NASA Astrophysics Data System (ADS)
He, Yuan; Cremer, Dieter
For 30 molecules and two atoms, MP n correlation energies up to n = 6 are computed and used to analyse higher order correlation effects and the initial convergence behaviour of the MP n series. Particularly useful is the analysis of correlation contributions E(n)XY ...( n = 4,5,6; X , Y ,... = S, D, T, Q denoting single, double, triple, and quadruple excitations) in the form of correlation energy spectra. Two classes of system are distinguished, namely class A systems possessing well separated electron pairs and class B systems which are characterized by electron clustering in certain regions of atomic and molecular space. For class A systems, electron pair correlation effects as described by D, Q, DD, DQ, QQ, DDD, etc., contributions are most important, which are stepwise included at MP n with n = 2,... ,6. Class A systems are reasonably described by MP n theory, which is reflected by the fact that convergence of the MP n series is monotonic (but relatively slow) for class A systems. The description of class B systems is difficult since three- and four-electron correlation effects and couplings between two-, three-, and four-electron correlation effects missing for lower order perturbation theory are significant. MP n methods, which do not cover these effects, simulate higher order with lower order correlation effects thus exaggerating the latter, which has to be corrected with increasing n. Consequently, the MP n series oscillates for class B systems at low orders. A possible divergence of the MP n series is mostly a consequence of an unbalanced basis set. For example, diffuse functions added to an unsaturated sp basis lead to an exaggeration of higher order correlation effects, which can cause enhanced oscillations and divergence of the MP n series.
Theoretical scheme of thermal-light many-ghost imaging by Nth-order intensity correlation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Yingchuan; College of Mathematics and Physics, University of South China, Hengyang 421001; Kuang Leman
2011-05-15
In this paper, we propose a theoretical scheme of many-ghost imaging in terms of Nth-order correlated thermal light. We obtain the Gaussian thin lens equations in the many-ghost imaging protocol. We show that it is possible to produce N-1 ghost images of an object at different places in a nonlocal fashion by means of a higher order correlated imaging process with an Nth-order correlated thermal source and correlation measurements. We investigate the visibility of the ghost images in the scheme and obtain the upper bounds of the visibility for the Nth-order correlated thermal-light ghost imaging. It is found that themore » visibility of the ghost images can be dramatically enhanced when the order of correlation becomes larger. It is pointed out that the many-ghost imaging phenomenon is an observable physical effect induced by higher order coherence or higher order correlations of optical fields.« less
Relativistic calculation of correlational energy for a helium-like atom
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palchikov, V.G.
This paper presents an analytical method for calculating the firstorder correlational energy from the electron interaction, taking account of lag effects. Explicit analytical expressions are obtained for radial matrix elements. The nonrelativistic limit is investigated. The given method may be used to calculate correlation effects in higher orders of perturbation theory (second and higher orders with respect to 1/z) using the Strum expansion for the Coulomb Green's functions.
A Maximum Entropy Test for Evaluating Higher-Order Correlations in Spike Counts
Onken, Arno; Dragoi, Valentin; Obermayer, Klaus
2012-01-01
Evaluating the importance of higher-order correlations of neural spike counts has been notoriously hard. A large number of samples are typically required in order to estimate higher-order correlations and resulting information theoretic quantities. In typical electrophysiology data sets with many experimental conditions, however, the number of samples in each condition is rather small. Here we describe a method that allows to quantify evidence for higher-order correlations in exactly these cases. We construct a family of reference distributions: maximum entropy distributions, which are constrained only by marginals and by linear correlations as quantified by the Pearson correlation coefficient. We devise a Monte Carlo goodness-of-fit test, which tests - for a given divergence measure of interest - whether the experimental data lead to the rejection of the null hypothesis that it was generated by one of the reference distributions. Applying our test to artificial data shows that the effects of higher-order correlations on these divergence measures can be detected even when the number of samples is small. Subsequently, we apply our method to spike count data which were recorded with multielectrode arrays from the primary visual cortex of anesthetized cat during an adaptation experiment. Using mutual information as a divergence measure we find that there are spike count bin sizes at which the maximum entropy hypothesis can be rejected for a substantial number of neuronal pairs. These results demonstrate that higher-order correlations can matter when estimating information theoretic quantities in V1. They also show that our test is able to detect their presence in typical in-vivo data sets, where the number of samples is too small to estimate higher-order correlations directly. PMID:22685392
Correlated stopping, proton clusters and higher order proton cumulants
Bzdak, Adam; Koch, Volker; Skokov, Vladimir
2017-05-05
Here, we investigate possible effects of correlations between stopped nucleons on higher order proton cumulants at low energy heavy-ion collisions. We find that fluctuations of the number of wounded nucleons N part lead to rather nontrivial dependence of the correlations on the centrality; however, this effect is too small to explain the large and positive four-proton correlations found in the preliminary data collected by the STAR collaboration at √s = 7.7 GeV. We further demonstrate that, by taking into account additional proton clustering, we are able to qualitatively reproduce the preliminary experimental data. We speculate that this clustering may originatemore » either from collective/multi-collision stopping which is expected to be effective at lower energies or from a possible first-order phase transition, or from (attractive) final state interactions. To test these ideas we propose to measure a mixed multi-particle correlation between stopped protons and a produced particle (e.g. pion, antiproton).« less
Experimental characterization of a quantum many-body system via higher-order correlations.
Schweigler, Thomas; Kasper, Valentin; Erne, Sebastian; Mazets, Igor; Rauer, Bernhard; Cataldini, Federica; Langen, Tim; Gasenzer, Thomas; Berges, Jürgen; Schmiedmayer, Jörg
2017-05-17
Quantum systems can be characterized by their correlations. Higher-order (larger than second order) correlations, and the ways in which they can be decomposed into correlations of lower order, provide important information about the system, its structure, its interactions and its complexity. The measurement of such correlation functions is therefore an essential tool for reading, verifying and characterizing quantum simulations. Although higher-order correlation functions are frequently used in theoretical calculations, so far mainly correlations up to second order have been studied experimentally. Here we study a pair of tunnel-coupled one-dimensional atomic superfluids and characterize the corresponding quantum many-body problem by measuring correlation functions. We extract phase correlation functions up to tenth order from interference patterns and analyse whether, and under what conditions, these functions factorize into correlations of lower order. This analysis characterizes the essential features of our system, the relevant quasiparticles, their interactions and topologically distinct vacua. From our data we conclude that in thermal equilibrium our system can be seen as a quantum simulator of the sine-Gordon model, relevant for diverse disciplines ranging from particle physics to condensed matter. The measurement and evaluation of higher-order correlation functions can easily be generalized to other systems and to study correlations of any other observable such as density, spin and magnetization. It therefore represents a general method for analysing quantum many-body systems from experimental data.
Higher-Order Statistical Correlations and Mutual Information Among Particles in a Quantum Well
NASA Astrophysics Data System (ADS)
Yépez, V. S.; Sagar, R. P.; Laguna, H. G.
2017-12-01
The influence of wave function symmetry on statistical correlation is studied for the case of three non-interacting spin-free quantum particles in a unidimensional box, in position and in momentum space. Higher-order statistical correlations occurring among the three particles in this quantum system is quantified via higher-order mutual information and compared to the correlation between pairs of variables in this model, and to the correlation in the two-particle system. The results for the higher-order mutual information show that there are states where the symmetric wave functions are more correlated than the antisymmetric ones with same quantum numbers. This holds in position as well as in momentum space. This behavior is opposite to that observed for the correlation between pairs of variables in this model, and the two-particle system, where the antisymmetric wave functions are in general more correlated. These results are also consistent with those observed in a system of three uncoupled oscillators. The use of higher-order mutual information as a correlation measure, is monitored and examined by considering a superposition of states or systems with two Slater determinants.
NASA Astrophysics Data System (ADS)
Klaus, Julian; Pan Chun, Kwok; Stumpp, Christine
2015-04-01
Spatio-temporal dynamics of stable oxygen (18O) and hydrogen (2H) isotopes in precipitation can be used as proxies for changing hydro-meteorological and regional and global climate patterns. While spatial patterns and distributions gained much attention in recent years the temporal trends in stable isotope time series are rarely investigated and our understanding of them is still limited. These might be a result of a lack of proper trend detection tools and effort for exploring trend processes. Here we make use of an extensive data set of stable isotope in German precipitation. In this study we investigate temporal trends of δ18O in precipitation at 17 observation station in Germany between 1978 and 2009. For that we test different approaches for proper trend detection, accounting for first and higher order serial correlation. We test if significant trends in the isotope time series based on different models can be observed. We apply the Mann-Kendall trend tests on the isotope series, using general multiplicative seasonal autoregressive integrate moving average (ARIMA) models which account for first and higher order serial correlations. With the approach we can also account for the effects of temperature, precipitation amount on the trend. Further we investigate the role of geographic parameters on isotope trends. To benchmark our proposed approach, the ARIMA results are compared to a trend-free prewhiting (TFPW) procedure, the state of the art method for removing the first order autocorrelation in environmental trend studies. Moreover, we explore whether higher order serial correlations in isotope series affects our trend results. The results show that three out of the 17 stations have significant changes when higher order autocorrelation are adjusted, and four stations show a significant trend when temperature and precipitation effects are considered. Significant trends in the isotope time series are generally observed at low elevation stations (≤315 m a.s.l.). Higher order autoregressive processes are important in the isotope time series analysis. Our results show that the widely used trend analysis with only the first order autocorrelation adjustment may not adequately take account of the high order autocorrelated processes in the stable isotope series. The investigated time series analysis method including higher autocorrelation and external climate variable adjustments is shown to be a better alternative.
Montangie, Lisandro; Montani, Fernando
2016-10-01
Spike correlations among neurons are widely encountered in the brain. Although models accounting for pairwise interactions have proved able to capture some of the most important features of population activity at the level of the retina, the evidence shows that pairwise neuronal correlation analysis does not resolve cooperative population dynamics by itself. By means of a series expansion for short time scales of the mutual information conveyed by a population of neurons, the information transmission can be broken down into firing rate and correlational components. In a proposed extension of this framework, we investigate the information components considering both second- and higher-order correlations. We show that the existence of a mixed stimulus-dependent correlation term defines a new scenario for the interplay between pairwise and higher-than-pairwise interactions in noise and signal correlations that would lead either to redundancy or synergy in the information-theoretic sense.
Pulse transmission receiver with higher-order time derivative pulse correlator
Dress, Jr., William B.; Smith, Stephen F.
2003-09-16
Systems and methods for pulse-transmission low-power communication modes are disclosed. A pulse transmission receiver includes: a higher-order time derivative pulse correlator; a demodulation decoder coupled to the higher-order time derivative pulse correlator; a clock coupled to the demodulation decoder; and a pseudorandom polynomial generator coupled to both the higher-order time derivative pulse correlator and the clock. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.
Energy-energy correlation in electron-positron annihilation at NNLL + NNLO accuracy
NASA Astrophysics Data System (ADS)
Tulipánt, Zoltán; Kardos, Adam; Somogyi, Gábor
2017-11-01
We present the computation of energy-energy correlation in e^+e^- collisions in the back-to-back region at next-to-next-to-leading logarithmic accuracy matched with the next-to-next-to-leading order perturbative prediction. We study the effect of the fixed higher-order corrections in a comparison of our results to LEP and SLC data. The next-to-next-to-leading order correction has a sizable impact on the extracted value of α S(M_Z), hence its inclusion is mandatory for a precise measurement of the strong coupling using energy-energy correlation.
Method for suppressing noise in measurements
NASA Technical Reports Server (NTRS)
Carson, Paul J. (Inventor); Madsen, Louis A. (Inventor); Leskowitz, Garett M. (Inventor); Weitekamp, Daniel P. (Inventor)
2000-01-01
Techniques of combining separate but correlated measurements to form a second-order or higher order correlation function to suppress the effects of noise in the initial condition of a system capable of retaining memory of an initial state of the system with a characteristic relaxation time. At least two separate measurements are obtained from the system. The temporal separation between the two separate measurements is preferably comparable to or less than the characteristic relaxation time and is adjusted to allow for a correlation between two measurements.
NASA Astrophysics Data System (ADS)
Kumar, Pradeep; Li, Cheng-Bin; Sahoo, B. K.
2018-03-01
Dependencies of electron correlation effects with the rank and radial behavior of spectroscopic properties are analyzed in the singly charged calcium ion (Ca+). To demonstrate these trends, we have determined field shift constants, magnetic dipole and electric quadrupole hyperfine structure constants, Landé g J factors, and electric quadrupole moments that are described by electronic operators with different radial and angular factors. Radial dependencies are investigated by comparing correlation trends among the properties that have similar angular factors and vice versa. To highlight these observations, we present results from the mean-field approach to all-orders along with intermediate contributions. Contributions from higher relativistic corrections are also given. These findings suggest that sometime lower-order approximations can give results agreeing with the experimental results, but inclusion of some of higher-order correlation effects can cause large disagreement with the experimental values. Therefore, validity of a method for accurate evaluation of atomic properties can be tested by performing calculations of several properties simultaneously that have diverse dependencies on the angular and radial factors and comparing with the available experimental results. Nevertheless, it is imperative to include full triple and quadrupole excitations in the all-order many-body methods for high-precision calculations that are yet to be developed adopting spherical coordinate system for atomic studies.
Higher-Order Factors of Personality: Do They Exist?
Ashton, Michael C.; Lee, Kibeom; Goldberg, Lewis R.; de Vries, Reinout E.
2010-01-01
Scales that measure the Big Five personality factors are often substantially intercorrelated. These correlations are sometimes interpreted as implying the existence of two higher-order factors of personality. We show that correlations between measures of broad personality factors do not necessarily imply the existence of higher-order factors, and might instead be due to variables that represent same-signed blends of orthogonal factors. Therefore, the hypotheses of higher-order factors and blended variables can only be tested with data on lower-level personality variables that define the personality factors. We compared the higher-order factor model and the blended variable model in three participant samples using the Big Five Aspect Scales, and found better fit for the latter model. In other analyses using the HEXACO Personality Inventory, we identified mutually uncorrelated markers of six personality factors. We conclude that correlations between personality factor scales can be explained without postulating any higher-order dimensions of personality. PMID:19458345
Fourth-Order Spatial Correlation of Thermal Light
NASA Astrophysics Data System (ADS)
Wen, Feng; Zhang, Xun; Xue, Xin-Xin; Sun, Jia; Song, Jian-Ping; Zhang, Yan-Peng
2014-11-01
We investigate the fourth-order spatial correlation properties of pseudo-thermal light in the photon counting regime, and apply the Klyshko advanced-wave picture to describe the process of four-photon coincidence counting measurement. We deduce the theory of a proof-of-principle four-photon coincidence counting configuration, and find that if the four randomly radiated photons come from the same radiation area and are indistinguishable in principle, the fourth-order correlation of them is 24 times larger than that when four photons come from different radiation areas. In addition, we also show that the higher-order spatial correlation function can be decomposed into multiple lower-order correlation functions, and the contrast and visibility of low-order correlation peaks are less than those of higher orders, while the resolutions all are identical. This study may be useful for better understanding the four-photon interference and multi-channel correlation imaging.
Ocular wavefront aberration and refractive error in pre-school children
NASA Astrophysics Data System (ADS)
Thapa, Damber; Fleck, Andre; Lakshminarayanan, Vasudevan; Bobier, William R.
2011-11-01
Hartmann-Shack images taken from an archived collection of SureSight refractive measurements of pre-school children in Oxford County, Ontario, Canada were retrieved and re-analyzed. Higher-order aberrations were calculated over the age range of 3 to 6 years. These higher-order aberrations were compared with respect to magnitudes of ametropia. Subjects were classified as emmetropic (range -0.5 to + 0.5D), low hyperopic (+ 0.5 to +2D) and high hyperopic (+2D or more) based upon the resulting spherical equivalent. Higher-order aberrations were found to increase with higher levels of hyperopia (p < 0.01). The strongest effect was for children showing more than +2.00D of hyperopia. The correlation coefficients were small in all of the higher-order aberrations; however, they were significant (p < 0.01). These analyses indicate a weak association between refractive error and higher-order aberrations in pre-school children.
Higher-Order Squeezing in a Boson Coupled Two-Mode System
NASA Technical Reports Server (NTRS)
Chizhov, A. V.; Haus, J. W.; Yeong, K. C.
1996-01-01
We consider a model for nondegenerate cavity fields interacting through an intervening Boson field. The quantum correlations introduced in this manner are manifest through their higher-order correlation functions where a type of squeezed state is identified.
Effects of high-order correlations on personalized recommendations for bipartite networks
NASA Astrophysics Data System (ADS)
Liu, Jian-Guo; Zhou, Tao; Che, Hong-An; Wang, Bing-Hong; Zhang, Yi-Cheng
2010-02-01
In this paper, we introduce a modified collaborative filtering (MCF) algorithm, which has remarkably higher accuracy than the standard collaborative filtering. In the MCF, instead of the cosine similarity index, the user-user correlations are obtained by a diffusion process. Furthermore, by considering the second-order correlations, we design an effective algorithm that depresses the influence of mainstream preferences. Simulation results show that the algorithmic accuracy, measured by the average ranking score, is further improved by 20.45% and 33.25% in the optimal cases of MovieLens and Netflix data. More importantly, the optimal value λ depends approximately monotonously on the sparsity of the training set. Given a real system, we could estimate the optimal parameter according to the data sparsity, which makes this algorithm easy to be applied. In addition, two significant criteria of algorithmic performance, diversity and popularity, are also taken into account. Numerical results show that as the sparsity increases, the algorithm considering the second-order correlation can outperform the MCF simultaneously in all three criteria.
Higher Order Aberration and Astigmatism in Children with Hyperopic Amblyopia
Choi, Seung Kwon
2016-01-01
Purpose To investigate the changes in corneal higher-order aberration (HOA) during amblyopia treatment and the correlation between HOA and astigmatism in hyperopic amblyopia children. Methods In this retrospective study, a total of 72 eyes from 72 patients ranging in age from 38 to 161 months were included. Patients were divided into two groups based on the degree of astigmatism. Corneal HOA was measured using a KR-1W aberrometer at the initial visit and at 3-, 6-, and 12-month follow-ups. Correlation analysis was performed to assess the association between HOA and astigmatism. Results A total of 72 patients were enrolled in this study, 37 of which were classified as belonging to the higher astigmatism group, while 35 were assigned to the lower astigmatism group. There was a statistically significant difference in success rate between the higher and lower astigmatism groups. In both groups, all corneal HOAs were significantly reduced during amblyopia treatment. When comparing the two groups, a significant difference in coma HOA at the 12-month follow-up was detected (p = 0.043). In the Pearson correlation test, coma HOA at the 12-month follow-up demonstrated a statistically significant correlation with astigmatism and a stronger correlation with astigmatism in the higher astigmatism group than in the lower astigmatism group (coefficient values, 0.383 and 0.284 as well as p = 0.021 and p = 0.038, respectively). Conclusions HOA, particularly coma HOA, correlated with astigmatism and could exert effects in cases involving hyperopic amblyopia. PMID:26865804
Higher Order Aberration and Astigmatism in Children with Hyperopic Amblyopia.
Choi, Seung Kwon; Chang, Ji Woong
2016-02-01
To investigate the changes in corneal higher-order aberration (HOA) during amblyopia treatment and the correlation between HOA and astigmatism in hyperopic amblyopia children. In this retrospective study, a total of 72 eyes from 72 patients ranging in age from 38 to 161 months were included. Patients were divided into two groups based on the degree of astigmatism. Corneal HOA was measured using a KR-1W aberrometer at the initial visit and at 3-, 6-, and 12-month follow-ups. Correlation analysis was performed to assess the association between HOA and astigmatism. A total of 72 patients were enrolled in this study, 37 of which were classified as belonging to the higher astigmatism group, while 35 were assigned to the lower astigmatism group. There was a statistically significant difference in success rate between the higher and lower astigmatism groups. In both groups, all corneal HOAs were significantly reduced during amblyopia treatment. When comparing the two groups, a significant difference in coma HOA at the 12-month follow-up was detected (p = 0.043). In the Pearson correlation test, coma HOA at the 12-month follow-up demonstrated a statistically significant correlation with astigmatism and a stronger correlation with astigmatism in the higher astigmatism group than in the lower astigmatism group (coefficient values, 0.383 and 0.284 as well as p = 0.021 and p = 0.038, respectively). HOA, particularly coma HOA, correlated with astigmatism and could exert effects in cases involving hyperopic amblyopia.
Delgado, S; Velazco, J; Delgado Pelayo, R M; Ruiz-Quintero, N
2016-07-01
To determine the correlation of higher order aberrations in anterior corneal surface and degree of keratoconus measured with a Scheimpflug camera. A descriptive, cross-sectional study was conducted on 152 eyes (both eyes of each patient) of patients with keratoconus, from January 2009 to April 2014. An examination was performed on the corneal aberrometry in the anterior corneal surface, and topographic mapping (by Amsler and Muckenhirn classification) was used to determine the degree of keratoconus. The correlation between high-order aberrations in anterior corneal surface and the degree of keratoconus was determined. Coma aberration significantly correlated with keratoconus severity (r=.60, P<.01), as well as with the high order aberration (r=.61, P<.01). Trefoil and keratoconus were weakly correlated (r=.34, P<.01). Higher order aberrations in anterior corneal surface were positively correlated with the degree of keratoconus in a similar way to the entire optical system. Copyright © 2016 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.
NASA Astrophysics Data System (ADS)
Fianti; Najwa, F. L.; Linuwih, S.
2017-04-01
Higher-order-thinking-skills can not be developed directly, except by training which is employing open-ended problems for measuring and developing critics, creativeness, and problem-solving thinking-skills of students. This study is a research and development producing open-ended problems. The purpose of this study is to measure the properness and effectiveness of the developed product and to observe the profile of higher-order-thinking-skills of students on global warming phenomenon. The result of properness test of open-ended problems according to the experts is 92,59% on the first stage and 97,53% on the second stage, so we can assume that the product isvery proper. The result of effectiveness test shows the coefficient of correlation between student’s midterm test scores and open-ended questions is 0,634 which is in the category of strong. Higher-order-thinking-skills of SMA Negeri 1 Salatiga students is in the category of good with the average achievement scores 61,28.
The Meaning of Higher-Order Factors in Reflective-Measurement Models
ERIC Educational Resources Information Center
Eid, Michael; Koch, Tobias
2014-01-01
Higher-order factor analysis is a widely used approach for analyzing the structure of a multidimensional test. Whenever first-order factors are correlated researchers are tempted to apply a higher-order factor model. But is this reasonable? What do the higher-order factors measure? What is their meaning? Willoughby, Holochwost, Blanton, and Blair…
Non-equilibrium many-body influence on mode-locked Vertical External-cavity Surface-emitting Lasers
NASA Astrophysics Data System (ADS)
Kilen, Isak Ragnvald
Vertical external-cavity surface-emitting lasers are ideal testbeds for studying the influence of the non-equilibrium many-body dynamics on mode locking. As we will show in this thesis, ultra short pulse generation involves a marked departure from Fermi carrier distributions assumed in prior theoretical studies. A quantitative model of the mode locking dynamics is presented, where the semiconductor Bloch equations with Maxwell's equation are coupled, in order to study the influences of quantum well carrier scattering on mode locking dynamics. This is the first work where the full model is solved without adiabatically eliminating the microscopic polarizations. In many instances we find that higher order correlation contributions (e.g. polarization dephasing, carrier scattering, and screening) can be represented by rate models, with the effective rates extracted at the level of second Born-Markov approximations. In other circumstances, such as continuous wave multi-wavelength lasing, we are forced to fully include these higher correlation terms. In this thesis we identify the key contributors that control mode locking dynamics, the stability of single pulse mode-locking, and the influence of higher order correlation in sustaining multi-wavelength continuous wave operation.
Solving the Quantum Many-Body Problem via Correlations Measured with a Momentum Microscope
NASA Astrophysics Data System (ADS)
Hodgman, S. S.; Khakimov, R. I.; Lewis-Swan, R. J.; Truscott, A. G.; Kheruntsyan, K. V.
2017-06-01
In quantum many-body theory, all physical observables are described in terms of correlation functions between particle creation or annihilation operators. Measurement of such correlation functions can therefore be regarded as an operational solution to the quantum many-body problem. Here, we demonstrate this paradigm by measuring multiparticle momentum correlations up to third order between ultracold helium atoms in an s -wave scattering halo of colliding Bose-Einstein condensates, using a quantum many-body momentum microscope. Our measurements allow us to extract a key building block of all higher-order correlations in this system—the pairing field amplitude. In addition, we demonstrate a record violation of the classical Cauchy-Schwarz inequality for correlated atom pairs and triples. Measuring multiparticle momentum correlations could provide new insights into effects such as unconventional superconductivity and many-body localization.
Pain coping strategies: Neonatal intensive care unit survivors in adolescence.
van Ganzewinkel, Christ-Jan; Been, Jasper V; Dieleman, Jeanne P; Katgert, Titia; Boelen-van der Loo, Tera; van der Pal, Sylvia M; van Dijk, Monique; Kramer, Boris W; Andriessen, Peter
2016-12-01
Data on long-term consequences of preterm birth on pain coping later in life are limited. To assess whether gestational age, birth weight and neonatal disease severity have effect on pain coping style in adolescents born preterm or with low birth weight. Observational, longitudinal study (Project On Preterm and SGA-infants, POPS-19). We analyzed data of 537 adolescents at the age of 19 years, who were born at a gestational age <32 weeks or with a birth weight <1500g. Participants completed the pain coping questionnaire (PCQ) that assesses pain coping strategies in three higher-order factors: approach ("to deal with pain"), problem-focused avoidance ("to disengage from pain") and emotion-focused avoidance ("expression of pain"). Furthermore, their pain coping effectiveness, pain controllability and emotional reactions to pain were assessed. All participants completed an IQ test. Univariate analysis showed no significant correlation between length of stay, sepsis and necrotizing enterocolitis and any of the higher-order factors. Approach was only correlated with IQ. Problem-focused avoidance was, in the multiple regression analysis (including gestational age, IVH and IQ), only correlated with IQ. For emotion-focused avoidance (including birth weight, SGA, IVH, respiratory support and IQ) three independent predictors remained: IVH was positively correlated, while respiratory support and IQ were negatively correlated with emotion-focused avoidance. Early neonatal characteristics and neonatal disease severity have limited effect on pain coping style in adolescence. Higher IQ was associated with the use of adaptive coping strategies, while maladaptive strategies were used less. Copyright © 2016. Published by Elsevier Ireland Ltd.
Analysis of age-dependence of the anterior and posterior cornea with scheimpflug imaging.
Nemeth, Gabor; Hassan, Ziad; Szalai, Eszter; Berta, Andras; Modis, Laszlo
2013-05-01
To assess keratometric and higher-order aberrations of the anterior and posterior cornea and their age-related changes. This study investigated one healthy eye of 227 patients (mean age: 55.15 ± 21.2 years; range: 16 to 90 years; 135 right eyes, 92 left eyes). Images were captured from each eye with Pentacam HR (Oculus Optikgeräte GmbH, Wetzlar, Germany) using automatic mode. Keratometric, astigmatism data, and corneal higher-order aberrations were analyzed. With respect to laterality, no deviance was found in any of the parameters (P > .05). Mean refractive error was 0.52 ± 0.23 diopters. The level of astigmatism decreased significantly with advancing age for both the anterior and posterior corneal surfaces (P < .05). The overall root mean square of the higher-order aberration increased continuously with age (r = 0.517; P < .01), which can be explained by the combined effect of the increased in both the anterior and posterior corneal root mean square higher-order aberrations. Of the higher-order aberrations, the constant increase of the primary and secondary spherical aberration with aging (P < .01) is caused by the spherical aberration growth of the anterior surface. Apart from these, only the vertical coma aberration of the posterior surface and the vertical trefoil aberrations of both the anterior and posterior surfaces showed a significantly positive correlation with aging (P < .05). Corneal astigmatism showed a significant decrease with aging. Of the higher-order aberrations, primary and secondary spherical aberrations, vertical coma, and vertical trefoil significantly increase with age, whereas other higher-order aberrations show no correlation with aging. Copyright 2013, SLACK Incorporated.
ERIC Educational Resources Information Center
Konold, Clifford E.; Bates, John A.
1982-01-01
Significant correlations between measures of cognitive structure and performance were found using a procedure distinguishing between episodic and semantic memory as an heuristic with achievement test items. The design increased the likelihood of indications of semantic memory. Higher-order and lower-order cognitive processes are discussed.…
Explicit calculation of the two-loop corrections to the chiral magnetic effect with the NJL model
NASA Astrophysics Data System (ADS)
Chu, Kit-fai; Huang, Peng-hui; Liu, Hui
2018-05-01
The chiral magnetic effect (CME) is usually believed to not receive higher-order corrections due to the nonrenormalization of the AVV triangle diagram in the framework of quantum field theory. However, the CME-relevant triangle, which is obtained by expanding the current-current correlation, requires zero momentum on the axial vertex and is not equivalent to the general AVV triangle when taking the zero-momentum limit owing to the infrared problem on the axial vertex. Therefore, it is still significant to check if there exists perturbative higher-order corrections to the current-current correlation. In this paper, we explicitly calculate the two-loop corrections of CME within the Nambu-Jona-Lasinio model with a Chern-Simons term, which ensures a consistent μ5 . The result shows the two-loop corrections to the CME conductivity are zero, which confirms the nonrenomalization of CME conductivity.
Correlated bursts and the role of memory range
NASA Astrophysics Data System (ADS)
Jo, Hang-Hyun; Perotti, Juan I.; Kaski, Kimmo; Kertész, János
2015-08-01
Inhomogeneous temporal processes in natural and social phenomena have been described by bursts that are rapidly occurring events within short time periods alternating with long periods of low activity. In addition to the analysis of heavy-tailed interevent time distributions, higher-order correlations between interevent times, called correlated bursts, have been studied only recently. As the underlying mechanism behind such correlated bursts is far from being fully understood, we devise a simple model for correlated bursts using a self-exciting point process with a variable range of memory. Whether a new event occurs is stochastically determined by a memory function that is the sum of decaying memories of past events. In order to incorporate the noise and/or limited memory capacity of systems, we apply two memory loss mechanisms: a fixed number or a variable number of memories. By analysis and numerical simulations, we find that too much memory effect may lead to a Poissonian process, implying that there exists an intermediate range of memory effect to generate correlated bursts comparable to empirical findings. Our conclusions provide a deeper understanding of how long-range memory affects correlated bursts.
NASA Technical Reports Server (NTRS)
Mcclelland, J.; Silk, J.
1978-01-01
Higher-order correlation functions for the large-scale distribution of galaxies in space are investigated. It is demonstrated that the three-point correlation function observed by Peebles and Groth (1975) is not consistent with a distribution of perturbations that at present are randomly distributed in space. The two-point correlation function is shown to be independent of how the perturbations are distributed spatially, and a model of clustered perturbations is developed which incorporates a nonuniform perturbation distribution and which explains the three-point correlation function. A model with hierarchical perturbations incorporating the same nonuniform distribution is also constructed; it is found that this model also explains the three-point correlation function, but predicts different results for the four-point and higher-order correlation functions than does the model with clustered perturbations. It is suggested that the model of hierarchical perturbations might be explained by the single assumption of having density fluctuations or discrete objects all of the same mass randomly placed at some initial epoch.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santi, Peter Angelo; Cutler, Theresa Elizabeth; Favalli, Andrea
In order to improve the accuracy and capabilities of neutron multiplicity counting, additional quantifiable information is needed in order to address the assumptions that are present in the point model. Extracting and utilizing higher order moments (Quads and Pents) from the neutron pulse train represents the most direct way of extracting additional information from the measurement data to allow for an improved determination of the physical properties of the item of interest. The extraction of higher order moments from a neutron pulse train required the development of advanced dead time correction algorithms which could correct for dead time effects inmore » all of the measurement moments in a self-consistent manner. In addition, advanced analysis algorithms have been developed to address specific assumptions that are made within the current analysis model, namely that all neutrons are created at a single point within the item of interest, and that all neutrons that are produced within an item are created with the same energy distribution. This report will discuss the current status of implementation and initial testing of the advanced dead time correction and analysis algorithms that have been developed in an attempt to utilize higher order moments to improve the capabilities of correlated neutron measurement techniques.« less
Derivation of the density functional theory from the cluster expansion.
Hsu, J Y
2003-09-26
The density functional theory is derived from a cluster expansion by truncating the higher-order correlations in one and only one term in the kinetic energy. The formulation allows self-consistent calculation of the exchange correlation effect without imposing additional assumptions to generalize the local density approximation. The pair correlation is described as a two-body collision of bound-state electrons, and modifies the electron- electron interaction energy as well as the kinetic energy. The theory admits excited states, and has no self-interaction energy.
Copeland, Kari L; Anderson, Julie A; Farley, Adam R; Cox, James R; Tschumper, Gregory S
2008-11-13
To examine the effects of pi-stacking interactions between aromatic amino acid side chains and adenine bearing ligands in crystalline protein structures, 26 toluene/(N9-methyl)adenine model configurations have been constructed from protein/ligand crystal structures. Full geometry optimizations with the MP2 method cause the 26 crystal structures to collapse to six unique structures. The complete basis set (CBS) limit of the CCSD(T) interaction energies has been determined for all 32 structures by combining explicitly correlated MP2-R12 computations with a correction for higher-order correlation effects from CCSD(T) calculations. The CCSD(T) CBS limit interaction energies of the 26 crystal structures range from -3.19 to -6.77 kcal mol (-1) and average -5.01 kcal mol (-1). The CCSD(T) CBS limit interaction energies of the optimized complexes increase by roughly 1.5 kcal mol (-1) on average to -6.54 kcal mol (-1) (ranging from -5.93 to -7.05 kcal mol (-1)). Corrections for higher-order correlation effects are extremely important for both sets of structures and are responsible for the modest increase in the interaction energy after optimization. The MP2 method overbinds the crystal structures by 2.31 kcal mol (-1) on average compared to 4.50 kcal mol (-1) for the optimized structures.
NASA Astrophysics Data System (ADS)
Cygorek, M.; Axt, V. M.
2015-08-01
Starting from a quantum kinetic theory for the spin dynamics in diluted magnetic semiconductors, we derive simplified equations that effectively describe the spin transfer between carriers and magnetic impurities for an arbitrary initial impurity magnetization. Taking the Markov limit of these effective equations, we obtain good quantitative agreement with the full quantum kinetic theory for the spin dynamics in bulk systems at high magnetic doping. In contrast, the standard rate description where the carrier-dopant interaction is treated according to Fermi’s golden rule, which involves the assumption of a short memory as well as a perturbative argument, has been shown previously to fail if the impurity magnetization is non-zero. The Markov limit of the effective equations is derived, assuming only a short memory, while higher order terms are still accounted for. These higher order terms represent the precession of the carrier-dopant correlations in the effective magnetic field due to the impurity spins. Numerical calculations show that the Markov limit of our effective equations reproduces the results of the full quantum kinetic theory very well. Furthermore, this limit allows for analytical solutions and for a physically transparent interpretation.
Custer, Christine M.; Gray, B.R.; Custer, T.W.
2010-01-01
The laying order of tree swallow eggs was identified from the Housatonic River, Berkshire County, Massachusetts, USA, and eggs were chemically analyzed individually to document possible effects of laying order on organic contaminant and inorganic element concentrations. Effects of laying order on other parameters such as egg weight, size, and lipid and moisture content also were assessed. Some effects of egg order on total polychlorinated biphenyls (PCBs) were detected, but the effect was not uniform across individual females or between years. In 2004, clutches with higher total PCBs tended to have concentrations decline across egg order, whereas clutches with lower concentrations of PCBs tended to increase across egg order. In contrast, in 2005, there was a tendency for concentrations to increase across egg order. Polychlorinated biphenyl concentrations were highly variable within and among clutches in both years. The directionality of egg order associations (i.e., slopes) for trace elements was element dependent, was positive for Mn and Zn, was negative for B, and had no slope for Cr. Whole egg weight increased across egg order. Percentage lipid was variable within a clutch, with no pattern common across all females. Percentage lipid was also correlated with organic contaminant concentration. In highly contaminated environments, higher lipid content could have the unanticipated corollary of having higher concentrations of lipophilic contaminants such as PCBs. To reduce the effect of high variation within a clutch when assessing contamination exposure, it is recommended that two eggs per clutch be collected and pooled for chemical analysis. We further recommend that, as long as the two eggs are randomly collected, the additional effort needed to identify and collect specific eggs is not warranted. ?? 2009 SETAC.
Hu, Erzhong; Nosato, Hirokazu; Sakanashi, Hidenori; Murakawa, Masahiro
2013-01-01
Capsule endoscopy is a patient-friendly endoscopy broadly utilized in gastrointestinal examination. However, the efficacy of diagnosis is restricted by the large quantity of images. This paper presents a modified anomaly detection method, by which both known and unknown anomalies in capsule endoscopy images of small intestine are expected to be detected. To achieve this goal, this paper introduces feature extraction using a non-linear color conversion and Higher-order Local Auto Correlation (HLAC) Features, and makes use of image partition and subspace method for anomaly detection. Experiments are implemented among several major anomalies with combinations of proposed techniques. As the result, the proposed method achieved 91.7% and 100% detection accuracy for swelling and bleeding respectively, so that the effectiveness of proposed method is demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behbahani, Siavosh R.; /SLAC /Stanford U., Phys. Dept. /Boston U.; Dymarsky, Anatoly
2012-06-06
We apply the Effective Field Theory of Inflation to study the case where the continuous shift symmetry of the Goldstone boson {pi} is softly broken to a discrete subgroup. This case includes and generalizes recently proposed String Theory inspired models of Inflation based on Axion Monodromy. The models we study have the property that the 2-point function oscillates as a function of the wavenumber, leading to oscillations in the CMB power spectrum. The non-linear realization of time diffeomorphisms induces some self-interactions for the Goldstone boson that lead to a peculiar non-Gaussianity whose shape oscillates as a function of the wavenumber.more » We find that in the regime of validity of the effective theory, the oscillatory signal contained in the n-point correlation functions, with n > 2, is smaller than the one contained in the 2-point function, implying that the signature of oscillations, if ever detected, will be easier to find first in the 2-point function, and only then in the higher order correlation functions. Still the signal contained in higher-order correlation functions, that we study here in generality, could be detected at a subleading level, providing a very compelling consistency check for an approximate discrete shift symmetry being realized during inflation.« less
NASA Astrophysics Data System (ADS)
Cremer, Dieter
The electron correlation effects covered by density functional theory (DFT) can be assessed qualitatively by comparing DFT densities ρ(r) with suitable reference densities obtained with wavefunction theory (WFT) methods that cover typical electron correlation effects. The analysis of difference densities ρ(DFT)-ρ(WFT) reveals that LDA and GGA exchange (X) functionals mimic non-dynamic correlation effects in an unspecified way. It is shown that these long range correlation effects are caused by the self-interaction error (SIE) of standard X functionals. Self-interaction corrected (SIC) DFT exchange gives, similar to exact exchange, for the bonding region a delocalized exchange hole, and does not cover any correlation effects. Hence, the exchange SIE is responsible for the fact that DFT densities often resemble MP4 or MP2 densities. The correlation functional changes X-only DFT densities in a manner observed when higher order coupling effects between lower order N-electron correlation effects are included. Hybrid functionals lead to changes in the density similar to those caused by SICDFT, which simply reflects the fact that hybrid functionals have been developed to cover part of the SIE and its long range correlation effects in a balanced manner. In the case of spin-unrestricted DFT (UDFT), non-dynamic electron correlation effects enter the calculation both via the X functional and via the wavefunction, which may cause a double-counting of correlation effects. The use of UDFT in the form of permuted orbital and broken-symmetry DFT (PO-UDFT, BS-UDFT) can lead to reasonable descriptions of multireference systems provided certain conditions are fulfilled. More reliable, however, is a combination of DFT and WFT methods, which makes the routine description of multireference systems possible. The development of such methods implies a separation of dynamic and non-dynamic correlation effects. Strategies for accomplishing this goal are discussed in general and tested in practice for CAS (complete active space)-DFT.
Incoherent coincidence imaging of space objects
NASA Astrophysics Data System (ADS)
Mao, Tianyi; Chen, Qian; He, Weiji; Gu, Guohua
2016-10-01
Incoherent Coincidence Imaging (ICI), which is based on the second or higher order correlation of fluctuating light field, has provided great potentialities with respect to standard conventional imaging. However, the deployment of reference arm limits its practical applications in the detection of space objects. In this article, an optical aperture synthesis with electronically connected single-pixel photo-detectors was proposed to remove the reference arm. The correlation in our proposed method is the second order correlation between the intensity fluctuations observed by any two detectors. With appropriate locations of single-pixel detectors, this second order correlation is simplified to absolute-square Fourier transform of source and the unknown object. We demonstrate the image recovery with the Gerchberg-Saxton-like algorithms and investigate the reconstruction quality of our approach. Numerical experiments has been made to show that both binary and gray-scale objects can be recovered. This proposed method provides an effective approach to promote detection of space objects and perhaps even the exo-planets.
ppcor: An R Package for a Fast Calculation to Semi-partial Correlation Coefficients.
Kim, Seongho
2015-11-01
Lack of a general matrix formula hampers implementation of the semi-partial correlation, also known as part correlation, to the higher-order coefficient. This is because the higher-order semi-partial correlation calculation using a recursive formula requires an enormous number of recursive calculations to obtain the correlation coefficients. To resolve this difficulty, we derive a general matrix formula of the semi-partial correlation for fast computation. The semi-partial correlations are then implemented on an R package ppcor along with the partial correlation. Owing to the general matrix formulas, users can readily calculate the coefficients of both partial and semi-partial correlations without computational burden. The package ppcor further provides users with the level of the statistical significance with its test statistic.
Higher order correlations of IRAS galaxies
NASA Technical Reports Server (NTRS)
Meiksin, Avery; Szapudi, Istvan; Szalay, Alexander
1992-01-01
The higher order irreducible angular correlation functions are derived up to the eight-point function, for a sample of 4654 IRAS galaxies, flux-limited at 1.2 Jy in the 60 microns band. The correlations are generally found to be somewhat weaker than those for the optically selected galaxies, consistent with the visual impression of looser clusters in the IRAS sample. It is found that the N-point correlation functions can be expressed as the symmetric sum of products of N - 1 two-point functions, although the correlations above the four-point function are consistent with zero. The coefficients are consistent with the hierarchical clustering scenario as modeled by Hamilton and by Schaeffer.
Toward Establishing Relationships between Essential and Higher Order Teaching Skills.
ERIC Educational Resources Information Center
Kromrey, Jeffrey D.; And Others
Nineteen secondary school teachers in a mid-sized Florida school district participated in a single-group pretest/posttest design to explore the relationship between essential and higher order teaching skills. Correlations between two sets of teacher performance variables were computed before and after training in teaching for higher order thinking…
Nonlinear dynamic analysis of voices before and after surgical excision of vocal polyps
NASA Astrophysics Data System (ADS)
Zhang, Yu; McGilligan, Clancy; Zhou, Liang; Vig, Mark; Jiang, Jack J.
2004-05-01
Phase space reconstruction, correlation dimension, and second-order entropy, methods from nonlinear dynamics, are used to analyze sustained vowels generated by patients before and after surgical excision of vocal polyps. Two conventional acoustic perturbation parameters, jitter and shimmer, are also employed to analyze voices before and after surgery. Presurgical and postsurgical analyses of jitter, shimmer, correlation dimension, and second-order entropy are statistically compared. Correlation dimension and second-order entropy show a statistically significant decrease after surgery, indicating reduced complexity and higher predictability of postsurgical voice dynamics. There is not a significant postsurgical difference in shimmer, although jitter shows a significant postsurgical decrease. The results suggest that jitter and shimmer should be applied to analyze disordered voices with caution; however, nonlinear dynamic methods may be useful for analyzing abnormal vocal function and quantitatively evaluating the effects of surgical excision of vocal polyps.
Simplifying the EFT of Inflation: generalized disformal transformations and redundant couplings
NASA Astrophysics Data System (ADS)
Bordin, Lorenzo; Cabass, Giovanni; Creminelli, Paolo; Vernizzi, Filippo
2017-09-01
We study generalized disformal transformations, including derivatives of the metric, in the context of the Effective Field Theory of Inflation. All these transformations do not change the late-time cosmological observables but change the coefficients of the operators in the action: some couplings are effectively redundant. At leading order in derivatives and up to cubic order in perturbations, one has 6 free functions that can be used to set to zero 6 of the 17 operators at this order. This is used to show that the tensor three-point function cannot be modified at leading order in derivatives, while the scalar-tensor-tensor correlator can only be modified by changing the scalar dynamics. At higher order in derivatives there are transformations that do not affect the Einstein-Hilbert action: one can find 6 additional transformations that can be used to simplify the inflaton action, at least when the dynamics is dominated by the lowest derivative terms. We also identify the leading higher-derivative corrections to the tensor power spectrum and bispectrum.
The Gaussian streaming model and convolution Lagrangian effective field theory
Vlah, Zvonimir; Castorina, Emanuele; White, Martin
2016-12-05
We update the ingredients of the Gaussian streaming model (GSM) for the redshift-space clustering of biased tracers using the techniques of Lagrangian perturbation theory, effective field theory (EFT) and a generalized Lagrangian bias expansion. After relating the GSM to the cumulant expansion, we present new results for the real-space correlation function, mean pairwise velocity and pairwise velocity dispersion including counter terms from EFT and bias terms through third order in the linear density, its leading derivatives and its shear up to second order. We discuss the connection to the Gaussian peaks formalism. We compare the ingredients of the GSM tomore » a suite of large N-body simulations, and show the performance of the theory on the low order multipoles of the redshift-space correlation function and power spectrum. We highlight the importance of a general biasing scheme, which we find to be as important as higher-order corrections due to non-linear evolution for the halos we consider on the scales of interest to us.« less
The Gaussian streaming model and convolution Lagrangian effective field theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlah, Zvonimir; Castorina, Emanuele; White, Martin, E-mail: zvlah@stanford.edu, E-mail: ecastorina@berkeley.edu, E-mail: mwhite@berkeley.edu
We update the ingredients of the Gaussian streaming model (GSM) for the redshift-space clustering of biased tracers using the techniques of Lagrangian perturbation theory, effective field theory (EFT) and a generalized Lagrangian bias expansion. After relating the GSM to the cumulant expansion, we present new results for the real-space correlation function, mean pairwise velocity and pairwise velocity dispersion including counter terms from EFT and bias terms through third order in the linear density, its leading derivatives and its shear up to second order. We discuss the connection to the Gaussian peaks formalism. We compare the ingredients of the GSM tomore » a suite of large N-body simulations, and show the performance of the theory on the low order multipoles of the redshift-space correlation function and power spectrum. We highlight the importance of a general biasing scheme, which we find to be as important as higher-order corrections due to non-linear evolution for the halos we consider on the scales of interest to us.« less
Johnson, Cari L.; Graham, Stephan A.
2007-01-01
An integrated database of outcrop studies, borehole logs, and seismic-reflection profiles is used to divide Eocene through Miocene strata of the central and southern San Joaquin Basin, California, into a framework of nine stratigraphic sequences. These third- and higher-order sequences (<3 m.y. duration) comprise the principal intervals for petroleum assessment for the basin, including key reservoir and source rock intervals. Important characteristics of each sequence are discussed, including distribution and stratigraphic relationships, sedimentary facies, regional correlation, and age relations. This higher-order stratigraphic packaging represents relatively short-term fluctuations in various forcing factors including climatic effects, changes in sediment supply, local and regional tectonism, and fluctuations in global eustatic sea level. These stratigraphic packages occur within the context of second-order stratigraphic megasequences, which mainly reflect long-term tectonic basin evolution. Despite more than a century of petroleum exploration in the San Joaquin Basin, many uncertainties remain regarding the age, correlation, and origin of the third- and higher-order sequences. Nevertheless, a sequence stratigraphic approach allows definition of key intervals based on genetic affinity rather than purely lithostratigraphic relationships, and thus is useful for reconstructing the multiphase history of this basin, as well as understanding its petroleum systems.
NASA Astrophysics Data System (ADS)
Tu, Zhoudunming
2018-01-01
Studies of charge-dependent azimuthal correlations for the same- and oppositesign particle pairs are presented in PbPb collisions at 5 TeV and pPb collisions at 5 and 8.16 TeV, with the CMS experiment at the LHC. The azimuthal correlations are evaluated with respect to the second- and also higher-order event planes, as a function of particle pseudorapidity and transverse momentum, and event multiplicity. By employing an event-shape engineering technique, the dependence of correlations on azimuthal anisotropy flow is investigated. Results presented provide new insights to the origin of observed charge-dependent azimuthal correlations, and have important implications to the search for the chiral magnetic effect in heavy ion collisions.
Correlated sequential tunneling through a double barrier for interacting one-dimensional electrons
NASA Astrophysics Data System (ADS)
Thorwart, M.; Egger, R.; Grifoni, M.
2005-07-01
The problem of resonant tunneling through a quantum dot weakly coupled to spinless Tomonaga-Luttinger liquids has been studied. We compute the linear conductance due to sequential tunneling processes upon employing a master equation approach. Besides the previously used lowest-order golden rule rates describing uncorrelated sequential tunneling processes, we systematically include higher-order correlated sequential tunneling (CST) diagrams within the standard Weisskopf-Wigner approximation. We provide estimates for the parameter regions where CST effects can be important. Focusing mainly on the temperature dependence of the peak conductance, we discuss the relation of these findings to previous theoretical and experimental results.
Correlated sequential tunneling in Tomonaga-Luttinger liquid quantum dots
NASA Astrophysics Data System (ADS)
Thorwart, M.; Egger, R.; Grifoni, M.
2005-02-01
We investigate tunneling through a quantum dot formed by two strong impurites in a spinless Tomonaga-Luttinger liquid. Upon employing a Markovian master equation approach, we compute the linear conductance due to sequential tunneling processes. Besides the previously used lowest-order Golden Rule rates describing uncorrelated sequential tunneling (UST) processes, we systematically include higher-order correlated sequential tunneling (CST) diagrams within the standard Weisskopf-Wigner approximation. We provide estimates for the parameter regions where CST effects are shown to dominate over UST. Focusing mainly on the temperature dependence of the conductance maximum, we discuss the relation of our results to previous theoretical and experimental results.
NASA Technical Reports Server (NTRS)
Dompka, R. V.
1989-01-01
Under the NASA-sponsored DAMVIBS (Design Analysis Methods for VIBrationS) program, a series of ground vibration tests and NASTRAN finite element model (FEM) correlations were conducted on the Bell AH-1G helicopter gunship to investigate the effects of difficult components on the vibration response of the airframe. Previous correlations of the AG-1G showed good agreement between NASTRAN and tests through 15 to 20 Hz, but poor agreement in the higher frequency range of 20 to 30 Hz. Thus, this effort emphasized the higher frequency airframe vibration response correlations and identified areas that need further R and T work. To conduct the investigations, selected difficult components (main rotor pylon, secondary structure, nonstructural doors/panels, landing gear, engine, furl, etc.) were systematically removed to quantify their effects on overall vibratory response of the airframe. The entire effort was planned and documented, and the results reviewed by NASA and industry experts in order to ensure scientific control of the testing, analysis, and correlation exercise. In particular, secondary structure and damping had significant effects on the frequency response of the airframe above 15 Hz. Also, the nonlinear effects of thrust stiffening and elastomer mounts were significant on the low frequency pylon modes below main rotor 1p (5.4 Hz). The results of the NASTRAN FEM correlations are given.
Revealing hidden antiferromagnetic correlations in doped Hubbard chains via string correlators
NASA Astrophysics Data System (ADS)
Hilker, Timon A.; Salomon, Guillaume; Grusdt, Fabian; Omran, Ahmed; Boll, Martin; Demler, Eugene; Bloch, Immanuel; Gross, Christian
2017-08-01
Topological phases, like the Haldane phase in spin-1 chains, defy characterization through local order parameters. Instead, nonlocal string order parameters can be employed to reveal their hidden order. Similar diluted magnetic correlations appear in doped one-dimensional lattice systems owing to the phenomenon of spin-charge separation. Here we report on the direct observation of such hidden magnetic correlations via quantum gas microscopy of hole-doped ultracold Fermi-Hubbard chains. The measurement of nonlocal spin-density correlation functions reveals a hidden finite-range antiferromagnetic order, a direct consequence of spin-charge separation. Our technique, which measures nonlocal order directly, can be readily extended to higher dimensions to study the complex interplay between magnetic order and density fluctuations.
[Spatial point patterns of Antarctic krill fishery in the northern Antarctic Peninsula].
Yang, Xiao Ming; Li, Yi Xin; Zhu, Guo Ping
2016-12-01
As a key species in the Antarctic ecosystem, the spatial distribution of Antarctic krill (thereafter krill) often tends to present aggregation characteristics, which therefore reflects the spatial patterns of krill fishing operation. Based on the fishing data collected from Chinese krill fishing vessels, of which vessel A was professional krill fishing vessel and Vessel B was a fishing vessel which shifted between Chilean jack mackerel (Trachurus murphyi) fishing ground and krill fishing ground. In order to explore the characteristics of spatial distribution pattern and their ecological effects of two obvious different fishing fleets under a high and low nominal catch per unit effort (CPUE), from the viewpoint of spatial point pattern, the present study analyzed the spatial distribution characteristics of krill fishery in the northern Antarctic Peninsula from three aspects: (1) the two vessels' point pattern characteristics of higher CPUEs and lower CPUEs at different scales; (2) correlation of the bivariate point patterns between these points of higher CPUE and lower CPUE; and (3) correlation patterns of CPUE. Under the analysis derived from the Ripley's L function and mark correlation function, the results showed that the point patterns of the higher/lo-wer catch available were similar, both showing an aggregation distribution in this study windows at all scale levels. The aggregation intensity of krill fishing was nearly maximum at 15 km spatial scale, and kept stably higher values at the scale of 15-50 km. The aggregation intensity of krill fishery point patterns could be described in order as higher CPUE of vessel A > lower CPUE of vessel B >higher CPUE of vessel B > higher CPUE of vessel B. The relationship of the higher and lo-wer CPUEs of vessel A showed positive correlation at the spatial scale of 0-75 km, and presented stochastic relationship after 75 km scale, whereas vessel B showed positive correlation at all spatial scales. The point events of higher and lower CPUEs were synchronized, showing significant correlations at most of spatial scales because of the dynamics nature and complex of krill aggregation patterns. The distribution of vessel A's CPUEs was positively correlated at scales of 0-44 km, but negatively correlated at the scales of 44-80 km. The distribution of vessel B's CPUEs was negatively correlated at the scales of 50-70 km, but no significant correlations were found at other scales. The CPUE mark point patterns showed a negative correlation, which indicated that intraspecific competition for space and prey was significant. There were significant differences in spatial point pattern distribution between vessel A with higher fishing capacity and vessel B with lower fishing capacity. The results showed that the professional krill fishing vessel is suitable to conduct the analysis of spatial point pattern and scientific fishery survey.
Target correlation effects on neutron-nucleus total, absorption, and abrasion cross sections
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Townsend, Lawrence W.; Wilson, John W.
1991-01-01
Second order optical model solutions to the elastic scattering amplitude were used to evaluate total, absorption, and abrasion cross sections for neutron nucleus scattering. Improved agreement with experimental data for total and absorption cross sections is found when compared with first order (coherent approximation) solutions, especially below several hundred MeV. At higher energies, the first and second order solutions are similar. There are also large differences in abrasion cross section calculations; these differences indicate a crucial role for cluster knockout in the abrasion step.
The integrated bispectrum and beyond
NASA Astrophysics Data System (ADS)
Munshi, Dipak; Coles, Peter
2017-02-01
The position-dependent power spectrum has been recently proposed as a descriptor of gravitationally induced non-Gaussianity in galaxy clustering, as it is sensitive to the "soft limit" of the bispectrum (i.e. when one of the wave number tends to zero). We generalise this concept to higher order and clarify their relationship to other known statistics such as the skew-spectrum, the kurt-spectra and their real-space counterparts the cumulants correlators. Using the Hierarchical Ansatz (HA) as a toy model for the higher order correlation hierarchy, we show how in the soft limit, polyspectra at a given order can be identified with lower order polyspectra with the same geometrical dependence but with renormalised amplitudes expressed in terms of amplitudes of the original polyspectra. We extend the concept of position-dependent bispectrum to bispectrum of the divergence of the velocity field Θ and mixed multispectra involving δ and Θ in the 3D perturbative regime. To quantify the effects of transients in numerical simulations, we also present results for lowest order in Lagrangian perturbation theory (LPT) or the Zel'dovich approximation (ZA). Finally, we discuss how to extend the position-dependent spectrum concept to encompass cross-spectra. And finally study the application of this concept to two dimensions (2D), for projected galaxy maps, convergence κ maps from weak-lensing surveys or maps of CMB secondaries e.g. the frequency cleaned y-parameter maps of thermal Sunyaev-Zel'dovich (tSZ) effect from CMB surveys.
Chang, Luye; Connelly, Brian S; Geeza, Alexis A
2012-02-01
Though most personality researchers now recognize that ratings of the Big Five are not orthogonal, the field has been divided about whether these trait intercorrelations are substantive (i.e., driven by higher order factors) or artifactual (i.e., driven by correlated measurement error). We used a meta-analytic multitrait-multirater study to estimate trait correlations after common method variance was controlled. Our results indicated that common method variance substantially inflates trait correlations, and, once controlled, correlations among the Big Five became relatively modest. We then evaluated whether two different theories of higher order factors could account for the pattern of Big Five trait correlations. Our results did not support Rushton and colleagues' (Rushton & Irwing, 2008; Rushton et al., 2009) proposed general factor of personality, but Digman's (1997) α and β metatraits (relabeled by DeYoung, Peterson, and Higgins (2002) as Stability and Plasticity, respectively) produced viable fit. However, our models showed considerable overlap between Stability and Emotional Stability and between Plasticity and Extraversion, raising the question of whether these metatraits are redundant with their dominant Big Five traits. This pattern of findings was robust when we included only studies whose observers were intimately acquainted with targets. Our results underscore the importance of using a multirater approach to studying personality and the need to separate the causes and outcomes of higher order metatraits from those of the Big Five. We discussed the implications of these findings for the array of research fields in which personality is studied.
Second order closure modeling of turbulent buoyant wall plumes
NASA Technical Reports Server (NTRS)
Zhu, Gang; Lai, Ming-Chia; Shih, Tsan-Hsing
1992-01-01
Non-intrusive measurements of scalar and momentum transport in turbulent wall plumes, using a combined technique of laser Doppler anemometry and laser-induced fluorescence, has shown some interesting features not present in the free jet or plumes. First, buoyancy-generation of turbulence is shown to be important throughout the flow field. Combined with low-Reynolds-number turbulence and near-wall effect, this may raise the anisotropic turbulence structure beyond the prediction of eddy-viscosity models. Second, the transverse scalar fluxes do not correspond only to the mean scalar gradients, as would be expected from gradient-diffusion modeling. Third, higher-order velocity-scalar correlations which describe turbulent transport phenomena could not be predicted using simple turbulence models. A second-order closure simulation of turbulent adiabatic wall plumes, taking into account the recent progress in scalar transport, near-wall effect and buoyancy, is reported in the current study to compare with the non-intrusive measurements. In spite of the small velocity scale of the wall plumes, the results showed that low-Reynolds-number correction is not critically important to predict the adiabatic cases tested and cannot be applied beyond the maximum velocity location. The mean and turbulent velocity profiles are very closely predicted by the second-order closure models. but the scalar field is less satisfactory, with the scalar fluctuation level underpredicted. Strong intermittency of the low-Reynolds-number flow field is suspected of these discrepancies. The trends in second- and third-order velocity-scalar correlations, which describe turbulent transport phenomena, are also predicted in general, with the cross-streamwise correlations better than the streamwise one. Buoyancy terms modeling the pressure-correlation are shown to improve the prediction slightly. The effects of equilibrium time-scale ratio and boundary condition are also discussed.
Redshift Evolution of Non-Gaussianity in Cosmic Large-Scale Structure
NASA Astrophysics Data System (ADS)
Sullivan, James; Wiegand, Alexander; Eisenstein, Daniel
2018-01-01
We probe the higher-order galaxy clustering in the final data release (DR12) of the Sloan Digital Sky Survey using germ-grain Minkowski Functionals (MFs). Our data selection contains 979,430 BOSS galaxies from both the northern and southern galactic caps over the redshift range 0.2 - 0.6. We extract the higher-order parts of the MFs and find deviations from the case without higher order MFs with chi-squared values of order 1000 for 24 degrees of freedom across the entire data selection. We show the MFs to be sensitive to contributions up to the five-point correlation function across the entire data selection. We measure significant redshift evolution in the higher-order functionals for the first time, with a percentage growth between redshift bins of approximately 20 % in both galactic caps. This is a nearly a factor of 2 greater than similar growth in the two-point correlation function and will allow for tests of non-linear structure growth by comparing the three-point and higher-order parts to their expected theoretical values. The SAO REU program is funded by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant AST-1659473, and by the Smithsonian Institution.
Wang, Chen; Lu, Linjun; Lu, Jian; Wang, Tao
2016-01-01
In order to improve motorcycle safety, this article examines the correlation between crash avoidance maneuvers and injury severity sustained by motorcyclists, under multiple precrash conditions. Ten-year crash data for single-vehicle motorcycle crashes from the General Estimates Systems (GES) were analyzed, using partial proportional odds models (i.e., generalized ordered logit models). The modeling results show that "braking (no lock-up)" is associated with a higher probability of increased severity, whereas "braking (lock-up)" is associated with a higher probability of decreased severity, under all precrash conditions. "Steering" is associated with a higher probability of reduced injury severity when other vehicles are encroaching, whereas it is correlated with high injury severity under other conditions. "Braking and steering" is significantly associated with a higher probability of low severity under "animal encounter and object presence," whereas it is surprisingly correlated with high injury severity when motorcycles are traveling off the edge of the road. The results also show that a large number of motorcyclists did not perform any crash avoidance maneuvers or conducted crash avoidance maneuvers that are significantly associated with high injury severity. In general, this study suggests that precrash maneuvers are an important factor associated with motorcyclists' injury severity. To improve motorcycle safety, training/educational programs should be considered to improve safety awareness and adjust driving habits of motorcyclists. Antilock brakes and such systems are also promising, because they could effectively prevent brake lock-up and assist motorcyclists in maneuvering during critical conditions. This study also provides valuable information for the design of motorcycle training curriculum.
ERIC Educational Resources Information Center
Molenaar, Dylan; Dolan, Conor V.; Wicherts, Jelte M.; van der Maas, Han L. J.
2010-01-01
The general differentiation hypothesis states that the strength of the correlations among a set of IQ subtests varies with a given variable. Instances of the general differentiation hypothesis that have been considered in the literature include age and ability differentiation. Traditionally, the differentiation effect is attributed to the varying…
First and Higher Order Effects on Zero Order Radiative Transfer Model
NASA Astrophysics Data System (ADS)
Neelam, M.; Mohanty, B.
2014-12-01
Microwave radiative transfer model are valuable tool in understanding the complex land surface interactions. Past literature has largely focused on local sensitivity analysis for factor priotization and ignoring the interactions between the variables and uncertainties around them. Since land surface interactions are largely nonlinear, there always exist uncertainties, heterogeneities and interactions thus it is important to quantify them to draw accurate conclusions. In this effort, we used global sensitivity analysis to address the issues of variable uncertainty, higher order interactions, factor priotization and factor fixing for zero-order radiative transfer (ZRT) model. With the to-be-launched Soil Moisture Active Passive (SMAP) mission of NASA, it is very important to have a complete understanding of ZRT for soil moisture retrieval to direct future research and cal/val field campaigns. This is a first attempt to use GSA technique to quantify first order and higher order effects on brightness temperature from ZRT model. Our analyses reflect conditions observed during the growing agricultural season for corn and soybeans in two different regions in - Iowa, U.S.A and Winnipeg, Canada. We found that for corn fields in Iowa, there exist significant second order interactions between soil moisture, surface roughness parameters (RMS height and correlation length) and vegetation parameters (vegetation water content, structure and scattering albedo), whereas in Winnipeg, second order interactions are mainly due to soil moisture and vegetation parameters. But for soybean fields in both Iowa and Winnipeg, we found significant interactions only to exist between soil moisture and surface roughness parameters.
Development of a second order closure model for computation of turbulent diffusion flames
NASA Technical Reports Server (NTRS)
Varma, A. K.; Donaldson, C. D.
1974-01-01
A typical eddy box model for the second-order closure of turbulent, multispecies, reacting flows developed. The model structure was quite general and was valid for an arbitrary number of species. For the case of a reaction involving three species, the nine model parameters were determined from equations for nine independent first- and second-order correlations. The model enabled calculation of any higher-order correlation involving mass fractions, temperatures, and reaction rates in terms of first- and second-order correlations. Model predictions for the reaction rate were in very good agreement with exact solutions of the reaction rate equations for a number of assumed flow distributions.
Proceedings of the Second Annual Symposium for Nondestructive Evaluation of Bond Strength
NASA Technical Reports Server (NTRS)
Roberts, Mark J. (Compiler)
1999-01-01
Ultrasonics, microwaves, optically stimulated electron emission (OSEE), and computational chemistry approaches have shown relevance to bond strength determination. Nonlinear ultrasonic nondestructive evaluation methods, however, have shown the most effectiveness over other methods on adhesive bond analysis. Correlation to changes in higher order material properties due to microstructural changes using nonlinear ultrasonics has been shown related to bond strength. Nonlinear ultrasonic energy is an order of magnitude more sensitive than linear ultrasound to these material parameter changes and to acoustic velocity changes caused by the acoustoelastic effect when a bond is prestressed. Signal correlations between non-linear ultrasonic measurements and initialization of bond failures have been measured. This paper reviews bond strength research efforts presented by university and industry experts at the Second Annual Symposium for Nondestructive Evaluation of Bond Strength organized by the NDE Sciences Branch at NASA Langley in November 1998.
Study on the mapping of dark matter clustering from real space to redshift space
NASA Astrophysics Data System (ADS)
Zheng, Yi; Song, Yong-Seon
2016-08-01
The mapping of dark matter clustering from real space to redshift space introduces the anisotropic property to the measured density power spectrum in redshift space, known as the redshift space distortion effect. The mapping formula is intrinsically non-linear, which is complicated by the higher order polynomials due to indefinite cross correlations between the density and velocity fields, and the Finger-of-God effect due to the randomness of the peculiar velocity field. Whilst the full higher order polynomials remain unknown, the other systematics can be controlled consistently within the same order truncation in the expansion of the mapping formula, as shown in this paper. The systematic due to the unknown non-linear density and velocity fields is removed by separately measuring all terms in the expansion directly using simulations. The uncertainty caused by the velocity randomness is controlled by splitting the FoG term into two pieces, 1) the ``one-point" FoG term being independent of the separation vector between two different points, and 2) the ``correlated" FoG term appearing as an indefinite polynomials which is expanded in the same order as all other perturbative polynomials. Using 100 realizations of simulations, we find that the Gaussian FoG function with only one scale-independent free parameter works quite well, and that our new mapping formulation accurately reproduces the observed 2-dimensional density power spectrum in redshift space at the smallest scales by far, up to k~ 0.2 Mpc-1, considering the resolution of future experiments.
The integrated bispectrum and beyond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munshi, Dipak; Coles, Peter, E-mail: D.Munshi@sussex.ac.uk, E-mail: P.Coles@sussex.ac.uk
2017-02-01
The position-dependent power spectrum has been recently proposed as a descriptor of gravitationally induced non-Gaussianity in galaxy clustering, as it is sensitive to the 'soft limit' of the bispectrum (i.e. when one of the wave number tends to zero). We generalise this concept to higher order and clarify their relationship to other known statistics such as the skew-spectrum, the kurt-spectra and their real-space counterparts the cumulants correlators. Using the Hierarchical Ansatz (HA) as a toy model for the higher order correlation hierarchy, we show how in the soft limit, polyspectra at a given order can be identified with lower ordermore » polyspectra with the same geometrical dependence but with renormalised amplitudes expressed in terms of amplitudes of the original polyspectra. We extend the concept of position-dependent bispectrum to bispectrum of the divergence of the velocity field Θ and mixed multispectra involving δ and Θ in the 3D perturbative regime. To quantify the effects of transients in numerical simulations, we also present results for lowest order in Lagrangian perturbation theory (LPT) or the Zel'dovich approximation (ZA). Finally, we discuss how to extend the position-dependent spectrum concept to encompass cross-spectra. And finally study the application of this concept to two dimensions (2D), for projected galaxy maps, convergence κ maps from weak-lensing surveys or maps of CMB secondaries e.g. the frequency cleaned y -parameter maps of thermal Sunyaev-Zel'dovich (tSZ) effect from CMB surveys.« less
Blind channel estimation and deconvolution in colored noise using higher-order cumulants
NASA Astrophysics Data System (ADS)
Tugnait, Jitendra K.; Gummadavelli, Uma
1994-10-01
Existing approaches to blind channel estimation and deconvolution (equalization) focus exclusively on channel or inverse-channel impulse response estimation. It is well-known that the quality of the deconvolved output depends crucially upon the noise statistics also. Typically it is assumed that the noise is white and the signal-to-noise ratio is known. In this paper we remove these restrictions. Both the channel impulse response and the noise model are estimated from the higher-order (fourth, e.g.) cumulant function and the (second-order) correlation function of the received data via a least-squares cumulant/correlation matching criterion. It is assumed that the noise higher-order cumulant function vanishes (e.g., Gaussian noise, as is the case for digital communications). Consistency of the proposed approach is established under certain mild sufficient conditions. The approach is illustrated via simulation examples involving blind equalization of digital communications signals.
NASA Technical Reports Server (NTRS)
Dompka, R. V.
1989-01-01
Under the NASA-sponsored Design Analysis Methods for VIBrationS (DAMVIBS) program, a series of ground vibration tests and NASTRAN finite element model (FEM) correlations were conducted on the Bell AH-1G helicopter gunship to investigate the effects of difficult components on the vibration response of the airframe. Previous correlations of the AH-1G showed good agreement between NASTRAN and tests through 15 to 20 Hz, but poor agreement in the higher frequency range of 20 to 30 Hz. Thus, this effort emphasized the higher frequency airframe vibration response correlations and identified areas that need further R and T work. To conduct the investigations, selected difficult components (main rotor pylon, secondary structure, nonstructural doors/panels, landing gear, engine, fuel, etc.) were systematically removed to quantify their effects on overall vibratory response of the airframe. The entire effort was planned and documented, and the results reviewed by NASA and industry experts in order to ensure scientific control of the testing, analysis, and correlation exercise. In particular, secondary structure and damping had significant effects on the frequency response of the airframe above 15 Hz. Also, the nonlinear effects of thrust stiffening and elastomer mounts were significant on the low frequency pylon modes below main rotor 1p (5.4 Hz). The results of the ground vibration testing are presented.
A second-order closure analysis of turbulent diffusion flames. [combustion physics
NASA Technical Reports Server (NTRS)
Varma, A. K.; Fishburne, E. S.; Beddini, R. A.
1977-01-01
A complete second-order closure computer program for the investigation of compressible, turbulent, reacting shear layers was developed. The equations for the means and the second order correlations were derived from the time-averaged Navier-Stokes equations and contain third order and higher order correlations, which have to be modeled in terms of the lower-order correlations to close the system of equations. In addition to fluid mechanical turbulence models and parameters used in previous studies of a variety of incompressible and compressible shear flows, a number of additional scalar correlations were modeled for chemically reacting flows, and a typical eddy model developed for the joint probability density function for all the scalars. The program which is capable of handling multi-species, multistep chemical reactions, was used to calculate nonreacting and reacting flows in a hydrogen-air diffusion flame.
The effects of conscientiousness on the appraisals of daily stressors.
Gartland, Nicola; O'Connor, Daryl B; Lawton, Rebecca
2012-02-01
Conscientiousness (C) is positively associated with health and longevity although the mechanisms underlying this relationship are not fully understood. Stress may play a role in explaining the C-longevity relationship. This study investigated whether C predicted the cognitive appraisals of daily stressors/hassles. Participants (N=102) completed measures of C and cognitive appraisal in relation to the most stressful hassle they had experienced in the last 7 days. Correlational analysis revealed that Total C, Order and Industriousness were positively correlated with primary appraisals, and Responsibility was positively correlated with secondary appraisals. The facets of C were then entered into hierarchical regression models, controlling for age and gender. This demonstrated that Order (β=0.27, p<0.05) and Industriousness (β=0.28, p<0.05) significantly predicted primary appraisals, accounting for 15.8% of the variance. Responsibility significantly predicted secondary appraisals (β=0.44, p<0.01), accounting for 16.3% of the variance. These findings indicate that higher Order and Industriousness are related to having a greater stake in daily stressors, whereas higher Responsibility is related to greater confidence in one's ability to deal with daily stressors. These results are the first demonstration that C is related to the appraisals of daily hassles and suggest that C may moderate the experience of stress in daily life. Copyright © 2011 John Wiley & Sons, Ltd.
ERIC Educational Resources Information Center
Raykov, Tenko
2011-01-01
Interval estimation of intraclass correlation coefficients in hierarchical designs is discussed within a latent variable modeling framework. A method accomplishing this aim is outlined, which is applicable in two-level studies where participants (or generally lower-order units) are clustered within higher-order units. The procedure can also be…
ERIC Educational Resources Information Center
Unsworth, Nash; Engle, Randall W.
2006-01-01
Complex (working memory) span tasks have generally shown larger and more consistent correlations with higher-order cognition than have simple (or short-term memory) span tasks. The relation between verbal complex and simple verbal span tasks to fluid abilities as a function of list-length was examined. The results suggest that the simple…
Nakano, Masahiko; Yoshikawa, Takeshi; Hirata, So; Seino, Junji; Nakai, Hiromi
2017-11-05
We have implemented a linear-scaling divide-and-conquer (DC)-based higher-order coupled-cluster (CC) and Møller-Plesset perturbation theories (MPPT) as well as their combinations automatically by means of the tensor contraction engine, which is a computerized symbolic algebra system. The DC-based energy expressions of the standard CC and MPPT methods and the CC methods augmented with a perturbation correction were proposed for up to high excitation orders [e.g., CCSDTQ, MP4, and CCSD(2) TQ ]. The numerical assessment for hydrogen halide chains, polyene chains, and first coordination sphere (C1) model of photoactive yellow protein has revealed that the DC-based correlation methods provide reliable correlation energies with significantly less computational cost than that of the conventional implementations. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Spatio-Chromatic Adaptation via Higher-Order Canonical Correlation Analysis of Natural Images
Gutmann, Michael U.; Laparra, Valero; Hyvärinen, Aapo; Malo, Jesús
2014-01-01
Independent component and canonical correlation analysis are two general-purpose statistical methods with wide applicability. In neuroscience, independent component analysis of chromatic natural images explains the spatio-chromatic structure of primary cortical receptive fields in terms of properties of the visual environment. Canonical correlation analysis explains similarly chromatic adaptation to different illuminations. But, as we show in this paper, neither of the two methods generalizes well to explain both spatio-chromatic processing and adaptation at the same time. We propose a statistical method which combines the desirable properties of independent component and canonical correlation analysis: It finds independent components in each data set which, across the two data sets, are related to each other via linear or higher-order correlations. The new method is as widely applicable as canonical correlation analysis, and also to more than two data sets. We call it higher-order canonical correlation analysis. When applied to chromatic natural images, we found that it provides a single (unified) statistical framework which accounts for both spatio-chromatic processing and adaptation. Filters with spatio-chromatic tuning properties as in the primary visual cortex emerged and corresponding-colors psychophysics was reproduced reasonably well. We used the new method to make a theory-driven testable prediction on how the neural response to colored patterns should change when the illumination changes. We predict shifts in the responses which are comparable to the shifts reported for chromatic contrast habituation. PMID:24533049
Spatio-chromatic adaptation via higher-order canonical correlation analysis of natural images.
Gutmann, Michael U; Laparra, Valero; Hyvärinen, Aapo; Malo, Jesús
2014-01-01
Independent component and canonical correlation analysis are two general-purpose statistical methods with wide applicability. In neuroscience, independent component analysis of chromatic natural images explains the spatio-chromatic structure of primary cortical receptive fields in terms of properties of the visual environment. Canonical correlation analysis explains similarly chromatic adaptation to different illuminations. But, as we show in this paper, neither of the two methods generalizes well to explain both spatio-chromatic processing and adaptation at the same time. We propose a statistical method which combines the desirable properties of independent component and canonical correlation analysis: It finds independent components in each data set which, across the two data sets, are related to each other via linear or higher-order correlations. The new method is as widely applicable as canonical correlation analysis, and also to more than two data sets. We call it higher-order canonical correlation analysis. When applied to chromatic natural images, we found that it provides a single (unified) statistical framework which accounts for both spatio-chromatic processing and adaptation. Filters with spatio-chromatic tuning properties as in the primary visual cortex emerged and corresponding-colors psychophysics was reproduced reasonably well. We used the new method to make a theory-driven testable prediction on how the neural response to colored patterns should change when the illumination changes. We predict shifts in the responses which are comparable to the shifts reported for chromatic contrast habituation.
The Effects of Response Option Order and Question Order on Self-Rated Health
Garbarski, Dana; Schaeffer, Nora Cate; Dykema, Jennifer
2014-01-01
Objectives This study aims to assess the impact of response option order and question order on the distribution of responses to the self-rated health (SRH) question and the relationship between SRH and other health-related measures. Methods In an online panel survey, we implement a 2-by-2 between-subjects factorial experiment, manipulating the following levels of each factor: 1) order of response options (“excellent” to “poor” versus “poor” to “excellent”); and 2) order of SRH item (either preceding or following the administration of domain-specific health items). We use chi-square difference tests, polychoric correlations, and differences in means and proportions to evaluate the effect of the experimental treatments on SRH responses and the relationship between SRH and other health measures. Results Mean SRH is higher (better health) and proportion in “fair” or “poor” health lower when response options are ordered from “excellent” to “poor” and SRH is presented first compared to other experimental treatments. Presenting SRH after domain-specific health items increases its correlation with these items, particularly when response options are ordered “excellent” to “poor.” Among participants with the highest level of current health risks, SRH is worse when it is presented last versus first. Conclusion While more research on the presentation of SRH is needed across a range of surveys, we suggest that ordering response options from “poor” to “excellent” might reduce positive clustering. Given the question order effects found here, we suggest presenting SRH before domain-specific health items in order to increase inter-survey comparability, as domain-specific health items will vary across surveys. PMID:25409654
Observation of a remarkable reduction of correlation effects in BaCr2As2 by ARPES.
Nayak, Jayita; Filsinger, Kai; Fecher, Gerhard H; Chadov, Stanislav; Minár, Ján; Rienks, Emile D L; Büchner, Bernd; Parkin, Stuart P; Fink, Jörg; Felser, Claudia
2017-11-21
The superconducting phase in iron-based high-[Formula: see text] superconductors (FeSC), as in other unconventional superconductors such as the cuprates, neighbors a magnetically ordered one in the phase diagram. This proximity hints at the importance of electron correlation effects in these materials, and Hund's exchange interaction has been suggested to be the dominant correlation effect in FeSCs because of their multiband nature. By this reasoning, correlation should be strongest for materials closest to a half-filled [Formula: see text] electron shell (Mn compounds, hole-doped FeSCs) and decrease for systems with both higher (electron-doped FeSCs) and lower (Cr-pnictides) [Formula: see text] counts. Here we address the strength of correlation effects in nonsuperconducting antiferromagnetic BaCr 2 As 2 by means of angle-resolved photoemission spectroscopy (ARPES) and first-principles calculations. This combination provides us with two handles on the strength of correlation: First, a comparison of the experimental and calculated effective masses yields the correlation-induced mass renormalization. In addition, the lifetime broadening of the experimentally observed dispersions provides another measure of the correlation strength. Both approaches reveal a reduction of electron correlation in BaCr 2 As 2 with respect to systems with a [Formula: see text] count closer to five. Our results thereby support the theoretical predictions that Hund's exchange interaction is important in these materials.
Relativistic wide-angle galaxy bispectrum on the light cone
NASA Astrophysics Data System (ADS)
Bertacca, Daniele; Raccanelli, Alvise; Bartolo, Nicola; Liguori, Michele; Matarrese, Sabino; Verde, Licia
2018-01-01
Given the important role that the galaxy bispectrum has recently acquired in cosmology and the scale and precision of forthcoming galaxy clustering observations, it is timely to derive the full expression of the large-scale bispectrum going beyond approximated treatments which neglect integrated terms or higher-order bias terms or use the Limber approximation. On cosmological scales, relativistic effects that arise from observing the past light cone alter the observed galaxy number counts, therefore leaving their imprints on N-point correlators at all orders. In this paper we compute for the first time the bispectrum including all general relativistic, local and integrated, effects at second order, the tracers' bias at second order, geometric effects as well as the primordial non-Gaussianity contribution. This is timely considering that future surveys will probe scales comparable to the horizon where approximations widely used currently may not hold; neglecting these effects may introduce biases in estimation of cosmological parameters as well as primordial non-Gaussianity.
Hedging Your Bets by Learning Reward Correlations in the Human Brain
Wunderlich, Klaus; Symmonds, Mkael; Bossaerts, Peter; Dolan, Raymond J.
2011-01-01
Summary Human subjects are proficient at tracking the mean and variance of rewards and updating these via prediction errors. Here, we addressed whether humans can also learn about higher-order relationships between distinct environmental outcomes, a defining ecological feature of contexts where multiple sources of rewards are available. By manipulating the degree to which distinct outcomes are correlated, we show that subjects implemented an explicit model-based strategy to learn the associated outcome correlations and were adept in using that information to dynamically adjust their choices in a task that required a minimization of outcome variance. Importantly, the experimentally generated outcome correlations were explicitly represented neuronally in right midinsula with a learning prediction error signal expressed in rostral anterior cingulate cortex. Thus, our data show that the human brain represents higher-order correlation structures between rewards, a core adaptive ability whose immediate benefit is optimized sampling. PMID:21943609
Wang, Jun-Jian; Guo, Ying-Ying; Guo, Da-Li; Yin, Sen-Lu; Kong, De-Liang; Liu, Yang-Sheng; Zeng, Hui
2012-01-17
Fine roots are critical components for plant mercury (Hg) uptake and removal, but the patterns of Hg distribution and turnover within the heterogeneous fine root components and their potential limiting factors are poorly understood. Based on root branching structure, we studied the total Hg (THg) and its cellular partitioning in fine roots in 6 Chinese subtropical trees species and the impacts of root morphological and stoichiometric traits on Hg partitioning. The THg concentration generally decreased with increasing root order, and was higher in cortex than in stele. This concentration significantly correlated with root length, diameter, specific root length, specific root area, and nitrogen concentration, whereas its cytosolic fraction (accounting for <10% of THg) correlated with root carbon and sulfur concentrations. The estimated Hg return flux from dead fine roots outweighed that from leaf litter, and ephemeral first-order roots that constituted 7.2-22.3% of total fine root biomass may have contributed most to this flux (39-71%, depending on tree species and environmental substrate). Our results highlight the high capacity of Hg stabilization and Hg return by lower-order roots and demonstrate that turnover of lower-order roots may be an effective strategy of detoxification in perennial tree species.
Neural Classifiers for Learning Higher-Order Correlations
NASA Astrophysics Data System (ADS)
Güler, Marifi
1999-01-01
Studies by various authors suggest that higher-order networks can be more powerful and are biologically more plausible with respect to the more traditional multilayer networks. These architectures make explicit use of nonlinear interactions between input variables in the form of higher-order units or product units. If it is known a priori that the problem to be implemented possesses a given set of invariances like in the translation, rotation, and scale invariant pattern recognition problems, those invariances can be encoded, thus eliminating all higher-order terms which are incompatible with the invariances. In general, however, it is a serious set-back that the complexity of learning increases exponentially with the size of inputs. This paper reviews higher-order networks and introduces an implicit representation in which learning complexity is mainly decided by the number of higher-order terms to be learned and increases only linearly with the input size.
ANCA: Anharmonic Conformational Analysis of Biomolecular Simulations.
Parvatikar, Akash; Vacaliuc, Gabriel S; Ramanathan, Arvind; Chennubhotla, S Chakra
2018-05-08
Anharmonicity in time-dependent conformational fluctuations is noted to be a key feature of functional dynamics of biomolecules. Although anharmonic events are rare, long-timescale (μs-ms and beyond) simulations facilitate probing of such events. We have previously developed quasi-anharmonic analysis to resolve higher-order spatial correlations and characterize anharmonicity in biomolecular simulations. In this article, we have extended this toolbox to resolve higher-order temporal correlations and built a scalable Python package called anharmonic conformational analysis (ANCA). ANCA has modules to: 1) measure anharmonicity in the form of higher-order statistics and its variation as a function of time, 2) output a storyboard representation of the simulations to identify key anharmonic conformational events, and 3) identify putative anharmonic conformational substates and visualization of transitions between these substates. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Chatrchyan, Serguei
2014-02-20
Azimuthal dihadron correlations of charged particles have been measured in PbPb collisions atmore » $$\\sqrt{s_{NN}}$$ = 2.76 TeV by the CMS collaboration, using data from the 2011 LHC heavy-ion run. The data set includes a sample of ultra-central (0-0.2% centrality) PbPb events collected using a trigger based on total transverse energy in the hadron forward calorimeters and the total multiplicity of pixel clusters in the silicon pixel tracker. A total of about 1.8 million ultra-central events were recorded, corresponding to an integrated luminosity of 120 inverse microbarns. The observed correlations in ultra-central PbPb events are expected to be particularly sensitive to initial-state fluctuations. The single-particle anisotropy Fourier harmonics, from $$v_2$$ to $$v_6$$, are extracted as a function of particle transverse momentum. At higher transverse momentum, the $$v_2$$ harmonic becomes significantly smaller than the higher-order $$v_n$$ (n greater than or equal to 3). The pt-averaged $$v_2$$ and $$v_3$$ are found to be equal within 2%, while higher-order $$v_n$$ decrease as n increases. The breakdown of factorization of dihadron correlations into single-particle azimuthal anisotropies is observed. This effect is found to be most prominent in the ultra-central PbPb collisions, where the initial-state fluctuations play a dominant role. As a result, a comparison of the factorization data to hydrodynamic predictions with event-by-event fluctuating initial conditions is also presented.« less
Stephen, Julia M; Ranken, Doug F; Aine, Cheryl J
2006-01-01
The sensitivity of visual areas to different temporal frequencies, as well as the functional connections between these areas, was examined using magnetoencephalography (MEG). Alternating circular sinusoids (0, 3.1, 8.7 and 14 Hz) were presented to foveal and peripheral locations in the visual field to target ventral and dorsal stream structures, respectively. It was hypothesized that higher temporal frequencies would preferentially activate dorsal stream structures. To determine the effect of frequency on the cortical response we analyzed the late time interval (220-770 ms) using a multi-dipole spatio-temporal analysis approach to provide source locations and timecourses for each condition. As an exploratory aspect, we performed cross-correlation analysis on the source timecourses to determine which sources responded similarly within conditions. Contrary to predictions, dorsal stream areas were not activated more frequently during high temporal frequency stimulation. However, across cortical sources the frequency-following response showed a difference, with significantly higher power at the second harmonic for the 3.1 and 8.7 Hz stimulation and at the first and second harmonics for the 14 Hz stimulation with this pattern seen robustly in area V1. Cross-correlations of the source timecourses showed that both low- and high-order visual areas, including dorsal and ventral stream areas, were significantly correlated in the late time interval. The results imply that frequency information is transferred to higher-order visual areas without translation. Despite the less complex waveforms seen in the late interval of time, the cross-correlation results show that visual, temporal and parietal cortical areas are intricately involved in late-interval visual processing.
ERIC Educational Resources Information Center
Khattab, Ali-Maher; Michael, William B.
1986-01-01
Based on reanalyses of correlational data obtained from the University of Southern California Aptitudes Research Project, this investigation examined the extent to which two higher order factors of semantic content and symbolic content form Guilford's structure-of-intellect model reflected distinct constructs. (Author/LMO)
NASA Technical Reports Server (NTRS)
Kerr, R. A.
1983-01-01
In a three dimensional simulation higher order derivative correlations, including skewness and flatness factors, are calculated for velocity and passive scalar fields and are compared with structures in the flow. The equations are forced to maintain steady state turbulence and collect statistics. It is found that the scalar derivative flatness increases much faster with Reynolds number than the velocity derivative flatness, and the velocity and mixed derivative skewness do not increase with Reynolds number. Separate exponents are found for the various fourth order velocity derivative correlations, with the vorticity flatness exponent the largest. Three dimensional graphics show strong alignment between the vorticity, rate of strain, and scalar-gradient fields. The vorticity is concentrated in tubes with the scalar gradient and the largest principal rate of strain aligned perpendicular to the tubes. Velocity spectra, in Kolmogorov variables, collapse to a single curve and a short minus 5/3 spectral regime is observed.
The effect of physician supply on health status: Canadian evidence.
Piérard, Emmanuelle
2014-10-01
We estimate the relationship between per capita supply of physicians, both general practitioners and specialists, and health status of Canadians. We use data from the Canadian National Population Health Survey and the Canadian Institute for Health Information. Two measures of quality of life, self-assessed health status and the Health Utility Index, are explored. Random effects ordered probits are used to model self-assessed health status, and quantile regressions are used for the Health Utility Index. A higher supply of general practitioners is correlated with better health outcomes as measured by both measures of health status, albeit for different age groups, and it is correlated with a higher HUI for some individuals who report having a chronic condition. A higher supply of specialists is correlated with worse health outcomes for the HUI for some individuals. It is possible that a higher supply of general practitioners increases the likelihood of diagnosing and treating health conditions in a timely manner and that this in turn affects health status. Specialists, due to the nature of their expertise could affect negatively health, both through the use of riskier procedures and due to their clientele being in relatively worse health. Based on our findings, we therefore would recommend maintaining a robust supply and distribution of GPs across Canada. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Sensing spontaneous collapse and decoherence with interfering Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Schrinski, Björn; Hornberger, Klaus; Nimmrichter, Stefan
2017-12-01
We study how matter-wave interferometry with Bose-Einstein condensates is affected by hypothetical collapse models and by environmental decoherence processes. Motivated by recent atom fountain experiments with macroscopic arm separations, we focus on the observable signatures of first-order and higher-order coherence for different two-mode superposition states, and on their scaling with particle number. This can be used not only to assess the impact of environmental decoherence on many-body coherence, but also to quantify the extent to which macrorealistic collapse models are ruled out by such experiments. We find that interference fringes of phase-coherently split condensates are most strongly affected by decoherence, whereas the quantum signatures of independent interfering condensates are more immune against macrorealistic collapse. A many-body enhanced decoherence effect beyond the level of a single atom can be probed if higher-order correlations are resolved in the interferogram.
Study on the mapping of dark matter clustering from real space to redshift space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Yi; Song, Yong-Seon, E-mail: yizheng@kasi.re.kr, E-mail: ysong@kasi.re.kr
The mapping of dark matter clustering from real space to redshift space introduces the anisotropic property to the measured density power spectrum in redshift space, known as the redshift space distortion effect. The mapping formula is intrinsically non-linear, which is complicated by the higher order polynomials due to indefinite cross correlations between the density and velocity fields, and the Finger-of-God effect due to the randomness of the peculiar velocity field. Whilst the full higher order polynomials remain unknown, the other systematics can be controlled consistently within the same order truncation in the expansion of the mapping formula, as shown inmore » this paper. The systematic due to the unknown non-linear density and velocity fields is removed by separately measuring all terms in the expansion directly using simulations. The uncertainty caused by the velocity randomness is controlled by splitting the FoG term into two pieces, 1) the ''one-point' FoG term being independent of the separation vector between two different points, and 2) the ''correlated' FoG term appearing as an indefinite polynomials which is expanded in the same order as all other perturbative polynomials. Using 100 realizations of simulations, we find that the Gaussian FoG function with only one scale-independent free parameter works quite well, and that our new mapping formulation accurately reproduces the observed 2-dimensional density power spectrum in redshift space at the smallest scales by far, up to k ∼ 0.2 Mpc{sup -1}, considering the resolution of future experiments.« less
Theoretical Study of the H2-ML(+) Binding Energies
NASA Technical Reports Server (NTRS)
Maitre, Philippe; Bauschlicher, Charles W., Jr.
1993-01-01
The cooperative ligand effects are studied in MLH2(+) and the results are compared to the recent experiments of Kemper et al. The bonding in these compounds is principally electrostatic in origin; however, ligand to metal and metal to ligand donations are important, especially for H2. We show that differences arise among the vanadium, cobalt, and copper complexes which are due to 3d donation to H2. Electron correlation is required to describe the dative interaction, and we find that second order Moller-Plesset perturbation theory (MP2) yields a good description of these systems compared with higher levels of correlation (such as the modified coupled pair functional and coupled cluster approaches) and experiment. However, obtaining quantitative results requires higher levels of theory than MP2.
Bias of phencyclidine discrimination by the schedule of reinforcement.
McMillan, D E; Wenger, G R
1984-01-01
Pigeons, trained to discriminate phencyclidine from saline under a procedure requiring the bird to track the location of a color, received cumulative doses of phencyclidine, pentobarbital, or d-amphetamine with a variety of schedules of reinforcement in effect (across phases). When the same second-order schedules were used to reinforce responding after either saline or phencyclidine administration, stimulus control by phencyclidine did not depend on the schedule parameter. When different second-order schedules were used that biased responding toward the phencyclidine-correlated key color, pigeons responded on the phencyclidine-correlated key at lower doses of phencyclidine and pentobarbital than when the second-order schedule biased responding toward the saline key color. A similar but less marked effect was obtained with d-amphetamine. Attempts to produce bias by changing reinforcement magnitude (duration of food availability) were less successful. A signal-detection analysis of dose-effect curves for phencyclidine under two of the second-order schedules employed suggested that at low doses of phencyclidine, response bias is a major determinant of responding. As doses were increased, position preferences occurred and response bias decreased; at higher doses both response bias and position preference decreased and discriminability increased. With low doses of pentobarbital, responding again was biased but increasing doses produced position preference with only small increases in discriminability. At low doses of d-amphetamine responding also was biased, but bias did not decrease consistently with dose nor did discriminability increase. These experiments suggest that the schedule of reinforcement can be used to bias responding toward or away from making the drug-correlated response in drug discrimination experiments, and that signal-detection analysis and analysis of responding at a position can be used to separate the discriminability of the drug state from other effects of the drug on responding. PMID:6481300
NASA Astrophysics Data System (ADS)
Meshgin, Pania
2011-12-01
This research focuses on two important subjects: (1) Characterization of heterogeneous microstructure of multi-phase composites and the effect of microstructural features on effective properties of the material. (2) Utilizations of phase change materials and recycled rubber particles from waste tires to improve thermal properties of insulation materials used in building envelopes. Spatial pattern of multi-phase and multidimensional internal structures of most composite materials are highly random. Quantitative description of the spatial distribution should be developed based on proper statistical models, which characterize the morphological features. For a composite material with multi-phases, the volume fraction of the phases as well as the morphological parameters of the phases have very strong influences on the effective property of the composite. These morphological parameters depend on the microstructure of each phase. This study intends to include the effect of higher order morphological details of the microstructure in the composite models. The higher order statistics, called two-point correlation functions characterize various behaviors of the composite at any two points in a stochastic field. Specifically, correlation functions of mosaic patterns are used in the study for characterizing transport properties of composite materials. One of the most effective methods to improve energy efficiency of buildings is to enhance thermal properties of insulation materials. The idea of using phase change materials and recycled rubber particles such as scrap tires in insulation materials for building envelopes has been studied.
Extension of local-type inequality for the higher order correlation functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suyama, Teruaki; Yokoyama, Shuichiro, E-mail: suyama@resceu.s.u-tokyo.ac.jp, E-mail: shu@a.phys.nagoya-u.ac.jp
2011-07-01
For the local-type primordial perturbation, it is known that there is an inequality between the bispectrum and the trispectrum. By using the diagrammatic method, we develop a general formalism to systematically construct the similar inequalities up to any order correlation function. As an application, we explicitly derive all the inequalities up to six and eight-point functions.
NASA Astrophysics Data System (ADS)
Acharya, S.; Adam, J.; Adamová, D.; Adolfsson, J.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Al-Turany, M.; Alam, S. N.; Alba, J. L. B.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altenkamper, L.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andreou, D.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Anwar, R.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Ball, M.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barioglio, L.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Batigne, G.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, A.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Blair, J. T.; Blau, D.; Blume, C.; Boca, G.; Bock, F.; Bogdanov, A.; Boldizsár, L.; Bombara, M.; Bonomi, G.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Bratrud, L.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Capon, A. A.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cerello, P.; Chandra, S.; Chang, B.; Chapeland, S.; Chartier, M.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Chowdhury, T.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Concas, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Costanza, S.; Crkovská, J.; Crochet, P.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; de Souza, R. D.; Degenhardt, H. F.; Deisting, A.; Deloff, A.; Deplano, C.; Dhankher, P.; di Bari, D.; di Mauro, A.; di Nezza, P.; di Ruzza, B.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Doremalen, L. V. R.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Duggal, A. K.; Dukhishyam, M.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Espagnon, B.; Esumi, S.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Fabbietti, L.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Fernández Téllez, A.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Gay Ducati, M. B.; Germain, M.; Ghosh, J.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Greiner, L.; Grelli, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Gronefeld, J. M.; Grosa, F.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Haque, M. R.; Harris, J. W.; Harton, A.; Hassan, H.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Hernandez, E. G.; Herrera Corral, G.; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hills, C.; Hippolyte, B.; Hladky, J.; Hohlweger, B.; Horak, D.; Hornung, S.; Hosokawa, R.; Hristov, P.; Hughes, C.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Iga Buitron, S. A.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Islam, M. S.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovsky, J.; Jaelani, S.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jercic, M.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karczmarczyk, P.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Ketzer, B.; Khabanova, Z.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kielbowicz, M. M.; Kileng, B.; Kim, B.; Kim, D.; Kim, D. J.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Köhler, M. K.; Kollegger, T.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Konyushikhin, M.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Kreis, L.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kundu, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lai, Y. S.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lavicka, R.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Lehner, S.; Lehrbach, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Lévai, P.; Li, X.; Lien, J.; Lietava, R.; Lim, B.; Lindal, S.; Lindenstruth, V.; Lindsay, S. W.; Lippmann, C.; Lisa, M. A.; Litichevskyi, V.; Llope, W. J.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Loncar, P.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Luhder, J. R.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martinez, J. A. L.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Masciocchi, S.; Masera, M.; Masoni, A.; Masson, E.; Mastroserio, A.; Mathis, A. M.; Matuoka, P. F. T.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mihaylov, D. L.; Mikhaylov, K.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Mohisin Khan, M.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Myrcha, J. W.; Nag, D.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Narayan, A.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Negrao de Oliveira, R. A.; Nellen, L.; Nesbo, S. V.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Ohlson, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Pachmayer, Y.; Pacik, V.; Pagano, D.; Pagano, P.; Paić, G.; Palni, P.; Pan, J.; Pandey, A. K.; Panebianco, S.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, J.; Parmar, S.; Passfeld, A.; Pathak, S. P.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira, L. G.; Pereira da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Pezzi, R. P.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pliquett, F.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Pozdniakov, V.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Rana, D. B.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Rokita, P. S.; Ronchetti, F.; Rosas, E. D.; Rosnet, P.; Rossi, A.; Rotondi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rueda, O. V.; Rui, R.; Rumyantsev, B.; Rustamov, A.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Saha, S. K.; Sahlmuller, B.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandoval, A.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sas, M. H. P.; Scapparone, E.; Scarlassara, F.; Schaefer, B.; Scharenberg, R. P.; Scheid, H. S.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M. O.; Schmidt, M.; Schmidt, N. V.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shahoyan, R.; Shaikh, W.; Shangaraev, A.; Sharma, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silaeva, S.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Stocco, D.; Storetvedt, M. M.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thakur, D.; Thakur, S.; Thomas, D.; Thoresen, F.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Torres, S. R.; Tripathy, S.; Trogolo, S.; Trombetta, G.; Tropp, L.; Trubnikov, V.; Trzaska, W. H.; Trzeciak, B. A.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Vértesi, R.; Vickovic, L.; Vigolo, S.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Voscek, D.; Vranic, D.; Vrláková, J.; Wagner, B.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wenzel, S. C.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C. S.; Willsher, E.; Windelband, B.; Witt, W. E.; Yalcin, S.; Yamakawa, K.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zmeskal, J.; Zou, S.; Alice Collaboration
2018-02-01
The correlations between event-by-event fluctuations of anisotropic flow harmonic amplitudes have been measured in Pb-Pb collisions at √{sNN}=2.76 TeV with the ALICE detector at the Large Hadron Collider. The results are reported in terms of multiparticle correlation observables dubbed symmetric cumulants. These observables are robust against biases originating from nonflow effects. The centrality dependence of correlations between the higher order harmonics (the quadrangular v4 and pentagonal v5 flow) and the lower order harmonics (the elliptic v2 and triangular v3 flow) is presented. The transverse momentum dependences of correlations between v3 and v2 and between v4 and v2 are also reported. The results are compared to calculations from viscous hydrodynamics and a multiphase transport (AMPT) model calculations. The comparisons to viscous hydrodynamic models demonstrate that the different order harmonic correlations respond differently to the initial conditions and the temperature dependence of the ratio of shear viscosity to entropy density (η /s ) . A small average value of η /s is favored independent of the specific choice of initial conditions in the models. The calculations with the AMPT initial conditions yield results closest to the measurements. Correlations among the magnitudes of v2, v3, and v4 show moderate pT dependence in midcentral collisions. This might be an indication of possible viscous corrections to the equilibrium distribution at hadronic freeze-out, which might help to understand the possible contribution of bulk viscosity in the hadronic phase of the system. Together with existing measurements of individual flow harmonics, the presented results provide further constraints on the initial conditions and the transport properties of the system produced in heavy-ion collisions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acharya, S.; Adam, J.; Adamová, D.
The correlations between event-by-event fluctuations of anisotropic flow harmonic amplitudes have been measured in Pb-Pb collisions atmore » $$\\sqrt{s}$$$_ {NN}$$=2.76 TeV with the ALICE detector at the Large Hadron Collider. The results are reported in terms of multiparticle correlation observables dubbed symmetric cumulants. These observables are robust against biases originating from nonflow effects. The centrality dependence of correlations between the higher order harmonics (the quadrangular v 4 and pentagonal v 5 flow) and the lower order harmonics (the elliptic v 2 and triangular v 3 flow) is presented. The transverse momentum dependences of correlations between v 3 and v 2 and between v 4 and v 2 are also reported. The results are compared to calculations from viscous hydrodynamics and a multiphase transport (AMPT) model calculations. The comparisons to viscous hydrodynamic models demonstrate that the different order harmonic correlations respond differently to the initial conditions and the temperature dependence of the ratio of shear viscosity to entropy density (η/s). A small average value of η/s is favored independent of the specific choice of initial conditions in the models. The calculations with the AMPT initial conditions yield results closest to the measurements. Correlations among the magnitudes of v 2, v 3, and v 4 show moderate p T dependence in midcentral collisions. This might be an indication of possible viscous corrections to the equilibrium distribution at hadronic freeze-out, which might help to understand the possible contribution of bulk viscosity in the hadronic phase of the system. Lastly, together with existing measurements of individual flow harmonics, the presented results provide further constraints on the initial conditions and the transport properties of the system produced in heavy-ion collisions.« less
Acharya, S.; Adam, J.; Adamová, D.; ...
2018-02-12
The correlations between event-by-event fluctuations of anisotropic flow harmonic amplitudes have been measured in Pb-Pb collisions atmore » $$\\sqrt{s}$$$_ {NN}$$=2.76 TeV with the ALICE detector at the Large Hadron Collider. The results are reported in terms of multiparticle correlation observables dubbed symmetric cumulants. These observables are robust against biases originating from nonflow effects. The centrality dependence of correlations between the higher order harmonics (the quadrangular v 4 and pentagonal v 5 flow) and the lower order harmonics (the elliptic v 2 and triangular v 3 flow) is presented. The transverse momentum dependences of correlations between v 3 and v 2 and between v 4 and v 2 are also reported. The results are compared to calculations from viscous hydrodynamics and a multiphase transport (AMPT) model calculations. The comparisons to viscous hydrodynamic models demonstrate that the different order harmonic correlations respond differently to the initial conditions and the temperature dependence of the ratio of shear viscosity to entropy density (η/s). A small average value of η/s is favored independent of the specific choice of initial conditions in the models. The calculations with the AMPT initial conditions yield results closest to the measurements. Correlations among the magnitudes of v 2, v 3, and v 4 show moderate p T dependence in midcentral collisions. This might be an indication of possible viscous corrections to the equilibrium distribution at hadronic freeze-out, which might help to understand the possible contribution of bulk viscosity in the hadronic phase of the system. Lastly, together with existing measurements of individual flow harmonics, the presented results provide further constraints on the initial conditions and the transport properties of the system produced in heavy-ion collisions.« less
Enhanced spin-ordering temperature in ultrathin FeTe films grown on a topological insulator
NASA Astrophysics Data System (ADS)
Singh, Udai Raj; Warmuth, Jonas; Kamlapure, Anand; Cornils, Lasse; Bremholm, Martin; Hofmann, Philip; Wiebe, Jens; Wiesendanger, Roland
2018-04-01
We studied the temperature dependence of the diagonal double-stripe spin order in 1 and 2 unit cell thick layers of FeTe grown on the topological insulator B i2T e3 via spin-polarized scanning tunneling microscopy. The spin order persists up to temperatures which are higher than the transition temperature reported for bulk F e1 +yTe with lowest possible excess Fe content y . The enhanced spin order stability is assigned to a strongly decreased y with respect to the lowest values achievable in bulk crystal growth, and effects due to the interface between the FeTe and the topological insulator. The result is relevant for understanding the recent observation of a coexistence of superconducting correlations and spin order in this system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okada, S.; Shinada, M.; Matsuoka, O.
1990-10-01
A systematic calculation of new relativistic Gaussian basis sets is reported. The new basis sets are similar to the previously reported ones (J. Chem. Phys. {bold 91}, 4193 (1989)), but, in the calculation, the Breit interaction has been explicitly included besides the Dirac--Coulomb Hamiltonian. They have been adopted for the calculation of the self-consistent field effect on the Breit interaction energies and are expected to be useful for the studies on higher-order effects such as the electron correlations and other quantum electrodynamical effects.
Using bivariate signal analysis to characterize the epileptic focus: the benefit of surrogates.
Andrzejak, R G; Chicharro, D; Lehnertz, K; Mormann, F
2011-04-01
The disease epilepsy is related to hypersynchronous activity of networks of neurons. While acute epileptic seizures are the most extreme manifestation of this hypersynchronous activity, an elevated level of interdependence of neuronal dynamics is thought to persist also during the seizure-free interval. In multichannel recordings from brain areas involved in the epileptic process, this interdependence can be reflected in an increased linear cross correlation but also in signal properties of higher order. Bivariate time series analysis comprises a variety of approaches, each with different degrees of sensitivity and specificity for interdependencies reflected in lower- or higher-order properties of pairs of simultaneously recorded signals. Here we investigate which approach is best suited to detect putatively elevated interdependence levels in signals recorded from brain areas involved in the epileptic process. For this purpose, we use the linear cross correlation that is sensitive to lower-order signatures of interdependence, a nonlinear interdependence measure that integrates both lower- and higher-order properties, and a surrogate-corrected nonlinear interdependence measure that aims to specifically characterize higher-order properties. We analyze intracranial electroencephalographic recordings of the seizure-free interval from 29 patients with an epileptic focus located in the medial temporal lobe. Our results show that all three approaches detect higher levels of interdependence for signals recorded from the brain hemisphere containing the epileptic focus as compared to signals recorded from the opposite hemisphere. For the linear cross correlation, however, these differences are not significant. For the nonlinear interdependence measure, results are significant but only of moderate accuracy with regard to the discriminative power for the focal and nonfocal hemispheres. The highest significance and accuracy is obtained for the surrogate-corrected nonlinear interdependence measure.
Using bivariate signal analysis to characterize the epileptic focus: The benefit of surrogates
NASA Astrophysics Data System (ADS)
Andrzejak, R. G.; Chicharro, D.; Lehnertz, K.; Mormann, F.
2011-04-01
The disease epilepsy is related to hypersynchronous activity of networks of neurons. While acute epileptic seizures are the most extreme manifestation of this hypersynchronous activity, an elevated level of interdependence of neuronal dynamics is thought to persist also during the seizure-free interval. In multichannel recordings from brain areas involved in the epileptic process, this interdependence can be reflected in an increased linear cross correlation but also in signal properties of higher order. Bivariate time series analysis comprises a variety of approaches, each with different degrees of sensitivity and specificity for interdependencies reflected in lower- or higher-order properties of pairs of simultaneously recorded signals. Here we investigate which approach is best suited to detect putatively elevated interdependence levels in signals recorded from brain areas involved in the epileptic process. For this purpose, we use the linear cross correlation that is sensitive to lower-order signatures of interdependence, a nonlinear interdependence measure that integrates both lower- and higher-order properties, and a surrogate-corrected nonlinear interdependence measure that aims to specifically characterize higher-order properties. We analyze intracranial electroencephalographic recordings of the seizure-free interval from 29 patients with an epileptic focus located in the medial temporal lobe. Our results show that all three approaches detect higher levels of interdependence for signals recorded from the brain hemisphere containing the epileptic focus as compared to signals recorded from the opposite hemisphere. For the linear cross correlation, however, these differences are not significant. For the nonlinear interdependence measure, results are significant but only of moderate accuracy with regard to the discriminative power for the focal and nonfocal hemispheres. The highest significance and accuracy is obtained for the surrogate-corrected nonlinear interdependence measure.
ERIC Educational Resources Information Center
Canivez, Gary L.
2014-01-01
The Wechsler Intelligence Scale for Children--Fourth Edition (WISC-IV) is one of the most frequently used intelligence tests in clinical assessments of children with learning difficulties. Construct validity studies of the WISC-IV have generally supported the higher order structure with four correlated first-order factors and one higher-order…
Genetic evaluation of weekly body weight in Japanese quail using random regression models.
Karami, K; Zerehdaran, S; Tahmoorespur, M; Barzanooni, B; Lotfi, E
2017-02-01
1. A total of 11 826 records from 2489 quails, hatched between 2012 and 2013, were used to estimate genetic parameters for BW (body weight) of Japanese quail using random regression models. Weekly BW was measured from hatch until 49 d of age. WOMBAT software (University of New England, Australia) was used for estimating genetic and phenotypic parameters. 2. Nineteen models were evaluated to identify the best orders of Legendre polynomials. A model with Legendre polynomial of order 3 for additive genetic effect, order 3 for permanent environmental effects and order 1 for maternal permanent environmental effects was chosen as the best model. 3. According to the best model, phenotypic and genetic variances were higher at the end of the rearing period. Although direct heritability for BW reduced from 0.18 at hatch to 0.12 at 7 d of age, it gradually increased to 0.42 at 49 d of age. It indicates that BW at older ages is more controlled by genetic components in Japanese quail. 4. Phenotypic and genetic correlations between adjacent periods except hatching weight were more closely correlated than remote periods. The present results suggested that BW at earlier ages, especially at hatch, are different traits compared to BW at older ages. Therefore, BW at earlier ages could not be used as a selection criterion for improving BW at slaughter age.
Fast large scale structure perturbation theory using one-dimensional fast Fourier transforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmittfull, Marcel; Vlah, Zvonimir; McDonald, Patrick
The usual fluid equations describing the large-scale evolution of mass density in the universe can be written as local in the density, velocity divergence, and velocity potential fields. As a result, the perturbative expansion in small density fluctuations, usually written in terms of convolutions in Fourier space, can be written as a series of products of these fields evaluated at the same location in configuration space. Based on this, we establish a new method to numerically evaluate the 1-loop power spectrum (i.e., Fourier transform of the 2-point correlation function) with one-dimensional fast Fourier transforms. This is exact and a fewmore » orders of magnitude faster than previously used numerical approaches. Numerical results of the new method are in excellent agreement with the standard quadrature integration method. This fast model evaluation can in principle be extended to higher loop order where existing codes become painfully slow. Our approach follows by writing higher order corrections to the 2-point correlation function as, e.g., the correlation between two second-order fields or the correlation between a linear and a third-order field. These are then decomposed into products of correlations of linear fields and derivatives of linear fields. In conclusion, the method can also be viewed as evaluating three-dimensional Fourier space convolutions using products in configuration space, which may also be useful in other contexts where similar integrals appear.« less
Fast large scale structure perturbation theory using one-dimensional fast Fourier transforms
Schmittfull, Marcel; Vlah, Zvonimir; McDonald, Patrick
2016-05-01
The usual fluid equations describing the large-scale evolution of mass density in the universe can be written as local in the density, velocity divergence, and velocity potential fields. As a result, the perturbative expansion in small density fluctuations, usually written in terms of convolutions in Fourier space, can be written as a series of products of these fields evaluated at the same location in configuration space. Based on this, we establish a new method to numerically evaluate the 1-loop power spectrum (i.e., Fourier transform of the 2-point correlation function) with one-dimensional fast Fourier transforms. This is exact and a fewmore » orders of magnitude faster than previously used numerical approaches. Numerical results of the new method are in excellent agreement with the standard quadrature integration method. This fast model evaluation can in principle be extended to higher loop order where existing codes become painfully slow. Our approach follows by writing higher order corrections to the 2-point correlation function as, e.g., the correlation between two second-order fields or the correlation between a linear and a third-order field. These are then decomposed into products of correlations of linear fields and derivatives of linear fields. In conclusion, the method can also be viewed as evaluating three-dimensional Fourier space convolutions using products in configuration space, which may also be useful in other contexts where similar integrals appear.« less
Dermody, Sarah S.; Wright, Aidan G.C.; Cheong, JeeWon; Miller, Karissa G.; Muldoon, Matthew F.; Flory, Janine D.; Gianaros, Peter J.; Marsland, Anna L.; Manuck, Stephen B.
2015-01-01
Objective Varying associations are reported between Five Factor Model (FFM) personality traits and cardiovascular diseaabolic risk within a hierarchical model of personality that posits higherse risk. Here, we further examine dispositional correlates of cardiomet -order traits of Stability (shared variance of Agreeableness, Conscientiousness, inverse Neuroticism) and Plasticity (Extraversion, Openness), and test hypothesized mediation via biological and behavioral factors. Method In an observational study of 856 community volunteers aged 30–54 years (46% male, 86% Caucasian), latent variable FFM traits (using multiple-informant reports) and aggregated cardiometabolic risk (indicators: insulin resistance, dyslipidemia, blood pressure, adiposity) were estimated using confirmatory factor analysis (CFA). The cardiometabolic factor was regressed on each personality factor or higher-order trait. Cross-sectional indirect effects via systemic inflammation, cardiac autonomic control, and physical activity were tested. Results CFA models confirmed the Stability “meta-trait,” but not Plasticity. Lower Stability was associated with heightened cardiometabolic risk. This association was accounted for by inflammation, autonomic function, and physical activity. Among FFM traits, only Openness was associated with risk over and above Stability and, unlike Stablity, this relationship was unexplained by the intervening variables. Conclusions A Stability meta-trait covaries with midlife cardiometabolic risk, and this association is accounted for by three candidate biological and behavioral factors. PMID:26249259
Mapping eQTL Networks with Mixed Graphical Markov Models
Tur, Inma; Roverato, Alberto; Castelo, Robert
2014-01-01
Expression quantitative trait loci (eQTL) mapping constitutes a challenging problem due to, among other reasons, the high-dimensional multivariate nature of gene-expression traits. Next to the expression heterogeneity produced by confounding factors and other sources of unwanted variation, indirect effects spread throughout genes as a result of genetic, molecular, and environmental perturbations. From a multivariate perspective one would like to adjust for the effect of all of these factors to end up with a network of direct associations connecting the path from genotype to phenotype. In this article we approach this challenge with mixed graphical Markov models, higher-order conditional independences, and q-order correlation graphs. These models show that additive genetic effects propagate through the network as function of gene–gene correlations. Our estimation of the eQTL network underlying a well-studied yeast data set leads to a sparse structure with more direct genetic and regulatory associations that enable a straightforward comparison of the genetic control of gene expression across chromosomes. Interestingly, it also reveals that eQTLs explain most of the expression variability of network hub genes. PMID:25271303
Fuller, G B; Wallbrown, F H
1983-11-01
Administered the Bender-Gestalt (BG) and Minnesota Percepto-Diagnostic Test (MPD) to 69 first-grade children prior to administration of the California Achievement Test (CAT). Order of administration for the BG and MPD was counterbalanced to control for practice effects. Correlations (rs) were computed between the 9 CAT subtests and scores from the BG and MPD. The DD score from the MPD correlated significantly with all 9 CAT subtests. The SpCD score from the MPD correlated significantly with 6 of the 9 CAT subtests. The BG Koppitz score correlated significantly with 6 of the 9 CAT subtests. Both the DD and SpCD scores showed a significantly higher negative r with Reading Vocabulary, Total Reading, and Arithmetic Computation than the BG. Furthermore, both types of MPD scores showed a much higher average r with the 9 CAT subtests than was evident for the BG. These findings suggest that DD and SpCD scores from the MPD provide a more sensitive measure of deficits in visual-motor perception than the Koppitz score from the BG.
Karami, K; Zerehdaran, S; Barzanooni, B; Lotfi, E
2017-12-01
1. The aim of the present study was to estimate genetic parameters for average egg weight (EW) and egg number (EN) at different ages in Japanese quail using multi-trait random regression (MTRR) models. 2. A total of 8534 records from 900 quail, hatched between 2014 and 2015, were used in the study. Average weekly egg weights and egg numbers were measured from second until sixth week of egg production. 3. Nine random regression models were compared to identify the best order of the Legendre polynomials (LP). The most optimal model was identified by the Bayesian Information Criterion. A model with second order of LP for fixed effects, second order of LP for additive genetic effects and third order of LP for permanent environmental effects (MTRR23) was found to be the best. 4. According to the MTRR23 model, direct heritability for EW increased from 0.26 in the second week to 0.53 in the sixth week of egg production, whereas the ratio of permanent environment to phenotypic variance decreased from 0.48 to 0.1. Direct heritability for EN was low, whereas the ratio of permanent environment to phenotypic variance decreased from 0.57 to 0.15 during the production period. 5. For each trait, estimated genetic correlations among weeks of egg production were high (from 0.85 to 0.98). Genetic correlations between EW and EN were low and negative for the first two weeks, but they were low and positive for the rest of the egg production period. 6. In conclusion, random regression models can be used effectively for analysing egg production traits in Japanese quail. Response to selection for increased egg weight would be higher at older ages because of its higher heritability and such a breeding program would have no negative genetic impact on egg production.
[Self-concept of school-age children: the norm in Kaohsiung].
Chin, C C; Liu, Y Y; Ka, J K
1989-05-01
This study has two objectives: (1) to establish the norm of three graphical projective tests (Children's Social-Self Test, Children's Attitude Inventory and Children's Self-Concept Inventory), and (2) to explore the influence of sex, order of birth, social economic status of family, and leadership of class that effect self-concept of the school-age children. These subjects are selected from elementary schools in Kaohsiung, twenty-two classes are drawn out from each grade by systemic-random sampling. Then two classes are drawn out from 22 classes at random to arrange retest for reliability. The total subjects are 6207 students. From October 1987 to June 1988, six researchers are divided into three group to conduct the test. Besides establishing the norm, we find results from analysis of data as follow: 1. The reliability and validity of three graphical projective tests are good, they can be used for assessing the self-concept of school-age children. 2. The grade, sex, order of birth, social economic status of family, leadership of class all influence the self-concept of school-age children. 3. The self-concept and the grade has negative correlation. 4. The self-concept and the social economic status of family has positive correlation. 5. The girls have higher self-concept than the boys. 6. The order of first-born or second-born has higher self-concept than the others. 7. The ones who are leaders of class have higher self-concept than the others.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohanty, Debasish; Sefat, Athena S.; Li, Jianlin
Structure–electrochemical property correlation is presented for lithium–manganese-rich layered–layered nickel manganese cobalt oxide (LMR–NMC) having composition Li1.2Co0.1Mn0.55Ni0.15O2 (TODA HE5050) in order to examine the possible reasons for voltage fade during short-to-mid-term electrochemical cycling. The Li1.2Co0.1Mn0.55Ni0.15O2 based cathodes were cycled at two different upper cutoff voltages (UCV), 4.2 V and 4.8 V, for 1, 10, and 125 cycles; voltage fade was observed after 10 and 125 cycles only when the UCV was 4.8 V. Magnetic susceptibility and selected-area electron diffraction data showed the presence of cation ordering in the pristine material, which remained after 125 cycles when the UCV was 4.2 V.more » When cycled at 4.8 V, the magnetic susceptibility results showed the suppression of cation ordering after one cycle; the cation ordering diminished upon further cycling and was not observed after 125 cycles. Selected-area electron diffraction data from oxides oriented towards the [0001] zone axis revealed a decrease in the intensity of cation-ordering reflections after one cycle and an introduction of spinel-type reflections after 10 cycles at 4.8 V; after 125 cycles, only the spinel-type reflections and the fundamental O3 layered oxide reflections were observed. A significant decrease in the effective magnetic moment of the compound after one cycle at 4.8 V indicated the presence of lithium and/or oxygen vacancies; analysis showed a reduction of Mn4+ (high spin/low spin) in the pristine oxide to Mn3+ (low spin) after one cycle. The effective magnetic moment was higher after 10 and 125 cycles at 4.8 V, suggesting the presence of Mn3+ in a high spin state, which is believed to originate from distorted spinel (Li2Mn2O4) and/or spinel (LiMn2O4) compounds. The increase in effective magnetic moments was not observed when the oxide was cycled at 4.2 V, indicating the stability of the structure under these conditions. This study shows that structural rearrangements in the LMR–NMC oxide happen only at higher potentials (4.8 V, for example) and provides evidence of a direct correlation between cation ordering and voltage fade.« less
NASA Astrophysics Data System (ADS)
Sørensen, L. K.; Fleig, T.; Olsen, J.
2009-08-01
Aimed at obtaining complete and highly accurate potential energy surfaces for molecules containing heavy elements, we present a new general-order coupled cluster method which can be applied in the framework of the spin-free Dirac formalism. As an initial application we present a systematic study of electron correlation and relativistic effects on the spectroscopic and electric properties of the LiCs molecule in its electronic ground state. In particular, we closely investigate the importance of excitations higher than coupled cluster doubles, spin-free and spin-dependent relativistic effects and the correlation of outer-core electrons on the equilibrium bond length, the harmonic vibrational frequency, the dissociation energy, the dipole moment and the static electric dipole polarizability. We demonstrate that our new implementation allows for highly accurate calculations not only in the bonding region but also along the complete potential curve. The quality of our results is demonstrated by a vibrational analysis where an almost complete set of vibrational levels has been calculated accurately.
Flexible Space-Filling Designs for Complex System Simulations
2013-06-01
interior of the experimental region and cannot fit higher-order models. We present a genetic algorithm that constructs space-filling designs with...Computer Experiments, Design of Experiments, Genetic Algorithm , Latin Hypercube, Response Surface Methodology, Nearly Orthogonal 15. NUMBER OF PAGES 147...experimental region and cannot fit higher-order models. We present a genetic algorithm that constructs space-filling designs with minimal correlations
ERIC Educational Resources Information Center
Khattab, Ali-Maher; And Others
1982-01-01
A causal modeling system, using confirmatory maximum likelihood factor analysis with the LISREL IV computer program, evaluated the construct validity underlying the higher order factor structure of a given correlation matrix of 46 structure-of-intellect tests emphasizing the product of transformations. (Author/PN)
Workers' perceptions of how jobs affect health: a social ecological perspective.
Ettner, S L; Grzywacz, J G
2001-04-01
A national sample of 2,048 workers was asked to rate the impact of their job on their physical and mental health. Ordered logistic regression analyses based on social ecology theory showed that the workers' responses were significantly correlated with objective and subjective features of their jobs, in addition to personality characteristics. Workers who had higher levels of perceived constraints and neuroticism, worked nights or overtime, or reported serious ongoing stress at work or higher job pressure reported more negative effects. Respondents who had a higher level of extraversion, were self-employed, or worked part time or reported greater decision latitude or use of skills on the job reported more positive effects. These findings suggest that malleable features of the work environment are associated with perceived effects of work on health, even after controlling for personality traits and other sources of reporting bias.
Problematic internet users' skin conductance and anxiety increase after exposure to the internet.
Romano, Michela; Roaro, Alessandra; Re, Federica; Osborne, Lisa A; Truzoli, Roberto; Reed, Phil
2017-12-01
To examine the impact of cessation of an internet session on skin conductance responses and anxiety of higher and lower problem internet users, in order to explore possible physiological withdrawal effects. Participants were measured in terms of their skin conductance before (15min), during (15min), and after (15min) an internet session, and completed self-report measures of state anxiety and problematic internet use. Higher, but not lower, problem users showed increased skin conductance after internet use was stopped, relative to before their internet session. Higher problem users' GSR scores increased, as the time from internet cessation became longer. Higher problem users also showed increased levels of anxiety, following their internet session, which correlated with their skin conductance scores. These results suggest that, following termination of an internet session, withdrawal-like effects are seen, both psychologically and physiologically. Copyright © 2017 Elsevier Ltd. All rights reserved.
Floquet prethermalization in the resonantly driven Hubbard model
NASA Astrophysics Data System (ADS)
Herrmann, Andreas; Murakami, Yuta; Eckstein, Martin; Werner, Philipp
2017-12-01
We demonstrate the existence of long-lived prethermalized states in the Mott insulating Hubbard model driven by periodic electric fields. These states, which also exist in the resonantly driven case with a large density of photo-induced doublons and holons, are characterized by a nonzero current and an effective temperature of the doublons and holons which depends sensitively on the driving condition. Focusing on the specific case of resonantly driven models whose effective time-independent Hamiltonian in the high-frequency driving limit corresponds to noninteracting fermions, we show that the time evolution of the double occupation can be reproduced by the effective Hamiltonian, and that the prethermalization plateaus at finite driving frequency are controlled by the next-to-leading-order correction in the high-frequency expansion of the effective Hamiltonian. We propose a numerical procedure to determine an effective Hubbard interaction that mimics the correlation effects induced by these higher-order terms.
ERIC Educational Resources Information Center
Chen, Chi Yuan; Wang, Shu-Yin; Yang, Yi-Fang
2017-01-01
The purpose of the study is to explore the influence of teaching evaluations on teachers in that they might try to please their students by giving higher grades in order to get higher teaching evaluation scores. To achieve this purpose, the study analyzed the correlations between teaching evaluation scores, student's final grades and course fail…
Study of photon correlation techniques for processing of laser velocimeter signals
NASA Technical Reports Server (NTRS)
Mayo, W. T., Jr.
1977-01-01
The objective was to provide the theory and a system design for a new type of photon counting processor for low level dual scatter laser velocimeter (LV) signals which would be capable of both the first order measurements of mean flow and turbulence intensity and also the second order time statistics: cross correlation auto correlation, and related spectra. A general Poisson process model for low level LV signals and noise which is valid from the photon-resolved regime all the way to the limiting case of nonstationary Gaussian noise was used. Computer simulation algorithms and higher order statistical moment analysis of Poisson processes were derived and applied to the analysis of photon correlation techniques. A system design using a unique dual correlate and subtract frequency discriminator technique is postulated and analyzed. Expectation analysis indicates that the objective measurements are feasible.
Pressure effects on the electronic properties in CeCoIn5: A first-principle study
NASA Astrophysics Data System (ADS)
Medeiros, Gustavo; Gonzalez, J. L.; Scopel, Wanderlã L.
2017-11-01
Superconducting heavy fermions are exotic materials with strong electronic correlations. The temperature-pressure phase diagrams of some of these materials show a complex interplay between superconductivity and magnetism that is essential to understand the physical properties of these systems. In this work, first principle calculations are performed in order to study the pressure effects on the electronic correlations in the CeCoIn5 system, which is superconducting at ambient pressure with Tc = 2.3 K. The density functional theory (DFT) method was used to include on-site coulomb repulsions (U) at the d (Co and In) and f (Ce) electrons of the CeCoIn5 compound. External applied pressures were simulated by correlating an applied pressure with a reduction of the volume of the unit cell, but keeping constant the c/a relation, as reported in experiments. Our findings reveal that the U parameters for all atomic species increase linearly with the pressure (P), being this effect higher for the f-electrons of the cerium ions, where dU / dP = 1.2 eV/GPa. In summary, these results not only suggest that the pressure effect can be correlated with an increase in the electronic correlations in the CeCoIn5 compound, as also, the work allows quantify this effect.
Higher-order spin-noise spectroscopy of atomic spins in fluctuating external fields
Li, Fuxiang; Crooker, S. A.; Sinitsyn, N. A.
2016-03-09
Here, we discuss the effect of external noisy magnetic fields on mesoscopic spin fluctuations that can be probed in semiconductors and atomic vapors by means of optical spin-noise spectroscopy. We also show that conventional arguments of the law of large numbers do not apply to spin correlations induced by external fields, namely, the magnitude of the 4th-order spin cumulant grows as ~N 2 with the number N of observed spins, i.e., it is not suppressed in comparison to the 2nd-order cumulant. Moreover, this allows us to design a simple experiment to measure the 4th-order cumulant of spin fluctuations in anmore » atomic system near thermodynamic equilibrium and develop a quantitative theory that explains all observations.« less
Bravermanová, Anna; Viktorinová, Michaela; Tylš, Filip; Novák, Tomáš; Androvičová, Renáta; Korčák, Jakub; Horáček, Jiří; Balíková, Marie; Griškova-Bulanova, Inga; Danielová, Dominika; Vlček, Přemysl; Mohr, Pavel; Brunovský, Martin; Koudelka, Vlastimil; Páleníček, Tomáš
2018-02-01
Disruption of auditory event-related evoked potentials (ERPs) P300 and mismatch negativity (MMN), electrophysiological markers of attentive and pre-attentive cognitive processing, is repeatedly described in psychosis and schizophrenia. Similar findings were observed in a glutamatergic model of psychosis, but the role of serotonergic 5-HT 2A receptors in information processing is less clear. We studied ERPs in a serotonergic model of psychosis, induced by psilocybin, a psychedelic with 5-HT 2A/C agonistic properties, in healthy volunteers. Twenty subjects (10M/10F) were given 0.26 mg/kg of psilocybin orally in a placebo-controlled, double-blind, cross-over design. ERPs (P300, MMN) were registered during the peak of intoxication. Correlations between measured electrophysiological variables and psilocin serum levels and neuropsychological effects were also analyzed. Psilocybin induced robust psychedelic effects and psychotic-like symptoms, decreased P300 amplitude (p = 0.009) but did not affect the MMN. Psilocybin's disruptive effect on P300 correlated with the intensity of the psychedelic state, which was dependent on the psilocin serum levels. We also observed a decrease in N100 amplitude (p = 0.039) in the P300 paradigm and a negative correlation between P300 and MMN amplitude (p = 0.014). Even though pre-attentive cognition (MMN) was not affected, processing at the early perceptual level (N100) and in higher-order cognition (P300) was significantly disrupted by psilocybin. Our results have implications for the role of 5-HT 2A receptors in altered information processing in psychosis and schizophrenia.
18F-FDG PET radiomics approaches: comparing and clustering features in cervical cancer.
Tsujikawa, Tetsuya; Rahman, Tasmiah; Yamamoto, Makoto; Yamada, Shizuka; Tsuyoshi, Hideaki; Kiyono, Yasushi; Kimura, Hirohiko; Yoshida, Yoshio; Okazawa, Hidehiko
2017-11-01
The aims of our study were to find the textural features on 18 F-FDG PET/CT which reflect the different histological architectures between cervical cancer subtypes and to make a visual assessment of the association between 18 F-FDG PET textural features in cervical cancer. Eighty-three cervical cancer patients [62 squamous cell carcinomas (SCCs) and 21 non-SCCs (NSCCs)] who had undergone pretreatment 18 F-FDG PET/CT were enrolled. A texture analysis was performed on PET/CT images, from which 18 PET radiomics features were extracted including first-order features such as standardized uptake value (SUV), metabolic tumor volume (MTV) and total lesion glycolysis (TLG), second- and high-order textural features using SUV histogram, normalized gray-level co-occurrence matrix (NGLCM), and neighborhood gray-tone difference matrix, respectively. These features were compared between SCC and NSCC using a Bonferroni adjusted P value threshold of 0.0028 (0.05/18). To assess the association between PET features, a heat map analysis with hierarchical clustering, one of the radiomics approaches, was performed. Among 18 PET features, correlation, a second-order textural feature derived from NGLCM, was a stable parameter and it was the only feature which showed a robust trend toward significant difference between SCC and NSCC. Cervical SCC showed a higher correlation (0.70 ± 0.07) than NSCC (0.64 ± 0.07, P = 0.0030). The other PET features did not show any significant differences between SCC and NSCC. A higher correlation in SCC might reflect higher structural integrity and stronger spatial/linear relationship of cancer cells compared with NSCC. A heat map with a PET feature dendrogram clearly showed 5 distinct clusters, where correlation belonged to a cluster including MTV and TLG. However, the association between correlation and MTV/TLG was not strong. Correlation was a relatively independent PET feature in cervical cancer. 18 F-FDG PET textural features might reflect the differences in histological architecture between cervical cancer subtypes. PET radiomics approaches reveal the association between PET features and will be useful for finding a single feature or a combination of features leading to precise diagnoses, potential prognostic models, and effective therapeutic strategies.
Mercury anomaly, Deccan volcanism and the end-Cretaceous mass extinction
NASA Astrophysics Data System (ADS)
Font, Eric; Adatte, Thierry; Nobrega Sial, Alcides; Drude de Lacerda, Luiz; Keller, Gerta; Punekar, Jahnavi
2016-04-01
The contribution of the Deccan Traps volcanism in the Cretaceous-Palaeogene (KPg) crisis is still a matter of debate. Particularly, the global geochemical effects of Deccan volcanism in the marine sedimentary record are still poorly resolved. Here, we investigate the mercury (Hg) content of the Bidart (France) section, where an interval of low magnetic susceptibility (MS) located just below the KPg boundary was hypothesized to result from paleoenvironmental perturbations linked to paroxysmal Deccan phase-2. Results show mercury concentrations over two orders of magnitude higher from ~80 cm below up to ~50 cm above the KPg boundary (max. 46.6 ppb) and coincident with the low MS interval. Increase in Hg contents shows no correlation with clay or total organic carbon contents, suggesting that the mercury anomalies resulted from higher input of atmospheric Hg species into the marine realm, rather than organic matter scavenging and/or increased run-off. The Hg anomalies correlate with high shell fragmentation and dissolution effects in planktic foraminifera suggesting correlative changes in marine biodiversity. This discovery represents an unprecedented piece of evidence of the nature and importance of the Deccan-related environmental changes at the onset of the KPg mass extinction. Funded by IDL (FCT UID/GEO/50019/2013)
Kandala, Sridhar; Petersen, Steven E.; Povinelli, Daniel J.
2015-01-01
Understanding the underpinnings of social responsiveness and theory of mind (ToM) will enhance our knowledge of autism spectrum disorder (ASD). We hypothesize that higher-order relational reasoning (higher-order RR: reasoning necessitating integration of relationships among multiple variables) is necessary but not sufficient for ToM, and that social responsiveness varies independently of higher-order RR. A pilot experiment tested these hypotheses in n = 17 children, 3–14, with and without ASD. No child failing 2nd-order RR passed a false belief ToM test. Contrary to prediction, Social Responsiveness Scale scores did correlate with 2nd-order RR performance, likely due to sample characteristics. It is feasible to translate this comparative cognition-inspired line of inquiry for full-scale studies of ToM, higher-order RR, and social responsiveness in ASD. PMID:25630898
Pruett, John R; Kandala, Sridhar; Petersen, Steven E; Povinelli, Daniel J
2015-07-01
Understanding the underpinnings of social responsiveness and theory of mind (ToM) will enhance our knowledge of autism spectrum disorder (ASD). We hypothesize that higher-order relational reasoning (higher-order RR: reasoning necessitating integration of relationships among multiple variables) is necessary but not sufficient for ToM, and that social responsiveness varies independently of higher-order RR. A pilot experiment tested these hypotheses in n = 17 children, 3-14, with and without ASD. No child failing 2nd-order RR passed a false belief ToM test. Contrary to prediction, Social Responsiveness Scale scores did correlate with 2nd-order RR performance, likely due to sample characteristics. It is feasible to translate this comparative cognition-inspired line of inquiry for full-scale studies of ToM, higher-order RR, and social responsiveness in ASD.
Boosted one dimensional fermionic superfluids on a lattice
NASA Astrophysics Data System (ADS)
Ray, Sayonee; Mukerjee, Subroto; Shenoy, Vijay B.
2017-09-01
We study the effect of a boost (Fermi sea displaced by a finite momentum) on one dimensional systems of lattice fermions with short-ranged interactions. In the absence of a boost such systems with attractive interactions possess algebraic superconducting order. Motivated by physics in higher dimensions, one might naively expect a boost to weaken and ultimately destroy superconductivity. However, we show that for one dimensional systems the effect of the boost can be to strengthen the algebraic superconducting order by making correlation functions fall off more slowly with distance. This phenomenon can manifest in interesting ways, for example, a boost can produce a Luther-Emery phase in a system with both charge and spin gaps by engendering the destruction of the former.
The Issue of Power in the Identification of "g" with Lower-Order Factors
ERIC Educational Resources Information Center
Matzke, Dora; Dolan, Conor V.; Molenaar, Dylan
2010-01-01
In higher order factor models, general intelligence (g) is often found to correlate perfectly with lower-order common factors, suggesting that g and some well-defined cognitive ability, such as working memory, may be identical. However, the results of studies that addressed the equivalence of g and lower-order factors are inconsistent. We suggest…
NASA Astrophysics Data System (ADS)
Rose, F.; Dupuis, N.
2018-05-01
We present an approximation scheme of the nonperturbative renormalization group that preserves the momentum dependence of correlation functions. This approximation scheme can be seen as a simple improvement of the local potential approximation (LPA) where the derivative terms in the effective action are promoted to arbitrary momentum-dependent functions. As in the LPA, the only field dependence comes from the effective potential, which allows us to solve the renormalization-group equations at a relatively modest numerical cost (as compared, e.g., to the Blaizot-Mendéz-Galain-Wschebor approximation scheme). As an application we consider the two-dimensional quantum O(N ) model at zero temperature. We discuss not only the two-point correlation function but also higher-order correlation functions such as the scalar susceptibility (which allows for an investigation of the "Higgs" amplitude mode) and the conductivity. In particular, we show how, using Padé approximants to perform the analytic continuation i ωn→ω +i 0+ of imaginary frequency correlation functions χ (i ωn) computed numerically from the renormalization-group equations, one can obtain spectral functions in the real-frequency domain.
NASA Astrophysics Data System (ADS)
Haendel, A.; Ohrnberger, M.; Krüger, F.
2016-11-01
Knowledge of the quality factor of near-surface materials is of fundamental interest in various applications. Attenuation can be very strong close to the surface and thus needs to be properly assessed. In recent years, several researchers have studied the retrieval of attenuation coefficients from the cross correlation of ambient seismic noise. Yet, the determination of exact amplitude information from noise-correlation functions is, in contrast to the extraction of traveltimes, not trivial. Most of the studies estimated attenuation coefficients on the regional scale and within the microseism band. In this paper, we investigate the possibility to derive attenuation coefficients from seismic noise at much shallower depths and higher frequencies (>1 Hz). The Euroseistest area in northern Greece offers ideal conditions to study quality factor retrieval from ambient noise for different rock types. Correlations are computed between the stations of a small scale array experiment (station spacings <2 km) that was carried out in the Euroseistest area in 2011. We employ the correlation of the coda of the correlation (C3) method instead of simple cross correlations to mitigate the effect of uneven noise source distributions on the correlation amplitude. Transient removal and temporal flattening are applied instead of 1-bit normalization in order to retain relative amplitudes. The C3 method leads to improved correlation results (higher signal-to-noise ratio and improved time symmetry) compared to simple cross correlations. The C3 functions are rotated from the ZNE to the ZRT system and we focus on Love wave arrivals on the transverse component and on Love wave quality factors QL. The analysis is performed for selected stations being either situated on soft soil or on weathered rock. Phase slowness is extracted using a slant-stack method. Attenuation parameters are inferred by inspecting the relative amplitude decay of Love waves with increasing interstation distance. We observe that the attenuation coefficient γ and QL can be reliably extracted for stations situated on soft soil whereas the derivation of attenuation parameters is more problematic for stations that are located on weathered rock. The results are in acceptable conformance with theoretical Love wave attenuation curves that were computed using 1-D shear wave velocity and quality factor profiles from the Euroseistest area.
NASA Astrophysics Data System (ADS)
Jin, Ye; Yang, Yang; Zhang, Du; Peng, Degao; Yang, Weitao
2017-10-01
The optimized effective potential (OEP) that gives accurate Kohn-Sham (KS) orbitals and orbital energies can be obtained from a given reference electron density. These OEP-KS orbitals and orbital energies are used here for calculating electronic excited states with the particle-particle random phase approximation (pp-RPA). Our calculations allow the examination of pp-RPA excitation energies with the exact KS density functional theory (DFT). Various input densities are investigated. Specifically, the excitation energies using the OEP with the electron densities from the coupled-cluster singles and doubles method display the lowest mean absolute error from the reference data for the low-lying excited states. This study probes into the theoretical limit of the pp-RPA excitation energies with the exact KS-DFT orbitals and orbital energies. We believe that higher-order correlation contributions beyond the pp-RPA bare Coulomb kernel are needed in order to achieve even higher accuracy in excitation energy calculations.
Mala-Maung; Abdullah, Azman; Abas, Zoraini W
2011-12-01
This cross-sectional study determined the appreciation of the learning environment and development of higher-order learning skills among students attending the Medical Curriculum at the International Medical University, Malaysia which provides traditional and e-learning resources with an emphasis on problem based learning (PBL) and self-directed learning. Of the 708 participants, the majority preferred traditional to e-resources. Students who highly appreciated PBL demonstrated a higher appreciation of e-resources. Appreciation of PBL is positively and significantly correlated with higher-order learning skills, reflecting the inculcation of self-directed learning traits. Implementers must be sensitive to the progress of learners adapting to the higher education environment and innovations, and to address limitations as relevant.
NASA Astrophysics Data System (ADS)
Gukelberger, Jan; Kozik, Evgeny; Hafermann, Hartmut
2017-07-01
The dual fermion approach provides a formally exact prescription for calculating properties of a correlated electron system in terms of a diagrammatic expansion around dynamical mean-field theory (DMFT). Most practical implementations, however, neglect higher-order interaction vertices beyond two-particle scattering in the dual effective action and further truncate the diagrammatic expansion in the two-particle scattering vertex to a leading-order or ladder-type approximation. In this work, we compute the dual fermion expansion for the two-dimensional Hubbard model including all diagram topologies with two-particle interactions to high orders by means of a stochastic diagrammatic Monte Carlo algorithm. We benchmark the obtained self-energy against numerically exact diagrammatic determinant Monte Carlo simulations to systematically assess convergence of the dual fermion series and the validity of these approximations. We observe that, from high temperatures down to the vicinity of the DMFT Néel transition, the dual fermion series converges very quickly to the exact solution in the whole range of Hubbard interactions considered (4 ≤U /t ≤12 ), implying that contributions from higher-order vertices are small. As the temperature is lowered further, we observe slower series convergence, convergence to incorrect solutions, and ultimately divergence. This happens in a regime where magnetic correlations become significant. We find, however, that the self-consistent particle-hole ladder approximation yields reasonable and often even highly accurate results in this regime.
Control order and visuomotor strategy development for joystick-steered underground shuttle cars.
Cloete, Steven; Zupanc, Christine; Burgess-Limerick, Robin; Wallis, Guy
2014-09-01
In this simulator-based study, we aimed to quantify performance differences between joystick steering systems using first-order and second-order control, which are used in underground coal mining shuttle cars. In addition, we conducted an exploratory analysis of how users of the more difficult, second-order system changed their behavior over time. Evidence from the visuomotor control literature suggests that higher-order control devices are not intuitive, which could pose a significant risk to underground mine personnel, equipment, and infrastructure. Thirty-six naive participants were randomly assigned to first- and second-order conditions and completed three experimental trials comprising sequences of 90 degrees turns in a virtual underground mine environment, with velocity held constant at 9 km/h(-1). Performance measures were lateral deviation, steering angle variability, high-frequency steering content, joystick activity, and cumulative time in collision with the virtual mine wall. The second-order control group exhibited significantly poorer performance for all outcome measures. In addition, a series of correlation analyses revealed that changes in strategy were evident in the second-order group but not the first-order group. Results were consistent with previous literature indicating poorer performance with higher-order control devices and caution against the adoption of the second-order joystick system for underground shuttle cars. Low-cost, portable simulation platforms may provide an effective basis for operator training and recruitment.
NASA Astrophysics Data System (ADS)
Piretzidis, D.; Sra, G.; Sideris, M. G.
2016-12-01
This study explores new methods for identifying correlation errors in harmonic coefficients derived from monthly solutions of the Gravity Recovery and Climate Experiment (GRACE) satellite mission using pattern recognition and neural network algorithms. These correlation errors are evidenced in the differences between monthly solutions and can be suppressed using a de-correlation filter. In all studies so far, the implementation of the de-correlation filter starts from a specific minimum order (i.e., 11 for RL04 and 38 for RL05) until the maximum order of the monthly solution examined. This implementation method has two disadvantages, namely, the omission of filtering correlated coefficients of order less than the minimum order and the filtering of uncorrelated coefficients of order higher than the minimum order. In the first case, the filtered solution is not completely free of correlated errors, whereas the second case results in a monthly solution that suffers from loss of geophysical signal. In the present study, a new method of implementing the de-correlation filter is suggested, by identifying and filtering only the coefficients that show indications of high correlation. Several numerical and geometric properties of the harmonic coefficient series of all orders are examined. Extreme cases of both correlated and uncorrelated coefficients are selected, and their corresponding properties are used to train a two-layer feed-forward neural network. The objective of the neural network is to identify and quantify the correlation by providing the probability of an order of coefficients to be correlated. Results show good performance of the neural network, both in the validation stage of the training procedure and in the subsequent use of the trained network to classify independent coefficients. The neural network is also capable of identifying correlated coefficients even when a small number of training samples and neurons are used (e.g.,100 and 10, respectively).
Convergence behavior of the random phase approximation renormalized correlation energy
NASA Astrophysics Data System (ADS)
Bates, Jefferson E.; Sensenig, Jonathon; Ruzsinszky, Adrienn
2017-05-01
Based on the random phase approximation (RPA), RPA renormalization [J. E. Bates and F. Furche, J. Chem. Phys. 139, 171103 (2013), 10.1063/1.4827254] is a robust many-body perturbation theory that works for molecules and materials because it does not diverge as the Kohn-Sham gap approaches zero. Additionally, RPA renormalization enables the simultaneous calculation of RPA and beyond-RPA correlation energies since the total correlation energy is the sum of a series of independent contributions. The first-order approximation (RPAr1) yields the dominant beyond-RPA contribution to the correlation energy for a given exchange-correlation kernel, but systematically underestimates the total beyond-RPA correction. For both the homogeneous electron gas model and real systems, we demonstrate numerically that RPA renormalization beyond first order converges monotonically to the infinite-order beyond-RPA correlation energy for several model exchange-correlation kernels and that the rate of convergence is principally determined by the choice of the kernel and spin polarization of the ground state. The monotonic convergence is rationalized from an analysis of the RPA renormalized correlation energy corrections, assuming the exchange-correlation kernel and response functions satisfy some reasonable conditions. For spin-unpolarized atoms, molecules, and bulk solids, we find that RPA renormalization is typically converged to 1 meV error or less by fourth order regardless of the band gap or dimensionality. Most spin-polarized systems converge at a slightly slower rate, with errors on the order of 10 meV at fourth order and typically requiring up to sixth order to reach 1 meV error or less. Slowest to converge, however, open-shell atoms present the most challenging case and require many higher orders to converge.
Four-Photon Imaging with Thermal Light
NASA Astrophysics Data System (ADS)
Wen, Feng; Xue, Xinxin; Zhang, Xun; Yuan, Chenzhi; Sun, Jia; Song, Jianping; Zhang, Yanpeng
2014-10-01
In a near-field four-photon correlation measurement, ghost imaging with classical incoherent light is investigated. By applying the Klyshko advanced-wave picture, we consider the properties of four-photon spatial correlation and find that the fourth-order spatial correlation function can be decomposed into multiple lower-order correlation functions. On the basis of the spatial correlation properties, a proof-of-principle four-photon ghost imaging is proposed, and the effect of each part in a fourth-order correlation function on imaging is also analyzed. In addition, the similarities and differences among ghost imaging by fourth-, second-, and third-order correlations are also discussed. It is shown that the contrast and visibility of fourth-order correlated imaging are improved significantly, while the resolution is unchanged. Such studies can be very useful in better understanding multi photon interference and multi-channel correlation imaging.
NASA Astrophysics Data System (ADS)
Lumpkin, A. H.; Thurman-Keup, R.; Edstrom, D.; Ruan, J.; Eddy, N.; Prieto, P.; Napoly, O.; Carlsten, B. E.; Bishofberger, K.
2018-06-01
We report the direct observations of submacropulse beam centroid oscillations correlated with higher order modes (HOMs) which were generated by off-axis electron beam steering in TESLA-type superconducting rf cavities. The experiments were performed at the Fermilab Accelerator Science and Technology (FAST) facility using its unique configuration of a photocathode rf gun injecting beam into two separated nine-cell cavities in series with corrector magnets and beam position monitors (BPMs) located before, between, and after them. Oscillations of ˜100 kHz in the vertical plane and ˜380 kHz in the horizontal plane with up to 600 -μ m amplitudes were observed in a 3-MHz micropulse repetition rate beam with charges of 100, 300, 500, and 1000 pC /b . However, the effects were much reduced at 100 pC /b . The measurements were based on HOM detector circuitry targeting the first and second dipole passbands, rf BPM bunch-by-bunch array data, imaging cameras, and a framing camera. Calculations reproduced the oscillation frequencies of the phenomena in the vertical case. In principle, these fundamental results may be scaled to cryomodule configurations of major accelerator facilities.
Lumpkin, A. H.; Thurman-Keup, R.; Edstrom, D.; ...
2018-06-04
Here, we report the direct observations of submacropulse beam centroid oscillations correlated with higher order modes (HOMs) which were generated by off-axis electron beam steering in TESLA-type superconducting rf cavities. The experiments were performed at the Fermilab Accelerator Science and Technology (FAST) facility using its unique configuration of a photocathode rf gun injecting beam into two separated nine-cell cavities in series with corrector magnets and beam position monitors (BPMs) located before, between, and after them. Oscillations of ~100 kHz in the vertical plane and ~380 kHz in the horizontal plane with up to 600-μm amplitudes were observed in a 3-MHzmore » micropulse repetition rate beam with charges of 100, 300, 500, and 1000 pC/b. However, the effects were much reduced at 100 pC/b. The measurements were based on HOM detector circuitry targeting the first and second dipole passbands, rf BPM bunch-by-bunch array data, imaging cameras, and a framing camera. Calculations reproduced the oscillation frequencies of the phenomena in the vertical case. In principle, these fundamental results may be scaled to cryomodule configurations of major accelerator facilities.« less
ERIC Educational Resources Information Center
Eisenman, Gordon; Payne, Beverly D.
1997-01-01
Contrasted effects of Higher Order Thinking Skills (HOTS) program to those of Chapter 1 programs on fourth and fifth graders' reading achievement, self-concept, and higher-order thinking skills. Found that HOTS is more effective in raising self-concept and some higher-order thinking skills in fifth grade and after two years of treatment, with…
Arbogast, Luke W; Delaglio, Frank; Schiel, John E; Marino, John P
2017-11-07
Two-dimensional (2D) 1 H- 13 C methyl NMR provides a powerful tool to probe the higher order structure (HOS) of monoclonal antibodies (mAbs), since spectra can readily be acquired on intact mAbs at natural isotopic abundance, and small changes in chemical environment and structure give rise to observable changes in corresponding spectra, which can be interpreted at atomic resolution. This makes it possible to apply 2D NMR spectral fingerprinting approaches directly to drug products in order to systematically characterize structure and excipient effects. Systematic collections of NMR spectra are often analyzed in terms of the changes in specifically identified peak positions, as well as changes in peak height and line widths. A complementary approach is to apply principal component analysis (PCA) directly to the matrix of spectral data, correlating spectra according to similarities and differences in their overall shapes, rather than according to parameters of individually identified peaks. This is particularly well-suited for spectra of mAbs, where some of the individual peaks might not be well resolved. Here we demonstrate the performance of the PCA method for discriminating structural variation among systematic sets of 2D NMR fingerprint spectra using the NISTmAb and illustrate how spectral variability identified by PCA may be correlated to structure.
Socioeconomic disadvantage and schizophrenia in migrants under mental health detention orders.
Bulla, Jan; Hoffmann, Klaus; Querengässer, Jan; Ross, Thomas
2017-09-01
Migrants with mental hospital orders according to section 63 of the German criminal code are overrepresented in relation to their numbers in the general population. Subgroups originating from certain world regions are diagnosed with schizophrenia at a much higher rate than others. In the present literature, there is a strong evidence for a substantial correlation between migration, social disadvantage and the prevalence of schizophrenia. This study investigates the relationship between countries of origin, the risk of becoming a forensic patient and the proportion of schizophrenia spectrum disorders. Data from a comprehensive evaluation tool of forensic inpatients in the German federal state of Baden-Württemberg (FoDoBa) were compared with population statistics and correlated with the Human Development Index (HDI) and Multidimensional Poverty Index (MPI). For residents with migration background, the risk ratio to receive a mental hospital order is 1.3 in comparison to non-migrants. There was a highly significant correlation between the HDI of the country of origin and the risk ratio for detention in a forensic psychiatric hospital. The proportion of schizophrenia diagnoses also correlated significantly with the HDI. In contrast, the MPI country rankings were not associated with schizophrenia diagnoses. Two lines of explanations are discussed: first, higher prevalence of schizophrenia in migrants originating from low-income countries, and second, a specific bias in court rulings with regard to involuntary forensic treatment orders for these migrant groups.
A Hierarchical Causal Taxonomy of Psychopathology across the Life Span
Lahey, Benjamin B.; Krueger, Robert F.; Rathouz, Paul J.; Waldman, Irwin D.; Zald, David H.
2016-01-01
We propose a taxonomy of psychopathology based on patterns of shared causal influences identified in a review of multivariate behavior genetic studies that distinguish genetic and environmental influences that are either common to multiple dimensions of psychopathology or unique to each dimension. At the phenotypic level, first-order dimensions are defined by correlations among symptoms; correlations among first-order dimensions similarly define higher-order domains (e.g., internalizing or externalizing psychopathology). We hypothesize that the robust phenotypic correlations among first-order dimensions reflect a hierarchy of increasingly specific etiologic influences. Some nonspecific etiologic factors increase risk for all first-order dimensions of psychopathology to varying degrees through a general factor of psychopathology. Other nonspecific etiologic factors increase risk only for all first-order dimensions within a more specific higher-order domain. Furthermore, each first-order dimension has its own unique causal influences. Genetic and environmental influences common to family members tend to be nonspecific, whereas environmental influences unique to each individual are more dimension-specific. We posit that these causal influences on psychopathology are moderated by sex and developmental processes. This causal taxonomy also provides a novel framework for understanding the heterogeneity of each first-order dimension: Different persons exhibiting similar symptoms may be influenced by different combinations of etiologic influences from each of the three levels of the etiologic hierarchy. Furthermore, we relate the proposed causal taxonomy to transdimensional psychobiological processes, which also impact the heterogeneity of each psychopathology dimension. This causal taxonomy implies the need for changes in strategies for studying the etiology, psychobiology, prevention, and treatment of psychopathology. PMID:28004947
Soylu, Firat; Newman, Sharlene D
2016-02-01
Fingers are used as canonical representations for numbers across cultures. In previous imaging studies, it was shown that arithmetic processing activates neural resources that are known to participate in finger movements. Additionally, in one dual-task study, it was shown that anatomically ordered finger tapping disrupts addition and subtraction more than multiplication, possibly due to a long-lasting effect of early finger counting experiences on the neural correlates and organization of addition and subtraction processes. How arithmetic task difficulty and tapping complexity affect the concurrent performance is still unclear. If early finger counting experiences have bearing on the neural correlates of arithmetic in adults, then one would expect anatomically and non-anatomically ordered tapping to have different interference effects, given that finger counting is usually anatomically ordered. To unravel these issues, we studied how (1) arithmetic task difficulty and (2) the complexity of the finger tapping sequence (anatomical vs. non-anatomical ordering) affect concurrent performance and use of key neural circuits using a mixed block/event-related dual-task fMRI design with adult participants. The results suggest that complexity of the tapping sequence modulates interference on addition, and that one-digit addition (fact retrieval), compared to two-digit addition (calculation), is more affected from anatomically ordered tapping. The region-of-interest analysis showed higher left angular gyrus BOLD response for one-digit compared to two-digit addition, and in no-tapping conditions than dual tapping conditions. The results support a specific association between addition fact retrieval and anatomically ordered finger movements in adults, possibly due to finger counting strategies that deploy anatomically ordered finger movements early in the development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evarts, Eric R.; Rippard, William H.; Pufall, Matthew R.
In a small fraction of magnetic-tunnel-junction-based magnetic random-access memory devices with in-plane free layers, the write-error rates (WERs) are higher than expected on the basis of the macrospin or quasi-uniform magnetization reversal models. In devices with increased WERs, the product of effective resistance and area, tunneling magnetoresistance, and coercivity do not deviate from typical device properties. However, the field-swept, spin-torque, ferromagnetic resonance (FS-ST-FMR) spectra with an applied DC bias current deviate significantly for such devices. With a DC bias of 300 mV (producing 9.9 × 10{sup 6} A/cm{sup 2}) or greater, these anomalous devices show an increase in the fraction of the power presentmore » in FS-ST-FMR modes corresponding to higher-order excitations of the free-layer magnetization. As much as 70% of the power is contained in higher-order modes compared to ≈20% in typical devices. Additionally, a shift in the uniform-mode resonant field that is correlated with the magnitude of the WER anomaly is detected at DC biases greater than 300 mV. These differences in the anomalous devices indicate a change in the micromagnetic resonant mode structure at high applied bias.« less
NASA Astrophysics Data System (ADS)
Karpishkov, A. V.; Nefedov, M. A.; Saleev, V. A.
2017-11-01
We calculate the angular distribution spectra between beauty (B ) and antibeauty (B ¯) mesons in proton-proton collisions in the leading order approximation of the parton Reggeization approach consistently merged with the next-to-leading order corrections from the emission of an additional hard gluon. To describe b-quark hadronization we use the universal scale-dependent parton-to-meson fragmentation functions extracted from the world e+e- annihilation data. We have obtained good agreement between our predictions and data from the CMS Collaboration at the energy √{S }=7 TeV for B B ¯ angular correlations within uncertainties and without free parameters. Predictions for analogous correlation observables at √{S }=13 TeV are provided.
Effective equilibrium picture in the x y model with exponentially correlated noise
NASA Astrophysics Data System (ADS)
Paoluzzi, Matteo; Marconi, Umberto Marini Bettolo; Maggi, Claudio
2018-02-01
We study the effect of exponentially correlated noise on the x y model in the limit of small correlation time, discussing the order-disorder transition in the mean field and the topological transition in two dimensions. We map the steady states of the nonequilibrium dynamics into an effective equilibrium theory. In the mean field, the critical temperature increases with the noise correlation time τ , indicating that memory effects promote ordering. This finding is confirmed by numerical simulations. The topological transition temperature in two dimensions remains untouched. However, finite-size effects induce a crossover in the vortices proliferation that is confirmed by numerical simulations.
Effective equilibrium picture in the xy model with exponentially correlated noise.
Paoluzzi, Matteo; Marconi, Umberto Marini Bettolo; Maggi, Claudio
2018-02-01
We study the effect of exponentially correlated noise on the xy model in the limit of small correlation time, discussing the order-disorder transition in the mean field and the topological transition in two dimensions. We map the steady states of the nonequilibrium dynamics into an effective equilibrium theory. In the mean field, the critical temperature increases with the noise correlation time τ, indicating that memory effects promote ordering. This finding is confirmed by numerical simulations. The topological transition temperature in two dimensions remains untouched. However, finite-size effects induce a crossover in the vortices proliferation that is confirmed by numerical simulations.
Mode analysis of higher-order transverse-mode correlation beams in a turbulent atmosphere.
Avetisyan, H; Monken, C H
2017-01-01
Due to the transfer of the angular spectrum of the pump beam to the two-photon state in spontaneous parametric downconversion, the generated twin photons are entangled in their spatial degrees of freedom. This spatial entanglement can be observed through correlation measurements in any set of modes in which one may choose to perform measurements. Choosing, e.g., a Hermite-Gaussian (HG) set of spatial modes as a basis, one can observe correlations present in their spatial degrees of freedom. In addition, these modes can be used as alphabets for quantum communication. For global quantum communication purposes, we derive an analytic expression for two-photon detection probability in terms of HG modes, taking into account the effects of the turbulent atmosphere. Our result is more general as it accounts for the propagation of both signal and idler photons through the atmosphere, as opposed to other works considering one photon's propagation in vacuum. We show that while the restrictions on both the parity and order of the downconverted HG fields no longer hold, due to the crosstalk between modes when propagating in the atmosphere, the crosstalk is not uniform: there are more robust modes that tend to keep the photons in them. These modes can be employed in order to increase the fidelity of quantum communication.
NASA Astrophysics Data System (ADS)
Zheng, R. K.; Zhu, C. F.; Xie, J. Q.; Li, X. G.
2001-01-01
Ultrasonic sound velocity and attenuation have been measured in polycrystalline manganese oxide La1-xCaxMnO3 (x=0.5,0.83,1.0) at a frequency of 10 MHz. For x=0.5, on cooling down from high temperature, a slight softening of the sound velocity above the charge ordering transition temperature TCO and dramatic stiffening below TCO coincided with big attenuation peaks for both longitudinal and transverse waves were observed. It was found that these ultrasonic anomalies near TCO are correlated with the fine structure (i.e., the lattice parameters) change caused by the Jahn-Teller effect. For x=0.83, the sound velocity starts to soften dramatically with decreasing temperature from higher temperature to TS (180 K), and stiffens dramatically below TS. The large softening and stiffening of the sound velocity accompanied by a big attenuation peak are strongly correlated with a cubic-to-tetragonal structural phase transition at TS, which is confirmed by the low-temperature powder x-ray diffraction measurements. It is suggested that this structural phase transition be due to the Jahn-Teller distortion of the Mn3+O6 octahedra and related to the charge ordering transition. For CaMnO3, the anomaly in sound velocity is small.
Yang, M. H.; Li, J. H.; Liu, B. X.
2016-01-01
Based on the newly constructed n-body potential of Ni-Ti-Mo system, Molecular Dynamics and Monte Carlo simulations predict an energetically favored glass formation region and an optimal composition sub-region with the highest glass-forming ability. In order to compare the producing techniques between liquid melt quenching (LMQ) and solid-state amorphization (SSA), inherent hierarchical structure and its effect on mechanical property were clarified via atomistic simulations. It is revealed that both producing techniques exhibit no pronounced differences in the local atomic structure and mechanical behavior, while the LMQ method makes a relatively more ordered structure and a higher intrinsic strength. Meanwhile, it is found that the dominant short-order clusters of Ni-Ti-Mo metallic glasses obtained by LMQ and SSA are similar. By analyzing the structural evolution upon uniaxial tensile deformation, it is concluded that the gradual collapse of the spatial structure network is intimately correlated to the mechanical response of metallic glasses and acts as a structural signature of the initiation and propagation of shear bands. PMID:27418115
NASA Astrophysics Data System (ADS)
Wan, Xiaoqing; Zhao, Chunhui; Wang, Yanchun; Liu, Wu
2017-11-01
This paper proposes a novel classification paradigm for hyperspectral image (HSI) using feature-level fusion and deep learning-based methodologies. Operation is carried out in three main steps. First, during a pre-processing stage, wave atoms are introduced into bilateral filter to smooth HSI, and this strategy can effectively attenuate noise and restore texture information. Meanwhile, high quality spectral-spatial features can be extracted from HSI by taking geometric closeness and photometric similarity among pixels into consideration simultaneously. Second, higher order statistics techniques are firstly introduced into hyperspectral data classification to characterize the phase correlations of spectral curves. Third, multifractal spectrum features are extracted to characterize the singularities and self-similarities of spectra shapes. To this end, a feature-level fusion is applied to the extracted spectral-spatial features along with higher order statistics and multifractal spectrum features. Finally, stacked sparse autoencoder is utilized to learn more abstract and invariant high-level features from the multiple feature sets, and then random forest classifier is employed to perform supervised fine-tuning and classification. Experimental results on two real hyperspectral data sets demonstrate that the proposed method outperforms some traditional alternatives.
Roberts, M J; Gale, T C E; Sice, P J A; Anderson, I R
2013-06-01
Selection to specialty training is a high-stakes assessment demanding valuable consultant time. In one initial entry level and two higher level anaesthesia selection centres, we investigated the feasibility of using staff participating in simulation scenarios, rather than observing consultants, to rate candidate performance. We compared participant and observer scores using four different outcomes: inter-rater reliability; score distributions; correlation of candidate rankings; and percentage of candidates whose selection might be affected by substituting participants' for observers' ratings. Inter-rater reliability between observers was good (correlation coefficient 0.73-0.96) but lower between participants (correlation coefficient 0.39-0.92), particularly at higher level where participants also rated candidates more favourably than did observers. Station rank orderings were strongly correlated between the rater groups at entry level (rho 0.81, p < 0.001) but weaker at the two higher level centres (rho 0.52, p = 0.018; rho 0.58, p = 0.001). Substituting participants' for observers' ratings had less effect once scores were combined with those from other selection centre stations. Selection decisions for 0-20% of candidates could have changed, depending on the numbers of training posts available. We conclude that using participating raters is feasible at initial entry level only. Anaesthesia © 2013 The Association of Anaesthetists of Great Britain and Ireland.
Quantum gases. Observation of many-body dynamics in long-range tunneling after a quantum quench.
Meinert, Florian; Mark, Manfred J; Kirilov, Emil; Lauber, Katharina; Weinmann, Philipp; Gröbner, Michael; Daley, Andrew J; Nägerl, Hanns-Christoph
2014-06-13
Quantum tunneling is at the heart of many low-temperature phenomena. In strongly correlated lattice systems, tunneling is responsible for inducing effective interactions, and long-range tunneling substantially alters many-body properties in and out of equilibrium. We observe resonantly enhanced long-range quantum tunneling in one-dimensional Mott-insulating Hubbard chains that are suddenly quenched into a tilted configuration. Higher-order tunneling processes over up to five lattice sites are observed as resonances in the number of doubly occupied sites when the tilt per site is tuned to integer fractions of the Mott gap. This forms a basis for a controlled study of many-body dynamics driven by higher-order tunneling and demonstrates that when some degrees of freedom are frozen out, phenomena that are driven by small-amplitude tunneling terms can still be observed. Copyright © 2014, American Association for the Advancement of Science.
Elliptic and triangular flow in p-Pb and peripheral Pb-Pb collisions from parton scatterings
Bzdak, Adam; Ma, Guo-Liang
2014-12-15
Using a multiphase transport model (AMPT) we calculate the elliptic v₂ and triangular v₃ Fourier coefficients of the two-particle azimuthal correlation function in proton-nucleus (p-Pb) and peripheral nucleus-nucleus (Pb-Pb) collisions. Our results for v₃ are in a good agreement with the CMS data collected at the Large Hadron Collider. The v₂ coefficient is very well described in p-Pb collisions and is underestimated for higher transverse momenta in Pb-Pb interactions. The characteristic mass ordering of v₂ in p-Pb is reproduced, whereas for v₃, this effect is not observed. We further predict the pseudorapidity dependence of v₂ and v₃ in p-Pb andmore » observe that both are increasing when going from a proton side to a Pb-nucleus side. Predictions for the higher-order Fourier coefficients, v₄ and v₅, in p-Pb are also presented.« less
Substance-dependence rehab treatment in Thailand: a meta analysis.
Verachai, Viroj; Kittipichai, Wirin; Konghom, Suwapat; Lukanapichonchut, Lumsum; Sinlapasacran, Narong; Kimsongneun, Nipa; Rergarun, Prachern; Doungnimit, Amawasee
2009-12-01
To synthesize the substance-dependence researches focusing on rehab treatment phase. Several criteria were used to select studies for meta analysis. Firstly, the research must have focused on the rehab period on the substance-dependence treatment, secondly, only quantitative researches that used statistics to calculate effect sizes were selected, and thirdly, all researches were from Thai libraries and were done during 1997-2006. The instrument used for data collection was comprised of two sets. The first used to collect the general information of studies including the crucial statistics and test statistics. The second was used to assess the quality of studies. Results from synthesizing 32 separate studies found that 323 effect sizes were computed in terms of the correlation coefficient "r". The psychology approach rehab program was higher in effect size than the network approach (p < 0.05). Additionally, Quasi-experimental studies were higher in effect size than correlation studies (p < 0.05). Among the quasi-experimental studies it was found that TCs revealed the highest effect size (r = 0.76). Among the correlation studies, it was found that the motivation program revealed the highest effect size (r = 0.84). The substance-use rehab treatment programs in Thailand which revealed the high effect size should be adjusted to the current program. However, the narcotic studies which focus on the rehab phase should be synthesized every 5-10 years in order to integrate new concept into the development of future the substance-dependence rehab treatment program, especially those at the research unit of the Drug Dependence Treatment Institute/Centers in Thailand.
Waldman, Irwin D; Poore, Holly E; van Hulle, Carol; Rathouz, Paul J; Lahey, Benjamin B
2016-11-01
Several recent studies of the hierarchical phenotypic structure of psychopathology have identified a General psychopathology factor in addition to the more expected specific Externalizing and Internalizing dimensions in both youth and adult samples and some have found relevant unique external correlates of this General factor. We used data from 1,568 twin pairs (599 MZ & 969 DZ) age 9 to 17 to test hypotheses for the underlying structure of youth psychopathology and the external validity of the higher-order factors. Psychopathology symptoms were assessed via structured interviews of caretakers and youth. We conducted phenotypic analyses of competing structural models using Confirmatory Factor Analysis and used Structural Equation Modeling and multivariate behavior genetic analyses to understand the etiology of the higher-order factors and their external validity. We found that both a General factor and specific Externalizing and Internalizing dimensions are necessary for characterizing youth psychopathology at both the phenotypic and etiologic levels, and that the 3 higher-order factors differed substantially in the magnitudes of their underlying genetic and environmental influences. Phenotypically, the specific Externalizing and Internalizing dimensions were slightly negatively correlated when a General factor was included, which reflected a significant inverse correlation between the nonshared environmental (but not genetic) influences on Internalizing and Externalizing. We estimated heritability of the general factor of psychopathology for the first time. Its moderate heritability suggests that it is not merely an artifact of measurement error but a valid construct. The General, Externalizing, and Internalizing factors differed in their relations with 3 external validity criteria: mother's smoking during pregnancy, parent's harsh discipline, and the youth's association with delinquent peers. Multivariate behavior genetic analyses supported the external validity of the 3 higher-order factors by suggesting that the General, Externalizing, and Internalizing factors were correlated with peer delinquency and parent's harsh discipline for different etiologic reasons. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Simulating superradiance from higher-order-intensity-correlation measurements: Single atoms
NASA Astrophysics Data System (ADS)
Wiegner, R.; Oppel, S.; Bhatti, D.; von Zanthier, J.; Agarwal, G. S.
2015-09-01
Superradiance typically requires preparation of atoms in highly entangled multiparticle states, the so-called Dicke states. In this paper we discuss an alternative route where we prepare such states from initially uncorrelated atoms by a measurement process. By measuring higher-order intensity-intensity correlations we demonstrate that we can simulate the emission characteristics of Dicke superradiance by starting with atoms in the fully excited state. We describe the essence of the scheme by first investigating two excited atoms. Here we demonstrate how via Hanbury Brown and Twiss type of measurements we can produce Dicke superradiance and subradiance displayed commonly with two atoms in the single excited symmetric and antisymmetric Dicke states, respectively. We thereafter generalize the scheme to arbitrary numbers of atoms and detectors, and explain in detail the mechanism which leads to this result. The approach shows that the Hanbury Brown and Twiss type of intensity interference and the phenomenon of Dicke superradiance can be regarded as two sides of the same coin. We also present a compact result for the characteristic functional which generates all order intensity-intensity correlations.
Hospital nurses' individual priorities, internal psychological states and work motivation.
Toode, K; Routasalo, P; Helminen, M; Suominen, T
2014-09-01
This study looks to describe the relationships between hospital nurses' individual priorities, internal psychological states and their work motivation. Connections between hospital nurses' work-related needs, values and work motivation are essential for providing safe and high quality health care. However, there is insufficient empirical knowledge concerning these connections for the practice development. A cross-sectional empirical research study was undertaken. A total of 201 registered nurses from all types of Estonian hospitals filled out an electronic self-reported questionnaire. Descriptive statistics, Mann-Whitney, Kruskal-Wallis and Spearman's correlation were used for data analysis. In individual priorities, higher order needs strength were negatively correlated with age and duration of service. Regarding nurses' internal psychological states, central hospital nurses had less sense of meaningfulness of work. Nurses' individual priorities (i.e. their higher order needs strength and shared values with the organization) correlated with their work motivation. Their internal psychological states (i.e. their experienced meaningfulness of work, experienced responsibility for work outcomes and their knowledge of results) correlated with intrinsic work motivation. Nurses who prioritize their higher order needs are more motivated to work. The more their own values are compatible with those of the organization, the more intrinsically motivated they are likely to be. Nurses' individual achievements, autonomy and training are key factors which influence their motivation to work. The small sample size and low response rate of the study limit the direct transferability of the findings to the wider nurse population, so further research is needed. This study highlights the need and importance to support nurses' professional development and self-determination, in order to develop and retain motivated nurses. It also indicates a need to value both nurses and nursing in healthcare policy and management. © 2014 International Council of Nurses.
Robustness of Hierarchical Modeling of Skill Association in Cognitive Diagnosis Models
ERIC Educational Resources Information Center
Templin, Jonathan L.; Henson, Robert A.; Templin, Sara E.; Roussos, Louis
2008-01-01
Several types of parameterizations of attribute correlations in cognitive diagnosis models use the reduced reparameterized unified model. The general approach presumes an unconstrained correlation matrix with K(K - 1)/2 parameters, whereas the higher order approach postulates K parameters, imposing a unidimensional structure on the correlation…
How to derotate the cosmic microwave background polarization.
Kamionkowski, Marc
2009-03-20
If the linear polarization of the cosmic microwave background is rotated in a frequency-independent manner as it propagates from the surface of last scatter, it may introduce a B-mode polarization. Here I show that measurement of higher-order TE, EE, EB, and TB correlations induced by this rotation can be used to reconstruct the rotation angle as a function of position on the sky. This technique can be used to distinguish primordial B modes from those induced by rotation. The effects of rotation can be distinguished geometrically from similar effects due to cosmic shear.
Chen, Chiun-Fan; Bikson, Marom; Chou, Li-Wei; Shan, Chunlei; Khadka, Niranjan; Chen, Wen-Shiang; Fregni, Felipe
2017-03-03
It is well established that electrical-stimulation frequency is crucial to determining the scale of induced neuromodulation, particularly when attempting to modulate corticospinal excitability. However, the modulatory effects of stimulation frequency are not only determined by its absolute value but also by other parameters such as power at harmonics. The stimulus pulse shape further influences parameters such as excitation threshold and fiber selectivity. The explicit role of the power in these harmonics in determining the outcome of stimulation has not previously been analyzed. In this study, we adopted an animal model of peripheral electrical stimulation that includes an amplitude-adapted pulse train which induces force enhancements with a corticospinal contribution. We report that the electrical-stimulation-induced force enhancements were correlated with the amplitude of stimulation power harmonics during the amplitude-adapted pulse train. In an exploratory analysis, different levels of correlation were observed between force enhancement and power harmonics of 20-80 Hz (r = 0.4247, p = 0.0243), 100-180 Hz (r = 0.5894, p = 0.0001), 200-280 Hz (r = 0.7002, p < 0.0001), 300-380 Hz (r = 0.7449, p < 0.0001), 400-480 Hz (r = 0.7906, p < 0.0001), 500-600 Hz (r = 0.7717, p < 0.0001), indicating a trend of increasing correlation, specifically at higher order frequency power harmonics. This is a pilot, but important first demonstration that power at high order harmonics in the frequency spectrum of electrical stimulation pulses may contribute to neuromodulation, thus warrant explicit attention in therapy design and analysis.
Macular pigment spatial distribution effects on glare disability.
Putnam, Christopher M; Bassi, Carl J
2015-01-01
This project explored the relationship of the macular pigment optical density (MPOD) spatial profile with measures of glare disability (GD) across the macula. A novel device was used to measure MPOD across the central 16° of retina along four radii using customized heterochromatic flicker photometry (cHFP)at eccentricities of 0°, 2°, 4°, 6° and 8°. MPOD was measured as discrete and integrated values at all measured retinal loci. GD was calculated as a difference in contrast sensitivity (CS) between no glare and glare conditions using identical stimuli presented at the same eccentricities. GD was defined as [(CSNo Glare-CSGlare)/CSNo Glare] in order to isolate the glare attenuation effects of MPOD by controlling for CS variability among the subject sample. Correlations of the discrete and integrated MPOD with GD were compared. The cHFP identified reliable MPOD spatial distribution maps demonstrating a 1st-order exponential decay as a function of increasing eccentricity. There was a significant negative correlation between both measures of foveal MPOD and GD using 6 cycles per degree (cpd) and 9 cpd stimuli. Significant correlations were found between corresponding parafoveal MPOD measures and GD at 2 and 4° of eccentricity using 9 cpd stimuli with greater MPOD associated with less glare disability. These results are consistent with the glare attenuation effects of MP at higher spatial frequencies and support the hypothesis that discrete and integrated measures of MPOD have similar correlations with glare attenuation effects across the macula. Additionally, peak foveal MPOD appears to influence GD across the macula. Copyright © 2014 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.
Halo correlations in nonlinear cosmic density fields
NASA Astrophysics Data System (ADS)
Bernardeau, F.; Schaeffer, R.
1999-09-01
The question we address in this paper is the determination of the correlation properties of the dark matter halos appearing in cosmic density fields once they underwent a strongly nonlinear evolution induced by gravitational dynamics. A series of previous works have given indications that kind of non-Gaussian features are induced by nonlinear evolution in term of the high-order correlation functions. Assuming such patterns for the matter field, i.e. that the high-order correlation functions behave as products of two-body correlation functions, we derive the correlation properties of the halos, that are assumed to represent the correlation properties of galaxies or clusters. The hierarchical pattern originally induced by gravity is shown to be conserved for the halos. The strength of their correlations at any order varies, however, but is found to depend only on their internal properties, namely on the parameter x~ m/r(3-gamma ) where m is the mass of the halo, r its size and gamma is the power law index of the two-body correlation function. This internal parameter is seen to be close to the depth of the internal potential well of virialized objects. We were able to derive the explicit form of the generating function of the moments of the halo counts probability distribution function. In particular we show explicitly that, generically, S_P(x)-> P(P-2) in the rare halo limit. Various illustrations of our general results are presented. As a function of the properties of the underlying matter field, we construct the count probabilities for halos and in particular discuss the halo void probability. We evaluate the dependence of the halo mass function on the environment: within clusters, hierarchical clustering implies the higher masses are favored. These properties solely arise from what is a natural bias (ie, naturally induced by gravity) between the observed objects and the unseen matter field, and how it manifests itself depending on which selection effects are imposed.
Whittington, J; Holland, A; Webb, T
2009-05-01
Genetic disorders occasionally provide the means to uncover potential mechanisms linking gene expression and physical or cognitive characteristics or behaviour. Prader-Willi syndrome (PWS) is one such genetic disorder in which differences between the two main genetic subtypes have been documented (e.g. higher verbal IQ in one vs. higher performance IQ in the other; slower than normal reaction time in one vs. normal in the other). In a population study of PWS, the IQ distribution of people with PWS was approximately normal. This raises the question of whether this distribution arose from a systematic effect of PWS on IQ (hypothesis 1) or whether it was the fortuitous result of random effects (hypothesis 2). The correlation between PWS and sibling IQ was determined in order to discriminate between the two hypotheses. In the first case we would expect the correlation to be similar to that found in the general population (0.5); in the second case it would be zero. It was found that the overall PWS-sibling IQ correlation was 0.3 but that the two main genetic subtypes of PWS differed in their familial IQ relationships. As expected, the IQs of normal siblings correlated 0.5, and this was also the case with one genetic subtype of PWS (uniparental disomy) and their siblings, while the other subtype IQ correlated -0.07 with sibling IQ. This is a potentially powerful result that gives another clue to the role of genes on chromosome 15 in the determination of IQ. It is another systematic difference between the genetic subtypes of PWS, which needs an explanation in terms of the very small genetic differences between them.
Exotic quantum order in low-dimensional systems
NASA Astrophysics Data System (ADS)
Girvin, S. M.
1998-08-01
Strongly correlated quantum systems in low dimensions often exhibit novel quantum ordering. This ordering is sometimes hidden and can be revealed only by examining new "dual" types of correlations. Such ordering leads to novel collection modes and fractional quantum numbers. Examples will be presented from quantum spin chains and the quantum Hall effect.
Point model equations for neutron correlation counting: Extension of Böhnel's equations to any order
Favalli, Andrea; Croft, Stephen; Santi, Peter
2015-06-15
Various methods of autocorrelation neutron analysis may be used to extract information about a measurement item containing spontaneously fissioning material. The two predominant approaches being the time correlation analysis (that make use of a coincidence gate) methods of multiplicity shift register logic and Feynman sampling. The common feature is that the correlated nature of the pulse train can be described by a vector of reduced factorial multiplet rates. We call these singlets, doublets, triplets etc. Within the point reactor model the multiplet rates may be related to the properties of the item, the parameters of the detector, and basic nuclearmore » data constants by a series of coupled algebraic equations – the so called point model equations. Solving, or inverting, the point model equations using experimental calibration model parameters is how assays of unknown items is performed. Currently only the first three multiplets are routinely used. In this work we develop the point model equations to higher order multiplets using the probability generating functions approach combined with the general derivative chain rule, the so called Faà di Bruno Formula. Explicit expression up to 5th order are provided, as well the general iterative formula to calculate any order. This study represents the first necessary step towards determining if higher order multiplets can add value to nondestructive measurement practice for nuclear materials control and accountancy.« less
Fitting Prony Series To Data On Viscoelastic Materials
NASA Technical Reports Server (NTRS)
Hill, S. A.
1995-01-01
Improved method of fitting Prony series to data on viscoelastic materials involves use of least-squares optimization techniques. Based on optimization techniques yields closer correlation with data than traditional method. Involves no assumptions regarding the gamma'(sub i)s and higher-order terms, and provides for as many Prony terms as needed to represent higher-order subtleties in data. Curve-fitting problem treated as design-optimization problem and solved by use of partially-constrained-optimization techniques.
Revealing cancer subtypes with higher-order correlations applied to imaging and omics data.
Graim, Kiley; Liu, Tiffany Ting; Achrol, Achal S; Paull, Evan O; Newton, Yulia; Chang, Steven D; Harsh, Griffith R; Cordero, Sergio P; Rubin, Daniel L; Stuart, Joshua M
2017-03-31
Patient stratification to identify subtypes with different disease manifestations, severity, and expected survival time is a critical task in cancer diagnosis and treatment. While stratification approaches using various biomarkers (including high-throughput gene expression measurements) for patient-to-patient comparisons have been successful in elucidating previously unseen subtypes, there remains an untapped potential of incorporating various genotypic and phenotypic data to discover novel or improved groupings. Here, we present HOCUS, a unified analytical framework for patient stratification that uses a community detection technique to extract subtypes out of sparse patient measurements. HOCUS constructs a patient-to-patient network from similarities in the data and iteratively groups and reconstructs the network into higher order clusters. We investigate the merits of using higher-order correlations to cluster samples of cancer patients in terms of their associations with survival outcomes. In an initial test of the method, the approach identifies cancer subtypes in mutation data of glioblastoma, ovarian, breast, prostate, and bladder cancers. In several cases, HOCUS provides an improvement over using the molecular features directly to compare samples. Application of HOCUS to glioblastoma images reveals a size and location classification of tumors that improves over human expert-based stratification. Subtypes based on higher order features can reveal comparable or distinct groupings. The distinct solutions can provide biologically- and treatment-relevant solutions that are just as significant as solutions based on the original data.
A hierarchical causal taxonomy of psychopathology across the life span.
Lahey, Benjamin B; Krueger, Robert F; Rathouz, Paul J; Waldman, Irwin D; Zald, David H
2017-02-01
We propose a taxonomy of psychopathology based on patterns of shared causal influences identified in a review of multivariate behavior genetic studies that distinguish genetic and environmental influences that are either common to multiple dimensions of psychopathology or unique to each dimension. At the phenotypic level, first-order dimensions are defined by correlations among symptoms; correlations among first-order dimensions similarly define higher-order domains (e.g., internalizing or externalizing psychopathology). We hypothesize that the robust phenotypic correlations among first-order dimensions reflect a hierarchy of increasingly specific etiologic influences . Some nonspecific etiologic factors increase risk for all first-order dimensions of psychopathology to varying degrees through a general factor of psychopathology. Other nonspecific etiologic factors increase risk only for all first-order dimensions within a more specific higher-order domain. Furthermore, each first-order dimension has its own unique causal influences. Genetic and environmental influences common to family members tend to be nonspecific, whereas environmental influences unique to each individual are more dimension-specific. We posit that these causal influences on psychopathology are moderated by sex and developmental processes. This causal taxonomy also provides a novel framework for understanding the heterogeneity of each first-order dimension: Different persons exhibiting similar symptoms may be influenced by different combinations of etiologic influences from each of the 3 levels of the etiologic hierarchy. Furthermore, we relate the proposed causal taxonomy to transdimensional psychobiological processes, which also impact the heterogeneity of each psychopathology dimension. This causal taxonomy implies the need for changes in strategies for studying the etiology, psychobiology, prevention, and treatment of psychopathology. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Culture, emotion regulation, and adjustment.
Matsumoto, David; Yoo, Seung Hee; Nakagawa, Sanae
2008-06-01
This article reports differences across 23 countries on 2 processes of emotion regulation--reappraisal and suppression. Cultural dimensions were correlated with country means on both and the relationship between them. Cultures that emphasized the maintenance of social order--that is, those that were long-term oriented and valued embeddedness and hierarchy--tended to have higher scores on suppression, and reappraisal and suppression tended to be positively correlated. In contrast, cultures that minimized the maintenance of social order and valued individual Affective Autonomy and Egalitarianism tended to have lower scores on Suppression, and Reappraisal and Suppression tended to be negatively correlated. Moreover, country-level emotion regulation was significantly correlated with country-level indices of both positive and negative adjustment. (PsycINFO Database Record (c) 2008 APA, all rights reserved).
Non-Gaussian lineshapes and dynamics of time-resolved linear and nonlinear (correlation) spectra.
Dinpajooh, Mohammadhasan; Matyushov, Dmitry V
2014-07-17
Signatures of nonlinear and non-Gaussian dynamics in time-resolved linear and nonlinear (correlation) 2D spectra are analyzed in a model considering a linear plus quadratic dependence of the spectroscopic transition frequency on a Gaussian nuclear coordinate of the thermal bath (quadratic coupling). This new model is contrasted to the commonly assumed linear dependence of the transition frequency on the medium nuclear coordinates (linear coupling). The linear coupling model predicts equality between the Stokes shift and equilibrium correlation functions of the transition frequency and time-independent spectral width. Both predictions are often violated, and we are asking here the question of whether a nonlinear solvent response and/or non-Gaussian dynamics are required to explain these observations. We find that correlation functions of spectroscopic observables calculated in the quadratic coupling model depend on the chromophore's electronic state and the spectral width gains time dependence, all in violation of the predictions of the linear coupling models. Lineshape functions of 2D spectra are derived assuming Ornstein-Uhlenbeck dynamics of the bath nuclear modes. The model predicts asymmetry of 2D correlation plots and bending of the center line. The latter is often used to extract two-point correlation functions from 2D spectra. The dynamics of the transition frequency are non-Gaussian. However, the effect of non-Gaussian dynamics is limited to the third-order (skewness) time correlation function, without affecting the time correlation functions of higher order. The theory is tested against molecular dynamics simulations of a model polar-polarizable chromophore dissolved in a force field water.
Mann, Frank D; Patterson, Megan W; Grotzinger, Andrew D; Kretsch, Natalie; Tackett, Jennifer L; Tucker-Drob, Elliot M; Harden, K Paige
2016-07-01
Both sensation seeking and affiliation with deviant peer groups are risk factors for delinquency in adolescence. In this study, we use a sample of adolescent twins (n = 549), 13 to 20 years old (M age = 15.8 years), in order to test the interactive effects of peer deviance and sensation seeking on delinquency in a genetically informative design. Consistent with a socialization effect, affiliation with deviant peers was associated with higher delinquency even after controlling for selection effects using a co-twin-control comparison. At the same time, there was evidence for person-environment correlation; adolescents with genetic dispositions toward higher sensation seeking were more likely to report having deviant peer groups. Genetic influences on sensation seeking substantially overlapped with genetic influences on adolescent delinquency. Finally, the environmentally mediated effect of peer deviance on adolescent delinquency was moderated by individual differences in sensation seeking. Adolescents reporting high levels of sensation seeking were more susceptible to deviant peers, a Person × Environment interaction. These results are consistent with both selection and socialization processes in adolescent peer relationships, and they highlight the role of sensation seeking as an intermediary phenotype for genetic risk for delinquency. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Effects of Helicity on Lagrangian and Eulerian Time Correlations in Turbulence
NASA Technical Reports Server (NTRS)
Rubinstein, Robert; Zhou, Ye
1998-01-01
Taylor series expansions of turbulent time correlation functions are applied to show that helicity influences Eulerian time correlations more strongly than Lagrangian time correlations: to second order in time, the helicity effect on Lagrangian time correlations vanishes, but the helicity effect on Eulerian time correlations is nonzero. Fourier analysis shows that the helicity effect on Eulerian time correlations is confined to the largest inertial range scales. Some implications for sound radiation by swirling flows are discussed.
2011-01-01
Background Gene co-expression, in the form of a correlation coefficient, has been valuable in the analysis, classification and prediction of protein-protein interactions. However, it is susceptible to bias from a few samples having a large effect on the correlation coefficient. Gene co-expression stability is a means of quantifying this bias, with high stability indicating robust, unbiased co-expression correlation coefficients. We assess the utility of gene co-expression stability as an additional measure to support the co-expression correlation in the analysis of protein-protein interaction networks. Results We studied the patterns of co-expression correlation and stability in interacting proteins with respect to their interaction promiscuity, levels of intrinsic disorder, and essentiality or disease-relatedness. Co-expression stability, along with co-expression correlation, acts as a better classifier of hub proteins in interaction networks, than co-expression correlation alone, enabling the identification of a class of hubs that are functionally distinct from the widely accepted transient (date) and obligate (party) hubs. Proteins with high levels of intrinsic disorder have low co-expression correlation and high stability with their interaction partners suggesting their involvement in transient interactions, except for a small group that have high co-expression correlation and are typically subunits of stable complexes. Similar behavior was seen for disease-related and essential genes. Interacting proteins that are both disordered have higher co-expression stability than ordered protein pairs. Using co-expression correlation and stability, we found that transient interactions are more likely to occur between an ordered and a disordered protein while obligate interactions primarily occur between proteins that are either both ordered, or disordered. Conclusions We observe that co-expression stability shows distinct patterns in structurally and functionally different groups of proteins and interactions. We conclude that it is a useful and important measure to be used in concert with gene co-expression correlation for further insights into the characteristics of proteins in the context of their interaction network. PMID:22369639
Huen, Jenny M Y; Ip, Brian Y T; Ho, Samuel M Y; Yip, Paul S F
2015-01-01
The present study investigated whether hope and hopelessness are better conceptualized as a single construct of bipolar spectrum or two distinct constructs and whether hope can moderate the relationship between hopelessness and suicidal ideation. Hope, hopelessness, and suicidal ideation were measured in a community sample of 2106 participants through a population-based household survey. Confirmatory factor analyses showed that a measurement model with separate, correlated second-order factors of hope and hopelessness provided a good fit to the data and was significantly better than that of the model collapsing hope and hopelessness into a single second-order factor. Negative binomial regression showed that hope and hopelessness interacted such that the effect of hopelessness on suicidal ideation was lower in individuals with higher hope than individuals with lower hope. Hope and hopelessness are two distinct but correlated constructs. Hope can act as a resilience factor that buffers the impact of hopelessness on suicidal ideation. Inducing hope in people may be a promising avenue for suicide prevention.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beste, Ariana; Vazquez-Mayagoitia, Alvaro; Ortiz, J. Vincent
2013-01-01
A direct method (D-Delta-MBPT(2)) to calculate second-order ionization potentials (IPs), electron affinities (EAs), and excitation energies is developed. The Delta-MBPT(2) method is defined as the correlated extension of the Delta-HF method. Energy differences are obtained by integrating the energy derivative with respect to occupation numbers over the appropriate parameter range. This is made possible by writing the second-order energy as a function of the occupation numbers. Relaxation effects are fully included at the SCF level. This is in contrast to linear response theory, which makes the D-Delta-MBPT(2) applicable not only to single excited but also higher excited states. We showmore » the relationship of the D-Delta-MBPT(2) method for IPs and EAs to a second-order approximation of the effective Fock-space coupled-cluster Hamiltonian and a second-order electron propagator method. We also discuss the connection between the D-Delta-MBPT(2) method for excitation energies and the CIS-MP2 method. Finally, as a proof of principle, we apply our method to calculate ionization potentials and excitation energies of some small molecules. For IPs, the Delta-MBPT(2) results compare well to the second-order solution of the Dyson equation. For excitation energies, the deviation from EOM-CCSD increases when correlation becomes more important. When using the numerical integration technique, we encounter difficulties that prevented us from reaching the Delta-MBPT(2) values. Most importantly, relaxation beyond the Hartree Fock level is significant and needs to be included in future research.« less
The three-point function as a probe of models for large-scale structure
NASA Astrophysics Data System (ADS)
Frieman, Joshua A.; Gaztanaga, Enrique
1994-04-01
We analyze the consequences of models of structure formation for higher order (n-point) galaxy correlation functions in the mildly nonlinear regime. Several variations of the standard Omega = 1 cold dark matter model with scale-invariant primordial perturbations have recently been introduced to obtain more power on large scales, Rp is approximately 20/h Mpc, e.g., low matter-density (nonzero cosmological constant) models, 'tilted' primordial spectra, and scenarios with a mixture of cold and hot dark matter. They also include models with an effective scale-dependent bias, such as the cooperative galaxy formation scenario of Bower et al. We show that higher-order (n-point) galaxy correlation functions can provide a useful test of such models and can discriminate between models with true large-scale power in the density field and those where the galaxy power arises from scale-dependent bias: a bias with rapid scale dependence leads to a dramatic decrease of the the hierarchical amplitudes QJ at large scales, r is greater than or approximately Rp. Current observational constraints on the three-point amplitudes Q3 and S3 can place limits on the bias parameter(s) and appear to disfavor, but not yet rule out, the hypothesis that scale-dependent bias is responsible for the extra power observed on large scales.
NASA Astrophysics Data System (ADS)
Andersen, Mie; Plaisance, Craig P.; Reuter, Karsten
2017-10-01
First-principles screening studies aimed at predicting the catalytic activity of transition metal (TM) catalysts have traditionally been based on mean-field (MF) microkinetic models, which neglect the effect of spatial correlations in the adsorbate layer. Here we critically assess the accuracy of such models for the specific case of CO methanation over stepped metals by comparing to spatially resolved kinetic Monte Carlo (kMC) simulations. We find that the typical low diffusion barriers offered by metal surfaces can be significantly increased at step sites, which results in persisting correlations in the adsorbate layer. As a consequence, MF models may overestimate the catalytic activity of TM catalysts by several orders of magnitude. The potential higher accuracy of kMC models comes at a higher computational cost, which can be especially challenging for surface reactions on metals due to a large disparity in the time scales of different processes. In order to overcome this issue, we implement and test a recently developed algorithm for achieving temporal acceleration of kMC simulations. While the algorithm overall performs quite well, we identify some challenging cases which may lead to a breakdown of acceleration algorithms and discuss possible directions for future algorithm development.
NASA Astrophysics Data System (ADS)
Roubidoux, J. A.; Jackson, J. E.; Lasseigne, A. N.; Mishra, B.; Olson, D. L.
2010-02-01
This paper correlates nonlinear material properties to nondestructive electronic measurements by using wave analysis techniques (e.g. Perturbation Methods) and incorporating higher-order phenomena. The correlations suggest that nondestructive electronic property measurements and practices can be used to assess thin films, surface layers, and other advanced materials that exhibit modified behaviors based on their space-charged interfacial behavior.
The correlation function for density perturbations in an expanding universe. II - Nonlinear theory
NASA Technical Reports Server (NTRS)
Mcclelland, J.; Silk, J.
1977-01-01
A formalism is developed to find the two-point and higher-order correlation functions for a given distribution of sizes and shapes of perturbations which are randomly placed in three-dimensional space. The perturbations are described by two parameters such as central density and size, and the two-point correlation function is explicitly related to the luminosity function of groups and clusters of galaxies
Analysis of Smart Composite Structures Including Debonding
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi; Seeley, Charles E.
1997-01-01
Smart composite structures with distributed sensors and actuators have the capability to actively respond to a changing environment while offering significant weight savings and additional passive controllability through ply tailoring. Piezoelectric sensing and actuation of composite laminates is the most promising concept due to the static and dynamic control capabilities. Essential to the implementation of these smart composites are the development of accurate and efficient modeling techniques and experimental validation. This research addresses each of these important topics. A refined higher order theory is developed to model composite structures with surface bonded or embedded piezoelectric transducers. These transducers are used as both sensors and actuators for closed loop control. The theory accurately captures the transverse shear deformation through the thickness of the smart composite laminate while satisfying stress free boundary conditions on the free surfaces. The theory is extended to include the effect of debonding at the actuator-laminate interface. The developed analytical model is implemented using the finite element method utilizing an induced strain approach for computational efficiency. This allows general laminate geometries and boundary conditions to be analyzed. The state space control equations are developed to allow flexibility in the design of the control system. Circuit concepts are also discussed. Static and dynamic results of smart composite structures, obtained using the higher order theory, are correlated with available analytical data. Comparisons, including debonded laminates, are also made with a general purpose finite element code and available experimental data. Overall, very good agreement is observed. Convergence of the finite element implementation of the higher order theory is shown with exact solutions. Additional results demonstrate the utility of the developed theory to study piezoelectric actuation of composite laminates with pre-existing debonding. Significant changes in the modes shapes and reductions in the control authority result due to partially debonded actuators. An experimental investigation addresses practical issues, such as circuit design and implementation, associated with piezoelectric sensing and actuation of composite laminates. Composite specimens with piezoelectric transducers were designed, constructed and tested to validate the higher order theory. These specimens were tested with various stacking sequences, debonding lengths and gains for both open and closed loop cases. Frequency changes of 15% and damping on the order of more than 20% of critical damping, via closed loop control, was achieved. Correlation with the higher order theory is very good. Debonding is shown to adversely affect the open and closed loop frequencies, damping ratios, settling time and control authority.
Infrared spectrometric study of acid-degradable glasses.
De Maeyer, E A P; Verbeeck, R M H; Vercruysse, C W J
2002-08-01
The composition of glasses used in glass-ionomer cements affects their leaching behavior and hence the properties of the cement. The aim of this study was to correlate the composition and leaching behavior of these glasses with their infrared absorption characteristics. The wavenumber of the absorption band of the Si-O asymmetric stretching vibration shifts to a higher value with decreasing content of mono- and bivalent cations in the glass. This effect can be ascribed to the influence of these extraneous ions on the glass network order and connectivity. Preferential leaching of these ions induces an increase of asymmetric stretching vibration and a general modification of the band profile. The results can be correlated with the x-ray diffraction characteristics of the glass.
Deming, D.; Sass, J.H.; Lachenbruch, A.H.; De Rito, R. F.
1992-01-01
Several high-resolution temperature logs were made in each of 21 drillholes and a total of 601 thermal conductivity measurements were made on drill cuttings and cores. Near-surface heat flow (??20%) is inversely correlated with elevation and ranges from a low of 27 mW/m2 in the foothills of the Brooks Range in the south, to a high of 90 mW/m2 near the north coast. Subsurface temperatures and thermal gradients estimated from corrected BHTs are similarly much higher on the coastal plain than in the foothills province to the south. Significant east-west variation in heat flow and subsurface temperature is also observed; higher heat flow and temperature coincide with higher basement topography. The observed thermal pattern is consistent with forced convection by a topographically driven ground-water flow system. Average ground-water (Darcy) velocity in the postulated flow system is estimated to be of the order of 0.1 m/yr; the effective basin-scale permeability is estimated to be of the order of 10-14 m2. -from Authors
Fast Electron Correlation Methods for Molecular Clusters without Basis Set Superposition Errors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamiya, Muneaki; Hirata, So; Valiev, Marat
2008-02-19
Two critical extensions to our fast, accurate, and easy-to-implement binary or ternary interaction method for weakly-interacting molecular clusters [Hirata et al. Mol. Phys. 103, 2255 (2005)] have been proposed, implemented, and applied to water hexamers, hydrogen fluoride chains and rings, and neutral and zwitterionic glycine–water clusters with an excellent result for an initial performance assessment. Our original method included up to two- or three-body Coulomb, exchange, and correlation energies exactly and higher-order Coulomb energies in the dipole–dipole approximation. In this work, the dipole moments are replaced by atom-centered point charges determined so that they reproduce the electrostatic potentials of themore » cluster subunits as closely as possible and also self-consistently with one another in the cluster environment. They have been shown to lead to dramatic improvement in the description of short-range electrostatic potentials not only of large, charge-separated subunits like zwitterionic glycine but also of small subunits. Furthermore, basis set superposition errors (BSSE) known to plague direct evaluation of weak interactions have been eliminated by com-bining the Valiron–Mayer function counterpoise (VMFC) correction with our binary or ternary interaction method in an economical fashion (quadratic scaling n2 with respect to the number of subunits n when n is small and linear scaling when n is large). A new variant of VMFC has also been proposed in which three-body and all higher-order Coulomb effects on BSSE are estimated approximately. The BSSE-corrected ternary interaction method with atom-centered point charges reproduces the VMFC-corrected results of conventional electron correlation calculations within 0.1 kcal/mol. The proposed method is significantly more accurate and also efficient than conventional correlation methods uncorrected of BSSE.« less
Electromigration in epitaxial Cu(001) lines
NASA Astrophysics Data System (ADS)
Ramanath, G.; Kim, H.; Goindi, H. S.; Frederick, M. J.; Shin, C.-S.; Goswami, R.; Petrov, I.; Greene, J. E.
2002-04-01
We report the electromigration (EM) response of single-domain epitaxial Cu(001) lines on layers of Ta, TaN, and TiN. Epitaxial Cu(001) lines on nitride layers exhibit nearly two orders of magnitude higher mean-time-to-failure (MTTF) values than those on Ta, indicating the strong influence of the underlayer. The activation energy of EM for Cu on the nitrides is ˜0.8-1.2 eV, and that of Cu on Ta is ˜0.2 eV, for 200-300 °C. Our results also indicate that the MTTF values correlate inversely to the crystal quality of the Cu layers measured by X-ray diffraction. The EM resistance of epitaxial Cu lines with different crystal quality on TaN were measured to separate the effects of interface chemistry and crystal quality. While higher quality epitaxial films reveal a higher EM resistance, the magnitude of the change is smaller than that obtained by changing the interface chemistry. Epitaxial lines exhibit more than 3-4 orders of magnitude higher MTTF than polycrystalline lines on the same underlayer. Based upon our results, we propose that the Cu/underlayer interface chemistry and presence of grain boundary diffusion play important roles in unpassivated Cu films.
Redundant correlation effect on personalized recommendation
NASA Astrophysics Data System (ADS)
Qiu, Tian; Han, Teng-Yue; Zhong, Li-Xin; Zhang, Zi-Ke; Chen, Guang
2014-02-01
The high-order redundant correlation effect is investigated for a hybrid algorithm of heat conduction and mass diffusion (HHM), through both heat conduction biased (HCB) and mass diffusion biased (MDB) correlation redundancy elimination processes. The HCB and MDB algorithms do not introduce any additional tunable parameters, but keep the simple character of the original HHM. Based on two empirical datasets, the Netflix and MovieLens, the HCB and MDB are found to show better recommendation accuracy for both the overall objects and the cold objects than the HHM algorithm. Our work suggests that properly eliminating the high-order redundant correlations can provide a simple and effective approach to accurate recommendation.
Nonlinear coupling of flow harmonics: Hexagonal flow and beyond
NASA Astrophysics Data System (ADS)
Giacalone, Giuliano; Yan, Li; Ollitrault, Jean-Yves
2018-05-01
Higher Fourier harmonics of anisotropic flow (v4 and beyond) get large contributions induced by elliptic and triangular flow through nonlinear response. We present a general framework of nonlinear hydrodynamic response which encompasses the existing one and allows us to take into account the mutual correlation between the nonlinear couplings affecting Fourier harmonics of any order. Using Large Hadron Collider data on Pb+Pb collisions at
Principal regression analysis and the index leverage effect
NASA Astrophysics Data System (ADS)
Reigneron, Pierre-Alain; Allez, Romain; Bouchaud, Jean-Philippe
2011-09-01
We revisit the index leverage effect, that can be decomposed into a volatility effect and a correlation effect. We investigate the latter using a matrix regression analysis, that we call ‘Principal Regression Analysis' (PRA) and for which we provide some analytical (using Random Matrix Theory) and numerical benchmarks. We find that downward index trends increase the average correlation between stocks (as measured by the most negative eigenvalue of the conditional correlation matrix), and makes the market mode more uniform. Upward trends, on the other hand, also increase the average correlation between stocks but rotates the corresponding market mode away from uniformity. There are two time scales associated to these effects, a short one on the order of a month (20 trading days), and a longer time scale on the order of a year. We also find indications of a leverage effect for sectorial correlations as well, which reveals itself in the second and third mode of the PRA.
Rubik, Beverly; Brooks, Audrey J; Schwartz, Gary E
2006-01-01
To measure effects of Reiki treatments on growth of heat-shocked bacteria, and to determine the influence of healing context and practitioner well-being. Overnight cultures of Escherichia coli K12 in fresh medium were used. Culture samples were paired with controls to minimize any ordering effects. Samples were heat-shocked prior to Reiki treatment, which was performed by Reiki practitioners for up to 15 minutes, with untreated controls. Plate-count assay using an automated colony counter determined the number of viable bacteria. Fourteen Reiki practitioners each completed 3 runs (n = 42 runs) without healing context, and another 2 runs (n = 28 runs) in which they first treated a pain patient for 30 minutes (healing context). Well-being questionnaires were administered to practitioners pre-post all sessions. No overall difference was found between the Reiki and control plates in the nonhealing context. In the healing context, the Reiki treated cultures overall exhibited significantly more bacteria than controls (p < 0.05). Practitioner social (p < 0.013) and emotional well-being (p < 0.021) correlated with Reiki treatment outcome on bacterial cultures in the nonhealing context. Practitioner social (p < 0.031), physical (p < 0.030), and emotional (p < 0.026) well-being correlated with Reiki treatment outcome on the bacterial cultures in the healing context. For practitioners starting with diminished well-being, control counts were likely to be higher than Reiki-treated bacterial counts. For practitioners starting with a higher level of well-being, Reiki counts were likely to be higher than control counts. Reiki improved growth of heat-shocked bacterial cultures in a healing context. The initial level of well-being of the Reiki practitioners correlates with the outcome of Reiki on bacterial culture growth and is key to the results obtained.
Pennycook, Gordon; Ross, Robert M; Koehler, Derek J; Fugelsang, Jonathan A
2016-01-01
Individual differences in the mere willingness to think analytically has been shown to predict religious disbelief. Recently, however, it has been argued that analytic thinkers are not actually less religious; rather, the putative association may be a result of religiosity typically being measured after analytic thinking (an order effect). In light of this possibility, we report four studies in which a negative correlation between religious belief and performance on analytic thinking measures is found when religious belief is measured in a separate session. We also performed a meta-analysis on all previously published studies on the topic along with our four new studies (N = 15,078, k = 31), focusing specifically on the association between performance on the Cognitive Reflection Test (the most widely used individual difference measure of analytic thinking) and religious belief. This meta-analysis revealed an overall negative correlation (r) of -.18, 95% CI [-.21, -.16]. Although this correlation is modest, self-identified atheists (N = 133) scored 18.7% higher than religiously affiliated individuals (N = 597) on a composite measure of analytic thinking administered across our four new studies (d = .72). Our results indicate that the association between analytic thinking and religious disbelief is not caused by a simple order effect. There is good evidence that atheists and agnostics are more reflective than religious believers.
Pennycook, Gordon; Ross, Robert M.; Koehler, Derek J.; Fugelsang, Jonathan A.
2016-01-01
Individual differences in the mere willingness to think analytically has been shown to predict religious disbelief. Recently, however, it has been argued that analytic thinkers are not actually less religious; rather, the putative association may be a result of religiosity typically being measured after analytic thinking (an order effect). In light of this possibility, we report four studies in which a negative correlation between religious belief and performance on analytic thinking measures is found when religious belief is measured in a separate session. We also performed a meta-analysis on all previously published studies on the topic along with our four new studies (N = 15,078, k = 31), focusing specifically on the association between performance on the Cognitive Reflection Test (the most widely used individual difference measure of analytic thinking) and religious belief. This meta-analysis revealed an overall negative correlation (r) of -.18, 95% CI [-.21, -.16]. Although this correlation is modest, self-identified atheists (N = 133) scored 18.7% higher than religiously affiliated individuals (N = 597) on a composite measure of analytic thinking administered across our four new studies (d = .72). Our results indicate that the association between analytic thinking and religious disbelief is not caused by a simple order effect. There is good evidence that atheists and agnostics are more reflective than religious believers. PMID:27054566
A highly accurate ab initio potential energy surface for methane.
Owens, Alec; Yurchenko, Sergei N; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter
2016-09-14
A new nine-dimensional potential energy surface (PES) for methane has been generated using state-of-the-art ab initio theory. The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit and incorporates a range of higher-level additive energy corrections. These include core-valence electron correlation, higher-order coupled cluster terms beyond perturbative triples, scalar relativistic effects, and the diagonal Born-Oppenheimer correction. Sub-wavenumber accuracy is achieved for the majority of experimentally known vibrational energy levels with the four fundamentals of (12)CH4 reproduced with a root-mean-square error of 0.70 cm(-1). The computed ab initio equilibrium C-H bond length is in excellent agreement with previous values despite pure rotational energies displaying minor systematic errors as J (rotational excitation) increases. It is shown that these errors can be significantly reduced by adjusting the equilibrium geometry. The PES represents the most accurate ab initio surface to date and will serve as a good starting point for empirical refinement.
Attack tolerance of correlated time-varying social networks with well-defined communities
NASA Astrophysics Data System (ADS)
Sur, Souvik; Ganguly, Niloy; Mukherjee, Animesh
2015-02-01
In this paper, we investigate the efficiency and the robustness of information transmission for real-world social networks, modeled as time-varying instances, under targeted attack in shorter time spans. We observe that these quantities are markedly higher than that of the randomized versions of the considered networks. An important factor that drives this efficiency or robustness is the presence of short-time correlations across the network instances which we quantify by a novel metric the-edge emergence factor, denoted as ξ. We find that standard targeted attacks are not effective in collapsing this network structure. Remarkably, if the hourly community structures of the temporal network instances are attacked with the largest size community attacked first, the second largest next and so on, the network soon collapses. This behavior, we show is an outcome of the fact that the edge emergence factor bears a strong positive correlation with the size ordered community structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okumura, Teppei; Seljak, Uroš; McDonald, Patrick
Measurement of redshift-space distortions (RSD) offers an attractive method to directly probe the cosmic growth history of density perturbations. A distribution function approach where RSD can be written as a sum over density weighted velocity moment correlators has recently been developed. In this paper we use results of N-body simulations to investigate the individual contributions and convergence of this expansion for dark matter. If the series is expanded as a function of powers of μ, cosine of the angle between the Fourier mode and line of sight, then there are a finite number of terms contributing at each order. Wemore » present these terms and investigate their contribution to the total as a function of wavevector k. For μ{sup 2} the correlation between density and momentum dominates on large scales. Higher order corrections, which act as a Finger-of-God (FoG) term, contribute 1% at k ∼ 0.015hMpc{sup −1}, 10% at k ∼ 0.05hMpc{sup −1} at z = 0, while for k > 0.15hMpc{sup −1} they dominate and make the total negative. These higher order terms are dominated by density-energy density correlations which contributes negatively to the power, while the contribution from vorticity part of momentum density auto-correlation adds to the total power, but is an order of magnitude lower. For μ{sup 4} term the dominant term on large scales is the scalar part of momentum density auto-correlation, while higher order terms dominate for k > 0.15hMpc{sup −1}. For μ{sup 6} and μ{sup 8} we find it has very little power for k < 0.15hMpc{sup −1}, shooting up by 2–3 orders of magnitude between k < 0.15hMpc{sup −1} and k < 0.4hMpc{sup −1}. We also compare the expansion to the full 2-d P{sup ss}(k,μ), as well as to the monopole, quadrupole, and hexadecapole integrals of P{sup ss}(k,μ). For these statistics an infinite number of terms contribute and we find that the expansion achieves percent level accuracy for kμ < 0.15hMpc{sup −1} at 6-th order, but breaks down on smaller scales because the series is no longer perturbative. We explore resummation of the terms into FoG kernels, which extend the convergence up to a factor of 2 in scale. We find that the FoG kernels are approximately Lorentzian with velocity dispersions around 600 km/s at z = 0.« less
Birth order effects on autism symptom domains.
Reichenberg, Abraham; Smith, Christopher; Schmeidler, James; Silverman, Jeremy M
2007-03-30
Autism is predominantly genetically determined. Evidence supports familiality of the main sets of behavioral characteristics that define the syndrome of autism; however, possible non-genetic effects have also been suggested. The present study compared levels of autism symptom domains, as measured by the Autism Diagnostic Interview, and useful phrase speech scores between 106 pairs of first- and second-born siblings from multiply affected families. In addition, the intercorrelations between the measures were compared between siblings. The overall mean repetitive behavior total score was significantly higher (worse) in first-born than in second-born siblings. In contrast, first-born siblings had significantly lower (better) useful phrase speech than their younger siblings. Autism social and non-verbal communication scores were significantly correlated in first- and in second-born siblings. However, there was a significant difference in the coefficients between first- and second-born siblings. Performance on the non-verbal communication domain was also significantly and positively correlated with useful phrase speech score in both first- and second-born siblings. It is unclear at this time whether these results are of biologic origin. Nevertheless, the findings suggest that genetic studies in autism using specific levels of familial autism traits as phenotypes should take into account their intercorrelations and birth order effects embedded in the instrument.
Analysis of correlation between corneal topographical data and visual performance
NASA Astrophysics Data System (ADS)
Zhou, Chuanqing; Yu, Lei; Ren, Qiushi
2007-02-01
Purpose: To study correlation among corneal asphericity, higher-order aberrations and visual performance for eyes of virgin myopia and postoperative laser in situ keratomileusis (LASIK). Methods: There were 320 candidates 590 eyes for LASIK treatment included in this study. The mean preoperative spherical equivalence was -4.35+/-1.51D (-1.25 to -9.75), with astigmatism less than 2.5 D. Corneal topography maps and contrast sensitivity were measured and analyzed for every eye before and one year after LASIK for the analysis of corneal asphericity and wavefront aberrations. Results: Preoperatively, only 4th and 6th order aberration had significant correlation with corneal asphericity and apical radius of curvature (p<0.001). Postoperatively, all 3th to 6th order aberrations had statistically significant correlation with corneal asphericity (p<0.01), but only 4th and 6th order aberration had significant correlation with apical radius of curvature (p<0.05). The asymmetrical aberration like coma had significant correlation with vertical offset of pupil center (p<0.01). Preoperatively, corneal aberrations had no significant correlation with visual acuity and area under the log contrast sensitivity (AULCSF) (P>0.05). Postoperatively, corneal aberrations still didn't have significant correlation with visual acuity (P>0.05), but had significantly negative correlation with AULCSF (P<0.01). Corneal asphericity had no significant correlation with AULCSF before and after the treatment (P>0.05). Conclusions: Corneal aberrations had different correlation with corneal profile and visual performance for eyes of virgin myopia and postoperative LASIK, which may be due to changed corneal profile and limitation of metrics of corneal aberrations.
CMB ISW-lensing bispectrum from cosmic strings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamauchi, Daisuke; Sendouda, Yuuiti; Takahashi, Keitaro, E-mail: yamauchi@resceu.s.u-tokyo.ac.jp, E-mail: sendouda@cc.hirosaki-u.ac.jp, E-mail: keitaro@sci.kumamoto-u.ac.jp
2014-02-01
We study the effect of weak lensing by cosmic (super-)strings on the higher-order statistics of the cosmic microwave background (CMB). A cosmic string segment is expected to cause weak lensing as well as an integrated Sachs-Wolfe (ISW) effect, the so-called Gott-Kaiser-Stebbins (GKS) effect, to the CMB temperature fluctuation, which are thus naturally cross-correlated. We point out that, in the presence of such a correlation, yet another kind of the post-recombination CMB temperature bispectra, the ISW-lensing bispectra, will arise in the form of products of the auto- and cross-power spectra. We first present an analytic method to calculate the autocorrelation ofmore » the temperature fluctuations induced by the strings, and the cross-correlation between the temperature fluctuation and the lensing potential both due to the string network. In our formulation, the evolution of the string network is assumed to be characterized by the simple analytic model, the velocity-dependent one scale model, and the intercommutation probability is properly incorporated in order to characterize the possible superstringy nature. Furthermore, the obtained power spectra are dominated by the Poisson-distributed string segments, whose correlations are assumed to satisfy the simple relations. We then estimate the signal-to-noise ratios of the string-induced ISW-lensing bispectra and discuss the detectability of such CMB signals from the cosmic string network. It is found that in the case of the smaller string tension, Gμ << 10{sup -7}, the ISW-lensing bispectrum induced by a cosmic string network can constrain the string-model parameters even more tightly than the purely GKS-induced bispectrum in the ongoing and future CMB observations on small scales.« less
Protein structure similarity from Principle Component Correlation analysis.
Zhou, Xiaobo; Chou, James; Wong, Stephen T C
2006-01-25
Owing to rapid expansion of protein structure databases in recent years, methods of structure comparison are becoming increasingly effective and important in revealing novel information on functional properties of proteins and their roles in the grand scheme of evolutionary biology. Currently, the structural similarity between two proteins is measured by the root-mean-square-deviation (RMSD) in their best-superimposed atomic coordinates. RMSD is the golden rule of measuring structural similarity when the structures are nearly identical; it, however, fails to detect the higher order topological similarities in proteins evolved into different shapes. We propose new algorithms for extracting geometrical invariants of proteins that can be effectively used to identify homologous protein structures or topologies in order to quantify both close and remote structural similarities. We measure structural similarity between proteins by correlating the principle components of their secondary structure interaction matrix. In our approach, the Principle Component Correlation (PCC) analysis, a symmetric interaction matrix for a protein structure is constructed with relationship parameters between secondary elements that can take the form of distance, orientation, or other relevant structural invariants. When using a distance-based construction in the presence or absence of encoded N to C terminal sense, there are strong correlations between the principle components of interaction matrices of structurally or topologically similar proteins. The PCC method is extensively tested for protein structures that belong to the same topological class but are significantly different by RMSD measure. The PCC analysis can also differentiate proteins having similar shapes but different topological arrangements. Additionally, we demonstrate that when using two independently defined interaction matrices, comparison of their maximum eigenvalues can be highly effective in clustering structurally or topologically similar proteins. We believe that the PCC analysis of interaction matrix is highly flexible in adopting various structural parameters for protein structure comparison.
CMB ISW-lensing bispectrum from cosmic strings
NASA Astrophysics Data System (ADS)
Yamauchi, Daisuke; Sendouda, Yuuiti; Takahashi, Keitaro
2014-02-01
We study the effect of weak lensing by cosmic (super-)strings on the higher-order statistics of the cosmic microwave background (CMB). A cosmic string segment is expected to cause weak lensing as well as an integrated Sachs-Wolfe (ISW) effect, the so-called Gott-Kaiser-Stebbins (GKS) effect, to the CMB temperature fluctuation, which are thus naturally cross-correlated. We point out that, in the presence of such a correlation, yet another kind of the post-recombination CMB temperature bispectra, the ISW-lensing bispectra, will arise in the form of products of the auto- and cross-power spectra. We first present an analytic method to calculate the autocorrelation of the temperature fluctuations induced by the strings, and the cross-correlation between the temperature fluctuation and the lensing potential both due to the string network. In our formulation, the evolution of the string network is assumed to be characterized by the simple analytic model, the velocity-dependent one scale model, and the intercommutation probability is properly incorporated in order to characterize the possible superstringy nature. Furthermore, the obtained power spectra are dominated by the Poisson-distributed string segments, whose correlations are assumed to satisfy the simple relations. We then estimate the signal-to-noise ratios of the string-induced ISW-lensing bispectra and discuss the detectability of such CMB signals from the cosmic string network. It is found that in the case of the smaller string tension, Gμ << 10-7, the ISW-lensing bispectrum induced by a cosmic string network can constrain the string-model parameters even more tightly than the purely GKS-induced bispectrum in the ongoing and future CMB observations on small scales.
Nonlinear circuits for naturalistic visual motion estimation
Fitzgerald, James E; Clark, Damon A
2015-01-01
Many animals use visual signals to estimate motion. Canonical models suppose that animals estimate motion by cross-correlating pairs of spatiotemporally separated visual signals, but recent experiments indicate that humans and flies perceive motion from higher-order correlations that signify motion in natural environments. Here we show how biologically plausible processing motifs in neural circuits could be tuned to extract this information. We emphasize how known aspects of Drosophila's visual circuitry could embody this tuning and predict fly behavior. We find that segregating motion signals into ON/OFF channels can enhance estimation accuracy by accounting for natural light/dark asymmetries. Furthermore, a diversity of inputs to motion detecting neurons can provide access to more complex higher-order correlations. Collectively, these results illustrate how non-canonical computations improve motion estimation with naturalistic inputs. This argues that the complexity of the fly's motion computations, implemented in its elaborate circuits, represents a valuable feature of its visual motion estimator. DOI: http://dx.doi.org/10.7554/eLife.09123.001 PMID:26499494
CMB internal delensing with general optimal estimator for higher-order correlations
Namikawa, Toshiya
2017-05-24
We present here a new method for delensing B modes of the cosmic microwave background (CMB) using a lensing potential reconstructed from the same realization of the CMB polarization (CMB internal delensing). The B -mode delensing is required to improve sensitivity to primary B modes generated by, e.g., the inflationary gravitational waves, axionlike particles, modified gravity, primordial magnetic fields, and topological defects such as cosmic strings. However, the CMB internal delensing suffers from substantial biases due to correlations between observed CMB maps to be delensed and that used for reconstructing a lensing potential. Since the bias depends on realizations, wemore » construct a realization-dependent (RD) estimator for correcting these biases by deriving a general optimal estimator for higher-order correlations. The RD method is less sensitive to simulation uncertainties. Compared to the previous ℓ -splitting method, we find that the RD method corrects the biases without substantial degradation of the delensing efficiency.« less
Optical aberrations induced by subclinical decentrations of the ablation pattern
NASA Astrophysics Data System (ADS)
Mrochen, Michael; Kaemmerer, Maik; Riedel, Peter; Mierdel, Peter; Krinke, Hans-Eberhard; Seiler, Theo
2000-06-01
Purpose: The aim of this work was to study the effect of currently used ablation profiles along with eccentric ablations on the increase of higher order aberrations observed after PRK. Material and Methods: The optical aberrations of 10 eyes were tested before and after PRK. Refractive surgery was performed using a ArF-excimer laser system. In all cases, the ablation zone was 6 mm or larger. The spherical equivalent of the correction was ranging from -2.5 D to -6.0 D. The measured wavefront error was compared to numerical simulations done with the reduced eye model and currently used ablation profiles as well as compared with experimental results obtained from ablation on PMMA balls. Results: The aberration measurements result in a considerable change of the spherical- and coma-like wavefront errors. This result was in good correlation with the numerical simulations and the experimental results. Furthermore, it has been derived that the major contribution on the induced higher order aberrations are a result of the small decentration (less than 1.0 mm) of the ablation zone. Conclusions: Higher order spherical- and coma-like aberrations after PRK are mainly determined by the decentration of the ablation zone during laser refractive surgery. However, future laser systems should use efficient eye-tracking systems and aspherical ablation profiles to overcome this problem.
Paternal-age and birth-order effect on the human secondary sex ratio.
Ruder, A
1985-01-01
Because of conflicting results in previous analyses of possible maternal and paternal effects on the variation in sex ratio at birth, records of United States live births in 1975 were sorted by offspring sex, live birth order (based on maternal parity), parental races, and, unlike prior studies, ungrouped parental ages. Linear regression and logistic analysis showed significant effects of birth order and paternal age on sex ratio in the white race data (1.67 million births; 10,219 different combinations of independent variables). Contrary to previous reported results, the paternal-age effect cannot be ascribed wholly to the high correlation between paternal age and birth order as maternal age, even more highly correlated with birth order, does not account for a significant additional reduction in sex-ratio variation over that accounted for by birth order alone. PMID:3985011
Cumulative query method for influenza surveillance using search engine data.
Seo, Dong-Woo; Jo, Min-Woo; Sohn, Chang Hwan; Shin, Soo-Yong; Lee, JaeHo; Yu, Maengsoo; Kim, Won Young; Lim, Kyoung Soo; Lee, Sang-Il
2014-12-16
Internet search queries have become an important data source in syndromic surveillance system. However, there is currently no syndromic surveillance system using Internet search query data in South Korea. The objective of this study was to examine correlations between our cumulative query method and national influenza surveillance data. Our study was based on the local search engine, Daum (approximately 25% market share), and influenza-like illness (ILI) data from the Korea Centers for Disease Control and Prevention. A quota sampling survey was conducted with 200 participants to obtain popular queries. We divided the study period into two sets: Set 1 (the 2009/10 epidemiological year for development set 1 and 2010/11 for validation set 1) and Set 2 (2010/11 for development Set 2 and 2011/12 for validation Set 2). Pearson's correlation coefficients were calculated between the Daum data and the ILI data for the development set. We selected the combined queries for which the correlation coefficients were .7 or higher and listed them in descending order. Then, we created a cumulative query method n representing the number of cumulative combined queries in descending order of the correlation coefficient. In validation set 1, 13 cumulative query methods were applied, and 8 had higher correlation coefficients (min=.916, max=.943) than that of the highest single combined query. Further, 11 of 13 cumulative query methods had an r value of ≥.7, but 4 of 13 combined queries had an r value of ≥.7. In validation set 2, 8 of 15 cumulative query methods showed higher correlation coefficients (min=.975, max=.987) than that of the highest single combined query. All 15 cumulative query methods had an r value of ≥.7, but 6 of 15 combined queries had an r value of ≥.7. Cumulative query method showed relatively higher correlation with national influenza surveillance data than combined queries in the development and validation set.
Resonant radiation from oscillating higher order solitons
Driben, R.; Yulin, A. V.; Efimov, A.
2015-07-15
We present radiation mechanism exhibited by a higher order soliton. In a course of its evolution the higher-order soliton emits polychromatic radiation resulting in formation of multipeak frequency comb-like spectral band. Moreover, the shape and spectral position of this band can be effectively controlled by the relative strength of the third order dispersion. An analytical description is corroborated by numerical simulations. It is also shown that for longer pulses the described effect persists also under the action of higher order perturbations such as Raman and self-steepening.
Tan, Ee Lim; Pereles, Brandon D.
2010-01-01
A wireless sensor based on the magnetoelastic, magnetically soft ferromagnetic alloy was constructed for remote measurement of pressure in flowing fluids. The pressure sensor was a rectangular strip of ferromagnetic alloy Fe40Ni38Mo4B18 adhered on a solid polycarbonate substrate and protected by a thin polycarbonate film. Upon excitation of a time-varying magnetic field through an excitation coil, the magnetically soft sensor magnetized and produced higher-order harmonic fields, which were detected through a detection coil. Under varying pressures, the sensor's magnetoelastic property caused a change in its magnetization, altering the amplitudes of the higher-order harmonic fields. A theoretical model was developed to describe the effect of pressure on the sensor's higher order harmonic fields. Experimental observations showed the 2nd order harmonic field generated by the pressure sensor was correlated to the surrounding fluid pressure, consistent with the theoretical results. Furthermore, it was demonstrated that the sensor exhibited good repeatability and stability with minimal drift. Sensors with smaller dimensions were shown to have greater sensitivity but lower pressure range as compared to their larger counterparts. Since the sensor signal was also dependent on the location of the sensor with respect to the excitation/detection coil, a calibration algorithm was developed to eliminate signal variations due to the changing sensor location. Because of its wireless and passive nature, this sensor is useful for continuous and long-term monitoring of pressure at inaccessible areas. For example, sensors with these capabilities are suitable to be used in biomedical applications where permanent implantation and long-term monitoring are needed. PMID:20514363
Signal Processing Studies of a Simulated Laser Doppler Velocimetry-Based Acoustic Sensor
1990-10-17
investigated using spectral correlation methods. Results indicate that it may be possible to extend demonstrated LDV-based acoustic sensor sensitivities using higher order processing techniques. (Author)
Kinetic theory of coupled oscillators.
Hildebrand, Eric J; Buice, Michael A; Chow, Carson C
2007-02-02
We present an approach for the description of fluctuations that are due to finite system size induced correlations in the Kuramoto model of coupled oscillators. We construct a hierarchy for the moments of the density of oscillators that is analogous to the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy in the kinetic theory of plasmas and gases. To calculate the lowest order system size effect, we truncate this hierarchy at second order and solve the resulting closed equations for the two-oscillator correlation function around the incoherent state. We use this correlation function to compute the fluctuations of the order parameter, including the effect of transients, and compare this computation with numerical simulations.
Quantum imaging with incoherently scattered light from a free-electron laser
NASA Astrophysics Data System (ADS)
Schneider, Raimund; Mehringer, Thomas; Mercurio, Giuseppe; Wenthaus, Lukas; Classen, Anton; Brenner, Günter; Gorobtsov, Oleg; Benz, Adrian; Bhatti, Daniel; Bocklage, Lars; Fischer, Birgit; Lazarev, Sergey; Obukhov, Yuri; Schlage, Kai; Skopintsev, Petr; Wagner, Jochen; Waldmann, Felix; Willing, Svenja; Zaluzhnyy, Ivan; Wurth, Wilfried; Vartanyants, Ivan A.; Röhlsberger, Ralf; von Zanthier, Joachim
2018-02-01
The advent of accelerator-driven free-electron lasers (FEL) has opened new avenues for high-resolution structure determination via diffraction methods that go far beyond conventional X-ray crystallography methods. These techniques rely on coherent scattering processes that require the maintenance of first-order coherence of the radiation field throughout the imaging procedure. Here we show that higher-order degrees of coherence, displayed in the intensity correlations of incoherently scattered X-rays from an FEL, can be used to image two-dimensional objects with a spatial resolution close to or even below the Abbe limit. This constitutes a new approach towards structure determination based on incoherent processes, including fluorescence emission or wavefront distortions, generally considered detrimental for imaging applications. Our method is an extension of the landmark intensity correlation measurements of Hanbury Brown and Twiss to higher than second order, paving the way towards determination of structure and dynamics of matter in regimes where coherent imaging methods have intrinsic limitations.
Bignardi, A B; El Faro, L; Cardoso, V L; Machado, P F; Albuquerque, L G
2009-09-01
The objective of the present study was to estimate milk yield genetic parameters applying random regression models and parametric correlation functions combined with a variance function to model animal permanent environmental effects. A total of 152,145 test-day milk yields from 7,317 first lactations of Holstein cows belonging to herds located in the southeastern region of Brazil were analyzed. Test-day milk yields were divided into 44 weekly classes of days in milk. Contemporary groups were defined by herd-test-day comprising a total of 2,539 classes. The model included direct additive genetic, permanent environmental, and residual random effects. The following fixed effects were considered: contemporary group, age of cow at calving (linear and quadratic regressions), and the population average lactation curve modeled by fourth-order orthogonal Legendre polynomial. Additive genetic effects were modeled by random regression on orthogonal Legendre polynomials of days in milk, whereas permanent environmental effects were estimated using a stationary or nonstationary parametric correlation function combined with a variance function of different orders. The structure of residual variances was modeled using a step function containing 6 variance classes. The genetic parameter estimates obtained with the model using a stationary correlation function associated with a variance function to model permanent environmental effects were similar to those obtained with models employing orthogonal Legendre polynomials for the same effect. A model using a sixth-order polynomial for additive effects and a stationary parametric correlation function associated with a seventh-order variance function to model permanent environmental effects would be sufficient for data fitting.
Higher-order Kerr effect and harmonic cascading in gases.
Bache, Morten; Eilenberger, Falk; Minardi, Stefano
2012-11-15
The higher-order Kerr effect (HOKE) has recently been advocated to explain measurements of the saturation of the nonlinear refractive index in gases. Here we show that cascaded third-harmonic generation results in an effective fifth-order nonlinearity that is negative and significant. Higher-order harmonic cascading will also occur from the HOKE, and the cascading contributions may significantly modify the observed nonlinear index change. At lower wavelengths, cascading increases the HOKE saturation intensity, while for longer wavelengths cascading will decrease the HOKE saturation intensity.
NASA Astrophysics Data System (ADS)
Zhang, Tingxian; Xie, Luyou; Li, Jiguang; Lu, Zehuang
2017-07-01
We calculated the magnetic dipole and the electric quadrupole hyperfine interaction constants of 3 s 3 p 3,1P1o states and the isotope shift, including mass and field shift, factors for transitions from these two states to the ground state 3 s 2 1S0 in Al+ ions using the multiconfiguration Dirac-Hartree-Fock method. The effects of the electron correlations and the Breit interaction on these physical quantities were investigated in detail based on the active space approach. It is found that the core-core and the higher order correlations are considerable for evaluating the uncertainties of the atomic parameters concerned. The uncertainties of the hyperfine interaction constants in this work are less than 1.6%. Although the isotope shift factors are highly sensitive to the electron correlations, reasonable uncertainties were obtained by exploring the effects of the electron correlations. Moreover, we found that the relativistic nuclear recoil corrections to the mass shift factors are very small and insensitive to the electron correlations for Al+. These atomic parameters present in this work are valuable for extracting the nuclear electric quadrupole moments and the mean-square charge radii of Al isotopes.
Goicoechea, Héctor C; Olivieri, Alejandro C; Tauler, Romà
2010-03-01
Correlation constrained multivariate curve resolution-alternating least-squares is shown to be a feasible method for processing first-order instrumental data and achieve analyte quantitation in the presence of unexpected interferences. Both for simulated and experimental data sets, the proposed method could correctly retrieve the analyte and interference spectral profiles and perform accurate estimations of analyte concentrations in test samples. Since no information concerning the interferences was present in calibration samples, the proposed multivariate calibration approach including the correlation constraint facilitates the achievement of the so-called second-order advantage for the analyte of interest, which is known to be present for more complex higher-order richer instrumental data. The proposed method is tested using a simulated data set and two experimental data systems, one for the determination of ascorbic acid in powder juices using UV-visible absorption spectral data, and another for the determination of tetracycline in serum samples using fluorescence emission spectroscopy.
General and specific consciousness: a first-order representationalist approach
Mehta, Neil; Mashour, George A.
2013-01-01
It is widely acknowledged that a complete theory of consciousness should explain general consciousness (what makes a state conscious at all) and specific consciousness (what gives a conscious state its particular phenomenal quality). We defend first-order representationalism, which argues that consciousness consists of sensory representations directly available to the subject for action selection, belief formation, planning, etc. We provide a neuroscientific framework for this primarily philosophical theory, according to which neural correlates of general consciousness include prefrontal cortex, posterior parietal cortex, and non-specific thalamic nuclei, while neural correlates of specific consciousness include sensory cortex and specific thalamic nuclei. We suggest that recent data support first-order representationalism over biological theory, higher-order representationalism, recurrent processing theory, information integration theory, and global workspace theory. PMID:23882231
Nosworthy, Matthew G; Medina, Gerardo; Franczyk, Adam J; Neufeld, Jason; Appah, Paulyn; Utioh, Alphonsus; Frohlich, Peter; House, James D
2018-02-01
In order to determine the effect of extrusion, baking and cooking on the protein quality of red and green lentils, a rodent bioassay was conducted and compared to an in vitro method of protein quality determination. On average, the Protein Digestibility-Corrected Amino Acid Score of red lentils (55.0) was higher than that of green lentils (50.8). Extruded lentil flour had higher scores (63.01 red, 57.09 green) than either cooked (57.40 red, 52.92 green) or baked (53.84 red, 47.14 green) flours. The average Digestible Indispensable Amino Acid Score of red lentils (0.54) was higher than green lentils (0.49). The Protein Efficiency Ratio of the extruded lentil flours (1.30 red, 1.34 green) was higher than that of the baked flour (0.98 red, 1.09 green). A correlation was found between in vivo and in vitro methods of determining protein digestibility (R 2 =0.8934). This work could influence selection of processing method during product development. Copyright © 2017 Elsevier Ltd. All rights reserved.
The effect of temperature on the sensitivity of Daphnia magna to cyanobacteria is genus dependent.
Hochmuth, Jennifer D; De Schamphelaere, Karel A C
2014-10-01
In the present study, the authors investigated the effects of 6 different genera of cyanobacteria on multiple endpoints of Daphnia magna in a 21-d life table experiment conducted at 3 different temperatures (15 °C, 19 °C, and 23 °C). The specific aims were to test if the effect of temperature on Daphnia's sensitivity to cyanobacteria differed among different cyanobacteria and if the rank order from most to least harmful cyanobacteria to Daphnia reproduction changed or remained the same across the studied temperature range. Overall, the authors observed a decrease in harmful effects on reproduction with increasing temperature for Microcystis, Nodularia, and Aphanizomenon, and an increase in harmful effects with increasing temperature for Anabaena and Oscillatoria. No effect of temperature was observed on Daphnia sensitivity to Cylindrospermopsis. Harmful effects of Microcystis and Nodularia on reproduction appear to be mirrored by a decrease in length. On the other hand, harmful effects of Anabaena, Aphanizomenon, and Oscillatoria on reproduction were correlated with a decrease in intrinsic rate of natural increase, which was matched by a later onset of reproduction in exposures to Oscillatoria. In addition, the results suggest that the cyanobacteria rank order of harmfulness may change with temperature. Higher temperatures may increase the sensitivity of D. magna to the presence of some cyanobacteria (Anabaena and Oscillatoria) in their diet, whereas the harmful effects of others (Microcystis, Nodularia, and Aphanizomenon) may be reduced by higher temperatures. © 2014 SETAC.
ERIC Educational Resources Information Center
Miller, Joshua D.; Zeichner, Amos; Wilson, Lauren F.
2012-01-01
Although many studies of personality and aggression focus on multidimensional traits and higher order personality disorders (e.g., psychopathy), lower order, unidimensional traits may provide more precision in identifying specific aspects of personality that relate to aggression. The current study includes a comprehensive measurement of lower…
Lammel, D R; Azevedo, L C B; Paula, A M; Armas, R D; Baretta, D; Cardoso, E J B N
2015-11-01
Brazil is the biggest coffee producer in the world and different plantation management systems have been applied to improve sustainability and soil quality. Little is known about the environmental effects of these different management systems, therefore, the goal of this study was to use soil biological parameters as indicators of changes. Soils from plantations in Southeastern Brazil with conventional (CC), organic (OC) and integrated management systems containing intercropping of Brachiaria decumbens (IB) or Arachis pintoi (IA) were sampled. Total organic carbon (TOC), microbial biomass carbon (MBC) and nitrogen (MBN), microbial activity (C-CO2), metabolic quotient (qCO2), the enzymes dehydrogenase, urease, acid phosphatase and arylsulphatase, arbuscular mycorrhizal fungi (AMF) colonization and number of spores and soil fauna were evaluated. The greatest difference between the management systems was seen in soil organic matter content. The largest quantity of TOC was found in the OC, and the smallest was found in IA. TOC content influenced soil biological parameters. The use of all combined attributes was necessary to distinguish the four systems. Each management presented distinct faunal structure, and the data obtained with the trap method was more reliable than the TSBF (Tropical Soils) method. A canonic correlation analysis showed that Isopoda was correlated with TOC and the most abundant order with OC. Isoptera was the most abundant faunal order in IA and correlated with MBC. Overall, OC had higher values for most of the biological measurements and higher populations of Oligochaeta and Isopoda, corroborating with the concept that the OC is a more sustainable system.
Global analysis of Skyrme forces with higher-order density dependencies
NASA Astrophysics Data System (ADS)
Zuo, Zhi-Wei; Pei, Jun-Chen; Xiong, Xue-Yu; Zhu, Yi
2018-05-01
The density-dependent term in Skyrme forces is essential to simulate three-body and many-body correlations beyond the low-momentum two-body interaction. We speculate that a single density term may be insufficient and a higher-order density dependent term is added. The present work investigates the influence of higher-order density dependencies based on extended UNEDF0 and SkM* forces. Global descriptions of nuclear masses and charge radii are presented. The extended UNEDF0 force gives a global rms error on binding energies of 1.29 MeV. The influence on fission barriers and equation of state are also investigated. Perspectives to improve Skyrme forces are discussed, including global center-of-mass corrections and Lipkin-Nogami pairing corrections. Supported by National Natural Science Foundation of China (11522538)
Thermodynamics of higher dimensional black holes with higher order thermal fluctuations
NASA Astrophysics Data System (ADS)
Pourhassan, B.; Kokabi, K.; Rangyan, S.
2017-12-01
In this paper, we consider higher order corrections of the entropy, which coming from thermal fluctuations, and find their effect on the thermodynamics of higher dimensional charged black holes. Leading order thermal fluctuation is logarithmic term in the entropy while higher order correction is proportional to the inverse of original entropy. We calculate some thermodynamics quantities and obtain the effect of logarithmic and higher order corrections of entropy on them. Validity of the first law of thermodynamics investigated and Van der Waals equation of state of dual picture studied. We find that five-dimensional black hole behaves as Van der Waals, but higher dimensional case have not such behavior. We find that thermal fluctuations are important in stability of black hole hence affect unstable/stable black hole phase transition.
Generalized lattice Boltzmann model for flow through tight porous media with Klinkenberg's effect
NASA Astrophysics Data System (ADS)
Chen, Li; Fang, Wenzhen; Kang, Qinjun; De'Haven Hyman, Jeffrey; Viswanathan, Hari S.; Tao, Wen-Quan
2015-03-01
Gas slippage occurs when the mean free path of the gas molecules is in the order of the characteristic pore size of a porous medium. This phenomenon leads to Klinkenberg's effect where the measured permeability of a gas (apparent permeability) is higher than that of the liquid (intrinsic permeability). A generalized lattice Boltzmann model is proposed for flow through porous media that includes Klinkenberg's effect, which is based on the model of Guo et al. [Phys. Rev. E 65, 046308 (2002), 10.1103/PhysRevE.65.046308]. The second-order Beskok and Karniadakis-Civan's correlation [A. Beskok and G. Karniadakis, Microscale Thermophys. Eng. 3, 43 (1999), 10.1080/108939599199864 and F. Civan, Transp. Porous Med. 82, 375 (2010), 10.1007/s11242-009-9432-z] is adopted to calculate the apparent permeability based on intrinsic permeability and the Knudsen number. Fluid flow between two parallel plates filled with porous media is simulated to validate the model. Simulations performed in a heterogeneous porous medium with components of different porosity and permeability indicate that Klinkenberg's effect plays a significant role on fluid flow in low-permeability porous media, and it is more pronounced as the Knudsen number increases. Fluid flow in a shale matrix with and without fractures is also studied, and it is found that the fractures greatly enhance the fluid flow and Klinkenberg's effect leads to higher global permeability of the shale matrix.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markiewicz, R. S.; Buda, I. G.; Mistark, P.
Here, we propose a new approach to understand the origin of the pseudogap in the cuprates, in terms of bosonic entropy. The near-simultaneous softening of a large number of different q-bosons yields an extended range of short-range order, wherein the growth of magnetic correlations with decreasing temperature T is anomalously slow. These entropic effects cause the spectral weight associated with the Van Hove singularity (VHS) to shift rapidly and nearly linearly toward half filling at higher T, consistent with a picture of the VHS driving the pseudogap transition at a temperature ~T*. As a byproduct, we develop an order-parameter classificationmore » scheme that predicts supertransitions between families of order parameters. As one example, we find that by tuning the hopping parameters, it is possible to drive the cuprates across a transition between Mott and Slater physics, where a spin-frustrated state emerges at the crossover.« less
Entropic Origin of Pseudogap Physics and a Mott-Slater Transition in Cuprates
Markiewicz, R. S.; Buda, I. G.; Mistark, P.; ...
2017-03-22
Here, we propose a new approach to understand the origin of the pseudogap in the cuprates, in terms of bosonic entropy. The near-simultaneous softening of a large number of different q-bosons yields an extended range of short-range order, wherein the growth of magnetic correlations with decreasing temperature T is anomalously slow. These entropic effects cause the spectral weight associated with the Van Hove singularity (VHS) to shift rapidly and nearly linearly toward half filling at higher T, consistent with a picture of the VHS driving the pseudogap transition at a temperature ~T*. As a byproduct, we develop an order-parameter classificationmore » scheme that predicts supertransitions between families of order parameters. As one example, we find that by tuning the hopping parameters, it is possible to drive the cuprates across a transition between Mott and Slater physics, where a spin-frustrated state emerges at the crossover.« less
A Demand-Driven Approach for a Multi-Agent System in Supply Chain Management
NASA Astrophysics Data System (ADS)
Kovalchuk, Yevgeniya; Fasli, Maria
This paper presents the architecture of a multi-agent decision support system for Supply Chain Management (SCM) which has been designed to compete in the TAC SCM game. The behaviour of the system is demand-driven and the agents plan, predict, and react dynamically to changes in the market. The main strength of the system lies in the ability of the Demand agent to predict customer winning bid prices - the highest prices the agent can offer customers and still obtain their orders. This paper investigates the effect of the ability to predict customer order prices on the overall performance of the system. Four strategies are proposed and compared for predicting such prices. The experimental results reveal which strategies are better and show that there is a correlation between the accuracy of the models' predictions and the overall system performance: the more accurate the prediction of customer order prices, the higher the profit.
NASA Astrophysics Data System (ADS)
Gabel, Scott A.; Luck, Linda A.; Werbelow, Lawrence G.; London, Robert E.
1997-10-01
The13C multiplet structure ofD-[1-13C,1-2H]glucose complexed to theEscherichia coliperiplasmic glucose/galactose receptor has been studied as a function of temperature. Asymmetric multiplet patterns observed are shown to arise from dynamic frequency shifts. Multiplet asymmetry contributions resulting from shift anisotropy-dipolar cross correlations were found to be small, with optimal fits of the data corresponding to small, negative values of the correlation factor, χCD-CSA. Additional broadening at higher temperatures most probably results from ligand exchange between free and complexed states. Effects of internal motion are also considered theoretically, and indicate that the order parameter for the bound glucose is ≥0.9.
Composite vibrational spectroscopy of the group 12 difluorides: ZnF2, CdF2, and HgF2.
Solomonik, Victor G; Smirnov, Alexander N; Navarkin, Ilya S
2016-04-14
The vibrational spectra of group 12 difluorides, MF2 (M = Zn, Cd, Hg), were investigated via coupled cluster singles, doubles, and perturbative triples, CCSD(T), including core correlation, with a series of correlation consistent basis sets ranging in size from triple-zeta through quintuple-zeta quality, which were then extrapolated to the complete basis set (CBS) limit using a variety of extrapolation procedures. The explicitly correlated coupled cluster method, CCSD(T)-F12b, was employed as well. Although exhibiting quite different convergence behavior, the F12b method yielded the CBS limit estimates closely matching more computationally expensive conventional CBS extrapolations. The convergence with respect to basis set size was examined for the contributions entering into composite vibrational spectroscopy, including those from higher-order correlation accounted for through the CCSDT(Q) level of theory, second-order spin-orbit coupling effects assessed within four-component and two-component relativistic formalisms, and vibrational anharmonicity evaluated via a perturbative treatment. Overall, the composite results are in excellent agreement with available experimental values, except for the CdF2 bond-stretching frequencies compared to spectral assignments proposed in a matrix isolation infrared and Raman study of cadmium difluoride vapor species [Loewenschuss et al., J. Chem. Phys. 50, 2502 (1969); Givan and Loewenschuss, J. Chem. Phys. 72, 3809 (1980)]. These assignments are called into question in the light of the composite results.
Composite vibrational spectroscopy of the group 12 difluorides: ZnF2, CdF2, and HgF2
NASA Astrophysics Data System (ADS)
Solomonik, Victor G.; Smirnov, Alexander N.; Navarkin, Ilya S.
2016-04-01
The vibrational spectra of group 12 difluorides, MF2 (M = Zn, Cd, Hg), were investigated via coupled cluster singles, doubles, and perturbative triples, CCSD(T), including core correlation, with a series of correlation consistent basis sets ranging in size from triple-zeta through quintuple-zeta quality, which were then extrapolated to the complete basis set (CBS) limit using a variety of extrapolation procedures. The explicitly correlated coupled cluster method, CCSD(T)-F12b, was employed as well. Although exhibiting quite different convergence behavior, the F12b method yielded the CBS limit estimates closely matching more computationally expensive conventional CBS extrapolations. The convergence with respect to basis set size was examined for the contributions entering into composite vibrational spectroscopy, including those from higher-order correlation accounted for through the CCSDT(Q) level of theory, second-order spin-orbit coupling effects assessed within four-component and two-component relativistic formalisms, and vibrational anharmonicity evaluated via a perturbative treatment. Overall, the composite results are in excellent agreement with available experimental values, except for the CdF2 bond-stretching frequencies compared to spectral assignments proposed in a matrix isolation infrared and Raman study of cadmium difluoride vapor species [Loewenschuss et al., J. Chem. Phys. 50, 2502 (1969); Givan and Loewenschuss, J. Chem. Phys. 72, 3809 (1980)]. These assignments are called into question in the light of the composite results.
ERIC Educational Resources Information Center
Alsowat, Hamad
2016-01-01
This study aimed at investigating the effect of a suggested EFL Flipped Classroom Teaching Model (EFL-FCTM) on graduate students' English higher-order thinking skills (HOTS), engagement and satisfaction. Also, it investigated the relationship between higher-order thinking skills, engagement and satisfaction. The sample comprised (67) graduate…
From "Hello" to Higher-Order Thinking: The Effect of Coaching and Feedback on Online Chats
ERIC Educational Resources Information Center
Stein, David S.; Wanstreet, Constance E.; Slagle, Paula; Trinko, Lynn A.; Lutz, Michelle
2013-01-01
This exploratory study examined the effect of a coaching and feedback intervention in teaching presence and social presence on higher-order thinking in an online community of inquiry. Coaching occurred before each chat, and feedback was provided immediately afterwards. The findings suggest that over time, the frequency of higher-order thinking…
Higher-Order Spectral Analysis of F-18 Flight Flutter Data
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Dunn, Shane
2005-01-01
Royal Australian Air Force (RAAF) F/A-18 flight flutter test data is presented and analyzed using various techniques. The data includes high-quality measurements of forced responses and limit cycle oscillation (LCO) phenomena. Standard correlation and power spectral density (PSD) techniques are applied to the data and presented. Novel applications of experimentally-identified impulse responses and higher-order spectral techniques are also applied to the data and presented. The goal of this research is to develop methods that can identify the onset of nonlinear aeroelastic phenomena, such as LCO, during flutter testing.
Solid particle erosion mechanisms of protective coatings for aerospace applications
NASA Astrophysics Data System (ADS)
Bousser, Etienne
The main objective of this PhD project is to investigate the material loss mechanisms during Solid Particle Erosion (SPE) of hard protective coatings, including nanocomposite and nanostructured systems. In addition, because of the complex nature of SPE mechanisms, rigorous testing methodologies need to be employed and the effects of all testing parameters need to be fully understood. In this PhD project, the importance of testing methodology is addressed throughout in order to effectively study the SPE mechanisms of brittle materials and coatings. In the initial stage of this thesis, we studied the effect of the addition of silicon (Si) on the microstructure, mechanical properties and, more specifically, on the SPE resistance of thick CrN-based coatings. It was found that the addition of Si significantly improved the erosion resistance and that SPE correlated with the microhardness values, i.e. the coating with the highest microhardness also had the lowest erosion rate (ER). In fact, the ERs showed a much higher dependence on the surface hardness than what has been proposed for brittle erosion mechanisms. In the first article, we study the effects of the particle properties on the SPE behavior of six brittle bulk materials using glass and alumina powders. First, we apply a robust methodology to accurately characterize the elasto-plastic and fracture properties of the studied materials. We then correlate the measured ER to materials' parameters with the help of a morphological study and an analysis of the quasi-static elasto-plastic erosion models. Finally, in order to understand the effects of impact on the particles themselves and to support the energy dissipation-based model proposed here, we study the particle size distributions of the powders before and after erosion testing. It is shown that tests using both powders lead to a material loss mechanism related to lateral fracture, that the higher than predicted velocity exponents point towards a velocity-dependent damage accumulation mechanism correlated to target yield pressure, and that damage accumulation effects are more pronounced for the softer glass powder because of kinetic energy dissipation through different means. In the second article, we study the erosion mechanisms for several hard coatings deposited by pulsed DC magnetron sputtering. We first validate a new methodology for the accurate measurement of volume loss, and we show the importance of optimizing the testing parameters in order to obtain results free from experimental artefacts. We then correlate the measured ERs to the material parameters measured by depth-sensing indentation. In order to understand the material loss mechanisms, we study three of the coating systems in greater detail with the help of fracture characterization and a morphological study of the eroded surfaces. Finally, we study the particle size distributions of the powders before and after erosion testing in an effort to understand the role of particle fracture. We demonstrate that the measured ERs of the coatings are strongly dependent on the target hardness and do not correlate with coating toughness. In fact, the material removal mechanism is found to occur through repeated ductile indentation and cutting of the surface by the impacting particles and that particle breakup is not sufficiently large to influence the results significantly. Studying SPE mechanisms of hard protective coating systems in detail has proven to be quite challenging in the past, given that conventional SPE testing is notoriously inaccurate due to its aggressive nature and its many methodological uncertainties. In the third article, we present a novel in situ real-time erosion testing methodology using a quartz crystal microbalance, developed in order to study the SPE process of hard protective coating systems. Using conventional mass loss SPE testing, we validate and discuss the advantages and challenges related to such a method. In addition, this time-resolved technique enables us to discuss some transient events present during SPE testing of hard coating systems leading to new insights into the erosion process. (Abstract shortened by UMI.)
ERIC Educational Resources Information Center
Sen, Anindya; Clemente, Anthony
2010-01-01
We exploit the 1986, 1994, and 2001 waves of the Canadian general social surveys in order to estimate intergenerational correlations in education. The use of these specific data is important because of available information on the final educational attainment of survey respondents and both parents, as well as family size and birth order. OLS…
NASA Astrophysics Data System (ADS)
Goveas, Lora Rita; Anuradha, K. N.; Bhagyashree, K. S.; Bhat, S. V.
2015-05-01
To explore the effect of size reduction to nanoscale on the hole doped Sm0.65Ca0.35MnO3 compound, dc magnetic measurements and electron magnetic resonance (EMR) were done on bulk and nanoparticle samples in the temperature range 10 ≤ T ≤ 300 K. Magnetization measurement showed that the bulk sample undergoes a charge ordering transition at 240 K and shows a mixed magnetic phase at low temperature. However, the nanosample underwent a ferromagnetic transition at 75 K, and the charge ordered state was destabilized on size reduction down to nanoscale. The low-temperature ferromagnetic component is found to be enhanced in nanoparticles as compared to their bulk counterpart. Interestingly around room temperature, bulk particles show higher magnetization where as at low temperature nanoparticles show higher magnetization. Ferromagnetism in the bulk is due to super exchange where as ferromagnetism in nanoparticles is due to uncompensated spins of the surface layer. Temperature variation of EMR parameters correlates well with the results of magnetic measurements. The magnetic behaviour of the nanoparticles is understood in terms of the core shell scenario.
The three-point function as a probe of models for large-scale structure
NASA Technical Reports Server (NTRS)
Frieman, Joshua A.; Gaztanaga, Enrique
1993-01-01
The consequences of models of structure formation for higher-order (n-point) galaxy correlation functions in the mildly non-linear regime are analyzed. Several variations of the standard Omega = 1 cold dark matter model with scale-invariant primordial perturbations were recently introduced to obtain more power on large scales, R(sub p) is approximately 20 h(sup -1) Mpc, e.g., low-matter-density (non-zero cosmological constant) models, 'tilted' primordial spectra, and scenarios with a mixture of cold and hot dark matter. They also include models with an effective scale-dependent bias, such as the cooperative galaxy formation scenario of Bower, etal. It is shown that higher-order (n-point) galaxy correlation functions can provide a useful test of such models and can discriminate between models with true large-scale power in the density field and those where the galaxy power arises from scale-dependent bias: a bias with rapid scale-dependence leads to a dramatic decrease of the hierarchical amplitudes Q(sub J) at large scales, r is approximately greater than R(sub p). Current observational constraints on the three-point amplitudes Q(sub 3) and S(sub 3) can place limits on the bias parameter(s) and appear to disfavor, but not yet rule out, the hypothesis that scale-dependent bias is responsible for the extra power observed on large scales.
Excitation Spectra and Brightness Optimization of Two-Photon Excited Probes
Mütze, Jörg; Iyer, Vijay; Macklin, John J.; Colonell, Jennifer; Karsh, Bill; Petrášek, Zdeněk; Schwille, Petra; Looger, Loren L.; Lavis, Luke D.; Harris, Timothy D.
2012-01-01
Two-photon probe excitation data are commonly presented as absorption cross section or molecular brightness (the detected fluorescence rate per molecule). We report two-photon molecular brightness spectra for a diverse set of organic and genetically encoded probes with an automated spectroscopic system based on fluorescence correlation spectroscopy. The two-photon action cross section can be extracted from molecular brightness measurements at low excitation intensities, while peak molecular brightness (the maximum molecular brightness with increasing excitation intensity) is measured at higher intensities at which probe photophysical effects become significant. The spectral shape of these two parameters was similar across all dye families tested. Peak molecular brightness spectra, which can be obtained rapidly and with reduced experimental complexity, can thus serve as a first-order approximation to cross-section spectra in determining optimal wavelengths for two-photon excitation, while providing additional information pertaining to probe photostability. The data shown should assist in probe choice and experimental design for multiphoton microscopy studies. Further, we show that, by the addition of a passive pulse splitter, nonlinear bleaching can be reduced—resulting in an enhancement of the fluorescence signal in fluorescence correlation spectroscopy by a factor of two. This increase in fluorescence signal, together with the observed resemblance of action cross section and peak brightness spectra, suggests higher-order photobleaching pathways for two-photon excitation. PMID:22385865
Suicide and death ideation in older adults obtaining aging services.
O'Riley, Alisa A; Van Orden, Kimberly A; He, Hua; Richardson, Thomas M; Podgorski, Carol; Conwell, Yeates
2014-06-01
To assess the frequency and correlates of death and suicide ideation in older adults accessing aging services. Cross-sectional. Data for this study were collected via in-home interviews. Aging Services Network (ASN) care management clients aged 60 years and older (N = 377) were recruited for this study. The PHQ-9 and the Paykel Suicide Scale were used to assess death and suicide ideation. Correlates of death and suicide ideation were also examined. Fourteen percent of subjects endorsed current death or suicide ideation, 27.9% of subjects endorsed death ideation in the past year, and 9.3% of subjects endorsed suicide ideation in the last year. Current death and suicide ideation were associated with greater depressive symptoms. As compared with individuals without ideation, individuals with death ideation demonstrated higher levels of depressive symptoms, more medical conditions, and lower social support. Individuals with suicide ideation demonstrated higher depressive and anxiety symptoms and less perceived social support. Finally, as compared with individuals with death ideation, individuals with suicide ideation demonstrated higher depressive and anxiety symptoms and more alcohol misuse. Death and suicide ideation are common among ASN clients. There were both differences and similarities between correlates of death and suicide ideation. ASN providers are uniquely situated to address many of the correlates of suicide ideation identified in this study; in order to effectively manage suicide ideation in an ASN setting, however, links to primary and mental health care providers are necessary. Copyright © 2014 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.
Correlation between centrality metrics and their application to the opinion model
NASA Astrophysics Data System (ADS)
Li, Cong; Li, Qian; Van Mieghem, Piet; Stanley, H. Eugene; Wang, Huijuan
2015-03-01
In recent decades, a number of centrality metrics describing network properties of nodes have been proposed to rank the importance of nodes. In order to understand the correlations between centrality metrics and to approximate a high-complexity centrality metric by a strongly correlated low-complexity metric, we first study the correlation between centrality metrics in terms of their Pearson correlation coefficient and their similarity in ranking of nodes. In addition to considering the widely used centrality metrics, we introduce a new centrality measure, the degree mass. The mth-order degree mass of a node is the sum of the weighted degree of the node and its neighbors no further than m hops away. We find that the betweenness, the closeness, and the components of the principal eigenvector of the adjacency matrix are strongly correlated with the degree, the 1st-order degree mass and the 2nd-order degree mass, respectively, in both network models and real-world networks. We then theoretically prove that the Pearson correlation coefficient between the principal eigenvector and the 2nd-order degree mass is larger than that between the principal eigenvector and a lower order degree mass. Finally, we investigate the effect of the inflexible contrarians selected based on different centrality metrics in helping one opinion to compete with another in the inflexible contrarian opinion (ICO) model. Interestingly, we find that selecting the inflexible contrarians based on the leverage, the betweenness, or the degree is more effective in opinion-competition than using other centrality metrics in all types of networks. This observation is supported by our previous observations, i.e., that there is a strong linear correlation between the degree and the betweenness, as well as a high centrality similarity between the leverage and the degree.
NASA Astrophysics Data System (ADS)
Rachmatia, H.; Kusuma, W. A.; Hasibuan, L. S.
2017-05-01
Selection in plant breeding could be more effective and more efficient if it is based on genomic data. Genomic selection (GS) is a new approach for plant-breeding selection that exploits genomic data through a mechanism called genomic prediction (GP). Most of GP models used linear methods that ignore effects of interaction among genes and effects of higher order nonlinearities. Deep belief network (DBN), one of the architectural in deep learning methods, is able to model data in high level of abstraction that involves nonlinearities effects of the data. This study implemented DBN for developing a GP model utilizing whole-genome Single Nucleotide Polymorphisms (SNPs) as data for training and testing. The case study was a set of traits in maize. The maize dataset was acquisitioned from CIMMYT’s (International Maize and Wheat Improvement Center) Global Maize program. Based on Pearson correlation, DBN is outperformed than other methods, kernel Hilbert space (RKHS) regression, Bayesian LASSO (BL), best linear unbiased predictor (BLUP), in case allegedly non-additive traits. DBN achieves correlation of 0.579 within -1 to 1 range.
Complete Hamiltonian analysis of cosmological perturbations at all orders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandi, Debottam; Shankaranarayanan, S., E-mail: debottam@iisertvm.ac.in, E-mail: shanki@iisertvm.ac.in
2016-06-01
In this work, we present a consistent Hamiltonian analysis of cosmological perturbations at all orders. To make the procedure transparent, we consider a simple model and resolve the 'gauge-fixing' issues and extend the analysis to scalar field models and show that our approach can be applied to any order of perturbation for any first order derivative fields. In the case of Galilean scalar fields, our procedure can extract constrained relations at all orders in perturbations leading to the fact that there is no extra degrees of freedom due to the presence of higher time derivatives of the field in themore » Lagrangian. We compare and contrast our approach to the Lagrangian approach (Chen et al. [2006]) for extracting higher order correlations and show that our approach is efficient and robust and can be applied to any model of gravity and matter fields without invoking slow-roll approximation.« less
Esch, Tobias; Winkler, Jeremy; Auwärter, Volker; Gnann, Heike; Huber, Roman; Schmidt, Stefan
2017-01-01
Background: Research has demonstrated that short meditation training may yield higher pain tolerance in acute experimental pain. Our study aimed at examining underlying mechanisms of this alleged effect. In addition, placebo research has shown that higher pain tolerance is mediated via endogenous neuromodulators: experimental inhibition of opioid receptors by naloxone antagonized this effect. We performed a trial to discern possible placebo from meditation-specific effects on pain tolerance and attention. Objectives: It was proposed that (i) meditation training will increase pain tolerance; (ii) naloxone will inhibit this effect; (iii) increased pain tolerance will correlate with improved attention performance and mindfulness. Methods: Randomized-controlled, partly blinded trial with 31 healthy meditation-naïve adults. Pain tolerance was assessed by the tourniquet test, attention performance was measured by Attention Network Test (ANT), self-perceived mindfulness by Freiburg Mindfulness Inventory. 16 participants received a 5-day meditation training, focusing on body/breath awareness; the control group (N = 15) received no intervention. Measures were taken before the intervention and on 3 consecutive days after the training, with all participants receiving either no infusion, naloxone infusion, or saline infusion (blinded). Blood samples were taken in order to determine serum morphine and morphine glucuronide levels by applying liquid chromatography-tandem mass spectrometry analysis. Results: The meditation group produced fewer errors in ANT. Paradoxically, increases in pain tolerance occurred in both groups (accentuated in control), and correlated with reported mindfulness. Naloxone showed a trend to decrease pain tolerance in both groups. Plasma analyses revealed sporadic morphine and/or morphine metabolite findings with no discernable pattern. Discussion: Main objectives could not be verified. Since underlying study goals had not been made explicit to participants, on purpose (framing effects toward a hypothesized mindfulness-pain tolerance correlation were thus avoided, trainees had not been instructed how to ‘use’ mindfulness, regarding pain), the question remains open whether lack of meditation effects on pain tolerance was due to these intended ‘non-placebo’ conditions, cultural effects, or other confounders, or on an unsuitable paradigm. Conclusion: Higher pain tolerance through meditation could not be confirmed. PMID:28184192
Esch, Tobias; Winkler, Jeremy; Auwärter, Volker; Gnann, Heike; Huber, Roman; Schmidt, Stefan
2016-01-01
Background: Research has demonstrated that short meditation training may yield higher pain tolerance in acute experimental pain. Our study aimed at examining underlying mechanisms of this alleged effect. In addition, placebo research has shown that higher pain tolerance is mediated via endogenous neuromodulators: experimental inhibition of opioid receptors by naloxone antagonized this effect. We performed a trial to discern possible placebo from meditation-specific effects on pain tolerance and attention. Objectives: It was proposed that (i) meditation training will increase pain tolerance; (ii) naloxone will inhibit this effect; (iii) increased pain tolerance will correlate with improved attention performance and mindfulness. Methods: Randomized-controlled, partly blinded trial with 31 healthy meditation-naïve adults. Pain tolerance was assessed by the tourniquet test, attention performance was measured by Attention Network Test (ANT), self-perceived mindfulness by Freiburg Mindfulness Inventory. 16 participants received a 5-day meditation training, focusing on body/breath awareness; the control group ( N = 15) received no intervention. Measures were taken before the intervention and on 3 consecutive days after the training, with all participants receiving either no infusion, naloxone infusion, or saline infusion (blinded). Blood samples were taken in order to determine serum morphine and morphine glucuronide levels by applying liquid chromatography-tandem mass spectrometry analysis. Results: The meditation group produced fewer errors in ANT. Paradoxically, increases in pain tolerance occurred in both groups (accentuated in control), and correlated with reported mindfulness. Naloxone showed a trend to decrease pain tolerance in both groups. Plasma analyses revealed sporadic morphine and/or morphine metabolite findings with no discernable pattern. Discussion: Main objectives could not be verified. Since underlying study goals had not been made explicit to participants, on purpose (framing effects toward a hypothesized mindfulness-pain tolerance correlation were thus avoided, trainees had not been instructed how to 'use' mindfulness, regarding pain), the question remains open whether lack of meditation effects on pain tolerance was due to these intended 'non-placebo' conditions, cultural effects, or other confounders, or on an unsuitable paradigm. Conclusion: Higher pain tolerance through meditation could not be confirmed.
Periodic diffraction correlation imaging without a beam-splitter.
Li, Hu; Chen, Zhipeng; Xiong, Jin; Zeng, Guihua
2012-01-30
In this paper, we proposed and demonstrated a new correlation imaging mechanism based on the periodic diffraction effect. In this effect, a periodic intensity pattern is generated at the output surface of a periodic point source array. This novel correlation imaging mechanism can realize super-resolution imaging, Nth-order ghost imaging without a beam-splitter and correlation microscopy.
Molecular dynamics simulation of nonlinear spectroscopies of intermolecular motions in liquid water.
Yagasaki, Takuma; Saito, Shinji
2009-09-15
Water is the most extensively studied of liquids because of both its ubiquity and its anomalous thermodynamic and dynamic properties. The properties of water are dominated by hydrogen bonds and hydrogen bond network rearrangements. Fundamental information on the dynamics of liquid water has been provided by linear infrared (IR), Raman, and neutron-scattering experiments; molecular dynamics simulations have also provided insights. Recently developed higher-order nonlinear spectroscopies open new windows into the study of the hydrogen bond dynamics of liquid water. For example, the vibrational lifetimes of stretches and a bend, intramolecular features of water dynamics, can be accurately measured and are found to be on the femtosecond time scale at room temperature. Higher-order nonlinear spectroscopy is expressed by a multitime correlation function, whereas traditional linear spectroscopy is given by a one-time correlation function. Thus, nonlinear spectroscopy yields more detailed information on the dynamics of condensed media than linear spectroscopy. In this Account, we describe the theoretical background and methods for calculating higher order nonlinear spectroscopy; equilibrium and nonequilibrium molecular dynamics simulations, and a combination of both, are used. We also present the intermolecular dynamics of liquid water revealed by fifth-order two-dimensional (2D) Raman spectroscopy and third-order IR spectroscopy. 2D Raman spectroscopy is sensitive to couplings between modes; the calculated 2D Raman signal of liquid water shows large anharmonicity in the translational motion and strong coupling between the translational and librational motions. Third-order IR spectroscopy makes it possible to examine the time-dependent couplings. The 2D IR spectra and three-pulse photon echo peak shift show the fast frequency modulation of the librational motion. A significant effect of the translational motion on the fast frequency modulation of the librational motion is elucidated by introducing the "translation-free" molecular dynamics simulation. The isotropic pump-probe signal and the polarization anisotropy decay show fast transfer of the librational energy to the surrounding water molecules, followed by relaxation to the hot ground state. These theoretical methods do not require frequently used assumptions and can thus be called ab initio methods; together with multidimensional nonlinear spectroscopies, they provide powerful methods for examining the inter- and intramolecular details of water dynamics.
Generation of Synthetic Spike Trains with Defined Pairwise Correlations
Niebur, Ernst
2008-01-01
Recent technological advances as well as progress in theoretical understanding of neural systems have created a need for synthetic spike trains with controlled mean rate and pairwise cross-correlation. This report introduces and analyzes a novel algorithm for the generation of discretized spike trains with arbitrary mean rates and controlled cross correlation. Pairs of spike trains with any pairwise correlation can be generated, and higher-order correlations are compatible with common synaptic input. Relations between allowable mean rates and correlations within a population are discussed. The algorithm is highly efficient, its complexity increasing linearly with the number of spike trains generated and therefore inversely with the number of cross-correlated pairs. PMID:17521277
NASA Astrophysics Data System (ADS)
Zeng, Lingkun
We performed an angle-resolved photoemission spectroscopy (ARPES) study of the CaFe2(As0.935P0.065)2 in the collapse tetragonal(CT) phase and uncollapse tetragonal(UCT) phase. We find in the CT phase the electronic correlation dramatically reduces respective to UCT phase. Meanwhile, the reduction of correlation in CT phase show an orbital selective effect: correlation in dxy reduces the most, and then dxz/yz, while the one in dz2-r2 almost keeps the same. In CT phase, almost all bands sink downwards to higher binding energy, leading to the hole like bands around Brillouin zone(BZ) center sink below EF compared with UCT phase. However, the electron pocket around Brillouin Zone(BZ) corner(M) in UCT phase, forms a hole pocket around BZ center(Z point) in CT phase. Moreover, the dxy exhibits larger movement down to higher binding energy, resulting in farther away from dyz/xz and closer to dxy.We propose the electron filling ,namely high spin state in UCT phase to low spin state in CT phase(due to competing between crystal structure field and Hund's coupling), other than the Fermi surface nesting might be responsible for the absent of magnetic ordering.
NASA Astrophysics Data System (ADS)
Xue, Lixia; Dai, Yun; Rao, Xuejun; Wang, Cheng; Hu, Yiyun; Liu, Qian; Jiang, Wenhan
2008-01-01
Higher-order aberrations correction can improve visual performance of human eye to some extent. To evaluate how much visual benefit can be obtained with higher-order aberrations correction we developed an adaptive optics vision simulator (AOVS). Dynamic real time optimized modal compensation was used to implement various customized higher-order ocular aberrations correction strategies. The experimental results indicate that higher-order aberrations correction can improve visual performance of human eye comparing with only lower-order aberration correction but the improvement degree and higher-order aberration correction strategy are different from each individual. Some subjects can acquire great visual benefit when higher-order aberrations were corrected but some subjects acquire little visual benefit even though all higher-order aberrations were corrected. Therefore, relative to general lower-order aberrations correction strategy, customized higher-order aberrations correction strategy is needed to obtain optimal visual improvement for each individual. AOVS provides an effective tool for higher-order ocular aberrations optometry for customized ocular aberrations correction.
2014-06-17
100 0 2 4 Wigner distribution 0 50 100 0 0.5 1 Auto-correlation function 0 50 100 0 2 4 L- Wigner distribution 0 50 100 0 0.5 1 Auto-correlation function ...bilinear or higher order autocorrelation functions will increase the number of missing samples, the analysis shows that accurate instantaneous...frequency estimation can be achieved even if we deal with only few samples, as long as the auto-correlation function is properly chosen to coincide with
Local image statistics: maximum-entropy constructions and perceptual salience
Victor, Jonathan D.; Conte, Mary M.
2012-01-01
The space of visual signals is high-dimensional and natural visual images have a highly complex statistical structure. While many studies suggest that only a limited number of image statistics are used for perceptual judgments, a full understanding of visual function requires analysis not only of the impact of individual image statistics, but also, how they interact. In natural images, these statistical elements (luminance distributions, correlations of low and high order, edges, occlusions, etc.) are intermixed, and their effects are difficult to disentangle. Thus, there is a need for construction of stimuli in which one or more statistical elements are introduced in a controlled fashion, so that their individual and joint contributions can be analyzed. With this as motivation, we present algorithms to construct synthetic images in which local image statistics—including luminance distributions, pair-wise correlations, and higher-order correlations—are explicitly specified and all other statistics are determined implicitly by maximum-entropy. We then apply this approach to measure the sensitivity of the human visual system to local image statistics and to sample their interactions. PMID:22751397
Hope and Hopelessness: The Role of Hope in Buffering the Impact of Hopelessness on Suicidal Ideation
Huen, Jenny M. Y.; Ip, Brian Y. T.; Ho, Samuel M. Y.; Yip, Paul S. F.
2015-01-01
Objectives The present study investigated whether hope and hopelessness are better conceptualized as a single construct of bipolar spectrum or two distinct constructs and whether hope can moderate the relationship between hopelessness and suicidal ideation. Methods Hope, hopelessness, and suicidal ideation were measured in a community sample of 2106 participants through a population-based household survey. Results Confirmatory factor analyses showed that a measurement model with separate, correlated second-order factors of hope and hopelessness provided a good fit to the data and was significantly better than that of the model collapsing hope and hopelessness into a single second-order factor. Negative binomial regression showed that hope and hopelessness interacted such that the effect of hopelessness on suicidal ideation was lower in individuals with higher hope than individuals with lower hope. Conclusions Hope and hopelessness are two distinct but correlated constructs. Hope can act as a resilience factor that buffers the impact of hopelessness on suicidal ideation. Inducing hope in people may be a promising avenue for suicide prevention. PMID:26107687
Deterministic diffusion in flower-shaped billiards.
Harayama, Takahisa; Klages, Rainer; Gaspard, Pierre
2002-08-01
We propose a flower-shaped billiard in order to study the irregular parameter dependence of chaotic normal diffusion. Our model is an open system consisting of periodically distributed obstacles in the shape of a flower, and it is strongly chaotic for almost all parameter values. We compute the parameter dependent diffusion coefficient of this model from computer simulations and analyze its functional form using different schemes, all generalizing the simple random walk approximation of Machta and Zwanzig. The improved methods we use are based either on heuristic higher-order corrections to the simple random walk model, on lattice gas simulation methods, or they start from a suitable Green-Kubo formula for diffusion. We show that dynamical correlations, or memory effects, are of crucial importance in reproducing the precise parameter dependence of the diffusion coefficent.
Two-dimensional La2/3Sr4/3MnO4 Manganite Films Probed by Epitaxial Strain and Cation Ordering
NASA Astrophysics Data System (ADS)
Nelson-Cheeseman, Brittany; Santos, Tiffany; Bhattacharya, Anand
2010-03-01
Dimensionality is known to play a central role in the properties of strongly correlated systems. Here we investigate magnetism and transport in thin films of the Ruddlesden-Popper n=1 phase, La1-xSr1+xMnO4. Within this material, the MnO6-octahedra form two-dimensional perovskite sheets separated by an extra rocksalt layer. By fabricating high quality thin films with ozone-assisted molecular beam epitaxy, we study how the effects of epitaxial strain and intentional cation ordering, known as digital synthesis, influence the properties of this 2-dimensional manganite. For example, at the same Mn^3+:Mn^4+ ratio (2:1) as its fully spin-polarized 3D manganite counterpart, this two dimensional analog at x=1/3 only displays a spin glass phase below 20K in bulk. This is believed to result from a competition between superexchange and double exchange, as well as disordered Jahn-Teller distortions. However, in our films we find weak ferromagnetic order up to much higher temperatures in addition to a low temperature spin glass phase. We will discuss how strain and cation order effect the presence of this weak ferromagnetism.
Insularity and the determinants of lizard population density.
Buckley, Lauren B; Jetz, Walter
2007-06-01
The relative effects of resource availability and partitioning on animal population density are unresolved yet central to ecology and conservation. Species-depauperate islands offer an intriguing test case. Across 643 lizard populations from around the world, local abundances are one order of magnitude higher on islands than on mainlands, even when controlled for resource availability. On mainlands, predator and competitor richness only weakly correlate with lizard densities. On islands, sharp reductions in predator and competitor richness are the dominant drivers of lizard abundance. Our results demonstrate the dramatic effect insularity has on the interplay between biotic and abiotic control of animal abundances and the heightened sensitivity of island communities to species' losses and gains.
Wolf, Alexander; Reiher, Markus; Hess, Bernd Artur
2004-05-08
The first molecular calculations with the generalized Douglas-Kroll method up to fifth order in the external potential (DKH5) are presented. We study the spectroscopic parameters and electron affinity of the tin oxide molecule SnO and its anion SnO(-) applying nonrelativistic as well as relativistic calculations with higher orders of the DK approximation. In order to guarantee highly accurate results close to the basis set limit, an all-electron basis for Sn of at least quintuple-zeta quality has been constructed and optimized. All-electron CCSD(T) calculations of the potential energy curves of both SnO and SnO(-) reproduce the experimental values very well. Relative energies and valence properties are already well described with the established standard second-order approximation DKH2 and the higher-order corrections DKH3-DKH5 hardly affect these quantities. However, an accurate description of total energies and inner-shell properties requires superior relativistic schemes up to DKH5. (c) 2004 American Institute of Physics.
Isaksen, Jonas; Leber, Remo; Schmid, Ramun; Schmid, Hans-Jakob; Generali, Gianluca; Abächerli, Roger
2017-02-01
The first-order high-pass filter (AC coupling) has previously been shown to affect the ECG for higher cut-off frequencies. We seek to find a systematic deviation in computer measurements of the electrocardiogram when the AC coupling with a 0.05 Hz first-order high-pass filter is used. The standard 12-lead electrocardiogram from 1248 patients and the automated measurements of their DC and AC coupled version were used. We expect a large unipolar QRS-complex to produce a deviation in the opposite direction in the ST-segment. We found a strong correlation between the QRS integral and the offset throughout the ST-segment. The coefficient for J amplitude deviation was found to be -0.277 µV/(µV⋅s). Potential dangerous alterations to the diagnostically important ST-segment were found. Medical professionals and software developers for electrocardiogram interpretation programs should be aware of such high-pass filter effects since they could be misinterpreted as pathophysiology or some pathophysiology could be masked by these effects. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Shen, L Y; Luo, J; Lei, H G; Jiang, Y Z; Bai, L; Li, M Z; Tang, G Q; Li, X W; Zhang, S H; Zhu, L
2015-11-13
The myosin heavy chain (MyHC) composition, glycolytic potential, mitochondrial content, and gene expression related to energy metabolism were analyzed in eight muscles from Tibetan pigs, to study how meat quality develops in different muscle tissues. The muscles were classified into three clusters, based on MyHC composition: masseter, trapezius, and latissimus dorsi as 'slow-oxidative-type'; psoas major and semimembranosus as 'intermediate-type'; and longissimus dorsi, obliquus externus abdominis, and semitendinosus as 'fast-glycolytic-type'. The 'slow-oxidative-type' muscles had the highest MyHC I and MyHC IIA content (P < 0.01); 'intermediate-type' muscles, the highest MyHC IIx content (P < 0.01); and 'fast-glycolytic-type' muscles, the highest MyHC IIb content (P < 0.01). The pH values measured in 'slow-oxidative-type' muscles were higher than those in the other clusters were; however, the color of 'fast-glycolytic-type' muscles was palest (P < 0.01). Mitochondrial content increased in the order: fast-glycolytic-type < intermediate-type < slow-oxidative-type. In the 'slow-oxidative-type' muscles, the expression levels of genes related to ATP synthesis were higher, but were lower for those related to glycogen synthesis and glycolysis. Mitochondrial content was significantly positively correlated with MyHC I content, but negatively correlated with MyHC IIb content. MyHC I and mitochondrial content were both negatively correlated with glycolytic potential. Overall, muscles used frequently in exercise had a higher proportion of type I fibers. 'Slow-oxidative-type' muscles, rich in type I fibers with higher mitochondrial and lower glycogen and glucose contents, had a higher ATP synthesis efficiency and lower glycolytic capacity, which contributed to their superior meat quality.
Effects of irradiation of Aplysia pacemaker neurons with 20-MeV electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpenter, D.O.; Gaubatz, G.; Willis, J.A.
1978-10-01
Aplysia pacemaker neurons are excited by irradiation with 20-MeV electrons. The response is an increase in discharge frequency occurring immediately after exposure and decaying within a few seconds to minutes except at very high exposures. The threshold is on the order of 1000 rad, and cell inactivation occurs acutely only at doses on the order of 20,000 rad. Within these limits the excitatory effect is more or less linear with dose. The acute effect is not associated with dramatic resistance changes, although the resulting depolarization indicates an increase in Na/sup +/ permeability. Synaptic transmission in this preparation does not appearmore » to be more sensitive than impulse propagation. At very high doses, spike generation is blocked. Neurons recorded for a number of hours following irradiation show a hyperpolarization prior to final depolarization, which suggests that one terminal event may be an accumulation of intracellular Ca/sup 2 +/ leading to increased K/sup +/ conductance. These studies confirm and extend previous observations on the relative radioresistance of Aplysia neurons. With respect to mammalian studies on nervous system susceptibility to high doses of radiation, no events were found which correlate in time with early transient incapacitation. However, the depressed excitability occurring several hours after exposure may correlate with the occurrence of death due to the central nervous system syndrome which is seen in higher aminals.« less
Coupling of soil respiration and nutrient mineralization: What is the role of land use?
NASA Astrophysics Data System (ADS)
Gan, Huei Ying; Schoening, Ingo; Schrumpf, Marion
2017-04-01
Microbial decomposition of soil organic matter (SOM) is coupling carbon (C) and nutrient mineralization. In order to meet their stoichiometric requirements for growth, it can be assumed that microbes have to mineralize (or remove) relative more organic carbon (OC) to acquire limiting nutrients at sites with large carbon-to-nutrient (C:N, C:P, C:S) ratios of SOM. Land use and management intensities are important controls for belowground C and nutrient availabilities, but their effect on the combined carbon and nutrient mineralization and carbon use efficiency (CUE) have rarely been addressed. The main objective of this study was to test the effect of land use (forest versus grassland), forest management (unmanaged beech forest and age-class managed coniferous and deciduous forests) and grassland management (fertilized and unfertilized meadow, mown pasture and pasture) on the stoichiometry of mineralized C, N, P and S. We incubated a total of 120 topsoil samples (0-10 cm) from three German study regions with different soil types for two weeks in microlysimeters and measured CO2 evolution and leachable organic carbon (DOC) and nutrients (NH4+, NO3-, SO42- and PO43-). The relationships between metabolic quotient (microbial respiration per unit microbial biomass; qCO2) and soil nutrient concentrations were compared between different land use and management. Preliminary results showed that qCO2 was significantly higher (p<0.001) in forests than grasslands. This supports our hypothesis that under higher nutrient limitations in forest, more energy may be allocated for maintenance than growth. In forest, qCO2 was strongly correlated to C:N ratio (r =0.84, p<0.001), while C:N was less strongly correlated with qCO2 in the grasslands (r =0.35, p>0.05). As C:N ratio was significantly higher (p<0.05) in forests (14.9±0.3) than grasslands (10.0±0.3), this finding agreed with previous studies that more C per unit microbial C is respired under lower N availability. Similary in forests, qCO2 was found to be strongly correlated to inorganic P (Olsen) content (r =0.82, p<0.001), whereas weaker correlation was observed in the grasslands (r =0.47, p>0.05). The stronger correlation in forests might indicate higher P limitation as compared to grasslands. Soil pH showed strong negative effect on qCO2 in the forests (r =-0.68, p<0.005) while positively correlated to qCO2 in the grasslands (r =0.42, p<0.05). This indicates that lower soil pH in forests results in higher qCO2 and lower CUE, but higher soil pH in the grasslands could also constrain microbial activities and result in lower CUE. Our first results suggest that qCO2 is affected by land use, and that this effect could be due to differences in nutrient availability. More analysis will follow to elucidate the interactions between qCO2 and other nutrients, and how is this affected by forest and grassland management.
Impurity Induced Phase Competition and Supersolidity
NASA Astrophysics Data System (ADS)
Karmakar, Madhuparna; Ganesh, R.
2017-12-01
Several material families show competition between superconductivity and other orders. When such competition is driven by doping, it invariably involves spatial inhomogeneities which can seed competing orders. We study impurity-induced charge order in the attractive Hubbard model, a prototypical model for competition between superconductivity and charge density wave order. We show that a single impurity induces a charge-ordered texture over a length scale set by the energy cost of the competing phase. Our results are consistent with a strong-coupling field theory proposed earlier in which superconducting and charge order parameters form components of an SO(3) vector field. To discuss the effects of multiple impurities, we focus on two cases: correlated and random distributions. In the correlated case, the CDW puddles around each impurity overlap coherently leading to a "supersolid" phase with coexisting pairing and charge order. In contrast, a random distribution of impurities does not lead to coherent CDW formation. We argue that the energy lowering from coherent ordering can have a feedback effect, driving correlations between impurities. This can be understood as arising from an RKKY-like interaction, mediated by impurity textures. We discuss implications for charge order in the cuprates and doped CDW materials such as NbSe2.
Statistical modelling of formaldehyde occupational exposure levels in French industries, 1986-2003.
Lavoué, Jérôme; Vincent, Raymond; Gérin, Michel
2006-04-01
Occupational exposure databanks (OEDBs) have been cited as sources of exposure data for exposure surveillance and exposure assessment in epidemiology. In 2003, an extract was made from COLCHIC, the French national OEDB, of all concentrations of formaldehyde. The data were analysed with extended linear mixed-effects models in order to identify influent variables and elaborate a multi-sector picture of formaldehyde exposures. Respectively, 1401 and 1448 personal and area concentrations were available for the analysis. The fixed effects of the personal and area models explained, respectively, 57 and 53% of the total variance. Personal concentrations were related to the sampling duration (short-term higher than TWA levels), decreased with the year of sampling (-9% per year) and were higher when local exhaust ventilation was present. Personal levels taken during planned visits and for occupational illness notification purpose were consistently lower than those taken during ventilation modification programmes or because the hygienist suspected the presence of significant risk or exposure. Area concentrations were related to the sampling duration (short-term higher than TWA levels), and decreased with the year of sampling (-7% per year) and when the measurement sampling flow increased. Significant within-facility (correlation coefficient 0.4-0.5) and within-sampling campaign correlation (correlation coefficient 0.8) was found for both area and personal data. The industry/task classification appeared to have the greatest influence on exposure variability while the sample duration and the sampling flow were significant in some cases. Estimates made from the models for year 2002 showed elevated formaldehyde exposure in the fields of anatomopathological and biological analyses, operation of gluing machinery in the wood industry, operation and monitoring of mixers in the pharmaceutical industry, and garages and warehouses in urban transit authorities.
Effect of body mass index on diabetogenesis factors at a fixed fasting plasma glucose level.
Lin, Jiunn-Diann; Hsu, Chun-Hsien; Wu, Chung-Ze; Hsieh, An-Tsz; Hsieh, Chang-Hsun; Liang, Yao-Jen; Chen, Yen-Lin; Pei, Dee; Chang, Jin-Biou
2018-01-01
The present study evaluated the relative influence of body mass index (BMI) on insulin resistance (IR), first-phase insulin secretion (FPIS), second-phase insulin secretion (SPIS), and glucose effectiveness (GE) at a fixed fasting plasma glucose level in an older ethnic Chinese population. In total, 265 individuals aged 60 years with a fasting plasma glucose level of 5.56 mmol/L were enrolled. Participants had BMIs of 20.0-34.2 kg/m2. IR, FPIS, SPIS, and GE were estimated using our previously developed equations. Pearson correlation analysis was conducted to assess the correlations between the four diabetogenesis factors and BMI. A general linear model was used to determine the differences in the percentage of change among the four factor slopes against BMI. Significant correlations were observed between BMI and FPIS, SPIS, IR, and GE in both women and men, which were higher than those reported previously. In men, BMI had the most profound effect on SPIS, followed by IR, FPIS, and GE, whereas in women, the order was slightly different: IR, followed by FPIS, SPIS, and GE. Significant differences were observed among all these slopes, except for the slopes between FPIS and SPIS in women (p = 0.856) and IR and FPIS in men (p = 0.258). The contribution of obesity to all diabetes factors, except GE, was higher than that reported previously. BMI had the most profound effect on insulin secretion in men and on IR in women in this 60-year-old cohort, suggesting that lifestyle modifications for obesity reduction in women remain the most important method for improving glucose metabolism and preventing future type 2 diabetes mellitus.
Two photon excitation of atomic oxygen
NASA Technical Reports Server (NTRS)
Pindzola, M. S.
1977-01-01
A standard perturbation expansion in the atom-radiation field interaction is used to calculate the two photon excitation cross section for 1s(2) 2s(2) 2p(4) p3 to 1s(2) 2s(2) 2p(3) (s4) 3p p3 transition in atomic oxygen. The summation over bound and continuum intermediate states is handled by solving the equivalent inhomogeneous differential equation. Exact summation results differ by a factor of 2 from a rough estimate obtained by limiting the intermediate state summation to one bound state. Higher order electron correlation effects are also examined.
Solution methods for one-dimensional viscoelastic problems
NASA Technical Reports Server (NTRS)
Stubstad, John M.; Simitses, George J.
1987-01-01
A recently developed differential methodology for solution of one-dimensional nonlinear viscoelastic problems is presented. Using the example of an eccentrically loaded cantilever beam-column, the results from the differential formulation are compared to results generated using a previously published integral solution technique. It is shown that the results obtained from these distinct methodologies exhibit a surprisingly high degree of correlation with one another. A discussion of the various factors affecting the numerical accuracy and rate of convergence of these two procedures is also included. Finally, the influences of some 'higher order' effects, such as straining along the centroidal axis are discussed.
The moral foundations of illusory correlation
Barberia, Itxaso
2017-01-01
Previous research has studied the relationship between political ideology and cognitive biases, such as the tendency of conservatives to form stronger illusory correlations between negative infrequent behaviors and minority groups. We further explored these findings by studying the relation between illusory correlation and moral values. According to the moral foundations theory, liberals and conservatives differ in the relevance they concede to different moral dimensions: Care, Fairness, Loyalty, Authority, and Purity. Whereas liberals consistently endorse the Care and Fairness foundations more than the Loyalty, Authority and Purity foundations, conservatives tend to adhere to the five foundations alike. In the present study, a group of participants took part in a standard illusory correlation task in which they were presented with randomly ordered descriptions of either desirable or undesirable behaviors attributed to individuals belonging to numerically different majority and minority groups. Although the proportion of desirable and undesirable behaviors was the same in the two groups, participants attributed a higher frequency of undesirable behaviors to the minority group, thus showing the expected illusory correlation effect. Moreover, this effect was specifically associated to our participants’ scores in the Loyalty subscale of the Moral Foundations Questionnaire. These results emphasize the role of the Loyalty moral foundation in the formation of attitudes towards minorities among conservatives. Our study points out the moral system as a useful fine-grained framework to explore the complex interaction between basic cognitive processes and ideology. PMID:28972990
A generative spike train model with time-structured higher order correlations.
Trousdale, James; Hu, Yu; Shea-Brown, Eric; Josić, Krešimir
2013-01-01
Emerging technologies are revealing the spiking activity in ever larger neural ensembles. Frequently, this spiking is far from independent, with correlations in the spike times of different cells. Understanding how such correlations impact the dynamics and function of neural ensembles remains an important open problem. Here we describe a new, generative model for correlated spike trains that can exhibit many of the features observed in data. Extending prior work in mathematical finance, this generalized thinning and shift (GTaS) model creates marginally Poisson spike trains with diverse temporal correlation structures. We give several examples which highlight the model's flexibility and utility. For instance, we use it to examine how a neural network responds to highly structured patterns of inputs. We then show that the GTaS model is analytically tractable, and derive cumulant densities of all orders in terms of model parameters. The GTaS framework can therefore be an important tool in the experimental and theoretical exploration of neural dynamics.
Nonlinear pattern analysis of ventricular premature beats by mutual information
NASA Technical Reports Server (NTRS)
Osaka, M.; Saitoh, H.; Yokoshima, T.; Kishida, H.; Hayakawa, H.; Cohen, R. J.
1997-01-01
The frequency of ventricular premature beats (VPBs) has been related to the risk of mortality. However, little is known about the temporal pattern of occurrence of VPBs and its relationship to autonomic activity. Hence, we applied a general correlation measure, mutual information, to quantify how VPBs are generated over time. We also used mutual information to determine the correlation between VPB production and heart rate in order to evaluate effects of autonomic activity on VPB production. We examined twenty subjects with more than 3000 VPBs/day and simulated random time series of VPB occurrence. We found that mutual information values could be used to characterize quantitatively the temporal patterns of VPB generation. Our data suggest that VPB production is not random and VPBs generated with a higher value of mutual information may be more greatly affected by autonomic activity.
Acceptability of Service Targets for ICT-Based Healthcare
Jeon, Eun Min
2016-01-01
Objectives In order to adopt and activate telemedicine it is necessary to survey how medical staff, who are providers of medical service, and consumers, who are the service targets, perceive information and communication technology (ICT)-based healthcare service. Methods This study surveyed the awareness and acceptability of ICT-based healthcare by involving service targets, specifically workers and students living in the Seoul and Gyeonggi regions who are consumers of healthcare service. To determine the correlation among awareness of ICT-based healthcare, the need for self-management, and acceptability, this study conducted a correlation analysis and a simple regression analysis. Results According to the responses to the questions on the need for ICT-based healthcare service by item, blood pressure (n = 279, 94.3%) and glucose (n = 277, 93.6%) were revealed to be the physiological signal monitoring area. Among the six measurement factors affecting ICT-based healthcare service acceptability, age, health concerns, and effect expectation had the most significant effects. As effect expectation increased, acceptability became 4.38 times higher (p < 0.05). Conclusions This study identified a positive awareness of service targets on ICT-based healthcare service. The fact that acceptability is higher among people who have family disease history or greater health concerns may lead to service targets’ more active participation. This study also confirmed that a policy to motivate active participation of those in their 40s (who had high prevalence rates) was needed. PMID:27895966
Acceptability of Service Targets for ICT-Based Healthcare.
Jeon, Eun Min; Seo, Hwa Jeong
2016-10-01
In order to adopt and activate telemedicine it is necessary to survey how medical staff, who are providers of medical service, and consumers, who are the service targets, perceive information and communication technology (ICT)-based healthcare service. This study surveyed the awareness and acceptability of ICT-based healthcare by involving service targets, specifically workers and students living in the Seoul and Gyeonggi regions who are consumers of healthcare service. To determine the correlation among awareness of ICT-based healthcare, the need for self-management, and acceptability, this study conducted a correlation analysis and a simple regression analysis. According to the responses to the questions on the need for ICT-based healthcare service by item, blood pressure (n = 279, 94.3%) and glucose (n = 277, 93.6%) were revealed to be the physiological signal monitoring area. Among the six measurement factors affecting ICT-based healthcare service acceptability, age, health concerns, and effect expectation had the most significant effects. As effect expectation increased, acceptability became 4.38 times higher ( p < 0.05). This study identified a positive awareness of service targets on ICT-based healthcare service. The fact that acceptability is higher among people who have family disease history or greater health concerns may lead to service targets' more active participation. This study also confirmed that a policy to motivate active participation of those in their 40s (who had high prevalence rates) was needed.
NASA Astrophysics Data System (ADS)
Bonezzi, Roberto; Boulanger, Nicolas; De Filippi, David; Sundell, Per
2017-11-01
We first prove that, in Vasiliev’s theory, the zero-form charges studied in Sezgin E and Sundell P 2011 (arXiv:1103.2360 [hep-th]) and Colombo N and Sundell P 20 (arXiv:1208.3880 [hep-th]) are twisted open Wilson lines in the noncommutative Z space. This is shown by mapping Vasiliev’s higher-spin model on noncommutative Yang-Mills theory. We then prove that, prior to Bose-symmetrising, the cyclically-symmetric higher-spin invariants given by the leading order of these n-point zero-form charges are equal to corresponding cyclically-invariant building blocks of n-point correlation functions of bilinear operators in free conformal field theories (CFT) in three dimensions. On the higher spin gravity side, our computation reproduces the results of Didenko V and Skvortsov E 2013 J. High Energy Phys. JHEP04(2013)158 using an alternative method amenable to the computation of subleading corrections obtained by perturbation theory in normal order. On the free CFT side, our proof involves the explicit computation of the separate cyclic building blocks of the correlation functions of n conserved currents in arbitrary dimension d>2 using polarization vectors, which is an original result. It is shown to agree, for d=3 , with the results obtained in Gelfond O A and Vasiliev M A 2013 Nucl. Phys. B 876 871-917 in various dimensions and where polarization spinors were used.
NASA Astrophysics Data System (ADS)
Tuo, Shengquan; CMS Collaboration
2017-11-01
The mixed higher-order flow harmonics and nonlinear response coefficients of charged particles are presented as a function of pT and centrality in PbPb collisions at √{sNN} = 2.76 TeV and 5.02 TeV with the CMS detector. The results are obtained using the scalar product method, and cover a pT range from 0.3 GeV/c to 8.0 GeV/c, pseudorapidity | η | < 2.4, and a centrality range of 0-60%. The mixed harmonic results at 5.02 TeV are compared to the matching higher-order flow harmonics from two-particle correlations, which measure vn values with respect to the n-th order event plane. It is observed that the nonlinear response coefficients of the odd harmonics are larger than the even harmonics ones. The results are compared with hydrodynamic predictions using different shear viscosity to entropy density ratios and different initial conditions.
NASA Astrophysics Data System (ADS)
Kovchegov, Yuri V.; Skokov, Vladimir V.
2018-05-01
We show that, in the saturation/color glass condensate framework, odd azimuthal harmonics of the two-gluon correlation function with a long-range separation in rapidity are generated by the higher-order saturation corrections in the interactions with the projectile and the target. At the very least, the odd harmonics require three scatterings in the projectile and three scatterings in the target. We derive the leading-order expression for the two-gluon production cross section which generates odd harmonics: the expression includes all-order interactions with the target and three interactions with the projectile. We evaluate the obtained expression both analytically and numerically, confirming that the odd-harmonics contribution to the two-gluon production in the saturation framework is nonzero.
Neipert, Christine; Space, Brian
2006-12-14
Sum vibrational frequency spectroscopy, a second order optical process, is interface specific in the dipole approximation. At charged interfaces, there exists a static field, and as a direct consequence, the experimentally detected signal is a combination of enhanced second and static field induced third order contributions. There is significant evidence in the literature of the importance/relative magnitude of this third order contribution, but no previous molecularly detailed approach existed to separately calculate the second and third order contributions. Thus, for the first time, a molecularly detailed time correlation function theory is derived here that allows for the second and third order contributions to sum frequency vibrational spectra to be individually determined. Further, a practical, molecular dynamics based, implementation procedure for the derived correlation functions that describe the third order phenomenon is also presented. This approach includes a novel generalization of point atomic polarizability models to calculate the hyperpolarizability of a molecular system. The full system hyperpolarizability appears in the time correlation functions responsible for third order contributions in the presence of a static field.
Swain, Eric
2012-12-30
Several stochastic analyses were conducted in Miami-Dade County, Florida, to evaluate the effects of wellfield withdrawal on aquifer water levels, canal stage, and canal flow. Multiyear data for withdrawals at four water-supply wellfields, water levels at the S-121 canal control structure and groundwater head at a nearby monitoring well were used to determine the interrelation between wellfield withdrawals and water levels in the canal and aquifer. A spectral analysis was performed first on the wellfield withdrawals, showing similar patterns of fluctuations, but no well-defined seasonality. In order to compare water-level response with withdrawals at each wellfield, the intercorrelation effects between wellfields was removed through a 'causal chain' approach where the inter-wellfield correlation is used to isolate the wellfield/water-level correlation. Most computed correlations have magnitudes less than 5 percent, but with statistical significance above 90 percent. Results indicate that withdrawals from the wellfields most distant from the canal had no significant correlation to the canal levels. However the highest correlation was not at the wellfield closest to the canal, but at the two wellfields at the intermediate distance that have higher withdrawal rates. The hydraulic interconnectivity of the canal with the rest of the canal network, covering the study area, allows the canal equalizes with all connected canals. This explains why proximity to a particular canal location does not appear to be as important a factor as the withdrawal rate. Groundwater levels are more highly correlated to a wellfield on the same side of the canal, and to pumping wells in the same wellfield on the same side of the canal. This indicates that canals are an effective barrier and source/sink for the groundwater. Further nonlinear correlation analysis indicates that high withdrawal rates disproportionally affect water levels and are the predominant effect on the canal. Published by Elsevier Ltd.
Measurement of the $$b\\bar{b}$$ di-jet cross section at CDF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vallecorsa, Sofia
The dominant b production mechanism at the Tevatron is pair production through strong interactions. The lowest order QCD diagrams contain only b andmore » $$\\bar{b}$$ quarks in the final state, for which momentum conservation requires the quarks to be produced back-to-back in azimuthal opening angle. When higher order QCD processes are considered, the presence of additional light quarks and gluons in the final state allows the azimuthal angle difference, Δφ, to spread. The next to leading order QCD calculation includes diagrams up to O(α$$3\\atop{s}$$) some of which, commonly known as flavor excitation and gluon splitting, provide a contribution of approximately the same magnitude as the lowest order diagrams. The study of b$$\\bar{b}$$ angular correlation gives predictions on the effective b quark production mechanisms and on the different contributions of the leading order and next-to-leading order terms. The first experimental results on inclusive bottom production at the Tevatron were strongly underestimated by the exact NLO QCD prediction. Later on this disagreement had been explained and reduced by theoretical and experimental improvements: new QCD calculations that implement the Fixed Order with Next-to- Leading-Logarithms calculation (FONLL); updated parton distribution functions and fragmentation functions; and more precise measurements. Previous measurements of b$$\\bar{b}$$ azimuthal angle correlation have, instead, reached various level of agreement with parton shower Monte Carlo and NLO predictions. Here we present a measurement of the b$$\\bar{b}$$ jet cross section and azimuthal angle correlation performed on about 260 pb -1 of data collected by the CDF II detector at Fermilab from March 2002 to September 2004. This study extends the energy range investigated by previous analyses, measuring jet transverse energies (E T) up to values of about 220 GeV. It relies on the good tracking capabilities of the CDF detector both at the trigger level and offline. Events with heavy quarks are selected online using the Secondary Vertex Trigger (SVT), which can measure in real time the impact parameter of the tracks, in particular those originated from the decay of long-lived particles. The SVT represents the key element for all the heavy flavor measurement performed by CDF, and this analysis describes one of the first cases in which the SVT trigger is used to study high pT physics. The total cross section is mesured together with the di-jet differential cross sections as a function of the highest energy jet ET and the di-jet invariant mass. The azimuthal angular correlation (Δφ) between the two jets is also measured. As expected this distribution proves that the largest contribution to b$$\\bar{b}$$ production is due to lowest order QCD diagrams, corresponding to a back to back configuration of the two b-jets (large Δφ values). The most interesting fact is, however, that the low Δφ region also results highly populated, suggesting an important role played by higher order production terms. To verify this conclusion, results are compared to Monte Carlo predictions at leading order and next to leading order QCD. When technical details are correctly taken into account, as the contribution of the underlying event for example, it is possible to conclude that the data are in agreement with a next to leading order model. Nevertheless the agreement is not perfect and the data present some excess with respect to theoretical predictions. This thesis describes the analysis steps in details as support to the PRL paper forseen to be published soon.« less
Dark solitons in the presence of higher-order effects.
Horikis, Theodoros P; Frantzeskakis, Dimitrios J
2013-12-01
Dark soliton propagation is studied in the presence of higher-order effects, including third-order dispersion, self-steepening, linear/nonlinear gain/loss, and Raman scattering. It is found that for certain values of the parameters a stable evolution can exist for both the soliton and the relative continuous-wave background. Using a newly developed perturbation theory we show that the perturbing effects give rise to a shelf that accompanies the soliton in its propagation. Although, the stable solitons are not affected by the shelf it remains an integral part of the dynamics otherwise not considered so far in studies of higher-order nonlinear Schrödinger models.
The Effects of Adjunct Questions on Prose Learning.
ERIC Educational Resources Information Center
Hamaker, Christiaan
1986-01-01
The research literature on the effects of factual and higher order adjunct questions is reviewed. The influence of 13 design variables on the direction and size of adjunct-questions effects is investigated. It is indicated that higher order adjunct questions may have a more general facilitative effect. (Author/JAZ)
NASA Astrophysics Data System (ADS)
Aaboud, M.; Aad, G.; Abbott, B.; Abdinov, O.; Abeloos, B.; Abidi, S. H.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adachi, S.; Adamczyk, L.; Adelman, J.; Adersberger, M.; Adye, T.; Affolder, A. A.; Afik, Y.; Agatonovic-Jovin, T.; Agheorghiesei, C.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akatsuka, S.; Akerstedt, H.; Åkesson, T. P. A.; Akilli, E.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albicocco, P.; Alconada Verzini, M. J.; Alderweireldt, S. C.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alstaty, M. I.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Angerami, A.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Antrim, D. J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Araujo Ferraz, V.; Arce, A. T. H.; Ardell, R. E.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Bagnaia, P.; Bahmani, M.; Bahrasemani, H.; Baines, J. T.; Bajic, M.; Baker, O. K.; Bakker, P. J.; Baldin, E. M.; Balek, P.; Balli, F.; Balunas, W. K.; Banas, E.; Bandyopadhyay, A.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barkeloo, J. T.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Beck, H. C.; Becker, K.; Becker, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beermann, T. A.; Begalli, M.; Begel, M.; Behr, J. K.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Bergsten, L. J.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernardi, G.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertram, I. A.; Bertsche, C.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Bethani, A.; Bethke, S.; Betti, A.; Bevan, A. J.; Beyer, J.; Bianchi, R. M.; Biebel, O.; Biedermann, D.; Bielski, R.; Bierwagen, K.; Biesuz, N. V.; Biglietti, M.; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bittrich, C.; Bjergaard, D. M.; Black, J. E.; Black, K. M.; Blair, R. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blue, A.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bolz, A. E.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozson, A. J.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Braren, F.; Bratzler, U.; Brau, B.; Brau, J. E.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Briglin, D. L.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruni, A.; Bruni, G.; Bruni, L. S.; Bruno, S.; Brunt, BH; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burch, T. J.; Burdin, S.; Burgard, C. D.; Burger, A. M.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cai, H.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Calvente Lopez, S.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Cano Bret, M.; Cantero, J.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carlson, B. T.; Carminati, L.; Carney, R. M. D.; Caron, S.; Carquin, E.; Carrá, S.; Carrillo-Montoya, G. D.; Casadei, D.; Casado, M. P.; Casha, A. F.; Casolino, M.; Casper, D. W.; Castelijn, R.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Celebi, E.; Ceradini, F.; Cerda Alberich, L.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, W. S.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, C.; Chen, H.; Chen, J.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Cheu, E.; Cheung, K.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chiu, Y. H.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, Y. S.; Christodoulou, V.; Chu, M. C.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper-Sarkar, A. M.; Cormier, F.; Cormier, K. J. R.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Creager, R. A.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Cuhadar Donszelmann, T.; Cukierman, A. R.; Cummings, J.; Curatolo, M.; Cúth, J.; Czekierda, S.; Czodrowski, P.; D'amen, G.; D'Auria, S.; D'eramo, L.; D'Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Daneri, M. F.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Daubney, T.; Davey, W.; David, C.; Davidek, T.; Davis, D. R.; Davison, P.; Dawe, E.; Dawson, I.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Maria, A.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vasconcelos Corga, K.; De Vivie De Regie, J. B.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delporte, C.; Delsart, P. A.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Devesa, M. R.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Bello, F. A.; Di Ciaccio, A.; Di Ciaccio, L.; Di Clemente, W. K.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Di Nardo, R.; Di Petrillo, K. F.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Díez Cornell, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Dodsworth, D.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Dubinin, F.; Dubreuil, A.; Duchovni, E.; Duckeck, G.; Ducourthial, A.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudder, A. Chr.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dulsen, C.; Dumancic, M.; Dumitriu, A. E.; Duncan, A. K.; Dunford, M.; Duperrin, A.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Duvnjak, D.; Dyndal, M.; Dziedzic, B. S.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; El Kosseifi, R.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Ennis, J. S.; Epland, M. B.; Erdmann, J.; Ereditato, A.; Ernst, M.; Errede, S.; Escalier, M.; Escobar, C.; Esposito, B.; Estrada Pastor, O.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Ezzi, M.; Fabbri, F.; Fabbri, L.; Fabiani, V.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Fenton, M. J.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, R. R. M.; Flick, T.; Flierl, B. M.; Flores Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Förster, F. A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Freund, B.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fusayasu, T.; Fuster, J.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Ganguly, S.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; García Pascual, J. A.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gascon Bravo, A.; Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gee, C. N. P.; Geisen, J.; Geisen, M.; Geisler, M. P.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Geßner, G.; Ghasemi, S.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giangiacomi, N.; Giannetti, P.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giordani, M. P.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugliarelli, G.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gkountoumis, P.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Gama, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, G.; Gonella, L.; Gongadze, A.; Gonski, J. L.; González de la Hoz, S.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gottardo, C. A.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Grabowska-Bold, I.; Gradin, P. O. J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, C.; Gray, H. M.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Grummer, A.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Gui, B.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, W.; Guo, Y.; Gupta, R.; Gurbuz, S.; Gustavino, G.; Gutelman, B. J.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Guzik, M. P.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Hageböck, S.; Hagihara, M.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Han, S.; Hanagaki, K.; Hanawa, K.; Hance, M.; Handl, D. M.; Haney, B.; Hanke, P.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrison, P. F.; Hartmann, N. M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havener, L. B.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heer, S.; Heidegger, K. K.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Held, A.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Herde, H.; Herget, V.; Hernández Jiménez, Y.; Herr, H.; Herten, G.; Hertenberger, R.; Hervas, L.; Herwig, T. C.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Higashino, S.; Higón-Rodriguez, E.; Hildebrand, K.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hils, M.; Hinchliffe, I.; Hirose, M.; Hirschbuehl, D.; Hiti, B.; Hladik, O.; Hlaluku, D. R.; Hoad, X.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Honda, S.; Honda, T.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hostiuc, A.; Hou, S.; Hoummada, A.; Howarth, J.; Hoya, J.; Hrabovsky, M.; Hrdinka, J.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, P. J.; Hsu, S.-C.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Huhtinen, M.; Hunter, R. F. H.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Hyneman, R.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Iltzsche, F.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Isacson, M. F.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Issever, C.; Istin, S.; Ito, F.; Iturbe Ponce, J. M.; Iuppa, R.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, P.; Jacobs, R. M.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansky, R.; Janssen, J.; Janus, M.; Janus, P. A.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Javurkova, M.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jelinskas, A.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiang, Z.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Jivan, H.; Johansson, P.; Johns, K. A.; Johnson, C. A.; Johnson, W. J.; Jon-And, K.; Jones, R. W. L.; Jones, S. D.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kar, D.; Karakostas, K.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kay, E. F.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kellermann, E.; Kempster, J. J.; Kendrick, J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-zada, F.; Khanov, A.; Kharlamov, A. G.; Kharlamova, T.; Khodinov, A.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; Kirchmeier, D.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kitali, V.; Kivernyk, O.; Kladiva, E.; Klapdor-Kleingrothaus, T.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klingl, T.; Klioutchnikova, T.; Klitzner, F. F.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Köhler, N. M.; Koi, T.; Kolb, M.; Koletsou, I.; Komar, A. A.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Konya, B.; Kopeliansky, R.; Koperny, S.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Koulouris, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kourlitis, E.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Krauss, D.; Kremer, J. A.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, M. C.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kulinich, Y. P.; Kuna, M.; Kunigo, T.; Kupco, A.; Kupfer, T.; Kuprash, O.; Kurashige, H.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kurth, M. G.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; Navarro, J. L. La Rosa; La Rotonda, L.; La Ruffa, F.; Lacasta, C.; Lacava, F.; Lacey, J.; Lack, D. P. J.; Lacker, H.; Lacour, D.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Langenberg, R. J.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Lapertosa, A.; Laplace, S.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Lau, T. S.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, G. R.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Lerner, G.; Leroy, C.; Les, R.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Li, B.; Li, Changqiao; Li, H.; Li, L.; Li, Q.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, C. Y.; Lin, K.; Lin, S. C.; Lin, T. H.; Linck, R. A.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, H.; Liu, H.; Liu, J. K. K.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo, C. Y.; Sterzo, F. Lo; Lobodzinska, E. M.; Loch, P.; Loebinger, F. K.; Loesle, A.; Loew, K. M.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopez, J. A.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lu, Y. J.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lutz, M. S.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyu, F.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Mader, W. F.; Madsen, A.; Madysa, N.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A. S.; Magerl, V.; Maiani, C.; Maidantchik, C.; Maier, T.; Maio, A.; Majersky, O.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandić, I.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mankinen, K. H.; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchese, L.; Marchiori, G.; Marcisovsky, M.; Marin Tobon, C. A.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Martensson, M. U. F.; Marti-Garcia, S.; Martin, C. B.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, M.; Martinez Outschoorn, V. I.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Mason, L. H.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Maznas, I.; Mazza, S. M.; McFadden, N. C.; McGoldrick, G.; McKee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McNamara, P. C.; McNicol, C. J.; McPherson, R. A.; Meehan, S.; Megy, T. J.; Mehlhase, S.; Mehta, A.; Meideck, T.; Meier, K.; Meirose, B.; Melini, D.; Mellado Garcia, B. R.; Mellenthin, J. D.; Melo, M.; Meloni, F.; Melzer, A.; Menary, S. B.; Meng, L.; Meng, X. T.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Merlassino, C.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Millar, D. A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Minegishi, Y.; Ming, Y.; Mir, L. M.; Mirto, A.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mizukami, A.; Mjörnmark, J. U.; Mkrtchyan, T.; Mlynarikova, M.; Moa, T.; Mochizuki, K.; Mogg, P.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moschovakos, P.; Mosidze, M.; Moss, H. J.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Moyse, E. J. W.; Muanza, S.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nelson, M. E.; Nemecek, S.; Nemethy, P.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Newman, P. R.; Ng, T. Y.; Ng, Y. S.; Nguyen Manh, T.; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikiforou, N.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishu, N.; Nisius, R.; Nitsche, I.; Nitta, T.; Nobe, T.; Noguchi, Y.; Nomachi, M.; Nomidis, I.; Nomura, M. A.; Nooney, T.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'connor, K.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olsson, M. J. R.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oppen, H.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Pacheco Rodriguez, L.; Padilla Aranda, C.; Pagan Griso, S.; Paganini, M.; Paige, F.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; St. Panagiotopoulou, E.; Panagoulias, I.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasner, J. M.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearson, B.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Peri, F.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, F. H.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pinamonti, M.; Pinfold, J. L.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Pluth, D.; Podberezko, P.; Poettgen, R.; Poggi, R.; Poggioli, L.; Pogrebnyak, I.; Pohl, D.; Pokharel, I.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Ponomarenko, D.; Pontecorvo, L.; Popeneciu, G. A.; Portillo Quintero, D. M.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potti, H.; Poulsen, T.; Poveda, J.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Primavera, M.; Prince, S.; Proklova, N.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puri, A.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rangel-Smith, C.; Rashid, T.; Raspopov, S.; Ratti, M. G.; Rauch, D. M.; Rauscher, F.; Rave, S.; Ravinovich, I.; Rawling, J. H.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reed, R. G.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reiss, A.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Resseguie, E. D.; Rettie, S.; Reynolds, E.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ripellino, G.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Roberts, R. T.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Rocco, E.; Roda, C.; Rodina, Y.; Rodriguez Bosca, S.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Roe, S.; Rogan, C. S.; Røhne, O.; Roloff, J.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Rosati, S.; Rosbach, K.; Rose, P.; Rosien, N.-A.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Rothberg, J.; Rousseau, D.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Ruettinger, E. M.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salazar Loyola, J. E.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sampsonidou, D.; Sánchez, J.; Sanchez Martinez, V.; Sanchez Pineda, A.; Sandaker, H.; Sandbach, R. L.; Sander, C. O.; Sandhoff, M.; Sandoval, C.; Sankey, D. P. C.; Sannino, M.; Sano, Y.; Sansoni, A.; Santoni, C.; Santos, H.; Santoyo Castillo, I.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sato, K.; Sauvan, E.; Savage, G.; Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, L.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schildgen, L. K.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schouwenberg, J. F. P.; Schovancova, J.; Schramm, S.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Sciandra, A.; Sciolla, G.; Scornajenghi, M.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Semprini-Cesari, N.; Senkin, S.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Shen, Y.; Sherafati, N.; Sherman, A. D.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shipsey, I. P. J.; Shirabe, S.; Shiyakova, M.; Shlomi, J.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shope, D. R.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sideras Haddad, E.; Sidiropoulou, O.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, L.; Simion, S.; Simioni, E.; Simmons, B.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Siral, I.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smiesko, J.; Smirnov, N.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, J. W.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, I. M.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Søgaard, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Sopczak, A.; Sosa, D.; Sotiropoulou, C. L.; Sottocornola, S.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spieker, T. M.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanitzki, M. M.; Stapf, B. S.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Stark, S. H.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Stegler, M.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, T. J.; Stewart, G. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultan, D. M. S.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Suruliz, K.; Suster, C. J. E.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Swift, S. P.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Tahirovic, E.; Taiblum, N.; Takai, H.; Takashima, R.; Takasugi, E. H.; Takeda, K.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanaka, S.; Tanioka, R.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, A. J.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teixeira-Dias, P.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Thais, S. J.; Theveneaux-Pelzer, T.; Thiele, F.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Tian, Y.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorova-Nova, S.; Todt, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Tornambe, P.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Treado, C. J.; Trefzger, T.; Tresoldi, F.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsang, K. W.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tulbure, T. T.; Tuna, A. N.; Turchikhin, S.; Turgeman, D.; Turk Cakir, I.; Turra, R.; Tuts, P. M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Uno, K.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usui, J.; Vacavant, L.; Vacek, V.; Vachon, B.; Vadla, K. O. H.; Vaidya, A.; Valderanis, C.; Valdes Santurio, E.; Valente, M.; Valentinetti, S.; Valero, A.; Valéry, L.; Valkar, S.; Vallier, A.; Valls Ferrer, J. A.; Van Den Wollenberg, W.; van der Graaf, H.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varni, C.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vasquez, G. A.; Vazeille, F.; Vazquez Furelos, D.; Vazquez Schroeder, T.; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, A. T.; Vermeulen, J. C.; Vetterli, M. C.; Viaux Maira, N.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vishwakarma, A.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vogel, M.; Vokac, P.; Volpi, G.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wagner, W.; Wagner-Kuhr, J.; Wahlberg, H.; Wahrmund, S.; Wakamiya, K.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, Q.; Wang, R.-J.; Wang, R.; Wang, S. M.; Wang, T.; Wang, W.; Wang, W.; Wang, Z.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, A. F.; Webb, S.; Weber, M. S.; Weber, S. W.; Weber, S. W.; Weber, S. A.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weirich, M.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M. D.; Werner, P.; Wessels, M.; Weston, T. D.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A. S.; White, A.; White, M. J.; White, R.; Whiteson, D.; Whitmore, B. W.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winkels, E.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wobisch, M.; Wolf, A.; Wolf, T. M. H.; Wolff, R.; Wolter, M. W.; Wolters, H.; Wong, V. W. S.; Woods, N. L.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Wozniak, K. W.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xi, Z.; Xia, L.; Xu, D.; Xu, L.; Xu, T.; Xu, W.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamane, F.; Yamatani, M.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yigitbasi, E.; Yildirim, E.; Yorita, K.; Yoshihara, K.; Young, C.; Young, C. J. S.; Yu, J.; Yu, J.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zacharis, G.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanzi, D.; Zeitnitz, C.; Zemaityte, G.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, L.; Zhang, M.; Zhang, P.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Y.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, M.; Zhou, M.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zou, R.; zur Nedden, M.; Zwalinski, L.
2018-02-01
Measurements of longitudinal flow correlations are presented for charged particles in the pseudorapidity range |η |<2.4 using 7 and 470 μ b^{-1} of Pb+Pb collisions at √{s_{ {NN}}}=2.76 and 5.02 TeV, respectively, recorded by the ATLAS detector at the LHC. It is found that the correlation between the harmonic flow coefficients v_n measured in two separated η intervals does not factorise into the product of single-particle coefficients, and this breaking of factorisation, or flow decorrelation, increases linearly with the η separation between the intervals. The flow decorrelation is stronger at 2.76 TeV than at 5.02 TeV. Higher-order moments of the correlations are also measured, and the corresponding linear coefficients for the k{ {th}}-moment of the v_n are found to be proportional to k for v_3, but not for v_2. The decorrelation effect is separated into contributions from the magnitude of v_n and the event-plane orientation, each as a function of η . These two contributions are found to be comparable. The longitudinal flow correlations are also measured between v_n of different order in n. The decorrelations of v_2 and v_3 are found to be independent of each other, while the decorrelations of v_4 and v_5 are found to be driven by the nonlinear contribution from v_2^2 and v_2v_3, respectively.
Frandsen, Benjamin A.; Billinge, Simon J. L.; Ross, Kathryn A.; ...
2017-12-29
Here, we present time-of-flight neutron total scattering and polarized neutron scattering measurements of the magnetically frustrated compounds NaCaCo 2F 7 and NaSrCo 2F 7, which belong to a class of recently discovered pyrochlore compounds based on transition metals and fluorine. The magnetic pair distribution function (mPDF) technique is used to analyze and model the total scattering data in real space. We find that a previously-proposed model of short-range XY-like correlations with a length scale of 10-15 Å, combined with nearest-neighbor collinear antiferromagnetic correlations, accurately describes the mPDF data at low temperature, confirming the magnetic ground state in these materials. Thismore » model is further verified by the polarized neutron scattering data. From an analysis of the temperature dependence of the mPDF and polarized neutron scattering data, we find that short-range correlations persist on the nearest-neighbor length scale up to 200 K, approximately two orders of magnitude higher than the spin freezing temperatures of these compounds. These results highlight the opportunity presented by these new pyrochlore compounds to study the effects of geometric frustration at relatively high temperatures, while also advancing the mPDF technique and providing a novel opportunity to investigate a genuinely short-range-ordered magnetic ground state directly in real space.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frandsen, Benjamin A.; Billinge, Simon J. L.; Ross, Kathryn A.
Here, we present time-of-flight neutron total scattering and polarized neutron scattering measurements of the magnetically frustrated compounds NaCaCo 2F 7 and NaSrCo 2F 7, which belong to a class of recently discovered pyrochlore compounds based on transition metals and fluorine. The magnetic pair distribution function (mPDF) technique is used to analyze and model the total scattering data in real space. We find that a previously-proposed model of short-range XY-like correlations with a length scale of 10-15 Å, combined with nearest-neighbor collinear antiferromagnetic correlations, accurately describes the mPDF data at low temperature, confirming the magnetic ground state in these materials. Thismore » model is further verified by the polarized neutron scattering data. From an analysis of the temperature dependence of the mPDF and polarized neutron scattering data, we find that short-range correlations persist on the nearest-neighbor length scale up to 200 K, approximately two orders of magnitude higher than the spin freezing temperatures of these compounds. These results highlight the opportunity presented by these new pyrochlore compounds to study the effects of geometric frustration at relatively high temperatures, while also advancing the mPDF technique and providing a novel opportunity to investigate a genuinely short-range-ordered magnetic ground state directly in real space.« less
NASA Astrophysics Data System (ADS)
Frandsen, Benjamin A.; Ross, Kate A.; Krizan, Jason W.; Nilsen, Gøran J.; Wildes, Andrew R.; Cava, Robert J.; Birgeneau, Robert J.; Billinge, Simon J. L.
2017-12-01
We present time-of-flight neutron total scattering and polarized neutron scattering measurements of the magnetically frustrated compounds NaCaCo2F7 and NaSrCo2F7 , which belong to a class of recently discovered pyrochlore compounds based on transition metals and fluorine. The magnetic pair distribution function (mPDF) technique is used to analyze and model the total scattering data in real space. We find that a previously proposed model of short-range XY-like correlations with a length scale of 10-15 Å, combined with nearest-neighbor collinear antiferromagnetic correlations, accurately describes the mPDF data at low temperature, confirming the magnetic ground state in these materials. This model is further verified by the polarized neutron scattering data. From an analysis of the temperature dependence of the mPDF and polarized neutron scattering data, we find that short-range correlations persist on the nearest-neighbor length scale up to 200 K, approximately two orders of magnitude higher than the spin freezing temperatures of these compounds. These results highlight the opportunity presented by these new pyrochlore compounds to study the effects of geometric frustration at relatively high temperatures, while also advancing the mPDF technique and providing an opportunity to investigate a genuinely short-range-ordered magnetic ground state directly in real space.
Swami, Viren; Vintila, Mona; Tudorel, Otilia; Goian, Cosmin; Barron, David
2018-06-01
We examined the psychometric properties of a Romanian translation of the 15-item Drive for Muscularity Scale (DMS). Male university students from Romania (N = 343) completed the DMS, as well as measures of self-esteem, body appreciation, and muscle discrepancy. Exploratory factor analysis indicated that DMS scores reduced to two factors that related to muscularity-oriented attitudes and behaviours, with both first-order factors loading onto a higher-order factor. However, confirmatory factor analysis indicated that a model with two first-order factors and a higher-order factor had poor fit. A two-factor model without a higher-order construct achieved acceptable but mediocre fit. Scores on the two-factor DMS model had adequate internal consistency and demonstrated acceptable convergent validity (significant correlations with self-esteem, body appreciation, and muscle discrepancy). These results provide support for a two-factor model of DMS scores in a Romanian-speaking sample and extends the availability of the DMS to a rarely-examined linguistic group. Copyright © 2018 Elsevier Ltd. All rights reserved.
Decentralized control experiments on the JPL flexible spacecraft
NASA Technical Reports Server (NTRS)
Ozguner, U.; Ossman, K.; Donne, J.; Boesch, M.; Ahmed, A.
1990-01-01
Decentralized control experiments were successfully demonstrated for the JPL/AFAL Flexible Structure. A simulation package using MATRIXx showed strong correlation between the simulations and experimental result, while providing a means for test and debug of the various control strategies. Implementation was simplified by a modular software design that was easily transported from the simulation environment to the experimental environment. Control designs worked well for suppression of the dominant modes of the structure. Static decentralized output feedback dampened the excited modes of the structure, but sometimes excited higher order modes upon startup of the controller. A second-order frequency shaping controller helped to eliminate excitation of the higher order modes by attenuating high frequencies in the control effort. However, it also resulted in slightly longer settling times.
Alahmadi, Adnan A S; Samson, Rebecca S; Gasston, David; Pardini, Matteo; Friston, Karl J; D'Angelo, Egidio; Toosy, Ahmed T; Wheeler-Kingshott, Claudia A M
2016-06-01
Previous studies have used fMRI to address the relationship between grip force (GF) applied to an object and BOLD response. However, whilst the majority of these studies showed a linear relationship between GF and neural activity in the contralateral M1 and ipsilateral cerebellum, animal studies have suggested the presence of non-linear components in the GF-neural activity relationship. Here, we present a methodology for assessing non-linearities in the BOLD response to different GF levels, within primary motor as well as sensory and cognitive areas and the cerebellum. To be sensitive to complex forms, we designed a feasible grip task with five GF targets using an event-related visually guided paradigm and studied a cohort of 13 healthy volunteers. Polynomial functions of increasing order were fitted to the data. (1) activated motor areas irrespective of GF; (2) positive higher-order responses in and outside M1, involving premotor, sensory and visual areas and cerebellum; (3) negative correlations with GF, predominantly involving the visual domain. Overall, our results suggest that there are physiologically consistent behaviour patterns in cerebral and cerebellar cortices; for example, we observed the presence of a second-order effect in sensorimotor areas, consistent with an optimum metabolic response at intermediate GF levels, while higher-order behaviour was found in associative and cognitive areas. At higher GF levels, sensory-related cortical areas showed reduced activation, interpretable as a redistribution of the neural activity for more demanding tasks. These results have the potential of opening new avenues for investigating pathological mechanisms of neurological diseases.
Trück, Johannes; Mitchell, Ruth; Thompson, Amber J; Morales-Aza, Begonia; Clutterbuck, Elizabeth A; Kelly, Dominic F; Finn, Adam; Pollard, Andrew J
2014-01-01
The ELISpot assay is used in vaccine studies for the quantification of antigen-specific memory B cells (B(MEM)), and can be performed using cryopreserved samples. The effects of cryopreservation on B(MEM) detection and the consistency of cultured ELISpot assays when performed by different operators or laboratories are unknown. In this study, blood was taken from healthy volunteers, and a cultured ELISpot assay was used to count B(MEM) specific for 2 routine vaccine antigens (diphtheria and tetanus toxoid). Results were assessed for intra- and inter-operator variation, and the effects of cryopreservation. Cryopreserved samples were shipped to a second laboratory in order to assess inter-laboratory variation. B(MEM) frequencies were very strongly correlated when comparing fresh and frozen samples processed by the same operator, and were also very strongly correlated when comparing 2 operators in the same laboratory. Results were slightly less consistent when samples were processed in different laboratories but correlation between the 2 measurements was still very strong. Although cell viability was reduced in some cryopreserved samples due to higher temperatures during transportation, B(MEM) could still be quantified. These results demonstrate the reproducibility of the ELISpot assay across operators and laboratories, and support the use of cryopreserved samples in future B(MEM) studies.
NASA Astrophysics Data System (ADS)
Kosciesza, M.; Blecki, J. S.; Parrot, M.
2014-12-01
We report the structure function analysis of changes found in electric field in the ELF range plasma turbulence registered in the ionosphere over epicenter region of major earthquakes with depth less than 40 km that took place during 6.5 years of the scientific mission of the DEMETER satellite. We compare the data for the earthquakes for which we found turbulence with events without any turbulent changes. The structure functions were calculated also for the Polar CUSP region and equatorial spread F region. Basic studies of the turbulent processes were conducted with use of higher order spectra and higher order statistics. The structure function analysis was performed to locate and check if there are intermittent behaviors in the ionospheres plasma over epicenter region of the earthquakes. These registrations are correlated with the plasma parameters measured onboard DEMETER satellite and with geomagnetic indices.
Promoting higher order thinking skills using inquiry-based learning
NASA Astrophysics Data System (ADS)
Madhuri, G. V.; S. S. N Kantamreddi, V.; Goteti, L. N. S. Prakash
2012-05-01
Active learning pedagogies play an important role in enhancing higher order cognitive skills among the student community. In this work, a laboratory course for first year engineering chemistry is designed and executed using an inquiry-based learning pedagogical approach. The goal of this module is to promote higher order thinking skills in chemistry. Laboratory exercises are designed based on Bloom's taxonomy and a just-in-time facilitation approach is used. A pre-laboratory discussion outlining the theory of the experiment and its relevance is carried out to enable the students to analyse real-life problems. The performance of the students is assessed based on their ability to perform the experiment, design new experiments and correlate practical utility of the course module with real life. The novelty of the present approach lies in the fact that the learning outcomes of the existing experiments are achieved through establishing a relationship with real-world problems.
Macro-level safety analysis of pedestrian crashes in Shanghai, China.
Wang, Xuesong; Yang, Junguang; Lee, Chris; Ji, Zhuoran; You, Shikai
2016-11-01
Pedestrian safety has become one of the most important issues in the field of traffic safety. This study aims at investigating the association between pedestrian crash frequency and various predictor variables including roadway, socio-economic, and land-use features. The relationships were modeled using the data from 263 Traffic Analysis Zones (TAZs) within the urban area of Shanghai - the largest city in China. Since spatial correlation exists among the zonal-level data, Bayesian Conditional Autoregressive (CAR) models with seven different spatial weight features (i.e. (a) 0-1 first order, adjacency-based, (b) common boundary-length-based, (c) geometric centroid-distance-based, (d) crash-weighted centroid-distance-based, (e) land use type, adjacency-based, (f) land use intensity, adjacency-based, and (g) geometric centroid-distance-order) were developed to characterize the spatial correlations among TAZs. Model results indicated that the geometric centroid-distance-order spatial weight feature, which was introduced in macro-level safety analysis for the first time, outperformed all the other spatial weight features. Population was used as the surrogate for pedestrian exposure, and had a positive effect on pedestrian crashes. Other significant factors included length of major arterials, length of minor arterials, road density, average intersection spacing, percentage of 3-legged intersections, and area of TAZ. Pedestrian crashes were higher in TAZs with medium land use intensity than in TAZs with low and high land use intensity. Thus, higher priority should be given to TAZs with medium land use intensity to improve pedestrian safety. Overall, these findings can help transportation planners and managers understand the characteristics of pedestrian crashes and improve pedestrian safety. Copyright © 2016 Elsevier Ltd. All rights reserved.
On hierarchical solutions to the BBGKY hierarchy
NASA Technical Reports Server (NTRS)
Hamilton, A. J. S.
1988-01-01
It is thought that the gravitational clustering of galaxies in the universe may approach a scale-invariant, hierarchical form in the small separation, large-clustering regime. Past attempts to solve the Born-Bogoliubov-Green-Kirkwood-Yvon (BBGKY) hierarchy in this regime have assumed a certain separable hierarchical form for the higher order correlation functions of galaxies in phase space. It is shown here that such separable solutions to the BBGKY equations must satisfy the condition that the clustered component of the solution has cluster-cluster correlations equal to galaxy-galaxy correlations to all orders. The solutions also admit the presence of an arbitrary unclustered component, which plays no dyamical role in the large-clustering regime. These results are a particular property of the specific separable model assumed for the correlation functions in phase space, not an intrinsic property of spatially hierarchical solutions to the BBGKY hierarchy. The observed distribution of galaxies does not satisfy the required conditions. The disagreement between theory and observation may be traced, at least in part, to initial conditions which, if Gaussian, already have cluster correlations greater than galaxy correlations.
On the effective field theory of intersecting D3-branes
NASA Astrophysics Data System (ADS)
Abbaspur, Reza
2018-05-01
We study the effective field theory of two intersecting D3-branes with one common dimension along the lines recently proposed in ref. [1]. We introduce a systematic way of deriving the classical effective action to arbitrary orders in perturbation theory. Using a proper renormalization prescription to handle logarithmic divergencies arising at all orders in the perturbation series, we recover the first order renormalization group equation of ref. [1] plus an infinite set of higher order equations. We show the consistency of the higher order equations with the first order one and hence interpret the first order result as an exact RG flow equation in the classical theory.
Different phases of a system of hard rods on three dimensional cubic lattice
NASA Astrophysics Data System (ADS)
Vigneshwar, N.; Dhar, Deepak; Rajesh, R.
2017-11-01
We study the different phases of a system of monodispersed hard rods of length k on a cubic lattice, using an efficient cluster algorithm able to simulate densities close to the fully-packed limit. For k≤slant 4 , the system is disordered at all densities. For k=5, 6 , we find a single density-driven transition, from a disordered phase to high density layered-disordered phase, in which the density of rods of one orientation is strongly suppressed, breaking the system into weakly coupled layers. Within a layer, the system is disordered. For k ≥slant 7 , three density-driven transitions are observed numerically: isotropic to nematic to layered-nematic to layered-disordered. In the layered-nematic phase, the system breaks up into layers, with nematic order in each layer, but very weak correlation between the ordering directions of different layers. We argue that the layered-nematic phase is a finite-size effect, and in the thermodynamic limit, the nematic phase will have higher entropy per site. We expect the systems of rods in four and higher dimensions will have a qualitatively similar phase diagram.
Almond-Roesler, B; Blume-Peytavi, U; Bisson, S; Krahn, M; Rohloff, E; Orfanos, C E
1998-01-01
Isotretinoin for oral therapy in severe acne conglobata and acne nodulocystica represents a significant achievement; however, the drug exerts several mucocutaneous and systemic adverse effects, besides its teratogenic potency. The aim of this study was to investigate the plasma levels of isotretinoin and of 4-oxo-isotretinoin over long-term treatment of severe acne and to assess any correlation with the given dose, the clinical improvement and the occurrence of side effects. Forty-one patients with severe acne and acne-related disorders were studied under long-term oral intake of isotretinoin. Therapeutic effects and side effects were evaluated prior, during and at the end of therapy. The plasma levels of isotretinoin and of its major metabolite 4-oxo-isotretinoin were measured by reversed-phase HPLC and were correlated with the administered oral dose and the number and frequency of side effects. Dose-dependent plasma levels of isotretinoin and its metabolite were observed. At a mean dosage of 0.75-1.0 mg/kg/day, 404 +/- 142 ng/ml were measured, whereas the plasma levels of 4-oxo-isotretinoin were 1-2x higher. The plasma levels correlated well with the orally administered dose of isotretinoin and the observed mucocutaneous side effects. The study demonstrates that measuring of the plasma levels may be a helpful tool to monitor the individual therapeutic dose regimen in patients with severe acne in order to minimize undesired side effects and to control oral intake.
Phase dependence of the unnormalized second-order photon correlation function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciornea, V.; Bardetski, P.; Macovei, M. A., E-mail: macovei@phys.asm.md
2016-10-15
We investigate the resonant quantum dynamics of a multi-qubit ensemble in a microcavity. Both the quantum-dot subsystem and the microcavity mode are pumped coherently. We find that the microcavity photon statistics depends on the phase difference of the driving lasers, which is not the case for the photon intensity at resonant driving. This way, one can manipulate the two-photon correlations. In particular, higher degrees of photon correlations and, eventually, stronger intensities are obtained. Furthermore, the microcavity photon statistics exhibits steady-state oscillatory behaviors as well as asymmetries.
Sánchez-Alarcos, V; Pérez-Landazábal, J I; Recarte, V; Rodríguez-Velamazán, J A; Chernenko, V A
2010-04-28
The influence of long-range L2(1) atomic order on the martensitic and magnetic transformations of Ni-Mn-Ga shape memory alloys has been investigated. In order to correlate the structural and magnetic transformation temperatures with the atomic order, calorimetric, magnetic and neutron diffraction measurements have been performed on polycrystalline and single-crystalline alloys subjected to different thermal treatments. It is found that both transformation temperatures increase with increasing atomic order, showing exactly the same linear dependence on the degree of L2(1) atomic order. A quantitative correlation between atomic order and transformation temperatures has been established, from which the effect of atomic order on the relative stability between the structural phases has been quantified. On the other hand, the kinetics of the post-quench ordering process taking place in these alloys has been studied. It is shown that the activation energy of the ordering process agrees quite well with the activation energy of the Mn self-diffusion process.
NASA Astrophysics Data System (ADS)
Yépez-Martínez, T.; Amor Quiroz, D. A.; Hess, P. O.; Civitarese, O.
2017-07-01
We present the low energy meson spectrum of a Coulomb gauge QCD motivated Hamiltonian for light and strange quarks. We have used the harmonic oscillator as a trial basis and performed a pre-diagonalization of the kinetic energy term in order to get an effective basis where quark and anti-quark degrees of freedom are defined. For the relevant interactions between quarks and anti-quarks, we have implemented a confining interaction between color sources, in order to account in an effective way for the gluonic degrees of freedom. The low energy meson spectrum is obtained from the implementation of the TDA and RPA many-body-methods. The physical states have been described as TDA and RPA collective states with a relatively good agreement. Particularly, the particle-hole correlations of the RPA ground state improve the RPA pion-like state (159.7 MeV) close to its physical value while the TDA one remains at a higher energy (269.2 MeV).
Ruderman, Michael A; Powell, Susan B; Geyer, Mark A
2009-07-01
Sensorimortor gating and locomotion are behaviors that reflect pre-attentive sensory filtering and higher order, top-down, sensory processing, respectively. These processes are thought to affect either the perception of novelty in an environment (filtering) or cognition (higher order processing), salient features of models of altered states of consciousness (ASC). Drugs with highly selective receptor affinities that produce ASC can help to establish neural correlates, pathways, and mechanisms underlying ASC. Furthermore, screening for substances that selectively reverse drug-induced sensory processing departures is valuable for development of experimental antipsychotics. This study investigated the anomalous opioid sub-type, the kappa opioid (KA) system, within the two ASC models. Significant interaction and reversal effects between KA and the serotonin/2A (5-HT2A) system - the serotonin sub-type associated with classical psychedelics - were observed in three BPM measures. These measures showed that KA activation-induced effects could be reversed by 5-HT2A deactivation. These results suggest that KA could function as an atypical antipsychotic medications and/or as a screening tool for new antipsychotic medicines. The experimental work for this study comprised dose-response and reversal experiments with drugs that activate and deactivate kappa opioid and serotonin systems in the two behavioral models for the first time in mice.
Double-quantum homonuclear correlations of spin I=5/2 nuclei.
Iuga, Dinu
2011-02-01
The challenges associated with acquiring double-quantum homonuclear Nuclear Magnetic Resonance correlation spectra of half-integer quadrupolar nuclei are described. In these experiments the radio-frequency irradiation amplitude is necessarily weak in order to selectively excite the central transition. In this limit only one out of the 25 double-quantum coherences possible for two coupled spin I=5/2 nuclei is excited. An investigation of all the 25 two spins double quantum transitions reveals interesting effects such as a compensation of the first-order quadrupolar interaction between the two single quantum transitions involved in the double quantum coherence. In this paper a full numerical study of a hypothetical two spin I=5/2 system is used to show what happens when the RF amplitude during recoupling is increased. In principle this is advantageous, since the required double quantum coherence should build up faster, but in practice it also induces adiabatic passage transfer of population and coherence which impedes any build up. Finally an optimized rotary resonance recoupling (oR(3)) sequence is introduced in order to decrease these transfers. This sequence consists of a spin locking irradiation whose amplitude is reduced four times during one rotor period, and allows higher RF powers to be used during recoupling. The sequence is used to measure (27)Al DQ dipolar correlation spectra of Y(3)Al(5)O(12) (YAG) and gamma alumina (γAl(2)O(3)). The results prove that aluminium vacancies in gamma alumina mainly occur in the tetrahedral sites. Copyright © 2010 Elsevier Inc. All rights reserved.
Futurist Art: Motion and Aesthetics As a Function of Title
Mastandrea, Stefano; Umiltà, Maria A.
2016-01-01
Very often the titles of Futurist paintings contain words denoting movement in order to satisfy their artistic poetic focused on motion and velocity. The aim of the present study is to investigate the reported dynamism and aesthetic quality of several Futurist artworks as a function of their title. Ten Futurist artworks with a movement-related word in the title were selected for this study. The titles were manipulated, resulting in four conditions for each painting: the “original title” with the movement word; an “increased” title in which an adjective was added in order to intensify the sense of dynamism; a “decreased” title, in which the movement word was eliminated; no title. Participants evaluated the movement suggested by each painting in the four different title conditions, rated their beauty and reported how much they liked the work. Results showed that the manipulation of the title had an effect on the reported movement: compared to the others, paintings presented with the “original” and with the “increased” title received significant higher movement scores. Of interest, beauty did not differ across conditions, but liking was higher for the conditions with more movement. Lastly, positive correlations between the quantity of perceived movement and aesthetic evaluation were found. From the present results it can be concluded that Futurists attributed much relevance to the titles of their artworks in order to effectively increase the expression of the movement represented. PMID:27242471
Kay, Robert T.; Arnold, Terri L.; Cannon, William F.; Graham, David; Morton, Eric; Bienert, Raymond
2003-01-01
Polynuclear aromatic hydrocarbon (PAH) compounds are ubiquitous in ambient surface soils in the city of Chicago, Illinois. PAH concentrations in samples collected in June 2001 and January 2002 were typically in the following order from highest to lowest: fluoranthene, pyrene, benzo(b)fluoranthene, phenanthrene, benzo(a)pyrene, chrysene, benzo(a)anthracene, benzo(k)fluoranthene, indeno(1,2,3-cd)pyrene, benzo(g,h,i)perylene, dibenzo(a,h)anthracene, and anthracene. Naphthalene, acenaphthene, acenaphthylene, and fluorene were consistently at the lowest concentrations in each sample. Concentrations of the PAH compounds showed variable correlation. Concentrations of PAH compounds with higher molecular weights typically show a higher degree of correlation with other PAH compounds of higher molecular weight, whereas PAH compounds with lower molecular weights tended to show a lower degree of correlation with all other PAH compounds. These differences indicate that high and low molecular-weight PAHs behave differentl y once released into the environment. Concentrations of individual PAH compounds in soils typically varied by at least three orders of magnitude across the city and varied by more than an order of magnitude over a distance of about 1,000 feet. Concentrations of a given PAH in ambient surface soils are affected by a variety of site-specific factors, and may be affected by proximity to industrial areas. Concentrations of a given PAH in ambient surface soils did not appear to be affected the organic carbon content of the soil, proximity to non-industrial land use, or proximity to a roadway. The concentration of the different PAH compounds in ambient surface soils appears to be affected by the propensity for the PAH compound to be in the vapor or particulate phase in the atmosphere. Lower molecular-weight PAH compounds, which are primarily in the vapor phase in the atmosphere, were detected in lower concentrations in the surface soils. Higher molecular-weight PAH compounds, which are present primarily in the particulate phase in the atmosphere, tended to be in higher concentrations in the surface soils. The apparent effect of the PAH phase in the atmosphere on the concentration of a PAH in ambient surface soils indicates that atmospheric settling of particulate matter is an important source of the PAH compounds in ambient surface soils in Chicago. The distribution of PAH compounds within the city was complex. Comparatively high concentrations were detected near Lake Michigan in the northern part of the city, in much of the western part of the city, and in isolated areas in the southern part of the city. Concentrations were lower in much of the northwestern, south-central, southwestern, and far southern parts of the city. The arithmetic mean concentration of arsenic, mercury, calcium, magnesium, phosphorus, copper, molybdenum, zinc, and selenium was from 2 to 6 times higher in ambient surface soils in the city of Chicago than in soils from surrounding agricultural areas. The arithmetic mean concentration of lead in Chicago soils was about 20 times higher. Concentrations of calcium and magnesium above those of surrounding agricultural areas appear to be related to the effects of dolomite bedrock on the chemical composition of the soil. Elevated concentrations of the remaining elements listed above indicate a potential anthropogenic source(s) of these elements in Chicago soils.
Confinement and Ordering of Au Nanorods in Polymer Films
NASA Astrophysics Data System (ADS)
Hore, Michael J. A.; Mills, Eric; Liu, Yu; Composto, Russell J.
2009-03-01
Ordered arrays of gold nanorods (Au NRs) possess interesting optical properties that might be utilized in future devices. Au NRs functionalized with a poly(ethylene glycol)-thiol brush are incorporated into homopolymer or block copolymer (BCP) films. NR distribution and orientational correlations are studied as a function of nanorod concentration and spacial confinement via Rutherford backscattering spectrometry (RBS) and transmission electron microscopy, respectively. In particular, differences in the degree of nanorod ordering are presented for PMMA homopolymer films (d ˜ 45 nm) versus PS-b-PMMA BCP films (L/2 ˜ 40 nm), where higher ordering is seen in the case of BCP films. At moderate volume fractions of NRs, φ = 1% to 10%, the degree of ordering is moderate, and increases with increasing φ . However, coexistence between regions of higher ordering and isotropic orientations is observed. In addition to the planar confinement considered above, orientation of Au NRs confined to cylindrical P2VP domains is studied in PS-b-P2VP BCP films.
Vowel selection and its effects on perturbation and nonlinear dynamic measures.
Maccallum, Julia K; Zhang, Yu; Jiang, Jack J
2011-01-01
Acoustic analysis of voice is typically conducted on recordings of sustained vowel phonation. This study applied perturbation and nonlinear dynamic analyses to the vowels /a/, /i/, and /u/ in order to determine vowel selection effects on analysis. Forty subjects (20 males and 20 females) with normal voices participated in recording. Traditional parameters of fundamental frequency, signal-to-noise ratio, percent jitter, and percent shimmer were calculated for the signals using CSpeech. Nonlinear dynamic parameters of correlation dimension and second-order entropy were also calculated. Perturbation analysis results were largely incongruous in this study and in previous research. Fundamental frequency results corroborated previous work, indicating higher fundamental frequency for /i/ and /u/ and lower fundamental frequency for /a/. Signal-to-noise ratio results showed that /i/ and /u/ have greater harmonic levels than /a/. Results of nonlinear dynamic analysis suggested that more complex activity may be evident in /a/ than in /i/ or /u/. Percent jitter and percent shimmer may not be useful for description of acoustic differences between vowels. Fundamental frequency, signal-to-noise ratio, and nonlinear dynamic parameters may be applied to characterize /a/ as having lower frequency, higher noise, and greater nonlinear components than /i/ and /u/. Copyright © 2010 S. Karger AG, Basel.
Kinoform optics applied to X-ray photon correlation spectroscopy.
Sandy, A R; Narayanan, S; Sprung, M; Su, J-D; Evans-Lutterodt, K; Isakovic, A F; Stein, A
2010-05-01
Moderate-demagnification higher-order silicon kinoform focusing lenses have been fabricated to facilitate small-angle X-ray photon correlation spectroscopy (XPCS) experiments. The geometric properties of such lenses, their focusing performance and their applicability for XPCS measurements are described. It is concluded that one-dimensional vertical X-ray focusing via silicon kinoform lenses significantly increases the usable coherent flux from third-generation storage-ring light sources for small-angle XPCS experiments.
Wu, Jianlan; Cao, Jianshu
2013-07-28
We apply a new formalism to derive the higher-order quantum kinetic expansion (QKE) for studying dissipative dynamics in a general quantum network coupled with an arbitrary thermal bath. The dynamics of system population is described by a time-convoluted kinetic equation, where the time-nonlocal rate kernel is systematically expanded of the order of off-diagonal elements of the system Hamiltonian. In the second order, the rate kernel recovers the expression of the noninteracting-blip approximation method. The higher-order corrections in the rate kernel account for the effects of the multi-site quantum coherence and the bath relaxation. In a quantum harmonic bath, the rate kernels of different orders are analytically derived. As demonstrated by four examples, the higher-order QKE can reliably predict quantum dissipative dynamics, comparing well with the hierarchic equation approach. More importantly, the higher-order rate kernels can distinguish and quantify distinct nontrivial quantum coherent effects, such as long-range energy transfer from quantum tunneling and quantum interference arising from the phase accumulation of interactions.
SKA weak lensing - III. Added value of multiwavelength synergies for the mitigation of systematics
NASA Astrophysics Data System (ADS)
Camera, Stefano; Harrison, Ian; Bonaldi, Anna; Brown, Michael L.
2017-02-01
In this third paper of a series on radio weak lensing for cosmology with the Square Kilometre Array, we scrutinize synergies between cosmic shear measurements in the radio and optical/near-infrared (IR) bands for mitigating systematic effects. We focus on three main classes of systematics: (I) experimental systematic errors in the observed shear; (II) signal contamination by intrinsic alignments and (III) systematic effects due to an incorrect modelling of non-linear scales. First, we show that a comprehensive, multiwavelength analysis provides a self-calibration method for experimental systematic effects, only implying <50 per cent increment on the errors on cosmological parameters. We also illustrate how the cross-correlation between radio and optical/near-IR surveys alone is able to remove residual systematics with variance as large as 10-5, I.e. the same order of magnitude of the cosmological signal. This also opens the possibility of using such a cross-correlation as a means to detect unknown experimental systematics. Secondly, we demonstrate that, thanks to polarization information, radio weak lensing surveys will be able to mitigate contamination by intrinsic alignments, in a way similar but fully complementary to available self-calibration methods based on position-shear correlations. Lastly, we illustrate how radio weak lensing experiments, reaching higher redshifts than those accessible to optical surveys, will probe dark energy and the growth of cosmic structures in regimes less contaminated by non-linearities in the matter perturbations. For instance, the higher redshift bins of radio catalogues peak at z ≃ 0.8-1, whereas their optical/near-IR counterparts are limited to z ≲ 0.5-0.7. This translates into having a cosmological signal 2-5 times less contaminated by non-linear perturbations.
Agudelo-Gómez, Divier; Pineda-Sierra, Sebastian; Cerón-Muñoz, Mario Fernando
2015-01-01
Genealogy and productive information of 48621 dual-purpose buffaloes born in Colombia between years 1996 and 2014 was used. The following traits were assessed using one-trait models: milk yield at 270 days (MY270), age at first calving (AFC), weaning weight (WW), and weights at the following ages: first year (W12), 18 months (W18), and 2 years (W24). Direct additive genetic and residual random effects were included in all the traits. Maternal permanent environmental and maternal additive genetic effects were included for WW and W12. The fixed effects were: contemporary group (for all traits), sex (for WW, W12, W18, and W24), parity (for WW, W12, and MY270). Age was included as covariate for WW, W12, W18 and W24. Principal component analysis (PCA) was conducted using the genetic values of 133 breeding males whose breeding-value reliability was higher than 50% for all the traits in order to define the number of principal components (PC) which would explain most of the variation. The highest heritabilities were for W18 and MY270, and the lowest for AFC; with 0.53, 0.23, and 0.17, respectively. The first three PCs represented 66% of the total variance. Correlation of the first PC with meat production traits was higher than 0.73, and it was -0.38 with AFC. Correlations of the second PC with maternal genetic component traits for WW and W12 were above 0.75. The third PC had 0.84 correlation with MY270. PCA is an alternative approach for analyzing traits in dual-purpose buffaloes and reduces the dimension of the traits. PMID:26230093
NASA Astrophysics Data System (ADS)
Schroer, M. A.; Gutt, C.; Grübel, G.
2014-07-01
Recently the analysis of scattering patterns by angular cross-correlation analysis (CCA) was introduced to reveal the orientational order in disordered samples with special focus to future applications on x-ray free-electron laser facilities. We apply this CCA approach to ultra-small-angle light-scattering data obtained from two-dimensional monolayers of microspheres. The films were studied in addition by optical microscopy. This combined approach allows to calculate the cross-correlations of the scattering patterns, characterized by the orientational correlation function Ψl(q), as well as to obtain the real-space structure of the monolayers. We show that CCA is sensitive to the orientational order of monolayers formed by the microspheres which are not directly visible from the scattering patterns. By mixing microspheres of different radii the sizes of ordered monolayer domains is reduced. For these samples it is shown that Ψl(q) quantitatively describes the degree of hexagonal order of the two-dimensional films. The experimental CCA results are compared with calculations based on the microscopy images. Both techniques show qualitatively similar features. Differences can be attributed to the wave-front distortion of the laser beam in the experiment. This effect is discussed by investigating the effect of different wave fronts on the cross-correlation analysis results. The so-determined characteristics of the cross-correlation analysis will be also relevant for future x-ray-based studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamasha, Safeia, E-mail: safeia@hu.edu.jo
2013-11-15
The fully relativistic configuration interaction method of the FAC code is used to calculate atomic data for multipole transitions in Mg-like Au (Au{sup 67+}) and Al-like Au (Au{sup 66+}) ions. Generated atomic data are important in the modeling of M-shell spectra for heavy Au ions and Au plasma diagnostics. Energy levels, oscillator strengths and transition rates are calculated for electric-dipole (E1), electric quadrupole (E2), magnetic dipole (M1), and magnetic quadrupole (M2) for transitions between excited and ground states 3l−nl{sup ′}, such that n=4,5,6,7. The local central potential is derived using the Dirac–Fock–Slater method. Correlation effects to all orders are consideredmore » by the configuration interaction expansion. All relativistic effects are included in the calculations. Calculated energy levels are compared against published values that were calculated using the multi-reference many body perturbation theory, which includes higher order QED effects. Favorable agreement was observed, with less than 0.15% difference.« less
Fe-induced enhancement of antiferromagnetic spin correlations in Mn2-xFexBO4
NASA Astrophysics Data System (ADS)
Kazak, N. V.; Platunov, M. S.; Knyazev, Yu. V.; Moshkina, E. M.; Gavrilkin, S. Yu.; Bayukov, O. A.; Gorev, M. V.; Pogoreltsev, E. I.; Zeer, G. M.; Zharkov, S. M.; Ovchinnikov, S. G.
2018-04-01
Fe substitution effect on the magnetic behavior of Mn2-xFexBO4 (x = 0.3, 0.5, 0.7) warwickites has been investigated combining Mössbauer spectroscopy, dc magnetization, ac magnetic susceptibility, and heat capacity measurements. The Fe3+ ions distribution over two crystallographic nonequivalent sites is studied. The Fe introduction breaks a long-range antiferromagnetic order and leads to onset of spin-glass ground state. The antiferromagnetic short-range-order spin correlations persist up to temperatures well above TSG reflecting in increasing deviations from the Curie-Weiss law, the reduced effective magnetic moment and "missing" entropy. The results are interpreted in the terms of the progressive increase of the frustration effect and the formation of spin-correlated regions.
Effect of cation ordering on oxygen vacancy diffusion pathways in double perovskites
Uberuaga, Blas Pedro; Pilania, Ghanshyam
2015-07-08
Perovskite structured oxides (ABO 3) are attractive for a number of technological applications, including as superionics because of the high oxygen conductivities they exhibit. Double perovskites (AA’BB’O 6) provide even more flexibility for tailoring properties. Using accelerated molecular dynamics, we examine the role of cation ordering on oxygen vacancy mobility in one model double perovskite SrLaTiAlO 6. We find that the mobility of the vacancy is very sensitive to the cation ordering, with a migration energy that varies from 0.6 to 2.7 eV. In the extreme cases, the mobility is both higher and lower than either of the two endmore » member single perovskites. Further, the nature of oxygen vacancy diffusion, whether one-dimensional, two-dimensional, or three-dimensional, also varies with cation ordering. We correlate the dependence of oxygen mobility on cation structure to the distribution of Ti 4+ cations, which provide unfavorable environments for the positively charged oxygen vacancy. The results demonstrate the potential of using tailored double perovskite structures to precisely control the behavior of oxygen vacancies in these materials.« less
DGCA: A comprehensive R package for Differential Gene Correlation Analysis.
McKenzie, Andrew T; Katsyv, Igor; Song, Won-Min; Wang, Minghui; Zhang, Bin
2016-11-15
Dissecting the regulatory relationships between genes is a critical step towards building accurate predictive models of biological systems. A powerful approach towards this end is to systematically study the differences in correlation between gene pairs in more than one distinct condition. In this study we develop an R package, DGCA (for Differential Gene Correlation Analysis), which offers a suite of tools for computing and analyzing differential correlations between gene pairs across multiple conditions. To minimize parametric assumptions, DGCA computes empirical p-values via permutation testing. To understand differential correlations at a systems level, DGCA performs higher-order analyses such as measuring the average difference in correlation and multiscale clustering analysis of differential correlation networks. Through a simulation study, we show that the straightforward z-score based method that DGCA employs significantly outperforms the existing alternative methods for calculating differential correlation. Application of DGCA to the TCGA RNA-seq data in breast cancer not only identifies key changes in the regulatory relationships between TP53 and PTEN and their target genes in the presence of inactivating mutations, but also reveals an immune-related differential correlation module that is specific to triple negative breast cancer (TNBC). DGCA is an R package for systematically assessing the difference in gene-gene regulatory relationships under different conditions. This user-friendly, effective, and comprehensive software tool will greatly facilitate the application of differential correlation analysis in many biological studies and thus will help identification of novel signaling pathways, biomarkers, and targets in complex biological systems and diseases.
Study of boundary-layer transition using transonic cone Preston tube data
NASA Technical Reports Server (NTRS)
Reed, T. D.; Abu-Mostafa, A.
1982-01-01
Laminar layer Preston tube data on a sharp nose, ten degree cone obtained in the Ames 11 ft TWT and in flight tests are analyzed. During analyses of the laminar-boundary layer data, errors were discovered in both the wind tunnel and the flight data. A correction procedure for errors in the flight data is recommended which forces the flight data to exhibit some of the orderly characteristics of the wind tunnel data. From corrected wind tunnel data, a correlation is developed between Preston tube pressures and the corresponding values of theoretical laminar skin friction. Because of the uncertainty in correcting the flight data, a correlation for the unmodified data is developed, and, in addition, three other correlations are developed based on different correction procedures. Each of these correlations are used in conjunction with the wind tunnel correlation to define effective freestream unit Reynolds numbers for the 11 ft TWT over a Mach number range of 0.30 to 0.95. The maximum effective Reynolds numbers are approximately 6.5% higher than the normal values. These maximum values occur between freestream Mach numbers of 0.60 and 0.80. Smaller values are found outside this Mach number range. These results indicate wind tunnel noise affects the average laminar skin friction much less than it affects boundary layer transition. Data on the onset, extent, and end of boundary layer transition are summarized. Application of a procedure for studying the relative effects of varying nose radius on a ten degree cone at supercritical speeds indicates that increasing nose radius promotes boundary layer transition and separation of laminar boundary layers.
van der Fels, Irene M J; Te Wierike, Sanne C M; Hartman, Esther; Elferink-Gemser, Marije T; Smith, Joanne; Visscher, Chris
2015-11-01
This review aims to give an overview of studies providing evidence for a relationship between motor and cognitive skills in typically developing children. A systematic review. PubMed, Web of Science, and PsychINFO were searched for relevant articles. A total of 21 articles were included in this study. Methodological quality was independently assessed by two reviewers. Motor and cognitive skills were divided into six categories. There was either no correlation in the literature, or insufficient evidence for or against many correlations between motor skills and cognitive skills. However, weak-to-strong evidence was found for some correlations between underlying categories of motor and cognitive skills, including complex motor skills and higher order cognitive skills. Furthermore, a stronger relationship between underlying categories of motor and cognitive skills was found in pre-pubertal children compared to pubertal children (older than 13 years). Weak-to-strong relations were found between some motor and cognitive skills. The results suggest that complex motor intervention programs can be used to stimulate both motor and higher order cognitive skills in pre-pubertal children. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Joachimsthaler, Bettina; Uhlmann, Michaela; Miller, Frank; Ehret, Günter; Kurt, Simone
2014-01-01
Because of its great genetic potential, the mouse (Mus musculus) has become a popular model species for studies on hearing and sound processing along the auditory pathways. Here, we present the first comparative study on the representation of neuronal response parameters to tones in primary and higher-order auditory cortical fields of awake mice. We quantified 12 neuronal properties of tone processing in order to estimate similarities and differences of function between the fields, and to discuss how far auditory cortex (AC) function in the mouse is comparable to that in awake monkeys and cats. Extracellular recordings were made from 1400 small clusters of neurons from cortical layers III/IV in the primary fields AI (primary auditory field) and AAF (anterior auditory field), and the higher-order fields AII (second auditory field) and DP (dorsoposterior field). Field specificity was shown with regard to spontaneous activity, correlation between spontaneous and evoked activity, tone response latency, sharpness of frequency tuning, temporal response patterns (occurrence of phasic responses, phasic-tonic responses, tonic responses, and off-responses), and degree of variation between the characteristic frequency (CF) and the best frequency (BF) (CF–BF relationship). Field similarities were noted as significant correlations between CFs and BFs, V-shaped frequency tuning curves, similar minimum response thresholds and non-monotonic rate-level functions in approximately two-thirds of the neurons. Comparative and quantitative analyses showed that the measured response characteristics were, to various degrees, susceptible to influences of anesthetics. Therefore, studies of neuronal responses in the awake AC are important in order to establish adequate relationships between neuronal data and auditory perception and acoustic response behavior. PMID:24506843
NASA Astrophysics Data System (ADS)
Menegassi, Silvio Renato Oliveira; Pereira, Gabriel Ribas; Dias, Eduardo Antunes; Koetz, Celso; Lopes, Flávio Guiselli; Bremm, Carolina; Pimentel, Concepta; Lopes, Rubia Branco; da Rocha, Marcela Kuczynski; Carvalho, Helena Robattini; Barcellos, Júlio Otavio Jardim
2016-01-01
The objective of this study was to evaluate the seasonal effects of the environment on sperm quality in subtropical region determined by temperature and humidity index (THI). We used 20 Brangus bulls (5/8 Angus × 3/8 Nellore) aged approximately 24 months at the beginning of the study. Semen evaluations were performed twice per season during 1 year. Climate THI data were collected from an automatic weather station from the National Institute of Meteorology. Infrared thermography images were used to determine the temperature of the proximal and distal poles of the testis to assess the testicular temperature gradient (TG). The seasonal effects on seminal and climatic variables were analyzed with ANOVA using MIXED procedure of SAS. Sperm motility in spring (60.1 %), summer (57.6 %), and autumn (64.5 %) showed difference compared to winter (73.0 %; P < 0.01). TG was negatively correlated with THI at 18 days (spermiogenesis) (-0.76; P < 0.05) and at 12 days (epididymal transit) (-0.85; P < 0.01). Ocular temperature (OcT) had a positive correlation with THI at 18 days (0.78; P < 0.05) and at 12 days (0.84; P < 0.01). Motility showed a negative correlation with THI only at 18 days (-0.79; P < 0.05). During spermiogenesis, the TG had higher negative correlation compared to OcT (-0.97; P < 0.01) and rectal temperature (-0.72; P < 0.05). Spermatozoa with distal midpiece reflex were correlated with THI during transit epididymis (0.72; P < 0.05). Seminal parameters are not affected when THI reaches 93.0 (spermiogenesis) and 88.0 (epididymal transit). We concluded that infrared thermography can be adopted as an indirect method in order to assess the effect of environmental changes in TG and OcT of Brangus bulls.
Tavarez, Melissa M; Ayers, Brandon; Jeong, Jong H; Coombs, Carmen M; Thompson, Ann; Hickey, Robert W
2017-08-01
Higher resource utilization in the management of pediatric patients with undifferentiated vomiting and/or diarrhea does not correlate consistently with improved outcomes or quality of care. Performance feedback has been shown to change physician practice behavior and may be a mechanism to minimize practice variation. We aimed to evaluate the effects of e-mail-only, provider-level performance feedback on the ordering and admission practice variation of pediatric emergency physicians for patients presenting with undifferentiated vomiting and/or diarrhea. We conducted a prospective, quality improvement intervention and collected data over 3 consecutive fiscal years. The setting was a single, tertiary care pediatric emergency department. We collected admission and ordering practices data on 19 physicians during baseline, intervention, and postintervention periods. We provided physicians with quarterly e-mail-based performance reports during the intervention phase. We measured admission rate and created four categories for ordering practices: no orders, laboratory orders, pharmacy orders, and radiology orders. There was wide (two- to threefold) practice variation among physicians. Admission rates ranged from 15% to 30%, laboratory orders from 19% to 43%, pharmacy orders from 29% to 57%, and radiology orders from 11% to 30%. There was no statistically significant difference in the proportion of patients admitted or with radiology or pharmacy orders placed between preintervention, intervention, or postintervention periods (p = 0.58, p = 0.19, and p = 0.75, respectively). There was a significant but very small decrease in laboratory orders between the preintervention and postintervention periods. Performance feedback provided only via e-mail to pediatric emergency physicians on a quarterly basis does not seem to significantly impact management practices for patients with undifferentiated vomiting and/or diarrhea. © 2017 by the Society for Academic Emergency Medicine.
NASA Astrophysics Data System (ADS)
Vlah, Zvonimir; Seljak, Uroš; McDonald, Patrick; Okumura, Teppei; Baldauf, Tobias
2012-11-01
We develop a perturbative approach to redshift space distortions (RSD) using the phase space distribution function approach and apply it to the dark matter redshift space power spectrum and its moments. RSD can be written as a sum over density weighted velocity moments correlators, with the lowest order being density, momentum density and stress energy density. We use standard and extended perturbation theory (PT) to determine their auto and cross correlators, comparing them to N-body simulations. We show which of the terms can be modeled well with the standard PT and which need additional terms that include higher order corrections which cannot be modeled in PT. Most of these additional terms are related to the small scale velocity dispersion effects, the so called finger of god (FoG) effects, which affect some, but not all, of the terms in this expansion, and which can be approximately modeled using a simple physically motivated ansatz such as the halo model. We point out that there are several velocity dispersions that enter into the detailed RSD analysis with very different amplitudes, which can be approximately predicted by the halo model. In contrast to previous models our approach systematically includes all of the terms at a given order in PT and provides a physical interpretation for the small scale dispersion values. We investigate RSD power spectrum as a function of μ, the cosine of the angle between the Fourier mode and line of sight, focusing on the lowest order powers of μ and multipole moments which dominate the observable RSD power spectrum. Overall we find considerable success in modeling many, but not all, of the terms in this expansion. This is similar to the situation in real space, but predicting power spectrum in redshift space is more difficult because of the explicit influence of small scale dispersion type effects in RSD, which extend to very large scales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlah, Zvonimir; Seljak, Uroš; Baldauf, Tobias
We develop a perturbative approach to redshift space distortions (RSD) using the phase space distribution function approach and apply it to the dark matter redshift space power spectrum and its moments. RSD can be written as a sum over density weighted velocity moments correlators, with the lowest order being density, momentum density and stress energy density. We use standard and extended perturbation theory (PT) to determine their auto and cross correlators, comparing them to N-body simulations. We show which of the terms can be modeled well with the standard PT and which need additional terms that include higher order correctionsmore » which cannot be modeled in PT. Most of these additional terms are related to the small scale velocity dispersion effects, the so called finger of god (FoG) effects, which affect some, but not all, of the terms in this expansion, and which can be approximately modeled using a simple physically motivated ansatz such as the halo model. We point out that there are several velocity dispersions that enter into the detailed RSD analysis with very different amplitudes, which can be approximately predicted by the halo model. In contrast to previous models our approach systematically includes all of the terms at a given order in PT and provides a physical interpretation for the small scale dispersion values. We investigate RSD power spectrum as a function of μ, the cosine of the angle between the Fourier mode and line of sight, focusing on the lowest order powers of μ and multipole moments which dominate the observable RSD power spectrum. Overall we find considerable success in modeling many, but not all, of the terms in this expansion. This is similar to the situation in real space, but predicting power spectrum in redshift space is more difficult because of the explicit influence of small scale dispersion type effects in RSD, which extend to very large scales.« less
Spin Hall Effects in Metallic Antiferromagnets
Zhang, Wei; Jungfleisch, Matthias B.; Jiang, Wanjun; ...
2014-11-04
In this paper, we investigate four CuAu-I-type metallic antiferromagnets for their potential as spin current detectors using spin pumping and inverse spin Hall effect. Nontrivial spin Hall effects were observed for FeMn, PdMn, and IrMn while a much higher effect was obtained for PtMn. Using thickness-dependent measurements, we determined the spin diffusion lengths of these materials to be short, on the order of 1 nm. The estimated spin Hall angles of the four materials follow the relationship PtMn > IrMn > PdMn > FeMn, highlighting the correlation between the spin-orbit coupling of nonmagnetic species and the magnitude of the spinmore » Hall effect in their antiferromagnetic alloys. These experiments are compared with first-principles calculations. Finally, engineering the properties of the antiferromagnets as well as their interfaces can pave the way for manipulation of the spin dependent transport properties in antiferromagnet-based spintronics.« less
Effects of fiber, matrix, and interphase on carbon fiber composite compression strength
NASA Technical Reports Server (NTRS)
Nairn, John A.; Harper, Sheila I.; Bascom, Willard D.
1994-01-01
The major goal of this project was to obtain basic information on compression failure properties of carbon fiber composites. To do this, we investigated fiber effects, matrix effects, and fiber/matrix interface effects. Using each of nine fiber types, we prepared embedded single-fiber specimens, single-ply specimens, and full laminates. From the single-fiber specimens, in addition to the standard fragmentation test analysis, we were able to use the low crack density data to provide information about the distribution of fiber flaws. The single-ply specimens provided evidence of a correlation between the size of kink band zones and the quality of the interface. Results of the laminate compression experiments mostly agreed with the results from single-ply experiments, although the ultimate compression strengths of laminates were higher. Generally, these experiments showed a strong effect of interfacial properties. Matrix effects were examined using laminates subjected to precracking under mixed-mode loading conditions. A large effect of precracking conditions on the mode 1 toughness of the laminates was found. In order to control the properties of the fiber/matrix interface, we prepared composites of carbon fiber and polycarbonate and subjected these to annealing. The changes in interfacial properties directly correlated with changes in compression strength.
Bold Diagrammatic Monte Carlo Method Applied to Fermionized Frustrated Spins
NASA Astrophysics Data System (ADS)
Kulagin, S. A.; Prokof'ev, N.; Starykh, O. A.; Svistunov, B.; Varney, C. N.
2013-02-01
We demonstrate, by considering the triangular lattice spin-1/2 Heisenberg model, that Monte Carlo sampling of skeleton Feynman diagrams within the fermionization framework offers a universal first-principles tool for strongly correlated lattice quantum systems. We observe the fermionic sign blessing—cancellation of higher order diagrams leading to a finite convergence radius of the series. We calculate the magnetic susceptibility of the triangular-lattice quantum antiferromagnet in the correlated paramagnet regime and reveal a surprisingly accurate microscopic correspondence with its classical counterpart at all accessible temperatures. The extrapolation of the observed relation to zero temperature suggests the absence of the magnetic order in the ground state. We critically examine the implications of this unusual scenario.
NASA Astrophysics Data System (ADS)
Nattrass, Christine; Todoroki, Takahito
2018-05-01
Dihadron and jet-hadron correlationsare commonly used in relativistic heavy ion collisions to study the soft component of jets in a quark gluon plasma. There is a large correlated background which is described by the Fourier decomposition of the azimuthal anisotropy where vn is the n th order coefficient. The path length dependence of partonic energy loss can be studied by varying the angle of the high momentum trigger particle or jet relative to a reconstructed event plane. This modifies the shape of the background correlated with that event plane. The original derivation of the shape of this background only considered correlations relative to the second-order event plane, which is correlated to the initial participant plane. We derive the shape of this background for an event plane at an arbitrary order. There is a phase shift in the case of jets restricted to asymmetric regions relative to the event plane. For realistic correlations between event planes, the correlation between the second- and fourth-order event planes leads to a much smaller effect than the finite event plane resolution at each order. Finally, we assess the status of the rapidity even v1 term due to flow, which has been measured to be comparable to v2 and v3 terms.
Impact of neutral density fluctuations on gas puff imaging diagnostics
NASA Astrophysics Data System (ADS)
Wersal, C.; Ricci, P.
2017-11-01
A three-dimensional turbulence simulation of the SOL and edge regions of a toroidally limited tokamak is carried out. The simulation couples self-consistently the drift-reduced two-fluid Braginskii equations to a kinetic equation for neutral atoms. A diagnostic neutral gas puff on the low-field side midplane is included and the impact of neutral density fluctuations on D_α light emission investigated. We find that neutral density fluctuations affect the D_α emission. In particular, at a radial distance from the gas puff smaller than the neutral mean free path, neutral density fluctuations are anti-correlated with plasma density, electron temperature, and D_α fluctuations. It follows that the neutral fluctuations reduce the D_α emission in most of the observed region and, therefore, have to be taken into account when interpreting the amplitude of the D_α emission. On the other hand, higher order statistical moments (skewness, kurtosis) and turbulence characteristics (such as correlation length, or the autocorrelation time) are not significantly affected by the neutral fluctuations. At distances from the gas puff larger than the neutral mean free path, a non-local shadowing effect influences the neutral density fluctuations. There, the D_α fluctuations are correlated with the neutral density fluctuations, and the high-order statistical moments and measurements of other turbulence properties are strongly affected by the neutral density fluctuations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovchegov, Yuri V.; Skokov, Vladimir V.
We show that, in the saturation/Color Glass Condensate framework, odd azimuthal harmonics of the two-gluon correlation function with a long-range separation in rapidity are generated by the higher-order saturation corrections in the interactions with the projectile and the target. At the very least, the odd harmonics require three scatterings in the projectile and three scatterings in the target. We derive the leading-order expression for the two-gluon production cross section which generates odd harmonics: the expression includes all-order interactions with the target and three interactions with the projectile. Here, we evaluate the obtained expression both analytically and numerically, confirming that themore » odd-harmonics contribution to the two-gluon production in the saturation framework is non-zero.« less
Kovchegov, Yuri V.; Skokov, Vladimir V.
2018-04-30
We show that, in the saturation/Color Glass Condensate framework, odd azimuthal harmonics of the two-gluon correlation function with a long-range separation in rapidity are generated by the higher-order saturation corrections in the interactions with the projectile and the target. At the very least, the odd harmonics require three scatterings in the projectile and three scatterings in the target. We derive the leading-order expression for the two-gluon production cross section which generates odd harmonics: the expression includes all-order interactions with the target and three interactions with the projectile. Here, we evaluate the obtained expression both analytically and numerically, confirming that themore » odd-harmonics contribution to the two-gluon production in the saturation framework is non-zero.« less
Renormalization group analysis of the Reynolds stress transport equation
NASA Technical Reports Server (NTRS)
Rubinstein, R.; Barton, J. M.
1992-01-01
The pressure velocity correlation and return to isotropy term in the Reynolds stress transport equation are analyzed using the Yakhot-Orszag renormalization group. The perturbation series for the relevant correlations, evaluated to lowest order in the epsilon-expansion of the Yakhot-Orszag theory, are infinite series in tensor product powers of the mean velocity gradient and its transpose. Formal lowest order Pade approximations to the sums of these series produce a fast pressure strain model of the form proposed by Launder, Reece, and Rodi, and a return to isotropy model of the form proposed by Rotta. In both cases, the model constant are computed theoretically. The predicted Reynolds stress ratios in simple shear flows are evaluated and compared with experimental data. The possibility is discussed of driving higher order nonlinear models by approximating the sums more accurately.
Bučinský, Lukáš; Jayatilaka, Dylan; Grabowsky, Simon
2016-08-25
This study investigates the possibility of detecting relativistic effects and electron correlation in single-crystal X-ray diffraction experiments using the examples of diphenyl mercury (HgPh2) and triphenyl bismuth (BiPh3). In detail, the importance of electron correlation (ECORR), relativistic effects (REL) [distinguishing between total, scalar and spin-orbit (SO) coupling relativistic effects] and picture change error (PCE) on the theoretical electron density, its topology and its Laplacian using infinite order two component (IOTC) wave functions is discussed. This is to develop an understanding of the order of magnitude and shape of these different effects as they manifest in the electron density. Subsequently, the same effects are considered for the theoretical structure factors. It becomes clear that SO and PCE are negligible, but ECORR and scalar REL are important in low- and medium-order reflections on absolute and relative scales-not in the high-order region. As a further step, Hirshfeld atom refinement (HAR) and subsequent X-ray constrained wavefunction (XCW) fitting have been performed for the compound HgPh2 with various relativistic and nonrelativistic wave functions against the experimental structure factors. IOTC calculations of theoretical structure factors and relativistic HAR as well as relativistic XCW fitting are presented for the first time, accounting for both scalar and spin-orbit relativistic effects.
A continued fraction resummation form of bath relaxation effect in the spin-boson model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Zhihao; Tang, Zhoufei; Wu, Jianlan, E-mail: jianlanwu@zju.edu.cn
2015-02-28
In the spin-boson model, a continued fraction form is proposed to systematically resum high-order quantum kinetic expansion (QKE) rate kernels, accounting for the bath relaxation effect beyond the second-order perturbation. In particular, the analytical expression of the sixth-order QKE rate kernel is derived for resummation. With higher-order correction terms systematically extracted from higher-order rate kernels, the resummed quantum kinetic expansion approach in the continued fraction form extends the Pade approximation and can fully recover the exact quantum dynamics as the expansion order increases.
Polaron melting and ordering as key mechanisms for colossal resistance effects in manganites
Jooss, Ch.; Wu, L.; Beetz, T.; Klie, R. F.; Beleggia, M.; Schofield, M. A.; Schramm, S.; Hoffmann, J.; Zhu, Y.
2007-01-01
Polarons, the combined motion of electrons in a cloth of their lattice distortions, are a key transport feature in doped manganites. To develop a profound understanding of the colossal resistance effects induced by external fields, the study of polaron correlations and the resulting collective polaron behavior, i.e., polaron ordering and transition from polaronic transport to metallic transport is essential. We show that static long-range ordering of Jahn–Teller polarons forms a polaron solid which represents a new type of charge and orbital ordered state. The related noncentrosymmetric lattice distortions establish a connection between colossal resistance effects and multiferroic properties, i.e., the coexistence of ferroelectric and antiferromagnetic ordering. Colossal resistance effects due to an electrically induced polaron solid–liquid transition are directly observed in a transmission electron microscope with local electric stimulus applied in situ using a piezo-controlled tip. Our results shed light onto the colossal resistance effects in magnetic field and have a strong impact on the development of correlated electron-device applications such as resistive random access memory (RRAM). PMID:17699633
NASA Astrophysics Data System (ADS)
Romenskyy, Maksym; Lobaskin, Vladimir
2013-03-01
We study dynamic self-organisation and order-disorder transitions in a two-dimensional system of self-propelled particles. Our model is a variation of the Vicsek model, where particles align the motion to their neighbours but repel each other at short distances. We use computer simulations to measure the orientational order parameter for particle velocities as a function of intensity of internal noise or particle density. We show that in addition to the transition to an ordered state on increasing the particle density, as reported previously, there exists a transition into a disordered phase at the higher densities, which can be attributed to the destructive action of the repulsions. We demonstrate that the transition into the ordered phase is accompanied by the onset of algebraic behaviour of the two-point velocity correlation function and by a non-monotonous variation of the velocity relaxation time. The critical exponent for the decay of the velocity correlation function in the ordered phase depends on particle concentration at low densities but assumes a universal value in more dense systems.
NASA Astrophysics Data System (ADS)
Li, Hui-Ling; Yang, Shu-Zheng; Zu, Xiao-Tao
2017-01-01
In the framework of holography, we survey the phase structure for a higher dimensional hairy black hole including the effects of the scalar field hair. It is worth emphasizing that, not only black hole entropy, but also entanglement entropy and two point correlation function exhibit the Van der Waals-like phase transition in a fixed scalar charge ensemble. Furthermore, by making use of numerical computation, we show that the Maxwell's equal area law is valid for the first order phase transition. In addition, we also discuss how the hair parameter affects the black hole's phase transition.
Statistical performance evaluation of ECG transmission using wireless networks.
Shakhatreh, Walid; Gharaibeh, Khaled; Al-Zaben, Awad
2013-07-01
This paper presents simulation of the transmission of biomedical signals (using ECG signal as an example) over wireless networks. Investigation of the effect of channel impairments including SNR, pathloss exponent, path delay and network impairments such as packet loss probability; on the diagnosability of the received ECG signal are presented. The ECG signal is transmitted through a wireless network system composed of two communication protocols; an 802.15.4- ZigBee protocol and an 802.11b protocol. The performance of the transmission is evaluated using higher order statistics parameters such as kurtosis and Negative Entropy in addition to the common techniques such as the PRD, RMS and Cross Correlation.
Relating microstructure to rheology of a bundled and cross-linked F-actin network in vitro
NASA Astrophysics Data System (ADS)
Shin, J. H.; Gardel, M. L.; Mahadevan, L.; Matsudaira, P.; Weitz, D. A.
2004-06-01
The organization of individual actin filaments into higher-order structures is controlled by actin-binding proteins (ABPs). Although the biological significance of the ABPs is well documented, little is known about how bundling and cross-linking quantitatively affect the microstructure and mechanical properties of actin networks. Here we quantify the effect of the ABP scruin on actin networks by using imaging techniques, cosedimentation assays, multiparticle tracking, and bulk rheology. We show how the structure of the actin network is modified as the scruin concentration is varied, and we correlate these structural changes to variations in the resultant network elasticity.
NASA Astrophysics Data System (ADS)
Setiawan, A.; Malik, A.; Suhandi, A.; Permanasari, A.
2018-02-01
This research was based on the need for improving critical and creative thinking skills of student in the 21 -st century. In this research, we have implemented HOT-Lab model for topic of force. The model was characterized by problem solving and higher order thinking development through real laboratory activities. This research used a quasy experiment method with pre-test post-test control group design. Samples of this research were 60 students of Physics Education Program of Teacher Educatuon Institution in Bandung. The samples were divided into 2 classes, experiment class (HOT-lab model) and control class (verification lab model). Research instruments were essay tests for creative and critical thinking skills measurements. The results revealed that both the models have improved student’s creative and critical thinking skills. However, the improvement of the experiment class was significantly higher than that of the control class, as indicated by the average of normalized gains (N-gain) for critical thinking skills of 60.18 and 29.30 and for creative thinking skills of 70.71 and 29.40, respectively for the experimental class and the control class. In addition, there is no significant correlation between the improvement of critical thinking skills and creative thinking skills in both the classes.
Perturbative reduction of derivative order in EFT
NASA Astrophysics Data System (ADS)
Glavan, Dražen
2018-02-01
Higher derivative corrections are ubiquitous in effective field theories, which seemingly introduces new degrees of freedom at successive orders. This is actually an artefact of the implicit local derivative expansion defining effective field theories. We argue that higher derivative corrections that introduce additional degrees of freedom should be removed and their effects captured either by lower derivative corrections, or special combinations of higher derivative corrections not propagating extra degrees of freedom. Three methods adapted for this task are examined and field redefinitions are found to be most appropriate. First order higher derivative corrections in a scalar tensor theory are removed by field redefinition and it is found that their effects are captured by a subset of Horndeski theories. A case is made for restricting the effective field theory expansions in principle to only terms not introducing additional degrees of freedom.
NASA Astrophysics Data System (ADS)
Nepal, Niraj K.; Ruzsinszky, Adrienn; Bates, Jefferson E.
2018-03-01
The ground state structural and energetic properties for rocksalt and cesium chloride phases of the cesium halides were explored using the random phase approximation (RPA) and beyond-RPA methods to benchmark the nonempirical SCAN meta-GGA and its empirical dispersion corrections. The importance of nonadditivity and higher-order multipole moments of dispersion in these systems is discussed. RPA generally predicts the equilibrium volume for these halides within 2.4% of the experimental value, while beyond-RPA methods utilizing the renormalized adiabatic LDA (rALDA) exchange-correlation kernel are typically within 1.8%. The zero-point vibrational energy is small and shows that the stability of these halides is purely due to electronic correlation effects. The rAPBE kernel as a correction to RPA overestimates the equilibrium volume and could not predict the correct phase ordering in the case of cesium chloride, while the rALDA kernel consistently predicted results in agreement with the experiment for all of the halides. However, due to its reasonable accuracy with lower computational cost, SCAN+rVV10 proved to be a good alternative to the RPA-like methods for describing the properties of these ionic solids.
Ab initio Studies of Magnetism in the Iron Chalcogenides FeTe and FeSe
NASA Astrophysics Data System (ADS)
Hirayama, Motoaki; Misawa, Takahiro; Miyake, Takashi; Imada, Masatoshi
2015-09-01
The iron chalcogenides FeTe and FeSe belong to the family of iron-based superconductors. We study the magnetism in these compounds in the normal state using the ab initio downfolding scheme developed for strongly correlated electron systems. In deriving ab initio low-energy effective models, we employ the constrained GW method to eliminate the double counting of electron correlations originating from the exchange correlations already taken into account in the density functional theory. By solving the derived ab initio effective models, we reveal that the elimination of the double counting is important in reproducing the bicollinear antiferromagnetic order in FeTe, as is observed in experiments. We also show that the elimination of the double counting induces a unique degeneracy of several magnetic orders in FeSe, which may explain the absence of the magnetic ordering. We discuss the relationship between the degeneracy and the recently found puzzling phenomena in FeSe as well as the magnetic ordering found under pressure.
Higher order turbulence closure models
NASA Technical Reports Server (NTRS)
Amano, Ryoichi S.; Chai, John C.; Chen, Jau-Der
1988-01-01
Theoretical models are developed and numerical studies conducted on various types of flows including both elliptic and parabolic. The purpose of this study is to find better higher order closure models for the computations of complex flows. This report summarizes three new achievements: (1) completion of the Reynolds-stress closure by developing a new pressure-strain correlation; (2) development of a parabolic code to compute jets and wakes; and, (3) application to a flow through a 180 deg turnaround duct by adopting a boundary fitted coordinate system. In the above mentioned models near-wall models are developed for pressure-strain correlation and third-moment, and incorporated into the transport equations. This addition improved the results considerably and is recommended for future computations. A new parabolic code to solve shear flows without coordinate tranformations is developed and incorporated in this study. This code uses the structure of the finite volume method to solve the governing equations implicitly. The code was validated with the experimental results available in the literature.
Volatilities, Traded Volumes, and Price Increments in Derivative Securities
NASA Astrophysics Data System (ADS)
Kim, Kyungsik; Lim, Gyuchang; Kim, Soo Yong; Scalas, Enrico
2007-03-01
We apply the detrended fluctuation analysis (DFA) to the statistics of the Korean treasury bond (KTB) futures from which the logarithmic increments, volatilities, and traded volumes are estimated over a specific time lag. For our case, the logarithmic increment of futures prices has no long-memory property, while the volatility and the traded volume exhibit the existence of long-memory property. To analyze and calculate whether the volatility clustering is due to the inherent higher-order correlation not detected by applying directly the DFA to logarithmic increments of the KTB futures, it is of importance to shuffle the original tick data of futures prices and to generate the geometric Brownian random walk with the same mean and standard deviation. It is really shown from comparing the three tick data that the higher-order correlation inherent in logarithmic increments makes the volatility clustering. Particularly, the result of the DFA on volatilities and traded volumes may be supported the hypothesis of price changes.
Volatilities, traded volumes, and the hypothesis of price increments in derivative securities
NASA Astrophysics Data System (ADS)
Lim, Gyuchang; Kim, SooYong; Scalas, Enrico; Kim, Kyungsik
2007-08-01
A detrended fluctuation analysis (DFA) is applied to the statistics of Korean treasury bond (KTB) futures from which the logarithmic increments, volatilities, and traded volumes are estimated over a specific time lag. In this study, the logarithmic increment of futures prices has no long-memory property, while the volatility and the traded volume exhibit the existence of the long-memory property. To analyze and calculate whether the volatility clustering is due to a inherent higher-order correlation not detected by with the direct application of the DFA to logarithmic increments of KTB futures, it is of importance to shuffle the original tick data of future prices and to generate a geometric Brownian random walk with the same mean and standard deviation. It was found from a comparison of the three tick data that the higher-order correlation inherent in logarithmic increments leads to volatility clustering. Particularly, the result of the DFA on volatilities and traded volumes can be supported by the hypothesis of price changes.
Huang, Wenzhu; Zhen, Tengkun; Zhang, Wentao; Zhang, Fusheng; Li, Fang
2015-01-01
Static strain can be detected by measuring a cross-correlation of reflection spectra from two fiber Bragg gratings (FBGs). However, the static-strain measurement resolution is limited by the dominant Gaussian noise source when using this traditional method. This paper presents a novel static-strain demodulation algorithm for FBG-based Fabry-Perot interferometers (FBG-FPs). The Hilbert transform is proposed for changing the Gaussian distribution of the two FBG-FPs’ reflection spectra, and a cross third-order cumulant is used to use the results of the Hilbert transform and get a group of noise-vanished signals which can be used to accurately calculate the wavelength difference of the two FBG-FPs. The benefit by these processes is that Gaussian noise in the spectra can be suppressed completely in theory and a higher resolution can be reached. In order to verify the precision and flexibility of this algorithm, a detailed theory model and a simulation analysis are given, and an experiment is implemented. As a result, a static-strain resolution of 0.9 nε under laboratory environment condition is achieved, showing a higher resolution than the traditional cross-correlation method. PMID:25923938
Huang, Wenzhu; Zhen, Tengkun; Zhang, Wentao; Zhang, Fusheng; Li, Fang
2015-04-27
Static strain can be detected by measuring a cross-correlation of reflection spectra from two fiber Bragg gratings (FBGs). However, the static-strain measurement resolution is limited by the dominant Gaussian noise source when using this traditional method. This paper presents a novel static-strain demodulation algorithm for FBG-based Fabry-Perot interferometers (FBG-FPs). The Hilbert transform is proposed for changing the Gaussian distribution of the two FBG-FPs' reflection spectra, and a cross third-order cumulant is used to use the results of the Hilbert transform and get a group of noise-vanished signals which can be used to accurately calculate the wavelength difference of the two FBG-FPs. The benefit by these processes is that Gaussian noise in the spectra can be suppressed completely in theory and a higher resolution can be reached. In order to verify the precision and flexibility of this algorithm, a detailed theory model and a simulation analysis are given, and an experiment is implemented. As a result, a static-strain resolution of 0.9 nε under laboratory environment condition is achieved, showing a higher resolution than the traditional cross-correlation method.
NASA Astrophysics Data System (ADS)
Liu, Yao; Wang, Xiufeng; Lin, Jing; Zhao, Wei
2016-11-01
Motor current is an emerging and popular signal which can be used to detect machining chatter with its multiple advantages. To achieve accurate and reliable chatter detection using motor current, it is important to make clear the quantitative relationship between motor current and chatter vibration, which has not yet been studied clearly. In this study, complex continuous wavelet coherence, including cross wavelet transform and wavelet coherence, is applied to the correlation analysis of motor current and chatter vibration in grinding. Experimental results show that complex continuous wavelet coherence performs very well in demonstrating and quantifying the intense correlation between these two signals in frequency, amplitude and phase. When chatter occurs, clear correlations in frequency and amplitude in the chatter frequency band appear and the phase difference of current signal to vibration signal turns from random to stable. The phase lead of the most correlated chatter frequency is the largest. With the further development of chatter, the correlation grows up in intensity and expands to higher order chatter frequency band. The analyzing results confirm that there is a consistent correlation between motor current and vibration signals in the grinding chatter process. However, to achieve accurate and reliable chatter detection using motor current, the frequency response bandwidth of current loop of the feed drive system must be wide enough to response chatter effectively.
Superconducting order from disorder in 2H-TaSe2-xSx
NASA Astrophysics Data System (ADS)
Li, Lijun; Deng, Xiaoyu; Wang, Zhen; Liu, Yu; Abeykoon, Milinda; Dooryhee, Eric; Tomic, Aleksandra; Huang, Yanan; Warren, John B.; Bozin, Emil S.; Billinge, Simon J. L.; Sun, Yuping; Zhu, Yimei; Kotliar, Gabriel; Petrovic, Cedomir
2017-12-01
We report on the emergence of robust superconducting order in single crystal alloys of TaSe2-xSx (0 ≤ × ≤ 2). The critical temperature of the alloy is surprisingly higher than that of the two end compounds TaSe2 and TaS2. The evolution of superconducting critical temperature Tc(x) correlates with the full width at half maximum of the Bragg peaks and with the linear term of the high-temperature resistivity. The conductivity of the crystals near the middle of the alloy series is higher or similar than that of either one of the end members 2H-TaSe2 and/or 2H-TaS2. It is known that in these materials superconductivity is in close competition with charge density wave order. We interpret our experimental findings in a picture where disorder tilts this balance in favor of superconductivity by destroying the charge density wave order.
Hayashi, Ken; Hirata, Akira; Yoshida, Motoaki; Yoshimura, Koichi; Hayashi, Hideyuki
2012-08-01
To investigate the long-term effect of surface light scattering and glistenings of various intraocular lenses (IOLs) on visual function and optical aberrations after cataract surgery. Case-control study. Thirty-five eyes that underwent implantation of a hydrophobic acrylic, silicone, or polymethyl methacrylate (PMMA) IOL more than 10 years ago were recruited. The scattering light intensity of the surface and internal matrix of the optic was measured using Scheimpflug photography. Visual acuity (VA) was measured using VA charts, and contrast VA and that with glare (glare VA) were examined using a contrast sensitivity tester. Ocular higher-order aberrations (HOAs) were measured using a Hartmann-Shack aberrometer. Mean scattering light intensity of the surface and internal matrix of the optic was significantly higher in the acrylic group than in the silicone and PMMA groups (P < .0001). Mean uncorrected VA, photopic and mesopic contrast VA and glare VA, and HOAs did not differ significantly among groups, although mean corrected VA in the acrylic group was significantly better than that in the other groups (P = .0023). Scattering light intensity of the surface and internal matrix did not correlate with VA, contrast VA, or glare VA, and did not correlate with ocular and internal optic HOAs in the acrylic group. At more than 10 years postoperatively, visual function, including contrast sensitivity, and ocular HOAs were comparable among eyes that received acrylic, silicone, and PMMA IOLs. Surface scattering and glistenings with the acrylic IOLs were not significantly correlated with visual function and optical aberrations. Copyright © 2012 Elsevier Inc. All rights reserved.
Interaction effects on galaxy pairs with Gemini/GMOS- III: stellar population synthesis
NASA Astrophysics Data System (ADS)
Krabbe, A. C.; Rosa, D. A.; Pastoriza, M. G.; Hägele, G. F.; Cardaci, M. V.; Dors, O. L., Jr.; Winge, C.
2017-05-01
We present an observational study of the impacts of interactions on the stellar population in a sample of galaxy pairs. Long-slit spectra in the wavelength range 3440-7300 Å obtained with the Gemini Multi-Object Spectrograph (GMOS) at Gemini South for 15 galaxies in nine close pairs were used. The spatial distributions of the stellar population contributions were obtained using the stellar population synthesis code starlight. Taking into account the different contributions to the emitted light, we found that most of the galaxies in our sample are dominated by young/intermediate stellar populations. This result differs from the one derived for isolated galaxies, where the old stellar population dominates the disc surface brightness. We interpreted such different behaviour as being due to the effect of gas inflows along the discs of interacting galaxies on the star formation over a time-scale of the order of about 2 Gyr. We also found that, in general, the secondary galaxy of a pair has a higher contribution from the young stellar population than the primary one. We compared the estimated values of stellar and nebular extinction derived from the synthesis method and the Hα/Hβ emission-line ratio, finding that nebular extinctions are systematically higher than stellar ones by about a factor of 2. We did not find any correlation between nebular and stellar metallicities. Neither did we find a correlation between stellar metallicities and ages, while a positive correlation between nebular metallicities and stellar ages was obtained, with older regions being the most metal-rich.
Optical and Biometric Characteristics of Anisomyopia in Human Adults
Tian, Yibin; Tarrant, Janice; Wildsoet, Christine F.
2011-01-01
Purpose To investigate the role of higher order optical aberrations and thus retinal image degradation in the development of myopia, through the characterization of anisomyopia in human adults in terms of their optical and biometric characteristics. Methods The following data were collected from both eyes of fifteen young adult anisometropic myopes and sixteen isometropic myopes: subjective and objective refractive errors, corneal power and shape, monochromatic optical aberrations, anterior chamber depth, lens thickness, vitreous chamber depth, and best corrected visual acuity. Monochromatic aberrations were analyzed in terms of their higher order components, and further analyzed in terms of 31 optical quality metrics. Interocular differences for the two groups (anisomyopes vs. isomyopes) were compared and the relationship between measured ocular parameters and refractive errors also analyzed across all eyes. Results As expected, anisomyopes and isomyopes differed significantly in terms of interocular differences in vitreous chamber depth, axial length and refractive error. However, interocular differences in other optical properties showed no significant intergroup differences. Overall, higher myopia was associated with deeper anterior and vitreous chambers, higher astigmatism, more prolate corneas, and more positive spherical aberration. Other measured optical and biometric parameters were not significantly correlated with spherical refractive error, although some optical quality metrics and corneal astigmatism were significantly correlated with refractive astigmatism. Conclusions An optical cause for anisomyopia related to increased higher order aberrations is not supported by our data. Corneal shape changes and increased astigmatism in more myopic eyes may be a by-product of the increased anterior chamber growth in these eyes; likewise, the increased positive spherical aberration in more myopic eyes may be a product of myopic eye growth. PMID:21797915
Beeler, N.M.; Lockner, D.A.
2003-01-01
We provide an explanation why earthquake occurrence does not correlate well with the daily solid Earth tides. The explanation is derived from analysis of laboratory experiments in which faults are loaded to quasiperiodic failure by the combined action of a constant stressing rate, intended to simulate tectonic loading, and a small sinusoidal stress, analogous to the Earth tides. Event populations whose failure times correlate with the oscillating stress show two modes of response; the response mode depends on the stressing frequency. Correlation that is consistent with stress threshold failure models, e.g., Coulomb failure, results when the period of stress oscillation exceeds a characteristic time tn; the degree of correlation between failure time and the phase of the driving stress depends on the amplitude and frequency of the stress oscillation and on the stressing rate. When the period of the oscillating stress is less than tn, the correlation is not consistent with threshold failure models, and much higher stress amplitudes are required to induce detectable correlation with the oscillating stress. The physical interpretation of tn is the duration of failure nucleation. Behavior at the higher frequencies is consistent with a second-order dependence of the fault strength on sliding rate which determines the duration of nucleation and damps the response to stress change at frequencies greater than 1/tn. Simple extrapolation of these results to the Earth suggests a very weak correlation of earthquakes with the daily Earth tides, one that would require >13,000 earthquakes to detect. On the basis of our experiments and analysis, the absence of definitive daily triggering of earthquakes by the Earth tides requires that for earthquakes, tn exceeds the daily tidal period. The experiments suggest that the minimum typical duration of earthquake nucleation on the San Andreas fault system is ???1 year.
Gutzwiller charge phase diagram of cuprates, including electron–phonon coupling effects
Markiewicz, R. S.; Seibold, G.; Lorenzana, J.; ...
2015-02-01
Besides significant electronic correlations, high-temperature superconductors also show a strong coupling of electrons to a number of lattice modes. Combined with the experimental detection of electronic inhomogeneities and ordering phenomena in many high-T c compounds, these features raise the question as to what extent phonons are involved in the associated instabilities. Here we address this problem based on the Hubbard model including a coupling to phonons in order to capture several salient features of the phase diagram of hole-doped cuprates. Charge degrees of freedom, which are suppressed by the large Hubbard U near half-filling, are found to become active atmore » a fairly low doping level. We find that possible charge order is mainly driven by Fermi surface nesting, with competition between a near-(π, π) order at low doping and antinodal nesting at higher doping, very similar to the momentum structure of magnetic fluctuations. The resulting nesting vectors are generally consistent with photoemission and tunneling observations, evidence for charge density wave order in YBa₂Cu₃O 7-δ including Kohn anomalies, and suggestions of competition between one- and two-q-vector nesting.« less
Do conscientious individuals live longer? A quantitative review.
Kern, Margaret L; Friedman, Howard S
2008-09-01
Following up on growing evidence that higher levels of conscientiousness are associated with greater health protection, the authors conducted a meta-analysis of the association between conscientiousness-related traits and longevity. Using a random-effects analysis model, the authors statistically combined 20 independent samples. In addition, the authors used fixed-effects analyses to examine specific facets of conscientiousness and study characteristics as potential moderators of this relationship. Effect sizes were computed for each individual sample as the correlation coefficient r, based on the relationship between conscientiousness and mortality risk (all-cause mortality risk, longevity, or length of survival). Higher levels of conscientiousness were significantly and positively related to longevity (r = .11, 95% confidence interval = .05-.17). Associations were strongest for the achievement (persistent, industrious) and order (organized, disciplined) facets of conscientiousness. Results strongly support the importance of conscientiousness-related traits to health across the life span. Future research and interventions should consider how individual differences in conscientiousness may cause and be shaped by health-relevant biopsychosocial events across many years. PsycINFO Database Record (c) 2008 APA, all rights reserved.
NASA Astrophysics Data System (ADS)
Kohno, M.
2018-03-01
Adopting hyperon-nucleon and hyperon-nucleon-nucleon interactions parametrized in chiral effective field theory, single-particle potentials of the Λ and Σ hyperons are evaluated in symmetric nuclear matter and in pure neutron matter within the framework of lowest-order Bruckner theory. The chiral NLO interaction bears strong Λ N -Σ N coupling. Although the Λ potential is repulsive if the coupling is switched off, the Λ N -Σ N correlation brings about the attraction consistent with empirical data. The Σ potential is repulsive, which is also consistent with empirical information. The interesting result is that the Λ potential becomes shallower beyond normal density. This provides the possibility of solving the hyperon puzzle without introducing ad hoc assumptions. The effects of the Λ N N -Λ N N and Λ N N -Σ N N three-baryon forces are considered. These three-baryon forces are first reduced to normal-ordered effective two-baryon interactions in nuclear matter and then incorporated in the G -matrix equation. The repulsion from the Λ N N -Λ N N interaction is of the order of 5 MeV at normal density and becomes larger with increasing density. The effects of the Λ N N -Σ N N coupling compensate the repulsion at normal density. The net effect of the three-baryon interactions on the Λ single-particle potential is repulsive at higher densities.
Optimized effective potential model for the double perovskites Sr2 - xYxVMoO6 and Sr2 - xYxVTcO6
NASA Astrophysics Data System (ADS)
Solovyev, I. V.
2011-08-01
In an attempt to explore half-metallic properties of the double perovskites Sr2 - xYxVMoO6 and Sr2 - xYxVTcO6, we construct an effective low-energy model, which describes the behavior of the t2g states of these compounds. All parameters of such a model are derived rigorously on the basis of first-principles electronic structure calculations. In order to solve this model, we employ the optimized effective potential method and treat the correlation interactions in the random phase approximation. Although correlation interactions considerably reduce the intraatomic exchange splitting in comparison with the Hartree-Fock approach, this splitting still substantially exceeds the typical values obtained in the local-spin-density approximation (LSDA), which alters many predictions based on the LSDA. Our main results are summarized as follows. (i) All ferromagnetic states are expected to be half-metallic. However, their energies are generally higher than those of the ferrimagnetic ordering between V and Mo/Tc sites (except Sr2VMoO6). (ii) All ferrimagnetic states are metallic (except fully insulating Y2VTcO6) and no half-metallic antiferromagnetism has been found. (iii) Moreover, many of the ferrimagnetic structures appear to be unstable with respect to the spin-spiral alignment. Thus, the true magnetic ground state of these systems is expected to be more complex. In addition, we discuss several methodological issues related to nonuniqueness of the effective potential for the half-metallic and magnetic insulating states.
Double-deprotected chemically amplified photoresists (DD-CAMP): higher-order lithography
NASA Astrophysics Data System (ADS)
Earley, William; Soucie, Deanna; Hosoi, Kenji; Takahashi, Arata; Aoki, Takashi; Cardineau, Brian; Miyauchi, Koichi; Chun, Jay; O'Sullivan, Michael; Brainard, Robert
2017-03-01
The synthesis and lithographic evaluation of 193-nm and EUV photoresists that utilize a higher-order reaction mechanism of deprotection is presented. Unique polymers utilize novel blocking groups that require two acid-catalyzed steps to be removed. When these steps occur with comparable reaction rates, the overall reaction can be higher order (<= 1.85). The LWR of these resists is plotted against PEB time for a variety of compounds to acquire insight into the effectiveness of the proposed higher-order mechanisms. Evidence acquired during testing of these novel photoresist materials supports the conclusion that higher-order reaction kinetics leads to improved LWR vs. control resists.
Laspas, Fotios; Tsantioti, Dimitra; Roussakis, Arkadios; Kritikos, Nikolaos; Efthimiadou, Roxani; Kehagias, Dimitrios; Andreou, John
2011-04-01
Computed tomography coronary angiography (CTCA) has been widely used since the introduction of 64-slice scanners and dual-source CT technology, but the relatively high radiation dose remains a major concern. To evaluate the relationship between radiation exposure and heart rate (HR), in dual-source CTCA. Data from 218 CTCA examinations, performed with a dual-source 64-slices scanner, were statistically evaluated. Effective radiation dose, expressed in mSv, was calculated as the product of the dose-length product (DLP) times a conversion coefficient for the chest (mSv = DLPx0.017). Heart rate range and mean heart rate, expressed in beats per minute (bpm) of each individual during CTCA, were also provided by the system. Statistical analysis of effective dose and heart rate data was performed by using Pearson correlation coefficient and two-sample t-test. Mean HR and effective dose were found to have a borderline positive relationship. Individuals with a mean HR >65 bpm observed to receive a statistically significant higher effective dose as compared to those with a mean HR ≤65 bpm. Moreover, a strong correlation between effective dose and variability of HR of more than 20 bpm was observed. Dual-source CT scanners are considered to have the capability to provide diagnostic examinations even with high HR and arrhythmias. However, it is desirable to keep the mean heart rate below 65 bpm and heart rate fluctuation less than 20 bpm in order to reduce the radiation exposure.
The Importance of Stochastic Effects for Explaining Entrainment in the Zebrafish Circadian Clock.
Heussen, Raphaela; Whitmore, David
2015-01-01
The circadian clock plays a pivotal role in modulating physiological processes and has been implicated, either directly or indirectly, in a range of pathological states including cancer. Here we investigate how the circadian clock is entrained by external cues such as light. Working with zebrafish cell lines and combining light pulse experiments with simulation efforts focused on the role of synchronization effects, we find that even very modest doses of light exposure are sufficient to trigger some entrainment, whereby a higher light intensity or duration correlates with strength of the circadian signal. Moreover, we observe in the simulations that stochastic effects may be considered an essential feature of the circadian clock in order to explain the circadian signal decay in prolonged darkness, as well as light initiated resynchronization as a strong component of entrainment.
Smart, Adam S; Tingley, Reid; Weeks, Andrew R; van Rooyen, Anthony R; McCarthy, Michael A
2015-10-01
Effective management of alien species requires detecting populations in the early stages of invasion. Environmental DNA (eDNA) sampling can detect aquatic species at relatively low densities, but few studies have directly compared detection probabilities of eDNA sampling with those of traditional sampling methods. We compare the ability of a traditional sampling technique (bottle trapping) and eDNA to detect a recently established invader, the smooth newt Lissotriton vulgaris vulgaris, at seven field sites in Melbourne, Australia. Over a four-month period, per-trap detection probabilities ranged from 0.01 to 0.26 among sites where L. v. vulgaris was detected, whereas per-sample eDNA estimates were much higher (0.29-1.0). Detection probabilities of both methods varied temporally (across days and months), but temporal variation appeared to be uncorrelated between methods. Only estimates of spatial variation were strongly correlated across the two sampling techniques. Environmental variables (water depth, rainfall, ambient temperature) were not clearly correlated with detection probabilities estimated via trapping, whereas eDNA detection probabilities were negatively correlated with water depth, possibly reflecting higher eDNA concentrations at lower water levels. Our findings demonstrate that eDNA sampling can be an order of magnitude more sensitive than traditional methods, and illustrate that traditional- and eDNA-based surveys can provide independent information on species distributions when occupancy surveys are conducted over short timescales.
Zhuang, Chengxu; Wang, Yulong; Yamins, Daniel; Hu, Xiaolin
2017-01-01
Visual information in the visual cortex is processed in a hierarchical manner. Recent studies show that higher visual areas, such as V2, V3, and V4, respond more vigorously to images with naturalistic higher-order statistics than to images lacking them. This property is a functional signature of higher areas, as it is much weaker or even absent in the primary visual cortex (V1). However, the mechanism underlying this signature remains elusive. We studied this problem using computational models. In several typical hierarchical visual models including the AlexNet, VggNet, and SHMAX, this signature was found to be prominent in higher layers but much weaker in lower layers. By changing both the model structure and experimental settings, we found that the signature strongly correlated with sparse firing of units in higher layers but not with any other factors, including model structure, training algorithm (supervised or unsupervised), receptive field size, and property of training stimuli. The results suggest an important role of sparse neuronal activity underlying this special feature of higher visual areas.
Zhuang, Chengxu; Wang, Yulong; Yamins, Daniel; Hu, Xiaolin
2017-01-01
Visual information in the visual cortex is processed in a hierarchical manner. Recent studies show that higher visual areas, such as V2, V3, and V4, respond more vigorously to images with naturalistic higher-order statistics than to images lacking them. This property is a functional signature of higher areas, as it is much weaker or even absent in the primary visual cortex (V1). However, the mechanism underlying this signature remains elusive. We studied this problem using computational models. In several typical hierarchical visual models including the AlexNet, VggNet, and SHMAX, this signature was found to be prominent in higher layers but much weaker in lower layers. By changing both the model structure and experimental settings, we found that the signature strongly correlated with sparse firing of units in higher layers but not with any other factors, including model structure, training algorithm (supervised or unsupervised), receptive field size, and property of training stimuli. The results suggest an important role of sparse neuronal activity underlying this special feature of higher visual areas. PMID:29163117
Wang, Xianhua; Wu, Jing; Chen, Yingquan; Pattiya, Adisak; Yang, Haiping; Chen, Hanping
2018-06-01
Wet torrefaction (WT) possesses some advantages over dry torrefaction (DT). In this study, a comparative analysis of torrefied corn stalk from WT and DT was conducted along with an investigation of their pyrolysis properties under optimal conditions for biomass pyrolysis polygeneration. Compared with DT, WT removed 98% of the ash and retained twice the amount of hydrogen. The impacts of DT and WT on the biomass macromolecular structure was also found to be different using two-dimensional perturbation correlation infrared spectroscopy (2D-PCIS). WT preserved the active hydroxyl groups and rearranged the macromolecule structure to allow cellulose to be more ordered, while DT removed these active hydroxyl groups and formed inter-crosslinking structures in macromolecules. Correspondingly, the bio-char yield after WT was lower than DT but the bio-char quality was upgraded due to high ash removal. Furthermore, higher bio-oil yield, higher sugar content, and higher H 2 generation, were obtained after WT. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sánchez, Marta I; Paredes, Irene; Lebouvier, Marion; Green, Andy J
2016-01-01
Filter-feeding organisms are often keystone species with a major influence on the dynamics of aquatic ecosystems. Studies of filtering rates in such taxa are therefore vital in order to understand ecosystem functioning and the impact of natural and anthropogenic stressors such as parasites, climate warming and invasive species. Brine shrimps Artemia spp. are the dominant grazers in hypersaline systems and are a good example of such keystone taxa. Hypersaline ecosystems are relatively simplified environments compared with much more complex freshwater and marine ecosystems, making them suitable model systems to address these questions. The aim of this study was to compare feeding rates at different salinities and temperatures between clonal A. parthenogenetica (native to Eurasia and Africa) and the invasive American brine shrimp A. franciscana, which is excluding native Artemia from many localities. We considered how differences observed in laboratory experiments upscale at the ecosystem level across both spatial and temporal scales (as indicated by chlorophyll-a concentration and turbidity). In laboratory experiments, feeding rates increased at higher temperatures and salinities in both Artemia species and sexes, whilst A. franciscana consistently fed at higher rates. A field study of temporal dynamics revealed significantly higher concentrations of chlorophyll-a in sites occupied by A. parthenogenetica, supporting our experimental findings. Artemia parthenogenetica density and biomass were negatively correlated with chlorophyll-a concentration at the spatial scale. We also tested the effect of cestode parasites, which are highly prevalent in native Artemia but much rarer in the invasive species. The cestodes Flamingolepis liguloides and Anomotaenia tringae decreased feeding rates in native Artemia, whilst Confluaria podicipina had no significant effect. Total parasite prevalence was positively correlated with turbidity. Overall, parasites are likely to reduce feeding rates in the field, and their negative impact on host fecundity is likely to exacerbate the difference between grazing rates of native and alien Artemia populations at the ecosystem level. The results of this study provide evidence for the first time that the replacement of native Artemia by A. franciscana may have major consequences for the functioning of hypersaline ecosystems. The strong effect of parasites on feeding rate underlines the importance of taking parasites into account in order to improve our understanding of the functioning of aquatic ecosystems.
NASA Technical Reports Server (NTRS)
Singer, M. S.; Oliveira, L.; Vriend, G.; Shepherd, G. M.
1995-01-01
A family of G-protein-coupled receptors is believed to mediate the recognition of odor molecules. In order to identify potential ligand-binding residues, we have applied correlated mutation analysis to receptor sequences from the rat. This method identifies pairs of sequence positions where residues remain conserved or mutate in tandem, thereby suggesting structural or functional importance. The analysis supported molecular modeling studies in suggesting several residues in positions that were consistent with ligand-binding function. Two of these positions, dominated by histidine residues, may play important roles in ligand binding and could confer broad specificity to mammalian odor receptors. The presence of positive (overdominant) selection at some of the identified positions provides additional evidence for roles in ligand binding. Higher-order groups of correlated residues were also observed. Each group may interact with an individual ligand determinant, and combinations of these groups may provide a multi-dimensional mechanism for receptor diversity.
Structuring Stokes correlation functions using vector-vortex beam
NASA Astrophysics Data System (ADS)
Kumar, Vijay; Anwar, Ali; Singh, R. P.
2018-01-01
Higher order statistical correlations of the optical vector speckle field, formed due to scattering of a vector-vortex beam, are explored. Here, we report on the experimental construction of the Stokes parameters covariance matrix, consisting of all possible spatial Stokes parameters correlation functions. We also propose and experimentally realize a new Stokes correlation functions called Stokes field auto correlation functions. It is observed that the Stokes correlation functions of the vector-vortex beam will be reflected in the respective Stokes correlation functions of the corresponding vector speckle field. The major advantage of proposing Stokes correlation functions is that the Stokes correlation function can be easily tuned by manipulating the polarization of vector-vortex beam used to generate vector speckle field and to get the phase information directly from the intensity measurements. Moreover, this approach leads to a complete experimental Stokes characterization of a broad range of random fields.
Higher-order gravitational lensing reconstruction using Feynman diagrams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenkins, Elizabeth E.; Manohar, Aneesh V.; Yadav, Amit P.S.
2014-09-01
We develop a method for calculating the correlation structure of the Cosmic Microwave Background (CMB) using Feynman diagrams, when the CMB has been modified by gravitational lensing, Faraday rotation, patchy reionization, or other distorting effects. This method is used to calculate the bias of the Hu-Okamoto quadratic estimator in reconstructing the lensing power spectrum up to O (φ{sup 4}) in the lensing potential φ. We consider both the diagonal noise TT TT, EB EB, etc. and, for the first time, the off-diagonal noise TT TE, TB EB, etc. The previously noted large O (φ{sup 4}) term in the second order noise ismore » identified to come from a particular class of diagrams. It can be significantly reduced by a reorganization of the φ expansion. These improved estimators have almost no bias for the off-diagonal case involving only one B component of the CMB, such as EE EB.« less
The Neuroanatomical Correlates of Training-Related Perceptuo-Reflex Uncoupling in Dancers
Nigmatullina, Yuliya; Hellyer, Peter J.; Nachev, Parashkev; Sharp, David J.; Seemungal, Barry M.
2015-01-01
Sensory input evokes low-order reflexes and higher-order perceptual responses. Vestibular stimulation elicits vestibular-ocular reflex (VOR) and self-motion perception (e.g., vertigo) whose response durations are normally equal. Adaptation to repeated whole-body rotations, for example, ballet training, is known to reduce vestibular responses. We investigated the neuroanatomical correlates of vestibular perceptuo-reflex adaptation in ballet dancers and controls. Dancers' vestibular-reflex and perceptual responses to whole-body yaw-plane step rotations were: (1) Briefer and (2) uncorrelated (controls' reflex and perception were correlated). Voxel-based morphometry showed a selective gray matter (GM) reduction in dancers' vestibular cerebellum correlating with ballet experience. Dancers' vestibular cerebellar GM density reduction was related to shorter perceptual responses (i.e. positively correlated) but longer VOR duration (negatively correlated). Contrastingly, controls' vestibular cerebellar GM density negatively correlated with perception and VOR. Diffusion-tensor imaging showed that cerebral cortex white matter (WM) microstructure correlated with vestibular perception but only in controls. In summary, dancers display vestibular perceptuo-reflex dissociation with the neuronatomical correlate localized to the vestibular cerebellum. Controls' robust vestibular perception correlated with a cortical WM network conspicuously absent in dancers. Since primary vestibular afferents synapse in the vestibular cerebellum, we speculate that a cerebellar gating of perceptual signals to cortical regions mediates the training-related attenuation of vestibular perception and perceptuo-reflex uncoupling. PMID:24072889
Enhanced electron transfer kinetics through hybrid graphene-carbon nanotube films.
Henry, Philémon A; Raut, Akshay S; Ubnoske, Stephen M; Parker, Charles B; Glass, Jeffrey T
2014-11-01
We report the first study of the electrochemical reactivity of a graphenated carbon nanotube (g-CNT) film. The electron transfer kinetics of the ferri-ferrocyanide couple were examined for a g-CNT film and compared to the kinetics to standard carbon nanotubes (CNTs). The g-CNT film exhibited much higher catalytic activity, with a heterogeneous electron-transfer rate constant, k 0 , approximately two orders of magnitude higher than for standard CNTs. Scanning electron microscopy and Raman spectroscopy were used to correlate the higher electron transfer kinetics with the higher edge-density of the g-CNT film.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aaboud, M.; Aad, G.; Abbott, B.
Measurements of longitudinal flow correlations are presented for charged particles in the pseudorapidity range |η|<2.4 using 7 and 470 μb -1 of Pb+Pb collisions atmore » $$\\sqrt{s}$$$_ {NN}$$= 2.76 and 5.02 TeV, respectively, recorded by the ATLAS detector at the LHC. It is found that the correlation between the harmonic flow coefficients v n measured in two separated η intervals does not factorise into the product of single-particle coefficients, and this breaking of factorisation, or flow decorrelation, increases linearly with the η separation between the intervals. The flow decorrelation is stronger at 2.76 TeV than at 5.02 TeV. Higher-order moments of the correlations are also measured, and the corresponding linear coefficients for the kth-moment of the vn are found to be proportional to k for v 3, but not for v 2. The decorrelation effect is separated into contributions from the magnitude of v n and the event-plane orientation, each as a function of η. These two contributions are found to be comparable. The longitudinal flow correlations are also measured between v n of different order in n. The decorrelations of v 2 and v 3 are found to be independent of each other, while the decorrelations of v 4 and v 5 are found to be driven by the nonlinear contribution from v$$2\\atop{2}$$ and v 2v 3, respectively.« less
Aaboud, M.; Aad, G.; Abbott, B.; ...
2018-02-19
Measurements of longitudinal flow correlations are presented for charged particles in the pseudorapidity range |η|<2.4 using 7 and 470 μb -1 of Pb+Pb collisions atmore » $$\\sqrt{s}$$$_ {NN}$$= 2.76 and 5.02 TeV, respectively, recorded by the ATLAS detector at the LHC. It is found that the correlation between the harmonic flow coefficients v n measured in two separated η intervals does not factorise into the product of single-particle coefficients, and this breaking of factorisation, or flow decorrelation, increases linearly with the η separation between the intervals. The flow decorrelation is stronger at 2.76 TeV than at 5.02 TeV. Higher-order moments of the correlations are also measured, and the corresponding linear coefficients for the kth-moment of the vn are found to be proportional to k for v 3, but not for v 2. The decorrelation effect is separated into contributions from the magnitude of v n and the event-plane orientation, each as a function of η. These two contributions are found to be comparable. The longitudinal flow correlations are also measured between v n of different order in n. The decorrelations of v 2 and v 3 are found to be independent of each other, while the decorrelations of v 4 and v 5 are found to be driven by the nonlinear contribution from v$$2\\atop{2}$$ and v 2v 3, respectively.« less
Role of Weak Measurements on States Ordering and Monogamy of Quantum Correlation
NASA Astrophysics Data System (ADS)
Hu, Ming-Liang; Fan, Heng; Tian, Dong-Ping
2015-01-01
The information-theoretic definition of quantum correlation, e.g., quantum discord, is measurement dependent. By considering the more general quantum measurements, weak measurements, which include the projective measurement as a limiting case, we show that while weak measurements can enable one to capture more quantumness of correlation in a state, it can also induce other counterintuitive quantum effects. Specifically, we show that the general measurements with different strengths can impose different orderings for quantum correlations of some states. It can also modify the monogamous character for certain classes of states as well which may diminish the usefulness of quantum correlation as a resource in some protocols. In this sense, we say that the weak measurements play a dual role in defining quantum correlation.
Correlations of heavy quarks produced at the Large Hadron Collider
NASA Astrophysics Data System (ADS)
Younus, Mohammed; Jamil, Umme; Srivastava, Dinesh K.
2012-02-01
We study the correlations of heavy quarks produced in relativistic heavy-ion collisions and find them to be quite sensitive to the effects of the medium and the production mechanisms. In order to put this on a quantitative footing, as a first step, we analyze the azimuthal, transverse momentum, and rapidity correlations of heavy quark-antiquark (Q\\overline{Q}) pairs in pp collisions at {O}(α3s). This sets the stage for the identification and study of medium modification of similar correlations in the relativistic collision of heavy nuclei at the Large Hadron Collider. Next we study the additional production of charm quarks in heavy ion collisions due to multiple scatterings, namely jet-jet collisions, jet-thermal collisions, and thermal interactions. We find that these give rise to azimuthal correlations which are quite different from those arising from the prompt initial production at leading order and at next to leading order. Communicated by Professor Steffen Bass.
Palmer, Edward J; Devitt, Peter G
2007-01-01
Background Reliable and valid written tests of higher cognitive function are difficult to produce, particularly for the assessment of clinical problem solving. Modified Essay Questions (MEQs) are often used to assess these higher order abilities in preference to other forms of assessment, including multiple-choice questions (MCQs). MEQs often form a vital component of end-of-course assessments in higher education. It is not clear how effectively these questions assess higher order cognitive skills. This study was designed to assess the effectiveness of the MEQ to measure higher-order cognitive skills in an undergraduate institution. Methods An analysis of multiple-choice questions and modified essay questions (MEQs) used for summative assessment in a clinical undergraduate curriculum was undertaken. A total of 50 MCQs and 139 stages of MEQs were examined, which came from three exams run over two years. The effectiveness of the questions was determined by two assessors and was defined by the questions ability to measure higher cognitive skills, as determined by a modification of Bloom's taxonomy, and its quality as determined by the presence of item writing flaws. Results Over 50% of all of the MEQs tested factual recall. This was similar to the percentage of MCQs testing factual recall. The modified essay question failed in its role of consistently assessing higher cognitive skills whereas the MCQ frequently tested more than mere recall of knowledge. Conclusion Construction of MEQs, which will assess higher order cognitive skills cannot be assumed to be a simple task. Well-constructed MCQs should be considered a satisfactory replacement for MEQs if the MEQs cannot be designed to adequately test higher order skills. Such MCQs are capable of withstanding the intellectual and statistical scrutiny imposed by a high stakes exit examination. PMID:18045500
Many-body quantum dynamics in the decay of bent dark solitons of Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Katsimiga, G. C.; Mistakidis, S. I.; Koutentakis, G. M.; Kevrekidis, P. G.; Schmelcher, P.
2017-12-01
The beyond mean-field (MF) dynamics of a bent dark soliton (BDS) embedded in a two-dimensional repulsively interacting Bose-Einstein condensate is explored. We examine the case of a single BDS comparing the MF dynamics to a correlated approach, the multi-configuration time-dependent Hartree method for bosons. Dynamical snaking of this bent structure is observed, signaling the onset of fragmentation which becomes significant during the vortex nucleation. In contrast to the MF approximation ‘filling’ of the vortex core is observed, leading in turn to the formation of filled-core vortices, instead of the MF vortex-antivortex pairs. The resulting smearing effect in the density is a rather generic feature, occurring when solitonic structures are exposed to quantum fluctuations. Here, we show that this filling owes its existence to the dynamical building of an antidark structure developed in the next-to-leading order orbital. We further demonstrate that the aforementioned beyond MF dynamics can be experimentally detected using the variance of single shot measurements. Additionally, a variety of excitations including vortices, oblique dark solitons, and open ring dark soliton-like structures building upon higher-lying orbitals is observed. We demonstrate that signatures of the higher-lying orbital excitations emerge in the total density, and can be clearly captured by inspecting the one-body coherence. In the latter context, the localization of one-body correlations exposes the existence of the multi-orbital vortex-antidark structure.
Caregiver Report of Prevalence and Appearance Order of Linguistic Symptoms in Alzheimer's Patients.
ERIC Educational Resources Information Center
Bayles, Kathryn A.; Tomoeda, Cheryl K.
1991-01-01
Interviewed primary caregivers of 99 Alzheimer's patients about existence and appearance order of linguistic symptoms to study disease effects on communication. Found that prevalence of linguistic symptoms strongly correlated with order of symptom appearance. Discusses symptom prevalence and order of appearance in relation to onset of…
Three-Dimensional Maps of All Chromosomes in Human Male Fibroblast Nuclei and Prometaphase Rosettes
Bolzer, Andreas; Kreth, Gregor; Solovei, Irina; Koehler, Daniela; Saracoglu, Kaan; Fauth, Christine; Müller, Stefan; Eils, Roland; Cremer, Christoph; Speicher, Michael R
2005-01-01
Studies of higher-order chromatin arrangements are an essential part of ongoing attempts to explore changes in epigenome structure and their functional implications during development and cell differentiation. However, the extent and cell-type-specificity of three-dimensional (3D) chromosome arrangements has remained controversial. In order to overcome technical limitations of previous studies, we have developed tools that allow the quantitative 3D positional mapping of all chromosomes simultaneously. We present unequivocal evidence for a probabilistic 3D order of prometaphase chromosomes, as well as of chromosome territories (CTs) in nuclei of quiescent (G0) and cycling (early S-phase) human diploid fibroblasts (46, XY). Radial distance measurements showed a probabilistic, highly nonrandom correlation with chromosome size: small chromosomes—independently of their gene density—were distributed significantly closer to the center of the nucleus or prometaphase rosette, while large chromosomes were located closer to the nuclear or rosette rim. This arrangement was independently confirmed in both human fibroblast and amniotic fluid cell nuclei. Notably, these cell types exhibit flat-ellipsoidal cell nuclei, in contrast to the spherical nuclei of lymphocytes and several other human cell types, for which we and others previously demonstrated gene-density-correlated radial 3D CT arrangements. Modeling of 3D CT arrangements suggests that cell-type-specific differences in radial CT arrangements are not solely due to geometrical constraints that result from nuclear shape differences. We also found gene-density-correlated arrangements of higher-order chromatin shared by all human cell types studied so far. Chromatin domains, which are gene-poor, form a layer beneath the nuclear envelope, while gene-dense chromatin is enriched in the nuclear interior. We discuss the possible functional implications of this finding. PMID:15839726
Avoiding stimulus confounds in Implicit Association Tests by using the concepts as stimuli.
Steffens, Melanie C; Kirschbaum, Michael; Glados, Petra
2008-06-01
Implicit Association Tests (IATs) are supposed to measure associations between concepts. In order to achieve that aim, participants are required to assign individual stimuli to those concepts under time pressure in two different tasks. Previous research has shown that not only the associations of the concepts with each other, but also the stimuli's cross-category associations influence the observed reaction time difference between these tasks (i.e. the IAT effect). Little is known about adequate stimulus selection. In this article, we introduce a variant of the IAT, the Concept Association Task (CAT) in which the concepts themselves or synonyms of them are used as stimuli. Three experiments on Germans' attitudes towards foreigners yielded evidence for the convergent validity of the CAT: (1) it correlated well with other IAT versions; (2) it correlated higher with spontaneous attitude-related judgements than other IAT versions; and (3) it correlated with response-window priming, another implicit measure based on reaction times. Furthermore, we showed that the CAT yielded reasonable findings when other IAT versions appear to yield distorted ones.
A Discrete Probability Function Method for the Equation of Radiative Transfer
NASA Technical Reports Server (NTRS)
Sivathanu, Y. R.; Gore, J. P.
1993-01-01
A discrete probability function (DPF) method for the equation of radiative transfer is derived. The DPF is defined as the integral of the probability density function (PDF) over a discrete interval. The derivation allows the evaluation of the PDF of intensities leaving desired radiation paths including turbulence-radiation interactions without the use of computer intensive stochastic methods. The DPF method has a distinct advantage over conventional PDF methods since the creation of a partial differential equation from the equation of transfer is avoided. Further, convergence of all moments of intensity is guaranteed at the basic level of simulation unlike the stochastic method where the number of realizations for convergence of higher order moments increases rapidly. The DPF method is described for a representative path with approximately integral-length scale-sized spatial discretization. The results show good agreement with measurements in a propylene/air flame except for the effects of intermittency resulting from highly correlated realizations. The method can be extended to the treatment of spatial correlations as described in the Appendix. However, information regarding spatial correlations in turbulent flames is needed prior to the execution of this extension.
Research on the Fusion of Dependent Evidence Based on Rank Correlation Coefficient.
Shi, Fengjian; Su, Xiaoyan; Qian, Hong; Yang, Ning; Han, Wenhua
2017-10-16
In order to meet the higher accuracy and system reliability requirements, the information fusion for multi-sensor systems is an increasing concern. Dempster-Shafer evidence theory (D-S theory) has been investigated for many applications in multi-sensor information fusion due to its flexibility in uncertainty modeling. However, classical evidence theory assumes that the evidence is independent of each other, which is often unrealistic. Ignoring the relationship between the evidence may lead to unreasonable fusion results, and even lead to wrong decisions. This assumption severely prevents D-S evidence theory from practical application and further development. In this paper, an innovative evidence fusion model to deal with dependent evidence based on rank correlation coefficient is proposed. The model first uses rank correlation coefficient to measure the dependence degree between different evidence. Then, total discount coefficient is obtained based on the dependence degree, which also considers the impact of the reliability of evidence. Finally, the discount evidence fusion model is presented. An example is illustrated to show the use and effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Proctor, Ashley R.; Ramirez, Gabriel A.; Han, Songfeng; Liu, Ziping; Bubel, Tracy M.; Choe, Regine
2018-03-01
Nicotinamide has been shown to affect blood flow in both tumor and normal tissues, including skeletal muscle. Intraperitoneal injection of nicotinamide was used as a simple intervention to test the sensitivity of noninvasive diffuse correlation spectroscopy (DCS) to changes in blood flow in the murine left quadriceps femoris skeletal muscle. DCS was then compared with the gold-standard fluorescent microsphere (FM) technique for validation. The nicotinamide dose-response experiment showed that relative blood flow measured by DCS increased following treatment with 500- and 1000-mg / kg nicotinamide. The DCS and FM technique comparison showed that blood flow index measured by DCS was correlated with FM counts quantified by image analysis. The results of this study show that DCS is sensitive to nicotinamide-induced blood flow elevation in the murine left quadriceps femoris. Additionally, the results of the comparison were consistent with similar studies in higher-order animal models, suggesting that mouse models can be effectively employed to investigate the utility of DCS for various blood flow measurement applications.
Research on the Fusion of Dependent Evidence Based on Rank Correlation Coefficient
Su, Xiaoyan; Qian, Hong; Yang, Ning; Han, Wenhua
2017-01-01
In order to meet the higher accuracy and system reliability requirements, the information fusion for multi-sensor systems is an increasing concern. Dempster–Shafer evidence theory (D–S theory) has been investigated for many applications in multi-sensor information fusion due to its flexibility in uncertainty modeling. However, classical evidence theory assumes that the evidence is independent of each other, which is often unrealistic. Ignoring the relationship between the evidence may lead to unreasonable fusion results, and even lead to wrong decisions. This assumption severely prevents D–S evidence theory from practical application and further development. In this paper, an innovative evidence fusion model to deal with dependent evidence based on rank correlation coefficient is proposed. The model first uses rank correlation coefficient to measure the dependence degree between different evidence. Then, total discount coefficient is obtained based on the dependence degree, which also considers the impact of the reliability of evidence. Finally, the discount evidence fusion model is presented. An example is illustrated to show the use and effectiveness of the proposed method. PMID:29035341
Presentation-order effects for aesthetic stimulus preference.
Englund, Mats P; Hellström, Åke
2012-10-01
For preference comparisons of paired successive musical excerpts, Koh (American Journal of Psychology, 80, 171-185, 1967) found time-order effects (TOEs) that correlated negatively with stimulus valence-the first (vs. the second) of two unpleasant (vs. two pleasant) excerpts tended to be preferred. We present three experiments designed to investigate whether valence-level-dependent order effects for aesthetic preference (a) can be accounted for using Hellström's (e.g., Journal of Experimental Psychology: Human Perception and Performance, 5, 460-477, 1979) sensation-weighting (SW) model, (b) can be generalized to successive and to simultaneous visual stimuli, and (c) vary, in accordance with the stimulus weighting, with interstimulus interval (ISI; for successive stimuli) or stimulus duration (for simultaneous stimuli). Participants compared paired successive jingles (Exp. 1), successive color patterns (Exp. 2), and simultaneous color patterns (Exp. 3), selecting the preferred stimulus. The results were well described by the SW model, which provided a better fit than did two extended versions of the Bradley-Terry-Luce model. Experiments 1 and 2 revealed higher weights for the second stimulus than for the first, and negatively valence-level-dependent TOEs. In Experiment 3, there was no laterality effect on the stimulus weighting and no valence-level-dependent space-order effects (SOEs). In terms of the SW model, the valence-level-dependent TOEs can be explained as a consequence of differential stimulus weighting in combination with stimulus valence varying from low to high, and the absence of valence-level-dependent SOEs as a consequence of the absence of differential weighting. For successive stimuli, there were no important effects of ISI on weightings and TOEs, and, for simultaneous stimuli, duration had only a small effect on the weighting.
[The Manifestation of the Anxiety during Fear Conditioning in Wistar Rats].
Pavlova, I V; Rysakova, M P
2015-01-01
In order to identify the correlation between anxiety and conditioned fear, the behavior of the same male Wistar rats was compared in three anxiety tests (open field, light-dark box and elevated plus-maze) and in Pavlovian auditory fear conditioning paradigm using correlation, factor and variance analyses. The correlation between anxiety/bravery and locomotion indexes in different tests was not revealed. Positive correlations between grooming, urinations and defecations, rearing in three tests were revealed. These data suggest that animals reacted to various tests differently, resulting, apparently in the emergence of different anxiety levels, specific for each test. Vegetative reactions, inclination to exploration and substituting behavior were more stable characteristics of rats. Anxiety behavior in elevated plus-maze correlated to freezing response to context after fear conditioning, while high-anxiety rats had higher level of freezing to context than low-anxiety rats. The higher freezing response to sound after fear conditioning was found in rats with middle locomotor activity in open field. Conditioned fear to the context and to the sound was associated with different forms of rat anxiety during different tests.
Three-Point Correlations in the COBE DMR 2 Year Anisotropy Maps
NASA Technical Reports Server (NTRS)
Hinshaw, G.; Banday, A. J.; Bennett, C. L.; Gorski, K. M.; Kogut, A.
1995-01-01
We compute the three-point temperature correlation function of the COBE Differential Microwave Radiometer (DMR) 2 year sky maps to search for evidence of non-Gaussian temperature fluctuations. We detect three-point correlations in our sky with a substantially higher signal-to-noise ratio than from the first-year data. However, the magnitude of the signal is consistent with the level of cosmic variance expected from Gaussian fluctuations, even when the low-order multipole moments, up to l = 9, are filtered from the data. These results do not strongly constrain most existing models of structure formation, but the absence of intrinsic three-point correlations on large angular scales is an important consistency test for such models.
Heritability of personality disorder traits: a twin study.
Jang, K L; Livesley, W J; Vernon, P A; Jackson, D N
1996-12-01
Genetic and non-genetic influences on the hierarchy of traits that delineate personality disorder as measured by the Dimensional Assessment of Personality Problems (DAPP-DQ) scale were examined using data from a sample of 483 volunteer twin pairs (236 monozygotic pairs and 247 dizygotic pairs). The DAPP-DQ assesses four higher-order factors, 18 basic dimensions and 69 facet traits of personality disorder. The correlation coefficients for monozygotic and dizygotic twin pairs ranged from 0.26 to 0.56 and from 0.03 to 0.41, respectively. Broad heritability estimates ranged from 0 to 58% (median value 45%). Additive genetic effects and unique environmental effects emerged as the primary influences on these scales, with unique environmental influences accounting for the largest proportion of the variance for most traits at all levels of the hierarchy.
One-loop effective actions and higher spins. Part II
NASA Astrophysics Data System (ADS)
Bonora, L.; Cvitan, M.; Prester, P. Dominis; Giaccari, S.; Štemberga, T.
2018-01-01
In this paper we continue and improve the analysis of the effective actions obtained by integrating out a scalar and a fermion field coupled to external symmetric sources, started in the previous paper. The first subject we study is the geometrization of the results obtained there, that is we express them in terms of covariant Jacobi tensors. The second subject concerns the treatment of tadpoles and seagull terms in order to implement off-shell covariance in the initial model. The last and by far largest part of the paper is a repository of results concerning all two point correlators (including mixed ones) of symmetric currents of any spin up to 5 and in any dimensions between 3 and 6. In the massless case we also provide formulas for any spin in any dimension.
Study on depth profile of heavy ion irradiation effects in poly(tetrafluoroethylene-co-ethylene)
NASA Astrophysics Data System (ADS)
Gowa, Tomoko; Shiotsu, Tomoyuki; Urakawa, Tatsuya; Oka, Toshitaka; Murakami, Takeshi; Oshima, Akihiro; Hama, Yoshimasa; Washio, Masakazu
2011-02-01
High linear energy transfer (LET) heavy ion beams were used to irradiate poly(tetrafluoroethylene-co-ethylene) (ETFE) under vacuum and in air. The irradiation effects in ETFE as a function of the depth were precisely evaluated by analyzing each of the films of the irradiated samples, which were made of stacked ETFE films. It was indicated that conjugated double bonds were generated by heavy ion beam irradiation, and their amounts showed the Bragg-curve-like distributions. Also, it was suggested that higher LET beams would induce radical formation in high density and longer conjugated C=C double bonds could be generated by the second-order reactions. Moreover, for samples irradiated in air, C=O was produced correlating to the yield of oxygen molecules diffusing from the sample surface.
Spin-flop quasi-first order phase transition and putative tricritical point in Gd3Co
NASA Astrophysics Data System (ADS)
Samatham, S. Shanmukharao; Barua, Soumendu; Suresh, K. G.
2017-12-01
Magnetic nature of Gd3Co is investigated using detailed measurements of temperature and field dependent magnetization. The antiferromagnetic phase is field-instable due to prevailing ferromagnetic exchange correlations above Néel temperature TN ∼ 130K . Below TN , with gradually increasing magnetic fields, the compound undergoes a quasi-first order phase transition from AFM to spin-flop over region and eventually acquires ferromagnetic phase in higher fields. Further the point at which the quasi-first order transition ends and second order transition sets in is the tricritical point, TTCP ∼ 125.6K , HTCP ∼ 4.4kOe .
Patient characteristics and intervention effect as measured by Voice Handicap Index.
Hengen, Johanna; Peterson, Malin; McAllister, Anita
2017-07-01
To analyze patients with a confirmed voice disorder in order to identify patterns regarding age, gender, and occupation compared to the general public. To explore effects of voice therapy according to the Voice Handicap Index (VHI) score pre- and post-therapy in relation to the number of sessions, age, and gender. Prospective cohort study. This study was conducted as a collaborative project between Linköping University and hospitals in the south-east health care region in Sweden. Six voice clinics participated by asking their patients voluntarily to complete the Swedish version of the VHI at the beginning and end of therapy. The two most prevalent diagnoses were dysphonia (43%) and phonasthenia (25%). Among the working population, the three most common occupational fields were education, health care, and child-care. The majority of the patients were women (74.3%), and the mean age of all patients was 55 years. A significant improvement in VHI scores was found after therapy, with an average decrease of 19 median points in total score and a substantial effect size (0.55). The number of sessions did not significantly correlate with the mean VHI score difference but had a weak correlation to the start and end scores. Increasing age correlated with a higher median VHI score both at the start and end of therapy but did not affect the average decrease between the two measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Seungmok; Seong, Heeje
In this paper, experimental analyses are conducted into the GDI soot oxidation characteristics as dependent on engine operating conditions. Soot is sampled at various engine operating conditions of a commercial 2.4 L GDI engine with a naturally aspirated, homogeneous, and stoichiometric operation strategy. The oxidation reactivity, ash composition, and carbon nanostructure of the GDI soot samples are analyzed using thermogravimetric analysis (TGA), scanning electron microscope–energy-dispersive spectroscopy (SEM-EDS), high-resolution transmission electron microscopy (HR-TEM), and Raman spectroscopy. Based on the analyses, a global GDI soot oxidation mechanism is proposed which includes the effects of soluble organic fractions (SOF)/weakly bonded carbon (WBC), andmore » three types of ash on GDI soot oxidation. The results show that GDI soot contains an order of magnitude higher ash fraction than does conventional diesel soot, and oxidation reactivity is significantly enhanced by the catalytic effects of ash, as a function of ash content in soot. A modified empirical kinetic correlation for GDI soot oxidation is suggested on the basis of the results, and the modified kinetic correlation predicts the GDI soot oxidation rate accurately for various engine operation points at wide ranges of soot conversion and temperature without modifying kinetic parameters. The kinetic parameters are determined from isothermal and non-isothermal thremogravimetric analysis (TGA) soot oxidation tests; the methods are elucidated in detail.« less
Choi, Seungmok; Seong, Heeje
2015-03-02
In this paper, experimental analyses are conducted into the GDI soot oxidation characteristics as dependent on engine operating conditions. Soot is sampled at various engine operating conditions of a commercial 2.4 L GDI engine with a naturally aspirated, homogeneous, and stoichiometric operation strategy. The oxidation reactivity, ash composition, and carbon nanostructure of the GDI soot samples are analyzed using thermogravimetric analysis (TGA), scanning electron microscope–energy-dispersive spectroscopy (SEM-EDS), high-resolution transmission electron microscopy (HR-TEM), and Raman spectroscopy. Based on the analyses, a global GDI soot oxidation mechanism is proposed which includes the effects of soluble organic fractions (SOF)/weakly bonded carbon (WBC), andmore » three types of ash on GDI soot oxidation. The results show that GDI soot contains an order of magnitude higher ash fraction than does conventional diesel soot, and oxidation reactivity is significantly enhanced by the catalytic effects of ash, as a function of ash content in soot. A modified empirical kinetic correlation for GDI soot oxidation is suggested on the basis of the results, and the modified kinetic correlation predicts the GDI soot oxidation rate accurately for various engine operation points at wide ranges of soot conversion and temperature without modifying kinetic parameters. The kinetic parameters are determined from isothermal and non-isothermal thremogravimetric analysis (TGA) soot oxidation tests; the methods are elucidated in detail.« less
Protein assignments without peak lists using higher-order spectra.
Benison, Gregory; Berkholz, Donald S; Barbar, Elisar
2007-12-01
Despite advances in automating the generation and manipulation of peak lists for assigning biomolecules, there are well-known advantages to working directly with spectra: the eye is still superior to computer algorithms when it comes to picking out peak relationships from contour plots in the presence of confounding factors such as noise, overlap, and spectral artifacts. Here, we present constructs called higher-order spectra for identifying, through direct visual examination, many of the same relationships typically identified by searching peak lists, making them another addition to the set of tools (alongside peak picking and automated assignment) that can be used to solve the assignment problem. The technique is useful for searching for correlated peaks in any spectrum type. Application of this technique to novel, complete sequential assignment of two proteins (AhpFn and IC74(84-143)) is demonstrated. The program "burrow-owl" for the generation and display of higher-order spectra is available at (http://sourceforge.net/projects/burrow-owl) or from the authors.
Fragile-to-strong transition in liquid silica
NASA Astrophysics Data System (ADS)
Geske, Julian; Drossel, Barbara; Vogel, Michael
2016-03-01
We investigate anomalies in liquid silica with molecular dynamics simulations and present evidence for a fragile-to-strong transition at around 3100 K-3300 K. To this purpose, we studied the structure and dynamical properties of silica over a wide temperature range, finding four indicators of a fragile-to-strong transition. First, there is a density minimum at around 3000 K and a density maximum at 4700 K. The turning point is at 3400 K. Second, the local structure characterized by the tetrahedral order parameter changes dramatically around 3000 K from a higher-ordered, lower-density phase to a less ordered, higher-density phase. Third, the correlation time τ changes from an Arrhenius behavior below 3300 K to a Vogel-Fulcher-Tammann behavior at higher temperatures. Fourth, the Stokes-Einstein relation holds for temperatures below 3000 K, but is replaced by a fractional relation above this temperature. Furthermore, our data indicate that dynamics become again simple above 5000 K, with Arrhenius behavior and a classical Stokes-Einstein relation.
Effects of host social hierarchy on disease persistence.
Davidson, Ross S; Marion, Glenn; Hutchings, Michael R
2008-08-07
The effects of social hierarchy on population dynamics and epidemiology are examined through a model which contains a number of fundamental features of hierarchical systems, but is simple enough to allow analytical insight. In order to allow for differences in birth rates, contact rates and movement rates among different sets of individuals the population is first divided into subgroups representing levels in the hierarchy. Movement, representing dominance challenges, is allowed between any two levels, giving a completely connected network. The model includes hierarchical effects by introducing a set of dominance parameters which affect birth rates in each social level and movement rates between social levels, dependent upon their rank. Although natural hierarchies vary greatly in form, the skewing of contact patterns, introduced here through non-uniform dominance parameters, has marked effects on the spread of disease. A simple homogeneous mixing differential equation model of a disease with SI dynamics in a population subject to simple birth and death process is presented and it is shown that the hierarchical model tends to this as certain parameter regions are approached. Outside of these parameter regions correlations within the system give rise to deviations from the simple theory. A Gaussian moment closure scheme is developed which extends the homogeneous model in order to take account of correlations arising from the hierarchical structure, and it is shown that the results are in reasonable agreement with simulations across a range of parameters. This approach helps to elucidate the origin of hierarchical effects and shows that it may be straightforward to relate the correlations in the model to measurable quantities which could be used to determine the importance of hierarchical corrections. Overall, hierarchical effects decrease the levels of disease present in a given population compared to a homogeneous unstructured model, but show higher levels of disease than structured models with no hierarchy. The separation between these three models is greatest when the rate of dominance challenges is low, reducing mixing, and when the disease prevalence is low. This suggests that these effects will often need to be considered in models being used to examine the impact of control strategies where the low disease prevalence behaviour of a model is critical.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eriksen, Janus J., E-mail: janusje@chem.au.dk; Jørgensen, Poul; Matthews, Devin A.
The accuracy at which total energies of open-shell atoms and organic radicals may be calculated is assessed for selected coupled cluster perturbative triples expansions, all of which augment the coupled cluster singles and doubles (CCSD) energy by a non-iterative correction for the effect of triple excitations. Namely, the second- through sixth-order models of the recently proposed CCSD(T–n) triples series [J. J. Eriksen et al., J. Chem. Phys. 140, 064108 (2014)] are compared to the acclaimed CCSD(T) model for both unrestricted as well as restricted open-shell Hartree-Fock (UHF/ROHF) reference determinants. By comparing UHF- and ROHF-based statistical results for a test setmore » of 18 modest-sized open-shell species with comparable RHF-based results, no behavioral differences are observed for the higher-order models of the CCSD(T–n) series in their correlated descriptions of closed- and open-shell species. In particular, we find that the convergence rate throughout the series towards the coupled cluster singles, doubles, and triples (CCSDT) solution is identical for the two cases. For the CCSD(T) model, on the other hand, not only its numerical consistency, but also its established, yet fortuitous cancellation of errors breaks down in the transition from closed- to open-shell systems. The higher-order CCSD(T–n) models (orders n > 3) thus offer a consistent and significant improvement in accuracy relative to CCSDT over the CCSD(T) model, equally for RHF, UHF, and ROHF reference determinants, albeit at an increased computational cost.« less
Personality at midlife: stability, intrinsic maturation, and response to life events.
Costa, P T; Herbst, J H; McCrae, R R; Siegler, I C
2000-12-01
Although developmental theories and popular accounts suggest that midlife is a time of turmoil and change, longitudinal studies of personality traits have generally found stability of rank order and little or no change in mean levels. Using data from 2,274 men and women in their 40s retested after 6 to 9 years, the present study examined two hypotheses: (a) that retest correlations should be no higher than about .60 and (b) that there should be small decreases in Neuroticism, Extraversion, and Openness, and small increases in Agreeableness and Conscientiousness. The study also explored the effects of recalled life events on subsequent personality scores. Results did not support the first hypothesis; uncorrected retest correlations uniformly exceeded .60. This was true for all personality traits, including facets of Agreeableness and Conscientiousness not previously included in longitudinal studies. The hypothesized decreases in Neuroticism, Extraversion, and Openness were found, but Conscientiousness showed a small decrease instead of the predicted increase. Life events in general showed very little influence on the levels of personality traits, although some effects were seen for changes in job and marital status that warrant further research.
Tureck, Luciane Viater; Leite, Neiva; Souza, Ricardo Lehtonen Rodrigues; da Silva Timossi, Luciana; Osiecki, Ana Claudia Vecchi; Osiecki, Raul; Alle, Lupe Furtado
2015-01-01
Adiponectin is an adipokine inversely correlated with obesity, which has beneficial effect on insulin resistance and lipid metabolism. Considering its potential as a therapeutic target in the metabolic disorder contexts, and in order to add knowledge in the area, our study evaluated the ADIPOQ 276G > T polymorphism effect on adiponectin levels, and on lipoproteins of clinical interest in a population sample composed of 211 healthy individuals. Significant effects were observed only among men: the carriers of heterozygous genotype (GT) showed high levels of adiponectin (p = 0.018), while the rare homozygous genotype (TT) gave its carriers a negative phenotype, represented by higher levels of low density lipoprotein cholesterol (LDL-C) (p = 0.004 and p = 0.005) and total cholesterol (TC) (p = 0.010 and p = 0.005) compared to carriers of other genotypes (GG and GT respectively), the independent effect of SNP on LDL-C and TC levels was confirmed by multiple regression analysis (p = 0.008 and p = 0.044). We found no evidence of correlation between circulating adiponectin levels and biochemical markers, which suggests, therefore, an SNP 276G > T independent effect on adiponectin levels and on lipoprotein metabolism in men enrolled in this study. PMID:26137445
Effects of Correlated Errors on the Analysis of Space Geodetic Data
NASA Technical Reports Server (NTRS)
Romero-Wolf, Andres; Jacobs, C. S.
2011-01-01
As thermal errors are reduced instrumental and troposphere correlated errors will increasingly become more important. Work in progress shows that troposphere covariance error models improve data analysis results. We expect to see stronger effects with higher data rates. Temperature modeling of delay errors may further reduce temporal correlations in the data.
Studies of higher-order flow harmonics in PbPb collisions at 2.76 TeV with CMS
NASA Astrophysics Data System (ADS)
Tuo, Shengquan
2013-05-01
High-order Fourier harmonics (vn, n>2) in the azimuthal distributions of charged particles produced in PbPb collisions at a nucleon-nucleon center-of-mass energy s=2.76TeV are presented. The vn coefficients are studied using the event-plane method and a Fourier decomposition analysis of the two particle correlations in various collision centrality, pT and η ranges. A unique measurement of vn in the ultra-central collisions (UCC) is performed using the long-range component of the two particle correlations. These data provide strong constraints on the theoretical models of the initial condition in heavy ion collisions and the transport properties of the produced medium.
The Influence of Higher-Order Epistasis on Biological Fitness Landscape Topography
NASA Astrophysics Data System (ADS)
Weinreich, Daniel M.; Lan, Yinghong; Jaffe, Jacob; Heckendorn, Robert B.
2018-07-01
The effect of a mutation on the organism often depends on what other mutations are already present in its genome. Geneticists refer to such mutational interactions as epistasis. Pairwise epistatic effects have been recognized for over a century, and their evolutionary implications have received theoretical attention for nearly as long. However, pairwise epistatic interactions themselves can vary with genomic background. This is called higher-order epistasis, and its consequences for evolution are much less well understood. Here, we assess the influence that higher-order epistasis has on the topography of 16 published, biological fitness landscapes. We find that on average, their effects on fitness landscape declines with order, and suggest that notable exceptions to this trend may deserve experimental scrutiny. We conclude by highlighting opportunities for further theoretical and experimental work dissecting the influence that epistasis of all orders has on fitness landscape topography and on the efficiency of evolution by natural selection.
The Influence of Higher-Order Epistasis on Biological Fitness Landscape Topography
NASA Astrophysics Data System (ADS)
Weinreich, Daniel M.; Lan, Yinghong; Jaffe, Jacob; Heckendorn, Robert B.
2018-02-01
The effect of a mutation on the organism often depends on what other mutations are already present in its genome. Geneticists refer to such mutational interactions as epistasis. Pairwise epistatic effects have been recognized for over a century, and their evolutionary implications have received theoretical attention for nearly as long. However, pairwise epistatic interactions themselves can vary with genomic background. This is called higher-order epistasis, and its consequences for evolution are much less well understood. Here, we assess the influence that higher-order epistasis has on the topography of 16 published, biological fitness landscapes. We find that on average, their effects on fitness landscape declines with order, and suggest that notable exceptions to this trend may deserve experimental scrutiny. We conclude by highlighting opportunities for further theoretical and experimental work dissecting the influence that epistasis of all orders has on fitness landscape topography and on the efficiency of evolution by natural selection.
On Direction of Dependence in Latent Variable Contexts
ERIC Educational Resources Information Center
von Eye, Alexander; Wiedermann, Wolfgang
2014-01-01
Approaches to determining direction of dependence in nonexperimental data are based on the relation between higher-than second-order moments on one side and correlation and regression models on the other. These approaches have experienced rapid development and are being applied in contexts such as research on partner violence, attention deficit…
Dimensions of Acculturation in Native American College Students
ERIC Educational Resources Information Center
Reynolds, Amy L.; Sodano, Sandro M.; Ecklund, Timothy R.; Guyker, Wendy
2012-01-01
Exploratory and confirmatory factor analyses were applied to the responses of two respective independent samples of Native American college students on the Native American Acculturation Scale (NAAS). Three correlated dimensions were found to underlie NAAS items and these dimensions may also comprise a broader higher order dimension of Native…
Assessing Higher-Order Thinking Using a Networked Portfolio System with Peer Assessment
ERIC Educational Resources Information Center
Liu, Eric Zhi-Feng; Zhuo, Yi-Chin; Yuan, Shyan-Ming
2004-01-01
In the past, the quantitative evidences of portfolio assessment have been explored under online instruction. Liu, Lin, and Yuan provide a long-term measure of peer-self, peer-instructor and self-instructor correlation coefficients under networked innovative assessment procedures. Analytical results indicated that undergraduate students could…
Investigating the Structure of the WJ-III Cognitive at School Age
ERIC Educational Resources Information Center
Dombrowski, Stefan C.
2013-01-01
During its development, the Woodcock-Johnson, Third Edition Cognitive (WJ-III Cognitive; McGrew & Woodcock, 2001) was never subjected to structural analysis using exploratory and higher order factor analyses. Instead, confirmatory factor analyses were conducted on separate sets of WJ-III correlation matrices, yielding a seven-factor model…
Dynamic Social Impact: The Creation of Culture by Communication.
ERIC Educational Resources Information Center
Latane, Bibb
1996-01-01
Presents a theory of how individuals located in social space influence each other to create higher order patterns of cultural structure. Presents the theory as five propositions and six derivations, arguing that Dynamic Social Impact Theory accounts for four key features of culture: regional clustering, correlations among cultural elements,…
Evidence for higher twist effects in fast π- production by antineutrinos in neon
NASA Astrophysics Data System (ADS)
Fitch, P. J.; Kasper, P.; Cooper-Sarkar, A. M.; Aderholz, M.; Armenise, N.; Azemoon, T.; Bertrand, D.; Berggren, M.; Bullock, F. W.; Calicchio, M.; Clayton, E. F.; Coghen, T.; Erriquez, O.; Gerbier, G.; Guy, J.; Hulth, P. O.; Iaselli, G.; Jones, G. T.; Lagraa, M.; Marage, P.; Middleton, R. P.; Miller, D.; Mobayyen, M. M.; Neveu, M.; O'Neale, S. W.; Parker, M. A.; Sansum, R. A.; Simopoulou, E.; Varvell, K.; Vallée, C.; Vayaki, A.; Venus, W.; Wachsmuth, H.; Wittek, W.; Wells, J.; Zevgolatakos, E.
1986-03-01
Evidence for a significant higher twist contribution to high z π- production in antineutrino scattering is presented. In events with W>3 GeV and Q 2>1 GeV2 in our data, it accounts for (51 ±8)% of all π- with z above 0.5. It is consistent with the z- Q 2 correlations of Berger's higher twist prediction. The data are inconclusive concerning the predicted y-z correlation and p T dependence. The z - Q 2 correlation is not adequately described by the Lund Monte-Carlo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDougall, Gregory J.; Aczel, Adam A.; Su, Yixi
The A-site spinel material CoAl 2O 4 is a physical realization of the frustrated diamond-lattice antiferromagnet, a model in which unique incommensurate or “spin-spiral-liquid” ground states are predicted. Our previous single-crystal neutron scattering study instead classified it as a “kinetically inhibited” antiferromagnet, where the long-ranged correlations of a collinear Néel ground state are blocked by the freezing of domain-wall motion below a first-order phase transition at T*=6.5 K. This study provides new data sets from a number of experiments, which support and expand this work in several important ways. We show that the phenomenology leading to the kinetically inhibited ordermore » is unaffected by sample measured and instrument resolution, while new low-temperature measurements reveal spin correlations are unchanging between T=2 K and 250 mK, consistent with a frozen state. Polarized diffuse neutron measurements show several interesting magnetic features, which can be entirely explained by the existence of short-ranged Néel order. Finally, and crucially, this paper presents some neutron scattering studies of single crystalline MnAl 2O 4, which acts as an unfrustrated analog to CoAl 2O 4 and shows all the hallmarks of a classical antiferromagnet with a continuous phase transition to Néel order at T N=39 K. Direct comparison between the two compounds indicates that CoAl 2O 4 is unique, not in the nature of high-temperature diffuse correlations, but rather in the nature of the frozen state below T*. Finally, the higher level of cation inversion in the MnAl 2O 4 sample indicates that this behavior is primarily an effect of greater next-nearest-neighbor exchange.« less
MacDougall, Gregory J.; Aczel, Adam A.; Su, Yixi; ...
2016-11-17
The A-site spinel material CoAl 2O 4 is a physical realization of the frustrated diamond-lattice antiferromagnet, a model in which unique incommensurate or “spin-spiral-liquid” ground states are predicted. Our previous single-crystal neutron scattering study instead classified it as a “kinetically inhibited” antiferromagnet, where the long-ranged correlations of a collinear Néel ground state are blocked by the freezing of domain-wall motion below a first-order phase transition at T*=6.5 K. This study provides new data sets from a number of experiments, which support and expand this work in several important ways. We show that the phenomenology leading to the kinetically inhibited ordermore » is unaffected by sample measured and instrument resolution, while new low-temperature measurements reveal spin correlations are unchanging between T=2 K and 250 mK, consistent with a frozen state. Polarized diffuse neutron measurements show several interesting magnetic features, which can be entirely explained by the existence of short-ranged Néel order. Finally, and crucially, this paper presents some neutron scattering studies of single crystalline MnAl 2O 4, which acts as an unfrustrated analog to CoAl 2O 4 and shows all the hallmarks of a classical antiferromagnet with a continuous phase transition to Néel order at T N=39 K. Direct comparison between the two compounds indicates that CoAl 2O 4 is unique, not in the nature of high-temperature diffuse correlations, but rather in the nature of the frozen state below T*. Finally, the higher level of cation inversion in the MnAl 2O 4 sample indicates that this behavior is primarily an effect of greater next-nearest-neighbor exchange.« less
Tzeng, Huey-Ming; Hu, Hsou Mei; Yin, Chang-Yi
2011-12-01
Medicare no longer reimburses acute care hospitals for the costs of additional care required due to hospital-acquired injuries. Consequently, this study explored the effective computerized systems to inform practice for better interventions to reduce fall risk. It provided a correlation between type of computerized system and hospital-acquired injurious fall rates at acute care hospitals in California, Florida, and New York. It used multiple publicly available data sets, with the hospital as the unit of analysis. Descriptive and Pearson correlation analyses were used. The analysis included 462 hospitals. Significant correlations could be categorized into two groups: (1) meaningful computerized systems that were associated with lower injurious fall rates: the decision support systems for drug allergy alerts, drug-drug interaction alerts, and drug-laboratory interaction alerts; and (2) computerized systems that were associated with higher injurious fall rates: the decision support system for drug-drug interaction alerts and the computerized provider order entry system for radiology tests. Future research may include additional states, multiple years of data, and patient-level data to validate this study's findings. This effort may further inform policy makers and the public about effective clinical computerized systems provided to clinicians to improve their practice decisions and care outcomes.
Padma, Narayanan; Maheshwari, Priya; Bhattacharya, Debarati; Tokas, Raj B; Sen, Shashwati; Honda, Yoshihide; Basu, Saibal; Pujari, Pradeep Kumar; Rao, T V Chandrasekhar
2016-02-10
Influence of substrate temperature on growth modes of copper phthalocyanine (CuPc) thin films at the dielectric/semiconductor interface in organic field effect transistors (OFETs) is investigated. Atomic force microscopy (AFM) imaging at the interface reveals a change from 'layer+island' to "island" growth mode with increasing substrate temperatures, further confirmed by probing the buried interfaces using X-ray reflectivity (XRR) and positron annihilation spectroscopic (PAS) techniques. PAS depth profiling provides insight into the details of molecular ordering while positron lifetime measurements reveal the difference in packing modes of CuPc molecules at the interface. XRR measurements show systematic increase in interface width and electron density correlating well with the change from layer + island to coalesced huge 3D islands at higher substrate temperatures. Study demonstrates the usefulness of XRR and PAS techniques to study growth modes at buried interfaces and reveals the influence of growth modes of semiconductor at the interface on hole and electron trap concentrations individually, thereby affecting hysteresis and threshold voltage stability. Minimum hole trapping is correlated to near layer by layer formation close to the interface at 100 °C and maximum to the island formation with large voids between the grains at 225 °C.
Papiernik, E; Grangé, G; Zeitlin, J
1998-01-01
This article reviews the arguments for the use of multifetal pregnancy reduction (MFPR) for the prevention of preterm deliveries in triplet and higher order multiple pregnancies and evaluates its effectiveness based on data from published studies. The arguments in favour of pregnancy reduction are based on the substantial mortality and morbidity associated with these pregnancies. Triplets and higher order multiples have increased rates of preterm delivery and intrauterine growth retardation, both of which are independent risk factors for death and handicap. Even controlling for gestational age, rates of mortality and handicap are higher for multiples than for singletons. Moreover, the family's risk of losing a child or having a handicapped child is greater because there are more infants at risk. MFPR effectively lowers these risk by reducing the frequency of preterm delivery. However, its effectiveness may be limited. In some studies, the proportion of preterm deliveries in reduced pregnancies remains above levels found in spontaneous twin or singleton pregnancies and MFPR does not appear to reduce the prevalence of low birth weight. Furthermore, the procedure itself has unwanted side effects: it increases the risk of miscarriage, premature rupture of the membranes and causes adverse psychological effects such as grief or depression for many patients. The authors note that a majority of the higher order multiple pregnancies result from a medical intervention in the first place, either through IVF techniques or the use of ovulation stimulation drugs. Although MFPR is an effective measure for reducing the substantial morbidity and mortality associated with higher order multiple pregnancies, preventive methods, such as limiting to 2 the number of embryos transferred for IVF and better control of the use of ovulation induction drugs, remain more effective and less intrusive.
The effect of dense phase carbon dioxide on the conformation of hemoglobin.
Yan, Wenjie; Xie, Yangyang; Wang, Xiaoxi; Jia, Fei; Li, Xingmin
2018-04-01
Dense phase carbon dioxide (DPCD) sterilization is a non-thermal sterilization technology used to process heat-sensitive foods. Although nutritional and sensorial quality of food is preserved while unwanted microbial activity is reduced during DPCD sterilization, the effect on protein structure remains unclear. In this work, the effect of DPCD on the higher order structure and fluorescence properties of Hemoglobin (Hb) was investigated. The different conditions assessed during DPCD processing included variation in pressure, pH and heating conditions. Results from this study showed an inversely proportional correlation between α-helical content of Hb and pressure. As the pressure was lowered, the levels of α-helical content increased. The increased levels of α-helix correlated with a lower fluorescence intensity and a limited redshift in the fluorescence emission wavelength. TEM imaging showed that DPCD processing resulted in Hb with larger molecular diameters, which became smaller as the pressure increased. Interestingly, after 7-day storage at 4 °C, an increase in α-helical content was observed. Results from this work show that DPCD sterilization does impact the conformation of hemoglobin, with a notable impact on secondary and tertiary structure. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Mayukh; Banerjee, Nilanjana; Ghosh, Pritha
2010-11-15
Chronic arsenic exposure through contaminated drinking water is a major environmental health issue. Chronic arsenic exposure is known to exert its toxic effects by a variety of mechanisms, of which generation of reactive oxygen species (ROS) is one of the most important. A high level of ROS, in turn, leads to DNA damage that might ultimately culminate in cancer. In order to keep the level of ROS in balance, an array of enzymes is present, of which catalase (CAT) and myeloperoxidase (MPO) are important members. Hence, in this study, we determined the activities of these two enzymes in the seramore » and chromosomal aberrations (CA) in peripheral blood lymphocytes in individuals exposed and unexposed to arsenic in drinking water. Arsenic in drinking water and in urine was used as a measure of exposure. Our results show that individuals chronically exposed to arsenic have significantly higher CAT and MPO activities and higher incidence of CA. We found moderate positive correlations between CAT and MPO activities, induction of CA and arsenic in urine and water. These results indicate that chronic arsenic exposure causes higher CAT and MPO activities in serum that correlates with induction of genetic damage. We conclude that the serum levels of these enzymes might be used as biomarkers of early arsenic exposure induced disease much before the classical dermatological symptoms of arsenicosis begin to appear.« less
Finite-nuclear-size contribution to the g factor of a bound electron: Higher-order effects
NASA Astrophysics Data System (ADS)
Karshenboim, Savely G.; Ivanov, Vladimir G.
2018-02-01
A precision comparison of theory and experiments on the g factor of an electron bound in a hydrogenlike ion with a spinless nucleus requires a detailed account of finite-nuclear-size contributions. While the relativistic corrections to the leading finite-size contribution are known, the higher-order effects need an additional consideration. Two results are presented in the paper. One is on the anomalous-magnetic-moment correction to the finite-size effects and the other is due to higher-order effects in Z α m RN . We also present here a method to relate the contributions to the g factor of a bound electron in a hydrogenlike atom to its energy within a nonrelativistic approach.
Association of maternal anti-HLA class II antibodies with protection from allergy in offspring.
Jones, M; Jeal, H; Harris, J M; Smith, J D; Rose, M L; Taylor, A N; Cullinan, P
2013-09-01
Recent studies have suggested that the birth order effect in allergy may be established during the prenatal period and that the protective effect may originate in the mother. HLA class II disparity between mother and foetus has been associated with significantly increased Th1 production. In this study, we investigated whether production of HLA antibodies 4 years after pregnancy with index child is associated with allergic outcomes in offspring at 8 years. Anti-HLA class I and II antibodies were measured in maternal serum (n = 284) and levels correlated to numbers of pregnancies and birth order, and allergic outcomes in offspring at 8 years of age. Maternal anti-HLA class I and II antibodies were significantly higher when birth order, and the number of pregnancies were larger. Anti-HLA class II, but not class I antibodies were associated with significantly less atopy and seasonal rhinitis in the offspring at age 8 years. Mothers with nonatopic (but not atopic) offspring had a significant increase in anti-HLA class I and II antibodies with birth order. This study suggests that the 'birth order' effect in children may be due to parity-related changes in the maternal immune response to foetal antigens. We have observed for the first time an association between maternal anti-HLA class II antibodies and protection from allergy in the offspring. Further work is required to determine immunologically how HLA disparity between mother and father can protect against allergy. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Trocha, Lidia K; Bulaj, Bartosz; Kutczynska, Paulina; Mucha, Joanna; Rutkowski, Pawel; Zadworny, Marcin
2017-08-01
In general, respiration (RS) is highly correlated with nitrogen concentration (N) in plant organs, including roots, which exhibit a positive N-RS relationship. Less is known, however, about the relationship between N and RS in roots of different branch orders within an individual tree along a vertical soil profile; this is especially true in trees with contrasting life strategies, such as pioneer Scots pine (Pinus sylvestris L.) vs mid-successional sessile oak (Quercus petraea Liebl.). In the present research, the impact of root branch order, as represented by those with absorptive vs transporting ability, and soil genetic horizon on root N, RS and the N-RS relationship was examined. Mean RS and total N concentration differed significantly among root branch orders and was significantly higher in absorptive roots than in transporting roots. The soil genetic horizon differentially affected root RS in Scots pine vs sessile oak. The genetic horizon mostly affected RS in absorptive roots of Scots pine and transporting roots in sessile oak. Root N was the highest in absorptive roots and most affected by soil genetic horizon in both tree species. Root N was not correlated with soil N, although N levels were higher in roots growing in fertile soil genetic horizons. Overall, RS in different root branch orders was positively correlated with N in both species. The N-RS relationship in roots, pooled by soil genetic horizon, was significant in both species, but was only significant in sessile oak when roots were pooled by root branch order. In both tree species, a significant interaction was found between the soil genetic horizon and root branch order with root function; however, species-specific responses were found. Both root N, which was unaffected by soil N, and the positive N-RS relationship consistently observed in different genetic horizons suggest that root function prevails over environmental factors, such as soil genetic horizon. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Instanton effects on CP-violating gluonic correlators
NASA Astrophysics Data System (ADS)
Mori, Shingo; Frison, Julien; Kitano, Ryuichiro; Matsufuru, Hideo; Yamada, Norikazu
2018-03-01
In order to better understand the role played by instantons behind nonperturbative dynamics, we investigate the instanton contributions to the gluonic two point correlation functions in the SU(2) YM theory. Pseudoscalar-scalar gluonic correlation functions are calculated on the lattice at various temperatures and compared with the instanton calculus. We discuss how the instanton effects emerge or disappear with temperature and try to provide the interpretation behind it.
T-duality invariant effective actions at orders α', α'2
NASA Astrophysics Data System (ADS)
Razaghian, Hamid; Garousi, Mohammad R.
2018-02-01
We use compatibility of the D-dimensional effective actions for diagonal metric and for dilaton with the T-duality when theory is compactified on a circle, to find the D-dimensional couplings of curvatures and dilaton as well as the higher derivative corrections to the ( D - 1)-dimensional Buscher rules at orders α' and α'2. We observe that the T-duality constraint on the effective actions fixes the covariant effective actions at each order of α' up to field redefinitions and up to an overall factor. Inspired by these results, we speculate that the D-dimensional effective actions at any order of α' must be consistent with the standard Buscher rules provided that one uses covariant field redefinitions in the corresponding reduced ( D - 1)-dimensional effective actions. This constraint may be used to find effective actions at all higher orders of α'.
NASA Astrophysics Data System (ADS)
Hassan Mohammed, Mohammed Ahmed
For an efficient maintenance of a diverse fleet of air- and rotorcraft, effective condition based maintenance (CBM) must be established based on rotating components monitored vibration signals. In this dissertation, we present theory and applications of polyspectral signal processing techniques for condition monitoring of critical components in the AH-64D helicopter tail rotor drive train system. Currently available vibration-monitoring tools are mostly built around auto- and cross-power spectral analysis which have limited performance in detecting frequency correlations higher than second order. Studying higher order correlations and their Fourier transforms, higher order spectra, provides more information about the vibration signals which helps in building more accurate diagnostic models of the mechanical system. Based on higher order spectral analysis, different signal processing techniques are developed to assess health conditions of different critical rotating-components in the AH-64D helicopter drive-train. Based on cross-bispectrum, quadratic nonlinear transfer function is presented to model second order nonlinearity in a drive-shaft running between the two hanger bearings. Then, quadratic-nonlinearity coupling coefficient between frequency harmonics of the rotating shaft is used as condition metric to study different seeded shaft faults compared to baseline case, namely: shaft misalignment, shaft imbalance, and combination of shaft misalignment and imbalance. The proposed quadratic-nonlinearity metric shows better capabilities in distinguishing the four studied shaft settings than the conventional linear coupling based on cross-power spectrum. We also develop a new concept of Quadratic-Nonlinearity Power-Index spectrum, QNLPI(f), that can be used in signal detection and classification, based on bicoherence spectrum. The proposed QNLPI(f) is derived as a projection of the three-dimensional bicoherence spectrum into two-dimensional spectrum that quantitatively describes how much of the mean square power at certain frequency f is generated due to nonlinear quadratic interaction between different frequency components. The proposed index, QNLPI(f), can be used to simplify the study of bispectrum and bicoherence signal spectra. It also inherits useful characteristics from the bicoherence such as high immunity to additive Gaussian noise, high capability of nonlinear-systems identifications, and amplification invariance. The quadratic-nonlinear power spectral density PQNL(f) and percentage of quadratic nonlinear power PQNLP are also introduced based on the QNLPI(f). Concept of the proposed indices and their computational considerations are discussed first using computer generated data, and then applied to real-world vibration data to assess health conditions of different rotating components in the drive train including drive-shaft, gearbox, and hanger bearing faults. The QNLPI(f) spectrum enables us to gain more details about nonlinear harmonic generation patterns that can be used to distinguish between different cases of mechanical faults, which in turn helps to gaining more diagnostic/prognostic capabilities.
Detecting higher-order interactions among the spiking events in a group of neurons.
Martignon, L; Von Hasseln, H; Grün, S; Aertsen, A; Palm, G
1995-06-01
We propose a formal framework for the description of interactions among groups of neurons. This framework is not restricted to the common case of pair interactions, but also incorporates higher-order interactions, which cannot be reduced to lower-order ones. We derive quantitative measures to detect the presence of such interactions in experimental data, by statistical analysis of the frequency distribution of higher-order correlations in multiple neuron spike train data. Our first step is to represent a frequency distribution as a Markov field on the minimal graph it induces. We then show the invariance of this graph with regard to changes of state. Clearly, only linear Markov fields can be adequately represented by graphs. Higher-order interdependencies, which are reflected by the energy expansion of the distribution, require more complex graphical schemes, like constellations or assembly diagrams, which we introduce and discuss. The coefficients of the energy expansion not only point to the interactions among neurons but are also a measure of their strength. We investigate the statistical meaning of detected interactions in an information theoretic sense and propose minimum relative entropy approximations as null hypotheses for significance tests. We demonstrate the various steps of our method in the situation of an empirical frequency distribution on six neurons, extracted from data on simultaneous multineuron recordings from the frontal cortex of a behaving monkey and close with a brief outlook on future work.
Theoretical Studies of the Kinetics of First-Order Phase Transitions.
NASA Astrophysics Data System (ADS)
Zheng, Qiang
This thesis involves theoretical studies of the kinetics of orderings in three classes of systems. The first class involves problems of phase separation in which the order parameter is conserved, such as occurs in the binary alloy Al-Zn. A theory is developed for the late stages of phase separation in the droplet regime for two -dimensional systems, namely, Ostwald ripening in two dimensions. The theory considers droplet correlations, which was neglected before, by a proper treatment of the screening effect of the correlations. This correlation effect is found that it does not alert the scaling features of phase separation, but significantly changes the shape of droplet-size distribution function. Further experiments and computer simulations are needed before this long-time subject may be closed. A second class of problem involves a study of the finite-size effects on domain growth described by the Allen-Cahn dynamics. Based on a theoretical approach of Ohta, Jasnow, and Kawasaki the explicit scaling functions for the scattering intensity for hypercubes and films are obtained. These results are for the cases in which the order-parameter is not conserved, such as in an order-disorder transition in alloys. These studies will be relevant to the experimental and computer simulation research projects currently being carried out in the United States and Europe. The last class of problems involves orderings in strong correlated systems, namely, the growth of Breath Figures. A special feature of this class of problems is that the coalescence effect. A theoretical model is proposed which can handle the two growth mechanisms, the individual droplet growth and coalescence simultaneously. Under certain approximations, the droplet-size distribution function is obtained analytically, and is in qualitative agreement with computer simulations. Our model also suggests that there may be an interesting relationship between the growth of Breath Figures and a geometric structure (ultrametricity) of general complex systems.
Comparison of an expert system with other clinical scores for the evaluation of severity of asthma.
Gautier, V; Rédier, H; Pujol, J L; Bousquet, J; Proudhon, H; Michel, C; Daurès, J P; Michel, F B; Godard, P
1996-01-01
"Asthmaexpert" was produced at the special request of several clinicians in order to obtain a better understanding of the medical decisions taken by clinical experts in the management of asthmatic patients. In order to assess the severity of asthma, a new score called Artificial Intelligence score (AI score), produced by Asthmaexpert, was compared with three other scores (Aas, Hargreave and Brooks). One hundred patients were enrolled prospectively in the study during their first consultation in the out-patient clinic. Distribution of severity level according to the different scores was studied, and the reliability between AI and other scores was evaluated by Kappa and MacNemar tests. Correlations with functional parameters were performed. The AI score assessed higher levels of severity than the other scores (Kappa = 18, 28 and 10% for Aas, Hargreave and Brooks, respectively) with significant MacNemar test in all cases. There was a significant correlation between AI score and forced expiratory volume in one second (FEV1) (r = 0.73). These data indicate that the AI score is a severity score which defines higher levels of severity than the chosen scores. Correlations for functional parameters are good. This score appears easy to use for the first consultation of an asthmatic patient.
Estimating the Effective System Dead Time Parameter for Correlated Neutron Counting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Croft, Stephen; Cleveland, Steve; Favalli, Andrea
We present that neutron time correlation analysis is one of the main technical nuclear safeguards techniques used to verify declarations of, or to independently assay, special nuclear materials. Quantitative information is generally extracted from the neutron-event pulse train, collected from moderated assemblies of 3He proportional counters, in the form of correlated count rates that are derived from event-triggered coincidence gates. These count rates, most commonly referred to as singles, doubles and triples rates etc., when extracted using shift-register autocorrelation logic, are related to the reduced factorial moments of the time correlated clusters of neutrons emerging from the measurement items. Correctingmore » these various rates for dead time losses has received considerable attention recently. The dead time losses for the higher moments in particular, and especially for large mass (high rate and highly multiplying) items, can be significant. Consequently, even in thoughtfully designed systems, accurate dead time treatments are needed if biased mass determinations are to be avoided. In support of this effort, in this paper we discuss a new approach to experimentally estimate the effective system dead time of neutron coincidence counting systems. It involves counting a random neutron source (e.g. AmLi is a good approximation to a source without correlated emission) and relating the second and higher moments of the neutron number distribution recorded in random triggered interrogation coincidence gates to the effective value of dead time parameter. We develop the theoretical basis of the method and apply it to the Oak Ridge Large Volume Active Well Coincidence Counter using sealed AmLi radionuclide neutron sources and standard multiplicity shift register electronics. The method is simple to apply compared to the predominant present approach which involves using a set of 252Cf sources of wide emission rate, it gives excellent precision in a conveniently short time, and it yields consistent results as a function of the order of the moment used to extract the dead time parameter. In addition, this latter observation is reassuring in that it suggests the assumptions underpinning the theoretical analysis are fit for practical application purposes. However, we found that the effective dead time parameter obtained is not constant, as might be expected for a parameter that in the dead time model is characteristic of the detector system, but rather, varies systematically with gate width.« less
Estimating the Effective System Dead Time Parameter for Correlated Neutron Counting
Croft, Stephen; Cleveland, Steve; Favalli, Andrea; ...
2017-04-29
We present that neutron time correlation analysis is one of the main technical nuclear safeguards techniques used to verify declarations of, or to independently assay, special nuclear materials. Quantitative information is generally extracted from the neutron-event pulse train, collected from moderated assemblies of 3He proportional counters, in the form of correlated count rates that are derived from event-triggered coincidence gates. These count rates, most commonly referred to as singles, doubles and triples rates etc., when extracted using shift-register autocorrelation logic, are related to the reduced factorial moments of the time correlated clusters of neutrons emerging from the measurement items. Correctingmore » these various rates for dead time losses has received considerable attention recently. The dead time losses for the higher moments in particular, and especially for large mass (high rate and highly multiplying) items, can be significant. Consequently, even in thoughtfully designed systems, accurate dead time treatments are needed if biased mass determinations are to be avoided. In support of this effort, in this paper we discuss a new approach to experimentally estimate the effective system dead time of neutron coincidence counting systems. It involves counting a random neutron source (e.g. AmLi is a good approximation to a source without correlated emission) and relating the second and higher moments of the neutron number distribution recorded in random triggered interrogation coincidence gates to the effective value of dead time parameter. We develop the theoretical basis of the method and apply it to the Oak Ridge Large Volume Active Well Coincidence Counter using sealed AmLi radionuclide neutron sources and standard multiplicity shift register electronics. The method is simple to apply compared to the predominant present approach which involves using a set of 252Cf sources of wide emission rate, it gives excellent precision in a conveniently short time, and it yields consistent results as a function of the order of the moment used to extract the dead time parameter. In addition, this latter observation is reassuring in that it suggests the assumptions underpinning the theoretical analysis are fit for practical application purposes. However, we found that the effective dead time parameter obtained is not constant, as might be expected for a parameter that in the dead time model is characteristic of the detector system, but rather, varies systematically with gate width.« less
Estimating the effective system dead time parameter for correlated neutron counting
NASA Astrophysics Data System (ADS)
Croft, Stephen; Cleveland, Steve; Favalli, Andrea; McElroy, Robert D.; Simone, Angela T.
2017-11-01
Neutron time correlation analysis is one of the main technical nuclear safeguards techniques used to verify declarations of, or to independently assay, special nuclear materials. Quantitative information is generally extracted from the neutron-event pulse train, collected from moderated assemblies of 3He proportional counters, in the form of correlated count rates that are derived from event-triggered coincidence gates. These count rates, most commonly referred to as singles, doubles and triples rates etc., when extracted using shift-register autocorrelation logic, are related to the reduced factorial moments of the time correlated clusters of neutrons emerging from the measurement items. Correcting these various rates for dead time losses has received considerable attention recently. The dead time losses for the higher moments in particular, and especially for large mass (high rate and highly multiplying) items, can be significant. Consequently, even in thoughtfully designed systems, accurate dead time treatments are needed if biased mass determinations are to be avoided. In support of this effort, in this paper we discuss a new approach to experimentally estimate the effective system dead time of neutron coincidence counting systems. It involves counting a random neutron source (e.g. AmLi is a good approximation to a source without correlated emission) and relating the second and higher moments of the neutron number distribution recorded in random triggered interrogation coincidence gates to the effective value of dead time parameter. We develop the theoretical basis of the method and apply it to the Oak Ridge Large Volume Active Well Coincidence Counter using sealed AmLi radionuclide neutron sources and standard multiplicity shift register electronics. The method is simple to apply compared to the predominant present approach which involves using a set of 252Cf sources of wide emission rate, it gives excellent precision in a conveniently short time, and it yields consistent results as a function of the order of the moment used to extract the dead time parameter. This latter observation is reassuring in that it suggests the assumptions underpinning the theoretical analysis are fit for practical application purposes. However, we found that the effective dead time parameter obtained is not constant, as might be expected for a parameter that in the dead time model is characteristic of the detector system, but rather, varies systematically with gate width.
Short-range second order screened exchange correction to RPA correlation energies
NASA Astrophysics Data System (ADS)
Beuerle, Matthias; Ochsenfeld, Christian
2017-11-01
Direct random phase approximation (RPA) correlation energies have become increasingly popular as a post-Kohn-Sham correction, due to significant improvements over DFT calculations for properties such as long-range dispersion effects, which are problematic in conventional density functional theory. On the other hand, RPA still has various weaknesses, such as unsatisfactory results for non-isogyric processes. This can in parts be attributed to the self-correlation present in RPA correlation energies, leading to significant self-interaction errors. Therefore a variety of schemes have been devised to include exchange in the calculation of RPA correlation energies in order to correct this shortcoming. One of the most popular RPA plus exchange schemes is the second order screened exchange (SOSEX) correction. RPA + SOSEX delivers more accurate absolute correlation energies and also improves upon RPA for non-isogyric processes. On the other hand, RPA + SOSEX barrier heights are worse than those obtained from plain RPA calculations. To combine the benefits of RPA correlation energies and the SOSEX correction, we introduce a short-range RPA + SOSEX correction. Proof of concept calculations and benchmarks showing the advantages of our method are presented.
Short-range second order screened exchange correction to RPA correlation energies.
Beuerle, Matthias; Ochsenfeld, Christian
2017-11-28
Direct random phase approximation (RPA) correlation energies have become increasingly popular as a post-Kohn-Sham correction, due to significant improvements over DFT calculations for properties such as long-range dispersion effects, which are problematic in conventional density functional theory. On the other hand, RPA still has various weaknesses, such as unsatisfactory results for non-isogyric processes. This can in parts be attributed to the self-correlation present in RPA correlation energies, leading to significant self-interaction errors. Therefore a variety of schemes have been devised to include exchange in the calculation of RPA correlation energies in order to correct this shortcoming. One of the most popular RPA plus exchange schemes is the second order screened exchange (SOSEX) correction. RPA + SOSEX delivers more accurate absolute correlation energies and also improves upon RPA for non-isogyric processes. On the other hand, RPA + SOSEX barrier heights are worse than those obtained from plain RPA calculations. To combine the benefits of RPA correlation energies and the SOSEX correction, we introduce a short-range RPA + SOSEX correction. Proof of concept calculations and benchmarks showing the advantages of our method are presented.
Nguyen, Manh Cuong; Yao, Yongxin; Wang, Cai-Zhuang; ...
2018-05-16
The dependence of the magnetocrystalline anisotropy energy (MAE) in MCo 5 (M = Y, La, Ce, Gd) and CoPt on the Coulomb correlations and strength of spin orbit (SO) interaction within the GGA + U scheme is investigated. A range of parameters suitable for the satisfactory description of key magnetic properties is determined. We show that for a large variation of SO interaction the MAE in these materials can be well described by the traditional second order perturbation theory. We also show that in these materials the MAE can be both proportional and negatively proportional to the orbital moment anisotropymore » (OMA) of Co atoms. Dependence of relativistic effects on Coulomb correlations, applicability of the second order perturbation theory for the description of MAE, and effective screening of the SO interaction in these systems are discussed using a generalized virial theorem. Finally, such determined sets of parameters of Coulomb correlations can be used in much needed large scale atomistic simulations.« less
NASA Astrophysics Data System (ADS)
Nguyen, Manh Cuong; Yao, Yongxin; Wang, Cai-Zhuang; Ho, Kai-Ming; Antropov, Vladimir P.
2018-05-01
The dependence of the magnetocrystalline anisotropy energy (MAE) in MCo5 (M = Y, La, Ce, Gd) and CoPt on the Coulomb correlations and strength of spin orbit (SO) interaction within the GGA + U scheme is investigated. A range of parameters suitable for the satisfactory description of key magnetic properties is determined. We show that for a large variation of SO interaction the MAE in these materials can be well described by the traditional second order perturbation theory. We also show that in these materials the MAE can be both proportional and negatively proportional to the orbital moment anisotropy (OMA) of Co atoms. Dependence of relativistic effects on Coulomb correlations, applicability of the second order perturbation theory for the description of MAE, and effective screening of the SO interaction in these systems are discussed using a generalized virial theorem. Such determined sets of parameters of Coulomb correlations can be used in much needed large scale atomistic simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Manh Cuong; Yao, Yongxin; Wang, Cai-Zhuang
The dependence of the magnetocrystalline anisotropy energy (MAE) in MCo 5 (M = Y, La, Ce, Gd) and CoPt on the Coulomb correlations and strength of spin orbit (SO) interaction within the GGA + U scheme is investigated. A range of parameters suitable for the satisfactory description of key magnetic properties is determined. We show that for a large variation of SO interaction the MAE in these materials can be well described by the traditional second order perturbation theory. We also show that in these materials the MAE can be both proportional and negatively proportional to the orbital moment anisotropymore » (OMA) of Co atoms. Dependence of relativistic effects on Coulomb correlations, applicability of the second order perturbation theory for the description of MAE, and effective screening of the SO interaction in these systems are discussed using a generalized virial theorem. Finally, such determined sets of parameters of Coulomb correlations can be used in much needed large scale atomistic simulations.« less
Rayleigh-enhanced attosecond sum-frequency polarization beats via twin color-locking noisy lights
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Yanpeng; Li Long; Ma Ruiqiong
2005-07-15
Based on color-locking noisy field correlation, a time-delayed method is proposed to suppress the thermal effect, and the ultrafast longitudinal relaxation time can be measured even in an absorbing medium. One interesting feature in field-correlation effects is that Rayleigh-enhanced four-wave mixing (RFWM) with color-locking noisy light exhibits spectral symmetry and temporal asymmetry with no coherence spike at {tau}=0. Due to the interference between the Rayleigh-resonant signal and the nonresonant background, RFWM exhibits hybrid radiation-matter detuning with terahertz damping oscillations. The subtle Markovian high-order correlation effects have been investigated in the homodyne- or heterodyne-detected Rayleigh-enhanced attosecond sum-frequency polarization beats (RASPBs). Analyticmore » closed forms of fourth-order Markovian stochastic correlations are characterized for homodyne (quadratic) and heterodyne (linear) detection, respectively. Based on the polarization interference between two four-wave mixing processes, the phase-sensitive detection of RASPBs has also been used to obtain the real and imaginary parts of the Rayleigh resonance.« less
New Models for Velocity/Pressure-Gradient Correlations in Turbulent Boundary Layers
NASA Astrophysics Data System (ADS)
Poroseva, Svetlana; Murman, Scott
2014-11-01
To improve the performance of Reynolds-Averaged Navier-Stokes (RANS) turbulence models, one has to improve the accuracy of models for three physical processes: turbulent diffusion, interaction of turbulent pressure and velocity fluctuation fields, and dissipative processes. The accuracy of modeling the turbulent diffusion depends on the order of a statistical closure chosen as a basis for a RANS model. When the Gram-Charlier series expansions for the velocity correlations are used to close the set of RANS equations, no assumption on Gaussian turbulence is invoked and no unknown model coefficients are introduced into the modeled equations. In such a way, this closure procedure reduces the modeling uncertainty of fourth-order RANS (FORANS) closures. Experimental and direct numerical simulation data confirmed the validity of using the Gram-Charlier series expansions in various flows including boundary layers. We will address modeling the velocity/pressure-gradient correlations. New linear models will be introduced for the second- and higher-order correlations applicable to two-dimensional incompressible wall-bounded flows. Results of models' validation with DNS data in a channel flow and in a zero-pressure gradient boundary layer over a flat plate will be demonstrated. A part of the material is based upon work supported by NASA under award NNX12AJ61A.
Moving and memorizing: motor planning modulates the recency effect in serial and free recall.
Weigelt, Matthias; Rosenbaum, David A; Huelshorst, Sven; Schack, Thomas
2009-09-01
Motor planning has generally been studied in situations where participants carry out physical actions without a particular purpose. Yet in everyday life physical actions are usually carried out for higher-order goals. We asked whether two previously discovered motor planning phenomena--the end-state comfort effect and motor hysteresis--would hold up if the actions were carried out in the service of higher-order goals. The higher-order goal we chose to study was memorization. By focusing on memorization, we asked not only how and whether motor planning is affected by the need to memorize, but also how memory performance might depend on the cognitive demands of motor planning. We asked university-student participants to retrieve cups from a column of drawers and memorize as many letters as possible from the inside of the cups. The drawers were opened either in a random order (Experiment 1) or in a regular order (Experiments 2 and 3). The end-state comfort effect and motor hysteresis were replicated in these conditions, indicating that the effects hold up when physical actions are carried out for the sake of a higher-order goal. Surprisingly, one of the most reliable effects in memory research was eliminated, namely, the tendency of recent items to be recalled better than earlier items--the recency effect. This outcome was not an artifact of memory being uniformly poor, because the tendency of initial items to be recalled better than later items--the primacy effect--was obtained. Elimination of the recency effect was not due to the requirement that participants recall items in their correct order, for the recency effect was also eliminated when the items could be recalled in any order (Experiment 3). These and other aspects of the results support recent claims for tighter links between perceptual-motor control and intellectual (symbolic) processing than have been assumed in the past.
Surface and finite size effect on fluctuations dynamics in nanoparticles with long-range order
NASA Astrophysics Data System (ADS)
Morozovska, A. N.; Eliseev, E. A.
2010-02-01
The influence of surface and finite size on the dynamics of the order parameter fluctuations and critical phenomena in the three-dimensional (3D)-confined systems with long-range order was not considered theoretically. In this paper, we study the influence of surface and finite size on the dynamics of the order parameter fluctuations in the particles of arbitrary shape. We consider concrete examples of the spherical and cylindrical ferroic nanoparticles within Landau-Ginzburg-Devonshire phenomenological approach. Allowing for the strong surface energy contribution in micro and nanoparticles, the analytical expressions derived for the Ornstein-Zernike correlator of the long-range order parameter spatial-temporal fluctuations, dynamic generalized susceptibility, relaxation times, and correlation radii discrete spectra are different from those known for bulk systems. Obtained analytical expressions for the correlation function of the order parameter spatial-temporal fluctuations in micro and nanosized systems can be useful for the quantitative analysis of the dynamical structural factors determined from magnetic resonance diffraction and scattering spectra. Besides the practical importance of the correlation function for the analysis of the experimental data, derived expressions for the fluctuations strength determine the fundamental limits of phenomenological theories applicability for 3D-confined systems.
NASA Astrophysics Data System (ADS)
Huang, Haiping
2017-03-01
To understand the collective spiking activity in neuronal populations, it is essential to reveal basic circuit variables responsible for these emergent functional states. Here, I develop a mean field theory for the population coupling recently proposed in the studies of the visual cortex of mouse and monkey, relating the individual neuron activity to the population activity, and extend the original form to the second order, relating neuron-pair’s activity to the population activity, to explain the high order correlations observed in the neural data. I test the computational framework on the salamander retinal data and the cortical spiking data of behaving rats. For the retinal data, the original form of population coupling and its advanced form can explain a significant fraction of two-cell correlations and three-cell correlations, respectively. For the cortical data, the performance becomes much better, and the second order population coupling reveals non-local effects in local cortical circuits.
A simplified parsimonious higher order multivariate Markov chain model
NASA Astrophysics Data System (ADS)
Wang, Chao; Yang, Chuan-sheng
2017-09-01
In this paper, a simplified parsimonious higher-order multivariate Markov chain model (SPHOMMCM) is presented. Moreover, parameter estimation method of TPHOMMCM is give. Numerical experiments shows the effectiveness of TPHOMMCM.
Li, Yaohang; Liu, Hui; Rata, Ionel; Jakobsson, Eric
2013-02-25
The rapidly increasing number of protein crystal structures available in the Protein Data Bank (PDB) has naturally made statistical analyses feasible in studying complex high-order inter-residue correlations. In this paper, we report a context-based secondary structure potential (CSSP) for assessing the quality of predicted protein secondary structures generated by various prediction servers. CSSP is a sequence-position-specific knowledge-based potential generated based on the potentials of mean force approach, where high-order inter-residue interactions are taken into consideration. The CSSP potential is effective in identifying secondary structure predictions with good quality. In 56% of the targets in the CB513 benchmark, the optimal CSSP potential is able to recognize the native secondary structure or a prediction with Q3 accuracy higher than 90% as best scored in the predicted secondary structures generated by 10 popularly used secondary structure prediction servers. In more than 80% of the CB513 targets, the predicted secondary structures with the lowest CSSP potential values yield higher than 80% Q3 accuracy. Similar performance of CSSP is found on the CASP9 targets as well. Moreover, our computational results also show that the CSSP potential using triplets outperforms the CSSP potential using doublets and is currently better than the CSSP potential using quartets.
Optical probe of Heisenberg-Kitaev magnetism in α -RuCl3
NASA Astrophysics Data System (ADS)
Sandilands, Luke J.; Sohn, C. H.; Park, H. J.; Kim, So Yeun; Kim, K. W.; Sears, Jennifer A.; Kim, Young-June; Noh, Tae Won
2016-11-01
We report a temperature-dependent optical spectroscopic study of the Heisenberg-Kitaev magnet α -RuCl3 . Our measurements reveal anomalies in the optical response near the magnetic ordering temperature. At higher temperatures, we observe a redistribution of spectral weight over a broad energy range that is associated with nearest-neighbor spin-spin correlations. This finding is consistent with highly frustrated magnetic interactions and in agreement with theoretical expectations for this class of material. The optical data also reveal significant electron-hole interaction effects, including a bound excitonic state. These results demonstrate a clear coupling between charge and spin degrees of freedom and provide insight into the properties of thermally disordered Heisenberg-Kitaev magnets.
Nonextensivity at the Circum-Pacific subduction zones-Preliminary studies
NASA Astrophysics Data System (ADS)
Scherrer, T. M.; França, G. S.; Silva, R.; de Freitas, D. B.; Vilar, C. S.
2015-05-01
Following the fragment-asperity interaction model introduced by Sotolongo-Costa and Posadas (2004) and revised by Silva et al. (2006), we try to explain the nonextensive effect in the context of the asperity model designed by Lay and Kanamori (1981). To address this issue, we used data from the NEIC catalog in the decade between 2001 and 2010, in order to investigate the so-called Circum-Pacific subduction zones. We propose a geophysical explanation to nonextensive parameter q. The results need further investigation however evidence of correlation between the nonextensive parameter and the asperity model is shown, i.e., we show that q-value is higher for areas with larger asperities and stronger coupling.
He, Jie; Zhao, Yunfeng; Zhao, Jingli; Gao, Jin; Han, Dandan; Xu, Pao; Yang, Runqing
2017-11-02
Because of their high economic importance, growth traits in fish are under continuous improvement. For growth traits that are recorded at multiple time-points in life, the use of univariate and multivariate animal models is limited because of the variable and irregular timing of these measures. Thus, the univariate random regression model (RRM) was introduced for the genetic analysis of dynamic growth traits in fish breeding. We used a multivariate random regression model (MRRM) to analyze genetic changes in growth traits recorded at multiple time-point of genetically-improved farmed tilapia. Legendre polynomials of different orders were applied to characterize the influences of fixed and random effects on growth trajectories. The final MRRM was determined by optimizing the univariate RRM for the analyzed traits separately via penalizing adaptively the likelihood statistical criterion, which is superior to both the Akaike information criterion and the Bayesian information criterion. In the selected MRRM, the additive genetic effects were modeled by Legendre polynomials of three orders for body weight (BWE) and body length (BL) and of two orders for body depth (BD). By using the covariance functions of the MRRM, estimated heritabilities were between 0.086 and 0.628 for BWE, 0.155 and 0.556 for BL, and 0.056 and 0.607 for BD. Only heritabilities for BD measured from 60 to 140 days of age were consistently higher than those estimated by the univariate RRM. All genetic correlations between growth time-points exceeded 0.5 for either single or pairwise time-points. Moreover, correlations between early and late growth time-points were lower. Thus, for phenotypes that are measured repeatedly in aquaculture, an MRRM can enhance the efficiency of the comprehensive selection for BWE and the main morphological traits.
A causal contiguity effect that persists across time scales.
Kiliç, Asli; Criss, Amy H; Howard, Marc W
2013-01-01
The contiguity effect refers to the tendency to recall an item from nearby study positions of the just recalled item. Causal models of contiguity suggest that recalled items are used as probes, causing a change in the memory state for subsequent recall attempts. Noncausal models of the contiguity effect assume the memory state is unaffected by recall per se, relying instead on the correlation between the memory states at study and at test to drive contiguity. We examined the contiguity effect in a probed recall task in which the correlation between the study context and the test context was disrupted. After study of several lists of words, participants were given probe words in a random order and were instructed to recall a word from the same list as the probe. The results showed both short-term and long-term contiguity effects. Because study order and test order are uncorrelated, these contiguity effects require a causal contiguity mechanism that operates across time scales.
Accurate and diverse recommendations via eliminating redundant correlations
NASA Astrophysics Data System (ADS)
Zhou, Tao; Su, Ri-Qi; Liu, Run-Ran; Jiang, Luo-Luo; Wang, Bing-Hong; Zhang, Yi-Cheng
2009-12-01
In this paper, based on a weighted projection of a bipartite user-object network, we introduce a personalized recommendation algorithm, called network-based inference (NBI), which has higher accuracy than the classical algorithm, namely collaborative filtering. In NBI, the correlation resulting from a specific attribute may be repeatedly counted in the cumulative recommendations from different objects. By considering the higher order correlations, we design an improved algorithm that can, to some extent, eliminate the redundant correlations. We test our algorithm on two benchmark data sets, MovieLens and Netflix. Compared with NBI, the algorithmic accuracy, measured by the ranking score, can be further improved by 23 per cent for MovieLens and 22 per cent for Netflix. The present algorithm can even outperform the Latent Dirichlet Allocation algorithm, which requires much longer computational time. Furthermore, most previous studies considered the algorithmic accuracy only; in this paper, we argue that the diversity and popularity, as two significant criteria of algorithmic performance, should also be taken into account. With more or less the same accuracy, an algorithm giving higher diversity and lower popularity is more favorable. Numerical results show that the present algorithm can outperform the standard one simultaneously in all five adopted metrics: lower ranking score and higher precision for accuracy, larger Hamming distance and lower intra-similarity for diversity, as well as smaller average degree for popularity.
NASA Astrophysics Data System (ADS)
Janik, Rafal; Ritz, Emily; Gravelle, Andrew; Shi, Lichi; Peng, Xiaohu; Ladizhansky, Vladimir
2010-03-01
In this work, we demonstrate that Homonuclear Rotary Resonance Recoupling (HORROR) can be used to reintroduce carbonyl-carbonyl interresidue dipolar interactions and to achieve efficient polarization transfer between carbonyl atoms in uniformly 13C, 15N-labeled peptides and proteins. We show that the HORROR condition is anisotropically broadened and overall shifted to higher radio frequency intensities because of the CSA effects. These effects are analyzed theoretically using Average Hamiltonian Theory. At spinning frequencies used in this study, 22 kHz, this broadening is experimentally found to be on the order of a kilohertz at a proton field of 600 MHz. To match HORROR condition over all powder orientations, variable amplitude radio frequency (RF) fields are required, and efficient direct transfers on the order of 20-30% can be straightforwardly established. Two- and three-dimensional chemical shift correlation experiments establishing long-range interresidue connectivities (e.g., (N[i]-CO[i - 2])) are demonstrated on the model peptide N-acetyl-valine-leucine, and on the third immunoglobulin binding domain of protein G. Possible future developments are discussed.
Variables associated with achievement in higher education: A systematic review of meta-analyses.
Schneider, Michael; Preckel, Franzis
2017-06-01
The last 2 decades witnessed a surge in empirical studies on the variables associated with achievement in higher education. A number of meta-analyses synthesized these findings. In our systematic literature review, we included 38 meta-analyses investigating 105 correlates of achievement, based on 3,330 effect sizes from almost 2 million students. We provide a list of the 105 variables, ordered by the effect size, and summary statistics for central research topics. The results highlight the close relation between social interaction in courses and achievement. Achievement is also strongly associated with the stimulation of meaningful learning by presenting information in a clear way, relating it to the students, and using conceptually demanding learning tasks. Instruction and communication technology has comparably weak effect sizes, which did not increase over time. Strong moderator effects are found for almost all instructional methods, indicating that how a method is implemented in detail strongly affects achievement. Teachers with high-achieving students invest time and effort in designing the microstructure of their courses, establish clear learning goals, and employ feedback practices. This emphasizes the importance of teacher training in higher education. Students with high achievement are characterized by high self-efficacy, high prior achievement and intelligence, conscientiousness, and the goal-directed use of learning strategies. Barring the paucity of controlled experiments and the lack of meta-analyses on recent educational innovations, the variables associated with achievement in higher education are generally well investigated and well understood. By using these findings, teachers, university administrators, and policymakers can increase the effectivity of higher education. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Photodegradation of iodinated trihalomethanes in aqueous solution by UV 254 irradiation.
Xiao, Yongjun; Fan, Rongli; Zhang, Lifeng; Yue, Junqi; Webster, Richard D; Lim, Teik-Thye
2014-02-01
Photodegradation of 6 iodinated trihalomethanes (ITHMs) under UV irradiation at 254 nm was investigated in this study. ITHMs underwent a rapid photodegradation process through cleavage of carbon-halogen bond with first-order rate constants in the range of 0.1-0.6 min(-1). The effects of matrix species including nitrate, humic acid (HA), bicarbonate, sulfate, and chloride were evaluated. The degradation rate increased slightly in the presence of nitrate possibly due to generation of HO at a low quantum yield via direct photolysis of nitrate, while HA lowered the photodegradation rate of ITHMs due to its competitive UV absorption. Moreover, bicarbonate, sulfate, and chloride had no significant effect on photodegradation kinetics, as there is no UV absorption for these 3 species. In the study using surface water, treated water, and secondary effluent from a wastewater treatment plant, high turbidity and natural organic matters present in the water inhibited the photodegradation of ITHMs. The degradation rates of 6 ITHMs in UV/H2O2 system were rather comparable and significantly higher than those achieved in the UV system without H2O2. To develop a quantitative structure-reactivity relationship (QSAR) model, the logarithm of measured first-order rate constants was correlated with a number of molecular descriptors. The best correlation was obtained with a combination of 3 molecular descriptors, namely the bond strength of carbon-halogen to be broken in the rate-determining step, steric and electronic effects of all substituents to the carbon center. Copyright © 2013 Elsevier Ltd. All rights reserved.
Hadronic Contribution to Muon g-2 with Systematic Error Correlations
NASA Astrophysics Data System (ADS)
Brown, D. H.; Worstell, W. A.
1996-05-01
We have performed a new evaluation of the hadronic contribution to a_μ=(g-2)/2 of the muon with explicit correlations of systematic errors among the experimental data on σ( e^+e^- → hadrons ). Our result for the lowest order hadronic vacuum polarization contribution is a_μ^hvp = 701.7(7.6)(13.4) × 10-10 where the total systematic error contributions from below and above √s = 1.4 GeV are (12.5) × 10-10 and (4.8) × 10-10 respectively. Therefore new measurements on σ( e^+e^- → hadrons ) below 1.4 GeV in Novosibirsk, Russia can significantly reduce the total error on a_μ^hvp. This contrasts with a previous evaluation which indicated that the dominant error is due to the energy region above 1.4 GeV. The latter analysis correlated systematic errors at each energy point separately but not across energy ranges as we have done. Combination with higher order hadronic contributions is required for a new measurement of a_μ at Brookhaven National Laboratory to be sensitive to electroweak and possibly supergravity and muon substructure effects. Our analysis may also be applied to calculations of hadronic contributions to the running of α(s) at √s= M_Z, the hyperfine structure of muonium, and the running of sin^2 θW in Møller scattering. The analysis of the new Novosibirsk data will also be given.
Development of a Gas Dynamic and Thermodynamic Simulation Model of the Lontra Blade Compressor™
NASA Astrophysics Data System (ADS)
Karlovsky, Jerome
2015-08-01
The Lontra Blade Compressor™ is a patented double acting, internally compressing, positive displacement rotary compressor of innovative design. The Blade Compressor is in production for waste-water treatment, and will soon be launched for a range of applications at higher pressure ratios. In order to aid the design and development process, a thermodynamic and gas dynamic simulation program has been written in house. The software has been successfully used to optimise geometries and running conditions of current designs, and is also being used to evaluate future designs for different applications and markets. The simulation code has three main elements. A positive displacement chamber model, a leakage model and a gas dynamic model to simulate gas flow through ports and to track pressure waves in the inlet and outlet pipes. All three of these models are interlinked in order to track mass and energy flows within the system. A correlation study has been carried out to verify the software. The main correlation markers used were mass flow, chamber pressure, pressure wave tracking in the outlet pipe, and volumetric efficiency. It will be shown that excellent correlation has been achieved between measured and simulated data. Mass flow predictions were to within 2% of measured data, and the timings and magnitudes of all major gas dynamic effects were well replicated. The simulation will be further developed in the near future to help with the optimisation of exhaust and inlet silencers.
Wagle, Durgesh V; Deakyne, Carol A; Baker, Gary A
2016-07-14
We report quantum chemical calculations performed on three popular deep eutectic solvents (DESs) in order to elucidate the molecular interactions, charge transfer interactions, and thermodynamics associated with these systems. The DESs studied comprise 1:2 choline chloride/urea (reline), 1:2 choline chloride/ethylene glycol (ethaline), and 1:1 choline chloride/malonic acid (maloline). The excellent correlation between calculated and experimental vibrational spectra allowed for identification of dominant interactions in the DES systems. The DESs were found to be stabilized by both conventional hydrogen bonds and C-H···O/C-H···π interactions between the components. The hydrogen-bonding network established in the DES is clearly distinct from that which exists within the neat hydrogen-bond donor dimer. Charge decomposition analysis indicates significant charge transfer from choline and chloride to the hydrogen-bond donor with a higher contribution from the cation, and a density of states analysis confirms the direction of the charge transfer. Consequently, the sum of the bond orders of the choline-Cl(-) interactions in the DESs correlates directly with the melting temperatures of the DESs, a correlation that offers insight into the effect of the tuning of the choline-Cl(-) interactions by the hydrogen-bond donors on the physical properties of the DESs. Finally, the differences in the vibrational entropy changes upon DES formation are consistent with the trend in the overall entropy changes upon DES formation.
Problem-Based Learning and Use of Higher-Order Thinking by Emergency Medical Technicians
ERIC Educational Resources Information Center
Rosenberger, Paul
2013-01-01
Emergency Medical Technicians (EMTs) often handle chaotic life-and-death situations that require higher-order thinking skills. Improving the pass rate of EMT students depends on many factors, including the use of proven and effective teaching methods. Results from recent research about effective teaching have suggested that the instructional…
Borkar, Nrupa; Xia, Dengning; Holm, René; Gan, Yong; Müllertz, Anette; Yang, Mingshi; Mu, Huiling
2014-01-23
Lipid matrix particles (LMP) may be used as better carriers for poorly water-soluble drugs than liquid lipid carriers because of reduced drug mobilization in the formulations. However, the digestion process of solid lipid particles and their effect on the absorption of poorly water-soluble drugs are not fully understood. This study aimed at investigating the effect of particle size of LMP on drug release in vitro as well as absorption in vivo in order to get a better understanding on the effect of degradation of lipid particles on drug solubilisation and absorption. Fenofibrate, a model poorly water-soluble drug, was incorporated into LMP in this study using probe ultrasound sonication. The resultant LMP were characterised in terms of particle size, size distribution, zeta potential, entrapment efficiency, in vitro lipolysis and in vivo absorption in rat model. LMP of three different particle sizes i.e. approximately 100 nm, 400 nm, and 10 μm (microparticles) were produced with high entrapment efficiencies. The in vitro lipolysis study showed that the recovery of fenofibrate in the aqueous phase for 100 nm and 400 nm LMP was significantly higher (p<0.05) than that of microparticles after 30 min of lipolysis, suggesting that nano-sized LMP were digested to a larger extent due to greater specific surface area. The 100 nm LMP showed faster initial digestion followed by 400 nm LMP and microparticles. The area under the plasma concentration-time curve (AUC) following oral administration of 100 nm LMP was significantly higher (p<0.01) than that of microparticles and fenofibrate crystalline suspension (control). However, no significant difference was observed between the AUCs of 100 nm and 400 nm LMP. The same rank order on the in vivo absorption and the in vitro response was observed. The recovery (%) of fenofibrate partitioning into the aqueous phase during in vitro lipolysis and the AUC of plasma concentration-time curve of fenofibric acid was in the order of 100 nm LMP>microparticles>control. In summary, the present study demonstrated the particle size dependence of bioavailability of fenofibrate loaded LMP in rat model which correlates well with the in vitro drug release performed in the biorelevant medium. Copyright © 2013 Elsevier B.V. All rights reserved.
A tridiagonal parsimonious higher order multivariate Markov chain model
NASA Astrophysics Data System (ADS)
Wang, Chao; Yang, Chuan-sheng
2017-09-01
In this paper, we present a tridiagonal parsimonious higher-order multivariate Markov chain model (TPHOMMCM). Moreover, estimation method of the parameters in TPHOMMCM is give. Numerical experiments illustrate the effectiveness of TPHOMMCM.
Zhang, Jian-Hui; Liu, Chong
2017-01-01
We study the higher-order generalized nonlinear Schrödinger (NLS) equation describing the propagation of ultrashort optical pulse in optical fibres. By using Darboux transformation, we derive the superregular breather solution that develops from a small localized perturbation. This type of solution can be used to characterize the nonlinear stage of the modulation instability (MI) of the condensate. In particular, we show some novel characteristics of the nonlinear stage of MI arising from higher-order effects: (i) coexistence of a quasi-Akhmediev breather and a multipeak soliton; (ii) two multipeak solitons propagation in opposite directions; (iii) a beating pattern followed by two multipeak solitons in the same direction. It is found that these patterns generated from a small localized perturbation do not have the analogues in the standard NLS equation. Our results enrich Zakharov’s theory of superregular breathers and could provide helpful insight on the nonlinear stage of MI in presence of the higher-order effects. PMID:28413335
[Effects of reduced solar radiation on winter wheat flag leaf net photosynthetic rate].
Zheng, You-Fei; Ni, Yan-Li; Mai, Bo-Ru; Wu, Rong-Jun; Feng, Yan; Sun, Jian; Li, Jian; Xu, Jing-Xin
2011-06-01
Taking winter wheat Triticum aestivum L. (cv. Yangmai 13) as test material, a field experiment was conducted in Nanjing City to study the effects of simulated reduced solar radiation on the diurnal variation of winter wheat flag leaf photosynthetic rate and the main affecting factors. Five treatments were installed, i. e., 15% (T15), 20% (T20) , 40% (T40), 60% (T60), and 100% (CK) of total incident solar radiation. Reduced solar irradiance increased the chlorophyll and lutein contents significantly, but decreased the net photosynthetic rate (Pn). Under different solar irradiance, the diurnal variation of Pn had greater difference, and the daily maximum Pn was in the order of CK > T60 > T40 > T 20 > T15. In CK, the Pn exhibited a double peak diurnal curve; while in the other four treatments, the Pn showed a single peak curve, and the peak was lagged behind that of CK. Correlation analysis showed that reduced solar irradiance was the main factor affecting the diurnal variation of Pn, but the physiological parameters also played important roles in determining the diurnal variation of Pn. In treatments T60 and T40, the photosynthesis active radiation (PAR), leaf temperature (T1) , stomatal conductance (Gs) , and transpiration rate (Tr) were significantly positively correlated with Pn, suggesting their positive effects on Pn. The intercellular CO2 concentration (Ci) and stomatal limitation (Ls) had significant negative correlations with Pn in treatments T60 and T40 but significant positive correlations with Pn in treatments T20 and T15, implying that the Ci and Ls had negative (or positive) effects on Pn when the solar irradiance was higher (or lower) than 40% of incident solar irradiance.
The contribution of timbre attributes to musical tension.
Farbood, Morwaread M; Price, Khen C
2017-01-01
Timbre is an auditory feature that has received relatively little attention in empirical work examining musical tension. In order to address this gap, an experiment was conducted to explore the contribution of several specific timbre attributes-inharmonicity, roughness, spectral centroid, spectral deviation, and spectral flatness-to the perception of tension. Listeners compared pairs of sounds representing low and high degrees of each attribute and indicated which sound was more tense. Although the response profiles showed that the high states corresponded with increased tension for all attributes, further analysis revealed that some attributes were strongly correlated with others. When qualitative factors, attribute correlations, and listener responses were all taken into account, there was fairly strong evidence that higher degrees of roughness, inharmonicity, and spectral flatness elicited higher tension. On the other hand, evidence that higher spectral centroid and spectral deviation corresponded to increases in tension was ambiguous.
Review: Fuel Volatility Standards and Spark-Ignition Vehicle Driveability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yanowitz, Janet; McCormick, Robert L.
2016-03-14
We've put spark-ignition engine fuel standards in place in order to ensure acceptable hot and cold weather driveability (HWD and CWD). Vehicle manufacturers and fuel suppliers have developed systems that meet our driveability requirements so effectively that drivers overwhelmingly find that their vehicles reliably start up and operate smoothly and consistently throughout the year. For HWD, fuels that are too volatile perform more poorly than those that are less volatile. Vapor lock is the apparent cause of poor HWD, but there is conflicting evidence in the literature as to where in the fuel system it occurs. Most studies have foundmore » a correlation between degraded driveability and higher dry vapor pressure equivalent or lower TV/L = 20, and less consistently with a minimum T50. For CWD, fuels with inadequate volatility can cause difficulty in starting and rough operation during engine warmup. The Driveability Index (DI)-a function of T10, T50, and T90-is well correlated with CWD in hydrocarbon fuels. For ethanol-containing fuels, a correction factor to the DI equation improves the correlation with CWD, although the best value for that factor has still not been determined. Ethanol increases the heat of vaporization. But, this is likely insignificant for E15 and lower concentration fuels. The impact of ethanol on driveability is likely due to its direct effect on vapor pressure at cold temperatures. For E51-E83 or flex-fuel blends, ASTM sets a minimum vapor pressure; however, published data suggest that a correction for the amount of ethanol in the fuel is needed to accurately predict CWD, possibly because ethanol has a higher lower-flammability limit.« less
ERIC Educational Resources Information Center
Krizan, Margaret M. Best
2012-01-01
Research investigating the level of student achievement in two demographically comparable urban high schools was examined as to the presence of or the absence of the Correlates of Effective Schools. The purpose of the study was to determine: Do the Correlates of an Effective School as identified by Lezotte distinguish a higher achieving high…
Modeling 3D PCMI using the Extended Finite Element Method with higher order elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, W.; Spencer, Benjamin W.
2017-03-31
This report documents the recent development to enable XFEM to work with higher order elements. It also demonstrates the application of higher order (quadratic) elements to both 2D and 3D models of PCMI problems, where discrete fractures in the fuel are represented using XFEM. The modeling results demonstrate the ability of the higher order XFEM to accurately capture the effects of a crack on the response in the vicinity of the intersecting surfaces of cracked fuel and cladding, as well as represent smooth responses in the regions away from the crack.
Percolation analysis for cosmic web with discrete points
NASA Astrophysics Data System (ADS)
Zhang, Jiajun; Cheng, Dalong; Chu, Ming-Chung
2016-03-01
Percolation analysis has long been used to quantify the connectivity of the cosmic web. Unlike most of the previous works using density field on grids, we have studied percolation analysis based on discrete points. Using a Friends-of-Friends (FoF) algorithm, we generate the S-bb relation, between the fractional mass of the largest connected group (S) and the FoF linking length (bb). We propose a new model, the Probability Cloud Cluster Expansion Theory (PCCET) to relate the S-bb relation with correlation functions. We show that the S-bb relation reflects a combination of all orders of correlation functions. We have studied the S-bb relation with simulation and find that the S-bb relation is robust against redshift distortion and incompleteness in observation. From the Bolshoi simulation, with Halo Abundance Matching (HAM), we have generated a mock galaxy catalogue. Good matching of the projected two-point correlation function with observation is confirmed. However, comparing the mock catalogue with the latest galaxy catalogue from SDSS DR12, we have found significant differences in their S-bb relations. This indicates that the mock catalogue cannot accurately recover higher order correlation functions than the two-point correlation function, which reveals the limit of HAM method.
Integration of fluvial erosion factors for predicting landslides along meandering rivers
NASA Astrophysics Data System (ADS)
Chen, Yi-chin; Chang, Kang-tsung; Ho, Jui-yi
2015-04-01
River incision and lateral erosion are important geomorphologic processes in mountainous areas of Taiwan. During a typhoon or storm event, the increase of water discharge, flow velocity, and sediment discharge enhances the power of river erosion on channel bank. After the materials on toe of hillslope were removed by river erosion, landslides were triggered at outer meander bends. Although it has been long expected that river erosion can trigger landslide, studies quantifying the effects of river erosion on landslide and the application of river erosion index in landslide prediction are still overlooked. In this study, we investigated the effect of river erosion on landslide in a particular meanders landscape of the Jhoukou River, southern Taiwan. We developed a semi-automatic model to separate meandering lines into several reach segments based on the inflection points and to calculate river erosion indexes, e.g. sinuosity of meander, stream power, and stream order, for each reach segment. This model, then, built the spatial relationship between the reaches and its corresponding hillslopes, of which the toe was eroded by the reach. Based on the spatial relationship, we quantified the correlations between these indexes and landslides triggered by Typhoon Morakot in 2009 to examine the effects of river erosion on landslide. The correlated indexes were then used as landslide predictors in logistic regression model. Results of the study showed that there is no significant correlation between landslide density and meander sinuosity. This may be a result of wider channel dispersing the erosion at a meandering reach. On the other hand, landslide density at concave bank is significantly higher than that at convex bank in the downstream (stream order > 3), but that is almost the same in the upstream (stream order < 3). This may imply that river sediment play different roles between down- and upstream segments. River sediment in the upstream is an erosion agent vertically scouring the river bed, resulting in a symmetrical effect on both concave and convex bank. In contrast, river sediment in the downstream is an erosion agent eroding the concave bank laterally, but also depositing on the concave side and protecting the bank from erosion. Finally, the results also showed that the integration of fluvial erosion factors can improve the performance in predicting landsliding along meandering rivers.
Quadratic canonical transformation theory and higher order density matrices.
Neuscamman, Eric; Yanai, Takeshi; Chan, Garnet Kin-Lic
2009-03-28
Canonical transformation (CT) theory provides a rigorously size-extensive description of dynamic correlation in multireference systems, with an accuracy superior to and cost scaling lower than complete active space second order perturbation theory. Here we expand our previous theory by investigating (i) a commutator approximation that is applied at quadratic, as opposed to linear, order in the effective Hamiltonian, and (ii) incorporation of the three-body reduced density matrix in the operator and density matrix decompositions. The quadratic commutator approximation improves CT's accuracy when used with a single-determinant reference, repairing the previous formal disadvantage of the single-reference linear CT theory relative to singles and doubles coupled cluster theory. Calculations on the BH and HF binding curves confirm this improvement. In multireference systems, the three-body reduced density matrix increases the overall accuracy of the CT theory. Tests on the H(2)O and N(2) binding curves yield results highly competitive with expensive state-of-the-art multireference methods, such as the multireference Davidson-corrected configuration interaction (MRCI+Q), averaged coupled pair functional, and averaged quadratic coupled cluster theories.
Gravitational wave searches with pulsar timing arrays: Cancellation of clock and ephemeris noises
NASA Astrophysics Data System (ADS)
Tinto, Massimo
2018-04-01
We propose a data processing technique to cancel monopole and dipole noise sources (such as clock and ephemeris noises, respectively) in pulsar timing array searches for gravitational radiation. These noises are the dominant sources of correlated timing fluctuations in the lower-part (≈10-9-10-8 Hz ) of the gravitational wave band accessible by pulsar timing experiments. After deriving the expressions that reconstruct these noises from the timing data, we estimate the gravitational wave sensitivity of our proposed processing technique to single-source signals to be at least one order of magnitude higher than that achievable by directly processing the timing data from an equal-size array. Since arrays can generate pairs of clock and ephemeris-free timing combinations that are no longer affected by correlated noises, we implement with them the cross-correlation statistic to search for an isotropic stochastic gravitational wave background. We find the resulting optimal signal-to-noise ratio to be more than one order of magnitude larger than that obtainable by correlating pairs of timing data from arrays of equal size.
Hierarchical Factoring Based On Image Analysis And Orthoblique Rotations.
Stankov, L
1979-07-01
The procedure for hierarchical factoring suggested by Schmid and Leiman (1957) is applied within the framework of image analysis and orthoblique rotational procedures. It is shown that this approach necessarily leads to correlated higher order factors. Also, one can obtain a smaller number of factors than produced by typical hierarchical procedures.
Contributions of Associative Learning to Age and Individual Differences in Fluid Intelligence
ERIC Educational Resources Information Center
Tamez, Elaine; Myerson, Joel; Hale, Sandra
2012-01-01
According to the cognitive cascade hypothesis, age-related slowing results in decreased working memory, which in turn affects higher-order cognition. Because recent studies show complex associative learning correlates highly with fluid intelligence, the present study examined the role of complex associative learning in cognitive cascade models of…
Poppe, Leszek; Jordan, John B; Rogers, Gary; Schnier, Paul D
2015-06-02
An important aspect in the analytical characterization of protein therapeutics is the comprehensive characterization of higher order structure (HOS). Nuclear magnetic resonance (NMR) is arguably the most sensitive method for fingerprinting HOS of a protein in solution. Traditionally, (1)H-(15)N or (1)H-(13)C correlation spectra are used as a "structural fingerprint" of HOS. Here, we demonstrate that protein fingerprint by line shape enhancement (PROFILE), a 1D (1)H NMR spectroscopy fingerprinting approach, is superior to traditional two-dimensional methods using monoclonal antibody samples and a heavily glycosylated protein therapeutic (Epoetin Alfa). PROFILE generates a high resolution structural fingerprint of a therapeutic protein in a fraction of the time required for a 2D NMR experiment. The cross-correlation analysis of PROFILE spectra allows one to distinguish contributions from HOS vs protein heterogeneity, which is difficult to accomplish by 2D NMR. We demonstrate that the major analytical limitation of two-dimensional methods is poor selectivity, which renders these approaches problematic for the purpose of fingerprinting large biological macromolecules.
Superconducting order from disorder in 2H-TaSe 2-xS x
Li, Lijun; Deng, Xiaoyu; Wang, Zhen; ...
2017-02-24
Here, we report on the emergence of robust superconducting order in single crystal alloys of TaSe 2$ -$x S x (0 ≤ × ≤2). The critical temperature of the alloy is surprisingly higher than that of the two end compounds TaSe2 and TaS2. The evolution of superconducting critical temperature T c(x) correlates with the full width at half maximum of the Bragg peaks and with the linear term of the high-temperature resistivity. The conductivity of the crystals near the middle of the alloy series is higher or similar than that of either one of the end members 2H-TaSe 2 and/ormore » 2H-TaS 2. It is known that in these materials superconductivity is in close competition with charge density wave order. We interpret our experimental findings in a picture where disorder tilts this balance in favor of superconductivity by destroying the charge density wave order.« less
Sicilia, Alvaro; González-Cutre, David
2011-05-01
The purpose of this study was to validate the Spanish version of the Exercise Dependence Scale-Revised (EDS-R). To achieve this goal, a sample of 531 sport center users was used and the psychometric properties of the EDS-R were examined through different analyses. The results supported both the first-order seven-factor model and the higher-order model (seven first-order factors and one second-order factor). The structure of both models was invariant across age. Correlations among the subscales indicated a related factor model, supporting construct validity of the scale. Alpha values over .70 (except for Reduction in Other Activities) and suitable levels of temporal stability were obtained. Users practicing more than three days per week had higher scores in all subscales than the group practicing with a frequency of three days or fewer. The findings of this study provided reliability and validity for the EDS-R in a Spanish context.
Miller, Joshua D; Zeichner, Amos; Wilson, Lauren F
2012-09-01
Although many studies of personality and aggression focus on multidimensional traits and higher order personality disorders (e.g., psychopathy), lower order, unidimensional traits may provide more precision in identifying specific aspects of personality that relate to aggression. The current study includes a comprehensive measurement of lower order personality traits in relation to three forms of aggression: reactive, proactive, and relational. Traits related to interpersonal antagonism and impulsivity, especially impulsive behavior in the context of negative affect, were consistently related to aggression across multiple indices. These findings suggest that certain lower order traits are of critical importance to understanding who engages in aggressive behavior and why this behavior occurs.
NASA Astrophysics Data System (ADS)
Pineda, M.; Stamatakis, M.
2017-07-01
Modeling the kinetics of surface catalyzed reactions is essential for the design of reactors and chemical processes. The majority of microkinetic models employ mean-field approximations, which lead to an approximate description of catalytic kinetics by assuming spatially uncorrelated adsorbates. On the other hand, kinetic Monte Carlo (KMC) methods provide a discrete-space continuous-time stochastic formulation that enables an accurate treatment of spatial correlations in the adlayer, but at a significant computation cost. In this work, we use the so-called cluster mean-field approach to develop higher order approximations that systematically increase the accuracy of kinetic models by treating spatial correlations at a progressively higher level of detail. We further demonstrate our approach on a reduced model for NO oxidation incorporating first nearest-neighbor lateral interactions and construct a sequence of approximations of increasingly higher accuracy, which we compare with KMC and mean-field. The latter is found to perform rather poorly, overestimating the turnover frequency by several orders of magnitude for this system. On the other hand, our approximations, while more computationally intense than the traditional mean-field treatment, still achieve tremendous computational savings compared to KMC simulations, thereby opening the way for employing them in multiscale modeling frameworks.
Diaz, Elena; Ruiz, Fatima; Hoyos, Itziar; Zubero, Jaime; Gravina, Leyre; Gil, Javier; Irazusta, Jon; Gil, Susana Maria
2010-01-01
The aim of this study was to measure the effect of nutrition on cell damage, antioxidant enzymes, and cortisol during a two-day ski mountaineering competition. Twenty-one male skiers participated in the study. Creatine kinase (CK), aspartate aminotransferase (AST), alanine aminotransferase (ALT), γ-glutamyl transpeptidase (GGT), lactate dehydrogenase (LDH), alkaline phosphatase (AP), cortisol and C-reactive protein (CRP), glutathione peroxidase (GPx) and reductase activities (GR) and C-reactive protein (CRP) levels, total antioxidant status, and cortisol levels were measured in serum the day before and immediately after the race. Their diet was also analysed during the competition. Enzymes and cortisol levels significantly increased after the competition. CK and LDH and cortisol levels were negatively correlated to total energy, protein, and fat intake. Intake of vitamin A, B1, B2, B6 and niacin was negatively correlated to LDH and AP. A negative correlation was also found between CK activity and Na, Fe, and Zn intake. Cortisol levels were negatively correlated to the intake of vitamins C, B1 and B2, and niacin. A positive correlation was found between serum GPx and intake of energy, carbohydrates, proteins, A and B vitamins, and folic acid. Skiers with the lowest nutrient intake during the competition were the ones who showed greater cell damage and lower antioxidant enzyme activity and cortisol levels, which may impair performance and also cause injuries and accidents. Particularly, skiers should have high intakes of total energy, macronutrients, vitamins A and B, Na, Zn, and Fe in order to decrease the deleterious effect of strenuous exercise. Key points A two-day ski mountaineering race produced muscle cell damage and oxidative stress and an increase in cortisol levels. There was a marked insufficient intake of carbohydrates which has been shown to affect performance Those skiers with lowest nutrient intake showed greater cell damage, lower antioxidant activity and higher cortisol levels. Nutrition should be carefully monitored and assessed in order to minimize the mentioned blood changes to avoid fatigue, injuries and also accidents in this type of sport; particularly when skiers must carry their own food. PMID:24149705
Renormalization group methods for the Reynolds stress transport equations
NASA Technical Reports Server (NTRS)
Rubinstein, R.
1992-01-01
The Yakhot-Orszag renormalization group is used to analyze the pressure gradient-velocity correlation and return to isotropy terms in the Reynolds stress transport equations. The perturbation series for the relevant correlations, evaluated to lowest order in the epsilon-expansion of the Yakhot-Orszag theory, are infinite series in tensor product powers of the mean velocity gradient and its transpose. Formal lowest order Pade approximations to the sums of these series produce a rapid pressure strain model of the form proposed by Launder, Reece, and Rodi, and a return to isotropy model of the form proposed by Rotta. In both cases, the model constants are computed theoretically. The predicted Reynolds stress ratios in simple shear flows are evaluated and compared with experimental data. The possibility is discussed of deriving higher order nonlinear models by approximating the sums more accurately. The Yakhot-Orszag renormalization group provides a systematic procedure for deriving turbulence models. Typical applications have included theoretical derivation of the universal constants of isotropic turbulence theory, such as the Kolmogorov constant, and derivation of two equation models, again with theoretically computed constants and low Reynolds number forms of the equations. Recent work has applied this formalism to Reynolds stress modeling, previously in the form of a nonlinear eddy viscosity representation of the Reynolds stresses, which can be used to model the simplest normal stress effects. The present work attempts to apply the Yakhot-Orszag formalism to Reynolds stress transport modeling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, N.; Takahashi, M.; Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577
The double processes of He in electron-impact ionization, single ionization with simultaneous excitation and double ionization, have been studied at large momentum transfer using an energy- and momentum-dispersive binary (e,2e) spectrometer. The experiment has been performed at an impact energy of 2080 eV in the symmetric noncoplanar geometry. In this way we have achieved a large momentum transfer of 9 a.u., a value that has never been realized so far for the study on double ionization. The measured (e,2e) and (e,3-1e) cross sections for transitions to the n=2 excited state of He{sup +} and to doubly ionized He{sup 2+} aremore » presented as normalized intensities relative to that to the n=1 ground state of He{sup +}. The results are compared with first-order plane-wave impulse approximation (PWIA) calculations using various He ground-state wave functions. It is shown that shapes of the momentum-dependent (e,2e) and (e,3-1e) cross sections are well reproduced by the PWIA calculations only when highly correlated wave functions are employed. However, noticeable discrepancies between experiment and theory remain in magnitude for both the double processes, suggesting the importance of higher-order effects under the experimental conditions examined as well as of acquiring more complete knowledge of electron correlation in the target.« less
O'Rourke, Norm; Bachner, Yaacov G; Cappeliez, Philippe; Chaudhury, Habib; Carmel, Sara
2015-01-01
Existing research with English-speaking samples indicates that various ways in which older adults recall their past affect both their physical and mental health. Self-positive reminiscence functions (i.e. identity, problem-solving, death preparation) correlate and predict mental health in later life whereas self-negative functions (i.e. bitterness revival, boredom reduction, intimacy maintenance) correlate and predict the physical health of older adults. For this study, we recruited 295 Israeli Holocaust survivors to ascertain if early life trauma affects these associations between reminiscence and health. In order to distinguish cross-national differences from survivor-specific effects, we also recruited two comparative samples of other older Israelis (not Holocaust survivors; n = 205) and a second comparative sample of 335 older Canadians. Three separate structural equation models were computed to replicate this tripartite reminiscence and health model. Coefficients for self-negative functions significantly differed between survivors and both Canadians and other older Israelis, and between Canadians and both Israeli samples. However, no differences were found between prosocial and self-positive functions. Moreover, the higher order structure of reminiscence and health appears largely indistinguishable across these three groups. Early life trauma does not appear to fundamentally affect associations between reminiscence and health. These findings underscore the resilience of Holocaust survivors.
Molecular properties of steroids involved in their effects on the biophysical state of membranes.
Wenz, Jorge J
2015-10-01
The activity of steroids on membranes was studied in relation to their ordering, rigidifying, condensing and/or raft promoting ability. The structures of 82 steroids were modeled by a semi-empirical procedure (AM1) and 245 molecular descriptors were next computed on the optimized energy conformations. Principal component analysis, mean contrasting and logistic regression were used to correlate the molecular properties with 212 cases of documented activities. It was possible to group steroids based on their properties and activities, indicating that steroids having similar molecular properties have similar activities on membranes. Steroids having high values of area, partition coefficient, volume, number of rotatable bonds, molar refractivity, polarizability or mass displayed ordering, rigidifying, condensing and/or raft promoting activity on membranes higher than those steroids having low values in such molecular properties. After a variable selection procedure circumventing correlation problems among descriptors, area and log P were found as the most relevant properties in governing and predicting the activity of steroids on membranes. A logistic regression model as a function of the area and log P of the steroids is proposed, which is able to predict correctly 92.5% of the cases. A rationale of the findings is discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Freitas, M. C.; Pacheco, A. M. G.; Dionísio, I.; Sarmento, S.; Baptista, M. S.; Vasconcelos, M. T. S. D.; Cabral, J. P.
2006-08-01
Elemental contents of atmospheric biomonitors—epiphytic lichens and tree bark, exposed in continuous and discontinuous modes—have been assessed through k0-standardised instrumental neutron activation analysis ( k0-INAA) (two different institutions), inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometry (AAS). Certified reference materials—ISE-921 (river clay), NIST-1547 (peach leaves), ICHTJ-INCT-TL-1 (tea leaves; TL-1 hereinafter) and IAEA-336 (lichen material), and nonparametric statistics—rank-order correlations (Spearman RS) and enhanced-sign tests (Wilcoxon T)—were used for analytical control and data comparison, respectively. In general, quality of procedures was deemed good, except for k0-INAA in determining Br, Cu and Na, all likely affected by high counting statistics, and/or contamination issues (the latter). Results for Cu, Ni, Pb and Sr (by both ICP-MS and AAS) revealed that, despite an outstanding correlation (asymptotic p=0.000), they could be viewed as statistically equal for Cu only: AAS tended to yield higher values for Pb and Ni, and lower ones for Sr. The comparison between ICP-MS and k0-INAA data from TUDelft, for Al, Ca, Cu, Mg, Mn, Na, Ti and V, showed an excellent correlation (as above) and random (relative) magnitude for Cu, Mg, Mn and Ti only: ICP-MS tended to yield higher values for Al, Na and V, and lower ones for Ca, whereas between k0-INAA data from TUDelft and ITN, for Br, Ca and Na, resulted in systematically higher [Br] and [Ca] variates from TUDelft, even if all corresponding data sets were found to correlate at stringent significance levels. In a few cases, though—Ca, Sr in lichens; Pb in bark—matrix effects did appear to interfere in the outcome of matched-pairs, signed-rank tests, since random hierarchy of variates could be asserted just when lichen and bark data sets were processed separately.
Correlation as a Determinant of Configurational Entropy in Supramolecular and Protein Systems
2015-01-01
For biomolecules in solution, changes in configurational entropy are thought to contribute substantially to the free energies of processes like binding and conformational change. In principle, the configurational entropy can be strongly affected by pairwise and higher-order correlations among conformational degrees of freedom. However, the literature offers mixed perspectives regarding the contributions that changes in correlations make to changes in configurational entropy for such processes. Here we take advantage of powerful techniques for simulation and entropy analysis to carry out rigorous in silico studies of correlation in binding and conformational changes. In particular, we apply information-theoretic expansions of the configurational entropy to well-sampled molecular dynamics simulations of a model host–guest system and the protein bovine pancreatic trypsin inhibitor. The results bear on the interpretation of NMR data, as they indicate that changes in correlation are important determinants of entropy changes for biologically relevant processes and that changes in correlation may either balance or reinforce changes in first-order entropy. The results also highlight the importance of main-chain torsions as contributors to changes in protein configurational entropy. As simulation techniques grow in power, the mathematical techniques used here will offer new opportunities to answer challenging questions about complex molecular systems. PMID:24702693
Theory of the classical electron gas
NASA Technical Reports Server (NTRS)
Guernsey, R. L.
1978-01-01
In a previous paper Cohen and Murphy (1969) used the Meeron resummation (1958) of the Mayer diagrams (1950) to calculate the pair correlation for the classical electron gas in thermal equilibrium. They found that successive terms in the expression for the pair correlation were more and more singular for small interparticle spacing, actually dominating the Debye-Hueckel result for sufficiently small distances. This led to apparent divergence in the higher order contributions to the internal energy. The present paper shows that the apparent anomalies in the Cohen-Murphy results can be removed without further resummation by a more careful treatment of the region of small interparticle spacing. It is shown that there is really no anomalous behavior at short range in any order and all integrals in the expression for the internal energy converge.
Hyperextended Cosmological Perturbation Theory: Predicting Nonlinear Clustering Amplitudes
NASA Astrophysics Data System (ADS)
Scoccimarro, Román; Frieman, Joshua A.
1999-07-01
We consider the long-standing problem of predicting the hierarchical clustering amplitudes Sp in the strongly nonlinear regime of gravitational evolution. N-body results for the nonlinear evolution of the bispectrum (the Fourier transform of the three-point density correlation function) suggest a physically motivated Ansatz that yields the strongly nonlinear behavior of the skewness, S3, starting from leading-order perturbation theory. When generalized to higher order (p>3) polyspectra or correlation functions, this Ansatz leads to a good description of nonlinear amplitudes in the strongly nonlinear regime for both scale-free and cold dark matter models. Furthermore, these results allow us to provide a general fitting formula for the nonlinear evolution of the bispectrum that interpolates between the weakly and strongly nonlinear regimes, analogous to previous expressions for the power spectrum.
The effect of neighboring districts on body height of Polish conscripts.
Gomula, Aleksandra; Koziel, Slawomir; Groth, Detlef; Bielicki, Tadeusz
2017-04-01
The aim of the study was to investigate the correlation of heights of conscripts living in neighboring districts in Poland. The study used 10% of a nationally representative sample of 26,178 males 18.5-19.5 years old examined during the National survey of Polish conscripts conducted in 2001. The sample represented all regions and social strata of the country and included 354 different districts within 16 voivodships (provinces). Analyses were performed with the R statistical software. A small but significant correlation (0.24, p < 0.0001) was observed for height between 1 st order neighboring districts. Correlations decreased with increased distances between neighboring districts, but remained significant for 7 th node neighbors (0.18, p < 0.0001). Regarding voivodships (provinces), average height showed a geographical trend from the northwest (relatively tall) to the southeast (relatively short), and the correlation was stronger for first order neighboring provinces (0.796, p < 0.001). This study revealed clusters of tall people and short people, providing a support for hypothesis of the community effect in height. Small correlations between 1 st order neighbors than in another country (Switzerland) may be associated with differences in geography, since in Poland there are no natural barriers (e.g., mountains) and road infrastructure is well-developed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Lijun; Deng, Xiaoyu; Wang, Zhen
Here, we report on the emergence of robust superconducting order in single crystal alloys of TaSe 2$ -$x S x (0 ≤ × ≤2). The critical temperature of the alloy is surprisingly higher than that of the two end compounds TaSe2 and TaS2. The evolution of superconducting critical temperature T c(x) correlates with the full width at half maximum of the Bragg peaks and with the linear term of the high-temperature resistivity. The conductivity of the crystals near the middle of the alloy series is higher or similar than that of either one of the end members 2H-TaSe 2 and/ormore » 2H-TaS 2. It is known that in these materials superconductivity is in close competition with charge density wave order. We interpret our experimental findings in a picture where disorder tilts this balance in favor of superconductivity by destroying the charge density wave order.« less
Investigation on the efficiency of treated Palm Tree waste for removal of organic pollutants
NASA Astrophysics Data System (ADS)
Azoulay, Karima; El HajjajiI, Souad; Dahchour, Abdelmalek
2017-04-01
Development of the industrial sector generates several problems of environmental pollution. This issue rises concern among scientific community and decision makers, in this work; we e interested in water resources polluted by the chemical substances, which can cause various problems of health. As an example, dyes generated by different industrial activities such as textile, cosmetic, metal plating, leather, paper and plastic sectors, constitute an important source of pollution. In this work, we aim at investigating the efficiency of palm tree waste for removal of dyes from polluted solution. Our work presents a double environmental aspect, on one hand it constitutes an attempt for valorization of Palm Tree waste, and on the other hand it provides natural adsorbent. The study focuses on the effectiveness of the waste in removing Methylene Bleu and Methyl Orange taken as models of pollutants from aqueous solution. Kinetics and isotherm experiments were conducted in order to determine the sorption behavior of the examined dye. The effects of initial dye and adsorbent concentrations are considered. The results indicate that the correlation coefficient calculated from pseudo-second order equation was higher than the other kinetic equations, indicating that equilibrium data fitted well with pseudo-second order model where adsorption process was chemisorption. The adsorption equilibrium was well described by Langmuir isotherm model.
Long-range dipolar order and dispersion forces in polar liquids
NASA Astrophysics Data System (ADS)
Besford, Quinn Alexander; Christofferson, Andrew Joseph; Liu, Maoyuan; Yarovsky, Irene
2017-11-01
Complex solvation phenomena, such as specific ion effects, occur in polar liquids. Interpretation of these effects in terms of structure and dispersion forces will lead to a greater understanding of solvation. Herein, using molecular dynamics, we probe the structure of polar liquids through specific dipolar pair correlation functions that contribute to the potential of mean force that is "felt" between thermally rotating dipole moments. It is shown that unique dipolar order exists at separations at least up to 20 Å for all liquids studied. When the structural order is compared with a dipolar dispersion force that arises from local co-operative enhancement of dipole moments, a strong agreement is found. Lifshitz theory of dispersion forces was compared with the structural order, where the theory is validated for all liquids that do not have significant local dipole correlations. For liquids that do have significant local dipole correlations, specifically liquid water, Lifshitz theory underestimates the dispersion force by a factor of 5-10, demonstrating that the force that leads to the increased structure in liquid water is missed by Lifshitz theory of van der Waals forces. We apply similar correlation functions to an ionic aqueous system, where long-range order between water's dipole moment and a single chloride ion is found to exist at 20 Å of separation, revealing a long-range perturbation of water's structure by an ion. Furthermore, we found that waters within the 1st, 2nd, and 3rd solvation shells of a chloride ion exhibit significantly enhanced dipolar interactions, particularly with waters at larger distances of separation. Our results provide a link between structures, dispersion forces, and specific ion effects, which may lead to a more robust understanding of solvation.
Wang, Gui-Zhen; Li, Zhao-Jun; Zhang, Shu-Qing; Ma, Xiao-Tong; Liang, Yong-Chao
2013-02-01
In order to illustrate the degradation of tetracyclines (TCs) and their influences on process parameters during the period of chicken feces aerobic-composting, the degradation of oxytetracycline (OTC), a kind of TCs and its effects on parameters during the period of chick feces aerobic-composting including temperature, pH, and germination index were investigated using the method of aerobic-composting. The contents of OTC decreased gradually with composting time. The degradation rate was high before 10 d, and then decreased gradually. The differences in OTC degradation among the OTC treatments were also found. The degradation rate of OTC was higher at the level of 25 mg.kg-1, than that of other levels. The degradation curve of OTC could be described by the first-order kinetic model, and the correlation coefficients ranged from 0. 911 1 to 0. 9913. The impacts of OTC on chick feces composting were found. OTC could decrease the rising rate of composting temperature and make the high temperature (> or =50 degrees C) period shorter than that of the control. The values of pH, TN, WSC, and the content of NH: -N of composting were 4.58%, 12.62%, 49.06%, and 35.30% higher than those of the control. The impacts of OTC on maturity of chicken feces composting was not found when the OTC addition contents were lower than 50 mg.kg-1. However, the strong impacts of OTC on maturity of chicken feces composting were found when the OTC addition contents were higher than 50 mg.kg-1. The rates of NH+4 -N to NO-3 -N, and GI were much higher than 0. 5 and lower than 80% , respectively. Theses results suggest that OTC have strong impacts on chicken feces composting when the contents of TOC was higher than 50 mg.kg-1, although OTC have the short half-life period ranged from 1.79-4.88 d.
Jang, Seung-Ho; Ryu, Han-Seung; Choi, Suck-Chei; Lee, Sang-Yeol
2016-10-01
The purpose of this study was to examine psychosocial factors related to gastroesophageal reflux disease (GERD) and their effects on quality of life (QOL) in firefighters. Data were collected from 1217 firefighters in a Korean province. We measured psychological symptoms using the scale. In order to observe the influence of the high-risk group on occupational stress, we conduct logistic multiple linear regression. The correlation between psychological factors and QOL was also analyzed and performed a hierarchical regression analysis. GERD was observed in 32.2% of subjects. Subjects with GERD showed higher depressive symptom, anxiety and occupational stress scores, and lower self-esteem and QOL scores relative to those observed in GERD - negative subject. GERD risk was higher for the following occupational stress subcategories: job demand, lack of reward, interpersonal conflict, and occupational climate. The stepwise regression analysis showed that depressive symptoms, occupational stress, self-esteem, and anxiety were the best predictors of QOL. The results suggest that psychological and medical approaches should be combined in GERD assessment.
Diffusion coefficients of rare earth elements in fcc Fe: A first-principles study
NASA Astrophysics Data System (ADS)
Wang, Haiyan; Gao, Xueyun; Ren, Huiping; Chen, Shuming; Yao, Zhaofeng
2018-01-01
The diffusion data and corresponding detailed insights are particularly important for the understanding of the related kinetic processes in Fe based alloys, e.g. solute strengthening, phase transition, solution treatment etc. We present a density function theory study of the diffusivity of self and solutes (La, Ce, Y and Nb) in fcc Fe. The five-frequency model was employed to calculate the microscopic parameters in the correlation factors of the solute diffusion. The interactions of the solutes with the first nearest-neighbor vacancy (1nn) are all attractive, and can be well understood on the basis of the combination of the strain-relief effects and the electronic effects. It is found that among the investigated species, Ce is the fastest diffusing solute in fcc Fe matrix followed by Nb, and the diffusion coefficients of these two solutes are about an order of magnitude higher than that of Fe self-diffusion. And the results show that the diffusion coefficient of La is slightly higher than that of Y, and both species are comparable to that of Fe self-diffusion.
Jang, Seung-Ho; Ryu, Han-Seung; Choi, Suck-Chei; Lee, Sang-Yeol
2016-01-01
Objectives The purpose of this study was to examine psychosocial factors related to gastroesophageal reflux disease (GERD) and their effects on quality of life (QOL) in firefighters. Methods Data were collected from 1217 firefighters in a Korean province. We measured psychological symptoms using the scale. In order to observe the influence of the high-risk group on occupational stress, we conduct logistic multiple linear regression. The correlation between psychological factors and QOL was also analyzed and performed a hierarchical regression analysis. Results GERD was observed in 32.2% of subjects. Subjects with GERD showed higher depressive symptom, anxiety and occupational stress scores, and lower self-esteem and QOL scores relative to those observed in GERD – negative subject. GERD risk was higher for the following occupational stress subcategories: job demand, lack of reward, interpersonal conflict, and occupational climate. The stepwise regression analysis showed that depressive symptoms, occupational stress, self-esteem, and anxiety were the best predictors of QOL. Conclusions The results suggest that psychological and medical approaches should be combined in GERD assessment. PMID:27691373
Higher-order correlations for fluctuations in the presence of fields.
Boer, A; Dumitru, S
2002-10-01
The higher-order moments of the fluctuations for thermodynamic systems in the presence of fields are investigated in the framework of a theoretical method. The method uses a generalized statistical ensemble consistent with an adequate expression for the internal energy. The applications refer to the case of a system in a magnetoquasistatic field. In the case of linear magnetic media, one finds that, for the description of the magnetic induction fluctuations, the Gaussian approximation is satisfactory. For nonlinear media, the corresponding fluctuations are non-Gaussian, having a non-null asymmetry. Furthermore, the respective fluctuations have characteristics of leptokurtic, mesokurtic and platykurtic type, depending on the value of the magnetic field strength as compared with a scaling factor of the magnetization curve.
NASA Astrophysics Data System (ADS)
Mondal, Ritwik; Berritta, Marco; Oppeneer, Peter M.
2018-07-01
The phenomenological Landau–Lifshitz–Gilbert (LLG) equation of motion remains as the cornerstone of contemporary magnetisation dynamics studies, wherein the Gilbert damping parameter has been attributed to first-order relativistic effects. To include magnetic inertial effects the LLG equation has previously been extended with a supplemental inertia term; the arising inertial dynamics has been related to second-order relativistic effects. Here we start from the relativistic Dirac equation and, performing a Foldy–Wouthuysen transformation, derive a generalised Pauli spin Hamiltonian that contains relativistic correction terms to any higher order. Using the Heisenberg equation of spin motion we derive general relativistic expressions for the tensorial Gilbert damping and magnetic inertia parameters, and show that these tensors can be expressed as series of higher-order relativistic correction terms. We further show that, in the case of a harmonic external driving field, these series can be summed and we provide closed analytical expressions for the Gilbert and inertial parameters that are functions of the frequency of the driving field.
Mondal, Ritwik; Berritta, Marco; Oppeneer, Peter M
2018-05-17
The phenomenological Landau-Lifshitz-Gilbert (LLG) equation of motion remains as the cornerstone of contemporary magnetisation dynamics studies, wherein the Gilbert damping parameter has been attributed to first-order relativistic effects. To include magnetic inertial effects the LLG equation has previously been extended with a supplemental inertia term; the arising inertial dynamics has been related to second-order relativistic effects. Here we start from the relativistic Dirac equation and, performing a Foldy-Wouthuysen transformation, derive a generalised Pauli spin Hamiltonian that contains relativistic correction terms to any higher order. Using the Heisenberg equation of spin motion we derive general relativistic expressions for the tensorial Gilbert damping and magnetic inertia parameters, and show that these tensors can be expressed as series of higher-order relativistic correction terms. We further show that, in the case of a harmonic external driving field, these series can be summed and we provide closed analytical expressions for the Gilbert and inertial parameters that are functions of the frequency of the driving field.
Limitations of the clump-correlation theories of shear-induced turbulence suppression
NASA Astrophysics Data System (ADS)
Zhang, Y. Z.; Mahajan, S. M.
2017-05-01
The clump theory, primarily constructed by Dupree [Phys. Fluids 15, 334 (1972)] based on the moment approach and then generalized to the correlation theory [Y. Z. Zhang and S. M. Mahajan, Phys. Fluids B 5, 2000 (1993)], has long served as a basis for constructing theories of turbulence suppression by shear flow. In order to reveal the "intrinsic approximation" invoked in the clump-correlation theory, we examine a model based on two dimensional magnetized drift waves. After a rigorous derivation of the exact response function—a key to average the Green function of the system—we show that the Dupree, Zhang-Mahajan approach is recovered as the lowest order approximation in a small dimensionless parameter ϒ which is a triple product of the correlation time, wave number, and fluctuating drift velocity. The clump-correlation theory, thus, constitutes the Gaussian and lowest order non-Markovian process for a homogeneous stationary turbulence. We also provide, especially for the tokamak community, a readily usable formula to evaluate the effectiveness of shear-flow suppression; this formula pertains regardless of the specific model of correlation time.
A new approach to pattern metrology
NASA Astrophysics Data System (ADS)
Ausschnitt, Christopher P.
2004-05-01
We describe an approach to pattern metrology that enables the simultaneous determination of critical dimensions, overlay and film thickness. A single optical system captures nonzero- and zero-order diffracted signals from illuminated grating targets, as well as unpatterned regions of the surrounding substrate. Differential targets provide in situ dimensional calibration. CD target signals are analyzed to determine average dimension, profile attributes, and effective dose and defocus. In turn, effective dose and defocus determines all CDs pre-correlated to the dose and focus settings of the exposure tool. Overlay target signals are analyzed to determine the relative reflectivity of the layer pair and the overlay error between them. Compared to commercially available pattern metrology (SEM, optical microscopy, AFM, scatterometry and schnitzlometry), our approach promises improved signal-to-noise, higher throughput and smaller targets. We have dubbed this optical chimera MOXIE (Metrology Of eXtremely Irrational Exuberance).
Subjective visual perception: from local processing to emergent phenomena of brain activity.
Panagiotaropoulos, Theofanis I; Kapoor, Vishal; Logothetis, Nikos K
2014-05-05
The combination of electrophysiological recordings with ambiguous visual stimulation made possible the detection of neurons that represent the content of subjective visual perception and perceptual suppression in multiple cortical and subcortical brain regions. These neuronal populations, commonly referred to as the neural correlates of consciousness, are more likely to be found in the temporal and prefrontal cortices as well as the pulvinar, indicating that the content of perceptual awareness is represented with higher fidelity in higher-order association areas of the cortical and thalamic hierarchy, reflecting the outcome of competitive interactions between conflicting sensory information resolved in earlier stages. However, despite the significant insights into conscious perception gained through monitoring the activities of single neurons and small, local populations, the immense functional complexity of the brain arising from correlations in the activity of its constituent parts suggests that local, microscopic activity could only partially reveal the mechanisms involved in perceptual awareness. Rather, the dynamics of functional connectivity patterns on a mesoscopic and macroscopic level could be critical for conscious perception. Understanding these emergent spatio-temporal patterns could be informative not only for the stability of subjective perception but also for spontaneous perceptual transitions suggested to depend either on the dynamics of antagonistic ensembles or on global intrinsic activity fluctuations that may act upon explicit neural representations of sensory stimuli and induce perceptual reorganization. Here, we review the most recent results from local activity recordings and discuss the potential role of effective, correlated interactions during perceptual awareness.
Subjective visual perception: from local processing to emergent phenomena of brain activity
Panagiotaropoulos, Theofanis I.; Kapoor, Vishal; Logothetis, Nikos K.
2014-01-01
The combination of electrophysiological recordings with ambiguous visual stimulation made possible the detection of neurons that represent the content of subjective visual perception and perceptual suppression in multiple cortical and subcortical brain regions. These neuronal populations, commonly referred to as the neural correlates of consciousness, are more likely to be found in the temporal and prefrontal cortices as well as the pulvinar, indicating that the content of perceptual awareness is represented with higher fidelity in higher-order association areas of the cortical and thalamic hierarchy, reflecting the outcome of competitive interactions between conflicting sensory information resolved in earlier stages. However, despite the significant insights into conscious perception gained through monitoring the activities of single neurons and small, local populations, the immense functional complexity of the brain arising from correlations in the activity of its constituent parts suggests that local, microscopic activity could only partially reveal the mechanisms involved in perceptual awareness. Rather, the dynamics of functional connectivity patterns on a mesoscopic and macroscopic level could be critical for conscious perception. Understanding these emergent spatio-temporal patterns could be informative not only for the stability of subjective perception but also for spontaneous perceptual transitions suggested to depend either on the dynamics of antagonistic ensembles or on global intrinsic activity fluctuations that may act upon explicit neural representations of sensory stimuli and induce perceptual reorganization. Here, we review the most recent results from local activity recordings and discuss the potential role of effective, correlated interactions during perceptual awareness. PMID:24639588
NASA Technical Reports Server (NTRS)
Megier, J. (Principal Investigator)
1976-01-01
The author has identified the following significant results. Some qualitative results were obtained out of the experiment of reflectance measurements under greenhouse conditions. An effort was made to correlate phenological stages, production, and radiometric measurements. It was found that the first order effect of exposure variability to sun irradiation is responsible for different rice productivity classes. Effects of rice variety and fertilization become second order, because they are completely masked by the first order effects.
Cerebral Cortex Regions Selectively Vulnerable to Radiation Dose-Dependent Atrophy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seibert, Tyler M.; Karunamuni, Roshan; Kaifi, Samar
Purpose and Objectives: Neurologic deficits after brain radiation therapy (RT) typically involve decline in higher-order cognitive functions such as attention and memory rather than sensory defects or paralysis. We sought to determine whether areas of the cortex critical to cognition are selectively vulnerable to radiation dose-dependent atrophy. Methods and Materials: We measured change in cortical thickness in 54 primary brain tumor patients who underwent fractionated, partial brain RT. The study patients underwent high-resolution, volumetric magnetic resonance imaging (T1-weighted; T2 fluid-attenuated inversion recovery, FLAIR) before RT and 1 year afterward. Semiautomated software was used to segment anatomic regions of the cerebral cortex formore » each patient. Cortical thickness was measured for each region before RT and 1 year afterward. Two higher-order cortical regions of interest (ROIs) were tested for association between radiation dose and cortical thinning: entorhinal (memory) and inferior parietal (attention/memory). For comparison, 2 primary cortex ROIs were also tested: pericalcarine (vision) and paracentral lobule (somatosensory/motor). Linear mixed-effects analyses were used to test all other cortical regions for significant radiation dose-dependent thickness change. Statistical significance was set at α = 0.05 using 2-tailed tests. Results: Cortical atrophy was significantly associated with radiation dose in the entorhinal (P=.01) and inferior parietal ROIs (P=.02). By contrast, no significant radiation dose-dependent effect was found in the primary cortex ROIs (pericalcarine and paracentral lobule). In the whole-cortex analysis, 9 regions showed significant radiation dose-dependent atrophy, including areas responsible for memory, attention, and executive function (P≤.002). Conclusions: Areas of cerebral cortex important for higher-order cognition may be most vulnerable to radiation-related atrophy. This is consistent with clinical observations that brain radiation patients experience deficits in domains of memory, executive function, and attention. Correlations of regional cortical atrophy with domain-specific cognitive functioning in prospective trials are warranted.« less
[Effects of soil trituration size on adsorption of oxytetracycline on soils].
Qi, Rui-Huan; Li, Zhao-Jun; Long, Jian; Fan, Fei-Fei; Liang, Yong-Chao
2011-02-01
In order to understand the effects of soil trituration size on adsorption of oxytetracycline (OTC) on soils, two contrasting soils including moisture soil and purplish soil were selected to investigate adsorption of OTC on these soils, at the scales of no more than 0.20 mm, 0.84 mm, 0.25 mm and 0.15 mm, using the method of batch equilibrium experiments respectively. The results presented as the following: (1) Adsorption amount of OTC on moisture soil and purplish soil increased with the sampling time, and reached to equilibration at 24 h. First-order kinetic model, second-order kinetic model, parabolic-diffusion kinetic model, Elovich kinetic model, and two-constant kinetic model could be used to fit the changes in adsorption on soils with sampling time. Adsorption of OTC on two soils consisted of two processes such as quick adsorption and slow adsorption. Quick adsorption process happened during the period of 0-0.5 h. The adsorption rates of OTC on soils were higher at the small trituration size than those at the large trituration size, and at the same trituration size, the k(f) of purplish soil was about two times higher than those of moisture soil. (2) Adsorption isotherms of OTC on two soils with different trituration sizes were deviated from the linear model. The data were fitted well to Freundlich and Langmuir models, with the correlation coefficients between 0.956 and 0.999. The values of k(f) and q(m) for purplish soil were higher than those for moisture soil. At the same soil, adsorption amount of OTC increased with the decreases of soil trituration size. The results suggested that it is important to select the appropriate trituration size, based on the physical and chemical properties such as soil particle composition and so on, when the fate of antibiotics on soils was investigated.
Critical Thinking Disposition: The Effects of Infusion Approach in Engineering Drawing
ERIC Educational Resources Information Center
Darby, Norazlinda Mohd; Rashid, Abdullah Mat
2017-01-01
Critical Thinking Disposition is known as an important factor that drives a student to use Higher Order Thinking Skills (HOTS) in order to solve engineering drawing problems. Infusing them while teaching the subject may enhance students' disposition and higher order thinking skills. However, no research has been done in critical thinking…
Demirci, Esra
2018-01-01
The aim of this article was to assess the effects of child sexual abuse (CSA) on emotion regulation (ER) in adolescents and to evaluate the relationships between non suicidal self-injury (NSSI), emotional eating, insomnia and emotion disregulation (ED). Fifty two adolescents, aged 10-18 years, without who weren't diagnosed a psychiatric disease before abuse and completed 6-months of follow-up after abuse included the study. Control group consisted of 33 healthy voluntary participants without any known psychiatric disorders. Patients and volunteers who participated in the study were assessed with the Inventory of Statements About Self-injury (ISAS), Dutch Eating Behavior Questionnaire (DEBQ), Pittsburgh Sleep Quality Index (PSQI), Insomnia severity index (ISI), and the Difficulties in Emotion Regulation Scale (DERS). In our study, PSQI scores, DERS total scores and DEBQ emotional eating subscores were significantly higher in the CSA victims (In orderly; p = 0,034, p < 0.001, p = 0,023). 55.7% of the CSA victims reported self-injurious behavior, while 15.5% of healthy voluntary participants reporting self-injurious behavior. The CSA victims reporting NSSI had higher DERS scores than CSA victims without NSSI. (p = 0.024). The CSA victims with post-traumatic stress disorder (PTSD) and CSA victims without PTSD had a positive correlation between DEBQ emotional eating subscores and DERS total scores (In orderly: r = 0.762, p = 0.031; r = 0.872, p < 0.001). There was a positive correlation between the PSQI scores and DERS scores in the CSA victims with PTSD (r = 0.827, p = 0.023). Further studies are needed to assess the relationship between self-injury, emotional eating, insomnia and ED, and to determine how sexual abuse effect the ER in a clinical sample of CSA. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Universality from disorder in the random-bond Blume-Capel model
NASA Astrophysics Data System (ADS)
Fytas, N. G.; Zierenberg, J.; Theodorakis, P. E.; Weigel, M.; Janke, W.; Malakis, A.
2018-04-01
Using high-precision Monte Carlo simulations and finite-size scaling we study the effect of quenched disorder in the exchange couplings on the Blume-Capel model on the square lattice. The first-order transition for large crystal-field coupling is softened to become continuous, with a divergent correlation length. An analysis of the scaling of the correlation length as well as the susceptibility and specific heat reveals that it belongs to the universality class of the Ising model with additional logarithmic corrections which is also observed for the Ising model itself if coupled to weak disorder. While the leading scaling behavior of the disordered system is therefore identical between the second-order and first-order segments of the phase diagram of the pure model, the finite-size scaling in the ex-first-order regime is affected by strong transient effects with a crossover length scale L*≈32 for the chosen parameters.
Validation of a motivation-based typology of angry aggression among antisocial youths in Norway.
Bjørnebekk, Gunnar; Howard, Rick
2012-01-01
This article describes the validation of the Angry Aggression Scales (AAS), the Behavior Inhibition System and the Behavior Activation System (BIS/BAS) scales, the reactive aggression and proactive power scales in relation to a Norwegian sample of 101 antisocial youths with conduct problems (64 boys, 37 girls, mean age 15 ± 1.3 years) and 101 prosocial controls matched on age, gender, education, ethnicity, and school district. Maximum likelihood exploratory factor analyses with oblique rotation were performed on AAS, BIS/BAS, reactive aggression and proactive power scales as well as computation of Cronbach's alpha and McDonald's omega. Tests for normality and homogeneity of variance were acceptable. Factor analyses of AAS and the proactive/reactive aggression scales suggested a hierarchical structure comprising a single higher-order angry aggression (AA) factor and four and two lower-order factors, respectively. Moreover, results suggested one BIS factor and a single higher-order BAS factor with three lower-order factors related to drive, fun-seeking and reward responsiveness. To compare scores of antisocial youths with controls, t-tests on the mean scale scores were computed. Results confirmed that antisocial youths were different from controls on the above-mentioned scales. Consistent with the idea that anger is associated with approach motivation, AAS scores correlated with behavioral activation, but only explosive/reactive and vengeful/ruminative AA correlated with behavioral inhibition. Results generally validated the quadruple typology of aggression and violence proposed by Howard (2009). Copyright © 2012 John Wiley & Sons, Ltd.
Temporal integration property of stereopsis after higher-order aberration correction
Kang, Jian; Dai, Yun; Zhang, Yudong
2015-01-01
Based on a binocular adaptive optics visual simulator, we investigated the effect of higher-order aberration correction on the temporal integration property of stereopsis. Stereo threshold for line stimuli, viewed in 550nm monochromatic light, was measured as a function of exposure duration, with higher-order aberrations uncorrected, binocularly corrected or monocularly corrected. Under all optical conditions, stereo threshold decreased with increasing exposure duration until a steady-state threshold was reached. The critical duration was determined by a quadratic summation model and the high goodness of fit suggested this model was reasonable. For normal subjects, the slope for stereo threshold versus exposure duration was about −0.5 on logarithmic coordinates, and the critical duration was about 200 ms. Both the slope and the critical duration were independent of the optical condition of the eye, showing no significant effect of higher-order aberration correction on the temporal integration property of stereopsis. PMID:26601010
Extremely correlated Fermi liquid theory of the t-J model in 2 dimensions: low energy properties
NASA Astrophysics Data System (ADS)
Shastry, B. Sriram; Mai, Peizhi
2018-01-01
Low energy properties of the metallic state of the two-dimensional t-J model are presented for second neighbor hopping with hole-doping (t\\prime ≤slant 0) and electron-doping (t\\prime > 0), with various superexchange energy J. We use a closed set of equations for the Greens functions obtained from the extremely correlated Fermi liquid theory. These equations reproduce the known low energies features of the large U Hubbard model in infinite dimensions. The density and temperature dependent quasiparticle weight, decay rate and the peak spectral heights over the Brillouin zone are calculated. We also calculate the resistivity, Hall conductivity, Hall number and cotangent Hall angle. The spectral features display high thermal sensitivity at modest T for density n≳ 0.8, implying a suppression of the effective Fermi-liquid temperature by two orders of magnitude relative to the bare bandwidth. The cotangent Hall angle exhibits a T 2 behavior at low T, followed by an interesting kink at higher T. The Hall number exhibits strong renormalization due to correlations. Flipping the sign of t\\prime changes the curvature of the resistivity versus T curves between convex and concave. Our results provide a natural route for understanding the observed difference in the temperature dependent resistivity of strongly correlated electron-doped and hole-doped matter.
Spatial correlation of shear-wave velocity in the San Francisco Bay Area sediments
Thompson, E.M.; Baise, L.G.; Kayen, R.E.
2007-01-01
Ground motions recorded within sedimentary basins are variable over short distances. One important cause of the variability is that local soil properties are variable at all scales. Regional hazard maps developed for predicting site effects are generally derived from maps of surficial geology; however, recent studies have shown that mapped geologic units do not correlate well with the average shear-wave velocity of the upper 30 m, Vs(30). We model the horizontal variability of near-surface soil shear-wave velocity in the San Francisco Bay Area to estimate values in unsampled locations in order to account for site effects in a continuous manner. Previous geostatistical studies of soil properties have shown horizontal correlations at the scale of meters to tens of meters while the vertical correlations are on the order of centimeters. In this paper we analyze shear-wave velocity data over regional distances and find that surface shear-wave velocity is correlated at horizontal distances up to 4 km based on data from seismic cone penetration tests and the spectral analysis of surface waves. We propose a method to map site effects by using geostatistical methods based on the shear-wave velocity correlation structure within a sedimentary basin. If used in conjunction with densely spaced shear-wave velocity profiles in regions of high seismic risk, geostatistical methods can produce reliable continuous maps of site effects. ?? 2006 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Girelli, L.; Tocci, M.; Montesano, L.; Gelfi, M.; Pola, A.
2017-11-01
Additive manufacturing of metals is a production process developed in the last few years to realize net shape components with complex geometry and high performance. AlSi10Mg is one of the most widely used aluminium alloys, both in this field and in conventional foundry processes, for its significant mechanical properties combined with good corrosion resistance. In this paper the effect of heat treatment on AlSi10Mg alloy was investigated. Solution and ageing treatments were carried out with different temperatures and times on samples obtained by direct metal laser sintering and gravity casting in order to compare their performance. Microstructural analyses and hardness tests were performed to investigate the effectiveness of the heat treatment. The results were correlated to the sample microstructure and porosity, analysed by means of optical microscopy and density measurements. It was found that, in the additive manufactured samples, the heat treatment can reduce significantly the performance of the alloy also because of the increase of porosity due to entrapped gas during the deposition technique and that the higher the solution temperature the higher the increase of such defects. A so remarkable effect was not found in the conventional cast alloy.
[Mercury pollution in cricket in different biotopes suffering from pollution by zinc smelting].
Zheng, Dong-Mei; Li, Xin-Xin; Luo, Qing
2012-10-01
Total mercury contents in cricket bodies were studied in different biotopes in the surrounding of Huludao Zinc Plant to discuss the mercury distribution characteristics in cricket and to reveal the effects of environmental mercury accumulation in the short life-cycle insects through comparing cricket with other insect species. The average mercury content in cricket was 0.081 mg x kg(-1) and much higher than those in the control sites (0.012 mg x kg(-1) in average) in different biotopes. Mercury contents were found in the order of cricket head > wing > thorax approximately abdomen > leg. Mercury contents in cricket bodies varied greatly with sample sites. Significant correlation was found between the mercury contents in cricket and the distance from the pollution source as well as the mercury contents in plant stems. No significant correlation was found between the mercury contents in soil and in cricket bodies. Mercury contents in cricket were lower than those in cicadae, similar to those in other insects with shorter life-cycle periods.
NASA Technical Reports Server (NTRS)
Jegley, Dawn C.
1987-01-01
Buckling loads of thick-walled orthotropic and anisotropic simply supported circular cylinders are predicted using a higher-order transverse-shear deformation theory. A comparison of buckling loads predicted by the conventional first-order transverse-shear deformation theory and the higher-order theory show that the additional allowance for transverse shear deformation has a negligible effect on the predicted buckling loads of medium-thick metallic isotropic cylinders. However, the higher-order theory predicts buckling loads which are significantly lower than those predicted by the first-order transverse-shear deformation theory for certain short, thick-walled cylinders which have low through-the-thickness shear moduli. A parametric study of the effects of ply orientation on the buckling load of axially compressed cylinders indicates that laminates containing 45 degree plies are most sensitive to transverse-shear deformation effects. Interaction curves for buckling loads of cylinders subjected to axial compressive and external pressure loadings indicate that buckling loads due to external pressure loadings are as sensitive to transverse-shear deformation effects as buckling loads due to axial compressive loadings. The effects of anisotropy are important over a much wider range of cylinder geometries than the effects of transverse shear deformation.