 volunteers at rest and during plantar flexion MVCs. Maximal M-wave reached significantly larger amplitude during MVC (+2.2 [0.4; 3.9] mV) for a higher stimulation intensity (+7.9 [-0.4; 16] mA). Similarly, maximal H-reflex reached significantly larger amplitude during MVC than at rest (+3.2 [0.9; 5.5] mV) for a much higher stimulation intensity (+17.7 [9.7; 25.7] mA). V-wave amplitude plateaued only when M-wave during MVC plateaued, that is, at higher intensity than M-wave at rest. V-wave was correlated to the maximal H-reflex during MVC (r = 0.79, P < 0.05). Electrically evoked potentials showed a specific recruitment curve during MVC with higher maximal values attained for higher stimulation intensities. Thus, recording reflex responses during MVC based on intensities determined at rest or as a percentage of M-wave may yield inaccurate results. V-wave presented a plateau for stimulation intensity of 1.5 times the onset of the resting M-wave plateau. Evoked potentials obtained during actual contractions should be normalized to M-waves obtained during contractions of the same force level.
A waved journal bearing concept with improved steady-state and dynamic performance
NASA Technical Reports Server (NTRS)
Dimofte, Florin
1994-01-01
Analysis of the waved journal bearing concept featuring a waved inner bearing diameter for use with a compressible lubricant (gas) is presented. A three wave, waved journal bearing geometry is used to show the geometry of this concept. The performance of generic waved bearings having either three, four, six, or eight waves is predicted for air lubricated bearings. Steady-state performance is discussed in terms of bearing load capacity, while the dynamic performance is discussed in terms of dynamic coefficients and fluid film stability. It was found that the bearing wave amplitude has an important influence on both steady-state and dynamic performance of the waved journal bearing. For a fixed eccentricity ratio, the bearing steady-state load capacity and direct dynamic stiffness coefficient increase as the wave amplitude increases. Also, the waved bearing becomes more stable as the wave amplitude increases. In addition, increasing the number of waves reduces the waved bearing's sensitivity to the direction of the applied load relative to the wave. However, the range in which the bearing performance can be varied decreases as the number of waves increases. Therefore, both the number and the amplitude of the waves must be properly selected to optimize the waved bearing design for a specific application. It is concluded that the stiffness of an air bearing, due to the hydrodynamic effect, could be doubled and made to run stably by using a six or eight wave geometry with a wave amplitude approximately half of the bearing radial clearance.
The family of anisotropically scaled equatorial waves
NASA Astrophysics Data System (ADS)
RamíRez GutiéRrez, Enver; da Silva Dias, Pedro Leite; Raupp, Carlos; Bonatti, Jose Paulo
2011-04-01
In the present work we introduce the family of anisotropic equatorial waves. This family corresponds to equatorial waves at intermediate states between the shallow water and the long wave approximation model. The new family is obtained by using anisotropic time/space scalings on the linearized, unforced and inviscid shallow water model. It is shown that the anisotropic equatorial waves tend to the solutions of the long wave model in one extreme and to the shallow water model solutions in the other extreme of the parameter dependency. Thus, the problem associated with the completeness of the long wave model solutions can be asymptotically addressed. The anisotropic dispersion relation is computed and, in addition to the typical dependency on the equivalent depth, meridional quantum number and zonal wavenumber, it also depends on the anisotropy between both zonal to meridional space and velocity scales as well as the fast to slow time scales ratio. For magnitudes of the scales compatible with those of the tropical region, both mixed Rossby-gravity and inertio-gravity waves are shifted to a moderately higher frequency and, consequently, not filtered out. This draws attention to the fact that, for completeness of the long wave like solutions, it is necessary to include both the anisotropic mixed Rossby-gravity and inertio-gravity waves. Furthermore, the connection of slow and fast manifolds (distinguishing feature of equatorial dynamics) is preserved, though modified for the equatorial anisotropy parameters used δ ∈ < 1]. New possibilities of horizontal and vertical scale nonlinear interactions are allowed. Thus, the anisotropic shallow water model is of fundamental importance for understanding multiscale atmosphere and ocean dynamics in the tropics.
Budía Alba, A; López Acón, J D; Polo-Rodrigo, A; Bahílo-Mateu, P; Trassierra-Villa, M; Boronat-Tormo, F
2015-06-01
To assess the safety of increasing the number of waves per session in the treatment of urolithiasis using extracorporeal lithotripsy. Prospective, comparative, nonrandomized parallel study of patients with renoureteral lithiasis and an indication for extracorporeal lithotripsy who were consecutively enrolled between 2009 and 2010. We compared group I (160 patients) treated on schedule with a standard number of waves/session (mean 2858,3±302,8) using a Dornier lithotripter U/15/50 against group II (172 patients) treated with an expanded number of waves/session (mean, 6728,9±889,6) using a Siemens Modularis lithotripter. The study variables were age, sex, location, stone size, number of waves/session and total number of waves to resolution, stone-free rate (SFR) and rate of complications (Clavien-Dindo classification). Student's t-test and the chi-squared test were employed for the statistical analysis. The total rate of complications was 11.9% and 10.46% for groups I and II, respectively (P=.39). All complications were minor (Clavien-Dindo grade I). The most common complications were colic pain and hematuria in groups I and II, respectively, with a similar treatment intolerance rate (P>.05). The total number of waves necessary was lower in group II than in group I (P=.001), with SFRs of 96.5% and 71.5%, respectively (P=.001). Treatment with an expanded number of waves per session in extracorporeal lithotripsy does not increase the rate of complications or their severity. However, it could increase the overall effectiveness of the treatment. Copyright © 2014 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, W. L.; Qiao, B.; Shen, X. F.; You, W. Y.; Huang, T. W.; Yan, X. Q.; Wu, S. Z.; Zhou, C. T.; He, X. T.
2016-09-01
Laser-driven ion acceleration potentially offers a compact, cost-effective alternative to conventional accelerators for scientific, technological, and health-care applications. A novel scheme for heavy ion acceleration in near-critical plasmas via staged shock waves driven by intense laser pulses is proposed, where, in front of the heavy ion target, a light ion layer is used for launching a high-speed electrostatic shock wave. This shock is enhanced at the interface before it is transmitted into the heavy ion plasmas. Monoenergetic heavy ion beam with much higher energy can be generated by the transmitted shock, comparing to the shock wave acceleration in pure heavy ion target. Two-dimensional particle-in-cell simulations show that quasi-monoenergetic {{{C}}}6+ ion beams with peak energy 168 MeV and considerable particle number 2.1 × {10}11 are obtained by laser pulses at intensity of 1.66 × {10}20 {{W}} {{cm}}-2 in such staged shock wave acceleration scheme. Similarly a high-quality {{Al}}10+ ion beam with a well-defined peak with energy 250 MeV and spread δ E/{E}0=30 % can also be obtained in this scheme.
Wang, Shan; Guo, Meng-Wei; Gao, Yu-Shan; Ren, Xiao-Xuan; Lan, Ying; Ji, Mao-Xian; Wu, Yan-Ying; Li, Kai-Ge; Tan, Li-Hua; Sui, Ming-He
2018-01-25
To observe and compare the effects of electroacupuncture (EA) at "Tianshu" (ST 25) and "Neiguan" (PC 6) for colonic motility and the expression of colon dopamine D 2 in irritable bowel syndrome (IBS) rats, and to explore the specificity of different meridians and different acupoints. Forty Wistar newborn rats were randomly divided into blank, model, Tianshu and Neiguan groups. Separation of mother and child and acetic acid coloclyster combined with colorectal distension were used to establish IBS model in the model, Tianshu and Neiguan groups. At the age of 9 weeks, EA at bilateral ST 25 and PC 6 were applied in the corresponding groups 5 times, once every other day. After the intervention, the Bristol fecal score, the latent period of abdominal retraction reflex and the number of contraction waves were recorded. The expression of dopamine D 2 receptor was detected by immunohistochemistry. Compared with the blank group, the Bristol fecal score of the model group was higher ( P <0.01), the 1 st contraction wave latent period was shorter ( P <0.01), the number of contraction waves in 90 s increased ( P <0.01), the immunoreactive expression of D 2 receptor in colon decreased ( P <0.01). Compared with the model group, the Bristol fecal scores of the Tianshu and Neiguan groups decreased ( P <0.01), the 1 st contraction wave latent periods were longer ( P <0.01), the numbers of contraction waves in 90 s decreased ( P <0.01), the positive expressions of D 2 receptor in colon increased ( P <0.01, P <0.05). Compared with the Tianshu group, the immunoreactive expression of D 2 receptor in the Neiguan group decreased ( P <0.01). EA at ST 25 and PC 6 can improve the symptoms of colonic motility in IBS rats. The effect of EA at ST 25 is better, which indicates that different meridians and different acupoints play specific effects.
Strain Imaging Using Terahertz Waves and Metamaterials
2016-11-01
TECHNICAL REPORT RDMR-WD-16-48 STRAIN IMAGING USING TERAHERTZ WAVES AND METAMATERIALS Henry O. Everitt and Martin S...TITLE AND SUBTITLE Strain Imaging Using Terahertz Waves and Metamaterials 5. FUNDING NUMBERS 6. AUTHOR(S) Henry O. Everitt, Martin S...predictions. 14. SUBJECT TERMS Birefringence, Terahertz Waves , Metamaterials 15. NUMBER OF PAGES 16 16. PRICE CODE 17. SECURITY
Wave number selection in the presence of noise: Experimental results
NASA Astrophysics Data System (ADS)
Zhilenko, Dmitry; Krivonosova, Olga; Gritsevich, Maria; Read, Peter
2018-05-01
In this study, we consider how the wave number selection in spherical Couette flow, in the transition to azimuthal waves after the first instability, occurs in the presence of noise. The outer sphere was held stationary, while the inner sphere rotational speed was increased linearly from a subcritical flow to a supercritical one. In a supercritical flow, one of two possible flow states, each with different azimuthal wave numbers, can appear depending upon the initial and final Reynolds numbers and the acceleration value. Noise perturbations were added by introducing small disturbances into the rotational speed signal. With an increasing noise amplitude, a change in the dominant wave number from m to m ± 1 was found to occur at the same initial and final Reynolds numbers and acceleration values. The flow velocity measurements were conducted by using laser Doppler anemometry. Using these results, the role of noise as well as the behaviour of the amplitudes of the competing modes in their stages of damping and growth were determined.
Measurement of the electron beam mode in earth's foreshock
NASA Technical Reports Server (NTRS)
Onsager, T. G.; Holzworth, R. H.
1990-01-01
High frequency electric field measurements from the AMPTE IRM plasma wave receiver are used to identify three simultaneously excited electrostatic wave modes in the earth's foreshock region: the electron beam mode, the Langmuir mode, and the ion acoustic mode. A technique is developed which allows the rest frame frequecy and wave number of the electron beam waves to be determined. It is shown that the experimentally determined rest frame frequency and wave number agree well with the most unstable frequency and wave number predicted by linear homogeneous Vlasov theory for a plasma with Maxwellian background electrons and a Lorentzian electron beam. From a comparison of the experimentally determined and theoretical values, approximate limits are put on the electron foreshock beam temperatures. A possible generation mechanism for ion acoustic waves involving mode coupling between the electron beam and Langmuir modes is also discussed.
Focusing Leaky Waves: A Class of Electromagnetic Localized Waves with Complex Spectra
NASA Astrophysics Data System (ADS)
Fuscaldo, Walter; Comite, Davide; Boesso, Alessandro; Baccarelli, Paolo; Burghignoli, Paolo; Galli, Alessandro
2018-05-01
Localized waves, i.e., the wide class of limited-diffraction, limited-dispersion solutions to the wave equation are generally characterized by real wave numbers. We consider the role played by localized waves with generally complex "leaky" wave numbers. First, the impact of the imaginary part of the wave number (i.e., the leakage constant) on the diffractive (spatial broadening) features of monochromatic localized solutions (i.e., beams) is rigorously evaluated. Then general conditions are derived to show that only a restricted class of spectra (either real or complex) allows for generating a causal localized wave. It turns out that backward leaky waves fall into this category. On this ground, several criteria for the systematic design of wideband radiators, namely, periodic radial waveguides based on backward leaky waves, are established in the framework of leaky-wave theory. An effective design method is proposed to minimize the frequency dispersion of the proposed class of devices and the impact of the "leakage" on the dispersive (temporal broadening) features of polychromatic localized solutions (i.e., pulses) is accounted for. Numerical results corroborate the concept, clearly highlighting the advantages and limitations of the leaky-wave approach for the generation of localized pulses at millimeter-wave frequencies, where energy focusing is in high demand in modern applications.
Toward a System-Based Approach to Electromagnetic Ion Cyclotron Waves in Earth's Magnetosphere
NASA Astrophysics Data System (ADS)
Gamayunov, K. V.; Engebretson, M. J.; Rassoul, H.
2015-12-01
We consider a nonlinear wave energy cascade from the low frequency range into the higher frequency domain of electromagnetic ion cyclotron (EMIC) wave generation as a possible source of seed fluctuations for EMIC wave growth due to the ion cyclotron instability in Earth's magnetosphere. The theoretical analysis shows that energy cascade from the Pc 4-5 frequency range (2-22 mHz) into the range of Pc 1-2 pulsations (0.1-5 Hz) is able to supply the level of seed fluctuations that guarantees growth of EMIC waves up to an observable level during one pass through the near equatorial region where the ion cyclotron instability takes place. We also analyze magnetic field data from the Polar and Van Allen Probes spacecraft to test this nonlinear mechanism. We restrict our analysis to magnetic spectra only. We do not analyze the third-order moment for total energy of the magnetic and velocity fluctuations, but judge whether a nonlinear energy cascade is present or whether it is not by only analyzing the appearance of power-law distributions in the low frequency part of the magnetic field spectra. While the power-law spectrum alone does not guarantee that a nonlinear cascade is present, the power-law distribution is a strong indication of the possible development of a nonlinear cascade. Our data analysis shows that a nonlinear energy cascade is indeed observed in both the outer and inner magnetosphere, and EMIC waves are growing from this nonthermal background. All the analyzed data are in good agreement with the theoretical model presented in this study. Overall, the results of this study support a nonlinear energy cascade in Earth's magnetosphere as a mechanism which is responsible for supplying seed fluctuating energy in the higher frequency domain where EMIC waves grow due to the ion cyclotron instability. Keywords: nonlinear energy cascade, ultra low frequency waves, electromagnetic ion cyclotron waves, seed fluctuationsAcknowledgments: This paper is based upon work supported by the National Science Foundation under Grant Number AGS-1203516.
Inversion of Surface Wave Phase Velocities for Radial Anisotropy to an Depth of 1200 km
NASA Astrophysics Data System (ADS)
Xing, Z.; Beghein, C.; Yuan, K.
2012-12-01
This study aims to evaluate three dimensional radial anisotropy to an depth of 1200 km. Radial anisotropy describes the difference in velocity between horizontally polarized Rayleigh waves and vertically polarized Love waves. Its presence in the uppermost 200 km mantle has well been documented by different groups, and has been regarded as an indicator of mantle convection which aligns the intrinsically anisotropic minerals, largely olivine, to form large scale anisotropy. However, there is no global agreement on whether anisotropy exists in the region below 200 km. Recent models also associate a fast vertically polarized shear wave with vertical upwelling mantle flow. The data used in this study is the globally isotropic phase velocity models of fundamental and higher mode Love and Rayleigh waves (Visser, 2008). The inclusion of higher mode surface wave phase velocity provides sensitivities to structure at depth that extends to below the transition zone. While the data is the same as used by Visser (2008), a quite different parameterization is applied. All the six parameters - five elastic parameters A, C, F, L, N and density - are now regarded as independent, which rules out possible biased conclusions induced by scaling relation method used in several previous studies to reduce the number of parameters partly due to limited computing resources. The data need to be modified by crustal corrections (Crust2.0) as we want to look at the mantle structure only. We do this by eliminating the perturbation in surface wave phase velocity caused by the difference in crustal structure with respect to the referent model PREM. Sambridge's Neighborhood Algorithm is used to search the parameter space. The introduction of such a direct search technique pales the traditional inversion method, which requires regularization or some unnecessary priori restriction on the model space. On the contrary, the new method will search the full model space, providing probability density function of each anisotropic parameter and the corresponding resolution.
ADVANCED WAVEFORM SIMULATION FOR SEISMIC MONITORING EVENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helmberger, Donald V.; Tromp, Jeroen; Rodgers, Arthur J.
The recent Nevada Earthquake (M=6) produced an extraordinary set of crustal guided waves. In this study, we examine the three-component data at all the USArray stations in terms of how well existing models perform in predicting the various phases, Rayleigh waves, Love waves, and Pnl waves. To establish the source parameters, we applied the Cut and Paste Code up to distance of 5° for an average local crustal model which produced a normal mechanism (strike=35°,dip=41°,rake=-85°) at a depth of 9 km and Mw=5.9. Assuming this mechanism, we generated synthetics at all distances for a number of 1D and 3D models.more » The Pnl observations fit the synthetics for the simple models well both in timing (VPn=7.9km/s) and waveform fits out to a distance of about 5°. Beyond this distance a great deal of complexity can be seen to the northwest apparently caused by shallow subducted slab material. These paths require considerable crustal thinning and higher P-velocities. Small delays and advances outline the various tectonic province to the south, Colorado Plateau, etc. with velocities compatible with that reported on by Song et al.(1996). Five-second Rayleigh waves (Airy Phase) can be observed throughout the whole array and show a great deal of variation ( up to 30s). In general, the Love waves are better behaved than the Rayleigh waves. We are presently adding higher frequency to the source description by including source complexity. Preliminary inversions suggest rupture to northeast with a shallow asperity. We are, also, inverting the aftershocks to extend the frequencies to 2 Hz and beyond following the calibration method outlined in Tan and Helmberger (2007). This will allow accurate directivity measurements for events with magnitude larger than 3.5. Thus, we will address the energy decay with distance as s function of frequency band for the various source types.« less
NASA Astrophysics Data System (ADS)
Müller, Tobias M.; Gurevich, Boris
2005-04-01
An important dissipation mechanism for waves in randomly inhomogeneous poroelastic media is the effect of wave-induced fluid flow. In the framework of Biot's theory of poroelasticity, this mechanism can be understood as scattering from fast into slow compressional waves. To describe this conversion scattering effect in poroelastic random media, the dynamic characteristics of the coherent wavefield using the theory of statistical wave propagation are analyzed. In particular, the method of statistical smoothing is applied to Biot's equations of poroelasticity. Within the accuracy of the first-order statistical smoothing an effective wave number of the coherent field, which accounts for the effect of wave-induced flow, is derived. This wave number is complex and involves an integral over the correlation function of the medium's fluctuations. It is shown that the known one-dimensional (1-D) result can be obtained as a special case of the present 3-D theory. The expression for the effective wave number allows to derive a model for elastic attenuation and dispersion due to wave-induced fluid flow. These wavefield attributes are analyzed in a companion paper. .
Relationship between individual neuron and network spontaneous activity in developing mouse cortex.
Barnett, Heather M; Gjorgjieva, Julijana; Weir, Keiko; Comfort, Cara; Fairhall, Adrienne L; Moody, William J
2014-12-15
Spontaneous synchronous activity (SSA) that propagates as electrical waves is found in numerous central nervous system structures and is critical for normal development, but the mechanisms of generation of such activity are not clear. In previous work, we showed that the ventrolateral piriform cortex is uniquely able to initiate SSA in contrast to the dorsal neocortex, which participates in, but does not initiate, SSA (Lischalk JW, Easton CR, Moody WJ. Dev Neurobiol 69: 407-414, 2009). In this study, we used Ca(2+) imaging of cultured embryonic day 18 to postnatal day 2 coronal slices (embryonic day 17 + 1-4 days in culture) of the mouse cortex to investigate the different activity patterns of individual neurons in these regions. In the piriform cortex where SSA is initiated, a higher proportion of neurons was active asynchronously between waves, and a larger number of groups of coactive cells was present compared with the dorsal cortex. When we applied GABA and glutamate synaptic antagonists, asynchronous activity and cellular clusters remained, while synchronous activity was eliminated, indicating that asynchronous activity is a result of cell-intrinsic properties that differ between these regions. To test the hypothesis that higher levels of cell-autonomous activity in the piriform cortex underlie its ability to initiate waves, we constructed a conductance-based network model in which three layers differed only in the proportion of neurons able to intrinsically generate bursting behavior. Simulations using this model demonstrated that a gradient of intrinsic excitability was sufficient to produce directionally propagating waves that replicated key experimental features, indicating that the higher level of cell-intrinsic activity in the piriform cortex may provide a substrate for SSA generation. Copyright © 2014 the American Physiological Society.
Kögler, Martin; Paul, Andrea; Anane, Emmanuel; Birkholz, Mario; Bunker, Alex; Viitala, Tapani; Maiwald, Michael; Junne, Stefan; Neubauer, Peter
2018-06-08
The application of Raman spectroscopy as a monitoring technique for bioprocesses is severely limited by a large background signal originating from fluorescing compounds in the culture media. Here we compare time-gated Raman (TG-Raman)-, continuous wave NIR-process Raman (NIR-Raman) and continuous wave micro-Raman (micro-Raman) approaches in combination with surface enhanced Raman spectroscopy (SERS) for their potential to overcome this limit. For that purpose, we monitored metabolite concentrations of Escherichia coli bioreactor cultivations in cell-free supernatant samples. We investigated concentration transients of glucose, acetate, AMP and cAMP at alternating substrate availability, from deficiency to excess. Raman and SERS signals were compared to off-line metabolite analysis of carbohydrates, carboxylic acids and nucleotides. Results demonstrate that SERS, in almost all cases, led to a higher number of identifiable signals and better resolved spectra. Spectra derived from the TG-Raman were comparable to those of micro-Raman resulting in well-discernable Raman peaks, which allowed for the identification of a higher number of compounds. In contrast, NIR-Raman provided a superior performance for the quantitative evaluation of analytes, both with and without SERS nanoparticles when using multivariate data analysis. This article is protected by copyright. All rights reserved. © 2018 American Institute of Chemical Engineers.
Effectiveness of radio waves application in modern general dental procedures: An update.
Qureshi, Arslan; Kellesarian, Sergio Varela; Pikos, Michael A; Javed, Fawad; Romanos, Georgios E
2017-01-01
The purpose of the present study was to review indexed literature and provide an update on the effectiveness of high-frequency radio waves (HRW) application in modern general dentistry procedures. Indexed databases were searched to identify articles that assessed the efficacy of radio waves in dental procedures. Radiosurgery is a refined form of electrosurgery that uses waves of electrons at a radiofrequency ranging between 2 and 4 MHz. Radio waves have also been reported to cause much less thermal damage to peripheral tissues compared with electrosurgery or carbon dioxide laser-assisted surgery. Formation of reparative dentin in direct pulp capping procedures is also significantly higher when HRW are used to achieve hemostasis in teeth with minimally exposed dental pulps compared with traditional techniques for achieving hemostasis. A few case reports have reported that radiosurgery is useful for procedures such as gingivectomy and gingivoplasty, stage-two surgery for implant exposure, operculectomy, oral biopsy, and frenectomy. Radiosurgery is a relatively modern therapeutic methodology for the treatment of trigeminal neuralgia; however, its long-term efficacy is unclear. Radio waves can also be used for periodontal procedures, such as gingivectomies, coronal flap advancement, harvesting palatal grafts for periodontal soft tissue grafting, and crown lengthening. Although there are a limited number of studies in indexed literature regarding the efficacy of radio waves in modern dentistry, the available evidence shows that use of radio waves is a modernization in clinical dentistry that might be a contemporary substitute for traditional clinical dental procedures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Xinliang; Lu, Quanming; Hao, Yufei
2014-01-01
The parametric instabilities of an Alfvén wave in a proton-electron plasma system are found to have great influence on proton dynamics, where part of the protons can be accelerated through the Landau resonance with the excited ion acoustic waves, and a beam component along the background magnetic field is formed. In this paper, with a one-dimensional hybrid simulation model, we investigate the evolution of the parametric instabilities of a monochromatic left-hand polarized Alfvén wave in a proton-electron-alpha plasma with a low beta. When the drift velocity between the protons and alpha particles is sufficiently large, the wave numbers of themore » backward daughter Alfvén waves can be cascaded toward higher values due to the modulational instability during the nonlinear evolution of the parametric instabilities, and the alpha particles are resonantly heated in both the parallel and perpendicular direction by the backward waves. On the other hand, when the drift velocity of alpha particles is small, the alpha particles are heated in the linear growth stage of the parametric instabilities due to the Landau resonance with the excited ion acoustic waves. Therefore, the heating occurs only in the parallel direction, and there is no obvious heating in the perpendicular direction. The relevance of our results to the preferential heating of heavy ions observed in the solar wind within 0.3 AU is also discussed in this paper.« less
Pulse wave imaging using coherent compounding in a phantom and in vivo
NASA Astrophysics Data System (ADS)
Zacharias Apostolakis, Iason; McGarry, Matthew D. J.; Bunting, Ethan A.; Konofagou, Elisa E.
2017-03-01
Pulse wave velocity (PWV) is a surrogate marker of arterial stiffness linked to cardiovascular morbidity. Pulse wave imaging (PWI) is a technique developed by our group for imaging the pulse wave propagation in vivo. PWI requires high temporal and spatial resolution, which conventional ultrasonic imaging is unable to simultaneously provide. Coherent compounding is known to address this tradeoff and provides full aperture images at high frame rates. This study aims to implement PWI using coherent compounding within a GPU-accelerated framework. The results of the implemented method were validated using a silicone phantom against static mechanical testing. Reproducibility of the measured PWVs was assessed in the right common carotid of six healthy subjects (n = 6) approximately 10-15 mm before the bifurcation during two cardiac cycles over the course of 1-3 d. Good agreement of the measured PWVs (3.97 ± 1.21 m s-1, 4.08 ± 1.15 m s-1, p = 0.74) was obtained. The effects of frame rate, transmission angle and number of compounded plane waves on PWI performance were investigated in the six healthy volunteers. Performance metrics such as the reproducibility of the PWVs, the coefficient of determination (r 2), the SNR of the PWI axial wall velocities (\\text{SN}{{\\text{R}}{{\\text{v}_{\\text{PWI}}}}} ) and the percentage of lateral positions where the pulse wave appears to arrive at the same time-point, indicating inadequacy of the temporal resolution (i.e. temporal resolution misses) were used to evaluate the effect of each parameter. Compounding plane waves transmitted at 1° increments with a linear array yielded optimal performance, generating significantly higher r 2 and \\text{SN}{{\\text{R}}{{\\text{v}_{\\text{PWI}}}}} values (p ⩽ 0.05). Higher frame rates (⩾1667 Hz) produced improvements with significant gains in the r 2 coefficient (p ⩽ 0.05) and significant increase in both r 2 and \\text{SN}{{\\text{R}}{{\\text{v}_{\\text{PWI}}}}} from single plane wave imaging to 3-plane wave compounding (p ⩽ 0.05). Optimal performance was established at 2778 Hz with 3 plane waves and at 1667 Hz with 5 plane waves.
Nonlinear Tollmien-Schlichting/vortex interaction in boundary layers
NASA Technical Reports Server (NTRS)
Hall, P.; Smith, F. T.
1988-01-01
The nonlinear reaction between two oblique 3-D Tollmein-Schlichting (TS) waves and their induced streamwise-vortex flow is considered theoretically for an imcompressible boundary layer. The same theory applies to the destabilization of an incident vortex motion by subharmonic TS waves, followed by interaction. The scales and flow structure involved are addressed for high Reynolds numbers. The nonlionear interaction is powerful, starting at quite low amplitudes with a triple-deck structure for the TS waves but a large-scale structure for the induced vortex, after which strong nonlinear amplification occurs. This includes nonparallel-flow effects. The nonlinear interaction is governed by a partial differential system for the vortex flow coupled with an ordinary-differential one for the TS pressure. The solution properties found sometimes produce a breakup within a finite distance and sometimes further downstream, depending on the input amplitudes upstream and on the wave angles, and that then leads to the second stages of interaction associated with higher amplitudes, the main second stages giving either long-scale phenomena significantly affected by nonparallelism or shorter quasi-parallel ones governed by the full nonlinear triple-deck response.
Experimental wave attenuation study over flexible plants on a submerged slope
NASA Astrophysics Data System (ADS)
Yin, Zegao; Yang, Xiaoyu; Xu, Yuanzhao; Ding, Meiling; Lu, Haixiang
2017-12-01
Using plants is a kind of environmentally-friendly coastal protection to attenuate wave energy. In this paper, a set of experiments were conducted to investigate the wave attenuation performance using flexible grasses on a submerged slope, and the wave attenuation coefficient for these experiments was calculated for different still water depths, slope and grass configurations. It was found that the slope plays a significant role in wave attenuation. The wave attenuation coefficient increases with increasing relative row number and relative density. For a small relative row number, the two configurations from the slope top to its toe and from the slope toe to its top performed equally to a large extent. For a medium relative row number, the configuration from the slope toe to its top performed more poorly than that from the slope top to its toe; however, it performed better than that from the slope top to its toe for a high relative row number. With a single row of grasses close to the slope top from the slope toe, the wave attenuation coefficient shows double peaks. With increasing grass rows or still water depth, the grass location corresponding to the maximum wave attenuation coefficient is close to the slope top. The dimensional analysis and the least square method were used to derive an empirical equation of the wave attenuation coefficient considering the effect of relative density, the slope, the relative row number and the relative location of the middle row, and the equation was validated to experimental data.
NASA Astrophysics Data System (ADS)
Girka, Igor O.; Pavlenko, Ivan V.; Thumm, Manfred
2018-05-01
Azimuthal surface waves are electromagnetic eigenwaves of cylindrical plasma-dielectric waveguides which propagate azimuthally nearby the plasma-dielectric interface across an axial external stationary magnetic field. Their eigenfrequency in particular can belong to the electron cyclotron frequency range. Excitation of azimuthal surface waves by rotating relativistic electron flows was studied in detail recently in the case of the zeroth radial mode for which the waves' radial phase change within the layer where the electrons gyrate is small. In this case, just the plasma parameters cause the main influence on the waves' dispersion properties. In the case of the first and higher radial modes, the wave eigenfrequency is higher and the wavelength is shorter than in the case of the zeroth radial mode. This gain being of interest for practical applications can be achieved without any change in the device design. The possibility of effective excitation of the higher order radial modes of azimuthal surface waves is demonstrated here. Getting shorter wavelengths of the excited waves in the case of higher radial modes is shown to be accompanied by decreasing growth rates of the waves. The results obtained here are of interest for developing new sources of electromagnetic radiation, in nano-physics and in medical physics.
Spike-like solitary waves in incompressible boundary layers driven by a travelling wave.
Feng, Peihua; Zhang, Jiazhong; Wang, Wei
2016-06-01
Nonlinear waves produced in an incompressible boundary layer driven by a travelling wave are investigated, with damping considered as well. As one of the typical nonlinear waves, the spike-like wave is governed by the driven-damped Benjamin-Ono equation. The wave field enters a completely irregular state beyond a critical time, increasing the amplitude of the driving wave continuously. On the other hand, the number of spikes of solitary waves increases through multiplication of the wave pattern. The wave energy grows in a sequence of sharp steps, and hysteresis loops are found in the system. The wave energy jumps to different levels with multiplication of the wave, which is described by winding number bifurcation of phase trajectories. Also, the phenomenon of multiplication and hysteresis steps is found when varying the speed of driving wave as well. Moreover, the nature of the change of wave pattern and its energy is the stability loss of the wave caused by saddle-node bifurcation.
Modern developments in shear flow control with swirl
NASA Technical Reports Server (NTRS)
Farokhi, Saeed; Taghavi, R.
1990-01-01
Passive and active control of swirling turbulent jets is experimentally investigated. Initial swirl distribution is shown to dominate the free jet evolution in the passive mode. Vortex breakdown, a manifestation of high intensity swirl, was achieved at below critical swirl number (S = 0.48) by reducing the vortex core diameter. The response of a swirling turbulent jet to single frequency, plane wave acoustic excitation was shown to depend strongly on the swirl number, excitation Strouhal number, amplitude of the excitation wave, and core turbulence in a low speed cold jet. A 10 percent reduction of the mean centerline velocity at x/D = 9.0 (and a corresponding increase in the shear layer momentum thickness) was achieved by large amplitude internal plane wave acoustic excitation. Helical instability waves of negative azimuthal wave numbers exhibit larger amplification rates than the plane waves in swirling free jets, according to hydrodynamic stability theory. Consequently, an active swirling shear layer control is proposed to include the generation of helical instability waves of arbitrary helicity and the promotion of modal interaction, through multifrequency forcing.
Finite-Difference Lattice Boltzmann Scheme for High-Speed Compressible Flow: Two-Dimensional Case
NASA Astrophysics Data System (ADS)
Gan, Yan-Biao; Xu, Ai-Guo; Zhang, Guang-Cai; Zhang, Ping; Zhang, Lei; Li, Ying-Jun
2008-07-01
Lattice Boltzmann (LB) modeling of high-speed compressible flows has long been attempted by various authors. One common weakness of most of previous models is the instability problem when the Mach number of the flow is large. In this paper we present a finite-difference LB model, which works for flows with flexible ratios of specific heats and a wide range of Mach number, from 0 to 30 or higher. Besides the discrete-velocity-model by Watari [Physica A 382 (2007) 502], a modified Lax Wendroff finite difference scheme and an artificial viscosity are introduced. The combination of the finite-difference scheme and the adding of artificial viscosity must find a balance of numerical stability versus accuracy. The proposed model is validated by recovering results of some well-known benchmark tests: shock tubes and shock reflections. The new model may be used to track shock waves and/or to study the non-equilibrium procedure in the transition between the regular and Mach reflections of shock waves, etc.
Laboratory Studies of the Nonlinear Interactions of Kink-Unstable Flux Ropes and Shear Alfvén Waves
NASA Astrophysics Data System (ADS)
Vincena, S. T.; Tripathi, S.; Gekelman, W. N.; DeHaas, T.; Pribyl, P.
2017-12-01
Magnetic flux ropes and shear Alfvén waves occur simultaneously in plasmas ranging from solar prominences, to the solar wind, to planetary magnetospheres. If the flux ropes evolve to become unstable to the kink mode, interactions between the kink oscillations and the shear waves can arise, and may even lead to nonlinear phenomena. Experiments aimed at elucidating such interactions are performed in the upgraded Large Plasma Device at UCLA. Flux ropes are generated using a 20 cm x 20 cm LaB6 cathode-anode discharge (with L = 18 m and β ˜ 0.1.) The ropes are embedded in a larger, otherwise current-free, cylindrical (r = 30cm) ambient plasma produced by a second cathode. Shear Alfvén waves are launched using externally fed antennas having three separate polarizations (azimuthal mode numbers.) The counter-propagating, kink-unstable oscillations and driven shear waves are observed to nonlinearly generate sidebands about the higher, shear wave frequency (evident in power spectra) via three-wave coupling. This is demonstrated though bi-coherence calculations and k-matching. With a fixed kink-mode polarization, a total of six daughter wave patterns are presented. Energy flow is shown to proceed from larger to smaller perpendicular wavelengths. Future work will focus on increasing the plasma beta and wave amplitudes in the quest to observe an evolution to a turbulent state. Work is performed at the US Basic Plasma Science Facility, which is supported by the US Department of Energy and the National Science Foundation.
Trivelpiece-Gould modes in a uniform unbounded plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stenzel, R. L.; Urrutia, J. M.
Trivelpiece-Gould (TG) modes originally described electrostatic surface waves on an axially magnetized cylindrical plasma column. Subsequent studies of electromagnetic waves in such plasma columns revealed two modes, a predominantly magnetic helicon mode (H) and the mixed magnetic and electrostatic Trivelpiece-Gould modes (TG). The latter are similar to whistler modes near the oblique cyclotron resonance in unbounded plasmas. The wave propagation in cylindrical geometry is assumed to be paraxial while the modes exhibit radial standing waves. The present work shows that TG modes also arise in a uniform plasma without radial standing waves. It is shown experimentally that oblique cyclotron resonancemore » arises in large mode number helicons. Their azimuthal wave number far exceeds the axial wave number which creates whistlers near the oblique cyclotron resonance. Cyclotron damping absorbs the TG mode and can energize electrons in the center of a plasma column rather than the edge of conventional TG modes. The angular orbital field momentum can produce new perpendicular wave-particle interactions.« less
Joint Optics Structures Experiment (JOSE)
NASA Technical Reports Server (NTRS)
Founds, David
1987-01-01
The objectives of the JOSE program is to develop, demonstrate, and evaluate active vibration suppression techniques for Directed Energy Weapons (DEW). DEW system performance is highly influenced by the line-of-sight (LOS) stability and in some cases by the wave front quality. The missions envisioned for DEW systems by the Strategic Defense Initiative require LOS stability and wave front quality to be significantly improved over any current demonstrated capability. The Active Control of Space Structures (ACOSS) program led to the development of a number of promising structural control techniques. DEW structures are vastly more complex than any structures controlled to date. They will be subject to disturbances with significantly higher magnitudes and wider bandwidths, while holding higher tolerances on allowable motions and deformations. Meeting the performance requirements of the JOSE program requires upgrading the ACOSS techniques to meet new more stringent requirements, the development of requisite sensors and acturators, improved control processors, highly accurate system identification methods, and the integration of hardware and methodologies into a successful demonstration.
Ultraviolet Thomson Scattering from Direct-Drive Coronal Plasmas in Multilayer Targets
NASA Astrophysics Data System (ADS)
Henchen, R. J.; Goncharov, V. N.; Michel, D. T.; Follett, R. K.; Katz, J.; Froula, D. H.
2014-10-01
Ultraviolet (λ4 ω = 263 nm) Thomson scattering (TS) was used to probe ion-acoustic waves (IAW's) and electron plasma waves (EPW's) from direct-drive coronal plasmas. Fifty-nine drive beams (λ3 ω = 351 nm) illuminate a spherical target with a radius of ~ 860 μ m. A series of experiments studied the effect of higher electron temperature near the 3 ω quarter-critical surface (~ 2 . 5 ×1021 cm-3) on laser-plasma interactions resulting from a Si layer in the target. Electron temperatures and densities were measured from 150 to 400 μm from the initial target surface. Standard CH shells were compared to two-layered shells of CH and Si and three-layered shells of CH, Si, and CH. These multilayer targets have less hot-electron energy than standard CH shells as a result of higher electron temperature in the coronal plasmas. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Dependence of Wave-Breaking Statistics on Wind Stress and Wave Development
NASA Technical Reports Server (NTRS)
Katsaros, Kristina B.; Atakturk, Serhad S.
1992-01-01
Incidence of wave breaking for pure wind driven waves has been studied on Lake Washington at wind speeds up to 8 m/s. Video recordings were employed to identify and categorize the breaking events in terms of micro-scale, spilling and plunging breakers. These events were correlated with the magnitude of the wave spectrum measured with a resistance wire wave gauge and band pass filtered between 6 and 10 Hz. An equivalent percentage of breaking crests were found for spilling and plunging events. Wave forcing as measured by wind stress (or friction velocity, u(sub *), squared) and by inverse wave age, u(sub *)/Cp where Cp is the phase velocity of the waves at the peak of the frequency spectrum, were found to be good prerictors of percentage of breaking crests. When combined in a two parameter regression, those two variables gave small standard deviation and had a high correlation coefficient (66 percent). The combination of u(sub *)(exp 2) and u(sub *)/Cp can be understood in physical terms. Furthermore, for the larger values of u(sub *)(exp 2) the dependence of wave braking and wave age was stronger than at the low end of the values u(sub *)(exp 2) and u(sub *)/Cp. Thus, both the level of wave development as determined by inverse wave age, which we may term relative wind effectiveness for wave forcing and the wind forcing on the water surface determine the incidence of wave breaking. Substituting U(sub 10)(sup 3.75) (which is the dependence of whitecap cover found by Monahan and coworkers) an equivalent correlation was found to the prediction by u(sub *)(exp 2). Slightly better standard deviation value and higher correlation coefficient were found by using a Reynolds number as predictor. A two-parameter regression involving u(sub *)(exp 2) and a Reynold's number proposed by Toba and his colleagues which relates u(sub *)(exp 2) and peak wave frequency, improves the correlation even more but is less easy to interpret in physical terms. The equivalent percentage of breaking crests obtained in our previous study was reported at 8.6 percent for a short record obtained at U(sub 10N) of about 6 m/s. Typical values in the current study for similar conditions are 6 percent, which is consistent with the previous study in view of the scatter. In that study we did not have a video recording system, so the observed breaking may include more of the micro-scaic breaking events, and the value, 8.6 percent, is well within the range of highly probable sampling variability.
Shock waves: The Maxwell-Cattaneo case.
Uribe, F J
2016-03-01
Several continuum theories for shock waves give rise to a set of differential equations in which the analysis of the underlying vector field can be done using the tools of the theory of dynamical systems. We illustrate the importance of the divergences associated with the vector field by considering the ideas by Maxwell and Cattaneo and apply them to study shock waves in dilute gases. By comparing the predictions of the Maxwell-Cattaneo equations with shock wave experiments we are lead to the following conclusions: (a) For low compressions (low Mach numbers: M) the results from the Maxwell-Cattaneo equations provide profiles that are in fair agreement with the experiments, (b) as the Mach number is increased we find a range of Mach numbers (1.27 ≈ M(1) < M < M(2) ≈ 1.90) such that numerical shock wave solutions to the Maxwell-Cattaneo equations cannot be found, and (c) for greater Mach numbers (M>M_{2}) shock wave solutions can be found though they differ significantly from experiments.
NASA Astrophysics Data System (ADS)
Fernandez, L.; Toffoli, A.; Monbaliu, J.
2012-04-01
In deep water, the dynamics of surface gravity waves is dominated by the instability of wave packets to side band perturbations. This mechanism, which is a nonlinear third order in wave steepness effect, can lead to a particularly strong focusing of wave energy, which in turn results in the formation of waves of very large amplitude also known as freak or rogue waves [1]. In finite water depth, however, the interaction between waves and the ocean floor induces a mean current. This subtracts energy from wave instability and causes it to cease for relative water depth , where k is the wavenumber and h the water depth [2]. Yet, this contradicts field observations of extreme waves such as the infamous 26-m "New Year" wave that have mainly been recorded in regions of relatively shallow water . In this respect, recent studies [3] seem to suggest that higher order nonlinearity in water of finite depth may sustain instability. In order to assess the role of higher order nonlinearity in water of finite and shallow depth, here we use a Higher Order Spectral Method [4] to simulate the evolution of surface gravity waves according to the Euler equations of motion. This method is based on an expansion of the vertical velocity about the surface elevation under the assumption of weak nonlinearity and has a great advantage of allowing the activation or deactivation of different orders of nonlinearity. The model is constructed to deal with an arbitrary order of nonlinearity and water depths so that finite and shallow water regimes can be analyzed. Several wave configurations are considered with oblique and collinear with the primary waves disturbances and different water depths. The analysis confirms that nonlinearity higher than third order play a substantial role in the destabilization of a primary wave train and subsequent growth of side band perturbations.
Excitations of breathers and rogue wave in the Heisenberg spin chain
NASA Astrophysics Data System (ADS)
Qi, Jian-Wen; Duan, Liang; Yang, Zhan-Ying; Yang, Wen-Li
2018-01-01
We study the excitations of breathers and rogue wave in a classical Heisenberg spin chain with twist interaction, which is governed by a fourth-order integrable nonlinear Schrödinger equation. The dynamics of these waves have been extracted from an exact solution. In particular, the corresponding existence conditions based on the parameters of perturbation wave number K, magnon number N, background wave vector ks and amplitude c are presented explicitly. Furthermore, the characteristics of magnetic moment distribution corresponding to these nonlinear waves are also investigated in detail. Finally, we discussed the state transition of three types nonlinear localized waves under the different excitation conditions.
NASA Technical Reports Server (NTRS)
Li, Xi-Zeng; Su, Bao-Xia
1996-01-01
It is found that the field of the combined mode of the probe wave and the phase-conjugate wave in the process of non-degenerate four-wave mixing exhibits higher-order squeezing to all even orders. And the generalized uncertainty relations in this process are also presented.
NASA Astrophysics Data System (ADS)
Wang, Huiqun; Toigo, Anthony D.
2016-06-01
Investigations of the variability, structure and energetics of the m = 1-3 traveling waves in the northern hemisphere of Mars are conducted with the MarsWRF general circulation model. Using a simple, annually repeatable dust scenario, the model reproduces many general characteristics of the observed traveling waves. The simulated m = 1 and m = 3 traveling waves show large differences in terms of their structures and energetics. For each representative wave mode, the geopotential signature maximizes at a higher altitude than the temperature signature, and the wave energetics suggests a mixed baroclinic-barotropic nature. There is a large contrast in wave energetics between the near-surface and higher altitudes, as well as between the lower latitudes and higher latitudes at high altitudes. Both barotropic and baroclinic conversions can act as either sources or sinks of eddy kinetic energy. Band-pass filtered transient eddies exhibit strong zonal variations in eddy kinetic energy and various energy transfer terms. Transient eddies are mainly interacting with the time mean flow. However, there appear to be non-negligible wave-wave interactions associated with wave mode transitions. These interactions include those between traveling waves and thermal tides and those among traveling waves.
Integrated, Reactor Relevant Solutions for Lower Hybrid Range of Frequencies Actuators
NASA Astrophysics Data System (ADS)
Shiraiwa, S.; Bonoli, P. T.; Lin, Y.; Wallace, G. M.; Wukitch, S. J.
2017-10-01
RF (radiofrequency) actuators with high system efficiency (wall-plug to plasma) and ability for continuous operation have long be recognized as essential tools for realizing a steady state tokamak. A number of physics and technological challenges to utilization remain including current drive efficiency and location, efficient coupling, and impurity contamination. In a reactor environment, plasma material interaction (PMI) issues associated with coupling structures are similar to the first wall and have been identified as a potential show-stopper. High field side (HFS) launch of LHRF power represents an integrated solution that both improves core wave physics and mitigates PMI/coupling issues. For HFS LHRF, wave penetration is vastly improves because wave accessibility scales as 1/B allowing for launching the wave at lower n|| (parallel refractive index). The lower n|| penetrate to higher electron temperature resulting in higher current drive efficiency (1/n||2). HFS RF launch also provides for a means to dramatically improve launcher robustness in a reactor environment. On the HFS, the SOL is quiescent; local density profile is steep and controlled through magnetic shape; fast particle, neutron, turbulent heat and particle fluxes are eliminated or minim Work supported by the U.S. DoE, Office of Science, Office of Fusion Energy Sciences, User Facility Alcator C-Mod under DE-FC02-99ER54512 and US DoE Contract No. DE-FC02-01ER54648 under a Scientific Discovery through Advanced Computing Initiative.
Infinite occupation number basis of bosons: Solving a numerical challenge
NASA Astrophysics Data System (ADS)
Geißler, Andreas; Hofstetter, Walter
2017-06-01
In any bosonic lattice system, which is not dominated by local interactions and thus "frozen" in a Mott-type state, numerical methods have to cope with the infinite size of the corresponding Hilbert space even for finite lattice sizes. While it is common practice to restrict the local occupation number basis to Nc lowest occupied states, the presence of a finite condensate fraction requires the complete number basis for an exact representation of the many-body ground state. In this work we present a truncation scheme to account for contributions from higher number states. By simply adding a single coherent-tail state to this common truncation, we demonstrate increased numerical accuracy and the possible increase in numerical efficiency of this method for the Gutzwiller variational wave function and within dynamical mean-field theory.
On Wave-Ice Interaction in the Arctic Marginal Ice Zone: Dispersion, Attenuation, and Ice Response
2016-06-01
PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 2. REPORT TYPE1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 6. AUTHOR(S) 8. PERFORMING...schemes and contributes to a change of wave height (and direction) analogous to shoaling and refraction. A method for jointly measuring dispersion and...46 APPENDEX B: WAVE HEIGHTS MEASURED IN ARTIC ICE
NASA Technical Reports Server (NTRS)
Azuma, H.
1993-01-01
The aim of this experiment is to understand how bubbles behave in a thermal gradient and acoustic stationary wave under microgravity. In microgravity, bubble or bubbles in a liquid will not rise upward as they do on Earth but will rest where they are formed because there exists no gravity-induced buoyancy. We are interested in how bubbles move and in the mechanisms which support the movement. We will try two ways to make bubbles migrate. The first experiment concerns behavior of bubbles in a thermal gradient. It is well known than an effect of surface tension which is masked by gravity on the ground becomes dominant in microgravity. The surface tension on the side of the bubble at a lower temperature is stronger than at a higher temperature. The bubble migrates toward the higher temperature side due to the surface tension difference. The migration speed depends on the so-called Marangoni number, which is a function of the temperature difference, the bubble diameter, liquid viscosity, and thermal diffusivity. At present, some experimental data about migration speeds in liquids with very small Marangoni numbers were obtained in space experiments, but cases of large Marangoni number are rarely obtained. In our experiment a couple of bubbles are to be injected into a cell filled with silicon oil, and the temperature gradient is to be made gradually in the cell by a heater and a cooler. We will be able to determine migration speeds in a very wide range of Marangoni numbers, as well as study interactions between the bubbles. We will observe bubble movements affected by hydrodynamical and thermal interactions, the two kinds of interactions which occur simultaneously. These observation data will be useful for analyzing the interactions as well as understanding the behavior of particles or drops in materials processing. The second experiment concerns bubble movement in an acoustic stationary wave. It is known that a bubble in a stationary wave moves toward the node or the loop according to whether its diameter is larger or smaller than that of the main resonant radius. In our experiment fine bubbles will be observed to move according to an acoustic field formed in a cylindrical cell. The existence of bubbles varies the acoustic speed, and the interactive force between bubbles will make the bubble behavior collective and complicated. This experiment will be very useful to development of bubble removable technology as well as to the understanding of bubble behavior.
NASA Astrophysics Data System (ADS)
Zeng, W.; Horwitz, J. L.
2007-12-01
Foster et al. [2002] and others have reported on elevated ionospheric density regions being convected from the subauroral plasmaspheric region toward noon, in association with convection of plasmaspheric tails in the dayside magnetosphere. It has been suggested that these so-called Storm Enhanced Density (SED) regions could serve as ionospheric plasma source populations for cleft ion fountain outflows. To investigate this scenario, we have used our Dynamic Fluid Kinetic (DyFK) model to simulate the entry of a high-density "plasmasphere-like" flux tube entering the cleft region and subjected to an episode of wave-driven transverse ion heating. We find that the O+ ion density at higher altitudes increases and the density at lower altitudes decreases, following this heating episode, indicating increased numbers of O+ ions from the ionospheric source gain sufficient energy to reach higher altitudes after the effects of transverse wave heating. We also find that O+- H+ crossing point in topside ionosphere moves upward as the wave heating continues. Foster, J. C., P. J. Erickson, A. J. Coster, J. Goldstein, and F. J. Rich, Ionospheric signatures of plasmaspheric tails, Geophys. Res. Lett., 29(13), 1623, doi:10.1029/2002GL015067, 2002.
Propagation of stationary Rossby waves in the Martian lower atmosphere
NASA Astrophysics Data System (ADS)
Ghosh, Priyanka; Thokuluwa, Ramkumar
The Martian lower atmospheric (-1.5 km to 29.3 km) temperature, measured by radio occultation technique during the Mars Global Surveyor (MGS) mission launched by US in November 1996, at the Northern winter hemispheric latitude of about 63(°) N clearly shows a statistically significant (above 95 percent confidential level white noise) and strong 3.5-day oscillation during 1-10 January 2006. This strong signal occurs in the longitudinal sectors of 0-30(°) E and 190-230(°) E but statistically insignificant in almost all the other longitudes. This 180 degree separation between the two peaks of occurrence of strong 3.5 day oscillation indicates that this may be associated with zonal wave number 2 structure global scale wave. At the lowest height of -1.5 km, the power observed in the longitude of 0-30(°) E is 50 K (2) and it increased gradually to the maximum power of 130 K (2) at the height of 0.8 - 1.7 km. Above this height, the power decreased monotonously and gradually to insignificant level at the height of 3.7 km (20 K (2) ). This gradual decrease of power above the height of 1.7 km indicates that radiative damping (infra red cooling due to large abundance of CO _{2} molecules and dust particles) would have played an important role in the dissipation of waves. The height and longitudinal profiles of phase of the 3.5-day wave indicate that this wave is a vertically standing and eastward propagating planetary wave respectively. Since the statistically significant spectral amplitude occurs near the high topography structures, it seems that the wave is generated by flows over the topography. In the Northern winter, it is possible that the large gradient of temperature between the low and high latitudes would lead to flow of winds from the tropical to polar latitudes. Due to the Coriolis effect, this flow would in turn move towards the right and incite wave generation when the air flows over the high topographic structures. This lead to speculate that the observed 3.5-day wave may be associated with topography-related zonal wave number 2 baroclinic Rossby wave. Similar analyses for January and February 2005 show significant 15-day oscillation for almost all the longitude sectors, indicating that this oscillation may be associated with barotropic waves generated by the geostrophic adjustment of planetary scale flows at the higher latitudes. The sharp contrast between the characteristics of atmospheric waves occurred in 2005 (summer) and 2006 (winter) indicates that there is a strong seasonal variation over the Mars. A detailed investigation will be presented about the various other characteristics of atmospheric waves observed for different years by various Mars missions.
Cavalieri, F L B; Morotti, F; Seneda, M M; Colombo, A H B; Andreazzi, M A; Emanuelli, I P; Rigolon, L P
2018-09-01
This study evaluated the effects of the synchronization of ovarian follicular wave emergence on the efficiency of in vitro embryo production. Bos indicus cows (n = 20) were divided into two groups (control vs. synchronization) and subjected to repeated ovum pick-up (OPU) sessions (8 replicates each, with an interval of 21 days in a 2 × 2 crossover design) and subsequent in vitro embryo production. Cows in the control group (n = 10) were submitted to OPU procedures without any stimulation every 21 days. Animals in the synchronization group received a protocol-based progesterone implant, estradiol benzoate and prostaglandin on a random day of the estrus cycle (Day 0) and the OPU was performed on Day 5. After in vitro production, embryos were transferred to recipients synchronized at a fixed time and the diagnosis was performed 60 days later. An evaluation of the parameters for each OPU session revealed that donors that received the synchronization protocol pre-OPU showed a greater number of embryos (5.9 ± 0.5 vs. 4.5 ± 0.4; P = 0.037), higher rate of embryo production (45.8% vs. 38.5%; P = 0.001) and higher mean number of conceptions per group (2.2 ± 0.2 vs. 1.6 ± 0.2; P = 0.07) in relation to the group that did not receive hormonal treatment. We concluded that synchronization of the follicular wave prior to OPU showed positive effects on in vitro embryo production as well as on pregnancy rates. Copyright © 2017 Elsevier Inc. All rights reserved.
Rulison, Kelly L; Feinberg, Mark; Gest, Scott D; Osgood, D Wayne
2015-10-01
We tested whether effects of the Strengthening Families Program for Youth 10-14 (SFP10-14) diffused from intervention participants to their friends. We also tested which program effects on participants accounted for diffusion. Data are from 5,449 students (51% female; mean initial age = 12.3 years) in the PROmoting School-community-university Partnerships to Enhance Resilience community intervention trial (2001-2006) who did not participate in SFP10-14 (i.e., nonparticipants). At each of five waves, students identified up to seven friends and self-reported past month drunkenness and cigarette use, substance use attitudes, parenting practices, and unsupervised time spent with friends. We computed two measures of indirect exposure to SFP10-14: total number of SFP-attending friends at each wave and cumulative proportion of SFP-attending friends averaged across the current and all previous post-intervention waves. Three years post-intervention, the odds of getting drunk (odds ratio = 1.4) and using cigarettes (odds ratio = 2.7) were higher among nonparticipants with zero SFP-attending friends compared with nonparticipants with three or more SFP-attending friends. Multilevel analyses also provided evidence of diffusion: nonparticipants with a higher cumulative proportion of SFP-attending friends at a given wave were less likely than their peers to use drugs at that wave. Effects from SFP10-14 primarily diffused through friendship networks by reducing the amount of unstructured socializing (unsupervised time that nonparticipants spent with friends), changing friends' substance use attitudes, and then changing nonparticipants' own substance use attitudes. Program developers should consider and test how interventions may facilitate diffusion to extend program reach and promote program sustainability. Copyright © 2015 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.
Rulison, Kelly L.; Feinberg, Mark; Gest, Scott D.; Osgood, D. Wayne
2015-01-01
Purpose We tested whether effects of the Strengthening Families Program for Youth 10–14 (SFP10–14) diffused from intervention participants to their friends. We also tested which program effects on participants accounted for diffusion. Methods Data are from 5,449 students (51% female; mean initial age=12.3 years) in the PROSPER community intervention trial (2001–2006) who did not participate in SFP10–14 (i.e., non-participants). At each of 5 waves, students identified up to 7 friends and self-reported past month drunkenness and cigarette use, substance use attitudes, parenting practices, and unsupervised time spent with friends. We computed two measures of indirect exposure to SFP10–14: total number of SFP-attending friends at each wave and cumulative proportion of SFP-attending friends averaged across the current and all previous post-intervention waves. Results Three years post-intervention, the odds of getting drunk (OR=1.4) and using cigarettes (OR=2.7) were higher among non-participants with 0 SFP-attending friends compared to non-participants with 3 or more SFP-attending friends. Multilevel analyses also provided evidence of diffusion: non-participants with a higher cumulative proportion of SFP-attending friends at a given wave were less likely than their peers to use drugs at that wave. Effects from SFP10–14 primarily diffused through friendship networks by reducing the amount of unstructured socializing (unsupervised time that non-participants spent with friends), changing friends’ substance use attitudes, and then changing non-participants’ own substance use attitudes. Conclusions Program developers should consider and test how interventions may facilitate diffusion to extend program reach and promote program sustainability. PMID:26210856
NASA Astrophysics Data System (ADS)
Wang, Rui; Tomikawa, Yoshihiro; Nakamura, Takuji; Huang, Kaiming; Zhang, Shaodong; Zhang, Yehui; Yang, Huigen; Hu, Hongqiao
2016-10-01
The mechanism to explain the variations of tropopause and tropopause inversion layer (TIL) in the Arctic region during a sudden stratospheric warming (SSW) in 2009 was studied with the Modern-Era Retrospective analysis for Research and Applications reanalysis data and GPS/Constellation Observing system for Meteorology, Ionosphere, and Climate (COSMIC) temperature data. During the prominent SSW in 2009, the cyclonic system changed to the anticyclonic system due to the planetary wave with wave number 2 (wave2). The GPS/COSMIC temperature data showed that during the SSW in 2009, the tropopause height in the Arctic decreased accompanied with the tropopause temperature increase and the TIL enhancement. The variations of the tropopause and TIL were larger in higher latitudes. A static stability analysis showed that the variations of the tropopause and TIL were associated with the variations of the residual circulation and the static stability due to the SSW. Larger static stability appeared in the upper stratosphere and moved downward to the narrow region just above the tropopause. The descent of strong downward flow was faster in higher latitudes. The static stability tendency analysis showed that the strong downward residual flow induced the static stability change in the stratosphere and around the tropopause. The strong downwelling in the stratosphere was mainly induced by wave2, which led to the tropopause height and temperature changes due to the adiabatic heating. Around the tropopause, a pair of downwelling above the tropopause and upwelling below the tropopause due to wave2 contributed to the enhancement of static stability in the TIL immediately after the SSW.
Few-cycle optical rogue waves: complex modified Korteweg-de Vries equation.
He, Jingsong; Wang, Lihong; Li, Linjing; Porsezian, K; Erdélyi, R
2014-06-01
In this paper, we consider the complex modified Korteweg-de Vries (mKdV) equation as a model of few-cycle optical pulses. Using the Lax pair, we construct a generalized Darboux transformation and systematically generate the first-, second-, and third-order rogue wave solutions and analyze the nature of evolution of higher-order rogue waves in detail. Based on detailed numerical and analytical investigations, we classify the higher-order rogue waves with respect to their intrinsic structure, namely, fundamental pattern, triangular pattern, and ring pattern. We also present several new patterns of the rogue wave according to the standard and nonstandard decomposition. The results of this paper explain the generalization of higher-order rogue waves in terms of rational solutions. We apply the contour line method to obtain the analytical formulas of the length and width of the first-order rogue wave of the complex mKdV and the nonlinear Schrödinger equations. In nonlinear optics, the higher-order rogue wave solutions found here will be very useful to generate high-power few-cycle optical pulses which will be applicable in the area of ultrashort pulse technology.
A wave dynamics criterion for optimization of mammalian cardiovascular system.
Pahlevan, Niema M; Gharib, Morteza
2014-05-07
The cardiovascular system in mammals follows various optimization criteria covering the heart, the vascular network, and the coupling of the two. Through a simple dimensional analysis we arrived at a non-dimensional number (wave condition number) that can predict the optimum wave state in which the left ventricular (LV) pulsatile power (LV workload) is minimized in a mammalian cardiovascular system. This number is also universal among all mammals independent of animal size maintaining a value of around 0.1. By utilizing a unique in vitro model of human aorta, we tested our hypothesis against a wide range of aortic compliance (pulse wave velocity). We concluded that the optimum value of the wave condition number remains to be around 0.1 for a wide range of aorta compliance that we could simulate in our in-vitro system. Copyright © 2014 Elsevier Ltd. All rights reserved.
Tuan, P H; Wen, C P; Chiang, P Y; Yu, Y T; Liang, H C; Huang, K F; Chen, Y F
2015-04-01
The Chladni nodal line patterns and resonant frequencies for a thin plate excited by an electronically controlled mechanical oscillator are experimentally measured. Experimental results reveal that the resonant frequencies can be fairly obtained by means of probing the variation of the effective impedance of the exciter with and without the thin plate. The influence of the extra mass from the central exciter is confirmed to be insignificant in measuring the resonant frequencies of the present system. In the theoretical aspect, the inhomogeneous Helmholtz equation is exploited to derive the response function as a function of the driving wave number for reconstructing experimental Chladni patterns. The resonant wave numbers are theoretically identified with the maximum coupling efficiency as well as the maximum entropy principle. Substituting the theoretical resonant wave numbers into the derived response function, all experimental Chladni patterns can be excellently reconstructed. More importantly, the dispersion relationship for the flexural wave of the vibrating plate can be determined with the experimental resonant frequencies and the theoretical resonant wave numbers. The determined dispersion relationship is confirmed to agree very well with the formula of the Kirchhoff-Love plate theory.
Nonlinear Excitation of the Ablative Rayleigh-Taylor Instability for All Wave Numbers
NASA Astrophysics Data System (ADS)
Zhang, H.; Betti, R.; Gopalaswamy, V.; Aluie, H.; Yan, R.
2017-10-01
Small-scale modes of the ablative Rayleigh-Taylor instability (ARTI) are often neglected because they are linearly stable when their wavelength is shorter than a linear cutoff. Using 2-D and 3-D numerical simulations, it is shown that linearly stable modes of any wavelength can be destabilized. This instability regime requires finite amplitude initial perturbations. Compared to 2-D, linearly stable ARTI modes are more easily destabilized in 3-D and the penetrating bubbles have a higher density because of enhanced vorticity. It is shown that for conditions found in laser fusion targets, short-wavelength ARTI modes are more efficient at driving mixing of ablated material throughout the target since the nonlinear bubble density increases with the wave number and small-scale bubbles carry a larger mass flux of mixed material. This work was supported by the Office of Fusion Energy Sciences Nos. DE-FG02-04ER54789, DE-SC0014318, the Department of Energy National Nuclear Security Administration under Award No. DE-NA0001944, the Ministerio de Ciencia e Innovacion of Spain (Grant No. ENE2011-28489), and the NANL LDRD program through Project Number 20150568ER.
Amplification and attenuation of shock wave strength caused by homogeneous isotropic turbulence
NASA Astrophysics Data System (ADS)
Tanaka, K.; Watanabe, T.; Nagata, K.; Sasoh, A.; Sakai, Y.; Hayase, T.
2018-03-01
We study the pressure increase across a planar shock wave with shock Mach numbers Ms of 1.1, 1.3, and 1.5 propagating through homogeneous isotropic turbulence at a low turbulent Mach number (Mt ˜ 10-4) based on direct numerical simulations (DNSs). Fluctuation in the pressure increase, Δp', on a given shock ray is induced by turbulence around the ray. A local amplification of the shock wave strength, measured with the pressure increase, is caused by the velocity fluctuation opposed to the shock wave propagating direction with a time delay, while the velocity in the opposite direction attenuates the shock wave strength. The turbulence effects on the shock wave are explained based on shock wave deformation due to turbulent shearing motions. The spatial distribution of Δp' on the shock wave has a characteristic length of the order of the integral scale of turbulence. The influence of turbulent velocity fluctuation at a given location on Δp' becomes most significant after the shock wave propagates from the location for a distance close to the integral length scale for all shock Mach numbers, demonstrating that the shock wave properties possess strong memory even during the propagation in turbulence. A lower shock Mach number Ms results in a smaller rms value of Δp', stronger influences on Δp' by turbulence far away from the shock ray, and a larger length scale in the spatial profile of Δp' on the shock wave. Relative intensity of Δp' increases with [Mt/(Ms-1 ) ] α, where DNS and experimental results yield α ≈ 0.73.
Development and Testing of the Rigidizable Inflatable Get-Away-Special Experiment
2007-06-01
assigned three different drawing numbers: RIGEX- WAVE1-D, RIGEX- WAVE2 -D, and RIGEX-WAVE3-D. The end of wave #3 leaves 20 RIGEX with all structural...intact RIGEX- WAVE2 -P Wave 2 Assembly Complete, main structure and various subassemblies RIGEX-WAVE3-P Wave 3 Assembly Complete RIGEX-HAN2007-P Wave
Optimal Length Scale for a Turbulent Dynamo.
Sadek, Mira; Alexakis, Alexandros; Fauve, Stephan
2016-02-19
We demonstrate that there is an optimal forcing length scale for low Prandtl number dynamo flows that can significantly reduce the required energy injection rate. The investigation is based on simulations of the induction equation in a periodic box of size 2πL. The flows considered are the laminar and turbulent ABC flows forced at different forcing wave numbers k_{f}, where the turbulent case is simulated using a subgrid turbulence model. At the smallest allowed forcing wave number k_{f}=k_{min}=1/L the laminar critical magnetic Reynolds number Rm_{c}^{lam} is more than an order of magnitude smaller than the turbulent critical magnetic Reynolds number Rm_{c}^{turb} due to the hindering effect of turbulent fluctuations. We show that this hindering effect is almost suppressed when the forcing wave number k_{f} is increased above an optimum wave number k_{f}L≃4 for which Rm_{c}^{turb} is minimum. At this optimal wave number, Rm_{c}^{turb} is smaller by more than a factor of 10 than the case forced in k_{f}=1. This leads to a reduction of the energy injection rate by 3 orders of magnitude when compared to the case where the system is forced at the largest scales and thus provides a new strategy for the design of a fully turbulent experimental dynamo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Hsin-Liang, E-mail: hlchen@iner.gov.tw; Tu, Yen-Cheng; Hsieh, Cheng-Chang
2014-09-14
With the characteristics of higher electron density and lower ion bombardment energy, large-area VHF (very high frequency) plasma enhanced chemical vapor deposition has become an essential manufacturing equipment to improve the production throughput and efficiency of thin film silicon solar cell. However, the combination of high frequency and large electrodes leads to the so-called standing wave effect causing a serious problem for the deposition uniformity of silicon thin film. In order to address this issue, a technique based on the idea of simultaneously launching two standing waves that possess similar amplitudes and are out of phase by 90° in timemore » and space is proposed in this study. A linear plasma reactor with discharge length of 54 cm is tested with two different frequencies including 60 and 80 MHz. The experimental results show that the proposed technique could effectively improve the non-uniformity of VHF plasmas from >±60% when only one standing wave is applied to <±10% once two specific standing waves are launched at the same time. Moreover, in terms of the reactor configuration adopted in this study, in which the standing wave effect along the much shorter dimension can be ignored, the proposed technique is applicable to different frequencies without the need to alter the number and arrangement of power feeding points.« less
Acoustic Receptivity of Mach 4.5 Boundary Layer with Leading- Edge Bluntness
NASA Technical Reports Server (NTRS)
Malik, Mujeeb R.; Balakumar, Ponnampalam
2007-01-01
Boundary layer receptivity to two-dimensional slow and fast acoustic waves is investigated by solving Navier-Stokes equations for Mach 4.5 flow over a flat plate with a finite-thickness leading edge. Higher order spatial and temporal schemes are employed to obtain the solution whereby the flat-plate leading edge region is resolved by providing a sufficiently refined grid. The results show that the instability waves are generated in the leading edge region and that the boundary-layer is much more receptive to slow acoustic waves (by almost a factor of 20) as compared to the fast waves. Hence, this leading-edge receptivity mechanism is expected to be more relevant in the transition process for high Mach number flows where second mode instability is dominant. Computations are performed to investigate the effect of leading-edge thickness and it is found that bluntness tends to stabilize the boundary layer. Furthermore, the relative significance of fast acoustic waves is enhanced in the presence of bluntness. The effect of acoustic wave incidence angle is also studied and it is found that the receptivity of the boundary layer on the windward side (with respect to the acoustic forcing) decreases by more than a factor of 4 when the incidence angle is increased from 0 to 45 deg. However, the receptivity coefficient for the leeward side is found to vary relatively weakly with the incidence angle.
The Total-Pressure Recovery and Drag Characteristics of Several Auxiliary Inlets at Transonic Speeds
NASA Technical Reports Server (NTRS)
Dennard, John S.
1959-01-01
Several flush and scoop-type auxiliary inlets have been tested for a range of Mach numbers from 0.55 to 1.3 to determine their transonic total-pressure recovery and drag characteristics. The inlet dimensions were comparable with the thickness of the boundary layer in which they were tested. Results indicate that flush inlets should be inclined at very shallow angles with respect to the surface for optimum total-pressure recovery and drag characteristics. Deep, narrow inlets have lower drag than wide shallow ones at Mach numbers greater than 0.9 but at lower Mach numbers the wider inlets proved superior. Inlets with a shallow approach ramp, 7 deg, and diverging ramp walls which incorporated boundary-layer bypass had lower drag than any other inlet tested for Mach numbers up to 1.2 and had the highest pressure recovery of all of the flush inlets. The scoop inlets, which operated in a higher velocity flow than the flush inlets, had higher drag coefficients. Several of these auxiliary inlets projected multiple, periodic shock waves into the stream when they were operated at low mass-flow ratios.
Seismic waves in rocks with fluids and fractures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berryman, J.G.
2007-05-14
Seismic wave propagation through the earth is often stronglyaffected by the presence of fractures. When these fractures are filledwith fluids (oil, gas, water, CO2, etc.), the type and state of the fluid(liquid or gas) can make a large difference in the response of theseismic waves. This paper summarizes recent work on methods ofdeconstructing the effects of fractures, and any fluids within thesefractures, on seismic wave propagation as observed in reflection seismicdata. One method explored here is Thomsen's weak anisotropy approximationfor wave moveout (since fractures often induce elastic anisotropy due tononuniform crack-orientation statistics). Another method makes use ofsome very convenient fracturemore » parameters introduced previously thatpermit a relatively simple deconstruction of the elastic and wavepropagation behavior in terms of a small number of fracture parameters(whenever this is appropriate, as is certainly the case for small crackdensities). Then, the quantitative effects of fluids on thesecrack-influence parameters are shown to be directly related to Skempton scoefficient B of undrained poroelasticity (where B typically ranges from0 to 1). In particular, the rigorous result obtained for the low crackdensity limit is that the crack-influence parameters are multiplied by afactor (1 ? B) for undrained systems. It is also shown how fractureanisotropy affects Rayleigh wave speed, and how measured Rayleigh wavespeeds can be used to infer shear wave speed of the fractured medium.Higher crack density results are also presented by incorporating recentsimulation data on such cracked systems.« less
Upper Mantle Shear Wave Structure Beneath North America From Multi-mode Surface Wave Tomography
NASA Astrophysics Data System (ADS)
Yoshizawa, K.; Ekström, G.
2008-12-01
The upper mantle structure beneath the North American continent has been investigated from measurements of multi-mode phase speeds of Love and Rayleigh waves. To estimate fundamental-mode and higher-mode phase speeds of surface waves from a single seismogram at regional distances, we have employed a method of nonlinear waveform fitting based on a direct model-parameter search using the neighbourhood algorithm (Yoshizawa & Kennett, 2002). The method of the waveform analysis has been fully automated by employing empirical quantitative measures for evaluating the accuracy/reliability of estimated multi-mode phase dispersion curves, and thus it is helpful in processing the dramatically increasing numbers of seismic data from the latest regional networks such as USArray. As a first step toward modeling the regional anisotropic shear-wave velocity structure of the North American upper mantle with extended vertical resolution, we have applied the method to long-period three-component records of seismic stations in North America, which mostly comprise the GSN and US regional networks as well as the permanent and transportable USArray stations distributed by the IRIS DMC. Preliminary multi-mode phase-speed models show large-scale patterns of isotropic heterogeneity, such as a strong velocity contrast between the western and central/eastern United States, which are consistent with the recent global and regional models (e.g., Marone, et al. 2007; Nettles & Dziewonski, 2008). We will also discuss radial anisotropy of shear wave speed beneath North America from multi-mode dispersion measurements of Love and Rayleigh waves.
NASA Astrophysics Data System (ADS)
Tada, T.; Cho, I.; Shinozaki, Y.
2005-12-01
We have invented a Two-Radius (TR) circular array method of microtremor exploration, an algorithm that enables to estimate phase velocities of Love waves by analyzing horizontal-component records of microtremors that are obtained with an array of seismic sensors placed around circumferences of two different radii. The data recording may be done either simultaneously around the two circles or in two separate sessions with sensors distributed around each circle. Both Rayleigh and Love waves are present in the horizontal components of microtremors, but in the data processing of our TR method, all information on the Rayleigh waves ends up cancelled out, and information on the Love waves alone are left to be analyzed. Also, unlike the popularly used frequency-wavenumber spectral (F-K) method, our TR method does not resolve individual plane-wave components arriving from different directions and analyze their "vector" phase velocities, but instead directly evaluates their "scalar" phase velocities --- phase velocities that contain no information on the arrival direction of waves --- through a mathematical procedure which involves azimuthal averaging. The latter feature leads us to expect that, with our TR method, it is possible to conduct phase velocity analysis with smaller numbers of sensors, with higher stability, and up to longer-wavelength ranges than with the F-K method. With a view to investigating the capabilities and limitations of our TR method in practical implementation to real data, we have deployed circular seismic arrays of different sizes at a test site in Japan where the underground structure is well documented through geophysical exploration. Ten seismic sensors were placed equidistantly around two circumferences, five around each circle, with varying combinations of radii ranging from several meters to several tens of meters, and simultaneous records of microtremors around circles of two different radii were analyzed with our TR method to produce estimates for the phase velocities of Love waves. The estimates were then checked against "model" phase velocities that are derived from theoretical calculations. We have also conducted a check of the estimated spectral ratios against the "model" spectral ratios, where we mean by "spectral ratio" an intermediary quantity that is calculated from observed records prior to the estimation of the phase velocity in the data analysis procedure of our TR method. In most cases, the estimated phase velocities coincided well with the model phase velocities within a wavelength range extending roughly from 3r to 6r (r: array radius). It was found out that, outside the upper and lower resolution limits of the TR method, the discrepancy between the estimated and model phase velocities, as well as the discrepancy between the estimated and model spectral ratios, were accounted for satisfactorily by theoretical consideration of three factors: the presence of higher surface-wave modes, directional aliasing effects related to the finite number of sensors in the seismic array, and the presence of incoherent noise.
NASA Astrophysics Data System (ADS)
Tsiklauri, D.
2014-12-01
Extensive particle-in-cell simulations of fast electron beams injected in a background magnetised plasma with a decreasing density profile were carried out. These simulations were intended to further shed light on a newly proposed mechanism for the generation of electromagnetic waves in type III solar radio bursts [1]. Here recent progress in an alternative to the plasma emission model using Particle-In-Cell, self-consistent electromagnetic wave emission simulations of solar type III radio bursts will be presented. In particular, (i) Fourier space drift (refraction) of non-gyrotropic electron beam-generated wave packets, caused by the density gradient [1,2], (ii) parameter space investigation of numerical runs [3], (iii) concurrent generation of whistler waves [4] and a separate problem of (iv) electron acceleration by Langmuir waves in a background magnetised plasma with an increasing density profile [5] will be discussed. In all considered cases the density inhomogeneity-induced wave refraction plays a crucial role. In the case of non-gyrotropic electron beam, the wave refaction transforms the generated wave packets from standing into freely escaping EM radiation. In the case of electron acceleration by Langmuir waves, a positive density gradient in the direction of wave propagation causes a decrease in the wavenumber, and hence a higher phase velocity vph=ω/k. The k-shifted wave is then subject to absorption by a faster electron by wave-particle interaction. The overall effect is an increased number of high energy electrons in the energy spectrum. [1] D. Tsiklauri, Phys. Plasmas 18, 052903 (2011) [2] H. Schmitz, D. Tsiklauri, Phys. Plasmas 20, 062903 (2013) [3] R. Pechhacker, D. Tsiklauri, Phys. Plasmas 19, 112903 (2012) [4] M. Skender, D. Tsiklauri, Phys. Plasmas 21, 042904 (2014) [5] R. Pechhacker, D. Tsiklauri, Phys. Plasmas 21, 012903 (2014)
Scaling laws for mixing and dissipation in unforced rotating stratified turbulence
NASA Astrophysics Data System (ADS)
Pouquet, A.; Rosenberg, D.; Marino, R.; Herbert, C.
2018-06-01
We present a model for the scaling of mixing in weakly rotating stratified flows characterized by their Rossby, Froude and Reynolds numbers Ro, Fr, Re. It is based on quasi-equipartition between kinetic and potential modes, sub-dominant vertical velocity and lessening of the energy transfer to small scales as measured by the ratio rE of kinetic energy dissipation to its dimensional expression. We determine their domains of validity for a numerical study of the unforced Boussinesq equations mostly on grids of 10243 points, with Ro/Fr> 2.5 and with 1600< Re<1.9x104; the Prandtl number is one, initial conditions are either isotropic and at large scale for the velocity, and zero for the temperature {\\theta}, or in geostrophic balance. Three regimes in Fr are observed: dominant waves, eddy-wave interactions and strong turbulence. A wave-turbulence balance for the transfer time leads to rE growing linearly with Fr in the intermediate regime, with a saturation at ~0.3 or more, depending on initial conditions for larger Froude numbers. The Ellison scale is also found to scale linearly with Fr, and the flux Richardson number Rf transitions for roughly the same parameter values as well. Putting together the 3 relationships of the model allows for the prediction of mixing efficiency scaling as Fr-2~RB-1 in the low and intermediate regimes, whereas for higher Fr, it scales as RB-1/2, as already observed: as turbulence strengthens, rE~1, the velocity is isotropic and smaller buoyancy fluxes altogether correspond to a decoupling of velocity and temperature fluctuations, the latter becoming passive.
Load-Differential Features for Automated Detection of Fatigue Cracks Using Guided Waves (Preprint)
2011-11-01
AFRL-RX-WP-TP-2011-4363 LOAD-DIFFERENTIAL FEATURES FOR AUTOMATED DETECTION OF FATIGUE CRACKS USING GUIDED WAVES (PREPRINT) Jennifer E...AUTOMATED DETECTION OF FATIGUE CRACKS USING GUIDED WAVES (PREPRINT) 5a. CONTRACT NUMBER FA8650-09-C-5206 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...tensile loads open fatigue cracks and thus enhance their detectability using ultrasonic methods. Here we introduce a class of load-differential methods
NASA Technical Reports Server (NTRS)
Vassout, P.; Parmentier, G.
1978-01-01
The results of the study reveal that with regard to the pulmonary lesions, twice the number of exposures is compensated for by quartering the overpressure of the wave crest. With regard to the mortality rates, it reveals that halving the overpressure of the wave crest is offset by a 20-fold increase in the number of exposures.
Multi-scale phenomena of rotation-modified mode-2 internal waves
NASA Astrophysics Data System (ADS)
Deepwell, David; Stastna, Marek; Coutino, Aaron
2018-03-01
We present high-resolution, three-dimensional simulations of rotation-modified mode-2 internal solitary waves at various rotation rates and Schmidt numbers. Rotation is seen to change the internal solitary-like waves observed in the absence of rotation into a leading Kelvin wave followed by Poincaré waves. Mass and energy is found to be advected towards the right-most side wall (for a Northern Hemisphere rotation), leading to increased amplitude of the leading Kelvin wave and the formation of Kelvin-Helmholtz (K-H) instabilities on the upper and lower edges of the deformed pycnocline. These fundamentally three-dimensional instabilities are localized within a region near the side wall and intensify in vigour with increasing rotation rate. Secondary Kelvin waves form further behind the wave from either resonance with radiating Poincaré waves or the remnants of the K-H instability. The first of these mechanisms is in accord with published work on mode-1 Kelvin waves; the second is, to the best of our knowledge, novel to the present study. Both types of secondary Kelvin waves form on the same side of the channel as the leading Kelvin wave. Comparisons of equivalent cases with different Schmidt numbers indicate that while adopting a numerically advantageous low Schmidt number results in the correct general characteristics of the Kelvin waves, excessive diffusion of the pycnocline and various density features precludes accurate representation of both the trailing Poincaré wave field and the intensity and duration of the Kelvin-Helmholtz instabilities.
Joint inversion of fundamental and higher mode Rayleigh waves
Luo, Y.-H.; Xia, J.-H.; Liu, J.-P.; Liu, Q.-S.
2008-01-01
In this paper, we analyze the characteristics of the phase velocity of fundamental and higher mode Rayleigh waves in a six-layer earth model. The results show that fundamental mode is more sensitive to the shear velocities of shallow layers (< 7 m) and concentrated in a very narrow band (around 18 Hz) while higher modes are more sensitive to the parameters of relatively deeper layers and distributed over a wider frequency band. These properties provide a foundation of using a multi-mode joint inversion to define S-wave velocity. Inversion results of both synthetic data and a real-world example demonstrate that joint inversion with the damped least squares method and the SVD (Singular Value Decomposition) technique to invert Rayleigh waves of fundamental and higher modes can effectively reduce the ambiguity and improve the accuracy of inverted S-wave velocities.
Ginther, O J; Hoffman, M M
2016-09-01
The interactions between side of ovary (left ovary [LO] and right ovary [RO]) and number of follicles per ovary and between side and intraovarian patterns were studied in heifers with two follicular waves (anovulatory wave 1 and ovulatory wave 2). Intraovarian patterns were on the basis of location of the dominant follicle (DF) and corpus luteum (CL) and were termed DF-CL, DF, CL, and devoid. The frequency of the DF-CL intraovarian pattern was greater for the RO than for the LO in wave 1 (80 of 121; P < 0.0004) and in wave 2 (54 of 83; P < 0.006). For each wave, the DF of the DF-CL and DF patterns was more often in the RO for the ipsilateral relationship (e.g., wave 1: 66% vs. 48%; P < 0.01) and in the LO for the contralateral relationship (52% vs. 34%; P < 0.01). An interaction between side and pattern (P < 0.05) for number of follicles in wave 2 that attained 6 mm was from a greater number in RO than in LO when a DF was present (DF-CL and DF patterns). An interaction of side and pattern for the number of wave 2 regressing subordinate follicles that recovered (increased in diameter) and became part of the subsequent wave 1 was greater (P < 0.05) for LO than for RO for the DF pattern but not for the CL pattern. An effect of side or an interaction that involved side was not found for the greater dimensions and blood flow for both the DF and CL of the DF-CL pattern. Results indicated that side interacted with ovarian pattern for number of DF-CL patterns, side of DF, number of follicles per ovary, and recovery of regressing wave 2 follicles. The hypothesis was supported that some aspects of follicle dynamics reflect an interaction of side and intraovarian pattern. Future studies on the effect of side on luteal or follicle dynamics could be incomplete or misleading if intraovarian patterns are ignored. Copyright © 2016 Elsevier Inc. All rights reserved.
Observational evidence of the downstream impact on tropical rainfall from stratospheric Kelvin waves
NASA Astrophysics Data System (ADS)
Zhang, Lei; Karnauskas, Kristopher B.; Weiss, Jeffrey B.; Polvani, Lorenzo M.
2017-08-01
Analysis of one continuous decade of daily, high-vertical resolution sounding data from five proximate islands in the western equatorial Pacific region reveals eastward and downward propagating Kelvin waves in the tropical stratosphere, with a zonal wave number one structure and a period of 15 days. By defining an initiation index, we find that these waves are primarily generated over the western Pacific warm pool and South America-tropical Atlantic sector, consistent with regions of frequent deep convection. The zonal phase speed of the stratospheric Kelvin waves (SKWs) is relatively slow ( 10 m s-1) over the initiation region due to coupling with deep convection, and becomes much faster ( 30-40 m s-1) once decoupled from the downstream troposphere. SKWs have significant impacts on downstream tropical rainfall through modulation of tropopause height. The cold phase of SKWs at tropopause leads to higher tropopause heights and more convection in tropics—with opposite impacts associated with the warm phase. Downstream tropical precipitation anomalies associated with these SKWs also propagate eastward with the same speed and zonal scale as observed SKWs. Interannual variability of the amplitude of the SKWs is shown to be associated with the Quasi-Biennial oscillation (QBO); implications for predictability are discussed.
Near-planar TS waves and longitudinal vortices in channel flow: Nonlinear interaction and focusing
NASA Technical Reports Server (NTRS)
Hall, P.; Smith, F. T.
1989-01-01
The nonlinear interaction between planar or near-planar Tollmien-Schlichting waves and longitudinal vortices, induced or input, is considered theoretically for channel flows at high Reynolds numbers. Several kinds of nonlinear interaction, dependent on the input amplitudes and wavenumbers or on previously occurring interactions, are found and inter-related. The first, Type 1, is studied the most here and it usually produces spanwise focusing of both the wave and the vortex motion, within a finite scaled time, along with enhancement of both their amplitudes. This then points to the nonlinear interaction Type 2 where new interactive effects come into force to drive the wave and the vortex nonlinearly. Types 3, 4 correspond to still higher amplitudes, with 3 being related to 2, while 4 is connected with a larger-scale interaction 5 studied in an allied paper. Both 3, 4 are subsets of the full three-dimensional triple-deck-lie interaction, 6. The strongest nonlinear interactions are those of 4, 5, 6 since they alter the mean-flow profile substantially, i.e., by an 0(1) relative amount. All the types of nonlinear interaction however can result in the formation of focussed responses in the sense of spanwise concentrations and/or amplifications of vorticity and wave amplitude.
Cai, Xiongwei; Xiao, Ting; James, Sharon Y; Da, Jiping; Lin, Dongmei; Liu, Yu; Zheng, Yang; Zou, Shuangmei; Di, Xuebing; Guo, Suping; Han, Naijun; Lu, Yong-Jie; Cheng, Shujun; Gao, Yanning; Zhang, Kaitai
2009-09-01
The small protein, HSPC300 (haematopoietic stem/progenitor cell protein 300), is associated with reorganization of actin filaments and cell movement, but its activity has not been reported in human cancer cells. Here, we investigated the association of HSPC300 expression with clinical features of lung squamous cell carcinoma. High levels of HSPC300 protein were detected in 84.1% of tumour samples, and in 30.8% of adjacent morphologically normal tissues. The number of primary tumours with elevated HSPC300 levels was significantly higher in primary tumours with lymph node metastases as opposed to those without, and also in tumours from patients with more advanced disease. HSPC300 modulates the morphology and motility of cells, as siRNA knockdown caused the reorganization of actin filaments, decreased the formation of pseudopodia, and inhibited the migration of a lung cancer cell line. We further showed that HSPC300 interacted with the WAVE2 protein, and HSPC300 silencing resulted in the degradation of WAVE2 in vitro. HSPC300 and WAVE2 were co-expressed in approximately 85.7% of primary tumours with lymph node metastases. We hypothesize that HSPC300 is associated with metastatic potential of lung squamous cell carcinoma through its interaction with WAVE2.
NASA Technical Reports Server (NTRS)
Jensen, Eric J.
2016-01-01
Recent investigations of the influence of atmospheric waves on ice nucleation in cirrus have identified a number of key processes and sensitivities: (1) ice concentrations produced by homogeneous freezing are strongly dependent on cooling rates, with gravity waves dominating upper tropospheric cooling rates; (2) rapid cooling driven by high-frequency waves are likely responsible for the rare occurrences of very high ice concentrations in cirrus; (3) sedimentation and entrainment tend to decrease ice concentrations as cirrus age; and (4) in some situations, changes in temperature tendency driven by high-frequency waves can quench ice nucleation events and limit ice concentrations. Here we use parcel-model simulations of ice nucleation driven by long-duration, constant-pressure balloon temperature time series, along with an extensive dataset of cold cirrus microphysical properties from the recent ATTREX high-altitude aircraft campaign, to statistically examine the importance of high-frequency waves as well as the consistency between our theoretical understanding of ice nucleation and observed ice concentrations. The parcel-model simulations indicate common occurrence of peak ice concentrations exceeding several hundred per liter. Sedimentation and entrainment would reduce ice concentrations as clouds age, but 1-D simulations using a wave parameterization (which underestimates rapid cooling events) still produce ice concentrations higher than indicated by observations. We find that quenching of nucleation events by high-frequency waves occurs infrequently and does not prevent occurrences of large ice concentrations in parcel simulations of homogeneous freezing. In fact, the high-frequency variability in the balloon temperature data is entirely responsible for production of these high ice concentrations in the simulations.
Joint inversion of high-frequency surface waves with fundamental and higher modes
Luo, Y.; Xia, J.; Liu, J.; Liu, Q.; Xu, S.
2007-01-01
Joint inversion of multimode surface waves for estimating the shear (S)-wave velocity has received much attention in recent years. In this paper, we first analyze sensitivity of phase velocities of multimodes of surface waves for a six-layer earth model, and then we invert surface-wave dispersion curves of the theoretical model and a real-world example. Sensitivity analysis shows that fundamental mode data are more sensitive to the S-wave velocities of shallow layers and are concentrated on a very narrow frequency band, while higher mode data are more sensitive to the parameters of relatively deeper layers and are distributed over a wider frequency band. These properties provide a foundation of using a multimode joint inversion to define S-wave velocities. Inversion results of both synthetic data and a real-world example demonstrate that joint inversion with the damped least-square method and the singular-value decomposition technique to invert high-frequency surface waves with fundamental and higher mode data simultaneously can effectively reduce the ambiguity and improve the accuracy of S-wave velocities. ?? 2007.
Cheriton, Olivia M.; McPhee-Shaw, Erika E.; Storlazzi, Curt D.; Rosenberger, Kurt J.; Shaw, William J.; Raanan, Ben Y.
2014-01-01
Several sequential upwelling events were observed in fall 2012, using measurements from the outer half of the continental shelf in Monterey Bay, during which the infiltration of dense water onto the shelf created a secondary, near-bottom pycnocline. This deep pycnocline existed in concert with the near-surface pycnocline and enabled the propagation of near-bottom, cold, semidiurnal internal tidal bores, as well as energetic, high-frequency, nonlinear internal waves of elevation (IWOE). The IWOE occurred within 20 m of the bottom, had amplitudes of 8–24 m, periods of 6–45 min, and depth-integrated energy fluxes up to 200 W m−1. Iribarren numbers (<0.03) indicate that these IWOE were nonbreaking in this region of the shelf. These observations further demonstrate how regional upwelling dynamics and the resulting bulk, cross-margin hydrography is a first-order control on the ability of internal waves, at tidal and higher frequencies, to propagate through continental shelf waters.
Ultrafast Ultrasound Imaging Using Combined Transmissions With Cross-Coherence-Based Reconstruction.
Zhang, Yang; Guo, Yuexin; Lee, Wei-Ning
2018-02-01
Plane-wave-based ultrafast imaging has become the prevalent technique for non-conventional ultrasound imaging. The image quality, especially in terms of the suppression of artifacts, is generally compromised by reducing the number of transmissions for a higher frame rate. We hereby propose a new ultrafast imaging framework that reduces not only the side lobe artifacts but also the axial lobe artifacts using combined transmissions with a new coherence-based factor. The results from simulations, in vitro wire phantoms, the ex vivo porcine artery, and the in vivo porcine heart show that our proposed methodology greatly reduced the axial lobe artifact by 25±5 dB compared with coherent plane-wave compounding (CPWC), which was considered as the ultrafast imaging standard, and suppressed side lobe artifacts by 15 ± 5 dB compared with CPWC and coherent spherical-wave compounding. The reduction of artifacts in our proposed ultrafast imaging framework led to a better boundary delineation of soft tissues than CPWC.
Millimeter-wave monolithic diode-grid frequency multiplier
NASA Technical Reports Server (NTRS)
Maserjian, Joseph (Inventor)
1990-01-01
A semiconductor diode structure useful for harmonic generation of millimeter or submillimeter wave radiation from a fundamental input wave is fabricated on a GaAs substrate. A heavily doped layer of n(sup ++) GaAs is produced on the substrate and then a layer of intrinsic GaAs on said heavily doped layer on top of which a sheet of heavy doping (++) is produced. A thin layer of intrinsic GaAs grown over the sheet is capped with two metal contacts separated by a gap to produce two diodes connected back to back through the n(sup ++) layer for multiplication of frequency by an odd multiple. If only one metal contact caps the thin layer of intrinsic GaAs, the second diode contact is produced to connect to the n(sup ++) layer for multiplication of frequency by an even number. The odd or even frequency multiple is selected by a filter. A phased array of diodes in a grid will increase the power of the higher frequency generated.
Wave and particle evolution downstream of quasi-perpendicular shocks
NASA Technical Reports Server (NTRS)
Mckean, M. E.; Omidi, N.; Krauss-Varban, D.; Karimabadi, H.
1995-01-01
Distributions of ions heated in quasi-perpendicular bow shocks have large perpendicular temperature anisotropies that provide free energy for the growth of Alfven ion cyclotron (AIC) and mirror waves. These modes are often obsreved in the Earth's magnetosheath. Using two-dimensional hybrid simulations, we show that these waves are produced near the shock front and convected downstream rather than being produced locally downstream. The wave activity reduces the proton anisotropy to magnetosheath levels within a few tens of gyroradii of the shock but takes significantly longer to reduce the anisotropy of He(++) ions. The waves are primarily driven by proton anisotropy and the dynamics of the helium ions is controlled by the proton waves. Downstream of high Mach number shocks, mirror waves compete effectively with AIC waves. Downstream of low Mach number shocks, AIC waves dominate.
SEISMIC SOURCE SCALING AND DISCRIMINATION IN DIVERSE TECTONIC ENVIRONMENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abercrombie, R E; Mayeda, K; Walter, W R
2008-07-08
The objectives of this study are to improve low-magnitude (concentrating on M2.5-5) regional seismic discrimination by performing a thorough investigation of earthquake source scaling using diverse, high-quality datasets from varied tectonic regions. Local-to-regional high-frequency discrimination requires an estimate of how earthquakes scale with size. Walter and Taylor (2002) developed the MDAC (Magnitude and Distance Amplitude Corrections) method to empirically account for these effects through regional calibration. The accuracy of these corrections has a direct impact on our ability to identify clandestine explosions in the broad regional areas characterized by low seismicity. Unfortunately our knowledge at small magnitudes (i.e., m{sub b}more » < {approx} 4.0) is poorly resolved, and source scaling remains a subject of on-going debate in the earthquake seismology community. Recently there have been a number of empirical studies suggesting scaling of micro-earthquakes is non-self-similar, yet there are an equal number of compelling studies that would suggest otherwise. It is not clear whether different studies obtain different results because they analyze different earthquakes, or because they use different methods. Even in regions that are well studied, such as test sites or areas of high seismicity, we still rely on empirical scaling relations derived from studies taken from half-way around the world at inter-plate regions. We investigate earthquake sources and scaling from different tectonic settings, comparing direct and coda wave analysis methods that both make use of empirical Green's function (EGF) earthquakes to remove path effects. Analysis of locally recorded, direct waves from events is intuitively the simplest way of obtaining accurate source parameters, as these waves have been least affected by travel through the earth. But finding well recorded earthquakes with 'perfect' EGF events for direct wave analysis is difficult, limits the number of earthquakes that can be studied. We begin with closely-located, well-correlated earthquakes. We use a multi-taper method to obtain time-domain source-time-functions by frequency division. We only accept an earthquake and EGF pair if they are able to produce a clear, time-domain source pulse. We fit the spectral ratios and perform a grid-search about the preferred parameters to ensure the fits are well constrained. We then model the spectral (amplitude) ratio to determine source parameters from both direct P and S waves. We analyze three clusters of aftershocks from the well-recorded sequence following the M5 Au Sable Forks, NY, earthquake to obtain some of the first accurate source parameters for small earthquakes in eastern North America. Each cluster contains a M{approx}2, and two contain M{approx}3, as well as smaller aftershocks. We find that the corner frequencies and stress drops are high (averaging 100 MPa) confirming previous work suggesting that intraplate continental earthquakes have higher stress drops than events at plate boundaries. We also demonstrate that a scaling breakdown suggested by earlier work is simply an artifact of their more band-limited data. We calculate radiated energy, and find that the ratio of Energy to seismic Moment is also high, around 10{sup -4}. We estimate source parameters for the M5 mainshock using similar methods, but our results are more doubtful because we do not have a EGF event that meets our preferred criteria. The stress drop and energy/moment ratio for the mainshock are slightly higher than for the aftershocks. Our improved, and simplified coda wave analysis method uses spectral ratios (as for the direct waves) but relies on the averaging nature of the coda waves to use EGF events that do not meet the strict criteria of similarity required for the direct wave analysis. We have applied the coda wave spectral ratio method to the 1999 Hector Mine mainshock (M{sub w} 7.0, Mojave Desert) and its larger aftershocks, and also to several sequences in Italy with M{approx}6 mainshocks. The Italian earthquakes have higher stress drops than the Hector Mine sequence, but lower than Au Sable Forks. These results show a departure from self-similarity, consistent with previous studies using similar regional datasets. The larger earthquakes have higher stress drops and energy/moment ratios. We perform a preliminary comparison of the two methods using the M5 Au Sable Forks earthquake. Both methods give very consistent results, and we are applying the comparison to further events.« less
Rogue waves in the Davey-Stewartson I equation.
Ohta, Yasuhiro; Yang, Jianke
2012-09-01
General rogue waves in the Davey-Stewartson-I equation are derived by the bilinear method. It is shown that the simplest (fundamental) rogue waves are line rogue waves which arise from the constant background with a line profile and then disappear into the constant background again. It is also shown that multirogue waves describe the interaction of several fundamental rogue waves. These multirogue waves also arise from the constant background and then decay back to it, but in the intermediate times, interesting curvy wave patterns appear. However, higher-order rogue waves exhibit different dynamics. Specifically, only part of the wave structure in the higher-order rogue waves rises from the constant background and then retreats back to it, and this transient wave possesses patterns such as parabolas. But the other part of the wave structure comes from the far distance as a localized lump, which decelerates to the near field and interacts with the transient rogue wave, and is then reflected back and accelerates to the large distance again.
Spectrum Gaps of Spin Waves Generated by Interference in a Uniform Nanostripe Waveguide
Wang, Qi; Zhang, Huaiwu; Ma, Guokun; Liao, Yulong; Tang, Xiaoli; Zhong, Zhiyong
2014-01-01
We studied spin waves excited by two or more excitation sources in a uniform nanostripe waveguide without periodic structures. Several distinct spectrum gaps formed by spin waves interference rather than by Bragg reflection were observed. We found the center frequency and the number of spectrum gaps of spin waves can be controlled by modulating the distance, number and width of the excitation sources. The results obtained by micromagnetic simulations agree well with that of analytical calculations. Our work therefore paves a new way to control the spectrum gaps of spin waves, which is promising for future spin wave-based devices. PMID:25082001
Biological effects of two successive shock waves focused on liver tissues and melanoma cells.
Benes, J; Sunka, P; Králová, J; Kaspar, J; Poucková, P
2007-01-01
A new generator of two successive shock waves focused to a common focal point has been developed. Cylindrical pressure waves created by multichannel electrical discharges on two cylindrical composite anodes are focused by a metallic parabolic reflector - cathode, and near the focus they are transformed to strong shock waves. Schlieren photos of the focal region have demonstrated that mutual interaction of the two waves results in generation of a large number of secondary short-wavelength shocks. Interaction of the focused shockwaves with liver tissues and cancer cell suspensions was investigated. Localized injury of rabbit liver induced by the shock waves was demonstrated by magnetic resonance imaging. Histological analysis of liver samples taken from the injured region revealed that the transition between the injured and the healthy tissues is sharp. Suspension of melanoma B16 cells was exposed and the number of the surviving cells rapidly decreased with increasing number of shocks and only 8 % of cells survived 350 shocks. Photographs of cells demonstrate that even small number of shocks results in perforation of cell membranes.
Internal waves in the Gulf of California - Observations from a spaceborne radar
NASA Technical Reports Server (NTRS)
Fu, L.-L.; Holt, B.
1984-01-01
Pronounced signatures of internal waves were detected repeatedly in the Gulf of California by the Seasat synthetic aperture radar (SAR). A series of nine images with exactly repeating ground coverage was used to study the temporal variability of the internal wave field in the area. It was found that the number of observed wave groups was highly correlated with the strength of the local tides: the maximum number occurred during spring tides and the minimum number occurred during neap tides, indicating that the internal waves were tidally forced. Most of the wave activity was found to the north of 28 deg N where the tides were the strongest in the Gulf. The application of a simple, nonlinear internal wave model to the observations indicated that the peak-to-peak amplitude of the observed waves was about 50 m with an uncertainty of a factor of 2. The estimated upper bound for the rate of the loss of tidal energy to internal waves was about 5 x 10 to the 15th erg/s, representing only 10 percent of the rate of the dissipation of the dominant M2 tide in the Gulf.
Experimental quantification of nonlinear time scales in inertial wave rotating turbulence
NASA Astrophysics Data System (ADS)
Yarom, Ehud; Salhov, Alon; Sharon, Eran
2017-12-01
We study nonlinearities of inertial waves in rotating turbulence. At small Rossby numbers the kinetic energy in the system is contained in helical inertial waves with time dependence amplitudes. In this regime the amplitude variations time scales are slow compared to wave periods, and the spectrum is concentrated along the dispersion relation of the waves. A nonlinear time scale was extracted from the width of the spectrum, which reflects the intensity of nonlinear wave interactions. This nonlinear time scale is found to be proportional to (U.k ) -1, where k is the wave vector and U is the root-mean-square horizontal velocity, which is dominated by large scales. This correlation, which indicates the existence of turbulence in which inertial waves undergo weak nonlinear interactions, persists only for small Rossby numbers.
Rogue-wave solutions of the Zakharov equation
NASA Astrophysics Data System (ADS)
Rao, Jiguang; Wang, Lihong; Liu, Wei; He, Jingsong
2017-12-01
Using the bilinear transformation method, we derive general rogue-wave solutions of the Zakharov equation. We present these Nth-order rogue-wave solutions explicitly in terms of Nth-order determinants whose matrix elements have simple expressions. We show that the fundamental rogue wave is a line rogue wave with a line profile on the plane ( x, y) arising from a constant background at t ≪ 0 and then gradually tending to the constant background for t ≫ 0. Higher-order rogue waves arising from a constant background and later disappearing into it describe the interaction of several fundamental line rogue waves. We also consider different structures of higher-order rogue waves. We present differences between rogue waves of the Zakharov equation and of the first type of the Davey-Stewartson equation analytically and graphically.
Brain stem auditory-evoked response of the nonanesthetized dog.
Marshall, A E
1985-04-01
The brain stem auditory evoked-response was measured from a group of 24 healthy dogs under conditions suitable for clinical diagnostic use. The waveforms were identified, and analysis of amplitude ratios, latencies, and interpeak latencies were done. The group was subdivided into subgroups based on tranquilization, nontranquilization, sex, and weight. Differences were not observed among any of these subgroups. All dogs responded to the click stimulus from 30 dB to 90 dB, but only 62.5% of the dogs responded at 5 dB. The total number of peaks averaged 1.6 at 5 dB, increased linearly to 6.5 at 50 dB, and remained at 6.5 to 90 dB. Frequency of recognizability of each wave was tabulated for each stimulus intensity tested; recognizability increased with increased stimulus intensity. Amplitudes of waves increased with increasing stimulus intensity, but were highly variable. The 4th wave had the greatest amplitude at the lower stimulus intensities, and the 1st wave had the greatest amplitude at the higher stimulus intensities. Amplitude ratio of the 1st to 5th wave was greater than 1 at less than or equal to 50 dB stimulus intensity, and was 1 for stimulus intensities greater than 50 dB. Interpeak latencies did not change relative to stimulus intensities. Peak latencies of each wave averaged at 5-dB hearing level for the 1st to 6th waves were 2.03, 2.72, 3.23, 4.14, 4.41, and 6.05 ms, respectively; latencies of these 6 waves at 90 dB were 0.92, 1.79, 2.46, 3.03, 3.47, and 4.86 ms, respectively. Latency decreased between 0.009 to 0.014 ms/dB for the waves.
The Damage To The Armour Layer Due To Extreme Waves
NASA Astrophysics Data System (ADS)
Oztunali Ozbahceci, Berguzar; Ergin, Aysen; Takayama, Tomotsuka
2010-05-01
The sea waves are not regular but random and chaotic. In order to understand this randomness, it is common to make individual wave analysis in time domain or spectral analysis in frequency domain. Characteristic wave heights like Hmax, H%2,H1-10, H1-3, Hmean are obtained through individual wave analysis in time domain. These characteristic wave heights are important because they are used in the design of different type of coastal structures. It is common to use significant wave height, H1-3,for the design of rubble mound structures. Therefore, only spectrally derived or zero-crossing significant wave height is usually reported for the rubble mound breakwaters without any information on larger waves. However, even the values of H1-3are similar; some train of irregular waves may exhibit a large fluctuation of instantaneous wave energy, while another train may not show such a fluctuation (Goda, 1998). Moreover, freak or rogue wave, simply defined as the wave exceeding at least twice the significant wave height may also occur. Those larger waves were called as extreme waves in this study and the effect of extreme waves on the damage to the armour layer of rubble mound breakwaters was investigated by means of hydraulic model experiment. Rock armored rubble mound breakwater model with 1:1.5 slope was constructed in the wave channel of Hydraulics Laboratory of the Disaster Prevention Research Institute of Kyoto University, Japan. The model was consisted of a permeable core layer, a filter and armour layer with two stones thicknesses. Size of stones were same for both of the slopes as Dn50(armour)=0.034m, Dn50(filter)=0.021m and Dn50(core)=0.0148m for armour, filter and core layers, respectively. Time series which are approximately equal to 1000 waves, with similar significant wave height but different extreme wave height cases were generated. In order to generate necessary time series in the wave channel, they were firstly computed by numerically. For the numerical computation of wave time series, Deterministic Spectral Amplitude (DSA) model with FFT algorithm was used. It is possible to get thousands of time series which have different wave statistics in DSA model by setting up the target spectrum and using random numbers for phase angles (Tuah et.al. 1982). Multi-reflection in the wave channel was minimized by the absorption mode of wave generator. Incident wave energy spectrum was obtained by using the separation method introduced by Goda and Suzuki (1976). Three wave gauges in front of the model were used for the separation. Individual wave heights were determined by zero-up crossing method after obtaining incident wave train. After each test, damage of the breakwater was calculated. Van der Meer's (1988) definition of damage level, S, was used in the calculations as: S= Ae/Dn502 (1) where; Ae= Eroded area, Dn50: nominal diameter of armour stone In order to get eroded area, the profile of armour layer was measured by laser equipment through nine lines along the section. Results of the experiments indicate that the higher the extreme waves are, the more destructive the wave train is, even the data is scattered. The damage was also calculated by using Van der Meer's formulae (1988) and compared with the experimental results. The comparison shows that the damages are more than the expected results in the cases where at least one wave height in the train is higher than the twice of H1-3. In fact, the damage results calculated by Van der Meer's formulae form the lower boundary for the higher extreme wave cases. It is also found that the damage is highly correlated to the ratios of characteristic waves like H1-10/H1-3 or H1-20/H1-3. Therefore, the parameter αextreme covering the effect of all extreme waves is proposed. References Goda, Y. and Suzuki, Y. (1976) .' Estimation of Incident and Reflected Waves in Random wave experiments.' Proc. 15th. Int. Conf. Coastal Engg., Hawai,1976, pp.828-845. Goda Y. (1998), 'An Overview of Coastal Engineering With Emphasis On Random Wave Approach', Coastal Engineering Journal, vol.40, No:1, pp. 1-21, World Scientific Pub. and JSCE Tuah, H, Hudspeth, RT (1982).'Comparisons of Numerical Random Sea Simulations,' Jour. Waterway, Port, Coastal and Ocean Engineering, Vol. 108, pp 569-584. Van der Meer, J.W,(1988). Rock Slopes and gravel beaches under wave attack. Ph.D thesis, Netherland.
Novel Tiltmeter for Monitoring Angle Shift In Incident Waves
2008-12-01
40th Annual Precise Time and Time Interval (PTTI) Meeting 559 NOVEL TILTMETER FOR MONITORING ANGLE SHIFT IN INCIDENT WAVES S... Tiltmeter For Monitoring Angle Shift In Incident Waves 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...up, any angle change of the incident beam ’θ results in a change of the intensity transmission of the resonator. A NOVEL ANGLE TILTMETER
2012-03-01
AFRL-RX-WP-TP-2012-0278 LOAD-DIFFERENTIAL IMAGING FOR DETECTION AND LOCALIZATION OF FATIGUE CRACKS USING LAMB WAVES (PREPRINT) X. Chen...OF FATIGUE CRACKS USING LAMB WAVES (PREPRINT) 5a. CONTRACT NUMBER FA8650-09-C-5206 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62102F 6...Jan 2012. Preprint journal article to be submitted to NDT & E. This document contains color. 14. ABSTRACT Fatigue cracks are common and
NASA Astrophysics Data System (ADS)
Semenov, A. N.; Gaponov, S. A.
2017-10-01
Based the direct numerical simulation in the paper the supersonic flow around of the infinitely thin plate, which was perturbed by the acoustic wave, was investigated. Calculations carried out in the case of small perturbations at the Mach number M=2 and Reynold's numbers Re<600. It is established that the velocity perturbation amplitude within the boundary layer is greater than the amplitude of the external acoustic wave in several times, the maximum amplitude growth is reached 10. At the small sliding and incidence angles the velocity perturbations amplitude increased monotonously with Reynold's numbers. At rather great values of these angles there are maxima in dependences of the velocity perturbations amplitude on the Reynold's number. The oscillations exaltation in the boundary layer by the sound wave more efficiently if the plate is irradiated from above. At the fixed Reynolds's number and frequency there are critical values of the sliding and incidence angles (χ, φ) at which the disturbances excited by a sound wave are maxima. At M=2 it takes place at χ≈ φ ≈30°. The excitation efficiency of perturbations in the boundary layer increases with the Mach number, and it decreases with a frequency.
Turbulence regeneration in pipe flow at moderate Reynolds numbers.
Hof, Björn; van Doorne, Casimir W H; Westerweel, Jerry; Nieuwstadt, Frans T M
2005-11-18
We present the results of an experimental investigation into the nature and structure of turbulent pipe flow at moderate Reynolds numbers. A turbulence regeneration mechanism is identified which sustains a symmetric traveling wave within the flow. The periodicity of the mechanism allows comparison to the wavelength of numerically observed exact traveling wave solutions and close agreement is found. The advection speed of the upstream turbulence laminar interface in the experimental flow is observed to form a lower bound on the phase velocities of the exact traveling wave solutions. Overall our observations suggest that the dynamics of the turbulent flow at moderate Reynolds numbers are governed by unstable nonlinear traveling waves.
Three-dimensional freak waves and higher-order wave-wave resonances
NASA Astrophysics Data System (ADS)
Badulin, S. I.; Ivonin, D. V.; Dulov, V. A.
2012-04-01
Quite often the freak wave phenomenon is associated with the mechanism of modulational (Benjamin-Feir) instability resulted from resonances of four waves with close directions and scales. This weakly nonlinear model reflects some important features of the phenomenon and is discussing in a great number of studies as initial stage of evolution of essentially nonlinear water waves. Higher-order wave-wave resonances attract incomparably less attention. More complicated mathematics and physics explain this disregard partially only. The true reason is a lack of adequate experimental background for the study of essentially three-dimensional water wave dynamics. We start our study with the classic example of New Year Wave. Two extreme events: the famous wave 26.5 meters and one of smaller 18.5 meters height (formally, not freak) of the same record, are shown to have pronounced features of essentially three-dimensional five-wave resonant interactions. The quasi-spectra approach is used for the data analysis in order to resolve adequately frequencies near the spectral peak fp ≈ 0.057Hz and, thus, to analyze possible modulations of the dominant wave component. In terms of the quasi-spectra the above two anomalous waves show co-existence of the peak harmonic and one at frequency f5w = 3/2fp that corresponds to maximum of five-wave instability of weakly nonlinear waves. No pronounced marks of usually discussed Benjamin-Feir instability are found in the record that is easy to explain: the spectral peak frequency fp corresponds to the non-dimensional depth parameter kD ≈ 0.92 (k - wavenumber, D ≈ 70 meters - depth at the Statoil platform Draupner site) that is well below the shallow water limit of the instability kD = 1.36. A unique data collection of wave records of the Marine Hydrophysical Institute in the Katsiveli platform (Black Sea) has been analyzed in view of the above findings of possible impact of the five-wave instability on freak wave occurrence. The data cover period October 14 - November 6, 2009 almost continuously. Antenna of 6 resistance wave gauges (a pentagon with one center gauge) is used to gain information on wave directions. Wave conditions vary from perfect still to storms with significant wave heights up to Hs = 1.7 meters and wind speeds 15m/s. Measurements with frequency 10Hz for dominant frequencies 0.1 - 0.2Hz fixed 40 freak wave events (criterium H/Hs > 2) and showed no dependence on Hs definitely. Data processing within frequency quasi-spectra approach and directional spectra reconstructions found pronounced features of essentially three-dimensional anomalous waves. All the events are associated with dramatic widening of instant frequency spectra in the range fp - f5w and stronger directional spreading. On the contrary, the classic Benjamin-Feir modulations show no definite links with the events and can be likely treated as dynamically neutral part of wave field. The apparent contradiction with the recent study (Saprykina, Dulov, Kuznetsov, Smolov, 2010) based on the same data collection can be explained partially by features of data processing. Physical roots of the inconsistency should be detailed in further studies. The work was supported by the Russian government contract 11.G34.31.0035 (signed 25 November 2010), Russian Foundation for Basic Research grant 11-05-01114-a, Ukrainian State Agency of Science, Innovations and Information under Contract M/412-2011 and ONR grant N000141010991. Authors gratefully acknowledge continuing support of these foundations.
NASA Astrophysics Data System (ADS)
Bendahmane, Issam; Triki, Houria; Biswas, Anjan; Saleh Alshomrani, Ali; Zhou, Qin; Moshokoa, Seithuti P.; Belic, Milivoj
2018-02-01
We present solitary wave solutions of an extended nonlinear Schrödinger equation with higher-order odd (third-order) and even (fourth-order) terms by using an ansatz method. The including high-order dispersion terms have significant physical applications in fiber optics, the Heisenberg spin chain, and ocean waves. Exact envelope solutions comprise bright, dark and W-shaped solitary waves, illustrating the potentially rich set of solitary wave solutions of the extended model. Furthermore, we investigate the properties of these solitary waves in nonlinear and dispersive media. Moreover, specific constraints on the system parameters for the existence of these structures are discussed exactly. The results show that the higher-order dispersion and nonlinear effects play a crucial role for the formation and properties of propagating waves.
NASA Technical Reports Server (NTRS)
Kleinstein, G. G.; Gunzburger, M. D.
1976-01-01
An integral conservation law for wave numbers is considered. In order to test the validity of the proposed conservation law, a complete solution for the reflection and transmission of an acoustic wave impinging normally on a material interface moving at a constant speed is derived. The agreement between the frequency condition thus deduced from the dynamic equations of motion and the frequency condition derived from the jump condition associated with the integral equation supports the proposed law as a true conservation law. Additional comparisons such as amplitude discontinuities and Snells' law in a moving media further confirm the stated proposition. Results are stated concerning frequency and wave number relations across a shock front as predicted by the proposed conservation law.
Structural relaxation in supercooled orthoterphenyl.
Chong, S-H; Sciortino, F
2004-05-01
We report molecular-dynamics simulation results performed for a model of molecular liquid orthoterphenyl in supercooled states, which we then compare with both experimental data and mode-coupling-theory (MCT) predictions, aiming at a better understanding of structural relaxation in orthoterphenyl. We pay special attention to the wave number dependence of the collective dynamics. It is shown that the simulation results for the model share many features with experimental data for real system, and that MCT captures the simulation results at the semiquantitative level except for intermediate wave numbers connected to the overall size of the molecule. Theoretical results at the intermediate wave number region are found to be improved by taking into account the spatial correlation of the molecule's geometrical center. This supports the idea that unusual dynamical properties at the intermediate wave numbers, reported previously in simulation studies for the model and discernible in coherent neutron-scattering experimental data, are basically due to the coupling of the rotational motion to the geometrical-center dynamics. However, there still remain qualitative as well as quantitative discrepancies between theoretical prediction and corresponding simulation results at the intermediate wave numbers, which call for further theoretical investigation.
NASA Astrophysics Data System (ADS)
Xiong, Jiangang; Wan, Weixing; Ding, Feng; Liu, Libo; Hu, Lianhuan; Yan, Chunxiao
2018-04-01
Quasi-two day wave propagating westward with wave number 1 (W1) in January 2017 is studied using global temperature observed by Sounding of the Atmosphere using Broadband Emission Radiometry and wind observed by a meteor radar at Fuke, China (19.0°N, 109.8°E). The amplitude of W1 significantly enhances during January 2017, when two stratospheric warming events occur. The temperature perturbation of W1 reaches maximum amplitude of more than 6 K at latitude ±15° around 84 km and 95 km. The structure of temperature W1 is symmetric with regard to the equator. The temporal variation of W1 is consistent with the stationary planetary wave with wave number 2 (SPW2), but contrary to the quasi-two day wave propagating westward with wave number 3 (W3). When SPW2 is large during two sudden stratospheric warming events, energy transfers from W3 to W1. Two bursts of the 2 day wave in meridional wind observed by the meteor radar are just corresponding to the local maxima of W3 and W1, respectively. We conclude that during January 2017, W1 is generated by the nonlinear interaction between SPW2 and W3. SPW2 which is modulated by the quasi-16 day perturbation in the stratosphere plays a key role in the energy transmission from W3 to W1, and it is responsible for the 16 day variation of W1.
Role of quasiresonant planetary wave dynamics in recent boreal spring-to-autumn extreme events
Petoukhov, Vladimir; Petri, Stefan; Rahmstorf, Stefan; Coumou, Dim; Kornhuber, Kai; Schellnhuber, Hans Joachim
2016-01-01
In boreal spring-to-autumn (May-to-September) 2012 and 2013, the Northern Hemisphere (NH) has experienced a large number of severe midlatitude regional weather extremes. Here we show that a considerable part of these extremes were accompanied by highly magnified quasistationary midlatitude planetary waves with zonal wave numbers m = 6, 7, and 8. We further show that resonance conditions for these planetary waves were, in many cases, present before the onset of high-amplitude wave events, with a lead time up to 2 wk, suggesting that quasiresonant amplification (QRA) of these waves had occurred. Our results support earlier findings of an important role of the QRA mechanism in amplifying planetary waves, favoring recent NH weather extremes. PMID:27274064
NASA Astrophysics Data System (ADS)
Tanimoto, Toshiro; Hadziioannou, Céline; Igel, Heiner; Wasserman, Joachim; Schreiber, Ulrich; Gebauer, André
2015-04-01
Using a colocated ring laser and an STS-2 seismograph, we estimate the ratio of Rayleigh-to-Love waves in the secondary microseism at Wettzell, Germany, for frequencies between 0.13 and 0.30 Hz. Rayleigh wave surface acceleration was derived from the vertical component of STS-2, and Love wave surface acceleration was derived from the ring laser. Surface wave amplitudes are comparable; near the spectral peak about 0.22 Hz, Rayleigh wave amplitudes are about 20% higher than Love wave amplitudes, but outside this range, Love wave amplitudes become higher. In terms of the kinetic energy, Rayleigh wave energy is about 20-35% smaller on average than Love wave energy. The observed secondary microseism at Wettzell thus consists of comparable Rayleigh and Love waves but contributions from Love waves are larger. This is surprising as the only known excitation mechanism for the secondary microseism, described by Longuet-Higgins (1950), is equivalent to a vertical force and should mostly excite Rayleigh waves.
Higher-order geodesic deviation for charged particles and resonance induced by gravitational waves
NASA Astrophysics Data System (ADS)
Heydari-Fard, M.; Hasani, S. N.
We generalize the higher-order geodesic deviation for the structure-less test particles to the higher-order geodesic deviation equations of the charged particles [R. Kerner, J. W. van Holten and R. Colistete Jr., Class. Quantum Grav. 18 (2001) 4725]. By solving these equations for charged particles moving in a constant magnetic field in the spacetime of a gravitational wave, we show for both cases when the gravitational wave is parallel and perpendicular to the constant magnetic field, a magnetic resonance appears at wg = Ω. This feature might be useful to detect the gravitational wave with high frequencies.
NASA Astrophysics Data System (ADS)
Cohen, Z.; Breneman, A. W.; Cattell, C. A.; Davis, L.; Grul, P.; Kersten, K.; Wilson, L. B., III
2017-12-01
Determining the role of plasma waves in providing energy dissipation at shock waves is of long-standing interest. Interplanetary (IP) shocks serve as a large database of low Mach number shocks. We examine electric field waveforms captured by the Time Domain Sampler (TDS) on the STEREO spacecraft during the ramps of IP shocks, with emphasis on captures lasting 2.1 seconds. Previous work has used captures of shorter duration (66 and 131 ms on STEREO, and 17 ms on WIND), which allowed for observation of waves with maximum (minimum) frequencies of 125 kHz (15 Hz), 62.5 kHz (8 Hz), and 60 kHz (59 Hz), respectively. The maximum frequencies are comparable to 2-8 times the plasma frequency in the solar wind, enabling observation of Langmuir waves, ion acoustic, and some whistler-mode waves. The 2 second captures resolve lower frequencies ( few Hz), which allows us to analyze packet structure of the whistler-mode waves and some ion acoustic waves. The longer capture time also improves the resolvability of simultaneous wave modes and of waves with frequencies on the order of 10s of Hz. Langmuir waves, however, cannot be identified at this sampling rate, since the plasma frequency is usually higher than 3.9 kHz. IP shocks are identified from multiple databases (Helsinki heliospheric shock database at http://ipshocks.fi, and the STEREO level 3 shock database at ftp://stereoftp.nascom.nasa.gov/pub/ins_data/impact/level3/). Our analysis focuses on TDS captures in shock ramp regions, with ramp durations determined from magnetic field data taken at 8 Hz. Software is used to identify multiple wave modes in any given capture and classify waves as Langmuir, ion acoustic, whistler, lower hybrid, electron cyclotron drift instability, or electrostatic solitary waves. Relevant frequencies are determined from density and magnetic field data collected in situ. Preliminary results suggest that large amplitude (∼ 5 mV/m) ion acoustic waves are most prevalent in the ramp, in agreement with Wilson, et al. Other modes are also observed. Statistical results will be presented and compared with previous studies and theoretical predictions.
Short-crested waves in the surf zone
NASA Astrophysics Data System (ADS)
Wei, Zhangping; Dalrymple, Robert A.; Xu, Munan; Garnier, Roland; Derakhti, Morteza
2017-05-01
This study investigates short-crested waves in the surf zone by using the mesh-free Smoothed Particle Hydrodynamics model, GPUSPH. The short-crested waves are created by generating intersecting wave trains in a numerical wave basin with a beach. We first validate the numerical model for short-crested waves by comparison with large-scale laboratory measurements. Then short-crested wave breaking over a planar beach is studied comprehensively. We observe rip currents as discussed in Dalrymple (1975) and undertow created by synchronous intersecting waves. The wave breaking of the short-crested wavefield created by the nonlinear superposition of intersecting waves and wave-current interaction result in the formation of isolated breakers at the ends of breaking wave crests. Wave amplitude diffraction at these isolated breakers gives rise to an increase in the alongshore wave number in the inner surf zone. Moreover, 3-D vortices and multiple circulation cells with a rotation frequency much lower than the incident wave frequency are observed across the outer surf zone to the beach. Finally, we investigate vertical vorticity generation under short-crested wave breaking and find that breaking of short-crested waves generates vorticity as pointed out by Peregrine (1998). Vorticity generation is not only observed under short-crested waves with a limited number of wave components but also under directional wave spectra.
Properies of the microseism wave field in Australia from three component array data
NASA Astrophysics Data System (ADS)
Gal, Martin; Reading, Anya; Ellingsen, Simon; Koper, Keith; Burlacu, Relu; Tkalčić, Hrvoje
2016-04-01
In the last two decades, ambient noise studies in the range of 1-20 seconds have predominantly focused on the analysis of source regions for Rayleigh and P waves. The theoretical excitation of these phases is well understood for primary microseisms (direct coupling of gravity waves in sloping shallow bathymetry) and secondary microseisms (wave-wave interaction) and correlates well with observations. For Love waves, the excitation mechanism in the secondary microseism band is to date unknown. It has been shown, that LQ waves can exhibit larger amplitudes than Rg waves for certain frequencies. Therefore detailed analysis of the wave field are necessary to find indications on the generation mechanism. We analyse data from two spiral-shaped arrays located in Australia, the Pilbara Array (PSAR) in the North-West and an array in South Queensland (SQspa) in the East. The two arrays are different in aperture and allow for the study of primary and secondary microseisms with SQspa and higher secondary microseisms with PSAR. We use a deconvolution enhanced beamforming approach, which is based on the CLEAN algorithm. It allows the accurate detection of weaker sources and the estimation of power levels on each component or wave type. For PSAR we evaluate 1 year of data in the frequency range of 0.35-1 Hz and find fundamental and higher mode Rg and LQ waves. For the low end of the frequency range, we find the strongest fundamental mode Rg waves to originate from multiple direction, but confined to coastline reflectors, i.e. coastlines that are perpendicular to the main swell direction, while higher mode Rg waves are mainly generated in the Great Australian Bight. For higher frequencies, the source locations of Rg waves move toward the north coast, which is closest to the array and we see an increase in the Lg phase. The majority of fundamental LQ waves are generated at the west coast of Australia and we find some agreement between low frequency Rg and LQ source locations, which becomes uncorrelated with increasing frequency. For higher mode LQ waves the generation region is in the south-west, where Australia is exposed to direct swells from the Antarctic. In the case of Rg-to-LQ power ratio, we find a frequency and backazimuth dependence. Results from SQspa allow lower frequency arrivals around the primary and secondary microseism peak to be investigated.
An Investigation in Atmospheric Dynamics and Its Effects on Optical Emissions
1991-08-01
waves are as follows: (1) Power spectrum analyses of simultaneous phot01- tric observations 11... of mesospheric and lower thermospheric optical...MAPSTAR Campaign) se-ms to show a surprisingly large number of power peaks with short periods. This would seem to suggest that the higher Fourier...directly aid hame aixrlcw height changes can be est-maed. •idle sawb of ouw results are known qualitatively to G. W. specalists, to ouw ) kowledge there has
Lattice vibrations in the Frenkel-Kontorova model. I. Phonon dispersion, number density, and energy
NASA Astrophysics Data System (ADS)
Meng, Qingping; Wu, Lijun; Welch, David O.; Zhu, Yimei
2015-06-01
We studied the lattice vibrations of two interpenetrating atomic sublattices via the Frenkel-Kontorova (FK) model of a linear chain of harmonically interacting atoms subjected to an on-site potential using the technique of thermodynamic Green's functions based on quantum field-theoretical methods. General expressions were deduced for the phonon frequency-wave-vector dispersion relations, number density, and energy of the FK model system. As the application of the theory, we investigated in detail cases of linear chains with various periods of the on-site potential of the FK model. Some unusual but interesting features for different amplitudes of the on-site potential of the FK model are discussed. In the commensurate structure, the phonon spectrum always starts at a finite frequency, and the gaps of the spectrum are true ones with a zero density of modes. In the incommensurate structure, the phonon spectrum starts from zero frequency, but at a nonzero wave vector; there are some modes inside these gap regions, but their density is very low. In our approximation, the energy of a higher-order commensurate state of the one-dimensional system at a finite temperature may become indefinitely close to the energy of an incommensurate state. This finding implies that the higher-order incommensurate-commensurate transitions are continuous ones and that the phase transition may exhibit a "devil's staircase" behavior at a finite temperature.
NASA Astrophysics Data System (ADS)
Tellmann, Silvia; Pätzold, Martin; Häusler, Bernd; Tyler, Leonard G.; Hinson, David P.
2015-11-01
Stationary (Rossby) Waves are excited by the interaction of the zonally varying topography with the strong eastward winter jets. They lead to distinctive longitudinal temperature variations which contribute significantly to the asymmetry of the seasonal polar CO2 ice caps and are also important for the dust redistribution in the planetary atmosphere.Radio Science profiles from the Mars Express Radio Science Experiment MaRS at northern and southern high latitudes are used to gain insight into winter stationary wave structures on both hemispheres.Mars Global Surveyor (MGS) radio occultation measurements from the same season and year with their exceptionally good longitudinal and temporal coverage can be used to estimate the influence of transient eddies. Transient waves are especially important in the northern winter hemisphere.Wave number 2 stationary waves, driven by topography, are dominant in the northern winter latitudes while the wave number 1 wave is the most significant wave number during southern winter. The wave amplitudes peak around winter solstice on both hemispheres.Radio occultation measurements provide the unique opportunity to determine simultaneous measurements of temperature and geopotential height structures. Assuming geostrophic balance, these measurements can be used to determine meridional winds and eddy heat fluxes which provide further insight into the contribution of stationary waves to the heat exchange between the poles and the lower latitudes.
Yao, Yu-Qin; Li, Ji; Han, Wei; Wang, Deng-Shan; Liu, Wu-Ming
2016-01-01
The intrinsic nonlinearity is the most remarkable characteristic of the Bose-Einstein condensates (BECs) systems. Many studies have been done on atomic BECs with time- and space- modulated nonlinearities, while there is few work considering the atomic-molecular BECs with space-modulated nonlinearities. Here, we obtain two kinds of Jacobi elliptic solutions and a family of rational solutions of the atomic-molecular BECs with trapping potential and space-modulated nonlinearity and consider the effect of three-body interaction on the localized matter wave solutions. The topological properties of the localized nonlinear matter wave for no coupling are analysed: the parity of nonlinear matter wave functions depends only on the principal quantum number n, and the numbers of the density packets for each quantum state depend on both the principal quantum number n and the secondary quantum number l. When the coupling is not zero, the localized nonlinear matter waves given by the rational function, their topological properties are independent of the principal quantum number n, only depend on the secondary quantum number l. The Raman detuning and the chemical potential can change the number and the shape of the density packets. The stability of the Jacobi elliptic solutions depends on the principal quantum number n, while the stability of the rational solutions depends on the chemical potential and Raman detuning. PMID:27403634
Geometric Effects on the Amplification of First Mode Instability Waves
NASA Technical Reports Server (NTRS)
Kirk, Lindsay C.; Candler, Graham V.
2013-01-01
The effects of geometric changes on the amplification of first mode instability waves in an external supersonic boundary layer were investigated using numerical techniques. Boundary layer stability was analyzed at Mach 6 conditions similar to freestream conditions obtained in quiet ground test facilities so that results obtained in this study may be applied to future test article design to measure first mode instability waves. The DAKOTA optimization software package was used to optimize an axisymmetric geometry to maximize the amplification of the waves at first mode frequencies as computed by the 2D STABL hypersonic boundary layer stability analysis tool. First, geometric parameters such as nose radius, cone half angle, vehicle length, and surface curvature were examined separately to determine the individual effects on the first mode amplification. Finally, all geometric parameters were allowed to vary to produce a shape optimized to maximize the amplification of first mode instability waves while minimizing the amplification of second mode instability waves. Since first mode waves are known to be most unstable in the form of oblique wave, the geometries were optimized using a broad range of wave frequencies as well as a wide range of oblique wave angles to determine the geometry that most amplifies the first mode waves. Since first mode waves are seen most often in flows with low Mach numbers at the edge of the boundary layer, the edge Mach number for each geometry was recorded to determine any relationship between edge Mach number and the stability of first mode waves. Results indicate that an axisymmetric cone with a sharp nose and a slight flare at the aft end under the Mach 6 freestream conditions used here will lower the Mach number at the edge of the boundary layer to less than 4, and the corresponding stability analysis showed maximum first mode N factors of 3.
Excess mortality related to the August 2003 heat wave in France
Fouillet, Anne; Rey, Grégoire; Laurent, Françoise; Pavillon, Gérard; Bellec, Stéphanie; Ghihenneuc-Jouyaux, Chantal; Clavel, Jacqueline; Jougla, Eric; Hémon, Denis
2006-01-01
Objectives From August 1st to 20th, 2003, the mean maximum temperature in France exceeded the seasonal norm by 11 to 12°C on nine consecutive days. A major increase in mortality was then observed, which main epidemiological features are described herein. Methods The number of deaths observed from August to November, 2003 in France was compared to those expected on the basis of the mortality rates observed from 2000 to 2002 and the 2003 population estimates. Results From August 1st to 20th, 2003, 15000 excess deaths were observed. From 35 years age, the excess mortality was marked and increased with age. It was 15% higher in women than in men of comparable age as of age 45 years. Excess mortality at home and in retirement institutions was greater than that in hospitals. The mortality of widowed, single and divorced subjects was greater than that of married people. Deaths directly related to heat, heatstroke, hyperthermia and dehydration increased massively. Cardiovascular diseases, ill-defined morbid disorders, respiratory diseases and nervous system diseases also markedly contributed to the excess mortality. The geographic variations in mortality showed a clear age-dependent relationship with the number of very hot days. No harvesting effect was observed. Conclusions Heat waves must be considered as a threat to European populations living in climates that are currently temperate. While the elderly and people living alone are particularly vulnerable to heat waves, no segment of the population may be considered protected from the risks associated with heat waves. PMID:16523319
Semidiurnal Solar Tide during the Fall Transition in the Northern Hemisphere
NASA Astrophysics Data System (ADS)
Conte, J. F.; Chau, J. L.; Laskar, F.; Stober, G.; Schmidt, H.
2017-12-01
We present an analysis of the semidiurnal solar tide (S2) during the fall transition in the Northern Hemisphere mesosphere and lower thermosphere (MLT) region. The tidal information has been derived from wind measurements provided by meteor radars at Andenes (69°N) and Juliusruh (54°N). During the autumn, S2 is characterized by a sudden and pronounced decrease occurring around day 285, every year and at all height levels. The spring transition also shows a decrease of S2, but that progressively extends from lower to higher altitudes during an interval of 15 to 40 days whose starting date varies from one year to the next. Possible explanations for the differences observed between fall and spring time periods are investigated using Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA) simulations of zonal and meridional winds, as well as ozone concentrations. Our results indicate that both, the westward propagating wave number 2 migrating tide (SW2) and the westward propagating wave number 1 non-migrating tide (SW1) decrease significantly during the fall, which results in a pronounced decrease of S2, as seen in the observations. During the spring, SW2 also decreases while SW1 remains approximately constant or slightly increases, resulting in a not so pronounced and more extended in time decrease of S2. SW2 and ozone concentrations do not show significant differences from one year to the next. SW1 on the other hand, presents considerable variability, which suggests that its source might be connected to interaction with other waves, such as gravity and planetary waves.
Matrix basis for plane and modal waves in a Timoshenko beam.
Claeyssen, Julio Cesar Ruiz; Tolfo, Daniela de Rosso; Tonetto, Leticia
2016-11-01
Plane waves and modal waves of the Timoshenko beam model are characterized in closed form by introducing robust matrix basis that behave according to the nature of frequency and wave or modal numbers. These new characterizations are given in terms of a finite number of coupling matrices and closed form generating scalar functions. Through Liouville's technique, these latter are well behaved at critical or static situations. Eigenanalysis is formulated for exponential and modal waves. Modal waves are superposition of four plane waves, but there are plane waves that cannot be modal waves. Reflected and transmitted waves at an interface point are formulated in matrix terms, regardless of having a conservative or a dissipative situation. The matrix representation of modal waves is used in a crack problem for determining the reflected and transmitted matrices. Their euclidean norms are seen to be dominated by certain components at low and high frequencies. The matrix basis technique is also used with a non-local Timoshenko model and with the wave interaction with a boundary. The matrix basis allows to characterize reflected and transmitted waves in spectral and non-spectral form.
Reconstruction of piano hammer force from string velocity.
Chaigne, Antoine
2016-11-01
A method is presented for reconstructing piano hammer forces through appropriate filtering of the measured string velocity. The filter design is based on the analysis of the pulses generated by the hammer blow and propagating along the string. In the five lowest octaves, the hammer force is reconstructed by considering two waves only: the incoming wave from the hammer and its first reflection at the front end. For the higher notes, four- or eight-wave schemes must be considered. The theory is validated on simulated string velocities by comparing imposed and reconstructed forces. The simulations are based on a nonlinear damped stiff string model previously developed by Chabassier, Chaigne, and Joly [J. Acoust. Soc. Am. 134(1), 648-665 (2013)]. The influence of absorption, dispersion, and amplitude of the string waves on the quality of the reconstruction is discussed. Finally, the method is applied to real piano strings. The measured string velocity is compared to the simulated velocity excited by the reconstructed force, showing a high degree of accuracy. A number of simulations are compared to simulated strings excited by a force derived from measurements of mass and acceleration of the hammer head. One application to an historic piano is also presented.
Technical considerations for designing low-cost, long-wave infrared objectives
NASA Astrophysics Data System (ADS)
Desroches, Gerard; Dalzell, Kristy; Robitaille, Blaise
2014-06-01
With the growth of uncooled infrared imaging in the consumer market, the balance between cost implications and performance criteria in the objective lens must be examined carefully. The increased availability of consumer-grade, long-wave infrared cameras is related to a decrease in military usage but it is also due to the decreasing costs of the cameras themselves. This has also driven up demand for low-cost, long-wave objectives that can resolve smaller pixels while maintaining high performance. Smaller pixels are traditionally associated with high cost objectives because of higher resolution requirements but, with careful consideration of all the requirements and proper selection of materials, costs can be moderated. This paper examines the cost/performance trade-off implications associated with optical and mechanical requirements of long-wave infrared objectives. Optical performance, f-number, field of view, distortion, focus range and thermal range all affect the cost of the objective. Because raw lens material cost is often the most expensive item in the construction, selection of the material as well as the shape of the lens while maintaining acceptable performance and cost targets were explored. As a result of these considerations, a low-cost, lightweight, well-performing objective was successfully designed, manufactured and tested.
On the propagation of hydromagnetic waves in a plasma of thermal and suprathermal components
NASA Astrophysics Data System (ADS)
Kumar, Nagendra; Sikka, Himanshu
2007-12-01
The propagation of MHD waves is studied when two ideal fluids, thermal and suprathermal gases, coupled by magnetic field are moving with the steady flow velocity. The fluids move independently in a direction perpendicular to the magnetic field but gets coupled along the field. Due to the presence of flow in suprathermal and thermal fluids there appears forward and backward waves. All the forward and backward modes propagate in such a way that their rate of change of phase speed with the thermal Mach number is same. It is also found that besides the usual hydromagnetic modes there appears a suprathermal mode which propagates with faster speed. Surface waves are also examined on an interface formed with composite plasma (suprathermal and thermal gases) on one side and the other is a non-magnetized plasma. In this case, the modes obtained are two or three depending on whether the sound velocity in thermal gas is equal to or greater than the sound velocity in suprathermal gas. The results lead to the conclusion that the interaction of thermal and suprathermal components may lead to the occurrence of an additional mode called suprathermal mode whose phase velocity is higher than all the other modes.
Steps towards a consistent Climate Forecast System Reanalysis wave hindcast (1979-2016)
NASA Astrophysics Data System (ADS)
Stopa, Justin E.; Ardhuin, Fabrice; Huchet, Marion; Accensi, Mickael
2017-04-01
Surface gravity waves are being increasingly recognized as playing an important role within the climate system. Wave hindcasts and reanalysis products of long time series (>30 years) have been instrumental in understanding and describing the wave climate for the past several decades and have allowed a better understanding of extreme waves and inter-annual variability. Wave hindcasts have the advantage of covering the oceans in higher space-time resolution than possible with conventional observations from satellites and buoys. Wave reanalysis systems like ECWMF's ERA-Interim directly included a wave model that is coupled to the ocean and atmosphere, otherwise reanalysis wind fields are used to drive a wave model to reproduce the wave field in long time series. The ERA Interim dataset is consistent in time, but cannot adequately resolve extreme waves. On the other hand, the NCEP Climate Forecast System (CFSR) wind field better resolves the extreme wind speeds, but suffers from discontinuous features in time which are due to the quantity and quality of the remote sensing data incorporated into the product. Therefore, a consistent hindcast that resolves the extreme waves still alludes us limiting our understanding of the wave climate. In this study, we systematically correct the CFSR wind field to reproduce a homogeneous wave field in time. To verify the homogeneity of our hindcast we compute error metrics on a monthly basis using the observations from a merged altimeter wave database which has been calibrated and quality controlled from 1985-2016. Before 1985 only few wave observations exist and are limited to a select number of wave buoys mostly in the North Hemisphere. Therefore we supplement our wave observations with seismic data which responds to nonlinear wave interactions created by opposing waves with nearly equal wavenumbers. Within the CFSR wave hindcast, we find both spatial and temporal discontinuities in the error metrics. The Southern Hemisphere often has wind speed biases larger than the Northern Hemisphere and we propose a simple correction to reduce these features by applying a taper shaped by a half-Hanning window. The discontinuous features in time are corrected by scaling the entire wind field by percentages ranging typically ranging from 1-3%. Our analysis is performed on monthly time series and we expect the monthly statistics to be more adequate for climate studies.
NASA Astrophysics Data System (ADS)
Teoman, U. M.; Turkelli, N.; Gok, R.
2005-12-01
Recently, crustal structure and the tectonic evolution of Eastern Turkey region was extensively studied in the context of Eastern Turkey Seismic Experiment (ETSE) from late 1999 to August 2001. Collision of the Arabian and Eurasian plates has been occurring along East Anatolian Fault Zone (EAFZ) and the Bitlis Suture, which made Eastern Turkey an ideal platform for scientific research. High quality local earthquake data from the ETSE seismic network were used in order to determine the 3-D P-wave velocity structure of upper crust for Eastern Turkey. Within the 32-station network, 524 well locatable earthquakes with azimuthal gaps < 200° and number of P-wave observations > 8 (corresponding to 6842 P-phase readings) were selected from the initial data set and simultaneously inverted. 1-D reference velocity model was derived by an iterative 1-D velocity inversion including the updated hypocenters and the station delays. The following 3-D tomographic inversion was iteratively performed by SIMULPS14 algorithm in a ``damped least-squares'' sense using the appropriate ray tracing technique, model parametrization and control parameters. As far as resolution is concerned, S waves were not included in this study due to strong attenuation, insufficient number of S phase readings and higher picking errors with respect to P phases. Several tests with the synthetic data were conducted to assess the solution quality, suggesting that the velocity structure is well resolved down to ~17km. Overall,resulting 3-D P-wave velocity model led to a more reliable hypocenter determination indicated by reduced event scattering and a significant reduction of %50 both in variance and residual (rms) values.With the influence of improved velocity model, average location errors did not exceed ~1.5km in horizontal and ~4km in vertical directions. Tomographic images revealed the presence of lateral velocity variations in Eastern Turkey. Existence of relatively low velocity zones (5.6 < Vp < 6.0 km/sec) along most of the vertical profiles possibly indicates the influence of major tectonic structures such as North Anatolian Fault Zone (NAFZ), East Anatolian Fault Zone (EAFZ) and the Bitlis thrust belt correlated with the seismicity. Low velocity anomalies extend deeper along EAFZ down to ~15km compared to a depth of ~10km along NAFZ. Arabian plate is generally marked by relatively higher velocities (Vp > 6.2 km/sec) in 10-15 km depth range.
2009-01-01
Mooring Records and a High- Resolution General Circulation Model Harper Simmons School of Fisheries and Ocean Sciences 903 Koyukuk Drive Fairbanks AK...oceanographic community has been to develop a global internal wave prediction system analogous to those already in place for surface waves. Early steps have...AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) School of Fisheries and Ocean
NASA Astrophysics Data System (ADS)
Bollmann, T. A.; van der Lee, S.; Frederiksen, A. W.; Wolin, E.; Aleqabi, G. I.; Revenaugh, J.; Wiens, D. A.; Darbyshire, F. A.
2014-12-01
The Superior Province Rifting Earthscope Experiment (SPREE) and the northern midwest footprint of USArray's Transportable Array recorded continuous ground motion for a period of 2.5 years. From around 400 M>5.5 teleseismic earthquakes recorded at 337 stations, we measured body wave delay times for 255 of these earthquakes. The P wave delays are accumulated over more than 45 thousand wave paths with turning points in the lower mantle. We combine these delay times with a similar number delay times used in previous tomographic studies of the study region. The latter delay times stem from fewer stations, including Polaris and CNSN stations, and nearly a thousand earthquakes. We combine these two sets of delay times to image the three-dimensional distribution of seismic velocity variations beneath the southern Superior Province and surrounding provinces. This combined data coverage is illustrated in the accompanying figure for a total number of 447 stations . The coverage and the combined delays form the best configuration yet to image the three-dimensional distribution of seismic P and S-wave velocity variations beneath the southern Superior and surrounding provinces. Closely spaced stations (~12 km) along and across the MRS provide higher resolving power for lithospheric structure beneath the rift system. Conforming to expectations that the entire region is underlain by thick, cool lithosphere, a mean delay of -.55 +/- .54 s. This is very similar to the mean delays -.6s +/- .37s measured for this region before 2012. Event corrections range from -.2 +/-.54 s and correlate with tectonics for 80% of the earthquakes. An inversion of these nearly one hundred thousand P and around thirty thousand S-wave delay times for high-resolution P and S-wave velocity structure, respectively, does not show structures that are obviously related to the crustal signature of the MRS. None of structures imaged, align with or have a similar shape to the high Mid-continent Gravity Anomaly (MGA). However, a low-velocity structure is imaged in the lithosphere just east of the MGA.
NASA Technical Reports Server (NTRS)
Cornish, C. R.
1988-01-01
The first clear-air observations of vertical velocities in the tropical upper troposphere and lower stratosphere (8-22 km) using the Arecibo 430-MHz radar are presented. Oscillations in the vertical velocity near the Brunt-Vaisala period are observed in the lower stratosphere during the 12-hour observation period. Frequency power spectra from the vertical velocity time series show a slope between -0.5 and -1.0. Vertical wave number spectra computed from the height profiles of vertical velocities have slopes between -1.0 and -1.5. These observed slopes do not agree well with the slopes of +1/3 and -2.5 for frequency and vertical wave number spectra, respectively, predicted by a universal gravity-wave spectrum model. The spectral power of wave number spectra of a radial beam directed 15 deg off-zenith is enhanced by an order of magnitude over the spectral power levels of the vertical beam. This enhancement suggests that other geophysical processes besides gravity waves are present in the horizontal flow. The steepening of the wave number spectrum of the off-vertical beam in the lower stratosphere to near -2.0 is attributed to a quasi-inertial period wave, which was present in the horizontal flow during the observation period.
Spatial and Temporal Characteristics of the 2009 A/H1N1 Influenza Pandemic in Peru
Chowell, Gerardo; Viboud, Cécile; Munayco, Cesar V.; Gómez, Jorge; Simonsen, Lone; Miller, Mark A.; Tamerius, James; Fiestas, Victor; Halsey, Eric S.; Laguna-Torres, Victor A.
2011-01-01
Background Highly refined surveillance data on the 2009 A/H1N1 influenza pandemic are crucial to quantify the spatial and temporal characteristics of the pandemic. There is little information about the spatial-temporal dynamics of pandemic influenza in South America. Here we provide a quantitative description of the age-specific morbidity pandemic patterns across administrative areas of Peru. Methods We used daily cases of influenza-like-illness, tests for A/H1N1 influenza virus infections, and laboratory-confirmed A/H1N1 influenza cases reported to the epidemiological surveillance system of Peru's Ministry of Health from May 1 to December 31, 2009. We analyzed the geographic spread of the pandemic waves and their association with the winter school vacation period, demographic factors, and absolute humidity. We also estimated the reproduction number and quantified the association between the winter school vacation period and the age distribution of cases. Results The national pandemic curve revealed a bimodal winter pandemic wave, with the first peak limited to school age children in the Lima metropolitan area, and the second peak more geographically widespread. The reproduction number was estimated at 1.6–2.2 for the Lima metropolitan area and 1.3–1.5 in the rest of Peru. We found a significant association between the timing of the school vacation period and changes in the age distribution of cases, while earlier pandemic onset was correlated with large population size. By contrast there was no association between pandemic dynamics and absolute humidity. Conclusions Our results indicate substantial spatial variation in pandemic patterns across Peru, with two pandemic waves of varying timing and impact by age and region. Moreover, the Peru data suggest a hierarchical transmission pattern of pandemic influenza A/H1N1 driven by large population centers. The higher reproduction number of the first pandemic wave could be explained by high contact rates among school-age children, the age group most affected during this early wave. PMID:21712984
Acousto-ultrasonic evaluation of ceramic matrix composite materials
NASA Technical Reports Server (NTRS)
Dosreis, Henrique L. M.
1991-01-01
Acousto-ultrasonic nondestructive evaluation of ceramic composite specimens with a lithium-alumino-silicate glass matrix reinforced with unidirectional silicon carbide (NICALON) fibers was conducted to evaluate their reserve of strength. Ceramic composite specimens with different amount of damage were prepared by four-point cyclic fatigue loading of the specimens at 500 C for a different number of cycles. The reserve of strength of the specimens was measured as the maximum bending stress recorded during four-pointed bending test with the load monotonically increased until failure occurs. It was observed that the reserve of strength did not correlate with the number of fatigue cycles. However, it was also observed that higher values of the stress wave factor measurements correspond to higher values of the reserve of strength test data. Therefore, these results show that the acousto-ultrasonic approach has the potential of being used to monitor damage and to estimate the reserve of strength of ceramic composites.
Modulation of chorus intensity by ULF waves deep in the inner magnetosphere
Xia, Zhiyang; Chen, Lunjin; Dai, Lei; ...
2016-09-05
Previous studies have shown that chorus wave intensity can be modulated by Pc4-Pc5 compressional ULF waves. In this paper, we present Van Allen Probes observation of ULF wave modulating chorus wave intensity, which occurred deep in the magnetosphere. The ULF wave shows fundamental poloidal mode signature and mirror mode compressional nature. The observed ULF wave can modulate not only the chorus wave intensity but also the distribution of both protons and electrons. Linear growth rate analysis shows consistence with observed chorus intensity variation at low frequency (f <~ 0.3f ce), but cannot account for the observed higher-frequency chorus waves, includingmore » the upper band chorus waves. This suggests the chorus waves at higher-frequency ranges require nonlinear mechanisms. Finally, in addition, we use combined observations of Radiation Belt Storm Probes (RBSP) A and B to verify that the ULF wave event is spatially local and does not last long.« less
Study of Perturbations on High Mach Number Blast Waves in Various Gasses
NASA Astrophysics Data System (ADS)
Edens, A.; Adams, R.; Rambo, P.; Shores, J.; Smith, I.; Atherton, B.; Ditmire, T.
2006-10-01
We have performed a series of experiments examining the properties of high Mach number blast waves. Experiments were conducted on the Z-Beamlet^1 laser at Sandia National Laboratories. We created blast waves in the laboratory by using 10 J- 1000 J laser pulses to illuminate millimeter scale solid targets immersed in gas. Our experiments studied the validity of theories forwarded by Vishniac and Ryu^2-4 to explain the dynamics of perturbations on astrophysical blast waves. These experiments consisted of an examination of the evolution of perturbations of known primary mode number induced on the surface of blast waves by means of regularly spaced wire arrays. The temporal evolution of the amplitude of the induced perturbations relative to the mean radius of the blast wave was fit to a power law in time. Measurements were taken for a number of different mode numbers and background gasses and the results show qualitative agreement with previously published theories for the hydrodynamics of thin shell blast wave. The results for perturbations on nitrogen gas have been recently published^5. .^1 P. K. Rambo, I. C. Smith, J. L. Porter, et al., Applied Optics 44, 2421 (2005). ^2 D. Ryu and E. T. Vishniac, Astrophysical Journal 313, 820 (1987). ^3 D. Ryu and E. T. Vishniac, Astrophysical Journal 368, 411 (1991). ^4 E. T. Vishniac, Astrophysical Journal 274, 152 (1983). ^5 A. D. Edens, T. Ditmire, J. F. Hansen, et al., Physical Review Letters 95 (2005).
Janusek, D; Svehlikova, J; Zelinka, J; Weigl, W; Zaczek, R; Opolski, G; Tysler, M; Maniewski, R
2018-05-08
The occurrence of T-wave alternans in electrocardiographic signals was recently linked to susceptibility to ventricular arrhythmias and sudden cardiac death. Thus, by detecting and comprehending the origins of T-wave alternans, it might be possible to prevent such events. Here, we simulated T-wave alternans in a computer-generated human heart model by modulating the action potential duration and amplitude during the first part of the repolarization phase. We hypothesized that changes in the intracardiac alternans patterns of action potential properties would differentially influence T-wave alternans measurements at the body surface. Specifically, changes were simulated globally in the whole left and right ventricles to simulate concordant T-wave alternans, and locally in selected regions to simulate discordant and regional discordant, hereinafter referred to as "regional", T-wave alternans. Body surface potential maps and 12-lead electrocardiographic signals were then computed. In depth discrimination, the influence of epicardial layers on T-wave alternans development was significantly higher than that of mid-myocardial cells. Meanwhile, spatial discrimination revealed that discordant and regional action potential property changes had a higher influence on T-wave alternans amplitude than concordant changes. Notably, varying T-wave alternans sources yielded distinct body surface potential map patterns for T-wave alternans amplitude, which can be used for location of regions within hearts exhibiting impaired repolarization. The highest ability for T-wave alternans detection was achieved in lead V1. Ultimately, we proposed new parameters Vector Magnitude Alternans and Vector Angle Alternans, with higher ability for T-wave alternans detection when using multi-lead electrocardiographic signals processing than for single leads. Finally, QT alternans was found to be associated with the process of T-wave alternans generation. The distributions of the body surface T-wave alternans amplitude have been shown to have unique patterns depending on the type of alternans (concordant, discordant or regional) and the location of the disturbance in the heart. The influence of epicardial cells on T-wave alternans development is significantly higher than that of mid-myocardial cells, among which the sub-endocardial layer exerted the highest influence. QT interval alternans is identified as a phenomenon that correlate with T-wave alternans.
STEREO Observations of Waves in the Ramp Regions of Interplanetary Shocks
NASA Astrophysics Data System (ADS)
Cohen, Z.; Breneman, A. W.; Cattell, C. A.; Davis, L.; Grul, P.; Kersten, K.; Wilson, L. B., III
2017-12-01
Determining the role of plasma waves in providing energy dissipation at shock waves is of long-standing interest. Interplanetary (IP) shocks serve as a large database of low Mach number shocks. We examine electric field waveforms captured by the Time Domain Sampler (TDS) on the STEREO spacecraft during the ramps of IP shocks, with emphasis on captures lasting 2.1 seconds. Previous work has used captures of shorter duration (66 and 131 ms on STEREO, and 17 ms on WIND), which allowed for observation of waves with maximum (minimum) frequencies of 125 kHz (15 Hz), 62.5 kHz (8 Hz), and 60 kHz (59 Hz), respectively. The maximum frequencies are comparable to 2-8 times the plasma frequency in the solar wind, enabling observation of Langmuir waves, ion acoustic, and some whistler-mode waves. The 2 second captures resolve lower frequencies ( few Hz), which allows us to analyze packet structure of the whistler-mode waves and some ion acoustic waves. The longer capture time also improves the resolvability of simultaneous wave modes and of waves with frequencies on the order of 10s of Hz. Langmuir waves, however, cannot be identified at this sampling rate, since the plasma frequency is usually higher than 3.9 kHz. IP shocks are identified from multiple databases (Helsinki heliospheric shock database at http://ipshocks.fi, and the STEREO level 3 shock database at ftp://stereoftp.nascom.nasa.gov/pub/ins_data/impact/level3/). Our analysis focuses on TDS captures in shock ramp regions, with ramp durations determined from magnetic field data taken at 8 Hz. Software is used to identify multiple wave modes in any given capture and classify waves as Langmuir, ion acoustic, whistler, lower hybrid, electron cyclotron drift instability, or electrostatic solitary waves. Relevant frequencies are determined from density and magnetic field data collected in situ. Preliminary results suggest that large amplitude (≥ 5 mV/m) ion acoustic waves are most prevalent in the ramp, in agreement with Wilson, et al. Other modes are also observed. Statistical results will be presented and compared with previous studies and theoretical predictions.
NASA Astrophysics Data System (ADS)
Liu, Lei; Tian, Bo; Wu, Xiao-Yu; Sun, Yan
2018-02-01
Under investigation in this paper is the higher-order rogue wave-like solutions for a nonautonomous nonlinear Schrödinger equation with external potentials which can be applied in the nonlinear optics, hydrodynamics, plasma physics and Bose-Einstein condensation. Based on the Kadomtsev-Petviashvili hierarchy reduction, we construct the Nth order rogue wave-like solutions in terms of the Gramian under the integrable constraint. With the help of the analytic and graphic analysis, we exhibit the first-, second- and third-order rogue wave-like solutions through the different dispersion, nonlinearity and linear potential coefficients. We find that only if the dispersion and nonlinearity coefficients are proportional to each other, heights of the background of those rogue waves maintain unchanged with time increasing. Due to the existence of complex parameters, such nonautonomous rogue waves in the higher-order cases have more complex features than those in the lower.
Millimeter wave micro-CPW integrated antenna
NASA Astrophysics Data System (ADS)
Tzuang, Ching-Kuang C.; Lin, Ching-Chyuan
1996-12-01
This paper presents the latest result of applying the microstrip's leaky mode for a millimeter-wave active integrated antenna design. In contrast to the use of the first higher-order leaky mode, the second higher-order leaky mode, the second higher-order leaky mode of even symmetry is employed in the new approach, which allows larger dimension for leaky-wave antenna design and thereby reduces its performance sensitivity to the photolithographic tolerance. The new active integrated antenna operating at frequency about 34 GHz comprises of a microstrip and a coplanar waveguide stacked on top of each other, named as the millimeter wave micro-CPW integrated antenna. The feed is through the CPW that would be connected to the active uniplanar millimeter-wave (M)MIC's. Our experimental and theoretical investigations on the new integrated antenna show good input matching characteristics for such a highly directed leaky-wave antenna with the first-pass success.
The effect of heat waves on dairy cow mortality.
Vitali, A; Felici, A; Esposito, S; Bernabucci, U; Bertocchi, L; Maresca, C; Nardone, A; Lacetera, N
2015-07-01
This study investigated the mortality of dairy cows during heat waves. Mortality data (46,610 cases) referred to dairy cows older than 24mo that died on a farm from all causes from May 1 to September 30 during a 6-yr period (2002-2007). Weather data were obtained from 12 weather stations located in different areas of Italy. Heat waves were defined for each weather station as a period of at least 3 consecutive days, from May 1 to September 30 (2002-2007), when the daily maximum temperature exceeded the 90th percentile of the reference distribution (1971-2000). Summer days were classified as days in heat wave (HW) or not in heat wave (nHW). Days in HW were numbered to evaluate the relationship between mortality and length of the wave. Finally, the first 3 nHW days after the end of a heat wave were also considered to account for potential prolonged effects. The mortality risk was evaluated using a case-crossover design. A conditional logistic regression model was used to calculate odds ratio and 95% confidence interval for mortality recorded in HW compared with that recorded in nHW days pooled and stratified by duration of exposure, age of cows, and month of occurrence. Dairy cows mortality was greater during HW compared with nHW days. Furthermore, compared with nHW days, the risk of mortality continued to be higher during the 3 d after the end of HW. Mortality increased with the length of the HW. Considering deaths stratified by age, cows up to 28mo were not affected by HW, whereas all the other age categories of older cows (29-60, 61-96, and >96mo) showed a greater mortality when exposed to HW. The risk of death during HW was higher in early summer months. In particular, the highest risk of mortality was observed during June HW. Present results strongly support the implementation of adaptation strategies which may limit heat stress-related impairment of animal welfare and economic losses in dairy cow farm during HW. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorranian, Davoud; Sabetkar, Akbar
The nonlinear dust acoustic solitary waves in a dusty plasma with two nonthermal ion species at different temperatures is studied analytically. Using reductive perturbation method, the Kadomtsev-Petviashivili (KP) equation is derived, and the effects of nonthermal coefficient, ions temperature, and ions number density on the amplitude and width of soliton in dusty plasma are investigated. It is shown that the amplitude of solitary wave of KP equation diverges at critical points of plasma parameters. The modified KP equation is also derived, and from there, the soliton like solutions of modified KP equation with finite amplitude is extracted. Results show thatmore » generation of rarefactive or compressive solitary waves strongly depends on the number and temperature of nonthermal ions. Results of KP equation confirm that for different magnitudes of ions temperature (mass) and number density, mostly compressive solitary waves are generated in a dusty plasma. In this case, the amplitude of solitary wave is decreased, while the width of solitary waves is increased. According to the results of modified KP equation for some certain magnitudes of parameters, there is a condition for generation of an evanescent solitary wave in a dusty plasma.« less
On the response to ocean surface currents in synthetic aperture radar imagery
NASA Technical Reports Server (NTRS)
Phillips, O. M.
1984-01-01
The balance of wave action spectral density for a fixed wave-number is expressed in terms of a new dimensionless function, the degree of saturation, b, and is applied to an analysis of the variations of this quantity (and local spectral level) at wave-numbers large compared to that of the spectral peak, that are produced by variations in the ocean surface currents in the presence of wind input and wave breaking. Particular care is taken to provide physically based representations of wind input and loss by wave breaking and a relatively convenient equation is derived that specifies the distribution of the degree of saturation in a current field, relative to its ambient (undisturbed) background in the absence of currents. The magnitude of the variations in b depends on two parameters, U(o)/c, where U/(o) is the velocity scale of the current and c the phase speed of the surface waves at the (fixed) wave-number considered or sampled by SAR, and S = (L/lambda) (u*/c)(2), where L is the length scale of the current distribution, lambda the wavelength of the surface waves the length scale of the current distribution, lambda the wavelength of the surface waves and u* the friction velocity of the wind.
NASA Astrophysics Data System (ADS)
Lee, Myoung-Jae; Jung, Young-Dae
2018-05-01
The dispersion properties of surface dust ion-acoustic waves in a self-gravitating magnetized dusty plasma layer with the (r, q) distribution are investigated. The result shows that the wave frequency of the symmetric mode in the plasma layer decreases with an increase in the wave number. It is also shown that the wave frequency of the symmetric mode decreases with an increase in the spectral index r. However, the wave frequency of the anti-symmetric mode increases with an increase in the wave number. It is also found that the anti-symmetric mode wave frequency increases with an increase in the spectral index r. In addition, it is found that the influence of the self-gravitation on the symmetric mode wave frequency decreases with increasing scaled Jeans frequency. Moreover, it is found that the wave frequency of the symmetric mode increases with an increase in the dust charge; however, the anti-symmetric mode shows opposite behavior.
Ocean rogue waves and their phase space dynamics in the limit of a linear interference model.
Birkholz, Simon; Brée, Carsten; Veselić, Ivan; Demircan, Ayhan; Steinmeyer, Günter
2016-10-12
We reanalyse the probability for formation of extreme waves using the simple model of linear interference of a finite number of elementary waves with fixed amplitude and random phase fluctuations. Under these model assumptions no rogue waves appear when less than 10 elementary waves interfere with each other. Above this threshold rogue wave formation becomes increasingly likely, with appearance frequencies that may even exceed long-term observations by an order of magnitude. For estimation of the effective number of interfering waves, we suggest the Grassberger-Procaccia dimensional analysis of individual time series. For the ocean system, it is further shown that the resulting phase space dimension may vary, such that the threshold for rogue wave formation is not always reached. Time series analysis as well as the appearance of particular focusing wind conditions may enable an effective forecast of such rogue-wave prone situations. In particular, extracting the dimension from ocean time series allows much more specific estimation of the rogue wave probability.
Ocean rogue waves and their phase space dynamics in the limit of a linear interference model
Birkholz, Simon; Brée, Carsten; Veselić, Ivan; Demircan, Ayhan; Steinmeyer, Günter
2016-01-01
We reanalyse the probability for formation of extreme waves using the simple model of linear interference of a finite number of elementary waves with fixed amplitude and random phase fluctuations. Under these model assumptions no rogue waves appear when less than 10 elementary waves interfere with each other. Above this threshold rogue wave formation becomes increasingly likely, with appearance frequencies that may even exceed long-term observations by an order of magnitude. For estimation of the effective number of interfering waves, we suggest the Grassberger-Procaccia dimensional analysis of individual time series. For the ocean system, it is further shown that the resulting phase space dimension may vary, such that the threshold for rogue wave formation is not always reached. Time series analysis as well as the appearance of particular focusing wind conditions may enable an effective forecast of such rogue-wave prone situations. In particular, extracting the dimension from ocean time series allows much more specific estimation of the rogue wave probability. PMID:27731411
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Ravinder; Malik, Hitendra K.; Singh, Khushvant
2012-01-15
Main concerns of the present article are to investigate the effects of dust charging and trapped electrons on the solitary structures evolved in an inhomogeneous magnetized plasma. Such a plasma is found to support two types of waves, namely, fast wave and slow wave. Slow wave propagates in the plasma only when the wave propagation angle {theta} satisfies the condition {theta}{>=}tan{sup -1}{l_brace}({radical}((1+2{sigma})-[(n{sub dlh}({gamma}{sub 1}-1))/(1+n{sub dlh}{gamma}{sub 1})])-v{sub 0}/u{sub 0}){r_brace}, where v{sub 0}(u{sub 0}) is the z- (x-) component of ion drift velocity, {sigma} = T{sub i}/T{sub eff}, n{sub dlh} = n{sub d0}/(n{sub el0} + n{sub eh0}), and {gamma}{sub 1}=-(1/{Phi}{sub i0})[(1-{Phi}{sub i0}/1+{sigma}(1-{Phi}{submore » i0}))] together with T{sub i} as ion temperature, n{sub el0}(n{sub eh0}) as the density of trapped (isothermal) electrons, {Phi}{sub i0} as the dust grain (density n{sub d0}) surface potential relative to zero plasma potential, and T{sub eff}=(n{sub elo}+n{sub eho})T{sub el}T{sub eh}/(n{sub elo}T{sub eh}+n{sub eho}T{sub el}), where T{sub el}(T{sub eh}) is the temperature of trapped (isothermal) electrons. Both the waves evolve in the form of density hill type structures in the plasma, confirming that these solitary structures are compressive in nature. These structures are found to attain higher amplitude when the charge on the dust grains is fluctuated (in comparison with the case of fixed charge) and also when the dust grains and trapped electrons are more in number; the same is the case with higher temperature of ions and electrons. Slow solitary structures show weak dependence on the dust concentration. Both types of structures are found to become narrower under the application of stronger magnetic field. With regard to the charging of dust grains, it is observed that the charge gets reduced for the higher trapped electron density and temperature of ions and electrons, and dust charging shows weak dependence on the ion temperature.« less
Projected changes in significant wave height toward the end of the 21st century: Northeast Atlantic
NASA Astrophysics Data System (ADS)
Aarnes, Ole Johan; Reistad, Magnar; Breivik, Øyvind; Bitner-Gregersen, Elzbieta; Ingolf Eide, Lars; Gramstad, Odin; Magnusson, Anne Karin; Natvig, Bent; Vanem, Erik
2017-04-01
Wind field ensembles from six CMIP5 models force wave model time slices of the northeast Atlantic over the last three decades of the 20th and the 21st centuries. The future wave climate is investigated by considering the RCP4.5 and RCP8.5 emission scenarios. The CMIP5 model selection is based on their ability to reconstruct the present (1971-2000) extratropical cyclone activity, but increased spatial resolution has also been emphasized. In total, the study comprises 35 wave model integrations, each about 30 years long, in total more than 1000 years. Here annual statistics of significant wave height are analyzed, including mean parameters and upper percentiles. There is general agreement among all models considered that the mean significant wave height is expected to decrease by the end of the 21st century. This signal is statistically significant also for higher percentiles, but less evident for annual maxima. The RCP8.5 scenario yields the strongest reduction in wave height. The exception to this is the north western part of the Norwegian Sea and the Barents Sea, where receding ice cover gives longer fetch and higher waves. The upper percentiles are reduced less than the mean wave height, suggesting that the future wave climate has higher variance than the historical period.
Structural and magnetic properties of Ni-doped SnO{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dwivedi, Sonam, E-mail: vdinesh33@rediffmail.com, E-mail: sonam.dwivedi88@gmail.com; Kumar, Ashwini; Dar, Mashkoor A.
2015-06-24
Samples of Ni doped SnO{sub 2} nanocrystalline were successfully prepared by chemical co-precipitation method. X-ray diffraction pattern infers that Sn{sub 1-x}Ni{sub x}O{sub 2} (x=0.00, 0.10, 0.15 and 0.20) samples are in single phase with tetragonal structure (P4{sub 2}/mnm). Raman spectroscopy reveals the observed phonon modes of SnO{sub 2} are at about 387-397, and 559 - 572 cm{sup −1}. For Sn{sub 0.9}Ni{sub 0.1}O{sub 2}, these peaks are shifted to higher wave numbers, while to that for Sn{sub 0.85}Ni{sub 0.15}O{sub 2} and Sn{sub 0.8}Ni{sub 0.2}O{sub 2}, peaks are shifted to the lower wave numbers. The frequency dependent dielectric constant decreases with the increasemore » in the frequency and becomes constant at high frequencies for all compositions of Ni substituted SnO{sub 2}. The magnetization curve confirms the paramagnetic nature of all Ni doped SnO{sub 2} samples.« less
Wave Energy Potential in the Eastern Mediterranean Levantine Basin. An Integrated 10-year Study
2014-01-01
SUBTITLE Wave energy potential in the Eastern Mediterranean Levantine Basin. An integrated 10-year study 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c... Cardone CV, Ewing JA, et al. The WAM model e a third generation ocean wave prediction model. J Phys Oceanogr 1988;18(12):1775e810. [70] Varinou M
NASA Astrophysics Data System (ADS)
Gómez, Breogán; Miguez-Macho, Gonzalo
2017-04-01
Nudging techniques are commonly used to constrain the evolution of numerical models to a reference dataset that is typically of a lower resolution. The nudged model retains some of the features of the reference field while incorporating its own dynamics to the solution. These characteristics have made nudging very popular in dynamic downscaling applications that cover from shot range, single case studies, to multi-decadal regional climate simulations. Recently, a variation of this approach called Spectral Nudging, has gained popularity for its ability to maintain the higher temporal and spatial variability of the model results, while forcing the large scales in the solution with a coarser resolution field. In this work, we focus on a not much explored aspect of this technique: the impact of selecting different cut-off wave numbers and spin-up times. We perform four-day long simulations with the WRF model, daily for three different one-month periods that include a free run and several Spectral Nudging experiments with cut-off wave numbers ranging from the smallest to the largest possible (full Grid Nudging). Results show that Spectral Nudging is very effective at imposing the selected scales onto the solution, while allowing the limited area model to incorporate finer scale features. The model error diminishes rapidly as the nudging expands over broader parts of the spectrum, but this decreasing trend ceases sharply at cut-off wave numbers equivalent to a length scale of about 1000 km, and the error magnitude changes minimally thereafter. This scale corresponds to the Rossby Radius of deformation, separating synoptic from convective scales in the flow. When nudging above this value is applied, a shifting of the synoptic patterns can occur in the solution, yielding large model errors. However, when selecting smaller scales, the fine scale contribution of the model is damped, thus making 1000 km the appropriate scale threshold to nudge in order to balance both effects. Finally, we note that longer spin-up times are needed for model errors to stabilize when using Spectral Nudging than with Grid Nudging. Our results suggest that this time is between 36 and 48 hours.
Wake wash waves produced by High Speed Crafts:measurements vs prediction
NASA Astrophysics Data System (ADS)
Benassai, Guido
2010-05-01
The subject of this study refers to the wake wash waves generated by High Speed Crafts observed at some distance away (typically one or multiple of ship lengths) from the line of travel of the vessel. The ratio of the vessel speed divided by the maximum wave celerity in shallow water (depth-based Froude number) or to the square root of the gravity by the vessel length (length-based Froude number) is often used to classify the wash. In fact the wash waves produced by vessels that travel at sub-critical Froude numbers are different in patterns (and hence applicable theory) from that produced by vessels which operate at the critical Froude number of 1 or at supercritical Froude numbers. High Speed Crafts generally operate at Fr>1, even if in some cases for safety of navigation they operate at Fr<1. In the study supercritical speed conditions were considered. The predicted wake wash was a result of a desk-top study and relied on the subject matter presented in numerous technical papers and publications, while the measured wake wash is a result of the first field measurements of wake wash produced by HSC operating in the Bay of Naples. The measurements were operated by a pressure gauge in three critical points where the distance from the coastline was less than 700m. These measurements were taken in shallow water (depth ranging from 4 to 5 meters) in calm weather conditions. The output of the tests were wave-elevation time histories upon which the maximum wave height Hm from the wave record was extracted. The wave height reported was therefore the highest wave, peak to through, which occurred in a wave train. The wave period is defined as double the related half period for the defined maximum wave height. For each wake wash measurement the vessel route was monitored aboard the crossing HSC and exact speed, distance and water obtained depth was determined. The obtained values of the wake wash were compared with predictions of wake wash obtained by similar vessels in analogous speed and depth conditions. Finally some comments and conclusions were given about the accordance between the measurements and the predictions of wake wash waves.
Global stability analysis of axisymmetric boundary layer over a circular cylinder
NASA Astrophysics Data System (ADS)
Bhoraniya, Ramesh; Vinod, Narayanan
2018-05-01
This paper presents a linear global stability analysis of the incompressible axisymmetric boundary layer on a circular cylinder. The base flow is parallel to the axis of the cylinder at inflow boundary. The pressure gradient is zero in the streamwise direction. The base flow velocity profile is fully non-parallel and non-similar in nature. The boundary layer grows continuously in the spatial directions. Linearized Navier-Stokes (LNS) equations are derived for the disturbance flow quantities in the cylindrical polar coordinates. The LNS equations along with homogeneous boundary conditions forms a generalized eigenvalues problem. Since the base flow is axisymmetric, the disturbances are periodic in azimuthal direction. Chebyshev spectral collocation method and Arnoldi's iterative algorithm is used for the solution of the general eigenvalues problem. The global temporal modes are computed for the range of Reynolds numbers and different azimuthal wave numbers. The largest imaginary part of the computed eigenmodes is negative, and hence, the flow is temporally stable. The spatial structure of the eigenmodes shows that the disturbance amplitudes grow in size and magnitude while they are moving towards downstream. The global modes of axisymmetric boundary layer are more stable than that of 2D flat-plate boundary layer at low Reynolds number. However, at higher Reynolds number they approach 2D flat-plate boundary layer. Thus, the damping effect of transverse curvature is significant at low Reynolds number. The wave-like nature of the disturbance amplitudes is found in the streamwise direction for the least stable eigenmodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588
2016-05-15
The dispersion relation for modified dust ion-acoustic surface waves in the magnetized dusty plasma containing the rotating dust grains is derived, and the effects of magnetic field configuration on the resonant growth rate are investigated. We present the results that the resonant growth rates of the wave would increase with the ratio of ion plasma frequency to cyclotron frequency as well as with the increase of wave number for the case of perpendicular magnetic field configuration when the ion plasma frequency is greater than the dust rotation frequency. For the parallel magnetic field configuration, we find that the instability occursmore » only for some limited ranges of the wave number and the ratio of ion plasma frequency to cyclotron frequency. The resonant growth rate is found to decrease with the increase of the wave number. The influence of dust rotational frequency on the instability is also discussed.« less
Heat waves in lowland Germany and their circulation-related conditions
NASA Astrophysics Data System (ADS)
Tomczyk, Arkadiusz M.; Sulikowska, Agnieszka
2017-09-01
The research study aimed at assessing multiannual variability of heat wave occurrence in the lowland part of Germany between 1966 and 2015 and determining the role of atmospheric circulation in their occurrence. The analysis was conducted with the use of two independent datasets, that is, the dataset of Germany's National Meteorological Service, Deutscher Wetterdienst, and American meteorological reanalysis database of the National Centre for Environmental Prediction/National Centre for Atmospheric Research. This article defines a hot day as a day with maximum temperature of >30 °C, and a heat wave as a sequence of at least three such days. The observed warming translated into an increase in a number of hot days and, consequently, an increase in the frequency of heat wave occurrence. In the analysed 50-year period, the smallest number of heat waves was observed between 1976 and 1985, and the largest number between 2006 and 2015 in the lowland part of Germany. The occurrence of heat waves in lowland Germany was related to anticyclonic circulation.
NASA Technical Reports Server (NTRS)
Nelson, Robert L.; Welsh, Clement J.
1960-01-01
The experimental wave drags of bodies and wing-body combinations over a wide range of Mach numbers are compared with the computed drags utilizing a 24-term Fourier series application of the supersonic area rule and with the results of equivalent-body tests. The results indicate that the equivalent-body technique provides a good method for predicting the wave drag of certain wing-body combinations at and below a Mach number of 1. At Mach numbers greater than 1, the equivalent-body wave drags can be misleading. The wave drags computed using the supersonic area rule are shown to be in best agreement with the experimental results for configurations employing the thinnest wings. The wave drags for the bodies of revolution presented in this report are predicted to a greater degree of accuracy by using the frontal projections of oblique areas than by using normal areas. A rapid method of computing wing area distributions and area-distribution slopes is given in an appendix.
NASA Astrophysics Data System (ADS)
Wagner, Alexander; Schülein, Erich; Petervari, René; Hannemann, Klaus; Ali, Syed R. C.; Cerminara, Adriano; Sandham, Neil D.
2018-05-01
Combined free-stream disturbance measurements and receptivity studies in hypersonic wind tunnels were conducted by means of a slender wedge probe and direct numerical simulation. The study comprises comparative tunnel noise measurements at Mach 3, 6 and 7.4 in two Ludwieg tube facilities and a shock tunnel. Surface pressure fluctuations were measured over a wide range of frequencies and test conditions including harsh test environments not accessible to measurement techniques such as pitot probes and hot-wire anemometry. Quantitative results of the tunnel noise are provided in frequency ranges relevant for hypersonic boundary layer transition. In combination with the experimental studies, direct numerical simulations of the leading-edge receptivity to fast and slow acoustic waves were performed for the slender wedge probe at conditions corresponding to the experimental free-stream conditions. The receptivity to fast acoustic waves was found to be characterized by an early amplification of the induced fast mode. For slow acoustic waves an initial decay was found close to the leading edge. At all Mach numbers, and for all considered frequencies, the leading-edge receptivity to fast acoustic waves was found to be higher than the receptivity to slow acoustic waves. Further, the effect of inclination angles of the acoustic wave with respect to the flow direction was investigated. The combined numerical and experimental approach in the present study confirmed the previous suggestion that the slow acoustic wave is the dominant acoustic mode in noisy hypersonic wind tunnels.
Stimulated Parametric Decay of Large Amplitude Alfvén waves in the Large Plasma Device (LaPD)
NASA Astrophysics Data System (ADS)
Dorfman, S. E.; Carter, T.; Pribyl, P.; Tripathi, S.; Van Compernolle, B.; Vincena, S. T.
2012-12-01
Alfvén waves, a fundamental mode of magnetized plasmas, are ubiquitous in lab and space. While the linear behaviour of these waves has been extensively studied [1], non-linear effects are important in many real systems, including the solar wind and solar corona. In particular, a parametric decay process in which a large amplitude Alfvén wave decays into an ion acoustic wave and backward propagating Alfvén wave may be key to the spectrum of solar wind turbulence. Ion acoustic waves have been observed in the heliosphere, but their origin and role have not yet been determined [2]. Such waves produced by parametric decay in the corona could contribute to coronal heating [3]. Parametric decay has also been suggested as an intermediate instability mediating the observed turbulent cascade of Alfvén waves to small spatial scales [4]. The present laboratory experiments aim to stimulate the parametric decay process by launching counter-propagating Alfvén waves from antennas placed at either end of the Large Plasma Device (LaPD). The resulting beat response has a dispersion relation consistent with an ion acoustic wave. Also consistent with a stimulated decay process: 1) The beat amplitude peaks when the frequency difference between the two Alfvén waves is near the value predicted by Alfvén-ion acoustic wave coupling. 2) This peak beat frequency scales with antenna and plasma parameters as predicted by three wave matching. 3) The beat amplitude peaks at the same location as the magnetic field from the Alfvén waves. 4) The beat wave is carried by the ions and propagates in the direction of the higher-frequency Alfvén wave. Strong damping observed after the pump Alfvén waves are turned off and observed heating of the plasma by the Alfvén waves are under investigation. [1] W. Gekelman, J. Geophys. Res., 104:14417-14436, July 1999. [2] A. Mangeney,et. al., Annales Geophysicae, Volume 17, Number 3 (1999). [3] F. Pruneti, F and M. Velli, ESA Spec. Pub. 404, 623 (1997). [4] P. Yoon and T. Fang, Plasma Phys. Control. Fusion 50 (2008). This work was performed at UCLA's Basic Plasma Science Facility, which is jointly supported by the U.S. DoE and NSF.
Largo, Remo; Stolzmann, Paul; Fankhauser, Christian D; Poyet, Cédric; Wolfsgruber, Pirmin; Sulser, Tullio; Alkadhi, Hatem; Winklhofer, Sebastian
2016-06-01
This study investigates the capabilities of low tube voltage computed tomography (CT) and dual-energy CT (DECT) for predicting successful shock wave lithotripsy (SWL) of urinary stones in vitro. A total of 33 urinary calculi (six different chemical compositions; mean size 6 ± 3 mm) were scanned using a dual-source CT machine with single- (120 kVp) and dual-energy settings (80/150, 100/150 Sn kVp) resulting in six different datasets. The attenuation (Hounsfield Units) of calculi was measured on single-energy CT images and the dual-energy indices (DEIs) were calculated from DECT acquisitions. Calculi underwent SWL and the number of shock waves for successful disintegration was recorded. The prediction of required shock waves regarding stone attenuation/DEI was calculated using regression analysis (adjusted for stone size and composition) and the correlation between CT attenuation/DEI and the number of shock waves was assessed for all datasets. The median number of shock waves for successful stone disintegration was 72 (interquartile range 30-361). CT attenuation/DEI of stones was a significant, independent predictor (P < 0.01) for the number of required shock waves with the best prediction at 80 kVp (β estimate 0.576) (P < 0.05). Correlation coefficients between attenuation/DEI and the number of required shock waves ranged between ρ = 0.31 and 0.68 showing the best correlation at 80 kVp (P < 0.001). The attenuation of urinary stones at low tube voltage CT is the best predictor for successful stone disintegration, being independent of stone composition and size. DECT shows no added value for predicting the success of SWL.
Confinement-induced p-wave resonances from s-wave interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishida, Yusuke; Tan, Shina; School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332
2010-12-15
We show that a purely s-wave interaction in three dimensions (3D) can induce higher partial-wave resonances in mixed dimensions. We develop two-body scattering theories in all three cases of 0D-3D, 1D-3D, and 2D-3D mixtures and determine the positions of higher partial-wave resonances in terms of the 3D s-wave scattering length assuming a harmonic confinement potential. We also compute the low-energy scattering parameters in the p-wave channel (scattering volume and effective momentum) that are necessary for the low-energy effective theory of the p-wave resonance. We point out that some of the resonances observed in the Florence group experiment [Phys. Rev. Lett.more » 104, 153202 (2010)] can be interpreted as the p-wave resonances in the 2D-3D mixed dimensions. Our study paves the way for a variety of physics, such as Anderson localization of matter waves under p-wave resonant scatterers.« less
Au, Frederick Wing-Fai; Ghai, Sandeep; Moshonov, Hadas; Kahn, Harriette; Brennan, Cressida; Dua, Hemi; Crystal, Pavel
2014-09-01
The purpose of this article is to assess the diagnostic performance of quantitative shear wave elastography in the evaluation of solid breast masses and to determine the most discriminatory parameter. B-mode ultrasound and shear wave elastography were performed before core biopsy of 123 masses in 112 women. The diagnostic performance of ultrasound and quantitative shear wave elastography parameters (mean elasticity, maximum elasticity, and elasticity ratio) were compared. The added effect of shear wave elastography on the performance of ultrasound was determined. The mean elasticity, maximum elasticity, and elasticity ratio were 24.8 kPa, 30.3 kPa, and 1.90, respectively, for 79 benign masses and 130.7 kPa, 154.9 kPa, and 11.52, respectively, for 44 malignant masses (p < 0.001). The optimal cutoff value for each parameter was determined to be 42.5 kPa, 46.7 kPa, and 3.56, respectively. The AUC of each shear wave elastography parameter was higher than that of ultrasound (p < 0.001); the AUC value for the elasticity ratio (0.943) was the highest. By adding shear wave elastography parameters to the evaluation of BI-RADS category 4a masses, about 90% of masses could be downgraded to BI-RADS category 3. The numbers of downgraded masses were 40 of 44 (91%) for mean elasticity, 39 of 44 (89%) for maximum elasticity, and 42 of 44 (95%) for elasticity ratio. The numbers of correctly downgraded masses were 39 of 40 (98%) for mean elasticity, 38 of 39 (97%) for maximum elasticity, and 41 of 42 (98%) for elasticity ratio. There was improvement in the diagnostic performance of ultrasound of mass assessment with shear wave elastography parameters added to BI-RADS category 4a masses compared with ultrasound alone. Combined ultrasound and elasticity ratio had the highest improvement, from 35.44% to 87.34% for specificity, from 45.74% to 80.77% for positive predictive value, and from 57.72% to 90.24% for accuracy (p < 0.0001). The AUC of combined ultrasound and elasticity ratio (0.914) was the highest compared with the other combined parameters. There was a statistically significant difference in the values of the quantitative shear wave elastography parameters of benign and malignant solid breast masses. By adding shear wave elastography parameters to BI-RADS category 4a masses, we found that about 90% of them could be correctly downgraded to BI-RADS category 3, thereby avoiding biopsy. Elasticity ratio (cutoff, 3.56) appeared to be the most discriminatory parameter.
Electron Scattering by High-Frequency Whistler Waves at Earth's Bow Shock
NASA Technical Reports Server (NTRS)
Oka, M.; Wilson, L. B., III; Phan, T. D.; Hull, A. J.; Amano, T.; Hoshino, M.; Argall, M. R.; Le Contel, O.; Agapitov, O.; Gersham, D. J.;
2017-01-01
Electrons are accelerated to non-thermal energies at shocks in space and astrophysical environments. While different mechanisms of electron acceleration have been proposed, it remains unclear how non-thermal electrons are produced out of the thermal plasma pool. Here, we report in situ evidence of pitch-angle scattering of non-thermal electrons by whistler waves at Earths bow shock. On 2015 November 4, the Magnetospheric Multiscale (MMS) mission crossed the bow shock with an Alfvn Mach number is approximately 11 and a shock angle of approximately 84deg. In the ramp and overshoot regions, MMS revealed bursty enhancements of non-thermal (0.52 keV) electron flux, correlated with high-frequency (0.2 - 0.4 Omega(sub ce), where Omega(sub ce) is the cyclotron frequency) parallel-propagating whistler waves. The electron velocity distribution (measured at 30 ms cadence) showed an enhanced gradient of phase-space density at and around the region where the electron velocity component parallel to the magnetic field matched the resonant energy inferred from the wave frequency range. The flux of 0.5 keV electrons (measured at 1ms cadence) showed fluctuations with the same frequency. These features indicate that non-thermal electrons were pitch-angle scattered by cyclotron resonance with the high-frequency whistler waves. However, the precise role of the pitch-angle scattering by the higher-frequency whistler waves and possible nonlinear effects in the electron acceleration process remains unclear.
Electron Scattering by High-frequency Whistler Waves at Earth’s Bow Shock
NASA Astrophysics Data System (ADS)
Oka, M.; Wilson, L. B., III; Phan, T. D.; Hull, A. J.; Amano, T.; Hoshino, M.; Argall, M. R.; Le Contel, O.; Agapitov, O.; Gershman, D. J.; Khotyaintsev, Y. V.; Burch, J. L.; Torbert, R. B.; Pollock, C.; Dorelli, J. C.; Giles, B. L.; Moore, T. E.; Saito, Y.; Avanov, L. A.; Paterson, W.; Ergun, R. E.; Strangeway, R. J.; Russell, C. T.; Lindqvist, P. A.
2017-06-01
Electrons are accelerated to non-thermal energies at shocks in space and astrophysical environments. While different mechanisms of electron acceleration have been proposed, it remains unclear how non-thermal electrons are produced out of the thermal plasma pool. Here, we report in situ evidence of pitch-angle scattering of non-thermal electrons by whistler waves at Earth’s bow shock. On 2015 November 4, the Magnetospheric Multiscale (MMS) mission crossed the bow shock with an Alfvén Mach number ˜11 and a shock angle ˜84°. In the ramp and overshoot regions, MMS revealed bursty enhancements of non-thermal (0.5-2 keV) electron flux, correlated with high-frequency (0.2-0.4 {{{Ω }}}{ce}, where {{{Ω }}}{ce} is the cyclotron frequency) parallel-propagating whistler waves. The electron velocity distribution (measured at 30 ms cadence) showed an enhanced gradient of phase-space density at and around the region where the electron velocity component parallel to the magnetic field matched the resonant energy inferred from the wave frequency range. The flux of 0.5 keV electrons (measured at 1 ms cadence) showed fluctuations with the same frequency. These features indicate that non-thermal electrons were pitch-angle scattered by cyclotron resonance with the high-frequency whistler waves. However, the precise role of the pitch-angle scattering by the higher-frequency whistler waves and possible nonlinear effects in the electron acceleration process remains unclear.
Adding teeth to wave action: the destructive effects of wave-borne rocks on intertidal organisms.
Shanks, Alan L; Wright, William G
1986-06-01
Observations in rocky intertidal areas demonstrate that breaking waves 'throw' rocks and cobbles and that these missiles can damage and kill organisms. Targets in the intertidal were dented by impacts from wave-borne rocks. New dents/day in these targets was positively correlated with the daily maximum significant wave height and with new patches/day in aggregations of the barnacle Chthamalus fissus. Impact frequency was highest in the upper intertidal and varied dramatically between microhabitats on individual boulders (edges, tops and faces). These patterns were reflected in the microhabitat abundances of 'old' and 'young' barnacles. Comparisons were made of the survivorship and the frequency of shell damage in two populations of the limpet Lottia gigantea living in habitats which differed primarily in the number of moveable rocks (i.e. potential projectiles). The mortality rate and frequency of shell damage were significantly higher in the projectilerich habitat. In addition only in this habitat did the frequency of shell damage covary significantly with seasonal periods of high surf. Investigation of the response of limpet shells to impacts suggests that shell strength varies between species and increases with shell size. Species-specific patterns of non-fatal shell breakage may have evolved to absorb the energy of impacts. In two of the intertidal habitats studied, wave-borne rock damage was chronic and, at least in part, may have governed the faunal makeup of the community by contributing to the physical 'boundaries" of the environment within which the inhabitants must survive.
NASA Technical Reports Server (NTRS)
Lawless, Patrick B.; Fleeter, Sanford
1993-01-01
A simple model for the stability zones of a low speed centrifugal compressor is developed, with the goal of understanding the driving mechanism for the changes in stalling behavior predicted for, and observed in, the Purdue Low Speed Centrifugal Research Compressor Facility. To this end, earlier analyses of rotating stall suppression in centrifugal compressors are presented in a reduced form that preserves the essential parameters of the model that affect the stalling behavior of the compressor. The model is then used to illuminate the relationship between compressor geometry, expected mode shape, and regions of amplification for weak waves which are indicative of the susceptibility of the system to rotating stall. The results demonstrate that increasing the stagger angle of the diffuser vanes, and consequently the diffusion path length, results in the compressor moving towards a condition where higher-order spatial modes are excited during stall initiation. Similarly, flow acceleration in the diffuser section caused by an increase in the number of diffuser vanes also results in the excitation of higher modes.
Gorjanc, Jurij; Morrison, Shawnda A; McDonnell, Adam C; Mekjavic, Igor B
2018-05-24
Cold-induced vasodilatation (CIVD) is a peripheral blood flow response, observed in both the hands and feet. Exercise has been shown to enhance the response, specifically by increasing mean skin temperatures (T sk ), in part due to the increased number of CIVD waves. In contrast, hypobaric hypoxia has been suggested to impair digit skin temperature responses, particularly during subsequent hand rewarming following the cold stimulus. This study examined the combined effect of exercise and hypobaric hypoxia on the CIVD response. We compared the CIVD responses in the digits of both the hands and feet of a team of alpinists (N = 5) before and after a 35-day Himalayan expedition to Broadpeak, Pakistan (8051 m). Five elite alpinists participated in hand and foot cold water immersion tests 20 days before and immediately upon return from their expedition. The alpinists summited successfully without supplemental oxygen. Post-expedition, all alpinists demonstrated higher minimum T sk in their hands (pre: 9.9 ± 1.1, post: 10.1 ± 0.7 °C, p = 0.031). Four alpinists had either greater CIVD waves, and, consequently, higher mean T sk in their hands, or higher recovery temperatures (pre: 26.0 ± 5.5 °C post: 31.0 ± 4.1 °C, p = 0.052), or faster rewarming rate (pre: 2.6 ± 0.5 °C min -1 post: 3.1 ± 0.4 °C min -1, p = 0.052). In the feet, the responses varied: 1/5 had higher wave amplitudes and 1/5 had higher passive recovery temperatures, whereas 3/5 had lower mean toe temperatures during cold exposure. The results of the cold stress test suggest after a 35-day Himalayan expedition, alpinists experienced a slight cold adaptation of the hands, but not the feet.
A novel design for passive misscromixers based on topology optimization method.
Chen, Xueye; Li, Tiechuan
2016-08-01
In this paper, a series of novel passive micromixers, called topological micromixers with reversed flow (TMRFX), are proposed. The reversed flow in the microchannels can enhance chaotic advection and produce better mixing performance. Therefore the maximum of reversed flow is chosen as the objective function of the topology optimization problem. Because the square-wave unit is easier to fabricate and have better mixing performance than many other serpentine micromixers, square-wave structure becomes the original geometry structure. By simulating analysis, the series of TMRFX, namely TMRF, TMRF0.75, TMRF0.5, TMRF0.25, mix better than the square-wave micromixer at various Reynolds numbers (Re), but pressure drops of TMRFX are much higher. Lots of intensive numerical simulations are conducted to prove that TMRF and TMRF0.75 have remarkable advantages on mixing over other micromixers at various Re. The mixing performance of TMRF0.75 is similar to TMRF's. What's more, TMRF have a larger pressure drop than TMRF0.75, which means that TMRF have taken more energy than TMRF0.75. For a wide range of Re (Re ≤ 0.1 and Re ≥ 10), TMRF0.75 delivers a great performance and the mixing efficiency is greater than 95 %. Even in the range of 0.1-10 for the Re, the mixing efficiency of TMRF0.75 is higher than 85 %.
Nonlinear travelling waves in rotating Hagen–Poiseuille flow
NASA Astrophysics Data System (ADS)
Pier, Benoît; Govindarajan, Rama
2018-03-01
The dynamics of viscous flow through a rotating pipe is considered. Small-amplitude stability characteristics are obtained by linearizing the Navier–Stokes equations around the base flow and solving the resulting eigenvalue problems. For linearly unstable configurations, the dynamics leads to fully developed finite-amplitude perturbations that are computed by direct numerical simulations of the complete Navier–Stokes equations. By systematically investigating all linearly unstable combinations of streamwise wave number k and azimuthal mode number m, for streamwise Reynolds numbers {{Re}}z ≤slant 500 and rotational Reynolds numbers {{Re}}{{Ω }} ≤slant 500, the complete range of nonlinear travelling waves is obtained and the associated flow fields are characterized.
76 FR 13994 - Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-15
... performance of the functions of the agency, including whether the information shall have practical utility; (b... Burden respondent hours over over 3 3-year 3 years years Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 Total Cohort... = Not Applicable. The decrease in the number of respondents within each cohort from one wave to the next...
Matrix basis for plane and modal waves in a Timoshenko beam
Tolfo, Daniela de Rosso; Tonetto, Leticia
2016-01-01
Plane waves and modal waves of the Timoshenko beam model are characterized in closed form by introducing robust matrix basis that behave according to the nature of frequency and wave or modal numbers. These new characterizations are given in terms of a finite number of coupling matrices and closed form generating scalar functions. Through Liouville’s technique, these latter are well behaved at critical or static situations. Eigenanalysis is formulated for exponential and modal waves. Modal waves are superposition of four plane waves, but there are plane waves that cannot be modal waves. Reflected and transmitted waves at an interface point are formulated in matrix terms, regardless of having a conservative or a dissipative situation. The matrix representation of modal waves is used in a crack problem for determining the reflected and transmitted matrices. Their euclidean norms are seen to be dominated by certain components at low and high frequencies. The matrix basis technique is also used with a non-local Timoshenko model and with the wave interaction with a boundary. The matrix basis allows to characterize reflected and transmitted waves in spectral and non-spectral form. PMID:28018668
NASA Astrophysics Data System (ADS)
Schoon, Lena; Zülicke, Christoph
2018-05-01
For the local diagnosis of wave properties, we develop, validate, and apply a novel method which is based on the Hilbert transform. It is called Unified Wave Diagnostics (UWaDi). It provides the wave amplitude and three-dimensional wave number at any grid point for gridded three-dimensional data. UWaDi is validated for a synthetic test case comprising two different wave packets. In comparison with other methods, the performance of UWaDi is very good with respect to wave properties and their location. For a first practical application of UWaDi, a minor sudden stratospheric warming on 30 January 2016 is chosen. Specifying the diagnostics for hydrostatic inertia-gravity waves in analyses from the European Centre for Medium-Range Weather Forecasts, we detect the local occurrence of gravity waves throughout the middle atmosphere. The local wave characteristics are discussed in terms of vertical propagation using the diagnosed local amplitudes and wave numbers. We also note some hints on local inertia-gravity wave generation by the stratospheric jet from the detection of shallow slow waves in the vicinity of its exit region.
Quasiperiodic waves at the onset of zero-Prandtl-number convection with rotation.
Kumar, Krishna; Chaudhuri, Sanjay; Das, Alaka
2002-02-01
We show the possibility of temporally quasiperiodic waves at the onset of thermal convection in a thin horizontal layer of slowly rotating zero-Prandtl-number Boussinesq fluid confined between stress-free conducting boundaries. Two independent frequencies emerge due to an interaction between straight rolls and waves along these rolls in the presence of Coriolis force, if the Taylor number is raised above a critical value. Constructing a dynamical system for the hydrodynamical problem, the competition between the interacting instabilities is analyzed. The forward bifurcation from the conductive state is self-tuned.
Screech tones from free and ducted supersonic jets
NASA Technical Reports Server (NTRS)
Tam, C. K. W.; Ahuja, K. K.; Jones, R. R., III
1993-01-01
The dependence of the instability wave spectrum on azimuthal mode number, the jet to ambient gas temperature ratio, and the jet Mach number is studied. It is shown that the switch of the dominant screech mode (axisymmetric to helical/flapping) as Mach number increases is due to the switch in dominance of the corresponding mode of instability waves. Super-resonance can occur when the feedback loop is powered by the most amplified instability wave. It is suggested that the large amplitude pressure fluctuations and tone in the test cells are generated by super-resonance.
Wave propagation in fiber composite laminates, part 2
NASA Technical Reports Server (NTRS)
Daniel, I. M.; Liber, T.
1976-01-01
An experimental investigation was conducted to determine the wave propagation characteristics, transient strains and residual properties in unidirectional and angle-ply boron/epoxy and graphite/epoxy laminates impacted with silicone rubber projectiles at velocities up to 250 MS-1. The predominant wave is flexural, propagating at different velocities in different directions. In general, measured wave velocities were higher than theoretically predicted values. The amplitude of the in-plane wave is less than ten percent of that of the flexural wave. Peak strains and strain rates in the transverse to the (outer) fiber direction are much higher than those in the direction of the fibers. The dynamics of impact were also studied with high speed photography.
Recurrence in truncated Boussinesq models for nonlinear waves in shallow water
NASA Technical Reports Server (NTRS)
Elgar, Steve; Freilich, M. H.; Guza, R. T.
1990-01-01
The rapid spatial recurrence of weakly nonlinear and weakly dispersive progressive shallow-water waves is examined using a numerical integration technique on the discretized and truncated form of the Boussinesq equations. This study primarily examines recurrence in wave fields with Ursell number O(1) and characterizes the sensitivity of recurrence to initial spectral shape and number of allowed frequency modes. It is shown that the rapid spatial recurrence is not an inherent property of the considered Boussinesq systems for evolution distances of 10-50 wavelengths. The main result of the study is that highly truncated Boussinesq models of resonant shallow-water ocean surface gravity waves predict rapid multiple recurrence cycles, but that this is an artifact dependent on the number of allowed modes. For initial conditions consisting of essentially all energy concentrated in a single mode, damping of the recurrence cycles increases as the number of low-power background modes increases. When more than 32 modes are allowed, the recurrence behavior is relatively insensitive to the number of allowed modes.
Nacheva, Elizabeth; Mokretar, Katya; Soenmez, Aynur; Pittman, Alan M; Grace, Colin; Valli, Roberto; Ejaz, Ayesha; Vattathil, Selina; Maserati, Emanuela; Houlden, Henry; Taanman, Jan-Willem; Schapira, Anthony H; Proukakis, Christos
2017-01-01
Potential bias introduced during DNA isolation is inadequately explored, although it could have significant impact on downstream analysis. To investigate this in human brain, we isolated DNA from cerebellum and frontal cortex using spin columns under different conditions, and salting-out. We first analysed DNA using array CGH, which revealed a striking wave pattern suggesting primarily GC-rich cerebellar losses, even against matched frontal cortex DNA, with a similar pattern on a SNP array. The aCGH changes varied with the isolation protocol. Droplet digital PCR of two genes also showed protocol-dependent losses. Whole genome sequencing showed GC-dependent variation in coverage with spin column isolation from cerebellum. We also extracted and sequenced DNA from substantia nigra using salting-out and phenol / chloroform. The mtDNA copy number, assessed by reads mapping to the mitochondrial genome, was higher in substantia nigra when using phenol / chloroform. We thus provide evidence for significant method-dependent bias in DNA isolation from human brain, as reported in rat tissues. This may contribute to array "waves", and could affect copy number determination, particularly if mosaicism is being sought, and sequencing coverage. Variations in isolation protocol may also affect apparent mtDNA abundance.
NASA Astrophysics Data System (ADS)
Resita Arum, Sari; A, Suparmi; C, Cari
2016-01-01
The Dirac equation for Eckart potential and trigonometric Manning Rosen potential with exact spin symmetry is obtained using an asymptotic iteration method. The combination of the two potentials is substituted into the Dirac equation, then the variables are separated into radial and angular parts. The Dirac equation is solved by using an asymptotic iteration method that can reduce the second order differential equation into a differential equation with substitution variables of hypergeometry type. The relativistic energy is calculated using Matlab 2011. This study is limited to the case of spin symmetry. With the asymptotic iteration method, the energy spectra of the relativistic equations and equations of orbital quantum number l can be obtained, where both are interrelated between quantum numbers. The energy spectrum is also numerically solved using the Matlab software, where the increase in the radial quantum number nr causes the energy to decrease. The radial part and the angular part of the wave function are defined as hypergeometry functions and visualized with Matlab 2011. The results show that the disturbance of a combination of the Eckart potential and trigonometric Manning Rosen potential can change the radial part and the angular part of the wave function. Project supported by the Higher Education Project (Grant No. 698/UN27.11/PN/2015).
NASA Astrophysics Data System (ADS)
Wen, Xiao-Yong; Yan, Zhenya
2017-02-01
The novel generalized perturbation (n, M)-fold Darboux transformations (DTs) are reported for the (2 + 1)-dimensional Kadomtsev-Petviashvili (KP) equation and its extension by using the Taylor expansion of the Darboux matrix. The generalized perturbation (1 , N - 1) -fold DTs are used to find their higher-order rational solitons and rogue wave solutions in terms of determinants. The dynamics behaviors of these rogue waves are discussed in detail for different parameters and time, which display the interesting RW and soliton structures including the triangle, pentagon, heptagon profiles, etc. Moreover, we find that a new phenomenon that the parameter (a) can control the wave structures of the KP equation from the higher-order rogue waves (a ≠ 0) into higher-order rational solitons (a = 0) in (x, t)-space with y = const . These results may predict the corresponding dynamical phenomena in the models of fluid mechanics and other physically relevant systems.
Influence of wave-front sampling in adaptive optics retinal imaging
Laslandes, Marie; Salas, Matthias; Hitzenberger, Christoph K.; Pircher, Michael
2017-01-01
A wide range of sampling densities of the wave-front has been used in retinal adaptive optics (AO) instruments, compared to the number of corrector elements. We developed a model in order to characterize the link between number of actuators, number of wave-front sampling points and AO correction performance. Based on available data from aberration measurements in the human eye, 1000 wave-fronts were generated for the simulations. The AO correction performance in the presence of these representative aberrations was simulated for different deformable mirror and Shack Hartmann wave-front sensor combinations. Predictions of the model were experimentally tested through in vivo measurements in 10 eyes including retinal imaging with an AO scanning laser ophthalmoscope. According to our study, a ratio between wavefront sampling points and actuator elements of 2 is sufficient to achieve high resolution in vivo images of photoreceptors. PMID:28271004
NASA Astrophysics Data System (ADS)
Yasui, Kyuichi; Kozuka, Teruyuki; Yasuoka, Masaki; Kato, Kazumi
2015-11-01
There are two major categories in a thermoacoustic prime-mover. One is the traveling-wave type and the other is the standing-wave type. A simple analytical model of a standing-wave thermoacoustic prime-mover is proposed at relatively low heat-flux for a stack much shorter than the acoustic wavelength, which approximately describes the Brayton cycle. Numerical simulations of Rott's equations have revealed that the work flow (acoustic power) increases by increasing of the amplitude of the particle velocity (| U|) for the traveling-wave type and by increasing cosΦ for the standing-wave type, where Φ is the phase difference between the particle velocity and the acoustic pressure. In other words, the standing-wave type is a phase-dominant type while the traveling-wave type is an amplitude-dominant one. The ratio of the absolute value of the traveling-wave component (| U|cosΦ) to that of the standing-wave component (| U|sinΦ) of any thermoacoustic engine roughly equals the ratio of the absolute value of the increasing rate of | U| to that of cosΦ. The different mechanism between the traveling-wave and the standing-wave type is discussed regarding the dependence of the energy efficiency on the acoustic impedance of a stack as well as that on ωτα, where ω is the angular frequency of an acoustic wave and τα is the thermal relaxation time. While the energy efficiency of the traveling-wave type at the optimal ωτα is much higher than that of the standing-wave type, the energy efficiency of the standing-wave type is higher than that of the traveling-wave type at much higher ωτα under a fixed temperature difference between the cold and the hot ends of the stack.
Lake St. Clair: Storm Wave and Water Level Modeling
2013-06-01
R. A. Luettich, C. Dawson, V. J. Cardone , A. T. Cox, M. D. Powell, H. J. Westerink, and H. J. Roberts. 2010. A high resolution coupled riverine flow...Storm Wave and Water Level Modeling 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Tyler J. Hesser
NASA Astrophysics Data System (ADS)
Gu, Sheng-Yang; Liu, Han-Li; Pedatella, N. M.; Dou, Xiankang; Li, Tao; Chen, Tingdi
2016-03-01
The quasi 2 day wave (QTDW) observed during 2007 austral summer period is well reproduced in an reanalysis produced by the data assimilation version of the Whole Atmosphere Community Climate Model (WACCM + Data Assimilation Research Testbed) developed at National Center for Atmospheric Research (NCAR). It is found that the QTDW peaked 3 times from January to February but with different zonal wave numbers. Diagnostic analysis shows that the mean flow instabilities, refractive index, and critical layers of QTDWs are fundamental for their propagation and amplification, and thus, the temporal variations of the background wind are responsible for the different wave number structures at different times. The westward propagating wave number 2 mode (W2) grew and maximized in the first half of January, when the mean flow instabilities related to the summer easterly jet were enclosed by the critical layers of the westward propagating wave number 3 (W3) and wave number 4 (W4) modes. This prevented W3 and W4 from approaching and extracting energy from the unstable region. The W2 decayed rapidly thereafter due to the recession of critical layer and thus the lack of additional amplification by the mean flow instability. The W3 peaked in late January, when the instabilities were still encircled by the critical layer of W4. The attenuation of W3 afterward was also due to the disappearance of critical layer and thus the lack of overreflection. Finally, the W4 peaked in late February when both the instability and critical layer were appropriate.
Wave-packet formation at the zero-dispersion point in the Gardner-Ostrovsky equation.
Whitfield, A J; Johnson, E R
2015-05-01
The long-time effect of weak rotation on an internal solitary wave is the decay into inertia-gravity waves and the eventual emergence of a coherent, steadily propagating, nonlinear wave packet. There is currently no entirely satisfactory explanation as to why these wave packets form. Here the initial value problem is considered within the context of the Gardner-Ostrovsky, or rotation-modified extended Korteweg-de Vries, equation. The linear Gardner-Ostrovsky equation has maximum group velocity at a critical wave number, often called the zero-dispersion point. It is found here that a nonlinear splitting of the wave-number spectrum at the zero-dispersion point, where energy is shifted into the modulationally unstable regime of the Gardner-Ostrovsky equation, is responsible for the wave-packet formation. Numerical comparisons of the decay of a solitary wave in the Gardner-Ostrovsky equation and a derived nonlinear Schrödinger equation at the zero-dispersion point are used to confirm the spectral splitting.
Wen, Xiao-Yong; Yan, Zhenya
2015-12-01
We study higher-order rogue wave (RW) solutions of the coupled integrable dispersive AB system (also called Pedlosky system), which describes the evolution of wave-packets in a marginally stable or unstable baroclinic shear flow in geophysical fluids. We propose its continuous-wave (CW) solutions and existent conditions for their modulation instability to form the rogue waves. A new generalized N-fold Darboux transformation (DT) is proposed in terms of the Taylor series expansion for the spectral parameter in the Darboux matrix and its limit procedure and applied to the CW solutions to generate multi-rogue wave solutions of the coupled AB system, which satisfy the general compatibility condition. The dynamical behaviors of these higher-order rogue wave solutions demonstrate both strong and weak interactions by modulating parameters, in which some weak interactions can generate the abundant triangle, pentagon structures, etc. Particularly, the trajectories of motion of peaks and depressions of profiles of the first-order RWs are explicitly analyzed. The generalized DT method used in this paper can be extended to other nonlinear integrable systems. These results may be useful for understanding the corresponding rogue-wave phenomena in fluid mechanics and related fields.
Nonlinear ultrasonic imaging with X wave
NASA Astrophysics Data System (ADS)
Du, Hongwei; Lu, Wei; Feng, Huanqing
2009-10-01
X wave has a large depth of field and may have important application in ultrasonic imaging to provide high frame rate (HFR). However, the HFR system suffers from lower spatial resolution. In this paper, a study of nonlinear imaging with X wave is presented to improve the resolution. A theoretical description of realizable nonlinear X wave is reported. The nonlinear field is simulated by solving the KZK nonlinear wave equation with a time-domain difference method. The results show that the second harmonic field of X wave has narrower mainlobe and lower sidelobes than the fundamental field. In order to evaluate the imaging effect with X wave, an imaging model involving numerical calculation of the KZK equation, Rayleigh-Sommerfeld integral, band-pass filtering and envelope detection is constructed to obtain 2D fundamental and second harmonic images of scatters in tissue-like medium. The results indicate that if X wave is used, the harmonic image has higher spatial resolution throughout the entire imaging region than the fundamental image, but higher sidelobes occur as compared to conventional focus imaging. A HFR imaging method with higher spatial resolution is thus feasible provided an apodization method is used to suppress sidelobes.
Spiess, Mathilde; Bernardi, Giulio; Kurth, Salome; Ringli, Maya; Wehrle, Flavia M; Jenni, Oskar G; Huber, Reto; Siclari, Francesca
2018-05-17
Slow waves, the hallmarks of non-rapid eye-movement (NREM) sleep, are thought to reflect maturational changes that occur in the cerebral cortex throughout childhood and adolescence. Recent work in adults has revealed evidence for two distinct synchronization processes involved in the generation of slow waves, which sequentially come into play in the transition to sleep. In order to understand how these two processes are affected by developmental changes, we compared slow waves between children and young adults in the falling asleep period. The sleep onset period (starting 30s before end of alpha activity and ending at the first slow wave sequence) was extracted from 72 sleep onset high-density EEG recordings (128 electrodes) of 49 healthy subjects (age 8-25). Using an automatic slow wave detection algorithm, the number, amplitude and slope of slow waves were analyzed and compared between children (age 8-11) and young adults (age 20-25). Slow wave number and amplitude increased linearly in the falling asleep period in children, while in young adults, isolated high-amplitude slow waves (type I) dominated initially and numerous smaller slow waves (type II) with progressively increasing amplitude occurred later. Compared to young adults, children displayed faster increases in slow wave amplitude and number across the falling asleep period in central and posterior brain regions, respectively, and also showed larger slow waves during wakefulness immediately prior to sleep. Children do not display the two temporally dissociated slow wave synchronization processes in the falling asleep period observed in adults, suggesting that maturational factors underlie the temporal segregation of these two processes. Our findings provide novel perspectives for studying how sleep-related behaviors and dreaming differ between children and adults. Copyright © 2018 Elsevier Inc. All rights reserved.
COMETBOARDS Can Optimize the Performance of a Wave-Rotor-Topped Gas Turbine Engine
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.
1997-01-01
A wave rotor, which acts as a high-technology topping spool in gas turbine engines, can increase the effective pressure ratio as well as the turbine inlet temperature in such engines. The wave rotor topping, in other words, may significantly enhance engine performance by increasing shaft horse power while reducing specific fuel consumption. This performance enhancement requires optimum selection of the wave rotor's adjustable parameters for speed, surge margin, and temperature constraints specified on different engine components. To examine the benefit of the wave rotor concept in engine design, researchers soft coupled NASA Lewis Research Center's multidisciplinary optimization tool COMETBOARDS and the NASA Engine Performance Program (NEPP) analyzer. The COMETBOARDS-NEPP combined design tool has been successfully used to optimize wave-rotor-topped engines. For illustration, the design of a subsonic gas turbine wave-rotor-enhanced engine with four ports for 47 mission points (which are specified by Mach number, altitude, and power-setting combinations) is considered. The engine performance analysis, constraints, and objective formulations were carried out through NEPP, and COMETBOARDS was used for the design optimization. So that the benefits that accrue from wave rotor enhancement could be examined, most baseline variables and constraints were declared to be passive, whereas important parameters directly associated with the wave rotor were considered to be active for the design optimization. The engine thrust was considered as the merit function. The wave rotor engine design, which became a sequence of 47 optimization subproblems, was solved successfully by using a cascade strategy available in COMETBOARDS. The graph depicts the optimum COMETBOARDS solutions for the 47 mission points, which were normalized with respect to standard results. As shown, the combined tool produced higher thrust for all mission points than did the other solution, with maximum benefits around mission points 11, 25, and 31. Such improvements can become critical, especially when engines are sized for these specific mission points.
Yang, Wan; Petkova, Elisaveta; Shaman, Jeffrey
2014-01-01
Background The 1918 influenza pandemic caused disproportionately high mortality among certain age groups. The mechanisms underlying these differences are not fully understood. Objectives To explore the dynamics of the 1918 pandemic and to identify potential age-specific transmission patterns. Methods We examined 1915–1923 daily mortality data in New York City (NYC) and estimated the outbreak duration and initial effective reproductive number (Re) for each 1-year age cohort. Results Four pandemic waves occurred from February 1918 to April 1920. The fractional mortality increase (i.e. ratio of excess mortality to baseline mortality) was highest among teenagers during the first wave. This peak shifted to 25- to 29-year-olds in subsequent waves. The distribution of age-specific mortality during the last three waves was strongly correlated (r = 0·94 and 0·86). With each wave, the pandemic appeared to spread with a comparable early growth rate but then attenuate with varying rates. For the entire population, Re estimates made assuming 2-day serial interval were 1·74 (1·27), 1·74 (1·43), 1·66 (1·25), and 1·86 (1·37), respectively, during the first week (first 3 weeks) of each wave. Using age-specific mortality, the average Re estimates over the first week of each wave were 1·62 (95% CI: 1·55–1·68), 1·68 (1·65–1·72), 1·67 (1·61–1·73), and 1·69 (1·63–1·74), respectively; Re was not significantly different either among age cohorts or between waves. Conclusions The pandemic generally caused higher mortality among young adults and might have spread mainly among school-aged children during the first wave. We propose mechanisms to explain the timing and transmission dynamics of the four NYC pandemic waves. PMID:24299150
Adjoint-Free Variational Data Assimilation into a Regional Wave Model
2015-07-01
Wave Model 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER...developed by Oceanweather, Inc. using the methodology of Cardone et al. (1995, 1996). The winds were taken for the period 11–20 September 2011 and...International Arctic Research Center, NSF Grants 1107925 and 1203740. It was also supported by theOffice of Naval Research (Program Element 0602435N, pro
NASA Astrophysics Data System (ADS)
Tsiklauri, David
2015-04-01
Extensive particle-in-cell simulations of fast electron beams injected in a background magnetised plasma with a decreasing density profile were carried out. These simulations were intended to further shed light on a newly proposed mechanism for the generation of electromagnetic waves in type III solar radio bursts [1]. Here recent progress in an alternative to the plasma emission model using Particle-In-Cell, self-consistent electromagnetic wave emission simulations of solar type III radio bursts will be presented. In particular, (i) Fourier space drift (refraction) of non-gyrotropic electron beam-generated wave packets, caused by the density gradient [1,2], (ii) parameter space investigation of numerical runs [3], (iii) concurrent generation of whistler waves [4] and a separate problem of (iv) electron acceleration by Langmuir waves in a background magnetised plasma with an increasing density profile [5] will be discussed. In all considered cases the density inhomogeneity-induced wave refraction plays a crucial role. In the case of non-gyrotropic electron beam, the wave refraction transforms the generated wave packets from standing into freely escaping EM radiation. In the case of electron acceleration by Langmuir waves, a positive density gradient in the direction of wave propagation causes a decrease in the wavenumber, and hence a higher phase velocity vph = ω/k. The k-shifted wave is then subject to absorption by a faster electron by wave-particle interaction. The overall effect is an increased number of high energy electrons in the energy spectrum. [1] D. Tsiklauri, Phys. Plasmas 18, 052903 (2011); http://dx.doi.org/10.1063/1.3590928 [2] H. Schmitz, D. Tsiklauri, Phys. Plasmas 20, 062903 (2013); http://dx.doi.org/10.1063/1.4812453 [3] R. Pechhacker, D. Tsiklauri, Phys. Plasmas 19, 112903 (2012); http://dx.doi.org/10.1063/1.4768429 [4] M. Skender, D. Tsiklauri, Phys. Plasmas 21, 042904 (2014); http://dx.doi.org/10.1063/1.4871723 [5] R. Pechhacker, D. Tsiklauri, Phys. Plasmas 21, 012903 (2014); http://dx.doi.org/10.1063/1.4863494 This research is funded by the Leverhulme Trust Research Project Grant RPG-311
Generalized minimal principle for rotor filaments.
Dierckx, Hans; Wellner, Marcel; Bernus, Olivier; Verschelde, Henri
2015-05-01
To a reaction-diffusion medium with an inhomogeneous anisotropic diffusion tensor D, we add a fourth spatial dimension such that the determinant of the diffusion tensor is constant in four dimensions. We propose a generalized minimal principle for rotor filaments, stating that the scroll wave filament strives to minimize its surface area in the higher-dimensional space. As a consequence, stationary scroll wave filaments in the original 3D medium are geodesic curves with respect to the metric tensor G=det(D)D(-1). The theory is confirmed by numerical simulations for positive and negative filament tension and a model with a non-stationary spiral core. We conclude that filaments in cardiac tissue with positive tension preferentially reside or anchor in regions where cardiac cells are less interconnected, such as portions of the cardiac wall with a large number of cleavage planes.
Quantum mechanics of conformally and minimally coupled Friedmann-Robertson-Walker cosmology
NASA Astrophysics Data System (ADS)
Kim, Sang Pyo
1992-10-01
The expansion method by a time-dependent basis of the eigenfunctions for the space-coordinate-dependent sub-Hamiltonian is one of the most natural frameworks for quantum systems, relativistic as well as nonrelativistic. The complete set of wave functions is found in the product integral formulation, whose constants of integration are fixed by Cauchy initial data. The wave functions for the Friedmann-Robertson-Walker (FRW) cosmology conformally and minimally coupled to a scalar field with a power-law potential or a polynomial potential are expanded in terms of the eigenfunctions of the scalar field sub-Hamiltonian part. The resultant gravitational field part which is an ``intrinsic'' timelike variable-dependent matrix-valued differential equation is solved again in the product integral formulation. There are classically allowed regions for the ``intrinsic'' timelike variable depending on the scalar field quantum numbers and these regions increase accordingly as the quantum numbers increase. For a fixed large three-geometry the wave functions corresponding to the low excited (small quantum number) states of the scalar field are exponentially damped or diverging and the wave functions corresponding to the high excited (large quantum number) states are still oscillatory but become eventually exponential as the three-geometry becomes larger. Furthermore, a proposal is advanced that the wave functions exponentially damped for a large three-geometry may be interpreted as ``tunneling out'' wave functions into, and the wave functions exponentially diverging as ``tunneling in'' from, different universes with the same or different topologies, the former being interpreted as the recently proposed Hawking-Page wormhole wave functions. It is observed that there are complex as well as Euclidean actions depending on the quantum numbers of the scalar field part outside the classically allowed region both of the gravitational and scalar fields, suggesting the usefulness of complex geometry and complex trajectories. From the most general wave functions for the FRW cosmology conformally coupled to scalar field, the boundary conditions for the wormhole wave functions are modified so that the modulus of wave functions, instead of the wave functions themselves, should be exponentially damped for a large three-geometry and be regular up to some negative power of the three-geometry as the three-geometry collapses. The wave functions for the FRW cosmology minimally coupled to an inhomogeneous scalar field are similarly found in the product integral formulation. The role of a large number of the inhomogeneous modes of the scalar field is not only to increase the classically allowed regions for the gravitational part but also to provide a mechanism of the decoherence of quantum interferences between the different sizes of the universe.
Ankiewicz, Adrian; Wang, Yan; Wabnitz, Stefan; Akhmediev, Nail
2014-01-01
We consider an extended nonlinear Schrödinger equation with higher-order odd (third order) and even (fourth order) terms with variable coefficients. The resulting equation has soliton solutions and approximate rogue wave solutions. We present these solutions up to second order. Moreover, specific constraints on the parameters of higher-order terms provide integrability of the resulting equation, providing a corresponding Lax pair. Particular cases of this equation are the Hirota and the Lakshmanan-Porsezian-Daniel equations. The resulting integrable equation admits exact rogue wave solutions. In particular cases, mentioned above, these solutions are reduced to the rogue wave solutions of the corresponding equations.
Low-Frequency Waves in Cold Three-Component Plasmas
NASA Astrophysics Data System (ADS)
Fu, Qiang; Tang, Ying; Zhao, Jinsong; Lu, Jianyong
2016-09-01
The dispersion relation and electromagnetic polarization of the plasma waves are comprehensively studied in cold electron, proton, and heavy charged particle plasmas. Three modes are classified as the fast, intermediate, and slow mode waves according to different phase velocities. When plasmas contain positively-charged particles, the fast and intermediate modes can interact at the small propagating angles, whereas the two modes are separate at the large propagating angles. The near-parallel intermediate and slow waves experience the linear polarization, circular polarization, and linear polarization again, with the increasing wave number. The wave number regime corresponding to the above circular polarization shrinks as the propagating angle increases. Moreover, the fast and intermediate modes cause the reverse change of the electromagnetic polarization at the special wave number. While the heavy particles carry the negative charges, the dispersion relations of the fast and intermediate modes are always separate, being independent of the propagating angles. Furthermore, this study gives new expressions of the three resonance frequencies corresponding to the highly-oblique propagation waves in the general three-component plasmas, and shows the dependence of the resonance frequencies on the propagating angle, the concentration of the heavy particle, and the mass ratio among different kinds of particles. supported by National Natural Science Foundation of China (Nos. 11303099, 41531071 and 41574158), and the Youth Innovation Promotion Association CAS
Ginosar, Y; Davidson, E M; Meroz, Y; Blotnick, S; Shacham, M; Caraco, Y
2009-09-01
There are diverse reports concerning the single-nucleotide polymorphism (SNP) A118G in the gene coding for the mu-opioid receptor. This study assessed pharmacokinetic-pharmacodynamic relationships in patients with acute pain (water-immersed extracorporeal shock wave lithotripsy). Ninety-nine patients (ASA I-II, age 18-70) were assessed in this prospective observational study. Blinding was achieved by determining genotype only after the procedure. I.V. alfentanil was administered by patient-controlled administration (loading dose, 10 microg kg(-1); continuous infusion, 20 microg kg(-1) h(-1); bolus, 3 microg kg(-1); lockout time, 1 min); no other analgesic or sedating medication was used. The allelic frequency was 15.2% in our population. The G118 SNP (AG/GG) was associated with a 27% increase in plasma alfentanil concentration (P=0.034), a 54% increase in alfentanil dose (P=0.009), a 47% increase in dose per kg body weight (P=0.004), a 55% increase in dose per kg corrected for stimulus intensity (P=0.002), a 112% increase in the numbers of attempted boluses (P=0.015), a 79% increase in the numbers of successful boluses (P=0.013), and a 153% increase in the numbers of failed boluses (P=0.042). Despite the increased alfentanil self-administration, the G118 SNP was associated with a 52% increase in verbal analogue pain scores over the same period of time (P=0.047). We demonstrated increased opioid requirement for alfentanil in patients with the G118 SNP, who self-administered a higher dose, achieved higher plasma concentration, and yet complained of more severe pain. This observation suggests that G118 SNP impairs the analgesic response to opioids.
ERIC Educational Resources Information Center
David, Miriam; Clegg, Sue
2008-01-01
In this paper, in keeping with developing feminist methodologies, we reflect on how we became second-wave feminists in the 1970s. We consider how the theories and practices that we were involved in have been changed as the global socio-political context has transformed higher education practices. Second-wave feminism originated as a political…
Frouz, Jan; Mudrák, Ondřej; Reitschmiedová, Erika; Walmsley, Alena; Vachová, Pavla; Šimáčková, Hana; Albrechtová, Jana; Moradi, Jabbar; Kučera, Jiří
2018-01-01
Geodiversity plays an important role in species establishment during spontaneous succession. At post-mining sites in the Czech Republic in 2003, we established plots in which the surface of the heaped overburden was either kept wave-like or leveled. Based on surveys conducted from 2006 to 2015, leveled plots were increasingly dominated by grasses and herbs (and especially by the grass Calamagrostis epigejos) while the wave-like plots were increasingly dominated by the trees Salix caprea and Betula pendula. In 2015, a detailed survey was conducted of the dominant species. Both S. caprea and B. pendula occurred more often in wave-like plots than in leveled plots; this was particularly true for trees taller than 1 m, which were absent in leveled plots. In wave-like plots, leaf and root biomasses of both woody species were higher on the wave slopes than on the wave depressions. Nitrogen content was higher but content stress indicating proline in leaves of S. caprea was lower in wave-like plots than in leveled plots. In wave-like plots, both woody species occurred mainly on wave slopes but C. epigejos occurred mainly in the depressions. We speculate that trees were more abundant in wave-like plots than in leveled plots because the waves trapped tree seeds and snow and because the soil porosity was greater in wave-like than in leveled plots. Grasses may have preferred the leveled plots because soil porosity was lower and clay content was higher in leveled than in wave-like plots. Copyright © 2017 Elsevier Ltd. All rights reserved.
Predicting Physical Time Series Using Dynamic Ridge Polynomial Neural Networks
Al-Jumeily, Dhiya; Ghazali, Rozaida; Hussain, Abir
2014-01-01
Forecasting naturally occurring phenomena is a common problem in many domains of science, and this has been addressed and investigated by many scientists. The importance of time series prediction stems from the fact that it has wide range of applications, including control systems, engineering processes, environmental systems and economics. From the knowledge of some aspects of the previous behaviour of the system, the aim of the prediction process is to determine or predict its future behaviour. In this paper, we consider a novel application of a higher order polynomial neural network architecture called Dynamic Ridge Polynomial Neural Network that combines the properties of higher order and recurrent neural networks for the prediction of physical time series. In this study, four types of signals have been used, which are; The Lorenz attractor, mean value of the AE index, sunspot number, and heat wave temperature. The simulation results showed good improvements in terms of the signal to noise ratio in comparison to a number of higher order and feedforward neural networks in comparison to the benchmarked techniques. PMID:25157950
Predicting physical time series using dynamic ridge polynomial neural networks.
Al-Jumeily, Dhiya; Ghazali, Rozaida; Hussain, Abir
2014-01-01
Forecasting naturally occurring phenomena is a common problem in many domains of science, and this has been addressed and investigated by many scientists. The importance of time series prediction stems from the fact that it has wide range of applications, including control systems, engineering processes, environmental systems and economics. From the knowledge of some aspects of the previous behaviour of the system, the aim of the prediction process is to determine or predict its future behaviour. In this paper, we consider a novel application of a higher order polynomial neural network architecture called Dynamic Ridge Polynomial Neural Network that combines the properties of higher order and recurrent neural networks for the prediction of physical time series. In this study, four types of signals have been used, which are; The Lorenz attractor, mean value of the AE index, sunspot number, and heat wave temperature. The simulation results showed good improvements in terms of the signal to noise ratio in comparison to a number of higher order and feedforward neural networks in comparison to the benchmarked techniques.
Grating formation by a high power radio wave in near-equator ionosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Rohtash; Sharma, A. K.; Tripathi, V. K.
2011-11-15
The formation of a volume grating in the near-equator regions of ionosphere due to a high power radio wave is investigated. The radio wave, launched from a ground based transmitter, forms a standing wave pattern below the critical layer, heating the electrons in a space periodic manner. The thermal conduction along the magnetic lines of force inhibits the rise in electron temperature, limiting the efficacy of heating to within a latitude of few degrees around the equator. The space periodic electron partial pressure leads to ambipolar diffusion creating a space periodic density ripple with wave vector along the vertical. Suchmore » a volume grating is effective to cause strong reflection of radio waves at a frequency one order of magnitude higher than the maximum plasma frequency in the ionosphere. Linearly mode converted plasma wave could scatter even higher frequency radio waves.« less
Three-dimensional instability of standing waves
NASA Astrophysics Data System (ADS)
Zhu, Qiang; Liu, Yuming; Yue, Dick K. P.
2003-12-01
We investigate the three-dimensional instability of finite-amplitude standing surface waves under the influence of gravity. The analysis employs the transition matrix (TM) approach and uses a new high-order spectral element (HOSE) method for computation of the nonlinear wave dynamics. HOSE is an extension of the original high-order spectral method (HOS) wherein nonlinear wave wave and wave body interactions are retained up to high order in wave steepness. Instead of global basis functions in HOS, however, HOSE employs spectral elements to allow for complex free-surface geometries and surface-piercing bodies. Exponential convergence of HOS with respect to the total number of spectral modes (for a fixed number of elements) and interaction order is retained in HOSE. In this study, we use TM-HOSE to obtain the stability of general three-dimensional perturbations (on a two-dimensional surface) on two classes of standing waves: plane standing waves in a rectangular tank; and radial/azimuthal standing waves in a circular basin. For plane standing waves, we confirm the known result of two-dimensional side-bandlike instability. In addition, we find a novel three-dimensional instability for base flow of any amplitude. The dominant component of the unstable disturbance is an oblique (standing) wave oriented at an arbitrary angle whose frequency is close to the (nonlinear) frequency of the original standing wave. This finding is confirmed by direct long-time simulations using HOSE which show that the nonlinear evolution leads to classical Fermi Pasta Ulam recurrence. For the circular basin, we find that, beyond a threshold wave steepness, a standing wave (of nonlinear frequency Omega) is unstable to three-dimensional perturbations. The unstable perturbation contains two dominant (standing-wave) components, the sum of whose frequencies is close to 2Omega. From the cases we consider, the critical wave steepness is found to generally decrease/increase with increasing radial/azimuthal mode number of the base standing wave. Finally, we show that the instability we find for both two- and three-dimensional standing waves is a result of third-order (quartet) resonance.
Mezheritsky, Alex A; Mezheritsky, Alex V
2007-12-01
A theoretical description of the dissipative phenomena in the wave dispersion related to the "energytrap" effect in a thickness-vibrating, infinite thicknesspolarized piezoceramic plate with resistive electrodes is presented. The three-dimensional (3-D) equations of linear piezoelectricity were used to obtain symmetric and antisymmetric solutions of plane harmonic waves and investigate the eigen-modes of thickness longitudinal (TL) up to third harmonic and shear (TSh) up to ninth harmonic vibrations of odd- and even-orders. The effects of internal and electrode energy dissipation parameters on the wave propagation under regimes ranging from a short-circuit (sc) condition through RC-type relaxation dispersion to an opencircuit (oc) condition are examined in detail for PZT piezoceramics with three characteristic T -mode energy-trap figure-of-merit c-(D)(33)/c-(E)(44) values - less, near equal and higher 4 - when the second harmonic spurious TSh resonance lies below, inside, and above the fundamental TL resonanceantiresonance frequency interval. Calculated complex lateral wave number dispersion dependences on frequency and electrode resistance are found to follow the universal scaling formula similar to those for dielectrics characterization. Formally represented as a Cole-Cole diagram, the dispersion branches basically exhibit Debye-like and modified Davidson Cole dependences. Varying the dissipation parameters of internal loss and electrode conductivity, the interaction of different branches was demonstrated by analytical and numerical analysis. For the purposes of dispersion characterization of at least any thickness resonance, the following theorem was stated: the ratio of two characteristic determinants, specifically constructed from the oc and sc boundary conditions, in the limit of zero lateral wave number, is equal to the basic elementary-mode normalized admittance. As was found based on the theorem, the dispersion near the basic and nonbasic TL and TSh resonances reveal some simple representations related to the respective elementary admittance and showing the connection between the propagation and excitation problems in a continuous piezoactive medium.
Alfvénic waves in polar spicules
NASA Astrophysics Data System (ADS)
Tavabi, E.; Koutchmy, S.; Ajabshirizadeh, A.; Ahangarzadeh Maralani, A. R.; Zeighami, S.
2015-01-01
Context. For investigating spicules from the photosphere to coronal heights, the new Hinode/SOT long series of high-resolution observations from space taken in CaII H line emission offers an improved way to look at their remarkable dynamical behavior using images free of seeing effects. They should be put in the context of the huge amount of already accumulated material from ground-based instruments, including high- resolution spectra of off-limb spicules. Aims: Both the origin of the phenomenon and the significance of dynamical spicules for the heating above the top of the photosphere and the fuelling of the chromospheric and the transition region need more investigation, including of the possible role of the associated magnetic waves for the corona higher up. Methods: We analyze in great detail the proper transverse motions of mature and tall polar region spicules for different heights, assuming that there might be Helical-Kink waves or Alfvénic waves propagating inside their multicomponent substructure, by interpreting the quasi-coherent behavior of all visible components presumably confined by a surrounding magnetic envelop. We concentrate the analysis on the taller CaII spicules more relevant for coronal heights and easier to measure. Two-dimensional velocity maps of proper motion were computed for the first time using a correlation tracking technique based on FFTs and cross-correlation function with a 2nd-order-accuracy Taylor expansion. Highly processed images with the popular mad-max algorithm were first prepared to perform this analysis. The locations of the peak of the cross-correlation function were obtained with subpixel accuracy. Results: The surge-like behavior of solar polar region spicules supports the untwisting multicomponent interpretation of spicules exhibiting helical dynamics. Several tall spicules are found with (i) upward and downward flows that are similar at lower and middle levels, the rate of upward motion being slightly higher at high levels; (ii) the left- and righthand velocities are also increasing with height; (iii) a large number of multicomponent spicules show shearing motion of both left- and righthanded senses occurring simultaneously, which might be understood as twisting (or untwisting) threads. The number of turns depends on the overall diameter of the structure made of components and changes from at least one turn for the smallest structure to at most two or three turns for surge-like broad structures. The curvature along the spicule corresponds to a low turn number similar to a transverse kink mode oscillation along the threads. A movie associated to Fig. 1 is available in electronic form at http://www.aanda.org
Mapping the Earth's thermochemical and anisotropic structure using global surface wave data
NASA Astrophysics Data System (ADS)
Khan, A.; Boschi, L.; Connolly, J. A. D.
2011-01-01
We have inverted global fundamental mode and higher-order Love and Rayleigh wave dispersion data jointly, to find global maps of temperature, composition, and radial seismic anisotropy of the Earth's mantle as well as their uncertainties via a stochastic sampling-based approach. We apply a self-consistent thermodynamic method to systematically compute phase equilibria and physical properties (P and S wave velocity, density) that depend only on composition (in the Na2-CaO-FeO-MgO-Al2O3-SiO2 model system), pressure, and temperature. Our 3-D maps are defined horizontally by 27 different tectonic regions and vertically by a number of layers. We find thermochemical differences between oceans and continents to extend down to ˜250 km depth, with continents and cratons appearing chemically depleted (high magnesium number (Mg #) and Mg/Si ratio) and colder (>100°C) relative to oceans, while young oceanic lithosphere is hotter than its intermediate age and old counterparts. We find what appears to be strong radial S wave anisotropy in the upper mantle down to ˜200 km, while there seems to be little evidence for shear anisotropy at greater depths. At and beneath the transition zone, 3-D heterogeneity is likely uncorrelated with surface tectonics; as a result, our tectonics-based parameterization is tenuous. Despite this weakness, constraints on the gross average thermochemical and anisotropic structure to ˜1300 km depth can be inferred, which appear to indicate that the compositions of the upper (low Mg# and high Mg/Si ratio) and lower mantle (high Mg# and low Mg/Si ratio) might possibly be distinct.
P wave dispersion in patients with hypochondriasis.
Atmaca, Murad; Korkmaz, Hasan; Korkmaz, Sevda
2010-11-26
P wave dispersion (Pd), defined as the difference between the maximum and the minimum P wave duration, has been associated with anxiety. Thus, we wondered whether Pd in hypochondriasis which is associated with anxiety differed from that in healthy controls. Pd was measured in 30 hypochondriac patients and same number of physically and mentally healthy age- and gender-matched controls. Hamilton Depression Rating (HDRS) and Hamilton Anxiety Rating Scales (HARS) were scored. The heart rate and left atrium (LA) sizes were not significantly different between groups. However, both Pmax and Pmin values of the patients were significantly higher than those of healthy controls. As for the main variable investigated in the present study, the corrected Pd was significantly longer in the patient group compared to control group. On the basis of this study, we can conclude that Pd may be related to hypochondriasis though our sample is too small to allow us to obtain a clear conclusion. Future studies with larger sample evaluating the effects of treatment are required. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Complex Correlation Calculation of e-H Total Cross Sections
NASA Technical Reports Server (NTRS)
Bhatia, A. K.; Temkin, A.; Fisher, Richard R. (Technical Monitor)
2001-01-01
Calculation of e-H total and elastic partial wave cross sections is being carried out using the complex correlation variational T-matrix method. In this preliminary study, elastic partial wave phase shifts are calculated with the correlation functions which are confined to be real. In that case the method reduces to the conventional optical potential approach with projection operators. The number of terms in the Hylleraas-type wave function for the S phase shifts is 95 while for the S it is 56, except for k=0.8 where it is 84. Our results, which are rigorous lower bounds, are given. They are seen to be in general agreement with those of Schwartz, but they are of 0 greater accuracy and outside of his error limits for k=0.3 and 0.4 for S. The main aim of this approach' is the application to higher energy scattering. By virtue of the complex correlation functions, the T matrix is not unitary so that elastic and total scattering cross sections are independent of each other. Our results will be compared specifically with those of Bray and Stelbovics.
Complex Correlation Calculation of e(-) - H Total Cross Sections
NASA Technical Reports Server (NTRS)
Bhatia, A. K.; Temkin, A.; Fisher, Richard R. (Technical Monitor)
2001-01-01
Calculation of e(-) - H total and elastic partial wave cross sections is being carried out using the complex correlation variational T-matrix method. In this preliminary study, elastic partial wave phase shifts are calculated with the correlation functions which are confined to be real. In that case the method reduces to the conventional optical potential approach with 2 projection operators. The number of terms in the Hylleraas-type wave function for the S-1 phase shifts is 95 while for the S-3 it is 56, except for k = 0.8 where it is 84. Our results, which are rigorous lower bounds, are seen to be in general agreement with those of Schwartz, but they are of greater accuracy and outside of his error limits for k = 0.3 and 0.4 for S-1. The main aim of this approach is the application to higher energy scattering. By virtue of the complex correlation functions, the T-matrix is not unitary so that elastic and total scattering cross sections are independent of each other. Our results will be compared specifically with those of Bray and Stelbovics.
Four-wave mixing in an asymmetric double quantum dot molecule
NASA Astrophysics Data System (ADS)
Kosionis, Spyridon G.
2018-06-01
The four-wave mixing (FWM) effect of a weak probe field, in an asymmetric semiconductor double quantum dot (QD) structure driven by a strong pump field is theoretically studied. Similarly to the case of examining several other nonlinear optical processes, the nonlinear differential equations of the density matrix elements are used, under the rotating wave approximation. By suitably tuning the intensity and the frequency of the pump field as well as by changing the value of the applied bias voltage, a procedure used to properly adjust the electron tunneling coupling, we control the FWM in the same way as several other nonlinear optical processes of the system. While in the weak electron tunneling regime, the impact of the pump field intensity on the FWM is proven to be of crucial importance, for even higher rates of the electron tunneling it is evident that the intensity of the pump field has only a slight impact on the form of the FWM spectrum. The number of the spectral peaks, depends on the relation between specific parameters of the system.
NASA Astrophysics Data System (ADS)
Narayan, J. P.; Kumar, Neeraj; Chauhan, Ranu
2018-03-01
This research work is inspired by the recently accepted concept that high frequency Rayleigh waves are generated in the epicentral zone of shallow earthquakes. Such high frequency Rayleigh waves with large amplitude may develop much of spatial variability in ground motion which in turn may cause unexpected damage to long-span structures like bridges, underground pipelines, dams, etc., in the hilly regions. Further, it has been reported that topography acts as an insulator for the Rayleigh waves (Ma et al. BSSA 97:2066-2079, 2007). The above mentioned scientific developments stimulated to quantify the role of shape and number of ridges and valleys falling in the path of Rayleigh wave in the insulating effect of topography on the Rayleigh waves. The simulated results reveals very large amplification of the horizontal component of Rayleigh wave near the top of a triangular ridge which may cause intensive landslides under favorable condition. The computed snapshots of the wave-field of Rayleigh wave reveals that the interaction of Rayleigh wave with the topography causes reflection, splitting, and diffraction of Rayleigh wave in the form of body waves which in turn provides the insulating capacity to the topography. Insulating effects of single valley is more than that of single ridge. Further this effect was more in case of elliptical ridge/valley than triangular ridge/valley. The insulating effect of topography was proportional to the frequency of Rayleigh wave and the number of ridges and valleys in the string. The obtained level of insulation effects of topography on the Rayleigh wave (energy of Rayleigh wave reduced to less than 4% after crossing a topography of span 4.5 km) calls for the consideration of role of hills and valleys in seismic hazard prediction, particularly in case of shallow earthquakes.
Analysis of the Giacobini-Zinner bow wave
NASA Technical Reports Server (NTRS)
Smith, E. J.; Slavin, J. A.; Bame, S. J.; Thomsen, M. F.; Cowley, S. W. H.; Richardson, I. G.; Hovestadt, D.; Ipavich, F. M.; Ogilvie, K. W.; Coplan, M. A.
1986-01-01
The cometary bow wave of P/Giacobini-Zinner has been analyzed using the complete set of ICE field and particle observations to determine if it is a shock. Changes in the magnetic field and plasma flow velocities from upstream to downstream have been analyzed to determine the direction of the normal and the propagation velocity of the bow wave. The velocity has then been compared with the fast magnetosonic wave speed upstream to derive the Mach number and establish whether it is supersonic, i.e., a shock, or subsonic, i.e., a large amplitude wave. The various measurements have also been compared with values derived from a Rankine-Hugoniot analysis. The results indicate that, inbound, the bow wave is a shock with M = 1.5. Outbound, a subsonic Mach number is obtained, however, arguments are presented that the bow wave is also likely to be a shock at this location.
Optical image and laser slope meter intercomparisons of high-frequency waves
NASA Technical Reports Server (NTRS)
Lubard, S. C.; Krimmel, J. E.; Thebaud, L. R.; Evans, D. D.; Shemdin, O. H.
1980-01-01
Spectral analyses of optical images of the ocean surface, obtained by a digital video system, are presented and compared with wave data measured simultaneously by the JPL Waverider-mounted laser slope meter. The image analyses, which incorporate several new ideas, provide two-dimensional wave number spectra of slope, covering wavelengths from 10 cm to 10 m. These slope spectra are converted to wave height spectra by a new technique which includes the effects of sky radiance gradients. Space-time spectra are also presented for waves whose frequencies are less than 2 Hz. The JPL slope frequency spectra are compared with image wave number spectra which have been converted to frequency spectra by use of the gravity wave dispersion relation. Results of comparisons between the frequency spectra obtained from the two different measurements show reasonable agreement for frequencies less than 3 Hz.
Experimental observation of steady inertial wave turbulence in deep rotating flows
NASA Astrophysics Data System (ADS)
Yarom, Ehud; Sharon, Eran
2015-11-01
We present experimental evidence of inertial wave turbulence in deep rotating fluid. Experiments were performed in a rotating cylindrical water tank, where previous work showed statistics similar to 2D turbulence (specifically an inverse energy cascade). Using Fourier analysis of high resolution data in both space (3D) and time we show that most of the energy of a steady state flow is contained around the inertial wave dispersion relation. The nonlinear interaction between the waves is manifested by the widening of the time spectrum around the dispersion relation. We show that as the Rossby number increases so does the spectrum width, with a strong dependence on wave number. Our results suggest that in some parameters range, rotating turbulence velocity field can be represented as a field of interacting waves (wave turbulence). Such formalism may provide a better understanding of the flow statistics. This work was supported by the Israel Science Foundation, Grant No. 81/12.
Jupiters North Equatorial Belt Expansion and Thermal Wave Activity Ahead of Junos Arrival.
NASA Technical Reports Server (NTRS)
Fletcher, L. N.; Orton, G. S.; Sinclair, J. A.; Donnelly, P.; Melin, H.; Rogers, J. H.; Greathouse, T. K.; Kasaba, Y.; Fujiyoshi, T.; Sato, T. M.;
2017-01-01
The dark colors of Jupiter's North Equatorial Belt (NEB, 7-17degN) appeared to expand northward into the neighboring one in 2015, consistent with a 35 year cycle. Inversions of thermal-IR imaging from the Very Large Telescope revealed a moderate warming and reduction of aerosol opacity at the cloud tops at 17-20degN, suggesting subsidence and drying in the expanded sector. Two new thermal waves were identified during this period: (i) an upper tropospheric thermal wave (wave number 16-17, amplitude 2.5 K at 170 mbar) in the mid-NEB that was anticorrelated with haze reflectivity; and (ii) a stratospheric wave (wave number 13-14, amplitude 7.3 K at 5 mbar) at 20-30degN. Both were quasi-stationary, confined to regions of eastward zonal flow, and are morphologically similar to waves observed during previous expansion events.
Wilson, Nick; Weerasekera, Deepa; Hoek, Janet; Li, Judy; Edwards, Richard
2010-10-01
We examined how recognition of a national quitline number changed after new health warnings were required on tobacco packaging in New Zealand (NZ). The NZ arm of the International Tobacco Control Policy Evaluation Survey (ITC Project) is a cohort study that surveyed smokers in two waves (N = 1,376 and N = 923). Wave 1 respondents were exposed to text-based warnings with a quitline number but no wording to indicate that it was the "Quitline" number. Wave 2 respondents were exposed to pictorial health warnings (PHWs) that included the word "Quitline" beside the number as well as a cessation message featuring the Quitline number and repeating the word "Quitline." The introduction of the new PHWs was associated with a 24 absolute percentage point between-wave increase in Quitline number recognition (from 37% to 61%, p < .001). Recognition increased from a minority of respondents to a majority for all age groups, genders, deprivation levels (using small area and individual measures), financial stress (two measures), and ethnic groups (e.g., the level for Maori in Wave 2: 62%, Pacific peoples: 61%, and European/other: 62%). There was also an equalizing effect on previous differences in Quitline recognition by gender, ethnic group, and for both deprivation measures. This study provides some evidence for the value of clearly identifying quitline numbers on tobacco packaging as part of PHWs. While this finding is consistent with previously published studies, the finding that this intervention appeared to benefit all sociodemographic groups is novel.
Bishop-Williams, Katherine E; Berke, Olaf; Pearl, David L; Kelton, David F
2015-08-06
In Southern Ontario, climate change may have given rise to an increasing occurrence of heat waves since the year 2000, which can cause heat stress to the general public, and potentially have detrimental health consequences. Heat waves are defined as three consecutive days with temperatures of 32 °C and above. Heat stress is the level of discomfort. A variety of heat stress indices have been proposed to measure heat stress (e.g., the heat stress index (HSI)), and has been shown to predict increases in morbidity and/or mortality rates in humans and other species. Maps visualizing the distribution of heat stress can provide information about related health risks and insight for control strategies. Information to inform heat wave preparedness models in Ontario was previously only available for major metropolitan areas. Hospitals in communities of fewer than 100,000 individuals were recruited for a pilot study by telephone. The number of people visiting the emergency room or 24-hour urgent care service was collected for a total of 27 days, covering three heat waves and six 3-day control periods from 2010-2012. The heat stress index was spatially predicted using data from 37 weather stations across Southern Ontario by geostatistical kriging. Poisson regression modeling was applied to determine the rate of increased number of emergency room visits in rural hospitals with respect to the HSI. During a heat wave, the average rate of emergency room visits was 1.11 times higher than during a control period (IRR = 1.11, CI95% (IRR) = (1.07,1.15), p ≤ 0.001). In a univariable model, HSI was not a significant predictor of emergency room visits, but when accounting for the confounding effect of a spatial trend polynomial in the hospital location coordinates, a one unit increase in HSI predicted an increase in daily emergency rooms visits by 0.4% (IRR = 1.004, CI95%(IRR) = (1.0005,1.007), p = 0.024) across the region. One high-risk cluster and no low risk clusters were identified in the southwestern portion of the study area by the spatial scan statistic during heat waves. The high-risk cluster is located in a region with high levels of heat stress during heat waves. This finding will aid hospitals and rural public health units in preventing and preparing for emergencies of foreseeable heat waves. Future research is needed to assess the relation between heat stress and individual characteristics and demographics of rural communities in Ontario.
Linares, Cristina; Martinez-Martin, Pablo; Rodríguez-Blázquez, Carmen; Forjaz, Maria João; Carmona, Rocío; Díaz, Julio
2016-01-01
Parkinson's disease (PD) is one of the factors which are associated with a higher risk of mortality during heat waves. The use of certain neuroleptic medications to control some of this disease's complications would appear to be related to an increase in heat-related mortality. To analyse the relationship and quantify the short-term effect of high temperatures during heat wave episodes in Madrid on daily mortality and PD-related hospital admissions. We used an ecological time-series study and fit Poisson regression models. We analysed the daily number of deaths due to PD and the number of daily PD-related emergency hospital admissions in the city of Madrid, using maximum daily temperature (°C) as the main environmental variable and chemical air pollution as covariates. We controlled for trend, seasonalities, and the autoregressive nature of the series. There was a maximum daily temperature of 30°C at which PD-related admissions were at a minimum. Similarly, a temperature of 34°C coincides with an increase in the number of admissions. For PD-related admissions, the Relative Risk (RR) for every increase of 1°C above the threshold temperature was 1.13 IC95%:(1.03-1.23) at lags 1 and 5; and for daily PD-related mortality, the RR was 1.14 IC95%:(1.01-1.28) at lag 3. Our results indicate that suffering from PD is a risk factor that contributes to the excess morbidity and mortality associated with high temperatures, and is relevant from the standpoint of public health prevention plans. Copyright © 2016 Elsevier Ltd. All rights reserved.
Temporal dynamics of fish communities on an exposed shoreline in Hawaii
Friedlander, A.M.; Parrish, J.D.
1998-01-01
Environmental conditions on higher latitude coral reefs can be extremely variable, and may structure fish communities in ways not previously observed in the more stable, low latitude locations where communities have usually been studied. Temporal changes in fish community structure were examined in an intensive two-year study of the reef fishes of Hanalei Bay, Kauai, Hawaii. Hanalei Bay is directly exposed to winter swells with high surf, as well as frequent heavy winter rainfall and high river discharge. Twenty-two transects (25 x 5 m) were established in a wide variety of habitats and censused monthly (N = 1052 censuses). Over 121 000 sightings of individuals from 150 species were made during the study. Seasonal patterns in number of species, number of individuals, species diversity, and evenness were observed, with winter values usually lowest. Values of these ensemble variables tended to be higher at deeper sites and at sites with greater habitat complexity. Surf height and degree of wave exposure were negatively correlated with several measures of community organization. Groups of fishes with different levels of spatial mobility tended to occupy depths consistent with their various abilities to respond to events of heavy weather. The rank abundance of fish taxa tended to be more stable seasonally at sites with less exposure to high wave energy. These seasonal effects may suggest some type of short-range movement from more exposed and monotypic habitats to locations that are deeper or otherwise provide refuge from seasonally heavy seas.
Lattice vibrations in the Frenkel-Kontorova model. I. Phonon dispersion, number density, and energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Qingping; Wu, Lijun; Welch, David O.
2015-06-17
We studied the lattice vibrations of two inter-penetrating atomic sublattices via the Frenkel-Kontorova (FK) model of a linear chain of harmonically interacting atoms subjected to an on-site potential, using the technique of thermodynamic Green's functions based on quantum field-theoretical methods. General expressions were deduced for the phonon frequency-wave-vector dispersion relations, number density, and energy of the FK model system. In addition, as the application of the theory, we investigated in detail cases of linear chains with various periods of the on-site potential of the FK model. Some unusual but interesting features for different amplitudes of the on-site potential of themore » FK model are discussed. In the commensurate structure, the phonon spectrum always starts at a finite frequency, and the gaps of the spectrum are true ones with a zero density of modes. In the incommensurate structure, the phonon spectrum starts from zero frequency, but at a non-zero wave vector; there are some modes inside these gap regions, but their density is very low. In our approximation, the energy of a higher-order commensurate state of the one-dimensional system at a finite temperature may become indefinitely close to the energy of an incommensurate state. This finding implies that the higher-order incommensurate-commensurate transitions are continuous ones and that the phase transition may exhibit a “devil's staircase” behavior at a finite temperature.« less
Vinagre, Catarina; Mendonça, Vanessa; Cereja, Rui; Abreu-Afonso, Francisca; Dias, Marta; Mizrahi, Damián; Flores, Augusto A V
2018-01-01
Mortality of fish has been reported in tide pools during warm days. That means that tide pools are potential ecological traps for coastal organisms, which happen when environmental changes cause maladaptive habitat selection. Heat-waves are predicted to increase in intensity, duration and frequency, making it relevant to investigate the role of tide pools as traps for coastal organisms. However, heat waves can also lead to acclimatization. If organisms undergo acclimatization prior to being trapped in tide pools, their survival chances may increase. Common tide pool species (46 species in total) were collected at a tropical and a temperate area and their upper thermal limits estimated. They were maintained for 10 days at their mean summer sea surface temperature +3°C, mimicking a heat-wave. Their upper thermal limits were estimated again, after this acclimation period, to calculate each species' acclimation response. The upper thermal limits of the organisms were compared to the temperatures attained by tide pool waters to investigate if 1) tide pools could be considered ecological traps and 2) if the increase in upper thermal limits elicited by the acclimation period could make the organisms less vulnerable to this threat. Tropical tide pools were found to be ecological traps for an important number of common coastal species, given that they can attain temperatures higher than the upper thermal limits of most of those species. Tide pools are not ecological traps in temperate zones. Tropical species have higher thermal limits than temperate species, but lower acclimation response, that does not allow them to survive the maximum habitat temperature of tropical tide pools. This way, tropical coastal organisms seem to be, not only more vulnerable to climate warming per se, but also to an increase in the ecological trap effect of tide pools.
Stability of plasma cylinder with current in a helical plasma flow
NASA Astrophysics Data System (ADS)
Leonovich, Anatoly S.; Kozlov, Daniil A.; Zong, Qiugang
2018-04-01
Stability of a plasma cylinder with a current wrapped by a helical plasma flow is studied. Unstable surface modes of magnetohydrodynamic (MHD) oscillations develop at the boundary of the cylinder enwrapped by the plasma flow. Unstable eigenmodes can also develop for which the plasma cylinder is a waveguide. The growth rate of the surface modes is much higher than that for the eigenmodes. It is shown that the asymmetric MHD modes in the plasma cylinder are stable if the velocity of the plasma flow is below a certain threshold. Such a plasma flow velocity threshold is absent for the symmetric modes. They are unstable in any arbitrarily slow plasma flows. For all surface modes there is an upper threshold for the flow velocity above which they are stable. The helicity index of the flow around the plasma cylinder significantly affects both the Mach number dependence of the surface wave growth rate and the velocity threshold values. The higher the index, the lower the upper threshold of the velocity jump above which the surface waves become stable. Calculations have been carried out for the growth rates of unstable oscillations in an equilibrium plasma cylinder with current serving as a model of the low-latitude boundary layer (LLBL) of the Earth's magnetic tail. A tangential discontinuity model is used to simulate the geomagnetic tail boundary. It is shown that the magnetopause in the geotail LLBL is unstable to a surface wave (having the highest growth rate) in low- and medium-speed solar wind flows, but becomes stable to this wave in high-speed flows. However, it can remain weakly unstable to the radiative modes of MHD oscillations.
Berta, Laura; Fazzari, Annamaria; Ficco, Anna Maria; Enrica, Patrizia Maurici; Catalano, Maria Graziella; Frairia, Roberto
2009-10-01
Extracorporeal shock waves (ESWs) are used to good effect in the treatment of soft tissue injuries, but the underlying mechanisms are still unknown. We therefore determined the effects of ESWs on normal fibroblasts in vitro, in order to assess treatment-induced cell response. A normal human fibroblast cell line (NHDF-12519) was treated with ESWs generated by a piezoelectric device (Piezoson 100; Richard Wolfe) using different protocols of impulses (300, 1,000, or 2,000 shots) and energy (0.11 or 0.22 mJ/mm(2)). Untreated controls and treated cells were cultivated for 12 days following a single shock-wave treatment. Viability, growth rate, and expression of mRNA for TGFbeta-1 and collagen types I and III were evaluated at days 3, 6, 9, and 12. 1 hour after shock-wave treatment, cell viability showed a decrease related mainly to impulse numbers applied. Fibroblasts treated with energy of 0.22 mJ/mm(2) subsequently showed an increase in proliferation from day 6 to day 9 that was higher than in untreated controls, without interference with the normal cell kinetic profile. mRNA expression was also higher in treated fibroblasts than in untreated controls for TGFbeta-1 on day 6 and day 9, for collagen type I on day 6, and for collagen type III on day 9. These in vitro data confirm that the main factors involved in the repair process of connective tissues are activated by ESWs. The study gives the rationale for, and may provide schedules for, ESW treatment of tendonopathies.
Diffusive wave in the low Mach limit for non-viscous and heat-conductive gas
NASA Astrophysics Data System (ADS)
Liu, Yechi
2018-06-01
The low Mach number limit for one-dimensional non-isentropic compressible Navier-Stokes system without viscosity is investigated, where the density and temperature have different asymptotic states at far fields. It is proved that the solution of the system converges to a nonlinear diffusion wave globally in time as Mach number goes to zero. It is remarked that the velocity of diffusion wave is proportional with the variation of temperature. Furthermore, it is shown that the solution of compressible Navier-Stokes system also has the same phenomenon when Mach number is suitably small.
Eckhaus-Benjamin-Feir Instability in Rotating Convection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Y.; Ecke, R.E.
1997-06-01
We report experimental measurements of a traveling-wave state in rotating Rayleigh-B{acute e}nard convection. The fluid was water with a Prandtl number of 6.3 and a dimensionless rotation rate of 274. The marginal and Eckhaus-Benjamin-Feir stability boundaries were determined and the local amplitude and wave number were obtained from demodulation of shadowgraph images. The phase-diffusion coefficient and group velocity were measured in the stable wave number band. This system was found to be well described by the one-dimensional complex Ginzburg-Landau equation. {copyright} {ital 1997} {ital The American Physical Society}
Predicting Binge Drinking in College Students: Rational Beliefs, Stress, or Loneliness?
Chen, Yixin; Feeley, Thomas Hugh
2015-01-01
We proposed a conceptual model to predict binge-drinking behavior among college students, based on the theory of planned behavior and the stress-coping hypothesis. A two-wave online survey was conducted with predictors and drinking behavior measured separately over 2 weeks' time. In the Wave 1 survey, 279 students at a public university in the United States answered questions assessing key predictors and individual characteristics. In the Wave 2 survey, 179 participants returned and reported their drinking behavior over 2 weeks' time. After conducting a negative binomial regression, we found that more favorable attitude toward drinking and less perceived control of drinking at Wave 1 were associated with more binge drinking at Wave 2; subjective norm at Wave 1 was not a significant predictor of binge drinking at Wave 2; students with higher stress at Wave 1 engaged in more binge drinking at Wave 2, but those with higher loneliness did not. Implications of findings are discussed. © The Author(s) 2016.
Sun, Wen-Rong; Liu, De-Yin; Xie, Xi-Yang
2017-04-01
We report the existence and properties of vector breather and semirational rogue-wave solutions for the coupled higher-order nonlinear Schrödinger equations, which describe the propagation of ultrashort optical pulses in birefringent optical fibers. Analytic vector breather and semirational rogue-wave solutions are obtained with Darboux dressing transformation. We observe that the superposition of the dark and bright contributions in each of the two wave components can give rise to complicated breather and semirational rogue-wave dynamics. We show that the bright-dark type vector solitons (or breather-like vector solitons) with nonconstant speed interplay with Akhmediev breathers, Kuznetsov-Ma solitons, and rogue waves. By adjusting parameters, we note that the rogue wave and bright-dark soliton merge, generating the boomeron-type bright-dark solitons. We prove that the rogue wave can be excited in the baseband modulation instability regime. These results may provide evidence of the collision between the mixed ultrashort soliton and rogue wave.
NASA Astrophysics Data System (ADS)
Feng, Q. S.; Zheng, C. Y.; Liu, Z. J.; Cao, L. H.; Xiao, C. Z.; Wang, Q.; Zhang, H. C.; He, X. T.
2017-08-01
Ion-bulk (IBk) wave, a novel branch with a phase velocity close to the ion’s thermal velocity, discovered by Valentini et al (2011 Plasma Phys. Control. Fusion 53 105017), is recently considered as an important electrostatic activity in solar wind, and thus of great interest to space physics and also inertial confinement fusion. The harmonic effects on IBk waves has been researched by Vlasov simulation for the first time. The condition of excitation of the large-amplitude IBk waves is given. The nature of nonlinear IBk waves in the condition of k< {k}{{lor}}/2 (k lor is the wave number at loss-of-resonance point) is undamped Bernstein-Greene-Kruskal-like waves with harmonic superposition. Only when the wave number k of IBk waves satisfies {k}{{lor}}/2≲ k≤slant {k}{{lor}}, can a large-amplitude and mono-frequency IBk wave be excited. A novel stimulated scattering from IBk modes called stimulated ion-bulk-wave scattering (SIBS) or stimulated Feng scattering (SFS) has been proposed and also verified by Vlasov-Maxwell code. In CH plasmas, in addition to the stimulated Brillouin scattering from multi ion-acoustic waves, there exists SIBS simultaneously. This research gives an insight into the SIBS in the field of laser plasma interaction.
Response spectrum method for extreme wave loading with higher order components of drag force
NASA Astrophysics Data System (ADS)
Reza, Tabeshpour Mohammad; Mani, Fatemi Dezfouli; Ali, Dastan Diznab Mohammad; Saied, Mohajernasab; Saied, Seif Mohammad
2017-03-01
Response spectra of fixed offshore structures impacted by extreme waves are investigated based on the higher order components of the nonlinear drag force. In this way, steel jacket platforms are simplified as a mass attached to a light cantilever cylinder and their corresponding deformation response spectra are estimated by utilizing a generalized single degree of freedom system. Based on the wave data recorded in the Persian Gulf region, extreme wave loading conditions corresponding to different return periods are exerted on the offshore structures. Accordingly, the effect of the higher order components of the drag force is considered and compared to the linearized state for different sea surface levels. When the fundamental period of the offshore structure is about one third of the main period of wave loading, the results indicate the linearized drag term is not capable of achieving a reliable deformation response spectrum.
Modeling of helicon wave propagation and the physical process of helicon plasma production
NASA Astrophysics Data System (ADS)
Isayama, Shogo; Hada, Tohru; Shinohara, Shunjiro; Tanikawa, Takao
2014-10-01
Helicon plasma is a high-density and low-temperature plasma generated by the helicon wave, and is expected to be useful for various applications. On the other hand, there still remain a number of unsolved physical issues regarding how the plasma is generated using the helicon wave. The generation involves such physical processes as wave propagation, mode conversion, and collisionless as well as collisional wave damping that leads to ionization/recombination of neutral particles. In this study, we attempt to construct a model for the helicon plasma production using numerical simulations. In particular, we will make a quantitative argument on the roles of the mode conversion from the helicon to the electrostatic Trivelpiece-Gould (TG) wave, as first proposed by Shamrai. According to his scenario, the long wavelength helicon wave linearly mode converts to the TG wave, which then dissipates rapidly due to its large wave number. On the other hand, the efficiency of the mode conversion depends strongly on the magnitudes of dissipation parameters. Particularly when the dissipation is dominant, the TG wave is no longer excited and the input helicon wave directly dissipates. In the presentation, we will discuss the mode conversion and the plasma heating using numerical simulations.
Marston, Philip L; Zhang, Likun
2017-05-01
When investigating the radiation forces on spheres in complicated wave-fields, the interpretation of analytical results can be simplified by retaining the s-function notation and associated phase shifts imported into acoustics from quantum scattering theory. For situations in which dissipation is negligible, as taken to be the case in the present investigation, there is an additional simplification in that partial-wave phase shifts become real numbers that vanish when the partial-wave index becomes large and when the wave-number-sphere-radius product vanishes. By restricting attention to monopole and dipole phase shifts, transitions in the axial radiation force for axisymmetric wave-fields are found to be related to wave-field parameters for traveling and standing Bessel wave-fields by considering the ratio of the phase shifts. For traveling waves, the special force conditions concern negative forces while for standing waves, the special force conditions concern vanishing radiation forces. An intermediate step involves considering the functional dependence on phase shifts. An appendix gives an approximation for zero-force plane standing wave conditions. Connections with early investigations of acoustic levitation are mentioned and some complications associated with viscosity are briefly noted.
Stochastic Particle Acceleration in Impulsive Solar Flares
NASA Technical Reports Server (NTRS)
Miller, James A.
2001-01-01
The acceleration of a huge number of electrons and ions to relativistic energies over timescales ranging from several seconds to several tens of seconds is the fundamental problem in high-energy solar physics. The cascading turbulence model we have developed has been shown previously (e.g., Miller 2000; Miller & Roberts 1995; Miner, LaRosa, & Moore 1996) to account for all the bulk features (such as acceleration timescales, fluxes, total number of energetic particles, and maximum energies) of electron and proton acceleration in impulsive solar flares. While the simulation of this acceleration process is involved, the essential idea of the model is quite simple, and consists of just a few parts: 1. During the primary flare energy release phase, we assume that low-amplitude MHD Alfven and fast mode waves are excited at long wavelengths, say comparable to the size of the event (although the results are actually insensitive to this initial wavelength). While an assumption, this appears reasonable in light of the likely highly turbulent nature of the flare. 2. These waves then cascade in a Kolmogorov-like fashion to smaller wavelengths (e.g., Verma et al. 1996), forming a power-law spectral density in wavenumber space through the inertial range. 3. When the mean wavenumber of the fast mode waves has increased sufficiently, the transit-time acceleration rate (Miller 1997) for superAlfvenic electrons can overcome Coulomb energy losses, and these electrons are accelerated out of the thermal distribution and to relativistic energies (Miller et al. 1996). As the Alfven waves cascade to higher wavenumbers, they can cyclotron resonate with progressively lower energy protons. Eventually, they will resonate with protons in the tail of the thermal distribution, which will then be accelerated to relativistic energies as well (Miller & Roberts 1995). Hence, both ions and electrons are stochastically accelerated, albeit by different mechanisms and different waves. 4. When the protons become superAlfvenic (above about 1 MeV/nucleon), they too can suffer transit-time acceleration by the fast mode waves and will receive an extra acceleration "kick." The basic overall objective of this 1 year effort was to construct a spatially-dependent version of this acceleration model and this has been realized.
Optimization of VLf/ELF Wave Generation using Beam Painting
NASA Astrophysics Data System (ADS)
Robinson, A.; Moore, R. C.
2017-12-01
A novel optimized beam painting algorithm (OBP) is used to generate high amplitude very low frequency (VLF) and extremely low frequency (ELF) waves in the D-region of the ionosphere above the High-frequency Active Auroral Research Program (HAARP) observatory. The OBP method creates a phased array of sources in the ionosphere by varying the azimuth and zenith angles of the high frequency (HF) transmitter to capitalize on the constructive interference of propagating VLF/ELF waves. OBP generates higher amplitude VLF/ELF signals than any other previously proposed method. From April through June during 2014, OBP was performed at HAARP over 1200 times. We compare the BP generated signals against vertical amplitude modulated transmissions at 50 % duty cycle (V), oblique amplitude modulated transmissions at 15 degrees zenith and 81 degrees azimuth at 50 % duty cycle (O), and geometric (circle-sweep) modulation at 15 degrees off-zenith angle at 1562.5 Hz, 3125 Hz, and 5000 Hz. We present an analysis of the directional dependence of each signal, its polarization, and its dependence on the properties of the different source region elements. We find that BP increases the received signal amplitudes of VLF and ELF waves when compared to V, O, and GM methods over a statistically significant number of trials.
NASA Astrophysics Data System (ADS)
Huntingford, Chris; Mitchell, Dann; Osprey, Scott
2015-04-01
A recent paper by Petoukhov et al (2013) demonstrates that many of the recent major extreme events in the NH may have been caused by resonant conditions driving very high meridional winds around slowly moving centres-of-action. Besides high amplitudes of planetary wave numbers 6,7 and 8, additional features are identified through 4 further conditions that trigger system resonance. These make the potential for high amplitude waves more likely as well as the possibility of more persistent events. A concern is that human-induced climate change could create conditions more conducive to tropospheric Rossby wave resonance, thereby forcing any periods of extreme weather to become more commonplace and longer lasting. Whilst the CMIP5 ensemble provides much information on expected changes, to fully address changing probabilities of extreme event occurrence - which by definition are relatively rare - is, though, best approached through a massive ensemble modeling framework. The climateprediction-dot-net citizen-science massive ensemble GCM modeling framework provides order 104 simulations for sea-surface temperature, sea-ice extent and atmospheric gas composition representative of both pre-industrial and contemporary conditions. Here we present what these families of simulations imply in terms of the changing likelihood of conditions for mid-latitude resonance, and implications for amplitudes of Rossby waves
Optimal speckle noise reduction filter for range gated laser illuminated imaging
NASA Astrophysics Data System (ADS)
Dayton, David; Gonglewski, John; Lasche, James; Hassall, Arthur
2016-09-01
Laser illuminated imaging has a number of applications in the areas of night time air-to-ground target surveillance, ID, and pointing and tracking. Using a laser illuminator, the illumination intensity and thus the signal to noise ratio can be controlled. With the advent of high performance range gated cameras in the short-wave infra-red band, higher spatial resolution can be achieved over passive thermal night imaging cameras in the mid-wave infra-red due to the shorter wave-length. If a coherent illuminator is used the resulting imagery often suffers from speckle noise due to the scattering off of a rough target surface, which gives it a grainy "salt and pepper" appearance. The probability density function for the intensity of focal plane speckle is well understood to follow a negative exponential distribution. This can be exploited to develop a Bayesian speckle noise filter. The filter has the advantage over simple frame averaging approaches in that it preserves target features and motion while reducing speckle noise without smearing or blurring the images. The resulting filtered images have the appearance of passive imagery and so are more amenable to sensor fusion with simultaneous mid-wave infra-red thermal images for enhanced target ID. The noise filter improvement is demonstrated using examples from real world laser imaging tests on tactical targets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Machida, S.; Goertz, C.K.
1988-09-01
We study the nonlinear saturation of the Farley-Buneman instability in a collisional plasma by a 2 1/2 dimensional electrostatic particle simulation which includes inelastic and elastic collisions of electrons and elastic collision of ions with neutrals. In our simulation, a uniform convection electric field is applied externally so that the relative velocity between the electrons and ions is greater than the ion sound speed and destabilizes the instability. We find a nonlinear frequency shift from higher to lower frequencies and diffusion of the wave spectrum in two dimensional wave number space. We are especially interested in finding whether the saturatedmore » wave turbulence can account for the anomalous heating rates observed in the polar ionosphere by Schlegel and St.-Maurice (1981). We find that the dominant mechanism for electron heating is due to an enhanced effective electron collision frequency and hence enhanced resistive heating as suggested by Primdahl (1986) and Robinson (1986) and not due to the heating of electrons by the electric field of the waves parallel to the magnetic field. For the ionospheric conditions discussed by Schlegel and St.-Maurice (1981) we find an anomalous heating rate of about 4 x 10/sup -7/ W/m/sup 3/. copyright American Geophysical Union 1988« less
Wave processes in dusty plasma near the Moon’s surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morozova, T. I.; Kopnin, S. I.; Popel, S. I., E-mail: popel@iki.rssi.ru
2015-10-15
A plasma—dust system in the near-surface layer on the illuminated side of the Moon is described. The system involves photoelectrons, solar-wind electrons and ions, neutrals, and charged dust grains. Linear and nonlinear waves in the plasma near the Moon’s surface are discussed. It is noticed that the velocity distribution of photoelectrons can be represented as a superposition of two distribution functions characterized by different electron temperatures: lower energy electrons are knocked out of lunar regolith by photons with energies close to the work function of regolith, whereas higher energy electrons are knocked out by photons corresponding to the peak atmore » 10.2 eV in the solar radiation spectrum. The anisotropy of the electron velocity distribution function is distorted due to the solar wind motion with respect to photoelectrons and dust grains, which leads to the development of instability and excitation of high-frequency oscillations with frequencies in the range of Langmuir and electromagnetic waves. In addition, dust acoustic waves can be excited, e.g., near the lunar terminator. Solutions in the form of dust acoustic solitons corresponding to the parameters of the dust—plasma system in the near-surface layer of the illuminated Moon’s surface are found. Ranges of possible Mach numbers and soliton amplitudes are determined.« less
Warm vegetarians? Heat waves and diet shifts in tadpoles.
Carreira, B M; Segurado, P; Orizaola, G; Gonçalves, N; Pinto, V; Laurila, A; Rebelo, R
2016-11-01
Temperature can play an important role in determining the feeding preferences of ectotherms. In light of the warmer temperatures arising with the current climatic changes, omnivorous ectotherms may perform diet shifts toward higher herbivory to optimize energetic intake. Such diet shifts may also occur during heat waves, which are projected to become more frequent, intense, and longer lasting in the future. Here, we investigated how heat waves of different duration affect feeding preferences in omnivorous anuran tadpoles and how these choices affect larval life history. In laboratory experiments, we fed tadpoles of three species on animal, plant, or mixed diet and exposed them to short heat waves (similar to the heat waves these species experience currently) or long heat waves (predicted to increase under climate change). We estimated the dietary choices of tadpoles fed on the mixed diet using stable isotopes and recorded tadpole survival and growth, larval period, and mass at metamorphosis. Tadpole feeding preferences were associated with their thermal background, with herbivory increasing with breeding temperature in nature. Patterns in survival, growth, and development generally support decreased efficiency of carnivorous diets and increased efficiency or higher relative quality of herbivorous diets at higher temperatures. All three species increased herbivory in at least one of the heat wave treatments, but the responses varied among species. Diet shifts toward higher herbivory were maladaptive in one species, but beneficial in the other two. Higher herbivory in omnivorous ectotherms under warmer temperatures may impact species differently and further contribute to changes in the structure and function of freshwater environments. © 2016 by the Ecological Society of America.
Acoustic resonance scattering from a multilayered cylindrical shell with imperfect bonding.
Rajabi, M; Hasheminejad, Seyyed M
2009-12-01
The method of wave function expansion is adopted to study the three dimensional scattering of a time-harmonic plane progressive sound field obliquely incident upon a multi-layered hollow cylinder with interlaminar bonding imperfection. For the generality of solution, each layer is assumed to be cylindrically orthotropic. An approximate laminate model in the context of the modal state equations with variable coefficients along with the classical T-matrix solution technique is set up for each layer to solve for the unknown modal scattering and transmission coefficients. A linear spring model is used to describe the interlaminar adhesive bonding whose effects are incorporated into the global transfer matrix by introduction of proper interfacial transfer matrices. Following the classic acoustic resonance scattering theory (RST), the scattered field and response to surface waves are determined by constructing the partial waves and obtaining the non-resonance (backgrounds) and resonance components. The solution is first used to investigate the effect of interlayer imperfection of an air-filled and water submerged bilaminate aluminium cylindrical shell on the resonances associated with various modes of wave propagation (i.e., symmetric/asymmetric Lamb waves, fluid-borne A-type waves, Rayleigh and Whispering Gallery waves) appearing in the backscattered spectrum, according to their polarization and state of stress. An illustrative numerical example is also given for a multi-layered (five-layered) cylindrical shell for which the stiffness of the adhesive interlayers is artificially varied. The sensitivity of resonance frequencies associated with higher mode numbers to the stiffness coefficients is demonstrated to be a good measure of the bonding strength. Limiting cases are considered and fair agreements with solutions available in the literature are established.
Time-Frequency-Wavenumber Analysis of Surface Waves Using the Continuous Wavelet Transform
NASA Astrophysics Data System (ADS)
Poggi, V.; Fäh, D.; Giardini, D.
2013-03-01
A modified approach to surface wave dispersion analysis using active sources is proposed. The method is based on continuous recordings, and uses the continuous wavelet transform to analyze the phase velocity dispersion of surface waves. This gives the possibility to accurately localize the phase information in time, and to isolate the most significant contribution of the surface waves. To extract the dispersion information, then, a hybrid technique is applied to the narrowband filtered seismic recordings. The technique combines the flexibility of the slant stack method in identifying waves that propagate in space and time, with the resolution of f- k approaches. This is particularly beneficial for higher mode identification in cases of high noise levels. To process the continuous wavelet transform, a new mother wavelet is presented and compared to the classical and widely used Morlet type. The proposed wavelet is obtained from a raised-cosine envelope function (Hanning type). The proposed approach is particularly suitable when using continuous recordings (e.g., from seismological-like equipment) since it does not require any hardware-based source triggering. This can be subsequently done with the proposed method. Estimation of the surface wave phase delay is performed in the frequency domain by means of a covariance matrix averaging procedure over successive wave field excitations. Thus, no record stacking is necessary in the time domain and a large number of consecutive shots can be used. This leads to a certain simplification of the field procedures. To demonstrate the effectiveness of the method, we tested it on synthetics as well on real field data. For the real case we also combine dispersion curves from ambient vibrations and active measurements.
Regional patterns of mortality during the 1918 influenza pandemic in Newfoundland.
Sattenspiel, Lisa
2011-07-22
The Spanish Influenza pandemic reached the island of Newfoundland in the summer of 1918 and by the time it disappeared, nearly 2000 of its 250,000 residents died. The pandemic spread in several waves, including a mild outbreak during the summer of 1918 (Wave I), a major, deadly outbreak in the succeeding fall and spring (Wave II), and a small echo wave in 1920. All parts of the island experienced the epidemic, but the effects varied across districts, both in timing and in severity. Overall P&I mortality rates across districts during the entire epidemic (1918-1920) ranged from 28.6 to 109.3 deaths per 10,000 population, with the island as a whole experiencing a mortality rate of 74.5 per 10,000. This island-wide mortality rate was 4.5 times higher than the P&I mortality rate for the 3 years immediately preceding the epidemic. Estimates of the reproduction number, R, range from 1.2 to 2.4 for Wave I and from 2.4 to 9.3 for Wave II. The pandemic experience on Newfoundland illustrates the high degree of regional variability in incidence and severity that epidemics can exhibit. In addition, compared to other world regions, the island's pandemic peaked relatively late and exhibited an unusual bimodal peak during Wave II, emphasizing that local and regional conditions can have major influences on timing, location, and rate of spread. This suggests the need to for greater understanding of how local factors influence epidemic spread so that more effective control strategies can be developed for populations experiencing future influenza pandemics. Copyright © 2011 Elsevier Ltd. All rights reserved.
Heat Wave and Mortality: A Multicountry, Multicommunity Study
Gasparrini, Antonio; Armstrong, Ben G.; Tawatsupa, Benjawan; Tobias, Aurelio; Lavigne, Eric; Coelho, Micheline de Sousa Zanotti Stagliorio; Pan, Xiaochuan; Kim, Ho; Hashizume, Masahiro; Honda, Yasushi; Guo, Yue-Liang Leon; Wu, Chang-Fu; Zanobetti, Antonella; Schwartz, Joel D.; Bell, Michelle L.; Scortichini, Matteo; Michelozzi, Paola; Punnasiri, Kornwipa; Li, Shanshan; Tian, Linwei; Garcia, Samuel David Osorio; Seposo, Xerxes; Overcenco, Ala; Zeka, Ariana; Goodman, Patrick; Dang, Tran Ngoc; Dung, Do Van; Mayvaneh, Fatemeh; Saldiva, Paulo Hilario Nascimento; Williams, Gail; Tong, Shilu
2017-01-01
Background: Few studies have examined variation in the associations between heat waves and mortality in an international context. Objectives: We aimed to systematically examine the impacts of heat waves on mortality with lag effects internationally. Methods: We collected daily data of temperature and mortality from 400 communities in 18 countries/regions and defined 12 types of heat waves by combining community-specific daily mean temperature ≥90th, 92.5th, 95th, and 97.5th percentiles of temperature with duration ≥2, 3, and 4 d. We used time-series analyses to estimate the community-specific heat wave–mortality relation over lags of 0–10 d. Then, we applied meta-analysis to pool heat wave effects at the country level for cumulative and lag effects for each type of heat wave definition. Results: Heat waves of all definitions had significant cumulative associations with mortality in all countries, but varied by community. The higher the temperature threshold used to define heat waves, the higher heat wave associations on mortality. However, heat wave duration did not modify the impacts. The association between heat waves and mortality appeared acutely and lasted for 3 and 4 d. Heat waves had higher associations with mortality in moderate cold and moderate hot areas than cold and hot areas. There were no added effects of heat waves on mortality in all countries/regions, except for Brazil, Moldova, and Taiwan. Heat waves defined by daily mean and maximum temperatures produced similar heat wave–mortality associations, but not daily minimum temperature. Conclusions: Results indicate that high temperatures create a substantial health burden, and effects of high temperatures over consecutive days are similar to what would be experienced if high temperature days occurred independently. People living in moderate cold and moderate hot areas are more sensitive to heat waves than those living in cold and hot areas. Daily mean and maximum temperatures had similar ability to define heat waves rather than minimum temperature. https://doi.org/10.1289/EHP1026 PMID:28886602
CYLINDRICAL WAVES OF FINITE AMPLITUDE IN DISSIPATIVE MEDIUM (in Russian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naugol'nykh, K.A.; Soluyan, S.I.; Khokhlov, R.V.
1962-07-01
Propagation of diverging and converging cylindrical waves in a nonlinear, viscous, heat conducting medium is analyzed using approximation methods. The KrylovBogolyubov method was used for small Raynold's numbers, and the method of S. I. Soluyan et al. (Vest. Mosk. Univ. ser. phys. and astronomy 3, 52-81, 1981), was used for large Raynold's numbers. The formation and dissipation of shock fronts and spatial dimensions of shock phenomena were analyzed. It is shown that the problem of finiteamplitude cylindrical wave propagation is identical to the problem of plane wave propagations in a medium with variable viscosity. (tr-auth)
Wave Modelling - The State of the Art
2007-09-27
Numerics and Resolution in Large Scale Wave Modelling 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 0601153N 6. AUTHOR( S ) 5d. PROJECT NUMBER Erick Rogers...Hendrik Tolman, Fabrice Ardhuin, Igor Lavrenov 5e. TASK NUMBER 5f. WORK UNIT NUMBER 73-8580-06-5 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) 8...SPONSORING/MONITORING AGENCY NAME( S ) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM( S ) Office of Naval Research ONR 800 N. Quincy St. Arlington, VA 22217
Demonstration of uneven distribution of intracranial pulsatility in hydrocephalus patients.
Eide, Per K
2008-11-01
Data from intracranial pressure (ICP) recordings in patients with hydrocephalus were reviewed to determine whether intracranial pulsatility within the cerebrospinal fluid (CSF) of cerebral ventricles (ICP(LV)) may differ from that within the brain parenchyma (ICP(PAR)), and whether pulsatility may differ between noncommunicating ventricles. The authors retrieved data from recordings previously obtained in 7 patients with hydrocephalus (noncommunicating in 4 and communicating in 3) and shunt failure who received both an external ventricular drainage (EVD) and an ICP sensor as part of surveillance during intensive care. Simultaneous ICP(LV) and ICP(PAR) signals were available in 6 cases, and simultaneous signals from the lateral and fourth ventricles (ICP(LV) and ICP4V, respectively) were recorded in 1 case. The recordings with both signals were parsed into 6-second time windows. Pulsatility was characterized by the wave amplitude and rise time coefficient, and differences in pulsatility between the ICP(LV) and ICP(PAR) signals (6 cases) or ICP(LV) and ICP4V signals (1 case) were determined. There was uneven distribution of intracranial pulsatility in all 7 patients, shown as significantly elevated pulsatility (that is, higher wave amplitudes and rise time coefficients) within the ventricles (ICP(LV)) than within brain parenchyma (ICP(PAR)) in 6 patients, and significantly higher pulsatility in the fourth (ICP4V) than in the lateral (ICP(LV)) ventricles in 1 patient. Differences > or = 1 mm Hg in ICP wave amplitude were found in 0.5-100% (median 9.4%) of observations in the 7 patients (total number of 6-second time windows, 68,242). The present observations demonstrate uneven distribution of intracranial pulsatility in patients with hydrocephalus, higher pulse pressure amplitudes within the ventricular CSF (ICP(LV)) than within the brain parenchyma (ICP(PAR)). This may be one mechanism behind ventricular enlargement in hydrocephalus.
Associations of Occupational Attributes and Excessive Drinking
Barnes, Andrew J.; Zimmerman, Frederick J.
2017-01-01
Numerous work-related drinking mechanisms have been posited and, oftentimes, examined in isolation. We combined data from over 100 occupational attributes into several factors and tested the association of these factors with measures of alcohol use. We used the NLSY79 2006 wave, a U.S. representative sample of 6,426 workers ages 41 to 49 and the 2006 Occupational Information Network database (O*NET), a nationally representative sample of nearly 1,000 occupations. We conducted exploratory factor analysis on 119 occupational attributes and found three independent workplace characteristics – physical demands, job autonomy, and social engagement - explained the majority of the variation. We then tested the association of these composite attributes with three drinking measures, before and after adjusting for gender, race/ethnicity, and a measure of human capital using count data models. We then stratified by gender and repeated our analyses. Men working in occupations with a one standard deviation higher level of physical demand (e.g. construction) reported a higher number of heavy drinking occasions (+20%, p<0.05). Job autonomy was not significantly associated with measures of alcohol use and when the combined association of higher levels of physical demand and lower levels of job autonomy was examined, modest support for job strain as a mechanism for work-related alcohol consumption was found. In our pooled sample, working in occupations with one standard deviation higher levels of social engagement was associated with lower numbers of drinking days (−9%, p<0.05) after adjustment. Physical demand and social engagement were associated with alcohol consumption measures but these relationships varied by workers’ gender. Future areas of research should include confirmatory analyses using other waves of O*Net data and replicating the current analysis in other samples of workers. If our results are validated, they suggest male workers in high physical demand occupations could be targets for intervention. PMID:23849277
Numerical Study of Pressure Fluctuations due to a Mach 6 Turbulent Boundary Layer
NASA Technical Reports Server (NTRS)
Duan, Lian; Choudhari, Meelan M.
2013-01-01
Direct numerical simulations (DNS) are used to examine the pressure fluctuations generated by a Mach 6 turbulent boundary layer with nominal freestream Mach number of 6 and Reynolds number of Re(sub t) approx. =. 464. The emphasis is on comparing the primarily vortical pressure signal at the wall with the acoustic freestream signal under higher Mach number conditions. Moreover, the Mach-number dependence of pressure signals is demonstrated by comparing the current results with those of a supersonic boundary layer at Mach 2.5 and Re(sub t) approx. = 510. It is found that the freestream pressure intensity exhibits a strong Mach number dependence, irrespective of whether it is normalized by the mean wall shear stress or by the mean pressure, with the normalized fluctuation amplitude being significantly larger for the Mach 6 case. Spectral analysis shows that both the wall and freestream pressure fluctuations of the Mach 6 boundary layer have enhanced energy content at high frequencies, with the peak of the premultiplied frequency spectrum of freestream pressure fluctuations being at a frequency of omega(delta)/U(sub infinity) approx. = 3.1, which is more than twice the corresponding frequency in the Mach 2.5 case. The space-time correlations indicate that the pressure-carrying eddies for the higher Mach number case are of smaller size, less elongated in the spanwise direction, and convect with higher convection speeds relative to the Mach 2.5 case. The demonstrated Mach-number dependence of the pressure field, including radiation intensity, directionality, and convection speed, is consistent with the trend exhibited in experimental data and can be qualitatively explained by the notion of "eddy Mach wave" radiation.
Pan, De-Bei; Gao, Xiang; Feng, Xia; Pan, Jun-Ting; Zhang, Hong
2016-02-24
Spirals or scroll waves pinned to heterogeneities in cardiac tissues may cause lethal arrhythmias. To unpin these life-threatening spiral waves, methods of wave emission from heterogeneities (WEH) induced by low-voltage pulsed DC electric fields (PDCEFs) and circularly polarized electric fields (CPEFs) have been used in two-dimensional (2D) cardiac tissues. Nevertheless, the unpinning of scroll waves in three-dimensional (3D) cardiac systems is much more difficult than that of spiral waves in 2D cardiac systems, and there are few reports on the removal of pinned scroll waves in 3D cardiac tissues by electric fields. In this article, we investigate in detail the removal of pinned scroll waves in a generic model of 3D excitable media using PDCEF, AC electric field (ACEF) and CPEF, respectively. We find that spherical waves can be induced from the heterogeneities by these electric fields in initially quiescent excitable media. However, only CPEF can induce spherical waves with frequencies higher than that of the pinned scroll wave. Such higher-frequency spherical waves induced by CPEF can be used to drive the pinned scroll wave out of the cardiac systems. We hope this remarkable ability of CPEF can provide a better alternative to terminate arrhythmias caused by pinned scroll waves.
NASA Astrophysics Data System (ADS)
Sarma, Rajkumar; Mondal, Pranab Kumar
2018-04-01
We investigate Marangoni instability in a thin liquid film resting on a substrate of low thermal conductivity and separated from the surrounding gas phase by a deformable free surface. Considering a nonmonotonic variation of surface tension with temperature, here we analytically derive the neutral stability curve for the monotonic and oscillatory modes of instability (for both the long-wave and short-wave perturbations) under the framework of linear stability analysis. For the long-wave instability, we derive a set of amplitude equations using the scaling k ˜(Bi) 1 /2 , where k is the wave number and Bi is the Biot number. Through this investigation, we demonstrate that for such a fluid layer upon heating from below, both monotonic and oscillatory instability can appear for a certain range of the dimensionless parameters, viz., Biot number (Bi ) , Galileo number (Ga ) , and inverse capillary number (Σ ) . Moreover, we unveil, through this study, the influential role of the above-mentioned parameters on the stability of the system and identify the critical values of these parameters above which instability initiates in the liquid layer.
Lehtonen, Arttu O; Langén, Ville L; Puukka, Pauli J; Kähönen, Mika; Nieminen, Markku S; Jula, Antti M; Niiranen, Teemu J
Scant data exist on incidence rates, correlates, and prognosis of electrocardiographic P-wave abnormalities in the general population. We recorded ECG and measured conventional cardiovascular risk factors in 5667 Finns who were followed up for incident atrial fibrillation (AF). We obtained repeat ECGs from 3089 individuals 11years later. The incidence rates of prolonged P-wave duration, abnormal P terminal force (PTF), left P-wave axis deviation, and right P-wave axis deviation were 16.0%, 7.4%, 3.4%, and 2.2%, respectively. Older age and higher BMI were associated with incident prolonged P-wave duration and abnormal PTF (P≤0.01). Higher blood pressure was associated with incident prolonged P-wave duration and right P-wave axis deviation (P≤0.01). During follow-up, only prolonged P-wave duration predicted AF (multivariable-adjusted hazard ratio, 1.38; P=0.001). Modifiable risk factors associate with P-wave abnormalities that are common and may represent intermediate steps of atrial cardiomyopathy on a pathway leading to AF. Copyright © 2017 Elsevier Inc. All rights reserved.
Nordstrom, K.F.; Jackson, N.L.; Smith, D.R.; Weber, R.G.
2006-01-01
The abundance of horseshoe crab eggs in the swash zone and remaining on the beach after tide levels fall was evaluated to identify how numbers of eggs available to shorebirds differ with fluctuations in spawning numbers of horseshoe crabs, wave energies and beach elevation changes. Field data were gathered 1-6 June 2004 at Slaughter Beach on the west side of Delaware Bay, USA. Counts of spawning crabs and process data from a pressure transducer and an anemometer and wind vane were related to number of eggs, embryos and larvae taken at depth and on the surface of the foreshore and in the active swash zone using a streamer trap. Beach elevation changes and depths of sediment activation were used to determine the potential for buried eggs to be exhumed by waves and swash. Mean significant wave heights during high water levels ranged from 0.08 to 0.40 m. Spawning counts were low (50-140 females km-1) when wave heights were low; no spawning occurred when wave heights were high. Vegetative litter (wrack) on the beach provides local traps for eggs, making more eggs available for shorebirds. Accumulation of litter on days when wave energy is low increases the probability that eggs will remain on the surface. High wave energies transport more eggs in the swash, but these eggs are dispersed or buried, and fewer eggs remain on the beach. Peaks in the number of eggs in the swash uprush occur during tidal rise and around time of high tide. The number of eggs in transport decreases during falling tide. Many more eggs move in the active swash zone than are found on the beach after water level falls, increasing the efficiency of bird foraging in the swash. Greater numbers of eggs in the swash during rising tide than falling tide and fewer eggs at lower elevations on the beach, imply that foraging becomes less productive as the tide falls and may help account for the tendency of shorebirds to feed on rising tides rather than on falling or low tides on days when no spawning occurs. ?? 2006 Elsevier Ltd. All rights reserved.
Chatelain, Mathieu; Guizien, Katell
2010-03-01
A one-dimensional vertical unsteady numerical model for diffusion-consumption of dissolved oxygen (DO) above and below the sediment-water interface was developed to investigate DO profile dynamics under wind waves and sea swell (high-frequency oscillatory flows with periods ranging from 2 to 30s). We tested a new approach to modelling DO profiles that coupled an oscillatory turbulent bottom boundary layer model with a Michaelis-Menten based consumption model. The flow regime controls both the mean value and the fluctuations of the oxygen mass transfer efficiency during a wave cycle, as expressed by the non-dimensional Sherwood number defined with the maximum shear velocity (Sh). The Sherwood number was found to be non-dependent on the sediment biogeochemical activity (mu). In the laminar regime, both cycle-averaged and variance of the Sherwood number are very low (Sh <0.05, VAR(Sh)<0.1%). In the turbulent regime, the cycle-averaged Sherwood number is larger (Sh approximately 0.2). The Sherwood number also has intra-wave cycle fluctuations that increase with the wave Reynolds number (VAR(Sh) up to 30%). Our computations show that DO mass transfer efficiency under high-frequency oscillatory flows in the turbulent regime are water-side controlled by: (a) the diffusion time across the diffusive boundary layer and (b) diffusive boundary layer dynamics during a wave cycle. As a result of these two processes, when the wave period decreases, the Sh minimum increases and the Sh maximum decreases. Sh values vary little, ranging from 0.17 to 0.23. For periods up to 30s, oxygen penetration depth into the sediment did not show any intra-wave fluctuations. Values for the laminar regime are small (
Supersonic Love waves in strong piezoelectrics of symmetry mm2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darinskii, A. N.; Weihnacht, M.
A study has been made of the Love wave propagation on piezoelectric substrates of symmetry mm2. It has been shown that under certain conditions the velocity of the Love wave exceeds that of shear horizontal (SH) bulk waves in the substrate. This occurs when the slowness curve of SH bulk waves in the substrate either has a concavity or is convex with nearly zero curvature. For such {open_quotes}supersonic{close_quotes} Love waves to appear, it is also required that the substrate as well as the layer be specially oriented and that their material constants fulfill a number of inequalities. Numerical computations havemore » been carried out for a number of structures. The results of numerical computations have been compared with approximate analytical estimations. {copyright} 2001 American Institute of Physics.« less
Investigation of wave phenomena on a blunt airfoil with straight and serrated trailing edges
NASA Astrophysics Data System (ADS)
Nies, Juliane M.; Gageik, Manuel A.; Klioutchnikov, Igor; Olivier, Herbert
2015-07-01
An investigation of pressure waves in compressible subsonic and transonic flow around a generic airfoil is performed in a modified shock tube. New comprehensive results are presented on pressure waves in compressible flow. For the first time, the influence of trailing edge serration will be examined in terms of the reduction in pressure wave amplitude. A generic airfoil is tested in two main configurations, one with blunt trailing edges and the other one with serrated trailing edges in a Mach number range from 0.6 to 0.8 and at chord Reynolds numbers of 1 × 106 < Re c < 5 ×106. The flow of the blunt trailing edge is characterized by a regular vortex street in the wake creating a regular pattern of upstream-moving pressure waves along the airfoil. The observed pressure waves lead to strong pressure fluctuations within the local flow field. A reduction in the trailing edge thickness leads to a proportional increase in the frequency of the vortex street in the wake as well as the frequency of the waves deduced from constant Strouhal number. By serrating the trailing edge, the formation of vortices in the wake is disturbed. Therefore, also the upstream-moving waves are influenced and reduced in their strength resulting in a steadier flow. An increasing length of the saw tooth enhances the three dimensionality of the structures in the wake and causes a strong decrease in the wave amplitude.
Flight Tests of a Supersonic Natural Laminar Flow Airfoil
NASA Technical Reports Server (NTRS)
Frederick, Mike; Banks, Dan; Garzon, Andres; Matisheck, Jason
2014-01-01
IR thermography was used to characterize the transition front on a S-NLF test article at chord Reynolds numbers in excess of 30 million Changes in transition due to Mach number, Reynolds number, and surface roughness were investigated - Regions of laminar flow in excess of 80% chord at chord Reynolds numbers greater than 14 million IR thermography clearly showed the transition front and other flow features such as shock waves impinging upon the surface A series of parallel oblique shocks, of yet unknown origin, were found to cause premature transition at higher Reynolds numbers. NASA has a current goal to eliminate barriers to the development of practical supersonic transport aircraft Drag reduction through the use of supersonic natural laminar flow (S-NLF) is currently being explored as a means of increasing aerodynamic efficiency - Tradeoffs work best for business jet class at M<2 Conventional high-speed designs minimize inviscid drag at the expense of viscous drag - Existence of strong spanwise pressure gradient leads to crossflow (CF) while adverse chordwise pressure gradients amplifies and Tollmien-Schlichting (TS) instabilities Aerion Corporation has patented a S-NLF wing design (US Patent No. 5322242) - Low sweep to control CF - dp/dx < 0 on both wing surfaces to stabilize TS - Thin wing with sharp leading edge to minimize wave drag increase due to reduction in sweep NASA and Aerion have partnered to study S-NLF since 1999 Series of S-NLF experiments flown on the NASA F-15B research test bed airplane Infrared (IR) thermography used to characterize transition - Non-intrusive, global, good spatial resolution - Captures significant flow features well
NASA Astrophysics Data System (ADS)
Tarpin, Malo; Canet, Léonie; Wschebor, Nicolás
2018-05-01
In this paper, we present theoretical results on the statistical properties of stationary, homogeneous, and isotropic turbulence in incompressible flows in three dimensions. Within the framework of the non-perturbative renormalization group, we derive a closed renormalization flow equation for a generic n-point correlation (and response) function for large wave-numbers with respect to the inverse integral scale. The closure is obtained from a controlled expansion and relies on extended symmetries of the Navier-Stokes field theory. It yields the exact leading behavior of the flow equation at large wave-numbers |p→ i| and for arbitrary time differences ti in the stationary state. Furthermore, we obtain the form of the general solution of the corresponding fixed point equation, which yields the analytical form of the leading wave-number and time dependence of n-point correlation functions, for large wave-numbers and both for small ti and in the limit ti → ∞. At small ti, the leading contribution at large wave-numbers is logarithmically equivalent to -α (ɛL ) 2 /3|∑tip→ i|2, where α is a non-universal constant, L is the integral scale, and ɛ is the mean energy injection rate. For the 2-point function, the (tp)2 dependence is known to originate from the sweeping effect. The derived formula embodies the generalization of the effect of sweeping to n-point correlation functions. At large wave-numbers and large ti, we show that the ti2 dependence in the leading order contribution crosses over to a |ti| dependence. The expression of the correlation functions in this regime was not derived before, even for the 2-point function. Both predictions can be tested in direct numerical simulations and in experiments.
Higher order acoustoelastic Lamb wave propagation in stressed plates.
Pei, Ning; Bond, Leonard J
2016-11-01
Modeling and experiments are used to investigate Lamb wave propagation in the direction perpendicular to an applied stress. Sensitivity, in terms of changes in velocity, for both symmetrical and anti-symmetrical modes was determined. Codes were developed based on analytical expressions for waves in loaded plates and they were used to give wave dispersion curves. The experimental system used a pair of compression wave transducers on variable angle wedges, with set separation, and variable frequency tone burst excitation, on an aluminum plate 0.16 cm thick with uniaxial applied loads. The loads, which were up to 600 με, were measured using strain gages. Model results and experimental data are in good agreement. It was found that the change in Lamb wave velocity, due to the acoustoelastic effect, for the S 1 mode exhibits about ten times more sensitive, in terms of velocity change, than the traditional bulk wave measurements, and those performed using the fundamental Lamb modes. The data presented demonstrate the potential for the use of higher order Lamb modes for online industrial stress measurement in plate, and that the higher sensitivity seen offers potential for improved measurement systems.
NASA Technical Reports Server (NTRS)
Mankbadi, Reda R.
1991-01-01
Here, numerical results are computed from an asymptotic near-resonance triad analysis. The analysis considers a resonant triad of instability waves consisting of a plane fundamental wave and a pair of symmetrical oblique subharmonic waves. The relevant scaling ensures that nonlinearity is confined to a distinct critical layer. The analysis is first used to form a composite solution that accounts for both the flow divergence and nonlinear effects. It is shown that the backreaction on the plane Tollmien Schlichting (TS) fundamental wave, although fully accounted for, is of little significance. The observed enhancement at the fundamental frequency disturbance is not in the plane TS wave, but is caused by nonlinearly generated waves at the fundamental frequency that result from nonlinear interactions in the critical layer. The saturation of the oblique waves is caused by their self-interaction. The nonlinear phase-locking phenomenon, the location of resonance with respect to the neutral stability curve, low frequency effects, detuning in the streamwise wave numbers, and nonlinear distortion of the mode shapes are discussed. Nonlinearity modifies the initially two dimensional Blasius profile into a fuller one with spanwise periodicity. The interactions at a wide range of unstable spanwise wave numbers are considered, and the existence of a preferred spanwise wave number is explained by means of the vorticity distribution in the critical layer. Besides presenting novel features of the phenomena and explaining the delicate mechanisms of the interactions, the results of the theory are in excellent agreement with experimental and numerical observations for all stages of the development and for various input parameters.
Numerical modeling of planetary-scale waves on Jupiter
NASA Astrophysics Data System (ADS)
Cosentino, Richard; Morales-Juberias, Raul; Simon, Amy
2014-11-01
The atmosphere of Jupiter has multiple alternating east-wind wind jets with different cloud morphologies some of which can be explained by the presence of atmospheric waves. One jet feature observed by Cassini and HST at 30N, called the Jovian Ribbon for its similarity to Saturn's Ribbon, displays chaotic cloud morphology caused by multiple wave components with dominating planetary scale wave-numbers ranging from 13 to 30. Both the cloud morphology and the dominant wave numbers observed change as a function of time and correlate to changes in the jet's speed. The average speed of the westward jet where this Jovian Ribbon is found is small compared to other notable jets that display wave behavior, namely the high velocity eastward jets at 7N (hot spots) and 7S (chevrons). We present the results of numerical simulations that show how attributes like jet speed, location, vertical shear and other background properties of the atmosphere (e.g. static stability) contribute to the development and evolution of wave structures in jets similar to those observed. Additionally, we explore the effects of local convective events and other atmospheric disturbances such as spots, on the morphology of these jets and waves. This work was supported by NASA PATM grant number NNX14AH47G. Computing resources for this research were provided by NMT and Yellowstone at CISL.
NASA Astrophysics Data System (ADS)
Parameswaran, K.; Rajeev, K.; Sasi, M. N.; Ramkumar, Geetha; Krishna Murthy, B. V.; Satheesan, K.; Jain, A. R.; Bhavanikumar, Y.; Raghunath, Kalavai J.; Krishnaiah, M.
2002-01-01
Rayleigh lidar observations of temperature in the stratosphere and mesosphere are carried out an Gadanki from February 29 to March 31, 2000, which provided a powerful means of studying the gravity wave characteristics over the tropical atmosphere during winter. The potential energy per unit mass associated with the gravity wave activity in the upper stratosphere and mesosphere is found to undergo periodic fluctuations, which are closely correlated with the zonal wind fluctuations in the stratosphere produced by the equatorial waves. This provides the first observational evidence for the modulation of the gravity wave activity by the long period equatorial waves over the tropical middle atmosphere. The vertical wave number spectra of gravity waves shows that power spectral density decease with increasing wave number with a slope less than that expected for the saturated gravity wave spectrum in the stratosphere and mesosphere. PSD decreases for vertical wavelengths smaller than about 10 km in the stratosphere while the decrease is observed for the complete range of observed gravity wave spectrum in the mesosphere. A monochromatic upward propagating gravity wave with periodicity of 6 hour, amplitude of about 1 K to 3 K and vertical wavelength of 11 km was observed on 22 March, 2000.
NASA Astrophysics Data System (ADS)
Seadawy, Aly R.
2017-12-01
In this study, we presented the problem formulations of models for internal solitary waves in a stratified shear flow with a free surface. The nonlinear higher order of extended KdV equations for the free surface displacement is generated. We derived the coefficients of the nonlinear higher-order extended KdV equation in terms of integrals of the modal function for the linear long-wave theory. The wave amplitude potential and the fluid pressure of the extended KdV equation in the form of solitary-wave solutions are deduced. We discussed and analyzed the stability of the obtained solutions and the movement role of the waves by making graphs of the exact solutions.
On mass transport in porosity waves
NASA Astrophysics Data System (ADS)
Jordan, Jacob S.; Hesse, Marc A.; Rudge, John F.
2018-03-01
Porosity waves arise naturally from the equations describing fluid migration in ductile rocks. Here, we show that higher-dimensional porosity waves can transport mass and therefore preserve geochemical signatures, at least partially. Fluid focusing into these high porosity waves leads to recirculation in their center. This recirculating fluid is separated from the background flow field by a circular dividing streamline and transported with the phase velocity of the porosity wave. Unlike models for one-dimensional chromatography in geological porous media, tracer transport in higher-dimensional porosity waves does not produce chromatographic separations between relatively incompatible elements due to the circular flow pattern. This may allow melt that originated from the partial melting of fertile heterogeneities or fluid produced during metamorphism to retain distinct geochemical signatures as they rise buoyantly towards the surface.
Wavelet Transform Based Higher Order Statistical Analysis of Wind and Wave Time Histories
NASA Astrophysics Data System (ADS)
Habib Huseni, Gulamhusenwala; Balaji, Ramakrishnan
2017-10-01
Wind, blowing on the surface of the ocean, imparts the energy to generate the waves. Understanding the wind-wave interactions is essential for an oceanographer. This study involves higher order spectral analyses of wind speeds and significant wave height time histories, extracted from European Centre for Medium-Range Weather Forecast database at an offshore location off Mumbai coast, through continuous wavelet transform. The time histories were divided by the seasons; pre-monsoon, monsoon, post-monsoon and winter and the analysis were carried out to the individual data sets, to assess the effect of various seasons on the wind-wave interactions. The analysis revealed that the frequency coupling of wind speeds and wave heights of various seasons. The details of data, analysing technique and results are presented in this paper.
NASA Astrophysics Data System (ADS)
Ulyanov, Sergey; Ulianova, Onega; Filonova, Nadezhda; Moiseeva, Yulia; Zaitsev, Sergey; Saltykov, Yury; Polyanina, Tatiana; Lyapina, Anna; Kalduzova, Irina; Larionova, Olga; Utz, Sergey; Feodorova, Valentina
2018-04-01
Theory of diffusing wave spectroscopy has been firstly adapted to the problem of rapid detection of Chlamydia trachomatis bacteria in blood samples of Chlamydia patients. Formula for correlation function of temporal fluctuations of speckle intensity is derived for the case of small number of scattering events. Dependence of bandwidth of spectrum on average number of scatterers is analyzed. Set-up for detection of the presence of C. trachomatis cells in aqueous suspension is designed. Good agreement between theoretical results and experimental data is shown. Possibility of detection of the presence of C. trachomatis cells in probing volume using diffusing wave spectroscopy with a small number of scatterers is successfully demonstrated for the first time.
Climatology of the quasi-2-day waves observed in the MLS/Aura measurements (2005-2014)
NASA Astrophysics Data System (ADS)
Pancheva, Dora; Mukhtarov, Plamen; Siskind, David E.
2018-06-01
The paper presents the climatology and interannual variability of both eastward- and westward-propagating ∼2-day waves (QTDW) observed in the MLS/Aura geopotential height data for a period of 10 full years (2005-2014). The climatology of the QTDWs has been studied in two steps: (i) by using average 2D-wavelet spectra both the dominant modes of variability and how these modes vary in time and space have been determined, and (ii) by applying a 2D decomposition procedure, where all planetary waves are simultaneously extracted from the data, the average global spatio-temporal distributions of all defined by the 2D-wavelet analysis modes have been obtained. It is found that the westward-propagating waves at mid-high latitudes have zonal wave numbers 2, 3 and 4 and are observed mainly in summer hemisphere. Two different types of eastward-propagating waves have been identified: (i) waves at mid-high latitudes with zonal wave numbers 2 and 3 observed in the winter hemisphere, and (ii) waves observed predominantly over the equator with zonal wave number 2, which do not have a well-defined seasonal variability but show some enhancement in both solstices. While the climatological features of the MLS/Aura QTDWs for the considered period are robust the interannual variations have to be adopted cautiously. The primary reason is that the length of the considered period of 10 years is not enough for finding clear variability pattern. The only long-term variability which appears to have some robustness is that of the W3 wave in the Southern Hemisphere where the influence of the solar cycle has been distinguished.
The Timing of School Transitions and Early Adolescent Problem Behavior
Lippold, Melissa A.; Powers, Christopher J.; Syvertsen, Amy K.; Feinberg, Mark E.; Greenberg, Mark T.
2013-01-01
This longitudinal study investigates whether rural adolescents who transition to a new school in sixth grade have higher levels of risky behavior than adolescents who transition in seventh grade. Our findings indicate that later school transitions had little effect on problem behavior between sixth and ninth grades. Cross-sectional analyses found a small number of temporary effects of transition timing on problem behavior: Spending an additional year in elementary school was associated with higher levels of deviant behavior in the Fall of Grade 6 and higher levels of antisocial peer associations in Grade 8. However, transition effects were not consistent across waves and latent growth curve models found no effects of transition timing on the trajectory of problem behavior. We discuss policy implications and compare our findings with other research on transition timing. PMID:24089584
Rogue wave in coupled electric transmission line
NASA Astrophysics Data System (ADS)
Duan, J. K.; Bai, Y. L.
2018-03-01
Distributed electrical transmission lines that consist of a large number of identical sections have been theoretically studied in the present paper. The rogue wave is analyzed and predicted using the nonlinear Schrodinger equation (NLSE). The results indicate that, in the continuum limit, the voltage for the transmission line is described in some cases by the NLSE that is obtained using the traditional perturbation technique. The dependences of the characteristics of the rouge wave parameters on the coupled electric transmission line are shown in the paper. As is well known, rogue waves can be found for a large number of oceanic disasters, and such waves may be disastrous. However, the results of the present paper for coupled electric transmission lines may be useful.
Normal shock wave reflection on porous compressible material
NASA Astrophysics Data System (ADS)
Gvozdeva, L. G.; Faresov, Iu. M.; Brossard, J.; Charpentier, N.
The present experimental investigation of the interaction of plane shock waves in air and a rigid wall coated with flat layers of expanded polymers was conducted in a standard shock tube and a diaphragm with an initial test section pressure of 100,000 Pa. The Mach number of the incident shock wave was varied from 1.1 to 2.7; the peak pressures measured on the wall behind polyurethane at various incident wave Mach numbers are compared with calculated values, with the ideal model of propagation, and with the reflection of shock waves in a porous material that is understood as a homogeneous mixture. The effect of elasticity and permeability of the porous material structure on the rigid wall's pressure pulse parameters is qualitatively studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emadi, E.; Zahed, H.
2016-08-15
The behavior of linear and nonlinear dust ion acoustic (DIA) solitary waves in an unmagnetized quantum dusty plasma, including inertialess electrons and positrons, ions, and mobile negative dust grains, are studied. Reductive perturbation and Sagdeev pseudopotential methods are employed for small and large amplitude DIA solitary waves, respectively. A minimum value of the Mach number obtained for the existence of solitary waves using the analytical expression of the Sagdeev potential. It is observed that the variation on the values of the plasma parameters such as different values of Mach number M, ion to electron Fermi temperature ratio σ, and quantummore » diffraction parameter H can lead to the creation of compressive solitary waves.« less
A methodology for the optimisation of a mm-wave scanner
NASA Astrophysics Data System (ADS)
Stec, L. Zoë; Podd, Frank J. W.; Peyton, Anthony J.
2016-10-01
The need to detect non-metallic items under clothes to prevent terrorism at transport hubs is becoming vital. Millimetre wave technology is able to penetrate clothing, yet able to interact with objects concealed underneath. This paper considers active illumination using multiple transmitter and receiver antennas. The positioning of these antennas must achieve full body coverage, whilst minimising the number of antenna elements and the number of required measurements. It sets out a rapid simulation methodology, based on the Kirchhoff equations, to explore different scenarios for scanner architecture optimisation. The paper assumes that the electromagnetic waves used are at lower frequencies (say, 10-30 GHz) where the body temperature does not need to be considered. This range allows better penetration of clothing than higher frequencies, yet still provides adequate resolution. Since passengers vary greatly in shape and size, the system needs to be able to work well with a range of body morphologies. Thus we have used two very differently shaped avatars to test the portal simulations. This simulation tool allows many different avatars to be generated quickly. Findings from these simulations indicated that the dimensions of the avatar did indeed have an effect on the pattern of illumination, and that the data for each antenna pair can easily be combined to compare different antenna geometries for a given portal architecture, resulting in useful insights into antenna placement. The data generated could be analysed both quantitatively and qualitatively, at various levels of scale.
NASA Astrophysics Data System (ADS)
Scales, Wayne; Bernhardt, Paul; McCarrick, Michael; Briczinski, Stanley; Mahmoudian, Alireza; Fu, Haiyang; Ranade Bordikar, Maitrayee; Samimi, Alireza
There has been significant interest in so-called narrowband Stimulated Electromagnetic Emission SEE over the past several years due to recent discoveries at the High Frequency Active Auroral Research Program HAARP facility near Gakone, Alaska. Narrowband SEE (NSEE) has been defined as spectral features in the SEE spectrum typically within 1 kHz of the transmitter (or pump) frequency. SEE is due to nonlinear processes leading to re-radiation at frequencies other than the pump wave frequency during heating the ionospheric plasma with high power HF radio waves. Although NSEE exhibits a richly complex structure, it has now been shown after a substantial number of observations at HAARP, that NSEE can be grouped into two basic classes. The first are those spectral features, associated with Stimulated Brillouin Scatter SBS, which typically occur when the pump frequency is not close to electron gyro-harmonic frequencies. Typically, these spectral features are within roughly 50 Hz of the pump wave frequency where it is to be noted that the O+ ion gyro-frequency is roughly 50 Hz. The second class of spectral features corresponds to the case when the pump wave frequency is typically within roughly 10 kHz of electron gyro-harmonic frequencies. In this case, spectral features ordered by harmonics of ion gyro-frequencies are typically observed, and termed Stimulated Ion Bernstein Scatter SIBS. There is also important parametric behavior on both classes of NSEE depending on the pump wave parameters including the field strength, antenna beam angle, and electron gyro-harmonic number. This presentation will first provide an overview of the recent NSEE experimental observations at HAARP. Both Stimulated Brillouin Scatter SBS and Stimulated Ion Bernstein Scatter SIBS observations will be discussed as well as their relationship to each other. Possible theoretical formulation in terms of parametric decay instabilities will be provided. Computer simulation model results will be presented to provide insight into associated higher order nonlinear effects including particle acceleration and wave-wave processes. Both theory and model results will be put into the context of the experimental observations. Finally, possible applications of NSEE will be pointed out including triggering diagnostics for artificial ionization layer formation, proton precipitation event diagnostics, and electron temperature measurements in the heated volume.
NASA Technical Reports Server (NTRS)
Ng, Lian Lai
1990-01-01
When a jet is perturbed by a periodic excitation of suitable frequency, a large-scale coherent structure develops and grows in amplitude as it propagates downstream. The structure eventually rolls up into vortices at some downstream location. The wavy flow associated with the roll-up of a coherent structure is approximated by a parallel mean flow and a small, spatially periodic, axisymmetric wave whose phase velocity and mode shape are given by classical (primary) stability theory. The periodic wave acts as a parametric excitation in the differential equations governing the secondary instability of a subharmonic disturbance. The (resonant) conditions for which the periodic flow can strongly destabilize a subharmonic disturbance are derived. When the resonant conditions are met, the periodic wave plays a catalytic role to enhance the growth rate of the subharmonic. The stability characteristics of the subharmonic disturbance, as a function of jet Mach number, jet heating, mode number and the amplitude of the periodic wave, are studied via a secondary instability analysis using two independent but complementary methods: (1) method of multiple scales, and (2) normal mode analysis. It is found that the growth rates of the subharmonic waves with azimuthal numbers beta = 0 and beta = 1 are enhanced strongly, but comparably, when the amplitude of the periodic wave is increased. Furthermore, compressibility at subsonic Mach numbers has a moderate stabilizing influence on the subharmonic instability modes. Heating suppresses moderately the subharmonic growth rate of an axisymmetric mode, and it reduces more significantly the corresponding growth rate for the first spinning mode. Calculations also indicate that while the presence of a finite-amplitude periodic wave enhances the growth rates of subharmonic instability modes, it minimally distorts the mode shapes of the subharmonic waves.
MMS Observations of Harmonic Electromagnetic Cyclotron Waves
NASA Astrophysics Data System (ADS)
Usanova, M.; Ahmadi, N.; Ergun, R.; Trattner, K. J.; Fuselier, S. A.; Torbert, R. B.; Mauk, B.; Le Contel, O.; Giles, B. L.; Russell, C. T.; Burch, J.; Strangeway, R. J.
2017-12-01
Harmonically related electromagnetic ion cyclotron waves with the fundamental frequency near the O+ cyclotron frequency were observed by the four MMS spacecraft on May 20, 2016. The wave activity was detected by the spacecraft on their inbound passage through the Earth's morning magnetosphere during generally quiet geomagnetic conditions but enhanced solar wind dynamic pressure. It was also associated with an enhancement of energetic H+ and O+ ions. The waves are seen in both magnetic and electric fields, formed by over ten higher order harmonics, most pronounced in the electric field. The wave activity lasted for about an hour with some wave packets giving rise to short-lived structures extending from Hz to kHz range. These observations are particularly interesting since they suggest cross-frequency coupling between the lower and higher frequency modes. Further work will focus on examining the nature and role of these waves in the energetic particle dynamics from a theoretical perspective.
Electromagnetic ion cyclotron waves in the plasma depletion layer
NASA Technical Reports Server (NTRS)
Denton, Richard E.; Hudson, Mary K.; Fuselier, Stephen A.; Anderson, Brian J.
1993-01-01
Results of a study of the theoretical properties of electromagnetic ion cyclotron (EMIC) waves which occur in the plasma depletion layer are presented. The analysis assumes a homogeneous plasma with the characteristics which were measured by the AMPTE/CCE satellite at 1450-1501 UT on October 5, 1984. Waves were observed in the Pc 1 frequency range below the hydrogen gyrofrequency, and these waves are identified as EMIC waves. The higher-frequency instability is driven by the temperature anisotropy of the H(+) ions, while the lower-frequency instability is driven by the temperature anisotropy of the He(2+) ions. It is argued that the higher-frequency waves will have k roughly parallel to B(0) and will be left-hand polarized, while the lower frequency wave band will have k oblique to B(0) and will be linearly polarized, in agreement with observations.
Analysis of unsteady wave processes in a rotating channel
NASA Technical Reports Server (NTRS)
Larosiliere, L. M.; Mawid, M.
1993-01-01
The impact of passage rotation on the gas dynamic wave processes is analyzed through a numerical simulation of ideal shock-tube flow in a closed rotating-channel. Initial conditions are prescribed by assuming homentropic solid-body rotation. Relevant parameters of the problem such as wheel Mach number, hub-to-tip radius ratio, length-to-tip radius ratio, diaphragm temperature ratio, and diaphragm pressure ratio are varied. The results suggest possible criteria for assessing the consequences of passage rotation on the wave processes, and they may therefore be applicable to pressure-exchange wave rotors. It is shown that for a fixed geometry and initial conditions, the contact interface acquires a distorted three-dimensional time-dependent orientation at non-zero wheel Mach numbers. At a fixed wheel Mach number, the level of distortion depends primarily on the density ratio across the interface as well as the hub-to-tip radius ratio. Rarefaction fronts, shocks, and contact interfaces are observed to propagate faster with increasing wheel Mach number.
Ozone formation behind pulsed-laser-generated blast waves in oxygen
NASA Astrophysics Data System (ADS)
Stricker, J.; Parker, J. G.
1984-12-01
The formation of ozone behind blast waves in oxygen generated by a pulsed laser has been investigated both experimentally and theoretically, over cell pressure range of 0.68-27 atm. Ozone buildup formed by successive pulses was monitored by recording UV absorption at 2540 Å. It was found that, as the number of pulses increase, the rate of ozone formation decreased until finally an equilibrium concentration was reached. This equilibrium magnitude was determined by the condition that the number of ozone molecules produced by the wave equals the number decomposed by the same wave. The decomposition and formation of O3 during a single pulse were monitored by time-resolved UV absorption measurements. In order to provide a fundamental basis for interpretation of the mechanism of ozone formation, a mathematical model was developed. Although qualitatively measurements and theory agree, the data, mainly on the number of O3 molecules produced per pulse, is in significant disagreement. Several possible explanations of this discrepancy are given.
Analysis of unsteady wave processes in a rotating channel
NASA Astrophysics Data System (ADS)
Larosiliere, Louis M.; Mawid, M.
1993-06-01
The impact of passage rotation on the gas dynamic wave processes is analyzed through a numerical simulation of ideal shock-tube flow in a closed rotating-channel. Initial conditions are prescribed by assuming homentropic solid-body rotation. Relevant parameters of the problem such as wheel Mach number, hub-to-tip radius ratio, length-to-tip radius ratio, diaphragm temperature ratio, and diaphragm pressure ratio are varied. The results suggest possible criteria for assessing the consequences of passage rotation on the wave processes, and they may therefore be applicable to pressure-exchange wave rotors. It is shown that for a fixed geometry and initial conditions, the contact interface acquires a distorted three-dimensional time-dependent orientation at non-zero wheel Mach numbers. At a fixed wheel Mach number, the level of distortion depends primarily on the density ratio across the interface as well as the hub-to-tip radius ratio. Rarefaction fronts, shocks, and contact interfaces are observed to propagate faster with increasing wheel Mach number.
Kobayashi, Akihiro; Misumida, Naoki; Aoi, Shunsuke; Kanei, Yumiko
2017-11-01
Positive T wave in lead aVR has been shown to predict an adverse in-hospital outcome in patients with anterior wall ST-segment elevation myocardial infarction (STEMI). However, the prognostic value of positive T wave in lead aVR on a long-term outcome has not been fully explored. We performed a retrospective analysis of 190 consecutive patients with first anterior wall STEMI who underwent an emergent coronary angiogram. Patients were divided into those with positive T wave > 0 mV and those with negative T wave ≦ 0 mV in lead aVR. Baseline and angiographic characteristics, and in-hospital revascularization procedures were recorded. In addition, in-hospital and 1-year major adverse cardiac events (MACE) including death, recurrent myocardial infarction, and target vessel revascularization were recorded. Among 190 patients, 37 patients (19%) had positive T wave and 153 patients (81%) had negative T wave in lead aVR. Patients with positive T wave had higher rate of left main disease defined as stenosis ≥50% (11% vs. 2%, p = .028) than those with negative T wave. Patients with positive T wave had higher rate of 1-year MACE (38% vs. 13%, p < .001) driven by higher all-cause mortality (27% vs. 5%, p < .001). Positive T wave was an independent predictor for 1-year MACE (OR 2.74; 95% CI 1.04-7.15; p = .04). Positive T wave in lead aVR was an independent predictor for 1-year MACE in patients with first anterior wall STEMI. © 2017 Wiley Periodicals, Inc.
Preconditioning for the Navier-Stokes equations with finite-rate chemistry
NASA Technical Reports Server (NTRS)
Godfrey, Andrew G.
1993-01-01
The extension of Van Leer's preconditioning procedure to generalized finite-rate chemistry is discussed. Application to viscous flow is begun with the proper preconditioning matrix for the one-dimensional Navier-Stokes equations. Eigenvalue stiffness is resolved and convergence-rate acceleration is demonstrated over the entire Mach-number range from nearly stagnant flow to hypersonic. Specific benefits are realized at the low and transonic flow speeds typical of complete propulsion-system simulations. The extended preconditioning matrix necessarily accounts for both thermal and chemical nonequilibrium. Numerical analysis reveals the possible theoretical improvements from using a preconditioner for all Mach number regimes. Numerical results confirm the expectations from the numerical analysis. Representative test cases include flows with previously troublesome embedded high-condition-number areas. Van Leer, Lee, and Roe recently developed an optimal, analytic preconditioning technique to reduce eigenvalue stiffness over the full Mach-number range. By multiplying the flux-balance residual with the preconditioning matrix, the acoustic wave speeds are scaled so that all waves propagate at the same rate, an essential property to eliminate inherent eigenvalue stiffness. This session discusses a synthesis of the thermochemical nonequilibrium flux-splitting developed by Grossman and Cinnella and the characteristic wave preconditioning of Van Leer into a powerful tool for implicitly solving two and three-dimensional flows with generalized finite-rate chemistry. For finite-rate chemistry, the state vector of unknowns is variable in length. Therefore, the preconditioning matrix extended to generalized finite-rate chemistry must accommodate a flexible system of moving waves. Fortunately, no new kind of wave appears in the system. The only existing waves are entropy and vorticity waves, which move with the fluid, and acoustic waves, which propagate in Mach number dependent directions. The nonequilibrium vibrational energies and species densities in the unknown state vector act strictly as convective waves. The essential concept for extending the preconditioning to generalized chemistry models is determining the differential variables which symmetrize the flux Jacobians. The extension is then straight-forward. This algorithm research effort will be released in a future version of the production level computational code coined the General Aerodynamic Simulation Program (GASP), developed by Walters, Slack, and McGrory.
NASA Astrophysics Data System (ADS)
Chen, Huayue; Gao, Xinliang; Lu, Quanming; Sun, Jicheng; Wang, Shui
2018-02-01
Nonlinear physical processes related to whistler mode waves are attracting more and more attention for their significant role in reshaping whistler mode spectra in the Earth's magnetosphere. Using a 1-D particle-in-cell simulation model, we have investigated the nonlinear evolution of parallel counter-propagating whistler mode waves excited by anisotropic electrons within the equatorial source region. In our simulations, after the linear phase of whistler mode instability, the strong electrostatic standing structures along the background magnetic field will be formed, resulting from the coupling between excited counter-propagating whistler mode waves. The wave numbers of electrostatic standing structures are about twice those of whistler mode waves generated by anisotropic hot electrons. Moreover, these electrostatic standing structures can further be coupled with either parallel or antiparallel propagating whistler mode waves to excite high-k modes in this plasma system. Compared with excited whistler mode waves, these high-k modes typically have 3 times wave number, same frequency, and about 2 orders of magnitude smaller amplitude. Our study may provide a fresh view on the evolution of whistler mode waves within their equatorial source regions in the Earth's magnetosphere.
Observation and Modeling of Tsunami-Generated Gravity Waves in the Earth’s Upper Atmosphere
2015-10-08
Observation and modeling of tsunami -generated gravity waves in the earth’s upper atmosphere 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...ABSTRACT Build a compatible set of models which 1) calculate the spectrum of atmospheric GWs excited by a tsunami (using ocean model data as input...for public release; distribution is unlimited. Observation and modeling of tsunami -generated gravity waves in the earth’s upper atmosphere Sharon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alam, Aftab; Khan, Suffian N.; Smirnov, A. V.
Korringa-Kohn-Rostoker (KKR) Green's function, multiple-scattering theory is an ecient sitecentered, electronic-structure technique for addressing an assembly of N scatterers. Wave-functions are expanded in a spherical-wave basis on each scattering center and indexed up to a maximum orbital and azimuthal number L max = (l,m) max, while scattering matrices, which determine spectral properties, are truncated at L tr = (l,m) tr where phase shifts δl>l tr are negligible. Historically, L max is set equal to L tr, which is correct for large enough L max but not computationally expedient; a better procedure retains higher-order (free-electron and single-site) contributions for L maxmore » > L tr with δl>l tr set to zero [Zhang and Butler, Phys. Rev. B 46, 7433]. We present a numerically ecient and accurate augmented-KKR Green's function formalism that solves the KKR equations by exact matrix inversion [R 3 process with rank N(l tr + 1) 2] and includes higher-L contributions via linear algebra [R 2 process with rank N(l max +1) 2]. Augmented-KKR approach yields properly normalized wave-functions, numerically cheaper basis-set convergence, and a total charge density and electron count that agrees with Lloyd's formula. We apply our formalism to fcc Cu, bcc Fe and L1 0 CoPt, and present the numerical results for accuracy and for the convergence of the total energies, Fermi energies, and magnetic moments versus L max for a given L tr.« less
Wave energy converter effects on wave propagation: A sensitivity study in Monterey Bay, CA
NASA Astrophysics Data System (ADS)
Chang, G.; Jones, C. A.; Roberts, J.; Magalen, J.; Ruehl, K.; Chartrand, C.
2014-12-01
The development of renewable offshore energy in the United States is growing rapidly and wave energy is one of the largest resources currently being evaluated. The deployment of wave energy converter (WEC) arrays required to harness this resource could feasibly number in the hundreds of individual devices. The WEC arrays have the potential to alter nearshore wave propagation and circulation patterns and ecosystem processes. As the industry progresses from pilot- to commercial-scale it is important to understand and quantify the effects of WECs on the natural nearshore processes that support a local, healthy ecosystem. To help accelerate the realization of commercial-scale wave power, predictive modeling tools have been developed and utilized to evaluate the likelihood of environmental impact. At present, direct measurements of the effects of different types of WEC arrays on nearshore wave propagation are not available; therefore wave model simulations provide the groundwork for investigations of the sensitivity of model results to prescribed WEC characteristics over a range of anticipated wave conditions. The present study incorporates a modified version of an industry standard wave modeling tool, SWAN (Simulating WAves Nearshore), to simulate wave propagation through a hypothetical WEC array deployment site on the California coast. The modified SWAN, referred to as SNL-SWAN, incorporates device-specific WEC power take-off characteristics to more accurately evaluate a WEC device's effects on wave propagation. The primary objectives were to investigate the effects of a range of WEC devices and device and array characteristics (e.g., device spacing, number of WECs in an array) on nearshore wave propagation using SNL-SWAN model simulations. Results showed that significant wave height was most sensitive to variations in WEC device type and size and the number of WEC devices in an array. Locations in the lee centerline of the arrays in each modeled scenario showed the largest potential changes in wave height. The SNL-SWAN model simulations for various WEC devices provide the basis for a solid model understanding, giving the confidence necessary for future WEC evaluations.
NASA Astrophysics Data System (ADS)
Nakayama, M.; Kawakata, H.; Hirano, S.; Doi, I.; Takahashi, N.
2016-12-01
Transmitted waves at high frequencies attenuate strongly through highly porous media such as shallow ground, although the waves enable us to investigate physical properties of the media with high-spatial resolutions. Nakayama et al. (2015, AGU) tried to investigate the spatio-temporal variations in physical properties of a highly porous sand soil during water injection in laboratory. Accelerometers installed in the sand soil received only the signals of no higher than 0.5 kHz, although they used rectangular waveforms as input signals. The wavelength corresponding to 0.5 kHz is about 400 mm because the measured wave velocity is about 200 m/s. The wavelength is comparable to the path lengths of the transmitted waves, so that it cannot be discussed how the temporal variations in physical properties depend on the paths. In this study, we try to transmit waves with wavelengths much shorter than a sand soil and path lengths through a highly porous sand soil. We make a sand soil (750 mm long, 300 mm wide, and 300 mm high) with porosity about 40%. We install a shaker as a wave source at a deep part in the sand soil. In addition, we install accelerometers, pore pressure gauges, and electrodes at different depths. We inject tap water into the sand soil from the bottom, and record transmitted waves together with pore pressure and electrode voltage until the sand soil becomes saturated. Note that we adopt sweep signals (0.1-10 kHz) as the source so that the shaker can generate high frequency waves more strongly than rectangular signals. Accelerometers receive the signals at least up to 5 kHz during the experiment (Figure 1). The wavelength corresponding to 5 kHz is about 40 mm. In conclusion, we succeed in detecting transmitted waves propagating through the highly porous sand soil whose path lengths are about ten times their wave lengths. Acknowledgment: We are grateful to Takayoshi Kishida for supporting the experiment. This work is supported by JSPS KAKENHI Grant Numbers JP15H02996 and 26750135.
Far-forward collective scattering measurements by FIR polarimeter-interferometer on J-TEXT tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, P.; Chen, J., E-mail: jiech@hust.edu.cn; Gao, L.
The multi-channel three-wave polarimeter-interferometer system on J-TEXT tokamak has been exploited to measure far-forward collective scattering from electron density fluctuations. The diagnostic utilizes far infrared lasers operated at 432 μm with 17-channel vertical chords (3 cm chord spacing), covering the entire cross section of plasma. Scattering laser power is measured using a high-sensitivity Schottky planar diode mixer which can also detect polarimetric and interferometric phase simultaneously. The system provides a line-integrated measurement of density fluctuations with maximum measurable wave number: k{sub ⊥max} ≤ 2 cm{sup −1} and time response up to 350 kHz. Feasibility of the diagnostic has been tested,more » showing higher sensitivity to detect fluctuation than interferometric measurement. Capability of providing spatial-resolved information of fluctuation has also been demonstrated in preliminary experimental applications.« less
An Optimization of Electrochemical Etching Conditions for Gold Nanotips Fabrication
NASA Astrophysics Data System (ADS)
Oh, Min Woo; Chong, Haeeun; Park, Doo Jae; Jang, Moonkyu; Bahn, Sebin; Choi, Soo Bong
2018-05-01
We demonstrate a series of experiments to find optimized electrochemical etching condition for fabricating gold nanotip, using square-wave voltage as a bias and using hydrochloric acid diluted by acetone as an etchant. We confirmed that the dilution ratio of 3: 1 between hydrochloric acid and acetone give the smallest tip apex diameter which reproduces our previous result. More importantly, by varying applied bias condition and immersion depth of the platinum ring used as a cathode inside the etchant, we found that the smaller tip apex diameter is achieved when both the amplitude and duty cycle get higher. The success rate, which we define the number of tips having meaningfully less diameter out of total number of tried tips, is also discussed.
Temperature profile and equipartition law in a Langevin harmonic chain
NASA Astrophysics Data System (ADS)
Kim, Sangrak
2017-09-01
Temperature profile in a Langevin harmonic chain is explicitly derived and the validity of the equipartition law is checked. First, we point out that the temperature profile in previous studies does not agree with the equipartition law: In thermal equilibrium, the temperature profile deviates from the same temperature distribution against the equipartition law, particularly at the ends of the chain. The matrix connecting temperatures of the heat reservoirs and the temperatures of the harmonic oscillators turns out to be a probability matrix. By explicitly calculating the power spectrum of the probability matrix, we will show that the discrepancy comes from the neglect of the power spectrum in higher frequency ω, which is in decay mode, and related with the imaginary number of wave number q.
Bidirectional Relations between Temperament and Parenting Styles in Chinese Children.
Lee, Erica H; Zhou, Qing; Eisenberg, Nancy; Wang, Yun
2013-01-01
The present study examined bidirectional relations between child temperament and parenting styles in a sample ( n = 425) of Chinese children during elementary school period (age range = 6 to 9 years at Wave 1). Using two waves (3.8 years apart) of longitudinal data, we tested two hypotheses: (1) whether child temperament (effortful control and anger/frustration) at Wave 1 predicts parenting styles (authoritative and authoritarian parenting) at Wave 2, controlling for Wave 1 parenting; and (2) whether parenting styles at Wave 1 predict Wave 2 temperament, controlling for Wave 1 temperament. We found support for bidirectional relations between temperament and authoritarian parenting, such that higher effortful control and lower anger/frustration were associated with higher authoritarian parenting across time and in both directions. There were no significant cross-time associations between children's temperament and authoritative parenting. These findings extend the previous tests of transactional relations between child temperament and parenting in Chinese children and are consistent with the cultural values toward effortful control and control of anger/frustration in Chinese society.
Body frame close coupling wave packet approach to gas phase atom-rigid rotor inelastic collisions
NASA Technical Reports Server (NTRS)
Sun, Y.; Judson, R. S.; Kouri, D. J.
1989-01-01
The close coupling wave packet (CCWP) method is formulated in a body-fixed representation for atom-rigid rotor inelastic scattering. For J greater than j-max (where J is the total angular momentum and j is the rotational quantum number), the computational cost of propagating the coupled channel wave packets in the body frame is shown to scale approximately as N exp 3/2, where N is the total number of channels. For large numbers of channels, this will be much more efficient than the space frame CCWP method previously developed which scales approximately as N-squared under the same conditions.
Subcritical collisionless shock waves. [in earth space plasma
NASA Technical Reports Server (NTRS)
Mellott, M. M.
1985-01-01
The development history of theoretical accounts of low Mach number collisionless shock waves is related to recent observational advancements, with attention to weaker shocks in which shock steepening is limited by dispersion and/or anomalous resistivity and whose character is primarily determined by the dispersive properties of the ambient plasma. Attention has focused on nearly perpendicular shocks where dispersive scale lengths become small and the associated cross-field currents become strong enough to generate significant plasma wave turbulence. A number of oblique, low Mach number bow shocks have been studied on the basis of data from the ISEE dual spacecraft pair, allowing an accurate determination of shock scale lengths.
NASA Astrophysics Data System (ADS)
Petrov, Irene Y.; Micci, Maria-Adelaide; Prough, Donald S.; Petrov, Yuriy; Guptarak, Jutatip; Grant, Auston C.; Parsley, Margaret A.; Bolding, Ian J.; Esenaliev, Rinat O.
2018-03-01
Optoacoustic diagnostics is based on detection and analysis of optoacoustic waves induced in tissues. It may find a number of important clinical applications in large populations of patients such as diagnostics of cerebral hypoxia, circulatory shock, etc. Recently, we proposed Nano-Pulse Laser Therapy (NPLT) which utilizes short optical pulses (typically, shorter than hundreds of nanoseconds) to generate optoacoustic waves in tissues upon stress-confined irradiation. It is well known that continuous wave low-level near-infrared light can be used for therapy/photobiomodulation to stimulate, repair, regenerate, and protect injured tissue. In the past few years, new works emerged on therapeutic effects of low-intensity ultrasound waves. The NPLT consists of irradiating tissue by both lowlevel light and optoacoustic waves/ultrasound that combines merits of low-level light and ultrasound therapies. In this work we propose optoacoustic theranostics that can be used for diagnostics, optoacoustic therapy/NPLT, and monitoring of therapeutic response during and after therapy. We developed and built pulsed, tunable, near infrared (680-1064 nm), fiber-coupled systems for optoacoustic theranostics and tested them in rats with traumatic brain injury (TBI). Low energy pulses were used for optoacoustic monitoring of cerebral blood oxygenation, while higher energy pulses were used for the NPLT. Our studies show that TBI results in cerebral hypoxia, while a 5-minute transcranial application of NPLT significantly reduces negative effects of TBI as assessed by vestibulomotor, cognitive, and immunofluorescence tests. The obtained results suggest that the optoacoustic theranostics may be used for diagnostics and management of TBI and other disorders.
NASA Astrophysics Data System (ADS)
Xia, Jianghai
2014-04-01
This overview article gives a picture of multichannel analysis of high-frequency surface (Rayleigh and Love) waves developed mainly by research scientists at the Kansas Geological Survey, the University of Kansas and China University of Geosciences (Wuhan) during the last eighteen years by discussing dispersion imaging techniques, inversion systems, and real-world examples. Shear (S)-wave velocities of near-surface materials can be derived from inverting the dispersive phase velocities of high-frequency surface waves. Multichannel analysis of surface waves—MASW used phase information of high-frequency Rayleigh waves recorded on vertical component geophones to determine near-surface S-wave velocities. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that inversion with higher modes and the fundamental mode simultaneously can increase model resolution and an investigation depth. Multichannel analysis of Love waves—MALW used phase information of high-frequency Love waves recorded on horizontal (perpendicular to the direction of wave propagation) component geophones to determine S-wave velocities of shallow materials. Because of independence of compressional (P)-wave velocity, the MALW method has some attractive advantages, such as 1) Love-wave dispersion curves are simpler than Rayleigh wave's; 2) dispersion images of Love-wave energy have a higher signal to noise ratio and more focused than those generated from Rayleigh waves; and 3) inversion of Love-wave dispersion curves is less dependent on initial models and more stable than Rayleigh waves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chong; Yang, Zhan-Ying, E-mail: zyyang@nwu.edu.cn; Zhao, Li-Chen, E-mail: zhaolichen3@163.com
We study vector localized waves on continuous wave background with higher-order effects in a two-mode optical fiber. The striking properties of transition, coexistence, and interaction of these localized waves arising from higher-order effects are revealed in combination with corresponding modulation instability (MI) characteristics. It shows that these vector localized wave properties have no analogues in the case without higher-order effects. Specifically, compared to the scalar case, an intriguing transition between bright–dark rogue waves and w-shaped–anti-w-shaped solitons, which occurs as a result of the attenuation of MI growth rate to vanishing in the zero-frequency perturbation region, is exhibited with the relativemore » background frequency. In particular, our results show that the w-shaped–anti-w-shaped solitons can coexist with breathers, coinciding with the MI analysis where the coexistence condition is a mixture of a modulation stability and MI region. It is interesting that their interaction is inelastic and describes a fusion process. In addition, we demonstrate an annihilation phenomenon for the interaction of two w-shaped solitons which is identified essentially as an inelastic collision in this system. -- Highlights: •Vector rogue wave properties induced by higher-order effects are studied. •A transition between vector rogue waves and solitons is obtained. •The link between the transition and modulation instability (MI) is demonstrated. •The coexistence of vector solitons and breathers coincides with the MI features. •An annihilation phenomenon for the vector two w-shaped solitons is presented.« less
Ragab, Seham M; Fathy, Waleed M; El-Aziz, Walaa FAbd; Helal, Rasha T
2015-01-01
Background Cardiac iron toxicity is the leading cause of death among β-halassaemia major (TM) patients. Once heart failure becomes overt, it is difficult to reverse. Objectives To investigate non-overt cardiac dysfunctions in TM patients using pulsed wave Tissue Doppler Imaging (TD I) and its relation to iron overload and brain natriuretic peptide (BNP). Methods Thorough clinical, conventional echo and pulsed wave TDI parameters were compared between asymptomatic 25 β-TM patients and 20 age and gender matched individuals. Serum ferritin and plasma BNP levels were assayed by ELISA. Results TM patients had significant higher mitral inflow early diastolic (E) wave and non significant other conventional echo parameters. In the patient group, pulsed wave TDI revealed systolic dysfunctions, in the form of significant higher isovolumetric contraction time (ICT), and lower ejection time (E T), with diastolic dysfunction in the form of higher isovolumetric relaxation time (IRT), and lower mitral annulus early diastolic velocity E′ (12.07 ±2.06 vs 15.04±2.65, P= 0.003) compared to the controls. Plasma BNP was higher in patients compared to the controls. Plasma BNP and serum ferritin had a significant correlation with each other and with pulsed wave conventional and TDI indices of systolic and diastolic functions. Patients with E/E′ ≥ 8 had significant higher serum ferritin and plasma BNP levels compared to those with ratio < 8 without a difference in Hb levels. Conclusion Pulsed wave TDI is an important diagnostic tool for latent cardiac dysfunction in iron-loaded TM patients and is related to iron overload and BNP. PMID:26401240
Ragab, Seham M; Fathy, Waleed M; El-Aziz, Walaa FAbd; Helal, Rasha T
2015-01-01
Cardiac iron toxicity is the leading cause of death among β-halassaemia major (TM) patients. Once heart failure becomes overt, it is difficult to reverse. To investigate non-overt cardiac dysfunctions in TM patients using pulsed wave Tissue Doppler Imaging (TD I) and its relation to iron overload and brain natriuretic peptide (BNP). Thorough clinical, conventional echo and pulsed wave TDI parameters were compared between asymptomatic 25 β-TM patients and 20 age and gender matched individuals. Serum ferritin and plasma BNP levels were assayed by ELISA. TM patients had significant higher mitral inflow early diastolic (E) wave and non significant other conventional echo parameters. In the patient group, pulsed wave TDI revealed systolic dysfunctions, in the form of significant higher isovolumetric contraction time (ICT), and lower ejection time (E T), with diastolic dysfunction in the form of higher isovolumetric relaxation time (IRT), and lower mitral annulus early diastolic velocity E' (12.07 ±2.06 vs 15.04±2.65, P= 0.003) compared to the controls. Plasma BNP was higher in patients compared to the controls. Plasma BNP and serum ferritin had a significant correlation with each other and with pulsed wave conventional and TDI indices of systolic and diastolic functions. Patients with E/E' ≥ 8 had significant higher serum ferritin and plasma BNP levels compared to those with ratio < 8 without a difference in Hb levels. Pulsed wave TDI is an important diagnostic tool for latent cardiac dysfunction in iron-loaded TM patients and is related to iron overload and BNP.
NASA Astrophysics Data System (ADS)
Sultana, S.; Schlickeiser, R.
2018-02-01
A three component degenerate relativistic quantum plasma (consisting of relativistically degenerate electrons, nondegenerate inertial light nuclei, and stationary heavy nuclei) is considered to model the linear wave and also the electrostatic solitary waves in the light nuclei-scale length. A well-known normal mode analysis is employed to investigate the linear wave properties. A mechanical-motion analog (Sagdeev-type) pseudo-potential approach, which reveals the existence of large amplitude solitary excitations, is adopted to study the nonlinear wave properties. Only the positive potential solitary excitations are found to exist in the plasma medium under consideration. The basic properties of the arbitrary amplitude electrostatic acoustic modes in the light nuclei-scale length and their existence domain in terms of soliton speed (Mach number) are examined. The modifications of solitary wave characteristics and their existence domain with the variation of different key plasma configuration parameters (e.g., electrons degeneracy parameter, inertial light nuclei number density, and degenerate electron number density) are also analyzed. Our results, which may be helpful to explain the basic features of the nonlinear wave propagation in multi-component degenerate quantum plasmas, in connection with astrophysical compact objects (e.g., white dwarfs) are briefly discussed.
Spectroscopic Measurement Techniques for Aerospace Flows
NASA Technical Reports Server (NTRS)
Danehy, Paul M.; Bathel, Brett F.; Johansen, Craig T.; Cutler, Andrew D.; Hurley, Samantha
2014-01-01
The conditions that characterize aerospace flows are so varied, that a single diagnostic technique is not sufficient for its measurement. Fluid dynamists use knowledge of similarity to help categorize and focus on different flow conditions. For example, the Reynolds number represents the ratio of inertial to viscous forces in a flow. When the velocity scales, length scales, and gas density are large and the magnitude of the molecular viscosity is low, the Reynolds number becomes large. This corresponds to large scale vehicles (e.g Airbus A380), fast moving objects (e.g. artillery projectiles), vehicles in dense fluids (e.g. submarine in water), or flows with low dynamic viscosity (e.g. skydiver in air). In each of these cases, the inertial forces dominate viscous forces, and unsteady turbulent fluctuations in the flow variables are observed. In contrast, flows with small length scales (e.g. dispersion of micro-particles in a solid rocket nozzle), slow moving objects (e.g. micro aerial vehicles), flows with low density gases (e.g. atmospheric re-entry), or fluids with a large magnitude of viscosity (e.g. engine coolant flow), all have low Reynolds numbers. In these cases, viscous forces become very important and often the flows can be steady and laminar. The Mach number, which is the ratio of the velocity to the speed of sound in the medium, also helps to differentiate types of flows. At very low Mach numbers, acoustic waves travel much faster than the object, and the flow can be assumed to be incompressible (e.g. Cessna 172 aircraft). As the object speed approaches the speed of sound, the gas density can become variable (e.g. flow over wing of Learjet 85). When the object speed is higher than the speed of sound (Ma > 1), the presences of shock waves and other gas dynamic features can become important to the vehicle performance (e.g. SR-71 Blackbird). In the hypersonic flow regime (Ma > 5), large changes in temperature begin to affect flow properties, causing real-gas effects to occur (e.g. X-43 Scramjet). At even higher Mach numbers, chemistry and nonequilibrium effects come into play (e.g. Startdust re-entry capsule), further complicating the measurement. These limits can be predicted by calculating the ratio of chemical and thermal relaxation time to the flow time scales. Other non-dimensional numbers can be used to further differentiate types of aerospace flows.
Nonlinear dynamics near the stability margin in rotating pipe flow
NASA Technical Reports Server (NTRS)
Yang, Z.; Leibovich, S.
1991-01-01
The nonlinear evolution of marginally unstable wave packets in rotating pipe flow is studied. These flows depend on two control parameters, which may be taken to be the axial Reynolds number R and a Rossby number, q. Marginal stability is realized on a curve in the (R, q)-plane, and the entire marginal stability boundary is explored. As the flow passes through any point on the marginal stability curve, it undergoes a supercritical Hopf bifurcation and the steady base flow is replaced by a traveling wave. The envelope of the wave system is governed by a complex Ginzburg-Landau equation. The Ginzburg-Landau equation admits Stokes waves, which correspond to standing modulations of the linear traveling wavetrain, as well as traveling wave modulations of the linear wavetrain. Bands of wavenumbers are identified in which the nonlinear modulated waves are subject to a sideband instability.
NASA Astrophysics Data System (ADS)
Kirilovskiy, S. V.; Poplavskaya, T. V.; Tsyryulnikov, I. S.
2016-10-01
This work is aimed at obtaining conversion factors of free stream disturbances from shock wave angle φ, angle of acoustic disturbances distribution θ and Mach number M∞ by solving a problem of interaction of long-wave (with the wavelength λ greater than the model length) free-stream disturbances with a shock wave formed in a supersonic flow around the wedge. Conversion factors at x/λ=0.2 as a ration between amplitude of pressure pulsations on the wedge surface and free stream disturbances amplitude were obtained. Factors of conversion were described by the dependence on angle θ of disturbances distribution, shock wave angle φ and Mach number M∞. These dependences are necessary for solving the problem of mode decomposition of disturbances in supersonic flows in wind tunnels.
Advances in Inner Magnetosphere Passive and Active Wave Research
NASA Technical Reports Server (NTRS)
Green, James L.; Fung, Shing F.
2004-01-01
This review identifies a number of the principal research advancements that have occurred over the last five years in the study of electromagnetic (EM) waves in the Earth's inner magnetosphere. The observations used in this study are from the plasma wave instruments and radio sounders on Cluster, IMAGE, Geotail, Wind, Polar, Interball, and others. The data from passive plasma wave instruments have led to a number of advances such as: determining the origin and importance of whistler mode waves in the plasmasphere, discovery of the source of kilometric continuum radiation, mapping AKR source regions with "pinpoint" accuracy, and correlating the AKR source location with dipole tilt angle. Active magnetospheric wave experiments have shown that long range ducted and direct echoes can be used to obtain the density distribution of electrons in the polar cap and along plasmaspheric field lines, providing key information on plasmaspheric filling rates and polar cap outflows.
Sugisaki, Kenji; Yamamoto, Satoru; Nakazawa, Shigeaki; Toyota, Kazuo; Sato, Kazunobu; Shiomi, Daisuke; Takui, Takeji
2016-08-18
Quantum computers are capable to efficiently perform full configuration interaction (FCI) calculations of atoms and molecules by using the quantum phase estimation (QPE) algorithm. Because the success probability of the QPE depends on the overlap between approximate and exact wave functions, efficient methods to prepare accurate initial guess wave functions enough to have sufficiently large overlap with the exact ones are highly desired. Here, we propose a quantum algorithm to construct the wave function consisting of one configuration state function, which is suitable for the initial guess wave function in QPE-based FCI calculations of open-shell molecules, based on the addition theorem of angular momentum. The proposed quantum algorithm enables us to prepare the wave function consisting of an exponential number of Slater determinants only by a polynomial number of quantum operations.
NASA Astrophysics Data System (ADS)
Lee, Myoung-Jae; Jung, Young-Dae
2017-03-01
The influence of electron-ion collision frequency and dust charge on the growth rate of two-stream instability of the electrostatic surface wave propagating at the interface of semi-infinite complex plasma whose constituents are electrons, negatively charged dust, and streaming ions. It is found that the surface wave can be unstable if the multiplication of wave number and ion flow velocity is greater than the total plasma frequency of electrons and dusts. The analytical solution of the growth rate is derived as a function of collision frequency, dust charge, and ion-to-electron density ratio. It is found that the growth rate is inversely proportional to the collision rate, but it is enhanced as the number of electrons residing on the dust grain surface is increased. The growth rate of surface wave is compared to that of the bulk wave.
Dense Gravity Currents with Breaking Internal Waves
NASA Astrophysics Data System (ADS)
Tanimoto, Yukinobu; Hogg, Charlie; Ouellette, Nicholas; Koseff, Jeffrey
2017-11-01
Shoaling and breaking internal waves along a pycnocline may lead to mixing and dilution of dense gravity currents, such as cold river inflows into lakes or brine effluent from desalination plants in near-coastal environments. In order to explore the interaction between gravity currents and breaking interfacial waves a series of laboratory experiments was performed in which a sequence of internal waves impinge upon a shelf-slope gravity current. The waves are generated in a two-layer thin-interface ambient water column under a variety of conditions characterizing both the waves and the gravity currents. The mixing of the gravity current is measured through both intrusive (CTD probe) and nonintrusive (Planar-laser inducted fluorescence) techniques. We will present results over a full range of Froude number (characterizing the waves) and Richardson number (characterizing the gravity current) conditions, and will discuss the mechanisms by which the gravity current is mixed into the ambient environment including the role of turbulence in the process. National Science Foundation.
Gravitational waves from vacuum first-order phase transitions: From the envelope to the lattice
NASA Astrophysics Data System (ADS)
Cutting, Daniel; Hindmarsh, Mark; Weir, David J.
2018-06-01
We conduct large scale numerical simulations of gravitational wave production at a first-order vacuum phase transition. We find a power law for the gravitational wave power spectrum at high wave number which falls off as k-1.5 rather than the k-1 produced by the envelope approximation. The peak of the power spectrum is shifted to slightly lower wave numbers from that of the envelope approximation. The envelope approximation reproduces our results for the peak power less well, agreeing only to within an order of magnitude. After the bubbles finish colliding, the scalar field oscillates around the true vacuum. An additional feature is produced in the UV of the gravitational wave power spectrum, and this continues to grow linearly until the end of our simulation. The additional feature peaks at a length scale close to the bubble wall thickness and is shown to have a negligible contribution to the energy in gravitational waves, providing the scalar field mass is much smaller than the Planck mass.
NASA Astrophysics Data System (ADS)
Dias, Frédéric; Renzi, Emiliano; Gallagher, Sarah; Sarkar, Dripta; Wei, Yanji; Abadie, Thomas; Cummins, Cathal; Rafiee, Ashkan
2017-08-01
The development of new wave energy converters has shed light on a number of unanswered questions in fluid mechanics, but has also identified a number of new issues of importance for their future deployment. The main concerns relevant to the practical use of wave energy converters are sustainability, survivability, and maintainability. Of course, it is also necessary to maximize the capture per unit area of the structure as well as to minimize the cost. In this review, we consider some of the questions related to the topics of sustainability, survivability, and maintenance access, with respect to sea conditions, for generic wave energy converters with an emphasis on the oscillating wave surge converter. New analytical models that have been developed are a topic of particular discussion. It is also shown how existing numerical models have been pushed to their limits to provide answers to open questions relating to the operation and characteristics of wave energy converters.
Dias, Frédéric; Renzi, Emiliano; Gallagher, Sarah; Sarkar, Dripta; Wei, Yanji; Abadie, Thomas; Cummins, Cathal; Rafiee, Ashkan
2017-01-01
The development of new wave energy converters has shed light on a number of unanswered questions in fluid mechanics, but has also identified a number of new issues of importance for their future deployment. The main concerns relevant to the practical use of wave energy converters are sustainability, survivability, and maintainability. Of course, it is also necessary to maximize the capture per unit area of the structure as well as to minimize the cost. In this review, we consider some of the questions related to the topics of sustainability, survivability, and maintenance access, with respect to sea conditions, for generic wave energy converters with an emphasis on the oscillating wave surge converter. New analytical models that have been developed are a topic of particular discussion. It is also shown how existing numerical models have been pushed to their limits to provide answers to open questions relating to the operation and characteristics of wave energy converters.
Global Observations of Magnetospheric High-m Poloidal Waves During the 22 June 2015 Magnetic Storm
NASA Technical Reports Server (NTRS)
Le, G.; Chi, P. J.; Strangeway, R. J.; Russell, C. T.; Slavin, J. A.; Takahashi, K.; Singer, H. J.; Anderson, B. J.; Bromund, K.; Fischer, D.;
2017-01-01
We report global observations of high-m poloidal waves during the recovery phase of the 22 June 2015 magnetic storm from a constellation of widely spaced satellites of five missions including Magnetospheric Multiscale (MMS), Van Allen Probes, Time History of Events and Macroscale Interactions during Substorm (THEMIS), Cluster, and Geostationary Operational Environmental Satellites (GOES). The combined observations demonstrate the global spatial extent of storm time poloidal waves. MMS observations confirm high azimuthal wave numbers (m approximately 100). Mode identification indicates the waves are associated with the second harmonic of field line resonances. The wave frequencies exhibit a decreasing trend as L increases, distinguishing them from the single-frequency global poloidal modes normally observed during quiet times. Detailed examination of the instantaneous frequency reveals discrete spatial structures with step-like frequency changes along L. Each discrete L shell has a steady wave frequency and spans about 1 RE, suggesting that there exist a discrete number of drift-bounce resonance regions across L shells during storm times.
Global observations of magnetospheric high-m poloidal waves during the 22 June 2015 magnetic storm.
Le, G; Chi, P J; Strangeway, R J; Russell, C T; Slavin, J A; Takahashi, K; Singer, H J; Anderson, B J; Bromund, K; Fischer, D; Kepko, E L; Magnes, W; Nakamura, R; Plaschke, F; Torbert, R B
2017-04-28
We report global observations of high- m poloidal waves during the recovery phase of the 22 June 2015 magnetic storm from a constellation of widely spaced satellites of five missions including Magnetospheric Multiscale (MMS), Van Allen Probes, Time History of Events and Macroscale Interactions during Substorm (THEMIS), Cluster, and Geostationary Operational Environmental Satellites (GOES). The combined observations demonstrate the global spatial extent of storm time poloidal waves. MMS observations confirm high azimuthal wave numbers ( m ~ 100). Mode identification indicates the waves are associated with the second harmonic of field line resonances. The wave frequencies exhibit a decreasing trend as L increases, distinguishing them from the single-frequency global poloidal modes normally observed during quiet times. Detailed examination of the instantaneous frequency reveals discrete spatial structures with step-like frequency changes along L . Each discrete L shell has a steady wave frequency and spans about 1 R E , suggesting that there exist a discrete number of drift-bounce resonance regions across L shells during storm times.
Comparative study of two intraoral laser techniques for soft tissue surgery
NASA Astrophysics Data System (ADS)
Swick, Michael D.; Richter, Alexander
2003-06-01
Historically, 810nm has been the predominant wavelength used for intraoral surgery, when diode lasers have been discussed, due to their large numbers in the market place. The techniques used intraorally with the 810nm diode have been relatively similar in most cases. Low powers, 1 or 2 watts, using continuous wave, are employed. The purpose of this study is to compare the thermal damage of the technique of using continuous wave at low powers, to using higher powers with a pulse mode and water for coolant, with the 980nm diode wavelength. During the study the laser fiber was held immobile eliminating surgical manipulation as an error. The resultant histology proves, while the volume of vaporization dramatically increases, thus giving the clinician the ability to reduce the time for destructive conduction of excess heat for a given procedure, the amount of coagulation actually decreases in width and depth. As an added benefit charring, which has been implicated in delayed healing is virtually eliminated. This evidence, coupled with excellent clinical results, lends validity to the use of pulsed higher powers and water coolant for the 980nm diode laser.
Obliquely Incident Solitary Wave onto a Vertical Wall
NASA Astrophysics Data System (ADS)
Yeh, Harry
2012-10-01
When a solitary wave impinges obliquely onto a reflective vertical wall, it can take the formation of a Mach reflection (a geometrically similar reflection from acoustics). The mathematical theory predicts that the wave at the reflection can amplify not twice, but as high as four times the incident wave amplitude. Nevertheless, this theoretical four-fold amplification has not been verified by numerical or laboratory experiments. We discuss the discrepancies between the theory and the experiments; then, improve the theory with higher-order corrections. The modified theory results in substantial improvement and is now in good agreement with the numerical as well as our laboratory results. Our laboratory experiments indicate that the wave amplitude along the reflective wall can reach 0.91 times the quiescent water depth, which is higher than the maximum of a freely propagating solitary wave. Hence, this maximum runup 0.91 h would be possible even if the amplitude of the incident solitary wave were as small as 0.24 h. This wave behavior could provide an explanation for local variability of tsunami runup as well as for sneaker waves.
Single Mode Theory for Impedance Eduction in Large-Scale Ducts with Grazing Flow
NASA Technical Reports Server (NTRS)
Watson, Willie R.; Gerhold, Carl H.; Jones, Michael G.; June, Jason C.
2014-01-01
An impedance eduction theory for a rigid wall duct containing an acoustic liner with an unknown impedance and uniform grazing flow is presented. The unique features of the theory are: 1) non-planar waves propagate in the hard wall sections of the duct, 2) input data consist solely of complex acoustic pressures acquired on a wall adjacent to the liner, and 3) multiple higher-order modes may exist in the direction perpendicular to the liner and the opposite rigid wall. The approach is to first measure the axial propagation constant of a dominant higher-order mode in the liner sample section. This axial propagation constant is then used in conjunction with a closed-form solution to a reduced form of the convected Helmholtz equation and the wall impedance boundary condition to educe the liner impedance. The theory is validated on a conventional liner whose impedance spectrum is educed in two flow ducts with different cross sections. For the frequencies and Mach numbers of interest, no higher-order modes propagate in the hard wall sections of the smaller duct. A benchmark method is used to educe the impedance spectrum in this duct. A dominant higher-order vertical mode propagates in the larger duct for similar test conditions, and the current theory is applied to educe the impedance spectrum. Results show that when the theory is applied to data acquired in the larger duct with a dominant higher-order vertical mode, the same impedance spectra is educed as that obtained in the small duct where only the plane wave mode is present and the benchmark method is used. This result holds for each higher-order vertical mode that is considered.
Wind growth and wave breaking in higher-order spectral phase resolved wave models
NASA Astrophysics Data System (ADS)
Leighton, R.; Walker, D. T.
2016-02-01
Wind growth and wave breaking are a integral parts of the wave evolution. Higher-OrderSpectral models (HoS) describing the non-linear evolution require empirical models for these effects. In particular, the assimilation of phase-resolved remotesensing data will require the prediction and modeling of wave breaking events.The HoS formulation used in this effort is based on fully nonlinear model of O. Nwogu (2009). The model for wave growth due to wind is based on the early normal and tangential stress model of Munk (1947). The model for wave breaking contains two parts. The first part initiates the breaking events based on the local wave geometry and the second part is a model for the pressure field, which acting against the surface normal velocity extracts energy from the wave. The models are tuned to balance the wind energy input with the breaking wave losses and to be similarfield observations of breaking wave coverage. The initial wave field, based on a Pierson-Moskowitz spectrum for 10 meter wind speed of 5-15 m/s, defined over a region of up to approximate 2.5 km on a side with the simulation running for several hundreds of peak wave periods. Results will be presented describing the evolution of the wave field.Sponsored by Office of Naval Research, Code 322
Pan, De-Bei; Gao, Xiang; Feng, Xia; Pan, Jun-Ting; Zhang, Hong
2016-01-01
Spirals or scroll waves pinned to heterogeneities in cardiac tissues may cause lethal arrhythmias. To unpin these life-threatening spiral waves, methods of wave emission from heterogeneities (WEH) induced by low-voltage pulsed DC electric fields (PDCEFs) and circularly polarized electric fields (CPEFs) have been used in two-dimensional (2D) cardiac tissues. Nevertheless, the unpinning of scroll waves in three-dimensional (3D) cardiac systems is much more difficult than that of spiral waves in 2D cardiac systems, and there are few reports on the removal of pinned scroll waves in 3D cardiac tissues by electric fields. In this article, we investigate in detail the removal of pinned scroll waves in a generic model of 3D excitable media using PDCEF, AC electric field (ACEF) and CPEF, respectively. We find that spherical waves can be induced from the heterogeneities by these electric fields in initially quiescent excitable media. However, only CPEF can induce spherical waves with frequencies higher than that of the pinned scroll wave. Such higher-frequency spherical waves induced by CPEF can be used to drive the pinned scroll wave out of the cardiac systems. We hope this remarkable ability of CPEF can provide a better alternative to terminate arrhythmias caused by pinned scroll waves. PMID:26905367