Serum copper and zinc concentrations in a representative sample of the Canarian population.
Díaz Romero, Carlos; Henríquez Sánchez, Patricia; López Blanco, Félix; Rodríguez Rodríguez, Elena; Serra Majem, Lluis
2002-01-01
Serum copper (Cu) and zinc (Zn) concentrations of 395 individuals (187 males + 208 females) living in Canary Islands were determined by flame atomic absorption spectrometry. The mean copper and zinc concentrations were 1.10 +/- 0.25 mg/L and 1.16 +/- 0.52 mg/L respectively. Our data were similar to other data published in other Spanish regions. Individuals from Lanzarote presented a mean Cu and Zn concentrations higher (p < 0.05) than individuals from the rest of islands; Individuals from EL Hierro showed the lowest (p < 0.05) mean Zn concentration. These differences could be attributed a differences in Cu and Zn contents of soil and/or differences in dietary habits of the populations. The mean serum Cu concentration in females was higher (p < 0.05) than in males, however serum Zn concentration did not vary with the sex of the subjects. No relation to socio-economic status and educational level were found with respect to the serum Cu and Zn concentrations. The serum Cu concentration varied with age of individuals, observing the highest (p < 0.05) Cu concentration in the 20-30 year old interval. A higher serum Cu concentration in females within 20-30 year old interval was observed. This could be due to a higher use of oral contraceptives or to the higher number of pregnancies. Boys (younger than 15) showed a decrease (p < 0.05) of the serum Cu concentration with age. The mean Zn concentrations in serum did not change (p > 0.05) among the different age intervals. No clear trends in the serum Cu and Zn concentrations were observed when drinking and smoking habits were considered. The increase of physical exercise reduced (p < 0.05) the serum Cu concentrations.
Tourinho, Paula S; van Gestel, Cornelis A M; Lofts, Stephen; Soares, Amadeu M V M; Loureiro, Susana
2013-12-01
The effects of soil pH on the toxicity of ZnO nanoparticles (NPs) to the terrestrial isopod Porcellionides pruinosus were evaluated. Isopods were exposed to a natural soil amended with CaCO3 to reach 3 different pH(CaCl2) levels (4.5, 6.2, and 7.3) and to standard LUFA 2.2 soil (pH 5.5) spiked with ZnO NPs (30 nm), non-nano ZnO (200 nm), and ionic Zn as ZnCl₂. Toxicity was expressed based on total Zn concentration in soil, as well as total Zn and free Zn²⁺ ion concentrations in porewater. Compared with ZnO-spiked soils, the ZnCl₂-spiked soils had lower pH and higher porewater Ca²⁺ and Zn levels. Isopod survival did not differ between Zn forms and soils, but survival was higher for isopods exposed to ZnO NPs at pH 4.5. Median effect concentrations (EC50s) for biomass change showed similar trends for all Zn forms in all soils, with higher values at intermediate pH. Median lethal concentration (LC50) and EC50 values based on porewater Zn or free Zn ion concentrations were much lower for ZnO than for ionic zinc. Zn body concentrations increased in a dose-related manner, but no effect of soil pH was found. It is suggested not only that dissolved or free Zn in porewater contributed to uptake and toxicity, but also that oral uptake (i.e., ingestion of soil particles) could be an important additional route of exposure. © 2013 SETAC.
Waalewijn-Kool, Pauline L; Rupp, Svenja; Lofts, Stephen; Svendsen, Claus; van Gestel, Cornelis A M
2014-10-01
Organic matter (OM) and pH may influence nanoparticle fate and effects in soil. This study investigated the influence of soil organic matter content and pH on the toxicity of ZnO-NP and ZnCl2 to Folsomia candida in four natural soils, having between 2.37% and 14.7% OM and [Formula: see text] levels between 5.0 and 6.8. Porewater Zn concentrations were much lower in ZnO-NP than in ZnCl2 spiked soils, resulting in higher Freundlich sorption constants for ZnO-NP. For ZnCl2 the porewater Zn concentrations were significantly higher in less organic soils, while for ZnO-NP the highest soluble Zn level (23mgZn/l) was measured in the most organic soil, which had the lowest pH. Free Zn(2+) ion concentrations were higher for ZnCl2 than for ZnO-NP and were greatly dependent on pH (pHpw) and dissolved organic carbon content of the pore water. The 28-d EC50 values for the effect of ZnCl2 on the reproduction of F. candida increased with increasing OM content from 356 to 1592mgZn/kg d.w. For ZnO-NP no correlation between EC50 values and OM content was found and EC50 values ranged from 1695 in the most organic soil to 4446mgZn/kg d.w. in the higher pH soil. When based on porewater and free Zn(2+) concentrations, EC50 values were higher for ZnCl2 than for ZnO-NP, and consistently decreased with increasing pHpw. This study shows that ZnO-NP toxicity is dependent on soil properties, but is mainly driven by soil pH. Copyright © 2014 Elsevier Inc. All rights reserved.
Organic Wheat Farming Improves Grain Zinc Concentration
Helfenstein, Julian; Müller, Isabel; Grüter, Roman; Bhullar, Gurbir; Mandloi, Lokendra; Papritz, Andreas; Siegrist, Michael; Schulin, Rainer; Frossard, Emmanuel
2016-01-01
Zinc (Zn) nutrition is of key relevance in India, as a large fraction of the population suffers from Zn malnutrition and many soils contain little plant available Zn. In this study we compared organic and conventional wheat cropping systems with respect to DTPA (diethylene triamine pentaacetic acid)-extractable Zn as a proxy for plant available Zn, yield, and grain Zn concentration. We analyzed soil and wheat grain samples from 30 organic and 30 conventional farms in Madhya Pradesh (central India), and conducted farmer interviews to elucidate sociological and management variables. Total and DTPA-extractable soil Zn concentrations and grain yield (3400 kg ha-1) did not differ between the two farming systems, but with 32 and 28 mg kg-1 respectively, grain Zn concentrations were higher on organic than conventional farms (t = -2.2, p = 0.03). Furthermore, multiple linear regression analyses revealed that (a) total soil zinc and sulfur concentrations were the best predictors of DTPA-extractable soil Zn, (b) Olsen phosphate taken as a proxy for available soil phosphorus, exchangeable soil potassium, harvest date, training of farmers in nutrient management, and soil silt content were the best predictors of yield, and (c) yield, Olsen phosphate, grain nitrogen, farmyard manure availability, and the type of cropping system were the best predictors of grain Zn concentration. Results suggested that organic wheat contained more Zn despite same yield level due to higher nutrient efficiency. Higher nutrient efficiency was also seen in organic wheat for P, N and S. The study thus suggests that appropriate farm management can lead to competitive yield and improved Zn concentration in wheat grains on organic farms. PMID:27537548
Organic Wheat Farming Improves Grain Zinc Concentration.
Helfenstein, Julian; Müller, Isabel; Grüter, Roman; Bhullar, Gurbir; Mandloi, Lokendra; Papritz, Andreas; Siegrist, Michael; Schulin, Rainer; Frossard, Emmanuel
2016-01-01
Zinc (Zn) nutrition is of key relevance in India, as a large fraction of the population suffers from Zn malnutrition and many soils contain little plant available Zn. In this study we compared organic and conventional wheat cropping systems with respect to DTPA (diethylene triamine pentaacetic acid)-extractable Zn as a proxy for plant available Zn, yield, and grain Zn concentration. We analyzed soil and wheat grain samples from 30 organic and 30 conventional farms in Madhya Pradesh (central India), and conducted farmer interviews to elucidate sociological and management variables. Total and DTPA-extractable soil Zn concentrations and grain yield (3400 kg ha-1) did not differ between the two farming systems, but with 32 and 28 mg kg-1 respectively, grain Zn concentrations were higher on organic than conventional farms (t = -2.2, p = 0.03). Furthermore, multiple linear regression analyses revealed that (a) total soil zinc and sulfur concentrations were the best predictors of DTPA-extractable soil Zn, (b) Olsen phosphate taken as a proxy for available soil phosphorus, exchangeable soil potassium, harvest date, training of farmers in nutrient management, and soil silt content were the best predictors of yield, and (c) yield, Olsen phosphate, grain nitrogen, farmyard manure availability, and the type of cropping system were the best predictors of grain Zn concentration. Results suggested that organic wheat contained more Zn despite same yield level due to higher nutrient efficiency. Higher nutrient efficiency was also seen in organic wheat for P, N and S. The study thus suggests that appropriate farm management can lead to competitive yield and improved Zn concentration in wheat grains on organic farms.
Silva, Bruna Mariáh da S E; Morales, Gundisalvo P; Gutjahr, Ana Lúcia N; Freitas Faial, Kelson do C; Carneiro, Bruno S
2018-03-14
In this study, trace element concentrations were measured in chelipod and gill samples of the crab U. cordatus by induced coupled plasma optical emission spectrometry (ICP OES). The element average concentrations between the structures were statistically compared. Gill concentrations of Cu and Zn were higher in female crabs, while in chelipods, Pb concentrations were higher in males. The concentration of Zn in crabs from Curuçá City were higher than the recommended by health agencies, but the provisional tolerable daily intake value (PTDI), for Zn and Cu, showed only 10 and 23% contribution, respectively. The bioaccumulation factor was higher than 1 for Cu (gills and chelipods) and Zn (only for chelipods), which suggests bioaccumulation for these elements. Further metallomic and oxidative stress analyses are suggested, in order to evaluate possible protein and/or enzymatic biomarkers of toxicity.
Wang, Zhongcheng; Yu, Huimin; Wu, Xuezhuang; Zhang, Tietao; Cui, Hu; Wan, Chunmeng; Gao, Xiuhua
2016-10-01
The experiment was conducted to investigate the effects of zinc pectin oligosaccharides (Zn-POS) chelate on growth performance, nutrient digestibility, and tissue zinc concentrations of Arbor Acre broilers aged from 1 to 42 days. A total of 576 1-day-old broilers were randomly assigned into 4 groups with 9 replicates per group and 16 chicks per replicate. Chicks were fed either a basal diet (control) or basal diet supplemented with Zn-POS at 300 (Zn-POS-300), 600 (Zn-POS-600), or 900 mg/kg (Zn-POS-900), respectively, for 42 days. A 3-day metabolism trial was conducted during the last week of the experiment feeding. The average daily gain and the average daily feed intake of Zn-POS-600 were significantly higher (P < 0.05) than those of either the control, Zn-POS-300, or Zn-POS-900. Zn-POS-600 had the highest apparent digestibility of dry matter, crude protein, and metabolic energy among all groups. The control group had the lowest apparent digestibility of dry matter (P < 0.05), whereas the apparent digestibility of dry matter in Zn-POS-600 was higher (P < 0.05) than that of Zn-POS-300. The apparent digestibility of crude protein in Zn-POS-600 or Zn-POS-900 was higher (P < 0.05) compared to Zn-POS-300 or the control. The apparent digestibility of metabolic energy in Zn-POS-600 or Zn-POS-900 was higher (P < 0.05) than that of Zn-POS-300. Zn-POS-600 had the highest liver zinc concentrations (P < 0.05), while Zn-POS-900 had the highest pancreatic zinc concentrations (P < 0.05). Our data suggest that the supplementation of 600 mg/kg Zn-POS is optimal in improving the average daily gain and the average daily feed intake, utilization of dietary dry matter and crude protein, and increasing tissue zinc concentrations in liver and pancreas of broilers.
Guo, Chih-Hung; Chen, Pei-Chung; Hsu, Guoo-Shyng W.; Wang, Chia-Liang
2013-01-01
End stage renal disease patients undergoing long-term dialysis are at risk for abnormal concentrations of certain essential and non-essential trace metals and high oxidative stress. We evaluated the effects of zinc (Zn) supplementation on plasma aluminum (Al) and selenium (Se) concentrations and oxidative stress in chronic dialysis patients. Zn-deficient patients receiving continuous ambulatory peritoneal dialysis or hemodialysis were divided into two groups according to plasma Al concentrations (HA group, Al > 50 μg/L; and MA group, Al > 30 to ≤ 50 μg/L). All patients received daily oral Zn supplements for two months. Age- and gender-matched healthy individuals did not receive Zn supplement. Clinical variables were assessed before, at one month, and after the supplementation period. Compared with healthy subjects, patients had significantly lower baseline plasma Se concentrations and higher oxidative stress status. After two-month Zn treatment, these patients had higher plasma Zn and Se concentrations, reduced plasma Al concentrations and oxidative stress. Furthermore, increased plasma Zn concentrations were related to the concentrations of Al, Se, oxidative product malondialdehyde (MDA), and antioxidant enzyme superoxide dismutase activities. In conclusion, Zn supplementation ameliorates abnormally high plasma Al concentrations and oxidative stress and improves Se status in long-term dialysis patients. PMID:23609777
Chen, Yanlong; Cui, Juan; Tian, Xiaohong; Zhao, Aiqing; Li, Meng; Wang, Shaoxia; Li, Xiushaung; Jia, Zhou; Liu, Ke
2017-01-01
Organic matter plays a key role in availability and transformation of soil Zn (zinc), which greatly controls Zn concentrations in cereal grains and human Zn nutrition level. Accordingly, soils homogenized with the wheat straw (0, 12 g straw kg-1) and Zn fertilizer (0, 7 mg Zn kg-1) were buried and incubated in the field over 210 days to explore the response of soil Zn availability and the ageing of exogenous Zn to straw addition. Results indicated that adding straw alone scarcely affected soil DTPA-Zn concentration and Zn fractions because of the low Zn concentration of wheat straw and the high soil pH, and large clay and calcium carbonate contents. However, adding exogenous Zn plus straw increased the DTPA-Zn abundance by about 5-fold and had the similar results to adding exogenous Zn alone, corresponding to the increased Zn fraction loosely bounded to organic matter, which had a more dominant presence in Zn reaction than soil other constituents such as carbonate and minerals in calcareous soil. The higher relative amount of ineffective Zn (~50%) after water soluble Zn addition also occurred, and at the days of 120-165 and 180-210when the natural temperature and rainfall changed mildly, the ageing process of exogenous Zn over time was well evaluated by the diffusion equation, respectively. Consequently, combining crop residues with exogenous water soluble Zn application is promising strategy to maximize the availability of Zn in calcareous soil, but the higher ageing rate of Zn caused by the higher Zn mobility should be considered.
Ciccolini, Valentina; Pellegrino, Elisa; Coccina, Antonio; Fiaschi, Anna Ida; Cerretani, Daniela; Sgherri, Cristina; Quartacci, Mike Frank; Ercoli, Laura
2017-07-12
The effect of field foliar Fe and Zn biofortification on concentration and potential bioavailability of Fe and Zn and health-promoting compounds was studied in wholemeal flour of two common wheat varieties (old vs modern). Moreover, the effect of milling and bread making was studied. Biofortification increased the concentration of Zn (+78%) and its bioavailability (+48%) in the flour of the old variety, whereas it was ineffective in increasing Fe concentration in both varieties. However, the old variety showed higher concentration (+41%) and bioavailability (+26%) of Fe than the modern one. As regard milling, wholemeal flour had higher Fe, Zn concentration and health-promoting compounds compared to white flour. Bread making slightly change Fe and Zn concentration but greatly increased their bioavailability (77 and 70%, respectively). All these results are of great support for developing a production chain of enriched functional bread having a protective role against chronic cardio-vascular diseases.
Relation of pH and other soil variables to concentrations of Pb, Cu, Zn, Cd, and Se in earthworms
Beyer, W.N.; Hensler, G.L.; Moore, J.
1987-01-01
Various soil treatments (clay, composted peat, superphosphate, sulfur, calcium carbonate, calcium chloride, zinc chloride, selenous acid) were added to experimental field plots to test the effect of different soil variables on the concentrations of 5 elements in earthworms (Pb, Cu, Zn, Cd, Se). Concentrations of the 5 elements were related to 9 soil variables (soil Pb, soil Cu, soil Zn, pH, organic matter, P, K, Mg, and Ca) with linear multiple regression. Lead concentrations in earthworms were positively correlated with soil Pb and soil organic matter, and negatively correlated with soil pH and soil Mg, with an R2 of 64%. Se concentrations were higher in earthworms from plots amended with Se, and Zn concentrations were higher in earthworms from plots amended with Zn. However, none of the other soil variables had important effects on the concentrations of Cu, Zn, Cd and Se in earthworms. Although some significant statistical relations were demonstrated, the values of r2 of all relations (> 20%) were so low that they had little predictive value.
Cadmium and zinc in soil solution extracts following the application of phosphate fertilizers.
Lambert, Raphaël; Grant, Cynthia; Sauvé, Sébastien
2007-06-01
This study investigated the solubility of cadmium and zinc in soils after the application of phosphate fertilizers containing those two metals. The solubility of cadmium and zinc was assessed by measuring their concentration in soil water extracts. Three monoammonium phosphate fertilizers containing various amounts of metals were applied on cultivated fields for 3 years at three different rates. In order to investigate the effects of long-term applications of fertilizers on the solubility of Cd and Zn, a similar design was used to apply contaminated fertilizers to soils in a laboratory experiment using a single fertilizer addition equivalent to 15 years of application. Phosphate fertilizers increased the concentration of Cd in soil extracts compared to control in 87% and 80% of the treatments in field and laboratory experiments respectively. Both increasing the rate of application and using fertilizer containing more Cd lead to higher Cd concentrations in extracts for the field and the laboratory experiments. The addition of the equivalent of 15 years of fertilizer application in the laboratory results in higher Cd concentration in extracts compared to the field experiment. For Zn, the fertilizer treatments enhanced the metal solution concentration in 83% of field treatments, but no significant correlations could be found between Zn inputs and its concentration in solution. In the laboratory, fertilizer additions increase the Zn concentrations in 53% of the treatments and decrease it in most of the other treatments. The decrease in Zn concentrations in the laboratory trial is attributed to the higher phosphate concentrations in the soil solution; which is presumed to have contributed to the precipitation of Zn-phosphates. For both trials, the metal concentrations in soil extracts cannot be related to the Zn concentration in the fertilizer or the rate of application. The high Zn to Cd ratio is presumably responsible for the Cd increase in the soil extracts due to competitive displacement by Zn. Finally, the observed acidification of soils with fertilizer application will also contribute to metal solubilisation.
Changes in spectral signatures of red lettuce regards to Zinc uptake
NASA Astrophysics Data System (ADS)
Shin, J.; Yu, J.; Koh, S. M.; Park, G.; Kim, S.
2017-12-01
Heavy metal contaminations caused by human activities such as mining and industrial activities caused serious soil contamination. Soil contaminations causes secondary impact on vegetation by uptake processes. Intakes of vegetables harvested from heavy metal contaminated soil may cause serious health problems. It would be very effective if screening tool could be developed before the vegetables are distributed over the market. This study investigated spectral response of red lettuce regards to Zn uptake from the treated soil in a laboratory condition. Zn solutions at different levels of concentration are injected to potted lettuce. The chemical composition and spectral characteristics of the leaves are analyzed every 2 days and the correlation between the Zn concentration and spectral reflectance is investigated. The experiment reveals that Zn uptake of red lettuce is significantly higher for the leaves from treated pot compared to untreated pot showing highly contaminated concentrations beyond the standard Zn concentrations for food. The spectral response regards to Zn is manifested at certain level of concentration threshold. Below the threshold, reflectance at NIR regions increases regards to increase in Zn concentration. On the other hand, above the threshold, IR reflectance decreases and slope of NIR shoulder increases regards to higher Zn concentration. We think this result may contribute for development of screening tools for heavy metal contaminations in vegetables.
Nie, Zhaojun; Wang, Jia; Rengel, Zed; Liu, Hongen; Gao, Wei; Zhao, Peng
2018-06-01
Zinc (Zn) deficiency remarkably depresses the protein concentration in the grain of winter wheat. Cultivar 'Pingan 8' showed lower Zn concentrations in the grain than did cultivar 'Yangao 006' after nitrogen (N) combined with Zn application. However, little is known about how amino acids are influenced by Zn combined with N application or about the differences in amino acid accumulation between the two winter wheat cultivars. A pot experiment was conducted to characterize amino acid accumulation in the low Zn-accumulating cultivar 'Pingan 8' and the high Zn-accumulating cultivar 'Yangao 006' at various growth stages (seedling, jointing, grain filling and maturity) as influenced by N and Zn supply. The N (N 0.2 ) combined with Zn (Zn 10 ) application significantly increased grain yields and the concentrations of N, Zn and crude protein in the grain of both wheat cultivars. N combined with Zn application significantly increased the concentrations of glutamate (Glu) and asparagine (Asn) but decreased the concentrations of glutamine (Gln) and aspartate (Asp) in cultivar 'Yangao 006'; the N combined with Zn application decreased the concentrations of Glu and Gln but increased the concentrations of Asp and Asn in cultivar 'Pingan 8' at the jointing, grain filling and mature stages. Correlation analysis results showed that there were significant relationships between grain yields, spike number, grain number and Zn, N, crude protein, Glu, Gln, Asp and Asn concentrations in the shoots and grain of winter wheat at different growth stages. These results demonstrate that N combined with Zn application enhanced protein synthesis by altering amino acid accumulation in both winter wheat cultivars. Cultivar 'Pingan 8' had lower Gln, Asp and Asn concentrations and higher Glu concentrations than did cultivar 'Yangao 006' after the N 0.05 treatment but had higher Glu, Gln, Asp, and Asn concentrations and lower Glu concentrations than did cultivar 'Yangao 006' after the N 0.2 treatment. These results revealed that the difference in amino acid concentrations between the two cultivars was related to the N application level. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Physiological limits to zinc biofortification of edible crops.
White, Philip J; Broadley, Martin R
2011-01-01
It has been estimated that one-third of the world's population lack sufficient Zn for adequate nutrition. This can be alleviated by increasing dietary Zn intakes through Zn biofortification of edible crops. Biofortification strategies include the application of Zn-fertilizers and the development of crop genotypes that acquire more Zn from the soil and accumulate it in edible portions. Zinc concentrations in roots, leaves, and stems can be increased through the application of Zn-fertilizers. Root Zn concentrations of up to 500-5000 mg kg(-1) dry matter (DM), and leaf Zn concentrations of up to 100-700 mg kg(-1) DM, can be achieved without loss of yield when Zn-fertilizers are applied to the soil. It is possible that greater Zn concentrations in non-woody shoot tissues can be achieved using foliar Zn-fertilizers. By contrast, Zn concentrations in fruits, seeds, and tubers are severely limited by low Zn mobility in the phloem and Zn concentrations higher than 30-100 mg kg(-1) DM are rarely observed. However, genetically modified plants with improved abilities to translocate Zn in the phloem might be used to biofortify these phloem-fed tissues. In addition, genetically modified plants with increased tolerance to high tissue Zn concentrations could be used to increase Zn concentrations in all edible produce and, thereby, increase dietary Zn intakes.
Yan, Xuedong; Zhang, Fan; Gao, Dan; Zeng, Chen; Xiang, Wang; Zhang, Man
2013-01-01
Concentrations of four typical heavy metals (Cu; Zn; Cd and Pb) in roadside soils close to three lakes in the Tibetan Plateau were investigated in this study. The hierarchical tree-based regression method was applied to classify concentrations of the heavy metals and analyze their potential influencing factors. It was found that the Tibetan Plateau meadow soils with higher content of sand lead to higher concentrations of Cu; Zn and Pb. The concentrations of Cd and Pb increase with road traffic volume; and for the road segments with higher traffic volume; the Cd and Pb concentrations significantly decrease with the roadside distance. Additionally; the concentrations of Zn and Pb increase as the altitude of sampling site increases. Furthermore; the Hakanson potential ecological risk index method was used to assess the contamination degree of the heavy metals for the study regions. The results show that accumulations of Cu; Zn and Pb in roadside soils remain an unpolluted level at all sites. However; the Cd indices in the regions with higher traffic volume have reached a strong potential ecological risk level; and some spots with peak concentrations have even been severely polluted due to traffic activities. PMID:23749055
Ao, T; Pierce, J L; Pescatore, A J; Cantor, A H; Dawson, K A; Ford, M J; Paul, M
2011-08-01
1. Two studies were conducted to investigate the effect of feeding different concentration and forms of zinc (Zn) on the performance and tibia Zn status of broiler chicks. 2. In Experiment 1, chicks fed on the control or the diet supplemented with 12?mg of Zn as sulphate had lower feed intake, weight gain and tibia Zn content than other treatment groups. Chicks given 12 and 24 mg of organic Zn in starter and grower phases, respectively, had the same performance and tibia Zn content as those fed 40 mg of Zn as sulphate and the same performance but higher tibia Zn content than those given 12 mg of Zn as organic over the 42 d. 3. In Experiment 2, chicks given 24 mg organic Zn had greater weight gain than chicks fed on the other treatment diets in the starter period. Chicks fed on the control diet had lower tibia Zn content than chicks fed other treatment diets. Chicks given 80 mg Zn as sulphate had higher tibia Zn content than chicks fed the other treatment diets except those given 40 mg of Zn as sulphate. 4. The results from these trials indicate that feeding lower concentration of Zn as organic form may better promote the growth performance of broiler chicks.
Effects of ZnO nanoparticles on wastewater biological nitrogen and phosphorus removal.
Zheng, Xiong; Wu, Rui; Chen, Yinguang
2011-04-01
With the increasing utilization of nanomaterials, zinc oxide nanoparticles (ZnO NPs) have been reported to induce adverse effects on human health and aquatic organisms. However, the potential impacts of ZnO NPs on wastewater nitrogen and phosphorus removal with an activated sludge process are unknown. In this paper, short-term exposure experiments were conducted to determine whether ZnO NPs caused adverse impacts on biological nitrogen and phosphorus removal in the unacclimated anaerobic-low dissolved oxygen sequencing batch reactor. Compared with the absence of ZnO NPs, the presence of 10 and 50 mg/L of ZnO NPs decreased total nitrogen removal efficiencies from 81.5% to 75.6% and 70.8%, respectively. The corresponding effluent phosphorus concentrations increased from nondetectable to 10.3 and 16.5 mg/L, respectively, which were higher than the influent phosphorus (9.8 mg/L), suggesting that higher concentration of ZnO NPs induced the loss of normal phosphorus removal. It was found that the inhibition of nitrogen and phosphorus removal induced by higher concentrations of ZnO NPs was due to the release of zinc ions from ZnO NPs dissolution and increase of reactive oxygen species (ROS) production, which caused inhibitory effect on polyphosphate-accumulating organisms and decreased nitrate reductase, exopolyphosphatase, and polyphosphate kinase activities.
Elemental maps of Amoeba proteus by a scanning proton microprobe
NASA Astrophysics Data System (ADS)
Li, Minqian; Zhu, Jingde; Zhu, Jieqing; Zhou, Zheng; Huang, Zeqi; Zhou, Weiying; Cholewa, M.; Legge, G. J. F.
1991-03-01
Elemental maps for P, S, Cl, K, Ca and Zn of individual Amoeba proteus were obtained with the Melbourne scanning proton microprobe. The emphasis was put on the relationship of both distribution and concentration of Zn within the cell and the growth inhibitory effect of higher Zn concentrations in the culture medium. At a concentration of 0.04 mmol ZnCl 2, Amoeba growth was inhibited. But at a concentration of 0.0016 mmol, the Amoeba grew as well as a control grown without addition of Zn. We found that in the former (0.04 mmol) Zn concentrated three times more than in the latter (0.0016 mmol), and also that Zn was enriched much more in the nucleus and endoplasm (five to six times) than in other parts of the cell (two times). Future work along these lines may provide insight into the mechanism by which Zn affects the growth of Amoeba proteus and other cells.
Assessment of the Zinc and Copper Status in Alpaca.
Pechová, A; Husáková, T; Pavlata, L; Holasová, M; Hauptmanová, K
2018-02-01
This study was performed with the aim of investigating the concentration of zinc and copper in the blood of healthy alpacas (Vicugna pacos) kept in central Europe and to compare the concentration of Zn and Cu in plasma and in whole blood. A further objective was to evaluate blood Zn and Cu in relation to different micromineral supplementation, age and sex groups of alpacas. A total of 299 alpacas (224 adults and 75 crias) from 18 farms were included in this study. The concentrations of copper and zinc in plasma/whole blood were measured by flame atomic absorption spectrometry. The results of this study show high individual variability in plasma Zn (median 3.54, range 1.56-8.01 μmol/l), whole blood Zn (median 10.01, range 6.23-75.0 μmol/l), plasma Cu (median 7.53, range 2.93-16.41 μmol/l) and whole blood Cu (median 6.33, range 3.02-13.95 μmol/l). Plasma Zn was not significantly influenced by sex, age or feeding group. Whole blood Zn was only significantly higher in females than in males. The intake of Zn in all groups was equal to or higher than the nutritional recommendation. During excessive supplementation, Zn absorption decreased and thus blood Zn did not reflect the higher intake. Only a weak correlation was found (Spearman correlation coefficient r = 0.384; p > 0.01; n = 204) between plasma and whole blood Zn concentrations. Plasma copper concentration was significantly influenced by age, sex and feeding; whole blood Cu by age and feeding. However, neither plasma Cu nor whole blood Cu reflected the intake of the element. We found a close correlation between plasma and blood copper concentrations (Spearman correlation coefficient r = 0.9043; p ≤ 0.01; n = 99). According to our results, copper in plasma or blood is not a good indicator of copper intake.
Carboxylate metabolism in sugar beet plants grown with excess Zn.
Sagardoy, R; Morales, F; Rellán-Álvarez, R; Abadía, A; Abadía, J; López-Millán, A F
2011-05-01
The effects of Zn excess on carboxylate metabolism were investigated in sugar beet (Beta vulgaris L.) plants grown hydroponically in a growth chamber. Root extracts of plants grown with 50 or 100μM Zn in the nutrient solution showed increases in several enzymatic activities related to organic acid metabolism, including citrate synthase and phosphoenolpyruvate carboxylase, when compared to activities in control root extracts. Root citric and malic acid concentrations increased in plants grown with 100μM Zn, but not in plants grown with 50μM Zn. In the xylem sap, plants grown with 50 and 100μM Zn showed increases in the concentrations of citrate and malate compared to the controls. Leaves of plants grown with 50 or 100μM Zn showed increases in the concentrations of citric and malic acid and in the activities of citrate synthase and fumarase. Leaf isocitrate dehydrogenase increased only in plants grown with 50μM Zn when compared to the controls. In plants grown with 300μM Zn, the only enzyme showing activity increases in root extracts was citrate synthase, whereas the activities of other enzymes decreased compared to the controls, and root citrate concentrations increased. In the 300μM Zn-grown plants, the xylem concentrations of citric and malic acids were higher than those of controls, whereas in leaf extracts the activity of fumarase increased markedly, and the leaf citric acid concentration was higher than in the controls. Based on our data, a metabolic model of the carboxylate metabolism in sugar beet plants grown under Zn excess is proposed. Copyright © 2010 Elsevier GmbH. All rights reserved.
Effect of Cr doping on structural and magnetic properties of ZnS nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Virpal,; Singh, Jasvir; Sharma, Sandeep
2016-05-23
The structural, optical and magnetic properties of pure and Cr doped ZnS nanoparticles were studied at room temperature. X-ray diffraction analysis confirmed the absence of any mixed phase and the cubic structure of ZnS in pure and Cr doped ZnS nanoparticles. Fourier transfer infrared spectra confirmed the Zn-S stretching bond at 664 cm{sup −1} of ZnS in all prepared nanoparticles. The UV-Visible absorption spectra showed blue shift which became even more pronounced in Cr doped ZnS nanoparticles. However, at relatively higher Cr concentrations a slower red shift was shown by the doped nanoparticles. This phenomenon is attributed to sp-d exchange interactionmore » that becomes prevalent at higher doping concentrations. Further, magnetic hysteresis measurements showed that Cr doped ZnS nanoparticles exhibited ferromagnetic behavior at room temperature.« less
Zhang, Ling; Wang, Yong-Xia; Xiao, Xue; Wang, Jiang-Shui; Wang, Qian; Li, Kai-Xuan; Guo, Tian-Yu; Zhan, Xiu-An
2017-08-01
An experiment was conducted to investigate the effects of zinc glycinate (Zn-Gly) supplementation as an alternative for zinc sulphate (ZnSO 4 ) on productive and reproductive performance, zinc (Zn) concentration and antioxidant status in broiler breeders. Six hundred 39-week-old Lingnan Yellow broiler breeders were randomly assigned to 6 groups consisting of 4 replicates with 25 birds each. Breeders were fed a basal diet (control group, 24 mg Zn/kg diet), basal diet supplemented with 80 mg Zn/kg diet from ZnSO 4 or basal diet supplemented with 20, 40, 60 and 80 mg Zn/kg diet from Zn-Gly. The experiment lasted for 8 weeks after a 4-week pre-test with the basal diet, respectively. Results showed that Zn supplementation, regardless of sources, improved (P < 0.05) the feed conversion ratio (kilogram of feed/kilogram of egg) and decreased broken egg rate, and elevated (P < 0.05) the qualified chick rate. Compared with the ZnSO 4 group, the 80 mg Zn/kg Zn-Gly group significantly increased (P < 0.05) average egg weight, fertility, hatchability and qualified chick rate, whereas it decreased (P < 0.05) broken egg rate. The Zn concentrations in liver and muscle were significantly higher (P < 0.05) in 80 mg Zn/kg Zn-Gly group than that in ZnSO 4 group. Compared with ZnSO 4 group, 80 mg Zn/kg Zn-Gly group significantly elevated (P < 0.05) the mRNA abundances of metallothionein (MT) and copper-zinc superoxide (Cu-Zn SOD), as well as the Cu-Zn SOD activity and MT concentration in liver. Moreover, the 80 mg Zn/kg Zn-Gly group had higher (P < 0.05) serum T-SOD and Cu-Zn SOD activities than that in the ZnSO 4 group. This study indicated that supplementation of Zn in basal diet improved productive and reproductive performance, Zn concentration and antioxidant status in broiler breeders, and the 80 mg Zn/kg from Zn-Gly was the optimum choice for broiler breeders compared with other levels of Zn from Zn-Gly and 80 mg/kg Zn from ZnSO 4 .
Effects of Zn²⁺ and Cu²⁺ on loach ovaries and ova development.
Tang, Jian-Xun; Li, Jun-Rong; Liu, Zhong-Liang; Zhao, Hua; Tao, Xiao-Min; Cheng, Zhang-Shun
2013-10-01
This study compared the accumulation of Zn²⁺ and Cu²⁺ in the ovaries and ova of loaches under different concentrations of Zn²⁺ (1.00, 2.50 and 5.00 mg/L respectively) and Cu²⁺ (0.10, 0.25 and 0.50 mg/L respectively). The results showed that both Zn²⁺ and Cu²⁺ accumulated in the ovaries, and that the relationship between accumulation and time was linear over 20 days of exposure. The accumulation of the metals in ovaries was closely related to the concentration of exposure in the solutions (P<0.05), and was obviously affected by the time and doses. However, the Cu²⁺ concentration was significantly higher than Zn²⁺ (P<0.05). The development level of ova in the ovaries also correlated with the concentration and exposure period in the Zn²⁺ and Cu²⁺ solutions. This study compared the accumulation of Zn 2+ and Cu 2+ in the ovaries and ova of loaches under different concentrations of Zn 2+ (1.00, 2.50 and 5.00 mg/L respectively) and Cu 2+ (0.10, 0.25 and 0.50 mg/L respectively). The results showed that both Zn 2+ and Cu 2+ accumulated in the ovaries, and that the relationship between accumulation and time was linear over 20 days of exposure. The accumulation of the metals in ovaries was closely related to the concentration of exposure in the solutions ( P< 0.05), and was obviously affected by the time and doses. However, the Cu 2+ concentration was significantly higher than Zn 2+ ( P< 0.05). The development level of ova in the ovaries also correlated with the concentration and exposure period in the Zn 2+ and Cu 2+ solutions.
Relationships between plasma and erythrocyte Zn and maturation in adolescent males
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arquitt, A.B.; Hermann, J.R.; Stoecker, B.J.
Sixty-three male volunteers between the ages of 10.6 and 14.3 yr were assessed for maturation and zinc status. The adrenal androgen dehydroepiandrosterone sulfate (DHEAS), used as a maturation indicator, was significantly correlated with height, weight, hemoglobin, and mid-arm muscle area (MAMA) as previously reported. Erythrocyte Zn (RBC-Zn) and plasma Zn were significantly correlated. When grouped by plasma Zn tertiles, significant differences were found for RBC-Zn and cholesterol between the highest and lowest groups. When subjects were grouped by RBC-Zn concentration, the lowest 10% of subjects had higher concentrations of DHEAS, lower plasma Zn , and were taller, heavier and hadmore » larger MAMA than the other group. In these subjects plasma and RBC-Zn concentrations were within normal limits. In this study RBC-Zn and plasma Zn were related to indicators of maturation.« less
Cho, Wan-Seob; Kang, Byeong-Cheol; Lee, Jong Kwon; Jeong, Jayoung; Che, Jeong-Hwan; Seok, Seung Hyeok
2013-03-26
The in vivo kinetics of nanoparticles is an essential to understand the hazard of nanoparticles. Here, the absorption, distribution, and excretion patterns of titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles following oral administration were evaluated. Nanoparticles were orally administered to rats for 13 weeks (7 days/week). Samples of blood, tissues (liver, kidneys, spleen, and brain), urine, and feces were obtained at necropsy. The level of Ti or Zn in each sample was measured using inductively coupled plasma-mass spectrometry. TiO₂ nanoparticles had extremely low absorption, while ZnO nanoparticles had higher absorption and a clear dose-response curve. Tissue distribution data showed that TiO₂ nanoparticles were not significantly increased in sampled organs, even in the group receiving the highest dose (1041.5 mg/kg body weight). In contrast, Zn concentrations in the liver and kidney were significantly increased compared with the vehicle control. ZnO nanoparticles in the spleen and brain were minimally increased. Ti concentrations were not significantly increased in the urine, while Zn levels were significantly increased in the urine, again with a clear dose-response curve. Very high concentrations of Ti were detected in the feces, while much less Zn was detected in the feces. Compared with TiO₂ nanoparticles, ZnO nanoparticles demonstrated higher absorption and more extensive organ distribution when administered orally. The higher absorption of ZnO than TiO₂ nanoparticles might be due to the higher dissolution rate in acidic gastric fluid, although more thorough studies are needed.
Zepf, Florian D; Rao, Pradeep; Runions, Kevin; Stewart, Richard M; Moore, Julia K; Wong, Janice Wy; Linden, Maike; Sungurtekin, Idil; Glass, Franziska; Gut, Linda; Peetz, Dirk; Hintereder, Gudrun; Schaab, Michael; Poustka, Fritz; Wöckel, Lars
2017-01-01
Research has implicated that changes in zinc (Zn) metabolism may be associated with the biological underpinnings of eating disorders, in particular anorexia nervosa. However, to date research on the role of Zn in patients with bulimia nervosa (BN) is scarce. We aimed to explore serum Zn concentrations in young patients with BN, with a focus on the stage of the disorder, comparing acutely ill and recovered patients with BN with healthy controls. Serum Zn concentrations were obtained from healthy controls and from acutely ill and remitted young patients with BN. Mean duration of remission was 4.0±3.5 years. Remitted patients showed elevated serum Zn concentrations when compared to controls (Cohen's d=2.022), but concentrations were still in the normal range. Acutely ill patients also had higher serum Zn levels when compared to controls (all values still being within the reference range, Cohen's d=0.882). There was no difference between acutely ill and remitted patients with BN in serum Zn concentrations. Of note, remitted patients had a significantly higher body weight when compared to the other two groups. Overall, there were no significant differences in dietary preferences with regard to Zn containing foods between the groups. The present study provides preliminary evidence that the underlying factors for changes in Zn serum concentrations in young patients with BN do not vary with regard to the stage of illness (acute versus remitted BN). Further prospective research is needed in order to disentangle the possible interplay between serum Zn status and bulimic eating behaviors.
Zepf, Florian D; Rao, Pradeep; Runions, Kevin; Stewart, Richard M; Moore, Julia K; Wong, Janice WY; Linden, Maike; Sungurtekin, Idil; Glass, Franziska; Gut, Linda; Peetz, Dirk; Hintereder, Gudrun; Schaab, Michael; Poustka, Fritz; Wöckel, Lars
2017-01-01
Background Research has implicated that changes in zinc (Zn) metabolism may be associated with the biological underpinnings of eating disorders, in particular anorexia nervosa. However, to date research on the role of Zn in patients with bulimia nervosa (BN) is scarce. Objective We aimed to explore serum Zn concentrations in young patients with BN, with a focus on the stage of the disorder, comparing acutely ill and recovered patients with BN with healthy controls. Methods Serum Zn concentrations were obtained from healthy controls and from acutely ill and remitted young patients with BN. Mean duration of remission was 4.0±3.5 years. Results Remitted patients showed elevated serum Zn concentrations when compared to controls (Cohen’s d=2.022), but concentrations were still in the normal range. Acutely ill patients also had higher serum Zn levels when compared to controls (all values still being within the reference range, Cohen’s d=0.882). There was no difference between acutely ill and remitted patients with BN in serum Zn concentrations. Of note, remitted patients had a significantly higher body weight when compared to the other two groups. Overall, there were no significant differences in dietary preferences with regard to Zn containing foods between the groups. Conclusion The present study provides preliminary evidence that the underlying factors for changes in Zn serum concentrations in young patients with BN do not vary with regard to the stage of illness (acute versus remitted BN). Further prospective research is needed in order to disentangle the possible interplay between serum Zn status and bulimic eating behaviors. PMID:29089768
Vandecasteele, B; Willekens, K; Zwertvaegher, A; Degrande, L; Tack, F M G; Du Laing, G
2013-11-01
Micronutrient content and availability in composts may be affected by the addition of wood chips or tree bark as a bulking agent in the compost feedstock. In the first part of this study, micronutrient levels were assessed in bark and wood of poplar and willow clones in a short-rotation coppice. Large differences between species were observed in bark concentrations for Cd, Zn and Mn. In the second part of the study, we aimed to determine the effect of feedstock composition and composting on Cd, Zn and Mn concentrations and availability. By means of three composting experiments we examined the effect of (a) bark of different tree species, (b) the amount of bark, and (c) the use of bark versus wood chips. In general, compost characteristics such as pH, organic matter and nutrient content varied due to differences in feedstock mixture and composting process. During the composting process, the availability of Cd, Zn and Mn decreased, although the use of willow and poplar bark or wood chips resulted in elevated total Cd, Zn or Mn concentrations in the compost. Cd concentrations in some composts even exceeded legal criteria. Cd and Zn were mainly bound in the reducible fraction extracted with 0.5M NH2OH⋅HCl. A higher acid-extractable fraction for Mn than for Cd and Zn was found. Higher Cd concentrations in the compost due to the use of bark or wood chips did not result in higher risk of Cd leaching. The results of the pH-stat experiment with gradual acidification of composts illustrated that only a strong pH decline in the compost results in higher availability of Cd, Zn and Mn. Copyright © 2013 Elsevier Ltd. All rights reserved.
Encina-Montoya, Francisco; Vega-Aguayo, Rolando; Díaz, Oscar; Esse, Carlos; Nimptsch, Jorge; Muñoz-Pedreros, Andrés
2017-10-26
The suitability of Mazzaella laminarioides and Sarcothalia crispata as heavy metal biomonitors of Cd, Cu, Hg, Pb, and Zn was assessed by comparing bioaccumulation of these elements in different life stages and frond sizes in samples from three locations, San Vicente Bay (industrial area), Coliumo, and Quidico (the latter as a reference station), where different degrees of heavy metal pollution are recorded. Bioaccumulation and bioconcentration factors of Cd, Cu, Hg, Pb, and Zn were evaluated. The two macroalgae species showed similar patterns, with higher values of Cu, Hg, Pb, and Zn in polluted areas. M. laminarioides bioaccumulated higher concentrations of all metals assessed than S. crispata, independent of life stage and frond size. The results also showed significantly higher Cu, Hg, Pb, and Zn concentrations (p < 0.05) in water samples from San Vicente Bay than those measured in Coliumo and Quidico. Concentrations of Cd, Hg, Pb, and Zn in San Vicente Bay and Cd, Hg, and Pb in Coliumo and Quidico exceed the mean values considered to represent natural concentrations (Cu = 3.00 μg L -1 ; Zn = 5.00 μg L -1 ; Pb = 0.03 μg L -1 ; Cd = 0.05 μg L -1 ; Hg = 0.05 μg L -1 ); however, the concentrations recorded do not cause negative effects on the growth and survival of macroalgae. The assessment of heavy metals bioaccumulated in M. laminarioides and S. crispata, particularly Hg, Pb, and Zn, offers a reliable approach for pollution assessment in rocky intertidal environments. Cu and Cd concentrations in seawater samples from San Vicente and Coliumo Bays were significantly higher than in those from Quidico (p value < 0.05); no significant differences in Cd concentrations were observed between San Vicente and Coliumo Bays (p < 0.05). Exceptionally, Cd is bioaccumulated at high levels independent of its availability in the water, thus reaching high concentrations in control areas. High concentrations of metals like Cu and Zn may limit or inhibit Cd uptake in macroalgae, since the transport channels are saturated by some metals, reducing the accumulation of others. These macroalgae species offer good potential for the development of suitable heavy metal pollution survey tools in rocky intertidal environments.
Defect studies of thin ZnO films prepared by pulsed laser deposition
NASA Astrophysics Data System (ADS)
Vlček, M.; Čížek, J.; Procházka, I.; Novotný, M.; Bulíř, J.; Lančok, J.; Anwand, W.; Brauer, G.; Mosnier, J.-P.
2014-04-01
Thin ZnO films were grown by pulsed laser deposition on four different substrates: sapphire (0 0 0 1), MgO (1 0 0), fused silica and nanocrystalline synthetic diamond. Defect studies by slow positron implantation spectroscopy (SPIS) revealed significantly higher concentration of defects in the studied films when compared to a bulk ZnO single crystal. The concentration of defects in the films deposited on single crystal sapphire and MgO substrates is higher than in the films deposited on amorphous fused silica substrate and nanocrystalline synthetic diamond. Furthermore, the effect of deposition temperature on film quality was investigated in ZnO films deposited on synthetic diamond substrates. Defect studies performed by SPIS revealed that the concentration of defects firstly decreases with increasing deposition temperature, but at too high deposition temperatures it increases again. The lowest concentration of defects was found in the film deposited at 450° C.
Razagui, Ibrahim B-A; Ghribi, Ibrahim
2005-07-01
Postpartum scalp hair samples from 82 term-pregnancy mother/ neonate pairs were analyzed for their concentrations of zinc (Zn), copper (Cu), cadmium (Cd), and lead (Pb), using inductively coupled plasma-mass spectrometry. Maternal and neonatal Zn concentrations had geometric means (and 99% confidence intervals) of 122.5 microg/g (117.9--131.5 microg/g) and 146.9 microg (141.5--156.7 microg/g) respectively. Corresponding Cu values were 18.4 microg/g (17.6--23.8 microg/g) and 6.7 microg/g (6.3--7.6 microg/g). Those of Cd were 0.49 microg/g (0.47--0.69 microg/g) in the mothers and 0.57 microg/g (0.55--0.86 microg/g) in the neonates. For Pb, they were 7.95 microg/g (7.60--9.32 microg/g) and 4.56 microg/g (4.39--5.56 microg/g). Cigarette smoking, despite its relatively low prevalence (19.5%), was associated with lower Zn and higher Cd and Pb concentrations and in lower Zn/Cd and Zn/Pb molar concentration ratios. Smoking also altered interelemental relationships, particularly those of Zn with Cd and Pb and those between Cd and Pb. Smoking frequency appeared to show negative dose-response effects on maternal and neonatal Zn concentrations, Zn/Pb molar concentration ratios, and birth weight. Mothers with a history of oral contraceptive (OC) usage had significantly higher Cu concentrations and lower Zn/Cu molar concentration ratios than non users, with the highest Cu concentrations and lowest Zn/Cu values being associated with third-generation OCs. No similar effects were elicited in the respective neonatal Cu concentrations. Neither alcohol consumption nor prenatal supplementation with iron and/or folic acid had discernible effects on the maternal or neonatal elemental concentrations. The data from this study suggest that in a given population of term-pregnancy mothers and neonates, significant interindividual variations in hair trace element concentrations can occur, irrespective of commonality of general environment, and that lifestyle factors, including cigarette smoking and OC usage history, can be significant contributory factors to such variations. The data are discussed in relation to the effects of smoking-associated exposure to Cd and Pb exposure on Zn availability for placental transfer, as well as on the quantitative maternal Zn supply levels to the fetus resulting from the known tendency of smokers to have lower dietary intakes of Zn.
Degryse, Fien; Smolders, Erik; Oliver, Ian; Zhang, Hao
2003-09-01
The technique of diffusive gradients in thin films (DGT) has been suggested to sample an available fraction of metals in soil. The objectives of this study were to compare DGT measurements with commonly measured fractions of Zn in soil, viz, the soil solution concentration and the total Zn concentration. The DGT technique was used to measure fluxes and interfacial concentrations of Zn in three series of field-contaminated soils collected in transects toward galvanized electricity pylons and in 15 soils amended with ZnCl2 at six rates. The ratio of DGT-measured concentration to pore water concentration of Zn, R, varied between 0.02 and 1.52 (mean 0.29). This ratio decreased with decreasing distribution coefficient, Kd, of Zn in the soil, which is in agreement with the predictions of the DGT-induced fluxes in soils (DIFS) model. The R values predicted with the DIFS model were generally larger than the observed values in the ZnCl2-amended soils at the higher Zn rates. A modification of the DIFS model indicated that saturation of the resin gel was approached in these soils, despite the short deployment times used (2 h). The saturation of the resin with Zn did not occur in the control soils (no Zn salt added) or the field-contaminated soils. Pore water concentration of Zn in these soils was predicted from the DGT-measured concentration and the total Zn content. Predicted values and observations were generally in good agreement. The pore water concentration was more than 5 times underpredicted for the most acid soil (pH = 3) and for six other soils, for which the underprediction was attributed to the presence of colloidal Zn in the soil solution.
Karouna-Renier, N.K.; Sparling, D.W.
2001-01-01
Stormwater treatment ponds receive elevated levels of metals from urban runoff, but the effects of these pollutants on organisms residing in the ponds are unknown. We investigated the accumulation of Cu, Zn, and Pb by macroinvertebrates collected from stormwater treatment ponds in Maryland serving commercial, highway, residential and open-space watersheds, and determined whether watershed land-use classification influences metal concentrations in macroinvertebrates, sediments, and water. Three types of invertebrate samples were analyzed for molluscs, odonates, and composite. Zn concentrations in odonates from ponds draining watersheds with commercial development (mean=113.82 ug/g) were significantly higher than concentrations in the other land-use categories. Similarly, Cu levels in odonates from commercial ponds (mean=27.12 ug/g) were significantly higher than from highway (mean=20.23 ug/g) and open space (mean=17.79 ug/g) ponds. However, metal concentrations in sediments and water did not differ significantly among land-uses. The results suggest that despite the high variation in ambient metal concentrations within each land-use category, macroinvertebrates in ponds serving commercial watersheds accumulate higher levels of Cu and Zn. The levels of Cu, Zn, and Pb in invertebrates from all ponds were less than dietary concentrations considered toxic to fish.
Comparative study of responses in the brown algae Sargassum thunbergii to zinc and cadmium stress
NASA Astrophysics Data System (ADS)
Lü, Fang; Dind, Gang; Liu, Wei; Zhan, Dongmei; Wu, Haiyi; Guo, Wen
2017-08-01
Heavy metal pollution in aquatic system is becoming a serious problem worldwide. In this study, responses of Sargassum thunbergii to different concentrations (0, 0.1, 0.5, 1.0 and 5.0 mg/L) of zinc (Zn) and cadmium (Cd) exposure separately were studied for 15 days in laboratory-controlled conditions. The results show that the specific growth rates increased slightly under the lower Zn concentration treatment (0.1 mg/L) at the first 5 d and then decreased gradually, which were significantly reduced with the exposure time in higher Zn concentrations and all Cd treatments compared to respective control, especially for 1.0 and 5.0 mg/L Cd. Chlorophyll a contents showed significant increase in 0.1 mg/L Zn treatment, whereas the gradually reduction were observed in the other three Zn treatments and all Cd treatments. The oxygen evolution rate and respiration rate presented distinct behavior in the Zn-treated samples, but both declined steadily with the exposure time in Cd treatments. The P/R value analyses showed similar variation patterns as chlorophyll a contents. Real-time PCR showed that lower Zn concentration (0.1 mg/L) increased mRNA expression of rbcL gene, whereas higher Zn concentrations and Cd reduced the rbcL expression. Taken together, these findings strongly indicate that Zn and Cd had different effects on S. thunbergii both at the physiological and gene transcription levels, the transcript level of photosynthesis-related gene rbcL can be used as an useful molecular marker of algal growth and environment impacts.
Waalewijn-Kool, Pauline L; Diez Ortiz, Maria; van Straalen, Nico M; van Gestel, Cornelis A M
2013-07-01
To assess the effect of long-term dissolution on bioavailability and toxicity, triethoxyoctylsilane coated and uncoated zinc oxide nanoparticles (ZnO-NP), non-nano ZnO and ZnCl2 were equilibrated in natural soil for up to twelve months. Zn concentrations in pore water increased with time for all ZnO forms but peaked at intermediate concentrations of ZnO-NP and non-nano ZnO, while for coated ZnO-NP such a clear peak only was seen after 12 months. Dose-related increases in soil pH may explain decreased soluble Zn levels due to fixation of Zn released from ZnO at higher soil concentrations. At T = 0 uncoated ZnO-NP and non-nano ZnO were equally toxic to the springtail Folsomia candida, but not as toxic as coated ZnO-NP, and ZnCl2 being most toxic. After three months equilibration toxicity to F. candida was already reduced for all Zn forms, except for coated ZnO-NP which showed reduced toxicity only after 12 months equilibration. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Lei; Huang, Xiaoping
2012-03-01
Concentrations of the trace metals Cu, Cd, Pb, and Zn were measured in seawater, rhizosphere sediments, interstitial water, and the tissues of three tropical species of seagrasses ( Thalassia hemprichii, Enhalus acoroides and Cymodocea rotundata) from Xincun Bay of Hainan Island, South China. We analyzed different environmental compartments and the highest concentrations of Pb and Zn were found in the interstitial and seawater. The concentrations of Cd and Zn were significantly higher in blades compared with roots or rhizomes in T. hemprichii and E. acoroides, respectively. A metal pollution index (MPI) demonstrated that sediment, interstitial water, and seagrasses in the sites located nearest anthropogenic sources of pollution had the most abundant metal concentrations. There was obvious seasonal variation of these metals in the three seagrasses with higher concentrations of Cu, Pb and Zn in January and Cd in July. Furthermore, the relationships between metal concentrations in seagrasses and environmental compartments were positively correlated significantly. The bioconcentration factors (BCF) demonstrated that Cd from the tissues of the three seagrasses might be absorbed from the sediment by the roots. However, for C. rotundata, Zn is likely to be derived from the seawater through its blades. Therefore, the blades of T. hemprichii, E. acoroides and C. rotundata are potential bio-indicators to Cd content in sediment, and additionally Zn content ( C. rotundata only) in seawater.
Zhang, Jia-quan; Li, Xiu; Zhang, Quan-fa; Li, Qiong; Xiao, Wen-sheng; Wang, Yong-kui; Zhang, Jian-chun; Gai, Xi-guang
2015-01-01
Each 20 water samples and soil samples (0-10 cm, 10-20 cm) were collected from the riparian zone of Daye Lake in dry season during March 2013. Heavy metals (Cu, Ph, Cd, Zn) have been detected by flame atomic absorption spectrometric (FAAS). The results showed that the average concentrations of Cu, Pb, Cd, Zn in the water were 7.14, 25.94, 15.72 and 37.58 microg x L(-1), respectively. The concentration of Cu was higher than the five degree of the surface water environment quality standard. The average concentrations of Cu, Pb, Cd, Zn in soil(0-10 cm) were 108.38, 53.92, 3.55, 139.26 mg x kg(-1) in soil (10-20 cm) were 93.00, 51.72, 2.08, 171.00 mg x kg(-1), respectively. The Cd concentrations were higher than the three grade value of the national soil environment quality standard. The transportation of Pb from soil to water was relatively stable, and Zn was greatly influenced by soil property and the surrounding environment from soil to water. The transformation of heavy metal in west riparian zone was higher than that of east riparian zone. The potential environmental risk was relatively high. Cu, Pb, Cd, Zn were dominated by residue fraction of the modified BCR sequential extraction method. The overall migration order of heavy metal element was: Pb > Cu > Cd > Zn. There were stronger transformation and higher environmental pollution risk of Cu, Pb. The index of assessment and potential ecological risk coefficient indicated that heavy metal pollution in soil (0-10 cm) was higher than the soil (10-20 cm), Cd was particularly serious.
Bednarska, Agnieszka J; Świątek, Zuzanna
2016-11-01
By studying the internal compartmentalization of metals in different subcellular fractions we are able to better understand the mechanisms of metal accumulation in organisms and the transfer of metals through trophic chains. We investigated the internal compartmentalization of cadmium (Cd) and zinc (Zn) in mealworm beetle (Tenebrio molitor) larvae by breeding them in flour contaminated with either Cd at 100, 300 and 600mgkg(-1), or Zn at 1000 and 2000mgkg(-1). We separated the cellular components of the larvae into 3 fractions: the S1 or cytosolic fraction containing organelles, heat-sensitive and heat-stable proteins, the S2 or cellular debris fraction and the G or metal-rich granule fraction. The concentration of Cd and Zn in each fraction was measured at 0, 7, 14 and 21 days of being fed the flour. The concentration of Cd in the flour affected the concentration of Cd measured in each larval subcellular fraction (p≤0.0001), while the concentration of Zn in the flour only affected the Zn concentration in the S2 and G fractions (p≤0.02). Both Cd and Zn concentrations in mealworms remained relatively constant during the exposure (days 7, 14 and 21) in all three fractions, but the Cd concentrations were much higher than those found in larvae before the exposure (day 0). The concentration of Cd in the flour, however, did not affect the percentage of Cd in the S1 fraction. The contribution of Cd in the G fraction to the total Cd amount was similar (30-40%) in all Cd treatments. The percentage of Zn in all three fractions was not affected by the concentration of Zn in the flour and the relative contributions of each subcellular fraction to the total burden of Zn remained generally constant for both control and treated larvae. In general, larvae sequestered approximately 30% of Cd and Zn in the S1 fraction, which is important for the transport of metals to higher trophic levels in a food web. Copyright © 2016 Elsevier Inc. All rights reserved.
Trace elemental analysis in cancer-afflicted tissues of penis and testis by PIXE technique
NASA Astrophysics Data System (ADS)
Naga Raju, G. J.; John Charles, M.; Bhuloka Reddy, S.; Sarita, P.; Seetharami Reddy, B.; Rama Lakshmi, P. V. B.; Vijayan, V.
2005-04-01
PIXE technique was employed to estimate the trace elemental concentrations in the biological samples of cancerous penis and testis. A 3 MeV proton beam was employed to excite the samples. From the present results it can be seen that the concentrations of Cl, Fe and Co are lower in the cancerous tissue of the penis when compared with those in normal tissue while the concentrations of Cu, Zn and As are relatively higher. The concentrations of K, Ca, Ti, Cr, Mn, Br, Sr and Pb are in agreement within standard deviations in both cancerous and normal tissues. In the cancerous tissue of testis, the concentrations of K, Cr and Cu are higher while the concentrations of Fe, Co and Zn are lower when compared to those in normal tissue of testis. The concentrations of Cl, Ca, Ti and Mn are in agreement in both cancerous and normal tissues of testis. The higher levels of Cu lead to the development of tumor. Our results also support the underlying hypothesis of an anticopper, antiangiogenic approach to cancer therapy. The Cu/Zn ratios of both penis and testis were higher in cancer tissues compared to that of normal.
Sharma, Prashant K; Dutta, Ranu K; Pandey, Avinash C
2010-05-15
Single-phase ZnO:Co(2+) nanoparticles of mean size 2-8 nm were synthesized by a simple co-precipitation technique. X-ray diffraction analysis reveals that the Co-doped ZnO nanoparticles crystallize in wurtzite structure without any impurity phase. The wurtzite structure (lattice constants) of ZnO nanoparticles decrease slightly with increasing Co doping concentration. Optical absorption spectra show an increase in the band gap with increasing Co content and also give an evidence of the presence of Co(2+) ions at tetrahedral sites of ZnO and substituted for the Zn site with no evidence of metallic Co. Initially these nanoparticles showed strong ferromagnetic behavior at room temperature, however at higher doping percentage of Co(2+), the ferromagnetic behavior was suppressed, and antiferromagnetic nature was enhanced. The enhanced antiferromagnetic interaction between neighboring Co-Co ions suppressed the ferromagnetism at higher doping concentrations of Co(2+). Photoluminescence intensity owing to the vacancies varies with the Co concentration because of the increment of oxygen vacancies. Copyright © 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Guo, Daoyou; Qin, Xinyuan; Lv, Ming; Shi, Haoze; Su, Yuanli; Yao, Guosheng; Wang, Shunli; Li, Chaorong; Li, Peigang; Tang, Weihua
2017-11-01
Highly (201) oriented Zn-doped β-Ga2O3 thin films with different dopant concentrations were grown on (0001) sapphire substrates by radio frequency magnetron sputtering. With the increase of Zn dopant concentration, the crystal lattice expands, the energy band gap shrinks, and the oxygen vacancy concentration decreases. Both the metal semiconductor metal (MSM) structure photodetectors based on the pure and Zn-doped β-Ga2O3 thin films exhibit solar blind UV photoelectric property. Compared to the pure β-Ga2O3 photodetector, the Zn-doped one exhibits a lower dark current, a higher photo/dark current ratio, a faster photoresponse speed, which can be attributed to the decreases of oxygen vacancy concentration.[Figure not available: see fulltext.
García-Gómez, Concepción; Obrador, Ana; González, Demetrio; Babín, Mar; Fernández, María Dolores
2017-07-01
The present study has investigated the toxicity of ZnO NPs to bean (Phaseolus vulgaris) and tomato (Solanum lycopersicon) crops grown to maturity under greenhouse conditions using an acidic (soil pH5.4) and a calcareous soil (soil pH8.3). The potentially available Zn in the soils and the Zn accumulation in the leaves from NPs applied to the soil (3, 20 and 225mgZnkg -1 ) and changes in the chlorophylls, carotenoids and oxidative stress biomarkers were measured at 15, 30, 60 and 90days and compared with those caused by bulk ZnO and ZnSO 4 . The available Zn in the soil and the leaf Zn content did not differ among the Zn chemical species, except in the acidic soil at the highest concentration of Zn applied as Zn ions, where the highest values of the two variables were found. The ZnO NPs showed comparable Zn toxicity or biostimulation to their bulk counterparts and Zn salts, irrespective of certain significant differences suggesting a higher activity of the Zn ion. The treatments altered the photosynthetic pigment concentration and induced oxidative stress in plants. ROS formation was observed at Zn plant concentrations ranging from 590 to 760mgkg -1 , but the effects on the rest of the parameters were highly dependent on the plant species, exposure time and especially soil type. In general, the effects were higher in the acidic soil than in the calcareous soil for the bean and the opposite for the tomato. The similar uptakes and toxicities of the different Zn forms suggest that the Zn ions derived from the ZnO NPs exerted a preferential toxicity in plants. However, several results obtained in soils treated with NPs at 3mgZnkg -1 soil indicated that may exist other underlying mechanisms related to the intrinsic nanoparticle properties, especially at low NP concentrations. Copyright © 2017 Elsevier B.V. All rights reserved.
Padoan, Elio; Romè, Chiara; Ajmone-Marsan, Franco
2017-12-01
Road dust (RD), together with surface soils, is recognized as one of the main sinks of pollutants in urban environments. Over the last years, many studies have focused on total and bioaccessible concentrations while few have assessed the bioaccessibility of size-fractionated elements in RD. Therefore, the distribution and bioaccessibility of Fe, Mn, Cd, Cr, Cu, Ni, Pb, Sb and Zn in size fractions of RD and roadside soils (<2.5μm, 2.5-10μm and 10-200μm) have been studied using aqua regia extraction and the Simple Bioaccessibility Extraction Test. Concentrations of metals in soils are higher than legislative limits for Cu, Cr, Ni, Pb and Zn. Fine fractions appear enriched in Fe, Mn, Cu, Pb, Sb and Zn, and 2.5-10μm particles are the most enriched. In RD, Cu, Pb, Sb and Zn derive primarily from non-exhaust sources, while Zn is found in greater concentrations in the <2.5μm fraction, where it most likely has an industrial origin. Elemental distribution across soils is dependent on land use, with Zn, Ni, Cu and Pb being present in higher concentrations at traffic sites. In addition, Fe, Ni and Cr feature greater bioaccessibility in the two finer fractions, while anthropic metals (Cu, Pb, Sb and Zn) do not. In RD, only Zn has significantly higher bioaccessibility at traffic sites compared to background, and the finest particles are always the most bioaccessible; >90% of Pb, Zn and Cu is bioaccessible in the <2.5μm fraction, while for Mn, Ni, Sb, Fe and Cr, values vary from 76% to 5%. In the 2.5-10μm fraction, the values were 89% for Pb, 67% for Zn and 60% for Cu. These results make the evaluation of the bioaccessibility of size-fractionated particles appear to be a necessity for correct estimation of risk in urban areas. Copyright © 2017 Elsevier B.V. All rights reserved.
Persson, Daniel Pergament; de Bang, Thomas C; Pedas, Pai R; Kutman, Umit Baris; Cakmak, Ismail; Andersen, Birgit; Finnie, Christine; Schjoerring, Jan K; Husted, Søren
2016-09-01
Low concentration of zinc (Zn) in the endosperm of cereals is a major factor contributing to Zn deficiency in human populations. We have investigated how combined Zn and nitrogen (N) fertilization affects the speciation and localization of Zn in durum wheat (Triticum durum). Zn-binding proteins were analysed with liquid chromatography ICP-MS and Orbitrap MS(2) , respectively. Laser ablation ICP-MS with simultaneous Zn, sulphur (S) and phosphorus (P) detection was used for bioimaging of Zn and its potential ligands. Increasing the Zn and N supply had a major impact on the Zn concentration in the endosperm, reaching concentrations higher than current breeding targets. The S concentration also increased, but S was only partly co-localized with Zn. The mutual Zn and S enrichment was reflected in substantially more Zn bound to small cysteine-rich proteins (apparent size 10-30 kDa), whereas the response of larger proteins (apparent size > 50 kDa) was only modest. Most of the Zn-responsive proteins were associated with redox- and stress-related processes. This study offers a methodological platform to deepen the understanding of processes behind endosperm Zn enrichment. Novel information is provided on how the localization and speciation of Zn is modified during Zn biofortification of grains. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Mg Content Dependence of EML-PVD Zn-Mg Coating Adhesion on Steel Strip
NASA Astrophysics Data System (ADS)
Jung, Woo Sung; Lee, Chang Wook; Kim, Tae Yeob; De Cooman, Bruno C.
2016-09-01
The effect of coating thickness and Mg concentration on the adhesion strength of electromagnetic levitation physical vapor deposited Zn-Mg alloy coatings on steel strip was investigated. The phase fraction of Zn, Mg2Zn11, and MgZn2 was determined for a coating Mg concentration in the 0 to 15 wt pct range. Coatings with a Mg content less than 5 pct consisted of an Zn and Mg2Zn11 phase mixture. The coatings showed good adhesion strength and ductile fracture behavior. Coatings with a higher Mg concentration, which consisted of a Mg2Zn11 and MgZn2 phase mixture, had a poor adhesion strength and a brittle fracture behavior. The adhesion strength of PVD Zn-Mg alloy coatings was found to be related to the pure Zn phase fraction. The effect of coating thickness on adhesion strength was found to be negligible. The microstructure of the interface between steel and Zn-Mg alloy coatings was investigated in detail by electron microscopy, electron diffraction, and atom probe tomography.
Transfer of copper, lead and zinc in soil-grass ecosystem in aspect of soils properties, in Poland.
Niesiobędzka, Krystyna
2012-04-01
The total metal concentrations in soil samples from polluted area (roadside soils) ranged from 13.87 to 195.76 mg/kg for Cu; 13.56-310.17 mg/kg for Pb and 18.43-894.11 mg/kg for Zn and they were, respectively about 5, 2 and 13 times above the corresponding values in soil samples from country area. The mean values of EDTA-extractable concentrations in soil samples at unpolluted sites were: 2.47 mg/kg for Cu, 6.33 mg/kg for Pb and 4.94 mg/kg for Zn. The highest concentrations of Cu, Pb and Zn in grass were measured in soils from polluted area. Higher values of proportions of EDTA-extractable metals (24% for Cu, 40% for Pb and 38% for Zn) indicate that anthropogenic metals were more mobile and bioavailable than the same metals in soils from unpolluted area (20, 16 and 20% for Cu, Pb and Zn, respectively). The availability of Cu, Pb and Zn are affected by soil properties such as pH, organic matter content and cation exchange capacity. Correlation between the EDTA-extractable forms concentrations of metals and the total concentration in the various soils was observed. The coefficients of determination (R(2)) varied between 0.809 for Cu; 0,709 for Pb and 0.930 for Zn in polluted soils and they are higher than corresponding values in unpolluted soils.
Wu, Hsuan-Chung; Chen, Hsing-Hao; Zhu, Yu-Ren
2016-08-01
We systematically investigated the effects of Al-impurity type on the formation energy, crystal structure, charge density, electronic structure, and optical properties of ZnO by using density functional theory and the Hubbard-U method. Al-related defects, such as those caused by the substitution of Zn and O atoms by Al atoms (Al s(Zn) and Al s(O) , respectively) and the presence of an interstitial Al atom at the center of a tetrahedron (Al i(tet) ) or an octahedron (Al i(oct) ), and various Al concentrations were evaluated. The calculated formation energy follows the order E f (Al s(Zn) ) < E f (Al i(tet) ) < E f (Al i(oct) ) < E f (Al s(O) ). Electronic structure analysis showed that the Al s(Zn) , Al s(O) , Al i(tet) , and Al i(oct) models follow n -type conduction, and the optical band gaps are higher than that of pure ZnO. The calculated carrier concentrations of the Al s(O) and Al i(tet) /Al i(oct) models are higher than that of the Al s(Zn) model. However, according to the curvature of the band structure, the occurrence of interstitial Al atoms or the substitution of O atoms by Al atoms results in a high effective mass, possibly reducing the carrier mobility. The average transmittance levels in the visible light and ultraviolet (UV) regions of the Al s(Zn) model are higher than those of pure ZnO. However, the presence of an interstitial Al atom within the ZnO crystal reduces transmittance in the visible light region; Al s(O) substantially reduces the transmittance in the visible light and UV regions. In addition, the properties of ZnO doped with various Al s(Zn) concentrations were analyzed.
Hong, Chang Oh; Gutierrez, Jessie; Yun, Sung Wook; Lee, Yong Bok; Yu, Chan; Kim, Pil Joo
2009-02-01
The heavy metal contamination in soils and cultivated corn plants affected by zinc smelting activities in the vicinity of a zinc smelting factory in Korea was studied. Soils and corn plants were sampled at the harvesting stage and analyzed for cadmium (Cd) and zinc (Zn) concentration, as well as Cd and Zn fraction and other chemical properties of soils. Cd and Zn were highly accumulated in the surface soils (0-20 cm), at levels higher than the Korean warning criteria (Cd, 1.5; Zn, 300 mg kg(-1)), with corresponding mean values of 1.7 and 407 mg kg(-1), respectively, but these metals decreased significantly with increasing soil depth and distance from the factory, implying that contaminants may come from the factory through aerosol dynamics (Hong et al., Kor J Environ Agr 26(3):204-209, 2007a; Environ Contam Toxicol 52:496-502, 2007b) and not from geological sources. The leaf part had higher Cd and Zn concentrations, with values of 9.5 and 1733 mg kg(-1), compared to the stem (1.6 and 547 mg kg(-1)) and grain (0.18 and 61 mg kg(-1)) parts, respectively. Cd and Zn were higher in the oxidizable fraction, at 38.5% and 46.9% of the total Cd (2.6 mg kg(-1)) and Zn (407 mg kg(-1)), but the exchangeable + acidic fraction of Cd and Zn as the bioavailable phases was low, 0.2 and 50 mg kg(-1), respectively. To study the reduction of plant Cd and Zn uptake by liming, radish (Raphanus sativa L.) was cultivated in one representative field among the sites investigated, and Ca(OH)(2) was applied at rates of 0, 2, 4, and 8 mg ha(-1). Plant Cd and Zn concentrations and NH(4)OAc extractable Cd and Zn concentrations of soil decreased significantly with increasing Ca(OH)(2) rate, since it markedly increases the cation exchange capacity of soil induced by increased pH. As a result, liming in this kind of soil could be an effective countermeasure in reducing the phytoextractability of Cd and Zn.
Qi, Jianying; Zhang, Hailong; Li, Xiangping; Lu, Jian; Zhang, Gaosheng
2016-07-01
China is one of the largest producers and consumers of lead and zinc in the world. Lead and zinc mining and smelting can release hazardous heavy metals such as Cd, Pb, Zn, and As into soils, exerting health risks to human by chronic exposure. The concentrations of Cd, Zn, Pb, and As in soil samples collected from a Pb-Zn mining area with exploitation history of 60 years were investigated. Health risks of the heavy metals in soil were evaluated using US Environmental Protection Agency (US EPA) recommended method. A geo-statistical technique (Kriging) was used for the interpolation of heavy metals pollution and Hazard Index (HI). The results indicated that the long-term Pb/Zn mining activities caused the serious pollution in the local soil. The concentrations of Cd, As, Pb, and Zn in topsoil were 40.3 ± 6.3, 103.7 ± 37.3, 3518.4 ± 896.1, and 10,413 ± 2973.2 mg/kg dry weight, respectively. The spatial distribution of the four metals possessed similar patterns, with higher concentrations around Aayiken (AYK), Maseka (MSK), and Kuangshan (KS) area and more rapidly dropped concentrations at upwind direction than those at downwind direction. The main pollutions of Cd and Zn were found in the upper 60 cm, the Pb was found in the upper 40 cm, and the As was in the upper 20 cm. The mobility of metals in soil profile of study area was classed as Cd > Zn ≫ Pb > As. Results indicated that there was a higher health risk (child higher than adult) in the study area. Pb contributed to the highest Hazard Quotient (57.0 ~ 73.9 %) for the Hazard Index.
NASA Astrophysics Data System (ADS)
Szigeti, Tamás; Kertész, Zsófia; Dunster, Christina; Kelly, Frank J.; Záray, Gyula; Mihucz, Victor G.
2014-09-01
Fifty samples of indoor and outdoor PM2.5 were collected onto quartz fiber and Teflon membrane filters in five office buildings equipped with heating, ventilation and air-conditioning system for 8 h daily in order to coincide with the work shift of employees. Samples were analyzed for i) mass concentration; ii) elemental concentration; and iii) oxidative potential (OP) through antioxidant depletion. The PM2.5 mass concentration exceeded the annual mean guideline of 10 μg m-3 WHO in 50% of the samples. Indoor and outdoor PM2.5 mass concentrations correlated almost linearly. Proton-induced X-ray emission (PIXE) spectrometry was used for the monitoring of 21 elements. Quantitative determination was achieved in the case of Teflon filters only for Al, Si, S, Cl, K, Ca, Ti, Cr, Mn, Fe and Zn at ng m-3 concentration level. Quartz fiber filters were less adequate for the PIXE measurements due to their greater thickness and filamentary structure. Ca, Cr, Zn and Ti had generally higher concentration (mg g-1) indoors. Indoor/outdoor (I/O) OP values were higher than one in 14% and 57% of the samples in the case of ascorbate and reduced glutathione (GSH), respectively. Spatial and temporal variations of OP were observed across the office buildings. The I/O ratios for OP, Cr and Zn concentrations in the case of GSH were higher for three buildings. Significant relationship was observed between GSH oxidation and Cr and Zn concentrations. Thus, employees were exposed to a higher extent to reactive oxygen species in three buildings.
Wang, Zuwei; Yu, Xiaoman; Geng, Mingshuo; Wang, Zilu; Wang, Qianqian; Zeng, Xiangfeng
2017-05-01
Heavy metal concentrations in soil, wheat, and scalp hair exposed to Beijing sewage discharge channel sewage irrigation area (BSIA) in Tianjin were studied to evaluate the influence of sewage irrigation. Results showed that the continuous application of wastewater has led to an accumulation of heavy metals in the soil, with 55.2 and 8.62% of soil samples accumulating Cd and Zn, respectively, at concentrations exceeding the permissible limits in China. Concentrations of heavy metals in wheat grain from BSIA were higher than these from the clean water irrigation area by 63.2% for Cd, 3.8% for Cu, 100% for Pb, 6.6% for Zn, and 326.7% for Cr. The heavy metal bioaccumulation factor (BAF) of wheat/soil in BSIA showed the following order: Zn > Cd > Cu > Pb > Cr. Interestingly, these accumulation of heavy metals in soil after sewage irrigation could increase the migration ability of heavy metals (particularly Zn and Cd) from soil to wheat. Mean concentrations of heavy metals in the hair of residents followed the decreasing trend of Zn > Cu > Pb > Cr > Cd, which were higher than the control area by 110.0% for Cd, 20.0% for Cu, 55.9% for Zn, 36.6% for Pb, and 64.6% for Cr. Concentrations of heavy metals in male human hair in BSIA were higher than those of females. And the concentrations of heavy metals except for Pb in human hair increased with their increasing ages. The heavy metal BAF values of wheat/soil in BSIA showed the trend of Zn (98.0057) > Pb (7.0162) > Cr (5.5788) > Cu (5.4853) > Cd (3.5584); heavy metals had obvious biological amplification from wheat to human hair. These results indicated that local population health was potentially exposed to the heavy metal risk via wheat consumption.
Heidari, Behnam; Riyahi Bakhtiari, Alireza; Shirneshan, Golshan
2013-12-01
This study examines concentrations of Cd, Cu, Pb and Zn in the soft tissue of Saccostrea cucullata in the intertidal zones of Lengeh Port, Persian Gulf, Iran, to survey whether heavy metals are within the acceptable limits for public health? The results revealed that the average metal concentrations (μg/g dry weight) ranged from 10.28 to 12.03 for Cd, 294.10 to 345.80 for Cu, 20.64 to 58.23 for Pb and 735.60 to 760.40 for Zn in the soft tissue of oysters. From the human public health point of view, comparison between the mean concentrations of the metals in the soft tissue of oyster and global guidelines clearly indicates that nearly in all cases concentrations are higher than the permissible amounts for human consumption. In addition, levels of Zn, Pb and Cu were well below their recommended oral maximum residue level (MRLs), whereas levels of Cd were observed two times higher. Copyright © 2013 Elsevier Ltd. All rights reserved.
Stefanowicz, Anna M; Stanek, Małgorzata; Woch, Marcin W; Kapusta, Paweł
2016-04-01
The study evaluated the levels of nine metals, namely Ca, Cd, Fe, K, Mg, Mn, Pb, Tl, and Zn, in soils and tissues of ten plant species growing spontaneously on heaps left by historical mining for Zn-Pb ores. The concentrations of Cd, Pb, Tl, and Zn in heap soils were much higher than in control soils. Plants growing on heaps accumulated excessive amounts of these elements in tissues, on average 1.3-52 mg Cd kg(-1), 9.4-254 mg Pb kg(-1), 0.06-23 mg Tl kg(-1) and 134-1479 mg Zn kg(-1) in comparison to 0.5-1.1 mg Cd kg(-1), 2.1-11 mg Pb kg(-1), 0.02-0.06 mg Tl kg(-1), and 23-124 mg Zn kg(-1) in control plants. The highest concentrations of Cd, Pb, and Zn were found in the roots of Euphorbia cyparissias, Fragaria vesca, and Potentilla arenaria, and Tl in Plantago lanceolata. Many species growing on heaps were enriched in K and Mg, and depleted in Ca, Fe, and Mn. The concentrations of all elements in plant tissues were dependent on species, organ (root vs. shoot), and species-organ interactions. Average concentrations of Ca, K, and Mg were generally higher in shoots than in roots or similar in the two organs, whereas Cd, Fe, Pb, Tl, and Zn were accumulated predominantly in the roots. Our results imply that heaps left by historical mining for Zn-Pb ores may pose a potential threat to the environment and human health.
Coupled mobilization of dissolved organic matter and metals (Cu and Zn) in soil columns
NASA Astrophysics Data System (ADS)
Zhao, Lu Y. L.; Schulin, Rainer; Weng, Liping; Nowack, Bernd
2007-07-01
Dissolved organic carbon (DOC) is a key component involved in metal displacement in soils. In this study, we investigated the concentration profiles of soil-borne DOC, Cu and Zn at various irrigation rates with synthetic rain water under quasi steady-state conditions, using repacked soil columns with a metal-polluted topsoil and two unpolluted subsoils. Soil solution was collected using suction cups installed at centimeter intervals over depth. In the topsoil the concentrations of DOC, dissolved metals (Zn and Cu), major cations (Ca 2+ and Mg 2+) and anions ( NO3- and SO42-) increased with depth. In the subsoil, the Cu and Zn concentrations dropped to background levels within 2 cm. All compounds were much faster mobilized in the first 4 cm than in the rest of the topsoil. DOC and Cu concentrations were higher at higher flow rates for a given depth, whereas the concentrations of the other ions decreased with increasing flow rate. The decomposition of soil organic matter resulted in the formation of DOC, SO42-, and NO3- and was the main driver of the system. Regression analysis indicated that Cu mobilization was governed by DOC, whereas Zn mobilization was primarily determined by Ca and to a lesser extent by DOC. Labile Zn and Cu 2+ concentrations were well predicted by the NICA-Donnan model. The results highlight the value of high-resolution in-situ measurements of DOC and metal mobilization in soil profiles.
Damon, Paul; Rengel, Zed
2017-01-01
Zinc (Zn) is an important micronutrient that can alleviate cadmium (Cd) toxicity to plants and limit Cd entry into the food chain. However, little is known about the Zn-Cd interactions in pasture plants. We characterized the effects of foliar Zn application and Cd uptake by ryegrass (Lolium rigidum L.) and clover (Trifolium subterraneum L.) grown on Cd-contaminated soils; all combinations of foliar Zn applications (0, 0.25 and 0.5% (w/v) ZnSO4·7H2O) and soil Cd concentrations (0, 2.5 and 5 mg Cd kg-1) were tested. For both plant species, soil concentrations of DTPA-extractable Cd and Zn increased with an increase in the Cd and Zn treatments, respectively. Compared with L. rigidum, T. subterraneum accumulated, respectively, 3.3- and 4.1-fold more Cd in the 2.5-Cd and 5-Cd treatments and about 1.3-, 2.3- and 2.8-fold more Zn in the No-Zn, 0.25-Zn and 0.5-Zn treatments. Also, DTPA-Zn concentration was higher in soil after T. subterraneum than L. rigidum growth regardless of Zn applications. Foliar application of 0.25% (w/v) Zn significantly decreased the total Cd concentration in shoots of both species grown in the Cd-contaminated soil and ameliorated the adverse effects of Cd exposure on root growth, particularly in T. subterraneum. PMID:28950025
Zhao, Cui-Yan; Tan, Shu-Xian; Xiao, Xi-Yu; Qiu, Xian-Shuai; Pan, Jia-Qiang; Tang, Zhao-Xin
2014-09-01
Broilers in four groups were fed a basal diet supplemented with 60 mg/kg zinc oxide (60-ZnO; control), or 20, 60, or 100 mg/kg ZnO nanoparticles (20-, 60-, and 100-nano-ZnO, respectively). Compared with the controls, after 14 days, birds in the 20- and 60-nano-ZnO groups had significantly greater weight gains and better feed conversion ratios. However, the body weight of birds in the 100-nano-ZnO group was dramatically reduced after 28 days. Relative to the control group, the total antioxidant capability (T-AOC) in serum and liver tissue was significantly higher in the 20-nano-ZnO group at all time points and also significantly higher in the 60- and 100-nano-ZnO groups in serum on days 28 and 35 and in liver tissues on days 21 and 28. Compared with the controls, the activity of copper-zinc superoxide dismutase (Cu-Zn-SOD) was significantly greater in the 60- and 100-nano-ZnO groups in serum on days 28 and 35 and in liver tissues after 21 days. Catalase activity in serum samples was significantly higher in the 20- and 60-nano-ZnO groups relative to the control and 100-nano-ZnO birds, but catalase activity in liver tissue was not affected by different nano-ZnO levels. Malondialdehyde content in serum and liver tissues was significantly reduced in the 20-, 60-, and 100-nano-ZnO groups compared with that in the control group at all time points except day 42. Taken together, our data indicate that appropriate concentration of dietary ZnO nanoparticles improves growth performance and antioxidative capabilities in broilers, and 20 mg/kg nano-ZnO is the optimal concentration.
Nimick, D.A.; Harper, D.D.; Farag, A.M.; Cleasby, T.E.; MacConnell, Elizabeth; Skaar, D.
2007-01-01
Extrapolating results of laboratory bioassays to streams is difficult, because conditions such as temperature and dissolved metal concentrations can change substantially on diel time scales. Field bioassays conducted for 96 h in two mining-affected streams compared the survival of hatchery-raised, metal-nai??ve westslope cutthroat trout (Oncorhynchus clarki lewisi) exposed to dissolved (0.1-??m filtration) metal concentrations that either exhibited the diel variation observed in streams or were controlled at a constant value. Cadmium and Zn concentrations in these streams increased each night by as much as 61 and 125%, respectively, and decreased a corresponding amount the next day, whereas Cu did not display a diel concentration cycle. In High Ore Creek (40 km south of Helena, MT, USA), survival (33%) after exposure to natural diel-fluctuating Zn concentrations (range, 214-634 ??g/L; mean, 428 ??g/L) was significantly (p = 0.008) higher than survival (14%) after exposure to a controlled, constant Zn concentration (422 ??g/L). Similarly, in Dry Fork Belt Creek (70 km southeast of Great Falls, MT, USA), survival (75%) after exposure to diel-fluctuating Zn concentrations (range, 266-522 ??g/L; mean, 399 ??g/L) was significantly (p = 0.022) higher than survival (50%) in the constant-concentration treatment (392 ??g/L). Survival likely was greater in these diel treatments, both because the periods of lower metal concentrations provided some relief for the fish and because toxicity during periods of higher metal concentrations was lessened by the simultaneous occurrence each night of lower water temperatures, which reduce the rate of metal uptake. Based on the present study, current water-quality criteria appear to be protective for streams with diel concentration cycles of Zn (and, perhaps, Cd) for the hydrologie conditions tested. ?? 2007 SETAC.
Hierarchical porous ZnO microflowers with ultra-high ethanol gas-sensing at low concentration
NASA Astrophysics Data System (ADS)
Song, Liming; Yue, He; Li, Haiying; Liu, Li; Li, Yu; Du, Liting; Duan, Haojie; Klyui, N. I.
2018-05-01
Hierarchical porous and non-porous ZnO microflowers have been successfully fabricated by hydrothermal method. Their crystal structure, morphology and gas-sensing properties were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and chemical gas sensing intelligent analysis system (CGS). Compared with hierarchical non-porous ZnO microflowers, hierarchical porous ZnO microflowers exhibited ultra-high sensitivity with 50 ppm ethanol at 260 °C and the response is 110, which is 1.8 times higher than that of non-porous ZnO microflowers. Moreover, the lowest concentration limit of hierarchical porous ZnO microflowers (non-porous ZnO microflowers) to ethanol is 0.1 (1) ppm, the response value is 1.6 (1).
Wildeus, S; McDowell, L R; Fugle, J R
1992-11-01
Serum and liver concentrations of selected macro- and trace minerals were determined in Senepol cattle at 8 sites (4 each in a high and low rainfall region) during the dry and wet season on St Croix. At each site an average of 15 mature, lactating cows, grazing native grass/legume pastures without supplementation were blood sampled each season. Liver samples were collected (n = 51) at slaughter from mature animals originating from the same sites. A preliminary analysis indicated no differences in serum mineral concentrations between mature lactating cows and growing heifers. There were differences between sites for serum magnesium (Mg) (P < 0.001), copper (Cu) (P < 0.05) selenium (Se) (P < 0.001) and zinc (Zn) (P < 0.01) in the dry season, and for Cu (P < 0.01), iron (Fe) (P < 0.001) and Zn (P < 0.01) in the wet season. Higher (P < 0.001) serum concentrations of Mg, Cu, Fe and Zn were observed in the dry season, while Se was higher (P < 0.01) in the wet season. Liver concentrations of Cu and Fe were lower (P < 0.01) and liver molybdenum (Mo) (P < 0.001) and Se (P < 0.05) higher during the dry season. The seasonal differences in serum Cu, Se and Zn concentrations have not been observed in other studies in the Central American region. More than 50% of serum samples were deficient in phosphorus (P) regardless of season, and in Cu and Zn during the wet season. Mineral supplementation should be considered.
Zhao, Aiqing; Yang, Shu; Wang, Bini; Tian, Xiaohong; Zhang, Youlin
2018-08-01
Human Zn deficiency is prevalent in developing countries, and staple grains are commonly bio-fortified to increase their Zn contents. We measured Zn content, distribution, and bioavailability in calcareous soil and in wheat plants (Triticum aestivum L.) in Shaanxi Province, China, when either an organic Zn-ethylenediaminetetraacetate (Zn-EDTA) or an inorganic zinc sulfate heptahydrate (ZnSO 4 ·7H 2 O) Zn source was banded below the seedbed or broadcasted into soil. Compared with ZnSO 4 ·7H 2 O, Zn-EDTA fertilization produced higher Zn concentration and uptake in wheat plants. However, Zn bioavailability in grain remained low, with [phytate]/[Zn] ratio >15 and the resulting estimated dietary total absorbed zinc (TAZ) < 3 mg Zn/d. ZnSO 4 banded into soil had little short-term effect on grain Zn concentration but had a high residual effect and promoted the maintenance of a high concentration of the Zn fraction bound to loose organic matter (LOM-Zn) in rhizosphere soil. Both ZnSO 4 and Zn-EDTA were more efficient if uniformly mixed through the soil than if banded to soil. Both ZnSO 4 and Zn-EDTA had limited effects on Zn bioavailability in wheat plants due to the high rate of Zn fixation in this calcareous soil. Copyright © 2018 Elsevier Ltd. All rights reserved.
Boron doped ZnO embedded into reduced graphene oxide for electrochemical supercapacitors
NASA Astrophysics Data System (ADS)
Alver, Ü.; Tanrıverdi, A.
2016-08-01
In this work, reduced graphene oxide/boron doped zinc oxide (RGO/ZnO:B) composites were fabricated by a hydrothermal process and their electrochemical properties were investigated as a function of dopant concentration. First, boron doped ZnO (ZnO:B) particles was fabricated with different boron concentrations (5, 10, 15 and 20 wt%) and then ZnO:B particles were embedded into RGO sheets. The physical properties of sensitized composites were characterized by XRD and SEM. Characterization indicated that the ZnO:B particles with plate-like structure in the composite were dispersed on graphene sheets. The electrochemical properties of the RGO/ZnO:B composite were investigated through cyclic voltammetry, galvanostatic charge/discharge measurements in a 6 M KOH electrolyte. Electrochemical measurements show that the specific capacitance values of RGO/ZnO:B electrodes increase with increasing boron concentration. RGO/ZnO:B composite electrodes (20 wt% B) display the specific capacitance as high as 230.50 F/g at 5 mV/s, which is almost five times higher than that of RGO/ZnO (52.71 F/g).
Effect of PdZn film on the performance of green light-emitting diodes
NASA Astrophysics Data System (ADS)
Kim, Ja-Yeon; Kwon, Min-Ki; Cho, Chu Young; Lee, Sang-Jun; Park, Seong-Ju; Kim, Sunwoon; Kim, Je Won; Kim, Yong Chun
2008-08-01
PdZn was used to improve the electrical properties of p-GaN annealed at low activation temperature for high efficiency green light-emitting diodes (LEDs). A hole concentration of p-GaN annealed at 600 °C with PdZn was almost 28 times higher than that of p-GaN annealed at 800 °C without PdZn. SIMS analysis showed that hydrogen concentration in p-GaN annealed with PdZn is decreased compared to that without using PdZn because the PdZn enhances hydrogen desorption from the Mg-doped p-GaN film at low temperature. The green MQW LED annealed at 600 °C using PdZn showed improved electrical characteristic and optical output power compared to that annealed at 800 °C without using PdZn. These results are attributed to the increase of hole concentration of p-GaN due to removal of hydrogen in p-GaN by PdZn and the decrease in thermal damage of MQW at low activation temperature.
Effects of zinc complexes on the distribution of zinc in calcareous soil and zinc uptake by maize.
Alvarez, José M; Rico, María I
2003-09-10
The movement and availability of Zn from six organic Zn sources in a Typic Xerorthent (calcareous) soil were compared by incubation, column assay, and in a greenhouse study with maize (Zea mays L.). Zinc soil behavior was studied by sequential, diethylenetriaminepentaacetate, and Mehlich-3 extractions. In the incubation experiment, the differences in Zn concentration observed in the water soluble plus exchangeable fraction strongly correlated with Zn uptake by plants in the greenhouse experiment. Zinc applied to the surface of soil columns scarcely moved into deeper layers except for Zn-ethylenediaminetetraacetate (EDTA) that showed the greatest distribution of labile Zn throughout the soil and the highest proportion of leaching of the applied Zn. In the upper part of the column, changes in the chemical forms of all treatments occurred and an increase in organically complexed and amorphous Fe oxide-bound fractions was detected. However, the water soluble plus exchangeable fraction was not detected. The same results were obtained at the end of the greenhouse experiment. Significant increases were found in plant dry matter yield and Zn concentration as compared with the control treatment without Zn addition. Increasing Zn rate in the soil increased dry matter yield in all cases but Zn concentration in the plant increased only with Zn-EDTA and Zn-ethylenediaminedi-o-hydroxyphenyl-acetate (EDDHA) fertilizers. Higher Zn concentration in plants (50.9 mg kg(-)(1)) occurred when 20 mg Zn kg(-)(1) was added to the soil as Zn-EDTA. The relative effectiveness of the different Zn carriers in increasing Zn uptake was in the order: Zn-EDTA > Zn-EDDHA > Zn-heptagluconate >/= Zn-phenolate approximately Zn-polyflavonoid approximately Zn-lignosulfonate.
Antonijević, M M; Dimitrijević, M D; Milić, S M; Nujkić, M M
2012-03-01
In this study concentrations of metals in the native plants and soils surrounding the old flotation tailings pond of the copper mine were determined. It has been established that the soil is heavily contaminated with copper, iron and arsenic, the mean concentrations being 1585.6, 29,462.5 and 171.7 mg kg(-1) respectively. All the plants, except manganese, accumulated metallic elements in concentrations which were either in the range of critical and phytotoxic values (Pb and As) or higher (Zn), and even much higher (Cu and Fe) than these values. Otherwise, the accumulation of Mn, Pb and As was considerably lower than that of Cu, Fe and Zn. In most plants the accumulation of target metals was highest in the root. Several plant species showed high bioaccumulation and translocation factor values, which classify them into species for potential use in phytoextraction. The BCF and TF values determined in Prunus persica were 1.20 and 3.95 for Cu, 1.5 and 6.0 for Zn and 1.96 and 5.44 for Pb. In Saponaria officinalis these values were 2.53 and 1.27 for Zn, and in Juglans regia L. they were 8.76 and 17.75 for Zn. The translocation factor in most plants, for most metals, was higher than one, whereas the highest value was determined in Populus nigra for Zn, amounting to 17.8. Among several tolerant species, the most suitable ones for phytostabilization proved to be Robinia pseudoacacia L. for Zn and Verbascum phlomoides L., Saponaria officinalis and Centaurea jacea L. for Mn, Pb and As. This journal is © The Royal Society of Chemistry 2012
[Bioaccumulation of cadmium and zinc in tomato (Lycopersicon esculentum L.)].
Sbartai, Hana; Djebar, Med Reda; Sbartai, Ibtissem; Berrabbah, Houria
2012-09-01
This work aims at evaluating the accumulation of cadmium (Cd) and zinc (Zn) (trace elements) in the organs of young tomato plants (Lycopersicon esculentum L. var. Rio Grande) and their effects on the rate of chlorophyll and enzyme activities involved in the antioxidant system: catalase (CAT), glutathion-S-transferase (GST) and peroxysase ascorbate (APX). Plants previously grown on a basic nutrient solution were undergoing treatment for 7 days, either by increasing concentrations of CdCl(2) or ZnSO(4) (0, 50, 100, 250, 500 μM) or by the combined concentrations of Cd and Zn (100/50, 100/100, 100/250, 100/500 μM). The results concerning the determination of metals in the various compartments of tomato plants as a function of increasing concentrations of Cd or Zn, suggest a greater accumulation of Cd and Zn in the roots compared to leaves. The combined treatment (Cd/Zn) interferes with the absorption of the two elements according to their concentrations in the culture medium. The presence of Zn at low concentrations (50 μM of Zn/100 μM Cd) has little influence on the accumulation of Cd in the roots and leaves, while the absorption of these two elements in the leaves increases and decreases in roots when their concentrations are equivalent (100/100 μM) compared to treatment alone. When the concentration of Zn is higher than that of Cd (500 μM of Zn/100 μM Cd) absorption of the latter is inhibited in the roots while increasing their translocation to the leaves. Meanwhile, the dosage of chlorophylls shows that they tend to decrease in a dose-dependent for both treatments (Cd or Cd/Zn), however, treatment with low concentrations of Zn (50 and 100 μM) stimulates chlorophyll synthesis. However, treatment with different concentrations of Cd seems to induce the activity of the enzymes studied (CAT, APX, GST). It is the same for treatment with different concentrations of Zn and this particularly for the highest concentrations. Finally, the combined treatment (Zn/Cd) also appears to cause enzyme inductions: CAT, APX and GST. Copyright © 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Ates, Mehmet; Arslan, Zikri; Demir, Veysel; Daniels, James; Farah, Ibrahim O.
2014-01-01
Dietary and waterborne exposure to CuO and ZnO nanoparticles (NPs) was conducted using a simplified model of an aquatic food chain consisting of zooplankton (Artemia salina) and goldfish (Carassius auratus) to determine bioaccumulation, toxic effects and particle transport through trophic levels. Artemia contaminated with NPs were used as food in dietary exposure. Fish were exposed to suspensions of the NPs in waterborne exposure. ICP-MS analysis showed that accumulation primarily occurred in the intestine, followed by the gills and liver. Dietary uptake was lower, but was found to be a potential pathway for transport of NPs to higher organisms. Waterborne exposure resulted in about a tenfold higher accumulation in the intestine. The heart, brain and muscle tissue had no significant Cu or Zn. However, concentrations in muscle increased with NP concentration, which was ascribed to bioaccumulation of Cu and Zn released from NPs. Free Cu concentration in the medium was always higher than that of Zn, indicating CuO NPs dissolved more readily. ZnO NPs were relatively benign, even in waterborne exposure (p≥0.05). In contrast, CuO NPs were toxic. Malondialdehyde levels in the liver and gills increased substantially (p<0.05). Despite lower Cu accumulation, the liver exhibited significant oxidative stress, which could be from chronic exposure to Cu ions. PMID:24860999
Ates, Mehmet; Arslan, Zikri; Demir, Veysel; Daniels, James; Farah, Ibrahim O
2015-01-01
Dietary and waterborne exposure to copper oxide (CuO) and zinc oxide (ZnO) nanoparticles (NPs) was conducted using a simplified model of an aquatic food chain consisting of zooplankton (Artemia salina) and goldfish (Carassius auratus) to determine bioaccumulation, toxic effects, and particle transport through trophic levels. Artemia contaminated with NPs were used as food in dietary exposure. Fish were exposed to suspensions of the NPs in waterborne exposure. ICP-MS analysis showed that accumulation primarily occurred in the intestine, followed by the gills and liver. Dietary uptake was lower, but was found to be a potential pathway for transport of NPs to higher organisms. Waterborne exposure resulted in about a 10-fold higher accumulation in the intestine. The heart, brain, and muscle tissue had no significant Cu or Zn. However, concentrations in muscle increased with NP concentration, which was ascribed to bioaccumulation of Cu and Zn released from NPs. Free Cu concentration in the medium was always higher than that of Zn, indicating CuO NPs dissolved more readily. ZnO NPs were relatively benign, even in waterborne exposure (p ≥ 0.05). In contrast, CuO NPs were toxic. Malondialdehyde levels in the liver and gills increased substantially (p < 0.05). Despite lower Cu accumulation, the liver exhibited significant oxidative stress, which could be from chronic exposure to Cu ions. © 2014 Wiley Periodicals, Inc.
Xin, Linwei; Wu, Zhihai; Qu, Quanli; Wang, Ruiying; Tang, Jichun; Chen, Lei
2017-01-01
Abstract The aim of the study was to explore the relationship between the concentration of C-telopeptide fragments of type II collagen (CTX-II), Zn2+, and Ca2+ in urine and knee osteoarthritis (KOA). Eighty-two patients with KOA and 20 healthy volunteers were enrolled. Anteroposterior and lateral position x-rays of knee joints were collected. The images were classified according to Kellgren-Lawrence radiographic grading criterion. The patients were divided into group grade I, group grade II, group grade III, and grade IV. The concentration of CTX-II in the urine was detected by enzyme-linked immunosorbent assay. The concentration of Zn2+ and Ca2+ in urine was detected by inductively coupled plasma atomic emission spectrometry. Compared with the healthy individuals, the concentration of CTX-II was significantly higher in KOA patients. The concentration of CTX-II in KOA patients from high to low was as follows: group IV, group III, group II, and group I. There was no significant difference between group I and healthy individuals. The concentration of Zn2+ and Ca2+ in urine of KOA patients was higher than that in healthy individuals. There was no difference in each KOA group. The concentration of CTX-II is instrumental to diagnose the progress of KOA. The concentration of Zn2+ and Ca2+ in urine is helpful for early diagnosis of KOA. PMID:28796042
Reddy, A Satyanarayana; Kuo, Yi-Hao; Atla, Shashi B; Chen, Chien-Yen; Chen, Chien-Cheng; Shih, Ruey-Chyuan; Chang, Young-Fo; Maity, Jyoti Prakash; Chen, How-Ji
2011-06-01
Rose-like ZnO nanostructures were synthesized by the precipitation method using a biosurfactant (surfactin) as a templating-agent stabilizer. The concentration of surfactin in the precursor solution significantly influenced the thickness and density of the petals in the rose-like structures, and all samples were of a wurtzite phase. The thickness of the petal was found to decrease with increasing surfactin concentration. The average thickness of the petals was found to be between 10 and 13 nm. Photocatalytic degradation of methylene blue using rose-like ZnO nanostuctures was investigated, and the morphology, density and thickness of the ZnO petals were found to influence the photodegradation activity. The samples with loosely-spread petals, or plate-like ZnO structures, brought about the strongest photodegradation in comparison with the dense rose-like structures. The greater activity of the loose-petal structures was correlated with their higher absorption in the UV region in comparison with the other samples. The ZnO samples prepared using low surfactin concentrations had higher rate constant values, i.e., 9.1 x 10(-3) min(-1), which revealed that the photodegradation of methylene blue under UV irradiation progressed by a pseudo first-order kinetic reaction.
Varol, Memet; Sünbül, Muhammet Raşit
2018-01-03
Freshwater mussels and crayfish are commonly used as biomonitors of trace metals. In the present study, the concentrations of ten metals were determined in mussels (Unio elongatulus eucirrus) and crayfish (Astacus leptodactylus) collected from the Keban Dam Reservoir in Turkey. The significant spatial differences in concentrations of studied metals except As in mussels were not found. However, Co, Cr, Cu, and Zn concentrations in mussels and As, Co, Cu, Fe, Pb, and Zn concentrations in crayfish showed significant seasonal differences. As, Cd, and Mn levels in mussels were about nine times higher than those in crayfish. The concentrations of Cd, Cr, Cu, Pb, Zn, and inorganic As in crayfish and mussels were lower than maximum permissible levels. When compared with other biomonitoring studies using mussels and crayfish, high concentrations of As, Cd, Co, Cr, and Ni in mussels and Cr and Ni in crayfish were observed due to lithogenic sources and anthropogenic activities in the basin. Bioconcentration factor values of Fe, Mn, Cd, and Zn in mussels and Zn, Cu, Fe, and Co in crayfish were > 1000, which indicates that both U. e. eucirrus and A. leptodactylus have potential to bioaccumulate these metals. Therefore, attention should be paid to mussels and crayfish from ecological and human health perspective, because they are potential vectors of metals to higher trophic levels.
Bai, L Y; Zeng, X B; Su, S M; Duan, R; Wang, Y N; Gao, X
2015-04-01
Greenhouse soils and arable (wheat field) soil samples were collected to identify the effects of greenhouse cultivation on the accumulation of six heavy metals (Cd, Cu, Zn, Pb, Cr, and Ni) and to evaluate the likely sources responsible for heavy metal accumulation in the irrigated desert soils of Wuwei District, China. The results indicated that the mean concentrations of Cd, Cu, Zn, Pb, Cr, and Ni were 0.421, 33.85, 85.31, 20.76, 53.12, and 28.59 mg kg(-1), respectively. The concentrations of Cd, Cu, and Zn in greenhouse soils were 60, 23, and 14% higher than those in arable soils and 263, 40, and 25% higher than background concentrations of natural soils in the study area, respectively. These results indicated that Cd, Cu, and Zn accumulation occurred in the greenhouse soils, and Cd was the most problematically accumulated heavy metal, followed by Cu and Zn. There was a significant positive correlation between the concentrations of Cd, Cu, and Zn in greenhouse soils and the number of years under cultivation (P < 0.05). Greenhouse cultivation had little impact on the accumulation of Cr, Ni, or Pb. Correlation analysis and principal component analysis suggested that the accumulation of Cd, Cu, and Zn in greenhouse soils resulted mainly from fertilizer applications. Our results indicated that the excessive and long-term use of fertilizers and livestock manures with high heavy metal levels leads to the accumulation of heavy metals in soils. Therefore, rational fertilization programs and reductions in the concentrations of heavy metals in both fertilizers and manure must be recommended to maintain a safe concentration of heavy metals in greenhouse soils.
Photoluminescence spectra of n-ZnO/p-GaN:(Er + Zn) and p-AlGaN:(Er + Zn) heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mezdrogina, M. M., E-mail: margaret.m@mail.ioffe.ru; Krivolapchuk, V. V., E-mail: vlad.krivol@mail.ioffe.ru; Feoktistov, N. A.
2008-07-15
Luminescence intensity of heterostructures based on n-ZnO/p-GaN:(Er + Zn) and n-ZnO/AlGaN:(Er + Zn) is higher by more than an order of magnitude than the corresponding intensity of separate n-ZnO, p-GaN:(Er + Zn), and AlGaN:(Er + Zn) layers. Most likely, this phenomenon is due to the effective tunneling recombination of charge carriers caused by a decrease in the concentration of the nonradiative recombination centers located between the n-ZnO/p-GaN:(Er + Zn) and n-ZnO/AlGaN:(Er + Zn) layers.
Luo, Y M; Yan, W D; Christie, P
2001-01-01
A pot experiment was conducted to study soil solution dynamics of Cu and Zn in a Cu/Zn-polluted soil as influenced by gamma-irradiation and Cu-Zn interaction. A slightly acid sandy loam was amended with Cu and Zn (as nitrates) either singly or in combination (100 mg Cu and 150 mg Zn kg(-1) soil) and was then gamma-irradiated (10 kGy). Unamended and unirradiated controls were included, and spring barley (Hordeum vulgare L. cv. Forrester) was grown for 50 days. Soil solution samples obtained using soil moisture samplers immediately before transplantation and every ten days thereafter were used directly for determination of Cu, Zn, pH and absorbance at 360 nm (A360). Cu and Zn concentrations in the solution of metal-polluted soil changed with time and were affected by gamma-irradiation and metal interaction. gamma-Irradiation raised soil solution Cu substantially but generally decreased soil solution Zn. These trends were consistent with increased dissolved organic matter (A360) and solution pH after gamma-irradiation. Combined addition of Cu and Zn usually gave higher soil solution concentrations of Cu or Zn compared with single addition of Cu or Zn in gamma-irradiated and non-irradiated soils, indicating an interaction between Cu and Zn. Cu would have been organically complexed and consequently maintained a relatively high concentration in the soil solution under higher pH conditions. Zn tends to occur mainly as free ion forms in the soil solution and is therefore sensitive to changes in pH. The extent to which gamma-irradiation and metal interaction affected solubility and bioavailability of Cu and Zn was a function of time during plant growth. Studies on soil solution metal dynamics provide very useful information for understanding metal mobility and bioavailability.
NASA Astrophysics Data System (ADS)
Concepción Ramos, Maria; Romero, María Paz
2015-04-01
This study investigated the influence of leaf thinning on micronutrient (Cu, Zn and Mn) uptake and distribution in grape tissues, in a 16 year-old Cabernet Sauvignon vineyard. The analysis was carried out in two plots with differences in vigor (P1- high and P2-low) grown in calcareous soils. Vigour was analysed by the NDVI values. In each plot, two treatments (with and without leaf thinning after bloom) were applied. Total and the CaCl2-DTPA extractable fraction of these micronutrients were evaluated. Nutrient concentration in petiole were evaluated from veraison to harvest as well as the concentration of those elements in seeds and skins at ripening and in wines elaborated with grapes grown in each plot and treatment in 2013. Their relationships were evaluated. The soil extractable fraction did not give a good correlation with petiole concentrations. However, Mn in petiole was strongly correlated with soil total Mn. Cu and Zn had higher concentration at veraison than at harvest, while for Mn it was the opposite. Cu concentration in petiole and seeds was greater in the most vigorous plots, but there were not clear differences between treatments. Cu in seeds and skins correlated significantly but there was not correlation with Cu in petiole. Zn concentration in skins was quite similar in both plots, but with higher values in vines without leaf thinning. Zn concentrations in skins were correlated with Zn in petiole but no significant correlation was found with Zn in seeds. Higher concentrations were found in the no thinning treatment in skins. For Mn, petiole concentrations were greater in the high vigorous plot and in the leaf thinning treatment. However, petiole Zn concentrations were greater in the less vigorous plot and without clear effect of leaf thinning. Mn concentration in skins was greater in the less vigorous vines in both treatments and it was inversely correlated with Mn in seeds, but there were no significant correlation between them and Mn in petiole. In wine, significant differences between both plots were found for Cu and Zn, with greater values in the most vigorous vines and with some differences in the wines elaborated with grapes from the leaf thinning treatment and without it. Cu levels in wine ranged between 0.78 and 0.96 mg/l in plot 1 and between 0.28 and 0.44 mg/L in plot 2, respectively for the areas with and without leaf thinning. For Zn, levels ranged between 0.76 and 0.74 in plot 1and between 0.24 and 0.22 mg/L in plot 2. However, no differences were found between plots for Mn. Mn levels in wine ranged between 1 and 1.9 mg/L in plot 1 and between 1.12 and 1.2 mg/L in plot 2. This behavior was similar to that found in the skins and seed analysis.
Tonietto, Alessandra Emanuele; Lombardi, Ana Teresa; Choueri, Rodrigo Brasil; Vieira, Armando Augusto Henriques
2015-10-01
This research aimed at evaluating cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) speciation in water samples as well as determining water quality parameters (alkalinity, chlorophyll a, chloride, conductivity, dissolved organic carbon, dissolved oxygen, inorganic carbon, nitrate, pH, total suspended solids, and water temperature) in a eutrophic reservoir. This was performed through calculation of free metal ions using the chemical equilibrium software MINEQL+ 4.61, determination of labile, dissolved, and total metal concentrations via differential pulse anodic stripping voltammetry, and determination of complexed metal by the difference between the total concentration of dissolved and labile metal. Additionally, ligand complexation capacities (CC), such as the strength of the association of metals-ligands (logK'ML) and ligand concentrations (C L) were calculated via Ruzic's linearization method. Water samples were taken in winter and summer, and the results showed that for total and dissolved metals, Zn > Cu > Pb > Cd concentration. In general, higher concentrations of Cu and Zn remained complexed with the dissolved fraction, while Pb was mostly complexed with particulate materials. Chemical equilibrium modeling (MINEQL+) showed that Zn(2+) and Cd(2+) dominated the labile species, while Cu and Pb were complexed with carbonates. Zinc was a unique metal for which a direct relation between dissolved species with labile and complexed forms was obtained. The CC for ligands indicated a higher C L for Cu, followed by Pb, Zn, and Cd in decreasing amounts. Nevertheless, the strength of the association of all metals and their respective ligands was similar. Factor analysis with principal component analysis as the extraction procedure confirmed seasonal effects on water quality parameters and metal speciation. Total, dissolved, and complexed Cu and total, dissolved, complexed, and labile Pb species were all higher in winter, whereas in summer, Zn was mostly present in the complexed form. A high degree of deterioration of the reservoir was confirmed by the results of this study.
Zhang, Zhigang; Liu, Guowen; Li, Xiaobing; Gao, Li; Guo, Changming; Wang, Hongbin; Wang, Zhe
2010-12-01
Ketosis in dairy cows can lead to poor reproductive success and decreased milk production. Since the serum concentrations of copper (Cu) and zinc (Zn) are closely associated with the health status of cows, we investigated whether serum concentrations of Cu and Zn differed in dairy cows with subclinical ketosis and healthy dairy cows. Blood samples of 19 healthy dairy cows and 15 subclinically ketotic dairy cows were collected from three farms, and the concentrations of β-hydroxybutyrate (BHBA), glucose, non-esterified fatty acids (NEFA), Cu, and Zn were determined. Subclinically ketotic dairy cows had significantly higher BHBA and NEFA levels (p < 0.01) and lower glucose (p < 0.01) than healthy dairy cows. Likewise, serum concentrations of Zn were significantly decreased (p < 0.05) in dairy cows with subclinical ketosis. There was no significant difference observed for serum Cu concentration between healthy and subclinically ketotic dairy cows. This study suggests that a decreased serum Zn concentration could be a cause of decreased reproductive performance in subclinically ketotic dairy cows.
Oytam, Yalchin; Kirby, Jason K.; Gomez-Fernandez, Laura; Baxter, Brent; McCall, Maxine J.
2014-01-01
Previous studies have shown no, or very limited, skin penetration of metal oxide nanoparticles following topical application of sunscreens, yet concerns remain about their safety compared to larger particles. Here, we assessed the comparative dermal absorption of a traceable form of Zn (68Zn) from 68ZnO nano-sized and larger particles in sunscreens. Sunscreens were applied to the backs of virgin or pregnant hairless mice over four days. Control groups received topical applications of the sunscreen formulation containing no ZnO particles, or no treatment. Major organs were assessed for changes in 68Zn/64Zn ratios, 68Zn tracer and total Zn concentrations. Short-term biological impact was assessed by measuring levels of serum amyloid A in blood, and by performing whole-genome transcriptional profiling on livers from each group. Increased concentrations of 68Zn tracer were detected in internal organs of mice receiving topical applications of 68ZnO (nano-sized and larger particles), as well as in fetal livers from treated dams, compared with controls. Furthermore, concentrations of 68Zn in organs of virgin mice treated with sunscreen containing 68ZnO nanoparticles were found to be significantly higher than in mice treated with sunscreen containing larger 68ZnO particles. However, no ZnO-mediated change in total Zn concentration in any of the major organs was observed. Thus, despite 68Zn absorption, which may have been in the form of soluble 68Zn species or 68ZnO particles (not known), Zn homeostasis was largely maintained, and the presence of ZnO particles in sunscreen did not elicit an adverse biological response in the mice following short-term topical applications. PMID:24266363
Gormley, Patrick Thomas; Callaghan, Neal Ingraham; MacCormack, Tyson James; Dieni, Christopher Anthony
2016-10-01
Citrated Sprague-Dawley rat blood plasma was used as a biologically relevant exposure medium to assess the acellular toxic potential of two metal oxide engineered nanomaterials (ENMs), zinc oxide (nZnO), and cerium oxide (nCeO 2 ). Plasma was incubated at 37 °C for up to 48 h with ENM concentrations ranging between 0 and 200 mg/L. The degree of ENM-induced oxidation was assessed by assaying for reactive oxygen species (ROS) levels using dichlorofluorescein (DCF), pH, ferric reducing ability of plasma (FRAP), lipase activity, malondialdehyde (MDA), and protein carbonyls (PC). Whereas previous in vitro studies showed linear-positive correlations between ENM concentration and oxidative damage, our results suggested that low concentrations were generally pro-oxidant and higher concentrations appeared antioxidant or protective, as indicated by DCF fluorescence trends. nZnO and nCeO 2 also affected pH in a manner dependent on concentration and elemental composition; higher nZnO concentrations maintained a more alkaline pH, while nCeO 2 tended to decrease pH. No other biomarkers of oxidative damage (FRAP, MDA, PC, lipase activity) showed changes at any ENM concentration or time-point tested. Differential dissolution of the two ENMs was also observed, where as much as ∼31.3% of nZnO was instantaneously dissolved to Zn 2+ and only negligible nCeO 2 was degraded. The results suggest that the direct oxidative potential of nZnO and nCeO 2 in citrated rat blood plasma is low, and that a physiological or immune response is needed to generate appreciable damage biomarkers. The data also highlight the need for careful consideration when selecting a model for assessing ENM toxicity.
Li, X; Christie, P
2001-01-01
Red clover plants inoculated with Glomus mosseae were grown in a sterile pasture soil containing 50 mg Zn kg(-1) in 'Plexiglas' (acrylic) containers with nylon net partitions (30 microm mesh) designed to separate the soil into a central root zone and two outer zones for hyphal growth with no root penetration. Two porous plastic soil moisture samplers were installed in each pot, one in the root compartment and the other in one of the hyphal compartments. The soil in the outer compartments was amended with one of the four application rates of Zn (as ZnSO4) ranging from 0 to 1000 mg kg(-1). Non-mycorrhizal controls were included, and there were five replicates of each treatment in a randomised block in a glasshouse. Uninoculated plants received supplementary P to avoid yield limitation due to low soil P status. Plants grew in the central compartment for nine weeks. Soil moisture samples were collected 4, 24 and 62 days after sowing to monitor changes in the Zn concentration and pH of the soil solution. At harvest, the mean mycorrhizal infection rate of inoculated plants ranged from 29% to 34% of total root length and was little affected by Zn application. Root and shoot yields were not affected by mycorrhizal infection. Plant Zn concentration and uptake were lower in mycorrhizal plants than non-mycorrhizal controls, and this effect was more pronounced with increasing Zn application rate to the soil. Soil solution Zn concentrations were lower and pH values were higher in mycorrhizal treatments than non-mycorrhizal controls and the mycorrhiza effect was more pronounced at higher Zn application rates. The protective effect of mycorrhiza against plant Zn uptake may have been associated with changes in Zn solubility mediated by changes in the soil solution pH, or by immobilisation of Zn in the extraradical mycelium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jankovska, Ivana, E-mail: jankovska@af.czu.cz; Miholova, Daniela; Lukesova, Daniela
2012-01-15
We monitored concentrations of Cd, Cu, Mn and Zn in acantocephalan parasites (Acanthocephalus lucii) and its final host (Perca fluviatilis). The concentrations in parasites were found to be significantly higher than those found in the muscle, gonads and liver of fish host. The bioaccumulation factor values were 194, 24.4, 2.2 and 4.7 for Cd, Cu, Mn and Zn, respectively. This suggests a benefit for the host due to the high accumulation of toxic cadmium.
Li, Xiao; Luo, Yu-Di; Pan, Dong-Rui; Shi, Xiao-Dan; Tan, Ya-Li; Li, Zhi-Hong
2017-01-01
ABSTRACT Using 5 Zn2+ supplementation strategies in a 50 L batch bioreactor named FUS-50L(A), possible correlations among Zn2+ content and addition timing, physiologic activity (PA), halohydrin dehalogenase (HheC) accumulation of Escherichia coli P84A/MC1061 were systematically investigated. First, Zn2+ was confirmed as the significant factor, and its optimal concentration for HheC expression was 3.87 mg/L through fermentation experiments in shaking flasks. Second, based on experimental results from the different strategies, it was found that PA, nutrient consumption rate (NCR) and specific growth rate (μ) for E. coli P84A/MC1061 were promoted in the log phase (4–8 h) under appropriate Zn2+ concentrations in the lag phase and late log phase. Furthermore cell biomass was also increased to a higher level and the maximum HheC activity (i.e. HheCmax) was increased by 9.80%, and the time to reach HheCmax was reduced from 16 to 12 hours. Furthermore, appropriate supplementation of Zn2+ caused higher μ for E. coli P84A/MC1061, which resulted in more rapid accumulation of increased acetic acid concentrations, leading to higher acetic acid consumption avoiding any negative effects on producing HheC because of carbon source being exhausted prematurely and acetic acid being consumed rapidly. PMID:28282255
Accumulation of Heavy Metals in Crayfish and Fish from Selected Czech Reservoirs
Kuklina, Iryna; Kouba, Antonín; Buřič, Miloš; Horká, Ivona; Ďuriš, Zdeněk; Kozák, Pavel
2014-01-01
To evaluate the accumulation of aluminium, cadmium, chromium, copper, lead, mercury, nickel, and zinc in crayfish and fish organ tissues, specimens from three drinking water reservoirs (Boskovice, Landštejn, and Nová Říše) and one contaminated site (Darkovské moře) in the Czech Republic were examined. Crayfish hepatopancreas was confirmed to be the primary accumulating site for the majority of metals (Cu > Zn > Ni > Cd > Cr), while Hg and Cr were concentrated in abdominal muscle, and Al and Pb were concentrated in gill. Metals found in Nová Říše specimens included Cu > Zn > Ni and those found in Boskovice included Zn > Hg > Cr. Cd concentrations were observed only in Landštejn specimens, while contaminated Darkovské moře specimens showed the highest levels of accumulation (Cu > Al > Zn > Pb). The majority of evaluated metals were found in higher concentrations in crayfish: Cu > Al > Zn > Ni > Cr > Cd > Pb, with Hg being the only metal accumulating higher in fish. Due to accumulation similarities of Al in crayfish and fish gill, differences of Hg in muscle, and features noted for the remaining metals in examined tissues, biomonitoring should incorporate both crayfish and fish to produce more relevant water quality surveys. PMID:24738051
Release and toxicity comparison between industrial- and ...
Many consumer products containing ZnO have raised concern for safety in regards toenvironmental impact and the public health. Widely used sunscreens for protectingagainst UV and avoiding sunburns represent a great exposure to nano-ZnO, one of theingredients commonly applied in sunscreens. Applying nano-products on beaches mayrelease nanoparticles unintentionally into the ocean. Despite the accumulation of suchnano-products in the ocean harming or being detrimental to critical marine organisms,few studies have investigated the release and potential toxicity of nanoparticlesextracted from products and compared them with those from industrial-typenanoparticles. Results show that the cytotoxicity of both industrial- and sunscreenderivednano-ZnO to the marine diatom algae, Thalassiosira pseudonana, increasedas exposure increases over time, as measured by growth inhibition (%) of the algae ata constant concentration of nano-ZnO (10 mg/L). The extent of toxicity appeared to behigher from industrial-type nano-ZnO compared to sunscreen-extracted nano-ZnO,though the extent becomes similar when concentrations increase to 50 mg/L. On theother hand, at a fixed exposure time of 48 hrs, the cytotoxicity increases asconcentrations increase with the higher toxicity shown from the industrial-typecompared to sunscreen-induced nano-ZnO. Results indicate that while industrial-typenano-ZnO shows higher toxicity than sunscreen-derived nano-ZnO, the release andextent of toxicity from n
Enrichment and Bioavailability of Trace Elements in Soil in Vicinity of Railways in Japan.
Wang, Zhen; Watanabe, Izumi; Ozaki, Hirozaku; Zhang, Jianqiang
2018-01-01
This study focuses on the concentrations, distribution, pollution levels, and bioavailability of 12 trace elements in soils along 6 different railways in Japan. Three diesel powered railways and three electricity powered railways were chosen as target. Surface soils (< 3 cm) were collected in vicinity of railways for analysis. Digestion and extraction were performed before concentration and bioavailability analysis. Enrichment factor was applied to investigate contamination levels of selected elements. The mean concentrations of Cr, Co, Ni, Cu, Zn, Sn, and Pb in soil samples were higher than soil background value in Japan. Concentrations of trace elements in soils along different railway had different characteristics. Horizontal distribution of Cu, Zn, Cd, Sn, and Pb in soil samples showed obviously downtrend with distance along railways with high frequency. Concentrations of V, Mn, Fe, and Co were higher in soils along railways which pass through city center. According to principal component analysis and cluster analysis, concentrations of Cu, Zn, Sn, and Pb could be considered as the indicators of soil contamination level along electricity powered trains, whereas indicators along diesel powered trains were not clear. Enrichment factor analysis proved that operation of freight trains had impact on pollution level of Cr, Ni, and Cd. Bioavailability of Mn, Co, Zn, and Cd in soil along electricity-powered railways were higher, and bioavailability of Pb in railways located in countryside was lower. Thus, enrichment and bioavailability of trace elements can be indicators of railway-originated trace elements pollution in soil.
Murtaza, Ghulam; Javed, Wasim; Hussain, Amir; Qadir, Manzoor; Aslam, Muhammad
2017-02-01
The present study aimed to evaluate the effect of soil-applied Zn and Cu on absorption and accumulation of Cd applied through irrigation water in legume (chickpea and mung bean) and cereal (wheat and maize) crops. The results revealed that Cd in irrigation water at higher levels (2 and 5 mg L -1 ) significantly (p < 0.05) reduced the plant biomass while the soil application of Zn and Cu, singly or combined, favored the biomass production. Plant tissue Cd concentration increased linearly with the increasing application of Cd via irrigation water. While Cd application caused a redistribution of metals in grains, straw, and roots with the highest concentration of Cd, Zn, and Cu occurred in roots followed by straw and grains. Zinc addition to soil alleviated Cd toxicity by decreasing Cd concentration in plant tissues due to a possible antagonistic effect. The addition of Cu to the soil had no consistent effects on Zn and Cd contents across all crops. Inhibitory effects of Cd on the uptake and accumulation of Zn and Cu have also been observed at higher Cd load. Thus, soil-applied Zn and Cu antagonized Cd helping the plant to cope with its toxicity and suppressed the toxic effects of Cd in plant tissues, thus favoring plant growth.
García-Gómez, C; Babin, M; Obrador, A; Álvarez, J M; Fernández, M D
2015-11-01
This work compared the toxicity of ZnO nanoparticles (ZnO-NPs), ZnO bulk, and ZnCl2 on microbial activity (C and N transformations and dehydrogenase and phosphatase activities) and their uptake and toxic effects (emergence, root elongation, and shoot growth) on three plant species namely wheat, radish, and vetch in a natural soil at 1000 mg Zn kg(-1). Additionally, plants were also tested at 250 mg Zn kg(-1). The effects of the chemical species on Zn extractability in soil were studied by performing single and sequential extractions. ZnCl2-1000 presented the highest toxicity for both taxonomic groups. For microorganisms, ZnO-NPs demonstrated adverse effects on all measured parameters, except on N transformations. The effects of both ZnO forms were similar. For plants, ZnO-NPs affected the growth of more plant species than ZnO bulk, although the effects were small in all cases. Regarding accumulation, the total Zn amounts were higher in plants exposed to ZnO-NP than those exposed to ZnO bulk, except for vetch shoots. The soil sequential extraction revealed that the Zn concentration in the most labile forms (water soluble (WS) and exchangeable (EX)) was similar in soil treated with ZnO (NP and bulk) and lower than that of ZnCl2-treated soil, indicating the higher availability of the ionic forms. The strong correlations obtained between WS-Zn fraction and the Zn concentrations in the roots, shoots, and the effects on shoot weight show the suitability of this soil extraction method for predicting bioavailable Zn soil for the three plant species when it was added as ZnO-NPs, ZnO bulk, or ZnCl2. In this work, the hazard associated with the ZnO-NPs was similar to ZnO bulk in most cases.
Navarro-León, Eloy; Barrameda-Medina, Yurena; Lentini, Marco; Esposito, Sergio; Ruiz, Juan M; Blasco, Begoña
2016-07-01
Zinc (Zn) deficiency is a major problem in agricultural crops of many world regions. N metabolism plays an essential role in plants and changes in their availability and their metabolism could seriously affect crop productivity. The main objective of the present work was to perform a comparative analysis of different strategies against Zn deficiency between two plant species of great agronomic interest such as Lactuca sativa cv. Phillipus and Brassica oleracea cv. Bronco. For this, both species were grown in hydroponic culture with different Zn doses: 10μM Zn as control and 0.01μM Zn as deficiency treatment. Zn deficiency treatment decreased foliar Zn concentration, although in greater extent in B. oleracea plants, and caused similar biomass reduction in both species. Zn deficiency negatively affected NO3(-) reduction and NH4(+) assimilation and enhanced photorespiration in both species. Pro and GB concentrations were reduced in L. sativa but they were increased in B. oleracea. Finally, the AAs profile changed in both species, highlighting a great increase in glycine (Gly) concentration in L. sativa plants. We conclude that L. sativa would be more suitable than B. oleracea for growing in soils with low availability of Zn since it is able to accumulate a higher Zn concentration in leaves with similar biomass reduction. However, B. oleracea is able to accumulate N derived protective compounds to cope with Zn deficiency stress. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Li, Long; Xu, Guang; Shao, Hua; Zhang, Zhi-Hu; Pan, Xing-Fu; Li, Jin-Ye
2017-01-01
Trace elements, including zinc (Zn) and germanium (Ge), are essential for health; deficiency or excess levels of trace elements results is harmful. As a result of industrial and agricultural production, Pb widely exists in people’s living environment. It is absorbed mainly through the respiratory and digestive tracts, producing systemic harm. Reference values for a normal, healthy population are necessary for health assessment, prevention and treatment of related diseases, and evaluation of occupational exposures. Reference ranges for the Chinese population have not been established. From March 2009 to February 2010; we collected data and blood samples (n = 1302) from residents aged 6–60 years living in Shandong Province, China. We measured blood concentrations of Zn, Ge, and Pb using inductively coupled plasma mass spectrometry to determine reference ranges. Results were stratified by factors likely to affect the concentrations of these trace elements: sex, use of cosmetics or hair dye, age, alcohol intake, smoking habits, and consumption of fried food. The overall geometric mean (GM) concentrations (95% confidence interval) were 3.14 (3.08–3.20) mg/L for Zn, 19.9 (19.3–20.6) μg/L for Ge, and 24.1 (23.2–25.1) μg/L for Pb. Blood Zn concentrations were higher in women than in men (p < 0.001), while the opposite was found for Pb (p < 0.001) and sex did not influence Ge (p = 0.095). Alcohol use was associated with higher blood concentrations of Zn (p = 0.002), Ge (p = 0.002), and Pb (p = 0.001). The GM concentration of Zn was highest in 20–30-year-olds (p < 0.001), while Pb concentrations were highest in 12–16-year-olds (p < 0.001). Use of hair dye was associated with lower blood concentrations of Ge (p < 0.05). GM blood concentrations of Pb differed significantly between those who consumed fried foods 1–2 times/month (18.7 μg/L), 1–2 times/week (20.9 μg/L), and every day (28.5 μg/L; p < 0.001). Blood Pb concentrations were higher in subjects who used cosmetics (p < 0.05), hair dye (p < 0.05), and who smoked cigarettes (p < 0.001) than in those who did not. PMID:28245579
Ates, Mehmet; Daniels, James; Arslan, Zikri; Farah, Ibrahim O; Rivera, Hilsamar Félix
2013-01-01
Brine shrimp (Artemia salina) larvae were exposed to different sizes of zinc (Zn) and zinc oxide (ZnO) nanoparticles (NPs) to evaluate their toxicity in marine aquatic ecosystems. Acute exposure was conducted in seawater with 10, 50 and 100 mg L(-1) concentrations of the NPs for 24 h and 96 h. Phase contrast microscope images confirmed the accumulation of the NPs inside the guts. Artemia were unable to eliminate the ingested particles, which was thought to be due to the formation of massive particles in the guts. Although the suspensions of the NPs did not exhibit any significant acute toxicity within 24 h, mortalities increased remarkably in 96 h and escalated with increasing concentration of NP suspension to 42% for Zn NPs (40-60 nm) (LC50∼ 100 mg L(-1)) and to about 34% for ZnO NPs (10-30 nm) (LC50 > 100 mg L(-1)). The suspensions of Zn NPs were more toxic to Artemia than those of ZnO NPs under comparable regimes. This effect was attributed to higher Zn(2+) levels (ca. up to 8.9 mg L(-1)) released to the medium from Zn NPs in comparison to that measured in the suspensions of ZnO NPs (ca. 5.5 mg L(-1)). In addition, the size of the nanopowders appeared to contribute to the observed toxicities. Although the suspensions possessed aggregates of comparable sizes, smaller Zn NPs (40-60 nm) were relatively more toxic than larger Zn NPs (80-100 nm). Likewise, the suspensions of 10-30 nm ZnO NPs caused higher toxicity than those of 200 nm ZnO NPs. Lipid peroxidation levels were substantially higher in 96 h (p < 0.05), indicating that the toxic effects were due to the oxidative stress.
Element accumulation in tall fescue and alfalfa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stucky, D.J.; Newman, T.S.
This study was initiated to examine the effect of three application rates of dried anaerobically digested sludge on two different soil media on the establishment, yield, duration, and element accumulation in tall fescue and alfalfa. In a greenhouse study, acid strip-mine spoil and agricultural soil were used to compare plant growth in sewage-amended and untreated media. Sludge was applied at 0, 314, and 627 metric tons/hectare to the agricultural soil control and the strip mine spoil. Plant yields were significantly higher for strip-mine spoil amended with 627 metric tons/ha and for agricultural soil amended with 314 and 627 metric tons/ha.more » Concentrations of Mn, Ni, Cd, Zn, and Cu were measured in plants and soils. Concentrations of Mn, Zn, Ni, and Cd in tall fescue and alfalfa grown in strip-mine spoils were higher at higher sludge application rates. Sludge application rate did not affect Cu uptake. Concentrations of Mn, Zn, Ni, and Cd in tall fescue were highest during the 180 toese is the fluctuation in nutrient salt concentrations:agreement of experimental and calculated data is obtton beam.« less
Zampella, Mariavittoria; Adamo, Paola
2010-01-01
A study on variable charge soils (volcanic Italian and podzolic Scottish soils) was performed to investigate the influence of soil properties on the chemical composition of soil solution. Zinc speciation, bioavailability and toxicity in the soil solution were examined. The soils were spiked with increasing amounts of Zn (0, 100, 200, 400 and 1000 mg/kg) and the soil solutions were extracted using rhizon soil moisture samplers. The pH, total organic carbon (TOC), base cations, anions, total Zn and free Zn2+ in soil solution were analysed. A rapid bioassay with the luminescent bacterium Escherichia coli HB101 pUCD607 was performed to assess Zn toxicity. The influence of soil type and Zn treatments on the chemical composition of soil solution and on Zn toxicity was considered and discussed. Different trends of total and free Zn concentrations, base cations desorption and luminescence of E. coli HB101 pUCD607 were observed. The soil solution extracted from the volcanic soils had very low total and free Zn concentrations and showed specific Zn2+/Ca2+ exchange. The soil solution from the podzolic soil had much higher total and free Zn concentrations and showed no evidence of specific Zn2+/Ca2+ exchange. In comparison with the subalkaline volcanic soils, the acidic podzol showed enhanced levels of toxic free Zn2+ and consequently stronger effects on E. coli viability.
Abu-Elsaoud, Abdelghafar M; Nafady, Nivien A; Abdel-Azeem, Ahmed M
2017-01-01
Mycoremediation is an on-site remediation strategy, which employs fungi to degrade or sequester contaminants from the environment. The present work focused on the bioremediation of soils contaminated with zinc by the use of a native mycorrhizal fungi (AM) called Funneliformis geosporum (Nicol. & Gerd.) Walker & Schüßler. Experiments were performed using Triticum aestivum L. cv. Gemmeza-10 at different concentrations of Zn (50, 100, 200 mg kg-1) and inoculated with or without F. geosporum. The results showed that the dry weight of mycorrhizal wheat increased at Zn stressed plants as compared to the non-Zn-stressed control plants. The concentrations of Zn also had an inhibitory effect on the yield of dry root and shoot of non-mycorrhizal wheat. The photosynthetic pigment fractions were significantly affected by Zn treatments and mycorrhizal inoculation, where in all treatments, the content of the photosynthetic pigment fractions decreased as the Zn concentration increased in the soil. However, the level of minerals of shoots, roots, and grains was greatly influenced by Zn-treatment and by inoculation with F. geosporum. Treatment with Zn in the soil increased Cu and Zn concentrations in the root, shoot and grains, however, other minerals (P, S, K, Ca and Fe) concentration was decreased. Inoculation of wheat with AM fungi significantly reduced the accumulation of Zn and depressed its translocation in shoots and grains of wheat. In conclusion, inoculation with a native F. geosporum-improves yields of wheat under higher levels of Zn and is possible to be applied for the improvement of zinc contaminated soil.
2017-01-01
Mycoremediation is an on-site remediation strategy, which employs fungi to degrade or sequester contaminants from the environment. The present work focused on the bioremediation of soils contaminated with zinc by the use of a native mycorrhizal fungi (AM) called Funneliformis geosporum (Nicol. & Gerd.) Walker & Schüßler. Experiments were performed using Triticum aestivum L. cv. Gemmeza-10 at different concentrations of Zn (50, 100, 200 mg kg-1) and inoculated with or without F. geosporum. The results showed that the dry weight of mycorrhizal wheat increased at Zn stressed plants as compared to the non-Zn-stressed control plants. The concentrations of Zn also had an inhibitory effect on the yield of dry root and shoot of non-mycorrhizal wheat. The photosynthetic pigment fractions were significantly affected by Zn treatments and mycorrhizal inoculation, where in all treatments, the content of the photosynthetic pigment fractions decreased as the Zn concentration increased in the soil. However, the level of minerals of shoots, roots, and grains was greatly influenced by Zn-treatment and by inoculation with F. geosporum. Treatment with Zn in the soil increased Cu and Zn concentrations in the root, shoot and grains, however, other minerals (P, S, K, Ca and Fe) concentration was decreased. Inoculation of wheat with AM fungi significantly reduced the accumulation of Zn and depressed its translocation in shoots and grains of wheat. In conclusion, inoculation with a native F. geosporum-improves yields of wheat under higher levels of Zn and is possible to be applied for the improvement of zinc contaminated soil. PMID:29145471
Source analysis of radiocesium in river waters using road dust tracers.
Murakami, Michio; Saha, Mahua; Iwasaki, Yuichi; Yamashita, Rei; Koibuchi, Yukio; Tsukada, Hirofumi; Takada, Hideshige; Sueki, Keisuke; Yasutaka, Tetsuo
2017-11-01
Following the Fukushima Dai-ichi Nuclear Power Station accident, regional road dust, heavily contaminated with radiocesium, now represents a potential source of radiocesium pollution in river water. To promote effective countermeasures for reducing the risk from radiocesium pollution, it is important to understand its sources. This study evaluated the utility of metals, including Al, Fe, and Zn as road dust tracers, and applied them to analyze sources of 137 Cs in rivers around Fukushima during wet weather. Concentrations of Zn in road dust were higher than agricultural and forest soils, whereas concentrations of Fe and Al were the opposite. Concentrations of Zn were weakly but significantly correlated with benzothiazole, a molecular marker of tires, indicating Zn represents an effective tracer of road dust. Al, Fe, and Zn were frequently detected in suspended solids in river water during wet weather. Distribution coefficients of these metals and 137 Cs exceeded 10 4 , suggesting sorptive behavior in water. Although concentrations of Al, Fe, Zn, and 137 Cs were higher in fine fractions of road dust and soils than in coarse fractions, use of ratios of 137 Cs to Al, Fe, or Zn showed smaller differences among size fractions. The results demonstrate that combinations of these metals and 137 Cs are useful for analyzing sources of radiocesium in water. These ratios in river water during wet weather were found to be comparable with or lower than during dry weather and were closer to soils than road dust, suggesting a limited contribution from road dust to radiocesium pollution in river water. Copyright © 2017 Elsevier Ltd. All rights reserved.
Trace elements in blood of sea turtles Lepidochelys olivacea in the Gulf of California, Mexico.
Zavala-Norzagaray, A A; Ley-Quiñónez, C P; Espinosa-Carreón, T L; Canizalez-Román, A; Hart, C E; Aguirre, A A
2014-11-01
This study determined the concentrations of heavy metals in blood collected from Pacific Ridley sea turtles (Lepidochelys olivacea) inhabiting the coast of Guasave, Mexico, in the Gulf of California. The highest reported metal concentration in blood was Zn, followed by Se. Of nonessential toxic metals, As was reported in higher percentage compared to Cd. The concentrations of metals detected were present as follows: Zn > Se > Mn > As > Ni > Cd > Cu. Cd concentration in blood is higher in our population in comparison with other populations of L. olivacea, and even higher in other species of sea turtles. Our study reinforces the usefulness of blood for the monitoring of the levels of contaminating elements, and is easily accessible and nonlethal for sea turtles.
Szymańska-Chabowska, Anna; Łaczmański, Łukasz; Jędrychowska, Iwona; Chabowski, Mariusz; Gać, Paweł; Janus, Agnieszka; Gosławska, Katarzyna; Smyk, Beata; Solska, Urszula; Mazur, Grzegorz; Poręba, Rafał
2015-08-06
The aim of this study was to find a relationship between polymorphisms of ALAD rs1805313, rs222808, rs1139488, VDR FokI and HFE C282Y and H63D and basic toxicological parameters (lead and ZnPP blood concentration) in people occupationally exposed to lead. We collected data of 101 workers (age 25-63 years) directly exposed to lead. The toxicological lab tests included blood lead, cadmium and ZnPP concentration measurement and arsenic urine concentration measurement. Workers were genotyped for ALAD (rs1805313, rs222808, rs1139488), HFE (C282Y, H63D) and VDR (FokI). Individuals with the lead exposure and coexisting F allel in the locus Fok-I of VDR gene are suspected of higher zinc protoporphyrins concentrations. Workers exposed to the lead with the Y allel in the locus C282Y of the HFE gene are predisposed to lower ZnPP levels and individuals with coexisting H allel in the locus H63D HFE gene are predisposed to lower Pb-B levels. The T allel in the locus rs1805313 of the ALAD gene determines lower Pb-B and ZnPP levels in lead-exposed individuals. The heterozigosity of the locus rs2228083 of the ALAD gene has a strong predilection to higher Pb-B levels. The carriage of the C allel in the locus rs1139488 of the ALAD gene might determine higher Pb-B levels and the heterozigosity of the locus rs1139488 of the ALAD gene might result in higher ZnPP levels. The study revealed relationship between VDR, HFE and ALAD genes polymorphism and basic toxicological parameters in occupationally exposed workers. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Zhou, Qi; Lin, Yan; Li, Xiang; Yang, Chunping; Han, Zhenfeng; Zeng, Guangming; Lu, Li; He, Shanying
2018-02-01
The effect of Zn 2+ on ammonium and phosphorous removal and duckweed growth was evaluated for treatment of anaerobically digested swine wastewater (ADSW) at various initial Zn 2+ concentrations ranging from 1.0 to 15mg/L. Lemna aequinoctialis taken from a local pond was selected for the treatment, and its fresh weight and contents of proteins, photosynthetic pigments, and vitamin E were examined. Results showed that the optimal Zn 2+ concentration was 5.0mg/L for NH 3 -N and TP removal, the duckweed growth, and the accumulation of proteins in the duckweed. A maximum content of photosynthetic pigments increased with the increase of initial Zn 2+ concentration, and it arrived earlier for a higher concentration of Zn 2+ . Vitamin E content in the duckweed reached 4.5mg/kg at 15mg/L Zn 2+ in 12-day cultivation, which showed the potential for producing and harvesting a high value-added product of vitamin E by culturing duckweed in ADSW. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Moon, Chung Hee; Tousi, Marzieh; Cheeney, Joseph; Ngo-Duc, Tam-Triet; Zuo, Zheng; Liu, Jianlin; Haberer, Elaine D.
2015-11-01
An 8-mer ZnO-binding peptide, VPGAAEHT, was identified using a M13 pVIII phage display library and employed as an additive during aqueous-based ZnO synthesis at 65 °C. Unlike most other well-studied ZnO-binding sequences which are strongly basic (pI > pH 7), the 8-mer peptide was overall acidic (pI < pH 7) in character, including only a single basic residue. The selected peptide strongly influenced ZnO nanostructure formation. Morphology and optical emission properties were found to be dependent on the concentration of peptide additive. Using lower peptide concentrations (<0.1 mM), single crystal hexagonal rods and platelets were produced, and using higher peptide concentrations (≥0.1 mM), polycrystalline layered platelets, yarn-like structures, and microspheres were assembled. Photoluminescence analysis revealed a characteristic ZnO band-edge peak, as well as sub-bandgap emission peaks. Defect-related green emission, typically associated with surface-related oxygen and zinc vacancies, was significantly reduced by the peptide additive, while blue emission, attributable to oxygen and zinc interstitials, emerged with increased peptide concentrations. Peptide-directed synthesis of ZnO materials may be useful for gas sensing and photocatalytic applications in which properly engineered morphology and defect levels have demonstrated enhanced performance.
Zhang, Zengqiang; Wang, Jim J; Ali, Amjad; DeLaune, Ronald D
2016-11-01
The seasonal variation in physico-chemical properties, anions, and the heavy metal (Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn) concentration was evaluated in water from nine different rivers in Lake Pontchartrain Basin, Louisiana, USA. The water quality parameters were compared with toxicity reference values (TRV), US Environmental Protection Agency (USEPA) drinking/aquatic life protection, and WHO standards. Among physico-chemical properties, pH, DO, and turbidity were high during spring, while, EC, temperature, and DOC were high during summer and vice versa. The anion study revealed that the concentrations of F - , Cl - , and NO 3 - were higher during summer and Br - and SO 4 - were higher during spring. Our research findings showed anion concentration decreased in the order of Cl - > SO 4 - > NO 3 - > Br - > F - , in accordance with the global mean anion concentration. The dissolved heavy metals (Cd, Co, Cr, Cu, Mn, Ni, Pb) except Zn were higher during spring than summer. None of the rivers showed any Cd pollution for both seasons. Co showed higher concentrations in Amite River, Mississippi River, Industrial Canal, and Lacombe Bayou during summer. The Cr concentration was higher than WHO drinking water standards, implicating water unsuitability for drinking purposes in all the rivers associated with the Lake Pontchartrain Basin. Cu showed no pollution risk for the study area. Mn and Co were similar to concentration in Lacombe Bayou, Liberty Bayou, Blind River, and Industrial Canal. Mn levels were greater than WHO standards for the Tickfaw River, Tangipahoa River, and Blind River in both seasons. Blind River, Tangipahoa River, Tickfaw River, and Amite River will require more monitoring for determining possible Mn pollution. Ni content in river water during both seasons showed low pollution risk. Liberty Bayou and Industrial Canal concentrations were closer to the WHO regulatory standards, indicating possible risk of Pb pollution in these water bodies. The Zn content was near the USEPA aquatic life standards in summer for all water bodies. None of the rivers showed any risk associated with Cd, Co, Cu, and Ni levels but medium to higher risk to aquatic life from Cr and Zn for both seasons for most of the rivers. Metal fractionation revealed the decreasing order of inert > labile > organic. The high inert fraction in the rivers under study reflects the major contribution of natural sources in Lake Pontchartrain Basin. The labile and organic forms of Cd, Cu, Ni, and Zn pose potential higher risk to the aquatic life in the Lake Pontchartrain Basin.
Stress induced by heavy metals on breeding of magpie (Pica pica) from central Iran.
Zarrintab, Mohammad; Mirzaei, Rouhollah
2017-09-01
The aim of this study was to address the impacts of some heavy metals (Cd, Pb, Zn, Ni and Cu) contamination on laying behavior, egg quality and breeding performance of Pica pica in north of Isfahan Province, Iran. During the breeding season of 2013, magpie's egg content and eggshell as well as nestling excrements and feathers were collected and total concentrations of heavy metals were measured by ICP-OES. Except for Zn in nestling feathers, the significantly higher concentrations of heavy metals were observed in nestling excrements than other samples. Also, comparison of heavy metals concentrations in egg content and eggshell showed that egg content had significantly higher concentrations of Zn and Pb, instead eggshell had significantly higher amount of Cu and Cd. Except for Cu, all heavy metals concentrations in eggshell had a negative relationship with morphological characters; and also concentration of Cu in egg content showed a significantly negative correlation with egg weight and volume. The most of heavy metals in nestling feathers and excrements had strongly positive correlations with each other. Also all heavy metals levels in eggshell and egg content had significantly positive correlations (except for Cu). Unhatched eggs had significantly lower weight but also greater levels of Zn, Cd, and Pb, than randomly collected eggs. No significant differences were observed for morphometric measurements of eggs between different sites, however, a decreased gradient was observed in egg volume toward the brick kiln site. Samples collected in brick kiln site accumulated higher concentrations of heavy metals than other sites. Although numbers of clutch size in brick kiln site were significantly higher than other sites, however, other breeding variable were lower than other sites. It can be suggested that ecosystem contamination may be caused to decrease the reproduction rate of Pica pica in brick kiln, probably by laying more poor quality eggs per clutch and nestling mortality. Copyright © 2017 Elsevier Inc. All rights reserved.
Arnamwong, Suteera; Wu, Longhua; Hu, Pengjie; Yuan, Cheng; Thiravetyan, Paitip; Luo, Yongming; Christie, Peter
2015-01-01
Cadmium (Cd) and zinc (Zn) phytoavailability and their phytoextraction by Sedum plumbizincicola using different nitrogen fertilizers, nitrification inhibitor (dicyandiamide, DCD) and urease inhibitor (N-(n-Butyl) thiophosphoric triamide, NBPT) were investigated in pot experiments where the soil was contaminated with 0.99 mg kg(-1) of Cd and 241 mg kg(-1) Zn. The soil solution pH varied between 7.30 and 8.25 during plant growth which was little affected by the type of N fertilizer. The (NH4)2SO4+DCD treatment produced higher NH4+-N concentrations in soil solution than the (NH4)2SO4 and NaNO3 treatment which indicated that DCD addition inhibited the nitrification process. Shoot Cd and Zn concentrations across all treatments showed ranges of 52.9-88.3 and 2691-4276 mg kg(-1), respectively. The (NH4)2SO4+DCD treatment produced slightly higher but not significant Cd and Zn concentrations in the xylem sap than the NaNO3 treatment. Plant shoots grown with NaNO3 had higher Cd concentrations than (NH4)2SO4+DCD treatment at 24.0 and 15.4 mg kg(-1), respectively. N fertilizer application had no significant effect on shoot dry biomass. Total Cd uptake in the urea+DCD treatment was higher than in the control, urea+NBPT, urea+NBPT+DCD, or urea treatments, by about 17.5, 23.3, 10.7, and 25.1%, respectively.
Hydrogen-Induced Plastic Deformation in ZnO
NASA Astrophysics Data System (ADS)
Lukáč, F.; Čížek, J.; Vlček, M.; Procházka, I.; Anwand, W.; Brauer, G.; Traeger, F.; Rogalla, D.; Becker, H.-W.
In the present work hydrothermally grown ZnO single crystals covered with Pd over-layer were electrochemically loaded with hydrogen and the influence of hydrogen on ZnO micro structure was investigated by positron annihilation spectroscopy (PAS). Nuclear reaction analysis (NRA) was employed for determination of depth profile of hydrogen concentration in the sample. NRA measurements confirmed that a substantial amount of hydrogen was introduced into ZnO by electrochemical charging. The bulk hydrogen concentration in ZnO determined by NRA agrees well with the concentration estimated from the transported charge using the Faraday's law. Moreover, a subsurface region with enhanced hydrogen concentration was found in the loaded crystals. Slow positron implantation spectroscopy (SPIS) investigations of hydrogen-loaded crystal revealed enhanced concentration of defects in the subsurface region. This testifies hydrogen-induced plastic deformation of the loaded crystal. Absorbed hydrogen causes a significant lattice expansion. At low hydrogen concentrations this expansion is accommodated by elastic straining, but at higher concentrations hydrogen-induced stress exceeds the yield stress in ZnO and plastic deformation of the loaded crystal takes place. Enhanced hydrogen concentration detected in the subsurface region by NRA is, therefore, due to excess hydrogen trapped at open volume defects introduced by plastic deformation. Moreover, it was found that hydrogen-induced plastic deformation in the subsurface layer leads to typical surface modification: formation of hexagonal shape pyramids on the surface due to hydrogen-induced slip in the [0001] direction.
NASA Astrophysics Data System (ADS)
Marimuthu, T.; Anandhan, N.; Thangamuthu, R.
2018-01-01
Electrochemical deposition of vertically aligned zinc oxide (ZnO) nanorods were prepared on ZnO seeded fluorine doped tin oxide (FTO) substrate in the solutions consisting of different concentrations of hexamethylenetetramine (HMTA). The electrochemical, structural, morphological, vibrational and optical properties were characterized by cyclic voltammetry (CV), X-ray diffraction (XRD), scanning electron microscope (SEM), Raman spectroscopy and photoluminescence (PL) spectroscopy, respectively. CV curves confirm that metallic zinc phase is not deposited as the HMTA concentration is about 9 mM in a deposition solution. XRD patterns of the as-prepared films show that the increasing HMTA concentrations from 0 mM to 9 mM not only increase the formation of zinc hydrate chloride (Zn5(OH)8Cl2·H2O) but also decrease and finally disappear the metallic Zn deposition. After the as-prepared films annealed at 450 ° C, the crystalline phases of Zn and Zn5(OH)8Cl2·H2O are completely converted to ZnO hexagonal wurtzite phase with high intense growth (002) plane orientation. SEM images support that the vertical growth of ZnO nanostructures (nanorods and petals) with a few flowers is found to be in the cordillera structure as the films are deposited in the solutions consisting of 3 mM, 6 mM and 9 mM HMTA respectively. Raman and PL spectra confirm that the ZnO film deposited in the solution consisting of 9 mM HMTA has a higher crystalline nature with lesser atomic defects and is also higher c-axis growth than that of other films deposited in the solutions consisting of 0 mM, 3 mM and 6 mM, respectively. UV-vis absorbance spectra corroborate that the ZnO film deposited in the solution consisting of 9 mM HMTA shows a high dye absorbance as compared with other films. The efficiency of DSSCs based on ZnO photoanodes deposited in the solutions consisting of 0 mM and 9 mM HMTA was 1.79 and 3.75%, respectively. Electrochemical impedance spectra revealed that DSSC based on ZnO photoanode deposited in the solution consisting of 9 mM HMTA has a higher charge recombination resistance (Rrec) than that of another DSSC.
Váradyová, Zora; Mravčáková, Dominika; Holodová, Monika; Grešáková, Ľubomira; Pisarčíková, Jana; Barszcz, Marcin; Taciak, Marcin; Tuśnio, Anna; Kišidayová, Svetlana; Čobanová, Klaudia
2018-06-14
Two experiments were conducted on sheep to determine the effect of dietary supplementation with zinc and a medicinal plant mixture on haematological parameters and microbial activity in the rumen and large intestine. In Experiment 1, 24 male lambs were randomly divided into four groups: One group was fed an unsupplemented basal diet (control), and three groups were fed a diet supplemented with 70 mg Zn/kg diet in the form of Zn sulphate (ZnSO 4 ), a Zn-chelate of glycine hydrate (Zn-Gly) or a Zn-proteinate (Zn-Pro), for five months. The ruminal content was collected separately from each lamb, and batch cultures of ruminal fluid were incubated in vitro with mixture of medicinal plants (Mix) with different roughage:concentrate ratios (800:200 and 400:600, w/w). Bioactive compounds in Mix were quantified by UPLC/MS/MS. In Experiment 2, four sheep were fed a diet consisting of meadow hay and barley grain (400:600, w/w), with Zn-Gly (70 mg Zn/kg diet), Mix (10% replacement of meadow hay) or Zn-Gly and Mix (Zn-Gly-Mix) as supplements in a Latin square design. Mix decreased total gas (p < 0.001) and methane (p < 0.01) production in vitro. In Experiment 1, caecal isobutyrate and isovalerate concentrations varied among the dietary treatments (p < 0.01). The isovalerate concentration of the zinc-supplemented groups in the distal colon was higher (p < 0.001) compared with the control. In Experiment 2, the molar proportion of isobutyrate was the highest in the faeces of the sheep fed the diet with Zn-Gly-Mix (p < 0.01). The plasma zinc concentration was higher in the groups fed a diet supplemented with zinc (p < 0.001). The haematological profile and antioxidant status did not differ between the dietary groups (p > 0.05). The diets containing medicinal plants and organic zinc thus helped to modulate the characteristics of fermentation in ruminants. © 2018 Blackwell Verlag GmbH.
3. A 40-years record of the polymetallic pollution of the Lot River system, France
NASA Astrophysics Data System (ADS)
Audry, S.; Schäfer, J.; Blanc, G.; Veschambre, S.; Jouanneau, J.-M.
2003-04-01
The Lot River system (southwest France) is known for historic Zn and Cd pollution that originates from Zn ore treatment in the small Riou-Mort watershed and affects seafood production in the Gironde Estuary. We present a sedimentary record from 2 cores taken in a dam lake downstream of the Riou-Mort watershed covering the evolution of metal inputs into the Lot River over the past 40 years (1960-2001). Depth profiles of Cd, Zn, Cu and Pb concentrations are comparable indicating common sources and transport. The constant Zn/Cd ratio (˜50) observed in the sediment cores is similar to that in SPM from the Riou-Mort watershed, indicating the dominance of point source pollution upon the geochemical background signal. Cadmium, Zn, Cu and Pb concentrations in the studied sediment cores show an important peak in 42-44 cm depth with up to 300 mg.kg-1 (Cd), 10,000 mg.kg-1 (Zn), 150 mg.kg-1 (Cu) and 930 mg.kg-1 (Pb). These concentrations are much higher than geochemical background values; For example, Cd concentrations are more than 350-fold higher than those measured in the same riverbed upstream the confluence with the Riou-Mort River. This peak coincides with the upper 137Cs peak resulting from the Chernobyl accident (1986). Therefore, this heavy metal peak is attributed to the latest accidental Cd pollution of the Lot-River in 1986. Several downward heavy metal peaks reflect varying input probably due to changes in industrial activities within the Riou-Mort watershed. Given mean sedimentation rate of about 2 cm.yr-1, the record suggests constant and much lower heavy metal concentrations since the early nineties due to restriction of industrial activities and remediation efforts in the Riou-Mort watershed. Nevertheless, Cd, Zn, Cu and Pb concentrations in the upper sediment remain high, compared to background values from reference sites in the upper Lot River system.
Zinc and copper bioaccumulation in fish from Laizhou Bay, the Bohai Sea
NASA Astrophysics Data System (ADS)
Liu, Jinhu; Cao, Liang; Huang, Wei; Zhang, Chuantao; Dou, Shuozeng
2014-05-01
Zinc (Zn) and copper (Cu) concentrations were determined in the tissues (muscle, stomach, liver, gills, skin, and gonads) of five commercial fish species (mullet Liza haematocheilus, flathead Platycephalus indicus, mackerel Scomberomorus niphonius, silver pomfret Pampus argenteus, and sea bass Lateolabrax japonicus) from Laizhou Bay in the Bohai Sea. Metal bioaccumulation was highest in the metabolically active tissues of the gonads and liver. Bioconcentration factors for Zn were higher in all tissues (gonads 44.35, stomach 7.73, gills 7.72, liver 5.61, skin 4.88, and muscle 1.63) than the corresponding values for Cu (gonads 3.50, stomach 3.00, gills 1.60, liver 5.43, skin 1.50, and muscle 0.93). Mackerel tissues accumulated metal to higher concentrations than did other fish species, but bioaccumulation levels were not significantly correlated with the trophic levels of the fish. Zn and Cu concentrations in the tissues were generally negatively correlated with fish length, except for a few tissues of sea bass. Risk assessment based on national and international permissible limits and provisional tolerances for weekly intake of Zn and Cu revealed that the concentrations of these two metals in muscle were relatively low and would not pose hazards to human health.
Oluwole, David O; Sarı, Fatma Aslıhan; Prinsloo, Earl; Dube, Edith; Yuzer, Abdulcelil; Nyokong, Tebello; Ince, Mine
2018-05-29
The syntheses of two zinc(II) phthalocyanines (ZnPcs) having either imidazole (ZnPc 1) or pyridiloxy (ZnPc 2) moieties as their macrocycle substituents are reported. Quaternization of the ZnPcs with methyl iodide afforded water soluble cationic phthalocyanines. The photophysical, photochemical properties and photodynamic therapy (PDT) activity of the ZnPcs were studied in solution. The fluorescence quantum yield and lifetime of ZnPc 1 were higher as compared to ZnPc 2. ZnPc 2 afforded higher triplet state (Φ T ) and singlet oxygen quantum yields (Φ Δ ) in comparison to ZnPc 1. The PDT activity of ZnPcs was investigated against human breast adenocarcinoma cells (MCF-7). The two compounds afforded a very minimal in vitro dark cytotoxicity with 85% viable cells at concentration ≤80 μM. On irradiation of the cells having the ZnPcs, ≥50% cell death was recorded for ZnPc 1 which was also evidenced by the cells photo-micrograph. Copyright © 2018 Elsevier B.V. All rights reserved.
Dey, Priyadarshini; Gola, Deepak; Mishra, Abhishek; Malik, Anushree; Kumar, Peeyush; Singh, Dileep Kumar; Patel, Neelam; von Bergen, Martin; Jehmlich, Nico
2016-11-15
In the present study, five fungal strains viz., Aspergillus terreus AML02, Paecilomyces fumosoroseus 4099, Beauveria bassiana 4580, Aspergillus terreus PD-17, Aspergillus fumigatus PD-18, were screened for simultaneous multimetal removal. Highest metal tolerance index for each individual metal viz., Cd, Cr, Cu, Ni, Pb and Zn (500mg/L) was recorded for A. fumigatus for the metals (Cd, 0.72; Cu, 0.72; Pb, 1.02; Zn, 0.94) followed by B. bassiana for the metals (Cd, 0.56; Cu, 0.14; Ni, 0.29; Zn, 0.85). Next, the strains were exposed to multiple metal mixture (Cd, Cr, Cu, Ni, Pb and Zn) of various concentrations (6, 12, 18, 30mg/L). Compared to other strains, B. bassiana and A. fumigatus had higher cube root growth (k) constants indicating their better adaptability to multi metal stress. After 72h, multimetal accumulation potential of B. bassiana (26.94±0.07mg/L) and A. fumigatus (27.59±0.09mg/L) were higher than the other strains at initial multimetal concentration of 30mg/L. However, considering the post treatment concentrations of individual metals in multimetal mixture (at all the tested concentrations), A. fumigatus demonstrated exceptional performance and could bring down the concentrations of Cd, Cu, Ni, Pb and Zn below the threshold level for irrigation prescribed by Food and Agriculture Organization (FAO). Copyright © 2016 Elsevier B.V. All rights reserved.
Heavy metals distribution in the coral reef ecosystems of the Northern Red Sea
NASA Astrophysics Data System (ADS)
Ali, Abdel-Hamid A. M.; Hamed, Mohamed A.; Abd El-Azim, Hoda
2011-03-01
Concentrations of seven heavy metals (Cu, Zn, Pb, Cd, Ni, Co and Fe) were measured in the seawater, sediments, common scleractinian reef-building corals and soft corals (Octocorallia : Alcyonacea) at seven reef sites in the Northern Red Sea: I (Hurghada), II (Ras Za'farana), III (El-Ain Al-Sukhna), IV (El-Tur), V (Sha'b Rashdan), VI (Sharm El-Sheikh) and VII (Dahab). Levels of heavy metals were considerably elevated in seawater, sediments and corals collected from reef sites exposed to increased environmental contamination, as a result of diversified natural and anthropogenic inputs. Soft corals of genera Lithophyton, Sarcophyton and Sinularia showed higher concentrations of Zn, Pb, Cd and Ni than hard coral genera Acropora and Stylophora. Soft coral Sarcophyton trocheliophorum collected from El Ain Al-Suhkna (Gulf of Suez) had greater concentration of Cu, followed by hard corals Acropora pharaonis and Acropora hemprichi. The elevated levels of Zn, Cd and Ni were reported in the dry tissue of soft coral Sinularia spp. On the other hand, the soft coral Lithophyton arboreum displayed the highest concentration of Pb at Sha'b Rashdan (Gulf of Suez) and elevated concentration of Zn at Sharm El-Sheikh. Sediments showed significantly higher concentration of Fe than corals. The higher levels of Fe in hard corals than soft corals reflected the incorporation of Fe into the aragonite and the chelation with the organic matrix of the skeleton. The greater abundance of soft corals in metal-contaminated reef sites and the elevated levels of metals in their tissue suggesting that the soft corals could develop a tolerance mechanism to relatively high concentrations of metals. Although the effects of heavy metals on reef corals were not isolated from the possible effects of other stresses, the percentage cover of dead corals were significantly higher as the concentrations of heavy metals increased.
Metals in some lagoons of Mexico.
Vazquez, F G; Sharma, V K; Alexander, V H; Frausto, C A
1995-02-01
The concentrations of metals, Cd, Cu, Fe, Mn, Ni, Pb, and Zn were determined in some lagoons to establish the level of metal pollution. The lagoons studied were Alvarado lagoon, Veracruz; San Andres lagoon, Tamaulipas; and Terminos lagoon, Campeche. The concentrations were determined in water, oyster (Crassostrea virginica), and sediments. Metals were accumulated in either oysters or sediments. Cu and Zn were higher in oysters and Fe and Mn were higher in sediments. The results in water samples were compared with the limit established by the Secretaria de Ecologia and Desarrollo Urbano Report and briefly discussed.
A facile synthesis of mesoporous Pdsbnd ZnO nanocomposites as efficient chemical sensor
NASA Astrophysics Data System (ADS)
Ismail, Adel A.; Harraz, Farid A.; Faisal, M.; El-Toni, Ahmed Mohamed; Al-Hajry, A.; Al-Assiri, M. S.
2016-07-01
Mesoporous ZnO was synthesized through the sol-gel method in the presence of triblock co-polymer Pluronic (F-127) template as the structure directing agent. Palladium nanoparticles were photochemically reduced and deposited onto mesoporous ZnO to obtain 1 wt.% Pd/ZnO nanocomposite. Structural and morphological analysis revealed high homogeneity and monodispersity of Pd nanoclusters with small particle sizes ∼ 2-5 nm onto mesoporous ZnO. The electrochemical detection of ethanol in aqueous solutions was conducted at the newly developed Pd/ZnO modified glassy carbon electrode (GCE) by the current-potential (IV) and cyclic voltammetry (CV) techniques and compared with bare GCE or pure ZnO. The presence of Pd dopant greatly enhances the sensitivity of ZnO, and the obtained mesoporous Pd/ZnO sensor has an excellent performance for precision detection of ethanol in aqueous solution with low concentration. The sensitivity was found to be 33.08 μAcm-2 mM-1 at lower concentration zone (0.05-0.8 mM) and 2.13 μAcm-2 mM-1 at higher concentration zone (0.8-12 mM), with a limit of detection (LOD) 19.2 μM. The kinetics study of ethanol oxidation revealed a characteristic feature for a mixed surface and diffusion-controlled process. These excellent sensing characteristics make the mesoporous Pd/ZnO nanocomposite a good candidate for the production of high-performance electrochemical sensors at low ethanol concentration in aqueous solution.
Gallardo-Lara, F; Azcón, M; Quesada, J L; Polo, A
1999-11-01
A greenhouse experiment was conducted under simulated field conditions using large-capacity plastic pots, filled each one with 25 kg of air-dried calcareous soil. Besides the control, four treatments were prepared by applying separately two rates (20 and 80 Mg ha-1) of municipal solid waste (MSW) compost, and co-composted municipal solid waste and sewage sludge (MSW-SS). Lettuce was planted and harvested 2.5 months later. The application of composted urban wastes tended to increase Cu concentration in lettuce with respect to the control, but it was only significant when the higher rate of MSW compost was applied. The control showed values of Zn concentration in plant within a deficient range. In general, composted urban wastes treatments had increased Zn concentration values, which were within the sufficiency range. Both treatments with MSW compost increased Cu and Zn uptake in comparison with MSW-SS co-compost treatments. At the postharvest, all composted urban wastes treatments increased significantly DTPA-extractable Cu content in soil with respect to the control; it was also significant the increase in AAAc-EDTA-extractable Cu in soil produced by the addition of the higher rate of MSW compost. The application of composted urban wastes increased significantly DTPA-extractable and AAAc-EDTA-extractable Zn contents in soil versus the control, except for the lower rate of MSW-SS co-compost. The values of DTPA-extractable/total ratio for Cu and Zn were under 10%, except for the treatment applying the higher rate of MSW compost which promoted higher values. The values of AAAc-EDTA-extractable/total ratio for Cu were above 10% in all treatments including the control. This tendency was also observed in AAAc-EDTA-extractable/total ratio for Zn when applying both rates of MSW compost or the higher rate of MSW-SS co-compost.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, M.F.; Hardy, J.T.; Miller, B.M.
1984-02-01
To determine the absorption, organ distribution, and retention of organically bound cadmium (Cd) and the effects of dietary zinc (Zn) on Cd metabolism, groups of mice were fed five different diets. The organic Cd used in the diets was in the form of lyophilized oyster (Crassostrea virginica) that had accumulated radiolabeled 109Cd through a plankton food chain. The mice were fed either a standard basal mouse diet (AIN-76) or diets containing five or eight times the Zn concentration of the basal diet. The source of Zn was either oyster tissue or ZnCO3. The concentration of organic and inorganic Cd providedmore » a dose of approximately 0.4 mg/kg. Diets prepared from oyster tissue probably contained all of the Cd and 85% of the Zn in organic form. Diets prepared with inorganic metals contained about the same Cd and Zn concentrations as the diets prepared with oyster. There was very little difference between the retention of Cd by mice that ingested organic (oyster bound) Cd and those fed inorganic Cd (CdCl2). However, when the Cd retained in the intestine was excluded, retention of organic Cd was significantly greater than that of inorganic Cd. The organ distribution of Cd differed significantly according to the chemical form of Cd fed (organic or inorganic) and the Zn level in the diet. The kidneys of mice fed organically bound Cd retained a higher percentage of the metal than the kidneys of those fed inorganic Cd. On the other hand, the livers of animals fed a low-Zn diet retained a higher percentage of the Cd than the livers of those fed a high-Zn diet, regardless of the dietary source of Cd.« less
Lifetime and dissolution kinetics of zinc oxide nanoparticles in aqueous media
NASA Astrophysics Data System (ADS)
Wang, Ning; Tong, Tiezheng; Xie, Minwei; Gaillard, Jean-François
2016-08-01
We have assessed the persistence and lifetime of ZnO nanoparticles (ZnO-NPs) by performing dissolution experiments in three different aqueous media. These experiments were performed at ZnO-NP concentration levels close to the solubility of zincite (˜8 μM or 650 μg l-1 of ZnO)—a concentration that is orders of magnitude higher than current estimated relevant environmental concentrations. The kinetics were followed by voltammetry, while maintaining the pH at about 7.5 using a CO2/N2 gas mixture to remove di-oxygen interference. Our results show that, under these conditions, ZnO-NPs readily dissolve with a lifetime expectancy that does not exceed 90 min. Water chemistry, especially the presence of dissolved organic matter (DOM), plays an important role in ZnO-NP dissolution. Dissolution rates significantly increase in the presence of strong chelating agents, EDTA and L-cysteine, while the addition of polymeric DOM, such as sodium alginate, has the opposite effect. Our results suggest that ZnO-NPs are unlikely to persist in natural aqueous media and that the toxicity should be primarily related to the released Zn2+ ions rather than effects commonly associated to the presence of nanoparticles.
Shi, Gao Ling; Lou, Lai Qing; Zhang, Shuai; Xia, Xue Wei; Cai, Qing Sheng
2013-12-01
Field studies were conducted to investigate arsenic (As), copper (Cu), and zinc (Zn) contamination in agricultural soils and wheat crops at two areas in Huaibei, China. Area A is in the proximity of Shuoli coal mine. In area B, three coal mines and a coal cleaning plant were distributed. The potential health risk of As, Cu, and Zn exposure to the local inhabitants through consumption of wheat grains was also estimated. The results showed that significantly higher (p<0.05) concentrations of As, Cu, and Zn were found in soils collected from area B than in those from area A. Arsenic concentrations in wheat sampled from area A were negatively correlated with the distance from the coal mine (p<0.001). Concentrations of Cu and Zn in wheat seedlings and grains collected from area B were significantly higher (p<0.05) than in those collected from area A, with the exception of Zn in wheat seedlings. Concentrations of Cu and Zn in most wheat grain samples were above the permissible limits of Cu and Zn in edible plants set by the Food and Agriculture Organization/World Health Organization. The hazard index of aggregate risk through consumption of wheat grains was 2.3-2.4 for rural inhabitants and 1.4-1.5 for urban inhabitants. The average intake of inorganic As for rural inhabitants in Huaibei was above 10 μg day(-1). These findings indicated that the inhabitants around the coal mine are experiencing a significant potential health risk due to the consumption of locally grown wheat.
Bing, Haijian; Wu, Yanhong; Zhou, Jun; Liang, Jianhong; Wang, Jipeng; Yang, Zijiang
2016-03-01
The concentrations and fractions of cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) in soils collected from Hailuogou Glacier foreland in eastern Tibetan Plateau were analyzed to decipher their mobility, and their eco-risk was assessed combined with multiple environmental indices. The concentrations of Cd were more than ten times higher than its local background in the O horizon and nearly three times higher in the A horizon. The concentrations of Pb and Zn were relatively high in the O horizon, whereas that of Cu increased with soil depth. The main fractions of metals in the surface horizons were reducible and acid-soluble for Cd, oxidizable and residual for Cu, reducible and oxidizable for Pb, and reducible and residual for Zn. The metal mobility generally followed the order of Cd > Pb > Zn > Cu in the O horizon and Cd > Pb > Cu > Zn in the A horizon. Sorption and complexation by soil organic matters imparted an important effect on the mobilization and transformation of Cd, Pb, and Zn in the soils. The oxidizable Cu fraction in the soils showed significant correlation with organic matters, and soil pH mainly modulated the acid-soluble and reducible Cu fractions. The concentrations and other environmental indices including contamination factor, enrichment factor, geoaccumulation index, and risk assessment index revealed that Cd reached high contamination and very high eco-risk, Pb had medium contamination but low eco-risk, Zn showed low contamination and low eco-risk, and Cu was not contaminated in the soils. The data indicated that Cd was the priority to concern in the soils of Hailuogou Glacier catchment.
NASA Astrophysics Data System (ADS)
Boroomand, Naser; Maleki, Mohammad Reza
2010-05-01
Compared to other cereals, such as wheat and barley cultivars which have low sensitivity to Zn deficiency, cowpea is sensitive to zinc (Zn) deficiency, however it extensively grows even in soils with deficient in Zn. A 8-week greenhouse experiment was conducted to study the response of cowpea and barely to Zn in calcareous soils with different DTPA- Zn. The soil samples were taken from soil surface up to 0.3 m in which their DTPA- Zn ranged from 0.5 to 3.5 mg kg-1. Shoot dry matter, concentration and uptake of Zn were found to be significantly correlated with soil DTPA- Zn in cowpea and barely. Critical deficiency level of Zn in cowpea was 1.3 mg kg-1 in soil and 28.5 mg kg-1 in shoot dry matter, however, to barely symptoms of Zn deficiency was not observed and concentration of Zn was higher than the critical level reported in literatures. Organic carbon (OC), calcium carbonate equivalent (CCE), pH and field capacity soil moisture content(FC) were significantly correlated with plant responses to Zn which were the most influenced characteristics to Zn uptake by plants.
Gu, Yang-Guang; Lin, Qin; Huang, Hong-Hui; Wang, Liang-Gen; Ning, Jia-Jia; Du, Fei-Yan
2017-01-30
The concentrations of heavy metals (Cd, Pb, Cr, Ni, Cu and Zn) were determined in four commercially valuable fish species (Thunnus obesus, Decapterus lajang, Cubiceps squamiceps and Priacanthus macracanthus), collected in the western continental shelf of the South China Sea. Concentrations of Cd, Pb, Cr, Ni, Cu, and Zn in fish muscles were 0.006-0.050, 0.13-0.68, 0.18-0.85, 0.11-0.25, 0.12-0.77, and 2.41-4.73μg/g, wet weight, respectively. Concentrations of heavy metals in all species were below their acceptable daily upper limit, suggesting human consumption of these wild fish species may be safe, with health risk assessment based on the target hazard quotients (THQ) and total THQ, indicating no significant adverse health effects with consumption. The average concentrations of Zn were higher in gills than in stomach contents, backbones or muscle, while conversely, the other heavy metals had higher concentrations in stomach contents than in other tissues. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jing, Mingyan; Rech, Leslie; Wu, Yinghong; Goltz, Douglas; Taylor, Carla G; House, James D
2015-04-01
Methionine synthase (MS) and betaine-homocysteine methyltransferase (BHMT) are both zinc (Zn)-dependent methyltransferases and involved in the methylation of homocysteine. The objective of this study was to investigate the effects of dietary Zn supply on homocysteine levels and expression of the two enzymes in growing rats. Male weanling Sprague-Dawley rats were assigned randomly to four dietary groups (n=8/group) for 3 weeks: Zn deficient (ZD; <1mg Zn/kg); Zn control (ZC; 30mg Zn/kg); Zn supplemented (ZS; 300mg Zn/kg); pair fed (PF; 30mg Zn/kg) to the ZD group. Serum and femur Zn concentrations were 83% and 58% lower in ZD, and 49% and 62% higher in ZS compared to ZC (P<0.001), respectively. The ZD rats had lower feed intake (37%), body weight gains (45%), liver (43%) and kidney (31%) weights than those of ZC (P<0.001), but these parameters in ZD were not significantly different from the PF controls. Serum homocysteine concentrations were 65% higher in ZD compared to PF (P<0.05), and there was no significant difference in serum folate levels between ZD and PF groups. The mRNA expression of liver and kidney MS was 57% and 38% lower in ZD than PF (P<0.001), respectively. Hepatic and renal BHMT mRNA levels were not altered in ZD compared to controls. The aforementioned measurements were not significantly different between ZS and ZC groups, except Zn levels. These results demonstrated that homocysteine homeostasis appeared to be disturbed by Zn deficiency but not Zn supplementation, and elevated serum homocysteine might be due to reduced expression of MS during Zn deficiency. Copyright © 2014 Elsevier GmbH. All rights reserved.
Zn2+-Doped Polyaniline/Graphene Oxide as Electrode Material for Electrochemical Supercapacitors
NASA Astrophysics Data System (ADS)
Xu, Hui; Tang, Jing; Chen, Yong; Liu, Jian; Pu, Jinjuan; Li, Qi
2017-10-01
Electrodes based on Zn2+-doped polyaniline/graphene oxide (Zn2+/PANI/GO) were synthesized on stainless steel mesh substrates in H2SO4 solution via electrochemical codeposition. Different concentrations of graphene oxide (GO) were incorporated into the films to improve the electrochemical performance of the electrodes. Electrochemical properties of the films were tested by cyclic voltammetry, galvanostatic charge-discharge tests, and electrochemical impedance spectroscopy, in a three-electrode system. The maximum specific capacitance of the Zn2+/PANI/GO film with a GO concentration of 15 mg L-1 was found to be 1266 F g-1 at a scan rate of 3 mV s-1. This value was higher than that of a Zn2+ doped polyaniline (Zn2+/PANI) film (814 F g-1). The Zn2+/PANI/GO film also showed good cycling stability, retaining over 86% of its initial capacitance after 1000 cycles. These results indicate that the Zn2+/PANI/GO composites can be applied as high performance supercapacitor electrodes.
Wright, P; Mason, C F
1999-02-09
A study was made of the concentrations of the elements As, Cd, Cu, Hg, Mn, Ni, Pb and Zn in the sediments and biota of two adjacent estuaries, the Orwell and Stour, in eastern England. The Orwell Estuary, with its urbanized head, was more contaminated with heavy metals than the Stour Estuary. Generally, in both estuaries, concentrations of metals were highest towards the head and the mouth. Saltmarsh sediments accumulated higher concentrations of most metals than mudflat sediments. Metal concentrations in the biota showed marked interspecific differences; Mytilus edulis had higher concentrations of Cd, Littorina littorea higher concentrations of Cu and Mn and Arenicola marina higher concentrations of Hg. Invertebrates from the Orwell had higher metal concentrations than those from the Stour. Algae had generally lower levels of metals than invertebrates. Metal concentrations were greatest and more variable in the top 10 cm of sediment. Metals were at greatest concentrations in winter and lowest in summer in sediments, algae and invertebrates. Mercury concentration increased with size in the three invertebrate species studied, but Cd and Zn generally were at higher concentrations in younger animals. Comparisons of sediments with average shale values indicated anthropogenic enrichment with several metals but it was considered that only Pb, at some sites, and possibly Hg posed potential threats to the ecology of the estuaries.
NASA Astrophysics Data System (ADS)
El Baz, Sherif M.; Khalil, Mohamed M.
2018-07-01
Trace metals contamination has been recently increased in the Egyptian Mediterranean coast owing to the nearby anthropological activities. This investigation aimed to detect the concentrations of six different trace metals (Fe, Mn, Cu, Cd, Pb and Zn) in surface sediments from the central part of the Egyptian Mediterranean coast, and to assess their state of contamination from different indices and risk factor calculations. Mean concentrations of Cu, Pb and Zn were lower and the mean concentration of Cd was higher compared to the background values. The assessment of pollution was mainly based on the contamination indices. Based on the contamination factor, Pb was the most enriched element followed by Cd, Mn, Zn and Cu. Most of the sites show low contamination with respect to Pb, Mn, Cd, Fe, Zn and Cu. The pollution load index also suggests that all the coastal sediments are unpolluted. According to the geoaccumulation index, the sediments were classified into unpolluted with Mn, Cd, Fe and Pb, and unpolluted to moderately polluted with Pb. Risk evaluation revealed that Cd had the greatest ecological risk, followed by Pb, Cu, Mn, while Zn had the lowest risk. With the aid of statistical methods, the origin of metals is classified into two clusters (A and B). Group A consists of Fe, Mn and Cu, whereas group B contains Zn, Pb and Cd. In the first cluster Fe and Mn are joined to each other at a positive and significant similarity (0.68). Fe is recognized as an indicator of lithogenous origin, therefore, its higher similarity with Mn may be indicative of the similar origin for Manganese. In the second cluster Pb and Zn are joined to each other at a positive and significant similarity (0.80). Pb is recognized as an indicator of anthropogenic origin, therefore, its higher similarity with Zn may be indicative of the similar origin for Zinc.
NASA Astrophysics Data System (ADS)
Singh, Chetan C.; Panda, Emila
2018-04-01
In order to know the threshold quantity of the zinc interstitials that contributes to an increase in carrier concentration in the Al-doped ZnO (AZO) films and their effect on the overall microstructure and optoelectronic properties of these films, in this work, Zn-rich-AZO and ZnO thin films are fabricated by adding excess zinc (from a zinc metallic target) during their deposition in RF magnetron sputtering and are then investigated using a wide range of experimental techniques. All these films are found to grow in a ZnO hexagonal wurtzite crystal structure with strong (002) orientation of the crystallites, with no indication of Al2O3, metallic Zn, and Al. The excessively introduced zinc in these AZO and/or ZnO films is found to increase the shallow donor level defects (i.e., zinc interstitials and oxygen-related electronic defect states), which is found to significantly increase the carrier concentration in these films. Additionally, aluminum is seen to enhance the creation of these electronic defect states in these films, thereby contributing more to the overall carrier concentration of these films. However, carrier mobility is found to decrease when the carrier concentration values are higher than 4 × 1020 cm-3, because of the electron-electron scattering. Whereas the optical band gap of the ZnO films is found to increase with increasing carrier concentration because of the Burstein-Moss shift, these decrease for the AZO films due to the band gap narrowing effect caused by excess carrier concentration.
Hu, Yahu; Nan, Zhongren; Su, Jieqiong; Wang, Ning
2013-10-01
The object of this study was to assess the capacity of Populus alba L. var. pyramidalis Bunge for phytoremediation of heavy metals on calcareous soils contaminated with multiple metals. In a pot culture experiment, a multi-metal-contaminated calcareous soil was mixed at different ratios with an uncontaminated, but otherwise similar soil, to establish a gradient of soil metal contamination levels. In a field experiment, poplars with different stand ages (3, 5, and 7 years) were sampled randomly in a wastewater-irrigated field. The concentrations of cadmium (Cd), Cu, lead (Pb), and zinc (Zn) in the poplar tissues and soil were determined. The accumulation of Cd and Zn was greatest in the leaves of P. pyramidalis, while Cu and Pb mainly accumulated in the roots. In the pot experiment, the highest tissue concentrations of Cd (40.76 mg kg(-1)), Cu (8.21 mg kg(-1)), Pb (41.62 mg kg(-1)), and Zn (696 mg kg(-1)) were all noted in the multi-metal-contaminated soil. Although extremely high levels of Cd and Zn accumulated in the leaves, phytoextraction using P. pyramidalis may take at least 24 and 16 years for Cd and Zn, respectively. The foliar concentrations of Cu and Pb were always within the normal ranges and were never higher than 8 and 5 mg kg(-1), respectively. The field experiment also revealed that the concentrations of all four metals in the bark were significantly higher than that in the wood. In addition, the tissue metal concentrations, together with the NH4NO3-extractable concentrations of metals in the root zone, decreased as the stand age increased. P. pyramidalis is suitable for phytostabilization of calcareous soils contaminated with multiple metals, but collection of the litter fall would be necessary due to the relatively high foliar concentrations of Cd and Zn.
Mechanisms of chronic waterborne Zn toxicity in Daphnia magna.
Muyssen, Brita T A; De Schamphelaere, Karel A C; Janssen, Colin R
2006-05-25
In order to gain better insights in the integrated response of Daphnia magna following chronic zinc exposure, several physiological parameters were measured in a time-dependent manner. D. magna juveniles were exposed for 21 days to dissolved Zn concentrations up to 340 microg/L. Next to standard endpoints such as mortality, growth and reproduction the following sub-lethal endpoints were measured: filtration and ingestion rate, respiration rate, energy reserves, internal Zn and total Ca concentrations in the organisms. Organisms exposed to 80 microg/L generally performed better than the Zn deprived control organisms. The former were used to elucidate the effects of higher Zn concentrations on the endpoints mentioned above. After 1 week, only 7% of the organisms exposed to 340 microg/L survived. Body Zn contents of these organisms were 281 +/- 76 microg g dry weight and a 37% decrease of the Ca contents was observed. This suggests a competitive effect of Zn on Ca uptake. Filtration rate (-51%), individual weight (-58%) and energy reserves (-35%) also exhibited a decreasing trend as a function of increasing Zn exposure concentrations. During the second and third exposure week an overall repair process was observed. In the surviving organisms mortality and reproduction were only slightly affected. This can be explained by (over)compensation reactions at lower levels of biological organisation: Ca contents (+24%) and filtration rate (+90%) increased as a function of the exposure concentration while respiration rate decreased (-29%) resulting in energy reserves remaining constant as a function of Zn exposure. It is hypothesized that a disturbed Ca balance is probably the first cause for zinc toxicity effects in D. magna.
NASA Astrophysics Data System (ADS)
Singh, Sonal; Ruhela, Aakansha; Rani, Sanju; Khanuja, Manika; Sharma, Rishabh
2018-02-01
In the present work, dual layer BiVO4/ZnO photoanode is instigated for photo-electrochemical (PEC) water splitting applications. Two different photocatalytic layers ZnO and BiVO4, reduces charge carrier recombination and charge transfer resistance at photoanode/electrolyte junction. The concentration-specific, tunable and without 'spike and overshoot' features, photocurrent density response is originated by varying BiVO4 concentration in the BiVO4/ZnO photoanode. The crystal structure of ZnO (hexagonal wurtzite structure) and BiVO4 (monoclinic scheelite structure) is confirmed by X-ray diffraction studies. The band gap of BiVO4/ZnO was estimated to be ca. 2.42 eV through Kubler-Munk function F(R∞) using diffuse reflectance spectroscopy. Electrochemical behavior of samples was analyzed with photocurrent measurements, electrochemical impedance, Mott-Schottky plots, bulk separation efficiency and surface transfer efficiency. The maximum photocurrent density of BiVO4/ZnO photoanode was found to be 2.3 times higher than pristine ZnO sample.0.038 M BiVO4/ZnO exhibited the highest separation efficiency of 72% and surface transfer efficiency of 64.7% at +1.23 V vs. RHE. Mott-Schottky study revealed the maximum charge carrier density in the same sample.
Bioaccumulation of trace metals in octocorals depends on age and tissue compartmentalization
Hwang, Jiang-Shiou; Huang, Ke Li; Huang, Mu-Yeh; Liu, Xue-Jun; Khim, Jong Seong; Wong, Chong Kim
2018-01-01
Trace metal dynamics have not been studied with respect to growth increments in octocorals. It is particularly unknown whether ontogenetic compartmentalization of trace metal accumulation is species-specific. We studied here for the first time the intracolonial distribution and concentrations of 18 trace metals in the octocorals Subergorgia suberosa, Echinogorgia complexa and E. reticulata that were retrieved from the northern coast of Taiwan. Levels of trace metals were considerably elevated in corals collected at these particular coral habitats as a result of diverse anthropogenic inputs. There was a significant difference in the concentration of metals among octocorals except for Sn. Both species of Echinogorgia contained significantly higher concentrations of Cu, Zn and Al than Subergorgia suberosa. We used for the first time exponential growth curves that describe an age-specific relationship of octocoral trace metal concentrations of Cu, Zn, Cd, Cr and Pb where the distance from the grip point was reflecting younger age as linear regressions. The larger colony (C7) had a lower accumulation rate constant than the smaller one (C6) for Cu, Zn, Cd, Cr and Pb, while other trace metals showed an opposite trend. The Cu concentration declined exponentially from the grip point, whereas the concentrations of Zn, Cd, Cr and Pb increased exponentially. In S. suberosa and E. reticulata, Zn occurred primarily in coenosarc tissues and Zn concentrations increased with distance from the grip point in both skeletal and coenosarc tissues. Metals which appeared at high concentrations (e.g. Ca, Zn and Fe) generally tended to accumulate in the outer coenosarc tissues, while metals with low concentrations (e.g. V) tended to accumulate in the soft tissues of the inner skeleton. PMID:29684058
Hamed, Seham M; Zinta, Gaurav; Klöck, Gerd; Asard, Han; Selim, Samy; AbdElgawad, Hamada
2017-06-01
Algae are frequently exposed to toxic metals, and zinc (Zn) is one of the major toxicants present. We exposed two green microalgae, Chlorella sorokiniana and Scenedesmus acuminatus, to sub-lethal concentrations (1.0 and 0.6mM) of Zn for seven days. Algal responses were analysed at the level of growth, oxidative stress, and antioxidants. Growth parameters such as cell culture yield and pigment content were less affected by Zn in C. sorokiniana, despite the fact that this alga accumulated more zinc than S. acuminatus. Also, C. sorokiniana, but not S. acuminatus, was able to acclimatize during long-term exposure to toxic concentrations of the test metals (specific growth rate (µ) was 0.041/day and total chlorophyll was 14.6mg/mL). Although, Zn induced oxidative stress in both species, C. sorokiniana experienced less stress than S. acuminatus. This could be explained by a higher accumulation of antioxidants in C. sorokiniana, where flavonoids, polyphenols, tocopherols, glutathione (GSH) and ascorbate (ASC) content increased. Moreover, antioxidant enzymes glutathione S transferase (GST), glutathione reductase (GR), superoxide dismutase (SOD), peroxidase (POX) and ascorbate peroxidase (APX), showed increased activities in C. sorokiniana. In addition to, and probably also underlying, the higher Zn tolerance in C. sorokiniana, this alga also showed higher Zn biosorption capacity. Use of C. sorokiniana as a bio-remediator, could be considered. Copyright © 2017 Elsevier Inc. All rights reserved.
Shope, Christopher L.; Xie, Ying; Gammons, Christopher H.
2006-01-01
Many mining-impacted streams in western Montana with pH near or above neutrality display large (up to 500%) diel cycles in dissolved Zn concentrations. The streams in question typically contain boulders coated with a thin biofilm, as well as black mineral crusts composed of hydrous Mn–Zn oxides. Laboratory mesocosm experiments simulating diel behavior in High Ore Creek (one of the Montana streams with particularly high Zn concentrations) show that the Zn cycles are not caused by 24-h changes in streamflow or hyporheic exchange, but rather to reversible in-stream processes that are driven by the solar cycle and its attendant influence on pH and water temperature (T). Laboratory experiments using natural Mn–Zn precipitates from the creek show that the mobilities of Zn and Mn increase nearly an order of magnitude for each unit decrease in pH, and decrease 2.4-fold for an increase in T from 5 to 20 °C. The response of dissolved metal concentration to small changes in either pH or T was rapid and reversible, and dissolved Zn concentrations were roughly an order of magnitude higher than Mn. These observations are best explained by sorption of Zn2+ and Mn2+ onto the secondary Mn–Zn oxide surfaces. From the T-dependence of residual metal concentrations in solution, approximate adsorption enthalpies of +50 kJ/mol (Zn) and +46 kJ/mol (Mn) were obtained, which are within the range of enthalpy values reported in the literature for sorption of divalent metal cations onto hydrous metal oxides. Using the derived pH- and T-dependencies from the experiments, good agreement is shown between predicted and observed diel Zn cycles for several historical data sets collected from High Ore Creek.
Copper, zinc, and cadmium in various fractions of soil and fungi in a Swedish forest.
Vinichuk, Mykhailo M
2013-01-01
Ectomycorrhizal fungi profoundly affect forest ecosystems through mediating nutrient uptake and maintaining forest food webs. The accumulation of metals in each transfer step from bulk soil to fungal sporocarps is not well known. The accumulation of three metals copper (Cu), zinc (Zn) and cadmium (Cd) in bulk soil, rhizosphere, soil-root interface, fungal mycelium and sporocarps of mycorrhizal fungi in a Swedish forest were compared. Concentrations of all three metals increased in the order: bulk soil < soil-root interface (or rhizosphere) < fungal mycelium < fungal sporocarps. The uptake of Cu, Zn and Cd during the entire transfer process in natural conditions between soil and sporocarps occurred against a concentration gradient. In fungal mycelium, the concentration of all three metals was about three times higher than in bulk soil, and the concentration in sporocarps was about two times higher than in mycelium. In terms of accumulation, fungi (mycelium and sporocarps) preferred Cd to Zn and Cu. Zinc concentration in sporocarps and to a lesser extent in mycelium depended on the concentration in soil, whereas, the uptake of Cu and Cd by both sporocarps and mycelium did not correlate with metal concentration in soil. Heavy metal accumulation within the fungal mycelium biomass in the top forest soil layer (0-5 cm) might account for ca. 5-9% of the total amount of Cu, 5-11% of Zn, and 16-32% of Cd. As the uptake of zinc and copper by fungi may be balanced, this implied similarities in the uptake mechanism.
Moghaddasi, Sahar; Fotovat, Amir; Khoshgoftarmanesh, Amir Hossein; Karimzadeh, F; Khazaei, Hamid Reza; Khorassani, Reza
2017-10-01
There is a gap of knowledge for the fate, effects and bioavailability of coated and uncoated ZnO nanoparticles (NPs) in soil. Moreover, little is known about the effects of soil properties on effects of NPs on plants. In this study, the availability ZnO NPs in two soils with different organic matter content (one treated with cow manure (CM) and the other as untreated) was compared with their bulk particles. Results showed that coated and uncoated ZnO NPs can be more bioaccessible than their bulk counterpart and despite their more positive effects at low concentration (< 100mgkg -1 ), they were more phytotoxic for plants compared to the bulk ZnO particles at high concentration (1000mgkg -1 ) in the soil untreated with CM. The concentration of 1000mgkg -1 of ZnO NPs, decreased shoot dry biomass (52%) in the soil untreated with CM but increased shoot dry biomass (35%) in CM-treated soil compared to their bulk counterpart. In general, plants in the CM-treated soil showed higher Zn concentration in their tissues compared with those in untreated soil. The difference in shoot Zn concentration between CM-treated and untreated soil for NPs treatments was more than bulk particles treatment. This different percentage at 100mgkg -1 of bulk particles was 20.6% and for coated and uncoated NPs were 37% and 32%, respectively. Generally, the distribution of ZnO among Zn fractions in soil (exchangeable, the metal bound to carbonates, Fe-Mn oxides, organic matter and silicate minerals and the residual fraction) changed based on applied Zn concentration, Zn source and soil organic matter content. The root tip deformation under high concentration of NPs (1000mgkg -1 treatment ) was observed by light microscopy in plants at the soil untreated with CM. It seems that root tip deformation is one of the specific effects of NPs which in turn inhibits plant growth and nutrients uptake by root. The transmission electron microcopy image showed the aggregation of NPs inside the plant cytoplasm and their accumulation adjacent to the cell membrane. Copyright © 2017. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Al-Ebraheem, A.; Mersov, A.; Gurusamy, K.; Farquharson, M. J.
2010-07-01
A microbeam synchrotron X-ray fluorescence (μSRXRF) technique has been used to determine the localization and the relative concentrations of Zn, Cu, Fe and Ca in primary colorectal cancer and secondary colorectal liver metastases. 24 colon and 23 liver samples were examined, all of which were formalin fixed tissues arranged as microarrays of 1.0 mm diameter and 10 μm thickness. The distribution of these metals was compared with light transmission images of adjacent sections that were H and E stained to reveal the location of the cancer cells. Histological details were provided for each sample which enable concentrations of all elements in different tissue types to be compared. In the case of liver, significant differences have been found for all elements when comparing tumour, normal, necrotic, fibrotic, and blood vessel tissues (Kruskal Wallis Test, P<0.0001). The concentrations of all elements have also been found to be significantly different among tumour, necrotic, fibrotic, and mucin tissues in the colon samples (Kruskal Wallis Test, P<0.0001). The concentrations of all elements have been compared between primary colorectal samples and colorectal liver metastases. Concentration of Zn, Cu, Fe and Ca are higher in all types of liver tissues compared to those in the colon tissues. Comparing liver tumour and colon tumour samples, significant differences have been found for all elements (Mann Whitney, P<0.0001). For necrotic tissues, significant increase has been found for Zn, Ca, Cu and Fe (Mann Whitney, P<0.0001 for Fe and Zn, 0.014 for Ca, and 0.001 for Cu). The liver fibrotic levels of Zn, Ca, Cu and Fe were higher than the fibrotic colon areas (independent T test, P=0.007 for Zn and Mann Whitney test P<0.0001 for Cu, Fe and Ca). For the blood vessel tissue, the analysis revealed that the difference was only significant for Fe ( P=0.009) from independent T test.
Epitaxial growth and chemical vapor transport of ZnTe by closed-tube method
NASA Astrophysics Data System (ADS)
Ogawa, H.; Nishio, M.; Arizumi, T.
1981-04-01
The epitaxial growth of ZnTe in a ZnTe- I2 system by a closed tube method is investigated by varying the charged iodine concentration ( MI2) or the temperature difference ( ΔT) between the high and low temperature zones. The transport rate is a function of MI2 and ΔT and has a minimum value increasing monotonically at higher and lower iodine concentration, and it increases with increasing ΔT. This experimental result can be explained well by thermodynamical calculations. The growth rate of ZnTe has the same tendency as the transport rate. The surface morphology of epitaxial layer on (110)ZnTe is not sinificantly affected by MI2 but becomes smoother with increasing temperature. The surface morphology and the growth rate of ZnTe layers also depend upon the orientation of substrate. The epitaxial layer can be obtained at temperature as low as 623°C.
Waalewijn-Kool, Pauline L; Ortiz, Maria Diez; Lofts, Stephen; van Gestel, Cornelis A M
2013-10-01
The effect of soil pH on the toxicity of 30 nm ZnO to Folsomia candida was assessed in Dorset field soils with pHCaCl2 adjusted to 4.31, 5.71, and 6.39. To unravel the contribution of particle size and dissolved Zn, 200 nm ZnO and ZnCl2 were tested. Zinc sorption increased with increasing pH, and Freundlich kf values ranged from 98.9 (L/kg)(1/n) to 333 (L/kg)(1/n) for 30 nm ZnO and from 64.3 (L/kg)(1/n) to 187 (L/kg)(1/n) for ZnCl2. No effect of particle size was found on sorption, and little difference was found in toxicity between 30 nm and 200 nm ZnO. The effect on reproduction decreased with increasing pH for all Zn forms, with 28-d median effective concentrations (EC50s) of 553 mg Zn/kg, 1481 mg Zn/kg, and 3233 mg Zn/kg for 30 nm ZnO and 331 mg Zn/kg, 732 mg Zn/kg, and 1174 mg Zn/kg for ZnCl2 at pH 4.31, 5.71, and 6.39, respectively. The EC50s based on porewater Zn concentrations increased with increasing pH for 30 nm ZnO from 4.77 mg Zn/L to 18.5 mg Zn/L, while for ZnCl2 no consistent pH-related trend in EC50s was found (21.0-63.3 mg Zn/L). Porewater calcium levels were 10 times higher in ZnCl2 -spiked soils than in ZnO-spiked soils. The authors' results suggest that the decreased toxicity of ZnCl2 compared with 30 nm ZnO based on porewater concentrations was because of a protective effect of calcium and not a particle effect. © 2013 SETAC.
Boguta, Patrycja; Sokołowska, Zofia
2016-01-01
The main aim of this study was the analysis of the interaction between humic acids (HAs) from different soils and Zn(II) ions at wide concentration ranges and at two different pHs, 5 and 7, by using fluorescence and FTIR spectroscopy, as well as potentiometric measurements. The presence of a few areas of HAs structures responsible for Zn(II) complexing was revealed. Complexation at α-sites (low humified structures of low-molecular weight and aromatic polycondensation) and β-sites (weakly humified structures) was stronger at pH 7 than 5. This trend was not observed for γ-sites (structures with linearly-condensed aromatic rings, unsaturated bonds and large molecular weight). The amount of metal complexed at pH5 and 7 by α and γ-structures increased with a decrease in humification and aromaticity of HAs, contrary to β-areas where complexation increased with increasing content of carboxylic groups. The stability of complexes was higher at pH 7 and was the highest for γ-structures. At pH 5, stability decreased with C/N increase for α-areas and -COOH content increase for β-sites; stability increased with humification decrease for γ-structures. The stability of complexes at α and β-areas at pH 7 decreased with a drop in HAs humification. FTIR spectra at pH 5 revealed that the most-humified HAs tended to cause bidentate bridging coordination, while in the case of the least-humified HAs, Zn caused bidentate bridging coordination at low Zn additions and bidentate chelation at the highest Zn concentrations. Low Zn doses at pH 7 caused formation of unidentate complexes while higher Zn doses caused bidentate bridging. Such processes were noticed for HAs characterized by high oxidation degree and high oxygen functional group content; where these were low, HAs displayed bidentate bridging or even bidentate chelation. To summarize, the above studies have showed significant impact of Zn concentration, pH and some properties of HAs on complexation reactions of humic acids with zinc.
Boguta, Patrycja; Sokołowska, Zofia
2016-01-01
The main aim of this study was the analysis of the interaction between humic acids (HAs) from different soils and Zn(II) ions at wide concentration ranges and at two different pHs, 5 and 7, by using fluorescence and FTIR spectroscopy, as well as potentiometric measurements. The presence of a few areas of HAs structures responsible for Zn(II) complexing was revealed. Complexation at α-sites (low humified structures of low-molecular weight and aromatic polycondensation) and β-sites (weakly humified structures) was stronger at pH 7 than 5. This trend was not observed for γ-sites (structures with linearly-condensed aromatic rings, unsaturated bonds and large molecular weight). The amount of metal complexed at pH5 and 7 by α and γ-structures increased with a decrease in humification and aromaticity of HAs, contrary to β-areas where complexation increased with increasing content of carboxylic groups. The stability of complexes was higher at pH 7 and was the highest for γ-structures. At pH 5, stability decreased with C/N increase for α-areas and -COOH content increase for β-sites; stability increased with humification decrease for γ-structures. The stability of complexes at α and β-areas at pH 7 decreased with a drop in HAs humification. FTIR spectra at pH 5 revealed that the most-humified HAs tended to cause bidentate bridging coordination, while in the case of the least-humified HAs, Zn caused bidentate bridging coordination at low Zn additions and bidentate chelation at the highest Zn concentrations. Low Zn doses at pH 7 caused formation of unidentate complexes while higher Zn doses caused bidentate bridging. Such processes were noticed for HAs characterized by high oxidation degree and high oxygen functional group content; where these were low, HAs displayed bidentate bridging or even bidentate chelation. To summarize, the above studies have showed significant impact of Zn concentration, pH and some properties of HAs on complexation reactions of humic acids with zinc. PMID:27077915
The leguminous species Anthyllis vulneraria as a Zn-hyperaccumulator and eco-Zn catalyst resources.
Grison, Claire M; Mazel, Marine; Sellini, Amandine; Escande, Vincent; Biton, Jacques; Grison, Claude
2015-04-01
Anthyllis vulneraria was highlighted here as a Zn-hyperaccumulator for the development of a pilot phytoextraction process in the mine site of Les Avinières in the district of Saint-Laurent-Le-Minier. A. vulneraria appeared to hyperaccumulate the highest concentration of Zn in shoots with a better metal selectivity relative to Cd and Pb than the reference Zn-hyperaccumulator Noccea caerulescens. A bigger biomass production associated to a higher Zn concentration conducted A. vulneraria to the highest total zinc gain per hectare per year. As a legume, A. vulneraria was infected by rhizobia symbionts. Inoculation of A. vulneraria seeds showed a positive impact on Zn hyperaccumulation. A large-scale culture process of symbiotic rhizobia of A. vulneraria was investigated and optimized to allow large-scale inoculation process. Contaminated shoots of A. vulneraria were not considered as wastes and were recovered as Eco-Zn catalyst in particular, examples of organic synthesis, electrophilic aromatic substitution. Eco-Zn catalyst was much more efficient than conventional catalysts and allowed greener chemical processes.
Nie, Zhaojun; Zhao, Peng; Wang, Jia; Li, Jinfeng; Liu, Hongen
2017-01-01
Nitrogen (N) is critical for zinc (Zn) absorption into plant roots; this in turn allows for Zn accumulation and biofortification of grain in winter wheat ( Triticum aestivum L.), an important food crop. However, little is known about root morphology and subcellular Zn distribution in response to N treatment at different levels of Zn supply. In this study, two nutrient solution culture experiments were conducted to examine Zn accumulation, Zn absorption kinetics, root morphology, and Zn subcellular distribution in wheat seedlings pre-cultured with different N concentrations. The results showed positive correlations between N and Zn concentrations, and N and Zn accumulation, respectively. The findings suggested that an increase in N supply enhanced root absorption and the root-to-shoot transport of Zn. Nitrogen combined with the high Zn (Zn 10 ) treatment increased the Zn concentration and consequently its accumulation in both shoots and roots. The maximum influx rate ( V max ), root length, surface area, and volume of 14-d-old seedlings, and root growth from 7 to 14 d in the medium N (N 7.5 ) treatment were higher, but the Michaelis constant ( K m ) and minimum equilibrium concentrations ( C min ) in this treatment were lower than those in the low (N 0.05 ) and high (N 15 ) N treatments, when Zn was supplied at a high level (Zn 10 ). Meanwhile, there were no pronounced differences in the above root traits between the N 0.05 Zn 0 and N 7.5 Zn 10 treatments. An increase in N supply decreased Zn in cell walls and cell organelles, while it increased Zn in the root soluble fraction. In leaves, an increase in N supply significantly decreased Zn in cell walls and the soluble fraction, while it increased Zn in cell organelles under Zn deficiency, but increased Zn distribution in the soluble fraction under medium and high Zn treatments. Therefore, a combination of medium N and high Zn treatments enhanced Zn absorption, apparently by enhancing Zn membrane transport and stimulating root development in winter wheat. An increase in N supply was beneficial in terms of achieving a balanced distribution of Zn subcellular fractions, thus enhancing Zn translocation to shoots, while maintaining normal metabolism.
Nie, Zhaojun; Zhao, Peng; Wang, Jia; Li, Jinfeng; Liu, Hongen
2017-01-01
Nitrogen (N) is critical for zinc (Zn) absorption into plant roots; this in turn allows for Zn accumulation and biofortification of grain in winter wheat (Triticum aestivum L.), an important food crop. However, little is known about root morphology and subcellular Zn distribution in response to N treatment at different levels of Zn supply. In this study, two nutrient solution culture experiments were conducted to examine Zn accumulation, Zn absorption kinetics, root morphology, and Zn subcellular distribution in wheat seedlings pre-cultured with different N concentrations. The results showed positive correlations between N and Zn concentrations, and N and Zn accumulation, respectively. The findings suggested that an increase in N supply enhanced root absorption and the root-to-shoot transport of Zn. Nitrogen combined with the high Zn (Zn10) treatment increased the Zn concentration and consequently its accumulation in both shoots and roots. The maximum influx rate (Vmax), root length, surface area, and volume of 14-d-old seedlings, and root growth from 7 to 14 d in the medium N (N7.5) treatment were higher, but the Michaelis constant (Km) and minimum equilibrium concentrations (Cmin) in this treatment were lower than those in the low (N0.05) and high (N15) N treatments, when Zn was supplied at a high level (Zn10). Meanwhile, there were no pronounced differences in the above root traits between the N0.05Zn0 and N7.5Zn10 treatments. An increase in N supply decreased Zn in cell walls and cell organelles, while it increased Zn in the root soluble fraction. In leaves, an increase in N supply significantly decreased Zn in cell walls and the soluble fraction, while it increased Zn in cell organelles under Zn deficiency, but increased Zn distribution in the soluble fraction under medium and high Zn treatments. Therefore, a combination of medium N and high Zn treatments enhanced Zn absorption, apparently by enhancing Zn membrane transport and stimulating root development in winter wheat. An increase in N supply was beneficial in terms of achieving a balanced distribution of Zn subcellular fractions, thus enhancing Zn translocation to shoots, while maintaining normal metabolism. PMID:28868060
Wacewicz, Marta; Socha, Katarzyna; Soroczyńska, Jolanta; Niczyporuk, Marek; Aleksiejczuk, Piotr; Ostrowska, Jolanta; Borawska, Maria H
2017-12-01
Psoriasis is a common, an inflammatory skin disease. Trace elements may play an active role in the pathogenesis of psoriasis. The aim of this study was to estimate the concentration of selenium (Se), zinc (Zn), copper (Cu) and Cu/Zn ratio as well as total antioxidant status (TAS) and c-reactive protein (CRP) in the serum of patients with psoriasis. In this case-control study sixty patients with psoriasis and fifty-eight healthy people were examined. Serum levels of Se, Zn and Cu were determined by atomic absorption spectrometry. Cu/Zn ratio was calculated. TAS was measured spectrophotometrically. CRP was analyzed by immunoturbidimetric method. Clinical activity of psoriasis was evaluated using Psoriasis Area and Severity Index (PASI). Serum concentration of Se in patients with psoriasis (71.89±16.90μg/L) was lower as compared to the control group (79.42±18.97μg/L) and after NB-UVB. Cu level of patients was higher (1.151±0.320mg/L) as compared to controls (1.038±0.336mg/L), but Zn level did not differ. We observed higher Cu/Zn ratio (p<0.05) in examined patients than in the control group and after NB-UVB. We found decrease TAS before and after NB-UVB. CRP levels was found to be normal range. A significant correlation coefficient between CRP and Cu/Zn was observed. The study showed some disturbances in the serum levels of trace elements and TAS in psoriatic patients. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.
NASA Astrophysics Data System (ADS)
Theyvaraju, D.; Muthukumaran, S.
2015-11-01
Zn0.96-xNi0.04CuxO nanoparticles have been synthesized by varying different Cu concentrations between 0% and 4% using simple sol-gel method. X-ray diffraction studies confirmed the hexagonal structure of the prepared samples. The formation of secondary phases, CuO (111) and Zn (101) at higher Cu content is due un-reacted Cu2+ and Zn2+ ions present in the solution which reduces the interaction between precursor ions and surfaces of ZnO. Well agglomerated and rod-like structure noticed at Cu=4% greatly de-generate and enhanced the particle size. The nominal elemental composition of Zn, Cu, Ni and O was confirmed by energy dispersive X-ray analysis. Even though energy gap was increased (blue-shift) from Cu=0-2% by quantum size effect, the s-d and p-d exchange interactions between the band electrons of ZnO and localized d electrons of Cu and Ni led to decrease (red-shift) the energy gap at Cu=4%. Presence of Zn-Ni-Cu-O bond was confirmed by Fourier transform infrared analysis. Ultraviolet emission by band to band electronic transition and defect related blue emission were discussed by photoluminescence spectra. The observed optical properties concluded that the doping of Cu in the present system is useful to tune the emission wavelength and hence acting as the important candidates for the optoelectronic device applications. Ferromagnetic ordering of Cu=2% sample was enhanced by charge carrier concentration where as the antiferromagnetic interaction between neighboring Cu-Cu ions suppressed the ferromagnetism at higher doping concentrations of Cu.
Nawab, Javed; Li, Gang; Khan, Sardar; Sher, Hassan; Aamir, Muhammad; Shamshad, Isha; Khan, Anwarzeb; Khan, Muhammad Amjad
2016-06-01
This study aimed to investigate the potential health risk associated with toxic metals in contaminated foodstuffs (fruits, vegetables, and cereals) collected from various agriculture fields present in chromite mining-affected areas of mafic and ultramafic terrains (northern Pakistan). The concentrations of Cr, Ni, Zn, Cd, and Pb were quantified in both soil and food samples. The soil samples were highly contaminated with Cr (320 mg/kg), Ni (108 mg/kg), and Cd (2.55 mg/kg), which exceeded their respective safe limits set by FAO/WHO. Heavy metal concentrations in soil were found in the order of Cr>Ni>Pb>Zn>Cd and showed significantly (p < 0.001) higher concentrations as compared to reference soil. The integrated pollution load index (PLI) value was observed greater than three indicating high level of contamination in the study area. The concentrations of Cr (1.80-6.99 mg/kg) and Cd (0.21-0.90 mg/kg) in foodstuffs exceeded their safe limits, while Zn, Pb, and Ni concentrations were observed within their safe limits. In all foodstuffs, the selected heavy metal concentrations were accumulated significantly (p < 0.001) higher as compared to the reference, while some heavy metals were observed higher but not significant like Zn in pear, persimmon, white mulberry, and date-plum; Cd in pear, fig and white mulberry; and Pb in walnut, fig, and pumpkin. The health risk assessment revealed no potential risk for both adults and children for the majority of heavy metals, except Cd, which showed health risk index (HRI) >1 for children and can pose potential health threats for local inhabitants. Graphical Abstract Heavy metals released from chromite mining lead to soil and foodstuff contamination and human health risk.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Draves, J.F.; Fox, M.G.
1998-08-01
In this study, the authors examined the effects of a gold mine tailings spill in the Montreal River (northern Ontario, Canada) on juvenile yellow perch (Perca flavescens), a benthic-feeding fish, and identified the major contributors to their uptake of tailings metals (Pb, Zn, Cd, and Cu) in dietary items and river water. Juvenile perch sampled from a 6-km reach of the river where most of the tailings were deposited had significantly less food in their stomachs than individuals sampled from a reference reach of the river. Concentrations of Pb in invertebrate prey taxa from the contaminated reach were 9 tomore » 20 times higher than in those sampled from the reference reach. These differences were consistent with a higher concentration of Pb in perch from the contaminated reach. In contrast, Zn concentrations were high in river water and perch from both the reference and contaminated reaches, and little difference was found in Zn concentration between invertebrate prey types sampled from the two reaches. No significant differences were found in Cu or Cd concentrations in yellow perch sampled from the two reaches. Higher levels of Pb in the major prey types from the contaminated reach indicate that dietary uptake may be the major vector for Pb accumulation in yellow perch from the Montreal River.« less
Combined effects of caffeine and zinc in the maternal diet on fetal brains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamoto, T.; Gottschalk, S.B.; Yazdani, M.
1991-03-15
The authors have reported that caffeine (C) intake during the lactational period by dams decreases the Zn content of the brain in their offspring. The objective of the present study is to determine how C plus Zn supplementation to the maternal diet during gestation affects the fetal brains. Timed-pregnant rats at day 3 of gestation were randomly divided into 4 groups (G). G1 was fed a 20% protein diet as a control, G2 was fed a diet supplemented with Zn, G3 was fed a diet with C and G4 was fed a diet with C and Zn. At day 22more » of gestation, fetuses were taken out surgically. Fetal brains were removed. Their weights, DNA, Zn, protein, cholesterol, caffeine concentration, and alkaline phosphatase activity were determined. Body and brain weights and cholesterol contents in G4 were greater than in G1, whereas Zn concentration and alkaline phosphatase activity were less. Zn concentration and Zn/DNA in G2 were greater than in G1. Cholesterol content in G4 was higher than in G3. Although mean caffeine concentration in brain and plasma in G4 was greater than in G3, there was no statistical significance between the G due to the wide fluctuation among the pups. It is concluded that supplementation of C and Zn in the maternal diet during gestation could influence fetal brain composition differently than C supplementation alone. Supplementation of Zn alone showed minor effects.« less
Zinc, lead, and cadmium levels in serum and milk of lactating women in Ibadan, Nigeria.
Edem, Victory Fabian; Akintunde, Kikelomo; Adelaja, Yewande Adeola; Nwozo, Sarah O; Charles-Davies, Mabel
2017-01-01
Zinc (Zn) is known to interact with lead (Pb) and cadmium (Cd) reversing their toxicity and reducing their concentrations. However, lactating women are at high risk of developing Zn deficiency, which may result in Pb and Cd intoxication or increased exposure of breast-fed infants to Pb and Cd from breast milk. The aim of this study was to determine Zn, Pb, and Cd concentrations and examine their relationship in serum and breast milk of lactating women in Ibadan, Nigeria. Ninety-two lactating women were recruited into this study. Anthropometric measurements were assessed by standard methods while serum and breast milk concentrations of Zn, Pb, and Cd were assessed by atomic absorption spectrophotometry. Data analyzed statistically by Student's t test, Pearson's correlation coefficient, and a multiple regression model were significant at p < 0.05. Zn deficiency was observed in 12 (17.1%) of lactating women. Breast milk levels of Zn, Pb, and Cd were significantly higher than their levels in serum, whereas the ratios Zn:Pb and Zn:Cd in milk were significantly less than serum ratios. Significant negative correlation was observed between milk Pb and serum Zn:Pb while milk Cd correlated positively with milk Zn. Significant positive correlations were observed between serum Zn and serum Zn:Pb, serum Zn and serum Zn:Cd, as well as serum Zn:Cd and serum Zn:Pb. Serum Cd and serum Zn were significantly negatively related. Significant negative correlations between serum Pb and serum Zn:Pb as well as milk Zn:Pb. Serum Cd and serum Zn:Pb as well as serum Zn:Cd correlated negatively. Milk Cd and Zn/Cd positively related with milk Pb while milk Zn was a negatively related with milk Pb in a multiple regression model ( R 2 = 0.333; p = 0.023). Breast milk may be contaminated by toxic metals. However, Zn supplementation in deficient mothers may protect maternal and infant health.
Yang, Xiaoe; Li, Tingqiang; Yang, Juncheng; He, Zhenli; Lu, Lingli; Meng, Fanhua
2006-06-01
Sedum alfredii Hance can accumulate Zn in shoots over 2%. Leaf and stem Zn concentrations of the hyperaccumulating ecotype (HE) were 24- and 28-fold higher, respectively, than those of the nonhyperaccumulating ecotype (NHE), whereas 1.4-fold more Zn was accumulated in the roots of the NHE. Approximately 2.7-fold more Zn was stored in the root vacuoles of the NHE, and thus became unavailable for loading into the xylem and subsequent translocation to shoot. Long-term efflux of absorbed 65Zn indicated that 65Zn activity was 6.8-fold higher in shoots but 3.7-fold lower in roots of the HE. At lower Zn levels (10 and 100 microM), there were no significant differences in 65Zn uptake by leaf sections and intact leaf protoplasts between the two ecotypes except that 1.5-fold more 65Zn was accumulated in leaf sections of the HE than in those of the NHE after exposure to 100 microM for 48 h. At 1,000 microM Zn, however, approximately 2.1-fold more Zn was taken up by the HE leaf sections and 1.5-fold more 65Zn taken up by the HE protoplasts as compared to the NHE at exposure times >16 h and >10 min, respectively. Treatments with carbonyl cyanide m-chlorophenylhydrazone (CCCP) or ruptured protoplasts strongly inhibited 65Zn uptake into leaf protoplasts for both ecotypes. Citric acid and Val concentrations in leaves and stems significantly increased for the HE, but decreased or had minimal changes for the NHE in response to raised Zn levels. These results indicate that altered Zn transport across tonoplast in the root and stimulated Zn uptake in the leaf cells are the major mechanisms involved in the strong Zn hyperaccumulation observed in S. alfredii H.
Physical properties of antiferromagnetic Mn doped ZnO samples: Role of impurity phase
NASA Astrophysics Data System (ADS)
Neogi, S. K.; Karmakar, R.; Misra, A. K.; Banerjee, A.; Das, D.; Bandyopadhyay, S.
2013-11-01
Structural, morphological, optical, and magnetic properties of nanocrystalline Zn1-xMnxO samples (x=0.01, 0.02, 0.04, 0.06, 0.08 and 0.10) prepared by the sol-gel route are studied by X-ray diffraction (XRD), Scanning electron microscopy (SEM), UV-visible absorption spectroscopy, Superconducting quantum interference device (SQUID) magnetometry and positron annihilation lifetime spectroscopy (PALS). XRD confirms formation of wurzite structure in all the Mn-substituted samples. A systematic increase in lattice constants and decrease in grain size have been observed with increase in manganese doping concentration up to 6 at% in the ZnO structure. An impurity phase (ZnMnO3) has been detected when percentage of Mn concentration is 6 at% or higher. The optical band gap of the Mn-substituted ZnO samples decrease with increase in doping concentration of manganese whereas the width of the localized states increases. The antiferromagnetic exchange interaction is strong in the samples for 2 and 4 at% of Mn doping but it reduces when the doping level increases from 6 at% and further. Positron life time components τ1 and τ2 are found to decrease when concentration of the dopant exceeds 6 at%. The changes in magnetic properties as well as positron annihilation parameters at higher manganese concentration have been assigned as due to the formation of impurity phase. Single phase structure has been observed up to 6 at% of Mn doping. Impurity phase has been developed above 6 at% of Mn doping. Antiferromagnetic and paramagnetic interactions are present in the samples. Defect parameters show sharp fall as Mn concentration above 6 at%. The magnetic and defect properties are modified by the formation of impurity phase.
Metals in some lagoons of Mexico.
Vazquez, F G; Sharma, V K; Alexander, V H; Frausto, C A
1995-01-01
The concentrations of metals, Cd, Cu, Fe, Mn, Ni, Pb, and Zn were determined in some lagoons to establish the level of metal pollution. The lagoons studied were Alvarado lagoon, Veracruz; San Andres lagoon, Tamaulipas; and Terminos lagoon, Campeche. The concentrations were determined in water, oyster (Crassostrea virginica), and sediments. Metals were accumulated in either oysters or sediments. Cu and Zn were higher in oysters and Fe and Mn were higher in sediments. The results in water samples were compared with the limit established by the Secretaria de Ecologia and Desarrollo Urbano Report and briefly discussed. PMID:7621796
Moreno-Montoro, Miriam; Olalla, Manuel; Giménez-Martínez, Rafael; Bergillos-Meca, Triana; Ruiz-López, María Dolores; Cabrera-Vique, Carmen; Artacho, Reyes; Navarro-Alarcón, Miguel
2015-11-01
Goat milk has been reported to possess good nutritional and health-promoting properties. Usually, it must be concentrated before fermented products can be obtained. The aim of this study was to compare physicochemical and nutritional variables among raw (RM), skimmed (SM), and ultrafiltration-concentrated skimmed (UFM) goat milk. The density, acidity, ash, protein, casein, whey protein, Ca, P, Mg, and Zn values were significantly higher in UFM than in RM or SM. Dry extract and fat levels were significantly higher in UFM than in SM, and Mg content was significantly higher in UFM than in RM. Ultrafiltration also increased the solubility of Ca and Mg, changing their distribution in the milk. The higher concentrations of minerals and proteins, especially caseins, increase the nutritional value of UFM, which may therefore be more appropriate for goat milk yogurt manufacturing in comparison to RM or SM. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Jamali-Sheini, Farid; Cheraghizade, Mohsen; Yousefi, Ramin
2018-06-01
In this study, electrodeposition technique was applied to deposit un-, lead (Pb), and zinc (Zn)-doped SnSe films. X-ray diffraction (XRD) patterns of the films showed a polycrystalline SnSe phase with orthorhombic crystalline lattice. SEM images revealed ball-shaped, rod-shaped, and wire-shaped morphologies for SnSe films. Moreover, optical measurements indicated incorporation of dopant in the crystalline lattice of films by varying the optical energy band gap. Electrical characterization of Pb- and Zn-doped SnSe films showed their p-type nature. Finally, the solar cell device fabricated using the Zn-doped SnSe films reveal a higher efficiency because of their higher carrier concentration.
Khan, Zafar Iqbal; Ahmad, Kafeel; Rehman, Sidrah; Siddique, Samra; Bashir, Humayun; Zafar, Asma; Sohail, Muhammad; Ali, Salem Alhajj; Cazzato, Eugenio; De Mastro, Giuseppe
2017-01-01
In the recent years, the use of sewage water for irrigation has attracted the attention of arid and semi-arid countries where the availability of fresh water is poor. Despite the potential use of sewage water in crop irrigation as effective and sustainable strategy, the environmental and human risks behind this use need to be deeply investigated. In this regard, an experiment was carried out under field conditions in Nursery, University College of Agriculture Sargodha, to evaluate the possible health risks of undesirable metals in wheat grains. Wheat variety Sarang was cultivated and irrigated with different combinations of ground (GW) and sewage water (SW). The concentrations of heavy metals (Cr, Cd, Ni, and Pb) and trace elements (Cu, Zn, and Fe) in wheat grains as well as in soil were determined. Moreover, the pollution load index (PLI), accumulation factor (AF), daily intake of metals (DIM), and health risk index (HRI) were calculated. Results showed that the concentration trend of heavy metals was Pb
Tellez, Marisa; Merchant, Mark
2015-01-01
Monitoring the bioaccumulation of chemical elements within various organismal tissues has become a useful tool to survey current or chronic levels of heavy metal exposure within an environment. In this study, we compared the bioaccumulations of As, Cd, Cu, Fe, Pb, Se, and Zn between the American alligator, Alligator mississippiensis, and its parasites in order to establish their use as bioindicators of heavy metal pollution. Concomitant with these results, we were interested to determine if parasites were more sensitive bioindicators of heavy metals relative to alligators. We found parasites collectively accumulated higher levels of As, Cu, Se, and Zn in comparison to their alligator hosts, whereas Fe, Cd, and Pb concentrations were higher in alligators. Interestingly, Fe levels were significantly greater in intestinal trematodes than their alligator hosts when analyzed independently from other parasitic taxa. Further analyses showed alligator intestinal trematodes concentrated As, Cu, Fe, Se, and Zn at significantly higher levels than intestinal nematodes and parasites from other organs. However, pentastomids also employed the role as a good biomagnifier of As. Interestingly, parasitic abundance decreased as levels of As increased. Stomach and intestinal nematodes were the poorest bioaccumulators of metals, yet stomach nematodes showed their ability to concentrate Pb at orders of magnitude higher in comparison to other parasites. Conclusively, we suggest that parasites, particularly intestinal trematodes, are superior biomagnifiers of As, Cu, Se, and Zn, whereas alligators are likely good biological indicators of Fe, Cd, and Pb levels within the environment. PMID:26555363
Baltas, Hasan; Sirin, Murat; Dalgic, Goktug; Bayrak, Esra Yilmaz; Akdeniz, Aysel
2017-09-15
This study investigated the contents of Cu, Zn and Pb in seawater, sediment, different shell sizes of mussel (Mytilus galloprovincialis) and sea snail (Rapana venosa) samples collected from four different provinces of the Eastern Black Sea Region. With the exception of Zn, all the metal concentration values measured in the sea snail were observed to be higher than those of mussels in all stations. While the correlation between mussels and sea snail according to metal concentrations was found to be positive (p˂0.05), this relation was not observed between the other parameters, such as the shell sizes, salinity and pH (p˃0.05). Although the mean concentration values of Cu, Zn, and Pb for mussel and sea snail are significantly above the tolerable levels, the estimated daily intake values for mussel were below the daily intake recommended. Copyright © 2017 Elsevier Ltd. All rights reserved.
Saiki, M.K.; Castleberry, D. T.; May, T. W.; Martin, B.A.; Bullard, F. N.
1995-01-01
Metals enter the Upper Sacramento River above Redding, California, primarily through Spring Creek, a tributary that receives acid-mine drainage from a US EPA Superfund site known locally as Iron Mountain Mine. Waterweed (Elodea canadensis) and aquatic insects (midge larvae, Chironomidae; and mayfly nymphs, Ephemeroptera) from the Sacramento River downstream from Spring Creek contained much higher concentrations of copper (Cu), cadmium (Cd), and zinc (Zn) than did similar taxa from nearby reference tributaries not exposed to acid-mine drainage. Aquatic insects from the Sacramento River contained especially high maximum concentrations of Cu (200 mg/kg dry weight in midge larvae), Cd (23 mg/kg dry weight in mayfly nymphs), and Zn (1,700 mg/kg dry weight in mayfly nymphs). Although not always statistically significant, whole-body concentrations of Cu, Cd, and Zn in fishes (threespine stickleback, Gasterosteus aculeatus; Sacramento sucker, Catostomus occidentalis; Sacramento squawfish, Ptychocheilus grandis; and chinook salmon, Oncorhynchus tshawytasch) from the Sacramento River were generally higher than in fishes from the reference tributaries.
Concentrations of trace elements in marine fish and its risk assessment in Malaysia.
Agusa, Tetsuro; Kunito, Takashi; Yasunaga, Genta; Iwata, Hisato; Subramanian, Annamalai; Ismail, Ahmad; Tanabe, Shinsuke
2005-01-01
Concentrations of trace elements (V, Cr, Mn, Co, Cu, Zn, Ga, Se, Rb, Sr, Mo, Ag, Cd, Sn, Sb, Cs, Ba, Hg, Tl, Pb and Bi) were determined in muscle and liver of 12 species of marine fish collected from coastal areas in Malaysia. Levels of V, Cr, Mn, Co, Cu, Zn, Ga, Sr, Mo, Ag, Cd, Sn, Ba and Pb in liver were higher than those in muscle, whereas Rb and Cs concentrations showed the opposite trend. Positive correlations between concentrations in liver and muscle were observed for all the trace elements except Cu and Sn. Copper, Zn, Se, Ag, Cd, Cs and Hg concentrations in bigeye scads from the east coast of the Peninsular Malaysia were higher than those from the west, whereas V showed the opposite trend. The high concentration of V in the west coast might indicate oil contamination in the Strait of Malacca. To evaluate the health risk to Malaysian population through consumption of fish, intake rates of trace elements were estimated on the basis of the concentrations of trace elements in muscle of fish and daily fish consumption. Some specimens of the marine fish had Hg levels higher than the guideline value by US Environmental Protection Agency (EPA), indicating that consumption of these fish at the present rate may be hazardous to Malaysian people. To our knowledge, this is the first study on multielemental accumulation in marine fish from the Malaysian coast.
Wu, L H; Luo, Y M; Christie, P; Wong, M H
2003-02-01
A pot experiment was conducted to study the effects of EDTA and low molecular weight organic acids (LMWOA) on the pH, total organic carbon (TOC) and heavy metals in the soil solution in the rhizosphere of Brassica juncea grown in a paddy soil contaminated with Cu, Zn, Pb and Cd. The results show that EDTA and LMWOA have no effect on the soil solution pH. EDTA addition significantly increased the TOC concentrations in the soil solution. The TOC concentrations in treatments with EDTA were significantly higher than those in treatments with LMWOA. Adding 3 mmol kg(-1) EDTA to the soil markedly increased the total concentrations of Cu, Zn, Pb and Cd in the soil solution. Compared to EDTA, LMWOA had a very small effect on the metal concentrations. Total concentrations in the soil solution followed the sequence: EDTA > citric acid (CA) approximately oxalic acid (OA) approximately malic acid (MA) for Cu and Pb; EDTA > MA > CA approximately OA for Zn; and EDTA > MA > CA > OA for Cd. The labile concentrations of Cu, Zn, Pb and Cd showed similar trends to the total concentrations.
Bonet, Berta; Corcoll, Natàlia; Acuňa, Vicenç; Sigg, Laura; Behra, Renata; Guasch, Helena
2013-02-01
While seasonal variations in fluvial communities have been extensively investigated, effects of seasonality on community responses to environmental and/or chemical stress are poorly documented. The aim of this study was to describe antioxidant enzyme activity (AEA) variability in fluvial biofilms over an annual cycle, under multi-stress scenarios due to environmental variability (e.g., light intensity, water flow, and temperature) and metal pollution (Zn, Mn and Fe). The annual monitoring study was performed at three sites according to their water and biofilm metal concentrations. Metal concentration was affected by water flow due to dilution. Low flow led to higher dissolved Zn concentrations, and thus to higher Zn accumulation in the biofilm. Water temperature, light intensity and phosphate concentration were the environmental factors which determined the seasonality of biofilm responses, whereas dissolved Zn and Zn accumulation in biofilms were the parameters linked to sites and periods of highest metal pollution. Community algal succession, from diatoms in cold conditions to green algae in warm conditions, was clearer in the non metal-polluted site than in those metal-polluted, presumably due to the selection pressure exerted by metals. Most AEA were related with seasonal environmental variability at the sites with low or no-metal pollution, except glutathione-S-transferase (GST) which was related with Zn (dissolved and accumulated in biofilm) pollution occurring at the most polluted site. We can conclude that seasonal variations of community composition and function are masked by metal pollution. From this study we suggest the use of a multi-biomarker approach, including AEA and a set of biological and physicochemical parameters as an effect-based field tool to assess metal pollution. Copyright © 2012 Elsevier B.V. All rights reserved.
Schmitt, C.J.; Brumbaugh, W.G.; May, T.W.
2009-01-01
Lead (Pb) and other metals can accumulate in northern hog sucker (Hypentelium nigricans) and other suckers (Catostomidae), which are harvested in large numbers from Ozark streams by recreational fishers. Suckers are also important in the diets of piscivorous wildlife and fishes. Suckers from streams contaminated by historic Pb-zinc (Zn) mining in southeastern Missouri are presently identified in a consumption advisory because of Pb concentrations. We evaluated blood sampling as a potentially nonlethal alternative to fillet sampling for Pb and other metals in northern hog sucker. Scaled, skin-on, bone-in "fillet" and blood samples were obtained from northern hog suckers (n = 75) collected at nine sites representing a wide range of conditions relative to Pb-Zn mining in southeastern Missouri. All samples were analyzed for cadmium (Cd), cobalt (Co), Pb, nickel (Ni), and Zn. Fillets were also analyzed for calcium as an indicator of the amount of bone, skin, and mucus included in the samples. Pb, Cd, Co, and Ni concentrations were typically higher in blood than in fillets, but Zn concentrations were similar in both sample types. Concentrations of all metals except Zn were typically higher at sites located downstream from active and historic Pb-Zn mines and related facilities than at nonmining sites. Blood concentrations of Pb, Cd, and Co were highly correlated with corresponding fillet concentrations; log-log linear regressions between concentrations in the two sample types explained 94% of the variation for Pb, 73-83% of the variation for Co, and 61% of the variation for Cd. In contrast, relations for Ni and Zn explained <12% of the total variation. Fillet Pb and calcium concentrations were correlated (r = 0.83), but only in the 12 fish from the most contaminated site; concentrations were not significantly correlated across all sites. Conversely, fillet Cd and calcium were correlated across the range of sites (r = 0.78), and the inclusion of calcium in the fillet-to-blood relation explained an additional 12% of the total variation in fillet Cd. Collectively, the results indicate that blood sampling could provide reasonably accurate and precise estimates of fillet Pb, Co, and Cd concentrations that would be suitable for identifying contaminated sites and for monitoring, but some fillet sampling might be necessary at contaminated sites for establishing consumption advisories. ?? 2009 US Government.
Han, Shuping; Naito, Wataru; Masunaga, Shigeki
To assess the effects of Fe(III) and anthropogenic ligands on the bioavailability of Ni, Cu, Zn, and Pb, concentrations of bioavailable metals were measured by the DGT (diffusive gradients in thin films) method in some urban rivers, and were compared with concentrations calculated by a chemical equilibrium model (WHAM 7.0). Assuming that dissolved Fe(III) (<0.45 μm membrane filtered) was in equilibrium with colloidal iron oxide, the WHAM 7.0 model estimated that bioavailable concentrations of Ni, Cu, and Zn were slightly higher than the corresponding values estimated assuming that dissolved Fe(III) was absent. In contrast, lower levels of free Pb were predicted by the WHAM 7.0 model when dissolved Fe(III) was included. Estimates showed that most of the dissolved Pb was present as colloidal iron-Pb complex. Ethylene-diamine-tetra-acetic acid (EDTA) concentrations at sampling sites were predicted from the relationship between EDTA and the calculated bioavailable concentration of Zn. When both colloidal iron and predicted EDTA concentrations were included in the WHAM 7.0 calculations, dissolved metals showed a strong tendency to form EDTA complexes, in the order Ni > Cu > Zn > Pb. With the inclusion of EDTA, bioavailable concentrations of Ni, Cu, and Zn predicted by WHAM 7.0 were different from those predicted considering only humic substances and colloidal iron.
Relationship between Heavy Metal Concentrations in Soils and Grasses of Roadside Farmland in Nepal
Yan, Xuedong; Zhang, Fan; Zeng, Chen; Zhang, Man; Devkota, Lochan Prasad; Yao, Tandong
2012-01-01
Transportation activities can contribute to accumulation of heavy metals in roadside soil and grass, which could potentially compromise public health and the environment if the roadways cross farmland areas. Particularly, heavy metals may enter the food chain as a result of their uptake by roadside edible grasses. This research was conducted to investigate heavy metal (Cu, Zn, Cd, and Pb) concentrations in roadside farmland soils and corresponding grasses around Kathmandu, Nepal. Four factors were considered for the experimental design, including sample type, sampling location, roadside distance, and tree protection. A total of 60 grass samples and 60 topsoil samples were collected under dry weather conditions. The Multivariate Analysis of Variance (MANOVA) results indicate that the concentrations of Cu, Zn, and Pb in the soil samples are significantly higher than those in the grass samples; the concentrations of Cu and Pb in the suburban roadside farmland are higher than those in the rural mountainous roadside farmland; and the concentrations of Cu and Zn at the sampling locations with roadside trees are significantly lower than those without tree protection. The analysis of transfer factor, which is calculated as the ratio of heavy-metal concentrations in grass to those in the corresponding soil, indicates that the uptake capabilities of heavy metals from soil to grass is in the order of Zn > Cu > Pb. Additionally, it is found that as the soils’ heavy-metal concentrations increase, the capability of heavy-metal transfer to the grass decreases, and this relationship can be characterized by an exponential regression model. PMID:23202679
PIXE analysis of elements in gastric cancer and adjacent mucosa
NASA Astrophysics Data System (ADS)
Liu, Qixin; Zhong, Ming; Zhang, Xiaofeng; Yan, Lingnuo; Xu, Yongling; Ye, Simao
1990-04-01
The elemental regional distributions in 20 resected human stomach tissues were obtained using PIXE analysis. The samples were pathologically divided into four types: normal, adjacent mucosa A, adjacent mucosa B and cancer. The targets for PIXE analysis were prepared by wet digestion with a pressure bomb system. P, K, Fe, Cu, Zn and Se were measured and statistically analysed. We found significantly higher concentrations of P, K, Cu, Zn and a higher ratio of Cu compared to Zn in cancer tissue as compared with normal tissue, but statistically no significant difference between adjacent mucosa and cancer tissue was found.
Soil and plant contamination by lead mining in Bellmunt (Western Mediterranean Area)
NASA Astrophysics Data System (ADS)
Bech, Jaume; Duran, Paola; Barceló, Juan; Roca, Núria; Tume, Pedro; Poschenrieder, Charlotte
2010-05-01
Galena has been mined in Bellmunt (Priorat, Western Mediterranean Area) since ancient times until 1972. While sediment pollution originated by the mining activity in the Ebro river passing the region has been investigated (Ferré, 2007), the local impact on soils and plants has received little attention. Here we report the first results on the concentrations of major metal contaminants and antimony in soils and representative plants from 5 selected sites with different pollutant burdens around the mining area. Both total (HNO3, HF, HClO4 digest) and extractable (EDTA) soil concentrations were studied. The range of total and extractable soil values in mgkg-1 is as follows: Sb 9.7-31 and 2.4-7.2; Cu: 89-823 and 20-62; Pb: 19-39 and 18-33; Zn: 318-989 and 79-287 mg•kg-1, respectively). Soils had alkaline pH (7.7-8.2), organic matter contents ranging from 0.8 to 2.4%, and a sandy-loam or a loamy-sand texture. All analysed plant species showed enhanced root and shoot concentrations of Pb, Cu, Zn and Sb when growing on the more polluted soils, and all but one restricted the translocation of metals from roots to shoots exhibiting shoot/root concentration ratios lower than unity. A notably exception was Moricandia moricandioides. This species of the Brassicaceae family exhibited higher Zn concentrations in the shoots than in the roots at all sampling sites yielding shoot/root concentration ratios up to 5.5. This metal accumulation pattern was only observed for Zn and not for other analysed metal contaminants. The concentrations of other, poorly mobile metals, like Pb or Cu were always higher in roots than in shoots (e.g. Pb shoot/root ratios ranged from 0.12 to 0.41). Taking into account the high Pb burden of the soil samples and these low shoot/root Pb ratios, it can be excluded that the particular Zn accumulation pattern of Moricandia moricandioides was biased by soil contamination of shoot samples. To the best of our knowledge, this is the first report of a Zn accumulation behaviour in a Moricandia species. The soil-to-shoot transfer factors (shoot Zn conc/total soil conc.) for this species were, however, relatively low ranging from 0.3 to 1.3. Two main reasons for this could be 1) the fact that real total Zn soil concentrations after HF attack and not pseudototal metal concentrations were analysed in the present study and 2) the relatively high pH of the soils which could considerably hamper Zn bioavailability. Further studies are required to confirm the possible Zn (hyper)accumulator character of Moricandia moricandioides (Boiss.) Heyw. [M. ramburii Webb]. Reference: Ferré, N. 2007 Nivells de metals pesants a la conca Catalana del riu Ebre. Avaluació del risc per la población i l'ecosistema. Universitat Rovira Virgili. ISBN 978-84-691-0371-5. Acknowledgement: Supported by BFU2007-60332/BFI
Wang, Yingge; Gelabert, Alexandre; Michel, F. Marc; ...
2016-05-07
Competitive sorption of Pb(II) and Zn(II) on Shewanella oneidensis MR-1 biofilm-coated single-crystal α-Al 2O 3 (1 –1 0 2) and α-Fe 2O 3 (0 0 0 1) surfaces was investigated using long-period X-ray standing wave-florescence yield (LP-XSW-FY) spectroscopy. In situ partitioning of aqueous Pb(II) and Zn(II) between the biofilms and underlying metal-oxide substrates was probed following exposure of these complex interfaces to equi-molar Pb and Zn solutions (0.01 M NaNO 3 as background electrolyte, pH = 6.0, and 3-h equilibration time). At higher Pb and Zn concentrations (≥10 –5 M), more than 99% of these ions partitioned into the biofilmsmore » at S. oneidensis/α-Al 2O 3 (1 –1 0 2)/water interfaces, which is consistent with the partitioning behavior of both Pb(II) or Zn(II) in single-metal-ion experiments. Furthermore, no apparent competitive effects were found in this system at these relatively high metal-ion concentrations. However, at lower equi-molar concentrations (≤10 –6 M), Pb(II) and Zn(II) partitioning in the same system changed significantly compared to the single-metal-ion systems. The presence of Zn(II) decreased Pb(II) partitioning onto α-Al 2O 3 (1 –1 0 2) substantially (~52% to ~13% at 10 –7 M, and ~23% to ~5% at 10–6 M), whereas the presence of Pb(II) caused more Zn(II) to partition onto α-Al 2O 3 (1 –1 0 2) surfaces (~15% to ~28% at 10 –7 M, and ~1% to ~7% at 10 –6 M) .The higher observed partitioning of Zn(II) (~28%) at the α-Al 2O 3 (1 –1 0 2) surfaces compared to Pb(II) (~13%) in the mixed-metal-ion systems at the lowest concentration (10 –7 M) suggests that Zn(II) is slightly favored over Pb(II) for sorption sites on α-Al 2O 3 (1 –1 0 2) surfaces under our experimental conditions.« less
Effect of culture medium on toxic effect of ZnO nanoparticles to freshwater microalgae
NASA Astrophysics Data System (ADS)
Aravantinou, Andriana F.; Tsarpali, Vasiliki; Dailianis, Stefanos; Manariotis, Ioannis D.
2014-05-01
The widely use of nanoparticles (NPs) in many products, is increasing over time. The release of NPs into the environment may affect ecosystems, and therefore it is essential to study their impact on aquatic organisms. The aim of this work was to investigate the effect of zinc oxide (ZnO) NPs on microalgae, cultured in different mediums. Chlorococcum sp. and Scenedesmus rubescens were used as freshwater microalgae model species in order to investigate the toxic effects of ZnO NPs. Microalgae species exposed to ZnO NPs concentrations varying from 0.081 to 810 mg/L for different periods of time (24 to 96 h) and two different culture mediums. The aggregation level and particle size distribution of NPs were also determined during the experiments. The experimental results revealed significant differences on algae growth rates depending on the selected culture medium. Specifically, the toxic effect of ZnO NPs in Chlorococcum sp. was higher in cultures with 1/3N BG-11 medium than in BBM medium, despite the fact that the dissolved zinc concentration was higher in BBM medium. On the other hand, Scenedesmus rubescens exhibited the exact opposite behavior, with the highest toxic effect in cultures with BBM medium. Both species growth was significantly affected by the exposure time, the NPs concentrations, and mainly the culture medium.
Loyola, Josiane; de Almeida, Pierre Batista; Quiterio, Simone Lorena; Sousa, Célia Regina; Arbilla, Graciela; Escaleira, Viviane; de Carvalho, Maria Isabel; dos Santos Amaral Gomes da Silva, Alzira
2006-11-01
Total suspended particles and 12 airborne metals were determined in 4 sampling sites in the industrial region of Médio Paraíba, Brazil. The geometrical means for the four sampling locals were (in units of microg/m3): 65.9 in Barra Mansa, 57.3 in Jardim Paraíba (Volta Redonda), 41.7 in Resende, and 48.9 in Volta Grande (Volta Redonda). These values are lower than levels previously determined in urban and industrial locals of the Metropolitan Area of Rio de Janeiro. For metals, the higher concentrations were obtained for Ca, Zn, Al, Fe, and Mg. Ca, Zn, and Al levels are higher than those determined in other industrial areas. These three metals are used in steel manufacturing, the main economical activity of the region. Enrichment factors for Zn, Cu, Cd, and Pb are higher than 10, suggesting an industrial input. Statistical analysis show a high correlation among Ca, Mg, Zn, Cr, Al, Mn, and Fe, all of them used as raw materials in steel manufacturing and/or accumulated as industrial blast furnace slag and steelworks slag.
Du, Yan-Jun; Wei, Ming-Li; Reddy, Krishna R; Jin, Fei; Wu, Hao-Liang; Liu, Zhi-Bin
2014-12-15
Cement stabilization is used extensively to remediate soils contaminated with heavy metals. However, previous studies suggest that the elevated zinc (Zn) and lead (Pb) concentrations in the contaminated soils would substantially retard the cement hydration, leading to the deterioration of the performance of cement stabilized soils. This study presents a new binder, KMP, composed of oxalic acid-activated phosphate rock, monopotassium phosphate and reactive magnesia. The effectiveness of stabilization using this binder is investigated on soils spiked with Zn and Pb, individually and together. Several series of tests are conducted including toxicity characteristic leaching (TCLP), ecotoxicity in terms of luminescent bacteria test and unconfined compressive strength. The leachability of a field Zn- and Pb- contaminated soil stabilized with KMP is also evaluated by TCLP leaching test. The results show that the leached Zn concentrations are lower than the China MEP regulatory limit except when Zn and Pb coexist and for the curing time of 7 days. On the other hand, the leached Pb concentrations for stabilized soils with Pb alone or mixed Zn and Pb contamination are much lower than the China MEP or USEPA regulatory limit, irrespective of the curing time. The luminescent bacteria test results show that the toxicity of the stabilized soils has been reduced considerably and is classified as slightly toxic class. The unconfined compressive strength of the soils decrease with the increase in the Zn concentration. The stabilized soils with mixed Zn and Pb contaminants exhibit notably higher leached Zn concentration, while there is lower unconfined compressive strength relative to the soils when contaminated with Zn alone. The X-ray diffraction and scanning electron microscope analyses reveal the presence of bobierrite (Mg3(PO4)2·8H2O) and K-struvite (MgKPO4·6H2O) as the main products formed in the KMP stabilized uncontaminated soils; the formation of hopeite (Zn3(PO4)2·4H2O), scholzite (CaZn2(PO4)2·2H2O), zinc hydroxide (Zn(OH)2), and fluoropyromorphite (Pb5(PO4)3F) in the soils are the main mechanisms for immobilization of Zn and Pb with the KMP binder. The change in the relative quantities of the formed phosphate-based products, with respect to the Zn concentration and presence of mixed Zn and Pb contaminants, can well explain the measured impact of the Zn concentration levels and presence of both Zn and Pb contaminants on the unconfined compressive strength of the KMP stabilized soils. Copyright © 2014 Elsevier Ltd. All rights reserved.
Baseline blood levels of manganese, lead, cadmium, copper, and zinc in residents of Beijing suburb
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Long-Lian, E-mail: Longlian57@163.com; Lu, Ling; Pan, Ya-Juan
Baseline blood concentrations of metals are important references for monitoring metal exposure in environmental and occupational settings. The purpose of this study was to determine the blood levels of manganese (Mn), copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd) among the residents (aged 12–60 years old) living in the suburb southwest of Beijing in China and to compare the outcomes with reported values in various developed countries. Blood samples were collected from 648 subjects from March 2009 to February 2010. Metal concentrations in the whole blood were determined by ICP-MS. The geometric means of blood levels of Mn, Cu,more » Zn, Pb and Cd were 11.4, 802.4, 4665, 42.6, and 0.68 µg/L, respectively. Male subjects had higher blood Pb than the females, while the females had higher blood Mn and Cu than the males. There was no gender difference for blood Cd and Zn. Smokers had higher blood Cu, Zn, and Cd than nonsmokers. There were significant age-related differences in blood levels of all metals studied; subjects in the 17–30 age group had higher blood levels of Mn, Pb, Cu, and Zn, while those in the 46–60 age group had higher Cd than the other age groups. A remarkably lower blood level of Cu and Zn in this population as compared with residents of other developed countries was noticed. Based on the current study, the normal reference ranges for the blood Mn were estimated to be 5.80–25.2 μg/L; for blood Cu, 541–1475 μg/L; for blood Zn, 2349–9492 μg/L; for blood Pb, <100 μg/L; and for blood Cd, <5.30 μg/L in the general population living in Beijing suburbs. - Highlights: • Baseline blood levels of metals in residents of Beijing suburb are investigated. • BMn and BPb in this cohort are higher than those in other developed countries. • Remarkably lower blood levels of Cu and Zn in this Chinese cohort are noticed. • The reference values for blood levels of Mn, Cu, Zn, Pb, and Cd are established.« less
Yi, Yu-Jun; Zhang, Shang-Hong
2012-11-01
The objective of this paper is to assess the regulation of the accumulation of heavy metals in the aquatic environment and different fish species. Water and fish samples were collected from upper to lower reaches of the Yangtze River. The heavy metal (Cd, Cr, Cu, Hg, Pb, Zn) concentrations in the muscle tissue of seven fishes were measured. Additionally, the relationships between heavy metal concentrations in fish tissue and fish size (length and weight), condition factor, water layer distribution, and trophic level were investigated. Metal concentrations (milligrams per kilogram wet weight) were found to be distributed differently among different fish species. The highest concentrations of Cu (1.22 mg/kg) and Zn (7.55 mg/kg) were measured in Pelteobagrus fulvidraco, the highest concentrations of Cd (0.115 mg/kg) and Hg (0.0304 mg/kg) were measured in Silurus asotus, and the highest concentrations of Pb (0.811 mg/kg) and Cr (0.239 mg/kg) were measured in Carassius auratus and Cyprinus carpio. A positive relationship was found between fish size and metal level in most cases. The variance of the relationships may be the result of differences in habitat, swimming behavior, and metabolic activity. In this study, fishes living in the lower water layer and river bottom had higher metals concentrations than in upper and middle layers. Benthic carnivorous and euryphagous fish had higher metals concentrations than phytoplankton and herbivorous fish. Generally, fish caught from the lower reach had higher metals concentrations than those from the upper reach. Cadmium and lead concentrations in several fishes exceeded the permissible food consumption limits, this should be considered to be an important warning signal.
NASA Astrophysics Data System (ADS)
Niranjan, K.; Dutta, Subhajit; Varghese, Soney; Ray, Ajoy Kumar; Barshilia, Harish C.
2017-04-01
We report the growth of flower-like ferromagnetic Cu-doped ZnO (CZO) nanostructures using electrochemical deposition on FTO-coated glass substrates. X-ray photoelectron spectroscopy studies affirmed the presence of Cu in ZnO with an oxidation state of 2+. In order to find the optimized dopant concentration, different Cu dopant concentrations of 0.28, 0.30, 0.32, 0.35, 0.38, and 0.40 mM are applied and their magnetic, optical, and electrical properties are studied. Magnetic moment increased with the increasing dopant concentration up to 0.35 mM and then decreased with further increase in the concentration. Diamagnetic pure ZnO showed ferromagnetic nature even with a low doping concentration of 0.28 mM. Band gap increased with the increasing Cu concentration until a value of 0.35 mM and then remained the same for the higher dopant concentrations. It is ascribed to the Burstein-Moss effect. Defect-related broad photoluminescence (PL) peak is observed for the pure ZnO in the visible range. In contrast, Cu-doped samples showed a sharp and intense PL peak at 426 nm due to increased Zn interstitials. Kelvin probe measurements revealed that the Fermi level shifts toward the conduction band for the Cu-doped samples with respect to pure material. Electron transport mechanism in the samples is observed to be dominated by space charge-limited current and Schottky behavior with improved ideality factor up to 0.38 mM Cu.
Mohammadi, Hamid; Kamkar, Abolfazl; Misaghi, Ali
2018-02-01
This work examined the physico mechanical parameters and antibacterial activity of CMC/okra mucilage (OM) blend films containing ZnO nanoparticles (NPs). Different proportions of CMC and okra mucilage (100/0; 70/30; 60/40 and 50/50 respectively), were mixed and casted to posterior analysis of formed films. The more colored films were obtained by higher contents of okra mucilage and adding ZnO nanoparticles. The incorporation of ZnO NPs into CMC film decreased the elongation at the break (EB) value of the films and increased the tensile strength (TS) value of the film. With increase in CMC concentration in the films, higher water vapor permeability and higher solubility in water were achieved. Microstructure analysis using SEM showed a smooth and compact surface morphology, homogeneous structure, and a rough surface for CMC, CMC+ZnO, and CMC/OM30%+ZnO, respectively. Nanocomposite films presented antibacterial activity against tested bacteria. Films contained okra mucilage showed more antibacterial activity. The inhibitory activities of resultant films were stronger against S. aureus than E. coli. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dresler, Sławomir; Wójciak-Kosior, Magdalena; Sowa, Ireneusz; Stanisławski, Grzegorz; Bany, Izabela; Wójcik, Małgorzata
2017-06-01
The aim of the study was to determine the response of metallicolous and nonmetallicolous Echium vulgare L. populations to chronic multi-metal (Zn, Pb, Cd) and acute Zn (200, 400 μM) and Pb (30, 60 μM) stress. Three populations of E. vulgare, one from uncontaminated and two from metal-contaminated areas, were studied. Two types of experiments were performed - a short-term hydroponic experiment with acute Zn or Pb stress and a long-term manipulative soil experiment with the use of soils from the sites of origin of the three populations. Growth parameters, such as shoot and root fresh weight and leaf area, as well as organic acid accumulation were determined. Moreover, the concentration of selected secondary metabolites and antioxidant capacity in the three populations exposed to Pb or Zn excess were measured. Both metallicolous populations generally achieved higher biomass compared with the nonmetallicolous population cultivated under metal stress in hydroponics or on metalliferous substrates. Plants exposed to Pb or Zn excess or contaminated soil substrate exhibited higher malate and citrate concentrations compared with the reference (no metal stress) plants. It was observed that Zn or Pb stress increased accumulation of allantoin, chlorogenic and rosmarinic acids, total phenolics, and flavonoids. Moreover, it was shown that Pb sequestration in the roots or Zn translocation to the shoots may play a role in enhanced metal tolerance of metallicolous populations under acute Pb/Zn stress. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Suman, T Y; Radhika Rajasree, S R; Kirubagaran, R
2015-03-01
The increasing industrial use of nanomaterials during the last decades poses a potential threat to the environment and in particular to organisms living in the aquatic environment. In the present study, the toxicity of zinc oxide nanoparticles (ZnO NPs) was investigated in Marine algae Chlorella vulgaris (C. vulgaris). High zinc dissociation from ZnONPs, releasing ionic zinc in seawater, is a potential route for zinc assimilation and ZnONPs toxicity. To examine the mechanism of toxicity, C. vulgaris were treated with 50mg/L, 100mg/L, 200mg/L and 300 mg/L ZnO NPs for 24h and 72h. The detailed cytotoxicity assay showed a substantial reduction in the viability dependent on dose and exposure. Further, flow cytometry revealed the significant reduction in C. vulgaris viable cells to higher ZnO NPs. Significant reductions in LDH level were noted for ZnO NPs at 300 mg/L concentration. The activity of antioxidant enzyme superoxide dismutase (SOD) significantly increased in the C. vulgaris exposed to 200mg/L and 300 mg/L ZnO NPs. The content of non-enzymatic antioxidant glutathione (GSH) significantly decreased in the groups with a ZnO NPs concentration of higher than 100mg/L. The level of lipid peroxidation (LPO) was found to increase as the ZnO NPs dose increased. The FT-IR analyses suggested surface chemical interaction between nanoparticles and algal cells. The substantial morphological changes and cell wall damage were confirmed through microscopic analyses (FESEM and CM). Copyright © 2014 Elsevier Inc. All rights reserved.
Profile of Some Trace Elements in the Liver of Camels, Sheep, and Goats in the Sudan
Ibrahim, Ibrahim Abdullah; Shamat, Ali Mahmoud; Hussien, Mohammed Osman; El Hussein, Abdel Rahim Mohammed
2013-01-01
One hundred camels (Camelus dromedaries) and fifty sheep and goats being adult, male, and apparently healthy field animals were studied to provide data regarding the normal values of some hepatic trace elements. Liver samples were collected during postmortem examination, digested, and analyzed for Cu, Zn, Fe, Co, and Mn using atomic absorption spectrophotometry. The results showed that the differences in mean liver concentrations of Cu, Zn, Fe, and Co between camels, sheep, and goats were statistically significant (P < 0.05). Hepatic Cu, Fe, and Co concentrations were higher in camels than in sheep and goats. All liver samples were adequate for Fe and Co, whereas only camel liver was adequate for Cu. In camels, hepatic Zn concentration was inadequately lower than that in sheep and goats. No difference in Mn concentration was detected between camels, sheep, and goats. All liver samples were inadequate compared to free-ranging herbivores. In camels, significant correlation (r 2 = −0.207, P value = 0.04) was detected between Zn and Co, whereas in sheep significant correlation (r 2 = −0.444, P value = 0.026) was detected between Zn and Mn. No significant correlation between trace elements was detected in goats. PMID:26464909
Major and trace elements in organically or conventionally produced milk.
Hermansen, John E; Badsberg, Jens H; Kristensen, Troels; Gundersen, Vagn
2005-08-01
A total of 480 samples of milk from 10 organically and 10 conventionally producing dairy farms in Denmark and covering 8 sampling periods over 1 year (triplicate samplings) were analysed for 45 trace elements and 6 major elements by high-resolution inductively coupled plasma mass spectrometry and inductively coupled plasma atomic emission spectrometry. Sampling, sample preparation, and analysis of the samples were performed under carefully controlled contamination-free conditions. The dairy cattle breeds were Danish-Holstein or Jersey. Sources of variance were quantified, and differences between production systems and breeds were tested. The major source of variation for most elements was week of sampling. Concentrations of Al, Cu, Fe, Mo, Rb, Se, and Zn were within published ranges. Concentrations of As, Cd, Cr, Mn and Pb were lower, and concentrations of Co and Sr were higher than published ranges. Compared with Holsteins, Jerseys produced milk with higher concentrations of Ba, Ca, Cu, Fe, Mg, Mn, Mo, P, Rh, and Zn and with a lower concentration of Bi. The organically produced milk, compared with conventionally produced milk, contained a significantly higher concentration of Mo (48 v. 37 ng/g) and a lower concentration of Ba (43 v. 62 ng/g), Eu (4 v. 7 ng/g), Mn (16 v. 20 ng/g) and Zn (4400 v. 5150 ng/g respectively). The investigation yielded typical concentrations for the following trace elements in milk, for which no or very few data are available: Ba, Bi, Ce, Cs, Eu, Ga, Gd, In, La, Nb, Nd, Pd, Pr, Rh, Sb, Sm, Tb, Te, Th, Ti, Tl, U, V, Y, and Zr.
Availability of heavy metals in minesoils measured by different methods
NASA Astrophysics Data System (ADS)
Lago, Manoel; Arenas, Daniel; Vega, Flora; Andrade, Luisa
2013-04-01
Most of environmental regulations concerning soil pollution commonly include the total heavy metal content as the reference for determining contamination levels. Nevertheless the total content includes all different chemical forms and it rarely gives information on mobility, availability and toxicity (Pueyo et al., 2004). To be able to determine the concentrations of contaminants that cause toxicity it is important to study the available content, the one that can interact with an organism and be incorporated in its structure (Vangronsveld and Cunningham, 1998). There are many techniques that determine the operationally defined as available content in soils. Most of them use a reagent that causes the displacement of the ions by electrostatic attraction (Pueyo et al., 2004). The aim of this work is to compare the agreement among different extractants (Cl2Ca, EDTA, DTPA, bidistilled water (BDW) and low molecular weight organic acids (LMWOA) when Ni and Zn concentrations are measured in the extractions from five mine soils (Touro, Spain). The sequence of soils according to total contents of Ni and Zn is S4>S5>S1>S3>S2 and S4>S1>S5>S2>S3, respectively. In all cases Zn total contents are higher than Ni varying from two times higher (S5) to four times higher (S2). Zn concentration is also higher than Ni in the Cl2Ca extractions but the opposite happens in DTPA extractions. Both metal concentrations in the EDTA, BDW and LMWOA extractions are quite similar in each soil. This first approximation already shows there is no agreement among the different techniques used for determining heavy metal availability in soils. Nevertheless it was found that soils sequence according to Zn and Ni concentrations in all available extractions techniques (with the exception of BDW) is the same. According to the Ni and Zn contents in Cl2Ca, DTPA, EDTA and LMWOA extractions the sequence is S3> S4> S5> S1> S2. The S3 is the soil with the highest content of available Ni and Zn whilst it is the soil with the lowest total Zn content and one of those with the lowest Ni one. Even the sequence obtained from BDW extractions is different (S4> S3> S2> S1> S5) the S3 soil also possess one of the highest amounts of available Ni and Zn. Therefore the information given by the BDW technique is different than the other ones used for determining available contents of Ni and Zn since DTPA, Cl2Ca, EDTA and LMWOA cause the displacement of both ions from soil matrix towards the soil solution. Acknowledgments This research was supported by Project CGL2010-16765 (MICINN-FEDER). F.A. Vega and D. Arenas-Lago acknowledge the Ministry of Science and Innovation and the University of Vigo for the Ramón y Cajal and FPI-MICINN, respectively. References Pueyo, M., López-Sánchez, J.F., Rauret, G. 2004. Analytica Chimica Acta. 504. 217-226. Vangronsveld, J.; Cunningham, S.D. 1998. Metal-Contaminated Soils: In-Situ Inactivation and Phytoremediation. Springer-Verlag, Berlin, Germany.
Analysis of heavy metal accumulation in fish from the coastal waters of Terengganu, Malaysia
NASA Astrophysics Data System (ADS)
Rosli, M. N. R.; Samat, S. B.; Yasir, M. S.
2018-04-01
Bioaccumulation of toxic metals in fish causes serious threats to the human when they are consumed. Thus, the detection of toxic element concentration levels in fish is important. The accumulation of four heavy metal concentration of Cd, Cu, Mn and Zn in fish was determined. Five fish species namely Epinephelus lanceolatus, Rastrelliger, Megalaspis cordyla, Bramidae and Siganus canaliculatus were collected from the coastal waters of Terengganu, Malaysia. The analysis was done using inductive coupled plasma-mass spectrometer (ICP-MS) technique. The accumulation of the four heavy metals in muscle tissues of the fish are lower compared to liver and gill tissues. Cd concentration was higher in liver tissues except in Megalaspis cordyla. Meanwhile Cu concentration was higher in liver for all selected fishes. Mn concentration was higher in gill tissues of all fish studied while Zn concentration was higher in gill tissues except in Epinephelus lanceolatus and Rastrelliger. The highest average level of heavy metal recorded in fish is Zn (11.05 × 10-2 ± 1.44 × 10-2 mg kg-1) followed by Mn (1.81 × 10-2 ± 0.58 × 10-2 mg kg-1), Cu (0.70 × 10-2 ± 0.10 × 10-2 mg kg-1) and Cd (0.52×10-2 ± 0.27 × 10-2 mg kg-1). The metal concentration found in this study was lower than the national and international Recommended Dietary Allowance (RDA) for human consumption. Long term monitoring system of metal bioaccumulation in fishes need to be done to provide useful information for the assessment of the potential health risks of metals in Malaysia.
NASA Astrophysics Data System (ADS)
Chitra, M.; Uthayarani, K.; Rajasekaran, N.; Neelakandeswari, N.; Girija, E. K.; Padiyan, D. Pathinettam
2016-11-01
Zinc oxide (ZnO) and aluminum (Al) doped ZnO nanostructures with and without surfactant have been successfully prepared via sol-gel route. The effect of the surfactant glyoxalic acid and various concentration of Al on the structural property of ZnO was analyzed by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR). The morphology of the samples was recorded using field emission scanning electron microscopy. The uniform distribution of ZnO nanostructures with hexagonal facets is facilitated by the surfactant and the grain growth is further inhibited by the increase in concentration of Al. The ethanol (0-300ppm) sensing characteristics of the as-prepared samples were systematically investigated at room temperature. Surfactant-assisted ZnO/Al:ZnO nanostructures show higher sensitivity of 94% at room temperature than ZnO/Al:ZnO nanostructures without surfactant. Faster response at 68s and recovery at 50s is also achieved by the samples. The surfactant-assisted ZnO nanostructures exhibit sharp selective detection towards ethanol when compared to the samples without surfactant. The enhanced ethanol sensing property may be ascribed to the larger surface area which is due to uniform and smaller crystallite size of the surfactant-assisted sample.
Ruelas-Inzunza, Jorge; Soto-Jiménez, Martín Federico; Ruiz-Fernández, Ana Carolina; Bojórquez-Leyva, Humberto; Pérez-Bernal, Hascibe; Páez-Osuna, Federico
2012-12-01
Daily mineral intake (DMI) of Cu and Zn, percentage weekly intake (PWI) of As, Cd, Hg, Pb, and doses of (210)Po were estimated by using their elemental concentration in muscle of two tuna species and the average tuna consumption in Mexico. Skipjack tuna Katsuwonus pelamis had significantly (p < 0.05) higher levels of As (1.38 μg g(-1) dw) and Cu (1.85 μg g(-1) dw) than yellowfin tuna Thunnus albacares, whereas Pb concentrations (0.18 μg g(-1) dw) were significantly (p < 0.05) higher in T. albacares. The sequence of elemental concentrations in both species was Zn > Cu > As > Hg > Pb > Cd. In T. albacares, concentrations of Cd and Pb in muscle tissue were positively correlated (p < 0.05) with weight of specimens, while Cu was negatively correlated. DMI values were below 10 %. PWI figures (<2 %) are not potentially harmful to human health. (210)Po concentration in T. albacares and K. pelamis accounts for 13.5 to 89.7 % of the median individual annual dose (7.1 μSv) from consumption of marine fish and shellfish for the world population.
Thin-Film Thermoelectric Module for Power Generator Applications Using a Screen-Printing Method
NASA Astrophysics Data System (ADS)
Lee, Heon-Bok; Yang, Hyun Jeong; We, Ju Hyung; Kim, Kukjoo; Choi, Kyung Cheol; Cho, Byung Jin
2011-05-01
A new process for fabricating a low-cost thermoelectric module using a screen-printing method has been developed. Thermoelectric properties of screen-printed ZnSb films were investigated in an effort to develop a thermoelectric module with low cost per watt. The screen-printed Zn x Sb1- x films showed a low carrier concentration and high Seebeck coefficient when x was in the range of 0.5 to 0.57 and the annealing temperature was kept below 550°C. When the annealing temperature was higher than 550°C, the carrier concentration of the Zn x Sb1- x films reached that of a metal, leading to a decrease of the Seebeck coefficient. In the present experiment, the optimized carrier concentration of screen-printed ZnSb was 7 × 1018/cm3. The output voltage and power density of the ZnSb film were 10 mV and 0.17 mW/cm2, respectively, at Δ T = 50 K. A thermoelectric module was produced using the proposed screen-printing approach with ZnSb and CoSb3 as p-type and n-type thermoelectric materials, respectively, and copper as the pad metal.
Ruelas-Inzunza, J; Spanopoulos-Zarco, P; Páez-Osuna, F
2009-12-01
With the objective of estimating the temporal variation and bioavailability of Cd, Cu, Pb and Zn in Coatzacoalcos estuary, the biota-sediment accumulation factors (BSAF) were calculated. For this purpose, surficial sediments and clams from 14 selected sites were collected during three climatic seasons. In surficial sediments, highest levels of Cd and Cu were measured during the rainy season near to the industrial area of Minatitlan, while highest concentrations of Pb and Zn were registered during the windy season in sediments collected near to the industrial area of Coatzacoalcos. Considering all the sampling seasons and bivalve species, average metal concentrations followed the order Zn > Cu > Cd > Pb. BSAF ranged from 0.01 (Pb) in Corbicula fluminea during the hot season to 25.1 (Cd) in Polymesoda caroliniana during the windy season. BSAF of Cd, Cu and Zn were higher during the windy season; in the case of Pb, the dry season was the time when such figure was more elevated. It can be stated that Polymesoda caroliniana is a net accumulator of Cd and Zn and a weak accumulator of Pb for the studied estuary.
Lee, Sang-Won; Cha, Seung-Hwan; Choi, Kyung-Jae; Kang, Byoung-Ho; Lee, Jae-Sung; Kim, Sae-Wan; Kim, Ju-Seong; Jeong, Hyun-Min; Gopalan, Sai-Anand; Kwon, Dae-Hyuk; Kang, Shin-Won
2016-01-07
We propose a solution-processable ultraviolet (UV) photodetector with a pn-heterojunction hybrid photoactive layer (HPL) that is composed of poly-n-vinylcarbazole (PVK) as a p-type polymer and ZnO nanoparticles (NPs) as an n-type metal oxide. To observe the effective photo-inducing ability of the UV photodetector, we analyzed the optical and electrical properties of HPL which is controlled by the doping concentration of n-type ZnO NPs in PVK matrix. Additionally, we confirmed that the optical properties of HPL dominantly depend on the ZnO NPs from the UV-vis absorption and the photoluminescence (PL) spectral measurements. This HPL can induce efficient charge transfer in the localized narrow pn-heterojunction domain and increases the photocurrent gain. It is essential that proper doping concentration of n-type ZnO NPs in polymer matrix is obtained to improve the performance of the UV photodetector. When the ZnO NPs are doped with the optimized concentration of 3.4 wt.%, the electrical properties of the photocurrent are significantly increased. The ratio of the photocurrent was approximately 10³ higher than that of the dark current.
Lee, Sang-Won; Cha, Seung-Hwan; Choi, Kyung-Jae; Kang, Byoung-Ho; Lee, Jae-Sung; Kim, Sae-Wan; Kim, Ju-Seong; Jeong, Hyun-Min; Gopalan, Sai-Anand; Kwon, Dae-Hyuk; Kang, Shin-Won
2016-01-01
We propose a solution-processable ultraviolet (UV) photodetector with a pn-heterojunction hybrid photoactive layer (HPL) that is composed of poly-n-vinylcarbazole (PVK) as a p-type polymer and ZnO nanoparticles (NPs) as an n-type metal oxide. To observe the effective photo-inducing ability of the UV photodetector, we analyzed the optical and electrical properties of HPL which is controlled by the doping concentration of n-type ZnO NPs in PVK matrix. Additionally, we confirmed that the optical properties of HPL dominantly depend on the ZnO NPs from the UV-vis absorption and the photoluminescence (PL) spectral measurements. This HPL can induce efficient charge transfer in the localized narrow pn-heterojunction domain and increases the photocurrent gain. It is essential that proper doping concentration of n-type ZnO NPs in polymer matrix is obtained to improve the performance of the UV photodetector. When the ZnO NPs are doped with the optimized concentration of 3.4 wt.%, the electrical properties of the photocurrent are significantly increased. The ratio of the photocurrent was approximately 103 higher than that of the dark current. PMID:26751453
Theoretical study of the characteristics of a continuous wave iron-doped ZnSe laser
NASA Astrophysics Data System (ADS)
Pan, Qikun; Chen, Fei; Xie, Jijiang; Wang, Chunrui; He, Yang; Yu, Deyang; Zhang, Kuo
2018-03-01
A theoretical model describing the dynamic process of a continuous-wave Fe2+:ZnSe laser is presented. The influence of some of the operating parameters on the output characteristics of an Fe2+:ZnSe laser is studied in detail. The results indicate that the temperature rise of the Fe2+:ZnSe crystal is significant with the use of a high power pump laser, especially for a high doped concentration of crystal. The optimal crystal length increases with decreasing the doped concentration of crystal, so an Fe2+:ZnSe crystal with simultaneous doping during growth is an attractive choice, which usually has a low doped concentration and long length. The laser pumping threshold is almost stable at low temperatures, but increases exponentially with a working temperature in the range of 180 K to room temperature. The main reason for this phenomenon is the short upper level lifetime and serious thermal temperature rise when the working temperature is higher than 180 K. The calculated optimum output mirror transmittance is about 35% and the performance of a continuous-wave Fe2+:ZnSe laser is more efficient at a lower operating temperature.
Attachment of Quantum Dots on Zinc Oxide Nanorods
NASA Astrophysics Data System (ADS)
Seay, Jared; Liang, Huan; Harikumar, Parameswar
2011-03-01
ZnO nanorods grown by hydrothermal technique are of great interest for potential applications in photovoltaic and optoelectronic devices. In this study we investigate the optimization of the optical absorption properties by a low temperature, chemical bath deposition technique. Our group fabricated nanorods on indium tin oxide (ITO) substrate with precursor solution of zinc nitrate hexahydrate and hexamethylenetramine (1:1 molar ratio) at 95C for 9 hours. In order to optimize the light absorption characteristics of ZnO nanorods, CdSe/ZnS core-shell quantum dots (QDs) of various diameters were attached to the surface of ZnO nanostructures grown on ITO and gold-coated silicon substrates. Density of quantum dots was varied by controlling the number drops on the surface of the ZnO nanorods. For a 0.1 M concentration of QDs of 10 nm diameter, the PL intensity at 385 nm increased as the density of the quantum dots on ZnO nanostructures was increased. For quantum dots at 1 M concentration, the PL intensity at 385 nm increased at the beginning and then decreased at higher density. We will discuss the observed changes in PL intensity with QD concentration with ZnO-QD band structure and recombination-diffusion processes taking place at the interface.
NASA Astrophysics Data System (ADS)
Guerra-López, José R.; Echeverría, Gustavo A.; Güida, Jorge A.; Viña, Raúl; Punte, Graciela
2015-06-01
Calcium hydroxyapatite (CaHap) formation when different amounts of Zn(II) are present in the mother solution has been investigated by atomic absorption, infrared and Raman spectroscopies, X-ray diffraction and thermal analysis (DTA and TG). The studied samples have been synthesized at T=95 °C and pH 9 in air. The analysis of the results have shown that the pure CaHap sample crystallizes in the monoclinic form P21/b. Concentrations up to 20% of Zn(II) in the mother solution, equivalent to smaller concentrations in solid (up to 9.1% in wt), favor the formation of the hexagonal apatite, P63/m, while Zn(II) concentrations higher than 20% in solution help an amorphous phase development where vibrational spectra indicated coexistence of two phases: an apatite and ZnNH4PO4·H2O. Infrared data of thermal treated samples endorse that HPO42- ion had not been incorporated in Zn(II) doped samples during the synthesis process. Present results also allow to conclude that Zn(II) cation exhibits a preference to occupy the Ca2 site of the apatite structure and induces water adsorption and a small quantity of CO32- cation incorporation, leading to formation of a less crystalline Ca deficient apatite.
Spatial variability of trace elements and sources for improved exposure assessment in Barcelona
NASA Astrophysics Data System (ADS)
Minguillón, María Cruz; Cirach, Marta; Hoek, Gerard; Brunekreef, Bert; Tsai, Ming; de Hoogh, Kees; Jedynska, Aleksandra; Kooter, Ingeborg M.; Nieuwenhuijsen, Mark; Querol, Xavier
2014-06-01
Trace and major elements concentrations in PM10 and PM2.5 were measured at 20 sites spread in the Barcelona metropolitan area (1 rural background, 6 urban background, 13 road traffic sites) and at 1 reference site. Three 2-week samples per site and size fraction were collected during 2009 using low volume samplers, adding a total of 120 samples. Collected samples were analysed for elemental composition using Energy Dispersive X-ray fluorescence (XRF). EC, OC, and hopanes and steranes concentrations in PM2.5 were determined. Positive Matrix Factorisation (PMF) model was used for a source apportionment analysis. The work was performed as part of the ESCAPE project. Elements were found in concentrations within the usual range in Spanish urban areas. Mineral elements were measured in higher concentrations during the warm season, due to enhanced resuspension; concentrations of fueloil combustion elements were also higher in summer. Elements in higher concentration at the traffic sites were: Ba, Cr, Cu, Fe, Mn, Mo, Pb, Sn, Zn and Zr. Spatial variations related to non-traffic sources were observed for concentrations of Br, Cl, K, and Na (sea salt origin) and Ni, V and S (shipping emissions), which were higher at the coastal sites, as well as for Zn and Pb, higher at sites closer to industrial facilities. Five common sources for PM10 and PM2.5 were identified by PMF: road traffic (with tracers Ba, Cr, Cu, Fe, Mo and Zn); fueloil combustion (Ni and V); secondary sulphate; industry (Pb and Zn); and mineral source (Al, Ca, Mg, Si, Sr and Ti). A marine aerosol source, a mixture of sea salt with aged anthropogenic aerosols, was found only in PM10. EC, hopanes and steranes concentrations correlate strongly with the PM10 road traffic source contributions, being hence all attributed to the same source. OC may arise from other sources in addition to road traffic and have a high contribution of secondary OC. Significant spatial and temporal variation in the PM2.5 and PM10 elemental composition was found. Spatial patterns differed per element, related to the main source. The identified source contributions can be used in health studies of source-specific particles.
Fedor, Monika; Socha, Katarzyna; Urban, Beata; Soroczyńska, Jolanta; Matyskiela, Monika; Borawska, Maria H; Bakunowicz-Łazarczyk, Alina
2017-03-01
The purpose of the present study was the assessment of the serum concentration of antioxidant microelements-zinc, copper, selenium, manganese, and Cu/Zn ratio in children and adolescents with myopia. Eighty-three children were examined (mean age 14.36 ± 2.49 years) with myopia. The control group was 38 persons (mean age 12.89 ± 3.84 years). Each patient had complete eye examination. The serum concentration of zinc, copper, manganese, and selenium was determined by atomic absorption spectrometry. Cu/Zn ratio, which is the indicator of the oxidative stress, was also calculated. The average serum concentration of zinc in myopic patients was significantly lower (0.865 ± 0.221 mg L -1 ) in comparison to the control group (1.054 ± 0.174 mg L -1 ). There was significantly higher Cu/Zn ratio in myopic patients (1.196 ± 0.452) in comparison to that in the control group (0.992 ± 0.203). The average serum concentration of selenium in the study group was significantly lower (40.23 ± 12.07 μg L -1 ) compared with that in the control group (46.00 ± 12.25 μg L -1 ). There were no essential differences between serum concentration of copper and manganese in the study group and the control group. Low serum concentration of zinc and selenium in myopic children may imply an association between insufficiency of these antioxidant microelements and the development of the myopia and could be the indication for zinc and selenium supplementation in the prevention of myopia. Significantly, higher Cu/Zn ratio in the study group can suggest the relationship between myopia and oxidative stress.
Saqib, Naeem; Bäckström, Mattias
2015-10-01
Impact of waste fuels (virgin/waste wood, mixed biofuel (peat, bark, wood chips) industrial, household, mixed waste fuel) and incineration technologies on partitioning and leaching behavior of trace elements has been investigated. Study included 4 grate fired and 9 fluidized boilers. Results showed that mixed waste incineration mostly caused increased transfer of trace elements to fly ash; particularly Pb/Zn. Waste wood incineration showed higher transfer of Cr, As and Zn to fly ash as compared to virgin wood. The possible reasons could be high input of trace element in waste fuel/change in volatilization behavior due to addition of certain waste fractions. The concentration of Cd and Zn increased in fly ash with incineration temperature. Total concentration in ashes decreased in order of Zn>Cu>Pb>Cr>Sb>As>Mo. The concentration levels of trace elements were mostly higher in fluidized boilers fly ashes as compared to grate boilers (especially for biofuel incineration). It might be attributed to high combustion efficiency due to pre-treatment of waste in fluidized boilers. Leaching results indicated that water soluble forms of elements in ashes were low with few exceptions. Concentration levels in ash and ash matrix properties (association of elements on ash particles) are crucial parameters affecting leaching. Leached amounts of Pb, Zn and Cr in >50% of fly ashes exceeded regulatory limit for disposal. 87% of chlorine in fly ashes washed out with water at the liquid to solid ratio 10 indicating excessive presence of alkali metal chlorides/alkaline earths. Copyright © 2015. Published by Elsevier B.V.
Rezende, C E; Lacerda, L D; Ovalle, A R C; Souza, C M M; Gobo, A A R; Santos, D O
2002-07-01
The concentrations of Al, Fe, Mn, Zn, Cu, Pb, Ni, Cr, Ba, V, Sn and As in offshore bottom sediments from the Bacia de Campos oil field, SE Brazil, were measured at the beginning and at 7 months after completion of the drilling operation. Concentrations of Al, Fe, Ba, Cr, Ni and Zn were significantly higher closer to the drilling site compared to stations far from the site. Average concentrations of Al, Cu, and in particular of Ni, were significantly higher at the end of the drilling operation than at the beginning. Comparison between drilling area sediments with control sediments of the continental platform, however, showed no significant difference in trace metal concentrations. Under the operation conditions of this drilling event, the results show that while changes in some trace metal concentrations do occur during drilling operations, they are not significantly large to be distinguished from natural variability of the local background concentrations.
NASA Astrophysics Data System (ADS)
Rastegari Mehr, Meisam; Keshavarzi, Behnam; Moore, Farid; Sharifi, Reza; Lahijanzadeh, Ahmadreza; Kermani, Maryam
2017-08-01
The present study examines some heavy metals (As, Cd, Co, Cr, Cu, Ni, Pb and Zn) contents in urban soils of 23 cities in Isfahan province, central Iran. For this purpose, 83 topsoil samples were collected and analyzed by ICP-MS. Results showed that the concentrations of As, Cd, Cu, Pb and Zn are higher than background values, while Co, Cr and Ni concentrations are close to the background. Compared with heavy metal concentrations in selected cities around the world, As, Cd, Cu, Pb and Zn concentrations in urban soils of Isfahan are relatively enriched. Moreover, natural background concentrations of Co, Cr and Ni in Isfahan province soil are high and the apparent enrichment relative to other major cities of the world is due to this high background contents. Calculated contamination factor (CF) confirmed that As, Cd, Cu, Pb and Zn are extremely enriched in the urban soils. Furthermore, pollution load index (PLI) and Geoaccumulation index (Igeo) highlighted that highly contaminated cities are mostly affected by pollution from traffic, industries and Shahkuh Pb-Zn mine. Based on hazard quotients (HQ), hazard index (HI) and cancer risk (CR) calculated in this study, human health risk (particularly for Pb and Cd) have reached alarming scales. Results from principle component analysis (PCA) and positive matrix factorization (PMF) introduces three sources for soils heavy metals including mine and industries (mainly for Pb, Zn, Cd and As); urban activities (particularly for Cu, Pb and Zn); and geogenic source (Ni, Co and Cr).
Luoma, S.N.; VanGeen, A.; Lee, B.-G.; Cloern, J.E.
1998-01-01
The 1994 spring phytoplankton bloom in South San Francisco Bay caused substantial reductions in concentrations of dissolved Cd, Ni, and Zn, but not Cu. We estimate that the equivalent of ~60% of the total annual input of Cd, Ni, and Zn from local waste-water treatment plants is cycled through the phytoplankton in South Bay. The results suggest that processes that affect phytoplankton bloom frequency or intensity in estuaries (e.g. nutrient enrichment) may also affect metal trapping. The bloom was characterized by hydrographic surveys conducted at weekly intervals for 9 weeks. Metal samples were collected from the water column on three occasions, timed to bracket the period when the bloom was predicted. Factors that might confound observations of biological influences, such as freshwater inputs, were relatively constant during the study. Before the bloom, concentrations of dissolved Cd were 0.81 ?? 0.02 nmol kg-1, Zn concentrations were 19.8 ?? 1.5 nmol kg-1, Ni were 42 ?? 1.4 nmol kg-1, and Cu were 37 ?? 1.4 nmol kg-1. The values are elevated relative to riverine and coastal end-members, reflecting inputs from wastewater and(or) sediments. At the height of the bloom, dissolved Zn, Cd, and Ni were reduced to 19, 50, and 75% of their prebloom concentrations, respectively. Dissolved Cu concentrations increased 20%. The mass of Cd taken up by phytoplankton was similar to the mass of Cd removed from solution if particle settling was considered, and Cd concentrations estimated in phytoplankton were higher than concentrations in suspended particulate material (SPM). Particulate concentrations of Zn and Ni during the bloom appeared to be dominated by the influence of changes in resuspension of Zn- and Ni-rich sediments.
Taraškevičius, Ričardas; Zinkutė, Rimantė; Gedminienė, Laura; Stankevičius, Žilvinas
2017-05-23
The research is based on analysis data of Cr, Cu, Mn, Ni, V, Zn (metals) and S in the hair of 47 girls and 63 boys from eight Vilnius kindergartens and the distribution pattern of high metal concentrations and bioavailability in snow-cover dust, also dust samples from vents of characteristic pollution sources. The kindergartens were selected according to topsoil total contamination index and dust-related indices. Significantly higher Cu, Mn, Ni and Zn concentrations in the hair of girls (means are 1.1, 1.9, 1.3, 1.2 times higher) and the differences between hair of genders according to inter-element correlation and clustering were found. Analysis of Spearman correlation coefficients between metal concentrations in hair of each gender and dust metal concentrations or metal loading rates at their residence sites revealed that for Mn, Cu and Zn, they are insignificant, while for Cr, Ni, Pb and V, they are mainly significant positive (except V in female hair). The correlation of the contents of Cr, Ni and V in dust with respective concentrations in hair was more significant for boys (p < 0.001) than for girls. Only a few cases with a significant Cr, Ni, Cu, Pb and Zn increase were revealed in hair of children attending polluted kindergartens in comparison with control. It was concluded that relationship between metal concentrations in hair and dust-related indices is more expressed for children's residence sites than for their kindergarten sites. The gender-based grouping and site-by-site study design are recommended in the studies of reflection of environmental exposure in hair.
Ferreira, Marisa; Monteiro, Silvia S; Torres, Jordi; Oliveira, Isabel; Sequeira, Marina; López, Alfredo; Vingada, José; Eira, Catarina
2016-03-01
The coastal preferences of harbour porpoise (Phocoena phocoena) intensify their exposure to human activities. The harbour porpoise Iberian population is presently very small and information about the threats it endures is vital for the conservation efforts that are being implemented to avoid local extinction. The present study explored the possible relation between the accumulation of trace elements by porpoises and their sex, body length, nutritional state, presence of parasites and gross pathologies. The concentrations of arsenic (As), cadmium (Cd), copper (Cu), mercury (Hg), manganese (Mn), nickel (Ni), lead (Pb), zinc (Zn) and selenium (Se) were evaluated in 42 porpoises stranded in Portugal between 2005 and 2013. Considering European waters, porpoises stranded in Portugal present the highest Hg concentrations and the lowest Cd concentrations, which may reflect dietary preferences and the geographic availability of these pollutants. While no effect of sex on trace element concentrations was detected, there was a positive relationship between porpoise body length and the concentration of Cd, Hg and Pb. Animals in worse nutritional condition showed higher levels of Zn. Harbour porpoises with high parasite burdens showed lower levels of Zn and As in all analysed tissues and also lower levels of renal Ni, while those showing gross pathologies presented higher Zn and Hg levels. This is the first data on the relationship between trace elements and health-related variables in porpoises from southern European Atlantic waters, providing valuable baseline information about the contamination status of this vulnerable population. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effect of greenhouse vegetable farming duration on Zinc accumulation in Northeast China
NASA Astrophysics Data System (ADS)
Wang, Jun; Yu, Peiying; Cui, Shuang; Chen, Xin; Shi, Yi
2018-02-01
Greenhouse vegetable production (GVP) has rapidly expanded, and reqiures more attention due to its heavy metal contamination. In this study, different cultivation greenhouses of 1, 2, 3, 5 and 13 years were selected to investigate the effects of GVP duration on Zn accumulation. The results revealed high Zn (total Zn and available Zn) accumulation in GVP surface layers (0-20 cm), and Zn contents in 0-20 cm soil layers were positively correlated with GVP duration (P<0.01). Zn accumulation was mainly attributed to manure fertilizer application due to higher concentrations of Zn in manures. For greenhouse sustainability, reduction of manure application and reasonable use of passivation materials may alleviate metal phytoavailability and the health risk.
Improving the selective cancer killing ability of ZnO nanoparticles using Fe doping.
Thurber, Aaron; Wingett, Denise G; Rasmussen, John W; Layne, Janet; Johnson, Lydia; Tenne, Dmitri A; Zhang, Jianhui; Hanna, Charles B; Punnoose, Alex
2012-06-01
This work reports a new method to improve our recent demonstration of zinc oxide (ZnO) nanoparticles (NPs) selectively killing certain human cancer cells, achieved by incorporating Fe ions into the NPs. Thoroughly characterized cationic ZnO NPs (∼6 nm) doped with Fe ions (Zn(1-x )Fe (x) O, x = 0-0.15) were used in this work, applied at a concentration of 24 μg/ml. Cytotoxicity studies using flow cytometry on Jurkat leukemic cancer cells show cell viability drops from about 43% for undoped ZnO NPs to 15% for ZnO NPs doped with 7.5% Fe. However, the trend reverses and cell viability increases with higher Fe concentrations. The non-immortalized human T cells are markedly more resistant to Fe-doped ZnO NPs than cancerous T cells, confirming that Fe-doped samples still maintain selective toxicity to cancer cells. Pure iron oxide samples displayed no appreciable toxicity. Reactive oxygen species generated with NP introduction to cells increased with increasing Fe up to 7.5% and decreased for >7.5% doping.
Roofing as a source of nonpoint water pollution.
Chang, Mingteh; McBroom, Matthew W; Scott Beasley, R
2004-12-01
Sixteen wooden structures with two roofs each were installed to study runoff quality for four commonly used roofing materials (wood shingle, composition shingle, painted aluminum, and galvanized iron) at Nacogdoches, Texas. Each roof, either facing NW or SE, was 1.22 m wide x 3.66 m long with a 25.8% roof slope. Thus, there were 32 alternatively arranged roofs, consisting of four roof types x two aspects x four replicates, in the study. Runoff from the roofs was collected through galvanized gutters, downspouts, and splitters. The roof runoff was compared to rainwater collected by a wet/dry acid rain collector for the concentrations of eight water quality variables, i.e. Cu(2+), Mn(2+), Pb(2+), Zn(2+), Mg(2+), Al(3+), EC and pH. Based on 31 storms collected between October 1997 and December 1998, the results showed: (1) concentrations of pH, Cu, and Zn in rainwater already exceed the EPA freshwater quality standards even without pollutant inputs from roofs, (2) Zn and Cu, the two most serious pollutants in roof runoff, exceeded the EPA national freshwater water quality standards in virtually 100% and more than 60% of the samples, respectively, (3) pH, EC, and Zn were the only three variables significantly affected by roofing materials, (4) differences in Zn concentrations were significant among all roof types and between all roof runoff and rainwater samples, (5) although there were no differences in Cu concentrations among all roof types and between roof runoff and rainwater, all means and medians of runoff and rainwater exceeded the national water quality standards, (6) water quality from wood shingles was the worst among the roof types studied, and (7) although SE is the most frequent and NW the least frequent direction for incoming storms, only EC, Mg, Mn, and Zn in wood shingle runoff from the SE were significantly higher than those from the NW; the two aspects affected no other elements in runoff from the other three roof types. Also, Zn concentrations from new wood-shingle roofs were significantly higher than those from aged roofs of a previous study. The study demonstrated that roofs could be a serious source of nonpoint water pollution. Since Zn is the most serious water pollutant and wood shingle is the worst of the four roof types, using less compounds and materials associated with Zn along with good care and maintenance of roofs are critical in reducing Zn pollution in roof runoff.
Rodriguez-Espinosa, P F; Jonathan, M P; Morales-García, S S; Villegas, Lorena Elizabeth Campos; Martínez-Tavera, E; Muñoz-Sevilla, N P; Cardona, Miguel Alvarado
2015-11-01
We analyzed the total (Zn, Pb, Ni, Hg, Cr, Cd, Cu, As) and partially leachable metals (PLMs) in 25 ash and soil samples from recent (2012-2013) eruptions of the Popocatépetl Volcano in Central Mexico. More recent ash and soil samples from volcanic activity in 2012-2013 had higher metal concentrations than older samples from eruptions in 1997 suggesting that the naturally highly volatile and mobile metals leach into nearby fresh water sources. The higher proportions of As (74.72%), Zn (44.64%), Cu (42.50%), and Hg (32.86%) reflect not only their considerable mobility but also the fact that they are dissolved and accumulated quickly following an eruption. Comparison of our concentration patterns with sediment quality guidelines indicates that the Cu, Cd, Cr, Hg, Ni, and Pb concentrations are higher than permissible limits; this situation must be monitored closely as these concentrations may reach lethal levels in the future.
Biodegradable CaMgZn bulk metallic glass for potential skeletal application.
Wang, Y B; Xie, X H; Li, H F; Wang, X L; Zhao, M Z; Zhang, E W; Bai, Y J; Zheng, Y F; Qin, L
2011-08-01
A low density and high strength alloy, Ca65Mg15Zn20 bulk metallic glass (CaMgZn BMG), was evaluated by both in vitro tests on ion release and cytotoxicity and in vivo implantation, aimed at exploring the feasibility of this new biodegradable metallic material for potential skeletal applications. MTT assay results showed that the experimental CaMgZn BMG extracts had no detectable cytotoxic effects on L929, VSMC and ECV304 cells over a wide range of concentrations (0-50%), whereas for MG63 cells concentrations in the range ~5-20% promoted cell viability. Meanwhile, alkaline phosphatase (ALP) activity results showed that CaMgZn BMG extracts increased alkaline phosphatase (ALP) production by MG63 cells. However, Annexin V-fluorescein isothiocyanate and propidium iodide staining indicated that higher concentrations (50%) might induce cell apoptosis. The fluorescence observation of F-actin and nuclei in MG63 cells showed that cells incubated with lower concentrations (0-50%) displayed no significant change in morphology compared with a negative control. Tumor necrosis factor-α expression by Raw264.7 cells in the presence of CaMgZn BMG extract was significantly lower than that of the positive and negative controls. Animal tests proved that there was no obvious inflammation reaction at the implantation site and CaMgZn BMG implants did not result in animal death. The cortical thickness around the CaMgZn BMG implant increased gradually from 1 to 4 weeks, as measured by in vivo micro-computer tomography. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Ishikawa, Ryo; Iwata, Masahide; Taniko, Kenta; Monden, Gotaro; Miyazaki, Naoya; Orn, Chhourn; Tsujimura, Yuki; Yoshida, Shusaku; Ma, Jian Feng; Ishii, Takashige
2017-01-01
Zinc (Zn) is one of the essential mineral elements for both plants and humans. Zn deficiency in human is one of the major causes of hidden hunger, a serious health problem observed in many developing countries. Therefore, increasing Zn concentration in edible part is an important issue for improving human Zn nutrition. Here, we found that an Australian wild rice O. meridionalis showed higher grain Zn concentrations compared with cultivated and other wild rice species. The quantitative trait loci (QTL) analysis was then performed to identify the genomic regions controlling grain Zn levels using backcross recombinant inbred lines derived from O. sativa 'Nipponbare' and O. meridionalis W1627. Four QTLs responsible for high grain Zn were detected on chromosomes 2, 9, and 10. The QTL on the chromosome 9 (named qGZn9), which showed the largest effect on grain Zn concentration was confirmed with the introgression line, which had a W1627 chromosomal segment covering the qGZn9 region in the genetic background of O. sativa 'Nipponbare'. Fine mapping of this QTL resulted in identification of two tightly linked loci, qGZn9a and qGZn9b. The candidate regions of qGZn9a and qGZn9b were estimated to be 190 and 950 kb, respectively. Furthermore, we also found that plants having a wild chromosomal segment covering qGZn9a, but not qGZn9b, is associated with fertility reduction. qGZn9b, therefore, provides a valuable allele for breeding rice with high Zn in the grains.
NASA Astrophysics Data System (ADS)
López-Berdonces, Miguel Angel; María Esbrí, José; Fernández-Calderón, Sergio; Naharro, Elena; García-Noguero, Eva Maria; Higueras, Pablo
2014-05-01
El Borracho mine was active since Roman times, but with its higher production period on 19th Century. Mine closure occured without restoration works and nowadays the mining area is dedicated to deer hunting activities. In order to evaluate heavy metals distribution on mining tailings and surrounding soils of the studied area, 40 samples of dumps, soils and sediments were taken. Samples from the mine tailings were collected with an Eijkelkamp soil core sampler for undisturbed samples, with a vertical constant spacing of 25 cm. With this procedure, a total of 21 samples were taken in two points at main dump. Samples of Oak-tree leaves and moss were taken to evaluate metal transfer to biota. Analytical determinations have included soil parameters (pH, conductivity, organic matter content), and total metal contents in geological and biological samples by EDXRF. Analytical determinations shows higher metal contents in dumps, especially in surficial samples, 17,700 mg kg-1 and 470 mg kg-1 in average of Pb and Zn respectively, and lower contents in soils, 5,200 mg kg-1 and 300 mg kg-1, and sediments, 3,500 mg kg-1 and 120 mg kg-1. Metal contents in tailings profiles shows higher levels of Pb, Zn and Cu at 3.5 meters depth, a zone with lower grainsize and higher moisture. Differences in efficiency of extraction techniques and metal remobilization inside the dump can be an explanation for this enrichment level. Metal contents in agricultural soils exceeded maximum allowed levels by European Community (300 mg kg-1 for Pb and Zn and 140 mg kg-1 for Cu). Metal contents in biota evidence that Oak-tree bioaccumulates some metals, especially those with higher mobility in acidic conditions like Zn and Sb, with averages Bioaccumulation factor (BAF = plant concentration/soil concentration) of 0.48 and 0.85 respectively. Moss reaches high concentrations of Pb and Zn (3,000 mg kg-1 and 175 mg kg-1 in average respectively). Uptake pattern of Pb and Zn by plants leaves and mosses seems to be similar and can be characterized by logistic curves, with higher affinity of mosses to uptake metals from soils.
Trace metals in sediments of two estuarine lagoons from Puerto Rico.
Acevedo-Figueroa, D; Jiménez, B D; Rodríguez-Sierra, C J
2006-05-01
Concentrations of As, Cd, Cu, Fe, Hg, Pb and Zn were evaluated in surface sediments of two estuaries from Puerto Rico, known as San José Lagoon (SJL) and Joyuda Lagoon. Significantly higher concentrations in microg/g dw of Cd (1.8 vs. 0.1), Cu (105 vs. 22), Hg (1.9 vs. 0.17), Pb (219 vs. 8), and Zn (531 vs. 52) were found in sediment samples from SJL when compared to Joyuda Lagoon. Average concentrations of Hg, Pb, and Zn in some sediment samples from SJL were above the effect range median (ERM) that predict toxic effects to aquatic organisms. Enrichments factors using Fe as a normalizer, and correlation matrices showed that metal pollution in SJL was the product of anthropogenic sources, while the metal content in Joyuda Lagoon was of natural origins. Sediment metal concentrations found in SJL were comparable to aquatic systems classified as contaminated from other regions of the world.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tynell, Tommi; Yamauchi, Hisao; Karppinen, Maarit, E-mail: maarit.karppinen@aalto.fi
2014-01-15
A combination of the atomic layer deposition (ALD) and molecular layer deposition (MLD) techniques is successfully employed to fabricate thin films incorporating superlattice structures that consist of single layers of organic molecules between thicker layers of ZnO. Diethyl zinc and water are used as precursors for the deposition of ZnO by ALD, while three different organic precursors are investigated for the MLD part: hydroquinone, 4-aminophenol and 4,4′-oxydianiline. The successful superlattice formation with all the organic precursors is verified through x-ray reflectivity studies. The effects of the interspersed organic layers/superlattice structure on the electrical and thermoelectric properties of ZnO are investigatedmore » through resistivity and Seebeck coefficient measurements at room temperature. The results suggest an increase in carrier concentration for small concentrations of organic layers, while higher concentrations seem to lead to rather large reductions in carrier concentration.« less
Mainzer, Barbara; Lahrssen-Wiederholt, Monika; Schafft, Helmut; Palavinskas, Richard; Breithaupt, Angele; Zentek, Jürgen
2015-01-01
This study was conducted to measure the concentrations of strontium (Sr), barium (Ba), cadmium (Cd), copper (Cu), zinc (Zn), manganese (Mn), chromium (Cr), antimony (Sb), selenium (Se), and lead (Pb) in canine liver, renal cortex, and renal medulla, and the association of these concentrations with age, gender, and occurrence of chronic kidney disease (CKD). Tissues from 50 dogs were analyzed using inductively coupled plasma mass spectrometry. Cu, Zn, and Mn levels were highest in the liver followed by the renal cortex and renal medulla. The highest Sr, Cd, and Se concentrations were measured in the renal cortex while lower levels were found in the renal medulla and liver. Female dogs had higher tissue concentrations of Sr (liver and renal medulla), Cd (liver), Zn (liver and renal cortex), Cr (liver, renal cortex, and renal medulla), and Pb (liver) than male animals. Except for Mn and Sb, age-dependent variations were observed for all element concentrations in the canine tissues. Hepatic Cd and Cr concentrations were higher in dogs with CKD. In conclusion, the present results provide new knowledge about the storage of specific elements in canine liver and kidneys, and can be considered important reference data for diagnostic methods and further investigations. PMID:25234328
Bai, Yang; Wang, Min; Peng, Chi; Alatalo, Juha M
2016-03-01
We investigated the horizontal and vertical distribution of heavy metals (Hg, Pb, Zn, Cu, Cd, As, Ni, and Cr) in soils in the water source protection zone for Shanghai to study the origins of these metals, their connections with urbanization, and their potential risk posed on the ecosystem. Determination of metal concentrations in 50 topsoil samples and nine soil profiles indicated that Hg, Pb, Zn, and Cu were present in significantly higher concentrations in topsoil than in deep soil layers. The spatial distributions of Hg, Pb, Zn, and Cu and contamination hotspots for these metals in the study area were similar to those near heavy industries and urban built-up areas. Emissions from automobiles resulted in increased soil concentrations of Cu, Pb, and Zn along roadsides, while high concentrations of Hg in the soil resulted from recent atmospheric deposition. Calculation of the potential ecological risk indicated that the integrative risk of these heavy metals in most areas was low, but a few sites surrounding high density of factories showed moderate risks.
Zn/Cd ratios and cadmium isotope evidence for the classification of lead-zinc deposits
Wen, Hanjie; Zhu, Chuanwei; Zhang, Yuxu; Cloquet, Christophe; Fan, Haifeng; Fu, Shaohong
2016-01-01
Lead-zinc deposits are often difficult to classify because clear criteria are lacking. In recent years, new tools, such as Cd and Zn isotopes, have been used to better understand the ore-formation processes and to classify Pb-Zn deposits. Herein, we investigate Cd concentrations, Cd isotope systematics and Zn/Cd ratios in sphalerite from nine Pb-Zn deposits divided into high-temperature systems (e.g., porphyry), low-temperature systems (e.g., Mississippi Valley type [MVT]) and exhalative systems (e.g., sedimentary exhalative [SEDEX]). Our results showed little evidence of fractionation in the high-temperature systems. In the low-temperature systems, Cd concentrations were the highest, but were also highly variable, a result consistent with the higher fractionation of Cd at low temperatures. The δ114/110Cd values in low-temperature systems were enriched in heavier isotopes (mean of 0.32 ± 0.31‰). Exhalative systems had the lowest Cd concentrations, with a mean δ114/110Cd value of 0.12 ± 0.50‰. We thus conclude that different ore-formation systems result in different characteristic Cd concentrations and fraction levels and that low-temperature processes lead to the most significant fractionation of Cd. Therefore, Cd distribution and isotopic studies can support better understanding of the geochemistry of ore-formation processes and the classification of Pb-Zn deposits. PMID:27121538
NASA Astrophysics Data System (ADS)
Liu, Tingzhi; Li, Yangyang; Zhang, Hao; Wang, Min; Fei, Xiaoyan; Duo, Shuwang; Chen, Ying; Pan, Jian; Wang, Wei
2015-12-01
Different flower-like ZnO hierarchical architectures were prepared by tartaric acid assisted hydrothermal synthesis, especially four flower-like ZnO nanostructures were obtained simultaneously under the same reaction condition. The cauliflower-like ZnO is assembled by spherical shaped nanoparticles, and the chrysanthemum-like and other flower-like ZnO nanostructures are assembled by hexagonal rods/prisms with from planar to semi-pyramid, and to pyramid tips. TA acts as a capping agent and structure-directing agent during the synthesis. All ZnO possess the hexagonal wurtzite structure. The PL spectra can be tuned by changing TA concentration. XRD, PL and Raman spectra confirmed that oxygen vacancies mainly come from the ZnO surface. The flower-like samples of 1:4.5 and 1:3 with the largest aspect ratios have highest photocatalytic performance. They decompose 85% MB within 60 min. Combining PL Gaussian fitting with K, the higher content of oxygen vacancy is, the higher photocatalytic activity is. The enhanced photocatalytic performance is mainly induced by oxygen vacancy of ZnO. The possible formation mechanism, growth and change process of flower-like ZnO were proposed.
NASA Astrophysics Data System (ADS)
Roy, Utpal N.; Camarda, Giuseppe S.; Cui, Yonggang; Gul, Rubi; Hossain, Anwar; Yang, Ge; James, Ralph B.; Pradhan, Aswini K.; Mundle, Rajeh
2016-09-01
Aluminum (Al) doped ZnO with very high Al concentration acts as metal regarding its electrical conductivity. ZnO offers many advantages over the commonly-known metals being used today as electrode materials for nuclear detector fabrication. Often, the common metals show poor adhesion to CdZnTe or CdTe surfaces and have a tendency to peel off. In addition, there is a large mismatch of the coefficients of thermal expansion (CTE) between the metals and underlying CdZnTe, which is one of the reasons for mechanical degradation of the contact. In contrast ZnO has a close match of the CTE with CdZnTe and possesses 8-20 times higher hardness than the commonly-used metals. In this presentation, we will explore and discuss the properties of CdZnTe detectors with ZnO:Al contacts.
Kubásek, J; Vojtěch, D; Jablonská, E; Pospíšilová, I; Lipov, J; Ruml, T
2016-01-01
Zn-(0-1.6)Mg (in wt.%) alloys were prepared by hot extrusion at 300 °C. The structure, mechanical properties and in vitro biocompatibility of the alloys were investigated. The hot-extruded magnesium-based WE43 alloy was used as a control. Mechanical properties were evaluated by hardness, compressive and tensile testing. The cytotoxicity, genotoxicity (comet assay) and mutagenicity (Ames test) of the alloy extracts and ZnCl2 solutions were evaluated with the use of murine fibroblasts L929 and human osteosarcoma cell line U-2 OS. The microstructure of the Zn alloys consisted of recrystallized Zn grains of 12 μm in size and fine Mg2Zn11 particles arranged parallel to the hot extrusion direction. Mechanical tests revealed that the hardness and strength increased with increasing Mg concentration. The Zn-0.8 Mg alloys showed the best combination of tensile mechanical properties (tensile yield strength of 203 MPa, ultimate tensile strength of 301 MPa and elongation of 15%). At higher Mg concentrations the plasticity of Zn-Mg alloys was deteriorated. Cytotoxicity tests with alloy extracts and ZnCl2 solutions proved the maximum safe Zn(2+) concentrations of 120 μM and 80 μM for the U-2 OS and L929 cell lines, respectively. Ames test with extracts of alloys indicated that the extracts were not mutagenic. The comet assay demonstrated that 1-day extracts of alloys were not genotoxic for U-2 OS and L929 cell lines after 1-day incubation. Copyright © 2015 Elsevier B.V. All rights reserved.
Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials.
Sun, Tian Yin; Gottschalk, Fadri; Hungerbühler, Konrad; Nowack, Bernd
2014-02-01
Concerns about the environmental risks of engineered nanomaterials (ENM) are growing, however, currently very little is known about their concentrations in the environment. Here, we calculate the concentrations of five ENM (nano-TiO2, nano-ZnO, nano-Ag, CNT and fullerenes) in environmental and technical compartments using probabilistic material-flow modelling. We apply the newest data on ENM production volumes, their allocation to and subsequent release from different product categories, and their flows into and within those compartments. Further, we compare newly predicted ENM concentrations to estimates from 2009 and to corresponding measured concentrations of their conventional materials, e.g. TiO2, Zn and Ag. We show that the production volume and the compounds' inertness are crucial factors determining final concentrations. ENM production estimates are generally higher than a few years ago. In most cases, the environmental concentrations of corresponding conventional materials are between one and seven orders of magnitude higher than those for ENM. Copyright © 2013 Elsevier Ltd. All rights reserved.
Endo, Tetsuya; Kimura, Osamu; Hisamichi, Yohsuke; Minoshima, Yasuhiko; Haraguchi, Koichi
2007-02-01
Mercury (Hg), cadmium (Cd), iron (Fe) manganese (Mn), zinc (Zn) and copper (Cu) concentrations in the liver, kidney and muscle of nine killer whales (including three calves) that stranded together in the northern area of Japan were determined. The Hg and Cd concentrations were found at trace levels in the calf organs, and increased with age. The Fe concentration in the muscle was significantly lower in the calves than in the mature whales and also increased with age. In contrast, Mn and Cu concentrations in the muscle were significantly higher in the calves than in the mature whales, and changes in the Zn concentration relative to age were unclear. These results suggest minimal mother-to-calf transfer of the toxic metals Hg and Cd and accumulation of these metals in the organs with age, while the essential metals Mn and Cu were found at higher concentrations in the muscle of calves than in mature whales.
Sulfur and Zinc Availability from Co-granulated Zn-Enriched Elemental Sulfur Fertilizers.
Mattiello, Edson M; da Silva, Rodrigo C; Degryse, Fien; Baird, Roslyn; Gupta, Vadakattu V S R; McLaughlin, Michael J
2017-02-15
Acidification by oxidation of elemental sulfur (ES) can solubilize ZnO, providing slow release of both sulfur (S) and zinc (Zn) in soil. For this study, a new granular fertilizer with ES and ZnO was produced and evaluated. The effect of incorporating microorganisms or a carbon source in the granule was also evaluated. Four granulated ES-Zn fertilizers with and without S-oxidizing microorganisms, a commercial ES pastille, ZnSO 4 , and ZnO were applied to the center of Petri dishes containing two contrasting pH soils. Soil pH, CaCl 2 -extractable S and Zn, and remaining ES were evaluated at 30 and 60 days in two soil sections (0-5 and 5-9 mm from the fertilizer application site). A visualization test was performed to evaluate Zn diffusion over time. A significant pH decrease was observed in the acidic soil for all ES-Zn fertilizer treatments and in the alkaline soil for the Acidithiobacillus thiooxidans-inoculated treatment only. In agreement with Zn visualization tests, extractable-Zn concentrations were higher from the point of application in the acidic (62.9 mg dm -3 ) compared to the alkaline soil (5.5 mg dm -3 ). Elemental S oxidation was greater in the acidic soil (20.9%) than slightly alkaline soil (12%). The ES-Zn granular fertilizers increased S and Zn concentrations in soil and can provide a strategically slow release of nutrients to the soil.
NASA Astrophysics Data System (ADS)
Wiriawan, A.; Takarina, N. D.; Pin, T. G.
2017-07-01
Blanakan fish ponds receive water resource from Kali Malang and Blanakan rivers. Industrial and domestic activities along the river can cause pollution, especially heavy metals. Zinc (Zn) is an essential element that needed by an organism, while Lead (Pb) is a nonessential element that is not needed. Discharge of waste water from industries and anthropogenic activities continuously not only pollute the water but also the sediment and biota live on it. This research was aimed to know the heavy metals content in the sediment of Blanakan fish ponds. Sediment samples were taken on July and August 2016 at three locations. Heavy metals were analyzed using Atomic Absorption Spectrophotometry (AAS) Shimadzu 6300. The result of Lead (Pb) measurement showed that Fish Pond 1 had higher average concentration compared Fish Pond 2 and Fish Pond 3 which was 0.55 ppm. Standard for Lead (Pb) in sediment according to Ontario Sediment Standards (2008) is 31 ppm. Based on Zinc (Zn) measurement, it was known that average of Zinc (Zn) concentration also higher on Fish Pond 1 compared to Fish Pond 2 and 3 which was 1.93 ppm. According to Ontario Sediment Standards (2008), a standard for Zinc (Zn) in sediment is 120 ppm. This indicated that heavy metals in the sediment of fish ponds were below standards. Statistical analysis using t-test showed that there was no significant difference of heavy metals content among fish ponds.
Metal transfer to plants grown on a dredged sediment: use of radioactive isotope 203Hg and titanium.
Caille, Nathalie; Vauleon, Clotilde; Leyval, Corinne; Morel, Jean-Louis
2005-04-01
Improperly disposed of dredged sediments contaminated with metals may induce long-term leaching and an increase of metal concentrations in ground waters and vegetal cover plants. The objective of the study was to quantify the sediment-to-plant transfer of Cu, Pb, Hg and Zn with a particular focus on the pathway of Hg and to determine whether the establishment of vegetal cover modifies the metal availability. A pot experiment with rape (Brassica napus), cabbage (Brassica oleraccea) and red fescue (Festuca rubra) was set up using a sediment first spiked with the radioisotope 203Hg. Zinc concentrations (197-543 mg kg(-1) DM) in leaves were higher than Cu concentration (197-543 mg kg(-1) DM), Pb concentration (2.3-2.6 mg kg(-1) DM) and Hg concentration (0.9-1.7 mg kg(-1) DM). Leaves-to-sediment ratios decreased as follows: Zn > Cu > Hg > Pb. According to Ti measurements, metal contamination by dry deposition was less than 1%. Mercury concentration in plant leaves was higher than European and French thresholds. Foliar absorption of volatile Hg was a major pathway for Hg contamination with a root absorption of Hg higher in rape than in cabbage and red fescue. Growth of each species increased Cu solubility. Zinc solubility was increased only in the presence of rape. The highest increase of Cu solubility was observed for red fescue whereas this species largely decreased Zn solubility. Dissolved organic carbon (DOC) measurements suggested that Cu solubilisation could result from organic matter or release of natural plant exudates. Dissolved inorganic carbon (DIC) measures suggested that the high Zn solubility in the presence of rape could originate from a generation of acidity in rape rhizosphere and a subsequent dissolution of calcium carbonates. Consequently, emission of volatile Hg from contaminated dredged sediments and also the potential increase of metal solubility by a vegetal cover of grass when used in phytostabilisation must be taken into account by decision makers.
Heavy metals concentration and availability of different soils in Sabzevar area, NE of Iran
NASA Astrophysics Data System (ADS)
Mazhari, Seyed Ali; Sharifiyan Attar, Reza; Haghighi, Faezeh
2017-10-01
Soils developed in the Sabzevar ophiolitic area originate from different bedrocks. All samples display similar physico-chemical properties, but heavy metal concentrations vary extremely in different soil samples. Serpentine soils have the highest total concentration of Cr, Ni and Co; while soils derived from mafic rocks (olivine basalts and hornblende gabbros) show the highest Cu (85.29-109.11 ppm) and Zn (46.88-86.60 ppm). The DTPA-extraction of soil samples indicates that the order of metal bioavailability was Cr
Song, Jinxi; Yang, Xiaogang; Zhang, Junlong; Long, Yongqing; Zhang, Yan; Zhang, Taifan
2015-01-01
Accurate estimation of the variability of heavy metals in river water and the hyporheic zone is crucial for pollution control and environmental management. The biotoxicities and potential ecological risks of heavy metals (Cu, Zn, Pb, Cd) in a solid-liquid two-phase system were estimated using the Geo-accumulation Index, Potential Ecological Risk Assessment and Quality Standard Index methods in the Weihe River of Shaanxi Province, China. Water and sediment samples were collected from five study sites during spring, summer and winter, 2013. The dominant species in the streambed sediments were chironomids and flutter earthworm, whose bioturbation mainly ranged from 0 to 20 cm. The concentrations of heavy metals in surface water and pore water varied obviously in spring and summer. The degrees of concentration of Cu and Cd in spring and summer were higher than the U.S. water quality Criteria Maximum Concentrations. Furthermore, the biotoxicities of Pb and Zn demonstrated season-spatial variations. The concentrations of Cu, Zn, Pb and Cd in spring and winter were significantly higher than those in summer, and the pollution levels also varied obviously in different layers of the sediments. Moreover, the pollution level of Cd was the most serious, as estimated by all three assessment methods. PMID:26193293
Zhang, Ling; Shi, Zhen; Zhang, Jingping; Jiang, Zhijian; Wang, Fei; Huang, Xiaoping
2016-05-01
Heavy metal concentrations and distribution were studied in sediments, seawater, and molluscs, and the possible heavy metal sources in the coastal waters of Guangdong Province, South China were discussed. The results showed that the concentrations of Cu, Pb, Zn, and Cr in sediments in eastern coastal waters were generally higher than those in the western coastal waters. However, concentrations of most metals in seawater and molluscs in western waters were higher than in the eastern waters, which was tightly related to the local economics and urbanization development, especially, the different industrial structure in two regions. The main heavy metal sources were attributed to the industrial and agricultural effluent, domestic sewage, and even waste gas. Furthermore, heavy metal contamination assessment indicated that high contamination levels of Cd, Zn, and Pb occurred in sediments in local areas, especially in the bays and harbors. The metal accumulation levels by molluscs ranked following the order of Cd > Cu > As > Zn > Pb > Cr, and the ecological risks introduced by heavy metals in different areas were in the order of Zhanjiang > Yangmao > Shantou > Shanhui.
Urban and industrial contribution to trace elements in the atmosphere as measured in holm oak bark
NASA Astrophysics Data System (ADS)
Drava, Giuliana; Brignole, Daniele; Giordani, Paolo; Minganti, Vincenzo
2016-11-01
The concentrations of As, Cd, Co, Cu, Fe, Mn, Ni, Pb, V and Zn were measured by ICP-OES in samples of bark of the holm oak (Quercus ilex L.) collected from trees in different urban environments (residential and mixed residential/industrial). The use of tree bark as a bioindicator makes it easy to create maps that can provide detailed data on the levels and on the spatial distribution of each trace element. For most of the elements considered (As, Co, Fe, Mn, Ni, V and Zn), the concentrations in the industrial sites are about twice (from 1.9 to 2.8 times higher) of those in the residential area. Arsenic, Fe and Zn show the highest concentrations near a steel plant (operational until 2005), but for the other elements it is not possible to identify any localized source, as evident from the maps. In areas where urban pollution is summed up by the impact of industrial activities, the population is exposed to significantly higher amounts of some metals than people living in residential areas.
Fate and effect of tire rubber ash nano-particles (RANPs) in cucumber.
Moghaddasi, Sahar; Hossein Khoshgoftarmanesh, Amir; Karimzadeh, Fatholah; Chaney, Rufus
2015-05-01
There are growing interests on effects of nano-materials on living organisms including higher plants. No report is available on positive and negative effects of rubber ash nano-particles (RANPs) on edible plants. Recently, we reported the possibility of using waste tire rubber and rubber ash as zinc (Zn) fertilizer for plants. In this nutrient solution culture study, for the first time, root uptake and the effects of RANPs on growth and Zn, cadmium (Cd), and lead (Pb) concentration in cucumber was investigated. Various Zn levels (0, 1, 5, 25, 125mgL(-1)) were applied in the form of RANPs or ZnSO4. The root RANPs uptake was visualized by light (LA), scanning electron (SEM), and transmission electron microcopies (TEM). At all Zn levels, cucumber plants supplied with RANPs produced higher shoot and root biomass compared with those supplied with ZnSO4. In addition, the RANPs resulted in higher accumulation of Zn in cucumber tissues in comparison with ZnSO4; although phytotoxicity of Zn from ZnSO4 was greater than that from RANPs. Clear evidence of the RANPs penetration into the root cells was obtained by using SEM and TEM. Filaments of RANPs were also observed at the end of roots by LM and TEM. Further research is needed to clarify the fate of the RANPs in plant cells and their possible risks for food chain. Copyright © 2015 Elsevier Inc. All rights reserved.
Galedari, Naghmeh Abuali; Rahmani, Mohammad; Tasbihi, Minoo
2017-05-01
In the current study, ZnO@SiO 2 core-shell structured catalyst was synthesized for photocatalytic degradation of phenol from aqueous samples. The synthesized catalyst was characterized by Fourier transform infrared spectra, X-ray diffraction, energy-dispersive X-ray spectroscopy, UV-Vis-NIR diffuse reflectance spectroscopy, transmission electron microscopy, BET surface area, zeta potential, and field emission scanning electron microscopy. The effect of catalyst loading, initial phenol concentration, pH, UV light intensity and weight ratio of ZnO/(SiO 2 + ZnO) were studied towards photocatalytic degradation of phenol. Moreover, photocatalytic activities of bare ZnO and ZnO@SiO 2 were compared. The results advocated that ZnO@SiO 2 catalyst showed high photocatalytic performance for degradation of phenol (96 % after 120 min) at an initial pH of 5.9, catalyst loading of 0.5 g/L and initial phenol concentration of 25 mg/L. Increase in the weight ratio of ZnO/(SiO 2 + ZnO) from 0.2 to 0.33 significantly enhanced the photodegradation of phenol from 84 to 94 %. It was also found that photocatalytic activity of ZnO@SiO 2 was higher than bare ZnO nanoparticles. Graphical abstract ᅟ.
Distribution of dissolved zinc in the western and central subarctic North Pacific
NASA Astrophysics Data System (ADS)
Kim, T.; Obata, H.; Gamo, T.
2016-02-01
Zinc (Zn) is an essential micronutrient for bacteria and phytoplankton in the ocean as it plays an important role in numerous enzyme systems involved in various metabolic processes. However, large-scale distributions of total dissolved Zn in the subarctic North Pacific have not been investigated yet. In this study, we investigated the distributions of total dissolved Zn to understand biogeochemical cycling of Zn in the western and central subarctic North Pacific as a Japanese GEOTRACES project. Seawater samples were collected during the R/V Hakuho-maru KH-12-4 GEOTRACES GP 02 cruise (from August to October 2012), by using acid-cleaned Teflon-coated X-type Niskin samplers. Total dissolved Zn in seawater was determined using cathodic stripping voltammetry (CSV) after UV-digestion. In this study, total dissolved Zn concentrations in the western and central subarctic North Pacific commonly showed Zn increase from surface to approximately 400-500 m, just above the oxygen minimum layer. However, in the western subarctic North Pacific, relatively higher Zn concentrations have also been observed at intermediate depths (800-1200 m), in comparison with those observed in deep waters. The relationship between Zn and Si in the western subarctic North Pacific showed that Zn is slightly enriched at intermediate depths. These results may indicate that there are additional sources of Zn to intermediate water of the western subarctic North Pacific.
NASA Astrophysics Data System (ADS)
Seisuma, Z.; Kulikova, I.
2012-11-01
The comparison of spatial and temporal distribution of Hg, Cd, Pb, Cu, Ni, Zn, Mn and Fe concentrations in sediments from the Gulf of Riga and open Baltic Sea along the coastal zone is presented for the first time. There were considerable differences in Pb, Zn, Mn and Fe levels in sediment at various stations of the Gulf of Riga. A significant difference of Cd, Pb, Cu, Ni, Zn levels was found in sediments of various stations in the open Baltic coast. The amount of Cd, Pb, Cu, Ni, Zn and Fe levels also differed significantly in the sediments of the Gulf of Riga in different years. A considerable yearly difference in amount of Hg, Cd, Pb, Cu, Ni and Mn levels was found in sediments in the open Baltic coast. The essential highest values of Pb and Zn in coastal sediments of the open Baltic Sea are stated in comparison with the Gulf of Riga. The concentrations of other metals have only a tendency to be higher in coastal sediments of the open Baltic Sea in comparison with the Gulf of Riga. Natural and anthropogenic factors were proved to play an important role in determining resultant metals concentrations in the regions.
Bioavailability of Zn in ZnO nanoparticle-spiked soil and the implications to maize plants
NASA Astrophysics Data System (ADS)
Liu, Xueqin; Wang, Fayuan; Shi, Zhaoyong; Tong, Ruijian; Shi, Xiaojun
2015-04-01
Little is known about the relationships between Zn bioavailability in ZnO nanoparticle (NP)-spiked soil and the implications to crops. The present pot culture experiment studied Zn bioavailability in soil spiked with different doses of ZnO NPs, using the diethylenetriaminepentaacetic acid (DTPA) extraction method, as well as the toxicity and Zn accumulation in maize plants. Results showed that ZnO NPs exerted dose-dependent effects on maize growth and nutrition, photosynthetic pigments, and root activity (dehydrogenase), ranging from stimulatory (100-200 mg/kg) through to neutral (400 mg/kg) and toxic effect (800-3200 mg/kg). Both Zn concentration in shoots and roots correlated positively ( P < 0.01) with ZnO NPs dose and soil DTPA-extractable Zn concentration. The BCF of Zn in shoots and roots ranged from 1.02 to 3.83 when ZnO NPs were added. In most cases, the toxic effects on plants elicited by ZnO NPs were overall similar to those caused by bulk ZnO and soluble Zn (ZnSO4) at the same doses, irrespective of some significant differences suggesting a higher toxicity of ZnO NPs. Oxidative stress in plants via superoxide free radical production was induced by ZnO NPs at 800 mg/kg and above, and was more severe than the same doses of bulk ZnO and ZnSO4. Although significantly lower compared to bulk ZnO and ZnSO4, at least 16 % of the Zn from ZnO NPs was converted into DTPA-extractable (bioavailable) forms. The dissolved Zn2+ from ZnO NPs may make a dominant contribution to their phytotoxicity. Although low amounts of ZnO NPs exhibited some beneficial effects, the accumulation of Zn from ZnO NPs into maize tissues could pose potential health risks for both plants and human.
V T K P, Fidal; Inguva, Saikumar; Krishnamurthy, Satheesh; Marsili, Enrico; Mosnier, Jean-Paul; T S, Chandra
2017-01-01
Al doped and undoped ZnO thin films were deposited by pulsed-laser deposition on polycarbonate sheets. The films were characterized by optical transmission, Hall effect measurement, XRD and SEM. Optical transmission and surface reflectometry studies showed good transparency with thicknesses ∼100nm and surface roughness of 10nm. Hall effect measurements showed that the sheet carrier concentration was -1.44×10 15 cm -2 for AZO and -6×10 14 cm -2 for ZnO. The films were then modified by drop-casting glucose oxidase (GOx) without the use of any mediators. Higher protein concentration was observed on ZnO as compared to AZO with higher specific activity for ZnO (0.042Umg -1 ) compared to AZO (0.032Umg -1 ), and was in agreement with cyclic voltemmetry (CV). X-ray photoelectron spectroscopy (XPS) suggested that the protein was bound by dipole interactions between AZO lattice oxygen and the amino group of the enzyme. Chronoamperometry showed sensitivity of 5.5μAmM -1 cm -2 towards glucose for GOx/AZO and 2.2μAmM -1 cm -2 for GOx/ZnO. The limit of detection (LoD) was 167μM of glucose for GOx/AZO, as compared to 360μM for GOx/ZnO. The linearity was 0.28-28mM for GOx/AZO whereas it was 0.6-28mM for GOx/ZnO with a response time of 10s. Possibly due to higher enzyme loading, the decrease of impedance in presence of glucose was larger for GOx/ZnO as compared to GOx/AZO in electrochemical impedance spectroscopy (EIS). Analyses with clinical blood serum samples showed that the systems had good reproducibility and accuracy. The characteristics of novel ZnO and AZO thin films with GOx as a model enzyme, should prove useful for the future fabrication of inexpensive, highly sensitive, disposable electrochemical biosensors for high throughput diagnostics. Copyright © 2016 Elsevier Inc. All rights reserved.
Lyu, Jie; Park, Jihae; Kumar Pandey, Lalit; Choi, Soyeon; Lee, Hojun; De Saeger, Jonas; Depuydt, Stephen; Han, Taejun
2018-03-01
Phytotoxicity tests using higher plants are among the most simple, sensitive, and cost-effective of the methods available for ecotoxicity testing. In the present study, a hydroponic-based phytotoxicity test using seeds of Lactuca sativa was used to evaluate the water quality of receiving waters and effluents near two industrial sites (Soyo and Daejon) in Korea with respect to the toxicity of 10 metals (As, Cd, Cr, Cu, Fe, Pb, Mn, Hg, Ni, Zn) and phenol, and of the receiving waters and effluents themselves. First, the L. sativa hydroponic bioassay was used to determine whether the receiving water or effluents were toxic; then, the responsible toxicant was identified. The results obtained with the L. sativa bioassay ranked the EC 50 toxicities of the investigated metal ions and phenol as: Cd > Ni > Cu > Zn > Hg > phenol > As > Mn > Cr > Pb > Fe. We found that Zn was the toxicant principally responsible for toxicity in Daejeon effluents. The Daejeon field effluent had a higher Zn concentration than permitted by the effluent discharge criteria of the Ministry of Environment of Korea. Our conclusion on the importance of Zn toxicity was supported by the results of the L. sativa hydroponic assay, which showed that the concentration of Zn required to inhibit root elongation in L. sativa by 50% (EC 50 ) was higher in the Daejeon field effluent than that of pure Zn. More importantly, we proved that the L. sativa hydroponic test method can be applied not only as an alternative tool for determining whether a given waste is acceptable for discharge into public water bodies, but also as an alternative method for measuring the safety of aquatic environments using EC 20 values, with respect to the water pollutants investigated (i.e., Cd, Cr, Cu, Pb, Mn, Hg, Ni, Zn, and phenol). Copyright © 2017. Published by Elsevier Inc.
Bocca, Beatrice; Caimi, Stefano; Senofonte, Oreste; Alimonti, Alessandro; Petrucci, Francesco
2018-07-15
This study sought to develop analytical methods to characterize titanium dioxide (TiO 2 ) and zinc oxide (ZnO) nanoparticles (NPs), including the particle size distribution and concentration, in cream and spray sunscreens with different sun protection factor (SPF). The Single Particle Inductively Coupled Plasma-Mass Spectrometry (SP ICP-MS) was used as screening and fast method to determine particles size and number. The Asymmetric Flow-Field Flow Fractionation (AF4-FFF) as a pre-separation technique was on-line coupled to the Multi-Angle Light Scattering (MALS) and ICP-MS to determine particle size distributions and size dependent multi-elemental concentration. Both methods were optimized in sunscreens in terms of recovery, repeatability, limit of detection and linear dynamic range. Results showed that sunscreens contained TiO 2 particles with an average size of ≤107 nm and also a minor number of ZnO particles sized ≤98 nm. The higher fraction of particles <100 nm was observed in sunscreens with SPF 50+ (ca. 80%); the lower percentage (12-35%) in sunscreens with lower SPF values. Also the higher TiO 2 (up to 24% weight) and ZnO (ca. 0.25% weight) concentrations were found in formulations of SPF 50+. Creamy sunscreens could be considered safe containing TiO 2 and ZnO NPs less than the maximum allowable concentration of 25% weight as set by the European legislation. On the contrary, spray products required additional considerations with regard to the potential inhalation of NPs. The developed methods can contribute to the actual demand for regulatory control and safety assessment of metallic NPs in consumers' products. Copyright © 2018 Elsevier B.V. All rights reserved.
Enhanced optical band-gap of ZnO thin films by sol-gel technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raghu, P., E-mail: dpr3270@gmail.com; Naveen, C. S.; Shailaja, J.
2016-05-06
Transparent ZnO thin films were prepared using different molar concentration (0.1 M, 0.2 M & 0.8 M) of zinc acetate on soda lime glass substrates by the sol-gel spin coating technique. The optical properties revealed that the transmittance found to decrease with increase in molar concentration. Absorption edge showed that the higher concentration film has increasingly red shifted. An increased band gap energy of the thin films was found to be direct allowed transition of ∼3.9 eV exhibiting their relevance for photovoltaic applications. The extinction coefficient analysis revealed maximum transmittance with negligible absorption coefficient in the respective wavelengths. The resultsmore » of ZnO thin film prepared by sol-gel technique reveal its suitability for optoelectronics and as a window layer in solar cell applications.« less
Zárubová, Pavla; Hejcman, Michal; Vondráčková, Stanislava; Mrnka, Libor; Száková, Jiřina; Tlustoš, Pavel
2015-12-01
Fast-growing clones of Salix and Populus have been studied for remediation of soils contaminated by risk elements (RE) using short-rotation coppice plantations. Our aim was to assess biomass yield and distributions of elements in wood and bark of highly productive willow (S1--[Salix schwerinii × Salix viminalis] × S. viminalis, S2--Salix × smithiana clone S-218) and poplar (P1--Populus maximowiczii × Populus nigra, P2--P. nigra) clones with respect to aging. The field experiment was established in April 2008 on moderately Cd-, Pb- and Zn- contaminated soil. Shoots were harvested after four seasons (February 2012) and separated into annual classes of wood and bark. All tested clones grew on contaminated soils, with highest biomass production and lowest mortality exhibited by P1 and S2. Concentrations of elements, with exception of Ca and Pb, decreased with age and were higher in bark than in wood. The Salix clones were characterised by higher removal of Cd, Mn and Zn compared to the Populus clones. Despite generally higher RE content in young shoots, partly due to lower wood/bark ratios and higher RE concentrations in bark, the overall removal of RE was higher in older wood classes due to higher biomass yield. Thus, longer rotations seem to be more effective when phytoextraction strategy is considered. Of the four selected clones, S1 exhibited the best removal of Cd and Zn and is a good candidate for phytoextraction.
Zinc oxide nanostructured layers for gas sensing applications
NASA Astrophysics Data System (ADS)
Caricato, A. P.; Cretí, A.; Luches, A.; Lomascolo, M.; Martino, M.; Rella, R.; Valerini, D.
2011-03-01
Various kinds of zinc oxide (ZnO) nanostructures, such as columns, pencils, hexagonal pyramids, hexagonal hierarchical structures, as well as smooth and rough films, were grown by pulsed laser deposition using KrF and ArF excimer lasers, without use of any catalyst. ZnO films were deposited at substrate temperatures from 500 to 700°C and oxygen background pressures of 1, 5, 50, and 100 Pa. Quite different morphologies of the deposited films were observed using scanning electron microscopy when different laser wavelengths (248 or 193 nm) were used to ablate the bulk ZnO target. Photoluminescence studies were performed at different temperatures (down to 7 K). The gas sensing properties of the different nanostructures were tested against low concentrations of NO2. The variation in the photoluminescence emission of the films when exposed to NO2 was used as transduction mechanism to reveal the presence of the gas. The nanostructured films with higher surface-to-volume ratio and higher total surface available for gas adsorption presented higher responses, detecting NO2 concentrations down to 3 ppm at room temperature.
Biogeochemical cycling of zinc and its isotopes in the Southern Ocean
NASA Astrophysics Data System (ADS)
Zhao, Y.; Vance, D.; Abouchami, W.; de Baar, H. J. W.
2014-01-01
We report Zn concentration and isotope data for seawater samples from the Atlantic sector of the Southern Ocean, collected during the IPY/GEOTRACES ANT-XXIV/III cruise along the Greenwich Zero Meridian. Data are reported for the full depth range of the water column at three stations, as well as a transect of surface samples, using a new analytical approach that is presented in detail here. Zn concentrations increase with depth, though due to proximity to upwelling sites, surface concentrations are not as low as in some parts of the ocean such as further northward into the Sub-Antarctic Zone. For two depth profiles south of the Polar Front Zone, the physical stratification of the upper water column is reflected in sudden near-surface changes in Zn concentration with depth. In contrast, beneath 100-300 m Zn concentrations barely change with depth. Zn isotopic data beneath 1000 m, for the Southern Ocean data presented here as well as published data from the North Atlantic and North Pacific, are strikingly homogeneous, with an average δ66Zn = +0.53 ± 0.14‰ (2SD, 2SE = 0.03, n = 21). The surface Southern Ocean is more variable, with δ66Zn ranging from 0.07‰ to 0.80‰. Between the two is a thin horizon at 40-80 m which, in the Southern Ocean as well as the North Atlantic and North Pacific, is characterised by distinctly light isotopic signatures, with δ66Zn about 0.3‰ lower than surface waters. Strong correlations between Si and Zn concentrations seen here and elsewhere, coupled to the lack of any systematic relationship between Si and Zn isotopes in the Southern Ocean, suggest that the removal of Zn associated with diatom opal involves little or no isotopic fractionation. Regeneration of this Zn also explains the homogeneous Zn isotopic composition of the global deep ocean so far sampled. However, the low Zn content of opal requires that deep ocean Zn does not directly come from the opal phase itself, but rather from associated organic material external to the diatom frustule during growth. Experimental data are consistent with little or no fractionation during incorporation of Zn into this material. On the other hand, the light zinc at 40-80 m is most consistent with the regeneration of an intra-cellular pool that both culturing experiments and field data suggest will be isotopically light. The data thus imply two processes by which Zn is taken up in the surface ocean, that these pools have very different regeneration lengthscales, and that physical mixing of the oceans cannot eradicate their isotopic signatures. Finally, the deep δ66Zn ocean value is significantly higher than the current best estimate of the input to the oceans. The most obvious candidate for the required light sink is the survival of some of the cellular Zn to be buried in sediment.
Trace metals in bulk precipitation and throughfall in a suburban area of Japan
NASA Astrophysics Data System (ADS)
Hou, H.; Takamatsu, T.; Koshikawa, M. K.; Hosomi, M.
Throughfall and bulk precipitation samples were collected monthly for 1.5 years over bare land and under canopies of Japanese cedar ( Cryptomeria japonica), Japanese red pine ( Pinus densiflora), Japanese cypress ( Chamaecyparis obtusa), and bamboo-leafed oak ( Quercus myrsinaefolia) in a suburban area of Japan. Samples were analyzed for dissolved Al, Mn, Fe, Cu, Zn, Ag, In, Sn, Sb and Bi by ICP-AES and ICP-MS. The metal concentrations were higher in throughfall, especially that of C. japonica, than bulk precipitation. Enrichment ratios (ERs: ratios of metal concentrations in throughfall to those in bulk precipitation) ranged from 2.5 (Zn) to 5.3 (Ag) (3.9 on average), and ERs for slightly soluble metals were generally higher than those for easily soluble metals. Concentrations of Mn, Fe, Cu, and Zn accounted for 99% of the total concentration of heavy metals in rainwater, whereas those of rare metals such as Ag, In, Sn, and Bi totaled <0.23%. Average concentrations of rare metals were 0.002 and 0.010 μg l -1 for Ag, 0.001 and 0.005 μg l -1 for In, 0.062 and 0.21 μg l -1 for Sn, and 0.006 and 0.023 μg l -1 for Bi in bulk precipitation and throughfall, respectively. The metal concentrations in rainwater were negatively correlated to the volume of rainwater, indicating that washout is the main mechanism that incorporates metals into rainwater. From the enrichment factors, that is, (X/Al) rain/(X/Al) crust, metals other than Fe were shown to be more enriched in rainwater than in the Earth's crust, including those present as a result of leaching from soil dust (Mn) and from anthropogenic sources (Cu, Zn, Ag, In, Sn, Sb, and Bi).
Zhou, Tong; Wu, Longhua; Luo, Yongming; Christie, Peter
2018-01-01
Soil particulate organic matter (POM) has rapid turnover and metal enrichment, but the interactions between organic matter (OM) and metals have not been well studied. The present study aimed to investigate changes in the OM concentration and composition of the POM fraction and their corresponding effects on metal distribution and extractability in long-term polluted paddy soils. Soil 2000-53 μm POM size fractions had higher contents of C-H and C=O bonds, C-H/C=O ratios and concentrations of fulvic acid (FA), humic acid (HA), cadmium (Cd) and zinc (Zn) than the bulk soils. Cadmium and Zn stocks in soil POM fractions were 24.5-27.9% and 7.12-16.7%, respectively, and were more readily EDTA-extractable. Compared with the control soil, the 2000-250 μm POM size fractions had higher organic carbon concentrations and C/N ratios in the polluted soils. However, there were no significant differences in the contents in C-H and C=O bonds or C-H/C=O ratios of POM fractions among the control, slightly and highly polluted soils. In accordance with the lower contents of C=O bonds and FA and HA concentrations, the Cd and Zn concentrations in 250-53 μm POM size fractions were lower than those in 2000-250 μm POM size fractions. Enrichment of Cd in POM fractions increased with increasing soil pollution level. These results support the view that changes in the OM concentration and the size and composition of POM fractions play a key role in determining the distribution of Cd and Zn in paddy soils. Copyright © 2017. Published by Elsevier Ltd.
Espinosa, E; Armienta, M A
2007-08-01
The impact of mining wastes on both the concentration and environmental mobility of Zn, Pb and Fe was studied in a shallow river. The studied tributary of the Taxco river is located south of the historical Ag, Zn, Cu and Pb mining area of Taxco, about 150 km south of México City. Methodology included total concentration determinations and sequential extraction analyses of the operational defined fractions of sediments. Results indicated that Fe, Pb and Zn concentrations are up to 5, 100 and 390 times respectively, greater than regional background concentrations. Higher contents of Pb and Zn were observed in the rainy season versus the dry season, whereas Fe was lower in the rainy season. Zinc and lead increased downflow in the dry season, and did not show any trend during the rainy season. Speciation showed that Zn was mainly linked to the carbonatic fraction (25-39%), to the hydrous Fe/Mn oxides fraction (15-25%) and to the organic matter and sulfide fraction (14-48%); lead was mainly associated to the hydrous Fe/Mn oxides (49-59%) and residual (22-39%) fractions; finally, iron was contained mainly in the residual (65-78%) and the hydrous Fe/Mn oxides fraction (15%). Mobility decreased according to the relation: Zn > Pb > Fe. Sediments were classified as strongly polluted in zinc, strongly to very strongly polluted in Pb, and moderately to strongly polluted in iron. However, a low proportion of metals in the exchangeable fractions, indicates low bioavailability. Limestone presence played a very important role on Zn and Pb fractionation and environmental mobility. Results show the importance of including geological background in river pollution studies.
A Potentiometric Indirect Uric Acid Sensor Based on ZnO Nanoflakes and Immobilized Uricase
Usman Ali, Syed M.; Ibupoto, Zafar Hussain; Kashif, Muhammad; Hashim, Uda; Willander, Magnus
2012-01-01
In the present work zinc oxide nanoflakes (ZnO-NF) structures with a wall thickness around 50 to 100 nm were synthesized on a gold coated glass substrate using a low temperature hydrothermal method. The enzyme uricase was electrostatically immobilized in conjunction with Nafion membrane on the surface of well oriented ZnO-NFs, resulting in a sensitive, selective, stable and reproducible uric acid sensor. The electrochemical response of the ZnO-NF-based sensor vs. a Ag/AgCl reference electrode was found to be linear over a relatively wide logarithmic concentration range (500 nM to 1.5 mM). In addition, the ZnO-NF structures demonstrate vast surface area that allow high enzyme loading which results provided a higher sensitivity. The proposed ZnO-NF array-based sensor exhibited a high sensitivity of ∼66 mV/ decade in test electrolyte solutions of uric acid, with fast response time. The sensor response was unaffected by normal concentrations of common interferents such as ascorbic acid, glucose, and urea. PMID:22736977
Blood plasma separation in ZnO nanoflowers-supported paper based microfluidic for glucose sensing
NASA Astrophysics Data System (ADS)
Muhimmah, Luthviyah Choirotul; Roekmono, Hadi, Harsono; Yuwono, Rio Akbar; Wahyuono, Ruri Agung
2018-04-01
Blood plasma separation is essential to analyze and quantify the bio-substances in the human blood and hence, allows for diagnosing various diseases. This paper presents the two layer paper-based microfluidic analytical devices coated with ZnO nanoflowers (ZnO NF-µPAD) for a rapid blood plasma separation and glucose sensing. Plasma separation in ZnO NF-µPAD was evaluated experimentally and numerically using computational fluid dynamics package for a flow over porous networks. Glucose detection was carried out using Fourier-transform infrared (FTIR) measurements. The glucose concentrations in the red blood samples investigated here vary in the range of 150 - 310 mg.dl-1. The plasma separation process on ZnO NF-μPAD requires 240 ± 93 s. The spectroscopic data reveals that the IR absorptions and Raman signals at the typical vibrational frequencies of glucose are increasing at higher glucose concentration. After subtraction from absorption background arising from ZnO NF and the paper, linearly increasing IR absorption (913 and 1349 cm-1) and Raman signals (1346 and 1461 cm-1) are observable with a relatively good sensitivity.
Arán, Daniela Silvina; Harguinteguy, Carlos Alfredo; Fernandez-Cirelli, Alicia; Pignata, María Luisa
2017-08-01
In order to study the bioaccumulation of Pb, Cr, Ni, and Zn and the stress response, the floating aquatic plant Limnobium laevigatum was exposed to increasing concentrations of a mixture of these metals for 28 days, and its potential use in the treatment of wastewater was evaluated. The metal concentrations of the treatment 1 (T1) were Pb 1 μg L -1 , Cr 4 μg L -1 , Ni 25 μg L -1 , and Zn 30 μg L -1 ; of treatment 2 (T2) were Pb 70 μg L -1 , Cr 70 μg L -1 , Ni 70 μg L -1 , and Zn 70 μg L -1 ; and of treatment 3 (T3) were Pb 1000 μg L -1 , Cr 1000 μg L -1 , Ni 500 μg L -1 , and Zn 100 μg L -1 , and there was also a control group (without added metal). The accumulation of Pb, Cr, Ni, and Zn in roots was higher than in leaves of L. laevigatum, and the bioconcentration factor revealed that the concentrations of Ni and Zn in the leaf and root exceeded by over a thousand times the concentrations of those in the culture medium (2000 in leaf and 6800 in root for Ni; 3300 in leaf and 11,500 in root for Zn). Thus, this species can be considered as a hyperaccumulator of these metals. In general, the changes observed in the morphological and physiological parameters and the formation of products of lipid peroxidation of membranes during the exposure to moderate concentrations (T2) of the mixture of metals did not cause harmful effects to the survival of the species within the first 14 days of exposure. Taking into account the accumulation capacity and tolerance to heavy metals, L. laevigatum is suitable for phytoremediation in aquatic environments contaminated with moderated concentrations of Cr, Ni, Pb, and Zn in the early stages of exposure.
Solution epitaxy of gallium-doped ZnO on p-GaN for heterojunction light-emitting diodes
NASA Astrophysics Data System (ADS)
Le, H. Q.; Lim, S. K.; Goh, G. K. L.; Chua, S. J.; Ang, N. S. S.; Liu, W.
2010-09-01
We report white light emission from a Ga-doped ZnO/p-GaN heterojunction light-emitting diode which was fabricated by growing gallium-doped ZnO film on the p-GaN in water at 90°C. As determined from Ga-doped ZnO films grown on (111) oriented MgAl2O4 spinel single crystal substrates, thermal treatment at 600°C in nitrogen ambient leads to a carrier concentration of 3.1×1020 cm-3 (and carrier mobility of 28 cm2/Vs) which is two orders of magnitude higher than that of the undoped films. Electroluminescence emissions at wavelengths of 393 nm (3.155 eV) and 529.5 nm (2.4 eV) were observed under forward bias in the heterojunction diode and white light could be visibly observed. The high concentration of electrons supplied from the Ga-doped ZnO films helped to enhance the carrier recombination and increase the light-emitting efficiency of the heterojunction diode.
Lin, Yuesheng; Fang, Fengman; Wang, Fei; Xu, Minglu
2015-09-01
Zn, Pb, Cu, Cr, V, Ni, Co, and As concentrations of indoor dust in Anhui rural were determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES). The degrees of metal pollution in indoor dust ranked as follows: Zn > Pb > Cr > Cu > V > Ni > Co > As, on average. The arithmetic means of Zn, Pb, Cu, Cr, V, Ni, Co, and As were 427.17, 348.73, 107.05, 113.68, 52.64, 38.93, 10.29, and 4.46 mg/kg, respectively. These were higher than background values of Anhui soil for Zn, Pb, Cu, Cr, and Ni, especially for Pb with the mean value of 13.21 times the background value. Heavy metal concentrations of indoor dust were different from different rural areas. House type (bungalows or storied house), sweeping frequency, and external environment around the house (such as the road grade) affected heavy metal concentrations in indoor dust. The results of factor analysis and correlation analysis indicated that Cu, Cr, Ni, Zn, and Co concentrations were mainly due to interior paint, metal objects, and building materials. Pb and As concentrations were due to vehicle emissions. V concentration was mainly of natural source. Average daily doses for the exposure pathway of the studied heavy metals decreased in children in the following order: hand-to-mouth ingestion > dermal contact > inhalation. The non-carcinogenic risks of heavy metals ranked as Pb > V > Cr > Cu > Zn > As > Co > Ni, and the carcinogenic risks of metals decreased in the order of Cr > Co > As > Ni. The non-carcinogenic hazard indexes and carcinogenic risks of metals in indoor dust were both lower than the safe values.
Resistance of extremely halophilic archaea to zinc and zinc oxide nanoparticles
NASA Astrophysics Data System (ADS)
Salgaonkar, Bhakti B.; Das, Deepthi; Bragança, Judith Maria
2016-02-01
Industrialization as well as other anthropogenic activities have resulted in addition of high loads of metal and/or metal nanoparticles to the environment. In this study, the effect of one of the widely used heavy metal, zinc (Zn) and zinc oxide nanoparticles (ZnO NPs) on extremely halophilic archaea was evaluated. One representative member from four genera namely Halococcus, Haloferax, Halorubrum and Haloarcula of the family Halobacteriaceae was taken as the model organism. All the haloarchaeal genera investigated were resistant to both ZnCl2 and ZnO NPs at varying concentrations. Halococcus strain BK6 and Haloferax strain BBK2 showed the highest resistance in complex/minimal medium of up to 2.0/1.0 mM ZnCl2 and 2.0/1.0-0.5 mM ZnO NP. Accumulation of ZnCl2/ZnO NPs was seen as Haloferax strain BBK2 (287.2/549.6 mg g-1) > Halococcus strain BK6 (165.9/388.5 mg g-1) > Haloarcula strain BS2 (93.2/28.5 mg g-1) > Halorubrum strain BS17 (29.9/16.2 mg g-1). Scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM-EDX) analysis revealed that bulk ZnCl2 was sorbed at a higher concentration (21.77 %) on the cell surface of Haloferax strain BBK2 as compared to the ZnO NPs (14.89 %).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solanki, Vanaraj; Joshi, Shalik R.; Mishra, Indrani
2016-08-07
The nanoscale patterns created on the ZnO(0001) surfaces during atom beam irradiation have been investigated here for their photo absorption response. Preferential sputtering, during irradiation, promotes Zn-rich zones that serve as the nucleation centers for the spontaneous creation of nanostructures. Nanostructured surfaces with bigger (78 nm) nanodots, displaying hexagonal ordering and long ranged periodic behavior, show higher photo absorption and a ∼0.09 eV reduced bandgap. These nanostructures also demonstrate higher concentration of oxygen vacancies which are crucial for these results. The enhanced photo-response, as observed here, has been achieved in the absence of any dopant elements.
Effect of temperature on storage modulus and glass transition temperature of ZnS/PS nanocomposites
NASA Astrophysics Data System (ADS)
Agarwal, Sonalika; Awasthi, Kamlendra; Saxena, N. S.
2018-05-01
In the present study, a simplified solution casting method has been used for preparation of ZnS/PS nanocomposites, based on mixing the ZnS nano filler in nanometer range with the polymer matrix. The prepared nanocomposites with different concentration (0, 2, 4, 6 & 8 wt %) are structurally characterized through X-ray diffraction (XRD) and transmission electron microscope (TEM). The main objective of this study is to investigate the variation of storage modulus and glass transition temperature (Tg) within temperature range 30oC to 150oC for PS and ZnS/PS nanocomposites and have been performed through dynamic mechanical analyzer (DMA). The result shows that storage modulus and Tg of nanocomposites increase with the increase of ZnS nanoparticles up to 4 wt. % in PS and beyond this wt. %, both storage modulus and Tg decrease. The increasing behavior is due to the good adhesion between the ZnS nanoparticles and PS matrix which indicates that ZnS nanoparticles are capable of reinforcing the PS matrix. Beside this the decreasing behaviour at higher filler concentration (6 and 8 wt. %) is due to the agglomeratation of nanoparticles in polymer matrix.
Konduru, Nagarjun V; Murdaugh, Kimberly M; Swami, Archana; Jimenez, Renato J; Donaghey, Thomas C; Demokritou, Philip; Brain, Joseph D; Molina, Ramon M
2016-08-01
Nanoparticle (NP) pharmacokinetics and biological effects are influenced by many factors, especially surface physicochemical properties. We assessed the effects of an amorphous silica coating on the fate of zinc after intravenous (IV) injection of neutron activated uncoated (65)ZnO or silica-coated (65)ZnO NPs in male Wistar Han rats. Groups of IV-injected rats were sequentially euthanized, and 18 tissues were collected and analyzed for (65)Zn radioactivity. The protein coronas on each ZnO NP after incubation in rat plasma were analyzed by SDS-PAGE gel electrophoresis and mass spectrometry of selected gel bands. Plasma clearance for both NPs was biphasic with rapid initial and slower terminal clearance rates. Half-lives of plasma clearance of silica-coated (65)ZnO were shorter (initial - <1 min; terminal - 2.5 min) than uncoated (65)ZnO (initial - 1.9 min; terminal - 38 min). Interestingly, the silica-coated (65)ZnO group had higher (65)Zn associated with red blood cells and higher initial uptake in the liver. The (65)Zn concentrations in all the other tissues were significantly lower in the silica-coated than uncoated groups. We also found that the protein corona formed on silica-coated ZnO NPs had higher amounts of plasma proteins, particularly albumin, transferrin, A1 inhibitor 3, α-2-hs-glycoprotein, apoprotein E and α-1 antitrypsin. Surface modification with amorphous silica alters the protein corona, agglomerate size, and zeta potential of ZnO NPs, which in turn influences ZnO biokinetic behavior in the circulation. This emphasizes the critical role of the protein corona in the biokinetics, toxicology and nanomedical applications of NPs.
NASA Astrophysics Data System (ADS)
Sali, S.; Boumaour, M.; Kermadi, S.; Keffous, A.; Kechouane, M.
2012-09-01
We investigated the structural; optical and electrical properties of ZnO thin films as the n-type semiconductor for silicon a-Si:H/Si heterojunction photodiodes. The ZnO film forms the front contact of the super-strata solar cell and has to exhibit good electrical (high conductivity) and optical (high transmittance) properties. In this paper we focused our attention on the influence of doping on device performance. The results show that the X-ray diffraction (XRD) spectra revealed a preferred orientation of the crystallites along c-axis. SEM images show that all films display a granular, polycrystalline morphology and the ZnO:Al exhibits a better grain uniformity. The transmittance of the doped films was found to be higher when compared to undoped ZnO. A low resistivity of the order of 2.8 × 10-4 Ω cm is obtained for ZnO:Al using 0.4 M concentration of zinc acetate. The photoluminescence (PL) spectra exhibit a blue band with two peaks centered at 442 nm (2.80 eV) and 490 nm (2.53 eV). It is noted that after doping the ZnO films a shift of the band by 22 nm (0.15 eV) is recorded and a high luminescence occurs when using Al as a dopant. Dark I-V curves of ZnO/a-Si:H/Si structure showed large difference, which means there is a kind of barrier to current flow between ZnO and a-Si:H layer. Doping films was applied and the turn-on voltages are around 0.6 V. Under reverse bias, the current of the ZnO/a-Si:H/Si heterojunction is larger than that of ZnO:Al/a-Si:H/Si. The improvement with ZnO:Al is attributed to a higher number of generated carriers in the nanostructure (due to the higher transmittance and a higher luminescence) that increases the probability of collisions.
Zhao, Ai-qing; Tian, Xiao-hong; Cao, Yu-xian; Lu, Xin-chun; Liu, Ting
2014-08-01
The concentration of Zn and phytic acid in wheat grain has important implications for human health. We conducted field and greenhouse experiments to compare the efficacy of soil and foliar Zn fertilisation in improving grain Zn concentration and bioavailability in wheat (Triticum aestivum L.) grain grown on potentially Zn-deficient calcareous soil. Results from the 2-year field experiment indicated that soil Zn application increased soil DTPA-Zn by an average of 174%, but had no significant effect on grain Zn concentration. In contrast, foliar Zn application increased grain Zn concentration by an average of 61%, and Zn bioavailability by an average of 36%. Soil DTPA-Zn concentrations varied depending on wheat cultivars. There were also significant differences in grain phytic acid concentration among the cultivars. A laboratory experiment indicated that Zn (from ZnSO4 ) had a low diffusion coefficient in this calcareous soil. Compared to soil Zn application, foliar Zn application is more effective in improving grain Zn content of wheat grown in potentially Zn-deficient calcareous soils. © 2013 Society of Chemical Industry.
Ab initio simulation of elastic and mechanical properties of Zn- and Mg-doped hydroxyapatite (HAP).
Aryal, Sitaram; Matsunaga, Katsuyuki; Ching, Wai-Yim
2015-07-01
Hydroxyapatite (HAP) is an important bioceramic which constitutes the mineral components of bones and hard tissues in mammals. It is bioactive and used as bioceramic coatings for metallic implants and bone fillers. HAP readily absorbs a large amount of impurities. Knowledge on the elastic and mechanical properties of impurity-doped HAP is a subject of great importance to its potential for biomedical applications. Zn and Mg are the most common divalent cations HAP absorbs. Using density function theory based ab initio methods, we have carried out a large number of ab initio calculations to obtain the bulk elastic and mechanical properties of HAP with Zn or Mg doped in different concentration at the Ca1 and Ca2 sites using large 352-atom supercells. Detailed information on their dependece on the concetraion of the substitued impurity is obtained. Our results show that Mg enhances overall elastic and bulk mechanical properties whereas Zn tends to degrade except at low concentrations. At a higher concentration, the mechanical properties of Zn and Mg doped HAP also depend significantly on impurity distribution between the Ca1 and Ca2 sites. There is a strong evidence that Zn prefers Ca2 site for substituion whereas Mg has no such preference. These results imply that proper control of dopant concentration and their site preference must carefully considered in using doped HAP for specific biomedical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mohd Bakhori, Siti Khadijah; Mahmud, Shahrom; Ling, Chuo Ann; Sirelkhatim, Amna Hassan; Hasan, Habsah; Mohamad, Dasmawati; Masudi, Sam'an Malik; Seeni, Azman; Abd Rahman, Rosliza
2017-09-01
ZnO with two different morphologies were used to study the inhibition of Streptococcus sobrinus and Streptococcus mutans which are closely associated with tooth cavity. Rod-like shaped ZnO-A and plate-like shaped ZnO-B were produced using a zinc boiling furnace. The nanopowders were characterized using energy filtered transmission electron microscopy (EFTEM), X-ray diffraction (XRD), photoluminescence (PL) spectroscopy, Raman spectroscopy and dynamic light scattering (DLS) to confirm the properties of the ZnO polycrystalline wurtzite structures. XRD results show that the calculated crystallite sizes of ZnO-A and ZnO-B were 36.6 and 39.4nm, respectively, whereas DLS revealed particle size distributions of 21.82nm (ZnO-A) and 52.21nm (ZnO-B). PL spectra showed ion vacancy defects related to green and red luminescence for both ZnO particles. These defects evolved during the generation of reactive oxygen species which contributed to the antibacterial activity. Antibacterial activity was investigated using microdilution technique towards S. sobrinus and S. mutans at different nanopowder concentrations. Results showed that ZnO-A exhibited higher inhibition on both bacteria compared with ZnO-B. Moreover, S. mutans was more sensitive compared with S. sobrinus because of its higher inhibition rate. Copyright © 2017 Elsevier B.V. All rights reserved.
The presence of zinc in Swedish waste fuels.
Jones, Frida; Bisaillon, Mattias; Lindberg, Daniel; Hupa, Mikko
2013-12-01
Zinc (Zn) is a chemical element that has gained more attention lately owing to its possibility to form corrosive deposits in large boilers, such as Waste-to-Energy plants. Zn enters the boilers in many different forms and particularly in waste, the amount of Zn is hard to determine due to both the heterogeneity of waste in general but also due to the fact that little is yet published specifically about the Zn levels in waste. This study aimed to determine the Zn in Swedish waste fuels by taking regular samples from seven different and geographically separate waste combustion plants over a 12-month period. The analysis shows that there is a relation between the municipal solid waste (MSW) content and the Zn-content; high MSW-content gives lower Zn-content. This means that waste combustion plants with a higher share of industrial and commercial waste and/or building and demolition waste would have a higher share of Zn in the fuel. The study also shows that in Sweden, the geographic location of the plant does not have any effect on the Zn-content. Furthermore, it is concluded that different seasons appear not to affect the Zn concentrations significantly. In some plants there was a clear correlation between the Zn-content and the content of other trace metals. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Lichun; Li, Qingshan; Wang, Feifei; Qu, Chong; Zhao, Fengzhou
2014-05-01
The n-ZnO:Ga/ p-GaN:Mg and n-ZnO:Ga/ i-ZnO/ p-GaN:Mg heterojunction light emitting diodes (LEDs) were fabricated by the pulsed laser deposition (PLD) technique. The blue electroluminescence (EL) of the n-ZnO:Ga/ p-GaN:Mg heterojunction LEDs is emitted mainly from the p-GaN layer instead of the n-ZnO:Ga layer, for the reason that the electron injection from n-ZnO:Ga prevailed over the hole injection from p-GaN:Mg due to the higher carrier concentration and carrier mobility in n-ZnO:Ga. On the other hand, the n-ZnO:Ga/ i-ZnO/ p-GaN:Mg heterojunction LEDs exhibited dominant ultraviolet-blue emission. The reason for this difference is attributed to the inserted undoped i-ZnO layer between n-ZnO:Ga and p-GaN:Mg, in which the holes from p-GaN:Mg and the electrons from n-ZnO:Ga are recombined.
Brun, Nadja Rebecca; Lenz, Markus; Wehrli, Bernhard; Fent, Karl
2014-04-01
The increasing use of zinc oxide nanoparticles (nZnO) and their associated environmental occurrence make it necessary to assess their potential effects on aquatic organisms. Upon water contact, nZnO dissolve partially to zinc (Zn(II)). To date it is not yet completely understood, whether effects of nZnO are solely or partly due to dissolved Zn(II). Here we compare potential effects of 0.2, 1 and 5mg/L nZnO and corresponding concentrations of released Zn(II) by water soluble ZnCl2 to two development stages of zebrafish, embryos and eleuthero-embryos, by analysing expressional changes by RT-qPCR. Another objective was to assess uptake and tissue distribution of Zn(II). Laser ablation-ICP-MS analysis demonstrated that uptake and tissue distribution of Zn(II) were identical for nZnO and ZnCl2 in eleuthero-embryos. Zn(II) was found particularly in the retina/pigment layer of eyes and brain. Both nZnO and dissolved Zn(II) derived from ZnCl2 had similar inhibiting effects on hatching, and they induced similar expressional changes of target genes. At 72hours post fertilization (hpf), both nZnO and Zn(II) delayed hatching at all doses, and inhibited hatching at 1 and 5 mg/L at 96 hpf. Both nZnO and Zn(II) lead to induction of metallothionein (mt2) in both embryos and eleuthero-embryos at all concentrations. Transcripts of oxidative stress related genes cat and Cu/Zn sod were also altered. Moreover, we show for the first time that nZnO exposure results in transcriptional changes of pro-inflammatory cytokines IL-1β and TNFα. Overall, transcriptional alterations were higher in embryos than eleuthero-embryos. The similarities of the effects lead to the conclusion that effects of nZnO are mainly related to the release of Zn(II). Copyright © 2014 Elsevier B.V. All rights reserved.
Sinnett, Danielle; Hutchings, Tony R; Hodson, Mark E
2010-01-01
This study examines the food-chain transfer of Zn from two plant species, Urtica dioica (stinging nettle) and Acer pseudoplatanus (sycamore maple), into their corresponding aphid species, Microlophium carnosum and Drepanosiphum platanoidis. The plants were grown in a hydroponic system using solutions with increasing concentrations of Zn from 0.02 to 41.9 mg Zn/l. Above-ground tissue concentrations in U. dioica and M. carnosum increased with increasing Zn exposure (p < 0.001). Zn concentrations in A. pseudoplatanus also increased with solution concentration from the control to the 9.8 mg Zn/l solution, above which concentrations remained constant. Zn concentrations in both D. platanoidis and the phloem tissue of A. pseudoplatanus were not affected by the Zn concentration in the watering solution. It appears that A. pseudoplatanus was able to limit Zn transport in the phloem, resulting in constant Zn exposure to the aphids. Zn concentrations in D. platanoidis were around three times those in M. carnosum.
Luo, Y M; Christie, P; Baker, A J
2000-07-01
Temporal changes in soil solution properties and metal speciation were studied in non-rhizosphere soil and in the rhizosphere of the hyperaccumulator Thlaspi caerulescens J. & C. Presl (population from Prayon, Belgium) grown in a Zn- and Cd-contaminated soil. This paper focuses on soil solution Zn and pH dynamics during phytoextraction. The concentration of Zn in both non-rhizosphere and rhizosphere soil solutions decreased from 23 mg/l at the beginning to 2 mg/l at the end of the experiment (84 days after transplanting of seedlings), mainly due to chemical sorption. There was no significant difference in overall Zn concentration between the planted and the unplanted soil solutions (P > 0.05). Soil solution pH decreased initially and then increased slightly in both planted and unplanted soil zones. From 60 to 84 days after transplanting, the pH of the rhizosphere soil solution was higher than that of non-rhizosphere soil solution (P<0.05). Zn uptake by the hyperaccumulator plants was 8.8 mg per pot (each containing 1 kg oven-dry soil) on average. The data indicate that the potential of T. caerulescens to remove Zn from contaminated soil may not be related to acidification of the rhizosphere.
Alvarenga, Paula; Simões, Isabel; Palma, Patrícia; Amaral, Olga; Matos, João Xavier
2014-02-01
To evaluate the accumulation of trace elements (TE) by vegetables produced in the vicinity of abandoned pyrite mines, eighteen different small farms were selected near three mines from the Portuguese sector of the Iberian Pyrite Belt (São Domingos, Aljustrel and Lousal). Total and bioavailable As, Cu, Pb, and Zn concentrations were analyzed in the soils, and the same TE were analyzed in three different vegetables, lettuce (Lactuca sativa), coriander (Coriandrum sativum), and cabbage (Brassica oleracea), collected at the same locations. The soils were contaminated with As, Cu, Pb, and Zn, since their total concentrations exceeded the considered soil quality guideline values for plant production in the majority of the sampling sites. The maximum total concentrations for those TE were extremely high in some of the sampling sites (e.g. 1,851 mg As kg(-1) in São Domingos, 1,126 mg Cu kg(-1) in Aljustrel, 4,946 mg Pb kg(-1) in São Domingos, and 1,224 mg Zn kg(-1) in Aljustrel). However, the soils were mainly circumneutral, a factor that contributes to their low bioavailable fractions. As a result, generally, the plants contained levels of these elements characteristic of uncontaminated plants, and accumulation factors for all elements <1, typical of excluder plants. Furthermore, the estimated daily intake (EDI) for Cu and Zn, through the consumption of these vegetables, falls below the recommended upper limit for daily intake of these elements. The sampling site that stood out from the others was located at São João de Negrilhos (Aljustrel), where bioavailable Zn levels were higher, a consequence of the slight acidity of the soil. Therefore, the Zn content in vegetables was also higher, characteristic of contaminated plants, emphasizing the risk of Zn entering the human food chain via the consumption of crops produced on those soils. © 2013.
A study on toxic and essential elements in wheat grain from the Republic of Kazakhstan.
Tattibayeva, Damira; Nebot, Carolina; Miranda, Jose M; Abuova, Altynai B; Baibatyrov, Torebek A; Kizatova, Maigul Z; Cepeda, Alberto; Franco, Carlos M
2016-03-01
Little information is currently available about the content of different elements in wheat samples from the Republic of Kazakhstan. The concentrations of toxic (As, Cd, Cr, Hg, Pb, and U) and essential (Co, Cu, Fe, Mn, Ni, Se, and Zn) elements in 117 sampled wheat grains from the Republic of Kazakhstan were measured. The results indicated that the mean and maximum concentrations of most investigated elements (As, Cd, Co, Cr, Mn, Se, Pb, and U) were higher in samples collected from southern Kazakhstan. The mean and maximum concentrations of toxic elements such as As, Cd, Hg, and Pb did not exceed levels specified by European, FAO, or Kazakh legislation, although the hazard quotient (HQ) values for Co, Cu, Mn, and Zn were higher than 1 and the hazard index (HI) was higher than 1 for samples collected from all areas of Kazakhstan. This indicates that there should be concern about the potential hazards of the combination of toxic elements in Kazakh wheat.
Ion-implanted epitaxially grown ZnSe
NASA Technical Reports Server (NTRS)
Chernow, F.
1975-01-01
The use of ZnSe to obtain efficient, short wavelength injection luminescence was investigated. It was proposed that shorter wavelength emission and higher efficiency be achieved by employing a p-i-n diode structure rather than the normal p-n diode structure. The intervening i layer minimizes concentration quenching effects and the donor-acceptor pair states leading to long wavelength emission. The surface p layer was formed by ion implantation; implantation of the i layer rather than the n substrate permits higher, uncompensated p-type doping. An ion implanted p-n junction in ZnSe is efficiency-limited by high electron injection terminating in nonradiative recombination at the front surface, and by low hole injection resulting from the inability to obtain high conductivity p-type surface layers. While the injection ratio in p-n junctions was determined by the radio of majority carrier concentrations, the injection ratio in p-i-n structures was determined by the mobility ratios and/or space charge neutrality requirements in the i layer.
Classification of trace elements in tissues from organic and conventional French pig production.
Parinet, Julien; Royer, Eric; Saint-Hilaire, Mailie; Chafey, Claude; Noël, Laurent; Minvielle, Brice; Dervilly-Pinel, Gaud; Engel, Erwan; Guérin, Thierry
2018-07-01
This study assesses the impact of the farming system on the levels of copper, zinc, arsenic, cadmium, lead and mercury in pig tissues from three types of production (Organic (n = 28), Label Rouge (n = 12) and Conventional (n = 30)) randomly sampled in different slaughterhouses. All the concentrations were below regulatory limits. In muscles, Cu, Zn and As were measured at slightly higher levels in organic samples but no differences between organic and Label Rouge was observed. Livers from conventional and Label Rouge pig farms exhibited higher Zn and Cd contents than the organic ones, probably due to different practice in zinc or phytase supplementation of fattening diets. Principal component analysis indicated a correlation between Cu and As concentrations in liver and carcass weight, and between Zn and Cd liver levels and lean meat percentage. The linear discriminant analysis succeeded in predicting the farming process on the basis of the lean meat percentage and the liver Cd level. Copyright © 2018 Elsevier Ltd. All rights reserved.
Health risks associated with heavy metals in the drinking water of Swat, northern Pakistan.
Lu, Yonglong; Khan, Hizbullah; Zakir, Shahida; Ihsanullah; Khan, Sardar; Khan, Akbar Ali; Wei, Luo; Wang, Tieyu
2013-10-01
The concentrations of heavy metals such as Cd, Cr, Cu, Mn, Ni, Pb and Zn were investigated in drinking water sources (surface and groundwater) collected from Swat valley, Khyber Pakhtunkhwa, Pakistan. The potential health risks of heavy metals to the local population and their possible source apportionment were also studied. Heavy metal concentrations were analysed using atomic absorption spectrometer and compared with permissible limits set by Pakistan Environmental Protection Agency and World Health Organization. The concentrations of Cd, Cr, Ni and Pb were higher than their respective permissible limits, while Cu, Mn and Zn concentrations were observed within their respective limits. Health risk indicators such as chronic daily intake (CDI) and health risk index (HRI) were calculated for adults and children separately. CDIs and HRIs of heavy metals were found in the order of Cr > Mn > Ni > Zn > Cd > Cu > Pb and Cd > Ni > Mn > Cr > Cu > Pb > Zn, respectively. HRIs of selected heavy metals in the drinking water were less than 1, indicating no health risk to the local people. Multivariate and univariate statistical analyses showed that geologic and anthropogenic activities were the possible sources of water contamination with heavy metals in the study area.
The shift of optical band gap in W-doped ZnO with oxygen pressure and doping level
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, J.; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing 400714; Peng, X.Y.
2014-06-01
Highlights: • CVD–PLD co-deposition technique was used. • Better crystalline of the ZnO samples causes the redshift of the optical band gap. • Higher W concentration induces blueshift of the optical band gap. - Abstract: Tungsten-doped (W-doped) zinc oxide (ZnO) nanostructures were synthesized on quartz substrates by pulsed laser and hot filament chemical vapor co-deposition technique under different oxygen pressures and doping levels. We studied in detail the morphological, structural and optical properties of W-doped ZnO by SEM, XPS, Raman scattering, and optical transmission spectra. A close correlation among the oxygen pressure, morphology, W concentrations and the variation of bandmore » gaps were investigated. XPS and Raman measurements show that the sample grown under the oxygen pressure of 2.7 Pa has the maximum tungsten concentration and best crystalline structure, which induces the redshift of the optical band gap. The effect of W concentration on the change of morphology and shift of optical band gap was also studied for the samples grown under the fixed oxygen pressure of 2.7 Pa.« less
Srichandan, Suchismita; Panigrahy, R C; Baliarsingh, S K; Rao B, Srinivasa; Pati, Premalata; Sahu, Biraja K; Sahu, K C
2016-10-15
Concentrations of trace metals such as iron (Fe), copper (Cu), zinc (Zn), cobalt (Co), nickel (Ni), manganese (Mn), lead (Pb), cadmium (Cd), chromium (Cr), arsenic (As), vanadium (V), and selenium (Se) were determined in seawater and zooplankton from the surface waters off Rushikulya estuary, north-western Bay of Bengal. During the study period, the concentration of trace metals in seawater and zooplankton showed significant spatio-temporal variation. Cu and Co levels in seawater mostly remained non-detectable. Other elements were found at higher concentrations and exhibited marked variations. The rank order distribution of trace metals in terms of their average concentration in seawater was observed as Fe>Ni>Mn>Pb>As>Zn>Cr>V>Se>Cd while in zooplankton it was Fe>Mn>Cd>As>Pb>Ni>Cr>Zn>V>Se. The bioaccumulation factor (BAF) of Fe was highest followed by Zn and the lowest value was observed with Ni. Results of correlation analysis discerned positive affinity and good relationship among the majority of the trace metals, both in seawater and zooplankton suggesting their strong affinity and coexistence. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Qian; Lu, Xinwei; Pan, Huiyun
2016-10-01
A study on heavy metal pollution was undertaken in the re-suspended road dusts from different functional areas in Xi'an City of China to investigate the impacts of human activities and land uses on urban environment. The concentrations of Co, Cr, Cu, Mn, Ni, Pb, V, and Zn were determined using X-ray fluorescence spectrometry, and their accumulations were analyzed using enrichment factor. Correlation analysis, principal component analysis, and cluster analysis, combined with the concentration property and enrichment factor, were used to identify the possible sources of heavy metals investigated. The investigated re-suspended road dusts had Co, Cr, Cu, Pb, and Zn concentrations higher than background levels. Samples from different functional areas had diverse heavy metal concentration levels. Co, Cr, Cu, Pb, and Zn presented moderate/significant enrichment in the samples. The source analyses indicated that Mn, Ni, V, Pb, and Zn had the mixed sources of nature and traffic, Cr and Cu mainly originated from traffic source, while Co was primarily derived from construction source. Traffic and construction activities had a significant impact on urban environment. This preliminary research provides a valuable basis for urban environment protection and management.
Characterizing the environmental impact of metals in construction and demolition waste.
Yu, Danfeng; Duan, Huabo; Song, Qingbin; Li, Xiaoyue; Zhang, Hao; Zhang, Hui; Liu, Yicheng; Shen, Weijun; Wang, Jinben
2018-05-01
Large quantities of construction and demolition (C&D) waste are generated in China every year, but their potential environmental impacts on the surrounding areas are rarely assessed. This study focuses on metals contained in C&D waste, characterizing the metal concentrations and their related environmental risks. C&D waste samples were collected in Shenzhen City, China, from building demolition sites, renovation areas undergoing refurbishment, landfill sites, and recycling companies (all located in Shenzhen city) that produce recycled aggregate, in order to identify pollution levels of the metals As, Cd, Cr, Cu, Pb, Ni, and Zn. The results showed that (1) the metal concentrations in most demolition and renovation waste samples were below the soil environmental quality standard for agricultural purposes (SQ-Agr.) in China; (2) Cd, Cu, and Zn led to relatively higher environmental risks than other metals, especially for Zn (DM5 tile sample, 360 mg/kg; R4 tile sample, 281 mg/kg); (3) non-inert C&D waste such as wall insulation and foamed plastic had high concentrations of As and Cd, so that these materials required special attention for sound waste management; and (4) C&D waste collected from landfill sites had higher concentrations of Cd and Cu than did waste collected from demolition and refurbishment sites.
Zota, Ami R; Schaider, Laurel A; Ettinger, Adrienne S; Wright, Robert O; Shine, James P; Spengler, John D
2011-01-01
Children living near hazardous waste sites may be exposed to environmental contaminants, yet few studies have conducted multi-media exposure assessments, including residential environments where children spend most of their time. We sampled yard soil, house dust, and particulate matter with aerodynamic diameter <2.5 in 59 homes of young children near an abandoned mining area and analyzed samples for lead (Pb), zinc (Zn), cadmium (Cd), arsenic (As), and manganese (Mn). In over half of the homes, dust concentrations of Pb, Zn, Cd, and As were higher than those in soil. Proximity to mine waste (chat) piles and the presence of chat in the driveway significantly predicted dust metals levels. Homes with both chat sources had Pb, Zn, Cd, and As dust levels two to three times higher than homes with no known chat sources after controlling for other sources. In contrast, Mn concentrations in dust were consistently lower than in soil and were not associated with chat sources. Mn dust concentrations were predicted by soil concentrations and occupant density. These findings suggest that nearby outdoor sources of metal contaminants from mine waste may migrate indoors. Populations farther away from the mining site may also be exposed if secondary uses of chat are in close proximity to the home.
NASA Astrophysics Data System (ADS)
George, M. A.; Azoulay, M.; Jayatirtha, H. N.; Burger, A.; Collins, W. E.; Silberman, E.
1993-10-01
X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) was used for the first time to characterize the chemical composition of modified surfaces of Zn xCd 1- xTe single crystals. These surface treatments were selected for their relevance to device preparation procedures. The XPS peaks indicated an increase of the tellurium and a depletion of the cadmium concentrations upon etching in bromine methanol solution. AFM revealed the formation of pronounced Te inclusions. Higher x values correlated with a decrease in residual bromine left on the surface, while cut and polished samples had higher oxide concentrations and increased bromination of the surface than cleaved samples.
Heggelund, Laura R; Diez-Ortiz, Maria; Lofts, Stephen; Lahive, Elma; Jurkschat, Kerstin; Wojnarowicz, Jacek; Cedergreen, Nina; Spurgeon, David; Svendsen, Claus
2014-08-01
To determine how soil properties influence nanoparticle (NP) fate, bioavailability and toxicity, this study compared the toxicity of nano zinc oxide (ZnO NPs), non-nano ZnO and ionic ZnCl2 to the earthworm Eisenia fetida in a natural soil at three pH levels. NP characterisation indicated that reaction with the soil media greatly controls ZnO properties. Three main conclusions were drawn. First that Zn toxicity, especially for reproduction, was influenced by pH for all Zn forms. This can be linked to the influence of pH on Zn dissolution. Secondly, that ZnO fate, toxicity and bioaccumulation were similar (including relationships with pH) for both ZnO forms, indicating the absence of NP-specific effects. Finally, earthworm Zn concentrations were higher in worms exposed to ZnO compared to ZnCl2, despite the greater toxicity of the ionic form. This observation suggests the importance of considering the relationship between uptake and toxicity in nanotoxicology studies.
Papadopoulos, A; Prochaska, C; Papadopoulos, F; Gantidis, N; Metaxa, E
2007-10-01
The objective of this study was to determine the levels of major phytotoxic metals--including cadmium (Cd), copper (Cu), nickel (Ni), and zinc (Zn)--in agricultural soils of Western Macedonia, Greece. We also wanted to determine the possible relationships among elements and between soil properties and elemental concentrations. Surface soil samples, n = 570, were collected and analyzed. The results of the elemental analysis showed that the mean metal concentrations were consistent with reported typical concentrations found in Greek agricultural soils in the cases of Zn and Cu. Cd exhibited lower and Ni higher mean concentrations than the typical levels reported in the literature. Metal concentrations in the majority of the examined samples (>69%) were found to be higher than the respective critical plant-deficiency levels. However, only 0.4% and 0.2% of the analyzed soil samples, respectively, exhibited Cd and Ni concentrations higher than the levels that cause plant toxicity, as referenced by other investigators. These results suggest that the soils studied can be considered as unpolluted with respect to the examined food-chain metal contaminants. However, the levels of the metal concentrations in some of the soil samples, and the low correlation of the metals with soil properties, suggest an anthropogenic rather that lithogenic origin.
Zahra, Azmat; Hashmi, Muhammad Zaffar; Malik, Riffat Naseem; Ahmed, Zulkifl
2014-02-01
Heavy metal concentrations in sediments of the Kurang stream: a principal feeding tributary of the Rawal Lake Reservoir were investigated using enrichment factor (EF), geoaccumulation index (Igeo) and metal pollution index (MPI) to determine metal accumulation, distribution and its pollution status. Sediment samples were collected from twenty one sites during two year monitoring in pre- and post-monsoon seasons (2007-2008). Heavy metal toxicity risk was assessed using Sediment Quality Guidelines (SQGs), effect range low/effect range median values (ERL/ERM), and threshold effect level/probable effect level (TEL/PEL). Greater mean concentrations of Ni, Mn and Pb were recorded in post-monsoon season whereas metal accumulation pattern in pre-monsoon season followed the order: Zn>Mn>Ni>Cr>Co>Cd>Pb>Cu>Li. Enrichment factor (EF) and geoaccumulation (Igeo) values showed that sediments were loaded with Cd, Zn, Ni and Mn. Comparison with uncontaminated background values showed higher concentrations of Cd, Zn and Ni than respective average shale values. Concentrations of Ni and Zn were above ERL values; however, Ni concentration exceeded the ERM values. Sediment contamination was attributed to anthropogenic and natural processes. The results can be used for effective management of fresh water hilly streams of Pakistan. © 2013.
Sciskalska, Milena; Zalewska, Marta; Grzelak, Agnieszka; Milnerowicz, Halina
2014-06-01
The aim of the study was to verify if there is any association between exposure to Cu, Zn, Cd, Pb, As and the formation of malondialdehyde (MDA), 8-hydroxydeoxyguanosine (8-OHdG), advanced oxidation protein products (AOPP), and whether in this process cigarette smoking plays a role. The investigations were performed in the 352 smelters occupationally exposed to heavy metals and 73 persons of control group. Metals concentration was determined by atomic absorption spectrometry. MDA and AOPP concentrations were determined by spectrophotometric methods. The concentration of 8-OHdG was determined by ELISA method. It was demonstrated an increased Cu concentration in smoking smelters compared to non-smoking control group. It was noted no differences in Zn and Mg concentrations between the examined groups. Pb concentration was more than sixfold higher in the group of smoking smelters and about fivefold higher in the group of non-smoking smelters compared to the control groups (smokers and non-smokers). It was shown that Cd concentration in the blood was nearly fivefold higher in the smoking control group compared to the non-smoking control group and more than threefold higher in the group of smoking smelters compared to non-smoking. It was shown an increased As concentration (more than fourfold) and decreased Ca concentration in both groups of smelters compared to control groups. In groups of smelters (smokers and non-smokers), twofold higher MDA and AOPP concentrations, and AOPP/albumin index compared to control groups (smokers and non-smokers) were shown. Tobacco smoke is the major source of Cd in the blood of smelters. Occupational exposure causes accumulation of Pb in the blood. Occupational exposure to heavy metals causes raise of MDA concentration and causes greater increase in AOPP concentration than tobacco smoke.
NASA Astrophysics Data System (ADS)
Elezaj, I. R.; Letaj, K. Rr.; Selimi, Q. I.; Zhushi-Etemi, F.
2003-05-01
The concentration of Pb, Cd, Zn and Cu, δ-aminolevulinic acid dehydratase activity (ALA-D: EC.4.2.1.24) hemoglobin and protein amount have been determined in three different populations of fruit fly (Drosophila melanogaster) caught at two urban sites (Mitrovica town, which is situated close to smelter of “Trepça” don close and Prishtina the capital of Kosova) and in Luki village as uncontaminated area. The results show that in the fruit fly of Mitrovica the concentration of Pb, Cd and Zn was significantly higher (P<0.00l) in comparison with that on the f-Liit fly of Prishtina and Luki. The concentration of Pb of fruit fly from Mitrovica was 3.1 times higher in comparison with that on fruit fly of Prishtina and 4.9 times higher in comparison with uncontaminated group of fruit fly. The ALA-D activity was significantly inhibited in the homogenate of fruit fly from Mitrovica in comparison with Prishtina and Luki localities (P<0.00l). ALA-D activity was also inhibited in the homogenate of Prishtina fruit fly in comparison with Luki group (P<0.00l). The amount of proteins was significantly lower in Mitrovica fruit fly in comparison with that in control and Prishtina group. The hemoglobin value was relatively unchanged.
Spatial Distribution of Elemental Concentrations in Street Dust of Hanoi, Vietnam.
Phi, Thai Ha; Chinh, Pham Minh; Hung, Nguyen The; Ly, Luong Thi Mai; Thai, Phong K
2017-02-01
Street dust samples were collected at 163 locations across four different zones of Hanoi, Vietnam, covering different traffic and population densities. Samples were sieved into three fractions of different particle sizes and analyzed for elemental concentrations (K, Ca, Mn, Fe, Zn, Pb) using an X-ray fluorescence (XRF) instrument. The metal concentrations in street dust were compared among different sampling zones and with samples from background to evaluate the degree of pollution. The smallest size particle fraction (diameter <75 μm) contained higher concentrations of metals than the coarser ones (diameters = 75-180 and >180 μm). While concentrations of metals like Ca and Fe are spatially similar, concentrations of Pb and Zn in street dust varied between different zones, with the highest concentrations observed in dust from the downtown area, and lowest levels in the new suburb areas. Overall, compared to studies from cities in other countries, the mean concentration of Pb in street dust in Hanoi was relatively low, suggesting a lower risk to human health due to inhalation or ingestion of Pb-containing dust particles than in cities where Pb concentrations were several times higher.
Sánchez-Rodríguez, Antonio Rafael; Del Campillo, María Carmen; Torrent, José
2017-08-01
Zinc deficiency, a major problem in crops grown on soils low in available Zn, is even more important in phosphorus-rich soils. This work aimed to elucidate the effects of soil P and Zn levels, and of fertilizer application, on yield and Zn concentration in cereal grains. Wheat and barley were successively pot-grown on 20 calcareous Vertisols low in available Zn and ranging widely in available P. Grain yield in the plants grown on the native soils was positively correlated with Olsen P but not with diethylenetriaminepentaacetic acid (DTPA)-extractable Zn except for wheat on P-rich soils. Grain Zn concentration was negatively correlated with Olsen P. Grain Zn uptake differed little among soils. Application of P to the soils increased grain yield insignificantly and P concentration significantly; however, it reduced grain Zn concentration (particularly at low Olsen P values). Applying Zn alone only increased grain Zn concentration, whereas applying P and Zn in combination increased yield and grain Zn concentration at low and high Olsen P values, respectively. Applying P alone to plants grown on calcareous Vertisols low in available P and Zn may in practice reduce grain Zn concentrations while not increasing grain yield significantly. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana.
Lee, Chang Woo; Mahendra, Shaily; Zodrow, Katherine; Li, Dong; Tsai, Yu-Chang; Braam, Janet; Alvarez, Pedro J J
2010-03-01
Phytotoxicity is an important consideration to understand the potential environmental impacts of manufactured nanomaterials. Here, we report on the effects of four metal oxide nanoparticles, aluminum oxide (nAl(2)O(3)), silicon dioxide (nSiO(2)), magnetite (nFe(3)O(4)), and zinc oxide (nZnO), on the development of Arabidopsis thaliana (Mouse-ear cress). Three toxicity indicators (seed germination, root elongation, and number of leaves) were quantified following exposure to each nanoparticle at three concentrations: 400, 2,000, and 4,000 mg/L. Among these particles, nZnO was most phytotoxic, followed by nFe(3)O(4), nSiO(2), and nAl(2)O(3), which was not toxic. Consequently, nZnO was further studied to discern the importance of particle size and zinc dissolution as toxicity determinants. Soluble zinc concentrations in nanoparticle suspensions were 33-fold lower than the minimum inhibitory concentration of dissolved zinc salt (ZnCl(2)), indicating that zinc dissolution could not solely account for the observed toxicity. Inhibition of seed germination by ZnO depended on particle size, with nanoparticles exerting higher toxicity than larger (micron-sized) particles at equivalent concentrations. Overall, this study shows that direct exposure to nanoparticles significantly contributed to phytotoxicity and underscores the need for eco-responsible disposal of wastes and sludge containing metal oxide nanoparticles.
Phosphorus-zinc interactive effects on growth by Selenastrum capricornutum (chlorophyta)
Kuwabara, J.S.
1985-01-01
Culturing experiments in chemically defined growth media were conducted to observe possible Zn and P interactions on Selenastrum capricornutum Printz growth indexes. Elevated Zn concentrations (7.5 ?? 10-8 and 1.5 ?? 10-7 M [Zn2+]) were highly detrimental to algal growth, affecting lag, exponential, and stationary growth phases. P behaved as a yield-limiting nutrient with maximum cell densities increasing linearly with total P. This yield limitation was intensified at elevated Zn concentrations. Although calculated cellular phosphorus concentrations increased markedly with Zn ion activity, elevated Zn concentrations had no apparent effect on rates of phosphorus uptake estimated for Selenastrum during exponential growth. Results indicated that P-Zn interactions were significant in describing Selenastrum cell yield results and are consistent with previous Zn studies on chlorophytes. These P-Zn interactions and the observed inhibitory growth effects of submicromolar Zn concentrations suggest that in nature an apparent P yield-limiting condition may result from elevated Zn concentrations.
Bradfield, Scott J; Kumar, Pawan; White, Jason C; Ebbs, Stephen D
2017-01-01
The potential release of metal oxide engineered nanoparticles (ENP) into agricultural systems has created the need to evaluate the impact of these materials on crop yield and food safety. The study here grew sweet potato (Ipomoea batatas) to maturity in field microcosms using substrate amended with three concentrations (100, 500 or 1000 mg kg DW -1 ) of either nZnO, nCuO, or nCeO 2 or equivalent amounts of Zn 2+ , Cu 2+ , or Ce 4+ . Adverse effects on tuber biomass were observed only for the highest concentration of Zn or Cu applied. Exposure to both forms of Ce had no adverse effect on yield and a slight positive benefit at higher concentrations on tuber diameter. The three metals accumulated in both the peel and flesh of the sweet potato tubers, with concentrations higher in the peel than the flesh for each element. For Zn, >70% of the metal was in the flesh and for Cu >50%. The peels retained 75-95% of Ce in the tubers. The projected dietary intake of each metal by seven age-mass classes from child to adult only exceeded the oral reference dose for chronic toxicity in a scenario where children consumed tubers grown at the highest metal concentration. The results throughout were generally not different between the ENP- and ionic-treatments, suggesting that the added ENPs underwent dissolution to release their component ions prior to accumulation. The results offer insight into the fate and impact of these ENPs in soils. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Amjadian, Keyvan; Sacchi, Elisa; Rastegari Mehr, Meisam
2016-11-01
Urban soil contamination is a growing concern for the potential health impact on the increasing number of people living in these areas. In this study, the concentration, the distribution, the contamination levels, and the role of land use were investigated in Erbil metropolis, the capital of Iraqi Kurdistan. A total of 74 soil samples were collected, treated, and analyzed for their physicochemical properties, and for 7 heavy metals (As, Cd, Cr, Cu, Fe, Pb, and Zn) and 16 PAH contents. High concentrations, especially of Cd, Cu Pb, and Zn, were found. The Geoaccumulation index (I geo ), along with correlation coefficients and principal component analysis (PCA) showed that Cd, Cu, Pb, and Zn have similar behaviors and spatial distribution patterns. Heavy traffic density mainly contributed to the high concentrations of these metals. The total concentration of ∑PAHs ranged from 24.26 to 6129.14 ng/g with a mean of 2296.1 ng/g. The PAH pattern was dominated by 4- and 5-ring PAHs, while diagnostic ratios and PCA indicated that the main sources of PAHs were pyrogenic. The toxic equivalent (TEQ) values ranged from 3.26 to 362.84 ng/g, with higher values in central parts of the city. A statistically significant difference in As, Cd, Cu, Pb, Zn, and ∑PAH concentrations between different land uses was observed. The highest As concentrations were found in agricultural areas while roadside, commercial, and industrial areas had the highest Cd, Cu, Pb, Zn, and ∑PAH contents.
Hatami, Ashkan; Khoshgoftarmanesh, Amir Hossein
2016-12-01
Uniform 2-year old seedlings of a commercial olive cultivar (Olea europaea L., cv. Mahzam) were exposed or unexposed to the air pollution from the controlled burning of waste tires. The plants were supplied with zinc sulfate (ZnSO 4 ) or synthesized Zn(Glycine) 2 (Zn-Gly) or unsupplied with Zn. Exposure to air pollution resulted in oxidative damage to the olive, as indicated by the higher production of malondialdehyde (MDA). Supplement with Zn partly alleviated oxidative damage induced by the air emissions on the olive. Leaf concentration of MDA was higher at the active period of tire burning than that of the inactive one. Exposure to the emissions from tire burning significantly increased leaf ascorbate peroxidase (APX) activity. Supplement with Zn increased APX activity in plants exposed to the air pollution. According to the results, Zn nutrition was effective in alleviating oxidative stress induced by air pollution on the olive. APX seemed to play a significant role in alleviating oxidative damages induced by air emissions from tire burning on the olive; however, the role of other antioxidant enzymes should be addressed in future studies.
Metal Complexation in Xylem Fluid 1
White, Michael C.; Chaney, Rufus L.; Decker, A. Morris
1981-01-01
The capacity of ligands in xylem fluid to form metal complexes was tested with a series of in vitro experiments using paper electrophoresis and radiographs. The xylem fluid was collected hourly for 8 hours from soybean (Glycine max L. Merr.) and tomato (Lycopersicon esculentum Mill.) plants grown in normal and Zn-phytotoxic nutrient solutions. Metal complexation was assayed by anodic or reduced cathodic movement of radionuclides (63Ni, 65Zn, 109Cd, 54Mn) that were presumed to have formed negatively charged complexes. Electrophoretic migration of Ni, Zn, Cd, and Mn added to xylem exudate and spotted on KCl- or KNO3-wetted paper showed that stable Ni, Zn, and Cd metal complexes were formed by exudate ligands. No anodic Mn complexes were observed in this test system. Solution pH, plant species, exudate collection time, and Zn phytotoxicity all affected the amount of metal complex formed in exudate. As the pH increased, there was increased anodic metal movement. Soybean exudate generally bound more of each metal than did tomato exudate. Metal binding usually decreased with increasing exudate collection time, and less metal was bound by the high-Zn exudate. Ni, Zn, Cd, and Mn in exudate added to exudate-wetted paper demonstrated the effect of ligand concentration on stable metal complex formation. Complexes for each metal were demonstratable with this method. Cathodic metal movement increased with time of exudate collection, and it was greater in the high-Zn exudate than in the normal-Zn exudate. A model study illustrated the effect of ligand concentration on metal complex stability in the electrophoretic field. Higher ligand (citric acid) concentrations increased the stability for all metals tested. Images PMID:16661666
Evaluation of trace element status of organic dairy cattle.
Orjales, I; Herrero-Latorre, C; Miranda, M; Rey-Crespo, F; Rodríguez-Bermúdez, R; López-Alonso, M
2018-06-01
The present study aimed to evaluate trace mineral status of organic dairy herds in northern Spain and the sources of minerals in different types of feed. Blood samples from organic and conventional dairy cattle and feed samples from the respective farms were analysed by inductively coupled plasma mass spectrometry to determine the concentrations of the essential trace elements (cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), iodine (I), manganese (Mn), molybdenum (Mo), nickel (Ni), selenium (Se) and zinc (Zn)) and toxic trace elements (arsenic (As), cadmium (Cd), mercury (Hg) and lead (Pb)). Overall, no differences between organic and conventional farms were detected in serum concentrations of essential and toxic trace elements (except for higher concentrations of Cd on the organic farms), although a high level of inter-farm variation was detected in the organic systems, indicating that organic production greatly depends on the specific local conditions. The dietary concentrations of the essential trace elements I, Cu, Se and Zn were significantly higher in the conventional than in the organic systems, which can be attributed to the high concentration of these minerals in the concentrate feed. No differences in the concentrations of trace minerals were found in the other types of feed. Multivariate chemometric analysis was conducted to determine the contribution of different feed sources to the trace element status of the cattle. Concentrate samples were mainly associated with Co, Cu, I, Se and Zn (i.e. with the elements supplemented in this type of feed). However, pasture and grass silage were associated with soil-derived elements (As, Cr, Fe and Pb) which cattle may thus ingest during grazing.
Metzler-Zebeli, B U; Caine, W R; McFall, M; Miller, B; Ward, T L; Kirkwood, R N; Mosenthin, R
2010-04-01
Sixty-four pigs from 16 sows were used to evaluate addition of zinc amino acid complex (ZnAA) to lactating sows and gastric nutriment-intubation of zinc methionine (ZnMet) to suckling pigs on mineral status, intestinal morphology and bacterial translocation after weaning. Sows were fed a barley-based diet supplying 120 ppm zinc (Zn; control) or the control diet supplemented with 240 ppm Zn from ZnAA. At birth, day-10 and day-21 (weaning) of age, pigs from each litter were nutriment-intubated with 5 ml of an electrolyte solution without or with 40 mg Zn from ZnMet. At weaning, 24 h prior to the collection of small and large intestinal lymph nodes and sections of the duodenum, jejunum and ileum, the pigs received an intramuscular injection of saline without or with 150 microg/kg body weight of Escherichia coli O26:B6 lipopolysaccharide (LPS). With the exception of a tendency (p = 0.09) for lower serum concentration of copper in pigs at weaning from ZnAA-supplemented sows, there were no differences (p > 0.1) than for pigs from control-fed sows for mineral status or intestinal morphology. Nutriment-intubation of ZnMet increased serum (p = 0.001) and liver (p = 0.003) Zn concentrations, number of goblet cells per 250 microm length of jejunal villous epithelium (p = 0.001) and tended (p = 0.06) to enhance jejunum mucosa thickness. Interactive effects (p < 0.05) for higher jejunal villi height and villi:crypt ratio and increased ileal goblet cell counts were apparent for pigs from ZnAA-supplemented sows that also received nutriment-intubation of ZnMet. Challenge with LPS increased (p = 0.05) ileal villous width. Nutriment-intubation of ZnMet decreased (p = 0.05) anaerobic bacteria colony forming unit counts in the large intestinal mesenteric lymph nodes. In conclusion, nutriment-intubation of ZnMet increased serum and liver tissue concentrations of Zn and resulted in limited improvement to intestinal morphology of weaned pigs.
Electrical instability of high-mobility zinc oxynitride thin-film transistors upon water exposure
NASA Astrophysics Data System (ADS)
Kim, Dae-Hwan; Jeong, Hwan-Seok; Kwon, Hyuck-In
2017-03-01
We investigate the effects of water absorption on the electrical performance and stability in high-mobility zinc oxynitride (ZnON) thin-film transistors (TFTs). The ZnON TFT exhibits a smaller field-effect mobility, lower turn-on voltage, and higher subthreshold slope with a deteriorated electrical stability under positive gate bias stresses after being exposed to water. From the Hall measurements, an increase of the electron concentration and a decrease of the Hall mobility are observed in the ZnON thin film after water absorption. The observed phenomena are mainly attributed to the water molecule-induced increase of the defective ZnXNY bond and the oxygen vacancy inside the ZnON thin film based on the x-ray photoelectron spectroscopy analysis.
Size effect of ZnO nanorods on physicochemical properties of plasticized starch composites.
Guz, L; Famá, L; Candal, R; Goyanes, S
2017-02-10
This work demonstrates that the size of ZnO nanorods (ZnONR) with similar aspect ratio determines several physicochemical and microbiological properties of thermoplastic starch composites (TPS/ZnONR) at a given concentration of ZnONRs. A combination of sol-gel and hydrothermal methods was developed to synthesize ZnONR with different sizes but similar aspect ratios. Starch composites containing 1wt.% of ZnONR were prepared by casting. Composites with smaller size nanorods (ZnONR-S) showed more efficiency in shielding UVA radiation and had a higher solubility and water vapor permeability than those with larger nanorods (ZnONR-L). Mechanical properties, biodegradability and antibacterial activity were also influenced by the size of the ZnONR. X-ray diffraction analysis showed that composites with ZnONR-S maintained the typical B-V type starch structure, intensifying the V-type starch structure peaks, while composite with ZnONR-L induced the formation of an amorphous structure, preventing starch retrogradation during storage. Properties affected by nanorods size are fundamental in determining composite applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
Magnetic studies of Co2+, Ni2+, and Zn2+-modified DNA double-crossover lattices
NASA Astrophysics Data System (ADS)
Dugasani, Sreekantha Reddy; Oh, Young Hoon; Gnapareddy, Bramaramba; Park, Tuson; Kang, Won Nam; Park, Sung Ha
2018-01-01
We fabricated divalent-metal-ion-modified DNA double-crossover (DX) lattices on a glass substrate and studied their magnetic characteristics as a function of ion concentrations [Co2+], [Ni2+] and [Zn2+]. Up to certain critical concentrations, the DNA DX lattices with ions revealed discrete S-shaped hysteresis, i.e. characteristics of strong ferromagnetism, with significant changes in the coercive field, remanent magnetization, and susceptibility. Induced magnetic dipoles formed by metal ions in DNA duplex in the presence of a magnetic field imparted ferromagnetic behaviour. By considering hysteresis and the magnitude of magnetization in a magnetization-magnetic field curve, Co2+-modified DNA DX lattices showed a relatively strong ferromagnetic nature with an increasing (decreasing) trend of coercive field and remanent magnetization when [Co2+] ≤ 1 mM ([Co2+] > 1 mM). In contrast, Ni2+ and Zn2+-modified DNA DX lattices exhibited strong and weak ferromagnetic behaviours at lower (≤1 mM for Ni2+ and ≤0.5 mM for Zn2+) and higher (>1 mM for Ni2+ and >0.5 mM for Zn2+) concentrations of ions, respectively. About 1 mM of [Co2+], [Ni2+] and [Zn2+] in DNA DX lattices was of special interest with regard to physical characteristics and was identified to be an optimum concentration of each ion. Finally, we measured the temperature-dependent magnetic characteristics of the metal-ion-modified DNA DX lattices. Nonzero magnetization and inverse susceptibility with almost constant values were observed between 25 and 300 K, with no indication of a magnetic transition. This indicated that the magnetic Curie temperatures of Co2+, Ni2+ and Zn2+-modified DNA DX lattices were above 300 K.
NASA Astrophysics Data System (ADS)
Herut, Barak; Kress, Nurit; Shefer, Edna; Hornung, Hava
1999-12-01
The trace element contamination levels in mollusks were evaluated for different marine coastal sites in the Mediterranean (Israeli coast), Red (Israeli coast) and North (German coast) Seas. Three bivalve species (Mactra corallina, Donax sp, and Mytilus edulis) and two gastropod species (Patella sp.and Cellana rota) were sampled at polluted and relatively clean sites, and their soft tissue analyzed for Hg, Cd, Zn, Cu, Mn and Fe concentrations. Representative samples were screened for organic contaminants [(DDE), polychlorinated biphenyls PCBs and polycyclic aromatic hydrocarbons (PAHs)] which exhibited very low concentrations at all sites. In the Red Sea, the gastropod C. rota showed low levels of Hg (below detection limit) and similar Cd concentrations at all the examined sites, while other trace elements (Cu, Zn, Mn, Fe) were slightly enriched at the northern beach stations. Along the Mediterranean coast of Israel, Hg and Zn were enriched in two bivalves (M. corallina and Donax sp.) from Haifa Bay, both species undergoing a long-term decrease in Hg based on previous studies. Significant Cd and Zn enrichment was detected in Patella sp. from the Kishon River estuary at the southern part of Haifa Bay. In general, Patella sp. and Donax sp. specimens from Haifa Bay exhibited higher levels of Cd compared to other sites along the Israeli Mediterranean coast, attributed to the enrichment of Cd in suspended particulate matter. Along the German coast (North Sea) M. edulis exhibited higher concentrations of Hg and Cd at the Elbe and Eider estuaries, but with levels below those found in polluted sites elsewhere.
Wu, Yaketon; Zhang, Huimin; Liu, Guihua; Zhang, Jianqing; Wang, Jizhong; Yu, Yingxin; Lu, Shaoyou
2016-02-01
This study aimed to investigate the levels of trace elements in animal-derived food in Shenzhen, Southern China. The concentrations of 14 trace elements (Cd, Hg, Pb, As, Cr, Cu, Fe, Zn, Mn, Mo, Ni, Co, Se and Ti) in a total of 220 meat samples, collected from the local markets of Shenzhen were determined. Cu, Fe and Zn were the major elements, with concentrations approximately 2-3 orders of magnitude higher than those of other elements. However, the daily intakes of Cu, Fe and Zn merely via the consumption of the meat products were lower than the recommended nutrient intake values provided by the 2013 Chinese Dietary Guide. Among the non-essential trace elements, Cd was accumulated in animal viscera, and the concentration ratios of chicken gizzard/chicken, chicken liver/chicken, pig kidney/pork and pig liver/pork were 41.6, 55.2, 863 and 177, respectively. In addition, high concentrations of As were found in aquatic products, especially in marine fish. The concentration of As in marine fish was slightly higher than the limits recommended by China, USA and Croatia. The health risk assessment of trace elements through the consumption of meat products by adult residents in Shenzhen was evaluated by using the target hazard quotient (THQ) method. The total THQ was greater than 1, implying a potential health risk. Approximately 66% of total THQ values, mainly from As, were from the consumption of aquatic products. Copyright © 2015 Elsevier Ltd. All rights reserved.
Miraloglu, Meral; Kurutas, Ergul Belge; Ozturk, Perihan; Arican, Ozer
2016-01-01
Tinea pedis (TP) is an infection of the feet caused by fungi. The infectious diseases caused by dermatophytes are mainly related to the enzymes produced by these fungi. Up to the now, the local 8-iso-prostaglandin F2α (8-iso-PGF2α), concentration as oxidative stress biomarker and trace elements status have not been published in patients with TP. The aim of this study is to evaluate the relationship between oxidative stress and trace elements (Cu, Zn, Se), and to evaluate the ratios of Cu/Zn and Cu/Se in this disorder. Forty-three consecutive patients with a diagnosis of unilateral interdigital TP were enrolled in this study. The samples were obtained by scraping the skin surface. 8-iso-PGF2α concentrations in scraping samples were determined by ELISA. In addition, the levels of Se, Zn and Cu in scraping samples were determined on flame and furnace atomic absorption spectrophotometer using Zeeman background correction. Oxidative stress was confirmed by the significant elevation in 8-iso-PGF2α concentrations (p < 0.05). When compared to non-lesional area, Zn and Se levels were significantly lower on lesional area, whereas Cu levels was higher on the lesional area than the non-lesional area (p < 0.05). In addition, the correlation results of this study were firstly shown that there were significant and positive correlations between Cu and 8-iso-PGF2α parameters, but negative correlations between Se-Cu; Se-8-iso-PGF2α parameters in lesional area. Furthermore, the ratios of Cu/Zn and Cu/Se were significantly higher on the lesional area than the non-lesional area (p < 0.05). According to sex and fungal subtypes, there was no significant difference in the concentrations of 8-iso-PGF2α and trace elements in patients with TP (p > 0.05). Our results showed that there is a possible link between oxidative stress (increased 8-iso-PGF2α concentrations) and imbalanced of trace elements status in lesional area of TP patients. The use of antifungal agents together with both Zn and Se drugs could be helpful in the both regression of disease and in shortening the duration of disease.
Wei, Xin; Gao, Bo; Wang, Peng; Zhou, Huaidong; Lu, Jin
2015-02-01
Street dusts from Heavy Density Traffic Area, Residential Area, Educational Area and Tourism Area in Beijing, China, were collected to study the distribution, accumulation and health risk assessment of heavy metals. Cr, Cu, Zn, Cd and Pb concentrations were in higher concentrations in these four locations than in the local soil background. In comparison with the concentrations of selected metals in other cities, the concentrations of heavy metals in Beijing were generally at moderate or low levels. Ni, Cu, Zn and Pb concentrations in the Tourism Area were the highest among four different areas in Beijing. A pollution assessment by Geoaccumulation Index showed that the pollution level for the heavy metals is in the following order: Cd>Pb>Zn>Cu>Cr>Ni. The Cd levels can be considered "heavily contaminated" status. The health risk assessment model that was employed to calculate human exposure indicated that both non-carcinogenic and carcinogenic risks of selected metals in street dusts were generally in the low range, except for the carcinogenic risk from Cr for children. Copyright © 2014 Elsevier Inc. All rights reserved.
Masiol, Mauro; Facca, Chiara; Visin, Flavia; Sfriso, Adriano; Pavoni, Bruno
2014-12-15
The elemental composition of surficial sediments of Venice Lagoon (Italy) in 1987, 1993, 1998 and 2003 were investigated. Zn and Cr concentrations resulted in higher than background levels, but only Cd and Hg were higher than legal quality standards (Italian Decree 2010/260 and Water Framework Directive 2000/60/EC). Contaminants with similar spatial distribution are sorted into three groups by means of correlation analysis: (i) As, Co, Cd, Cu, Fe, Pb, Zn; (ii) Ni, Cr; (iii) Hg. Interannual concentrations are compared by applying a factor analysis to the matrix of differences between subsequent samplings. A general decrease of heavy metal levels is observed from 1987 to 1993, whereas particularly high concentrations of Ni and Cr are recorded in 1998 as a consequence of intense clam fishing, subsequently mitigated by better prevention of illegal harvesting. Due to the major role played by anthropogenic sediment resuspension, bathymetric variations are also considered. Copyright © 2014 Elsevier Ltd. All rights reserved.
Trace metal bioavailability: Modeling chemical and biological interactions of sediment-bound zinc
Luoma, S. N.; Bryan, G.W.; Jenne, Everett A.
1979-01-01
Extractable concentrations of sediment-bound Zn, as modified by the physicochemical form of the metal in the sediments, controlled Zn concentrations in the deposit-feeding bivalvesScrobicularia plana (collected from 40 stations in 17 estuaries in southwest England) andMacoma balthica (from 28 stations in San Francisco Bay). Over a wide range of concentrations, a significant correlation was found between ammonium acetate-soluble concentrations of Zn in sediments and Zn concentrations in Scrobicularia. This correlation was insufficiently precise to be of predictive value for Scrobicularia, and did not hold for Macoma over the narrower range of Zn concentrations observed in San Francisco Bay. Strong correlation of Zn concentrations inScrobicularia and the bioavailability of sediment-bound Zn to Macoma with ratios of sorption substrate (oxides of iron and manganese, organic carbon, carbonates, humic materials) concentrations in sediments were found in both the English and San Francisco Bay study areas. These correlations were attributed to substrate competition for sorption of Zn within sediments, assuming: 1) competition for sorption of Zn was largely controlled by the relative concentrations of substrates present in the sediments and 2) the bioavailability of Zn to the deposit feeders was determined by the partitioning of Zn among the substrates. The correlations indicated that the availability of Zn to the bivalves increased when concentrations of either amorphous inorganic oxides or humic substances increased in sediments. Availability was reduced at increased concentrations of organic carbon and, in San Francisco Bay, ammonium acetate-soluble Mn. Concentrations of biologically available Zn in solution and low salinities may also have enhanced Zn uptake, although the roles of these variables were less obvious from the statistical analysis.
NASA Astrophysics Data System (ADS)
Craddock, P. R.; Tivey, M. K.; Seewald, J. S.; Rouxel, O.; Bach, W.
2007-12-01
Analyses of Fe, Mn, Cu, Zn, Pb, Ag, Cd, Co and Sb in vent fluid samples from four hydrothermal systems in the Manus back-arc basin, Papua New Guinea, were carried out by ICP-MS. Vienna Woods is located on the well- defined, basalt-dominated Manus Spreading Center, while the other systems are hosted in felsic volcanics on the Pual Ridge (PACMANUS), within a caldera (DESMOS), and on volcanic cones (SuSu Knolls). Metal concentrations were coupled with other fluid data (pH, SO4, Ca, H2S) to discriminate effects of deep- seated water-rock reaction and magmatic volatile input from near surface seawater entrainment, mixing, and consequent mineral precipitation and metal remobilization. Both magmatic volatile input (e.g. SO2, HCl, HF) and sulfide precipitation can increase fluid acidity and thus affect the aqueous mobility of metals. At Vienna Woods, 280°C end-member (Mg = 0) fluids have high pH (>4.2) and low metal contents (Fe <160 uM, Cu <10 uM, Zn <40 uM) relative to most mid-ocean ridge (MOR) vent fluids. The high pH and lack of evidence for magmatic volatile input are consistent with fluid compositions regulated by subsurface seawater- basalt/andesite reactions. Despite low aqueous Zn concentrations, Zn-rich (wurtzite-lined) chimneys are common at Vienna Woods active vents, reflecting deposition from fluids characterized by low Fe and Cu and high pH. At PACMANUS, black smoker fluids (T >300°C, pH ~ 2.7) are enriched in sulfide-forming metals by an order of magnitude relative to Vienna Woods fluids. Enrichments at PACMANUS reflect efficient leaching of metals at low pH, with the lower pH likely a result of input of magmatic volatiles. In addition, some vents fluids show clear evidence for seawater entrainment, subsurface precipitation of Cu-Fe-sulfides and preferential remobilization of Zn-sulfides (lower T, non-zero Mg, lower Fe, Cu, H2S and pH (2.3-2.4), but higher Zn, Pb, Cd and Ag, compared to black smokers). The higher metal concentrations and lower pH of fluids from PACMANUS versus Vienna Woods are reflected in chimney deposit compositions with Zn-poor sulfide linings composed of Cu-Fe-sulfides and As-Sb-sulfosalts in high T and lower T vents, respectively. At DESMOS caldera, fluid data suggest extensive magmatic volatile input (e.g. pH <1.5, elevated F and SO4) but lesser reaction with the basement felsic rocks (low Li, Rb, Mn). Sampled "acid-sulfate" fluids are low temperature (T ~180°C) with Mg >46 mM, and very high concentrations of some metals for these Mg concentrations (Fe >5 mM, Zn >50 - 400 uM). At SuSu Knolls, vent fluid compositions similar to those at both PACMANUS and DESMOS are observed. Smoker fluids have high but variable metal concentrations of similar magnitude to PACMANUS. Acid-sulfate fluids from North Su have low pH (<2), non-zero Mg (>40 mM), and high Fe and Zn concentrations, similar to DESMOS fluids. At SuSu Knolls, fluid compositions reflect either high temperature water-rock reaction (smoker fluids) or magmatic volatile input (acid-sulfate fluids). As at PACMANUS, chimney deposits that correspond to venting fluids are Cu-Fe-As-Sb-rich and Zn-poor, likely reflecting deposition from low pH, high Cu and Fe fluids.
O'Neill, A; Phillips, D H; Bowen, J; Sen Gupta, B
2015-04-15
A former silver mine in Tynagh, Co. Galway, Ireland is one of the most contaminated mine sites in Europe with maximum concentrations of Zn, As, Pb, Mn, Ni, Cu, and Cd far exceeding guideline values for water and sediment. The aims of this research were to 1) further assess the contamination, particularly metals, in surface water and sediment around the site, and 2) determine if the contamination has increased 10 years after the Environmental Protection Agency Ireland (EPAI) identified off-site contamination. Site pH is alkaline to neutral because CaCO3-rich sediment and rock material buffer the exposed acid generating sulphide-rich ore. When this study was compared to the previous EPAI study conducted 10 years earlier, it appeared that further weathering of exposed surface sediment had increased concentrations of As and other potentially toxic elements. Water samples from the tailings ponds and adjacent Barnacullia Stream had concentrations of Al, Cd, Mn, Zn and Pb above guideline values. Lead and Zn concentrations from the tailings pond sediment were 16 and 5 times higher, respectively, than concentrations reported 10 years earlier. Pb and Zn levels in most sediment samples exceeded the Expert Group (EGS) guidelines of 1000 and 5000 mg/kg, respectively. Arsenic concentrations were as high as 6238 mg/kg in the tailings ponds sediment, which is 62 and 862 times greater than the EGS and Canadian Soil Quality Guidelines (CSQG), respectively. Cadmium, Cu, Fe, Mn, Pb and Zn concentrations in water and sediment were above guideline values downstream of the site. Additionally, Fe, Mn and organic matter (OM) were strongly correlated and correlated to Zn, Pb, As, Cd, Cu and Ni in stream sediment. Therefore, the nearby Barnacullia Stream is also a significant pathway for contaminant transport to downstream areas. Further rehabilitation of the site may decrease the contamination around the area. Copyright © 2015 Elsevier B.V. All rights reserved.
Photodegradation of Acid Violet 7 with AgBr-ZnO under highly alkaline conditions.
Krishnakumar, B; Swaminathan, M
2012-12-01
The photocatalytic activity of AgBr-ZnO was investigated for the degradation of Acid Violet 7 (AV 7) in aqueous solution using UV-A light. AgBr-ZnO is found to be more efficient than commercial ZnO and prepared ZnO at pH 12 for the mineralization of AV 7. The effects of operational parameters such as the amount of photocatalyst, dye concentration, initial pH on photo mineralization have been analyzed. Expect oxone, other oxidants decrease the degradation efficiency. Addition of metal ions and anions decrease the degradation efficiency of AgBr-ZnO significantly. The mineralization of AV 7 has also been confirmed by COD measurements. The mechanism of degradation by AgBr-ZnO is proposed to explain its higher activity under UV light. The catalyst is found to be reusable. Copyright © 2012 Elsevier B.V. All rights reserved.
Dissolved and particulate trace metals in coastal waters of the Gulf and Western Arabian Sea
NASA Astrophysics Data System (ADS)
Fowler, S. W.; Huynh-Ngoc, L.; Fukai, R.
Concentrations of chemical species of selected heavy metals (Cu, Zn, Cd, Hg and Pb) were determined in surface waters from a series of coastal sites in Bahrain, United Arab Emirates (UAE) and the Sultanate of Oman. Analyses were carried out on bulk sea water samples as well as on suspended particulates by anodic stripping voltammetry. Heavy metal concentrations were relatively low with the exception of some "hot spots" which occurred in the vicinity of industrial and port activities. Average copper levels along the coast of UAE were generally higher than those measured in sea water from either Bahrain of Oman. Waters from the more populated and industrialised northwest coast of Oman were found to contain approximately 3 to 4-fold higher Cd and Zn (pH 4-4.5) concentrations than those from the southern coast, an undeveloped region adjacent to the more open waters of the Arabian Sea. Possible reasons for the observed regional variations in trace metal concentrations in Oman are discussed in terms of natural and anthropogenic input sources. Average concentrations in the Gulf (inside the Strait of Hormuz) were 510 ng 1 -1 (Cu), 340 ng 1 -1 (Zn), 20 ng 1 -1 (Cd), 16 ng 1 -1 (Hg) and 76 ng 1 -1 (Pb); in the western Arabian Sea along the coast of Oman concentrations averaged 290 ng 1 -1 (Cu), 180 ng 1 -1 (Zn), 37 ng 1 -1 (Cd), 11 ng 1 -1 (Hg) and 80 ng 1 -1 (Pb). Ranges of concentrations for these metals in Gulf and western Arabian Sea waters approach those which have been reported for open surface waters of the Atlantic, Pacific, Indian Oceans and the Mediterranean Sea indicating that, in general, the coastal waters of this region are not impacted by metal pollution and that the existing natural levels can be used as a point of reference for future pollutant studies.
Han, Ying; Kiat-amnuay, Sudarat; Powers, John M; Zhao, Yimin
2008-12-01
Contemporary silicone-based elastomeric prostheses tend to degrade over time because of the effect of mechanical loading. Little has been reported on how the mechanical properties of a maxillofacial prosthetic elastomer may be affected by the addition of nanosized oxide particles used as an opacifier. The purpose of this study was to evaluate the effect of different concentrations of nanosized oxides of various composition on the mechanical properties of a commercially available silicone elastomer. Nanosized oxides (Ti, Zn, or Ce) were added in various concentrations (0.5%, 1.0%, 1.5%, 2.0%, 2.5%, or 3.0% by weight) to a commercial silicone elastomer (A-2186), commonly used for fabricating extraoral maxillofacial prostheses. Silicone elastomer A-2186 without nanosized oxides served as a control group. Specimens (n=5) were polymerized according to manufacturer's recommendations and tested for tensile strength (ASTM D412) and tear strength (ASTM D624), and percent elongation in a universal testing machine. Uniformity of particle dispersion within the processed elastomer was assessed using scanning electron microscopic imaging. For each property, a 2-way ANOVA was performed evaluating the effect of oxide type and strength, and Fisher's PLSD test was used for pairwise comparisons (alpha=.05). SEM examination indicated that all 3 nanosized oxides distribute evenly throughout the silicone specimens, except for the 3.0% group, which are partly agglomerated. The 2.0% and 2.5% groups of all nanosized oxides demonstrated significantly higher tensile and tear strengths and percent elongation (P<.001) than the control group. CeO(2) had significantly lower tensile strength than TiO2 and ZnO (P<.05). The ZnO group had significantly higher tear strength than TiO(2) and CeO(2) (P <.05). Most of specimens became somewhat harder when compared with the control group. CeO(2) group had significantly higher Shore A hardness than TiO(2) and ZnO (P<.001). There was no significant difference of percent elongation among the type of nanosized oxides. Incorporation of Ti, Zn, or Ce nano-oxides at concentrations of 2.0% and 2.5% improved the overall mechanical properties of the silicone A-2186 maxillofacial elastomer.
Aiba, Isamu; Carlson, Andrew P.; Sheline, Christian T.
2012-01-01
Cortical spreading depression (CSD) is a consequence of a slowly propagating wave of neuronal and glial depolarization (spreading depolarization; SD). Massive release of glutamate contributes to SD propagation, and it was recently shown that Zn2+ is also released from synaptic vesicles during SD. The present study examined consequences of extracellular Zn2+ accumulation on the propagation of SD. SD mechanisms were studied first in murine brain slices, using focal KCl applications as stimuli and making electrical and optical recordings in hippocampal area CA1. Elevating extracellular Zn2+ concentrations with exogenous ZnCl2 reduced SD propagation rates. Selective chelation of endogenous Zn2+ (using TPEN or CaEDTA) increased SD propagation rates, and these effects appeared due to chelation of Zn2+ derived from synaptic vesicles. Thus, in tissues where synaptic Zn2+ release was absent [knockout (KO) of vesicular Zn2+ transporter ZnT-3], SD propagation rates were increased, and no additional increase was observed following chelation of endogenous Zn2+ in these tissues. The role of synaptic Zn2+ was then examined on CSD in vivo. ZnT-3 KO animals had higher susceptibility to CSD than wild-type controls as evidenced by significantly higher propagation rates and frequencies. Studies of candidate mechanisms excluded changes in neuronal excitability, presynaptic release, and GABA receptors but left open a possible contribution of N-methyl-d-aspartate (NMDA) receptor inhibition. These results suggest the extracellular accumulation of synaptically released Zn2+ can serve as an intrinsic inhibitor to limit SD events. The inhibitory action of extracellular Zn2+ on SD may counteract to some extent the neurotoxic effects of intracellular Zn2+ accumulation in acute brain injury models. PMID:22131381
Aiba, Isamu; Carlson, Andrew P; Sheline, Christian T; Shuttleworth, C William
2012-02-01
Cortical spreading depression (CSD) is a consequence of a slowly propagating wave of neuronal and glial depolarization (spreading depolarization; SD). Massive release of glutamate contributes to SD propagation, and it was recently shown that Zn(2+) is also released from synaptic vesicles during SD. The present study examined consequences of extracellular Zn(2+) accumulation on the propagation of SD. SD mechanisms were studied first in murine brain slices, using focal KCl applications as stimuli and making electrical and optical recordings in hippocampal area CA1. Elevating extracellular Zn(2+) concentrations with exogenous ZnCl(2) reduced SD propagation rates. Selective chelation of endogenous Zn(2+) (using TPEN or CaEDTA) increased SD propagation rates, and these effects appeared due to chelation of Zn(2+) derived from synaptic vesicles. Thus, in tissues where synaptic Zn(2+) release was absent [knockout (KO) of vesicular Zn(2+) transporter ZnT-3], SD propagation rates were increased, and no additional increase was observed following chelation of endogenous Zn(2+) in these tissues. The role of synaptic Zn(2+) was then examined on CSD in vivo. ZnT-3 KO animals had higher susceptibility to CSD than wild-type controls as evidenced by significantly higher propagation rates and frequencies. Studies of candidate mechanisms excluded changes in neuronal excitability, presynaptic release, and GABA receptors but left open a possible contribution of N-methyl-d-aspartate (NMDA) receptor inhibition. These results suggest the extracellular accumulation of synaptically released Zn(2+) can serve as an intrinsic inhibitor to limit SD events. The inhibitory action of extracellular Zn(2+) on SD may counteract to some extent the neurotoxic effects of intracellular Zn(2+) accumulation in acute brain injury models.
Qing, Xiao; Yutong, Zong; Shenggao, Lu
2015-10-01
The purpose of this study was to determine the concentrations and health risk of heavy metals in urban soils from a steel industrial district in China. A total of 115 topsoil samples from Anshan city, Liaoning, Northeast China were collected and analyzed for Cr, Cd, Pb, Zn, Cu, and Ni. The geoaccumulation index (Igeo), pollution index (PI), and potential ecological risk index (PER) were calculated to assess the pollution level in soils. The hazard index (HI) and carcinogenic risk (RI) were used to assess human health risk of heavy metals. The average concentration of Cr, Cd, Pb, Zn, Cu, and Ni were 69.9, 0.86, 45.1, 213, 52.3, and 33.5mg/kg, respectively. The Igeo and PI values of heavy metals were in the descending order of Cd>Zn>Cu>Pb>Ni>Cr. Higher Igeo value for Cd in soil indicated that Cd pollution was moderate. Pollution index indicated that urban soils were moderate to highly polluted by Cd, Zn, Cu, and Pb. The spatial distribution maps of heavy metals revealed that steel industrial district was the contamination hotspots. Principal component analysis (PCA) and matrix cluster analysis classified heavy metals into two groups, indicating common industrial sources for Cu, Zn, Pb, and Cd. Matrix cluster analysis classified the sampling sites into four groups. Sampling sites within steel industrial district showed much higher concentrations of heavy metals compared to the rest of sampling sites, indicating significant contamination introduced by steel industry on soils. The health risk assessment indicated that non-carcinogenic values were below the threshold values. The hazard index (HI) for children and adult has a descending order of Cr>Pb>Cd>Cu>Ni>Zn. Carcinogenic risks due to Cr, Cd, and Ni in urban soils were within acceptable range for adult. Carcinogenic risk value of Cr for children is slightly higher than the threshold value, indicating that children are facing slight threat of Cr. These results provide basic information of heavy metal pollution control and environment management in steel industrial regions. Copyright © 2015 Elsevier Inc. All rights reserved.
Maleki, Afshin; Safari, Mahdi; Shahmoradi, Behzad; Zandsalimi, Yahya; Daraei, Hiua; Gharibi, Fardin
2015-11-01
In this study, Cu-doped ZnO nanoparticles were investigated as an efficient synthesized catalyst for photodegradation of humic substances in aqueous solution under natural sunlight irradiation. Cu-doped ZnO nanocatalyst was prepared through mild hydrothermal method and was characterized using FT-IR, powder XRD and SEM techniques. The effect of operating parameters such as doping ratio, initial pH, catalyst dosage, initial concentrations of humic substances and sunlight illuminance were studied on humic substances degradation efficiency. The results of characterization analyses of samples confirmed the proper synthesis of Cu-doped ZnO nanocatalyst. The experimental results indicated the highest degradation efficiency of HS (99.2%) observed using 1.5% Cu-doped ZnO nanoparticles at reaction time of 120 min. Photocatalytic degradation efficiency of HS in a neutral and acidic pH was much higher than that at alkaline pH. Photocatalytic degradation of HS was enhanced with increasing the catalyst dosage and sunlight illuminance, while increasing the initial HS concentration led to decrease in the degradation efficiency of HS. Conclusively, Cu-doped ZnO nanoparticles can be used as a promising and efficient catalyst for degradation of HS under natural sunlight irradiation.
Wacewicz, Marta; Socha, Katarzyna; Soroczyńska, Jolanta; Niczyporuk, Marek; Aleksiejczuk, Piotr; Ostrowska, Jolanta; Borawska, Maria H
2018-03-01
Vitiligo is a chronic, depigmenting skin disorder, whose pathogenesis is still unknown. Narrow band ultraviolet-B (NB-UVB) is now one of the most widely used treatment of vitiligo. It was suggested that trace elements may play a role in pathogenesis of vitiligo. The aim of this study was to estimate the concentration of selenium (Se), zinc (Zn), copper (Cu) and Cu/Zn ratio as well as total antioxidant status (TAS) in the serum of patients with vitiligo. We assessed 50 patients with vitiligo and 58 healthy controls. Serum levels of Se, Zn and Cu were determined by the atomic absorption spectrometry method, and the Cu/Zn ratio was also calculated. TAS in serum was measured spectrophotometrically. Serum concentration of Se in patients with vitiligo before and after phototherapy was significantly lower as compared to the control group. Zn level in the serum of patients decreased significantly after phototherapy. We observed higher Cu/Zn ratio (p < .05) in examined patients than in the control group and after NB-UVB. We have found decrease in TAS in the serum of vitiligo patients after NB-UVB. The current study showed some disturbances in the serum levels of trace elements and total antioxidant status in vitiligo patients.
Sudrajat, Hanggara; Babel, Sandhya
2016-05-01
N-doped ZnO (N-ZnO) and N-doped ZrO2 (N-ZrO2) are synthesized by novel, simple thermal decomposition methods. The catalysts are evaluated for the degradation of rhodamine 6G (R6G) under visible and UV light. N-ZnO exhibits higher dye degradation under both visible and UV light compared to N-ZrO2 due to possessing higher specific surface area, lower crystalline size, and lower band gap. However, it is less reusable than N-ZrO2 and its photocatalytic activity is also deteriorated at low pH. At the same intensity of 3.5 W/m(2), UVC light is shown to be a better UV source for N-ZnO, while UVA light is more suitable for N-ZrO2. At pH 7 with initial dye concentration of 10 mg/L, catalyst concentration of 1 g/L, and UVC light, 94.3 % of R6G is degraded by N-ZnO within 2 h. Using UVA light under identical experimental conditions, 93.5 % degradation of R6G is obtained by N-ZrO2. Moreover, the type of light source is found to determine the reactive species produced in the R6G degradation by N-ZnO and N-ZrO2. Less oxidative reactive species such as superoxide radical and singlet oxygen play a major role in the degradation of R6G under visible light. On the contrary, highly oxidative hydroxyl radicals are predominant under UVC light. Based on the kinetic study, the adsorption of R6G on the catalyst surface is found to be the controlling step.
Li, Bo; Wang, Yanhong; Jiang, Yong; Li, Guochen; Cui, Jiehua; Wang, Ying; Zhang, Hong; Wang, Shicheng; Xu, Sheng; Wang, Ruzhen
2016-12-01
Mining and smelting activities engender soil contamination by metals severely. A field survey was conducted to investigate the present situation and health risk of heavy metals (Cd, Pb, Zn, Cu, Cr, As, and Hg) in soils and vegetables in the surrounding area of an 80-year-old zinc smelter in northeastern China. Soil pH, organic matter (SOM), and cation exchange capacity (CEC) were determined, and their relations with heavy metal contents in edible parts of vegetables were analyzed. Results showed that the smelting had led to the significant contamination of the local soils by Cd and Zn, with average concentrations of 3.88 and 403.89 mg kg -1 , respectively. Concentrations of Cd and Zn in greenhouse soils were much lower than those in open farmland soils. Cd concentrations in vegetable edible parts exceeded the permissible limits severely, while other metal concentrations were much lower than the corresponding standards. Leaf and root vegetables had higher concentrations and bioaccumulation factors (BCFs) of Cd than fruit vegetables. Hazard quotient and hazard index showed that cadmium is imposing a health risk to local residents via vegetable consumption. Cd uptake of some vegetables can be predicted by empirical models with the following parameters: soil pH, SOM, CEC, Zn concentrations, and Cd concentrations. Vegetables such as cabbage, Chinese cabbage, tomato, cucumber, and green bean were screened out as being suitable to grow in the studied area.
Competitive adsorption of Pb2+ and Zn2+ ions from aqueous solutions by modified coal fly ash
NASA Astrophysics Data System (ADS)
Astuti, Widi; Martiani, Wulan; Any Ismawati Khair, N.
2017-03-01
Coal fly ash (CFA), which is a solid waste generated in large amounts worldwide, is mainly composed of some oxides having high crystallinity, including quartz (SiO2) and mullite (3Al2O3 2SiO2), and unburned carbon as a mesopore material that enables it to act as a dual site adsorbent. To decrease the crystallinity, CFA was modified by sodium hydroxide treatment. The modified fly ash (MFA) contains lower amount of Si and Al and has a higher specific surface area than the untreated fly ash (CFA). The objective of this study is to investigate the competitive adsorption of Pb2+ and Zn2+ from aqueous solutions by CFA and MFA. The effect of pH, contact time and initial concentration was investigated. Effective pH for Pb2+ and Zn2+ removal was 4. A greater percentage of Pb2+ and Zn2+ was removed with a decrease in the initial concentration of Pb2+ and Zn2+. Quasi-equilibrium reached in 240 min.
NASA Astrophysics Data System (ADS)
Adib, Ahmad; Afzal, Peyman; Mirzaei Ilani, Shapour; Aliyari, Farhang
2017-10-01
The aim of this study is to determine a relationship between zinc mineralization and a major fault in the Behabad area, central Iran, using the Concentration-Distance to Major Fault (C-DMF), Area of Mineralized Zone-Distance to Major Fault (AMZ-DMF), and Concentration-Area (C-A) fractal models for Zn deposit/mine classification according to their distance from the Behabad fault. Application of the C-DMF and the AMZ-DMF models for Zn mineralization classification in the Behabad fault zone reveals that the main Zn deposits have a good correlation with the major fault in the area. The distance from the known zinc deposits/mines with Zn values higher than 29% and the area of the mineralized zone of more than 900 m2 to the major fault is lower than 1 km, which shows a positive correlation between Zn mineralization and the structural zone. As a result, the AMZ-DMF and C-DMF fractal models can be utilized for the delineation and the recognition of different mineralized zones in different types of magmatic and hydrothermal deposits.
Layered Double Hydroxides: Potential Release-on-Demand Fertilizers for Plant Zinc Nutrition.
López-Rayo, Sandra; Imran, Ahmad; Bruun Hansen, Hans Chr; Schjoerring, Jan K; Magid, Jakob
2017-10-11
A novel zinc (Zn) fertilizer concept based on Zn-doped layered double hydroxides (Zn-doped Mg-Fe-LDHs) has been investigated. Zn-doped Mg-Fe-LDHs were synthesized, their chemical composition was analyzed, and their nutrient release was studied in buffered solutions with different pH values. Uptake of Zn by barley (Hordeum vulgare cv. Antonia) was evaluated in short- (8 weeks), medium- (11 weeks), and long-term (28 weeks) experiments in quartz sand and in a calcareous soil enriched with Zn-doped Mg-Fe-LDHs. The Zn release rate of the Zn-doped Mg-Fe-LDHs was described by a first-order kinetics equation showing maximum release at pH 5.2, reaching approximately 45% of the total Zn content. The Zn concentrations in the plants receiving the LDHs were between 2- and 9.5-fold higher than those in plants without Zn addition. A positive effect of the LDHs was also found in soil. This work documents the long-term Zn release capacity of LDHs complying with a release-on-demand behavior and serves as proof-of-concept that Zn-doped Mg-Fe-LDHs can be used as Zn fertilizers.
Kendziorek, Maria; Klimecka, Maria; Barabasz, Anna; Borg, Sören; Rudzka, Justyna; Szczęsny, Paweł; Antosiewicz, Danuta Maria
2016-08-12
To increase the Zn level in shoots, AtHMA4 was ectopically expressed in tomato under the constitutive CaMV 35S promoter. However, the Zn concentration in the shoots of transgenic plants failed to increase at all tested Zn levels in the medium. Modification of Zn root/shoot distribution in tomato expressing 35S::AtHMA4 depended on the concentration of Zn in the medium, thus indicating involvement of unknown endogenous metal-homeostasis mechanisms. To determine these mechanisms, those metal-homeostasis genes that were expressed differently in transgenic and wild-type plants were identified by microarray and RT-qPCR analysis using laser-assisted microdissected RNA isolated from two root sectors: (epidermis + cortex and stele), and leaf sectors (upper epidermis + palisade parenchyma and lower epidermis + spongy parenchyma). Zn-supply-dependent modification of Zn root/shoot distribution in AtHMA4-tomato (increase at 5 μM Zn, no change at 0.5 μM Zn) involved tissue-specific, distinct from that in the wild type, expression of tomato endogenous genes. First, it is suggested that an ethylene-dependent pathway underlies the detected changes in Zn root/shoot partitioning, as it was induced in transgenic plants in a distinct way depending on Zn exposure. Upon exposure to 5 or 0.5 μM Zn, in the epidermis + cortex of the transgenics' roots the expression of the Strategy I Fe-uptake system (ethylene-dependent LeIRT1 and LeFER) was respectively lower or higher than in the wild type and was accompanied by respectively lower or higher expression of the identified ethylene genes (LeNR, LeACO4, LeACO5) and of LeChln. Second, the contribution of LeNRAMP2 expression in the stele is shown to be distinct for wild-type and transgenic plants at both Zn exposures. Ethylene was also suggested as an important factor in a pathway induced in the leaves of transgenic plants by high Zn in the apoplast, which results in the initiation of loading of the excess Zn into the mesophyll of "Zn accumulating cells". In transgenic tomato plants, the export activity of ectopically expressed AtHMA4 changes the cellular Zn status, which induces coordinated tissue-specific responses of endogenous ethylene-related genes and metal transporters. These changes constitute an important mechanism involved in the generation of the metal-related phenotype of transgenic tomato expressing AtHMA4.
Niyogi, Som; Blewett, Tamzin A; Gallagher, Trevor; Fehsenfeld, Sandra; Wood, Chris M
2016-09-01
Waterborne zinc (Zn) is known to cause toxicity to freshwater animals primarily by disrupting calcium (Ca) homeostasis during acute exposure, but its effects in marine and estuarine animals are not well characterized. The present study investigated the effects of salinity on short-term Zn accumulation and sub-lethal toxicity in the euryhaline green shore crab, Carcinus maenas. The kinetic and pharmacological properties of short-term branchial Zn uptake were also examined. Green crabs (n=10) were exposed to control (no added Zn) and 50μM (3.25mgL(-1)) of waterborne Zn (∼25% of 96h LC50 in 100 seawater) for 96h at 3 different salinity regimes (100%, 60% and 20% seawater). Exposure to waterborne Zn increased tissue-specific Zn accumulation across different salinities. However, the maximum accumulation occurred in 20% seawater and no difference was recorded between 60% and 100% seawater. Gills appeared to be the primary site of Zn accumulation, since the accumulation was significantly higher in the gills relative to the hepatopancreas, haemolymph and muscle. Waterborne Zn exposure induced a slight increase in haemolymph osmolality and chloride levels irrespective of salinity. In contrast, Zn exposure elicited marked increases in both haemolymph and gill Ca levels, and these changes were more pronounced in 20% seawater relative to that in 60% or 100% seawater. An in vitro gill perfusion technique was used to examine the characteristics of short-term (1-4h) branchial Zn uptake over an exposure concentration range of 3-12μM (200-800μgL(-1)). The rate of short-term branchial Zn uptake did not change significantly after 2h, and no difference was recorded in the rate of uptake between the anterior (respiratory) and posterior (ion transporting) gills. The in vitro branchial Zn uptake occurred in a concentration-dependent manner across different salinities. However, the rate of uptake was consistently higher in 20% seawater relative to 60% or 100% seawater - similar to the trend observed with tissue Zn accumulation during in vivo exposure. The short-term branchial Zn uptake was found to be inhibited by lanthanum (a blocker of voltage-independent Ca channels), suggesting that branchial Zn uptake occurs via the Ca transporting pathways, at least in part. Overall, our findings indicate that acute exposure to waterborne Zn leads to the disruption of Zn and Ca homeostasis in green crab, and these effects are exacerbated at the lower salinity. Copyright © 2016 Elsevier B.V. All rights reserved.
Basunia, S; Landsberger, S
2001-10-01
Pantex firing range soil samples were analyzed for Pb, Cu, Sb, Zn, and As. One hundred ninety-seven samples were collected from the firing range and vicinity area. There was a lack of knowledge about the distribution of Pb in the firing range, so a random sampling with proportional allocation was chosen. Concentration levels of Pb and Cu in the firing range were found to be in the range of 11-4675 and 13-359 mg/kg, respectively. Concentration levels of Sb were found to be in the range of 1-517 mg/kg. However, the Zn and As concentration levels were close to average soil background levels. The Sn concentration level was expected to be higher in the Pantex firing range soil samples. However, it was found to be below the neutron activation analysis (NAA) detection limit of 75 mg/kg. Enrichment factor analysis showed that Pb and Sb were highly enriched in the firing range with average magnitudes of 55 and 90, respectively. Cu was enriched approximately 6 times more than the usual soil concentration levels. Toxicity characteristic leaching procedure (TCLP) was carried out on size-fractionated homogeneous soil samples. The concentration levels of Pb in leachates were found to be approximately 12 times higher than the U.S. Environmental Protection Agency (EPA) regulatory concentration level of 5 mg/L. Sequential extraction (SE) was also performed to characterize Pb and other trace elements into five different fractions. The highest Pb fraction was found with organic matter in the soil.
Cryoprotective role of organic Zn and Cu supplementation in goats (Capra hircus) diet.
Arangasamy, Arunachalam; Krishnaiah, Mayasula Venkata; Manohar, Narasimhaiah; Selvaraju, Sellappan; Rani, Guvvala Pushpa; Soren, Nira Manik; Reddy, Ippala Janardhan; Ravindra, Janivara Parameshwaraiah
2018-04-01
The current study focused on cryopreservation and assessment of characters of post-thaw semen of indigenous Osmanabadi bucks maintained with standard diet, supplemented with different concentrations of organic zinc (Zn), copper (Cu) or in combination, for a period of 180 days. The different doses of organic Zn and Cu were fed per kg DM basis, Zn groups (low: Zn20, medium: Zn40 and high: Zn60), Cu groups: (low: Cu12.5, medium: Cu25 and high: Cu37.5) and combination of Zn + Cu groups (low: Zn20 + Cu12.5, medium: Zn40 + Cu25 and high: Zn60 + Cu37.5) respectively. The control group bucks were maintained mainly on the basal diet without any additional mineral supplementation. Two hundred and forty (240) semen samples were collected from 40 bucks aged 11 months, through electro ejaculator method, processed and analysed for sperm quality parameters both at pre freeze and post-thaw stage. The semen samples were diluted in Tris egg yolk extender, cooled and equilibrated for 4 h at 5 °C, cryopreserved using programmable freezer (PLANER Kryo 360-1.7) and stored at -196 °C. The organic trace minerals (Zn, Cu and Zn + Cu) protected the spermatozoa against the cryoinjury and maintained higher post-thaw semen parameters except in high Zn group. Additional feeding of organic Cu and Zn to bucks had a protective role and resulted in higher sperm liveability, plasma membrane and acrosome integrities, motility and velocity and reduced oxidative stress in supplemented goats (P < 0.05). Copyright © 2018 Elsevier Inc. All rights reserved.
Dolci, Natiely Natalyane; Sá, Fabian; da Costa Machado, Eunice; Krul, Ricardo; Rodrigues Neto, Renato
2017-09-10
Levels of trace elements were investigated in feathers of 51 adults and 47 eggshells of brown boobies Sula leucogaster from one bird colony in the Marine National Park of Currais Islands, Brazil, between December 2013 and October 2014. Average concentrations (μg g -1 , dry weight) in feathers and eggshells, respectively, were Al 50.62-9.58, As 0.35-2.37, Cd 0.05-0.03, Co 0.38-2.1, Cu 15.12-0.99, Fe 47.47-22.92, Mg 815.71-1116.92, Ni 0.29-11.85, and Zn 94.16-1.98. In both arrays, the average concentration of Mg was the highest among all the elements analyzed, while the lowest was recorded for Cd. As and Ni presented levels at which biological impacts might occur. Zn concentrations were higher than those considered normal in other organs. Levels of Al, Fe, Cu, Zn, and Cd were higher in feathers, whereas higher contents of Mg, Co, Ni, and As occurred in eggshells. The comparison between the elements in eggshells collected at different seasons showed no significant difference (p > 0.05) due, probably, to the lack of temporal variation on foraging behavior and/or on bioavailability of trace elements. Metals and arsenic in feathers and eggshells were mostly not correlated. Future studies on Paraná coast should focus on the speciation of the elements, especially As, Ni, and Zn, which proved to be a possible problem for the environment and biota. It is necessary to investigate both matrices, shell and internal contents of the eggs, in order to verify if the differences previously reported in other studies also occur in eggs of brown boobies in the Marine National Park of Currais Islands.
A Detailed Analysis of Aerosols Containing Zn, Pb, and Cl from an Industrial Region of Mexico City
NASA Astrophysics Data System (ADS)
Moffet, R. C.; Desyaterik, Y.; Hopkins, R. J.; Tivanski, A. V.; Gilles, M. K.; Shutthanandan, V.; Molina, L. T.; Gonzalez-Abraham, R.; Johnson, K. S.; Mugica, V.; Molina, M. J.; Laskin, A.; Prather, K. A.
2008-12-01
Measurements in the Northern Mexico City Metropolitan Area during the March, 2006 MILAGRO campaign revealed the frequent appearance of particles with a characteristically high content of internally mixed Zn, Pb, Cl, and P. A detailed analysis of the chemical and physical properties of these particles was performed using a complementary combination of aerosol measurement techniques. Single particles were analyzed using Aerosol Time-of-Flight Mass Spectrometry (ATOFMS) and Computer Controlled Scanning Electron Microscopy/Energy Dispersive X-Ray spectroscopy (CCSEM/EDX). Proton Induced X-Ray Emission (PIXE) analysis of bulk aerosol samples provided time-resolved mass concentrations of individual elements. The PIXE measurements indicated that Zn is more strongly correlated with Cl than with any other element and that Zn concentrations are higher than other non-ferrous transition metals. The Zn- and Pb - containing particles have both spherical and non-spherical morphologies. Many metal rich particles had needle-like structures and were found to be composed of ZnO and/or Zn(NO3)2-6H2O as indicated by scanning transmission x-ray microscopy/near edge X-ray absorption spectroscopy (STXM/NEXAFS). The Zn and Pb rich particles were primarily in the submicron size range and internally mixed with elemental carbon. The unique chemical associations most closely match signatures acquired for garbage incineration.
An experimental study of Pb and Zn as a function of HCl at 300 and 500°C
NASA Astrophysics Data System (ADS)
Rock, M.; Frank, M. R.
2017-12-01
Hydrothermal galena (PbS) and sphalerite (ZnS) deposits are important sources of Pb and Zn and can be related to low-temperature Mississippi Valley (MVT), moderate temperature massive sulfides (VMS), and higher-temperature porphyry type deposits). Lead and Zn are thought to complex with chloride (PbCl2 and ZnCl2) in the hydrothermal fluid and can precipitate through a decrease in temperature, an increase in pH, or through the addition of reduce sulfur. There is, however, a dearth of data on the solubility of galena and sphalerite in acidic and sulfur-rich hydrothermal fluids over a range temperature that spans the MVT to porphyry systems The experiments were conducted in René 41 cold-seal pressure vessels at 300 and 500°C and 100 MPa to determine the concentrations of Pb and Zn in hydrothermal fluids as a function of HCl. Platinum capsules were loaded with natural galena and sphalerite and an aqueous fluid of 13-15 wt.% NaCl (eq.) containing HCl + NaCl. The [Na/H] of the aqueous fluid was varied from 1.75 to 340. The aqueous fluids were captured at the conclusion of the experiment and Pb and Zn concentrations were determined by using AA and ICP-OES. The data illustrate that the concentration of Pb and Zn in the fluid increased directly with temperature and total chloride while indirectly with [Na/H]. Lead and Zn concentrations at 300°C were highest at a [Na/H] of 1.75 with concentrations of 84 μg/g and 2200 ± 600 μg/g, respectively, and decreased to 4 μg/g and 241 μg/g, respectively, at a [Na/H] of 295. At 500°C, lead concentrations were 7600 ± 1600 μg/g at a [Na/H] of 1.75 and decreased to 1170 μg/g at a [Na/H] of 340. Zinc concentrations at 500°C were 1700 μg/g at a [Na/H] of 30 and 640 μg/g at a [Na/H] of 100. Decreasing acidity (increasing [Na/H]) and temperature are especially efficient at inducing the precipitation of galena and sphalerite and could produce variable Pb:Zn values in a given system depending on if temperature or acidity was more variable. Thus, galena and sphalerite can precipitate from a reduced sulfur-bearing fluid provided the acidity of the fluid was sufficiently high during transportation. Further, the variable Pb:Zn ratios observed in some ore-bearing systems could be a result of differences in the rate of change of temperature, acidity, and reduced sulfur and not from separate pulses of distinct mineralizing fluids.
CdS/ZnS nanocomposites: from mechanochemical synthesis to cytotoxicity issues.
Baláž, Peter; Baláž, Matej; Dutková, Erika; Zorkovská, Anna; Kováč, Jaroslav; Hronec, Pavol; Kováč, Jaroslav; Čaplovičová, Mária; Mojžiš, Ján; Mojžišová, Gabriela; Eliyas, Alexander; Kostova, Nina G
2016-01-01
CdS/ZnS nanocomposites have been prepared by a two-step solid-state mechanochemical synthesis. CdS has been prepared from cadmium acetate and sodium sulfide precursors in the first step. The obtained cubic CdS (hawleyite, JCPDS 00-010-0454) was then mixed in the second step with the cubic ZnS (sphalerite, JCPDS 00-005-0566) synthesized mechanochemically from the analogous precursors. The crystallite sizes of the new type CdS/ZnS nanocomposite, calculated based on the XRD data, were 3-4 nm for both phases. The synthesized nanoparticles have been further characterized by high-resolution transmission electron microscopy (HRTEM) and micro-photoluminescence (μPL) spectroscopy. The PL emission peaks in the PL spectra are attributed to the recombination of holes/electrons in the nanocomposites occurring in depth associated with Cd, Zn vacancies and S interstitials. Their photocatalytic activity was also measured. In the photocatalytic activity tests to decolorize Methyl Orange dye aqueous solution, the process is faster and its effectivity is higher when using CdS/ZnS nanocomposite, compared to single phase CdS. Very low cytotoxic activity (high viability) of the cancer cell lines (selected as models of living cells) has been evidenced for CdS/ZnS in comparison with CdS alone. This fact is in a close relationship with Cd(II) ions dissolution tested in a physiological solution. The concentration of cadmium dissolved from CdS/ZnS nanocomposites with variable Cd:Zn ratio was 2.5-5.0 μg.mL(-1), whereas the concentration for pure CdS was much higher - 53 μg.ml(-1). The presence of ZnS in the nanocrystalline composite strongly reduced the release of cadmium into the physiological solution, which simulated the environment in the human body. The obtained CdS/ZnS quantum dots can serve as labeling media and co-agents in future anti-cancer drugs, because of their potential in theranostic applications. Copyright © 2015 Elsevier B.V. All rights reserved.
Factors affecting adsorption characteristics of Zn2+ on two natural zeolites.
Oren, Ali Hakan; Kaya, Abidin
2006-04-17
Mining-related and industrial wastes are primary sources of heavy metal contamination in soils and groundwater. The limitation of such waste in drinking water needs to meet government requirements in order to safeguard human health and environment. Zinc, one of the most preponderant pollutants, is difficult to remove from wastewater rather than other heavy metals (i.e. lead, copper and cadmium). This paper investigates Zn2+ adsorption characteristics of two natural zeolites found in the regions of Gordes and Bigadic, in western Turkey. The results show that the Zn2+ adsorption behavior of both zeolites is highly dependent on the pH. Adsorption dependence on lower pH values (pH<4) is explained by the dissolution of crystal structure and the competition of the zinc ions with the H+. Between pH 4 and 6, the basic mechanism is the ion exchange process. The results also showed that decrease in grain size does not increase the adsorption capacity of zeolite from Gordes, yet it increases that of zeolite from Bigadic about 23%. The results also reveal that an increase in the initial concentration of Zn2+ in the system causes an increase in the adsorption capacity to a degree, then it becomes more constant at higher concentrations. With this, the removal efficiency of Gordes zeolite is two times higher than that of Bigadic zeolite. Results show that an increase in slurry concentration results in a lower uptake of Zn2+. In the final part of the paper, we compared the experimental data with the Langmuir and Freundlich isotherms. The results show that there is a good fit between the experimental data and empirical isotherms.
P-Type Transparent Cu-Alloyed ZnS Deposited at Room Temperature
Woods-Robinson, Rachel; Cooper, Jason K.; Xu, Xiaojie; ...
2016-03-16
All transparent conducting materials (TCMs) of technological practicality are n-type; the inferior conductivity of p-type TCMs has limited their adoption. Additionally, many relatively high-performing p-type TCMs require synthesis temperatures > 400 °C. Here, room-temperature pulsed laser deposition of copper-alloyed zinc sulfide (Cu x Zn 1- x S) thin films (0 ≤ x ≤ 0.75) is reported. For 0.09 ≤ x ≤ 0.35, Cu x Zn 1- x S has high p-type conductivity, up to 42 S cm -1 at x = 0.30, with an optical band gap tunable from ≈3.0–3.3 eV and transparency, averaged over the visible, of 50%–71% formore » 200–250 nm thick films. In this range, synchrotron X-ray and electron diffraction reveal a nanocrystalline ZnS structure. Secondary crystalline Cu y S phases are not observed, and at higher Cu concentrations, x > 0.45, films are amorphous and poorly conducting. Furthermore, within the TCM regime, the conductivity is temperature independent, indicating degenerate hole conduction. A decrease in lattice parameter with Cu content suggests that the hole conduction is due to substitutional incorporation of Cu onto Zn sites. This hole-conducting phase is embedded in a less conducting amorphous Cu y S, which dominates at higher Cu concentrations. Finally, the combination of high hole conductivity and optical transparency for the peak conductivity Cu x Zn 1- x S films is among the best reported to date for a room temperature deposited p-type TCM.« less
NASA Astrophysics Data System (ADS)
Venkatesh, Davuluri; Ramesh, K. V.
2017-09-01
Nanocrystalline lithium substituted Ni-Zn ferrites with composition Ni0.5Zn0.5-xLixFe2O4 (x = 0.00-0.25 in steps of 0.05) were synthesized by the citrate gel auto-combustion method and were sintered at 1000∘C for 4 h in air atmosphere. The structural, dielectric, impedance spectroscopic and magnetic properties were studied by using X-ray diffraction, impedance analyzer and vibrating sample magnetometer respectively. The X-ray diffraction patterns confirm that all samples exhibit a single phase cubic spinel structure. Suitable cation distribution for all compositions has been proposed by using the X-ray diffraction line intensity calculations and the theoretical lattice parameter for each composition was observed in close agreement with the experimental ones and thereby supporting the proposed distribution. An increase in the saturation magnetization was observed up to x = 0.10 level of Li+ substitution and thereafter magnetization reduced for higher concentrations to the highest level of Li+ substitution. The dielectric constant and the DC resistivity of Ni-Zn-Li ferrites were noticed to decrease with increase in the Li+ ion concentration. The impedance spectroscopic studies by using the Cole-Cole plots were studied in order to obtain the relaxation time, grain resistance and grain capacitance. AC conductivity initially remained almost independent of frequency for lower frequencies and thereafter for higher frequencies the AC conductivity increased with increase of Lithium concentration.
Isimekhai, Khadijah A; Garelick, Hemda; Watt, John; Purchase, Diane
2017-07-01
Informal E-waste recycling can pose a risk to human health and the environment which this study endeavours to evaluate. The distribution of a number of heavy metals in soil from an informal recycling site in the largest market for used and new electronics and electrical equipment in West Africa was investigated. The potential bioavailability of heavy metals, extent of contamination, potential risk due to the recycling activities and impact of external factors such as rainfall were also assessed. The concentrations of all the heavy metals tested were higher in the area where burning of the waste occurred than at the control site, suggesting an impact of the recycling activities on the soil. The order of total metal concentrations was Cu > Pb > Zn > Mn > Ni > Sb > Cr > Cd for both the dry and wet seasons. The total concentrations of Cd, Cu, Mn, Ni and Zn were all significantly higher (p < 0.001) in the dry season than in the wet season. The concentrations of Cu (329-7106 mg kg -1 ), Pb (115-9623 mg kg -1 ) and Zn (508-8178 mg kg -1 ) were consistently higher than international soil guideline values. Using a sequential extraction method, the potential bioavailability of the heavy metals was indicated as Cd > Sb > Zn > Cu > Ni > Pb > Cr. When the risk was assessed using the Potential Ecological Risk Index (PERI), Cu was found to contribute the most to the potential ecological risk and Cd gave rise to the greatest concern due to its high toxic-response factor within the study site. Similarly, utilising the Risk Assessment Code (RAC) suggested that Cd posed the most risk in this site. This research establishes a high level of contamination in the study site and underscores the importance of applying the appropriate chemical speciation in risk assessment.
Haris, Hazzeman; Looi, Ley Juen; Aris, Ahmad Zaharin; Mokhtar, Nor Farhanna; Ayob, Nur Ain Ayunie; Yusoff, Fatimah Md; Salleh, Abu Bakar; Praveena, Sarva Mangala
2017-12-01
The aim of the present study was to appraise the levels of heavy metal contamination (Zn and Pb) in sediment of the Langat River (Selangor, Malaysia). Samples were collected randomly from 15 sampling stations located along the Langat River. The parameters measured were pH, redox potential, salinity, electrical conductivity, loss of ignition, cation exchanges capacity (Na, Mg, Ca, K), and metal ions (Zn and Pb). The geo-accumulation index (I geo ) and contamination factor (C f ) were applied to determine and classify the magnitude of heavy metal pollution in this urban river sediment. Results revealed that the I geo of Pb indicated unpolluted to moderately polluted sediment at most of the sampling stations, whereas Zn was considered to be within background concentration. The I geo results were refined by the C f values, which showed Pb with very high C f at 12 stations. Zinc, on the other hand, had low to moderate C f values. These findings indicated that the sediment of the Langat River is severely polluted with Pb. The Zn concentration at most sampling points was well below most sediment quality guidelines. However, 40% of the sampling points were found to have a Pb concentration higher than the consensus-based probable effect concentration of 128 mg/kg (concentrations above this value are likely to cause harmful effects). This result not only highlights the severity of Pb pollution in the sediment of the Langat River, but also the potential risk it poses to the environment.
Karlsson, Kristin; Viklander, Maria; Scholes, Lian; Revitt, Mike
2010-06-15
Sedimentation is a widely used technique in structural best management practices to remove pollutants from stormwater. However, concerns have been expressed about the environmental impacts that may be exerted by the trapped pollutants. This study has concentrated on stormwater ponds and sedimentation tanks and reports on the accumulated metal concentrations (Cd, Cr, Ni, Pb, and Zn) and the associated toxicity to the bacteria Vibrio fischeri. The metal concentrations are compared with guidelines and the toxicity results are assessed in relation to samples for which metal concentrations either exceed or conform to these values. The water phase metal concentrations were highest in the ponds whereas the sedimentation tanks exhibited a distinct decrease towards the outlet. However, none of the water samples demonstrated toxicity even though the concentrations of Cu, Pb, and Zn exceeded the threshold values for the compared guidelines. The facilities with higher traffic intensities had elevated sediment concentrations of Cr, Cu, Ni, and Zn which increased towards the outlet for the sedimentation tanks in agreement with the highest percentage of fine particles. The sediments in both treatment facilities exhibited the expected toxic responses in line with their affinity for heavy metals but the role of organic carbon content is highlighted. Copyright 2010 Elsevier B.V. All rights reserved.
Aydin-Onen, S; Kucuksezgin, F; Kocak, F; Açik, S
2015-06-01
In the present study, the bioaccumulation of six heavy metals (Cd, Cr, Cu, Hg, Pb, and Zn) in Hediste (Nereis) diversicolor (O.F. Müller, 1776) and also in the muscle and liver of Mugil cephalus (Linnaeus, 1758) collected from seven stations in the Bafa Lake was investigated. Sediment samples were also collected in each site to assess heavy metal levels and to provide additional information on pollution of the lake. The mean concentrations of heavy metals in sediment, H. diversicolor, and muscle and liver of the fish were found to be in the magnitude of Cr>Pb>Zn>Cu>Cd>Hg, Zn>Cu>Cr>Pb>Hg>Cd, Zn>Cu>Pb>Cr >Hg>Cd, and Cu>Zn>Cr>Cd>Pb>Hg, respectively. Hg, Cu, and Zn in H. diversicolor and Hg and Zn in muscle and also Hg, Cd, Cu, and Zn in liver of fish accumulated in a higher degree than in sediment. There was no clear relationship between metal concentrations in sediments, polychaetes, and fish, except Cr. According to international criteria and Turkish regulations, Pb and Zn values in edible muscle of the fish collected from stations S6 and S5 exceeded the food safety limits, respectively. The results of this study suggest that these sentinel species can be considered as good anthropogenic biological indicators for heavy metal pollution along the Bafa Lake.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolkas, M.M.; Nehru, C.E.
1995-09-01
Water logged abandoned mines have an impact on the environment. In this project we selected abandoned mines from two sets of different ore bodies to learn about their environmental impact. Franklin and Sterling Pb-Zn mines, NJ and the limestone quarry in Rondout formation, NY were selected as case study examples. In the Pb-Zn mines metalimestone is the country rock and in the Rondout quarry limestone is the country rock. Soil water samples from selected strategic locations were analyzed for toxic and related heavy metal elements such as Pb, Zn, Cd, Cr and U. The levels of concentrations of these elementsmore » varied from one location to another according to the chemistry of the ore body and the ground movement throughout the area. In particular Cd, Cr and U concentration were variable from Franklin to Sterling mine. However, in the Rondout limestone (cement) quarry, higher concentrations of Cr and lower concentrations of Pb and Zn were noted. We conclude that ore body chemistry, mine dumps and tailing contaminated ponds along with the ground water movement throughout the area have an impact on the ground water and nearby river/stream contaminant chemistry in the areas.« less
Summers, Brooke L; Rofe, Allan M; Coyle, Peter
2009-04-01
We have previously demonstrated that ethanol teratogenicity is associated with metallothionein-induced fetal zinc (Zn) deficiency, and that maternal subcutaneous Zn treatment given with ethanol in early pregnancy prevents fetal abnormalities and spatial memory impairments in mice. Here we investigated whether dietary Zn supplementation throughout pregnancy can also prevent ethanol-related dysmorphology. Pregnant mice were injected with saline or 25% ethanol (0.015 ml/g intraperitoneally at 0 and 4 hours) on gestational day (GD) 8 and fed either a control (35 mg Zn/kg) or a Zn-supplemented diet (200 mg Zn/kg) from GD 0 to 18. Fetuses from the saline, saline + Zn, ethanol and ethanol + Zn groups were assessed for external birth abnormalities on GD 18. In a separate cohort of mice, postnatal growth and survival of offspring from these treatment groups were examined from birth until postnatal day 60. Fetuses from dams treated with ethanol alone in early pregnancy had a significantly greater incidence of physical abnormalities (26%) compared to those from the saline (10%), saline + Zn (9%), or ethanol + Zn (12%) groups. The incidence of abnormalities in ethanol + Zn-supplemented fetuses was not different from saline-treated fetuses. While ethanol exposure did not affect the number of fetal resorptions or pre- or postnatal weight, there were more stillbirths with ethanol alone, and cumulative postnatal mortality was significantly higher in offspring exposed to ethanol alone (35% deaths) compared to all other treatment groups (13.5 to 20.5% deaths). Mice supplemented with Zn throughout pregnancy had higher plasma Zn concentrations than those in un-supplemented groups. These findings demonstrate that dietary Zn supplementation throughout pregnancy ameliorates dysmorphology and postnatal mortality caused by ethanol exposure in early pregnancy.
The effects of Nd2O3 concentration in the laser emission of TeO2-ZnO glasses
NASA Astrophysics Data System (ADS)
Moreira, L. M.; Anjos, V.; Bell, M. J. V.; Ramos, C. A. R.; Kassab, L. R. P.; Doualan, D. J. L.; Camy, P.; Moncorgé, R.
2016-08-01
The present work reports the modification introduced by different Nd2O3 concentration on optical properties and the laser operation of Nd3+ doped (TeO2-ZnO) bulk tellurite glass. The spectroscopic data are analyzed within the Judd Ofelt formalism framework and the results are compared to the fluorescence lifetime and emission measurements to derive values for the quantum efficiency and the stimulated emission cross section of the considered 4F3/2 → 4I11/2 infrared laser transition around 1062.5 nm. Continuous-wave laser action is achieved with this bulk tellurite glass by pumping the sample inside a standard plan-concave mirror laser cavity with different output couplers. It is possible to observe coherent emission only for the lower concentration (0.5%(wt.) of Nd2 O3). Also laser action could only be observed for this sample with threshold pump power of 73 mW associated with a laser slope efficiency of 8% for an output coupler transmission of 4% indicating that TeO2-ZnO are potential materials for laser action. The results presented in this work together with those previously reported with higher concentration (1.0% (wt) of Nd2O3) determine the adequate Nd2O3 concentration for laser action and guide the correct experimental procedure for TeO2-ZnO glasses preparation.
The Influence of Tobacco Smoke on Protein and Metal Levels in the Serum of Women during Pregnancy
Wrześniak, Marta; Kepinska, Marta; Królik, Małgorzata; Milnerowicz, Halina
2016-01-01
Background Tobacco smoking by pregnant women has a negative effect on fetal development and increases pregnancy risk by changing the oxidative balance and microelements level. Smoking affects the concentration, structure and function of proteins, potentially leading to various negative effects on pregnancy outcomes. Methodology/Principal Findings The influence of tobacco smoke on key protein fractions in smoking and non-smoking healthy pregnant women was determined by capillary electrophoresis (CE). Concentrations of the proteins α1-antitrypsin, α1-acid glycoprotein, α2-macroglobulin and transferrin were determined by ELISA tests. Total protein concentration was measured by the Biuret method. Smoking status was established by cotinine levels. Cadmium (Cd) and Zinc (Zn) concentrations were determined by flame atomic absorption spectrometry and the Zn/Cd ratio was calculated based on these numbers. Smoking women had a 3.7 times higher level of Cd than non-smoking women. Zn levels decreased during pregnancy for all women. The Zn/Cd ratio was three times lower in smoking women. The differences between the changes in the protein profile for smoking and non-smoking women were noted. Regarding proteins, α1-antitrypsin and α2-macroglobulin levels were lower in the non-smoking group than in the smoking group and correlated with Cd levels (r = -0.968, p = 0.032 for non-smokers; r = −0.835, p = 0.019 for smokers). Zn/Cd ratios correlated negatively with α1-, α2- and β-globulins. Conclusions/Significance Exposure to tobacco smoke increases the concentration of Cd in the blood of pregnant women and may lead to an elevated risk of pregnancy disorders. During pregnancy alter concentrations of some proteins. The correlation of Cd with proteins suggests that it is one of the causes of protein aberrations. PMID:27548057
Shen, Zhang Jun; Xu, De Cong; Chen, Yan Song; Zhang, Zhen
2017-09-01
Fengdan (Paeonia ostii) is one of Chinese 34 famous medicinal materials. This study investigated the concentrations of Arsenic (As), Chromium (Cr), Cadmium (Cd), Copper (Cu), Lead (Pb), Iron (Fe), Manganese (Mn), and Zinc (Zn) in rhizosphere soils, cortex mouton and seeds of Fengdan planted in a metal mining area, China. The mean concentrations of As, Cd, Cu, and Zn in the rhizosphere soils were above the limits set by the Chinese Soil Environmental Quality Standard (GB 15618-1995). The contamination factor (CF) of Cd was >5, while it was >2for As, Cu, Pb, and Zn in all the soils. The integrated pollution index for all the soils was >3 and ˂ 5. Metal concentrations in the edible parts of Fengdan were in the following decreasing order: Mn>Fe>Zn>Cu>Pb>As>Cr≥Cd. The transfer factor mean values for As, Cu, Cd and Fe in the cortex moutan of old Fengdan (over 6 years) were significantly higher than in young Fengdan. Available metal concentrations, pH and soil organic matter content influenced the metal concentrations of the cortex moutan. The results indicated that mining and smelting operations have led to heavy metals contamination of soils and medicinal parts of Fengdan. The major metal pollutants were elemental Cd, Cu, Pb, and Zn. Heavy metals mainly accumulated in the cortex moutan of Fengdan. The mean concentrations of Cd, Cu, and Pb in the old cortex moutan (over 6 years) were above those of the Chinese Green Trade Standards for Medicinal Plants and Preparations in Foreign Trade (WM/T2-2004). Copyright © 2017. Published by Elsevier Inc.
Kumar, Vinod; Chopra, A K
2014-11-01
Ferti-irrigation response of 5, 10, 25, 50, 75, and 100 % concentrations of the sugar mill effluent (SME) on French bean (Phaseolus vulgaris L., cv. Annapurna) in the rainy and summer seasons was investigated. The fertigant concentrations produced significant (P < 0.01) changes in the soil parameters, viz., electrical conductivity (EC), pH, organic carbon (OC), sodium (Na(+)), potassium (K(+)), calcium (Ca(2+)), magnesium (Mg(2+)), total Kjeldahl nitrogen (TKN), phosphate (PO4 (3-)), sulfate (SO4 (2-)), ferrous (Fe(2+)), cadmium (Cd), chromium (Cr), copper (Cu), manganese (Mn), and zinc (Zn), in both seasons. The contents of Cr, Cu, Mn, and Zn except Cd were found to be below the maximum levels permitted for soils in India. The agronomic performance of P. vulgaris was gradually increased at lower concentrations, i.e., from 5 to 25 %, and decreased at higher concentrations, i.e., from 50 to 100 %, of the SME in both seasons when compared to controls. The accumulations of heavy metals were increased in the soil and P. vulgaris from 5 to 100 % concentrations of the SME in both seasons. The contents of Cu, Mn, and Zn except Cd and Cr were noted under the permissible limit of Food and Agriculture Organization (FAO)/World Health Organization (WHO) standards. Most contents of biochemical components like crude proteins, crude fiber, and total carbohydrates were found with 25 % concentration of the SME in both seasons. The contamination factor (Cf) of various metals was in the order of Cd > Cr > Zn > Mn > Cu for soil and Mn > Zn > Cu > Cr > Cd for P. vulgaris in both seasons after fertigation with SME. Therefore, the SME can be used to improve the soil fertility and yield of P. vulgaris after appropriate dilution.
Heavy Metals in Soils and Vegetables Irrigated with Urban Grey Waste Water in Fagge, Kano, Nigeria.
Chiroma, T M; Ebewele, R O; Hymore, F K
2014-01-01
There is currently an increased consumption of vegetables within the local urban community. However, contamination of these vegetables with heavy metals poses a potential health hazard. Consequently, the potential contamination problem due to the effect of levels of some heavy metals (Fe, Mg, Zn, Mn, Cu and Cr) in soils and vegetables irrigated with drainage urban grey waste water were investigated. The maximum levels of Fe, Zn, Mn, Cu and Cr in the urban grey waste waters were respectively 2.8, 2.1, 19.5, 2.3 and 143.1 times, higher than the maximum recommended concentrations of these metals: 5.0 μg/mL, 2.0 μg/mL, 0.2 μg/mL, 0.2 μg/mL and 0.1 μg/mL, respectively, for irrigation waters. The soils were found to be contaminated with these metals to levels that range between 24 to 84 percent contaminations. Although the heavy metals concentration ranking in vegetable parts vary with plant specie, the concentrations of Fe, Zn, Mn, Cu and Cr in most parts of the vegetables were above their critical concentrations of 750 - 1000 μg/g, 100 - 400 μg/g, 300 - 500 μg/g, 20 - 100 μg/g and 5 - 30 μg/g, respectively, in plants. This suggests potential toxicity of these parts of vegetables. It was however found that over 40 percent of the concentrations of Fe, Mg, Zn and Cu in Onions, Fe in Okro, Cr in Bushgreen, Cu in Roselle and Zn, Cu in Carrot leaves can be easily removed by washing the leaves with water. However, only Cu concentration in Onions and Bushgreen leaves met the acceptable permissible level in plants after washing.
Radziemska, Maja; Fronczyk, Joanna
2015-01-01
Express roads are a potential source of heavy metal contamination in the surrounding environment. The Warsaw Expressway (E30) is one of the busiest roads in the capital of Poland and cuts through the ecologically valuable area (Mazowiecki Natural Landscape Park). Soil samples were collected at distances of 0.5, 4.5 and 25 m from the expressway. The concentrations of cadmium (Cd), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) were determined in the soils by the flame atomic absorption spectrometry method (FAAS). Soils located in the direct proximity of the analyzed stretch of road were found to have the highest values of pH and electrical conductivity (EC), which decreased along with an increase in the distance from the expressway. The contents of Cd, Cu and Zn were found to be higher than Polish national averages, whereas the average values of Ni and Pb were not exceeded. The pollution level was estimated based on the geo-accumulation index (Igeo), and the pollution index (PI). The results of Igeo and PI indexes revealed the following orders: Cu < Zn < Ni < Cd < Pb and Cu < Ni < Cd < Zn < Pb, and comparison with geochemical background values showed higher concentration of zinc, lead and cadmium. PMID:26512684
Radziemska, Maja; Fronczyk, Joanna
2015-10-23
Express roads are a potential source of heavy metal contamination in the surrounding environment. The Warsaw Expressway (E30) is one of the busiest roads in the capital of Poland and cuts through the ecologically valuable area (Mazowiecki Natural Landscape Park). Soil samples were collected at distances of 0.5, 4.5 and 25 m from the expressway. The concentrations of cadmium (Cd), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) were determined in the soils by the flame atomic absorption spectrometry method (FAAS). Soils located in the direct proximity of the analyzed stretch of road were found to have the highest values of pH and electrical conductivity (EC), which decreased along with an increase in the distance from the expressway. The contents of Cd, Cu and Zn were found to be higher than Polish national averages, whereas the average values of Ni and Pb were not exceeded. The pollution level was estimated based on the geo-accumulation index (Igeo), and the pollution index (PI). The results of Igeo and PI indexes revealed the following orders: Cu < Zn < Ni < Cd < Pb and Cu < Ni < Cd < Zn < Pb, and comparison with geochemical background values showed higher concentration of zinc, lead and cadmium.
Fernández-Martínez, Marcos; Vicca, Sara; Janssens, Ivan A; Espelta, Josep Maria; Peñuelas, Josep
2017-01-01
Fruit production (NPP f ), the amount of photosynthates allocated to reproduction (%GPP f ) and their controls for spatial and species-specific variability (e.g. nutrient availability, climate) have been poorly studied in forest ecosystems. We characterized fruit production and its temporal behaviour for several tree species and resolved the effects of gross primary production (GPP), climate and foliar nutrient concentrations. We used data for litterfall and foliar nutrient concentration from 126 European forests and related them to climatic data. GPP was estimated for each forest using a regression model. Mean NPP f ranged from c. 10 to 40 g C m -2 yr -1 and accounted for 0.5-3% of GPP. Forests with higher GPPs produced larger fruit crops. Foliar zinc (Zn) and phosphorus (P) concentrations were associated positively with NPP f , whereas foliar Zn and potassium (K) were negatively related to its temporal variability. Maximum NPP f and interannual variability of NPP f were higher in Fagaceae than in Pinaceae species. NPP f and %GPP f were similar amongst the studied species despite the different reproductive temporal behaviour of Fagaceae and Pinaceae species. We report that foliar concentrations of P and Zn are associated with %GPP f , NPP f and its temporal behaviour. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Andrade, S A L; Silveira, A P D; Mazzafera, P
2010-10-15
Studies on mycorrhizal symbiosis effects on metal accumulation and plant tolerance are not common in perennial crops under metal stress. The objective of this study was to evaluate the influence of mycorrhization on coffee seedlings under Cu and Zn stress. Copper (Cu) and zinc (Zn) uptake and some biochemical and physiological traits were studied in thirty-week old Coffea arabica seedlings, in response to the inoculation with arbuscular mycorrhizal fungi (AMF) and to increasing concentrations of Cu or Zn in soil. The experiments were conducted under greenhouse conditions in a 2×4 factorial design (inoculation or not with AMF and 0, 50, 150 and 450mgkg(-1) Cu or 0, 100, 300 and 900mgkg(-1) Zn). Non-mycorrhizal plants maintained a hampered and slow growth even in a soil with appropriate phosphorus (P) levels for this crop. As metal levels increased in soil, a greater proportion of the total absorbed metals were retained by roots. Foliar Cu concentrations increased only in non-mycorrhizal plants, reaching a maximum concentration of 30mgkg(-1) at the highest Cu in soil. Mycorrhization prevented the accumulation of Cu in leaves, and mycorrhizal plants showed higher Cu contents in stems, which indicated a differential Cu distribution in AMF-associated or non-associated plants. Zn distribution and concentrations in different plant organs followed a similar pattern independently of mycorrhization. In mycorrhizal plants, only the highest metal concentrations caused a reduction in biomass, leading to significant changes in some biochemical indicators, such as malondialdehyde, proline and amino acid contents in leaves and also in foliar free amino acid composition. Marked differences in these physiological traits were also found due to mycorrhization. In conclusion, AMF protected coffee seedlings against metal toxicity. Copyright © 2010 Elsevier B.V. All rights reserved.
A novel fractionation approach for water constituents - distribution of storm event metals.
McKenzie, Erica R; Young, Thomas M
2013-05-01
A novel fractionation method, based on both particle size and settling characteristics, was employed to examine metal distributions among five fractions. In-stream and stormwater runoff samples were collected from four land use types: highway, urban, agricultural (storm event and irrigation), and natural. Highway samples contained the highest dissolved concentrations for most metals, and freshwater ambient water quality criteria were exceeded for Cd, Cu, Pb, and Zn in the first storm of the water year. Anthropogenic sources were indicated for Cu, Zn, Cd, and Pb in highway and urban samples, and total metal loadings (mg km(-2)) were observed to be as follows: highway > urban > agricultural storm event ∼ natural > agricultural irrigation. Notably, ∼10-fold higher suspended solids concentration was observed in the agricultural storm event sample, and suspended solids-associated metals were correspondingly elevated. Distribution coefficients revealed the following affinities: Zn, Ni, Cd, and Pb to large dense particles; and Cu, Zn, Cr, Ni, and Pb to colloidal organic matter.
A novel fractionation approach for water constituents – distribution of storm event metals
McKenzie, Erica R.; Young, Thomas M.
2014-01-01
A novel fractionation method, based on both particle size and settling characteristics, was employed to examine metal distributions among five fractions. In-stream and stormwater runoff samples were collected from four land use types: highway, urban, agricultural (storm event and irrigation), and natural. Highway samples contained the highest dissolved concentrations for most metals, and freshwater ambient water quality criteria were exceeded for Cd, Cu, Pb, and Zn in the first storm of the water year. Anthropogenic sources were indicated for Cu, Zn, Cd, and Pb in highway and urban samples, and total metal loadings (mg/km2) were observed to be as follows: highway > urban > agricultural storm event ~ natural > agricultural irrigation. Notably, ~10-fold higher suspended solids concentration was observed in the agricultural storm event sample, and suspended solids-associated metals were correspondingly elevated. Distribution coefficients revealed the following affinities: Zn, Ni, Cd, and Pb to large dense particles; and Cu, Zn, Cr, Ni, and Pb to colloidal organic matter. PMID:23535891
Cai, Limei; Xu, Zhencheng; Ren, Mingzhong; Guo, Qingwei; Hu, Xibang; Hu, Guocheng; Wan, Hongfu; Peng, Pingan
2012-04-01
One hundred and four surface samples and 40 profiles samples in agricultural soils collected from Huizhou in south-east China were monitored for total contents of 8 heavy metals, and analyzed by multivariate statistical techniques and enrichment factor (EF), in order to investigate their origins. The results indicate that the concentrations of Cu, Zn, Ni, Cr, Pb, Cd, As and Hg in soils are 16.74, 57.21, 14.89, 27.61, 44.66, 0.10, 10.19 and 0.22 mg/kg, respectively. Compared to the soil background contents in Guangdong Province, the mean concentrations of Hg, Cd, Zn, Pb and As in soil of Huizhou are higher, especially Hg and Cd, which are 2.82 and 1.79 times the background values, respectively. Cr, Ni, Cu, partially, Zn and Pb mainly originate from a natural source. Cd, As, partially, Zn mainly come from agricultural practices. However, Hg, partially, Pb originate mainly from industry and traffic sources. Copyright © 2011 Elsevier Inc. All rights reserved.
Scheifler, R; Ben Brahim, M; Gomot-de Vaufleury, A; Carnus, J-M; Badot, P-M
2003-01-01
Juvenile Helix aspersa snails exposed in field microcosms were used to assess the transfer of Cd, Cu, Ni, Pb and Zn from forest soils amended with liquid and composted sewage sludge. Zn concentrations and contents were significantly higher in snails exposed to liquid and composted sludge after 5 and 7 weeks of exposure, when compared with control. Trends were less clear for the other metals. Present results show that Zn, among the cocktail of metallic trace elements (MTE) coming from sewage sludge disposal, represents the principal concern for food chain transfer and secondary poisoning risks. The microcosm design used in this experiment was well suited for relatively long-term (about 2 months) active biomonitoring with H. aspersa snails. The snails quickly indicated the variations of MTE concentrations in their immediate environment. Therefore, the present study provides a simple but efficient field tool to evaluate MTE bioavailability and transfer.
Younis, Alaa M; El-Zokm, Gehan M; Okbah, Mohamed A
2014-06-01
In risk assessment of aquatic sediments, the immobilizing effect of acid-volatile sulfide (AVS) on trace metals is a principal control on availability and associated toxicity of metals to aquatic biota, which reduces metal bioavailability and toxicity by binding and immobilizing metals as insoluble sulfides. Spatial variation pattern of AVS, simultaneously extracted metals (SEM), and sediment characteristics were studied for the first time in surface sediment samples (0-20 cm) from 43 locations in Egyptian northern delta lagoons (Manzalah, Burullus, and Maryut) as predictors of the bioavailability of some divalent metals (Cu, Zn, Cd, Pb, and Ni) in sediments as well as indicators of metal toxicity in anaerobic sediments. The results indicated that the ∑SEM (Cu + Zn + Cd + Pb + Ni) values in sediments of lagoon Burullus had higher concentrations than those of Maryut and Manzalah. In contrast, AVS concentrations were considerably higher in lagoons Manzalah and Maryut and seemed to be consistent with the increase in organic matter than lagoon Burullus. Generally, the average concentrations of the SEM in all lagoons were in the order of Zn > Cu > Ni > Pb > Cd. The ratios of ∑SEM/AVS were less than 1 at all the sampling stations except at one station in lagoon Maryut as well as four stations located in lagoon Burullus (∑SEM/AVS > 1), which suggests that the metals have toxicity potential in these sediments. Therefore, SEM concentrations probably are better indicators of the metal bioavailability in sediments than the conventional total metal concentrations.
Photoelectrochemical performance of NiO-coated ZnO-CdS core-shell photoanode
NASA Astrophysics Data System (ADS)
Iyengar, Pranit; Das, Chandan; Balasubramaniam, K. R.
2017-03-01
A nano-structured core-shell ZnO-CdS photoanode device with a mesoporous NiO co-catalyst layer was fabricated using solution-processing methods. The growth of the sparse ZnO nano-rod film with a thickness of ca. 930 nm was achieved by optimizing parameters such as the thickness of the ZnO seed layer, choice of Zn precursor salt and the salt concentration. CdS was then coated by a combination of spin coating and spin SILAR (Successive Ionic Layer Adsorption and Reaction) methods to completely fill the interspace of ZnO nano-rods. The uniform CdS surface facilitated the growth of a continuous mesoporous NiO layer. Upon illumination of 100 mW·cm-2 AM 1.5 G radiation the device exhibits stable photocurrents of 2.15 mA·cm-2 at 1.23 V and 0.92 mA·cm-2 at 0.00 V versus RHE, which are significantly higher as compared to the bare ZnO-CdS device. The excellent performance of the device can be ascribed to the higher visible region absorption by CdS, and effective separation of the photogenerated charge carriers due to the suitable band alignment and nanostructuring. Additionally, the mesoporous NiO overlayer offered a larger contact area with the electrolyte and promoted the kinetics enabling higher and stable photocurrent even till the 35th min. of testing.
Kocyła, Anna; Adamczyk, Justyna; Krężel, Artur
2018-01-24
Cellular zinc (Zn(ii)) is bound with proteins that are part of the proteomes of all domains of life. It is mostly utilized as a catalytic or structural protein cofactor, which results in a vast number of binding architectures. The Zn(ii) ion is also important for the formation of transient protein complexes with a Zn(ii)-dependent quaternary structure that is formed upon cellular zinc signals. The mechanisms by which proteins associate with and dissociate from Zn(ii) and the connection with cellular Zn(ii) changes remain incompletely understood. In this study, we aimed to examine how zinc protein domains with various Zn(ii)-binding architectures are formed under free Zn(ii) concentration changes and how formation of the Zn(ii)-dependent assemblies is related to the protein concentration and reactivity. To accomplish these goals we chose four zinc domains with different Zn(ii)-to-protein binding stoichiometries: classical zinc finger (ZnP), LIM domain (Zn 2 P), zinc hook (ZnP 2 ) and zinc clasp (ZnP 1 P 2 ) folds. Our research demonstrated a lack of changes in the saturation level of intraprotein zinc binding sites, despite various peptide concentrations, while homo- and heterodimers indicated a concentration-dependent tendency. In other words, at a certain free Zn(ii) concentration, the fraction of a formed dimeric complex increases or decreases with subunit concentration changes. Secondly, even small or local changes in free Zn(ii) may significantly affect protein saturation depending on its architecture, function and subcellular concentration. In our paper, we indicate the importance of interdependence of free Zn(ii) availability and protein subunit concentrations for cellular zinc signal regulation.
Zinc biosorption by the purple non-sulfur bacterium Rhodobacter capsulatus.
Magnin, Jean-Pierre; Gondrexon, Nicolas; Willison, John C
2014-12-01
This paper presents the first report providing information on the zinc (Zn) biosorption potentialities of the purple non-sulfur bacterium Rhodobacter capsulatus. The effects of various biological, physical, and chemical parameters on Zn biosorption were studied in both the wild-type strain B10 and a strain, RC220, lacking the endogenous plasmid. At an initial Zn concentration of 10 mg·L(-1), the Zn biosorption capacity at pH 7 for bacterial biomass grown in synthetic medium containing lactate as carbon source was 17 and 16 mg Zn·(g dry mass)(-1) for strains B10 and RC220, respectively. Equilibrium was achieved in a contact time of 30-120 min, depending on the initial Zn concentration. Zn sorption by live biomass was modelled, at equilibrium, according to the Redlich-Peterson and Langmuir isotherms, in the range of 1-600 mg Zn·L(-1). The wild-type strain showed a maximal Zn uptake capacity (Qm) of 164 ± 8 mg·(g dry mass)(-1) and an equilibrium constant (Kads) of 0.017 ± 0.00085 L·(mg Zn)(-1), compared with values of 73.9 mg·(g dry mass)(-1) and 0.361 L·mg(-1) for the strain lacking the endogenous plasmid. The Qm value observed for R. capsulatus B10 is one of the highest reported in the literature, suggesting that this strain may be useful for Zn bioremediation. The lower Qm value and higher equilibrium constant observed for strain RC220 suggest that the endogenous plasmid confers an enhanced biosorption capacity in this bacterium, although no genetic determinants for Zn resistance appear to be located on the plasmid, and possible explanations for this are discussed.
Nickel and zinc isotope fractionation in hyperaccumulating and nonaccumulating plants.
Deng, Teng-Hao-Bo; Cloquet, Christophe; Tang, Ye-Tao; Sterckeman, Thibault; Echevarria, Guillaume; Estrade, Nicolas; Morel, Jean-Louis; Qiu, Rong-Liang
2014-10-21
Until now, there has been little data on the isotope fractionation of nickel (Ni) in higher plants and how this can be affected by plant Ni and zinc (Zn) homeostasis. A hydroponic cultivation was conducted to investigate the isotope fractionation of Ni and Zn during plant uptake and translocation processes. The nonaccumulator Thlaspi arvense, the Ni hyperaccumulator Alyssum murale and the Ni and Zn hyperaccumulator Noccaea caerulescens were grown in low (2 μM) and high (50 μM) Ni and Zn solutions. Results showed that plants were inclined to absorb light Ni isotopes, presumably due to the functioning of low-affinity transport systems across root cell membrane. The Ni isotope fractionation between plant and solution was greater in the hyperaccumulators grown in low Zn treatments (Δ(60)Ni(plant-solution) = -0.90 to -0.63‰) than that in the nonaccumulator T. arvense (Δ(60)Ni(plant-solution) = -0.21‰), thus indicating a greater permeability of the low-affinity transport system in hyperaccumulators. Light isotope enrichment of Zn was observed in most of the plants (Δ(66)Zn(plant-solution) = -0.23 to -0.10‰), but to a lesser extent than for Ni. The rapid uptake of Zn on the root surfaces caused concentration gradients, which induced ion diffusion in the rhizosphere and could result in light Zn isotope enrichment in the hyperaccumulator N. caerulescens. In high Zn treatment, Zn could compete with Ni during the uptake process, which reduced Ni concentration in plants and decreased the extent of Ni isotope fractionation (Δ(60)Ni(plant-solution) = -0.11 to -0.07‰), indicating that plants might take up Ni through a low-affinity transport system of Zn. We propose that isotope composition analysis for transition elements could become an empirical tool to study plant physiological processes.
Diehl, S.F.; Hageman, P.L.; Seal, R.R.; Piatak, N.M.; Lowers, H.
2011-01-01
Weathered mine waste consists of oxidized primary minerals and chemically unstable secondary phases that can be sources of readily soluble metals and acid rock drainage. Elevated concentrations of metals such as Cd, Cu, Fe, Mn, Ni, Pb, and Zn are observed in deionized water-based leachate solutions derived from complex sedex and Cu-Pb-Zn mine wastes. Leachate (USGS FLT) from the Elizabeth mine, a massive sulfide deposit, has a pH of 3.4 and high concentrations of Al (16700 ug/L), Cu (440 ug/L), and Zn (8620 ug/L). Leachate from the sedex Faro mine has a pH of 3.5 and high concentrations of Al (2040 ug/L), Cu (1930 ug/L), Pb (2080 ug/L), and Zn (52900 ug/L). In contrast, higher-pH leachates produced from tailings of polymetallic vein deposits have order of magnitude lower metal concentrations. These data indicate that highly soluble secondary mineral phases exist at the surface of waste material where the samples were collected. Sulfide minerals from all sites exhibit differential degrees of weathering, from dissolution etched grain rims, to rinds of secondary minerals, to skeletal remnants. These microscale mineral-dissolution textures enhance weathering and metal teachability of waste material. Besides the formation of secondary minerals, sulfide grains from dried tailings samples may be coated by amorphous Fe-Al-Si minerals that also adsorb metals such as Cu, Ni, and Zn.
López-Rayo, Sandra; Nadal, Paloma; Lucena, Juan J.
2015-01-01
This study compares the effectiveness of multi-micronutrient formulations containing iron (Fe), manganese (Mn), and zinc (Zn) with traditional (EDTA, DTPA, HEEDTA, and EDDHAm) or novel chelates (o,p-EDDHA, S,S-EDDS, and IDHA) and natural complexing agents (gluconate and lignosulfonate). The stability and reactivity of the formulations were studied on batch experiments with calcareous soil and by speciation modeling. Formulations containing traditional ligands maintained higher Mn but lower Zn concentration in soil solution than the novel ligands. The gluconate and lignosulfonate maintained low concentrations of both Mn and Zn in soil solution. Selected formulations were applied into calcareous soil and their efficacy was evaluated in a pot experiment with soybean. The formulation containing DTPA led to the highest Zn concentration in plants, as well as the formulation containing S,S-EDDS in the short-term, which correlated with its biodegradability. The application of traditional or novel ligands in formulations did not result in sufficient plant Mn concentrations, which was related to the low Mn stability observed for all formulations under moderate oxidation conditions. The results highlight the need to consider the effect of metals and ligands interactions in multi-nutrient fertilization and the potential of S,S-EDDS to be used for Zn fertilization. Furthermore, it is necessary to explore new sources of Mn fertilization for calcareous soils that have greater stability and efficiency, or instead to use foliar fertilization. PMID:26442065
López-Rayo, Sandra; Nadal, Paloma; Lucena, Juan J
2015-01-01
This study compares the effectiveness of multi-micronutrient formulations containing iron (Fe), manganese (Mn), and zinc (Zn) with traditional (EDTA, DTPA, HEEDTA, and EDDHAm) or novel chelates (o,p-EDDHA, S,S-EDDS, and IDHA) and natural complexing agents (gluconate and lignosulfonate). The stability and reactivity of the formulations were studied on batch experiments with calcareous soil and by speciation modeling. Formulations containing traditional ligands maintained higher Mn but lower Zn concentration in soil solution than the novel ligands. The gluconate and lignosulfonate maintained low concentrations of both Mn and Zn in soil solution. Selected formulations were applied into calcareous soil and their efficacy was evaluated in a pot experiment with soybean. The formulation containing DTPA led to the highest Zn concentration in plants, as well as the formulation containing S,S-EDDS in the short-term, which correlated with its biodegradability. The application of traditional or novel ligands in formulations did not result in sufficient plant Mn concentrations, which was related to the low Mn stability observed for all formulations under moderate oxidation conditions. The results highlight the need to consider the effect of metals and ligands interactions in multi-nutrient fertilization and the potential of S,S-EDDS to be used for Zn fertilization. Furthermore, it is necessary to explore new sources of Mn fertilization for calcareous soils that have greater stability and efficiency, or instead to use foliar fertilization.
Łuczyńska, Joanna; Paszczyk, Beata; Łuczyński, Marek J
2018-05-30
Heavy metals content (Zn, Cu and Hg) were measured in gills, liver, gonads and muscles of perch, Perca fluviatilis (L.) and roach, Rutilus rutilus (L.) from Lake Pluszne (north-eastern Poland). Correlations between heavy metals levels and total length, weight, HSI, GSI and FCF were examined. As expected, muscles contained the significantly highest values of Hg (P ≤ .05). The concentrations of Zn were significantly higher in gills of roach and gonads of perch (P ≤ .05), while the liver of fish accumulated significantly more Cu than other organs (P ≤ .05). In all organs of perch the higher content of mercury was found (P ≤ .05). The value of Zn and Cu was highest in organs of roach (P ≤ .05) (with the exception of Zn in muscles P > .05). Sequence of metals in both species was Zn > Cu > Hg. Only in muscle tissue, Hg was significantly positive correlated with weight of roach (r = 0.811, P = .045) and perch (r = 0.652, P = .041), and total length of roach (r = 0.806, P = .005). A positive relationship was also observed between Zn concentration in gills of perch and their weight (r = 0.634, P = .049). In contrary, Zn in gills of roach decreased with weight (r = -0.693, P = .026)) and length (r = -0.668, P = .035). Cu concentration in liver of perch was statistically positively correlated with HSI (r = 0.717, P = .020), whereas Hg content in muscle tissue of roach with FCF (r = 0.643, P = .045). There was negative relationship between Hg in perch gonads and GSI (r = -0.808, P = .005). Metal pollution index (MPI) in gills, liver, gonads and muscles of roach was 7.68, 7.24, 6.77 and 3.13, respectively, whereas in these organs of perch was 3.25 (gills), 4.75 (liver), 5.84 (gonads) and 4.44 (muscles), therefore the contamination of each tissue ranged from very low contamination to low contamination. The concentration of mercury was lower than the maximum acceptable limit estimated by the Commission Regulation (EC) No 629/2008 of 2 July 2008. The values of HI and THQ were below 1, which means that consumption of these fish is not hazardous to the consumer. Copyright © 2018 Elsevier Inc. All rights reserved.
Yan, Geng; Mao, Lingchen; Liu, Shuoxun; Mao, Yu; Ye, Hua; Huang, Tianshu; Li, Feipeng; Chen, Ling
2018-08-01
The road traffic has become one of the main sources of urban pollution and could directly affect roadside soils. To understand the level of contamination and potential sources of trace metals in roadside soils of Shanghai, 10 trace metals (Sb, Cr, Co, Ni, Cu, Cd, Pb, Hg, Mn and Zn) from two urban/rural roads (Hutai Road and Wunign-Caoan Road) were analyzed in this study. Antimony, Ni, Cu, Cd, Pb, Hg and Zn concentrations were higher than that of soil background values of Shanghai, whereas accumulation of Cr, Co and Mn were minimal. Significantly higher Sb, Cd, Pb contents were found in samples from urban areas than those from suburban area, suggesting the impact from urbanization. The concentrations of Sb and Cd in older road (Hutai) were higher than that in younger road (Wunign-Caoan). Multivariate statistical analysis revealed that Sb, Cu, Cd, Pb and Zn were mainly controlled by traffic activities (e.g. brake wear, tire wear, automobile exhaust) with high contamination levels found near traffic-intensive areas; Cr, Co, Ni and Mn derived primarily from soil parent materials; Hg was related to industrial activities. Besides, the enrichment of Sb, Cd, Cu, Pb and Zn showed a decreasing trend with distance to the road edges. According to the enrichment factors (EF s ), 78.5% of Sb, Cu, Cd, Pb and Zn were in moderate or significant pollution, indicating considerable traffic contribution. In particular, recently introduced in automotive technology, accumulation of Sb has been recognized in 42.9% samples of both roads. The accumulation of these traffic-derived metals causes potential negative impact to human health and ecological environment and should be concerned, especially the emerging trace elements like Sb. Copyright © 2018 Elsevier B.V. All rights reserved.
Stavros, Hui-Chen W; Stolen, Megan; Durden, Wendy Noke; McFee, Wayne; Bossart, Gregory D; Fair, Patricia A
2011-03-01
The significance of metal concentrations in marine mammals is not well understood and relating concentrations between stranded and free-ranging populations has been difficult. In order to predict liver concentrations in free-ranging dolphins, we examined concentrations of trace elements (Al, As, Ba, Be, Cd, Co, Cu, Fe, Li, Mn, Ni, Pb, Sb, Se, Sn, total Hg (THg), V, Zn) in skin and liver of stranded bottlenose dolphins (Tursiops truncatus) from the South Carolina (SC) coast and the Indian River Lagoon, Florida (FL) during 2000-2008. Significantly higher concentrations of Zn, Fe, Se, Al, Cu and THg were found in skin while liver exhibited significantly higher Cu, Fe, Mn and THg concentrations for both study sites. Mean skin concentrations of Cu and Mn were significantly higher in SC dolphins while higher concentrations of THg and V were found in FL dolphins. In addition, liver tissues in SC dolphins exhibited significantly higher As concentrations while higher Fe, Pb, Se, THg, and V levels were found in FL dolphins. Two elements (Cu and THg) showed significant age-related correlations with skin concentration while five elements (Cu, Se, THg, Zn and V) showed age-related correlations with liver concentrations. Geographic location influenced age-related accumulation of several trace elements and age-related accumulation of THg in hepatic tissue was observed for both sites to have the highest correlations (r² = 0.90SC; r² = 0.69FL). Mean THg concentration in liver was about 10 times higher in FL dolphins (330 μg g⁻¹ dw) than those samples from SC dolphins (34.3 μg g⁻¹ dw). The mean molar ratio of Hg to Se was 0.93 ± 0.32 and 1.08 ± 0.38 for SC and FL dolphins, respectively. However, the Hg:Se ratio varied with age as much lower ratios (0.2-0.4) were found in younger animals. Of the 18 measured elements, only THg was significantly correlated in skin and liver of stranded dolphins and skin of free-ranging dolphins from both sites suggesting that skin may be useful in predicting Hg concentrations in liver tissue of free-ranging dolphins. Results indicate that 33% of the stranded and 15% of the free-ranging dolphins from FL exceed the minimum 100 μg g⁻¹ wet weight (ww) (~ 400 dw) Hg threshold for hepatic damage while none from SC reached this level. Hepatic concentrations of As in SC dolphins and V in FL dolphins were also highly correlated with skin concentrations which may have some regional specificity predictive value. The present study provides the first application of trace element concentrations derived from stranded bottlenose dolphins to predict liver concentrations in free-ranging populations. Copyright © 2010. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Kato, C.; Valdes, M. C.; Dhaliwal, J.; Day, J. M.; Moynier, F.
2013-12-01
The origin of the volatile element depletion of the Moon compared to Earth remains a key question in planetary science. It has recently been shown that both high-Ti and low-Ti lunar basalts are enriched in the heavier isotopes of Zn compared to Earth with an effect of ~1.3 permil on the 66Zn/64Zn ratio (Paniello et al., Nature, 2012). In order to obtain a better understanding of Zn behavior in and on the Moon, we present new measurements of lunar basalts, pyroclastic green glass 15426, highland anorthosites, cataclastic dunite 77215, cataclastic norite 72415 and some lunar soils. Samples were analyzed using a Thermo-Fisher Neptune Plus multi collector inductively coupled plasma mass spectrometer (MC-ICP-MS) at Washington University in St Louis. The data presented below are reported as the permil deviation of the 66Zn/64Zn ratio from the JMC-Lyon standard (δ66Zn). Four new high Ti basalts and three low Ti basalts confirm the observations of Paniello et al. (2012), that there is an enrichment in the heavier isotopes of Zn compared with chondrites and terrestrial samples. Combining these data together with Paniello et al. (2012) and Herzog et al. (GCA, 2009) we calculate a new average for lunar basalts of δ66Zn= 1.4×0.4 (1sd, n = 27). A few exceptions (5 samples out of 32) are isotopically light and probably represent addition of isotopically light Zn condensed onto the lunar surface from Zn isotopic fractionation during meteoritic impact, creating correspondingly isotopically heavy soils. In contrast to the homogeneity of mare basalts, highland samples show large Zn isotopic variability (δ66Zn -11.4 up to +4.24 permil) which encompasses the entire Zn isotopic variability measured so far in the Solar System. These δ66Zn variations are negatively correlated with the Zn abundance, with the isotopically light samples having the highest Zn concentrations. We interpret these results as the consequence of meteoritic bombardment and volatilization/condensation of Zn at the surface of the Moon. This represents secondary effects and mixing with exogenous Zn, explaining the higher abundance of Zn in highland rocks, relative to mare basalts. The pyroclastic green glass (15426) has a higher measured Zn concentration (~50ppm) compared with mare basalts, but is still depleted in Zn relative to most terrestrial basalts (typically >50 to 100 ppm). 15426 is also isotopically light (δ66Zn= -0.98), which is similar to previous measurements of Zn composition made for high-Ti pyroclastic glass beads (74220). We interpret the composition of the lunar pyroclastic glasses to reflect lava fountaining and coating of the surface of the beads by a volatile rich and isotopically light vapor. Thus, we conclude that mare basalts, which are isotopically heavier than the Earth, best represent the lunar silicate composition.
Enhanced glucose biosensor properties of gold nanoparticle-decorated ZnO nanorods
NASA Astrophysics Data System (ADS)
Wang, Zi-Hao; Yang, Chih-Chiang; Su, Yan-Kuin; Ruand, Jian-Long
2017-04-01
As new materials have been reported and more knowledge on detailed mechanism of glucose oxidation has been unveiled, the non-enzymatic glucose sensor keeps coming closer to practical applications. Nanostructures with higher surface specific area has great potential applications in sensing devices ZnO nanoords were synthesized in a hydrothermal method using simply available laboratory chemicals. Results showed that as-synthesized Gold Nanoparticle-decorated ZnO Nanorods possessing higher specific surface area, significantly increased the non-enzyme efficiency which in turn improved the sensing performances. The electrode also demonstrated excellent performance in sensing glucose concentration with remarkable sensitivity (46.6 μA/mM-cm2) and good repeatability. This work is expected to open a new avenue to fabricate non-enzymatic electrochemical sensors of glucose involving co-mediating.
Evaluation of wound healing potential of β-chitin hydrogel/nano zinc oxide composite bandage.
P T, Sudheesh Kumar; Lakshmanan, Vinoth-Kumar; Raj, Mincy; Biswas, Raja; Hiroshi, Tamura; Nair, Shantikumar V; Jayakumar, Rangasamy
2013-02-01
β-chitin hydrogel/nZnO composite bandage was fabricated and evaluated in detail as an alternative to existing bandages. β-chitin hydrogel was synthesized by dissolving β-chitin powder in Methanol/CaCl(2) solvent, followed by the addition of distilled water. ZnO nanoparticles were added to the β-chitin hydrogel and stirred for homogenized distribution. The resultant slurry was frozen at 0°C for 12 h. The frozen samples were lyophilized for 24 h to obtain porous composite bandages. The bandages showed controlled swelling and degradation. The composite bandages showed blood clotting ability as well as platelet activation, which was higher when compared to the control. The antibacterial activity of the bandages were proven against Staphylococcus aureus (S. aureus) and Escherichia coli (E.coli). Cytocompatibility of the composite bandages were assessed using human dermal fibroblast cells (HDF) and these cells on the composite bandages were viable similar to the Kaltostat control bandages and bare β-chitin hydrogel based bandages. The viability was reduced to 50-60% in bandages with higher concentration of zinc oxide nanoparticles (nZnO) and showed 80-90% viability with lower concentration of nZnO. In vivo evaluation in Sprague Dawley rats (S.D. rats) showed faster healing and higher collagen deposition ability of composite bandages when compared to the control. The prepared bandages can be used on various types of infected wounds with large volume of exudates.
Hu, Jing; Zhou, Shaoqi; Wu, Pan; Qu, Kunjie
2017-01-01
In this study, selected heavy metals (Hg, As, Cd, Pb, Cr, Cu and Zn) in the lake water and sediments from the Caohai wetland, which is a valuable state reserve for migrant birds in China, were investigated to assess the spatial distribution, sources, bioavailability and ecological risks. The results suggested that most of the higher concentrations were found in the eastern region of the lakeshore. The concentration factor (CF) revealed that Hg, Cd and Zn were present from moderate risk levels to considerable risk levels in this study; thus, based on the high pollution load index (PLI) values, the Caohai wetland can be considered polluted. According to the associated effects-range classification, Cd may present substantial environmental hazards. An investigation of the chemical speciation suggested that Cd and Zn were unstable across most of the sites, which implied a higher risk of quick desorption and release. Principal component analysis (PCA) indicated that the heavy metal contamination originated from both natural and anthropogenic sources.
Hu, Jing; Zhou, Shaoqi; Wu, Pan; Qu, Kunjie
2017-01-01
In this study, selected heavy metals (Hg, As, Cd, Pb, Cr, Cu and Zn) in the lake water and sediments from the Caohai wetland, which is a valuable state reserve for migrant birds in China, were investigated to assess the spatial distribution, sources, bioavailability and ecological risks. The results suggested that most of the higher concentrations were found in the eastern region of the lakeshore. The concentration factor (CF) revealed that Hg, Cd and Zn were present from moderate risk levels to considerable risk levels in this study; thus, based on the high pollution load index (PLI) values, the Caohai wetland can be considered polluted. According to the associated effects-range classification, Cd may present substantial environmental hazards. An investigation of the chemical speciation suggested that Cd and Zn were unstable across most of the sites, which implied a higher risk of quick desorption and release. Principal component analysis (PCA) indicated that the heavy metal contamination originated from both natural and anthropogenic sources. PMID:29253896
Zinc and dexamethasone induce metallothionein accumulation by endothelial cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briske-Anderson, M.; Bobilya, D.J.; Reeves, P.G.
1991-03-11
Several tissues increase their metallothionein (MT) concentration when exposed to elevated amounts of plasma Zn. Endothelial cells form the blood vessels that supply all tissues and constitute a barrier between cells of tissues and the blood. This study examined the ability of endothelial cells to synthesize MT and accumulate Zn in response to high amounts of Zn and dexamethasone. Bovine pulmonary endothelial cells were grown to confluence in Minimum Essential Medium with Earle's salts and 10% fetal calf serum. The monolayer was maintained for 2 d prior to use in medium containing EDTA-dialyzed serum. This low Zn medium was replacedmore » with one containing 1, 6, 25, 50, 100, 150, or 200 {mu}M Zn and incubated for 24 hr before harvesting the cells. MT was quantified by the cadmium binding assay. Cellular Zn concentrations were analyzed by atomic absorption after a nitric acid digestion. The MT concentration was elevated in response to Zn concentrations of 100 {mu}M or more. Cellular Zn concentration was elevated when media Zn was 25 {mu}M or more. MT and cellular Zn concentrations were positively correlated. In another study, inclusion of 0.1 {mu}M dexamethasone in the media increased concentration at all Zn concentrations studied. However, the inclusion of 0.3 {mu}M cis-platinum had no effect. In conclusion, endothelial cells in culture respond to elevated amounts of Zn and dexamethasone in the media by accumulating Zn and MT.« less
Abdu, Nafiu; Agbenin, John O; Buerkert, Andreas
2011-12-01
Quantitative data about phytoavailability and transfer into consumed plant parts for heavy metals in intensively managed urban vegetable production areas of sub-Saharan Africa are scarce. We therefore studied the transfer of zinc (Zn) and cadmium (Cd) from soil to the root and subsequent translocation to edible portions of four vegetables in six urban gardens. While respective diethylenetriaminepentaacetic acid (DTPA)-available Zn and Cd concentrations ranged from 18 to 66 mg kg(-1) and from 0.19 to 0.35 mg kg(-1) , respectively, in soils, total Zn and Cd were 8.4-256 mg kg(-1) and 0.04-1.7 mg kg(-1) in shoot parts. Metal transfer factor (MTF) ratios were higher in Zn (0.2-0.9) than in Cd (0.1-0.6). Our data suggest that total Zn concentration in soil is a reliable indicator to assess its transfer from soil to crop in lettuce, carrot and parsley, while for Cd DTPA-extractable concentration may be used to estimate soil-crop transfer of Cd in amaranthus and carrot. Overall, Cd was more easily translocated to the aerial plant parts than Zn. Zinc and Cd accumulation by vegetables in our soils is mainly a metabolically controlled process. Such accumulation can contaminate the ecosystem but under our conditions intake and ingestion of these metals will likely have to occur over a prolonged period to experience health hazard. Copyright © 2011 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Zhao, Baojun; Hayes, Peter C.; Jak, Evgueni
2011-10-01
The phase equilibria in the ZnO-"FeO"-Al2O3-CaO-SiO2-S system have been determined experimentally in equilibrium with metallic iron. A pseudoternary section of the form ZnO-"FeO"-(Al2O3+CaO+SiO2) for CaO/SiO2 = 0.71 (weight), (CaO+SiO2)/Al2O3 = 5.0 (weight), and fixed 2.0 wt pct S concentration has been constructed. It was found that the addition of 2.0 wt pct S to the liquid extends the spinel primary phase field significantly and decreases the size of the wustite primary phase field. The liquidus temperature in the wustite primary phase field is decreased by approximately 80 K and the liquidus temperature in the spinel primary phase field is decreased by approximately 10 K with addition of 2.0 wt pct S in the composition range investigated. It was also found that iron-zinc sulfides are present in some samples in the spinel primary phase field, which are matte appearing at low zinc concentrations and sphalerite (Zn,Fe)S at higher zinc concentrations. The presence of sulfur in the slag has a minor effect on the partitioning of ZnO between the wustite and liquid phases but no effect on the partitioning of ZnO between the spinel and liquid phases.
Wojtuń, Bronisław; Samecka-Cymerman, Aleksandra; Kolon, Krzysztof; Kempers, Alexander J
2013-06-01
In this investigation we focus on the evaluation of changes in metal pollution between 1986 until 2011 by Sphagnum species as bioindicators in 100 km part of the Sudety mountains influenced by the former Black Triangle Region. Concentrations of Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn were measured in various Sphagnum species all from ombrotrophic bogs in the Sudety mountains (SW Poland). The tested hypothesis was that overall improvements in pollution control in the former Black Triangle Region between 1986 until recent reduced the amount of metals deposited and accumulated by these plants. Concentrations of Cd, Cr, Cu, Fe, Pb and Zn in Sphagnum species were very high in 1986 indicating a heavy pollution of the examined bogs in this period, and significantly higher than in samples collected in 2011. The PCCA ordination showed the similar pattern in all bogs. In 2011 concentration of the Co was significantly higher in hollow species and concentration of Mn was significantly higher in those from hummocks. Differences between hollow/hummock sites were more important than species-specific abilities of Sphagnum mosses to accumulate metals. Species from hollows were better bioindicators of Co and those from hummocks were better bioindicators of Mn pollution. Copyright © 2012 Elsevier Ltd. All rights reserved.
Effect of Doping Materials on the Low-Level NO Gas Sensing Properties of ZnO Thin Films
NASA Astrophysics Data System (ADS)
Çorlu, Tugba; Karaduman, Irmak; Yildirim, Memet Ali; Ateş, Aytunç; Acar, Selim
2017-07-01
In this study, undoped, Cu-doped, and Ni-doped ZnO thin films have been successfully prepared by successive ionic layer adsorption and reaction method. The structural, compositional, and morphological properties of the thin films are characterized by x-ray diffractometer, energy dispersive x-ray analysis (EDX), and scanning electron microscopy, respectively. Doping effects on the NO gas sensing properties of these thin films were investigated depending on gas concentration and operating temperature. Cu-doped ZnO thin film exhibited a higher gas response than undoped and Ni-doped ZnO thin film at the operating temperature range. The sensor with Cu-doped ZnO thin film gave faster responses and recovery speeds than other sensors, so that is significant for the convenient application of gas sensor. The response and recovery speeds could be associated with the effective electron transfer between the Cu-doped ZnO and the NO molecules.
Effect of Cu-Dopant on the Structural, Magnetic and Electrical Properties of ZnO
NASA Astrophysics Data System (ADS)
Aryanto, D.; Kurniawan, C.; Subhan, A.; Sudiro, T.; Sebayang, P.; Ginting, M.; Siregar, S. M. K.; Nasruddin, M. N.
2017-05-01
Zn1- x Cu x O (x = 0, 2, 3, and 4 at.%) was synthesized by using solid-state reaction technique. The ZnO and CuO powders were mixed and then milled by using high-speed shaker mill. The influence of Cu dopants on the structure, magnetic, and electrical properties was investigated by using XRD, VSM, and I-V and C-V measurements. The XRD analysis showed that the Zn1- x Cu x O had hexagonal wurtzite polycrystalline. The diffraction intensity decreased and the peak position shifted directly to a higher 2θ angle with increasing the dopant concentration. Furthermore, the lattice parameters decreased when the ZnO was doped with x = 0.04, which indicated that the crystal structure changed. The increase of Cu dopants was believed to affect the magnetic and electrical properties of ZnO.
Hyperaccumulation of zinc by Corydalis davidii in Zn-polluted soils.
Lin, Wenjie; Xiao, Tangfu; Wu, Yunying; Ao, Ziqiang; Ning, Zengping
2012-02-01
A field survey was conducted to identify potential Zn accumulators from an artisanal Zn smelting area in southwest China's Guizhou Province. Hydroponic and soil culture experiments were performed to investigate the accumulation ability of Zn in Corydalis davidii. Zn concentrations in roots, stems and leaves of C. davidii in the smelting site were 1.1-3.5, 1.2-11.2, and 3.3-14 mg g(-)(1), respectively, whereas Zn concentrations in roots, stems and leaves of C. davidii in the contaminated site impacted by the Zn smelting were 1.0-2.4, 1.9-6.5, and 3.0-1.1 mg g(-1), respectively. Zn concentrations in leaves and stems of C. davidii were observed at above 10 mg g(-1) that refers to the threshold of Zn hyperaccumulator. The concentration distribution of Zn in C. davidii was leaf>stem>root, and the Zn bioaccumulation factors of C. davidii were above 1. It is concluded that C. davidii has high tolerance to concentrate Zn stress, and that C. davidii is a newly discovered Zn-hyperaccumulator with high biomass in the aboveground parts. Based on the cultivation experiments, C. davidii could reduce Zn concentration by 26.6, 21.2, and 10.2 mg kg(-1)yr(-1) by phytoextraction from the smelting slag, Zn-contaminated soil, and background soil, respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.
Geochemistry of magnetite from porphyry Cu and skarn deposits in the southwestern United States
Nadoll, Patrick; Mauk, Jeffrey L.; LeVeille, Richard A.; Koenig, Alan E.
2015-01-01
A combination of petrographic observations, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), and statistical data exploration was used in this study to determine compositional variations in hydrothermal and igneous magnetite from five porphyry Cu–Mo and skarn deposits in the southwestern United States, and igneous magnetite from the unmineralized, granodioritic Inner Zone Batholith, Japan. The most important overall discriminators for the minor and trace element chemistry of magnetite from the investigated porphyry and skarn deposits are Mg, Al, Ti, V, Mn, Co, Zn, and Ga—of these the elements with the highest variance for (I) igneous magnetite are Mg, Al, Ti, V, Mn, Zn, for (II) hydrothermal porphyry magnetite are Mg, Ti, V, Mn, Co, Zn, and for (III) hydrothermal skarn magnetite are Mg, Ti, Mn, Zn, and Ga. Nickel could only be detected at levels above the limit of reporting (LOR) in two igneous magnetites. Equally, Cr could only be detected in one igneous occurrence. Copper, As, Mo, Ag, Au, and Pb have been reported in magnetite by other authors but could not be detected at levels greater than their respective LORs in our samples. Comparison with the chemical signature of igneous magnetite from the barren Inner Zone Batholith, Japan, suggests that V, Mn, Co, and Ga concentrations are relatively depleted in magnetite from the porphyry and skarn deposits. Higher formation conditions in combination with distinct differences between melt and hydrothermal fluid compositions are reflected in Al, Ti, V, and Ga concentrations that are, on average, higher in igneous magnetite than in hydrothermal magnetite (including porphyry and skarn magnetite). Low Ti and V concentrations in combination with high Mn concentrations are characteristic features of magnetite from skarn deposits. High Mg concentrations (<1,000 ppm) are characteristic for magnetite from magnesian skarn and likely reflect extensive fluid/rock interaction. In porphyry deposits, hydrothermal magnetite from different vein types can be distinguished by varying Ti, V, Mn, and Zn contents. Titanium and V concentrations are highly variable among hydrothermal and igneous magnetites, but Ti concentrations above 3,560 ppm could only be detected in igneous magnetite, and V concentrations are on average lower in hydrothermal magnetite. The highest Ti concentrations are present in igneous magnetite from gabbro and monzonite. The lowest Ti concentrations were recorded in igneous magnetite from granodiorite and granodiorite breccia and largely overlap with Ti concentrations found in hydrothermal porphyry magnetite. Magnesium and Mn concentrations vary between magnetite from different skarn deposits but are generally greater than in hydrothermal magnetite from the porphyry deposits. High Mg, and low Ti and V concentrations characterize hydrothermal magnetite from magnesian skarn deposits and follow a trend that indicates that magnetite from skarn (calcic and magnesian) commonly has low Ti and V concentrations.
Electrical properties of lightly Ga-doped ZnO nanowires
NASA Astrophysics Data System (ADS)
Alagha, S.; Heedt, S.; Vakulov, D.; Mohammadbeigi, F.; Senthil Kumar, E.; Schäpers, Th; Isheim, D.; Watkins, S. P.; Kavanagh, K. L.
2017-12-01
We investigated the growth, crystal structure, elemental composition and electrical transport characteristics of ZnO nanowires, a promising candidate for optoelectronic applications in the UV-range. Nominally-undoped and Ga-doped ZnO nanowires were grown by metal-organic chemical vapor deposition. Photoluminescence measurements confirmed the incorporation of Ga via donor-bound exciton emission. With atom-probe tomography we estimated an upper limit of the Ga impurity concentration ({10}18 {{cm}}-3). We studied the electrical transport characteristics of these nanowires with a W-nanoprobe technique inside a scanning electron microscope and with lithographically-defined contacts allowing back-gated measurements. An increase in apparent resistivity by two orders of magnitude with decreasing radius was measured with both techniques with a much larger distribution width for the nanoprobe method. A drop in the effective carrier concentration and mobility was found with decreasing radius which can be attributed to carrier depletion and enhanced scattering due to surface states. Little evidence of a change in resistivity was observed with Ga doping, which indicates that the concentration of native or background dopants is higher than the Ga doping concentration.
[Heavy metals pollution and analysis of seasonal variation runoff in Xi'an].
Yuan, Hong-Lin; Li, Xing-Yu; Wang, Xiao-Chang
2014-11-01
In order to explore heavy metals pollution situation,changes in characteristics, the correlation between each heavy mental and pollution source analysis of Xi'an various regions in different season in one year. This study collected several samples of Xi'an rainfall typical urban trunk roads throughout the year in 2013 and used inductively coupled plasma mass spectrometry (ICP-MS) to determine the level of Fe, Mn, Pb, Zn, Al, Cd of the samples, then, analyzed the seasonal change of heavy mental. Studies have shown that: the heavy metal of Xi'an road runoff pollutes seriously, the concentration of Fe over three times of the national standard and maintain the higher levels throughout the year, meanwhile the concentration with the intensity of human activities increases. The concentration of Mn and Zn in one year show a trends: winter > autumn > summer> spring. Pb concentration increases with the increase in traffic volume, while showing: winter > spring > summer > autumn. Factor analysis shows: Fe and Al was affected by the same sources-natural sources; Zn, Cd affected by anthropogenic sources of large; Mn, Pb affected by the larger traffic sources.
Souza, A M; Salviano, A M; Melo, J F B; Felix, W P; Belém, C S; Ramos, P N
2016-01-01
In this study we determined the concentration of metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in the water lower São Francisco River basin, to evaluate the influence of urbanization and industrialization on environmental changes in the water resource. All samples were analyzed using the IUPAC adapted method and processed in an atomic absorption spectrophotometer. The sampling stations located near the industrial areas were influenced by industrialization because they presented higher concentrations of Cd, Cr, Ni and Cu. The other sampled locations showed changes with regard the trace elements probably originating in the soil, like Fe, Zn and Pb. There was a gradual increase in the concentrations of metals, in general, in the period of highest rainfall of the hydrographic network. Overall, except for Zn and Mn, the trace elements exceeded the maximum allowed value established by national legislation (CONAMA). Lower São Francisco River basin has suffered interference from urbanization and industrialization, so awareness programs should be developed so as to control and lessen future problems.
Distribution of trace metals in anchialine caves of Adriatic Sea, Croatia
NASA Astrophysics Data System (ADS)
Cuculić, Vlado; Cukrov, Neven; Kwokal, Željko; Mlakar, Marina
2011-11-01
This study presents results of the first comprehensive research on ecotoxic trace metals (Cd, Pb, Cu and Zn) in aquatic anchialine ecosystems. Data show the influence of hydrological and geological characteristics on trace metals in highly stratified anchialine water columns. Distribution of Cd, Pb, Cu and Zn in two anchialine water bodies, Bjejajka Cave and Lenga Pit in the Mljet National park, Croatia were investigated seasonally from 2006 to 2010. Behaviour and concentrations of dissolved and total trace metals in stratified water columns and metal contents in sediment, carbonate rocks and soil of the anchialine environment were evaluated. Trace metals and dissolved organic carbon (DOC) concentrations in both anchialine water columns were significantly elevated compared to adjacent seawater. Zn and Cu concentrations were the highest in the Lenga Pit water column and sediment. Elevated concentrations of Zn, Pb and Cu in Bjejajka Cave were mainly terrigenous. Significantly elevated concentrations of cadmium (up to 0.3 μg L -1) were found in the water column of Bjejajka cave, almost two orders of magnitude higher compared to nearby surface seawater. Laboratory analysis revealed that bat guano was the major source of cadmium in Bjejajka Cave. Cadmium levels in Lenga Pit, which lacks accumulations of bat guano, were 20-fold lower. Moreover, low metal amounts in carbonate rocks in both caves, combined with mineral leaching experiments, revealed that carbonates play a minor role as a source of metals in both water columns. We observed two types of vertical distribution pattern of cadmium in the stratified anchialine Bjejajka Cave water column. At lower salinities, non-conservative behaviour was characterized by strong desorption and enrichment of dissolved phase while, at salinities above 20, Cd behaved conservatively and its dissolved concentration decreased. Conservative behaviour of Cu, Pb, Zn and DOC was observed throughout the water column. After heavy rains, Cd showed reduced concentration and uniform vertical distribution, suggesting a non-terrestrial origin. Under the same conditions, concentrations of total and dissolved Pb, Cu, Zn and DOC were significantly elevated. Variations of trace metal vertical distributions in anchialine water columns were caused by large inputs of fresh water (extraordinary rainy events), and were not influenced by seasonal changes.
NASA Astrophysics Data System (ADS)
Carrasco, G. G.; Morton, P. L.; Donat, J. R.
2008-12-01
We determined Zn and Cd total dissolved (0.45 µm-filtered) concentrations, organic complexation and chemical speciation in surface water samples collected along the transect of the 2002 IOC Baseline Contaminant Survey expedition in the Western North Pacific and in vertical profile water samples at nine stations. The goals of this work were (1) to compare and contrast various trace metal sources, including both natural and anthropogenic atmospheric deposition, upwelling, marginal seas and others; (2) to study the organic ligand sources, generally thought to be phytoplankton; and (3) to investigate metal and ligand transport mechanisms, residence times and eventual upwelling in the Eastern North Pacific. Total dissolved (TD) Zn and Cd values were obtained using a combination of differential pulse stripping anodic voltammetry (DPASV), preconcentration with 8-HQ or APDC/DDC and quantification at ICPMS or AA. Organic complexation and chemical speciation of Zn and Cd were determined simultaneously using DPASV at a thin-mercury-film, glassy-carbon-disk-electrode. Surface transect TDZn and TDCd concentrations were low in the Subtropical Gyre (STG), in contrast with high values in the Western Subarctic Gyre (WSG). Zn and Cd were organically complexed in most surface samples: at least one ligand class was detected for Zn and Cd, whose conditional stability constants (log K') averaged 10.2 and 10.5, respectively. These ligands were found in excess of the total dissolved metal throughout the region of study except in the WSG for Cd. Vertical distributions of TDZn and TDCd exhibited nutrient-type profiles for all the STG stations. While constant Zn/Si and Cd/P values were observed throughout the water column in the WSG, some deviations were observed within the STG. In addition, the mode and intermediate water masses of the STG displayed very high concentrations of a Zn-complexing ligand (log K' 10.0) in excess of TDZn. As these water masses moved eastward, we observed that the ligand concentrations decreased. In contrast to the STG, the upper 1000m of the WSG showed elevated concentrations of both metals. Despite elevated surface (0-200m) Zn concentrations (~2nM), a Zn-complexing ligand (log K' 9.8) was found in excess of TDZn; below the photic layer, even higher TDZn concentrations might have saturated the ligand. A ligand for Cd was present in lower-than-TDCd concentrations in the same surface waters; below them, organic complexation of Cd was observed rarely in both STG and WSG regions. By studying the geographic distribution of the total dissolved metals and ligands, along with other dissolved and particulate tracers, possible sources and transport mechanisms can be contrasted and evaluated. Furthermore, the influence of these sources and transport mechanisms on the distribution of Zn and Cd chemical species and, ultimately, the bioavailability of these micronutrient metals can be studied.
Deng, Lin; Li, Zhu; Wang, Jie; Liu, Hongyan; Li, Na; Wu, Longhua; Hu, Pengjie; Luo, Yongming; Christie, Peter
2016-01-01
In two long-term field experiments the zinc (Zn)/cadmium (Cd) hyperaccumulator Sedum plumbizincicola (S. plumbizincicola) was examined to optimize the phytoextraction of metal contaminated soil by two agronomic strategies of intercropping with maize (Zea mays) and plant densities. Soil total Zn and Cd concentrations decreased markedly after long-term phytoextraction. But shoot biomass and Cd and Zn concentrations showed no significant difference with increasing remediation time. In the intercropping experiment the phytoremediation efficiency in the treatment "S. plumbizincicola intercropped with maize" was higher than in S. plumbizincicola monocropping, and Cd concentrations of corn were below the maximum national limit. In the plant density experiment the phytoremediation efficiency increased with increasing plant density and 440,000 plants ha(-1) gave the maximum rate. These results indicated that S. plumbizincicola at an appropriate planting density and intercropped with maize can achieve high remediation efficiency to contaminated soil without affecting the cereal crop productivity. This cropping system combines adequate agricultural production with soil heavy metal phytoextraction.
Heavy metals in Tuskegee Lake crayfish
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, A.T.
1995-12-31
The crayfish, Onconectes virifis, is a bottom dweller and eats insect larvae, worms, crustaceans, small snails, fishes, and dead animal matter. They can be used to monitor the aquatic environment such as lakes, ponds and creeks. To monitor the environmental contamination of heavy metals (Hg, Pb, Cd, Cu, Co, Ni, and Zn) in Tuskegee Lake, Tuskegee, Alabama, adult crayfish were collected and analyzed for these metals. The Pb, Cd, Cu, Ni, and Zn concentrations were 3.91, 0.22, 8.06, 1.11, and 33.37 ppm in muscle and 28.98, 1.15, 9.86, 2.1 8, and 32.62 ppm in exoskeleton of crayfish, respectively. The concentrationsmore » of Pb and Cd were significantly higher in exoskeleton than those of muscle. However, the concentrations of Cu, Ni, and Zn did not show any significant difference between the muscle and the exoskeleton of the crayfish. The concentrations of Hg and Co were undetected in both the exoskeleton and muscle of the crayfish.« less
Bioaccumulation of Heavy Metals in Some Tissues of Fish in Lake Geriyo, Adamawa State, Nigeria.
Bawuro, A A; Voegborlo, R B; Adimado, A A
2018-01-01
Bioaccumulation of heavy metals (Zn, Pb, Cd, and Cu) was determined in the liver, gills, and flesh from benthic and pelagic fish species collected from Lake Geriyo covering two seasons. The levels of the heavy metals varied significantly among fish species and organs. Flesh possessed the lowest concentration of all the metals. Liver was the target organ for Zn, Cu, and Pb accumulations. Cd however exhibited higher concentration in the gills. Fish species showed interspecific variation of metals. These differences were discussed for the contribution of potential factors that affected metals uptake like age, geographical distribution, and species-specific factors. The concentration of metals in fish flesh was accepted by the international legislation limits for Cu, Zn, and Cd; however, Pb transcend in Clarias and Tilapia during wet season and Heterotis in both seasons, hence unsafe for human consumption and a threat to public health. These levels might be due to anthropogenic inputs as there is no industrial activity around the lake.
Lai, Hung-Yu; Juang, Kai-Wei; Chen, Zueng-Sang
2010-01-01
A site in central Taiwan with an area of 1.3 ha and contaminated with Cr, Cu, Ni, and Zn was selected to examine the feasibility of phytoextraction. Based on the results of a preexperiment at this site, a total of approximately 20,000 plants of 12 species were selected from plants of 33 tested species to be used in a large-area phytoextraction experiment at this site. A comparison with the initial metal concentration of 12 plant species before planting demonstrated that most species accumulated significant amounts of Cr, Cu, Ni, and Zn in their shoots after growing in this contaminated site for 31 d. Among the 12 plant species, the following accumulated higher concentrations of metals in their shoots; Garden canna and Garden verbena (45-60 mg Cr kg(-1)), Chinese ixora and Kalanchoe (30 mg Cu kg(-1)), Rainbow pink and Sunflower (30 mg Ni kg(-1)), French marigold and Sunflower (300-470 mg Zn kg(-1)). The roots of the plants of most of the 12 plant species can accumulate higher concentrations of metals than the shoots and extending the growth period promotes accumulation in the shoots. Large-area experiments demonstrated that phytoextraction is a feasible method to enable metal-contaminated soil in central Taiwan to be reused.
Test of tree core sampling for screening of toxic elements in soils from a Norwegian site.
Algreen, Mette; Rein, Arno; Legind, Charlotte N; Amundsen, Carl Einar; Karlson, Ulrich Gosewinkel; Trapp, Stefan
2012-04-01
Tree core samples have been used to delineate organic subsurface plumes. In 2009 and 2010, samples were taken at trees growing on a former dump site in Norway and analyzed for arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), and zinc (Zn). Concentrations in wood were in averages (dw) 30 mg/kg for Zn, 2 mg/kg for Cu, and < 1 mg/kg for Cd, Cr, As and Ni. The concentrations in wood samples from the polluted test site were compared to those derived from a reference site. For all except one case, mean concentrations from the test site were higher than those from the reference site, but the difference was small and not always significant. Differences between tree species were usually higher than differences between reference and test site. Furthermore, all these elements occur naturally, and Cu, Ni, and Zn are essential minerals. Thus, all trees will have a natural background of these elements, and the occurrence alone does not indicate soil pollution. For the interpretation of the results, a comparison to wood samples from an unpolluted reference site with same species and similar soil conditions is required. This makes the tree core screening method less reliable for heavy metals than, e.g., for chlorinated solvents.
Tiecher, Tadeu L; Ceretta, Carlos A; Tiecher, Tales; Ferreira, Paulo A A; Nicoloso, Fernando T; Soriani, Hilda H; Rossato, Liana V; Mimmo, Tanja; Cesco, Stefano; Lourenzi, Cledimar R; Giachini, Admir J; Brunetto, Gustavo
2016-07-01
The occurrence of high levels of Cu in vineyard soils is often the result of intensive use of fungicides for the preventive control of foliar diseases and can cause toxicity to plants. Nowadays many grape growers in Southern Brazil have replaced Cu-based with Zn-based products. The aim of the study was to evaluate whether the increase in Zn concentration in a soil with high Cu contents can interfere with the dynamics of these elements, and if this increase in Zn may cause toxicity to maize (Zea mays L.). Soil samples were collected in two areas, one in a vineyard with more than 30 years of cultivation and high concentration of Cu and the other on a natural grassland area adjacent to the vineyard. Different doses of Cu and Zn were added to the soil, and the adsorption isotherms were built following the Langmuir's model. In a second experiment, the vineyard soil was spiked with different Zn concentrations (0, 30, 60, 90, 180, and 270mg Zn kg(-1)) in 3kg pots where maize was grown in a greenhouse for 35 days. When Cu and Zn were added together, there was a reduction in the quantities adsorbed, especially for Zn. Zn addition decreased the total plant dry matter and specific leaf mass. Furthermore, with the increase in the activity of catalase, an activation of the antioxidant system was observed. However, the system was not sufficiently effective to reverse the stress levels imposed on soil, especially in plants grown in the highest doses of Zn. At doses higher than 90Znmgkg(-1) in the Cu-contaminated vineyard soil, maize plants were no longer able to activate the protection mechanism and suffered from metal stress, resulting in suppressed dry matter yields due to impaired functioning of the photosynthetic apparatus and changes in the enzymatic activity of plants. Replacement of Cu- by Zn-based fungicides to avoid Cu toxicity has resulted in soil vineyards contaminated with these metals and damaging of plant photosynthetic apparatus and enzyme activity. Copyright © 2016 Elsevier Inc. All rights reserved.
Zheng, Shun-an; Zheng, Xiangqun; Chen, Chun
2012-01-01
Heavy metals that leach from contaminated soils under acid rain are of increasing concern. In this study, simulated acid rain (SAR) was pumped through columns of artificially contaminated purple soil. Column leaching tests and sequential extraction were conducted for the heavy metals Cu, Pb, Cd, and Zn to determine the extent of their leaching as well as to examine the transformation of their speciation in the artificially contaminated soil columns. Results showed that the maximum leachate concentrations of Cu, Pb, Cd, and Zn were less than those specified in the Chinese Quality Standards for Groundwater (Grade IV), thereby suggesting that the heavy metals that leached from the polluted purple soil receiving acid rain may not pose as risks to water quality. Most of the Pb and Cd leachate concentrations were below their detection limits. By contrast, higher Cu and Zn leachate concentrations were found because they were released by the soil in larger amounts as compared with those of Pb and Cd. The differences in the Cu and Zn leachate concentrations between the controls (SAR at pH 5.6) and the treatments (SAR at pH 3.0 and 4.5) were significant. Similar trends were observed in the total leached amounts of Cu and Zn. The proportions of Cu, Pb, Cd, and Zn in the EXC and OX fractions were generally increased after the leaching experiment at three pH levels, whereas those of the RES, OM, and CAR fractions were slightly decreased. Acid rain favors the leaching of heavy metals from the contaminated purple soil and makes the heavy metal fractions become more labile. Moreover, a pH decrease from 5.6 to 3.0 significantly enhanced such effects.
Zheng, Shun-an; Zheng, Xiangqun; Chen, Chun
2012-01-01
Heavy metals that leach from contaminated soils under acid rain are of increasing concern. In this study, simulated acid rain (SAR) was pumped through columns of artificially contaminated purple soil. Column leaching tests and sequential extraction were conducted for the heavy metals Cu, Pb, Cd, and Zn to determine the extent of their leaching as well as to examine the transformation of their speciation in the artificially contaminated soil columns. Results showed that the maximum leachate concentrations of Cu, Pb, Cd, and Zn were less than those specified in the Chinese Quality Standards for Groundwater (Grade IV), thereby suggesting that the heavy metals that leached from the polluted purple soil receiving acid rain may not pose as risks to water quality. Most of the Pb and Cd leachate concentrations were below their detection limits. By contrast, higher Cu and Zn leachate concentrations were found because they were released by the soil in larger amounts as compared with those of Pb and Cd. The differences in the Cu and Zn leachate concentrations between the controls (SAR at pH 5.6) and the treatments (SAR at pH 3.0 and 4.5) were significant. Similar trends were observed in the total leached amounts of Cu and Zn. The proportions of Cu, Pb, Cd, and Zn in the EXC and OX fractions were generally increased after the leaching experiment at three pH levels, whereas those of the RES, OM, and CAR fractions were slightly decreased. Acid rain favors the leaching of heavy metals from the contaminated purple soil and makes the heavy metal fractions become more labile. Moreover, a pH decrease from 5.6 to 3.0 significantly enhanced such effects. PMID:23185399
Identification of an inhibitory Zn2+ binding site on the human glycine receptor α1 subunit
Harvey, Robert J; Thomas, Philip; James, Colin H; Wilderspin, Andrew; Smart, Trevor G
1999-01-01
Whole-cell glycine-activated currents were recorded from human embryonic kidney (HEK) cells expressing wild-type and mutant recombinant homomeric glycine receptors (GlyRs) to locate the inhibitory binding site for Zn2+ ions on the human α1 subunit. Glycine-activated currents were potentiated by low concentrations of Zn2+ (<10 μm) and inhibited by higher concentrations (>100 μm) on wild-type α1 subunit GlyRs. Lowering the external pH from 7.4 to 5.4 inhibited the glycine responses in a competitive manner. The inhibition caused by Zn2+ was abolished leaving an overt potentiating effect at 10 μm Zn2+ that was exacerbated at 100 μm Zn2+. The identification of residues involved in the formation of the inhibitory binding site was also assessed using diethylpyrocarbonate (DEPC), which modifies histidines. DEPC (1 mm) abolished Zn2+-induced inhibition and also the potentiation of glycine-activated currents by Zn2+. The reduction in glycine-induced whole-cell currents in the presence of high (100 μm) concentrations of Zn2+ did not increase the rate of glycine receptor desensitisation. Systematic mutation of extracellular histidine residues in the GlyR α1 subunit revealed that mutations H107A or H109A completely abolished inhibition of glycine-gated currents by Zn2+. However, mutation of other external histidines, H210, H215 and H419, failed to prevent inhibition by Zn2+ of glycine-gated currents. Thus, H107 and H109 in the extracellular domain of the human GlyR α1 subunit are major determinants of the inhibitory Zn2+ binding site. An examination of Zn2+ co-ordination in metalloenzymes revealed that the histidine- hydrophobic residue-histidine motif found to be responsible for binding Zn2+ in the human GlyR α1 subunit is also shared by some of these enzymes. Further comparison of the structure and location of this motif with a generic model of the GlyR α1 subunit suggests that H107 and H109 participate in the formation of the inhibitory Zn2+ binding site at the apex of a β sheet in the N-terminal extracellular domain. PMID:10517800
Effect of heavy Ag doping on the physical properties of ZnO
NASA Astrophysics Data System (ADS)
Hou, Qingyu; Zhao, Chunwang; Jia, Xiaofang; Xu, Zhenchao
2018-04-01
The band structure, density of state and absorption spectrum of Zn1‑xAgxO (x = 0.02778, 0.04167) were calculated. Results indicated that a higher doping content of Ag led to a higher total energy, lower stability, higher formation energy, narrower bandgap, more significant red shift of the absorption spectrum, higher relative concentration of free hole, smaller hole effective mass, lower mobility and better conductivity. Furthermore, four types of model with the same doping content of double Ag-doped Zn1‑xAgxO (x = 0.125) but different manners of doping were established. Two types of models with different doping contents of double Ag-doped Zn1‑xAgxO (x = 0.0626, 0.0833) but the same manner of doping, were also established. Under the same doping content and different ordering occupations in Ag double doping, the doped system almost caused magnetic quenching upon the nearest neighbor -Ag-O-Ag- bonding at the direction partial to the a- or b-axis. Upon the next-nearest neighbor of -Ag-O-Zn-O-Ag- bonding at the direction partial to the c-axis, the total magnetic moment of the doped system increased, and the doped system reached a Curie temperature above the room-temperature. All these results indicated that the magnetic moments of Ag double-doped ZnO systems decreased with increased Ag doping content. Within the range of the mole number of the doping content of 0.02778-0.04167, a greater Ag doping content led to a narrower bandgap of the doped system and a more significant red shift in the absorption spectrum. The absorption spectrum of the doped ZnO system with interstitial Ag also shows a red shift.
Han, Xinhai; Wang, Guanzhong; Jie, Jiansheng; Choy, Wallace C H; Luo, Yi; Yuk, T I; Hou, J G
2005-02-24
Novel ZnO cone arrays with controllable morphologies have been synthesized on silicon (100) substrates by thermal evaporation of metal Zn powder at a low temperature of 570 degrees C without a metal catalyst. Clear structure evolutions were observed using scanning electron microscopy: well-aligned ZnO nanocones, double-cones with growing head cones attached by stem cones, and cones with straight hexagonal pillar were obtained as the distance between the source and the substrates was increased. X-ray diffraction shows that all cone arrays grow along the c-axis. Raman and photoluminescence spectra reveal that the optical properties of the buffer layer between the ZnO cone arrays and the silicon substrates are better than those of the ZnO cone arrays due to high concentration of Zn in the heads of the ZnO cone arrays and higher growth temperature of the buffer layer. The growth of ZnO arrays reveals that the cone arrays are synthesized through a self-catalyzed vapor-liquid-solid (VLS) process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Jinkyoung; Ahmed, Towfiq; Tang, Wei
ZnO radial p–n junction architecture has the potential for forward-leap of light-emitting diode (LED) technology in terms of higher efficacy and economical production. Here, we report on ZnO radial p–n junction-based light emitting diodes prepared by full metalorganic chemical vapour deposition (MOCVD) with hydrogen-assisted p-type doping approach. The p-type ZnO(P) thin films were prepared by MOCVD with the precursors of dimethylzinc, tert-butanol, and tertiarybutylphosphine. Controlling the precursor flow for dopant results in the systematic change of doping concentration, Hall mobility, and electrical conductivity. Moreover, the approach of hydrogen-assisted phosphorous doping in ZnO expands the understanding of doping behaviour in ZnO.more » Ultraviolet and visible electroluminescence of ZnO radial p–n junction was demonstrated through a combination of position-controlled nano/microwire and crystalline p-type ZnO(P) radial shell growth on the wires. Lastly, the reported research opens a pathway of realisation of production-compatible ZnO p–n junction LEDs.« less
Yoo, Jinkyoung; Ahmed, Towfiq; Tang, Wei; ...
2017-09-05
ZnO radial p–n junction architecture has the potential for forward-leap of light-emitting diode (LED) technology in terms of higher efficacy and economical production. Here, we report on ZnO radial p–n junction-based light emitting diodes prepared by full metalorganic chemical vapour deposition (MOCVD) with hydrogen-assisted p-type doping approach. The p-type ZnO(P) thin films were prepared by MOCVD with the precursors of dimethylzinc, tert-butanol, and tertiarybutylphosphine. Controlling the precursor flow for dopant results in the systematic change of doping concentration, Hall mobility, and electrical conductivity. Moreover, the approach of hydrogen-assisted phosphorous doping in ZnO expands the understanding of doping behaviour in ZnO.more » Ultraviolet and visible electroluminescence of ZnO radial p–n junction was demonstrated through a combination of position-controlled nano/microwire and crystalline p-type ZnO(P) radial shell growth on the wires. Lastly, the reported research opens a pathway of realisation of production-compatible ZnO p–n junction LEDs.« less
Burrows, Jill E.; Cravotta, Charles A.; Peters, Stephen C.
2017-01-01
Net-alkaline, anoxic coal-mine drainage containing ∼20 mg/L FeII and ∼0.05 mg/L Al and Zn was subjected to parallel batch experiments: control, aeration (Aer 1 12.6 mL/s; Aer 2 16.8 mL/s; Aer 3 25.0 mL/s), and hydrogen peroxide (H2O2) to test the hypothesis that aeration increases pH, FeII oxidation, hydrous FeIII oxide (HFO) formation, and trace-metal removal through adsorption and coprecipitation with HFO. During 5.5-hr field experiments, pH increased from 6.4 to 6.7, 7.1, 7.6, and 8.1 for the control, Aer 1, Aer 2, and Aer 3, respectively, but decreased to 6.3 for the H2O2 treatment. Aeration accelerated removal of dissolved CO2, Fe, Al, and Zn. In Aer 3, dissolved Al was completely removed within 1 h, but increased to ∼20% of the initial concentration after 2.5 h when pH exceeded 7.5. H2O2 promoted rapid removal of all dissolved Fe and Al, and 13% of dissolved Zn.Kinetic modeling with PHREEQC simulated effects of aeration on pH, CO2, Fe, Zn, and Al. Aeration enhanced Zn adsorption by increasing pH and HFO formation while decreasing aqueous CO2 available to form ZnCO30 and Zn(CO3)22− at high pH. Al concentrations were inconsistent with solubility control by Al minerals or Al-containing HFO, but could be simulated by adsorption on HFO at pH < 7.5 and desorption at higher pH where Al(OH)4− was predominant. Thus, aeration or chemical oxidation with pH adjustment to ∼7.5 could be effective for treating high-Fe and moderate-Zn concentrations, whereas chemical oxidation without pH adjustment may be effective for treating high-Fe and moderate-Al concentrations.
Characterizing bread wheat genotypes of Pakistani origin for grain zinc biofortification potential.
Rehman, Abdul; Farooq, Muhammad; Nawaz, Ahmad; Al-Sadi, Abdullah M; Al-Hashmi, Khalid S; Nadeem, Faisal; Ullah, Aman
2018-03-15
Zinc (Zn) is essential for all life forms and its deficiency is a major issue of malnutrition in humans. This study was carried out to characterize 28 wheat genotypes of Pakistani origin for grain zinc biofortification potential, genetic diversity and relatedness. There was low genetic differentiation among the tested genotypes. However, they differed greatly in yield-related traits, grain mineral (Zn, calcium (Ca) and protein) concentrations and Zn bioavailability. Zinc application increased the concentration of Zn in wheat grain (32.1%), embryo (19.8%), aleurone (47%) and endosperm (23.7%), with an increase in bioavailable Zn (22.2%) and a reduction in phytate concentration (6.8%). Application of Zn also enhanced grain protein and Ca concentrations. Among wheat genotypes, Blue Silver had the highest concentration of Zn in grain, embryo, aleurone and endosperm, with high bioavailable Zn, while Kohinoor-83 had low phytate concentration. Wheat genotypes of Pakistan are genetically less diverse owing to continuous focus on the development of high-yielding varieties only. Therefore genetically diverse wheat genotypes with high endospermic Zn concentration and better grain yield should be used in breeding programs approaches, aiming at improving Zn bioavailability. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Spatial Evaluation of Heavy Metals Concentrations in the Surface Sediment of Taihu Lake.
Niu, Yong; Jiao, Wei; Yu, Hui; Niu, Yuan; Pang, Yong; Xu, Xiangyang; Guo, Xiaochun
2015-11-27
With regard to the size of China's freshwater lakes, Taihu Lake ranks third and it plays an important role in the supply of drinking water, flood prevention, farming and navigation, as well as in the travelling industry. The problem of environmental pollution has attracted widespread attention in recent years. In order to understand the levels, distribution and sources of heavy metals in sediments of Taihu Lake, random selection was carried out to obtain 59 samples of surface sediment from the entire lake and study the concentrations of Pb, Cd, Cu, Zn, Cr and Ni. Toxic units were also calculated to normalize the toxicities caused by various heavy metals. As a result, Cd and Cu in sediment were considered lower than the effect range low (ERL) at all regions where samples were gathered, while Pb and Ni were categorized into ERL-effect range median (ERM) at over 22% of the regions where samples were obtained. Nevertheless, all average concentrations of the samples were below the level of potential effect. According to the findings of this research, significant spatial heterogeneity existed in the above heavy metals. In conclusion, the distribution areas of heavy metals with higher concentrations were mainly the north bays, namely Zhushan Bay, Meiliang Bay as well as Gonghu Bay. The distribution areas of Cu, Zn, Cr and Ni with higher concentration also included the lake's central region, whereas the uniform distribution areas of those with lower concentrations were the lake's southeast region. In addition, it was most probable that the spatial distribution of heavy metals was determined by river inputs, whereas atmospheric precipitation caused by urban and traffic contamination also exerted considerable effects on the higher concentrations of Pb and Cd. Through evaluating the total amount of toxic units (ΣTU), it was found that higher toxicity existed primarily in the north bays and central region of the lake. If the heavy metals were sorted by the reduction of mean heavy metal toxic units in Taihu Lake in descending order, it would be Pb, Cr, Ni, Cd, Zn and Cu. Generally speaking, these result of analyses are conducive to alleviating the contamination of heavy metals in Taihu Lake.
NASA Astrophysics Data System (ADS)
Yilmaz, Ceren; Unal, Ugur
2016-04-01
Zn(NO3)2 concentration had been reported to be significantly influential on electrodeposition of ZnO structures. In this work, this issue is revisited using hydrothermal-electrochemical deposition (HED). Seedless, cathodic electrochemical deposition of ZnO films is carried out on ITO electrode at 130 °C in a closed glass reactor with varying Zn(NO3)2 concentration. Regardless of the concentration of Zn2+ precursor (0.001-0.1 M) in the deposition solution, vertically aligned 1-D ZnO nanorods are obtained as opposed to electrodepositions at lower temperatures (70-80 °C). We also report the effects of high bath temperature and pressure on the photoelectrochemical properties of the ZnO films. Manipulation of precursor concentration in the deposition solution allows adjustment of the aspect ratio of the nanorods and the degree of texturation along the c-axis; hence photoinduced current density. HED is shown to provide a single step synthesis route to prepare ZnO rods with desired aspect ratio specific for the desired application just by controlling the precursor concentration.
NASA Astrophysics Data System (ADS)
Čeburnis, D.; Steinnes, E.
Concentrations of seven elements (As, Cd, Cr, Mn, Pb, V, Zn) in mosses ( Hylocomium splendens, Pleurozium schreberi, Eurhynchium angustirete) and needles of Norway spruce ( Picea abies) and juniper ( Juniperus communis) were determined at 48 sites in Lithuania. Conifer needles consistently showed many times lower concentrations than mosses collected at the same site. Correlations between heavy-metal concentrations in needles and mosses indicated that accumulation processes may be similar, but mosses appear to be clearly preferable as biomonitors of atmospheric deposition because of their higher elemental concentrations and more quantitative reflection of deposition rates. Precipitation in the open field and under the canopy was investigated at two stations with respect to the same metals. The canopy was shown to retain a considerable part of lead, whereas elements such as Zn and Mn were enriched in precipitation under the canopy. Study of metal concentrations in moss growing, respectively, below and outside the canopy showed that none of so studied elements was significantly retained by the canopy. Most of the metals (Cu, Fe, Zn, Cr, Ni, V) were leached from the canopy to a smaller or greater extent.
Microwave synthesis and photocatalytic activities of ZnO bipods with different aspect ratios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Fazhe; Zhao, Zengdian; Qiao, Xueliang, E-mail: xuelqiao@163.com
2016-02-15
Highlights: • We synthesized linked ZnO nanorods by a facile microwave method. • The effect of reaction parameters on ZnO was investigated. • ZnO bipods with different aspect ratios were prepared. • The photocatalytic performance of ZnO bipods was evaluated. - Abstract: Linked ZnO nanorods have been successfully prepared via a facile microwave method without any post-synthesis treatment. The X-ray diffraction (XRD) patterns indicated the precursor had completely transformed into the pure ZnO crystal. The images of field emitting scanning electron microscope (FESEM) and transmission electron microscope (TEM) showed that linked ZnO nanorods consisted predominantly of ZnO bipods. The formationmore » process of the ZnO bipods was clearly discussed. ZnO bipods with different aspect ratios have been obtained by tuning the concentrations of reagents and microwave power. Moreover, the photocatalytic performance of ZnO bipods with different aspect ratios for degradation of methylene blue was systematically evaluated. The results of photocatalytic experiments showed that the photocatalytic activity increased with the aspect ratios of ZnO bipods increased. The reason is that ZnO bipods with larger aspect ratio have higher surface area, which can absorb more MB molecules to react with ·OH radicals.« less
Hassan, Saad Eldin; Hijri, Mohamed; St-Arnaud, Marc
2013-09-25
Trace metal (TM) pollution of soil is a worldwide problem that threatens the quality of human and environmental health. Phytoremediation using plants and their associated microbes has been increasingly used as a green technology for cleaning up TM-polluted soils. In this study, we investigated the effect of inoculating two arbuscular mycorrhizal fungal isolates, Rhizophagus irregularis and Funneliformis mosseae, on trace metal uptake by sunflower plants grown in soils contaminated with three different Cd concentrations in a greenhouse trial. Root colonization, plant dry mass, and plant tissue cadmium (Cd), zinc (Zn), and copper (Cu) concentrations in roots and shoots were determined after sunflower harvesting. We found that root mycorrhizal colonization rates were not significantly affected by Cd treatments. At low soil Cd concentration, R. irregularis-inoculated plants had significantly higher shoot Cd and Zn concentrations than plants inoculated with F. mosseae and non-inoculated plants. However, at high soil Cd concentrations, F. mosseae-inoculated plants had significantly lower shoot Cd and Zn concentrations and biological concentration factor (BCF) values than plants inoculated with R. irregularis and non-inoculated plants. Cadmium was mainly translocated in shoot tissues of R. irregularis-inoculated plants and sequestered in the rhizosphere of F. mosseae-inoculated plants. The results indicate that these AMF strains mediate different tolerance strategies to alleviate TM toxicity in their host plants and that inoculation with the R. irregularis strain can be used for Cd phytoextraction, whereas this F. mosseae strain can be useful for Cd and Zn phytostabilization of contaminated soil. Copyright © 2013 Elsevier B.V. All rights reserved.
Evseeva, Tatiana I; Geras'kin, Stanislav A; Shuktomova, Ida I
2003-01-01
Water from natural reservoirs located near the radium production industry storage cell were analyzed using the anaphase-telophase chromosome aberration assay that was carried out on Allium schoenoprasum L. meristematic root tip cells. (262)Ra, (228)U, (232)Th, (210)Pb and (210)Po concentrations in all samples were found not to exceed the radioactivity concentration guides. The concentrations of 10 heavy metal ions were measured in water samples, but only Zn and Mn levels exceeded the maximum permissible concentration for the natural reservoirs. All water samples caused a significant increase of the chromosome aberration frequency as compared to control. The chromosome aberration spectrum analysis shows that the genotoxic effect was a result of chemical toxicity mainly. Two samples from the brook springhead were found to be toxic. The regression analysis results show that the mitotic index increased in parallel to Zn ion levels, and decreased with higher (238)U concentrations. The water samples genotoxicity positively correlated with the Zn concentration. The present work demonstrates that in order to achieve pollutant screening, it is not sufficient to determine the pollutants concentration only. Adequate conclusions on the risk due to environment contamination need to be based on the additional simultaneous use of toxicity and genotoxicity tests. When bioassays indicate some genotoxic and toxic effects, the determination of the chemical composition of the samples is then required. A combination of these two methods allows the identification of the elements that require constant biological monitoring. In the study reported here, those elements are Zn and (238)U.
Influence of annealing to the defect of inkjet-printed ZnO thin film
NASA Astrophysics Data System (ADS)
Tran, Van-Thai; Wei, Yuefan; Zhan, Zhaoyao; Du, Hejun
2018-03-01
The advantages of additive manufacturing for electronic devices have led to the demand of printing functional material in search of a replacement for the conventional subtractive fabrication process. Zinc oxide (ZnO), thanks to its interesting properties for the electronic and photonic applications, has gathered many attentions in the effort to fabricate functional devices additively. Although many potential methods have been proposed, most of them focus on the lowtemperature processing of the printed material to be compatible with the polymer substrate. These low-temperature fabrication processes could establish a high concentration of defects in printed ZnO which significantly affect the performance of the device. In this study, ZnO thin film for UV photodetector application was prepared by inkjet printing of zinc acetate dihydrate solution following by different heat treatment schemes. The effects of annealing to the intrinsic defect of printed ZnO and photoresponse characteristics under UV illumination were investigated. A longer response/decay time and higher photocurrent were observed after the annealing at 350°C for 30 minutes. X-ray photoelectron spectroscopy (XPS) analysis suggests that the reducing of defect concentration, such as oxygen vacancy, and excess oxygen species in printed ZnO is the main mechanism for the variation in photoresponse. The result provides a better understanding on the defect of inkjet-printed ZnO and could be applied in engineering the properties of the printed oxide-based semiconductor.
Local Structures Around Co Atoms in Wurtzite ZnO Nano-Composites Probed by Fluorescence XAFS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi Tongfei; National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029; Liu Wenhan
2007-02-02
The local structures around Co ions in the Zn1-xCoxO nano-composites prepared by the sol-gel method have been investigated by fluorescence X-ray absorption fine structure (XAFS) technique. The results indicate that for dilute Co-doped ZnO (x=0.02, 0.05), the Co2+ ions are incorporated into the ZnO lattice, and are located at the position of the substitutional Zn2+ ions. As the Co content increases to 0.10 or higher, only part of the Co ions enter the lattice of the wurtzite and the others exist in the form of a Co3O4 phase whose content increases with the doped Co concentration. In the substitutional Zn0.98Co0.02Omore » sample, the bond length of the first shell RCo-O and the second shell RCo-Zn is smaller than the second shell Zn-Zn distance in ZnO by about 0.01{approx}0.02 A. These results imply that only small local lattice deformation is induced by dilute Co2+ substituting into the Zn2+ sites.« less
[The relevance of the trace elements zinc and iron in the milk fever disease of cattle].
Heilig, M; Bäuml, D; Fürll, M
2014-01-01
The aim of this study was to analyse the concentrations of Zn and Fe as well as their relationships to metabolic parameters in milk fever cows. A total of 195 Simmental cows, downer cows and clinically healthy control animals were divided into five groups: a) control group (CG, n = 21), b) all cows with milk fever (MF) (n = 174), c) MF cows without additional diseases (n = 145), d) cows with MF and mastitis (n = 10) and e) cows with retained placenta or endometritis (n = 19). Selenium (Se), zinc (Zn), iron (Fe), calcium (Ca), inorganic phosphorus (Pi), tumour necrosis factor α (TNFα), haptoglobin (Hp), antioxidants (Trolox Equivalent Antioxidative Capacity: TEAC), non-esterified fatty acids (NEFA), beta-hydroxybutyrate (BHB), bilirubin, urea, creatinine, glucose, cholesterol, gamma-glutamyl transferase (GGT) and alkaline phosphatase (AP) were analysed in the blood serum. The concentrations of Zn, Fe, Ca, Pi and TEAC were lower in groups b) to e) whereas Hp was higher than in the CG (p ≤ 0.05). In group c), lower Ca and Pi concentrations were found when compared to groups d) and e) (p ≤ 0.05). In group e), Zn concentrations were significantly lower than in group c) (p ≤ 0.05). Zn was negatively correlated with K (CG) and positively correlated with TEAC, Cu, Mn and Fe (groups b and c) and with Mn (group e) (p ≤ 0.05). Fe was positively correlated with Ca (group c), Pi (group c), K (groups b and c) and Mg (groups b-d) as well as with Zn, Cu and Se (groups b and c) (p ≤ 0.05). In groups b) and c), TNFα was increased and negatively correlated with Fe (p ≤ 0.05). AP activity in groups b) and e) was lower than in the CG (p ≤ 0.05). These results and literature data support the hypothesis that Zn and Fe could be engaged in bone metabolism and be involved in the pathogenesis of MF. The concentrations of Hp and TEAC support this interpretation. Control of the Zn and Fe status of cows and Zn supplementation should be included in the prevention and advanced therapy of MF.
Guo, Peng-ran; Lei, Yong-qian; Zhou, Qiao-li; Wang, Chang; Pan, Jia-chuan
2015-09-01
This study aimed to investigate the pollution degree and human health risk of heavy metals in soil and air samples around electroplating factories. Soil, air and waste gas samples were collected to measure 8 heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn) in two electroplating factories, located in Baiyun district of Guangzhou city. Geoaccumulation index and USEPA Risk Assessment Guidance for Superfund (RAGS) were respectively carried out. Results showed that concentrations of Hg and Pb in waste gas and Cr in air samples were higher than limits of the corresponding quality standards, and concentrations of Cd, Hg and Zn in soil samples reached the moderate pollution level. The HQ and HI of exposure by heavy metals in air and soil samples were both lower than 1, indicating that there was no non-carcinogen risk. CRAs and CRCr in soil samples were beyond the maximum acceptable level of carcinogen risk (10(-4)), and the contribution rate of CRCr to TCR was over 81%. CRCr, CRNi and TCR in air samples were in range of 10(-6) - 10(-4), indicating there was possibly carcinogen risk but was acceptable risk. CR values for children were higher than adults in soils, but were higher for adults in air samples. Correlation analysis revealed that concentrations of heavy metals in soils were significantly correlated with these in waste gas samples, and PCA data showed pollution sources of Cd, Hg and Zn in soils were different from other metals.
NASA Astrophysics Data System (ADS)
Heras-Juaristi, Gemma; Pérez-Coll, Domingo; Mather, Glenn C.
2016-11-01
The effects of sintering temperature and addition of 4 mol.% ZnO as sintering additive on the crystal structure, microstructure and electrical properties of SrZr0.9Y0.1O3-δ are reported. The presence of ZnO as sintering aid brings about high densification at 1300 °C (relative density ∼97%); gas-tightness is not achieved for ZnO-free samples sintered below 1600 °C. Bulk conductivity (σB) is considerably higher in wet and dry O2 on doping with ZnO, but only slight variations of σB with sintering temperature are observed for the Zn-containing phases. Similarly, the apparent grain-boundary conductivities are much greater for the Zn-doped samples. The grain-boundary volume and accompanying resistances are much reduced on sintering at 1500 °C with ZnO addition in comparison to Zn-modified samples sintered below 1500 °C, with only minor changes in grain-boundary relaxation frequency observed. Conversely, in comparison to the undoped sample with sintering temperature of 1600 °C, there is an enormous improvement in the specific grain-boundary conductivity of two orders of magnitude for the ZnO-containing samples. Analysis on the basis of the core space-charge-layer model relates the enhancement of the grain-boundary transport to a higher concentration of charge carriers in the space-charge layer and associated lower potential barrier heights.
Harper, Erin R; St Leger, Judy A; Westberg, Jody A; Mazzaro, Lisa; Schmitt, Todd; Reidarson, Tom H; Tucker, Melinda; Cross, Dee H; Puschner, Birgit
2007-06-01
Concentrations of nine heavy metals (As, Cd, Cu, Fe, Hg, Pb, Mn, Mo and Zn) were determined in the hepatic and renal tissues of 80 stranded California sea lions (Zalophus californianus). Significant age-dependant increases were observed in liver and kidney concentrations of cadmium and mercury, and renal zinc concentrations. Hepatic iron concentrations were significantly higher in females than males. Animals with suspected domoic acid associated pathological findings had significantly higher concentrations of liver and kidney cadmium; and significantly higher liver mercury concentrations when compared to animals classified with infectious disease or traumatic mortality. Significantly higher hepatic burdens of molybdenum and zinc were found in animals that died from infectious diseases. This is the largest study of tissue heavy metal concentrations in California sea lions to date. These data demonstrate how passive monitoring of stranded animals can provide insight into environmental impacts on marine mammals.
Haines, T.A.; Brumbaugh, W.G.
1994-01-01
Adult white suckers were collected from four lakes in Maine that ranged in pH from 7.0 to 5.4. The gastrointestinal tract and remainder of the carcass of fishes of similar age and size from each lake, and gills from additional fishes of similar size, were analyzed for Al, Cd, Pb, and Zn. Carcasses were also analyzed for Hg. Concentrations of Al, Cd, and Pb were highest in the gastrointestinal tract and lowest in the carcass; Zn concentration was highest in the gill. For carcass, all metals except Al differed significantly among lakes, for gill tissue Cd and Pb differed, and for gastrointestinal tract, only Cd differed among lakes. Where differences were significant, patterns among lakes were similar in each tissue analyzed. Concentrations of Cd, Hg, and Pb were negatively correlated with lake water pH, acid neutralizing capacity (ANC), Ca, and lake:watershed area, and positively correlated with lake water SO4, indicating that concentrations were higher in fish from more acidic lakes. Zinc concentrations in gills were unrelated to lake acidity, and carcass concentrations were higher in the less acidic lakes, which is the opposite of the pattern for the other metals studied. Zinc in gastrointestinal tract did not differ among lakes. Although the lakes we studied were located in undisturbed watersheds and did not receive any point source discharges, fish metal concentrations were comparable to or higher than those reported from waters receiving industrial discharges.
NASA Astrophysics Data System (ADS)
Li, Guojian; Lin, Xiao; Liu, Shiying; Jia, Baohai; Wang, Qiang
2018-05-01
It is important to fabricate stable p-type ZnO:Sb thermoelectric (TE) films for the p-n homojunction TE devices that convert waste heat directly into electricity. In this study, the ZnO:Sb films with different Sb contents were prepared by oxidizing evaporated Zn-Sb films in oxygen. The film with a high Sb content (5.32%) is easy to form Zn4Sb3 and ZnSb compound in the wurtzite ZnO. The resistivity has a sharply reduction with the Sb content from 0.228 Ω·m of 3.95% Sb to 4.68 × 10-5 Ω·m of 5.32% Sb. The lowest resistivity is lower at least one order of magnitude than the results of others with the similar Sb content. The Seebeck coefficient indicates that the 5.32% Sb film remains stable p-type conduction. The carrier concentration is about 1020 cm-3 and is higher at least one order of magnitude than the other results. Raman analysis indicates that the peak of E2high related O sublattice vibrations indicates that the O sites are substituted by Sb3+ ions, which increases the carrier concentration. However, the mobility is relatively weak because the intrinsic host lattice defects activated as vibrating complexes. The power factor of the p-type ZnO:Sb of the 5.32% Sb film at 427 °C is 46.79 μW/m·K2.
Bioavailability of Zinc in Wistar Rats Fed with Rice Fortified with Zinc Oxide
Della Lucia, Ceres Mattos; Santos, Laura Luiza Menezes; Rodrigues, Kellen Cristina da Cruz; Rodrigues, Vivian Cristina da Cruz; Martino, Hércia Stampini Duarte; Pinheiro Sant’Ana, Helena Maria
2014-01-01
The study of zinc bioavailability in foods is important because this mineral intake does not meet the recommended doses for some population groups. Also, the presence of dietary factors that reduce zinc absorption contributes to its deficiency. Rice fortified with micronutrients (Ultra Rice®) is a viable alternative for fortification since this cereal is already inserted into the population habit. The aim of this study was to evaluate the bioavailability of zinc (Zn) in rice fortified with zinc oxide. During 42 days, rats were divided into four groups and fed with diets containing two different sources of Zn (test diet: UR® fortified with zinc oxide, or control diet: zinc carbonate (ZnCO3)), supplying 50% or 100%, respectively, of the recommendations of this mineral for animals. Weight gain, food intake, feed efficiency ratio, weight, thickness and length of femur; retention of zinc, calcium (Ca) and magnesium (Mg) in the femur and the concentrations of Zn in femur, plasma and erythrocytes were evaluated. Control diet showed higher weight gain, feed efficiency ratio, retention of Zn and Zn concentration in the femur (p < 0.05). However, no differences were observed (p > 0.05) for dietary intake, length and thickness of the femur, erythrocyte and plasmatic Zn between groups. Although rice fortified with zinc oxide showed a lower bioavailability compared to ZnCO3, this food can be a viable alternative to be used as a vehicle for fortification. PMID:24932657
Nakate, Umesh T; Patil, Pramila; Bulakhe, R N; Lokhande, C D; Kale, Sangeeta N; Naushad, Mu; Mane, Rajaram S
2016-10-15
We report the rapid (superhydrophobic to superhydrophilic) transition property and improvement in the liquefied petroleum gas (LPG) sensing response of zinc oxide (ZnO) nanorods (NRs) on UV-irradiation and platinum (Pt) surface sensitization, respectively. The morphological evolution of ZnO NRs is evidenced from the field emission scanning electron microscope and atomic force microscope digital images and for the structural elucidation X-ray diffraction pattern is used. Elemental survey mapping is obtained from energy dispersive X-ray analysis spectrum. The optical properties have been studied by UV-Visible and photoluminescence spectroscopy measurements. The rapid (120sec) conversion of superhydrophobic (154°) ZnO NRs film to superhydrophilic (7°) is obtained under UV light illumination and the superhydrophobicity is regained by storing sample in dark. The mechanism for switching wettability behavior of ZnO NRs has thoroughly been discussed. In second phase, Pt-sensitized ZnO NRs film has demonstrated considerable gas sensitivity at 260ppm concentration of LPG. At 623K operating temperature, the maximum LPG response of 58% and the response time of 49sec for 1040ppm LPG concentration of Pt- sensitized ZnO NRs film are obtained. This higher LPG response of Pt-sensitized ZnO NRs film over pristine is primarily due to electronic effect and catalytic effect (spill-over effect) caused by an additional of Pt on ZnO NRs film surface. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Couder, Eléonore; Mattielli, Nadine; Drouet, Thomas; Smolders, Erik; Delvaux, Bruno; Iserentant, Anne; Meeus, Coralie; Maerschalk, Claude; Opfergelt, Sophie; Houben, David
2015-11-01
Stable zinc (Zn) isotope fractionation between soil and plant has been used to suggest the mechanisms affecting Zn uptake under toxic conditions. Here, changes in Zn isotope composition in soil, soil solution, root and shoot were studied for ryegrass (Lolium multiflorum L.) and rape (Brassica napus L.) grown on three distinct metal-contaminated soils collected near Zn smelters (total Zn 0.7-7.5%, pH 4.8-7.3). The Zn concentrations in plants reflected a toxic Zn supply. The Zn isotopic fingerprint of total soil Zn varied from -0.05‰ to +0.26 ± 0.02‰ (δ66Zn values relative to the JMC 3-0749L standard) among soils, but the soil solution Zn was depleted in 66Zn, with a constant Zn isotope fractionation of about -0.1‰ δ66Zn unit compared to the bulk soil. Roots were enriched with 66Zn relative to soil solution (δ66Znroot - δ66Znsoil solution = Δ66Znroot-soil solution = +0.05 to +0.2 ‰) and shoots were strongly depleted in 66Zn relative to roots (Δ66Znshoot-root = -0.40 to -0.04 ‰). The overall δ66Zn values in shoots reflected that of the bulk soil, but were lowered by 0.1-0.3 ‰ units as compared to the latter. The isotope fractionation between root and shoot exhibited a markedly strong negative correlation (R2 = 0.83) with transpiration per unit of plant weight. Thus, the enrichment with light Zn isotopes in shoot progressed with increasing water flux per unit plant biomass dry weight, showing a passive mode of Zn transport by transpiration. Besides, the light isotope enrichment in shoots compared to roots was larger for rape than for rye grass, which may be related to the higher Zn retention in rape roots. This in turn may be related to the higher cation exchange capacity of rape roots. Our finding can be of use to trace the biogeochemical cycles of Zn and evidence the tolerance strategies developed by plants in Zn-excess conditions.
Effect of Al doping on performance of ZnO thin film transistors
NASA Astrophysics Data System (ADS)
Dong, Junchen; Han, Dedong; Li, Huijin; Yu, Wen; Zhang, Shendong; Zhang, Xing; Wang, Yi
2018-03-01
In this work, we investigate the Aluminum-doped Zinc Oxide (AZO) thin films and their feasibility as the active layer for thin film transistors (TFTs). A comparison on performance is made between the AZO TFTs and ZnO TFTs. The electrical properties such as saturation mobility, subthreshold swing, and on-to-off current ratio are improved when AZO is utilized as the active layer. Oxygen component of the thin film materials indicates that Al is the suppressor for oxygen defect in active layer, which improves the subthreshold swing. Moreover, based on band structure analyzation, we observe that the carrier concentration of AZO is higher than ZnO, leading to the enhancement of saturation mobility. The microstructure of the thin films convey that the AZO films exhibit much smaller grain boundaries than ZnO films, which results in the lower off-state current and higher on-to-off current ratio of AZO TFTs. The AZO thin films show huge potential to be the active layer of TFTs.
Avoidance behavior of Eisenia fetida in oxytetracycline- and heavy metal-contaminated soils.
Gao, Minling; Lv, Mengting; Han, Meng; Song, Wenhua; Wang, Dong
2016-10-01
To determine the behavior of oxytetracycline (OTC) and heavy metals in soil, this study assessed the pollutant-induced avoidance behavior of earthworms (E. fetida) exposed to zinc (Zn 2+ ), lead (Pb 2+ ), and OTC in soil. The results showed a clear avoidance response within 48h of exposure to the highest concentrations of pollutants. Moreover, E. fetida was shown to be more sensitive to Zn 2+ than to Pb 2+ and OTC. Compared with OTC alone, the net response of earthworms increased in the OTC-Zn 2+ and OTC-Pb 2+ combined treatments, indicating a synergistic effect. Moreover, the net response (NR) of the earthworms was higher for OTC-Zn 2+ than it was for OTC-Pb 2+ , possibly reflecting the differences in essential characteristics of Zn and Pb. Copyright © 2016 Elsevier B.V. All rights reserved.
Jakomin, L M; Marbán, L; Grondona, S; Glok Galli, M; Martínez, D E
2015-09-01
The prediction about metals behaviour in soil requires knowledge on their solid-liquid partitioning. Usually it is expressed with an empirical distribution coefficient or Kd, which gives the ratio of the metal concentration in the solid phase to that in the solution. Kd values have been determined for Zn, Pb and Cd from samples representing the two most exploited aquifers in Argentina, Pampeano and Puelche, at three different locations in the province of Buenos Aires. The Pampeano aquifer presented higher Kd values than the Puelche aquifer. Comparing Kd values, different relationships could be observed: (a) Pampeano aquifer: Pb > Zn > Cd, and (b) Puelche aquifer: Pb > Cd > Zn. Kd for Cd seems to be linked to cationic exchange capacity, but solid phases precipitation can be more determining for Pb and Zn.
Punniyakotti, J; Ponnusamy, V
2018-02-01
Natural radioactivity content and heavy metal concentration in the intertidal zone sand samples from the southern region of Tamil Nadu coast, India, have been analyzed using gamma ray spectrometer and ICP-OES, respectively. From gamma spectral analysis, the average radioactivity contents of 238 U, 232 Th, and 40 K in the intertidal zone sand samples are 12.13±4.21, 59.03±4.26, and 197.03±26.24Bq/kg, respectively. The average radioactivity content of 232 Th alone is higher than the world average value. From the heavy metal analysis, the average Cd, Cr, Cu, Ni, Pb, and Zn concentrations are 3.1, 80.24, 82.84, 23.66, 91.67, and 137.07ppm, respectively. The average Cr and Ni concentrations are lower, whereas other four metal (Cd, Cu, Pb, and Zn) concentrations are higher than world surface rock average values. From pollution assessment parameter values, the pollution level is "uncontaminated to moderately contaminated" in the study area. Copyright © 2017 Elsevier Ltd. All rights reserved.
Historical trend in heavy metal pollution in core sediments from the Masan Bay, Korea.
Cho, Jinhyung; Hyun, Sangmin; Han, J-H; Kim, Suhyun; Shin, Dong-Hyeok
2015-06-15
The spatiotemporal distribution and their mass accumulation rate (MAR) of heavy metals were investigated to evaluate the time-dependent historical trends of heavy metal concentration. The three short cores used for this study were collected from the catchment area (MS-PC5, 60cm length), the central part (MS-PC4, 40cm length) and the offshore (MS-PC2, 60cm length) of the Masan Bay, Korea. The concentration of heavy metals (Co, Ni, Cu, Zn, Cr and Pb) in catchment area is as much as 1.5-2 times higher than central part of the Bay, and about 2 times higher than offshore area approximately. In particular, MAR of metals (Cu, Zn and Pb) show clear spatiotemporal variation, so that MAR's of heavy metal may provide more accurate information in evaluating the degree of pollution. Temporally, the heavy metal concentration had been increased since the late 1970s, but it seems to decrease again since the 2004yr in catchment area. This may came from concentrated efforts for the government to reduce industrial waste release. Copyright © 2015 Elsevier Ltd. All rights reserved.
Góral, Marta; Szefer, Piotr; Ciesielski, Tomasz; Warzocha, Jan
2009-10-01
The concentrations of Ag, Cd, Co, Cr, Cu, Fe, Ni, Pb, Mn and Zn in Saduria entomon and adjacent bottom sediments from the southern Baltic were determined by FAAS. In order to estimate the strength of correlations between accumulated elements in these crustaceans and surficial sediment, bioaccumulation factors (BAFs) were calculated. The results of factor analysis (FA) and the Kruskal-Wallis analysis of variance (ANOVA) clearly indicate geographical differences between the concentrations of these elements. Cd, Co, Fe, Ni, Pb and Zn levels were higher in S. entomon from the Gulf of Gdańsk, whereas Cr and Mn levels were higher in the crustaceans inhabiting open Baltic waters. The concentrations of Ag and Cu were comparable in both regions. There was a tendency for metal concentrations to distinguish organisms inhabiting the muddy bottom from those living in sandy sediments. The granulometric composition of the sediment appears to influence trace metal bioavailability. The results show that S. entomon could be a valuable sentinel organism for biomonitoring heavy metal contamination in the southern Baltic.
NASA Astrophysics Data System (ADS)
Wang, Liyang; Tian, Guohui; Chen, Yajie; Xiao, Yuting; Fu, Honggang
2016-04-01
In this study, a ZnO/ZnSe nanonail array was prepared via a two-step sequential hydrothermal synthetic route. In this synthetic process, the ZnO nanorod array was first grown on a fluorine-doped tin oxide (FTO) substrate using a seed-mediated growth approach via the hydrothermal process. Then, the ZnO nanonail array was obtained via in situ growth of ZnSe nano caps onto the ZnO nanorod array via a hydrothermal process in the presence of a Se source. The surface morphology and amount of ZnSe grown on the surface of the ZnO nanorods can be regulated by varying the reaction time and reactant concentration. Compared with pure ZnO nanorods, this unique nanonail array heterostructure exhibits enhanced visible light absorption. The transient photocurrent condition, in combination with steady-state and time-resolved photoluminescence spectroscopy, reveals that the ZnO/ZnSe nanonail array electrode has the highest charge separation rate, highest electron injection efficiency, and highest chemical stability. The photocurrent density of the ZnO/ZnSe nanonail array heterostructure reaches 1.01 mA cm-2 at an applied potential of 0.1 V (vs. Ag/AgCl), which is much higher than that of the ZnO/ZnSe nanorod array (0.71 mA cm-2), the pristine ZnO nanorod array (0.39 mA cm-2), and the ZnSe electrode (0.21 mA cm-2), indicating its significant visible light driven activities for photoelectrochemical water oxidation. This unique morphology of nail-capped nanorods might be important for providing better insight into the correlation between heterostructure and photoelectrochemical activity.In this study, a ZnO/ZnSe nanonail array was prepared via a two-step sequential hydrothermal synthetic route. In this synthetic process, the ZnO nanorod array was first grown on a fluorine-doped tin oxide (FTO) substrate using a seed-mediated growth approach via the hydrothermal process. Then, the ZnO nanonail array was obtained via in situ growth of ZnSe nano caps onto the ZnO nanorod array via a hydrothermal process in the presence of a Se source. The surface morphology and amount of ZnSe grown on the surface of the ZnO nanorods can be regulated by varying the reaction time and reactant concentration. Compared with pure ZnO nanorods, this unique nanonail array heterostructure exhibits enhanced visible light absorption. The transient photocurrent condition, in combination with steady-state and time-resolved photoluminescence spectroscopy, reveals that the ZnO/ZnSe nanonail array electrode has the highest charge separation rate, highest electron injection efficiency, and highest chemical stability. The photocurrent density of the ZnO/ZnSe nanonail array heterostructure reaches 1.01 mA cm-2 at an applied potential of 0.1 V (vs. Ag/AgCl), which is much higher than that of the ZnO/ZnSe nanorod array (0.71 mA cm-2), the pristine ZnO nanorod array (0.39 mA cm-2), and the ZnSe electrode (0.21 mA cm-2), indicating its significant visible light driven activities for photoelectrochemical water oxidation. This unique morphology of nail-capped nanorods might be important for providing better insight into the correlation between heterostructure and photoelectrochemical activity. Electronic supplementary information (ESI) available: SEM, EDS, XPS and photocurrent test. See DOI: 10.1039/c6nr01969b
Bioaccumulation of heavy metals both in wild and mariculture food chains in Daya Bay, South China
NASA Astrophysics Data System (ADS)
Qiu, Yao-Wen
2015-09-01
Bioaccumulation and trophic transfer of heavy metals both in the natural marine ecosystem (seawater, sediment, coral reef, phytoplankton, macrophyte, shrimp, crab, shellfish, planktivorous and carnivorous fish) and in the mariculture ecosystem (compound feed, trash fish, farmed pompano and snapper) were studied at Daya Bay, a typical subtropical bay in Southern China. The levels of Cu, Zn, Pb and Cd in sediment were 11.7, 10.2, 53.8 and 2.8 times than those in coral reef, respectively. Pb and Zn levels were markedly higher in phytoplankton than in macrophyte, probably caused by the larger specific surface area in phytoplankton. The highest levels of Zn (98.1), Pb (1.87) and Cd (5.11 μg g-1 dw) in wild organisms were all found in clam (Veremolpa scabra), indicating that these metals were apt to bioaccumulate in shellfish. The average concentrations of Cu, Zn, Pb and Cd in wild fish were 3.7, 2.1, 0.4 and 22.2 times than those in farmed fish, confirming the "growth dilution" hypothesis in farmed fish. Heavy metal bioconcentration factors (BCFs) in algae, bioaccumulation factors (BAFs) in wild species and transfer factors (TFs) in organism were calculated and discussed. The results suggested that biologically essential Cu and Zn were easier to accumulate in fish than non-essential Cd. Concentrations of Cu, Zn and Cd were several times higher in wild fish than in farmed fish whereas the opposite was observed for Pb. This metal also showed the highest transfer factor from food, which means that special attention must be given to fish feed production in relation to metal contamination.
Statistical differentiation of bananas according to their mineral composition.
Forster, Markus Paul; Rodríguez Rodríguez, Elena; Martín, Jacinto Darias; Díaz Romero, Carlos
2002-10-09
The concentrations of Na, K, Ca, Mg, Fe, Cu, Zn, and Mn were determined in banana cultivars Gran enana and Pequeña enana cultivated in Tenerife and in cv. Gran enana bananas from Ecuador. The mineral concentrations in the bananas from Tenerife and from Ecuador were clearly different. The cultivar did not influence the mineral concentrations except in the case of Fe. Variations according to cultivation method (greenhouse and outdoors) and farming style (conventional and organic) in the mineral concentrations in the bananas from Tenerife were observed. The mineral concentrations in the internal part of the banana were higher than those in the middle and external parts. Representation of double log correlations K-Mg and Zn-Mn tended to separate the banana samples according to origin. Applying factor and cluster analysis, the bananas from Ecuador were well separated from the bananas produced in Tenerife, and therefore, these are useful tools for differentiating the origin of bananas.
Metals in Bone Tissue of Antillean Manatees from the Gulf of Mexico and Chetumal Bay, Mexico.
Romero-Calderón, Ana G; Morales-Vela, Benjamin; Rosíles-Martínez, René; Olivera-Gómez, León D; Delgado-Estrella, Alberto
2016-01-01
Concentrations of seven metals (As, Cd, Cr, Cu, Pb, Ni, and Zn) were analyzed in 33 bone tissue samples of Antillean manatees (Trichechus manatus manatus) found dead in lagoons and rivers of Tabasco and Campeche in the Gulf of Mexico and Chetumal Bay in the Caribbean region. The concentrations of Cr, Cu, Pb, and Zn were significantly different between regions, with greater levels found in the Gulf of Mexico group than in the Mexican Caribbean group (p < 0.05). Pb concentrations differed significantly between adults and calves. No differences were observed between sexes. Metal concentrations detected in the manatee bones were higher than most of those reported for bones in other marine mammals around the world. Future studies are necessary to establish whether the metal concentrations represent a risk to the health of the species.
Wang, Fayuan; Liu, Xueqin; Shi, Zhaoyong; Tong, Ruijian; Adams, Catharine A; Shi, Xiaojun
2016-03-01
ZnO nanoparticles (NPs) are considered an emerging contaminant when in high concentration, and their effects on crops and soil microorganisms pose new concerns and challenges. Arbuscular mycorrhizal (AM) fungi (AMF) form mutualistic symbioses with most vascular plants, and putatively contribute to reducing nanotoxicity in plants. Here, we studied the interactions between ZnO NPs and maize plants inoculated with or without AMF in ZnO NPs-spiked soil. ZnO NPs had no significant adverse effects at 400 mg/kg, but inhibited both maize growth and AM colonization at concentrations at and above 800 mg/kg. Sufficient addition of ZnO NPs decreased plant mineral nutrient acquisition, photosynthetic pigment concentrations, and root activity. Furthermore, ZnO NPs caused Zn concentrations in plants to increase in a dose-dependent pattern. As the ZnO NPs dose increased, we also found a positive correlation with soil diethylenetriaminepentaacetic acid (DTPA)-extractable Zn. However, AM inoculation significantly alleviated the negative effects induced by ZnO NPs: inoculated-plants experienced increased growth, nutrient uptake, photosynthetic pigment content, and SOD activity in leaves. Mycorrhizal plants also exhibited decreased ROS accumulation, Zn concentrations and bioconcentration factor (BCF), and lower soil DTPA-extractable Zn concentrations at high ZnO NPs doses. Our results demonstrate that, at high contamination levels, ZnO NPs cause toxicity to AM symbiosis, but AMF help alleviate ZnO NPs-induced phytotoxicity by decreasing Zn bioavailability and accumulation, Zn partitioning to shoots, and ROS production, and by increasing mineral nutrients and antioxidant capacity. AMF may play beneficial roles in alleviating the negative effects and environmental risks posed by ZnO NPs in agroecosystems. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effects of zinc toxicity on sugar beet (Beta vulgaris L.) plants grown in hydroponics.
Sagardoy, R; Morales, F; López-Millán, A-F; Abadía, A; Abadía, J
2009-05-01
The effects of high Zn concentration were investigated in sugar beet (Beta vulgaris L.) plants grown in a controlled environment in hydroponics. High concentrations of Zn sulphate in the nutrient solution (50, 100 and 300 microm) decreased root and shoot fresh and dry mass, and increased root/shoot ratios, when compared to control conditions (1.2 microm Zn). Plants grown with excess Zn had inward-rolled leaf edges and a damaged and brownish root system, with short lateral roots. High Zn decreased N, Mg, K and Mn concentrations in all plant parts, whereas P and Ca concentrations increased, but only in shoots. Leaves of plants treated with 50 and 100 microm Zn developed symptoms of Fe deficiency, including decreases in Fe, chlorophyll and carotenoid concentrations, increases in carotenoid/chlorophyll and chlorophyll a/b ratios and de-epoxidation of violaxanthin cycle pigments. Plants grown with 300 microm Zn had decreased photosystem II efficiency and further growth decreases but did not have leaf Fe deficiency symptoms. Leaf Zn concentrations of plants grown with excess Zn were high but fairly constant (230-260 microg.g(-1) dry weight), whereas total Zn uptake per plant decreased markedly with high Zn supply. These data indicate that sugar beet could be a good model to investigate Zn homeostasis mechanisms in plants, but is not an efficient species for Zn phytoremediation.
Assessing pollution in Izmir Bay from rivers in western Turkey: heavy metals.
Akinci, Gorkem; Guven, Duyusen E; Ugurlu, Sanem Keles
2013-12-01
Urban rivers having different catchment areas and properties are investigated in order to infer their heavy metal contribution to the Izmir Inner Bay. The concentrations of Cd, Cr, Cu, Ni, Pb, and Zn in the waters and sediments of these rivers were measured and compared with the limit values given in the Sediment Quality Guidelines and Screening Quick Reference Tables (SQuiRTs). Metal concentrations in the sediments were determined to be between 0.5 and 3.5 mg kg(-1), 10 to 221.5 mg kg(-1), 28 to 153.5 mg kg(-1), 13 to 103.5 mg kg(-1), 31.5 to 157 mg kg(-1), and 124 to 1065.5 mg kg(-1) for Cd, Cr, Cu, Ni, Pb, and Zn, respectively. Higher metal concentrations in river waters were observed in rainy seasons, and Cu and Zn were frequently found above the critical limits. The correlations between the concentrations in waters, sediments, and wash off fluxes of the river catchments were statistically investigated and evaluated. Strong correlations between Ni-Cr (r = 0.618, p < 0.01), Ni-Zn (r = 0.578, p < 0.01), and Zn-Pb (r = 0.590, p < 0.01) concentrations in water were found. The metal load entering the inner bay was found to be 28.2 tons per year. The fluxes (mg m(-2) per day) were generally high in large catchments with high annual flows, in regions with high runoff coefficients, and in areas hosting industrial activities. The strong correlations between the heavy metal fluxes suggest that the atmospheric pollution, which influences the whole city, may be the major source of these metals.
Schmitt, Christopher J.; Dwyer, F. James; Finger, Susan E.
1984-01-01
The activity of the erythrocyte enzyme δ-aminolevulinic acid dehydratase (ALA-D) was measured in 35 catostomids (black redhorse, Moxostoma duquesnei; golden redhorse, M. erythrurum; northern hogsucker, Hypentelium nigricans) collected from three sites on a stream contaminated with Pb-, Cd-, and Zn-rich mine tailings and from an uncontaminated site upstream. Enzyme activity was expressed in terms of hemoglobin (Hb), DNA, and protein concentrations; these variables can be determined in the laboratory on once-frozen blood samples. Concentrations of Pb and Zn in blood and of Pb in edible tissues were significantly higher, and ALA-D activity was significantly lower, at all three contaminated sites than upstream. At the most contaminated site, ALA-D activity was 62–67% lower than upstream. Lead concentrations in the edible tissues and in blood were positively correlated (r = 0.80), whereas ALA-D activity was negatively correlated with Pb in blood (r = −0.70) and in edible tissues (r = −0.59). Five statistically significant relations between Pb and Zn in blood and ALA-D activity were determined. The two models that explained the highest percentage (> 74%) of the total variance also included factors related to Hb concentration. All five significant models included negative coefficients for variables that represented Pb in blood and positive coefficients for Zn in blood. The ALA-D assay with results standardized to Hb concentration represents an expedient alternative to the more traditional hematocrit standardization, and the measurement of ALA-D activity by this method can be used to document exposure of fish to environmental Pb.
Synthesis of ZnO nanoparticles for oil-water interfacial tension reduction in enhanced oil recovery
NASA Astrophysics Data System (ADS)
Soleimani, Hassan; Baig, Mirza Khurram; Yahya, Noorhana; Khodapanah, Leila; Sabet, Maziyar; Demiral, Birol M. R.; Burda, Marek
2018-02-01
Nanoparticles show potential use in applications associated with upstream oil and gas engineering to increase the performance of numerous methods such as wettability alteration, interfacial tension reduction, thermal conductivity and enhanced oil recovery operations. Surface tension optimization is an important parameter in enhanced oil recovery. Current work focuses on the new economical method of surface tension optimization of ZnO nanofluids for oil-water interfacial tension reduction in enhanced oil recovery. In this paper, zinc oxide (ZnO) nanocrystallites were prepared using the chemical route and explored for enhanced oil recovery (EOR). Adsorption of ZnO nanoparticles (NPs) on calcite (111) surface was investigated using the adsorption locator module of Materials Studio software. It was found that ZnO nanoparticles show maximum adsorption energy of - 253 kcal/mol. The adsorption of ZnO on the rock surface changes the wettability which results in capillary force reduction and consequently increasing EOR. The nanofluids have been prepared by varying the concentration of ZnO nanoparticles to find the optimum value for surface tension. The surface tension (ST) was calculated with different concentration of ZnO nanoparticles using the pendant drop method. The results show a maximum value of ST 35.57 mN/m at 0.3 wt% of ZnO NPs. It was found that the nanofluid with highest surface tension (0.3 wt%) resulted in higher recovery efficiency. The highest recovery factor of 11.82% at 0.3 wt% is due to the oil/water interfacial tension reduction and wettability alteration.
Bazihizina, Nadia; Taiti, Cosimo; Marti, Lucia; Rodrigo-Moreno, Ana; Spinelli, Francesco; Giordano, Cristiana; Caparrotta, Stefania; Gori, Massimo; Azzarello, Elisa; Mancuso, Stefano
2014-01-01
Evidence suggests that heavy-metal tolerance can be induced in plants following pre-treatment with non-toxic metal concentrations, but the results are still controversial. In the present study, tobacco plants were exposed to increasing Zn2+ concentrations (up to 250 and/or 500 μM ZnSO4) with or without a 1-week acclimation period with 30 μM ZnSO4. Elevated Zn2+ was highly toxic for plants, and after 3 weeks of treatments there was a marked (≥50%) decline in plant growth in non-acclimated plants. Plant acclimation, on the other hand, increased plant dry mass and leaf area up to 1.6-fold compared with non-acclimated ones. In non-acclimated plants, the addition of 250 μM ZnSO4 led to transient membrane depolarization and stomatal closure within 24h from the addition of the stress; by contrast, the acclimation process was associated with an improved stomatal regulation and a superior ability to maintain a negative root membrane potential, with values on average 37% more negative compared with non-acclimated plants. The different response at the plasma-membrane level between acclimated and non-acclimated plants was associated with an enhanced vacuolar Zn2+ sequestration and up to 2-fold higher expression of the tobacco orthologue of the Arabidopsis thaliana MTP1 gene. Thus, the acclimation process elicited specific detoxification mechanisms in roots that enhanced Zn2+ compartmentalization in vacuoles, thereby improving root membrane functionality and stomatal regulation in leaves following elevated Zn2+ stress. PMID:24928985
Zinc metabolism in genetically obese (ob/ob) mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, M.L.; Failla, M.L.
1987-05-01
Recent reports indicate that the concentrations and total amounts of several essential trace metals in various tissues of genetically obese rodents differ markedly from those in lean controls. In the present studies the absorption, retention and tissue distribution of zinc and constitutive levels of zinc-metallothionein (Zn-MT) in selected tissues were compared in obese (ob/ob) and lean (+/.) C57BL/6J mice. When 5-, 10- and 22-wk-old mice were administered 1.2 mumol /sup 65/Zn by stomach tube the apparent absorption of /sup 65/Zn by obese mice was 1.5, 2.2 and 3.9 times higher, respectively, than that in age-matched lean mice. Retention of orallymore » administered /sup 65/Zn after 96 h was also substantially higher in obese mice than in lean mice. To assess the possible influences of hyperphagia and intestinal hypertrophy on the enhanced apparent absorption of /sup 65/Zn by obese mice food intake by an additional group of obese mice was restricted to that of age-matched lean controls. When actual absorption of zinc was determined according to the method of Heth and Hoekstra, groups of ad libitum--fed obese, pair-fed obese and lean mice absorbed 38, 32 and 18% of administered /sup 65/Zn, respectively. In contrast, the rate of /sup 65/Zn excretion 2-6 d after oral or subcutaneous administration of the metal was similar for obese and lean mice. Unrestricted and pair-fed obese mice had significantly lower percentages of carcass /sup 65/Zn present in skin, muscle plus bone, spleen and testes and higher percentages present in liver, small intestine and adipose tissue than lean mice.« less
Structural, magnetic and optical properties of ZnO nanostructures converted from ZnS nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Prayas Chandra; Ghosh, Surajit; Srivastava, P.C., E-mail: pcsrivastava50@gmail.com
Graphical abstract: The phase conversion of ZnS to highly crystalline hexagonal ZnO was done by heat treatment. - Highlights: • Phase change of cubic ZnS to hexagonal ZnO via heat treatment. • Band gap was found to decrease with increasing calcinations temperature. • ZnO samples have higher magnetic moment than ZnS. • Blocking Temperature of the samples is well above room temperature. • Maximum negative%MR with saturation value ∼38% was found for sample calcined at 600° C. - Abstract: The present work concentrates on the synthesis of cubic ZnS and hexagonal ZnO semiconducting nanoparticle from same precursor via co-precipitation method.more » The phase conversion of ZnS to highly crystalline hexagonal ZnO was done by heat treatment. From the analysis of influence of calcination temperature on the structural, optical and vibrational properties of the samples, an optimum temperature was found for the total conversion of ZnS nanoparticles to ZnO. Role of quantum confinement due to finite size is evident from the blue shift of the fundamental absorption in UV–vis spectra only in the ZnS nanoparticles. The semiconducting nature of the prepared samples is confirmed from the UV–vis, PL study and transport study. From the magnetic and transport studies, pure ZnO phase was found to be more prone to magnetic field.« less
Morina, Arian; Morina, Filis; Djikanović, Vesna; Spasić, Sladjana; Krpo-Ćetković, Jasmina; Kostić, Bojan; Lenhardt, Mirjana
2016-04-01
River sediments are a major source of metal contamination in aquatic food webs. Due to the ability of metals to move up the food chain, fishes, occupying higher trophic levels, are considered to be good environmental indicators of metal pollution. The aim of this study was to analyze the metal content in tissues of the common barbel (Barbus barbus), a rheophilous cyprinid fish widely distributed in the Danube Basin, in order to find out if it can be used as a bioindicator of the metal content in the river sediment. We analyzed bioavailable concentrations of 15 elements (Al, As, B, Ba, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Se, Sr, and Zn) in sediments of the Danube (D), the Zapadna Morava (ZM), and the Južna Morava (JM) using the inductively coupled plasma spectroscopy (ICP-OES). The barbel specimens were collected in the proximity of sediment sampling sites for the analysis of metals in four tissues, gills, muscle, intestine, and liver. The sediment analysis indicated that the ZM is the most polluted with Cu, Ni, and Zn compared to other two rivers. The JM had the lowest concentrations of almost all observed elements, while the Danube sediments were mainly characterized by higher concentrations of Pb. The fish from the ZM had the highest concentration of Cu and Ni in the liver and intestine, and of Zn in the muscle tissue, which was in accordance with the concentrations of these metals in the sediment. Scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM-EDS) was used for further analyses of metal interactions with fish tissues. The results suggest that the barbel can potentially be used as a bioindicator of sediment quality with respect to metal contamination.
Manav, Ramazan; Uğur Görgün, Aysun; Filizok, Işık
2016-11-09
The pollution level of Lake Bafa was investigated by collecting fish samples { Dicentrarchus labrax (sea bass), Liza ramada (mullet) and Anguilla anguilla (eel)}, surface sediment, and core samples. In all these samples, 210 Po and 210 Pb concentrations were estimated, and total annual dose rates were obtained for each species. Some heavy metal (Cr, Ni, Pb, Cd, Mn, Fe, and Zn) concentration levels were obtained for the fish and a core sample. The sediment mass accumulation rate was found to be 3.27 g·m -2 ·day -1 (0.119 g·cm -2 ·y -1 ) from a core sample. The heavy metal concentrations in the vertical profile of samples from the core were also observed. The measured concentration of Zn, Pb, Cd, and Cr were between the ERL (effects range low) and ERM (effects range median) limits, while Ni concentrations were higher than the ERM limit. The observed concentrations of Cd, Pb, and Zn in fish samples did not exceed the limits in accordance with Turkish Food Regulations. Further, the maximum effective dose equivalent of 210 Po in the area was found to be 1.169 µSv·y -1 .
Influence of Dopants in ZnO Films on Defects
NASA Astrophysics Data System (ADS)
Peng, Cheng-Xiao; Weng, Hui-Min; Zhang, Yang; Ma, Xing-Ping; Ye, Bang-Jiao
2008-12-01
The influence of dopants in ZnO films on defects is investigated by slow positron annihilation technique. The results show S that parameters meet SAl > Sun > SAg for Al-doped ZnO films, undoped and Ag-doped ZnO films. Zinc vacancies are found in all ZnO films with different dopants. According to S parameter and the same defect type, it can be induced that the zinc vacancy concentration is the highest in the Al-doped ZnO film, and it is the least in the Ag-doped ZnO film. When Al atoms are doped in the ZnO films grown on silicon substrates, Zn vacancies increase as compared to the undoped and Ag-doped ZnO films. The dopant concentration could determine the position of Fermi level in materials, while defect formation energy of zinc vacancy strongly depends on the position of Fermi level, so its concentration varies with dopant element and dopant concentration.
Relationship between air pollution and metal levels in cancerous and non-cancerous lung tissues.
Binkowski, Łukasz J; Rogoziński, Paweł; Błaszczyk, Martyna; Semla, Magdalena; Melia, Patrick M; Stawarz, Robert
2016-12-05
We aimed to check the relationships between levels of metals (Ca, Cd, Cu, Fe, Hg and Zn) in cancerous and non-cancerous lung tissues and their link to air pollution, expressed as particulate matter (PM) concentrations. The study also examines the influence on metal concentration in the lung tissue of patients' sex and the distance of their homes from the nearest emitter. We found that the general pattern of ascending concentrations in tumor tissue was as follows: Hg < Cd < Cu < Ca < Zn < Fe. In non-affected lung tissue the order of concentrations of Ca and Fe was reversed. With the exception of Cd and Cu, levels of metals were found in higher accumulations in non-cancerous tissue (e.g., Fe 326.423 and Ca 302.730 μg/g d.w) than in tumorous tissue (Fe 150.735 and Ca 15.025 μg/g d.w). Neither the PM10 (PM of a diameter of 10 μm) concentration nor sex revealed any connection with metal concentrations. The shorter the distance from the emitter, the higher the metal concentrations that tended to be observed for almost all metals, but a statistically significant (but weak) relationship was noted only for Cu in tumor tissue (r s : -0.4869).
Does biofilm contribute to diel cycling of Zn in High Ore Creek, Montana?
Morris, J.M.; Nimick, D.A.; Farag, A.M.; Meyer, J.S.
2005-01-01
Concentrations of metals cycle daily in the water column of some mining-impacted streams in the Rocky Mountains of the western USA. We hypothesized that biofilm in High Ore Creek, Montana, USA, sorbs and releases Zn on a diel cycle, and this uptake-and-release cycle controls the total and dissolved (0.45-??m filtered) Zn concentrations. We collected water samples from three sites (upstream, middle and downstream at 0, 350 and 650 m, respectively) along a 650-m reach of High Ore Creek during a 47-h period in August 2002 and from the upstream and downstream sites during a 24-h period in August 2003; we also collected biofilm samples at these sites. In 2002 and 2003, total and dissolved Zn concentrations did not exhibit a diel cycle at the upstream sampling site, which was ???30 m downstream from a settling pond through which the creek flows. However, total and dissolved Zn concentrations exhibited a diel cycle at the middle and downstream sampling sites, with the highest Zn concentrations occurring at dawn and the lowest Zn concentrations occurring during late afternoon (>2-fold range of concentrations at the downstream site). Based on (1) concentrations of Zn in biofilm at the three sites and (2) results of streamside experiments that demonstrated Zn uptake and release by nai??ve biofilm during the light and dark hours of a photocycle, respectively, we conclude that Zn uptake in photosynthetic biofilms could contribute a large percentage to the cycling of Zn concentrations in the water column in High Ore Creek. ?? Springer 2005.
Structural and magnetic characterization of mixed valence Co(II, III)xZn1-xO epitaxial thin films
NASA Astrophysics Data System (ADS)
Negi, D. S.; Loukya, B.; Dileep, K.; Sahu, R.; Shetty, S.; Kumar, N.; Ghatak, J.; Pachauri, N.; Gupta, A.; Datta, R.
2014-03-01
In this article, we report on the Co atom incorporation, secondary phase formation and composition-dependent magnetic and optical properties of mixed valence Co(II, III)xZn1-xO epitaxial thin films grown by pulsed laser deposition. The intended total Co concentration is varied between ~6-60 at.% with relatively higher concentration of +3 over +2 charge state. Mixed valence Co(II, III) shows high solubility in ZnO (up to 38 at.%) and ferromagnetism is observed in samples with total Co incorporation of ~29 and 38 at.%. Electron diffraction pattern and high resolution transmission electron microscopy images reveal single crystalline nature of the thin films with wurtzite structure. Co oxide interlayer, with both rock salt and spinel structure, are observed to be formed between the substrate and wurtzite film for total Co concentration at ~17 at.% and above. Magnetization shows composition dependence with a saturation moment value of ~93 emu cm-3 and a coercive field of ~285 Oe observed for ~38 at.% Co:ZnO films. Ferromagnetism was not observed for films with Co concentration 17 and 9 at.%. The Co oxide interlayer does not show any ferromagnetism. All the films are n-type with carrier concentration ~1019 cm-3. The observed magnetism is probably resulting from direct antiferromagntic exchange interaction between Co2+ and Co3+ ions favored by heavy Co alloying giving rise to ferrimagnetism in the system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGrath, S.P.; Zhao, F.J.; Dunham, S.J.
2000-06-01
Changes in the extractability and uptake by crops of sludge metals in a long-term field experiment, started in 1942, were measured to assess whether Zn and Cd are either fixed by the sludge/soil constituents or are released as the sludge organic matter (OM) decomposes. Total and 0.1 M CaCl{sub 2}-extractable concentrations of Zn and Cd in soil and total concentrations in crops were measured on archived crop and soil samples. Extractability of Zn as a proportion of the total ranged from 0.5 to 3% and that of Cd from 4 to 18%, and were higher in sludge-amended than farmyard manuremore » or fertilizer-amended soils. Over a 23-yr period after 1961, when sludge was last applied, the extractability of both metals fluctuated, but neither decreased nor increased consistently. The relationships between total soil and crop metal concentrations were linear, with no evidence of a plateau across the range of soil metal concentrations achieved. The slopes of the soil-plant relationships depended on the type of crop or crop part examined, but were generally in the order red beet (Beta vulgaris L.) > sugar beet (Beta vulgaris L.) > carrot (Daucus carota L.) > barley (Hordeum vulgare L.). However, there also were large seasonal differences in metal concentrations in the crops. It is concluded from the available evidence that up to 23 yr after sludge applications cease, Zn and Cd extractability and bioavailability do not decrease.« less
Effect of annealing on the sub-bandgap, defects and trapping states of ZnO nanostructures
NASA Astrophysics Data System (ADS)
Wahyuono, Ruri Agung; Hermann-Westendorf, Felix; Dellith, Andrea; Schmidt, Christa; Dellith, Jan; Plentz, Jonathan; Schulz, Martin; Presselt, Martin; Seyring, Martin; Rettenmeyer, Markus; Dietzek, Benjamin
2017-02-01
Annealing treatment was applied to different mesoporous ZnO nanostructures prepared by wet chemical synthesis, i.e. nanoflowers (NFs), spherical aggregates (SPs), and nanorods (NRs). The sub-bandgap, defect properties as well as the trapping state characteristics after annealing were characterized spectroscopically, including ultrasensitive photothermal deflection spectroscopy (PDS), photoluminescence and photo-electrochemical methods. The comprehensive experimental analysis reveals that annealing alters both the bandgap and the sub-bandgap. The defect concentration and the density of surface traps in the ZnO nanostructures are suppressed upon annealing as deduced from photoluminescence and open-circuit voltage decay analysis. The photo-electrochemical investigations reveal that the surface traps dominate the near conduction band edge of ZnO and, hence, lead to high recombination rates when used in DSSCs. The density of bulk traps in ZnO SPs is higher than that in ZnO NFs and ZnO NRs and promote lower recombination loss between photoinjected electrons with the electrolyte-oxidized species on the surface. The highest power conversion efficiency of ZnO NFs-, ZnO SPs-, and ZnO NRs-based DSSC obtained in our system is 2.0, 4.5, and 1.8%, respectively.
Madejón, P; Ciadamidaro, L; Marañón, T; Murillo, J M
2013-01-01
Phytostabilization aims to immobilize soil contaminants using higher plants. The accumulation of trace elements in Populus alba leaves was monitored for 12 years after a mine spill. Concentrations of As and Pb significantly decreased, while concentrations of Cd and Zn did not significantly over time. Soil concentrations extracted by CaCl2 were measured by ICP-OES and results of As and Pb were below the detection limit. Long-term biomonitoring of soil contamination using poplar leaves was proven to be better suited for the study of trace elements. Plants suitable for phytostabilization must also be able to survive and reproduce in contaminated soils. Concentrations of trace elements were also measured in P. alba fruiting catkins to determine the effect on its reproduction potential. Cadmium and Zn were found to accumulate in fruiting catkins, with the transfer coefficient for Cd significantly greater than Zn. It is possible for trace elements to translocate to seed, which presents a concern for seed germination, establishment and colonization. We conclude that white poplar is a suitable tree for long-term monitoring of soil contaminated with Cd and Zn, and for phytostabilization in riparian habitats, although some caution should be taken with the possible effects on the food web. Supplemental materials are available for this article. Go to the publisher's online edition of International Journal of Phytoremediation to view the supplemental file.
Heavy metal accumulation by Corchorus olitorius L. irrigated with wastewater.
Ahmed, Dalia A; Slima, Dalia F
2018-05-01
Many agricultural soils in Egypt irrigated with untreated wastewater. Herein, we investigated the effect of untreated industrial wastewater irrigation on the soil and fodder plant Corchorus olittorius (Jew mallow). It also aimed to assess its effect on the growth measurements as well as analyses of soils, irrigation waters, and plants for heavy metal and nutrient concentrations. Significant differences between irrigation waters and soil irrigated with fresh and wastewater were recognized. Wastewater irrigation leads to remarkable reduction in the growth parameters and reduced its vegetative biomass. The concentration of Pb, Cd, Cr, Cu, Fe, and Zn were high significant and above phytotoxic concentrations in leaves (edible part) and roots of wastewater-irrigated plant. The present study indicated that Jew mallow plant tends to phytostabilize (Cd, Ni, and Mn) in its root and had the ability to translocate (Pb, Cu, Cr, Fe, and Zn) to its leaves. Higher concentrations of Cd, Cu, Cr, Pb, Fe, Mn, Ni, and Zn in the roots than leaves indicate that the roots are hyper-accumulators for Pb, Cr, Cu, Fe, and Zn more than the leaves. The research study recommended that there is a need to protect the soil from contamination through regular monitoring and not to cultivate Jew mallow in wastewater-irrigated soil and that it had a high capacity to accumulate heavy metals in its edible part and causes several harmful health effects for consumers.
Glavan, Gordana; Milivojević, Tamara; Božič, Janko; Sepčić, Kristina; Drobne, Damjana
2017-04-01
The extensive production of zinc oxide (ZnO) nanomaterials (NMs) may result in high environmental zinc burdens. Honeybees need to have special concern due to their crucial role in pollination. Our previous study indicated that low concentrations of ZnO NMs, corresponding to 0.8 mg Zn/mL, have a neurotoxic potential for honeybees after a 10-day oral exposure. Present study was designed to investigate the effect of a short, dietary exposure of honeybees to ZnO NMs at concentrations 0.8-8 mg Zn/mL on consumption rate, food preference, and two enzymatic biomarkers-a stress-related glutathione S-transferase (GST) and the neurotoxicity biomarker acetylcholinesterase (AChE). Consumption rate showed a tendency toward a decrease feeding with the increasing concentrations of ZnO NMs. None of Zn NMs concentrations caused alterations in mortality rate and in the activities of brain GST and AChE. To investigate if there is an avoidance response against Zn presence in food, 24-h two-choice tests were performed with control sucrose diet versus sucrose suspensions with different concentrations of ZnO NMs added. We demonstrated that honeybees prefer ZnO NMs ZnO NMs containing suspensions, even at highest Zn concentrations tested, compared with the control diet. This indicates that they might be able to perceive the presence of ZnO NMs in sucrose solution. Because honeybees feed frequently the preference towards ZnO NMs might have a high impact on their survival when exposed to these NMs.
Chemical fractionation of Cu and Zn in stormwater, roadway dust and stormwater pond sediments
Camponelli, Kimberly M.; Lev, Steven M.; Snodgrass, Joel W.; Landa, Edward R.; Casey, Ryan E.
2010-01-01
This study evaluated the chemical fractionation of Cu and Zn from source to deposition in a stormwater system. Cu and Zn concentrations and chemical fractionation were determined for roadway dust, roadway runoff and pond sediments. Stormwater Cu and Zn concentrations were used to generate cumulative frequency distributions to characterize potential exposure to pond-dwelling organisms. Dissolved stormwater Zn exceeded USEPA acute and chronic water quality criteria in approximately 20% of storm samples and 20% of the storm duration sampled. Dissolved Cu exceeded the previously published chronic criterion in 75% of storm samples and duration and exceeded the acute criterion in 45% of samples and duration. The majority of sediment Cu (92–98%) occurred in the most recalcitrant phase, suggesting low bioavailability; Zn was substantially more available (39–62% recalcitrant). Most sediment concentrations for Cu and Zn exceeded published threshold effect concentrations and Zn often exceeded probable effect concentrations in surface sediments.
Heltai, Miklós; Markov, Georgi
2012-10-01
Our aim were to establish the metal (Cu, Ni, Zn, Co, Cd, and Pb) levels of red fox liver and the kidney samples (n = 10) deriving from central part of Hungary and compare the results with other countries' data. According to our results the concentrations of residues of the targeted elements (mg/kg dry weight) in liver and kidney samples were, respectively in liver: Cu: 21.418, Zn: 156.928, Ni: 2.079, Co: 1.611, Pb: 1.678 and Cd: 0.499; and kidney samples: Cu: 9.236; Zn: 87.159; Ni: 2.514; Co: 2.455; Pb: 2.63 and Cd: 0.818. Pb levels of Hungarian red fox liver samples significantly exceed the values of Italian specimens' samples, whilst the same element's concentrations of Hungarian red fox kidney samples were higher than the results published in Germany.
Phytoremediation of Heavy Metals in Contaminated Water and Soil Using Miscanthus sp. Goedae-Uksae 1.
Bang, Jihye; Kamala-Kannan, Seralathan; Lee, Kui-Jae; Cho, Min; Kim, Chang-Hwan; Kim, Young-Jin; Bae, Jong-Hyang; Kim, Kyong-Ho; Myung, Hyun; Oh, Byung-Taek
2015-01-01
The aim of this study is to characterize the heavy metal phytoremediation potential of Miscanthus sp. Goedae-Uksae 1, a hybrid, perennial, bio-energy crop developed in South Korea. Six different metals (As, Cu, Pb, Ni, Cd, and Zn) were used for the study. The hybrid grass effectively absorbed all the metals from contaminated soil. The maximum removal was observed for As (97.7%), and minimum removal was observed for Zn (42.9%). Similarly, Goedae-Uksae 1 absorbed all the metals from contaminated water except As. Cd, Pb, and Zn were completely (100%) removed from contaminated water samples. Generally, the concentration of metals in roots was several folds higher than in shoots. Initial concentration of metals highly influenced the phytoremediation rate. The results of the bioconcentration factor, translocation factor, and enrichment coefficient tests indicate that Goedae-Uksae 1 could be used for phytoremediation in a marginally contaminated ecosystem.
Lu, Lanlan; Liu, Guijian; Wang, Jie; Liu, Yuan
2017-08-30
Microelement (As, Cd, Cr, Cu, Ni, Pb, and Zn) concentrations were determined in the muscle, skin, gill, and liver tissues of Carassius auratus gibelio collected from subsidence pools at three different coal mines in the Huainan coalfield in China. The concentrations of elements in the water were within the allowable levels for raising fish. However, the higher levels of these metals in sediment may pose potential harm on fish. It was found that the concentrations of Cr, Ni, and Zn in all fish tissues were higher, while As, Cd, and Pb levels were relatively low. Microelement accumulation appeared to be more widespread in subsidence pools than that in natural water. Elements accumulated in fish tissues differently: the highest metal concentrations were generally found in the liver tissues of the fish analyzed, whereas the lowest were recorded in the muscles. The mean element concentrations in muscle tissue from C. auratus gibelio collected from subsidence pools (As, 0.16 mg/kg; Cd, 0.06 mg/kg; Cr, 6.21 mg/kg; Cu, 1.61 mg/kg; Ni, 3.88 mg/kg; Pb, 1.76 mg/kg; and Zn, 12.80 mg/kg dry weight) were far below the allowable limit of the hygienic standard in fish proposed by the Ministry of Health in China, suggesting that the fish were safe for human consumption. A health risk assessment also suggested there was no risk from the analyzed elements for inhabitants near the Huainan coalfield that consume fish.
Carlisle, Eli; Myers, Samuel; Raboy, Victor; Bloom, Arnold
2012-01-01
Inorganic N is available to plants from the soil as ammonium (NH4+) and nitrate (NO3-). We studied how wheat grown hydroponically to senescence in controlled environmental chambers is affected by N form (NH4+ vs. NO3−) and CO2 concentration (“subambient,” “ambient,” and “elevated”) in terms of biomass, yield, and nutrient accumulation and partitioning. Wheat supplied with NH4+ as a sole N source had the strongest response to CO2 concentration. Plants exposed to subambient and ambient CO2 concentrations typically had the greatest biomass and nutrient accumulation under both N forms. In general NH4+-supplied plants had higher concentrations of total N, P, K, S, Ca, Zn, Fe, and Cu, while NO3--supplied plants had higher concentrations of Mg, B, Mn, and NO3- - N. NH4+-supplied plants contained amounts of phytate similar to NO3−-supplied plants but had higher bioavailable Zn, which could have consequences for human health. NH4+-supplied plants allocated more nutrients and biomass to aboveground tissues whereas NO3+-supplied plants allocated more nutrients to the roots. The two inorganic nitrogen forms influenced plant growth and nutrient status so distinctly that they should be treated as separate nutrients. Moreover, plant growth and nutrient status varied in a non-linear manner with atmospheric CO2 concentration. PMID:22969784
Mineral Composition of Organically Grown Wheat Genotypes: Contribution to Daily Minerals Intake
Hussain, Abrar; Larsson, Hans; Kuktaite, Ramune; Johansson, Eva
2010-01-01
In this study, 321 winter and spring wheat genotypes were analysed for twelve nutritionally important minerals (B, Cu, Fe, Se, Mg, Zn, Ca, Mn, Mo, P, S and K). Some of the genotypes used were from multiple locations and years, resulting in a total number of 493 samples. Investigated genotypes were divided into six genotype groups i.e., selections, old landraces, primitive wheat, spelt, old cultivars and cultivars. For some of the investigated minerals higher concentrations were observed in selections, primitive wheat, and old cultivars as compared to more modern wheat material, e.g., cultivars and spelt wheat. Location was found to have a significant effect on mineral concentration for all genotype groups, although for primitive wheat, genotype had a higher impact than location. Spring wheat was observed to have significantly higher values for B, Cu, Fe, Zn, Ca, S and K as compared to winter wheat. Higher levels of several minerals were observed in the present study, as compared to previous studies carried out in inorganic systems, indicating that organic conditions with suitable genotypes may enhance mineral concentration in wheat grain. This study also showed that a very high mineral concentration, close to daily requirements, can be produced by growing specific primitive wheat genotypes in an organic farming system. Thus, by selecting genotypes for further breeding, nutritional value of the wheat flour for human consumption can be improved. PMID:20948934
Zia, Afia; van den Berg, Leon; Ahmad, Muhammad Nauman; Riaz, Muhammad; Zia, Dania; Ashmore, Mike
2018-05-31
A significant body of knowledge suggests that soil solution pH and dissolved organic carbon (DOC) strongly influence metal concentrations and speciation in porewater, however, these effects vary between different metals. This study investigated the factors influencing soil and soil solution concentrations of copper (Cu), lead (Pb), nickel (Ni) and zinc (Zn) under field conditions in upland soils from UK having a wide range of pH, DOC and organic matter contents. The study primarily focussed on predicting soil and soil solution metal concentrations from the data on total soil metal concentrations (HNO 3 extracts) and soil and soil solution properties (pH, DOC and organic matter content). We tested the multiple regression models proposed by Tipping et al. (2003) to predict heavy metal concentrations in soil solutions and the results indicated a better fit (higher R 2 values) in both studies for Pb compared to the Zn and Cu concentrations. Both studies observed consistent negative relationships of metals with pH and loss on ignition (LOI) suggesting an increase in soil solution metal concentrations with increasing acidity. The positive relationship between Pb concentrations in porewater and HNO 3 extracts was similar for both studies, however, similar relationships were not found for the Zn and Cu concentrations because of the negative coefficients for these metals in our study. The results of this study conclude that the predictive equations of Tipping et al. (2003) may not be applicable to the field sites where the range of DOC and metal concentrations is much lower than their study. Our study also suggests that the extent to which metals are partitioned into soil solution is lower in soils with a higher organic matter contents due to binding of these metals to soil organic matter. Copyright © 2018 Elsevier Ltd. All rights reserved.
Duquène, L; Vandenhove, H; Tack, F; Meers, E; Baeten, J; Wannijn, J
2009-02-15
The applicability of biodegradable amendments in phytoremediation to increase the uptake of uranium (U), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb) and zinc (Zn) by Indian mustard (Brassica juncea) and ryegrass (Lolium perenne) was tested in a greenhouse experiment. Plants were cultivated during one month on two soils with naturally or industrially increased contaminant levels of U. Treatments with citric acid, NH4-citrate/citric acid, oxalic acid, S,S-ethylenediamine disuccinic acid (EDDS) or nitrilotriacetic acid (NTA) at a rate of 5 mmol kg(-1) dry soil caused increases in soil solution concentrations that were up to 18 times higher for U and up to 1570 times higher for other heavy metals, compared to the controls. Shoot concentrations increased to a much smaller extent. With EDDS, 19-, 34-, and 37-fold increases were achieved in shoots of Indian mustard for U, Pb and Cu, respectively. The increases in plant uptake of Cd, Cr and Zn were limited to a factor of four at most. Ryegrass generally extracted less U and metals than Indian mustard. Despite a marked increase of U and metal concentrations in shoots after addition of amendments, the estimated time required to obtain an acceptable reduction in soil contaminant concentrations was impractically long. Only for Cu and Zn in one of the studied soils, could the Flemish standards for clean soil theoretically be attained in less than 100 years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iribarren, A., E-mail: augusto@imre.oc.uh.cu; Hernández-Rodríguez, E.; Maqueira, L.
Highlights: • Cu-doped ZnO nanoparticles obtained by chemical synthesis. • Substitutional or interstitial Cu into ZnO lead specific structural, chemical, and optical changes. • Incorporation efficiency of Cu atoms in ZnO as a function of the Cu concentration in the precursor dissolution. - Abstract: In this work a study of ZnO and Cu-doped ZnO nanoparticles obtained by chemical synthesis in aqueous media was carried out. Structural analysis gave the dominant presence of wurtzite ZnO phase forming a solid solution Zn{sub 1−x}Cu{sub x}O. For high Cu doping CuO phase is also present. For low Cu concentration the lattice shrinks due tomore » Cu atoms substitute Zn atoms. For high Cu concentration the lattice enlarges due to predominance of interstitial Cu. From elemental analysis we determined and analyzed the incorporation efficiency of Cu atoms in Zn{sub 1−x}Cu{sub x}O as a function of the Cu concentration in the precursor dissolution. Combining structural and chemical results we described the Cu/Zn precursor concentrations r{sub w} in which the solid solution of Cu in ZnO is predominant. In the region located at r{sub w} ≈ 0.2–0.3 it is no longer valid. For Cu/Zn precursor concentration r{sub w} > 0.3 interstitial Cu dominates, and some amount of copper oxide appears. As the Cu concentration increases, the effective size of nanoparticles decreases. Photoluminescence (PL) measurements of the Cu-doped ZnO nanoparticles were carried out and analyzed.« less
NASA Astrophysics Data System (ADS)
Li, Longfei; Ji, Shouxun; Zhu, Qiang; Wang, Yun; Dong, Xixi; Yang, Wenchao; Midson, Stephen; Kang, Yonglin
2018-06-01
The microstructure and mechanical properties of Al-8.1Mg-2.6Si-(0.08 to 4.62)Zn alloys (in wt pct) have been investigated by the permanent mold casting process. X-ray diffraction analysis shows that the τ-Mg32(Al, Zn)49 phase forms when the Zn content is 1.01 wt pct. With higher Zn contents of 2.37 and 3.59 wt pct, the η-MgZn2 and τ-Mg32(Al, Zn)49 phases precipitate in the microstructure, and the η-MgZn2 phase forms when the Zn content is 4.62 wt pct. Metallurgical analysis shows that the η-MgZn2 and τ-Mg32(Al, Zn)49 phases strengthen the Al-8.1Mg-2.6Si-(0.08 to 4.62)Zn alloys. After solutionizing at 510 °C for 180 minutes and aging at 180 °C for 90 minutes, the η'-MgZn2 phase precipitates in the α-Al matrix, which significantly enhances the mechanical properties. Addition of 3.59 wt pct Zn to the Al-8.1Mg-2.6Si alloy with heat treatment increases the yield strength from 96 to 280 MPa, increases the ultimate tensile strength from 267 to 310 MPa, and decreases the elongation from 9.97 to 1.74 pct.
Xin, Baoping; Huang, Qun; Chen, Shi; Tang, Xuemei
2008-01-01
High-purity nanoparticles ZnS has been successfully synthesized using a simple coupling reaction process of biological reduction and chemical precipitation mediated with EDTA referred to as the CRBRCP-EDTA process. This research investigated the optimum conditions of the transformation of SO(4) (2-) into S(2-) by SRB, and the production of ZnS in the CRBRCP-EDTA process. The results showed that the molar ratio of Zn(2+) to EDTA = 1:1 was crucial for SRB growth and ZnS synthesis. At the ratio(n) (Zn2+)/n) (EDTA) = 1:1, lower Zn(2+) concentration enhanced both the growth of SRB and the reduction of SO(4) (2-), leading to higher ZnS production. Although increase in Na(2)SO(4) concentration resulted in decrease in both SRB growth and SO(4) (2-) reduction, it improved the S(2-) and ZnS production. Under the optimum conditions (0.05 mol L(-1) ZnCl(2), 0.05 mol L(-1) EDTA, and 0.1 mol L(-1) Na(2)SO(4)), the synthesized ZnS was characterized by X-ray diffraction (XRD), X-ray energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The analysis showed that the obtained ZnS were high-purity and well-distributed solid spheres with diameters of about 15 nm for primary particles and around 400 nm for secondary particles. When polyacrylamide (PAM) was incorporated in the CRBRCP-EDTA process, the secondary particle's diameters were reduced to less than 100 nm. The photoluminescence (PL) spectra of produced ZnS centered at 396 nm, the spectrum with PAM added showed the gradual increase in absorption and stronger intensity in PL property. The present simple, low-cost, and safe method may be extended to prepare other metal-sulfide nanocomposites.
A hetero-homogeneous investigation of chemical bath deposited Ga-doped ZnO nanorods
NASA Astrophysics Data System (ADS)
Rakhsha, Amir Hosein; Abdizadeh, Hossein; Pourshaban, Erfan; Golobostanfard, Mohammad Reza
2018-01-01
One-dimensional nanostructures of zinc oxide (ZnO) have been in the center of attention, mostly for electronic applications due to their distinctive properties such as high electron mobility (100 cm2V-1s-1) and crystallinity. Thanks to its high density of vacancies and interstitial sites, wurtzite lattice of ZnO is a suitable host for gallium (Ga) as a dopant element. Herein, ZnO nanorod arrays (NRAs) are synthesized by a low-temperature chemical bath deposition (CBD) method with various concentrations of gallium nitrate hydrate as a dopant precursor. Structural and morphological analyses confirm that optimum properties of gallium-doped ZnO (GZO) are obtained at 1% (Ga to Zn molar ratio). Owing to the replacement of smaller Ga3+ ions with Zn2+ ions in the GZO structure, a slight shift of (002) peak to higher angles could be observed in XRD pattern of GZO NRAs. The scanning electron microscope images demonstrate a proliferation in the ZnO NRAs length from 650 nm for undoped ZnO (UZO) to 1200 nm for GZO-1%. However, increasing the dopant concentration above 2.5% results in formation of homogeneous zinc gallium oxide in the bulk solution, which is a sign of inefficient process of doping in GZO NRAs. Furthermore, photoluminescence spectroscopy is used to characterize the band-gap variation of the samples, which demonstrates a small red-shift in the UV emission peak and a decrease in visible emission peak intensity with introducing Ga in ZnO lattice. Lower resistivity for GZO-1% (1.1 MΩ) sample compared to UZO (1.4 MΩ) is recorded, which is compelling evidence for the presence of Ga3+ in ZnO lattice. The results suggest that incorporating Ga into ZnO lattice using CBD method is an easy and effective technique to improve the electrical properties of ZnO NRAs that is an essential factor for a broad range of devices.
Long-term effect of ZnO nanoparticles on waste activated sludge anaerobic digestion.
Mu, Hui; Chen, Yinguang
2011-11-01
The increasing use of zinc oxide nanoparticles (ZnO NPs) raises concerns about their environmental impacts, but the potential effect of ZnO NPs on sludge anaerobic digestion remains unknown. In this paper, long-term exposure experiments were carried out to investigate the influence of ZnO NPs on methane production during waste activated sludge (WAS) anaerobic digestion. The presence of 1 mg/g-TSS of ZnO NPs did not affect methane production, but 30 and 150 mg/g-TSS of ZnO NPs induced 18.3% and 75.1% of inhibition respectively, which showed that the impact of ZnO NPs on methane production was dosage dependant. Then, the mechanisms of ZnO NPs affecting sludge anaerobic digestion were investigated. It was found that the toxic effect of ZnO NPs on methane production was mainly due to the release of Zn(2+) from ZnO NPs, which may cause the inhibitory effects on the hydrolysis and methanation steps of sludge anaerobic digestion. Further investigations with enzyme and fluorescence in situ hybridization (FISH) assays indicated that higher concentration of ZnO NPs decreased the activities of protease and coenzyme F(420), and the abundance of methanogenesis Archaea. Copyright © 2011 Elsevier Ltd. All rights reserved.
Heshmati, Ali; Karami-Momtaz, Javad; Nili-Ahmadabadi, Amir; Ghadimi, Sabah
2017-04-01
This study was conducted to determine and compare the concentrations of mercury (Hg), cadmium (Cd), arsenic (As), lead (Pb), nickel (Ni), iron (Fe), zinc (Zn), copper (Cu), manganese (Mn), cobalt (Co), and selenium (Se) in the muscle of wild and farmed carp (Cyprinus carpio) and wild and farmed Caspian kutum (Rutilus frisii kutum) collected from south-western Caspian Sea areas of Iran between December 2014 and March 2015. In addition, risk assessment of consumers to exposure to metals through fish consumption was estimated. In all the samples, the arsenic concentration was lower than the detection limit. The Pb, Cd, Hg and Mn concentrations were significantly higher in the wild fish samples compared to the farmed fish samples. There was no significant difference in the Fe, Zn, Cu, Co, Ni and Se concentrations of the wild and farmed carp and the wild and farmed Caspian kutum. Iron displayed the highest concentration of all the analysed metals in both the wild and farmed fish, followed by Zn and Cu. The highest Hg, Cd, Pb, Ni, Fe, Zn, Cu, Mn, Co and Se concentrations were 0.056, 0.011, 0.065, 0.120, 4.151, 3.792, 2.948, 2.690, 0.037 and 0.162 μg g -1 , respectively. The estimated daily intake of all metals was acceptable, and the hazard quotient values showed that consumption of the analysed fish posed no health risk to consumers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nanoscale strengthening mechanisms in metallic thin film systems
NASA Astrophysics Data System (ADS)
Schoeppner, Rachel Lynn
Nano-scale strengthening mechanisms for thin films were investigated for systems governed by two different strengthening techniques: nano-laminate strengthening and oxide dispersion strengthening. Films were tested under elevated temperature conditions to investigate changes in deformation mechanisms at different operating temperatures, and the structural stability. Both systems exhibit remarkable stability after annealing and thus long-term reliability. Nano-scale metallic multilayers with smaller layer thicknesses show a greater relative resistance to decreasing strength at higher temperature testing conditions than those with larger layer thicknesses. This is seen in both Cu/Ni/Nb multilayers as well as a similar tri-component bi-layer system (Cu-Ni/Nb), which removed the coherent interface from the film. Both nanoindentation and micro-pillar compression tests investigated the strain-hardening ability of these two systems to determine what role the coherent interface plays in this mechanism. Tri-layer films showed a higher strain-hardening ability as the layer thickness decreased and a higher strain-hardening exponent than the bi-layer system: verifying the presence of a coherent interface increases the strain-hardening ability of these multilayer systems. Both systems exhibited hardening of the room temperature strength after annealing, suggesting a change in microstructure has occurred, unlike that seen in other multilayer systems. Oxide dispersion strengthened Au films showed a marked increase in hardness and wear resistance with the addition of ZnO particles. The threshold for stress-induced grain-refinement as opposed to grain growth is seen at concentrations of at least 0.5 vol%. These systems exhibited stable microstructures during thermal cycling in films containing at least 1.0%ZnO. Nanoindentation experiments show the drop in hardness following annealing is almost completely attributed to the resulting grain growth. Four-point probe resistivity measurements on annealed films showed a significant drop in resistivity for the higher concentration ZnO films, which is proposed to be the result of a change in the particle-matrix interface structure. A model connecting the hardness and resistivity as a function of ZnO concentration has been developed based on the assumption that the impact of nm-scale ZnO precipitates on the mechanical and electrical behavior of Au films is likely dominated by a transition from semi-coherent to incoherent interfaces.
Cherny, Vladimir V.; DeCoursey, Thomas E.
1999-01-01
Inhibition by polyvalent cations is a defining characteristic of voltage-gated proton channels. The mechanism of this inhibition was studied in rat alveolar epithelial cells using tight-seal voltage clamp techniques. Metal concentrations were corrected for measured binding to buffers. Externally applied ZnCl2 reduced the H+ current, shifted the voltage-activation curve toward positive potentials, and slowed the turn-on of H+ current upon depolarization more than could be accounted for by a simple voltage shift, with minimal effects on the closing rate. The effects of Zn2+ were inconsistent with classical voltage-dependent block in which Zn2+ binds within the membrane voltage field. Instead, Zn2+ binds to superficial sites on the channel and modulates gating. The effects of extracellular Zn2+ were strongly pHo dependent but were insensitive to pHi, suggesting that protons and Zn2+ compete for external sites on H+ channels. The apparent potency of Zn2+ in slowing activation was ∼10× greater at pHo 7 than at pHo 6, and ∼100× greater at pHo 6 than at pHo 5. The pHo dependence suggests that Zn2+, not ZnOH+, is the active species. Evidently, the Zn2+ receptor is formed by multiple groups, protonation of any of which inhibits Zn2+ binding. The external receptor bound H+ and Zn2+ with pK a 6.2–6.6 and pK M 6.5, as described by several models. Zn2+ effects on the proton chord conductance–voltage (g H–V) relationship indicated higher affinities, pK a 7 and pK M 8. CdCl2 had similar effects as ZnCl2 and competed with H+, but had lower affinity. Zn2+ applied internally via the pipette solution or to inside-out patches had comparatively small effects, but at high concentrations reduced H+ currents and slowed channel closing. Thus, external and internal zinc-binding sites are different. The external Zn2+ receptor may be the same modulatory protonation site(s) at which pHo regulates H+ channel gating. PMID:10578017
NASA Astrophysics Data System (ADS)
Zhao, Qinqin; Ju, Dianxing; Deng, Xiaolong; Huang, Jinzhao; Cao, Bingqiang; Xu, Xijin
2015-01-01
The morphology of SnO2 nanospheres was transformed into ultrathin nanosheets assembled architectures after Zn doping by one-step hydrothermal route. The as-prepared samples were characterized in detail by various analytical techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and nitrogen adsorption-desorption technique. The Zn-doped SnO2 nanostructures proved to be the efficient gas sensing materials for a series of flammable and explosive gases detection, and photocatalysts for the degradation of methyl orange (MO) under UV irradiation. It was observed that both of the undoped and Zn-doped SnO2 after calcination exhibited tremendous gas sensing performance toward glycol. The response (S = Ra/Rg) of Zn-doped SnO2 can reach to 90 when the glycol concentration is 100 ppm, which is about 2 times and 3 times higher than that of undoped SnO2 sensor with and without calcinations, respectively. The result of photocatalytic activities demonstrated that MO dye was almost completely degraded (~92%) by Zn-doped SnO2 in 150 min, which is higher than that of others (MO without photocatalyst was 23%, undoped SnO2 without and with calcination were 55% and 75%, respectively).
Zhao, Qinqin; Ju, Dianxing; Deng, Xiaolong; Huang, Jinzhao; Cao, Bingqiang; Xu, Xijin
2015-01-01
The morphology of SnO2 nanospheres was transformed into ultrathin nanosheets assembled architectures after Zn doping by one-step hydrothermal route. The as-prepared samples were characterized in detail by various analytical techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and nitrogen adsorption-desorption technique. The Zn-doped SnO2 nanostructures proved to be the efficient gas sensing materials for a series of flammable and explosive gases detection, and photocatalysts for the degradation of methyl orange (MO) under UV irradiation. It was observed that both of the undoped and Zn-doped SnO2 after calcination exhibited tremendous gas sensing performance toward glycol. The response (S = Ra/Rg) of Zn-doped SnO2 can reach to 90 when the glycol concentration is 100 ppm, which is about 2 times and 3 times higher than that of undoped SnO2 sensor with and without calcinations, respectively. The result of photocatalytic activities demonstrated that MO dye was almost completely degraded (~92%) by Zn-doped SnO2 in 150 min, which is higher than that of others (MO without photocatalyst was 23%, undoped SnO2 without and with calcination were 55% and 75%, respectively). PMID:25597269
Azam, Iqra; Afsheen, Sumera; Zia, Ahmed; Javed, Muqaddas; Saeed, Rashid; Sarwar, Muhammad Kaleem; Munir, Bushra
2015-01-01
To study the accumulation and contamination of heavy metals (i.e., Cd, Cr, Cu, Ni, and Zn) in soil, air, and water, few insect species were assayed as ecological indicators. Study area comes under industrial zone of district Gujrat of Punjab, Pakistan. Insects used as bioindicators included a libellulid dragonfly (Crocothemis servilia), an acridid grasshopper (Oxya hyla hyla), and a nymphalid butterfly (Danaus chrysippus) near industrial zone of Gujrat. Accumulation of Cd was highest in insect species followed by Cu, Cr, Zn, and Ni at p < 0.05. Hierarchical cluster analysis (HACA) was carried out to study metal accumulation level in all insects. Correlation and regression analysis confirmed HACA observations and declared concentration of heavy metals above permissible limits. Metal concentrations in insects were significantly higher near industries and nallahs in Gujrat and relatively higher concentrations of metals were found in Orthoptera than Odonata and Lepidoptera. The total metal concentrations in insects were pointed significantly higher at sites S3 (Mid of HalsiNala), S9 (End of HalsiNala), and S1 (Start of HalsiNala), whereas lowest value was detected at site S6 (Kalra Khasa) located far from industrial area. HACA indicates that these insect groups are potential indicators of metal contamination and can be used in biomonitoring. PMID:26167507
Azam, Iqra; Afsheen, Sumera; Zia, Ahmed; Javed, Muqaddas; Saeed, Rashid; Sarwar, Muhammad Kaleem; Munir, Bushra
2015-01-01
To study the accumulation and contamination of heavy metals (i.e., Cd, Cr, Cu, Ni, and Zn) in soil, air, and water, few insect species were assayed as ecological indicators. Study area comes under industrial zone of district Gujrat of Punjab, Pakistan. Insects used as bioindicators included a libellulid dragonfly (Crocothemis servilia), an acridid grasshopper (Oxya hyla hyla), and a nymphalid butterfly (Danaus chrysippus) near industrial zone of Gujrat. Accumulation of Cd was highest in insect species followed by Cu, Cr, Zn, and Ni at p < 0.05. Hierarchical cluster analysis (HACA) was carried out to study metal accumulation level in all insects. Correlation and regression analysis confirmed HACA observations and declared concentration of heavy metals above permissible limits. Metal concentrations in insects were significantly higher near industries and nallahs in Gujrat and relatively higher concentrations of metals were found in Orthoptera than Odonata and Lepidoptera. The total metal concentrations in insects were pointed significantly higher at sites S3 (Mid of HalsiNala), S9 (End of HalsiNala), and S1 (Start of HalsiNala), whereas lowest value was detected at site S6 (Kalra Khasa) located far from industrial area. HACA indicates that these insect groups are potential indicators of metal contamination and can be used in biomonitoring.
Nagalakshmi, D; Sridhar, K; Swain, P S; Reddy, A G
2016-01-01
The effect of replacing dietary Zn supplemented from inorganic (ZnCO 3 ) source with organic Zn (Zn methionine; Zn-met) was investigated in 72 rats (98.42 ± 1.483 g) by randomly allotting to 4 diets (6 replicates/diet, 3 rats/replicate). Basal diet was prepared with purified ingredients without Zn. The control diet (AIN-76A) contained 12 ppm of Zn from ZnCO 3 (100-I). In the other diets ZnCO 3 was replaced with Zn-met at the rates of 50 (50I:50O), 75 (25I:75O) or 100% (100-O). Weekly body weight and daily feed intake were recorded for 14 weeks. Blood was collected by retro-orbital puncture on the 70th and 80th day to determine haematological and various serum biochemical constituents, and antioxidant enzyme activities in haemolysate, respectively. Rats were antigenically challenged with sheep RBC on day 73 to assess humoral immune response (HIR), and on day 95 for cell mediated immune response (CMIR) and rats were sacrificed at the end of rearing period to collect liver, muscle, pancreas and kidneys for Zn estimation and oxidative stress markers in liver. The data were analysed using completely randomized design. Weight gain and feed intake, hematological and serum biochemical constituents, Zn content in organs (except liver) were not influenced by replacing ZnCO 3 with Zn-met. Zinc concentrations in the serum and liver were higher (P<0.05) with 50% replacement of ZnCO 3 with Zn-met compared to 0 or 100% replacement. Lower (P<0.05) lipid peroxidation and higher (P<0.05) glutathione peroxidase and glutathione reductase activities were observed with 50 and 75% replacement of ZnCO 3 with Zn-met compared to 0 or 100% replacement. Protein carbonyls and reduced glutathione in liver were not affected, while TBARS decreased (P<0.05) with substituting Zn-met (50-100%) for ZnCO 3 . The HIR and CMIR increased with increasing Zn-met supplementation and the highest response was observed with 75-100% replacement of ZnCO 3 with Zn-met. It is concluded that replacement of 50 or 75% of ZnCO 3 with Zn-met increased antioxidant and immune response in rats with no effect on growth.
Metal discharges by Sinaloa Rivers to the coastal zone of NW Mexico.
Frías-Espericueta, M G; Mejía-Cruz, R; Osuna López, I; Muy-Rangel, M D; Rubio-Carrasco, W; Aguilar-Juárez, M; Voltolina, D
2014-02-01
The aim of this work was to survey the discharges of dissolved and particulate Cd, Cu, Fe, Mn, Pb and Zn of the eight main rivers of Sinaloa State to the Mexican coastal environment. Zn was the most abundant dissolved metal and Fe was the most abundant particulate (8.02-16.90 and 51.8-1,140.3 μg/L, respectively). Only particulate Mn had significantly (p = 0.028) higher values in summer-fall (rainy season), whereas the significantly (p = 0.036) higher values of dissolved Zn were observed in winter and spring. The highest annual total discharges to Sinaloa coastal waters were those of the rivers San Lorenzo and Piaxtla (>2 × 10(3) m.t.) and the lowest those of rivers Baluarte and El Fuerte (349 and 119 m.t., respectively). Pb concentrations may become of concern, because they are higher than the value recommended for the welfare of aquatic communities of natural waters.
Zn concentration in plasma and gastric fluid in patients with upper gastrointestinal disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kadakia, S.C.; Wong, R.H.K.; Maydonovitch, C.
1986-03-05
Very few data are available about Zn in gastrointestinal fluids in humans. To obtain data in one such fluid Zn was measured in plasma and gastric fluid, obtained by direct visual aspiration through an endoscope placed into the gastric fundus, in 36 subjects with normal gastrointestinal mucosa (N) and in 36 patients with the following upper gastrointestinal pathology confirmed by endoscopy: 13 with esophagitis (E), 9 with gastritis (G) and 14 with duodenal ulcer disease (DU). Plasma and gastric fluid Zn were estimated by flame atomic absorption spectrophotometry. Mean plasma Zn was significantly lower than normal in patients with Emore » (N, 87 +/- 2 ..mu..g/dl, M +/- SEM; E, 75 +/- 4, p < 0.01) but plasma values were similar to normal in the other patient groups (G, 89 +/- 4; DU, 87 +/- 2). Mean gastric fluid zinc in G was significantly higher than in normal subjects (G, 664 +/- 159 ..mu..g/L; N, 360 +/- 43, p < 0.02) but not significantly different from normal in patients with DU or E (DU, 402 +/- 76; E, 307 +/- 55). Mean gastric fluid Zn in women with DU was approximately 45% higher than in men with DU, although it was 17% lower in normal women than in normal men. Compared to other normal tissues gastric fluid Zn is about 1/3 that in serum and about 3 times that in saliva. These results indicate that Zn in plasma and gastric fluid is altered in some upper gastrointestinal diseases.« less
Hayashi, K; Hara, H; Asvarujanon, P; Aoyama, Y; Luangpituksa, P
2001-10-01
We examined the effects of ingestion of five types of insoluble fibre on growth and Zn absorption in rats fed a marginally Zn-deficient diet (6.75 mg (0.103 mmol) Zn/kg diet) with or without added sodium phytate (12.6 mmol/kg diet). The types of insoluble fibre tested were corn husks, watermelon skin, yam-bean root (Pachyrhizus erosus) and pineapple core, and cellulose was used as a control (100 g/kg diet). Body-weight gain in the cellulose groups was suppressed by 57 % by feeding phytate. Body-weight gain in phytate-fed rats was 80 % greater in the watermelon skin fibre and yam-bean root fibre group than that in the cellulose group. Zn absorption ratio in the cellulose groups was lowered by 46 and 70 % in the first (days 7-10) and second (days 16-19) measurement periods with feeding phytate. In the rats fed the phytate-containing diets, Zn absorption ratio in the watermelon skin, yam-bean root and pineapple core fibre groups was 140, 80 and 54 % higher respectively than that in the cellulose group, in the second period. Fe absorption was not suppressed by phytate, however, feeding of these three types of fibre promoted Fe absorption in rats fed phytate-free diets. The concentration of soluble Zn in the caecal contents in the watermelon skin fibre or yam-bean root fibre groups was identical to that in the control group in spite of a higher short-chain fatty acid concentration and lower pH in the caecum. These findings indicate that ingestion of these types of insoluble fibre recovered the growth and Zn absorption suppressed by feeding a high level of phytate, and factors other than caecal fermentation may also be involved in this effect of insoluble fibre.
NASA Astrophysics Data System (ADS)
Yap, C. K.; Ismail, A.; Tan, S. G.; Abdul Rahim, I.
2003-07-01
The distributions of Cd, Pb and Zn in the total soft tissues and total shells of the green-lipped mussel Perna viridis were studied in field collected samples as well as from laboratory experimental samples. The results showed that Cd, Pb and Zn were readily accumulated in the whole shells. In mussels sampled from 12 locations along the west coast of Peninsular Malaysia, the ratios of the shell metals to the soft tissue metals were different at each sampling site. Nevertheless, the Cd and Pb levels in the shells were always higher than those in the soft tissues, while the Zn level was higher in the soft tissues than in the shells. In comparison with soft tissues, the degrees of variability for Pb and Cd concentrations in the shells were lower. The lower degrees of variability and significant ( P<0.05) correlation coefficients of Cd and Pb within the shells support the use of the mussel shell as a suitable biomonitoring material for the two metals rather than the soft tissue since this indicated that there is more precision (lower CV) in the determination of metal concentrations in the shell than in the soft tissue. Experimental work showed that the pattern of depuration in the shell was not similar to that of the soft tissue although their patterns of accumulation were similar. This indicated that the depuration of heavy metals in the shell was not affected by the physiological conditions of the mussels. Although Zn could be regulated by the soft tissue, the incorporated Cd, Pb and Zn remained in the shell matrices. The present results support the use of the total shell of P. viridis as a potential biomonitoring material for long-term contamination of Cd, Pb and Zn.
NASA Astrophysics Data System (ADS)
Siudek, Patrycja; Frankowski, Marcin
2017-12-01
This paper includes the results of chemical composition of bulk deposition samples collected simultaneously at urban (Poznań city) and forest (Jeziory) sites in central Poland, between April 2013 and October 2014. Rainwater samples were analyzed for trace elements (As, Zn, Ni, Pb, Cu, Cr, Cd) and physicochemical parameters. Overall, three metals, i.e. Zn, Pb and Cu were the most abundant anthropogenic constituents of rainwater samples from both locations. In Poznań city, the rainwater concentrations of trace elements did not differ significantly between spring and summer. However, they were elevated and more variable during the cold season (fall and winter), suggesting strong contribution from local high-temperature processes related to coal combustion (commercial and residential sector). In contrast to the urban site, relatively low variability in concentrations was found for Cu, Ni, Zn at the forest site, where direct impact of emission from vehicle traffic and coal-fired combustion (power plants) was much lower. The bulk deposition fluxes of Ni, As, Pb and Zn at this site exhibited a clear trend, with higher values during the cold season (fall and winter) than in spring and summer. At the urban site, the sums of total bulk deposition fluxes of Zn, Cu, Pb, Ni, As, Cr, Cd were as follows: 8460.4, 4209.2, 2247.4, 1882.1, 606.6, 281.6 and 31.4 μg m- 2. In addition, during the winter season, a significantly higher deposition fluxes of Cu and Zn were observed for rain (on average 103.8 and 129.4 μg m- 2, respectively) as compared to snow (19.7 μg Cu m- 2 and 54.1 μg Zn m- 2). This suggests that different deposition pattern of trace elements for rain, mixed and snow was probably the effect of several factors: precipitation type, changes in emission and favorable meteorological situation during rain events.
Evidence of the Zn vacancy acting as the dominant acceptor in n-type ZnO.
Tuomisto, F; Ranki, V; Saarinen, K; Look, D C
2003-11-14
We have used positron annihilation spectroscopy to determine the nature and the concentrations of the open volume defects in as-grown and electron irradiated (E(el)=2 MeV, fluence 6 x 10(17) cm(-2)) ZnO samples. The Zn vacancies are identified at concentrations of [V(Zn)] approximately 2 x 10(15) cm(-3) in the as-grown material and [V(Zn)] approximately 2 x 10(16) cm(-3) in the irradiated ZnO. These concentrations are in very good agreement with the total acceptor density determined by temperature dependent Hall experiments. Thus, the Zn vacancies are dominant acceptors in both as-grown and irradiated ZnO.
Martinez, Edward A; Shu-Nyamboli, Chemanji
2011-09-01
Since the reduction of the arsenic standard from 50 to 10 μg L(-1) by the US Environmental Protection Agency in 2006 many small town and rural water municipalities were left with the task of preventing or mitigating arsenic contamination of drinking water supplies. In this study macrophytes and sediments were used to determine the concentration and distribution of heavy metals (As, Cd, Cu, Pb, and Zn) within the primary source of drinking water (Gallinas River watershed) to the residents of Las Vegas, New Mexico. Sampling was done in the spring and fall at four sites, two above the city and two below, and samples were analyzed using ICP-MS. Results showed significantly higher (p<.05) metal concentrations in plant roots than shoots for most metals. Spearman's correlation showed positive correlations (r>.3) between plant and sediment concentrations of Cd, Pb, Zn, As, and a negative correlation for Cu. The site above waste water treatment plant (AWWTP) had the highest plant tissue concentrations of Cd, Pb, Zn, and As. All of these concentrations attained critical toxicity levels exceeding sediment quality guidelines. High concentration factor values and levels of metals detected in macrophyte tissues indicate that heavy metals within sediments in the Gallinas River occur in bioavailable forms. Correlations between plant and sediment metal concentrations indicate that metal concentrations in macrophyte tissues are a good reflection of metal concentrations within the sediment in the Gallinas River. Copyright © 2011 Elsevier Inc. All rights reserved.
The mechanism of zinc uptake by cultured rat liver cells.
Taylor, J A; Simons, T J
1994-01-01
1. The initial rate of 65Zn uptake into cultured rat hepatocytes has been measured over a range of Zn2+ concentrations from 3 x 10(-10) M to 5 x 10(-6) M. Histidine and albumin were used to buffer Zn2+ ions at concentrations below 1 x 10(-6) M. 2. The results suggest there are two mechanisms for Zn2+ uptake; a high-affinity, saturable pathway, with a maximum velocity (Vmax) of 20-30 pmol (mg protein)-1 min-1 and a Michaelis-Menten constant (Km) of about 2 x 10(-9) M Zn2+ (with histidine), and a low-affinity, linear pathway, that only makes a significant contribution to Zn2+ uptake at Zn2+ concentrations above 1 x 10(-6) M. 3. Transport via the high-affinity pathway is dependent on the concentration of Zn2+ ions and not on the concentrations of Zn(2+)-ligand complexes, suggesting that Zn2+ is the transported species. 4. The affinity of the saturable pathway for Zn2+ is slightly lower in the presence of albumin, with a Km of about 1.3 x 10(-8) M. The reason for this is uncertain. PMID:8014898
Enhanced photoelectrochemical and optical performance of ZnO films tuned by Cr doping
NASA Astrophysics Data System (ADS)
Salem, M.; Akir, S.; Massoudi, I.; Litaiem, Y.; Gaidi, M.; Khirouni, K.
2017-04-01
In this paper, pure and Cr-doped nanostructured Zinc oxide thin films were synthesized by simple and low cost co-precipitation and spin-coating method with Cr concentration varying between 0.5 and 5 at.%. Crystalline structure of the prepared films was investigated by X-ray diffraction (XRD) and Raman spectroscopy techniques. XRD analysis indicated that the films were indexed as the hexagonal phase of wurtzite-type structure and demonstrated a decrease in the crystallite size with increasing Cr doping content. Cr doping revealed a significant effect on the optical measurements such as transmission and photoluminescence properties. The optical measurements indicated that Cr doping decreases the optical band gap and it has been shifted from 3.41 eV for pure ZnO film to 3.31 eV for 5 at.% Cr-doped one. The photoelectrochemical (PEC) sensing characteristics of Cr-doped ZnO layers were investigated. Amongst all photo-anodes with different Cr dopant concentration, the 2 at.% Cr incorporated ZnO films exhibited fast response and higher photoconduction sensitivity.
Assessment of spatial distribution of soil heavy metals using ANN-GA, MSLR and satellite imagery.
Naderi, Arman; Delavar, Mohammad Amir; Kaboudin, Babak; Askari, Mohammad Sadegh
2017-05-01
This study aims to assess and compare heavy metal distribution models developed using stepwise multiple linear regression (MSLR) and neural network-genetic algorithm model (ANN-GA) based on satellite imagery. The source identification of heavy metals was also explored using local Moran index. Soil samples (n = 300) were collected based on a grid and pH, organic matter, clay, iron oxide contents cadmium (Cd), lead (Pb) and zinc (Zn) concentrations were determined for each sample. Visible/near-infrared reflectance (VNIR) within the electromagnetic ranges of satellite imagery was applied to estimate heavy metal concentrations in the soil using MSLR and ANN-GA models. The models were evaluated and ANN-GA model demonstrated higher accuracy, and the autocorrelation results showed higher significant clusters of heavy metals around the industrial zone. The higher concentration of Cd, Pb and Zn was noted under industrial lands and irrigation farming in comparison to barren and dryland farming. Accumulation of industrial wastes in roads and streams was identified as main sources of pollution, and the concentration of soil heavy metals was reduced by increasing the distance from these sources. In comparison to MLSR, ANN-GA provided a more accurate indirect assessment of heavy metal concentrations in highly polluted soils. The clustering analysis provided reliable information about the spatial distribution of soil heavy metals and their sources.
Mycorrhizo-remediation of lead/zinc mine tailings using vetiver: a field study.
Wu, Sheng Chun; Wong, Ching Chi; Shu, Wen Sheng; Khan, Adual G; Wong, Ming Hung
2011-01-01
A field study of Pb/Zn mine tailings was conducted to assess the influence of AM fungi and refuse compost on phytoremediation using vetiver grass slips. Our investigation revealed that vetiver could thrive on Pb/Zn mine tailings. The addition of refuse compost resulted in biomass that was more than 3-times higher when compared with the control, and were mainly attributed to an improvement of soil properties, as well as better nutrient supply than untreated control. AMF inoculation also significantly increased the dry matter of vetiver by a rate of 8.1-13.8%. It was observed that concentrations of N and P in the shoots were significantly higher in mycorrhizal treatments than those without AMF inoculation. However, AMF inoculation significantly decreased the metal concentrations in root, but not in shoot. Based on the results, it seems clear that AMF can play an essential role in the phytostabilization of metal contaminated soils.
Nie, Ming; Wan, Jia-Rong; Chen, Xiao-Feng; Wang, Li; Li, Bo; Chen, Jia-Kuan
2011-11-01
Heavy metals as one of major pollutants is harmful to the health of forest ecosystems. In the present paper, the concentrations of thirteen heavy metals (Fe, Al, Ti, Cr, Cu, Mn, V, Zn, Ni, Co, Pb, Se and Cd) were compared between natural and plantation forests in the Mt. Lushan by ICP-AES and atomic absorption spectroscopy. The results suggest that the soil of natural forest had higher concentrations of Fe, Al, Ti, Cu, Mn, V, Zn, Ni, Co, Pb, Se, and Cd than the plantation forest except for Cr. The soil of natural forest had a higher level of heavy metals than that of the plantation forest as a whole. This might be due to that the natural forest has longer age than the plantation forest, and fixed soil heavy metals take a longer period of time than the plantation forest.
Changes in metal contents in shrimp cultured in NW Mexico (2000-2010).
Frías-Espericueta, M G; Osuna-López, J I; Delgado-Alvarez, C G; Muy-Rangel, M D; López-López, G; Izaguirre-Fierro, G; Jaimes-Bustamante, F; Zazueta-Padilla, H M; Aguilar-Juárez, M; Rubio-Carrasco, W; Voltolina, D
2015-05-01
This study shows the concentrations of Cd, Cu, Pb, and Zn in the muscle and hepatopancreas of Pacific white shrimps, Litopenaeus vannamei, cultured during 2010 in 26 commercial farms of the three main producer states of the Mexican NW, Sonora, Sinaloa, and Nayarit and compares the results to those obtained in 2000 using samples collected in16 farms of the same states. No significant changes were detected in Cd concentrations, but the 2010 Zn levels were significantly higher in all states in the hepatopancreas and in Sinaloa in the case of the muscle. Cu showed a tendency to higher hepatopancreas values in 2010, but differences were significant only in Sonora and for the global mean value. In contrast, Pb was one order of magnitude lower in both organs in 2010, possibly because of the almost 15 years since leaded gasoline was discontinued in Mexico.
Synthesis of ZnO decorated graphene nanocomposite for enhanced photocatalytic properties
NASA Astrophysics Data System (ADS)
Gayathri, S.; Jayabal, P.; Kottaisamy, M.; Ramakrishnan, V.
2014-05-01
Zinc oxide/Graphene (GZ) composites with different concentrations of ZnO were successfully synthesized through simple chemical precipitation method. The X-ray diffraction pattern and the micro-Raman spectroscopic technique revealed the formation of GZ composite, and the energy dispersive X-ray spectrometry analysis showed the purity of the prepared samples. The ZnO nanoparticles decorated graphene sheets were clearly visible in the field emission scanning electron micrograph. Raman mapping was employed to analyze the homogeneity of the prepared samples. The diffuse-reflectance spectra clearly indicated that the formation of GZ composites promoted the absorption in the visible region also. The photocatalytic activity of ZnO and GZ composites was studied by the photodegradation of Methylene blue dye. The results revealed that the GZ composites exhibited a higher photocatalytic activity than pristine ZnO. Hence, we proposed a simple wet chemical method to synthesize GZ composite and its application on photocatalysis was demonstrated.
Impedance spectroscopy of undoped and Cr-doped ZnO gas sensors under different oxygen concentrations
NASA Astrophysics Data System (ADS)
Al-Hardan, N.; Abdullah, M. J.; Aziz, A. Abdul
2011-08-01
Thin films of undoped and chromium (Cr)-doped zinc oxide (ZnO) were synthesized by RF reactive co-sputtering for oxygen gas sensing applications. The prepared films showed a highly c-axis oriented phase with a dominant (0 0 2) peak appeared at a Bragg angle of around 34.13 °, which was lower than that of the standard reference of ZnO powder (34.42 °). The peak shifted to a slightly higher angle with Cr doping. The operating temperature of the ZnO gas sensor was around 350 °C, which shifted to around 250 °C with Cr-doping. The response of the sensor to oxygen gas was enhanced by doping ZnO with 1 at.% Cr. Impedance spectroscopy analysis showed that the resistance due to grain boundaries significantly contributed to the characteristics of the gas sensor.
Enhancement of multiple-phonon resonant Raman scattering in Co-doped ZnO nanorods
NASA Astrophysics Data System (ADS)
Phan, The-Long; Vincent, Roger; Cherns, David; Dan, Nguyen Huy; Yu, Seong-Cho
2008-08-01
We have studied Raman scattering in Co-doped ZnO nanorods prepared by thermal diffusion. Experimental results show that the features of their non-resonant spectra are similar to Raman spectra from Co-doped ZnO materials investigated previously. Under resonant conditions, however, there is a strong enhancement of multiple-phonon Raman scattering processes. Longitudinal optical (LO)-phonon overtones up to eleventh order are observed. The modes become more obvious when the Co concentration diffused into ZnO nanorods goes to an appropriate value. This phenomenon is explained due to the shift of the band-gap energy and also due to the decrease in the intensity of near-band-edge luminescence. Our observation is in agreement with the prediction [J. F. Scott, Phys. Rev. B 2, 1209 (1970)] that the number of LO-phonon lines in ZnO is higher than that observed for CdS.
Green manure addition to soil increases grain zinc concentration in bread wheat.
Aghili, Forough; Gamper, Hannes A; Eikenberg, Jost; Khoshgoftarmanesh, Amir H; Afyuni, Majid; Schulin, Rainer; Jansa, Jan; Frossard, Emmanuel
2014-01-01
Zinc (Zn) deficiency is a major problem for many people living on wheat-based diets. Here, we explored whether addition of green manure of red clover and sunflower to a calcareous soil or inoculating a non-indigenous arbuscular mycorrhizal fungal (AMF) strain may increase grain Zn concentration in bread wheat. For this purpose we performed a multifactorial pot experiment, in which the effects of two green manures (red clover, sunflower), ZnSO4 application, soil γ-irradiation (elimination of naturally occurring AMF), and AMF inoculation were tested. Both green manures were labeled with 65Zn radiotracer to record the Zn recoveries in the aboveground plant biomass. Application of ZnSO4 fertilizer increased grain Zn concentration from 20 to 39 mg Zn kg-1 and sole addition of green manure of sunflower to soil raised grain Zn concentration to 31 mg Zn kg-1. Adding the two together to soil increased grain Zn concentration even further to 54 mg Zn kg-1. Mixing green manure of sunflower to soil mobilized additional 48 µg Zn (kg soil)-1 for transfer to the aboveground plant biomass, compared to the total of 132 µg Zn (kg soil)-1 taken up from plain soil when neither green manure nor ZnSO4 were applied. Green manure amendments to soil also raised the DTPA-extractable Zn in soil. Inoculating a non-indigenous AMF did not increase plant Zn uptake. The study thus showed that organic matter amendments to soil can contribute to a better utilization of naturally stocked soil micronutrients, and thereby reduce any need for major external inputs.
NASA Astrophysics Data System (ADS)
Li, Jin; Bi, Xiaofang
2016-07-01
Al2O3/ZnO nanolaminates (NLs) with various ZnO sublayer thicknesses were prepared by atomic layer deposition. The Al2O3 sublayers are characterized as amorphous and the ZnO sublayers have an oriented polycrystalline structure. As the ZnO thickness decreases to a certain value, each NL exhibits a critical temperature at which its dielectric constant starts to rise quickly. Moreover, this temperature increases as the ZnO thickness is decreased further. On the other hand, the permittivity demonstrates a large value of several hundred at a frequency ⩽1000 Hz, followed by a steplike decrease at a higher frequency. The change in the cut-off frequency with ZnO thickness is characterized by a hook function. It is revealed that the Coulomb confinement effect becomes predominant in the dielectric behaviors of the NLs with very thin ZnO. As the ZnO thickness decreases to about the same as or even smaller than the Bohr radius of ZnO, a great change in the carrier concentration and effective mass of ZnO is induced, which is shown to be responsible for the peculiar dielectric behaviors of Al2O3/ZnO with very thin ZnO. These findings provide insight into the prevailing mechanisms to optimize the dielectric properties of semiconductor/insulator laminates with nanoscale sublayer thickness.
Electrochemical EDTA recycling after soil washing of Pb, Zn and Cd contaminated soil.
Pociecha, Maja; Kastelec, Damijana; Lestan, Domen
2011-08-30
Recycling of chelant decreases the cost of EDTA-based soil washing. Current methods, however, are not effective when the spent soil washing solution contains more than one contaminating metal. In this study, we applied electrochemical treatment of the washing solution obtained after EDTA extraction of Pb, Zn and Cd contaminated soil. A sacrificial Al anode and stainless steel cathode in a conventional electrolytic cell at pH 10 efficiently removed Pb from the solution. The method efficiency, specific electricity and Al consumption were significantly higher for solutions with a higher initial metal concentration. Partial replacement of NaCl with KNO(3) as an electrolyte (aggressive Cl(-) are required to prevent passivisation of the Al anode) prevented EDTA degradation during the electrolysis. The addition of FeCl(3) to the acidified washing solution prior to electrolysis improved Zn removal. Using the novel method 98, 73 and 66% of Pb, Zn and Cd, respectively, were removed, while 88% of EDTA was preserved in the treated washing solution. The recycled EDTA retained 86, 84 and 85% of Pb, Zn and Cd extraction potential from contaminated soil, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.
Trace elements in feed, manure, and manured soils.
Sheppard, S C; Sanipelli, B
2012-01-01
Modern animal feeds often include nutritional mineral supplements, especially elements such as Cu, P, Se, and Zn. Other sources of trace elements also occur in livestock systems, such as pharmaceutical use of As and Zn to control gut flora, Bi in dairy for mastitis control, and Cu as hoof dips. Additionally, potential exists for inadvertent inclusion of trace elements in feeds or manures. There is concern about long-term accumulation of trace elements in manured soil that may even exceed guideline "safe" concentrations. This project measured ∼60 elements in 124 manure samples from broiler, layer, turkey, swine grower, swine nursery, sow, dairy, and beef operations. The corresponding feeds were also analyzed. In general, concentrations in manure were two- to fivefold higher than those in feed: the manure/feed concentration ratios were relatively consistent for all the animal-essential elements and were numerically similar for many of the non-nutrient elements. To confirm the potential for accumulation in soil, total trace element concentrations were measured in the profiles of 10 manured and 10 adjacent unmanured soils. Concentrations of several elements were found to be elevated in the manured soils, with Zn (and P) the most common. One soil from a dairy standing yard had concentrations of B that exceeded soil health guideline concentrations. Given that the Cu/P and Zn/P ratios found in manure were greater than typically reported in harvested crop materials, these elements will accumulate in soil even if manure application rates are managed to prevent accumulation of P in soil. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Torri, Silvana; Lavado, Raúl
2009-07-30
The aim of the present study was to investigate the relationship between Lolium perenne L. uptake of Cd, Cu, Pb, and Zn in sludge amended soils and soil availability of these elements assessed by soil sequential extraction. A greenhouse experiment was set with three representative soils of the Pampas Region, Argentina, amended with sewage sludge and sewage sludge enriched with its own incinerated ash. After the stabilization period of 60 days, half of the pots were sampled for soil analysis; the rest of the pots were sown with L. perenne and harvested 8, 12, 16 and 20 weeks after sowing, by cutting just above the soil surface. Cadmium and Pb concentrations in aerial tissues of L. perenne were below detection limits, in good agreement with the soil fractionation study. Copper and Zn concentration in the first harvest were significantly higher in the coarse textured soil compared to the fine textured soil, in contrast with soil chemical speciation. In the third harvest, there was a positive correlation between Cu and Zn concentration in aerial biomass and soil fractions usually considered of low availability. We conclude that the most available fractions obtained by soil sequential extraction did not provide the best indicator of Cu and Zn availability to L. perenne.
Xu, Li; Wang, Tieyu; Wang, Jihua; Lu, Anxiang
2017-04-01
The occurrence, speciation and transport of heavy metals in 9 coastal rivers from watershed of Laizhou Bay were investigated. The largest dissolved concentrations of Cd, Cu and Zn in water were 6.26, 2755.00, 2076.00 μg/L, respectively, much higher than several drinking water guidelines. The greatest concentrations of Cu, Zn, Cr, Ni, Pb and Cd in sediments were 1462, 1602, 196, 67.2, 63.5 and 1.41 mg/kg, dw, respectively. Correlation and principal component analysis was also conducted to determine the extent between the concentrations of metals in water and sediment, as well as relevant parameters. Throughout the river stretch, most of Cr Zn, Cr, Ni and Pb bound to residual fraction, however, Cd was preferentially bound to the exchangeable phase. Among the 9 rivers, Yellow river account for 72.5%, 67.5%, 55.4%, 59.4%, 79.4% and 85.5% for Cr, Ni, Cu, Zn. Cd and Pb, respectively. The combined potential ecological risk indexes were used to evaluate potential risks. The majority of sampling sites from watershed of Laizhou Bay have moderate ecological risk from metals. The government should pay more attention to the ecological risk of river ecosystem which flow to Laizhou Bay. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naidu, J.R.
1974-06-01
The Pacific Hake, Merluccius productus (Ayers) was used to monitor the waters off Puget Sound and the West Coast of the US for zinc(Zn), cadmium(Cd), mercury(Hg) and {sup 65}Zn. The Columbia River is not the source of Zn, Cd or Hg contamination, but is the source of {sup 65}Zn, with the concentration in the Hake reflecting the position of the Columbia River plume. Zn and Cd accumulation in the Hake were fit to the equation Y=B{sub 1}+B{sub 2}e{sup B}{sub 3}X where Y is the concentration of the element and X is the length or weight of the fish. Biological attributesmore » were assigned to the other parameters as follows: B{sub 1} is the asymptotic value for Zn or Cd at chemical maturity; B{sub 2} is the location of the curve with respect to the length or weight of the fish; and B{sub 3} is a constant pertaining to the rate of change of Zn or Cd. Although Zn, Cd and Hg are all Group 2B elements, only the concentrations of Zn and Cd were correlated for all locations; Hg concentrations varied as a function of location. Zn and Cd concentrations increase with fish size and approach an asymptotic value at maturity, while Hg concentrations were linear and the slope is a function of sampling location. Zn and Cd levels are regulated in the adult, while Hg continues to increase with age. It may be significant that the age distribution of fish caught commercially coincides with the maximum concentration of Zn and Cd. 195 refs., 30 figs., 10 tabs. (MHB)« less
Andrade, Sara A L; Gratão, Priscila L; Schiavinato, Marlene A; Silveira, Adriana P D; Azevedo, Ricardo A; Mazzafera, Paulo
2009-06-01
The influence of arbuscular mycorrhizal fungi (AMF) inoculation on Canavalia ensiformis growth, nutrient and Zn uptake, and on some physiological parameters in response to increasing soil Zn concentrations was studied. Treatments were applied in seven replicates in a 2 x 4 factorial design, consisting of the inoculation or not with the AMF Glomus etunicatum, and the addition of Zn to soil at the concentrations of 0, 100, 300 and 900 mg kg(-1). AMF inoculation enhanced the accumulation of Zn in tissues and promoted biomass yields and root nodulation. Mycorrhizal plants exhibited relative tolerance to Zn up to 300 mg kg(-1) without exhibiting visual symptoms of toxicity, in contrast to non-mycorrhizal plants which exhibited a significant growth reduction at the same soil Zn concentration. The highest concentration of Zn added to soil was highly toxic to the plants. Leaves of plants grown in high Zn concentration exhibited a Zn-induced proline accumulation and also an increase in soluble amino acid contents; however proline contents were lower in mycorrhizal jack beans. Plants in association or not with the AMF exhibited marked differences in the foliar soluble amino acid profile and composition in response to Zn addition to soil. In general, Zn induced oxidative stress which could be verified by increased lipid peroxidation rates and changes in catalase, ascorbate peroxidase, glutathione reductase and superoxide dismutase activities. In summary, G. etunicatum was able to maintain an efficient symbiosis with jack bean plants in moderately contaminated Zn-soils, improving plant performance under those conditions, which is likely to be due to a combination of physiological and nutritional changes caused by the intimate relation between fungus and plant. The enhanced Zn uptake by AMF inoculated jack bean plants might be of interest for phytoremediation purposes.
Zhao, Bingzi; Maeda, Morihiro; Zhang, Jiabao; Zhu, Anning; Ozaki, Yasuo
2006-03-01
Andisols are widespread in Japan and have some special properties such as high anion exchange capacity, low bulk density, and high organic matter content, which might influence the accumulation or chemical fractionation of heavy metals. However, few such data exist in Japanese andisols. The primary objective of this study was to investigate the distribution and chemical fractions of Cu, Zn, Ni, and Cr in the soil profiles and subsequently to assess their potential environmental hazard. Soil samples were taken from a field experiment conducted on Japanese andisols, which had received either swine compost or chemical fertilizers for 6 years. Concentrations of Cu, Zn, Ni, and Cr were determined for all of the obtained extract solutions by ICP-AES. Considerably higher total concentrations of Cu and Zn were observed in the top 20 cm layer of the compost-amended soil, relative to the unfertilized soil, while chemical fertilizers had little effect. Application of the swine compost increased the concentrations of Cu and Zn, but not Ni and Cr, in all fractions in the top 20 cm layer. The greatest increase in the organically bound fraction (OM) Cu and dilute acid-exchangeable fraction (DAEXCH) Zn was observed. This suggests that Cu and Zn are potentially bioavailable and mobile in the andisol profiles after 6-year consecutive applications of the swine compost. On the other hand, distribution of Cu, Zn, Ni and Cr among various soil fractions was generally unaffected by chemical fertilizers. We observed that 6-year consecutive applications of the swine compost led to an increase in total metals of Cu and Zn, as well as their all-chemical fractions, in the top 20 cm soil layers. Potential hazard of heavy metals, especially of Cu and Zn, as a result of the use of swine compost on andisols, must be taken into account. The long-term effect of the accumulation of heavy metals, particularly Cu and Zn, in various plant tissues and soils, as well as their potential risk to surface water via runoff and groundwater via leaching, needs to be carefully considered. Further investigations in the long-term experiments are therefore necessary.
Trace metal dynamics in zooplankton from the Bay of Bengal during summer monsoon.
Rejomon, G; Kumar, P K Dinesh; Nair, M; Muraleedharan, K R
2010-12-01
Trace metal (Fe, Co, Ni, Cu, Zn, Cd, and Pb) concentrations in zooplankton from the mixed layer were investigated at 8 coastal and 20 offshore stations in the western Bay of Bengal during the summer monsoon of 2003. The ecotoxicological importance of trace metal uptake was apparent within the Bay of Bengal zooplankton. There was a distinct spatial heterogeneity of metals, with highest concentrations in the upwelling zones of the southeast coast, moderate concentrations in the cyclonic eddy of the northeast coast, and lowest concentrations in the open ocean warm gyre regions. The average trace metal concentrations (μg g⁻¹) in coastal zooplankton (Fe, 44894.1 ± 12198.2; Co, 46.2 ± 4.6; Ni, 62.8 ± 6.5; Cu, 84.9 ± 6.7; Zn, 7546.8 ± 1051.7; Cd, 46.2 ± 5.6; Pb, 19.2 ± 2.6) were higher than in offshore zooplankton (Fe, 3423.4 ± 681.6; Co, 19.5 ± 3.81; Ni, 25.3 ± 7.3; Cu, 29.4 ± 4.2; Zn, 502.3 ± 124.3; Cd, 14.3 ± 2.9; Pb, 3.2 ± 2.0). A comparison of average trace metal concentrations in zooplankton from the Bay of Bengal showed enrichment of Fe, Co, Ni, Cu, Zn, Cd, and Pb in coastal zooplankton may be related to metal absorption from primary producers, and differences in metal concentrations in phytoplankton from coastal waters (upwelling zone and cyclonic eddy) compared with offshore waters (warm gyre). Zooplankton showed a great capacity for accumulations of trace metals, with average concentration factors of 4 867 929 ± 569 971, 246 757 ± 51 321, 337 180 ± 125 725, 43 480 ± 11 212, 1 046 371 ± 110 286, 601 679 ± 213 949, and 15 420 ± 9201 for Fe, Co, Ni, Cu, Zn, Cd, and Pb with respect to dissolved concentrations in coastal and offshore waters of the Bay of Bengal. © 2009 Wiley Periodicals, Inc. Environ Toxicol, 2009. Copyright © 2009 Wiley Periodicals, Inc.
[Spatial variations of heavy metals in precipitation at Mount Taishan region].
Wang, Yan; Liu, Xiao-Huan; Jin, Ling-Ren; Yue, Tai-Xing; Wang, De-Zhong; Wang, Wen-Xing
2007-11-01
Zn, Al, Mn, Fe, Pb, Cu, Ni, Cr, As, Cd in rain samples collected from two sites at Mount Taishan region were determined by ICP-MS, to evaluate the spatial variation characteristics of heavy metals in precipitation. Individual rain events were sampled for one whole year from Jan. to Dec. 2006. High concentrations of heavy metals were found at both sites, indicating serious heavy metal pollution. Zn was the most abundant element, accounting for 54% - 57% of the total metals concentrations. Its volume-weighted mean concentrations of precipitation at Mt-top and Mt-foot sites were 92.94 microg/L and 70.41 microg/L respectively. The following elements were Fe, Al and Mn and their concentrations were much higher than toxic heavy metals (As, Cd and Cd) except Pb (8.04 microg/L and 7.79 microg/L at two sites respectively). Comparison results between two sites suggested that heavy metal characteristics of precipitation at two sites were different, due to the influences of different ambient air conditions. Correlation analysis between two sites showed that Al, Mn, Fe, As, Cd, Pb influenced by air mass origin greatly, while Ni, Cu, Zn affected by other different factors.
Lee, Yun-Ju; Wang, Jian; Cheng, Samuel R; Hsu, Julia W P
2013-09-25
We demonstrate improved organic photovoltaic device performance using solution processed electron transport layers of ZnO nanoparticle (NP) films containing organic additives, poly(vinylpyrrolidone) (PVP), or diethanolamine (DEA), that do not require post processing after film deposition. Inclusion of PVP or DEA decreased the ZnO work function by 0.4 eV through interfacial dipole formation. While PVP did not change the ZnO NP shape or size, DEA modified the ZnO shape from 5 nm × 15 nm nanorods to 5 nm nanoparticles. At an optimized PVP concentration of 0.7 wt %, ZnO NP:PVP electron transport layers (ETLs) improved the efficiency of inverted P3HT:PCBM devices by 37%, primarily through higher fill factor. ZnO NP:PVP and ZnO NP:DEA ETLs increased the open circuit voltage of inverted P3HT:ICBA devices by 0.07 V due to decreasing ETL work function, leading to enhanced built-in field. The relationship between ZnO nanocomposite ETL work function, donor-acceptor energy offset, and device performance is discussed. The effects of the two additives are compared.
Photocatalytic detoxification of Acid Red 18 by modified ZnO catalyst under sunlight irradiation
NASA Astrophysics Data System (ADS)
Senthilraja, A.; Subash, B.; Dhatshanamurthi, P.; Swaminathan, M.; Shanthi, M.
2015-03-01
In this work, hybrid structured Bi-Au-ZnO composite was prepared by precipitation-decomposition method. This method is mild, economical and efficient. Bi-Au-ZnO was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive spectrum (EDS), diffuse reflectance spectra (DRS), photoluminescence spectra (PL) and BET surface area measurements. Photocatalytic activity of Bi-Au-ZnO was evaluated by irradiating the Acid Red 18 (AR 18) dye solution under sun light. Heterostructured Bi-Au-ZnO photocatalyst showed higher photocatalytic activity than those of individual Bi-ZnO, Au-ZnO, bare ZnO, and TiO2-P25 at pH 11. The effects of operational parameters such as the amount of catalyst dosage, dye concentration, initial pH on photo mineralization of AR 18 dye have been analyzed. The mineralization of AR 18 has been confirmed by chemical oxygen demand (COD) measurements. A possible mechanism is proposed for the degradation of AR 18 under sun light. Finally, Bi-Au-ZnO heterojunction photocatalyst was more stable and could be easily recycled several times opening a new avenue for potential industrial applications.
NASA Astrophysics Data System (ADS)
Roh, Jeongkyun; Kim, Hyeok; Park, Myeongjin; Kwak, Jeonghun; Lee, Changhee
2017-10-01
Interface engineering for the improved injection properties of all-solution-processed n-type organic field-effect transistors (OFETs) arising from the use of an inkjet-printed ZnO electron injection layer were demonstrated. The characteristics of ZnO in terms of electron injection and transport were investigated, and then we employed ZnO as the electron injection layer via inkjet-printing during the fabrication of all-solution-processed, n-type OFETs. With the inkjet-printed ZnO electron injection layer, the devices exhibited approximately five-fold increased mobility (0.0058 cm2/V s to 0.030 cm2/V s), more than two-fold increased charge concentration (2.76 × 1011 cm-2 to 6.86 × 1011 cm-2), and two orders of magnitude reduced device resistance (120 MΩ cm to 3 MΩ cm). Moreover, n-type polymer form smoother film with ZnO implying denser packing of polymer, which results in higher mobility.
ZnO-nanorods/graphene heterostructure: a direct electron transfer glucose biosensor
NASA Astrophysics Data System (ADS)
Zhao, Yu; Li, Wenbo; Pan, Lijia; Zhai, Dongyuan; Wang, Yu; Li, Lanlan; Cheng, Wen; Yin, Wei; Wang, Xinran; Xu, Jian-Bin; Shi, Yi
2016-08-01
ZnO-nanorods/graphene heterostructure was synthesized by hydrothermal growth of ZnO nanorods on chemically reduced graphene (CRG) film. The hybrid structure was demonstrated as a biosensor, where direct electron transfer between glucose oxidase (GOD) and electrode was observed. The charge transfer was attributed to the ZnO nanorod wiring between the redox center of GOD and electrode, and the ZnO/graphene heterostructure facilitated the transport of electrons on the hybride electrode. The glucose sensor based on the GOD-ZnO/CRG/Pt electrode had a high sensitivity of 17.64 μA mM-1, which is higher than most of the previously reported values for direct electron transfer based glucose biosensors. Moreover, this biosensor is linearly proportional to the concentration of glucose in the range of 0.2-1.6 mM. The study revealed that the band structure of electrode could affect the detection of direct electron transfer of GOD, which would be helpful for the design of the biosensor electrodes in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lupan, O.; Department of Physics, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816-2385; Chow, L.
2009-01-08
Nanostructured ZnO thin films have been deposited using a successive chemical solution deposition method. The structural, morphological, electrical and sensing properties of the films were studied for different concentrations of Al-dopant and were analyzed as a function of rapid photothermal processing temperatures. The films were investigated by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron and micro-Raman spectroscopy. Electrical and gas sensitivity measurements were conducted as well. The average grain size is 240 and 224 A for undoped ZnO and Al-doped ZnO films, respectively. We demonstrate that rapid photothermal processing is an efficient method for improving themore » quality of nanostructured ZnO films. Nanostructured ZnO films doped with Al showed a higher sensitivity to carbon dioxide than undoped ZnO films. The correlations between material compositions, microstructures of the films and the properties of the gas sensors are discussed.« less
Critical Elements in Fly Ash from the Combustion of Bituminous Coal in Major Polish Power Plants
NASA Astrophysics Data System (ADS)
Bielowicz, Barbara; Botor, Dariusz; Misiak, Jacek; Wagner, Marian
2018-03-01
The concentration of critical elements, including such REE as Fe, Co, W, Zn, Cr, Ni, V, Mn, Ti, Ag, Ga, Ta, Sr, Li, and Cu, in the so-called fly ash obtained from the 9 Polish power plants and 1 thermal power station has been determined. The obtained values, compared with the global average concentration in bituminous coal ash and sedimentary rocks (Clarke values), have shown that the enrichment of fly ash in the specified elements takes place in only a few bituminous coal processing sites in Poland. The enrichment factor (EF) is only slightly higher (the same order of magnitude) than the Clarke values. The enrichment factor in relation to the Clarke value in the Earth's crust reached values above 10 in all of the examined ashes for the following elements: Cr, Ni, V, W, and, in some ash samples, also Cu and Zn. The obtained values are low, only slightly higher than the global average concentrations in sedimentary rocks and bituminous coal ashes. The ferromagnetic grains (microspheres) found in bituminous coal fly ashes seem to be the most economically prospective in recovery of selected critical elements. The microanalysis has shown that iron cenospheres and plerospheres in fly ash contain, in addition to enamel and iron oxides (magnetite and hematite), iron spinels enriched in Co, Cr, Cu, Mn, Ni, W, and Zn.
Damrongsiri, Seelawut; Vassanadumrongdee, Sujitra; Tanwattana, Puntita
2016-09-01
Sue Yai Utit is an old community located in Bangkok, Thailand which dismantles waste electrical and electronic equipment (WEEE). The surface soil samples at the dismantling site were contaminated with copper (Cu), lead (Pb), zinc (Zn), and nickel (Ni) higher than Dutch Standards, especially around the WEEE dumps. Residual fractions of Cu, Pb, Zn, and Ni in coarse soil particles were greater than in finer soil. However, those metals bonded to Fe-Mn oxides were considerably greater in fine soil particles. The distribution of Zn in the mobile fraction and a higher concentration in finer soil particles indicated its readily leachable character. The concentration of Cu, Pb, and Ni in both fine and coarse soil particles was mostly not significantly different. The fractionation of heavy metals at this dismantling site was comparable to the background. The contamination characteristics differed from pollution by other sources, which generally demonstrated the magnification of the non-residual fraction. A distribution pathway was proposed whereby contamination began by the deposition of WEEE scrap directly onto the soil surface as a source of heavy metal. This then accumulated, corroded, and was released via natural processes, becoming redistributed among the soil material. Therefore, the concentrations of both the residual and non-residual fractions of heavy metals in WEEE-contaminated soil increased.
Bioaccumulation of heavy metals in crop plants grown near Almeda Textile Factory, Adwa, Ethiopia.
Gitet, Hintsa; Hilawie, Masho; Muuz, Mehari; Weldegebriel, Yirgaalem; Gebremichael, Dawit; Gebremedhin, Desta
2016-09-01
The contents of heavy metals cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn) present in water (wastewater and wetland), soils, and food crops collected from the vicinity of Almeda Textile Factory were quantified using Flame Atomic Absorption Spectrometer (FAAS) in order to assess the environmental impact of the textile factory. The contents of heavy metals determined in the wastewater were found below the recommended limit set by WHO and United States Environmental Protection Agency (US EPA) except for Cr, which was found slightly higher than WHO permissible limit. Besides, the contents of the heavy metals determined in soils were below the permissible level of FAO/WHO and Canada maximum allowable limits. Moreover, only the concentrations of Cd and Pb were found above the permissible level set by FAO/WHO in the crop plants studied. Generally, the mean concentrations of heavy metals in the plants were in the decreasing order of: Mn > Zn > Cu > Pb > Ni > Co > Cr > Cd. Nevertheless, higher bioconcentration factor (BCF) was found for Cd (0.108-1.156) followed by Zn (0.081-0.499). In conclusion, comparison of heavy metal concentrations with the permissible limits in all collected sample types i.e. water, soil, and crop plants did not show significant pollution from the factory.
NASA Astrophysics Data System (ADS)
Lupan, O.; Viana, B.; Cretu, V.; Postica, V.; Adelung, R.; Pauporté, T.
2016-02-01
Transition metal doped-oxide semiconductor nanostructures are important to achieve enhanced and new properties for advanced applications. We describe the low temperature preparation of ZnO:Ag nanowire/nanorod (NW/NR) arrays by electrodeposition at 90 °C. The NWs have been characterized by SEM, EDX, transmittance and photoluminescence (PL) measurements. The integration of Ag in the crystal is shown. Single nanowire/nanorod of ZnO:Ag was integrated in a nanosensor structure leading to new and enhanced properties. The ultraviolet (UV) response of the nanosensor was investigated at room temperature. Experimental results indicate that ZnO:Ag (0.75 μM) nanosensor possesses faster response/recovery time and better response to UV light than those reported in literature. The sensor structure has been also shown to give a fast response for the hydrogen detection with improved performances compared to pristine ZnO NWs. ZnO:Ag nanowire/nanorod arrays electrochemically grown on p-type GaN single crystal layer is also shown to act as light emitter in LED structures. The emission wavelength is red-shifted compared to pristine ZnO NW array. At low Ag concentration a single UV-blue emission is found whereas at higher concentration of dopant the emission is broadened and extends up to the red wavelength range. Our study indicates that high quality ZnO:Ag NW/NR prepared at low temperature by electrodeposition can serve as building nanomaterials for new sensors and light emitting diodes (LEDs) structures with low-power consumption.
An analysis of the extension of a ZnO piezoelectric semiconductor nanofiber under an axial force
NASA Astrophysics Data System (ADS)
Zhang, Chunli; Wang, Xiaoyuan; Chen, Weiqiu; Yang, Jiashi
2017-02-01
This paper presents a theoretical analysis on the axial extension of an n-type ZnO piezoelectric semiconductor nanofiber under an axial force. The phenomenological theory of piezoelectric semiconductors consisting of Newton’s second law of motion, the charge equation of electrostatics and the conservation of charge was used. The equations were linearized for small axial force and hence small electron concentration perturbation, and were reduced to one-dimensional equations for thin fibers. Simple and analytical expressions for the electromechanical fields and electron concentration in the fiber were obtained. The fields are either totally or partially described by hyperbolic functions relatively large near the ends of the fiber and change rapidly there. The behavior of the fields is sensitive to the initial electron concentration and the applied axial force. For higher initial electron concentrations the fields are larger near the ends and change more rapidly there.
Bakshi, Madhurima; Ram, S S; Ghosh, Somdeep; Chakraborty, Anindita; Sudarshan, M; Chaudhuri, Punarbasu
2017-05-01
This work describes the micro-spatial variation of elemental distribution in estuarine sediment and bioaccumulation of those elements in different mangrove species of the Indian Sundarbans. The potential ecological risk due to such elemental load on this mangrove-dominated habitat is also discussed. The concentrations of elements in mangrove leaves and sediments were determined using energy-dispersive X-ray fluorescence spectroscopy. Sediment quality and potential ecological risks were assessed from the calculated indices. Our data reflects higher concentration of elements, e.g., Al, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, and Pb, in the sediment, as compared to that reported by earlier workers. Biological concentration factors for K, Ca, Mn, Fe, Cu, and Zn in different mangroves indicated gradual elemental bioaccumulation in leaf tissues (0.002-1.442). Significant variation was observed for elements, e.g., Ni, Mn, and Ca, in the sediments of all the sites, whereas in the plants, significant variation was found for P, S, Cl, K, Ca, Mn, Fe, Cu, and Zn. This was mostly due to the differences in uptake and accumulation potential of the plants. Various sediment quality indices suggested the surface sediments to be moderately contaminated and suffering from progressive deterioration. Cu, Cr, Zn, Mn, and Ni showed higher enrichment factors (0.658-1.469), contamination factors (1.02-2.7), and geo-accumulation index (0.043-0.846) values. The potential ecological risk index values considering Cu, Cr, Pb, and Zn were found to be within "low ecological risk" category (20.04-24.01). However, Cr and Ni in the Sundarban mangroves exceeded the effect range low and probable effect level limits. Strong correlation of Zn with Fe and K was observed, reflecting their similar transportation and accumulation process in both sediment and plant systems. The plant-sediment elemental correlation was found to be highly non-linear, suggesting role of some physiological and edaphic factors in the accumulation process. Overall, the study of micro-spatial distribution of elements can act as a useful tool for determining health of estuarine ecosystem.
Evaluation of Serum Levels of Zinc, Copper, Iron, and Zinc/Copper Ratio in Cutaneous Leishmaniasis
Pourfallah, F; Javadian, S; Zamani, Z; Saghiri, R; Sadeghi, S; Zarea, B; Faiaz, Sh; Mirkhani, F; Fatemi, N
2009-01-01
Background: The purpose of this study was to evaluate the levels of zinc (Zn), copper (Cu), iron (Fe) and zinc/ copper ratio in the serum of patients with cutaneous leishmaniasis in Qom Province, center of Iran. Methods: Serum levels of zinc and copper were determined by flame atomic absorption spectrophotometer and serum iron concentration was measured by using an Auto Analyzer. The study group consisted of 60 patients with cutaneous leishmaniasis and the control group of 100 healthy volunteers from the same area who were not exposed to cutaneous leishmaniasis. Result: There were no statistically significant differences in age and body mass index between the two groups. Serum Zn (P< 0.001) and Fe (P< 0.05) levels were lower in patients with cutaneous leishmaniasis than the control group. We also found serum Cu concentration (P< 0.05) in the patient group was significantly higher than that of the control group. However, zinc/ copper ratio (P< 0.001) was lower in patients with cutaneous leishmaniasis than in the control group. Conclusion: Our data indicated that Zn/Cu ratio was significantly lower in patients with CL as compared to the controls. Earlier reports suggest that, this ratio imbalance could be a useful marker for immune dysfunction in leishmaniasis. There was also strong association of Zn, Cu and Fe with CL. It suggests the use of blood zinc, copper, iron concentration and the copper/zinc ratio (Zn/Cu), as a means for estimating the prognosis of CL. PMID:22808376
Comparative tissue distribution of metals in birds in Sweden using ICP-MS and laser ablation ICP-MS.
Ek, Kristine H; Morrison, Gregory M; Lindberg, Peter; Rauch, Sébastien
2004-08-01
Cadmium, copper, lead, palladium, platinum, rhodium, and zinc profiles were investigated along feather shafts of raptor and other bird species by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The distribution of external versus internal metal contamination of feathers was investigated. The species examined were peregrine falcon (Falco peregrinus), sparrowhawk ( Accipiter nisus), willow grouse (Lagopus lagopus), and house sparrow (Passer domesticus) in Sweden. For habitat comparisons, total Cu, Pb, Zn, and Cd concentrations were analyzed by ICP-MS in feathers of the examined species as well as captive peregrine falcon. For investigation of metal distribution and correlation in different biological materials of raptors, total concentrations of Cu, Pb, Cd, and Zn were also investigated by ICP-MS in feathers, eggs, blood, feces, liver, and kidney of wild peregrine falcon from southwestern Sweden. Laser ablation of feathers revealed that Pb contamination is both external and internal, Zn contamination is internal, and Cd and Cu contamination is predominantly internal, with a few externally attached particles of high concentration. Pb, Cu, and Cd signal intensities were highest in urban habitats and contamination was mainly external in feathers. The background signal intensity of Zn was also higher in birds from urban habitats. The laser ablation profile of PGE (Pt, Pd, Rh) demonstrated that PGE contamination of feathers consists almost exclusively of externally attached PGE-containing particles, with little evidence of internally deposited PGE.Generally, total metal concentrations in feathers were highest in sparrowhawk and house sparrow due to their urban habitat. Total Cu, Zn, and Cd concentrations were highest in liver and kidney due to binding to metallothionein, while the total Pb concentration was highest in feces due to the high excretion rate of Pb. A decreasing temporal trend for Pb in feathers, showing that Pb levels in feathers have decreased since the introduction of nonleaded petrol, is also discussed.
Vukosav, Petra; Mlakar, Marina; Cukrov, Neven; Kwokal, Zeljko; Pižeta, Ivanka; Pavlus, Natalija; Spoljarić, Ivanka; Vurnek, Maja; Brozinčević, Andrijana; Omanović, Dario
2014-03-01
An evaluation of the quality status of the pristine karst, tufa depositing aquatic environment of the Plitvice Lakes National Park based on the analysis of heavy (ecotoxic) metals was examined for the first time. Analyses of trace metals in water, sediment and fish (Salmo trutta, Oncorhynchus mykiss, Squalius cephalus) samples were conducted either by stripping voltammetry (Zn, Cd, Pb and Cu) or cold vapour atomic absorption spectrometry (Hg). The concentration of dissolved trace metals in water was very low revealing a pristine aquatic environment (averages were, in ng/L: 258 (Zn), 10.9 (Cd), 11.7 (Pb), 115 (Cu) and 1.22 (Hg)). Slightly enhanced concentrations of Cd (up to 50 ng/L) and Zn (up to 900 ng/L) were found in two main water springs and are considered as of natural origin. Observed downstream decrease in concentration of Cd, Zn and Cu in both water and sediments is a consequence of the self-purification process governed by the formation and settling of authigenic calcite. Anthropogenic pressure was spotted only in the Kozjak Lake: Hg concentrations in sediments were found to be up to four times higher than the baseline value, while at two locations, Pb concentrations exceeded even a probable effect concentration. The increase of Hg and Pb was not reflected on their levels in the fish tissues; however, significant correlations were found between Cd level in fish tissues (liver and muscle) and in the water/sediment compartments, while only partial correlations were estimated for Zn and Cu. A high discrepancy between values of potentially bioavailable metal fraction estimated by different modelling programs/models raised the question about the usefulness of these data as a parameter in understanding/relating the metal uptake and their levels in aquatic organism. The aquatic environment of the Plitvice Lakes National Park is characterized, in general, as a clean ecosystem.
Heavy metals removal from aqueous solutions and wastewaters by using various byproducts.
Shaheen, Sabry M; Eissa, Fawzy I; Ghanem, Khaled M; Gamal El-Din, Hala M; Al Anany, Fathia S
2013-10-15
Water contamination with heavy metals (HM) represents a potential threat to humans, animals and plants, and thus removal of these metals from contaminated waters has received increasing attention. The present study aimed to assess the efficiency of some low cost sorbents i.e., chitosan (CH), egg shell (ES), humate potassium (HK), and sugar beet factory lime (SBFL) for removal of cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) from wastewaters. For this purpose batch equilibrium experiments were conducted with aqueous solutions containing various concentrations of the metals and sorbents in a mono-metal and competitive sorption system. Sorption isotherms were developed, and sorption parameters were determined. The potential applicability of the tested sorbents in the removal of Cd, Cu, and Zn from contaminated wastewaters was also investigated by equilibrating different sorbents and water ratios. Chitosan expressed the highest affinity for the metals followed by SBFL, ES, and HK. Nearly 100% of the metals were removed from aqueous solutions with the lowest initial metal concentrations by the sorbents especially CH and SBFL. However, the sorption efficiency decreased as the initial metal concentrations increased. Competition among the four metals changed significantly their distribution coefficient (Kd) values with the sorbents. The selectivity sequence of the metals was: Pb > Cu > Zn > Cd. The metal removal from the wastewaters varied from 72, 69, and 60 to nearly 100% for Cd, Cu and Zn, respectively. The efficiency of the studied byproducts in removing metals from the wastewaters differed based on the source of contamination and metal concentrations. Cadmium removal percentages by HK and CH were higher than SBFL and ES. The HK and CH exhibited the highest removal percentage of Cu from water with high concentrations. The SBFL and ES revealed the highest removal percentage of Zn from water with high concentrations. The results, demonstrate a high potential of CH, SBFL, HK, and ES for the remediation of HM contaminated wastewaters. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vijayaprasath, G.; Murugan, R.; Palanisamy, S.
Highlights: • The XRD analyses revealed that the synthesizes nickel doped ZnO (Zn{sub 1−x}Ni{sub x}O, x = 0.0, 0.03, 0.06 and 0.09) nanostructures have hexagonal wurtzite structure. • The photoluminescence measurements revealed that the broad emission was composed of different bands due to zinc and oxygen vacancies. • X-ray photoelectron spectroscopy (XPS) confirmed the Ni incorporation in ZnO lattice as Ni{sup 2+} ions. • Room temperature ferromagnetism was observed due to the oxygen vacancies and zinc interstitials are the main reasons for ferromagnetism in Ni doped ZnO NPs. - Abstract: Zn{sub 1−x}Ni{sub x}O nanoparticles were synthesized by co-precipitation method. Themore » crystallite sizes of the synthesized samples found to decrease from 38 to 26 nm with increase in nickel concentration. FTIR spectra confirmed the presence of Zn−O stretching bands at 577, 573, 569 and 565 cm{sup −1} in the respective ZnO NPs. Optical absorption spectra revealed the red shifted and estimated band gap is found to decrease with increase of Ni doping concentration. The PL spectra of all the samples exhibited a broad emission at 390 nm in the visible range. The carriers (donors) bounded on the Ni sites were observed from the micro Raman spectroscopic studies. Pure and Ni doped ZnO NPs showed significant changes in the M–H loop, especially the diamagnetic behavior changed into ferromagnetic nature for Ni doped samples. The antiferromagnetic super-exchange interactions between Ni{sup 2+} ions is increased in higher Ni doped ZnO NPs and also their antibacterial activity has been studied.« less
NASA Astrophysics Data System (ADS)
Muslim, Muhammad; Habib, Md Ahsan; Mahmood, Abu Jafar; Islam, Tajmeri Selima Akhter; Ismail, Iqbal Mohmmad Ibrahim
2012-10-01
ZnO, comprising nanosize particles (approximately 40 nm) has been prepared by heating (300°C) ZnCO3, which was obtained as precipitate by mixing ZnSO4 and (NH4)2CO3 solutions. The prepared ZnO was characterized by X-ray diffraction, scanning electron microscopy (SEM), laser-induced breakdown spectroscopy, and adsorption studies. It has been used to catalyze the decolorization of Ponceau S (PS), a model diazo dye, in an aqueous suspension under visible light ( I ≈ 1.8 × 10-4 W cm-2). This ZnO was found to be more efficient as a photocatalyst compared to pristine ZnO. ZnO samples with higher temperatures (500°C and 700°C) show less catalytic activity. SEM images show that the particle size of ZnO increases with the increase in calcined temperature of ZnO through agglomeration, resulting in a decrease in surface area. Photodecolorization of PS is affected by its and ZnO concentrations, but unaffected by the initial pH of the solutions in the range of 4 to 7. Illumination for a sufficiently long time completely mineralizes the dye, but no Zn2+ can be detected in the clear solution. Photodegradation kinetics in the ZnO suspension obeys the Langmuir-Hinshelwood equation, and some activation of the ZnO surface by light is indicated.
Li, Chun-Ting; Chang, Hung-Yu; Li, Yu-Yan; Huang, Yi-June; Tsai, Yu-Lin; Vittal, R; Sheng, Yu-Jane; Ho, Kuo-Chuan
2015-12-30
Highly efficient zinc compounds (Zn3N2, ZnO, ZnS, and ZnSe) have been investigated as low-cost electrocatalysts for the counter electrodes (CE) of dye-sensitized solar cells (DSSCs). Among them, Zn3N2 and ZnSe are introduced for the first time in DSSCs. The zinc compounds were separately mixed with a conducting binder, poly(3,4-ethylene-dioxythiophene):poly(styrenesulfonate) ( PSS), and thereby four composite films of Zn3N2/PEDOT:PSS, ZnO/PEDOT:PSS, ZnS/PEDOT:PSS, and ZnSe/ PSS were coated on the tin-doped indium oxide (ITO) substrates through a simple drop-coating process. In the composite film, nanoparticles of the zinc compound form active sites for the electrocatalytic reduction of triiodide ions, and PSS provides a continuous conductive matrix for fast electron transfer. By varying the weight percentage (5-20 wt %) of a zinc compound with respect to the weight of the PSS, the optimized concentration of a zinc compound was found to be 10 wt % in all four cases, based on the photovoltaic performances of the corresponding DSSCs. At this concentration (10 wt %), the composites films with Zn3N2 (Zn3N2-10), ZnO (ZnO-10), ZnS (ZnS-10), and ZnSe (ZnSe-10) rendered, for their DSSCs, power conversion efficiencies (η) of 8.73%, 7.54%, 7.40%, and 8.13%, respectively. The difference in the power conversion efficiency is explained based on the electrocatalytic abilities of those composite films as determined by cyclic voltammetry (CV), Tafel polarization plots, and electrochemical impedance spectroscopy (EIS) techniques. The energy band gaps of the zinc compounds, obtained by density functional theory (DFT) calculations, were used to explain the electrocatalytic behaviors of the compounds. Among all the zinc-based composites, the one with Zn3N2-10 showed the best electrocatalytic ability and thereby rendered for its DSSC the highest η of 8.73%, which is even higher than that of the cell with the traditional Pt CE (8.50%). Therefore, Zn3N2 can be considered as a promising inexpensive electrocatalyst to replace the rare and expensive Pt.
Prenatal zinc supplementation of zinc-adequate rats adversely affects immunity in offspring.
Sharkar, Mohammad T K; Jou, Ming-Yu; Hossain, Mohammad B; Lönnerdal, Bo; Stephensen, Charles B; Raqib, Rubhana
2011-08-01
We previously showed that zinc (Zn) supplementation of Zn-adequate dams induced immunosuppressive effects that persist in the offspring after weaning. We investigated whether the immunosuppressive effects were due to in utero exposure and/or mediated via milk using a cross-fostering design. Pregnant rats with adequate Zn nutriture were supplemented with either Zn (1.5 mg Zn in 10% sucrose) or placebo (10% sucrose) during pregnancy (3 times/wk). At postnatal d 3, 4 pups of Zn-supplemented dams (Zn-P) were exchanged with 4 of placebo-supplemented dams (P-Zn). The remaining pups continued with their biological mothers (Zn-Zn and P-P). Pups were orally immunized with dinitrophenol ovalbumin-BSA and/or cholera toxin B subunit (CTB), and serum Zn concentrations and cellular and humoral responses were assessed. Pups of Zn-supplemented dams had higher serum Zn when fostered either by placebo- or Zn-supplemented dams compared to pups of placebo-supplemented dams (P < 0.01). Postnatal Zn exposure reduced the number of Peyer's patches in both the Zn-Zn and P-Zn groups (P < 0.01). Prenatal Zn exposure suppressed CTB- (P = 0.05) and BSA-specific proliferation response of Peyer's Patch lymphocytes (P = 0.07). Prenatal Zn exposure effects on the splenocyte cytokine response were differently influenced by fostering mothers' Zn status. Antigen presenting cell (APC) activity of splenocytes was lower in the Zn-Zn group than in the P-P group (P < 0.08). In conclusion, prenatal Zn exposure increases serum Zn levels in pups and suppresses antigen-specific proliferation and antibody responses and APC function, whereas postnatal exposure may suppress the mucosal immune reservoir.
Al-Hwaiti, Mohammad Salem; Brumsack, Hans Jurgen; Schnetger, Bernhard
2015-07-01
Heavy metal contamination of clay waste through the phosphate beneficiation process is a serious problem faced by scientists and regulators worldwide. Through the beneficiation process, heavy metals naturally present in the phosphate rocks became concentrated in the clay waste. This study evaluated the concentration of heavy metals and their fractions in the clay waste in order to assess the risk of environmental contamination. A five-step sequential extraction method, the risk assessment code (RAC), effects range low (ERL), effects range medium (ERM), the lowest effect level (LEL), the severe effect level (SEL), the redistribution index (U tf), the reduced partition index (I), residual partition index (I R), and the Nemerow multi-factor index (PC) were used to assess for clay waste contamination. Heavy metals were analyzed using high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) and inductively coupled plasma optical emission spectroscopy (ICP-OES). Correlation analyses were carried out to better understand the relationships between the chemical characteristics and the contents of the different phase fractions. Concentrations of Cd and Cu confirmed that both were bound to the exchangeable fraction (F1) and the carbonate fraction (F2), presenting higher mobility, whereas Pb was most abundant in the Fe-Mn oxide fraction (F3) and organic matter fraction (F4). The residual fraction (F5) contained the highest concentrations (>60%) of As, Cr, Mo, V, and Zn, with lower mobility. Application of the RAC index showed that Cd and Cu should be considered a moderate risk, whereas As, Cr, Mo, Pb, and Zn presented a low risk. Cadmium and Cu contents in mobile fractions F1 and F2 were higher than ERL but lower than ERM. On the other hand, As, Pb, and Zn contents of mobile fractions F1 and F2 were lower than ERL and ERM guideline values. Moreover, total Pb concentrations in the clay waste were below the lowest effect level (LEL) threshold value period, Cr and Zn values in the clay waste were determined to have exceeded the severe effect level (SEL) limit values, whereas Cd and Cu level ranges between LEL and SEL indicate moderate contamination. I R values of heavy metals in the clay waste confirmed that Cd and Cu were bound to the exchangeable and carbonate fractions and presented higher mobility, whereas As, Cr, Mo, Pb, V, and Zn were bound to organic or residual fractions and consequently exhibit lower mobility. A Nemerow multi-factor index revealed that the mine site contains high levels of Cd, Cu, V, and Zn pollution. As and Cr were found at a moderate level of contamination, whereas Pb was present at a safe level of contamination. The order of the comprehensive contamination indices was Cd > Cu > Mo > Zn > V > Cr > As > Pb, indicating that the assessment of clay waste, especially with Cd and Cu, should be undertaken to control heavy metal contamination in adjacent urban and mine areas at the Eshidiya mines.
Green Manure Addition to Soil Increases Grain Zinc Concentration in Bread Wheat
Aghili, Forough; Gamper, Hannes A.; Eikenberg, Jost; Khoshgoftarmanesh, Amir H.; Afyuni, Majid; Schulin, Rainer; Jansa, Jan; Frossard, Emmanuel
2014-01-01
Zinc (Zn) deficiency is a major problem for many people living on wheat-based diets. Here, we explored whether addition of green manure of red clover and sunflower to a calcareous soil or inoculating a non-indigenous arbuscular mycorrhizal fungal (AMF) strain may increase grain Zn concentration in bread wheat. For this purpose we performed a multifactorial pot experiment, in which the effects of two green manures (red clover, sunflower), ZnSO4 application, soil γ-irradiation (elimination of naturally occurring AMF), and AMF inoculation were tested. Both green manures were labeled with 65Zn radiotracer to record the Zn recoveries in the aboveground plant biomass. Application of ZnSO4 fertilizer increased grain Zn concentration from 20 to 39 mg Zn kg−1 and sole addition of green manure of sunflower to soil raised grain Zn concentration to 31 mg Zn kg−1. Adding the two together to soil increased grain Zn concentration even further to 54 mg Zn kg−1. Mixing green manure of sunflower to soil mobilized additional 48 µg Zn (kg soil)−1 for transfer to the aboveground plant biomass, compared to the total of 132 µg Zn (kg soil)−1 taken up from plain soil when neither green manure nor ZnSO4 were applied. Green manure amendments to soil also raised the DTPA-extractable Zn in soil. Inoculating a non-indigenous AMF did not increase plant Zn uptake. The study thus showed that organic matter amendments to soil can contribute to a better utilization of naturally stocked soil micronutrients, and thereby reduce any need for major external inputs. PMID:24999738
Low-frequency zone boundary phonons in Li doped ZnO ceramics
NASA Astrophysics Data System (ADS)
Yadav, Harish Kumar; Sreenivas, K.; Gupta, Vinay; Katiyar, R. S.
2008-09-01
Room temperature Raman spectra of Li doped ZnO (Zn1-xLixO) ceramics with varying Li concentrations (x =0.0, 0.05, 0.10, and 0.15) are investigated in this study. Four peaks were identified at 96.6, 127, 157, and 194 cm-1 in the Li doped samples. The peaks at 127, 157, and 194 cm-1 are assigned to zone boundary phonons in ZnO [J. M. Calleja and M. Cardona, Phys. Rev. B 16, 3753 (1977)], and appear due to disorder in ZnO lattice with Li incorporation. Lithium, owing to its smaller radius, adjusts itself anywhere in the ZnO lattice and breaks the crystal translational symmetry to a large extent, compared to other dopants. Disorder in the lattice is seen to be finely modulated with varying Li content. The peak at 96.6 cm-1 is hypothesized to be a projection of the vibrational motion of Li atoms at lower frequencies, which contributes in a major fashion at higher frequencies, due to its lighter mass than Zn or O atoms.
Assessment of trace metal levels in size-resolved particulate matter in the area of Leipzig
NASA Astrophysics Data System (ADS)
Fomba, Khanneh Wadinga; van Pinxteren, Dominik; Müller, Konrad; Spindler, Gerald; Herrmann, Hartmut
2018-03-01
Size-resolved trace metal concentrations at four sites in Leipzig (Germany) and its surrounding were assessed between the winter of 2013 and the summer of 2015. The measurements were performed in parallel at; traffic dominated (Leipzig - Mitte, LMI), traffic and residential dominated (Eisenbahnstrasse, EIB), urban background (TROPOS, TRO) and regional background (Melpitz, MEL) sites. In total, 19 trace metals, i.e. K, Ca, Ti, Mn, Fe, Cu, Zn, As, Se, Ba, V, Pb, Ni, Cr, Sr, Sn, Sb, Co and Rb were analysed using total reflection x-ray fluorescence (TXRF). The major metals were Fe, K and Ca with concentrations ranging between; 31-440 ng/m3, 42-153 ng/m3 and 24-322 ng/m3, respectively, while the trace metals with the lowest concentrations were Co, Rb and Se with concentrations of; < 0.3 ng/m3, <0.5 ng/m3 and 0.5-0.7 ng/m3, respectively. PM10 trace metal concentrations during easterly air mass inflow especially at the background sites were in average 70% higher in the winter and 30% higher in the summer in comparison to westerly air mass inflow. Traffic at LMI contributed to about 75% of Cr, Ba, Cu, Sb, Sn, Ca, Co, Mn, Fe and Ti concentrations while regional activities contributed to more than 70% of K, Rb, Pb, Se, As and V concentrations. Traffic dominated trace metals were often observed in the coarse mode while the regional background dominated trace metals were often observed in the fine mode. Trace metal sources were related to crustal matter and road dust re-suspension for metals such as Ca, Fe, Co, Sr, and Ti, brake and tire wear (Cu, Sb, Ba, Fe, Zn, Pb), biomass burning (K, Rb), oil and coal combustion (V, Zn, As, Pb). Crustal matter contributed 5-12% in winter and 8-19% in summer of the PM10 mass. Using Cu and Zn as markers for brake and tire wear, respectively, the estimated brake and tire wear contributions to the PM10 mass were 0.1-0.8% and 1.7-2.9%, respectively. The higher contributions were observed at the traffic sites while the lower contributions were observed at the regional background site. In total, non-exhaust emissions could account for about 10-22% of the PM10 mass in the summer and about 7-15% of the PM10 mass in the winter.
Kiatkoski Kaminski, Renata Cristina; Caetano, Bruno Leonardo; Magnani, Marina; Meneau, Florian; Rochet, Amélie; Santilli, Celso Valentim; Briois, Valérie; Bourgaux, Claudie
2018-01-01
ZnO/ZnS heterostructures have emerged as an attractive approach for tailoring the properties of particles comprising these semiconductors. They can be synthesized using low temperature sol-gel routes. The present work yields insight into the mechanisms involved in the formation of ZnO/ZnS nanostructures. ZnO colloidal suspensions, prepared by hydrolysis and condensation of a Zn acetate precursor solution, were allowed to react with an ethanolic thioacetamide solution (TAA) as sulfur source. The reactions were monitored in situ by Small Angle X-ray Scattering (SAXS) and UV-vis spectroscopy, and the final colloidal suspensions were characterized by High Resolution Transmission Electron Microscopy (HRTEM). The powders extracted at the end of the reactions were analyzed by X-ray Absorption spectroscopy (XAS) and X-ray diffraction (XRD). Depending on TAA concentration, different nanostructures were revealed. ZnO and ZnS phases were mainly obtained at low and high TAA concentrations, respectively. At intermediate TAA concentrations, we evidenced the formation of ZnO/ZnS heterostructures. ZnS formation could take place via direct crystal growth involving Zn ions remaining in solution and S ions provided by TAA and/or chemical conversion of ZnO to ZnS. The combination of all the characterization techniques was crucial to elucidate the reaction steps and the nature of the final products. PMID:29360735
Bilos, C; Colombo, J C; Presa, M J
1998-01-01
Suspended particulate matter (SPM), sandy sediments and Asiatic clams were collected at seven sites along 150 km of the Río de la Plata coast to assess the magnitude of trace metal pollution in the area. Metal concentrations in SPM (Cu: 7.4-109; Cr: 75-408; Mn: 525-1341 microg(-1)), sediments (Cr: 16-27; Zn: 26-99; Mn: 221-489 microg(-1)) and bivalves (Cd: 0.5-1.9; Ni: 1.3-6.4; Cr: 1.3-11; Mn: 15-81; Cu: 28-89; Zn: 118-316 microg g(-1)) are comparable to those reported for other moderately polluted world rivers. Cu levels in Asiatic clams are among the highest, similar to those reported for heavily polluted sites. SPM Cu and Cr concentrations displayed a clear geographical trend with values increasing with proximity to major urban centers. Sediments showed a less clear pattern possibly due to their coarse nature (>98% sand) and higher proportion of mineral-associated residual metals. The clams showed a complex pattern due to the variability introduced by size-related factors and the natural dynamics of SPM in the estuary. Cr and Mn showed an apparent reverse industrial trend with higher concentrations in clams collected at distant stations near the turbidity maximum zone, possibly reflecting enhanced particle retention. Cu, Cd and Ni showed no clear geographical pattern, whereas Zn increased in the clams collected in the most industrialized area. A significant relationship with clam size was observed for Cu (positive) and Zn (negative) suggesting different physiological requirements for both metals with age. A principal component analysis confirmed these geographical and size-related trends.
Kasemodel, Mariana Consiglio; Lima, Jacqueline Zanin; Sakamoto, Isabel Kimiko; Varesche, Maria Bernadete Amancio; Trofino, Julio Cesar; Rodrigues, Valéria Guimarães Silvestre
2016-12-01
Improper disposal of mining waste is still considered a global problem, and further details on the contamination by potentially toxic metals are required for a proper assessment. In this context, it is important to have a combined view of the chemical and biological changes in the mining dump area. Thus, the objective of this study was to evaluate the Pb, Zn and Cd contamination in a slag disposal area using the integration of geochemical and microbiological data. Analyses of soil organic matter (SOM), pH, Eh, pseudo-total concentration of metals, sequential extraction and microbial community by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) were conducted. Metal availability was evaluated based on the geoaccumulation index (I geo ), ecological risk ([Formula: see text]), Risk Assessment Code (RAC) and experimental data, and different reference values were tested to assist in the interpretation of the indices. The soil pH was slightly acidic to neutral, the Eh values indicated oxidized conditions and the average SOM content varied from 12.10 to 53.60 g kg -1 . The average pseudo-total concentrations of metals were in the order of Zn > Pb > Cd. Pb and Zn were mainly bound to the residual fraction and Fe-Mn oxides, and a significant proportion of Cd was bound to the exchangeable and carbonate fractions. The topsoil (0-20 cm) is highly contaminated (I geo ) with Cd and has a very high potential ecological risk ([Formula: see text]). Higher bacterial diversity was mainly associated with higher metal concentrations. It is concluded that the integration of geochemical and microbiological data can provide an appropriate evaluation of mining waste-contaminated areas.
Ferri, Roberta; Hashim, Dana; Smith, Donald R; Guazzetti, Stefano; Donna, Filippo; Ferretti, Enrica; Curatolo, Michele; Moneta, Caterina; Beone, Gian Maria; Lucchini, Roberto G
2015-06-15
For the past century, ferroalloy industries in Brescia province, Italy produced particulate emissions enriched in manganese (Mn), lead (Pb), zinc (Zn), copper (Cu), cadmium (Cd), chromium (Cr), iron (Fe), and aluminum (Al). This study assessed metal concentrations in soil and vegetables of regions with varying ferroalloy industrial activity levels. Home gardens (n=63) were selected in three regions of varying ferroalloy plant activity durations in Brescia province. Total soil metal concentration and extractability were measured by X-Ray Fluorescence (XRF), aqua regia extraction, and modified Community Bureau of Reference (BCR) sequential extraction. Unwashed and washed spinach and turnips cultivated in the same gardens were analyzed for metal concentrations by flame atomic absorption spectrometry. Median soil Al, Cd, Fe, Mn, Pb, and Zn concentrations were significantly higher in home gardens near ferroalloy plants compared to reference home gardens. The BCR method yielded the most mobile soil fraction (the sum of extractable metals in Fractions 1 and 2) and all metal concentrations were higher in ferroalloy plant areas. Unwashed spinach showed higher metal concentrations compared to washed spinach. However, some metals in washed spinach were higher in the reference area likely due to history of agricultural product use. Over 60% of spinach samples exceeded the 2- to 4-fold Commission of European Communities and Codex Alimentarius Commission maximum Pb concentrations, and 10% of the same spinach samples exceeded 2- to 3-fold maximum Cd concentrations set by both organizations. Turnip metal concentrations were below maximum standard reference values. Prolonged industrial emissions increase median metal concentrations and most soluble fractions (BCR F1+F2) in home garden soils near ferroalloy plants. Areas near ferroalloy plant sites had spinach Cd and Pb metal concentrations several-fold above maximum standard references. We recommend thorough washing of vegetables to minimize metal exposure. Copyright © 2015 Elsevier B.V. All rights reserved.
Ferri, Roberta; Hashim, Dana; Smith, Donald R.; Guazzetti, Stefano; Donna, Filippo; Ferretti, Enrica; Curatolo, Michele; Moneta, Caterina; Beone, Gian Maria; Lucchini, Roberto G.
2015-01-01
Background For the past century, ferroalloy industries in Brescia province, Italy produced particulate emissions enriched in manganese (Mn), lead (Pb), zinc (Zn), copper (Cu), cadmium (Cd), chromium (Cr), iron (Fe), aluminum (Al). This study assessed metal concentrations in soil and vegetables of regions with varying ferroalloy industrial activity levels. Methods Home gardens (n=63) were selected in three regions of varying ferroalloy plant activity duration in Brescia province. Total soil metal concentration and extractability were measured by X-ray fluorescence (XRF), aqua regia extraction, and modified Community Bureau of Reference (BCR) sequential extraction. Unwashed and washed spinach and turnips cultivated in the same gardens were analyzed for metal concentrations by flame atomic absorption spectrometry. Results Median soil Al, Cd, Fe, Mn, Pb, and Zn concentrations were significantly higher in home gardens near ferroalloy plants compared to reference home gardens. The BCR method yielded the most mobile soil fraction (the sum of extractable metals in Fractions 1 and 2) and all metal concentrations were higher in ferroalloy plant areas. Unwashed spinach showed higher metal concentrations compared to washed spinach. However, some metals in washed spinach were higher in the reference area likely due to history of agricultural product use. Over 60% of spinach samples exceeded the 2- to 4-fold Commission of European Communities and Codex Alimentarius Commission maximum Pb concentrations, and 10% of the same spinach samples exceeded 2- to 3-fold maximum Cd concentrations set by both organizations. Turnip metal concentrations were below maximum standard reference values. Conclusions Prolonged industrial emissions increase median metal concentrations and most soluble fractions (BCR F1+F2) in home garden soils near ferroalloy plants. Areas near ferroalloy plant sites had spinach Cd and Pb metal concentrations several-fold above maximum standard references. We recommend thoroughly washing vegetables to minimize metal exposure. PMID:25777956
NASA Astrophysics Data System (ADS)
Ohteki, Yusuke; Sugiyama, Mutsumi
2018-07-01
A high-transparency ZnO thin film of high carrier concentration was grown by conventional RF sputtering, where the carrier concentration was continuously varied from 1016 to 1019 cm‑3 by controlling the amounts of O2 and H2 sputtering gases. To prevent the formation of a Schottky junction at the contact with In–Zn–O, and to improve the fill factor of a visible-light-transparent solar cell, a Ag-paste/NiO/ZnO/ZnO:H/IZO p–n diode structure with the carrier concentration of the ZnO:H layer of 1019 cm‑3 was fabricated. It is possible to reduce the depletion width and inverse the rectification action around ZnO/IZO by controlling the carrier concentration of the ZnO layer while maintaining the high transparency.
Kandziora-Ciupa, Marta; Nadgórska-Socha, Aleksandra; Barczyk, Gabriela; Ciepał, Ryszard
2017-09-01
The aim of this study was to determine the concentrations of heavy metals (Cd, Pb, Zn, Fe, and Mn) in soil, and their bioavailability and bioaccumulation in Vaccinium myrtillus L. and Vaccinium vitis-idaea L. organs. Analysis also concerned the physiological responses of these plants from three polluted sites (immediate vicinity of a zinc smelter in Miasteczko Śląskie, ArcelorMittal Poland S.A. iron smelter in Dąbrowa Górnicza-Łosień, and Jaworzno III power plant in Jaworzno) and one pseudo-control site (Pazurek nature reserve in Jaroszowiec Olkuski). All of the sites are situated in the southern parts of Poland in the Śląskie or Małopolskie provinces. The contents of proline, non-protein thiols, glutathione, ascorbic acid, and the activity of superoxide dismutase and guaiacol peroxidase in the leaves of Vaccinium myrtillus L. and Vaccinium vitis-idaea L. were measured. In soil, the highest levels of Cd, Pb, and Zn (HNO 3 extracted and CaCl 2 extracted) were detected at the Miasteczko Śląskie site. At all sites a several times lower concentration of the examined metals was determined in the fraction of soil extracted with CaCl 2 . Much higher Cd, Pb, Zn and Fe concentrations were found in V. myrtillus and V. vitis-idaea grown at the most polluted site (located near the zinc smelter) in comparison with cleaner areas; definitely higher bioaccumulation of these metals was found in lingonberry organs. Additionally, we observed a large capability of bilberry to accumulate Mn. Antioxidant response to heavy metal stress also differed between V. myrtillus and V. vitis-idaea. In V. myrtillus we found a positive correlation between the level of non-protein thiols and Cd and Zn concentrations, and also between proline and these metals. In V. vitis-idaea leaves an upward trend in ascorbic acid content and superoxide dismutase activity accompanied an increase in Cd, Pb, and Zn concentrations. At the same time, the increased levels of all tested metals in the leaves of V. vitis-idaea were accompanied by a decreased activity of guaiacol peroxidase. In both species increased Mn accumulation caused a decrease in antioxidant response.
Tokumaru, Takashi; Ozaki, Hirokazu; Onwona-Agyeman, Siaw; Ofosu-Anim, John; Watanabe, Izumi
2017-10-01
The concentrations of trace elements (Mg, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Y, Mo, Cd, In, Sn, Sb, Cs, Ba, Tl, Pb, and Bi) in soils, sediment, human hair, and foodstuff collected around the electronic waste (e-waste) recycling sites in Accra, Ghana were detected using inductively coupled plasma-mass spectrometry (ICP-MS). High levels of Cu, Zn, Mo, Cd, In, Sn, Sb, and Pb were observed in soils collected from the e-waste recycling sites. Four sequential extraction procedures were used to evaluate the mobility and bioavailability of metals (Cu, Zn, Cd, Sb, and Pb). Especially, the results showed that Cd and Zn in soils were mostly recovered in exchangeable fraction (respectively 58.9 and 62.8%). Sediment collected from around the site had enrichment of Zn, Sn, Sb, Mo, In, Pb, and Bi. The concentrations of Cu, Mo, Cd, Sb, and Pb in human hair were significantly higher than those collected from the control site (p < 0.01). Additionally, hierarchical cluster analysis reviewed that these elements were derived from e-waste activities. The results of Pb isotopic ratios in the samples indicate that Pb in human hair possibly originated from contaminated soils, fish, and foodstuff.