Higher-Order Neural Networks Recognize Patterns
NASA Technical Reports Server (NTRS)
Reid, Max B.; Spirkovska, Lilly; Ochoa, Ellen
1996-01-01
Networks of higher order have enhanced capabilities to distinguish between different two-dimensional patterns and to recognize those patterns. Also enhanced capabilities to "learn" patterns to be recognized: "trained" with far fewer examples and, therefore, in less time than necessary to train comparable first-order neural networks.
Yoshioka, S; Nakano, T; Nozue, Y; Kinoshita, S
2008-04-01
Colour patterns of animals' bodies are usually produced by the spatial distribution of pigments with different colours. However, some animals use the spatial variation of colour-producing microstructures. We have studied one distinctive example of such structurally produced colour patterns, the wing of the Madagascan sunset moth, to clarify the physical rules that underlie the colour variation. It is known that the iridescent wing scale of the sunset moth has the alternate air-cuticle multilayer structure that causes optical interference. The microscopic and optical investigations of various parts of the wing have confirmed that the thickness of the cuticle layers within the scale largely varies to produce the colour pattern. However, it varies in very different ways between the dorsal and ventral sides of the hind wing; the thickness gradually varies on the dorsal side from scale to scale, while the abrupt changes are found on the ventral side to form distinctive borders between differently coloured areas. It is also revealed that an unusual coloration mechanism is involved in the green part of the ventral hind wing: the colour is caused by higher order optical interference of the highly non-ideal multilayer structure. The physical mechanism of the colour pattern formation is briefly discussed with the several mathematical models proposed so far. PMID:17999945
Assessing reliable human mobility patterns from higher order memory in mobile communications.
Matamalas, Joan T; De Domenico, Manlio; Arenas, Alex
2016-08-01
Understanding how people move within a geographical area, e.g. a city, a country or the whole world, is fundamental in several applications, from predicting the spatio-temporal evolution of an epidemic to inferring migration patterns. Mobile phone records provide an excellent proxy of human mobility, showing that movements exhibit a high level of memory. However, the precise role of memory in widely adopted proxies of mobility, as mobile phone records, is unknown. Here we use 560 million call detail records from Senegal to show that standard Markovian approaches, including higher order ones, fail in capturing real mobility patterns and introduce spurious movements never observed in reality. We introduce an adaptive memory-driven approach to overcome such issues. At variance with Markovian models, it is able to realistically model conditional waiting times, i.e. the probability to stay in a specific area depending on individuals' historical movements. Our results demonstrate that in standard mobility models the individuals tend to diffuse faster than observed in reality, whereas the predictions of the adaptive memory approach significantly agree with observations. We show that, as a consequence, the incidence and the geographical spread of a disease could be inadequately estimated when standard approaches are used, with crucial implications on resources deployment and policy-making during an epidemic outbreak. PMID:27581479
Assessing reliable human mobility patterns from higher order memory in mobile communications.
Matamalas, Joan T; De Domenico, Manlio; Arenas, Alex
2016-08-01
Understanding how people move within a geographical area, e.g. a city, a country or the whole world, is fundamental in several applications, from predicting the spatio-temporal evolution of an epidemic to inferring migration patterns. Mobile phone records provide an excellent proxy of human mobility, showing that movements exhibit a high level of memory. However, the precise role of memory in widely adopted proxies of mobility, as mobile phone records, is unknown. Here we use 560 million call detail records from Senegal to show that standard Markovian approaches, including higher order ones, fail in capturing real mobility patterns and introduce spurious movements never observed in reality. We introduce an adaptive memory-driven approach to overcome such issues. At variance with Markovian models, it is able to realistically model conditional waiting times, i.e. the probability to stay in a specific area depending on individuals' historical movements. Our results demonstrate that in standard mobility models the individuals tend to diffuse faster than observed in reality, whereas the predictions of the adaptive memory approach significantly agree with observations. We show that, as a consequence, the incidence and the geographical spread of a disease could be inadequately estimated when standard approaches are used, with crucial implications on resources deployment and policy-making during an epidemic outbreak.
NASA Astrophysics Data System (ADS)
Leibovici, D. G.; Bastin, L.; Jackson, M.
2011-03-01
Analyzing geographical patterns by collocating events, objects or their attributes has a long history in surveillance and monitoring, and is particularly applied in environmental contexts, such as ecology or epidemiology. The identification of patterns or structures at some scales can be addressed using spatial statistics, particularly marked point processes methodologies. Classification and regression trees are also related to this goal of finding "patterns" by deducing the hierarchy of influence of variables on a dependent outcome. Such variable selection methods have been applied to spatial data, but, often without explicitly acknowledging the spatial dependence. Many methods routinely used in exploratory point pattern analysis are2nd-order statistics, used in a univariate context, though there is also a wide literature on modelling methods for multivariate point pattern processes. This paper proposes an exploratory approach for multivariate spatial data using higher-order statistics built from co-occurrences of events or marks given by the point processes. A spatial entropy measure, derived from these multinomial distributions of co-occurrences at a given order, constitutes the basis of the proposed exploratory methods.
Stone, Joanne; Kohari, Katherine S
2015-09-01
Higher-order multiple gestations have increased since the advent of advanced reproductive technologies. These pregnancies present unique risks to both mothers and fetuses. It is imperative that early diagnosis of chronicity be determined and that proper counseling is performed, so patients understand the risks, evaluation, and management needed.
NASA Technical Reports Server (NTRS)
Chou, Jin
1993-01-01
Rational Bezier and B-spline representations of circles have been heavily publicized. However, all the literature assumes the rational Bezier segments in the homogeneous space are both planar and (equivalent to) quadratic. This creates the illusion that circles can only be achieved by planar and quadratic curves. Circles that are formed by higher order rational Bezier curves which are nonplanar in the homogeneous space are shown. The problem of whether it is possible to represent a complete circle with one Bezier curve is investigated. In addition, some other interesting properties of cubic Bezier arcs are discussed.
Higher-order organization of complex networks.
Benson, Austin R; Gleich, David F; Leskovec, Jure
2016-07-01
Networks are a fundamental tool for understanding and modeling complex systems in physics, biology, neuroscience, engineering, and social science. Many networks are known to exhibit rich, lower-order connectivity patterns that can be captured at the level of individual nodes and edges. However, higher-order organization of complex networks--at the level of small network subgraphs--remains largely unknown. Here, we develop a generalized framework for clustering networks on the basis of higher-order connectivity patterns. This framework provides mathematical guarantees on the optimality of obtained clusters and scales to networks with billions of edges. The framework reveals higher-order organization in a number of networks, including information propagation units in neuronal networks and hub structure in transportation networks. Results show that networks exhibit rich higher-order organizational structures that are exposed by clustering based on higher-order connectivity patterns.
Higher-order organization of complex networks.
Benson, Austin R; Gleich, David F; Leskovec, Jure
2016-07-01
Networks are a fundamental tool for understanding and modeling complex systems in physics, biology, neuroscience, engineering, and social science. Many networks are known to exhibit rich, lower-order connectivity patterns that can be captured at the level of individual nodes and edges. However, higher-order organization of complex networks--at the level of small network subgraphs--remains largely unknown. Here, we develop a generalized framework for clustering networks on the basis of higher-order connectivity patterns. This framework provides mathematical guarantees on the optimality of obtained clusters and scales to networks with billions of edges. The framework reveals higher-order organization in a number of networks, including information propagation units in neuronal networks and hub structure in transportation networks. Results show that networks exhibit rich higher-order organizational structures that are exposed by clustering based on higher-order connectivity patterns. PMID:27387949
Nambu, Isao; Hagura, Nobuhiro; Hirose, Satoshi; Wada, Yasuhiro; Kawato, Mitsuo; Naito, Eiichi
2015-11-01
Performing a complex sequential finger movement requires the temporally well-ordered organization of individual finger movements. Previous behavioural studies have suggested that the brain prepares a whole sequence of movements as a single set, rather than the movements of individual fingers. However, direct neuroimaging support for this hypothesis is lacking and, assuming it to be true, it remains unclear which brain regions represent the information of a prepared sequence. Here, we measured brain activity with functional magnetic resonance imaging while 14 right-handed healthy participants performed two types of well-learned sequential finger movements with their right hands. Using multi-voxel pattern analysis, we examined whether the types of the forthcoming sequence could be predicted from the preparatory activities of nine regions of interest, which included the motor, somatosensory and posterior parietal regions in each hemisphere, bilateral visual cortices, cerebellum and basal ganglia. We found that, during preparation, the activity of the contralateral motor regions could predict which of the two sequences would be executed. Further detailed analysis revealed that the contralateral dorsal premotor cortex and supplementary motor area were the key areas that contributed to the prediction consistently across participants. These contrasted with results from execution-related brain activity where a performed sequence was successfully predicted from the activities in the broad cortical sensory-motor network, including the bilateral motor, parietal and ipsilateral somatosensory cortices. Our study supports the hypothesis that temporary well-organized sequences of movements are represented as a set in the brain, and that preparatory activity in higher-order motor regions represents information about upcoming motor actions.
Higher order turbulence closure models
NASA Technical Reports Server (NTRS)
Amano, Ryoichi S.; Chai, John C.; Chen, Jau-Der
1988-01-01
Theoretical models are developed and numerical studies conducted on various types of flows including both elliptic and parabolic. The purpose of this study is to find better higher order closure models for the computations of complex flows. This report summarizes three new achievements: (1) completion of the Reynolds-stress closure by developing a new pressure-strain correlation; (2) development of a parabolic code to compute jets and wakes; and, (3) application to a flow through a 180 deg turnaround duct by adopting a boundary fitted coordinate system. In the above mentioned models near-wall models are developed for pressure-strain correlation and third-moment, and incorporated into the transport equations. This addition improved the results considerably and is recommended for future computations. A new parabolic code to solve shear flows without coordinate tranformations is developed and incorporated in this study. This code uses the structure of the finite volume method to solve the governing equations implicitly. The code was validated with the experimental results available in the literature.
Higher order structure of chromosomes.
Okada, T A; Comings, D E
1979-04-01
Isolated Chinese hamster metaphase chromosomes were resuspended in 4 M ammonium acetate and spread on a surface of distilled water or 0.15 to 0.5 M ammonium acetate. The DNA was released in the form of a regular series of rosettes connected by interrossette DNA. The mean length of the rosette DNA was 14 micron, similar to the mean length of 10 micron for chromomere DNA of Drosophila polytene chromosomes. The mean interrosette DNA was 4.2 micron. SDS gel electrophoresis of the chromosomal nonhistone proteins showed them to be very similar to nuclear nonhistone proteins except for the presence of more actin and tubulin. Nuclear matrix proteins were present in the chromosomes and may play a role in forming the rosettes. Evidence that the rosette pattern is artifactual versus the possibility that it represents a real organizational substructure of the chromosomes is reviewed.
Generalized structure of higher order nonclassicality
NASA Astrophysics Data System (ADS)
Verma, Amit; Pathak, Anirban
2010-02-01
A generalized notion of higher order nonclassicality (in terms of higher order moments) is introduced. Under this generalized framework of higher order nonclassicality, conditions of higher order squeezing and higher order subpoissonian photon statistics are derived. A simpler form of the Hong-Mandel higher order squeezing criterion is derived under this framework by using an operator ordering theorem introduced by us in [A. Pathak, J. Phys. A 33 (2000) 5607]. It is also generalized for multi-photon Bose operators of Brandt and Greenberg. Similarly, condition for higher order subpoissonian photon statistics is derived by normal ordering of higher powers of number operator. Further, with the help of simple density matrices, it is shown that the higher order antibunching (HOA) and higher order subpoissonian photon statistics (HOSPS) are not the manifestation of the same phenomenon and consequently it is incorrect to use the condition of HOA as a test of HOSPS. It is also shown that the HOA and HOSPS may exist even in absence of the corresponding lower order phenomenon. Binomial state, nonlinear first order excited squeezed state (NLESS) and nonlinear vacuum squeezed state (NLVSS) are used as examples of quantum state and it is shown that these states may show higher order nonclassical characteristics. It is observed that the Binomial state which is always antibunched, is not always higher order squeezed and NLVSS which shows higher order squeezing does not show HOSPS and HOA. The opposite is observed in NLESS and consequently it is established that the HOSPS and HOS are two independent signatures of higher order nonclassicality.
Resonant radiation from oscillating higher order solitons
Driben, R.; Yulin, A. V.; Efimov, A.
2015-07-15
We present radiation mechanism exhibited by a higher order soliton. In a course of its evolution the higher-order soliton emits polychromatic radiation resulting in formation of multipeak frequency comb-like spectral band. The shape and spectral position of this band can be effectively controlled by the relative strength of the third order dispersion. An analytical description is corroborated by numerical simulations. Research showed that for longer pulses the described effect persists also under the action of higher order perturbations such as Raman and self-steepening.
Higher-order generic functions for CLOS
Hernandez, J.E.
1992-03-01
This paper presents a framework for developing higher-order generic functions within the Common Lisp Object System similar to the ones in Common Lisp for processing sequences. The framework consist of several CLOS classes which define a protocol that allows other classes to inherit default methods for many higher-order generic functions. These generic functions provide an elegant and uniform framework for processing CLOS objects that primarily represent collections of other objects.
Lagrangian systems with higher order constraints
NASA Astrophysics Data System (ADS)
Cendra, H.; Grillo, S. D.
2007-05-01
A class of mechanical systems subject to higher order constraints (i.e., constraints involving higher order derivatives of the position of the system) are studied. We call them higher order constrained systems (HOCSs). They include simplified models of elastic rolling bodies, and also the so-called generalized nonholonomic systems (GNHSs), whose constraints only involve the velocities of the system (i.e., first order derivatives in the position of the system). One of the features of this kind of systems is that D'Alembert's principle (or its nonlinear higher order generalization, the Chetaev's principle) is not necessarily satisfied. We present here, as another interesting example of HOCS, systems subjected to friction forces, showing that those forces can be encoded in a second order kinematic constraint. The main aim of the paper is to show that every HOCS is equivalent to a GNHS with linear constraints, in a canonical way. That is to say, systems with higher order constraints can be described in terms of one with linear constraints in velocities. We illustrate this fact with a system with friction and with Rocard's model [Dynamique Générale des Vibrations (1949), Chap. XV, p. 246 and L'instabilité en Mécanique; Automobiles, Avions, Ponts Suspendus (1954)] of a pneumatic tire. As a by-product, we introduce some applications on higher order tangent bundles, which we expect to be useful for the study of intrinsic aspects of the geometry of such bundles.
Higher-order awareness, misrepresentation and function.
Rosenthal, David
2012-05-19
Conscious mental states are states we are in some way aware of. I compare higher-order theories of consciousness, which explain consciousness by appeal to such higher-order awareness (HOA), and first-order theories, which do not, and I argue that higher-order theories have substantial explanatory advantages. The higher-order nature of our awareness of our conscious states suggests an analogy with the metacognition that figures in the regulation of psychological processes and behaviour. I argue that, although both consciousness and metacognition involve higher-order psychological states, they have little more in common. One thing they do share is the possibility of misrepresentation; just as metacognitive processing can misrepresent one's cognitive states and abilities, so the HOA in virtue of which one's mental states are conscious can, and sometimes does, misdescribe those states. A striking difference between the two, however, has to do with utility for psychological processing. Metacognition has considerable benefit for psychological processing; in contrast, it is unlikely that there is much, if any, utility to mental states' being conscious over and above the utility those states have when they are not conscious. PMID:22492758
Higher-order awareness, misrepresentation and function
Rosenthal, David
2012-01-01
Conscious mental states are states we are in some way aware of. I compare higher-order theories of consciousness, which explain consciousness by appeal to such higher-order awareness (HOA), and first-order theories, which do not, and I argue that higher-order theories have substantial explanatory advantages. The higher-order nature of our awareness of our conscious states suggests an analogy with the metacognition that figures in the regulation of psychological processes and behaviour. I argue that, although both consciousness and metacognition involve higher-order psychological states, they have little more in common. One thing they do share is the possibility of misrepresentation; just as metacognitive processing can misrepresent one's cognitive states and abilities, so the HOA in virtue of which one's mental states are conscious can, and sometimes does, misdescribe those states. A striking difference between the two, however, has to do with utility for psychological processing. Metacognition has considerable benefit for psychological processing; in contrast, it is unlikely that there is much, if any, utility to mental states' being conscious over and above the utility those states have when they are not conscious. PMID:22492758
Higher order equations of motion and gravity
NASA Astrophysics Data System (ADS)
Lämmerzahl, Claus; Rademaker, Patricia
2012-12-01
Standard fundamental equations of motion for point particles are of second order in the time derivative. Here we are exploring the consequences of fundamental equations of motion with an additional small even higher order term to the standard formulation. This is related to two issues: (i) higher order equations of motion will have influence on the definition of the structure of possible interactions and in particular of the gravitational interaction, and (ii) such equations of motion provide a framework to test the validity of Newton’s second law which is the basis for the definition of forces but which assumes from the very beginning that the fundamental equations of motion are of second order. We will show that starting with our generalized equations of motions it is possible to introduce the space-time metric describing the gravitational interaction by means of a standard gauge principle. Another main result within our model of even higher order derivatives is that for slowly varying and smooth fields the higher order derivatives either lead to runaway solutions or induces a zitterbewegung. We confront this higher order scheme with experimental data.
Higher-order force gradient symplectic algorithms
NASA Astrophysics Data System (ADS)
Chin, Siu A.; Kidwell, Donald W.
2000-12-01
We show that a recently discovered fourth order symplectic algorithm, which requires one evaluation of force gradient in addition to three evaluations of the force, when iterated to higher order, yielded algorithms that are far superior to similarly iterated higher order algorithms based on the standard Forest-Ruth algorithm. We gauge the accuracy of each algorithm by comparing the step-size independent error functions associated with energy conservation and the rotation of the Laplace-Runge-Lenz vector when solving a highly eccentric Kepler problem. For orders 6, 8, 10, and 12, the new algorithms are approximately a factor of 103, 104, 104, and 105 better.
Breastfeeding twins and higher-order multiples.
Gromada, K K; Spangler, A K
1998-01-01
The benefits of breastfeeding for pre-term and full-term infants are well documented. Breastfeeding facilitates maternal-infant attachment, provides optimal infant nutrition and immunologic protection, and minimizes economic impact. These benefits are multiplied with twins and higher-order multiples, who often are born at risk. Supporting a mother as she initiates and continues to breastfeed one infant requires specific knowledge and skills. Health professionals need additional knowledge and skills if they are to provide appropriate assessment, intervention, and support when a mother breastfeeds twins or higher-order multiples.
Breastfeeding twins and higher-order multiples.
Gromada, K K; Spangler, A K
1998-01-01
The benefits of breastfeeding for pre-term and full-term infants are well documented. Breastfeeding facilitates maternal-infant attachment, provides optimal infant nutrition and immunologic protection, and minimizes economic impact. These benefits are multiplied with twins and higher-order multiples, who often are born at risk. Supporting a mother as she initiates and continues to breastfeed one infant requires specific knowledge and skills. Health professionals need additional knowledge and skills if they are to provide appropriate assessment, intervention, and support when a mother breastfeeds twins or higher-order multiples. PMID:9684207
NASA Astrophysics Data System (ADS)
Guo, Shanxin; Zhu, A.-Xing; Meng, Lingkui; Burt, James E.; Du, Fei; Liu, Jing; Zhang, Guiming
2016-07-01
Detailed and accurate information on the spatial variation of soil types and soil properties are critical components of environmental research and hydrological modeling. Early studies introduced a soil feedback pattern as a promising environmental covariate to predict spatial variation over low-relief areas. However, in practice, local evaporation can have a significant influence on these patterns, making them incomparable at different locations. This study aims to solve this problem by examining the concept of transforming the dynamic patterns of soil feedback from the original time-related space to a new evaporation-related space. A study area in northeastern Illinois with large low-relief farmland was selected to examine the effectiveness of this idea. Images from MODIS in Terra for every April-May period over 12 years (2000-2011) were used to extract the soil feedback patterns. Compared to the original time-related space, the results indicate that the patterns in the new evaporation-related space tend to be more stable and more easily captured from multiple rain events regardless of local evaporation conditions. Random samples selected for soil subgroups from the SSURGO soil map show that patterns in the new space reveal a difference between different soil types. And these differences in patterns are closely related to the difference in the soil structure of the surface layer.
Higher Order Thinking in the Dance Studio
ERIC Educational Resources Information Center
Moffett, Ann-Thomas
2012-01-01
The author identifies higher order thinking as an essential component of dance training for students of all ages and abilities. Weaving together insights from interviews with experts in the field of dance education with practical pedagogical applications within an Improvisation and Composition class for talented and gifted youth, this article…
Analogy, higher order thinking, and education.
Richland, Lindsey Engle; Simms, Nina
2015-01-01
Analogical reasoning, the ability to understand phenomena as systems of structured relationships that can be aligned, compared, and mapped together, plays a fundamental role in the technology rich, increasingly globalized educational climate of the 21st century. Flexible, conceptual thinking is prioritized in this view of education, and schools are emphasizing 'higher order thinking', rather than memorization of a cannon of key topics. The lack of a cognitively grounded definition for higher order thinking, however, has led to a field of research and practice with little coherence across domains or connection to the large body of cognitive science research on thinking. We review literature on analogy and disciplinary higher order thinking to propose that relational reasoning can be productively considered the cognitive underpinning of higher order thinking. We highlight the utility of this framework for developing insights into practice through a review of mathematics, science, and history educational contexts. In these disciplines, analogy is essential to developing expert-like disciplinary knowledge in which concepts are understood to be systems of relationships that can be connected and flexibly manipulated. At the same time, analogies in education require explicit support to ensure that learners notice the relevance of relational thinking, have adequate processing resources available to mentally hold and manipulate relations, and are able to recognize both the similarities and differences when drawing analogies between systems of relationships.
Human motion perception: Higher-order organization
NASA Technical Reports Server (NTRS)
Kaiser, Mary K.; Proffitt, Dennis R.
1990-01-01
An overview is given of higher-order motion perception and organization. It is argued that motion is sufficient to fully specify a number of environmental properties, including: depth order, three-dimensional form, object displacement, and dynamics. A grammar of motion perception is proposed; applications of this work for display design are discussed.
Analogy, higher order thinking, and education.
Richland, Lindsey Engle; Simms, Nina
2015-01-01
Analogical reasoning, the ability to understand phenomena as systems of structured relationships that can be aligned, compared, and mapped together, plays a fundamental role in the technology rich, increasingly globalized educational climate of the 21st century. Flexible, conceptual thinking is prioritized in this view of education, and schools are emphasizing 'higher order thinking', rather than memorization of a cannon of key topics. The lack of a cognitively grounded definition for higher order thinking, however, has led to a field of research and practice with little coherence across domains or connection to the large body of cognitive science research on thinking. We review literature on analogy and disciplinary higher order thinking to propose that relational reasoning can be productively considered the cognitive underpinning of higher order thinking. We highlight the utility of this framework for developing insights into practice through a review of mathematics, science, and history educational contexts. In these disciplines, analogy is essential to developing expert-like disciplinary knowledge in which concepts are understood to be systems of relationships that can be connected and flexibly manipulated. At the same time, analogies in education require explicit support to ensure that learners notice the relevance of relational thinking, have adequate processing resources available to mentally hold and manipulate relations, and are able to recognize both the similarities and differences when drawing analogies between systems of relationships. PMID:26263071
Assessing Higher Order Thinking in Mathematics.
ERIC Educational Resources Information Center
Kulm, Gerald, Ed.
This book explores current theory, research, practice, and policy in the assessment of higher order thinking in mathematics, focusing on the elementary and secondary grades. Current knowledge and research on mathematics learning and testing is synthesized. Examples of innovative test items for classroom use and state assessment programs are…
Higher-order dielectrophoresis of nonspherical particles
NASA Astrophysics Data System (ADS)
Nili, Hossein; Green, Nicolas G.
2014-06-01
Higher-order terms of dielectrophoretic (DEP) force are commonly ignored by invoking the simplifying dipole approximation. Concurrently, the trend towards micro- and nano-electrode structures in DEP design is bringing about an increasing number of instances where the approximation is expected to lose reliability. The case is severe for nonspherical particles (the shape of many biological particles) due to the shape-dependent nature of dielectric polarization. However, there is a lack of analytical means to determine multipole moments of nonspherical particles, numerical calculations of the same are regarded as unreliable, and there is a prevalence for higher-order force considerations to be ignored. As a result, the dipole approximation is used and/or nonspherical particles are approximated as spheres. This work proves the inefficacy of current qualitative criteria for the reliability of the dipole approximation and presents a quantitative substitute, with verified accuracy, that enables precise determination of the extent to which the dipole approximation would be reliable, and if found unreliable, corrects the approximation by adding second- and third-order terms of the DEP force. The effects of field nonuniformity, electrode design, and particle shape and aspect ratio on the significance of higher-order DEP forces is quantitatively analyzed. The results show that higher-order DEP forces are indeed of substantially increased significance for nonspherical particles; in the cases examined in this work, multipolar terms are seen to constitute more than 40% of the total force on ellipsoidal and cylindrical particles. It is further shown that approximating nonspherical particles as spheres of similar dimensions is subject to substantial error. Last, the substantial importance of the electrode design in influencing higher-order forces is shown.
Synthesis of higher order nonlinear circuit elements
NASA Astrophysics Data System (ADS)
Chua, L. O.; Szeto, E. W.
1984-02-01
Higher and mixed-order n-port circuit elements were introduced recently to provide a logically complete formulation for nonlinear circuit theory. In this paper, higher order mutators are defined and used to synthesize these elements. The class of all higher order mutators is shown to form a group under cascade interconnections. Each mutator is realized using only linear capacitors, linear inductors and linear controlled sources. An upper bound on each type of element needed to realize a mutator is also given. Each higher or mixed-order n-port element is realized by cascading approprimate mutators across each port of a nonlinear n-port resistor. The main theorem shows that any higher or mixed-order nonlinear n-port element with a constitutive relation defined on a compact set can be realized using linear capacitors, inductors, and controlled sources, and 2-terminal nonlinear resistors.
Random interactions in higher order neural networks
NASA Technical Reports Server (NTRS)
Baldi, Pierre; Venkatesh, Santosh S.
1993-01-01
Recurrent networks of polynomial threshold elements with random symmetric interactions are studied. Precise asymptotic estimates are derived for the expected number of fixed points as a function of the margin of stability. In particular, it is shown that there is a critical range of margins of stability (depending on the degree of polynomial interaction) such that the expected number of fixed points with margins below the critical range grows exponentially with the number of nodes in the network, while the expected number of fixed points with margins above the critical range decreases exponentially with the number of nodes in the network. The random energy model is also briefly examined and links with higher order neural networks and higher order spin glass models made explicit.
Higher-Order Mentalising and Executive Functioning
2015-01-01
Higher-order mentalising is the ability to represent the beliefs and desires of other people at multiple, iterated levels – a capacity that sets humans apart from other species. However, there has not yet been a systematic attempt to determine what cognitive processes underlie this ability. Here we present three correlational studies assessing the extent to which performance on higher-order mentalising tasks relates to emotion recognition, self-reported empathy and self-inhibition. In Study 1a and 1b, examining emotion recognition and empathy, a relationship was identified between individual differences in the ability to mentalise and an emotion recognition task (the Reading the Mind in the Eyes task), but no correlation was found with the Empathy Quotient, a self-report scale of empathy. Study 2 investigated whether a relationship exists between individual mentalising abilities and four different forms of self-inhibition: motor inhibition, executive inhibition, automatic imitation and temporal discounting. Results demonstrate that only temporal discounting performance relates to mentalising ability; suggesting that cognitive skills relevant to representation of the minds of others’ are not influenced by the ability to perform more basic inhibition. Higher-order mentalising appears to rely on the cognitive architecture that serves both low-level social cognition (emotion recognition), and complex forms of inhibition. PMID:26543298
The regular state in higher order gravity
NASA Astrophysics Data System (ADS)
Cotsakis, Spiros; Kadry, Seifedine; Trachilis, Dimitrios
2016-08-01
We consider the higher-order gravity theory derived from the quadratic Lagrangian R + 𝜖R2 in vacuum as a first-order (ADM-type) system with constraints, and build time developments of solutions of an initial value formulation of the theory. We show that all such solutions, if analytic, contain the right number of free functions to qualify as general solutions of the theory. We further show that any regular analytic solution which satisfies the constraints and the evolution equations can be given in the form of an asymptotic formal power series expansion.
Higher-order corrections to Coulomb fission
NASA Astrophysics Data System (ADS)
Wheeler, Raymond T.; Norbury, John W.
1995-03-01
Fission cross sections resulting from a 120 MeV/nucleon 238U beam incident upon Be, Al, Cu, Ag, and U targets have recently been measured by Justice et al. [Phys. Rev. C 49, R5 (1994)]. The electromagnetic contribution to these experimental cross sections have been compared to Weizsäcker-Williams theory which is based on first-order perturbation theory. The present work calculates the contribution to these cross sections due to higher-order excitations. Our results show that these corrections are insignificant in comparison to experimental error.
Theorem Proving In Higher Order Logics
NASA Technical Reports Server (NTRS)
Carreno, Victor A. (Editor); Munoz, Cesar A.; Tahar, Sofiene
2002-01-01
The TPHOLs International Conference serves as a venue for the presentation of work in theorem proving in higher-order logics and related areas in deduction, formal specification, software and hardware verification, and other applications. Fourteen papers were submitted to Track B (Work in Progress), which are included in this volume. Authors of Track B papers gave short introductory talks that were followed by an open poster session. The FCM 2002 Workshop aimed to bring together researchers working on the formalisation of continuous mathematics in theorem proving systems with those needing such libraries for their applications. Many of the major higher order theorem proving systems now have a formalisation of the real numbers and various levels of real analysis support. This work is of interest in a number of application areas, such as formal methods development for hardware and software application and computer supported mathematics. The FCM 2002 consisted of three papers, presented by their authors at the workshop venue, and one invited talk.
The minimal power spectrum: Higher order contributions
NASA Technical Reports Server (NTRS)
Fry, J. N.
1994-01-01
It has been an accepted belief for some time that gravity induces a minimal tail P(k) approximately k(exp 4) in the power spectrum as k approaches 0 for distributions with no initial power on large scales. In a recent numerical experiment with initial power confined to a restricted range in k, Shandarin and Melott (1990) found a k approaches 0 tail that at early stages of evolution behaves as k(exp 4) and grows with time as a(exp 4)(t), where a(t) is the cosmological expansion factor, and at late times depends on scale as k(exp 3) and grows with time as a(exp 2)(t). I compute analytically several contributions to the power spectrum of higher order than those included in earlier work, and I apply the results to the particular case of initial power restricted to a finite range of k. As expected, in the perturbative regime P(k) approximately a(exp 4)k(exp 4) from the first correction to linear perturbation theory is the dominant term as k approaches 0. Numerical investigations show that the higher order contributions go as k(exp 4) also. However, perturbation theory alone cannot tell whether the P approximately a(exp 2)k(exp 3) result is 'nonperturbative' or a numerical artifact.
The fundamental skills of higher order thinking.
Grossen, B
1991-01-01
It may be possible to teach reasoning strategies to subjects with poor reasoning, including many subjects with learning disabilities (LD), using curriculum designed around a sameness analysis. The higher order thinking skills of analogical and logical reasoning are defined using the sameness analysis methodology. The sameness in the strategy for forming a generalization from experience is called "reasoning by analogy," while the sameness in the strategy for applying generalizations is described by the syllogism (logical reasoning). The research base for effective instruction in analogical and logical reasoning, particularly with subjects with LD, is summarized. The wide applicability of reasoning by analogy and by syllogism as complementary strategies is illustrated through their use in a critical review of the editorial page of a daily newspaper, and in linking content material in several domains.
Higher-order structure of rRNA
NASA Technical Reports Server (NTRS)
Gutell, R. R.; Woese, C. R.
1986-01-01
A comparative search for phylogenetically covarying basepair replacements within potential helices has been the only reliable method to determine the correct secondary structure of the 3 rRNAs, 5S, 16S, and 23S. The analysis of 16S from a wide phylogenetic spectrum, that includes various branches of the eubacteria, archaebacteria, eucaryotes, in addition to the mitochondria and chloroplast, is beginning to reveal the constraints on the secondary structures of these rRNAs. Based on the success of this analysis, and the assumption that higher order structure will also be phylogenetically conserved, a comparative search was initiated for positions that show co-variation not involved in secondary structure helices. From a list of potential higher order interactions within 16S rRNA, two higher-order interactions are presented. The first of these interactions involves positions 570 and 866. Based on the extent of phylogenetic covariation between these positions while maintaining Watson-Crick pairing, this higher-order interaction is considered proven. The other interaction involves a minimum of six positions between the 1400 and 1500 regions of the 16S rRNA. Although these patterns of covariation are not as striking as the 570/866 interaction, the fact that they all exist in an anti-parallel fashion and that experimental methods previously implicated these two regions of the molecule in tRNA function suggests that these interactions be given serious consideration.
Representing higher-order dependencies in networks
Xu, Jian; Wickramarathne, Thanuka L.; Chawla, Nitesh V.
2016-01-01
To ensure the correctness of network analysis methods, the network (as the input) has to be a sufficiently accurate representation of the underlying data. However, when representing sequential data from complex systems, such as global shipping traffic or Web clickstream traffic as networks, conventional network representations that implicitly assume the Markov property (first-order dependency) can quickly become limiting. This assumption holds that, when movements are simulated on the network, the next movement depends only on the current node, discounting the fact that the movement may depend on several previous steps. However, we show that data derived from many complex systems can show up to fifth-order dependencies. In these cases, the oversimplifying assumption of the first-order network representation can lead to inaccurate network analysis results. To address this problem, we propose the higher-order network (HON) representation that can discover and embed variable orders of dependencies in a network representation. Through a comprehensive empirical evaluation and analysis, we establish several desirable characteristics of HON, including accuracy, scalability, and direct compatibility with the existing suite of network analysis methods. We illustrate how HON can be applied to a broad variety of tasks, such as random walking, clustering, and ranking, and we demonstrate that, by using it as input, HON yields more accurate results without any modification to these tasks. PMID:27386539
Representing higher-order dependencies in networks.
Xu, Jian; Wickramarathne, Thanuka L; Chawla, Nitesh V
2016-05-01
To ensure the correctness of network analysis methods, the network (as the input) has to be a sufficiently accurate representation of the underlying data. However, when representing sequential data from complex systems, such as global shipping traffic or Web clickstream traffic as networks, conventional network representations that implicitly assume the Markov property (first-order dependency) can quickly become limiting. This assumption holds that, when movements are simulated on the network, the next movement depends only on the current node, discounting the fact that the movement may depend on several previous steps. However, we show that data derived from many complex systems can show up to fifth-order dependencies. In these cases, the oversimplifying assumption of the first-order network representation can lead to inaccurate network analysis results. To address this problem, we propose the higher-order network (HON) representation that can discover and embed variable orders of dependencies in a network representation. Through a comprehensive empirical evaluation and analysis, we establish several desirable characteristics of HON, including accuracy, scalability, and direct compatibility with the existing suite of network analysis methods. We illustrate how HON can be applied to a broad variety of tasks, such as random walking, clustering, and ranking, and we demonstrate that, by using it as input, HON yields more accurate results without any modification to these tasks. PMID:27386539
Higher-order polarization singularitites in tailored vector beams
NASA Astrophysics Data System (ADS)
Otte, E.; Alpmann, C.; Denz, C.
2016-07-01
Higher-order polarization singularities embedded in tailored vector beams are introduced and experimentally realized. As holographic modulation allows to define order and location of any vectorial singularity, the surrounding vector field can be dynamically shaped. We demonstrate light fields associated with flowers or spider webs due to regular and even irregular patterns of the orientation of polarization ellipses. Beyond that, not yet investigated hybrid structures are introduced that allow generating networks of flowers and webs in very close vicinity. Our results pave the way to applications of singular optics in spatially extended, optimized optical tweezing and high-resolution imaging.
Higher Order Pattern Structure Influences Auditory Representational Momentum
ERIC Educational Resources Information Center
Johnston, Heather Moynihan; Jones, Mari Riess
2006-01-01
Representational momentum refers to the phenomenon that observers tend to incorrectly remember an event undergoing real or implied motion as shifted beyond its actual final position. This has been demonstrated in both visual and auditory domains. In 5 pitch discrimination experiments, listeners heard tone sequences that implied either linear,…
Conceptualizing and Assessing Higher-Order Thinking in Reading
ERIC Educational Resources Information Center
Afflerbach, Peter; Cho, Byeong-Young; Kim, Jong-Yun
2015-01-01
Students engage in higher-order thinking as they read complex texts and perform complex reading-related tasks. However, the most consequential assessments, high-stakes tests, are currently limited in providing information about students' higher-order thinking. In this article, we describe higher-order thinking in relation to reading. We provide a…
Higher-order modes of phase conjugate resonators.
Hardy, A; Hochhauser, S
1982-07-01
A numerical analysis based on the Prony algorithm was carried out to find the higher-order modes of phase conjugate optical resonators with hard-edged apertures. The mode patterns are nearly Hermite-Gaussians even for unstable resonator configurations. This indicates that there is not a phase conjugate analog of conventional unstable resonators. The eigenvalues and the extent to which the phase fronts match the surface of the conventional mirror were also calculated for a variety of resonator parameters. When there is one limiting aperture in the resonator and all others (including the phase conjugating mirror) can be considered as unbound, the eigenvalues and phase matching parameter are scalable by the ratio g/N, where N is the Fres-nel number of the aperture and g = 1 - L/R as in conventional resonator theory. PMID:20396031
Skinner-Rusk unified formalism for higher-order systems
NASA Astrophysics Data System (ADS)
Prieto-Martínez, Pedro Daniel; Román-Roy, Narciso
2012-07-01
The Lagrangian-Hamiltonian unified formalism of R. Skinner and R. Rusk was originally stated for autonomous dynamical systems in classical mechanics. It has been generalized for non-autonomous first-order mechanical systems, first-order and higher-order field theories, and higher-order autonomous systems. In this work we present a generalization of this formalism for higher-order non-autonomous mechanical systems.
Generation of Higher Order Modes in a Rectangular Duct
NASA Technical Reports Server (NTRS)
Gerhold, Carl H.; Cabell, Randolph H.; Brown, Donald E.
2004-01-01
Advanced noise control methodologies to reduce sound emission from aircraft engines take advantage of the modal structure of the noise in the duct. This noise is caused by the interaction of rotor wakes with downstream obstructions such as exit guide vanes. Mode synthesis has been accomplished in circular ducts and current active noise control work has made use of this capability to cancel fan noise. The goal of the current effort is to examine the fundamental process of higher order mode propagation through an acoustically treated, curved duct. The duct cross-section is rectangular to permit greater flexibility in representation of a range of duct curvatures. The work presented is the development of a feedforward control system to generate a user-specified modal pattern in the duct. The multiple-error, filtered-x LMS algorithm is used to determine the magnitude and phase of signal input to the loudspeakers to produce a desired modal pattern at a set of error microphones. Implementation issues, including loudspeaker placement and error microphone placement, are discussed. Preliminary results from a 9-3/8 inch by 21 inch duct, using 12 loudspeakers and 24 microphones, are presented. These results demonstrate the ability of the control system to generate a user-specified mode while suppressing undesired modes.
Existence of solutions for some higher order boundary value problems
NASA Astrophysics Data System (ADS)
Charkrit, Sita; Kananthai, Amnuay
2007-05-01
In this paper, we are concerned with the existence of solutions for the higher order boundary value problem in the form where m is a given positive integer and is continuous. We introduce a new maximum principle of higher order equations and develop a monotone method in the presence of lower and upper solutions for this problem.
Assessing Higher Order Thinking and Communication Skills: Literacy.
ERIC Educational Resources Information Center
Venezky, Richard L.
Assessment of higher order literacy skills encounters three initial problems aside from assessment methods: (1) definition of literacy; (2) range of skills to assess; and (3) whether or not higher order literacy can be assessed independently of a particular content area. Regardless of definitions, the general performance areas to be covered must…
Higher order mode of a microstripline fed cylindrical dielectric resonator antenna
NASA Astrophysics Data System (ADS)
Kumar, A. V. Praveen
2016-03-01
A microstrip transmission line can be used to excite the broadside radiating mode of a cylindrical dielectric resonator antenna (CDRA). The same is found to excite considerably well a higher order mode (HOM) as well. However unlike the broadside mode, the higher order mode gives distorted radiation pattern which makes this mode less useful for practical applications. The cause of distortion in the HOM radiation and the dependence of HOM coupling on the microstrip feed line are explored using HFSS simulations.
Symplectic structures related with higher order variational problems
NASA Astrophysics Data System (ADS)
Kijowski, Jerzy; Moreno, Giovanni
2015-06-01
In this paper, we derive the symplectic framework for field theories defined by higher order Lagrangians. The construction is based on the symplectic reduction of suitable spaces of iterated jets. The possibility of reducing a higher order system of partial differential equations to a constrained first-order one, the symplectic structures naturally arising in the dynamics of a first-order Lagrangian theory, and the importance of the Poincaré-Cartan form for variational problems, are all well-established facts. However, their adequate combination corresponding to higher order theories is missing in the literature. Here we obtain a consistent and truly finite-dimensional canonical formalism, as well as a higher order version of the Poincaré-Cartan form. In our exposition, the rigorous global proofs of the main results are always accompanied by their local coordinate descriptions, indispensable to work out practical examples.
Application of Mass Lumped Higher Order Finite Elements
Chen, J.; Strauss, H. R.; Jardin, S. C.; Park, W.; Sugiyama, L. E.; G. Fu; Breslau, J.
2005-11-01
There are many interesting phenomena in extended-MHD such as anisotropic transport, mhd, 2-fluid effects stellarator and hot particles. Any one of them challenges numerical analysts, and researchers are seeking for higher order methods, such as higher order finite difference, higher order finite elements and hp/spectral elements. It is true that these methods give more accurate solution than their linear counterparts. However, numerically they are prohibitively expensive. Here we give a successful solution of this conflict by applying mass lumped higher order finite elements. This type of elements not only keep second/third order accuracy but also scale closely to linear elements by doing mass lumping. This is especially true for second order lump elements. Full M3D and anisotropic transport models are studied.
Unambiguous formalism for higher order Lagrangian field theories
NASA Astrophysics Data System (ADS)
Campos, Cédric M.; de León, Manuel; Martín de Diego, David; Vankerschaver, Joris
2009-11-01
The aim of this paper is to propose an unambiguous intrinsic formalism for higher order field theories which avoids the arbitrariness in the generalization of the conventional description of field theories, and implies the existence of different Cartan forms and Legendre transformations. We propose a differential-geometric setting for the dynamics of a higher order field theory, based on the Skinner and Rusk formalism for mechanics. This approach incorporates aspects of both the Lagrangian and the Hamiltonian description, since the field equations are formulated using the Lagrangian on a higher order jet bundle and the canonical multisymplectic form on its affine dual. As both of these objects are uniquely defined, the Skinner-Rusk approach has the advantage that it does not suffer from the arbitrariness in conventional descriptions. The result is that we obtain a unique and global intrinsic version of the Euler-Lagrange equations for higher order field theories. Several examples illustrate our construction.
Higher Order Fractional Stable Motion: Hyperdiffusion with Heavy Tails
NASA Astrophysics Data System (ADS)
Kawai, Reiichiro
2016-08-01
We introduce the class of higher order fractional stable motions that can exhibit hyperdiffusive spreading with heavy tails. We define the class as a generalization of higher order fractional Brownian motion as well as a generalization of linear fractional stable motions. Higher order fractional stable motions are self-similar with Hurst index larger than one and non-Gaussian stable marginals with infinite variance and have stationary higher order increments. We investigate their sample path properties and asymptotic dependence structure on the basis of codifference. In particular, by incrementing or decrementing sample paths once under suitable conditions, the diffusion rate can be accelerated or decelerated by one order. With a view towards simulation study, we provide a ready-for-use sample path simulation recipe at discrete times along with error analysis. The proposed simulation scheme requires only elementary numerical operations and is robust to high frequency sampling, irregular spacing and super-sampling.
On the Evaluation of Higher-Order Science Instructional Objectives
ERIC Educational Resources Information Center
Hambleton, Ronald K.; Sheehan, Daniel S.
1977-01-01
Advocates the use of a free-sort categorization technique for evaluation of higher-order science instructional objectives. An explanation and demonstration of the use of the evaluation technique with 284 ninth-grade science students is provided. (CP)
Higher Order Fractional Stable Motion: Hyperdiffusion with Heavy Tails
NASA Astrophysics Data System (ADS)
Kawai, Reiichiro
2016-10-01
We introduce the class of higher order fractional stable motions that can exhibit hyperdiffusive spreading with heavy tails. We define the class as a generalization of higher order fractional Brownian motion as well as a generalization of linear fractional stable motions. Higher order fractional stable motions are self-similar with Hurst index larger than one and non-Gaussian stable marginals with infinite variance and have stationary higher order increments. We investigate their sample path properties and asymptotic dependence structure on the basis of codifference. In particular, by incrementing or decrementing sample paths once under suitable conditions, the diffusion rate can be accelerated or decelerated by one order. With a view towards simulation study, we provide a ready-for-use sample path simulation recipe at discrete times along with error analysis. The proposed simulation scheme requires only elementary numerical operations and is robust to high frequency sampling, irregular spacing and super-sampling.
Development of a core confidence-higher order construct.
Stajkovic, Alexander D
2006-11-01
The author develops core confidence as a higher order construct and suggests that a core confidence-higher order construct--not addressed by extant work motivation theories--is helpful in better understanding employee motivation in today's rapidly changing organizations. Drawing from psychology (social, clinical, and developmental) and social anthropology, the author develops propositions regarding the relationships between core confidence and performance, attitudes, and subjective well-being. The core confidence-higher order construct is proposed to be manifested by hope, self-efficacy, optimism, and resilience. The author reasons that these four variables share a common confidence core (a higher order construct) and may be considered as its manifestations. Suggestions for future research and implications of the work are discussed. PMID:17100479
The Lagrangian-Hamiltonian formalism for higher order field theories
NASA Astrophysics Data System (ADS)
Vitagliano, Luca
2010-06-01
We generalize the Lagrangian-Hamiltonian formalism of Skinner and Rusk to higher order field theories on fiber bundles. As a byproduct we solve the long standing problem of defining, in a coordinate free manner, a Hamiltonian formalism for higher order Lagrangian field theories. Namely, our formalism does only depend on the action functional and, therefore, unlike previously proposed ones, is free from any relevant ambiguity.
Feynman rules of higher-order poles in CHY construction
NASA Astrophysics Data System (ADS)
Huang, Rijun; Feng, Bo; Luo, Ming-xing; Zhu, Chuan-Jie
2016-06-01
In this paper, we generalize the integration rules for scattering equations to situations where higher-order poles are present. We describe the strategy to deduce the Feynman rules of higher-order poles from known analytic results of simple CHY-integrands, and propose the Feynman rules for single double pole and triple pole as well as duplex-double pole and triplex-double pole structures. We demonstrate the validation and strength of these rules by ample non-trivial examples.
Higher order variability properties of accreting black holes
NASA Astrophysics Data System (ADS)
Maccarone, Thomas J.; Coppi, Paolo S.
2002-11-01
To better constrain the emission mechanism underlying the hard state of galactic black hole candidates, we use high-time resolution RXTE light curves for Cyg X-1 and GX 339-4 to compute two higher order variability statistics for these objects, the skewness and the Fourier bispectrum. Similar analyses, in particular using the skewness measure, have been attempted previously, but the photon collection area of RXTE allows us to present results of much greater statistical significance. The results for the two objects are qualitatively similar, reinforcing the idea that the same basic mechanisms are at work in both. We find a significantly positive skewness for variability time-scales less than ~1 s, and a negative skewness for time-scales from 1 to 5 s. Such a skewness pattern cannot be reproduced by the simplest shot variability models where individual shots have a fixed profile and intensity and are uncorrelated in time. Further evidence against simple-shot models comes from the significant detection of a non-zero bicoherence for Fourier periods ~0.1-10 s, implying that significant coupling does exist between variations on these time-scales. We discuss how current popular models for variability in black hole systems can be modified to match these observations. Using simulated light curves, we suggest that the most likely way to reproduce this observed behaviour is to have the variability come in groups of many shots, with the number of shots per unit time fitting an envelope function that has a rapid rise and a slow decay, while the individual shots have a slow rise and a rapid decay. Invoking a finite-energy reservoir that is depleted by each shot is a natural way of producing the required shot correlations.
Hidden SUSY from precision gauge unification
NASA Astrophysics Data System (ADS)
Krippendorf, Sven; Nilles, Hans Peter; Ratz, Michael; Winkler, Martin Wolfgang
2013-08-01
We revisit the implications of naturalness and gauge unification in the minimal supersymmetric standard model. We find that precision unification of the couplings in connection with a small μ parameter requires a highly compressed gaugino pattern as it is realized in mirage mediation. Due to the small mass difference between the gluino and lightest supersymmetric particle (LSP), collider limits on the gluino mass are drastically relaxed. Without further assumptions, the relic density of the LSP is very close to the observed dark matter density due to coannihilation effects.
Dynamics and control of higher-order nonholonomic systems
NASA Astrophysics Data System (ADS)
Rubio Hervas, Jaime
A theoretical framework is established for the control of higher-order nonholonomic systems, defined as systems that satisfy higher-order nonintegrable constraints. A model for such systems is developed in terms of differential-algebraic equations defined on a higher-order tangent bundle. A number of control-theoretic properties such as nonintegrability, controllability, and stabilizability are presented. Higher-order nonholonomic systems are shown to be strongly accessible and, under certain conditions, small time locally controllable at any equilibrium. There are important examples of higher-order nonholonomic systems that are asymptotically stabilizable via smooth feedback, including space vehicles with multiple slosh modes and Prismatic-Prismatic-Revolute (PPR) robots moving open liquid containers, as well as an interesting class of systems that do not admit asymptotically stabilizing continuous static or dynamic state feedback. Specific assumptions are introduced to define this class, which includes important examples of robotic systems. A discontinuous nonlinear feedback control algorithm is developed to steer any initial state to the equilibrium at the origin. The applicability of the theoretical development is illustrated through two examples: control of a planar PPR robot manipulator subject to a jerk constraint and control of a point mass moving on a constant torsion curve in a three dimensional space.
Higher-order motion sensitivity in fly visual circuits
Lee, Yu-Jen; Nordström, Karin
2012-01-01
In higher-order motion stimuli, the direction of object motion does not follow the direction of luminance change. Such stimuli could be generated by the wing movements of a flying butterfly and further complicated by its motion in and out of shadows. Human subjects readily perceive the direction of higher-order motion, although this stands in stark contrast to prevailing motion vision models. Flies and humans compute motion in similar ways, and because flies behaviorally track bars containing higher-order motion cues, they become an attractive model system for investigating the neurophysiology underlying higher-order motion sensitivity. We here use intracellular electrophysiology of motion-vision–sensitive neurons in the hoverfly lobula plate to quantify responses to stimuli containing higher-order motion. We show that motion sensitivity can be broken down into two separate streams, directionally coding for elementary motion and figure motion, respectively, and that responses to Fourier and theta motion can be predicted from these. The sensitivity is affected both by the stimulus’ time course and by the neuron’s underlying receptive field. Responses to preferred-direction theta motion are sexually dimorphic and particularly robust along the visual midline. PMID:22586123
Tensor Spectral Clustering for Partitioning Higher-order Network Structures
Benson, Austin R.; Gleich, David F.; Leskovec, Jure
2016-01-01
Spectral graph theory-based methods represent an important class of tools for studying the structure of networks. Spectral methods are based on a first-order Markov chain derived from a random walk on the graph and thus they cannot take advantage of important higher-order network substructures such as triangles, cycles, and feed-forward loops. Here we propose a Tensor Spectral Clustering (TSC) algorithm that allows for modeling higher-order network structures in a graph partitioning framework. Our TSC algorithm allows the user to specify which higher-order network structures (cycles, feed-forward loops, etc.) should be preserved by the network clustering. Higher-order network structures of interest are represented using a tensor, which we then partition by developing a multilinear spectral method. Our framework can be applied to discovering layered flows in networks as well as graph anomaly detection, which we illustrate on synthetic networks. In directed networks, a higher-order structure of particular interest is the directed 3-cycle, which captures feedback loops in networks. We demonstrate that our TSC algorithm produces large partitions that cut fewer directed 3-cycles than standard spectral clustering algorithms.
[Corneal higher order aberrations and their changes with aging].
Cermáková, S; Skorkovská, S
2010-12-01
Cornea is the most important refractive medium of the eye and affects its total aberration state. This paper deals with corneal higher order aberrations in healthy humans and evaluates their changes with aging and corneal curvature. The influence of the corneal anterior and posterior surfaces on aberrations of the whole cornea was also investigated. The examination was performed with a Scheimpflug camera which enables to examine the anterior and posterior corneal surface separately. The results show that higher order aberrations of the whole cornea are influenced mainly by the anterior surface aberrations. The main corneal higher order aberration is the Z (4,0) spherical aberration which has a positive value and increases with age. Also, 3rd order aberration values are of importance, especially coma which also increases with age. As a consequence, the root-mean-square of the 3rd and 4th order aberrations in elderly people has a higher value.
Optimized higher-order automatic differentiation for the Faddeeva function
NASA Astrophysics Data System (ADS)
Charpentier, Isabelle
2016-08-01
Considerable research efforts have been directed at implementing the Faddeeva function w(z) and its derivatives with respect to z, but these did not consider the key computing issue of a possible dependence of z on some variable t. The general case is to differentiate the compound function w(z(t)) = w ∘ z(t) with respect to t by applying the chain rule for a first order derivative, or Faà di Bruno's formula for higher-order ones. Higher-order automatic differentiation (HOAD) is an efficient and accurate technique for derivative calculation along scientific computing codes. Although codes are available for w(z) , a special symbolic HOAD is required to compute accurate higher-order derivatives for w ∘ z(t) in an efficient manner. A thorough evaluation is carried out considering a nontrivial case study in optics to support this assertion.
Higher-order theories from the minimal length
NASA Astrophysics Data System (ADS)
Dias, M.; Hoff da Silva, J. M.; Scatena, E.
2016-06-01
We show that the introduction of a minimal length in the context of noncommutative space-time gives rise (after some considerations) to higher-order theories. We then explicitly demonstrate how these higher-derivative theories appear as a generalization of the standard electromagnetism and general relativity by applying a consistent procedure that modifies the original Maxwell and Einstein-Hilbert actions. In order to set a bound on the minimal length, we compare the deviations from the inverse-square law with the potentials obtained in the higher-order theories and discuss the validity of the results. The introduction of a quantum bound for the minimal length parameter β in the higher-order QED allows us to lower the actual limits on the parameters of higher-derivative gravity by almost half of their order of magnitude.
Should evolutionary geneticists worry about higher-order epistasis?
Weinreich, Daniel M; Lan, Yinghong; Wylie, C Scott; Heckendorn, Robert B
2013-12-01
Natural selection drives evolving populations up the fitness landscape, the projection from nucleotide sequence space to organismal reproductive success. While it has long been appreciated that topographic complexities on fitness landscapes can arise only as a consequence of epistatic interactions between mutations, evolutionary genetics has mainly focused on epistasis between pairs of mutations. Here we propose a generalization to the classical population genetic treatment of pairwise epistasis that yields expressions for epistasis among arbitrary subsets of mutations of all orders (pairwise, three-way, etc.). Our approach reveals substantial higher-order epistasis in almost every published fitness landscape. Furthermore we demonstrate that higher-order epistasis is critically important in two systems we know best. We conclude that higher-order epistasis deserves empirical and theoretical attention from evolutionary geneticists.
Higher Order Lagrange Finite Elements In M3D
J. Chen; H.R. Strauss; S.C. Jardin; W. Park; L.E. Sugiyama; G. Fu; J. Breslau
2004-12-17
The M3D code has been using linear finite elements to represent multilevel MHD on 2-D poloidal planes. Triangular higher order elements, up to third order, are constructed here in order to provide M3D the capability to solve highly anisotropic transport problems. It is found that higher order elements are essential to resolve the thin transition layer characteristic of the anisotropic transport equation, particularly when the strong anisotropic direction is not aligned with one of the Cartesian coordinates. The transition layer is measured by the profile width, which is zero for infinite anisotropy. It is shown that only higher order schemes have the ability to make this layer converge towards zero when the anisotropy gets stronger and stronger. Two cases are considered. One has the strong transport direction partially aligned with one of the element edges, the other doesn't have any alignment. Both cases have the strong transport direction misaligned with the grid line by some angles.
Unified formalism for higher order non-autonomous dynamical systems
NASA Astrophysics Data System (ADS)
Prieto-Martínez, Pedro Daniel; Román-Roy, Narciso
2012-03-01
This work is devoted to giving a geometric framework for describing higher order non-autonomous mechanical systems. The starting point is to extend the Lagrangian-Hamiltonian unified formalism of Skinner and Rusk for these kinds of systems, generalizing previous developments for higher order autonomous mechanical systems and first-order non-autonomous mechanical systems. Then, we use this unified formulation to derive the standard Lagrangian and Hamiltonian formalisms, including the Legendre-Ostrogradsky map and the Euler-Lagrange and the Hamilton equations, both for regular and singular systems. As applications of our model, two examples of regular and singular physical systems are studied.
Vakonomic Constraints in Higher-Order Classical Field Theory
NASA Astrophysics Data System (ADS)
Campos, Cédric M.
2010-07-01
We propose a differential-geometric setting for the dynamics of a higher-order field theory, based on the Skinner and Rusk formalism for mechanics. This approach incorporates aspects of both, the Lagrangian and the Hamiltonian description, since the field equations are formulated using the Lagrangian on a higher-order jet bundle and the canonical multisymplectic form on its affine dual. The result is that we obtain a unique and global intrinsic description of the dynamics. The case of vakonomic constraints is also studied within this formalism.
A Testing Theory for a Higher-Order Cryptographic Language
NASA Astrophysics Data System (ADS)
Koutavas, Vasileios; Hennessy, Matthew
We study a higher-order concurrent language with cryptographic primitives, for which we develop a sound and complete, first-order testing theory for the preservation of safety properties. Our theory is based on co-inductive set simulations over transitions in a first-order Labelled Transition System. This keeps track of the knowledge of the observer, and treats transmitted higher-order values in a symbolic manner, thus obviating the quantification over functional contexts. Our characterisation provides an attractive proof technique, and we illustrate its usefulness in proofs of equivalence, including cases where bisimulation theory does not apply.
Higher order theories and their relationship with noncommutativity
NASA Astrophysics Data System (ADS)
Sánchez-Santos, Oscar; Vergara, José David
2014-06-01
We present a relationship between noncommutativity and higher order time derivative theories using a perturbation method. We make a generalization of the Chern-Simons quantum mechanics for higher order time derivatives. This model presents noncommutativity in a natural way when we project to low-energy physical states without the necessity of taking the strong field limit. We quantize the theory using a Bopp's shift of the noncommutative variables and we obtain a spectrum without negative energies, under the perturbation limits. In addition, we extent the model to high order time derivatives and noncommutativity with variable dependent parameter.
Higher order mode laser beam scintillations in oceanic medium
NASA Astrophysics Data System (ADS)
Baykal, Yahya
2016-01-01
In a horizontal oceanic optical wireless communication link, the scintillation index (the measure for the intensity fluctuations) of the received intensity caused by the oceanic turbulence is formulated and evaluated when the source is a higher order mode laser. Variations in the scintillation index vs. the underwater turbulence parameters, size of the higher order mode laser source, link length, and the wavelength are examined. Underwater turbulence parameters are the ratio that determines the relative strength of temperature and salinity in driving the index fluctuations, the rate of dissipation of the mean squared temperature, the rate of dissipation of the turbulent kinetic energy, and the Kolmogorov microscale length.
Superposition rules for higher order systems and their applications
NASA Astrophysics Data System (ADS)
Cariñena, J. F.; Grabowski, J.; de Lucas, J.
2012-05-01
Superposition rules form a class of functions that describe general solutions of systems of first-order ordinary differential equations in terms of generic families of particular solutions and certain constants. In this work, we extend this notion and other related ones to systems of higher order differential equations and analyse their properties. Several results concerning the existence of various types of superposition rules for higher order systems are proved and illustrated with examples extracted from the physics and mathematics literature. In particular, two new superposition rules for the second- and third-order Kummer-Schwarz equations are derived.
Higher-Order Latent Trait Models for Cognitive Diagnosis
ERIC Educational Resources Information Center
de la Torre, Jimmy; Douglas, Jeffrey A.
2004-01-01
Higher-order latent traits are proposed for specifying the joint distribution of binary attributes in models for cognitive diagnosis. This approach results in a parsimonious model for the joint distribution of a high-dimensional attribute vector that is natural in many situations when specific cognitive information is sought but a less informative…
Numerical modeling of higher order magnetic moments in UXO discrimination
Sanchez, V.; Yaoguo, L.; Nabighian, M.N.; Wright, D.L.
2008-01-01
The surface magnetic anomaly observed in unexploded ordnance (UXO) clearance is mainly dipolar, and consequently, the dipole is the only magnetic moment regularly recovered in UXO discrimination. The dipole moment contains information about the intensity of magnetization but lacks information about the shape of the target. In contrast, higher order moments, such as quadrupole and octupole, encode asymmetry properties of the magnetization distribution within the buried targets. In order to improve our understanding of magnetization distribution within UXO and non-UXO objects and to show its potential utility in UXO clearance, we present a numerical modeling study of UXO and related metallic objects. The tool for the modeling is a nonlinear integral equation describing magnetization within isolated compact objects of high susceptibility. A solution for magnetization distribution then allows us to compute the magnetic multipole moments of the object, analyze their relationships, and provide a depiction of the anomaly produced by different moments within the object. Our modeling results show the presence of significant higher order moments for more asymmetric objects, and the fields of these higher order moments are well above the noise level of magnetic gradient data. The contribution from higher order moments may provide a practical tool for improved UXO discrimination. ?? 2008 IEEE.
Higher-Order Item Response Models for Hierarchical Latent Traits
ERIC Educational Resources Information Center
Huang, Hung-Yu; Wang, Wen-Chung; Chen, Po-Hsi; Su, Chi-Ming
2013-01-01
Many latent traits in the human sciences have a hierarchical structure. This study aimed to develop a new class of higher order item response theory models for hierarchical latent traits that are flexible in accommodating both dichotomous and polytomous items, to estimate both item and person parameters jointly, to allow users to specify…
Computer-Mediated Assessment of Higher-Order Thinking Development
ERIC Educational Resources Information Center
Tilchin, Oleg; Raiyn, Jamal
2015-01-01
Solving complicated problems in a contemporary knowledge-based society requires higher-order thinking (HOT). The most productive way to encourage development of HOT in students is through use of the Problem-based Learning (PBL) model. This model organizes learning by solving corresponding problems relative to study courses. Students are directed…
Constrained variational calculus for higher order classical field theories
NASA Astrophysics Data System (ADS)
Campos, Cédric M.; de León, Manuel; Martín de Diego, David
2010-11-01
We develop an intrinsic geometrical setting for higher order constrained field theories. As a main tool we use an appropriate generalization of the classical Skinner-Rusk formalism. Some examples of applications are studied, in particular to the geometrical description of optimal control theory for partial differential equations.
Higher-Order Thinking: A "Basic" Skill for Everyone.
ERIC Educational Resources Information Center
Chancellor, Dinah
1991-01-01
Described are activities involving higher order thinking skills developed for gifted students that can be used for all students. Discussed is a framework for designing activities using Bloom's Taxonomy of the Cognitive Domain and William's Student Behaviors. Sample activities are included. (KR)
An Analysis of Higher Order Thinking in Online Discussions
ERIC Educational Resources Information Center
McLoughlin, D.; Mynard, J.
2009-01-01
This paper describes a study of online discussion forums as tools for promoting higher-order thinking. The study was carried out in a women's university in the United Arab Emirates. Data, in the form of online discussion forum transcripts, were collected over a 20-week semester and were analysed according to a model developed by Garrison,…
Multiple-Try Feedback and Higher-Order Learning Outcomes
ERIC Educational Resources Information Center
Clariana, Roy B.; Koul, Ravinder
2005-01-01
Although feedback is an important component of computer-based instruction (CBI), the effects of feedback on higher-order learning outcomes are not well understood. Several meta-analyses provide two rules of thumb: any feedback is better than no feedback and feedback with more information is better than feedback with less information. …
Recent Advances in Higher-order Multimodal Biomedical Imaging Agents
Rieffel, James; Chitgupi, Upendra
2015-01-01
Advances in biomedical imaging have spurred the development of integrated multimodal scanners, usually capable of two simultaneous imaging modes. The long-term vision of higher-order multimodality is to improve diagnostics or guidance through analysis of complementary, data-rich, co-registered images. Synergies achieved through combined modalities could enable researchers to better track diverse physiological and structural events, analyze biodistribution and treatment efficacy, and compare established and emerging modalities. Higher-order multimodal approaches stand to benefit from molecular imaging probes and in recent years, contrast agents that have hypermodal characteristics have increasingly been reported in preclinical studies. Given the chemical requirements for contrast agents representing various modalities to be integrated into a single entity, higher-order multimodal agents reported so far tend to be of nanoparticulate form. To date, the majority of reported nanoparticles have included components that are active for magnetic resonance. Herein, we review recent progress in higher-order multimodal imaging agents, which span a range of material and structural classes, that have demonstrated utility in three (or more) imaging modalities. PMID:26185099
Developing Higher-Order Thinking Skills through WebQuests
ERIC Educational Resources Information Center
Polly, Drew; Ausband, Leigh
2009-01-01
In this study, 32 teachers participated in a year-long professional development project related to technology integration in which they designed and implemented a WebQuest. This paper describes the extent to which higher-order thinking skills (HOTS) and levels of technology implementation (LoTI) occur in the WebQuests that participants designed.…
Multimedia: A Gateway to Higher-Order Thinking Skills.
ERIC Educational Resources Information Center
Fontana, Lynn A.; And Others
In June 1990, the research group at George Mason University (Virginia) Center for Interactive Educational Technology began designing a multimedia prototype to foster higher-order thinking skills in social studies. As an initial step, the Civil War Interactive Project using the Ken Burns documentary, "The Civil War," was used in a design…
Unification of Fundamental Forces
NASA Astrophysics Data System (ADS)
Salam, Abdus; Taylor, Foreword by John C.
2005-10-01
Foreword John C. Taylor; 1. Unification of fundamental forces Abdus Salam; 2. History unfolding: an introduction to the two 1968 lectures by W. Heisenberg and P. A. M. Dirac Abdus Salam; 3. Theory, criticism, and a philosophy Werner Heisenberg; 4. Methods in theoretical physics Paul Adrian Maurice Dirac.
Novel Object Exploration as a Potential Assay for Higher Order Repetitive Behaviors in Mice.
Steinbach, Jessica M; Garza, Elizabeth T; Ryan, Bryce C
2016-01-01
Restricted, repetitive behaviors (RRBs) are a core feature of autism spectrum disorder (ASD) and disrupt the lives of affected individuals. RRBs are commonly split into lower-order and higher-order components, with lower order RRBs consisting of motor stereotypies and higher order RRBs consisting of perseverative and sequencing behaviors. Higher order RRBs are challenging to model in mice. Current assays for RRBs in mice focus primarily on the lower order components, making basic biomedical research into potential treatments or interventions for higher-order RRBs difficult. Here we describe a new assay, novel object exploration. This assay uses a basic open-field arena with four novel objects placed around the perimeter. The test mouse is allowed to freely explore the arena and the order in which the mouse investigates the novel objects is recorded. From these data, patterned sequences of exploration can be identified, as can the most preferred object for each mouse. The representative data shared here and past results using the novel object exploration assay illustrate that inbred mouse strains do demonstrate different behavior in this assay and that strains with elevated lower order RRBs also show elevated patterned behavior. As such, the novel object exploration assay appears to possess good face validity for higher order RRBs in humans and may be a valuable assay for future studies investigating novel therapeutics for ASD. PMID:27583676
Stabilization with target oriented control for higher order difference equations
NASA Astrophysics Data System (ADS)
Braverman, Elena; Franco, Daniel
2015-06-01
For a physical or biological model whose dynamics is described by a higher order difference equation un+1 = f (un ,un-1 , … ,u n - k + 1), we propose a version of a target oriented control un+1 = cT + (1 - c) f (un ,un-1 , … ,u n - k + 1), with T ≥ 0, c ∈ [ 0 , 1). In ecological systems, the method incorporates harvesting and recruitment and for a wide class of f, allows to stabilize (locally or globally) a fixed point of f. If a point which is not a fixed point of f has to be stabilized, the target oriented control is an appropriate method for achieving this goal. As a particular case, we consider pest control applied to pest populations with delayed density-dependence. This corresponds to a proportional feedback method, which includes harvesting only, for higher order equations.
Higher-order Lagrangian perturbative theory for the Cosmic Web
NASA Astrophysics Data System (ADS)
Tatekawa, Takayuki; Mizuno, Shuntaro
2016-10-01
Zel'dovich proposed Lagrangian perturbation theory (LPT) for structure formation in the Universe. After this, higher-order perturbative equations have been derived. Recently fourth-order LPT (4LPT) have been derived by two group. We have shown fifth-order LPT (5LPT) In this conference, we notice fourth- and more higher-order perturbative equations. In fourth-order perturbation, because of the difference in handling of spatial derivative, there are two groups of equations. Then we consider the initial conditions for cosmological N-body simulations. Crocce, Pueblas, and Scoccimarro (2007) noticed that second-order perturbation theory (2LPT) is required for accuracy of several percents. We verify the effect of 3LPT initial condition for the simulations. Finally we discuss the way of further improving approach and future applications of LPTs.
Promoting higher order thinking skills using inquiry-based learning
NASA Astrophysics Data System (ADS)
Madhuri, G. V.; S. S. N Kantamreddi, V.; Goteti, L. N. S. Prakash
2012-05-01
Active learning pedagogies play an important role in enhancing higher order cognitive skills among the student community. In this work, a laboratory course for first year engineering chemistry is designed and executed using an inquiry-based learning pedagogical approach. The goal of this module is to promote higher order thinking skills in chemistry. Laboratory exercises are designed based on Bloom's taxonomy and a just-in-time facilitation approach is used. A pre-laboratory discussion outlining the theory of the experiment and its relevance is carried out to enable the students to analyse real-life problems. The performance of the students is assessed based on their ability to perform the experiment, design new experiments and correlate practical utility of the course module with real life. The novelty of the present approach lies in the fact that the learning outcomes of the existing experiments are achieved through establishing a relationship with real-world problems.
Spatial complexity of solutions of higher order partial differential equations
NASA Astrophysics Data System (ADS)
Kukavica, Igor
2004-03-01
We address spatial oscillation properties of solutions of higher order parabolic partial differential equations. In the case of the Kuramoto-Sivashinsky equation ut + uxxxx + uxx + u ux = 0, we prove that for solutions u on the global attractor, the quantity card {x epsi [0, L]:u(x, t) = lgr}, where L > 0 is the spatial period, can be bounded by a polynomial function of L for all \\lambda\\in{\\Bbb R} . A similar property is proven for a general higher order partial differential equation u_t+(-1)^{s}\\partial_x^{2s}u+ \\sum_{k=0}^{2s-1}v_k(x,t)\\partial_x^k u =0 .
Stable static structures in models with higher-order derivatives
Bazeia, D.; Lobão, A.S.; Menezes, R.
2015-09-15
We investigate the presence of static solutions in generalized models described by a real scalar field in four-dimensional space–time. We study models in which the scalar field engenders higher-order derivatives and spontaneous symmetry breaking, inducing the presence of domain walls. Despite the presence of higher-order derivatives, the models keep to equations of motion second-order differential equations, so we focus on the presence of first-order equations that help us to obtain analytical solutions and investigate linear stability on general grounds. We then illustrate the general results with some specific examples, showing that the domain wall may become compact and that the zero mode may split. Moreover, if the model is further generalized to include k-field behavior, it may contribute to split the static structure itself.
Higher order matrix differential equations with singular coefficient matrices
Fragkoulis, V. C.; Kougioumtzoglou, I. A.; Pantelous, A. A.; Pirrotta, A.
2015-03-10
In this article, the class of higher order linear matrix differential equations with constant coefficient matrices and stochastic process terms is studied. The coefficient of the highest order is considered to be singular; thus, rendering the response determination of such systems in a straightforward manner a difficult task. In this regard, the notion of the generalized inverse of a singular matrix is used for determining response statistics. Further, an application relevant to engineering dynamics problems is included.
Higher-order conditioning and the retrosplenial cortex.
Todd, Travis P; Huszár, Roman; DeAngeli, Nicole E; Bucci, David J
2016-09-01
The retrosplenial cortex (RSC) is known to contribute to contextual and spatial learning and memory. This is consistent with its well-established connectivity; the RSC is located at the interface of visuo-spatial association areas and the parahippocampal-hippocampal memory system. However, the RSC also contributes to learning and memory for discrete cues. For example, both permanent lesions and temporary inactivation of the RSC have been shown to impair sensory preconditioning, a form of higher-order conditioning. The purpose of the present experiment was to examine the role of the RSC in a closely related higher-order conditioning paradigm: second-order conditioning. Sham and RSC lesioned rats received first-order conditioning in which one visual stimulus (V1) was paired with footshock and one visual stimulus (V2) was not. Following first-order conditioning, one auditory stimulus (A1) was then paired with V1 and a second auditory stimulus (A2) was paired with V2. Although lesions of the RSC impaired the first-order discrimination, they had no impact on the acquisition of second-order conditioning. Thus, the RSC does not appear necessary for acquisition/expression of second-order fear conditioning. The role of the RSC in higher-order conditioning, as well as a possible dissociation from the hippocampus, is discussed.
Higher-order conditioning and the retrosplenial cortex.
Todd, Travis P; Huszár, Roman; DeAngeli, Nicole E; Bucci, David J
2016-09-01
The retrosplenial cortex (RSC) is known to contribute to contextual and spatial learning and memory. This is consistent with its well-established connectivity; the RSC is located at the interface of visuo-spatial association areas and the parahippocampal-hippocampal memory system. However, the RSC also contributes to learning and memory for discrete cues. For example, both permanent lesions and temporary inactivation of the RSC have been shown to impair sensory preconditioning, a form of higher-order conditioning. The purpose of the present experiment was to examine the role of the RSC in a closely related higher-order conditioning paradigm: second-order conditioning. Sham and RSC lesioned rats received first-order conditioning in which one visual stimulus (V1) was paired with footshock and one visual stimulus (V2) was not. Following first-order conditioning, one auditory stimulus (A1) was then paired with V1 and a second auditory stimulus (A2) was paired with V2. Although lesions of the RSC impaired the first-order discrimination, they had no impact on the acquisition of second-order conditioning. Thus, the RSC does not appear necessary for acquisition/expression of second-order fear conditioning. The role of the RSC in higher-order conditioning, as well as a possible dissociation from the hippocampus, is discussed. PMID:27208598
Quasi suppression of higher-order diffractions with inclined rectangular apertures gratings
Liu, Yuwei; Zhu, Xiaoli; Gao, Yulin; Zhang, Wenhai; Fan, Quanping; Wei, Lai; Yang, Zuhua; Zhang, Qiangqiang; Qian, Feng; Chen, Yong; He, Weihua; Wu, Yinzhong; Yan, Zhuoyang; Hua, Yilei; Zhao, Yidong; Cui, Mingqi; Qiu, Rong; Zhou, Weimin; Gu, Yuqiu; Zhang, Baohan; Xie, Changqing; Cao, Leifeng
2015-01-01
Advances in the fundamentals and applications of diffraction gratings have received much attention. However, conventional diffraction gratings often suffer from higher-order diffraction contamination. Here, we introduce a simple and compact single optical element, named inclined rectangular aperture gratings (IRAG), for quasi suppression of higher-order diffractions. We show, both in the visible light and soft x-ray regions, that IRAG can significantly suppress higher-order diffractions with moderate diffraction efficiency. Especially, as no support strut is needed to maintain the free-standing patterns, the IRAG is highly advantageous to the extreme-ultraviolet and soft x-ray regions. The diffraction efficiency of the IRAG and the influences of fabrication constraints are also discussed. The unique quasi-single order diffraction properties of IRAG may open the door to a wide range of photonic applications. PMID:26563588
Application of Higher-Order Cumulant in Fault Diagnosis of Rolling Bearing
NASA Astrophysics Data System (ADS)
Shen, Yongjun; Yang, Shaopu; Wang, Junfeng
2013-07-01
In this paper a new method of pattern recognition based on higher-order cumulant and envelope analysis is presented. The core of this new method is to construct analytical signals from the given signals and obtain the envelope signals firstly, then compute and compare the higher-order cumulants of the envelope signals. The higher-order cumulants could be used as a characteristic quantity to distinguish these given signals. As an example, this method is applied in fault diagnosis for 197726 rolling bearing of freight locomotive. The comparisons of the second-order, third-order and fourth-order cumulants of the envelope signals from different vibration signals of rolling bearing show this new method could discriminate the normal and two fault signals distinctly.
Automatic tracking of ground station antennas by means of higher order waveguide modes
NASA Astrophysics Data System (ADS)
Scheffer, H.
1980-02-01
Utilization of higher order waveguide modes, which are excited in the feed when the satellite is displaced from the boresight axis of the antenna is discussed. The physical relations involved in the excitation of higher order waveguide modes as a function of the antenna position are explained. The starting points of these considerations are the radiation patterns of the tracking modes excited by feeds with circular and square cross sections. Special mention is made of the derivation of the offset information in the cases of circular and linear polarization of the beacon signal. The principle of selective mode coupling by means of tracking mode couplers is described. A compilation of German ground station antennas is given, which apply tracking by higher order waveguide modes.
Quasi suppression of higher-order diffractions with inclined rectangular apertures gratings.
Liu, Yuwei; Zhu, Xiaoli; Gao, Yulin; Zhang, Wenhai; Fan, Quanping; Wei, Lai; Yang, Zuhua; Zhang, Qiangqiang; Qian, Feng; Chen, Yong; He, Weihua; Wu, Yinzhong; Yan, Zhuoyang; Hua, Yilei; Zhao, Yidong; Cui, Mingqi; Qiu, Rong; Zhou, Weimin; Gu, Yuqiu; Zhang, Baohan; Xie, Changqing; Cao, Leifeng
2015-01-01
Advances in the fundamentals and applications of diffraction gratings have received much attention. However, conventional diffraction gratings often suffer from higher-order diffraction contamination. Here, we introduce a simple and compact single optical element, named inclined rectangular aperture gratings (IRAG), for quasi suppression of higher-order diffractions. We show, both in the visible light and soft x-ray regions, that IRAG can significantly suppress higher-order diffractions with moderate diffraction efficiency. Especially, as no support strut is needed to maintain the free-standing patterns, the IRAG is highly advantageous to the extreme-ultraviolet and soft x-ray regions. The diffraction efficiency of the IRAG and the influences of fabrication constraints are also discussed. The unique quasi-single order diffraction properties of IRAG may open the door to a wide range of photonic applications.
Quasi suppression of higher-order diffractions with inclined rectangular apertures gratings.
Liu, Yuwei; Zhu, Xiaoli; Gao, Yulin; Zhang, Wenhai; Fan, Quanping; Wei, Lai; Yang, Zuhua; Zhang, Qiangqiang; Qian, Feng; Chen, Yong; He, Weihua; Wu, Yinzhong; Yan, Zhuoyang; Hua, Yilei; Zhao, Yidong; Cui, Mingqi; Qiu, Rong; Zhou, Weimin; Gu, Yuqiu; Zhang, Baohan; Xie, Changqing; Cao, Leifeng
2015-01-01
Advances in the fundamentals and applications of diffraction gratings have received much attention. However, conventional diffraction gratings often suffer from higher-order diffraction contamination. Here, we introduce a simple and compact single optical element, named inclined rectangular aperture gratings (IRAG), for quasi suppression of higher-order diffractions. We show, both in the visible light and soft x-ray regions, that IRAG can significantly suppress higher-order diffractions with moderate diffraction efficiency. Especially, as no support strut is needed to maintain the free-standing patterns, the IRAG is highly advantageous to the extreme-ultraviolet and soft x-ray regions. The diffraction efficiency of the IRAG and the influences of fabrication constraints are also discussed. The unique quasi-single order diffraction properties of IRAG may open the door to a wide range of photonic applications. PMID:26563588
Lipkin method of particle-number restoration to higher orders
NASA Astrophysics Data System (ADS)
Wang, X. B.; Dobaczewski, J.; Kortelainen, M.; Yu, L. F.; Stoitsov, M. V.
2014-07-01
Background: On the mean-field level, pairing correlations are incorporated through the Bogoliubov-Valatin transformation, whereby the particle degrees of freedom are replaced by quasiparticles. This approach leads to a spontaneous breaking of the particle-number symmetry and mixing of states with different particle numbers. In order to restore the particle number, various methods have been employed, which are based on projection approaches before or after variation. Approximate variation-after-projection (VAP) schemes, utilizing the Lipkin method, have mostly been used within the Lipkin-Nogami prescription. Purpose: Without employing the Lipkin-Nogami prescription, and using, instead, states rotated in the gauge space, we derive the Lipkin method of particle-number restoration up to sixth order and we test the convergence and accuracy of the obtained expansion. Methods: We perform self-consistent calculations using the higher-order Lipkin method to restore the particle-number symmetry in the framework of superfluid nuclear energy-density functional theory. We also apply the Lipkin method to a schematic exactly solvable two-level pairing model. Results: Calculations performed in open-shell tin and lead isotopes show that the Lipkin method converges at fourth order and satisfactorily reproduces the VAP ground-state energies and energy kernels. Near closed shells, the higher-order Lipkin method cannot be applied because of a nonanalytic kink in the ground-state energies as a function of the particle number. Conclusions: In open-shell nuclei, the higher-order Lipkin method provides a good approximation to the exact VAP energies. The method is computationally inexpensive, making it particularly suitable, for example, for future optimizations of the nuclear energy density functionals and simultaneous restoration of different symmetries.
Higher order software - A methodology for defining software
NASA Technical Reports Server (NTRS)
Hamilton, M.; Zeldin, S.
1976-01-01
Higher order software (HOS) is concerned only with computable functions and relationships. The HOS methodology can be used for the definition of software for multiprogrammed, multiprocessor, or multicomputer systems. A description of HOS methodology is presented, giving attention to questions of formulation, interface correctness, specification language principles, and HOS analyzers. Aspects of system design are considered, and details of software management are discussed. Attention is given to modularity as defined by HOS, frozen module management, the assembly control supervisor, and aspects of reliability and efficiency.
Integrable higher order deformations of Heisenberg supermagnetic model
Guo Jiafeng; Yan Zhaowen; Wang Shikun; Wu Ke; Zhao Weizhong
2009-11-15
The Heisenberg supermagnet model is an integrable supersymmetric system and has a close relationship with the strong electron correlated Hubbard model. In this paper, we investigate the integrable higher order deformations of Heisenberg supermagnet models with two different constraints: (i) S{sup 2}=3S-2I for S is an element of USPL(2/1)/S(U(2)xU(1)) and (ii) S{sup 2}=S for S is an element of USPL(2/1)/S(L(1/1)xU(1)). In terms of the gauge transformation, their corresponding gauge equivalent counterparts are derived.
Sandia Higher Order Elements (SHOE) v 0.5 alpha
2013-09-24
SHOE is research code for characterizing and visualizing higher-order finite elements; it contains a framework for defining classes of interpolation techniques and element shapes; methods for interpolating triangular, quadrilateral, tetrahedral, and hexahedral cells using Lagrange and Legendre polynomial bases of arbitrary order; methods to decompose each element into domains of constant gradient flow (using a polynomial solver to identify critical points); and an isocontouring technique that uses this decomposition to guarantee topological correctness. Please note that this is an alpha release of research software and that some time has passed since it was actively developed; build- and run-time issues likely exist.
Higher order temporal finite element methods through mixed formalisms.
Kim, Jinkyu
2014-01-01
The extended framework of Hamilton's principle and the mixed convolved action principle provide new rigorous weak variational formalism for a broad range of initial boundary value problems in mathematical physics and mechanics. In this paper, their potential when adopting temporally higher order approximations is investigated. The classical single-degree-of-freedom dynamical systems are primarily considered to validate and to investigate the performance of the numerical algorithms developed from both formulations. For the undamped system, all the algorithms are symplectic and unconditionally stable with respect to the time step. For the damped system, they are shown to be accurate with good convergence characteristics. PMID:25210664
Higher-order factors of the Big Five.
Digman, J M
1997-12-01
Estimated factor correlations from 14 studies supporting the 5 factor, Big Five model of personality trait organization--5 studies based on children and adolescents, 9 on adults--were factor analyzed. Two higher-order factors were clearly evident in all studies. One was principally related to the Big Five trait dimensions Agreeableness, Conscientiousness, and Emotional Stability; the other, the dimensions Extraversion and Intellect. Two models, one for children and adolescents, the other for adults, were tested by confirmatory factor analysis with generally excellent results. Many personality theorists appear to have considered one or both of these 2 metatraits, provisionally labeled alpha and beta.
Higher-order dynamical effects in Coulomb dissociation
Esbensen, H.; Bertsch, G.F.; Bertulani, C.A.
1995-08-01
Coulomb dissociation is a technique commonly used to extract the dipole response of nuclei far from stability. This technique is applicable if the dissociation is dominated by dipole transitions and if first-order perturbation theory is valid. In order to assess the significance of higher-order processes we solve numerically the time evolution of the wave function for a two-body breakup in the Coulomb field from a high Z target. We applied this method to the breakup reactions: {sup 11}Be {yields} {sup 10}Be + n and {sup 11}Li {yields} +2n. The latter is treated as a two-body breakup, using a di-neutron model.
Higher-order photon correlations in pulsed photonic crystal nanolasers
Elvira, D.; Hachair, X.; Braive, R.; Beaudoin, G.; Robert-Philip, I.; Sagnes, I.; Abram, I.; Beveratos, A.; Verma, V. B.; Baek, B.; Nam, S. W.; Stevens, M. J.; Dauler, E. A.
2011-12-15
We report on the higher-order photon correlations of a high-{beta} nanolaser under pulsed excitation at room temperature. Using a multiplexed four-element superconducting single-photon detector we measured g{sup (n)}(0-vector) with n=2,3,4. All orders of correlation display partially chaotic statistics, even at four times the threshold excitation power. We show that this departure from coherence and Poisson statistics is due to the quantum fluctuations associated with the small number of photons at the lasing threshold.
Programming real-time executives in higher order language
NASA Technical Reports Server (NTRS)
Foudriat, E. C.
1982-01-01
Methods by which real-time executive programs can be implemented in a higher order language are discussed, using HAL/S and Path Pascal languages as program examples. Techniques are presented by which noncyclic tasks can readily be incorporated into the executive system. Situations are shown where the executive system can fail to meet its task scheduling and yet be able to recover either by rephasing the clock or stacking the information for later processing. The concept of deadline processing is shown to enable more effective mixing of time and information synchronized systems.
Expected precision for neutron multiplicity assay using higher order moments
Ensslin, N.; Gavron, A.; Harker, W.C.
1997-11-01
This paper reports on the development of a new Figure of Merit code that can calculate the expected precision in neutron multiplicity assay using higher order moments. The code is used to provide a first look at the quadruple coincidence count rate and its expected precision. The results are good enough to warrant further study of potential applications of quadruple (quad) coincidences for large multiplying plutonium items. Also, the new code makes it possible to estimate the multiplicity assay precision if only randomly-triggered moments are used. This approach is described briefly, along with the current status of the investigation.
Higher order temporal finite element methods through mixed formalisms.
Kim, Jinkyu
2014-01-01
The extended framework of Hamilton's principle and the mixed convolved action principle provide new rigorous weak variational formalism for a broad range of initial boundary value problems in mathematical physics and mechanics. In this paper, their potential when adopting temporally higher order approximations is investigated. The classical single-degree-of-freedom dynamical systems are primarily considered to validate and to investigate the performance of the numerical algorithms developed from both formulations. For the undamped system, all the algorithms are symplectic and unconditionally stable with respect to the time step. For the damped system, they are shown to be accurate with good convergence characteristics.
Sandia Higher Order Elements (SHOE) v 0.5 alpha
2013-09-24
SHOE is research code for characterizing and visualizing higher-order finite elements; it contains a framework for defining classes of interpolation techniques and element shapes; methods for interpolating triangular, quadrilateral, tetrahedral, and hexahedral cells using Lagrange and Legendre polynomial bases of arbitrary order; methods to decompose each element into domains of constant gradient flow (using a polynomial solver to identify critical points); and an isocontouring technique that uses this decomposition to guarantee topological correctness. Please notemore » that this is an alpha release of research software and that some time has passed since it was actively developed; build- and run-time issues likely exist.« less
Introduction to Higher Order Spatial Statistics in Cosmology
NASA Astrophysics Data System (ADS)
Szapudi, I.
Higher order spatial statistics characterize non-Gaussian aspects of random fields, which are ubiquitous in cosmology: from the cosmic microwave background (CMB) to the large-scale structure (LSS) of the universe. These random fields are rich in their properties; they can be continuous or discrete; can have one through three, or even more dimensions; their degree of non- Gaussianity ranges from tiny to significant. Yet, there are several techniques and ideas, which are applicable to virtually all cosmological random fields, be it Lyman-a forests, LSS, or CMB.
Analytical formulas for gravitational lensing: Higher order calculation
Amore, Paolo; Arceo, Santiago; Fernandez, Francisco M.
2006-10-15
We extend to higher order a recently published method for calculating the deflection angle of light in a general static and spherically symmetric metric. We have tested our method on the metric of Schwarzschild and Reissner-Nordstroem black holes, on the metric of a charged black hole coupled to Born-Infeld electrodynamics and on the metric of Weyl gravity. Since our method is geometrically convergent, as proved in our previous work, our analytical formulas obtained working to fourth order are sufficient to reach errors of few percents even in proximity of the photon sphere.
Higher order parametric excitation modes for spaceborne quadrupole mass spectrometers
Gershman, D. J.; Block, B. P.; Rubin, M.; Zurbuchen, T. H.; Benna, M.; Mahaffy, P. R.
2011-12-15
This paper describes a technique to significantly improve upon the mass peak shape and mass resolution of spaceborne quadrupole mass spectrometers (QMSs) through higher order auxiliary excitation of the quadrupole field. Using a novel multiresonant tank circuit, additional frequency components can be used to drive modulating voltages on the quadrupole rods in a practical manner, suitable for both improved commercial applications and spaceflight instruments. Auxiliary excitation at frequencies near twice that of the fundamental quadrupole RF frequency provides the advantages of previously studied parametric excitation techniques, but with the added benefit of increased sensed excitation amplitude dynamic range and the ability to operate voltage scan lines through the center of upper stability islands. Using a field programmable gate array, the amplitudes and frequencies of all QMS signals are digitally generated and managed, providing a robust and stable voltage control system. These techniques are experimentally verified through an interface with a commercial Pfeiffer QMG422 quadrupole rod system. When operating through the center of a stability island formed from higher order auxiliary excitation, approximately 50% and 400% improvements in 1% mass resolution and peak stability were measured, respectively, when compared with traditional QMS operation. Although tested with a circular rod system, the presented techniques have the potential to improve the performance of both circular and hyperbolic rod geometry QMS sensors.
Higher order harmonic detection for exploring nonlinear interactions
Vasudevan, Rama K; Okatan, M. B.; Rajapaksa, Indrajit; Kim, Yunseok; Marincel, Dan; Trolier-McKinstry, Susan; Jesse, Stephen; Nagarajan, Valanoor; Kalinin, Sergei V
2013-01-01
Nonlinear dynamics underpin a vast array of physical phenomena ranging from interfacial motion to jamming transitions. In many cases, decoupling the contributions of competing or co-existing mechanisms to the system response can be achieved through investigation of higher order harmonics. Here, a method using band excitation scanning probe microscopy to investigate higher order harmonics of the electromechanical response, with nanometer scale spatial resolution is presented. The utility of the technique is demonstrated by probing the first three harmonics of strain for a well-known system, a model Pb(Zr1-xTix)O3 ferroelectric capacitor. It is shown that the second order harmonic response is correlated with the first harmonic response, whereas the third harmonic is not. Additionally, nanoscale measurements of the second harmonic response with field reveal significant deviations from Rayleigh-type models in the form of a much more complicated field dependence than is observed in the spatially averaged data. These results illustrate the versatility of combining proximal probe techniques with nth harmonic detection methods in exploring and decoupling nonlinear dynamics in a wide variety of nanoscale materials.
Laser-PlasmaWakefield Acceleration with Higher Order Laser Modes
Geddes, C.G.R.; Cormier-Michel, E.; Esarey, E.; Schroeder, C.B.; Mullowney, P.; Paul, K.; Cary, J.R.; Leemans, W.P.
2010-06-01
Laser-plasma collider designs point to staging of multiple accelerator stages at the 10 GeV level, which are to be developed on the upcoming BELLA laser, while Thomson Gamma source designs use GeV stages, both requiring efficiency and low emittance. Design and scaling of stages operating in the quasi-linear regime to address these needs are presented using simulations in the VORPAL framework. In addition to allowing symmetric acceleration of electrons and positrons, which is important for colliders, this regime has the property that the plasma wakefield is proportional to the transverse gradient of the laser intensity profile. We demonstrate use of higher order laser modes to tailor the laser pulse and hence the transverse focusing forces in the plasma. In particular, we show that by using higher order laser modes, we can reduce the focusing fields and hence increase the matched electron beam radius, which is important to increased charge and efficiency, while keeping the low bunch emittance required for applications.
Higher-order ionosphere modeling for CODE's next reprocessing activities
NASA Astrophysics Data System (ADS)
Lutz, S.; Schaer, S.; Meindl, M.; Dach, R.; Steigenberger, P.
2009-12-01
CODE (the Center for Orbit Determination in Europe) is a joint venture between the Astronomical Institute of the University of Bern (AIUB, Bern, Switzerland), the Federal Office of Topography (swisstopo, Wabern, Switzerland), the Federal Agency for Cartography and Geodesy (BKG, Frankfurt am Main, Germany), and the Institut für Astronomische und Phsyikalische Geodäsie of the Technische Universität München (IAPG/TUM, Munich, Germany). It acts as one of the global analysis centers of the International GNSS Service (IGS) and participates in the first IGS reprocessing campaign, a full reanalysis of GPS data collected since 1994. For a future reanalyis of the IGS data it is planned to consider not only first-order but also higher-order ionosphere terms in the space geodetic observations. There are several works (e.g. Fritsche et al. 2005), which showed a significant and systematic influence of these effects on the analysis results. The development version of the Bernese Software used at CODE is expanded by the ability to assign additional (scaling) parameters to each considered higher-order ionosphere term. By this, each correction term can be switched on and off on normal-equation level and, moreover, the significance of each correction term may be verified on observation level for different ionosphere conditions.
Aero-optical jitter estimation using higher-order wavefronts
NASA Astrophysics Data System (ADS)
Whiteley, Matthew R.; Goorskey, David J.; Drye, Richard
2013-07-01
Wavefront measurements from wind tunnel or flight testing of an optical system are affected by jitter sources due to the measurement platform, system vibrations, or aero-mechanical buffeting. Depending on the nature of the testing, the wavefront jitter will be a composite of several effects, one of which is the aero-optical jitter; i.e., the wavefront tilt due to random air density fluctuations. To isolate the aero-optical jitter component from recent testing, we have developed an estimation technique that uses only higher-order wavefront measurements to determine the jitter. By analogy with work done previously with free-stream turbulence, we have developed a minimum mean-square error estimator using higher-order wavefront modes to compute the current-frame tilt components through a linear operation. The estimator is determined from computational fluid dynamics evaluation of aero-optical disturbances, but does not depend on the strength of such disturbances. Applying this technique to turret flight test data, we found aero-optical jitter to be 7.7±0.8 μrad and to scale with (ρ/ρSL)M2 (˜1 μrad in the actual test cases examined). The half-power point of the aero-optical jitter variance was found to be ˜2u∞/Dt and to roll off in temporal frequency with a power law between f and f.
Visualizing Higher Order Finite Elements: FY05 Yearly Report.
Thompson, David; Pebay, Philippe Pierre
2005-11-01
This report contains an algorithm for decomposing higher-order finite elementsinto regions appropriate for isosurfacing and proves the conditions under which thealgorithm will terminate. Finite elements are used to create piecewise polynomialapproximants to the solution of partial differential equations for which no analyticalsolution exists. These polynomials represent fields such as pressure, stress, and mo-mentim. In the past, these polynomials have been linear in each parametric coordinate.Each polynomial coefficient must be uniquely determined by a simulation, and thesecoefficients are called degrees of freedom. When there are not enough degrees of free-dom, simulations will typically fail to produce a valid approximation to the solution.Recent work has shown that increasing the number of degrees of freedom by increas-ing the order of the polynomial approximation (instead of increasing the number offinite elements, each of which has its own set of coefficients) can allow some typesof simulations to produce a valid approximation with many fewer degrees of freedomthan increasing the number of finite elements alone. However, once the simulation hasdetermined the values of all the coefficients in a higher-order approximant, tools donot exist for visual inspection of the solution.This report focuses on a technique for the visual inspection of higher-order finiteelement simulation results based on decomposing each finite element into simplicialregions where existing visualization algorithms such as isosurfacing will work. Therequirements of the isosurfacing algorithm are enumerated and related to the placeswhere the partial derivatives of the polynomial become zero. The original isosurfacingalgorithm is then applied to each of these regions in turn.3 AcknowledgementThe authors would like to thank David Day and Louis Romero for their insight into poly-nomial system solvers and the LDRD Senior Council for the opportunity to pursue thisresearch. The authors were
Neutron scattering studies on chromatin higher-order structure
Graziano, V.; Gerchman, S.E.; Schneider, D.K.; Ramakrishnan, V.
1994-12-31
We have been engaged in studies of the structure and condensation of chromatin into the 30nm filament using small-angle neutron scattering. We have also used deuterated histone H1 to determine its location in the chromatin 30nm filament. Our studies indicate that chromatin condenses with increasing ionic strength to a limiting structure that has a mass per unit length of 6-7 nucleosomes/11 nm. They also show that the linker histone H1/H5 is located in the interior of the chromatin filament, in a position compatible with its binding to the inner face of the nucleosome. Analysis of the mass per unit length as a function of H5 stoichiometry suggests that 5-7 contiguous nucleosomes need to have H5 bound before a stable higher order structure can exist.
Higher-order nonlinear effects in a Josephson parametric amplifier
NASA Astrophysics Data System (ADS)
Kochetov, Bogdan A.; Fedorov, Arkady
2015-12-01
Nonlinearity of the current-phase relationship of a Josephson junction is the key resource for a Josephson parametric amplifier (JPA) as well as for a Josephson traveling-wave parametric amplifier, the only devices in which the quantum limit for added noise has so far been approached at microwave frequencies. A standard approach to describe JPA takes into account only the lowest order (cubic) nonlinearity resulting in a Duffing-like oscillator equation of motion or in a Kerr-type nonlinearity term in the Hamiltonian. In this paper we derive the quantum expression for the gain of JPA including all orders of the Josephson junction nonlinearity in the linear response regime. We then analyze gain saturation effect for stronger signals within a semiclassical approach. Our results reveal nonlinear effects of higher orders and their implications for operation of a JPA.
Pulse transmission transmitter including a higher order time derivate filter
Dress, Jr., William B.; Smith, Stephen F.
2003-09-23
Systems and methods for pulse-transmission low-power communication modes are disclosed. A pulse transmission transmitter includes: a clock; a pseudorandom polynomial generator coupled to the clock, the pseudorandom polynomial generator having a polynomial load input; an exclusive-OR gate coupled to the pseudorandom polynomial generator, the exclusive-OR gate having a serial data input; a programmable delay circuit coupled to both the clock and the exclusive-OR gate; a pulse generator coupled to the programmable delay circuit; and a higher order time derivative filter coupled to the pulse generator. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.
SU(2) Higher-order effective quark interactions from polarization
NASA Astrophysics Data System (ADS)
Braghin, Fábio L.
2016-10-01
Higher order quark effective interactions are found for SU(2) flavor by departing from a non-local quark-quark interaction. By integrating out a component of the quark field, the determinant is expanded in chirally symmetric and symmetry breaking effective interactions up to the fifth order in the quark bilinears. The resulting coupling constants are resolved in the leading order of the longwavelength limit and exact numerical ratios between several of these coupling constants are obtained in the large quark mass limit. In this level, chiral invariant interactions only show up in even powers of the quark bilinears, i.e. O(ψ bar ψ) 2 n (n = 1 , 2 , 3 , . .), whereas (explicit) chiral symmetry breaking terms emerge as O(ψ bar ψ) n being always proportional to some power of the Lagrangian quark mass.
Higher-order behavior classes: contingencies, beliefs, and verbal behavior.
Catania, A C
1995-09-01
The concepts of reinforcement and of higher-order classes of behavior are reviewed and applied to analyses of self-reinforcement, self-efficacy, the causal status of private events, and the role of verbal behavior in human action. The analyses support the case that Bandura's criticisms of behavior analytic thought rest upon several misunderstandings, the most important of which are the distinctions between theories and phenomena and a neglect of the process of ontogenic selection. Bandura's persistence in promoting these misunderstandings is puzzling, because over a period of at least two decades he has repeated without substantial correction arguments that were refuted at the time he first made them. Bandura's views on these concepts can be interpreted as a contemporary variety of creationism in behavioral science. PMID:8576398
Revealing Higher Order Protein Structure Using Mass Spectrometry
NASA Astrophysics Data System (ADS)
Chait, Brian T.; Cadene, Martine; Olinares, Paul Dominic; Rout, Michael P.; Shi, Yi
2016-06-01
The development of rapid, sensitive, and accurate mass spectrometric methods for measuring peptides, proteins, and even intact protein assemblies has made mass spectrometry (MS) an extraordinarily enabling tool for structural biology. Here, we provide a personal perspective of the increasingly useful role that mass spectrometric techniques are exerting during the elucidation of higher order protein structures. Areas covered in this brief perspective include MS as an enabling tool for the high resolution structural biologist, for compositional analysis of endogenous protein complexes, for stoichiometry determination, as well as for integrated approaches for the structural elucidation of protein complexes. We conclude with a vision for the future role of MS-based techniques in the development of a multi-scale molecular microscope.
Higher order correlation beams in atmosphere under strong turbulence conditions.
Avetisyan, H; Monken, C H
2016-02-01
Higher order correlation beams, that is, two-photon beams obtained from the process of spontaneous parametric down-conversion pumped by Hermite-Gauss or Laguerre-Gauss beams of any order, can be used to encode information in many modes, opening the possibility of quantum communication with large alphabets. In this paper we calculate, analytically, the fourth-order correlation function for the Hermite-Gauss and Laguerre-Gauss coherent and partially coherent correlation beams propagating through a strong turbulent medium. We show that fourth-order correlation functions for correlation beams have, under certain conditions, expressions similar to those of intensities of classical beams and are degraded by turbulence in a similar way as the classical beams. Our results can be useful in establishing limits for the use of two-photon beams in quantum communications with larger alphabets under atmospheric turbulence.
Intermediary LEO propagation including higher order zonal harmonics
NASA Astrophysics Data System (ADS)
Hautesserres, Denis; Lara, Martin
2016-10-01
Two new intermediary orbits of the artificial satellite problem are proposed. The analytical solutions include higher order effects of the geopotential, and are obtained by means of a torsion transformation applied to the quasi-Keplerian system resulting after the elimination of the parallax simplification, for the first intermediary, and after the elimination of the parallax and perigee simplifications, for the second one. The new intermediaries perform notably well for low Earth orbits propagation, are free from special functions, and result advantageous, both in accuracy and efficiency, when compared to the standard Cowell integration of the J_2 problem, thus providing appealing alternatives for onboard, short-term, orbit propagation under limited computational resources.
Inflationary scenarios in Starobinsky model with higher order corrections
Artymowski, Michał; Lalak, Zygmunt; Lewicki, Marek
2015-06-17
We consider the Starobinsky inflation with a set of higher order corrections parametrised by two real coefficients λ{sub 1} ,λ{sub 2}. In the Einstein frame we have found a potential with the Starobinsky plateau, steep slope and possibly with an additional minimum, local maximum or a saddle point. We have identified three types of inflationary behaviour that may be generated in this model: i) inflation on the plateau, ii) at the local maximum (topological inflation), iii) at the saddle point. We have found limits on parameters λ{sub i} and initial conditions at the Planck scale which enable successful inflation and disable eternal inflation at the plateau. We have checked that the local minimum away from the GR vacuum is stable and that the field cannot leave it neither via quantum tunnelling nor via thermal corrections.
Higher order mode damping in an ALS test cavity
Jacob, A.F.; Lamberston, G.R. ); Barry, W. )
1990-06-01
The higher order mode attenuation scheme proposed for the Advanced Light Source accelerating cavities consists of two broad-band dampers placed 90{degrees} apart on the outer edge. In order to assess the damping efficiency a test assembly was built. The HOM damping was obtained by comparing the peak values of the transmission through the cavity for both the damped and the undamped case. Because of the high number of modes and frequency shifts due to the damping gear, the damping was assessed statistically, by averaging over several modes. In the frequency range from 1.5 to 5.5 GHz, average damping greater than 100 was obtained. 1 ref., 6 figs.
Higher-order resonances in a Stark decelerator
Meerakker, Sebastiaan Y.T. van de; Bethlem, Hendrick L.; Vanhaecke, Nicolas; Meijer, Gerard
2005-05-15
The motion of polar molecules can be controlled by time-varying inhomogeneous electric fields. In a Stark decelerator, this is exploited to select a fraction of a molecular beam that is accelerated, transported, or decelerated. Phase stability ensures that the selected bunch of molecules is kept together throughout the deceleration process. In this paper an extended description of phase stability in a Stark decelerator is given, including higher-order effects. This analysis predicts a wide variety of resonances that originate from the spatial and temporal periodicity of the electric fields. These resonances are experimentally observed using a beam of OH ({sup 2}{pi}{sub 3/2},v=0,J=3/2) radicals passing through a Stark decelerator.
Dependable software through higher-order strategic programming.
Winter, Victor Lono; Fraij, Fares; Roach, Steve
2004-03-01
Program transformation is a restricted form of software construction that can be amenable to formal verification. When successful, the nature of the evidence provided by such a verification is considered strong and can constitute a major component of an argument that a high-consequence or safety-critical system meets its dependability requirements. This article explores the application of novel higher-order strategic programming techniques to the development of a portion of a class loader for a restricted implementation of the Java Virtual Machine (JVM). The implementation is called the SSP and is intended for use in high-consequence safety-critical embedded systems. Verification of the strategic program using ACL2 is also discussed.
A higher-order-mode erbium-doped-fiber amplifier.
Nicholson, J W; Fini, J M; DeSantolo, A M; Monberg, E; DiMarcello, F; Fleming, J; Headley, C; DiGiovanni, D J; Ghalmi, S; Ramachandran, S
2010-08-16
We demonstrate the first erbium-doped fiber amplifier operating in a single, large-mode area, higher-order mode. A high-power, fundamental-mode, Raman fiber laser operating at 1480 nm was used as a pump source. Using a UV-written, long-period grating, both pump and 1564 nm signal were converted to the LP(0,10) mode, which had an effective area of 2700 microm(2) at 1550 nm. A maximum output power of 5.8 W at 1564 nm with more than 20 dB of gain in a 2.68 m long amplifier was obtained. The mode profile was undistorted at the highest output power.
Higher-order structure of Saccharomyces cerevisiae chromatin
Lowary, P.T.; Widom, J. )
1989-11-01
We have developed a method for partially purifying chromatin from Saccharomyces cerevisiae (baker's yeast) to a level suitable for studies of its higher-order folding. This has required the use of yeast strains that are free of the ubiquitous yeast killer virus. Results from dynamic light scattering, electron microscopy, and x-ray diffraction show that the yeast chromatin undergoes a cation-dependent folding into 30-nm filaments that resemble those characteristic of higher-cell chromatin; moreover, the packing of nucleosomes within the yeast 30-nm filaments is similar to that of higher cells. These results imply that yeast has a protein or protein domain that serves the role of the histone H 1 found in higher cells; physical and genetic studies of the yeast activity could help elucidate the structure and function of H 1. Images of the yeast 30-nm filaments can be used to test crossed-linker models for 30-nm filament structure.
Higher order spin effects in inspiralling compact objects binaries
NASA Astrophysics Data System (ADS)
Marsat, Sylvain
2015-04-01
We present recent progress on higher order spin effects in the post-Newtonian dynamics of compact objects binaries. We present first an extension of a Lagrangian formalism for point particle with spins, where finite size effects are represented by an additional multipolar structure. When applied to the case of a spin-induced octupole, the formalism allows for the computation of the cubic-in-spin effects that enter at the order 3.5PN. We also report on results obtained for quadratic-in-spin effects at the next-to-leading order 3PN. In both cases, we recover existing results for the dynamics, and derive for the first time the gravitational wave energy flux and orbital phasing. These results will be useful for the data analysis of the upcoming generation of advanced detectors of gravitational waves. NASA Grant 11-ATP-046.
Detailed Modeling of Higher Order Hierarchical Kepler Star Systems
NASA Astrophysics Data System (ADS)
Gore, Joanna; Orosz, Jerome A.
2016-06-01
Most stars have stellar companions (i.e. they exist in double, triple, or higher order configurations). Binary star systems are those which contain two stars. These systems are valued scientifically because they allow for the measurement of fundamental stellar properties such as masses and radii. These properties in turn allow for detailed studies of stellar evolution. The Kepler space telescope has discovered roughly 2900 eclipsing binary stars in its field of view. Various studies have shown that roughly 20% of the Kepler eclipsing binaries contain companions are are most likely triple star systems. We present a preliminary survey of the orbital properties of the tertiary bodies in a sample of thirty triple systems. In addition, a small number of the triple systems show eclipse events due to the third star. We present the results of detailed modeling of two of these systems, and discuss how in some cases these triple systems allow for extremely precise measurements of the fundamental stellar parameters.
Higher-order phase transitions on financial markets
NASA Astrophysics Data System (ADS)
Kasprzak, A.; Kutner, R.; Perelló, J.; Masoliver, J.
2010-08-01
Statistical and thermodynamic properties of the anomalous multifractal structure of random interevent (or intertransaction) times were thoroughly studied by using the extended continuous-time random walk (CTRW) formalism of Montroll, Weiss, Scher, and Lax. Although this formalism is quite general (and can be applied to any interhuman communication with nontrivial priority), we consider it in the context of a financial market where heterogeneous agent activities can occur within a wide spectrum of time scales. As the main general consequence, we found (by additionally using the Saddle-Point Approximation) the scaling or power-dependent form of the partition function, Z(q'). It diverges for any negative scaling powers q' (which justifies the name anomalous) while for positive ones it shows the scaling with the general exponent τ(q'). This exponent is the nonanalytic (singular) or noninteger power of q', which is one of the pilar of higher-order phase transitions. In definition of the partition function we used the pausing-time distribution (PTD) as the central one, which takes the form of convolution (or superstatistics used, e.g. for describing turbulence as well as the financial market). Its integral kernel is given by the stretched exponential distribution (often used in disordered systems). This kernel extends both the exponential distribution assumed in the original version of the CTRW formalism (for description of the transient photocurrent measured in amorphous glassy material) as well as the Gaussian one sometimes used in this context (e.g. for diffusion of hydrogen in amorphous metals or for aging effects in glasses). Our most important finding is the third- and higher-order phase transitions, which can be roughly interpreted as transitions between the phase where high frequency trading is most visible and the phase defined by low frequency trading. The specific order of the phase transition directly depends upon the shape exponent α defining the stretched
Mantel, Bruno; Stoffregen, Thomas A.; Campbell, Alain; Bardy, Benoît G.
2015-01-01
Body movement influences the structure of multiple forms of ambient energy, including optics and gravito-inertial force. Some researchers have argued that egocentric distance is derived from inferential integration of visual and non-visual stimulation. We suggest that accurate information about egocentric distance exists in perceptual stimulation as higher-order patterns that extend across optics and inertia. We formalize a pattern that specifies the egocentric distance of a stationary object across higher-order relations between optics and inertia. This higher-order parameter is created by self-generated movement of the perceiver in inertial space relative to the illuminated environment. For this reason, we placed minimal restrictions on the exploratory movements of our participants. We asked whether humans can detect and use the information available in this higher-order pattern. Participants judged whether a virtual object was within reach. We manipulated relations between body movement and the ambient structure of optics and inertia. Judgments were precise and accurate when the higher-order optical-inertial parameter was available. When only optic flow was available, judgments were poor. Our results reveal that participants perceived egocentric distance from the higher-order, optical-inertial consequences of their own exploratory activity. Analysis of participants’ movement trajectories revealed that self-selected movements were complex, and tended to optimize availability of the optical-inertial pattern that specifies egocentric distance. We argue that accurate information about egocentric distance exists in higher-order patterns of ambient energy, that self-generated movement can generate these higher-order patterns, and that these patterns can be detected and used to support perception of egocentric distance that is precise and accurate. PMID:25856410
Higher-order neural network software for distortion invariant object recognition
NASA Technical Reports Server (NTRS)
Reid, Max B.; Spirkovska, Lilly
1991-01-01
The state-of-the-art in pattern recognition for such applications as automatic target recognition and industrial robotic vision relies on digital image processing. We present a higher-order neural network model and software which performs the complete feature extraction-pattern classification paradigm required for automatic pattern recognition. Using a third-order neural network, we demonstrate complete, 100 percent accurate invariance to distortions of scale, position, and in-plate rotation. In a higher-order neural network, feature extraction is built into the network, and does not have to be learned. Only the relatively simple classification step must be learned. This is key to achieving very rapid training. The training set is much smaller than with standard neural network software because the higher-order network only has to be shown one view of each object to be learned, not every possible view. The software and graphical user interface run on any Sun workstation. Results of the use of the neural software in autonomous robotic vision systems are presented. Such a system could have extensive application in robotic manufacturing.
Higher-order Fourier analysis over finite fields and applications
NASA Astrophysics Data System (ADS)
Hatami, Pooya
Higher-order Fourier analysis is a powerful tool in the study of problems in additive and extremal combinatorics, for instance the study of arithmetic progressions in primes, where the traditional Fourier analysis comes short. In recent years, higher-order Fourier analysis has found multiple applications in computer science in fields such as property testing and coding theory. In this thesis, we develop new tools within this theory with several new applications such as a characterization theorem in algebraic property testing. One of our main contributions is a strong near-equidistribution result for regular collections of polynomials. The densities of small linear structures in subsets of Abelian groups can be expressed as certain analytic averages involving linear forms. Higher-order Fourier analysis examines such averages by approximating the indicator function of a subset by a function of bounded number of polynomials. Then, to approximate the average, it suffices to know the joint distribution of the polynomials applied to the linear forms. We prove a near-equidistribution theorem that describes these distributions for the group F(n/p) when p is a fixed prime. This fundamental fact was previously known only under various extra assumptions about the linear forms or the field size. We use this near-equidistribution theorem to settle a conjecture of Gowers and Wolf on the true complexity of systems of linear forms. Our next application is towards a characterization of testable algebraic properties. We prove that every locally characterized affine-invariant property of functions f : F(n/p) → R with n∈ N, is testable. In fact, we prove that any such property P is proximity-obliviously testable. More generally, we show that any affine-invariant property that is closed under subspace restrictions and has "bounded complexity" is testable. We also prove that any property that can be described as the property of decomposing into a known structure of low
Phantom Friedmann cosmologies and higher-order characteristics of expansion
Dabrowski, Mariusz P. . E-mail: mpdabfz@sus.univ.szczecin.pl; Stachowiak, Tomasz . E-mail: toms@oa.uj.edu.pl
2006-04-15
We discuss a more general class of phantom (p < -{rho}) cosmologies with various forms of both phantom (w < -1), and standard (w > -1) matter. We show that many types of evolution which include both Big-Bang and Big-Rip singularities are admitted and give explicit examples. Among some interesting models, there exist non-singular oscillating (or 'bounce') cosmologies, which appear due to a competition between positive and negative pressure of variety of matter content. From the point of view of the current observations the most interesting cosmologies are the ones which start with a Big-Bang and terminate at a Big-Rip. A related consequence of having a possibility of two types of singularities is that there exists an unstable static universe approached by the two asymptotic models-one of them reaches Big-Bang, and another reaches Big-Rip. We also give explicit relations between density parameters {omega} and the dynamical characteristics for these generalized phantom models, including higher-order observational characteristics such as jerk and 'kerk.' Finally, we discuss the observational quantities such as luminosity distance, angular diameter, and source counts, both in series expansion and explicitly, for phantom models. Our series expansion formulas for the luminosity distance and the apparent magnitude go as far as to the fourth-order in redshift z term, which includes explicitly not only the jerk, but also the 'kerk' (or 'snap') which may serve as an indicator of the curvature of the universe.
Transcriptional Derepression Uncovers Cryptic Higher-Order Genetic Interactions
Taylor, Matthew B.; Ehrenreich, Ian M.
2015-01-01
Disruption of certain genes can reveal cryptic genetic variants that do not typically show phenotypic effects. Because this phenomenon, which is referred to as ‘phenotypic capacitance’, is a potential source of trait variation and disease risk, it is important to understand how it arises at the genetic and molecular levels. Here, we use a cryptic colony morphology trait that segregates in a yeast cross to explore the mechanisms underlying phenotypic capacitance. We find that the colony trait is expressed when a mutation in IRA2, a negative regulator of the Ras pathway, co-occurs with specific combinations of cryptic variants in six genes. Four of these genes encode transcription factors that act downstream of the Ras pathway, indicating that the phenotype involves genetically complex changes in the transcriptional regulation of Ras targets. We provide evidence that the IRA2 mutation reveals the phenotypic effects of the cryptic variants by disrupting the transcriptional silencing of one or more genes that contribute to the trait. Supporting this role for the IRA2 mutation, deletion of SFL1, a repressor that acts downstream of the Ras pathway, also reveals the phenotype, largely due to the same cryptic variants that were detected in the IRA2 mutant cross. Our results illustrate how higher-order genetic interactions among mutations and cryptic variants can result in phenotypic capacitance in specific genetic backgrounds, and suggests these interactions might reflect genetically complex changes in gene expression that are usually suppressed by negative regulation. PMID:26484664
Analytical higher-order model for flexible and stretchable sensors
NASA Astrophysics Data System (ADS)
Zhang, Yongfang; Zhu, Hongbin; Liu, Cheng; Liu, Xu; Liu, Fuxi; Lü, Yanjun
2015-03-01
The stretchable sensor wrapped around a foldable airfoil or embedded inside of it has great potential for use in the monitoring of the structural status of the foldable airfoil. The design methodology is important to the development of the stretchable sensor for status monitoring on the foldable airfoil. According to the requirement of mechanical flexibility of the sensor, the combined use of a layered flexible structural formation and a strain isolation layer is implemented. An analytical higher-order model is proposed to predict the stresses of the strain-isolation layer based on the shear-lag model for the safe design of the flexible and stretchable sensors. The normal stress and shear stress equations in the constructed structure of the sensors are obtained by the proposed model. The stress distribution in the structure is investigated when bending load is applied to the structures. The numerical results show that the proposed model can predict the variation of normal stress and shear stress along the thickness of the strain-isolation (polydimethylsiloxane) layer accurately. The results by the proposed model are in good agreement with the finite element method, in which the normal stress is variable while the shear stress is invariable along the thickness direction of strain-isolation layer. The high-order model is proposed to predict the stresses of the layered structure of the flexible and stretchable sensor for monitoring the status of the foldable airfoil.
Image Segmentation Using Higher-Order Correlation Clustering.
Kim, Sungwoong; Yoo, Chang D; Nowozin, Sebastian; Kohli, Pushmeet
2014-09-01
In this paper, a hypergraph-based image segmentation framework is formulated in a supervised manner for many high-level computer vision tasks. To consider short- and long-range dependency among various regions of an image and also to incorporate wider selection of features, a higher-order correlation clustering (HO-CC) is incorporated in the framework. Correlation clustering (CC), which is a graph-partitioning algorithm, was recently shown to be effective in a number of applications such as natural language processing, document clustering, and image segmentation. It derives its partitioning result from a pairwise graph by optimizing a global objective function such that it simultaneously maximizes both intra-cluster similarity and inter-cluster dissimilarity. In the HO-CC, the pairwise graph which is used in the CC is generalized to a hypergraph which can alleviate local boundary ambiguities that can occur in the CC. Fast inference is possible by linear programming relaxation, and effective parameter learning by structured support vector machine is also possible by incorporating a decomposable structured loss function. Experimental results on various data sets show that the proposed HO-CC outperforms other state-of-the-art image segmentation algorithms. The HO-CC framework is therefore an efficient and flexible image segmentation framework. PMID:26352230
Higher order finite element analysis of thick composite laminates
NASA Technical Reports Server (NTRS)
Goering, J.; Kim, H. J.
1992-01-01
A higher order, sub-parametric, laminated, 3D solid finite element was used for the analysis of very thick laminated composite plates. The geometry of this element is defined by four nodes in the X-Y plane which define a prism of material through the thickness of the laminate. There are twenty-four degrees of freedom at each node; translations at the upper and lower surfaces of the laminate in each of the three coordinate directions, and the derivatives of these translations with respect to each coordinate. This choice of degrees of freedom leads to displacement and strain compatibility at the corners. Stacking sequence effects are accounted for by explicitly integrating the strain energy density through the thickness of the element. The laminated solid element was combined with a gap-contact element to analyze thick laminated composite lugs loaded through flexible pins. The resulting model accounts for pin bending effects that produce non-uniform bearing stresses through the thickness of the lug. A thick composite lug experimental test program was performed, and provided data that was used to validate the analytical model. Two lug geometries and three stacking sequences were tested.
Dynamical stability of Minkowski space in higher order gravity
NASA Astrophysics Data System (ADS)
Tretyakov, Petr V.
2015-06-01
We discuss the Minkowski stability problem in modified gravity by using dynamical system approach. The method to investigate dynamical stability of Minkowski space is proposed. This method was applied for some modified gravity theories, such as f(R) gravity, f(R)+αR□R gravity and scalar-tensor gravity models with non-minimal kinetic coupling. It was shown that in the case of f(R) gravity Minkowski solution is asymptotically stable in ghost-free (f‧ > 0) and tachyon-free (f″ > 0) theories in expanding Universe with respect to isotropic and basic anisotropic perturbations. In the case of higher order gravity with αR□R correction conditions of Minkowski stability with respect to isotropic perturbations are significantly different: f‧(0) < 0, f″(0) < 0 and 3f‧(0) + f″(0)2/α > 0. And in the case of scalar-tensor gravity with non-minimal kinetic coupling Minkowski solution is asymptotically stable in expanding Universe with respect to isotropic perturbations of metric. Moreover, the developed method may be used for finding additional restrictions on parameters of different modified gravity theories.
Higher-Order Synaptic Interactions Coordinate Dynamics in Recurrent Networks
Chambers, Brendan; MacLean, Jason N.
2016-01-01
Linking synaptic connectivity to dynamics is key to understanding information processing in neocortex. Circuit dynamics emerge from complex interactions of interconnected neurons, necessitating that links between connectivity and dynamics be evaluated at the network level. Here we map propagating activity in large neuronal ensembles from mouse neocortex and compare it to a recurrent network model, where connectivity can be precisely measured and manipulated. We find that a dynamical feature dominates statistical descriptions of propagating activity for both neocortex and the model: convergent clusters comprised of fan-in triangle motifs, where two input neurons are themselves connected. Fan-in triangles coordinate the timing of presynaptic inputs during ongoing activity to effectively generate postsynaptic spiking. As a result, paradoxically, fan-in triangles dominate the statistics of spike propagation even in randomly connected recurrent networks. Interplay between higher-order synaptic connectivity and the integrative properties of neurons constrains the structure of network dynamics and shapes the routing of information in neocortex. PMID:27542093
Higher-order scene statistics of breast images
NASA Astrophysics Data System (ADS)
Abbey, Craig K.; Sohl-Dickstein, Jascha N.; Olshausen, Bruno A.; Eckstein, Miguel P.; Boone, John M.
2009-02-01
Researchers studying human and computer vision have found description and construction of these systems greatly aided by analysis of the statistical properties of naturally occurring scenes. More specifically, it has been found that receptive fields with directional selectivity and bandwidth properties similar to mammalian visual systems are more closely matched to the statistics of natural scenes. It is argued that this allows for sparse representation of the independent components of natural images [Olshausen and Field, Nature, 1996]. These theories have important implications for medical image perception. For example, will a system that is designed to represent the independent components of natural scenes, where objects occlude one another and illumination is typically reflected, be appropriate for X-ray imaging, where features superimpose on one another and illumination is transmissive? In this research we begin to examine these issues by evaluating higher-order statistical properties of breast images from X-ray projection mammography (PM) and dedicated breast computed tomography (bCT). We evaluate kurtosis in responses of octave bandwidth Gabor filters applied to PM and to coronal slices of bCT scans. We find that kurtosis in PM rises and quickly saturates for filter center frequencies with an average value above 0.95. By contrast, kurtosis in bCT peaks near 0.20 cyc/mm with kurtosis of approximately 2. Our findings suggest that the human visual system may be tuned to represent breast tissue more effectively in bCT over a specific range of spatial frequencies.
Predicting perceptual learning from higher-order cortical processing.
Wang, Fang; Huang, Jing; Lv, Yaping; Ma, Xiaoli; Yang, Bin; Wang, Encong; Du, Boqi; Li, Wu; Song, Yan
2016-01-01
Visual perceptual learning has been shown to be highly specific to the retinotopic location and attributes of the trained stimulus. Recent psychophysical studies suggest that these specificities, which have been associated with early retinotopic visual cortex, may in fact not be inherent in perceptual learning and could be related to higher-order brain functions. Here we provide direct electrophysiological evidence in support of this proposition. In a series of event-related potential (ERP) experiments, we recorded high-density electroencephalography (EEG) from human adults over the course of learning in a texture discrimination task (TDT). The results consistently showed that the earliest C1 component (68-84ms), known to reflect V1 activity driven by feedforward inputs, was not modulated by learning regardless of whether the behavioral improvement is location specific or not. In contrast, two later posterior ERP components (posterior P1 and P160-350) over the occipital cortex and one anterior ERP component (anterior P160-350) over the prefrontal cortex were progressively modified day by day. Moreover, the change of the anterior component was closely correlated with improved behavioral performance on a daily basis. Consistent with recent psychophysical and imaging observations, our results indicate that perceptual learning can mainly involve changes in higher-level visual cortex as well as in the neural networks responsible for cognitive functions such as attention and decision making.
A general higher-order remap algorithm for ALE calculations
Chiravalle, Vincent P
2011-01-05
A numerical technique for solving the equations of fluid dynamics with arbitrary mesh motion is presented. The three phases of the Arbitrary Lagrangian Eulerian (ALE) methodology are outlined: the Lagrangian phase, grid relaxation phase and remap phase. The Lagrangian phase follows a well known approach from the HEMP code; in addition the strain rate andflow divergence are calculated in a consistent manner according to Margolin. A donor cell method from the SALE code forms the basis of the remap step, but unlike SALE a higher order correction based on monotone gradients is also added to the remap. Four test problems were explored to evaluate the fidelity of these numerical techniques, as implemented in a simple test code, written in the C programming language, called Cercion. Novel cell-centered data structures are used in Cercion to reduce the complexity of the programming and maximize the efficiency of memory usage. The locations of the shock and contact discontinuity in the Riemann shock tube problem are well captured. Cercion demonstrates a high degree of symmetry when calculating the Sedov blast wave solution, with a peak density at the shock front that is similar to the value determined by the RAGE code. For a flyer plate test problem both Cercion and FLAG give virtually the same velocity temporal profile at the target-vacuum interface. When calculating a cylindrical implosion of a steel shell, Cercion and FLAG agree well and the Cercion results are insensitive to the use of ALE.
Higher-order web link analysis using multilinear algebra.
Kenny, Joseph P.; Bader, Brett William; Kolda, Tamara Gibson
2005-07-01
Linear algebra is a powerful and proven tool in web search. Techniques, such as the PageRank algorithm of Brin and Page and the HITS algorithm of Kleinberg, score web pages based on the principal eigenvector (or singular vector) of a particular non-negative matrix that captures the hyperlink structure of the web graph. We propose and test a new methodology that uses multilinear algebra to elicit more information from a higher-order representation of the hyperlink graph. We start by labeling the edges in our graph with the anchor text of the hyperlinks so that the associated linear algebra representation is a sparse, three-way tensor. The first two dimensions of the tensor represent the web pages while the third dimension adds the anchor text. We then use the rank-1 factors of a multilinear PARAFAC tensor decomposition, which are akin to singular vectors of the SVD, to automatically identify topics in the collection along with the associated authoritative web pages.
A consolidation algorithm for genomes fractionated after higher order polyploidization
2012-01-01
Background It has recently been shown that fractionation, the random loss of excess gene copies after a whole genome duplication event, is a major cause of gene order disruption. When estimating evolutionary distances between genomes based on chromosomal rearrangement, fractionation inevitably leads to significant overestimation of classic rearrangement distances. This bias can be largely avoided when genomes are preprocessed by "consolidation", a procedure that identifies and accounts for regions of fractionation. Results In this paper, we present a new consolidation algorithm that extends and improves previous work in several directions. We extend the notion of the fractionation region to use information provided by regions where this process is still ongoing. The new algorithm can optionally work with this new definition of fractionation region and is able to process not only tetraploids but also genomes that have undergone hexaploidization and polyploidization events of higher order. Finally, this algorithm reduces the asymptotic time complexity of consolidation from quadratic to linear dependence on the genome size. The new algorithm is applied both to plant genomes and to simulated data to study the effect of fractionation in ancient hexaploids. PMID:23282012
Higher-Order Synaptic Interactions Coordinate Dynamics in Recurrent Networks.
Chambers, Brendan; MacLean, Jason N
2016-08-01
Linking synaptic connectivity to dynamics is key to understanding information processing in neocortex. Circuit dynamics emerge from complex interactions of interconnected neurons, necessitating that links between connectivity and dynamics be evaluated at the network level. Here we map propagating activity in large neuronal ensembles from mouse neocortex and compare it to a recurrent network model, where connectivity can be precisely measured and manipulated. We find that a dynamical feature dominates statistical descriptions of propagating activity for both neocortex and the model: convergent clusters comprised of fan-in triangle motifs, where two input neurons are themselves connected. Fan-in triangles coordinate the timing of presynaptic inputs during ongoing activity to effectively generate postsynaptic spiking. As a result, paradoxically, fan-in triangles dominate the statistics of spike propagation even in randomly connected recurrent networks. Interplay between higher-order synaptic connectivity and the integrative properties of neurons constrains the structure of network dynamics and shapes the routing of information in neocortex. PMID:27542093
Distortion Measurement of Multi-Finger Transistor Using Split Higher-Order Laue Zone Lines Analysis
NASA Astrophysics Data System (ADS)
Uesugi, Fumihiko; Yamazaki, Takashi; Kuramochi, Koji; Hashimoto, Iwao; Kojima, Kenji; Takeno, Shiro
2008-05-01
A distortion measurement in a region close to the interface between different materials in LSI is performed using a convergent beam electron diffraction (CBED) pattern. Split higher-order Laue zone (HOLZ) lines emerge in the CBED pattern so that a stressing region is observed close to the interface. The calculation method of the split HOLZ lines based on kinematical approximation with the sample's deformation model well reflects the experimental results. As a result of split HOLZ line analysis using the present method, it is found that there is distortion depending on the external form of a multi-finger transistor.
Separating higher-order nonlinearities in transient absorption microscopy
NASA Astrophysics Data System (ADS)
Wilson, Jesse W.; Anderson, Miguel; Park, Jong Kang; Fischer, Martin C.; Warren, Warren S.
2015-08-01
The transient absorption response of melanin is a promising optically-accessible biomarker for distinguishing malignant melanoma from benign pigmented lesions, as demonstrated by earlier experiments on thin sections from biopsied tissue. The technique has also been demonstrated in vivo, but the higher optical intensity required for detecting these signals from backscattered light introduces higher-order nonlinearities in the transient response of melanin. These components that are higher than linear with respect to the pump or the probe introduce intensity-dependent changes to the overall response that complicate data analysis. However, our data also suggest these nonlinearities might be advantageous to in vivo imaging, in that different types of melanins have different nonlinear responses. Therefore, methods to separate linear from nonlinear components in transient absorption measurements might provide additional information to aid in the diagnosis of melanoma. We will discuss numerical methods for analyzing the various nonlinear contributions to pump-probe signals, with the ultimate objective of real time analysis using digital signal processing techniques. To that end, we have replaced the lock-in amplifier in our pump-probe microscope with a high-speed data acquisition board, and reprogrammed the coprocessor field-programmable gate array (FPGA) to perform lock-in detection. The FPGA lock-in offers better performance than the commercial instrument, in terms of both signal to noise ratio and speed. In addition, the flexibility of the digital signal processing approach enables demodulation of more complicated waveforms, such as spread-spectrum sequences, which has the potential to accelerate microscopy methods that rely on slow relaxation phenomena, such as photo-thermal and phosphorescence lifetime imaging.
Higher order chromatin structures in maize and Arabidopsis.
Paul, A L; Ferl, R J
1998-01-01
We are investigating the nature of plant genome domain organization by using DNase I- and topoisomerase II-mediated cleavage to produce domains reflecting higher order chromatin structures. Limited digestion of nuclei with DNase I results in the conversion of the >800 kb genomic DNA to an accumulation of fragments that represents a collection of individual domains of the genome created by preferential cleavage at super-hypersensitive regions. The median size of these fragments is approximately 45 kb in maize and approximately 25 kb in Arabidopsis. Hybridization analyses with specific gene probes revealed that individual genes occupy discrete domains within the distribution created by DNase I. The maize alcohol dehydrogenase Adh1 gene occupies a domain of 90 kb, and the maize general regulatory factor GRF1 gene occupies a domain of 100 kb in length. Arabidopsis Adh was found within two distinct domains of 8.3 and 6.1 kb, whereas an Arabidopsis GRF gene occupies a single domain of 27 kb. The domains created by topoisomerase II-mediated cleavage are identical in size to those created by DNase I. These results imply that the genome is not packaged by means of a random gathering of the genome into domains of indiscriminate length but rather that the genome is gathered into specific domains and that a gene consistently occupies a discrete physical section of the genome. Our proposed model is that these large organizational domains represent the fundamental structural loop domains created by attachment of chromatin to the nuclear matrix at loop basements. These loop domains may be distinct from the domains created by the matrix attachment regions that typically flank smaller, often functionally distinct sections of the genome. PMID:9707534
The assembly bias of dark matter haloes to higher orders
NASA Astrophysics Data System (ADS)
Angulo, R. E.; Baugh, C. M.; Lacey, C. G.
2008-06-01
We use an extremely large volume (2.4h-3Gpc3), high-resolution N-body simulation to measure the higher order clustering of dark matter haloes as a function of mass and internal structure. As a result of the large simulation volume and the use of a novel `cross-moment' counts-in-cells technique which suppresses discreteness noise, we are able to measure the clustering of haloes corresponding to rarer peaks than was possible in previous studies; the rarest haloes for which we measure the variance are 100 times more clustered than the dark matter. We are able to extract, for the first time, halo bias parameters from linear up to fourth order. For all orders measured, we find that the bias parameters are a strong function of mass for haloes more massive than the characteristic mass M*. Currently, no theoretical model is able to reproduce this mass dependence closely. We find that the bias parameters also depend on the internal structure of the halo up to fourth order. For haloes more massive than M*, we find that the more concentrated haloes are more weakly clustered than the less concentrated ones. We see no dependence of clustering on concentration for haloes with masses M < M* this is contrary to the trend reported in the literature when segregating haloes by their formation time. Our results are insensitive to whether haloes are labelled by the total mass returned by the friends-of-friends group finder or by the mass of the most massive substructure. This implies that our conclusions are not an artefact of the particular choice of group finding algorithm. Our results will provide important input to theoretical models of galaxy clustering.
Emotion recognition from EEG using higher order crossings.
Petrantonakis, Panagiotis C; Hadjileontiadis, Leontios J
2010-03-01
Electroencephalogram (EEG)-based emotion recognition is a relatively new field in the affective computing area with challenging issues regarding the induction of the emotional states and the extraction of the features in order to achieve optimum classification performance. In this paper, a novel emotion evocation and EEG-based feature extraction technique is presented. In particular, the mirror neuron system concept was adapted to efficiently foster emotion induction by the process of imitation. In addition, higher order crossings (HOC) analysis was employed for the feature extraction scheme and a robust classification method, namely HOC-emotion classifier (HOC-EC), was implemented testing four different classifiers [quadratic discriminant analysis (QDA), k-nearest neighbor, Mahalanobis distance, and support vector machines (SVMs)], in order to accomplish efficient emotion recognition. Through a series of facial expression image projection, EEG data have been collected by 16 healthy subjects using only 3 EEG channels, namely Fp1, Fp2, and a bipolar channel of F3 and F4 positions according to 10-20 system. Two scenarios were examined using EEG data from a single-channel and from combined-channels, respectively. Compared with other feature extraction methods, HOC-EC appears to outperform them, achieving a 62.3% (using QDA) and 83.33% (using SVM) classification accuracy for the single-channel and combined-channel cases, respectively, differentiating among the six basic emotions, i.e., happiness, surprise, anger, fear, disgust, and sadness. As the emotion class-set reduces its dimension, the HOC-EC converges toward maximum classification rate (100% for five or less emotions), justifying the efficiency of the proposed approach. This could facilitate the integration of HOC-EC in human machine interfaces, such as pervasive healthcare systems, enhancing their affective character and providing information about the user's emotional status (e.g., identifying user's emotion
Limb apraxias: higher-order disorders of sensorimotor integration.
Leiguarda, R C; Marsden, C D
2000-05-01
Limb apraxia comprises a wide spectrum of higher-order motor disorders that result from acquired brain disease affecting the performance of skilled, learned movements. At present, limb apraxia is primarily classified by the nature of the errors made by the patient and the pathways through which these errors are elicited, based on a two-system model for the organization of action: a conceptual system and a production system. Dysfunction of the former would cause ideational (or conceptual) apraxia, whereas impairment of the latter would induce ideomotor and limb-kinetic apraxia. Currently, it is possible to approach several types of limb apraxia within the framework of our knowledge of the modular organization of the brain. Multiple parallel parietofrontal circuits, devoted to specific sensorimotor transformations, have been described in monkeys: visual and somatosensory transformations for reaching; transformation of information about the location of body parts necessary for the control of movements; somatosensory transformation for posture; visual transformation for grasping; and internal representation of actions. Evidence from anatomical and functional brain imaging studies suggests that the organization of the cortical motor system in humans is based on the same principles. Imitation of postures and movements also seems to be subserved by dedicated neural systems, according to the content of the gesture (meaningful versus meaningless) to be imitated. Damage to these systems would produce different types of ideomotor and limb-kinetic praxic deficits depending on the context in which the movement is performed and the cognitive demands of the action. On the other hand, ideational (or conceptual) apraxia would reflect an inability to select and use objects due to the disruption of normal integration between systems subserving the functional knowledge of actions and those involved in object knowledge.
Gauge unification of fundamental forces
NASA Astrophysics Data System (ADS)
Salam, Abdus
The following sections are included: * I. Fundamental Particles, Fundamental Forces, and Gauge Unification * II. The Emergence of Spontaneously Broken SU(2)×U(1) Gauge Theory * III. The Present and Its Problems * IV. Direct Extrapolation from the Electroweak to the Electronuclear * A. The three ideas * B. Tests of electronuclear grand unification * V. Elementarity: Unification with Gravity and Nature of Charge * A. The quest for elementarity, prequarks (preons and pre-preons * B. Post-Planck physics, supergravity, and Einstein's dreams * C. Extended supergravity, SU(8) preons, and composite gauge fields * Appendix A: Examples of Grand Unifying Groups * Appendix B: Does the Grand Plateau really exist * References
Dynamics and phenomenology of higher order gravity cosmological models
NASA Astrophysics Data System (ADS)
Moldenhauer, Jacob Andrew
2010-10-01
I present here some new results about a systematic approach to higher-order gravity (HOG) cosmological models. The HOG models are derived from curvature invariants that are more general than the Einstein-Hilbert action. Some of the models exhibit late-time cosmic acceleration without the need for dark energy and fit some current observations. The open question is that there are an infinite number of invariants that one could select, and many of the published papers have stressed the need to find a systematic approach that will allow one to study methodically the various possibilities. We explore a new connection that we made between theorems from the theory of invariants in general relativity and these cosmological models. In summary, the theorems demonstrate that curvature invariants are not all independent from each other and that for a given Ricci Segre type and Petrov type (symmetry classification) of the space-time, there exists a complete minimal set of independent invariants (a basis) in terms of which all the other invariants can be expressed. As an immediate consequence of the proposed approach, the number of invariants to consider is dramatically reduced from infinity to four invariants in the worst case and to only two invariants in the cases of interest, including all Friedmann-Lemaitre-Robertson-Walker metrics. We derive models that pass stability and physical acceptability conditions. We derive dynamical equations and phase portrait analyses that show the promise of the systematic approach. We consider observational constraints from magnitude-redshift Supernovae Type Ia data, distance to the last scattering surface of the Cosmic Microwave Background radiation, and Baryon Acoustic Oscillations. We put observational constraints on general HOG models. We constrain different forms of the Gauss-Bonnet, f(G), modified gravity models with these observations. We show some of these models pass solar system tests. We seek to find models that pass physical and
Higher-order spectra for identification of nonlinear modal coupling
NASA Astrophysics Data System (ADS)
Hickey, Daryl; Worden, Keith; Platten, Michael F.; Wright, Jan R.; Cooper, Jonathan E.
2009-05-01
Over the past four decades considerable work has been done in the area of power spectrum estimation. The information contained within the power spectrum relates to a signal's autocorrelation or 'second-order statistics'. The power spectrum provides a complete statistical description of a Gaussian process; however, a problem with this information is that it is phase blind. This problem is addressed if one turns to a system's frequency response function (FRF). The FRF graphs the magnitude and phase of the frequency response of a system; in order to do this it requires information regarding the frequency content of the input and output signals. Situations arise in science and engineering whereby signal analysts are required to look beyond second-order statistics and analyse a signal's higher-order statistics (HOS). HOS or spectra give information on a signal's deviation from Gaussianity and consequently are a good indicator function for the presence of nonlinearity within a system. One of the main problems in nonlinear system identification is that of high modal density. Many modelling schemes involve making some expansion of the nonlinear restoring force in terms of polynomial or other basis terms. If more than one degree-of-freedom is involved this becomes a multivariate problem and the number of candidate terms in the expansion grows explosively with the order of nonlinearity and the number of degrees-of-freedom. This paper attempts to use HOS to detect and qualify nonlinear behaviour for a number of symmetrical and asymmetrical systems over a range of degrees-of-freedom. In doing so the paper also attempts to show that HOS are a more sensitive tool than the FRF in detecting nonlinearity. Furthermore, the object of this paper is to try and identify which modes couple in a nonlinear manner in order to reduce the number of candidate coupling terms, for a model, as much as possible. The bispectrum method has previously been applied to simple low-DOF systems with high
Upgrading the Marketing Curriculum: The Integration of Higher-Order Skills. A Perspective.
ERIC Educational Resources Information Center
Schoettinger, Nancy L.
1985-01-01
Discusses the support for higher-order skills in the secondary school and vocational curricula, the need for higher-order skills in the marketing curriculum, methods of teaching higher-order skills, and implications for teacher education. (CT)
Linguistic Unification and Language Rights.
ERIC Educational Resources Information Center
Akinnaso, F. Niyi
1994-01-01
This paper examines the tension between linguistic unification and language rights in Nigeria and assesses the nature, causes, and implications of the tension against the backgrounds of the country's history, political development, and language situation. (Contains 116 references.) (MDM)
The use of higher-order statistics in rapid object categorization in natural scenes.
Banno, Hayaki; Saiki, Jun
2015-02-04
We can rapidly and efficiently recognize many types of objects embedded in complex scenes. What information supports this object recognition is a fundamental question for understanding our visual processing. We investigated the eccentricity-dependent role of shape and statistical information for ultrarapid object categorization, using the higher-order statistics proposed by Portilla and Simoncelli (2000). Synthesized textures computed by their algorithms have the same higher-order statistics as the originals, while the global shapes were destroyed. We used the synthesized textures to manipulate the availability of shape information separately from the statistics. We hypothesized that shape makes a greater contribution to central vision than to peripheral vision and that statistics show the opposite pattern. Results did not show contributions clearly biased by eccentricity. Statistical information demonstrated a robust contribution not only in peripheral but also in central vision. For shape, the results supported the contribution in both central and peripheral vision. Further experiments revealed some interesting properties of the statistics. They are available for a limited time, attributable to the presence or absence of animals without shape, and predict how easily humans detect animals in original images. Our data suggest that when facing the time constraint of categorical processing, higher-order statistics underlie our significant performance for rapid categorization, irrespective of eccentricity.
NASA Astrophysics Data System (ADS)
Rummel, R.
2012-12-01
With the gravity field and steady-state ocean circulation explorer (GOCE) (preferably combined with the gravity field and climate experiment (GRACE)) a new generation of geoid models will become available for use in height determination. These models will be globally consistent, accurate (
How does participation in inquiry-based activities influence gifted students' higher order thinking?
NASA Astrophysics Data System (ADS)
Reger, Barbara H.
Inquiry-based learning is considered a useful technique to strengthen the critical thinking skills of students. The National Science Standards emphasize its use and the complexities and challenge it provides are well suited for meeting the needs of the gifted. While many studies have documented the effectiveness of this type of instruction, there is a lack of research on growth in higher-order thinking through participation in science inquiry. This study investigated such growth among a small group of gifted fifth-grade students. In this study a group of fifth-grade gifted science students completed a series of three forensics inquiry lessons, and documented questions, ideas and reflections as they constructed evidence to solve a crime. From this class of students, one small group was purposely selected to serve as the focus of the study. Using qualitative techniques, the questions and statements students made as they interacted in the activity were analyzed. Videotaped comments and student logs were coded for emerging patterns and also examined for evidence of increased levels of higher-order thinking based on a rubric that was designed using the six levels of Bloom's Taxonomy. Evidence from this study showed marked increase in and deeper levels of higher-order thinking for two of the students. The other boy and girl showed progress using the inquiry activities, but it was not as evident. The social dynamics of the group seemed to hinder one girl's participation during some of the activities. The social interactions played a role in strengthening the exchange of ideas and thinking skills for the others. The teacher had a tremendous influence over the production of higher-level statements by modeling that level of thinking as she questioned the students. Through her practice of answering a question with a question, she gradually solicited more analytical thinking from her students.
Gauge coupling unification in gauge-Higgs grand unification
NASA Astrophysics Data System (ADS)
Yamatsu, Naoki
2016-04-01
We discuss renormalization group equations for gauge coupling constants in gauge-Higgs grand unification on five-dimensional Randall-Sundrum warped space. We show that all four-dimensional Standard Model gauge coupling constants are asymptotically free and are effectively unified in SO(11) gauge-Higgs grand unified theories on 5D Randall-Sundrum warped space.
Higher-order Multivariable Polynomial Regression to Estimate Human Affective States
NASA Astrophysics Data System (ADS)
Wei, Jie; Chen, Tong; Liu, Guangyuan; Yang, Jiemin
2016-03-01
From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating human affective states through computational models such as multivariate linear-regression analysis, support vector regression, and artificial neural network, have been proposed in the past decade. In these models, linear models are generally lack of precision because of ignoring intrinsic nonlinearities of complex psychophysiological processes; and nonlinear models commonly adopt complicated algorithms. To improve accuracy and simplify model, we introduce a new computational modeling method named as higher-order multivariable polynomial regression to estimate human affective states. The study employs standardized pictures in the International Affective Picture System to induce thirty subjects’ affective states, and obtains pure affective patterns of skin conductance as input variables to the higher-order multivariable polynomial model for predicting affective valence and arousal. Experimental results show that our method is able to obtain efficient correlation coefficients of 0.98 and 0.96 for estimation of affective valence and arousal, respectively. Moreover, the method may provide certain indirect evidences that valence and arousal have their brain’s motivational circuit origins. Thus, the proposed method can serve as a novel one for efficiently estimating human affective states.
Higher-order Multivariable Polynomial Regression to Estimate Human Affective States.
Wei, Jie; Chen, Tong; Liu, Guangyuan; Yang, Jiemin
2016-01-01
From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating human affective states through computational models such as multivariate linear-regression analysis, support vector regression, and artificial neural network, have been proposed in the past decade. In these models, linear models are generally lack of precision because of ignoring intrinsic nonlinearities of complex psychophysiological processes; and nonlinear models commonly adopt complicated algorithms. To improve accuracy and simplify model, we introduce a new computational modeling method named as higher-order multivariable polynomial regression to estimate human affective states. The study employs standardized pictures in the International Affective Picture System to induce thirty subjects' affective states, and obtains pure affective patterns of skin conductance as input variables to the higher-order multivariable polynomial model for predicting affective valence and arousal. Experimental results show that our method is able to obtain efficient correlation coefficients of 0.98 and 0.96 for estimation of affective valence and arousal, respectively. Moreover, the method may provide certain indirect evidences that valence and arousal have their brain's motivational circuit origins. Thus, the proposed method can serve as a novel one for efficiently estimating human affective states. PMID:26996254
Higher-order Multivariable Polynomial Regression to Estimate Human Affective States
Wei, Jie; Chen, Tong; Liu, Guangyuan; Yang, Jiemin
2016-01-01
From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating human affective states through computational models such as multivariate linear-regression analysis, support vector regression, and artificial neural network, have been proposed in the past decade. In these models, linear models are generally lack of precision because of ignoring intrinsic nonlinearities of complex psychophysiological processes; and nonlinear models commonly adopt complicated algorithms. To improve accuracy and simplify model, we introduce a new computational modeling method named as higher-order multivariable polynomial regression to estimate human affective states. The study employs standardized pictures in the International Affective Picture System to induce thirty subjects’ affective states, and obtains pure affective patterns of skin conductance as input variables to the higher-order multivariable polynomial model for predicting affective valence and arousal. Experimental results show that our method is able to obtain efficient correlation coefficients of 0.98 and 0.96 for estimation of affective valence and arousal, respectively. Moreover, the method may provide certain indirect evidences that valence and arousal have their brain’s motivational circuit origins. Thus, the proposed method can serve as a novel one for efficiently estimating human affective states. PMID:26996254
The Meaning of Higher-Order Factors in Reflective-Measurement Models
ERIC Educational Resources Information Center
Eid, Michael; Koch, Tobias
2014-01-01
Higher-order factor analysis is a widely used approach for analyzing the structure of a multidimensional test. Whenever first-order factors are correlated researchers are tempted to apply a higher-order factor model. But is this reasonable? What do the higher-order factors measure? What is their meaning? Willoughby, Holochwost, Blanton, and Blair…
Problems in unification and supergravity
Farrar, G.; Henyey, F.
1984-01-01
Problems in unification of the various gauge groups, quantum gravity, supersymmetry and supergravity, compact dimensions of space-time, and conditions at the beginning of the universe are discussed. Separate entries were prepared for the data base for the 15 papers presented. (WHK)
Poletti, Mark A; Betlehem, Terence; Abhayapala, Thushara D
2014-07-01
Higher order sound sources of Nth order can radiate sound with 2N + 1 orthogonal radiation patterns, which can be represented as phase modes or, equivalently, amplitude modes. This paper shows that each phase mode response produces a spiral wave front with a different spiral rate, and therefore a different direction of arrival of sound. Hence, for a given receiver position a higher order source is equivalent to a linear array of 2N + 1 monopole sources. This interpretation suggests performance similar to a circular array of higher order sources can be produced by an array of sources, each of which consists of a line array having monopoles at the apparent source locations of the corresponding phase modes. Simulations of higher order arrays and arrays of equivalent line sources are presented. It is shown that the interior fields produced by the two arrays are essentially the same, but that the exterior fields differ because the higher order sources produces different equivalent source locations for field positions outside the array. This work provides an explanation of the fact that an array of L Nth order sources can reproduce sound fields whose accuracy approaches the performance of (2N + 1)L monopoles.
Raman amplification of pure side-seeded higher-order modes in hydrogen-filled hollow-core PCF.
Ménard, Jean-Michel; Trabold, Barbara M; Abdolvand, Amir; Russell, Philip St J
2015-01-26
We use Raman amplification in hydrogen-filled hollow-core kagomé photonic crystal fiber to generate high energy pulses in pure single higher-order modes. The desired higher-order mode at the Stokes frequency is precisely seeded by injecting a pulse of light from the side, using a prism to select the required modal propagation constant. An intense pump pulse in the fundamental mode transfers its energy to the Stokes seed pulse with measured gains exceeding 60 dB and output pulse energies as high as 8 µJ. A pressure gradient is used to suppress stimulated Raman scattering into the fundamental mode at the Stokes frequency. The growth of the Stokes pulse energy is experimentally and theoretically investigated for six different higher-order modes. The technique has significant advantages over the use of spatial light modulators to synthesize higher-order mode patterns, since it is very difficult to perfectly match the actual eigenmode of the fiber core, especially for higher-order modes with complex multi-lobed transverse field profiles.
Effects of higher-order aberration correction on stereopsis at different viewing durations.
Kang, Jian; Xiao, Fei; Zhao, Junlei; Zhao, Haoxin; Hu, Yiyun; Tang, Guomao; Dai, Yun; Zhang, Yudong
2015-07-01
To better understand how the eye's optics affects stereopsis, we measured stereoacuity before and after higher-order aberration (HOA) correction with a binocular adaptive optics visual simulator. The HOAs were corrected either binocularly or monocularly in the better eye (the eye with better contrast sensitivity). A two-line stereo pattern served as the visual stimulus. Stereo thresholds at different viewing durations were obtained with the psychophysical method of constant stimuli. Binocular HOA correction led to significant improvement in stereoacuity. However, better eye HOA correction could bring either a bad degradation or a slight improvement in stereoacuity. As viewing duration increased, the stereo benefit approached the level of 1.0 for both binocular and better eye correction, suggesting that long viewing durations might weaken the effects of the eye's optical quality on stereopsis.
Naturality, unification, and dark matter
Kainulainen, Kimmo; Virkajaervi, Jussi; Tuominen, Kimmo
2010-08-15
We consider a model where electroweak symmetry breaking is driven by technicolor dynamics with minimal particle content required for walking coupling and saturation of global anomalies. Furthermore, the model features three additional Weyl fermions singlet under technicolor interactions, two of which provide for a one-loop unification of the standard model gauge couplings. Among these extra matter fields exists a possible candidate for weakly interacting dark matter. We evaluate the relic densities and find that they are sufficient to explain the cosmological observations and avoid the experimental limits from earth-based searches. Hence, we establish a nonsupersymmetric framework where hierarchy and naturality problems are solved, coupling constant unification is achieved, and a plausible dark matter candidate exists.
Macroscopic constraints on string unification
Taylor, T.R.
1989-03-01
The comparison of sting theory with experiment requires a huge extrapolation from the microscopic distances, of order of the Planck length, up to the macroscopic laboratory distances. The quantum effects give rise to large corrections to the macroscopic predictions of sting unification. I discus the model-independent constraints on the gravitational sector of string theory due to the inevitable existence of universal Fradkin-Tseytlin dilatons. 9 refs.
SAT Encoding of Unification in EL
NASA Astrophysics Data System (ADS)
Baader, Franz; Morawska, Barbara
Unification in Description Logics has been proposed as a novel inference service that can, for example, be used to detect redundancies in ontologies. In a recent paper, we have shown that unification in EL is NP-complete, and thus of a complexity that is considerably lower than in other Description Logics of comparably restricted expressive power. In this paper, we introduce a new NP-algorithm for solving unification problems in EL, which is based on a reduction to satisfiability in propositional logic (SAT). The advantage of this new algorithm is, on the one hand, that it allows us to employ highly optimized state-of-the-art SAT solvers when implementing an EL-unification algorithm. On the other hand, this reduction provides us with a proof of the fact that EL-unification is in NP that is much simpler than the one given in our previous paper on EL-unification.
The Use of Metacognitive Knowledge Patterns to Compose Physics Higher Order Thinking Problems
ERIC Educational Resources Information Center
Abdullah, Helmi; Malago, Jasruddin D.; Bundu, Patta; Thalib, Syamsul Bachri
2013-01-01
The main aspect in physics learning is the use of equation in problem solving. Equation is a mathematical form of theoretical statements, principles, and laws in physics, and describes a relationship between one concept to another by using a specific symbol. In a context of knowledge dimension, equation is a procedural knowledge. Students are…
Questions for Assessing Higher-Order Cognitive Skills: It's Not Just Bloom's
ERIC Educational Resources Information Center
Lemons, Paula P.; Lemons, J. Derrick
2013-01-01
We present an exploratory study of biologists' ideas about higher-order cognition questions. We documented the conversations of biologists who were writing and reviewing a set of higher-order cognition questions. Using a qualitative approach, we identified the themes of these conversations. Biologists in our study used Bloom's Taxonomy to…
ERIC Educational Resources Information Center
Schraw, Gregory, Ed.; Robinson, Daniel H., Ed.
2011-01-01
This volume examines the assessment of higher order thinking skills from the perspectives of applied cognitive psychology and measurement theory. The volume considers a variety of higher order thinking skills, including problem solving, critical thinking, argumentation, decision making, creativity, metacognition, and self-regulation. Fourteen…
From "Hello" to Higher-Order Thinking: The Effect of Coaching and Feedback on Online Chats
ERIC Educational Resources Information Center
Stein, David S.; Wanstreet, Constance E.; Slagle, Paula; Trinko, Lynn A.; Lutz, Michelle
2013-01-01
This exploratory study examined the effect of a coaching and feedback intervention in teaching presence and social presence on higher-order thinking in an online community of inquiry. Coaching occurred before each chat, and feedback was provided immediately afterwards. The findings suggest that over time, the frequency of higher-order thinking…
Teaching Higher Order Thinking in the Introductory MIS Course: A Model-Directed Approach
ERIC Educational Resources Information Center
Wang, Shouhong; Wang, Hai
2011-01-01
One vision of education evolution is to change the modes of thinking of students. Critical thinking, design thinking, and system thinking are higher order thinking paradigms that are specifically pertinent to business education. A model-directed approach to teaching and learning higher order thinking is proposed. An example of application of the…
Authentic Instruction for 21st Century Learning: Higher Order Thinking in an Inclusive School
ERIC Educational Resources Information Center
Preus, Betty
2012-01-01
The author studied a public junior high school identified as successfully implementing authentic instruction. Such instruction emphasizes higher order thinking, deep knowledge, substantive conversation, and value beyond school. To determine in what ways higher order thinking was fostered both for students with and without disabilities, the author…
Higher Order Thinking Skills among Secondary School Students in Science Learning
ERIC Educational Resources Information Center
Saido, Gulistan Mohammed; Siraj, Saedah; Bin Nordin, Abu Bakar; Al Amedy, Omed Saadallah
2015-01-01
A central goal of science education is to help students to develop their higher order thinking skills to enable them to face the challenges of daily life. Enhancing students' higher order thinking skills is the main goal of the Kurdish Science Curriculum in the Iraqi-Kurdistan region. This study aimed at assessing 7th grade students' higher order…
A Study of Higher Order Need Strength and Job Satisfaction in Secondary Public School Teachers.
ERIC Educational Resources Information Center
Pastor, Margaret C.; Erlandson, David A.
1982-01-01
Teacher motivation was explored through surveys determining the relationship between higher order needs (such as autonomy, variety) or lower order needs (such as high pay) and job satisfaction. Conclusions are that needs of the teachers studied are predominantly higher order and that job satisfaction is significantly related to teacher needs. (MJL)
Improving Computer-Assisted Instruction in Teaching Higher-Order Skills
ERIC Educational Resources Information Center
Sinclair, Kelsey J.; Renshaw, Carl E.; Taylor, Holly A.
2004-01-01
Computer-assisted instruction (CAI) has been shown to enhance rote memory skills and improve higher order critical thinking skills. The challenge now is to identify what aspects of CAI improve which specific higher-order skills. This study focuses on the effectiveness of using CAI to teach logarithmic graphing and dimensional analysis. Two groups…
An Analysis of Higher-Order Thinking on Algebra I End-of-Course Tests
ERIC Educational Resources Information Center
Thompson, Tony
2011-01-01
This research provides insight into one US state's effort to incorporate higher-order thinking on its Algebra I End-of-Course tests. To facilitate the inclusion of higher-order thinking, the state used "Dimensions of Thinking" (Marzano et al., 1988) and "Bloom's Taxonomy" (Bloom et al., 1956). An analysis of Algebra I test items found that the…
Reinstating higher order properties of a study list by retrieving a list item.
Humphreys, Michael S; Murray, Krista L; Koh, Joyce Yanfang
2014-05-01
In two experiments, we looked at the role of higher order list properties in episodic recall. A probabilistic paired-associate paradigm was used in which each cue was repeatedly paired with two different targets. This paradigm permitted us to cue for a target that had been studied with that cue in the last list, or to cue for either of the two targets that had been repeatedly paired with that cue, although neither the cue nor either of its two targets had been studied in the last list. In Experiment 1, the higher order property was whether all of the targets in a given list were animal names or vegetable names. In Experiment 2, the higher order property was whether all of the pairs in a list were associatively related or unrelated. The assumption was that if participants were using these higher order properties when they retrieved a target that had been studied in the last list, they would also use these properties when recalling in response to a cue that had been studied in other lists but not in the most recent list. The results supported the use of both kinds of higher order properties in episodic access. They also showed that these higher order properties were reinstated by retrieving a target, and were then used in the next memory access operation. The questions of why the retrieval of a target would reinstate a higher order list property and how these very different higher order list properties aid in episodic access were also discussed.
ERIC Educational Resources Information Center
Fischer, Christopher; Bol, Linda; Pribesh, Shana
2011-01-01
This study investigated the extent to which higher-order thinking skills are promoted in social studies classes in high schools that are implementing smaller learning communities (SLCs). Data collection in this mixed-methods study included classroom observations and in-depth interviews. Findings indicated that higher-order thinking was rarely…
Assessing Higher-Order Cognitive Constructs by Using an Information-Processing Framework
ERIC Educational Resources Information Center
Dickison, Philip; Luo, Xiao; Kim, Doyoung; Woo, Ada; Muntean, William; Bergstrom, Betty
2016-01-01
Designing a theory-based assessment with sound psychometric qualities to measure a higher-order cognitive construct is a highly desired yet challenging task for many practitioners. This paper proposes a framework for designing a theory-based assessment to measure a higher-order cognitive construct. This framework results in a modularized yet…
Ability, Breadth, and Parsimony in Computational Models of Higher-Order Cognition
ERIC Educational Resources Information Center
Cassimatis, Nicholas L.; Bello, Paul; Langley, Pat
2008-01-01
Computational models will play an important role in our understanding of human higher-order cognition. How can a model's contribution to this goal be evaluated? This article argues that three important aspects of a model of higher-order cognition to evaluate are (a) its ability to reason, solve problems, converse, and learn as well as people do;…
NASA Astrophysics Data System (ADS)
Sabesan, Ramkumar; Jeong, Tae Moon; Carvalho, Luis; Cox, Ian G.; Williams, David R.; Yoon, Geunyoung
2007-04-01
Higher-order aberration correction in abnormal eyes can result in significant vision improvement, especially in eyes with abnormal corneas. Customized optics such as phase plates and customized contact lenses are one of the most practical, nonsurgical ways to correct these ocular higher-order aberrations. We demonstrate the feasibility of correcting higher-order aberrations and improving visual performance with customized soft contact lenses in keratoconic eyes while compensating for the static decentration and rotation of the lens. A reduction of higher-order aberrations by a factor of 3 on average was obtained in these eyes. The higher-order aberration correction resulted in an average improvement of 2.1 lines in visual acuity over the conventional correction of defocus and astigmatism alone.
Higher-order dangers and precisely constructed taxa in models of randomness
Pincus, Steve; Singer, Burton H.
2014-01-01
The certification, construction, and delineation of individual, infinite-length “random” sequences have been longstanding yet incompletely resolved problems. We address this topic via the study of normal numbers, which often have been viewed as reasonable proxies for randomness, given their limiting equidistribution of subblocks of all lengths. However, limitations arise within this perspective. First, we explicitly construct a normal number that satisfies the law of the iterated logarithm yet exhibits pairwise bias toward repeated values, rendering it inappropriate for any collection of random numbers. Accordingly, we deduce that the evaluation of higher-order block dynamics, even beyond limiting equidistribution and fluctuational typicality, is imperative in proper evaluation of sequential “randomness.” Second, we develop several criteria motivated by classical theorems for symmetric random walks, which lead to algorithms for generating normal numbers that satisfy a variety of attributes for the series of initial partial sums, including rates of sign changes, patterns of return times to 0, and the extent of fairness of the sequence. Such characteristics generally are unaddressed in most evaluations of randomness. More broadly, we can differentiate normal numbers both on the basis of multiple distinct qualitative attributes and quantitatively via a spectrum of rates within each attribute. Furthermore, we exhibit a toolkit of techniques to construct normal sequences that realize diverse a priori specifications, including profound biases. Overall, we elucidate the vast diversity within the category of normal sequences. PMID:24706776
Higher-order factors of the big five and basic values: empirical and theoretical relations.
Vecchione, Michele; Alessandri, Guido; Barbaranelli, Claudio; Caprara, Gianvittorio
2011-08-01
The Big Five Model of personality and Schwartz's theory of basic values are two prominent taxonomies that offer a convenient way to organize the major individual differences in, respectively, personality traits and personal values. Both taxonomies provide a hierarchical framework, whose components can be traced back to a smaller number of broader dimensions. The current study investigated the relationship between the two superordinate factors of personality encompassing the Big Five dimensions (alpha and beta) and the four higher-level value types from Schwartz's theory (Self-transcendence, Self-enhancement, Conservation, and Openness to change). To examine the relations between higher-order traits and values, we relied on factor analysis and multidimensional scaling. Results indicated that alpha and beta were differently related to the Conservation versus Openness to change dimension. Alpha was positively related to values that emphasize protecting stability and respecting norms and traditions, and negatively related to values emphasizing receptiveness to change and independence of thought, feeling, and action. The opposite pattern of relations was found for beta. PMID:21752001
Functional independence in resting-state connectivity facilitates higher-order cognition.
James, G Andrew; Kearney-Ramos, Tonisha E; Young, Jonathan A; Kilts, Clinton D; Gess, Jennifer L; Fausett, Jennifer S
2016-06-01
Growing evidence suggests that intrinsic functional connectivity (i.e. highly structured patterns of communication between brain regions during wakeful rest) may encode cognitive ability. However, the generalizability of these findings is limited by between-study differences in statistical methodology and cognitive domains evaluated. To address this barrier, we evaluated resting-state neural representations of multiple cognitive domains within a relatively large normative adult sample. Forty-four participants (mean(sd) age=31(10) years; 18 male and 26 female) completed a resting-state functional MRI scan and neuropsychological assessments spanning motor, visuospatial, language, learning, memory, attention, working memory, and executive function performance. Robust linear regression related cognitive performance to resting-state connectivity among 200 a priori determined functional regions of interest (ROIs). Only higher-order cognitions (such as learning and executive function) demonstrated significant relationships between brain function and behavior. Additionally, all significant relationships were negative - characterized by moderately positive correlations among low performers and weak to moderately negative correlations among high performers. These findings suggest that functional independence among brain regions at rest facilitates cognitive performance. Our interpretation is consistent with graph theoretic analyses which represent the brain as independent functional nodes that undergo dynamic reorganization with task demand. Future work will build upon these findings by evaluating domain-specific variance in resting-state neural representations of cognitive impairment among patient populations.
Functional independence in resting-state connectivity facilitates higher-order cognition.
James, G Andrew; Kearney-Ramos, Tonisha E; Young, Jonathan A; Kilts, Clinton D; Gess, Jennifer L; Fausett, Jennifer S
2016-06-01
Growing evidence suggests that intrinsic functional connectivity (i.e. highly structured patterns of communication between brain regions during wakeful rest) may encode cognitive ability. However, the generalizability of these findings is limited by between-study differences in statistical methodology and cognitive domains evaluated. To address this barrier, we evaluated resting-state neural representations of multiple cognitive domains within a relatively large normative adult sample. Forty-four participants (mean(sd) age=31(10) years; 18 male and 26 female) completed a resting-state functional MRI scan and neuropsychological assessments spanning motor, visuospatial, language, learning, memory, attention, working memory, and executive function performance. Robust linear regression related cognitive performance to resting-state connectivity among 200 a priori determined functional regions of interest (ROIs). Only higher-order cognitions (such as learning and executive function) demonstrated significant relationships between brain function and behavior. Additionally, all significant relationships were negative - characterized by moderately positive correlations among low performers and weak to moderately negative correlations among high performers. These findings suggest that functional independence among brain regions at rest facilitates cognitive performance. Our interpretation is consistent with graph theoretic analyses which represent the brain as independent functional nodes that undergo dynamic reorganization with task demand. Future work will build upon these findings by evaluating domain-specific variance in resting-state neural representations of cognitive impairment among patient populations. PMID:27105037
Higher order feed-forward control of reticle writing error fingerprints
NASA Astrophysics Data System (ADS)
van Haren, Richard; Cekli, Hakki Ergun; Beltman, Jan; Pastol, Anne; Sundermann, Frank; Gatefait, Maxime
2015-10-01
The understanding and control of the intra-field overlay budget becomes crucial particularly after the introduction of multi-patterning applications. The intra-field overlay budget is built-up out of many contributors, each with its own characteristic. Some of them are (semi-)static like the reticle writing error (RWE) fingerprint, the scanner lens fingerprint, or the intra-field processing signature. Others are more dynamic. Examples are reticle heating and lens heating due to the absorption of a small portion of the exposure light. Ideally, all overlay contributors that are understood and known could be taken out of the feed-back control loop and send as feed-forward corrections to the scanner. As a consequence, only non-correctable overlay residuals are measured on the wafer. In the current work, we have studied the possibility to characterize the reticle writing error fingerprint by an off-line position measurement tool and use this information to send feed-forward corrections to the ASML TWINSCANTM exposure tool. The current work is an extension of the work we published earlier. To this end, we have selected a reticle pair out of 50 production reticles that are used to manufacture a 28-nm technology device. These two reticles are special in the sense that the delta fingerprint contains a significant higher order RWE signature. While previously only the linear parameters were sent as feed-forward corrections to the ASML TWINSCANTM exposure tool, this time we additionally demonstrate the capability to correct for the non-linear terms as well. Since the concept heavily relies on the quality of the off-line mask registration measurements, a state-of-the-art reticle registration tool was chosen. Special care was taken to eliminate any effects of the tool induced shifts that may affect the quality of the measurements. The on-wafer overlay verification measurements were performed on an ASML YieldStar metrology tool as well as on a different vendor tool. In conclusion
Super Unification of All Forces
NASA Astrophysics Data System (ADS)
Bacinich, Edward J.
2003-06-01
The annihilation of Planck and anti-Planck mass is paramount in explaining the Big-Bang. This total release of primordial energy in the form of electromagnetic-like radiation through `nothing' offers a model similar to the standard model of a Riemannian hypersphere. Our model however would expand radiantly outward from time zero in the form of a hyper-wave which would carry the total energy of the Big-Bang with it. By using this wave concept and the Planck force (FPL) inherent in the quantum vacuum, it is possible to explain the space-time geometry of our universe and complete unification.
Grand unification: quo vadis domine
Senjanovic, G.
1985-01-01
The present theoretical and experimental situation with grand unification is summarized. The issues of proton decay and the Weinberg angle are addressed, going through the predictions of both the standard SU(5) theory and its supersymmetric extension. The SO(10) theory, which provides a minimal one family model, is then studied. The gravitational characteristics of domain walls and strings are then discussed. It is argued that there is a need to go beyond SO(10) in order to incorporate a unified picture of families. This leads to the prediction of mirror fermions, whose physics is analyzed. 31 refs. (LEW)
Nonlocal Symmetry Reductions, CTE Method and Exact Solutions for Higher-Order KdV Equation
NASA Astrophysics Data System (ADS)
Ren, Bo; Liu, Xi-Zhong; Liu, Ping
2015-02-01
The nonlocal symmetries for the higher-order KdV equation are obtained with the truncated Painlevé method. The nonlocal symmetries can be localized to the Lie point symmetries by introducing suitable prolonged systems. The finite symmetry transformations and similarity reductions for the prolonged systems are computed. Moreover, the consistent tanh expansion (CTE) method is applied to the higher-order KdV equation. These methods lead to some novel exact solutions of the higher-order KdV system.
Pulse transmission receiver with higher-order time derivative pulse correlator
Dress, Jr., William B.; Smith, Stephen F.
2003-09-16
Systems and methods for pulse-transmission low-power communication modes are disclosed. A pulse transmission receiver includes: a higher-order time derivative pulse correlator; a demodulation decoder coupled to the higher-order time derivative pulse correlator; a clock coupled to the demodulation decoder; and a pseudorandom polynomial generator coupled to both the higher-order time derivative pulse correlator and the clock. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.
Lagrangian-Hamiltonian unified formalism for autonomous higher order dynamical systems
NASA Astrophysics Data System (ADS)
Prieto-Martínez, Pedro Daniel; Román-Roy, Narciso
2011-09-01
The Lagrangian-Hamiltonian unified formalism of Skinner and Rusk was originally stated for autonomous dynamical systems in classical mechanics. It has been generalized for non-autonomous first-order mechanical systems, as well as for first-order and higher order field theories. However, a complete generalization to higher order mechanical systems is yet to be described. In this work, after reviewing the natural geometrical setting and the Lagrangian and Hamiltonian formalisms for higher order autonomous mechanical systems, we develop a complete generalization of the Lagrangian-Hamiltonian unified formalism for these kinds of systems, and we use it to analyze some physical models from this new point of view.
Luo, Ruiyao; Li, Lei; Cui, Wenda; Yang, Zining; Wang, Hongyan; Xu, Xiaojun
2016-06-13
In this paper, we have set up a diode laser pumped rubidium amplifier for higher-order Laguerre-Gauss (LG) modes. We experimentally realized amplification of higher-order LG modes including helical and sinusoidal LG_{03}, LG_{13}, LG_{23}, and LG_{33} modes with their high purity held. This novel scheme of generating high-purity higher-order LG beams at high laser power is preferred to the second-generation gravitational wave interferometers. To the best of our knowledge, it is the first time this scheme is formulated. PMID:27410352
Higher-Order Spectral Analysis of a Nonlinear Pitch and Plunge Apparatus
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Strganac, Thomas W.; Hajj, Muhammad R.
2005-01-01
Simulated aeroelastic responses of a nonlinear pitch and plunge apparatus are analyzed using various statistical signal processing techniques including higher-order spectral methods. A MATLAB version of the Nonlinear Aeroelastic Testbed Apparatus (NATA) at the Texas A&M University is used to generate various aeroelastic response data including limit cycle oscillations (LCO). Traditional and higher-order spectral (HOS) methods are applied to the simulated aeroelastic responses. Higher-order spectral methods are used to identify critical signatures that indicate the transition from linear to nonlinear (LCO) aeroelastic behavior.
On the capabilities of higher-order neurons: a radial basis function approach.
Schmitt, Michael
2005-03-01
Higher-order neurons with k monomials in n variables are shown to have Vapnik-Chervonenkis (VC) dimension at least nk + 1. This result supersedes the previously known lower bound obtained via k-term monotone disjunctive normal form (DNF) formulas. Moreover, it implies that the VC dimension of higher-order neurons with k monomials is strictly larger than the VC dimension of k-term monotone DNF. The result is achieved by introducing an exponential approach that employs gaussian radial basis function neural networks for obtaining classifications of points in terms of higher-order neurons.
Low-scale gaugino mass unification
Endo, Motoi; Yoshioka, Koichi
2008-07-15
We study a new class of scenarios with the gaugino mass unification at the weak scale. The unification conditions are generally classified and then, the mirage gauge mediation is explored where the low-energy mass spectrum is governed by a mirage of unified gauge coupling which is seen by low-energy observers. The gaugino masses have natural and stable low-scale unification. The mass parameters of scalar quarks and leptons are given by gauge couplings but exhibit no large mass hierarchy. They are nonuniversal even when mediated at the gauge coupling unification scale. In addition, the gravitino is rather heavy and not the lightest superparticle. These facts are in contrast to existing gauge and mirage mediation models. We also present several explicit models for dynamically realizing the TeV-scale unification.
NASA Astrophysics Data System (ADS)
Domin, Daniel S.
1999-01-01
The science laboratory instructional environment is ideal for fostering the development of problem-solving, manipulative, and higher-order thinking skills: the skills needed by today's learner to compete in an ever increasing technology-based society. This paper reports the results of a content analysis of ten general chemistry laboratory manuals. Three experiments from each manual were examined for evidence of higher-order cognitive activities. Analysis was based upon the six major cognitive categories of Bloom's Taxonomy of Educational Objectives: knowledge, comprehension, application, analysis, synthesis, and evaluation. The results of this study show that the overwhelming majority of general chemistry laboratory manuals provide tasks that require the use of only the lower-order cognitive skills: knowledge, comprehension, and application. Two of the laboratory manuals were disparate in having activities that utilized higher-order cognition. I describe the instructional strategies used within these manuals to foster higher-order cognitive development.
Higher-order corrections to dust ion-acoustic soliton in a quantum dusty plasma
Chatterjee, Prasanta; Das, Brindaban; Mondal, Ganesh; Muniandy, S. V.; Wong, C. S.
2010-10-15
Dust ion-acoustic soliton is studied in an electron-dust-ion plasma by employing a two-fluid quantum hydrodynamic model. Ions and electrons are assumed to follow quantum mechanical behaviors in dust background. The Korteweg-de Vries (KdV) equation and higher order contribution to KdV equations are derived using reductive perturbation technique. The higher order contribution is obtained as a higher order inhomogeneous differential equation. The nonsecular solution of the higher order contribution is obtained by using the renormalization method and the particular solution of the inhomogeneous equation is determined using a truncated series solution method. The effects of dust concentration, quantum parameter for ions and electrons, and soliton velocity on the amplitude and width of the dressed soliton are discussed.
Simple loss scaling laws for quadrupoles and higher-order multipoles used in antihydrogen traps
Fajans, J.; Bertsche, W.; Burke, K.; Deutsch, A.; Chapman, S. F.; Gomberoff, K.; Wurtele, J. S.; Werf, D. P. van der
2006-10-18
Simple scaling laws strongly suggest that for antihydrogen relevant parameters, quadrupole magnetic fields will transport particles into, or near to, the trap walls. Consequently quadrupoles are a poor choice for antihydrogen trapping. Higher order multipoles lead to much less transport.
Zembrzycki, Andreas; Stocker, Adam M; Leingärtner, Axel; Sahara, Setsuko; Chou, Shen-Ju; Kalatsky, Valery; May, Scott R; Stryker, Michael P; O'Leary, Dennis DM
2015-01-01
In mammals, the neocortical layout consists of few modality-specific primary sensory areas and a multitude of higher order ones. Abnormal layout of cortical areas may disrupt sensory function and behavior. Developmental genetic mechanisms specify primary areas, but mechanisms influencing higher order area properties are unknown. By exploiting gain-of and loss-of function mouse models of the transcription factor Emx2, we have generated bi-directional changes in primary visual cortex size in vivo and have used it as a model to show a novel and prominent function for genetic mechanisms regulating primary visual area size and also proportionally dictating the sizes of surrounding higher order visual areas. This finding redefines the role for intrinsic genetic mechanisms to concomitantly specify and scale primary and related higher order sensory areas in a linear fashion. DOI: http://dx.doi.org/10.7554/eLife.11416.001 PMID:26705332
Higher-order mass defect analysis for mass spectra of complex organic mixtures.
Roach, Patrick J; Laskin, Julia; Laskin, Alexander
2011-06-15
Higher-order mass defect analysis is introduced as a unique formula assignment and visualization method for the analysis of complex mass spectra. This approach is an extension of the concepts of Kendrick mass transformation widely used for identification of homologous compounds differing only by a number of base units (e.g., CH(2), H(2), O, CH(2)O, etc.) in complex mixtures. We present an iterative renormalization routine for defining higher-order homologous series and multidimensional clustering of mass spectral features. This approach greatly simplifies visualization of complex mass spectra and increases the number of chemical formulas that can be confidently assigned for given mass accuracy. The potential for using higher-order mass defects for data reduction and visualization is shown. Higher-order mass defect analysis is described and demonstrated through third-order analysis of a deisotoped high-resolution mass spectrum of crude oil containing nearly 13,000 peaks. PMID:21526851
Propagation of a higher-order cosh-Gaussian beam in turbulent atmosphere.
Zhou, Guoquan
2011-02-28
The propagation of a higher-order cosh-Gaussian beam through a paraxial and real ABCD optical system in turbulent atmosphere has been investigated. The analytical expressions for the average intensity, the effective beam size, and the kurtosis parameter of a higher-order cosh-Gaussian beam through a paraxial and real ABCD optical system are derived in turbulent atmosphere. The average intensity distribution and the spreading properties of a higher-order cosh-Gaussian in turbulent atmosphere are numerically demonstrated. The influences of the beam parameters and the structure constant of the atmospheric turbulence on the propagation of a higher-order cosh-Gaussian beam in turbulent atmosphere are also examined in detail.
Development of higher-order modal methods for transient thermal and structural analysis
NASA Technical Reports Server (NTRS)
Camarda, Charles J.; Haftka, Raphael T.
1989-01-01
A force-derivative method which produces higher-order modal solutions to transient problems is evaluated. These higher-order solutions converge to an accurate response using fewer degrees-of-freedom (eigenmodes) than lower-order methods such as the mode-displacement or mode-acceleration methods. Results are presented for non-proportionally damped structural problems as well as thermal problems modeled by finite elements.
Higher-order Schrödinger and Hartree–Fock equations
Carles, Rémi; Lucha, Wolfgang; Moulay, Emmanuel
2015-12-15
The domain of validity of the higher-order Schrödinger equations is analyzed for harmonic-oscillator and Coulomb potentials as typical examples. Then, the Cauchy theory for higher-order Hartree–Fock equations with bounded and Coulomb potentials is developed. Finally, the existence of associated ground states for the odd-order equations is proved. This renders these quantum equations relevant for physics.
Fast algorithm for scaling analysis with higher-order detrending moving average method
NASA Astrophysics Data System (ADS)
Tsujimoto, Yutaka; Miki, Yuki; Shimatani, Satoshi; Kiyono, Ken
2016-05-01
Among scaling analysis methods based on the root-mean-square deviation from the estimated trend, it has been demonstrated that centered detrending moving average (DMA) analysis with a simple moving average has good performance when characterizing long-range correlation or fractal scaling behavior. Furthermore, higher-order DMA has also been proposed; it is shown to have better detrending capabilities, removing higher-order polynomial trends than original DMA. However, a straightforward implementation of higher-order DMA requires a very high computational cost, which would prevent practical use of this method. To solve this issue, in this study, we introduce a fast algorithm for higher-order DMA, which consists of two techniques: (1) parallel translation of moving averaging windows by a fixed interval; (2) recurrence formulas for the calculation of summations. Our algorithm can significantly reduce computational cost. Monte Carlo experiments show that the computational time of our algorithm is approximately proportional to the data length, although that of the conventional algorithm is proportional to the square of the data length. The efficiency of our algorithm is also shown by a systematic study of the performance of higher-order DMA, such as the range of detectable scaling exponents and detrending capability for removing polynomial trends. In addition, through the analysis of heart-rate variability time series, we discuss possible applications of higher-order DMA.
Study of higher order non-classical properties of squeezed Kerr state
NASA Astrophysics Data System (ADS)
Mishra, Devendra Kumar
2010-09-01
Recently, Prakash and Mishra [J. Phys. B: at. Mol. Opt. Phys., 39, 2291(2006); 40, 2531(2007)] have studied higher order sub-Poissonian photon statistic conditions for non-classicality in the form of general inequalities for expectation values of products of arbitrary powers of photon number and of photon-number fluctuation. It is, therefore, vital to study the generation of these higher order sub-Poissonian photon statistics (phase-insensitive behavior) in a physically realizable medium and their relations to higher order squeezing (phase-sensitive behavior). In the present paper, we study higher order non-classical properties, such as Hong and Mandel squeezing, amplitude-squared squeezing and higher order sub-Poissonian photon statistics, of squeezed Kerr state which is generated by squeezing the output of a Kerr medium whose input is coherent light. Such states can be realized if laser light is sent through an optical fiber and then into a degenerate parametric amplifier. It is established that the squeezed Kerr state can exhibit higher order non-classical properties.
Questions for assessing higher-order cognitive skills: it's not just Bloom's.
Lemons, Paula P; Lemons, J Derrick
2013-01-01
We present an exploratory study of biologists' ideas about higher-order cognition questions. We documented the conversations of biologists who were writing and reviewing a set of higher-order cognition questions. Using a qualitative approach, we identified the themes of these conversations. Biologists in our study used Bloom's Taxonomy to logically analyze questions. However, biologists were also concerned with question difficulty, the length of time required for students to address questions, and students' experience with questions. Finally, some biologists demonstrated an assumption that questions should have one correct answer, not multiple reasonable solutions; this assumption undermined their comfort with some higher-order cognition questions. We generated a framework for further research that provides an interpretation of participants' ideas about higher-order questions and a model of the relationships among these ideas. Two hypotheses emerge from this framework. First, we propose that biologists look for ways to measure difficulty when writing higher-order questions. Second, we propose that biologists' assumptions about the role of questions in student learning strongly influence the types of higher-order questions they write.
Gravitational effects in models of grand unification
NASA Astrophysics Data System (ADS)
Reeb, David
Grand unified theories constitute an attractive idea bringing further coherence into our understanding of the fundamental forces of Nature beyond the well-accepted Standard Model. This dissertation contains a systematic study of the unification of gauge couplings associated with these forces in the presence of one or several effective dimension-5 operators cHG munuGmunu/4MPl, which are induced into the grand unified theory through gravitational interactions at the Planck scale. These operators alter the usually assumed condition for gauge coupling unification and can, depending on the Higgs content H of the theory and on its vacuum expectation value, lead to grand unification in models other than commonly believed and at scales Mx significantly different than naively expected. After presenting a general framework to treat such effects, we compute, for the case of SU(5) and SO(10) unification groups, the associated group theory constants necessary for the study of concrete models. We investigate the size of these effects in non-supersymmetric unification models and find that there exist regions of natural Wilson coefficients c in parameter space that achieve successful unification of the gauge couplings, while easily satisfying the bounds on the unification scale coming from the non-observation of proton decay. Both of these requirements are widely assumed to be violated in non-supersymmetric models of grand unification, but, as we show, can be fulfilled due to the effects coming from gravitational dimension-5 operators. A comparison to supersymmetric unification models shows that their parameter space for successful grand unification is no more natural than the one for the non-supersymmetric models. The main conclusion of this dissertation is that fairly minimal unification models are possible, i.e., with small unification groups and without supersymmetric particles. Whereas the observation of proton decay seems to be the only possible evidence for grand
Influence of baryons on the spatial distribution of matter: higher order correlation functions
NASA Astrophysics Data System (ADS)
Zhu, Xiao-Jun; Pan, Jun
2012-12-01
Physical processes involving baryons could leave a non-negligible imprint on the distribution of cosmic matter. A series of simulated data sets at high resolution with identical initial conditions are employed for count-in-cell analysis, including one N-body pure dark matter run, one with only adiabatic gas and one with dissipative processes. Variances and higher order cumulants Sn of dark matter and gas are estimated. It is found that physical processes with baryons mainly affect distributions of dark matter at scales less than 1 h-1 Mpc. In comparison with the pure dark matter run, adiabatic processes alone strengthen the variance of dark matter by ~ 10% at a scale of 0.1 h-1 Mpc, while the Sn parameters of dark matter only mildly deviate by a few percent. The dissipative gas run does not differ much from the adiabatic run in terms of variance for dark matter, but renders significantly different Sn parameters describing the dark matter, bringing about a more than 10% enhancement to S3 at 0.1 h-1 Mpc and z = 0 and being even larger at a higher redshift. Distribution patterns of gas in two hydrodynamical simulations are quite different. Variance of gas at z = 0 decreases by ~ 30% in the adiabatic simulation but by ~ 60% in the nonadiabatic simulation at 0.1 h-1 Mpc. The attenuation is weaker at larger scales but is still obvious at ~ 10 h-1 Mpc. Sn parameters of gas are biased upward at scales < ~ 4 h-1 Mpc, and dissipative processes show an ~ 84% promotion at z = 0 to S3 at 0.1 h-1 Mpc in contrast with the ~ 7% change in the adiabatic run. The segregation in clustering between gas and dark matter could have dramatic implications on modeling distributions of galaxies and relevant cosmological applications demanding fine details of matter distribution in a strongly nonlinear regime.
Regular expression order-sorted unification and matching
Kutsia, Temur; Marin, Mircea
2015-01-01
We extend order-sorted unification by permitting regular expression sorts for variables and in the domains of function symbols. The obtained signature corresponds to a finite bottom-up unranked tree automaton. We prove that regular expression order-sorted (REOS) unification is of type infinitary and decidable. The unification problem presented by us generalizes some known problems, such as, e.g., order-sorted unification for ranked terms, sequence unification, and word unification with regular constraints. Decidability of REOS unification implies that sequence unification with regular hedge language constraints is decidable, generalizing the decidability result of word unification with regular constraints to terms. A sort weakening algorithm helps to construct a minimal complete set of REOS unifiers from the solutions of sequence unification problems. Moreover, we design a complete algorithm for REOS matching, and show that this problem is NP-complete and the corresponding counting problem is #P-complete. PMID:26523088
Quantum Gravitational Effects and Grand Unification
Calmet, Xavier; Hsu, Stephen D. H.; Reeb, David
2008-11-23
In grand unified theories with large numbers of fields, renormalization effects significantly modify the scale at which quantum gravity becomes strong. This in turn can modify the boundary conditions for coupling constant unification, if higher dimensional operators induced by gravity are taken into consideration. We show that the generic size of, and the uncertainty in, these effects from gravity can be larger than the two-loop corrections typically considered in renormalization group analyses of unification. In some cases, gravitational effects of modest size can render unification impossible.
NASA Astrophysics Data System (ADS)
Lawson, Anton E.
Grossberg's neural modeling principles of learning, perception, cognition, and motor control are presented as the basis for construction of a neurological model of sensory-motor problem solving. The pattern of problem solving is assumed to be universal, thus is sought in the higher-order shift from the child's use of an additive strategy to the adolescent's use of a proportions strategy to solve the Pouring Water Task (Suarez and Rhonheimer, 1974). Possible neurological principles involved in this shift and in the process of psychological equilibration are discussed as are possible educational implications.
Unification of force and substance.
Wilczek, Frank
2016-08-28
Maxwell's mature presentation of his equations emphasized the unity of electromagnetism and mechanics, subsuming both as 'dynamical systems'. That intuition of unity has proved both fruitful, as a source of pregnant concepts, and broadly inspiring. A deep aspect of Maxwell's work is its use of redundant potentials, and the associated requirement of gauge symmetry. Those concepts have become central to our present understanding of fundamental physics, but they can appear to be rather formal and esoteric. Here I discuss two things: the physical significance of gauge invariance, in broad terms; and some tantalizing prospects for further unification, building on that concept, that are visible on the horizon today. If those prospects are realized, Maxwell's vision of the unity of field and substance will be brought to a new level.This article is part of the themed issue 'Unifying physics and technology in light of Maxwell's equations'. PMID:27458259
An efficient higher-order PML in WLP-FDTD method for time reversed wave simulation
NASA Astrophysics Data System (ADS)
Wei, Xiao-Kun; Shao, Wei; Ou, Haiyan; Wang, Bing-Zhong
2016-09-01
Derived from a stretched coordinate formulation, a higher-order complex frequency shifted (CFS) perfectly matched layer (PML) is proposed for the unconditionally stable finite-difference time-domain (FDTD) method based on weighted Laguerre polynomials (WLPs). The higher-order PML is implemented with an auxiliary differential equation (ADE) approach. In order to further improve absorbing performance, the parameter values of stretching functions in the higher-order PML are optimized by the multi-objective genetic algorithm (MOGA). The optimal solutions can be chosen from the Pareto front for trading-off between two independent objectives. It is shown in a numerical test that the higher-order PML is efficient in terms of attenuating propagating waves and reducing late time reflections. Moreover, the higher-order PML can be placed very close to the wall when analyzing the channel characteristics of time reversal (TR) waves in a multipath indoor environment. Numerical examples of TR wave propagation demonstrate the availability of the proposed method.
Proper orthogonal decomposition-based spectral higher-order stochastic estimation
Baars, Woutijn J.; Tinney, Charles E.
2014-05-15
A unique routine, capable of identifying both linear and higher-order coherence in multiple-input/output systems, is presented. The technique combines two well-established methods: Proper Orthogonal Decomposition (POD) and Higher-Order Spectra Analysis. The latter of these is based on known methods for characterizing nonlinear systems by way of Volterra series. In that, both linear and higher-order kernels are formed to quantify the spectral (nonlinear) transfer of energy between the system's input and output. This reduces essentially to spectral Linear Stochastic Estimation when only first-order terms are considered, and is therefore presented in the context of stochastic estimation as spectral Higher-Order Stochastic Estimation (HOSE). The trade-off to seeking higher-order transfer kernels is that the increased complexity restricts the analysis to single-input/output systems. Low-dimensional (POD-based) analysis techniques are inserted to alleviate this void as POD coefficients represent the dynamics of the spatial structures (modes) of a multi-degree-of-freedom system. The mathematical framework behind this POD-based HOSE method is first described. The method is then tested in the context of jet aeroacoustics by modeling acoustically efficient large-scale instabilities as combinations of wave packets. The growth, saturation, and decay of these spatially convecting wave packets are shown to couple both linearly and nonlinearly in the near-field to produce waveforms that propagate acoustically to the far-field for different frequency combinations.
Performance of Higher Order Campbell methods, Part II: calibration and experimental application
NASA Astrophysics Data System (ADS)
Elter, Zs.; de Izarra, G.; Filliatre, P.; Jammes, C.; Pázsit, I.
2016-11-01
Applying Higher Order Campbelling methods in neutron flux monitoring with fission chambers is advantageous due to their capabilities to suppress the impact of unwanted noises and signal contributions (such as gamma radiation). This work aims to verify through experimental results that the basic assumptions behind the Higher Order Campelling methods are valid in critical reactors. The experiments, reported in this work, were performed at the MINERVE reactor in Cadarache. It is shown that the calibration of a fission chamber and the associated electronic system is possible in higher order mode. With the use of unbiased cumulant estimators and with digital processing, it is shown that over a wide count rate range, accurate count rate estimation can be achieved based on signal samples of a few ms, which is a significant progress compared to similar experimental results in the literature. The difference between the count rate estimated by pulse counting and by the Higher Order Campelling is less than 4%. The work also investigates the possibility of monitoring transient events. For this purpose, a control rod drop event was followed in Higher Order Campbelling mode.
Design and Application of Strategies/Tactics in Higher Order Logics
NASA Technical Reports Server (NTRS)
Archer, Myla (Editor); diVito, Ben (Editor); Munoz, Cesar (Editor)
2003-01-01
This Proceedings includes both a paper from the implementors of PVS providing guidance for PVS strategy writers and a tutorial on PVS strategy writing distilled from the experience of three PVS users who have written extensive sets of PVS user strategies. Following these are three full papers from the higher-order logic theorem proving community that discuss PVS strategies to enhance arithmetic and other interactive reasoning in PVS; implementing first-order tactics in higher-order provers; and a proposed technique for specifying small step semantics that can be used in multiple higher order logic theorem provers, with illustrations from both Coq and PVS. The Proceedings concludes with three position papers for a panel session that discuss three settings in which development of PVS strategies is worth while.
Temporal integration property of stereopsis after higher-order aberration correction
Kang, Jian; Dai, Yun; Zhang, Yudong
2015-01-01
Based on a binocular adaptive optics visual simulator, we investigated the effect of higher-order aberration correction on the temporal integration property of stereopsis. Stereo threshold for line stimuli, viewed in 550nm monochromatic light, was measured as a function of exposure duration, with higher-order aberrations uncorrected, binocularly corrected or monocularly corrected. Under all optical conditions, stereo threshold decreased with increasing exposure duration until a steady-state threshold was reached. The critical duration was determined by a quadratic summation model and the high goodness of fit suggested this model was reasonable. For normal subjects, the slope for stereo threshold versus exposure duration was about −0.5 on logarithmic coordinates, and the critical duration was about 200 ms. Both the slope and the critical duration were independent of the optical condition of the eye, showing no significant effect of higher-order aberration correction on the temporal integration property of stereopsis. PMID:26601010
A higher order visual neuron tuned to the spatial amplitude spectra of natural scenes
Dyakova, Olga; Lee, Yu-Jen; Longden, Kit D.; Kiselev, Valerij G.; Nordström, Karin
2015-01-01
Animal sensory systems are optimally adapted to those features typically encountered in natural surrounds, thus allowing neurons with limited bandwidth to encode challengingly large input ranges. Natural scenes are not random, and peripheral visual systems in vertebrates and insects have evolved to respond efficiently to their typical spatial statistics. The mammalian visual cortex is also tuned to natural spatial statistics, but less is known about coding in higher order neurons in insects. To redress this we here record intracellularly from a higher order visual neuron in the hoverfly. We show that the cSIFE neuron, which is inhibited by stationary images, is maximally inhibited when the slope constant of the amplitude spectrum is close to the mean in natural scenes. The behavioural optomotor response is also strongest to images with naturalistic image statistics. Our results thus reveal a close coupling between the inherent statistics of natural scenes and higher order visual processing in insects. PMID:26439748
Higher-order cumulants and spectral kurtosis for early detection of subterranean termites
NASA Astrophysics Data System (ADS)
de la Rosa, Juan José González; Moreno Muñoz, Antonio
2008-02-01
This paper deals with termite detection in non-favorable SNR scenarios via signal processing using higher-order statistics. The results could be extrapolated to all impulse-like insect emissions; the situation involves non-destructive termite detection. Fourth-order cumulants in time and frequency domains enhance the detection and complete the characterization of termite emissions, non-Gaussian in essence. Sliding higher-order cumulants offer distinctive time instances, as a complement to the sliding variance, which only reveal power excesses in the signal; even for low-amplitude impulses. The spectral kurtosis reveals non-Gaussian characteristics (the peakedness of the probability density function) associated to these non-stationary measurements, specially in the near ultrasound frequency band. Contrasted estimators have been used to compute the higher-order statistics. The inedited findings are shown via graphical examples.
Development of a Higher Order Laminate Theory for Modeling Composites with Induced Strain Actuators
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi; Seeley, Charles E.
1996-01-01
A refined higher order plate theory is developed to investigate the actuation mechanism of piezoelectric materials surface bonded or embedded in composite laminates. The current analysis uses a displacement field which accurately accounts for transverse shear stresses. Some higher order terms are identified by using the conditions that shear stresses vanish at all free surfaces. Therefore, all boundary conditions for displacements and stresses are satisfied in the present theory. The analysis is implemented using the finite element method which provides a convenient means to construct a numerical solution due to the discrete nature of the actuators. The higher order theory is computationally less expensive than a full three dimensional analysis. The theory is also shown to agree well with published experimental results. Numerical examples are presented for composite plates with thicknesses ranging from thin to very thick.
Nonlinear optomechanics with gain and loss: amplifying higher-order sideband and group delay
NASA Astrophysics Data System (ADS)
Jiao, Y.; Lü, H.; Qian, J.; Li, Y.; Jing, H.
2016-08-01
We study the nonlinear optomechanically induced transparency (OMIT) with gain and loss. We find that (i) for a single active cavity, significant enhancement can be achieved for the higher-order sidebands, including the transmission rate and the group delay; (ii) for active-passive-coupled cavities, hundreds of microsecond of optical delay or advance are attainable for the nonlinear sideband pulses in the parity-time-symmetric regime. The active higher-order OMIT effects, as firstly revealed here, open up the way to make a low-power optomechaical amplifier, which can amplify both the strength and group delay of not only the probe light but also its higher-order sidebands.
Regularity properties of fiber derivatives associated with higher-order mechanical systems
NASA Astrophysics Data System (ADS)
Colombo, Leonardo; Prieto-Martínez, Pedro Daniel
2016-08-01
The aim of this work is to study fiber derivatives associated to Lagrangian and Hamiltonian functions describing the dynamics of a higher-order autonomous dynamical system. More precisely, given a function in T∗T(k-1)Q, we find necessary and sufficient conditions for such a function to describe the dynamics of a kth-order autonomous dynamical system, thus being a kth-order Hamiltonian function. Then, we give a suitable definition of (hyper)regularity for these higher-order Hamiltonian functions in terms of their fiber derivative. In addition, we also study an alternative characterization of the dynamics in Lagrangian submanifolds in terms of the solutions of the higher-order Euler-Lagrange equations.
Higher-order-statistics-based radial basis function networks for signal enhancement.
Lin, Bor-Shyh; Lin, Bor-Shing; Chong, Fok-Ching; Lai, Feipei
2007-05-01
In this paper, a higher-order-statistics (HOS)-based radial basis function (RBF) network for signal enhancement is introduced. In the proposed scheme, higher order cumulants of the reference signal were used as the input of HOS-based RBF. An HOS-based supervised learning algorithm, with mean square error obtained from higher order cumulants of the desired input and the system output as the learning criterion, was used to adapt weights. The motivation is that the HOS can effectively suppress Gaussian and symmetrically distributed non-Gaussian noise. The influence of a Gaussian noise on the input of HOS-based RBF and the HOS-based learning algorithm can be mitigated. Simulated results indicate that HOS-based RBF can provide better performance for signal enhancement under different noise levels, and its performance is insensitive to the selection of learning rates. Moreover, the efficiency of HOS-based RBF under the nonstationary Gaussian noise is stable.
A Hypergraph-Based Reduction for Higher-Order Binary Markov Random Fields.
Fix, Alexander; Gruber, Aritanan; Boros, Endre; Zabih, Ramin
2015-07-01
Higher-order Markov Random Fields, which can capture important properties of natural images, have become increasingly important in computer vision. While graph cuts work well for first-order MRF's, until recently they have rarely been effective for higher-order MRF's. Ishikawa's graph cut technique [1], [2] shows great promise for many higher-order MRF's. His method transforms an arbitrary higher-order MRF with binary labels into a first-order one with the same minima. If all the terms are submodular the exact solution can be easily found; otherwise, pseudoboolean optimization techniques can produce an optimal labeling for a subset of the variables. We present a new transformation with better performance than [1], [2], both theoretically and experimentally. While [1], [2] transforms each higher-order term independently, we use the underlying hypergraph structure of the MRF to transform a group of terms at once. For n binary variables, each of which appears in terms with k other variables, at worst we produce n non-submodular terms, while [1], [2] produces O(nk). We identify a local completeness property under which our method perform even better, and show that under certain assumptions several important vision problems (including common variants of fusion moves) have this property. We show experimentally that our method produces smaller weight of non-submodular edges, and that this metric is directly related to the effectiveness of QPBO [3]. Running on the same field of experts dataset used in [1], [2] we optimally label significantly more variables (96 versus 80 percent) and converge more rapidly to a lower energy. Preliminary experiments suggest that some other higher-order MRF's used in stereo [4] and segmentation [5] are also locally complete and would thus benefit from our work.
Higher order BLG supersymmetry transformations from 10-dimensional super Yang Mills
NASA Astrophysics Data System (ADS)
Hall, John; Low, Andrew
2014-06-01
We study a Simple Route for constructing the higher order Bagger-Lambert-Gustavsson theory - both supersymmetry transformations and Lagrangian - starting from knowledge of only the 10-dimensional Super Yang Mills Fermion Supersymmetry transformation. We are able to uniquely determine the four-derivative order corrected supersymmetry transformations, to lowest non-trivial order in Fermions, for the most general three-algebra theory. For the special case of Euclidean three-algbera, we reproduce the result presented in arXiv:1207.1208, with significantly less labour. In addition, we apply our method to calculate the quadratic fermion terms in the higher order BLG fermion supersymmetry transformation.
Mixed Electromagnetic and Circuit Simulations using Higher-Order Elements and Bases
Champagne, N J; Rockway, J D; Jandhyala, V
2003-06-18
In this paper, an approach to couple higher-order electromagnetic surface integral equations to circuit simulations is presented. Terminals are defined that connect circuit elements to contacts modeled on the distributed electromagnetic domain. A modified charge-current continuity equation is proposed for a generalized KCL connection at the contacts. The distributive electromagnetic integral equations are developed using higher-order bases and elements that allow both better convergence and accuracy for modeling. The resulting scheme enables simultaneous solution of electromagnetic integral equations for arbitrarily-shaped objects and SPICE-like modeling for lumped circuits, and permits design iterations and visualization of the interaction between the two domains.
NASA Astrophysics Data System (ADS)
Lim, C. W.; Zhang, G.; Reddy, J. N.
2015-05-01
In recent years there have been many papers that considered the effects of material length scales in the study of mechanics of solids at micro- and/or nano-scales. There are a number of approaches and, among them, one set of papers deals with Eringen's differential nonlocal model and another deals with the strain gradient theories. The modified couple stress theory, which also accounts for a material length scale, is a form of a strain gradient theory. The large body of literature that has come into existence in the last several years has created significant confusion among researchers about the length scales that these various theories contain. The present paper has the objective of establishing the fact that the length scales present in nonlocal elasticity and strain gradient theory describe two entirely different physical characteristics of materials and structures at nanoscale. By using two principle kernel functions, the paper further presents a theory with application examples which relates the classical nonlocal elasticity and strain gradient theory and it results in a higher-order nonlocal strain gradient theory. In this theory, a higher-order nonlocal strain gradient elasticity system which considers higher-order stress gradients and strain gradient nonlocality is proposed. It is based on the nonlocal effects of the strain field and first gradient strain field. This theory intends to generalize the classical nonlocal elasticity theory by introducing a higher-order strain tensor with nonlocality into the stored energy function. The theory is distinctive because the classical nonlocal stress theory does not include nonlocality of higher-order stresses while the common strain gradient theory only considers local higher-order strain gradients without nonlocal effects in a global sense. By establishing the constitutive relation within the thermodynamic framework, the governing equations of equilibrium and all boundary conditions are derived via the variational
Higher--order CO/sub 2/ laser beam spot size and depth of focus determined
Luxon, J.T.; Parker, D.E.
1981-06-01
Measurements of higher-order CO/sub 2/ laser beam spot size have been made and found in good agreement with a Hermite-Gaussian rectangular beam propagation model. A modified working definition of spot size is introduced, and a useful depth of focus relationship is presented. It is shown that a single measurement of spot size for any higher-order mode is all that is required to reasonably predict spot size for the same laser operating in different modes. Alternatively, beam size can be predicted theoretically on the basis of the optical cavity parameters.
Clayton, C
1982-07-01
"The structure of human geographical systems is often of a hierarchical nature. Population migration systems can usefully be conceptualized as a series of hierarchically related levels of migration fields: the fields at one level nesting within the fields at the next higher level. Such migration fields and the relationships between different levels can be extracted from large population migration origin-destination matrices with the aid of higher order factor analysis." A case study of the western United States illustrating the application of higher order factor analysis to large interaction matrices is presented.
NASA Technical Reports Server (NTRS)
Heyman, J. S.; Allison, S. G.; Salama, K.
1985-01-01
The behavior of higher order elastic properties, which are much more sensitive to material state than are second order properties, has been studied for steel alloys AISI 1016, 1045, 1095, and 8620 by measuring the stress derivative of the acoustic natural velocity to determine the stress acoustic constants (SAC's). Results of these tests show a 20 percent linear variation of SAC's with carbon content as well as even larger variations with prestrain (plastic deformation). The use of higher order elastic characterization permits quantitative evaluation of solids and may prove useful in studies of fatigue and fracture.
A higher-order split-step Fourier parabolic-equation sound propagation solution scheme.
Lin, Ying-Tsong; Duda, Timothy F
2012-08-01
A three-dimensional Cartesian parabolic-equation model with a higher-order approximation to the square-root Helmholtz operator is presented for simulating underwater sound propagation in ocean waveguides. The higher-order approximation includes cross terms with the free-space square-root Helmholtz operator and the medium phase speed anomaly. It can be implemented with a split-step Fourier algorithm to solve for sound pressure in the model. Two idealized ocean waveguide examples are presented to demonstrate the performance of this numerical technique.
Marquette, Ian
2010-07-15
We construct integrals of motion for multidimensional classical systems from ladder operators of one-dimensional systems. This method can be used to obtain new systems with higher order integrals. We show how these integrals generate a polynomial Poisson algebra. We consider a one-dimensional system with third order ladder operators and found a family of superintegrable systems with higher order integrals of motion. We obtain also the polynomial algebra generated by these integrals. We calculate numerically the trajectories and show that all bounded trajectories are closed.
Dynamic control of higher-order modes in hollow-core photonic crystal fibers.
Euser, T G; Whyte, G; Scharrer, M; Chen, J S Y; Abdolvand, A; Nold, J; Kaminski, C F; Russell, P St J
2008-10-27
We present a versatile method for selective mode coupling into higher-order modes of photonic crystal fibers, using holograms electronically generated by a spatial light modulator. The method enables non-mechanical and completely repeatable changes in the coupling conditions. We have excited higher order modes up to LP(31) in hollow-core photonic crystal fibers. The reproducibility of the coupling allows direct comparison of the losses of different guided modes in both hollow-core bandgap and kagome-lattice photonic crystal fibers. Our results are also relevant to applications in which the intensity distribution of the light inside the fiber is important, such as particle- or atom-guidance.
Higher order solutions to ion-acoustic solitons in a weakly relativistic two-fluid plasma
Gill, Tarsem Singh; Bala, Parveen; Kaur, Harvinder
2008-12-15
The nonlinear wave structure of small amplitude ion-acoustic solitary waves (IASs) is investigated in a two-fluid plasma consisting of weakly relativistic streaming ions and electrons. Using the reductive perturbation theory, the basic set of governing equations is reduced to the Korteweg-de Vries (KdV) equation for the lowest order perturbation. This analysis is further extended using the renormalization technique for the inclusion of higher order nonlinear and dispersive effects for better accuracy. The effect of higher order correction and various parameters on the soliton characteristics is investigated and also discussed.
Hubbs-Tait, Laura; Page, Melanie C.; Huey, Erron L.; Starost, Huei-Juang; Culp, Anne McDonald; Culp, Rex E.; Harper, M. Elizabeth
2009-01-01
We proposed a higher order latent construct of parenting young children, parenting quality. This higher-order latent construct comprises five component constructs: demographic protection, psychological distress, psychosocial maturity, moral and cognitive reflectivity, and parenting attitudes and beliefs. We evaluated this model with data provided by 199 mothers of 4-year-old children enrolled in Head Start. The model was confirmed with only one adjustment suggested by modification indices. Final RMSEA was .05, CFI .96, and NNFI .94, indicating good model fit. Results were interpreted as emphasizing the interdependence of psychological and environmental demands on parenting. Implications of the model for teachers, early interventionists, and public policy are discussed. PMID:19629192
Higher order wave loads on and response of an articulated tower
Utne, N.; Fause, S.; Toerum, A.
1995-12-31
A theoretical and experimental study has been carried out on the higher order wave load phenomena frequently called ringing. It has been shown that a significant mechanism for the ringing effect is impulse type wave loading around the still water line area on an articulated tower. In this paper the authors report on an experimental and theoretical study undertaken to explore the mechanism for the ringing. Several avenues were followed to explore the phenomenon of ringing like higher order wave theory effects and special wave loads effects in the surf zone. Both regular and irregular waves were used during the tests.
Superposition of Solitons with Arbitrary Parameters for Higher-order Equations
NASA Astrophysics Data System (ADS)
Ankiewicz, A.; Chowdury, A.
2016-07-01
The way in which solitons propagate and collide is an important theme in various areas of physics. We present a systematic study of the superposition of solitons in systems governed by higher-order equations related to the nonlinear Schrödinger family. We allow for arbitrary amplitudes and relative velocities and include an infinite number of equations in our analysis of collisions and superposed solitons. The formulae we obtain can be useful in determining the influence of subtle effects like higher-order dispersion in optical fibres and small delays in the material responses to imposed impulses.
Planck scale unification and dynamical symmetry breaking
Lykken, Joseph D.; Willenbrock, Scott
1993-09-01
We explore the possibility of unification of gauge couplings near the Planck scale in models of extended technicolor. We observe that models of the form G X SU(3)_c X SU(2)_L X U(1)_Y cannot be realized, due to the presence of massless neutral Goldstone bosons (axions) and light charged pseudo-Goldstone bosons; thus, unification of the known forces near the Planck scale cannot be achieved. The next simplest possibility, G X SU(4)_{PS} X SU(2)_L X U(1)_{T_{3R}}, cannot lead to unification of the Pati-Salam and weak gauge groups near the Planck scale. However, superstring theory provides relations between couplings at the Planck scale without the need for an underlying grand-unified gauge group, which allows unification of the SU(4)_{PS} and SU(2)_{L} couplings.
Conditional averaging of the Cloud Radiative Effect as a higher order test of GCM radiation budgets
NASA Astrophysics Data System (ADS)
Oreopoulos, L.
2010-12-01
Global Climate Models (GCMs) are quite capable in producing temporally and spatially averaged radiative fluxes that are close to observed values. Closer examination however of clear-sky fluxes and Cloud Radiative Effects (CREs) reveal that the agreement is often the result of numerous error cancellations in the spatiotemporal and spectral domains. One manifestation of this phenomenon is canceling CRE errors among different cloud types. Recent approaches of cloud retrieval analysis from satellites allow us to determine the contribution to the total CRE of various cloud types, information that can be used as a diagnostic of the quality of cloud-radiation simulations in GCMs. In this presentation we apply such conditional averaging to CREs and cloud types provided by the International Satellite Cloud Climatology Project (ISCCP). The ISCCP D1 gridded cloud product contains the joint distribution of cloud top pressure and cloud optical depth at 280 km grid cells observed daily every 3-hours. The patterns of these joint distributions can be used to identify, via cluster analysis, distinct states of the atmosphere at the mesoscale, which ISCCP terms "weather states". The spatiotemporal distribution of distinct weather states is now available as a separate ISCCP D1 product for various geographical zones. We identify the relative contribution to the total CRE (shortwave, longwave, and net; both top of the atmosphere and surface) of these weather states separately for the extended low latitudes, northern midlatitudes and southern midlatitudes for the period 1984-2007 by conditionally averaging the CREs of the ISCCP FD data set according to weather state. Results from such a CRE breakdown that can be used as higher order GCM diagnostics include: (a) The seasonal cycle of CRE of the various weather states and the relationship between their relative strength and their frequency of occurrence; b) the identification of the most dominant weather states in terms of their relative
NASA Astrophysics Data System (ADS)
Srzic, Veljko; Gotovac, Hrvoje; Cvetkovic, Vladimir; Andricevic, Roko
2014-05-01
In this work Langrangian framework is used for conservative tracer transport simulations through 2-D extremely heterogeneous porous media. Conducted numerical simulations enable large sets of concentration values in both spatial and temporal domains. In addition to the advection, which acts on all scales, an additional mechanism considered is local scale dispersion (LSD), accounting for both mechanical dispersion and molecular diffusion. The ratio between these two mechanisms is quantified by the Peclet (Pe) number. In its base, the work gives answers to concentration scalar features when influenced by: i) different log-conductivity variance; ii) log-conductivity structures defined by the same global variogram but with different log conductivity patterns correlated; and iii) for a wide range of Peclet values. Results conducted by Monte Carlo analysis show a complex interplay between the aforementioned parameters, indicating the influence of aquifer properties to temporal LSD evolution. A remarkable collapse of higher order to second-order concentration moments [Yee, 2009] leads to the conclusion that only two concentration moments are required for an accurate description of concentration fluctuations. This explicitly holds for the pure advection case, while in the case of LSD presence the moment deriving function(MDF) is involved to ensure the moment collapse validity. An inspection of the Beta distribution leads to the conclusion that the two-parametric distribution can be used for concentration fluctuation characterization even in cases of high aquifer heterogeneity and/or for different log-conductivity structures, independent of the sampling volume used. Furthermore, the expected mass fraction (EMF) [Heagy & Sullivan, 1996] concept is applied in groundwater transport. In its origin, EMF is function of the concentration but with lower number of realizations needed for its determination, compared to the one point PDF. From practical point of view, EMF excludes
A single dose of oxytocin nasal spray improves higher-order social cognition in schizophrenia.
Guastella, Adam J; Ward, Philip B; Hickie, Ian B; Shahrestani, Sara; Hodge, Marie Antoinette Redoblado; Scott, Elizabeth M; Langdon, Robyn
2015-11-01
Schizophrenia is associated with significant impairments in both higher and lower order social cognitive performance and these impairments contribute to poor social functioning. People with schizophrenia report poor social functioning to be one of their greatest unmet treatment needs. Recent studies have suggested the potential of oxytocin as such a treatment, but mixed results render it uncertain what aspects of social cognition are improved by oxytocin and, subsequently, how oxytocin might best be applied as a therapeutic. The aim of this study was to determine whether a single dose of oxytocin improved higher-order and lower-order social cognition performance for patients with schizophrenia across a well-established battery of social cognition tests. Twenty-one male patients received both a single dose of oxytocin nasal spray (24IU) and a placebo, two weeks apart in a randomized within-subjects placebo controlled design. Following each administration, participants completed the social cognition tasks, as well as a test of general neurocognition. Results revealed that oxytocin particularly enhanced performance on higher order social cognition tasks, with no effects on general neurocognition. Results for individual tasks showed most improvement on tests measuring appreciation of indirect hints and recognition of social faux pas. These results suggest that oxytocin, if combined to enhance social cognition learning, may be beneficial when targeted at higher order social cognition domains. This study also suggests that these higher order tasks, which assess social cognitive processing in a social communication context, may provide useful markers of response to oxytocin in schizophrenia.
Higher-order effects in bandwidth-limited soliton propagation in optical fibers
Aceves, A.B.; De Angelis, C. ); Nalesso, G.; Santagiustina, M. )
1994-12-15
By means of numerical studies and soliton perturbation theory we examine the effects of higher-order linear and nonlinear terms in bandwidth-limited amplified soliton propagation. We show that these effects are responsible for strong reductions of soliton--soliton interaction in such systems.
Iterative generation of higher-order nets in polynomial time using linear programming.
Roy, A; Mukhopadhyay, S
1997-01-01
This paper presents an algorithm for constructing and training a class of higher-order perceptrons for classification problems. The method uses linear programming models to construct and train the net. Its polynomial time complexity is proven and computational results are provided for several well-known problems. In all cases, very small nets were created compared to those reported in other computational studies.
Bounding higher-order ionosphere errors for the dual-frequency GPS user
NASA Astrophysics Data System (ADS)
Datta-Barua, S.; Walter, T.; Blanch, J.; Enge, P.
2008-10-01
Civil signals at L2 and L5 frequencies herald a new phase of Global Positioning System (GPS) performance. Dual-frequency users typically assume a first-order approximation of the ionosphere index of refraction, combining the GPS observables to eliminate most of the ranging delay, on the order of meters, introduced into the pseudoranges. This paper estimates the higher-order group and phase errors that occur from assuming the ordinary first-order dual-frequency ionosphere model using data from the Federal Aviation Administration's Wide Area Augmentation System (WAAS) network on a solar maximum quiet day and an extremely stormy day postsolar maximum. We find that during active periods, when ionospheric storms may introduce slant range delays at L1 as high as 100 m, the higher-order group errors in the L1-L2 or L1-L5 dual-frequency combination can be tens of centimeters. The group and phase errors are no longer equal and opposite, so these errors accumulate in carrier smoothing of the dual-frequency code observable. We show the errors in the carrier-smoothed code are due to higher-order group errors and, to a lesser extent, to higher-order phase rate errors. For many applications, this residual error is sufficiently small as to be neglected. However, such errors can impact geodetic applications as well as the error budgets of GPS Augmentation Systems providing Category III precision approach.
Problem-Based Learning and Use of Higher-Order Thinking by Emergency Medical Technicians
ERIC Educational Resources Information Center
Rosenberger, Paul
2013-01-01
Emergency Medical Technicians (EMTs) often handle chaotic life-and-death situations that require higher-order thinking skills. Improving the pass rate of EMT students depends on many factors, including the use of proven and effective teaching methods. Results from recent research about effective teaching have suggested that the instructional…
ERIC Educational Resources Information Center
Brady, Timothy F.; Tenenbaum, Joshua B.
2013-01-01
When remembering a real-world scene, people encode both detailed information about specific objects and higher order information like the overall gist of the scene. However, formal models of change detection, like those used to estimate visual working memory capacity, assume observers encode only a simple memory representation that includes no…
ERIC Educational Resources Information Center
Scandura, Joseph M.; And Others
A quasi-systematic strategy of devising rule sets for problem solving is applied to ruler and compass geometrical constructions. "Lower order" rules consisting of basic skills and "higher order" rules which govern the selection and combination of lower order rules are identified by an analysis of problem types; three types of construction problems…
Addition of higher order plate and shell elements into NASTRAN computer program
NASA Technical Reports Server (NTRS)
Narayanaswami, R.; Goglia, G. L.
1976-01-01
Two higher order plate elements, the linear strain triangular membrane element and the quintic bending element, along with a shallow shell element, suitable for inclusion into the NASTRAN (NASA Structural Analysis) program are described. Additions to the NASTRAN Theoretical Manual, Users' Manual, Programmers' Manual and the NASTRAN Demonstration Problem Manual, for inclusion of these elements into the NASTRAN program are also presented.
Scintillations of higher-order laser beams in non-Kolmogorov medium.
Baykal, Yahya
2014-04-01
In an atmospheric medium that shows a non-Kolmogorov turbulence behavior, the variation of the on-axis scintillation index is evaluated when higher-order laser modes are used as the excitation. The Rytov method is employed together with the equivalent structure constant, which makes our results valid in weak turbulence. In the limiting case, our solution correctly reduces to the known scintillation index of the Gaussian beam in Kolmogorov turbulence. For all the higher-order even modes, increase in the power law exponent, α of the non-Kolmogorov spectrum is found to increase the scintillations. When the source size of the higher-order modes is large, higher-order even modes attain almost the same scintillation index values for all α. However, for small source sizes, being valid for any realization of the non-Kolmogorov spectrum, the scintillations decrease as the mode order becomes large. The changes in the propagation distance, structure constant, and the wavelength do not vary these trends.
ERIC Educational Resources Information Center
Budsankom, Prayoonsri; Sawangboon, Tatsirin; Damrongpanit, Suntorapot; Chuensirimongkol, Jariya
2015-01-01
The purpose of the research is to develop and identify the validity of factors affecting higher order thinking skills (HOTS) of students. The thinking skills can be divided into three types: analytical, critical, and creative thinking. This analysis is done by applying the meta-analytic structural equation modeling (MASEM) based on a database of…
Higher-Order Thinking Development through Adaptive Problem-Based Learning
ERIC Educational Resources Information Center
Raiyn, Jamal; Tilchin, Oleg
2015-01-01
In this paper we propose an approach to organizing Adaptive Problem-Based Learning (PBL) leading to the development of Higher-Order Thinking (HOT) skills and collaborative skills in students. Adaptability of PBL is expressed by changes in fixed instructor assessments caused by the dynamics of developing HOT skills needed for problem solving,…
ERIC Educational Resources Information Center
Tanujaya, Benidiktus
2016-01-01
The purpose of this research was to develop an instrument that can be used to measure higher-order thinking skills (HOTS) in mathematics instruction of high school students. This research was conducted using a standard procedure of instrument development, from the development of conceptual definitions, development of operational definitions,…
Conception of Teaching Higher Order Thinking: Perspectives of Chinese Teachers in Hong Kong
ERIC Educational Resources Information Center
Yeung, Sze-yin Shirley
2015-01-01
Enhancing the higher order thinking (HOT) ability of students is a worldwide educational goal. This has also become a significant objective in the curriculum reforms in Hong Kong, which aims at better preparation of students to meet the challenges of the new era. Cultural aspects are often regarded as salient in determining approaches to teaching.…
The Higher Order Factor Structure and Gender Invariance of the Pathological Narcissism Inventory
ERIC Educational Resources Information Center
Wright, Aidan G. C.; Lukowitsky, Mark R.; Pincus, Aaron L.; Conroy, David E.
2010-01-01
The Pathological Narcissism Inventory (PNI) is a recently developed multidimensional inventory for the assessment of pathological narcissism. The authors describe and report the results of two studies that investigate the higher order factor structure and gender invariance of the PNI. The results of the first study indicate that the PNI has a…
Development of a Process To Assess Higher Order Thinking Skills for College Graduates.
ERIC Educational Resources Information Center
Rock, Donald A.
Issues in the development of assessments of higher order thinking skills for college graduates are discussed in the order in which they were presented when this series of papers was commissioned. With regard to Issue 1, it is generally agreed that the development of these skills is a desirable goal, but there is little consensus on how they should…
"What Do I Do Here?": Higher Order Learning Effects of Enhancing Task Instructions
ERIC Educational Resources Information Center
Chamberlain, Susanna; Zuvela, Danni
2014-01-01
This paper reports the findings of a one-year research project focused on a series of structured interventions aimed at enhancing task instruction to develop students' understanding of higher assessment practices, and encouraging higher order learning. It describes the nature and iterations of the interventions, made into a large-enrolment online…
Media Literacy, Popular Culture, and the Transfer of Higher Order Thinking Abilities.
ERIC Educational Resources Information Center
Mraz, Maryann; Heron, Alison H.; Wood, Karen
2003-01-01
Contends that by acknowledging the influence of media literacy on adolescents' lives outside the classroom, teachers have a potential source for motivating student interest and eliciting their higher order thinking abilities within the classroom. Specifically addresses merging popular culture with classroom culture and provides a paradigm for…
ERIC Educational Resources Information Center
McGill, Ryan J.; Canivez, Gary L.
2016-01-01
As recommended by Carroll, the present study examined the factor structure of the Wechsler Intelligence Scale for Children-Fourth Edition Spanish (WISC-IV Spanish) normative sample using higher order exploratory factor analytic techniques not included in the WISC-IV Spanish Technical Manual. Results indicated that the WISC-IV Spanish subtests were…
ERIC Educational Resources Information Center
Gamino, Jacquelyn F.; Chapman, Sandra B.; Cook, Lori G.
2009-01-01
Little is known about strategic learning ability in preteens and adolescents with traumatic brain injury (TBI). Strategic learning is the ability to combine and synthesize details to form abstracted gist-based meanings, a higher-order cognitive skill associated with frontal lobe functions and higher classroom performance. Summarization tasks were…
Variable-Length Computerized Adaptive Testing Using the Higher Order DINA Model
ERIC Educational Resources Information Center
Hsu, Chia-Ling; Wang, Wen-Chung
2015-01-01
Cognitive diagnosis models provide profile information about a set of latent binary attributes, whereas item response models yield a summary report on a latent continuous trait. To utilize the advantages of both models, higher order cognitive diagnosis models were developed in which information about both latent binary attributes and latent…
How to Assess Higher-Order Thinking Skills in Your Classroom
ERIC Educational Resources Information Center
Brookhart, Susan M.
2010-01-01
Don't settle for assessing recall and comprehension only when you can use this guide to create assessments for higher-order thinking skills. Assessment expert Susan M. Brookhart brings you up to speed on how to develop and use test questions and other assessments that reveal how well your students can analyze, reason, solve problems, and think…
Assessing Teachers' Pedagogical Knowledge in the Context of Teaching Higher-Order Thinking
ERIC Educational Resources Information Center
Zohar, Anat; Schwartzer, Noa
2005-01-01
This article reports the development and application of two instruments for assessing science teachers' pedagogical knowledge in the context of teaching higher-order thinking: a Likert-type research instrument, and an instrument that analyzes classroom observations. The rationale for developing these instruments and their main categories is…
Higher-Order Fertility among Urban Fathers: An Overlooked Issue for a Neglected Population
ERIC Educational Resources Information Center
Bronte-Tinkew, Jacinta; Ryan, Suzanne; Franzetta, Kerry; Manlove, Jennifer; Lilja, Emily
2009-01-01
The study includes a longitudinal sample of 1,989 fathers from the Fragile Families and Child Wellbeing study and examines factors associated with fathering a higher-order birth (three or more children) and compares these factors to those predicting any subsequent birth. Also, the article examines differences by marital status. Logistic regression…
Improving Higher Order Thinking Skills among Freshmen by Teaching Science through Inquiry
ERIC Educational Resources Information Center
Hugerat, Muhamad; Kortam, Naji
2014-01-01
Twenty-eight freshmen majoring in biology and/or chemistry in an Arab college in Israel, were given a pre-test and a post-test in which they had to identify the control group and design a controlled experiment. During the course an intervention was used. Science was taught by inquiry while using strategies that promote higher-order thinking skills…
Using Higher Order Thinking Questions to Foster Critical Thinking: A Classroom Study
ERIC Educational Resources Information Center
Barnett, Jerrold E.; Francis, Alisha L.
2012-01-01
To determine if quizzes containing higher order thinking questions are related to critical thinking and test performance when utilised in conjunction with an immersion approach to instruction and effort-based grading, sections of an "Educational Psychology" course were assigned to one of three quizzing conditions. Quizzes contained factual…
Higher Order, Critical Thinking Skills in National Police Academy Course Development
ERIC Educational Resources Information Center
Barker, Beth A.
2011-01-01
Law enforcement requires the officer to invoke reason and critical thinking skills in order to solve intricate problems in real time, on the job. This study examined the course development of a large national organization (State Police Academies) to ascertain what strategies are being used in their courses to promote training for higher order,…
Dichotomous Identification Keys: A Ladder to Higher Order Knowledge about the Human Body
ERIC Educational Resources Information Center
Sorgo, Andrej
2006-01-01
We tried to enrich teaching human anatomy in high school biology lessons. Students construct dichotomous identification keys to the cells, tissues, organs, or body parts. By doing this, students have achieved higher-order cognitive levels of knowledge because construction of such keys is based on analysis, synthesis, and evaluation. Students found…
ERIC Educational Resources Information Center
Toledo, Santiago; Dubas, Justin M.
2016-01-01
An emphasis on higher-order thinking within the curriculum has been a subject of interest in the chemical and STEM literature due to its ability to promote meaningful, transferable learning in students. The systematic use of learning taxonomies could be a practical way to scaffold student learning in order to achieve this goal. This work proposes…
Higher Order Testlet Response Models for Hierarchical Latent Traits and Testlet-Based Items
ERIC Educational Resources Information Center
Huang, Hung-Yu; Wang, Wen-Chung
2013-01-01
Both testlet design and hierarchical latent traits are fairly common in educational and psychological measurements. This study aimed to develop a new class of higher order testlet response models that consider both local item dependence within testlets and a hierarchy of latent traits. Due to high dimensionality, the authors adopted the Bayesian…
An Examination of the Higher-Order Structure of Psychopathology and its Relationship to Personality.
Uliaszek, Amanda A; Zinbarg, Richard E
2016-04-01
This study compared a series of higher-order models encompassing symptoms of both clinical and personality disorders. The final model was then correlated with a latent variable model of normal personality traits. A total of 420 undergraduates completed a battery of self-report symptom and personality questionnaires, with informant-reports and diagnostic interviews provided by overlapping subsamples. A three-level model with two factors at the highest level and four factors at the second level was the best fitting model. The higher-order internalizing and externalizing factors were then correlated with 30 latent personality facets. Results demonstrate an elevation on the neuroticism facets for the higher-order internalizing factor, along with low positive emotions, low actions, and low competence. The higher-order externalizing factor was negatively associated with most conscientiousness and agreeableness factors, while showing an elevation on excitement-seeking, impulsivity, and angry hostility. Future studies should replicate these models with the inclusion of more low base-rate disorders (i.e., psychosis).
NASA Astrophysics Data System (ADS)
Dori, Yehudit J.; Tal, Revital T.; Tsaushu, Masha
2003-11-01
Teaching nonscience majors topics in biotechnology through case studies is the focus of this research. Our Biotechnology, Environment, and Related Issues module, developed within the Science for All framework, is aimed at elevating the level of students' scientific and technological literacy and their higher order thinking skills. The research goal was to investigate nonscience major students' ability to use various thinking skills in analyzing environmental and moral conflicts presented through case studies in the Biotechnology Module. The research population consisted of about 200 nonscience majors in eight classes of grades 10-12 from heterogeneous communities. We found a significant improvement in students' knowledge and understanding and higher order thinking skills at all academic levels. The scores that low academic level students achieved in the knowledge and understanding category were higher than their high academic level peers' scores. In the higher order thinking skills - question posing, argumentation, and system thinking - a significant difference in favor of the high academic level students was found. The gap that had existed between low and high academic level students narrowed. Most students reported that the biotechnological topics that they had studied were interesting and relevant. Based on these results, we advocate a curriculum that exposes students to scientific controversies through case studies with environmental and moral implications. Our research has shown that this approach is likely to contribute to developing scientific and technological literacy along with higher order thinking skills of nonscience majors.
Higher Order First Integrals of Motion in a Gauge Covariant Hamiltonian Framework
NASA Astrophysics Data System (ADS)
Visinescu, Mihai
The higher order symmetries are investigated in a covariant Hamiltonian formulation. The covariant phase-space approach is extended to include the presence of external gauge fields and scalar potentials. The special role of the Killing-Yano tensors is pointed out. Some nontrivial examples involving Runge-Lenz type conserved quantities are explicitly worked out.
Whiteley, M R; Welsh, B M; Roggemann, M C
1998-12-20
Tilt compensation performance is generally suboptimal when phase measurements from natural or laser guide stars are used as the conjugate phase in an adaptive optics system. Optimal compensation is obtained when the conjugate-phase coefficients are estimated from beacon measurements, given knowledge of the correlation between the on-axis object phase and the beacon measurements. We apply optimal compensation theory to tilt correction for the case of an off-axis beacon. Because off-axis higher-order modes are correlated with the on-axis tilt components, a performance gain can be realized when the tilt estimator includes higher-order modal measurements. For natural guide star compensation, it is shown that equivalent tilt compensation can be achieved at beacon offsets that are three times larger when higher-order modes through Zernike 15 are used in the tilt estimator. For a laser guide star, although tilt information cannot be measured directly because of beam reciprocity, off-axis higher-order modal measurements can be used to estimate tilt components, leading to a maximum Strehl ratio of approximately 0.3 for the relative aperture diameter D/r(0) = 4 and the relative turbulence outer scale L(0)/D = 10.
Efficient nonlinear generation of high power, higher order, ultrafast "perfect" vortices in green.
Apurv Chaitanya, N; Jabir, M V; Samanta, G K
2016-04-01
We report on efficient nonlinear generation of ultrafast, higher order "perfect" vortices at the green wavelength. Based on Fourier transformation of the higher order Bessel-Gauss (BG) beam generated through the combination of the spiral phase plate and axicon, we have transformed the Gaussian beam of the ultrafast Yb-fiber laser at 1060 nm into perfect vortices of power 4.4 W and order up to 6. Using single-pass second-harmonic generation (SHG) of such vortices in 5 mm long chirped MgO-doped, periodically poled congruent LiNbO_{3} crystal, we have generated perfect vortices at green wavelength (530 nm) with output power of 1.2 W and vortex order up to 12 at a single-pass conversion efficiency of 27%, independent of the orders. This is the highest single-pass SHG efficiency of any optical beams other than Gaussian beams. Unlike the disintegration of higher order vortices due to spatial walk-off effect in birefringent crystals, here, the use of the quasi-phase-matching process enables generation of high-quality vortices, even at higher orders. The green perfect vortices of all orders have temporal and spectral widths of 507 fs and 1.9 nm, respectively, corresponding to a time-bandwidth product of 1.02. PMID:27192233
ERIC Educational Resources Information Center
Scandura, Joseph M.; And Others
The research reported in this paper was designed to analyze the incidence of use of higher-order rules by students solving geometric construction problems. A carefully selected set of construction problems was subjected to rigorous a priori analysis by mathematics educators to determine what basic and second-order rules might be used by able high…
Using Tests To Evaluate the Impact of Curricular Reform on Higher Order Thinking.
ERIC Educational Resources Information Center
Davis, Alan
The dominant issues in considering the use of tests developed outside the classroom to measure the impact of curriculum reform on higher order thinking are reviewed by a panel interviewed for this discussion. Panel members are: (1) Stuart Kahl, (2) Robert Linn, (3) Senta A. Raizen, (4) Lauren Resnick, and (5) Thomas A. Romberg. It is conceded…
ERIC Educational Resources Information Center
Shen, Yan; Hannafin, Michael
2013-01-01
This study is part of an ongoing design research to scaffold preservice teachers' higher-order reasoning while solving technology integration problems. Informed by previous iterations, we designed and examined progressively increasing scaffolds that integrated multiple scaffolding functions to facilitate three technology-based lesson design…
A new method to infer higher-order spike correlations from membrane potentials.
Reimer, Imke C G; Staude, Benjamin; Boucsein, Clemens; Rotter, Stefan
2013-10-01
What is the role of higher-order spike correlations for neuronal information processing? Common data analysis methods to address this question are devised for the application to spike recordings from multiple single neurons. Here, we present a new method which evaluates the subthreshold membrane potential fluctuations of one neuron, and infers higher-order correlations among the neurons that constitute its presynaptic population. This has two important advantages: Very large populations of up to several thousands of neurons can be studied, and the spike sorting is obsolete. Moreover, this new approach truly emphasizes the functional aspects of higher-order statistics, since we infer exactly those correlations which are seen by a neuron. Our approach is to represent the subthreshold membrane potential fluctuations as presynaptic activity filtered with a fixed kernel, as it would be the case for a leaky integrator neuron model. This allows us to adapt the recently proposed method CuBIC (cumulant based inference of higher-order correlations from the population spike count; Staude et al., J Comput Neurosci 29(1-2):327-350, 2010c) with which the maximal order of correlation can be inferred. By numerical simulation we show that our new method is reasonably sensitive to weak higher-order correlations, and that only short stretches of membrane potential are required for their reliable inference. Finally, we demonstrate its remarkable robustness against violations of the simplifying assumptions made for its construction, and discuss how it can be employed to analyze in vivo intracellular recordings of membrane potentials.
Analysis of warping deformation modes using higher order ANCF beam element
NASA Astrophysics Data System (ADS)
Orzechowski, Grzegorz; Shabana, Ahmed A.
2016-02-01
Most classical beam theories assume that the beam cross section remains a rigid surface under an arbitrary loading condition. However, in the absolute nodal coordinate formulation (ANCF) continuum-based beams, this assumption can be relaxed allowing for capturing deformation modes that couple the cross-section deformation and beam bending, torsion, and/or elongation. The deformation modes captured by ANCF finite elements depend on the interpolating polynomials used. The most widely used spatial ANCF beam element employs linear approximation in the transverse direction, thereby restricting the cross section deformation and leading to locking problems. The objective of this investigation is to examine the behavior of a higher order ANCF beam element that includes quadratic interpolation in the transverse directions. This higher order element allows capturing warping and non-uniform stretching distribution. Furthermore, this higher order element allows for increasing the degree of continuity at the element interface. It is shown in this paper that the higher order ANCF beam element can be used effectively to capture warping and eliminate Poisson locking that characterizes lower order ANCF finite elements. It is also shown that increasing the degree of continuity requires a special attention in order to have acceptable results. Because higher order elements can be more computationally expensive than the lower order elements, the use of reduced integration for evaluating the stress forces and the use of explicit and implicit numerical integrations to solve the nonlinear dynamic equations of motion are investigated in this paper. It is shown that the use of some of these integration methods can be very effective in reducing the CPU time without adversely affecting the solution accuracy.
Higher-order adaptive finite-element methods for orbital-free density functional theory
Motamarri, Phani; Iyer, Mrinal; Knap, Jaroslaw; Gavini, Vikram
2012-08-15
In the present work, we study various numerical aspects of higher-order finite-element discretizations of the non-linear saddle-point formulation of orbital-free density-functional theory. We first investigate the robustness of viable solution schemes by analyzing the solvability conditions of the discrete problem. We find that a staggered solution procedure where the potential fields are computed consistently for every trial electron-density is a robust solution procedure for higher-order finite-element discretizations. We next study the convergence properties of higher-order finite-element discretizations of orbital-free density functional theory by considering benchmark problems that include calculations involving both pseudopotential as well as Coulomb singular potential fields. Our numerical studies suggest close to optimal rates of convergence on all benchmark problems for various orders of finite-element approximations considered in the present study. We finally investigate the computational efficiency afforded by various higher-order finite-element discretizations, which constitutes the main aspect of the present work, by measuring the CPU time for the solution of discrete equations on benchmark problems that include large Aluminum clusters. In these studies, we use mesh coarse-graining rates that are derived from error estimates and an a priori knowledge of the asymptotic solution of the far-field electronic fields. Our studies reveal a significant 100-1000 fold computational savings afforded by the use of higher-order finite-element discretization, alongside providing the desired chemical accuracy. We consider this study as a step towards developing a robust and computationally efficient discretization of electronic structure calculations using the finite-element basis.
NASA Astrophysics Data System (ADS)
Zhang, Xiang-Wu; Li, Yuan-Yuan; Zhao, Xiao-Xia; Luo, Wen-Feng
2014-10-01
In this paper we study the higher-order differential variational principle and differential equations of motion for mechanical systems in event space. Based on the higher-order d'Alembert principle of the system, the higher-order velocity energy and the higher-order acceleration energy of the system in event space are defined, the higher-order d'Alembert—Lagrange principle of the system in event space is established, and the parametric forms of Euler—Lagrange, Nielsen and Appell for this principle are given. Finally, the higher-order differential equations of motion for holonomic systems in event space are obtained.
NASA Astrophysics Data System (ADS)
Wang, Qi-Min; Gao, Yi-Tian; Su, Chuan-Qi; Zuo, Da-Wei
2015-10-01
In this paper, a higher-order nonlinear Schrödinger-Maxwell-Bloch system with quintic terms is investigated, which describes the propagation of ultrashort optical pulses, up to the attosecond duration, in an erbium-doped fiber. Multi-soliton, breather and rogue-wave solutions are derived by virtue of the Darboux transformation and the limiting procedure. Features and interaction patterns of the solitons, breathers and rogue waves are discussed. (i) The solitonic amplitudes, widths and velocities are exhibited, and solitonic amplitudes and widths are proved to have nothing to do with the higher-order terms. (ii) The higher-order terms and frequency detuning affect the growth rate of periodic modulation and skewing angle for the breathers, except for the range of the frequency of modulation. (iii) The quintic terms and frequency detuning have the effects on the temporal duration for the rogue waves. (iv) Breathers are classified into two types, according to the range of the modulation instability. (v) Interaction between the two solitons is elastic. When the two solitons interact with each other, the periodic structure occurs, which is affected by the higher-order terms and frequency detuning. (vi) Interaction between the two Akhmediev-like breathers or two Kuznetsov-Ma-like solitons shows the different patterns with different ratios of the relative modulation frequencies, while the interaction area induced by the two breathers looks like a higher-order rogue wave.
Budyak, Ivan L; Doyle, Brandon L; Weiss, William F
2015-04-01
Robust higher order structure (HOS) characterization capability and strategy are critical throughout biopharmaceutical development from initial candidate selection and formulation screening to process optimization and manufacturing. This case study describes the utility of several orthogonal HOS methods as investigational tools during purification process development. An atypically high level of residual detergent in a development drug substance batch of a therapeutic monoclonal antibody triggered a root cause investigation. Several orthogonal biophysical techniques were used to uncover and characterize a specific interaction between the detergent and the antibody. Isothermal titration calorimetry (ITC) was used to quantify the molar ratio and affinity of the binding event, and circular dichroism (CD) spectroscopy and differential scanning calorimetry (DSC) were used to evaluate corresponding impacts on secondary/tertiary structure and thermal stability, respectively. As detergents are used routinely in biopharmaceutical processing, this case study highlights the value and power of HOS data in informing technical investigations and underlines the importance of HOS characterization as a component of overall biopharmaceutical analytical control strategy.
Gruia, Flaviu; Du, Jiali; Santacroce, Paul V; Remmele, Richard L; Bee, Jared S
2015-04-01
Changes in formulation may be required during the development of protein therapeutics. Some of the changes may alter the protein higher order structure (HOS). In this note, we show how the change from a trehalose-based formulation to an arginine-based formulation concomitantly impacted the tertiary structure and the thermal stability of a mAb (mAb1). The secondary structure was not disrupted by the formulation change. The destabilization of the tertiary structure did not affect the long-term stability or the bioactivity of mAb1. This indicates that loss of conformational stability was likely compensated by improvements in the colloidal stability of mAb1 in the arginine-based formulation. The formulation-induced changes in HOS were reversible as proven by measurements after dilution in a common buffer (phosphate-buffered saline). For aggregation driven by assembly of aggregates (colloidally limited), small changes in conformational structure and stability as measured by HOS methods may not necessarily be predictive of long-term stability.
Scott, Kristin M; Barbarin, Oscar A; Brown, Jeffrey M
2013-01-01
This study examines the relations of higher order (i.e., abstract) thinking (HOT) skills to specific domains of social competence in Black boys (n = 108) attending publicly sponsored prekindergarten (pre-K) programs. Data for the study were collected as part of the National Center for Early Development and Learning (NCEDL) Multi-State Study, a national, longitudinal study examining the quality and outcomes in a representative sample of publicly sponsored pre-K programs in six states (N = 240). Pre-K and kindergarten teachers rated randomly selected children on measures of abstract thinking, self-regulation, and social functioning at the beginning and end of each school year. Applying structural equation modeling, compared with earlier time points, HOT measured in the fall of kindergarten significantly predicted each of the domains of social competence in the spring of kindergarten, with the exception of peer social skills, while controlling for general cognitive ability. Results suggest that early intervention to improve HOT may be an effective and more focused approach to address concerns about Black boys' early social competencies in specific domains and potentially reduce the risk of later social difficulties.
Schendan, Haline E; Tinaz, Sule; Maher, Stephen M; Stern, Chantal E
2013-04-01
Sequence learning depends on the striatal system, but recent findings also implicate the mediotemporal lobe (MTL) system. Schendan, Searl, Melrose, and Stern (2003) found higher-order associative, learning-related activation in the striatum, dorsolateral prefrontal cortex, and the MTL during the early acquisition phase of both implicit and explicit variants of a serial response time task. This functional MRI (fMRI) study capitalized on this task to determine how changes in MTL function observed in aging and compromised frontostriatal function characteristic of patients with Parkinson's disease (PD) impacts sequence learning and memory under implicit instructions. Brain activity was compared between "sequence" and "random" conditions in 12 nondemented patients with PD and education- and gender-matched healthy control participants of whom 12 were age matched (MC) and 14 were younger (YC). Behaviorally, sequence-specific learning of higher-order associations was reduced with aging and changed further with PD and resulted primarily in implicit knowledge in the older participants. fMRI revealed reduced intensity and extent of sequence learning-related activation in older relative to younger people in frontostriatal circuits and the MTL. This was because signal was greater for the sequence than random condition in younger people, whereas older people, especially those with PD, showed the opposite pattern. Both older groups also showed increased activation to the task itself relative to baseline fixation. In addition, right MTL showed hypoactivation and left MTL hyperactivation in PD relative to the MC group. The results suggest changes in frontostriatal and MTL activity occur during aging that affect task-related activity and the initial acquisition phase of implicit higher-order sequence learning. In addition, the results suggest that Parkinson's disease adversely affects processes in the MTL including sequence learning and memory.
3D Higher Order Modeling in the BEM/FEM Hybrid Formulation
NASA Technical Reports Server (NTRS)
Fink, P. W.; Wilton, D. R.
2000-01-01
Higher order divergence- and curl-conforming bases have been shown to provide significant benefits, in both convergence rate and accuracy, in the 2D hybrid finite element/boundary element formulation (P. Fink and D. Wilton, National Radio Science Meeting, Boulder, CO, Jan. 2000). A critical issue in achieving the potential for accuracy of the approach is the accurate evaluation of all matrix elements. These involve products of high order polynomials and, in some instances, singular Green's functions. In the 2D formulation, the use of a generalized Gaussian quadrature method was found to greatly facilitate the computation and to improve the accuracy of the boundary integral equation self-terms. In this paper, a 3D, hybrid electric field formulation employing higher order bases and higher order elements is presented. The improvements in convergence rate and accuracy, compared to those resulting from lower order modeling, are established. Techniques developed to facilitate the computation of the boundary integral self-terms are also shown to improve the accuracy of these terms. Finally, simple preconditioning techniques are used in conjunction with iterative solution procedures to solve the resulting linear system efficiently. In order to handle the boundary integral singularities in the 3D formulation, the parent element- either a triangle or rectangle-is subdivided into a set of sub-triangles with a common vertex at the singularity. The contribution to the integral from each of the sub-triangles is computed using the Duffy transformation to remove the singularity. This method is shown to greatly facilitate t'pe self-term computation when the bases are of higher order. In addition, the sub-triangles can be further divided to achieve near arbitrary accuracy in the self-term computation. An efficient method for subdividing the parent element is presented. The accuracy obtained using higher order bases is compared to that obtained using lower order bases when the number
Minimal SUSY SO(10) and Yukawa unification
Okada, Nobuchika
2013-05-23
The minimal supersymmetric (SUSY) SO(10) model, where only two Higgs multiplets {l_brace}10 Circled-Plus 126-bar{r_brace} are utilized for Yukawa couplings with matter fields, can nicely fit the neutrino oscillation parameters as well as charged fermion masses and mixing angles. In the fitting of the fermion mass matrix data, the largest element in the Yukawa coupling with the 126-bar -plet Higgs (Y{sup 126}) is found to be of order one, so that the right see-saw scale should be provided by Higgs vacuum expectation values (VEVs) of {beta}(10{sup 14}GeV). This fact causes a serious problem, namely, the gauge coupling unification is spoiled because of the presence of many exotic Higgs multiples emerging at the see-saw scale. In order to solve this problem, we consider a unification between bottom-quark and tau Yukawa couplings (b - {tau} Yukawa coupling unification) at the grand unified theory (GUT) scale, due to threshold corrections of superpartners to the Yukawa couplings at the 1 TeV scale. When the b - {tau} Yukawa coupling unification is very accurate, the largest element in Y{sub 126} can become {beta}(0.01), so that the right see-saw scale is realized by the GUT scale VEV and the usual gauge coupling unification is maintained. Since the b - {tau} Yukawa unification alters the Yukawa coupling data at the GUT scale, we re-analyze the fitting of the fermion mass matrix data by taking all the relevant free parameters into account. Unfortunately, we find that no parameter region shows up to give a nice fit for the current neutrino oscillation data and therefore, the usual picture of the gauge coupling unification cannot accommodate the fermion mass matrix data fitting in our procedure.
ERIC Educational Resources Information Center
Bent, Henry A.; Weinhold, Frank
2007-01-01
The study presents and explains the various periodicity symbols, tables and models for the higher-order valency and donor-acceptor kinships used in chemistry. The described alternative tables are expected to improve the pedagogical consistency of the chemical periodicity patterns with better electronic behavior.
Novel asymmetric representation method for solving the higher-order Ginzburg-Landau equation
NASA Astrophysics Data System (ADS)
Wong, Pring; Pang, Lihui; Wu, Ye; Lei, Ming; Liu, Wenjun
2016-04-01
In ultrafast optics, optical pulses are generated to be of shorter pulse duration, which has enormous significance to industrial applications and scientific research. The ultrashort pulse evolution in fiber lasers can be described by the higher-order Ginzburg-Landau (GL) equation. However, analytic soliton solutions for this equation have not been obtained by use of existing methods. In this paper, a novel method is proposed to deal with this equation. The analytic soliton solution is obtained for the first time, and is proved to be stable against amplitude perturbations. Through the split-step Fourier method, the bright soliton solution is studied numerically. The analytic results here may extend the integrable methods, and could be used to study soliton dynamics for some equations in other disciplines. It may also provide the other way to obtain two-soliton solutions for higher-order GL equations.
Generalized quantum kinetic expansion: Higher-order corrections to multichromophoric Förster theory
Wu, Jianlan Gong, Zhihao; Tang, Zhoufei
2015-08-21
For a general two-cluster energy transfer network, a new methodology of the generalized quantum kinetic expansion (GQKE) method is developed, which predicts an exact time-convolution equation for the cluster population evolution under the initial condition of the local cluster equilibrium state. The cluster-to-cluster rate kernel is expanded over the inter-cluster couplings. The lowest second-order GQKE rate recovers the multichromophoric Förster theory (MCFT) rate. The higher-order corrections to the MCFT rate are systematically included using the continued fraction resummation form, resulting in the resummed GQKE method. The reliability of the GQKE methodology is verified in two model systems, revealing the relevance of higher-order corrections.
Finite time control for MIMO nonlinear system based on higher-order sliding mode.
Liu, Xiangjie; Han, Yaozhen
2014-11-01
Considering a class of MIMO uncertain nonlinear system, a novel finite time stable control algorithm is proposed based on higher-order sliding mode concept. The higher-order sliding mode control problem of MIMO nonlinear system is firstly transformed into finite time stability problem of multivariable system. Then continuous control law, which can guarantee finite time stabilization of nominal integral chain system, is employed. The second-order sliding mode is used to overcome the system uncertainties. High frequency chattering phenomenon of sliding mode is greatly weakened, and the arbitrarily fast convergence is reached. The finite time stability is proved based on the quadratic form Lyapunov function. Examples concerning the triple integral chain system with uncertainty and the hovercraft trajectory tracking are simulated respectively to verify the effectiveness and the robustness of the proposed algorithm. PMID:25277626
Higher order harmonic detection for exploring nonlinear interactions with nanoscale resolution.
Vasudevan, R K; Okatan, M Baris; Rajapaksa, I; Kim, Y; Marincel, D; Trolier-McKinstry, S; Jesse, S; Valanoor, N; Kalinin, S V
2013-01-01
Nonlinear dynamics underpin a vast array of physical phenomena ranging from interfacial motion to jamming transitions. In many cases, insight into the nonlinear behavior can be gleaned through exploration of higher order harmonics. Here, a method using band excitation scanning probe microscopy (SPM) to investigate higher order harmonics of the electromechanical response, with nanometer scale spatial resolution is presented. The technique is demonstrated by probing the first three harmonics of strain for a Pb(Zr(1-x)Ti(x))O₃ (PZT) ferroelectric capacitor. It is shown that the second order harmonic response is correlated with the first harmonic response, whereas the third harmonic is not. Additionally, measurements of the second harmonic reveal significant deviations from Rayleigh-type models in the form of a much more complicated field dependence than is observed in the spatially averaged data. These results illustrate the versatility of n(th) order harmonic SPM detection methods in exploring nonlinear phenomena in nanoscale materials.
Spur-Reduced Digital Sinusoid Generation Using Higher-Order Phase Dithering
NASA Technical Reports Server (NTRS)
Flanagan, M.; Zimmerman, G.
1993-01-01
A higher-order phase dithering technique that reduces the complexity of digital sinusoid generation is presented and analyzed. M(sup th) order phase dithering denotes the addition of M independent, uniform variates to the sinusoid phase prior to word-length reduction. Spurious magnitudes due to quantization effects are accelerated from the usual -6 dBc per phase bit to -6(M + 1) dBc per phase bit, while the noise power increases linearly in M. For a given spurious specification, higher-order phase dithering permits the use of fewer phase bits than the non-dithered system, resulting in an exponential reduction in look-up table size, dramatically decreasing system complexity.
Novel asymmetric representation method for solving the higher-order Ginzburg-Landau equation
Wong, Pring; Pang, Lihui; Wu, Ye; Lei, Ming; Liu, Wenjun
2016-01-01
In ultrafast optics, optical pulses are generated to be of shorter pulse duration, which has enormous significance to industrial applications and scientific research. The ultrashort pulse evolution in fiber lasers can be described by the higher-order Ginzburg-Landau (GL) equation. However, analytic soliton solutions for this equation have not been obtained by use of existing methods. In this paper, a novel method is proposed to deal with this equation. The analytic soliton solution is obtained for the first time, and is proved to be stable against amplitude perturbations. Through the split-step Fourier method, the bright soliton solution is studied numerically. The analytic results here may extend the integrable methods, and could be used to study soliton dynamics for some equations in other disciplines. It may also provide the other way to obtain two-soliton solutions for higher-order GL equations. PMID:27086841
Evidence of higher-order effects in thermally driven rapid granular flows
NASA Astrophysics Data System (ADS)
Hrenya, C. M.; Galvin, J. E.; Wildman, R. D.
Molecular dynamic (MD) simulations are used to probe the ability of Navier heat flux, stress tensor and dissipation rate - associated with granular materials. The system under investigation is bounded by two opposite walls of set granular temperature and is characterized by zero mean flow. The comparisons between MD and theory provide evidence of higher-order effects in each of the constitutive quantities. Furthermore, the size of these effects is roughly one order of magnitude greater, on a percentage basis, for heat flux than it is for stress or dissipation rate. For the case of heat flux, these effects are attributed to super-Burnett-order contributions (third order in gradients) or greater, since Burnett-order contributions to the heat flux do not exist. Finally, for the system considered, these higher-order contributions to the heat flux outweigh the first-order contribution arising from a gradient in concentration (i.e. the Dufour effect)
Higher-Order Laguerre-Gauss Mode Generation and Interferometry for Gravitational Wave Detectors
NASA Astrophysics Data System (ADS)
Granata, M.; Buy, C.; Ward, R.; Barsuglia, M.
2010-12-01
We report on the first experimental demonstration of higher-order Laguerre-Gauss (LGpℓ) mode generation and interferometry using a method scalable to the requirements of gravitational wave (GW) detection. GW detectors which use higher-order LGpℓ modes will be less susceptible to mirror thermal noise, which is expected to limit the sensitivity of all currently planned terrestrial detectors. We used a diffractive optic and a mode-cleaner cavity to convert a fundamental LG00 Gaussian beam into an LG33 mode with a purity of 98%. The ratio between the power of the LG00 mode of our laser and the power of the LG33 transmitted by the cavity was 36%. By measuring the transmission of our setup using the LG00, we inferred that the conversion efficiency specific to the LG33 mode was 49%. We illuminated a Michelson interferometer with the LG33 beam and achieved a visibility of 97%.
An initial framework for the language of higher-order thinking mathematics practices
NASA Astrophysics Data System (ADS)
Staples, Megan E.; Truxaw, Mary P.
2012-09-01
This article presents an examination of the language demands of cognitively demanding tasks and proposes an initial framework for the language demands of higher-order mathematics thinking practices. We articulate four categories for this framework: language of generalisation, language of comparison, language of proportional reasoning, and language of analysing impact. These categories were developed out of our collaborative work to design and implement higher-order thinking tasks with a group of Grade 9 (14- and 15-year-olds) teachers teaching in a linguistically diverse setting; analyses of student work samples on these tasks; and our knowledge of the literature. We describe each type of language demand and then analyse student work in each category to reveal linguistic challenges facing students as they engage these mathematical tasks. Implications for teaching and professional development are discussed.
Controlled generation of higher-order Poincaré sphere beams from a laser
NASA Astrophysics Data System (ADS)
Naidoo, Darryl; Roux, Filippus S.; Dudley, Angela; Litvin, Igor; Piccirillo, Bruno; Marrucci, Lorenzo; Forbes, Andrew
2016-05-01
The angular momentum of light can be described by positions on a higher-order Poincaré sphere, where superpositions of spin and orbital angular momentum states give rise to laser beams that have many applications, from microscopy to materials processing. Many techniques exist to create such beams but none so far allow their creation at the source. Here we report on a new class of laser that is able to generate all states on the higher-order Poincaré sphere. We exploit geometric phase control inside a laser cavity to map polarization to orbital angular momentum, demonstrating that the orbital angular momentum degeneracy of a standard laser cavity may be broken, producing pure orbital angular momentum beams, and that generalized vector vortex beams may be created with high purity at the source. This work paves the way to new lasers for structured light based on intracavity geometric phase control.
Higher-order numerical methods derived from three-point polynomial interpolation
NASA Technical Reports Server (NTRS)
Rubin, S. G.; Khosla, P. K.
1976-01-01
Higher-order collocation procedures resulting in tridiagonal matrix systems are derived from polynomial spline interpolation and Hermitian finite-difference discretization. The equations generally apply for both uniform and variable meshes. Hybrid schemes resulting from different polynomial approximations for first and second derivatives lead to the nonuniform mesh extension of the so-called compact or Pade difference techniques. A variety of fourth-order methods are described and this concept is extended to sixth-order. Solutions with these procedures are presented for the similar and non-similar boundary layer equations with and without mass transfer, the Burgers equation, and the incompressible viscous flow in a driven cavity. Finally, the interpolation procedure is used to derive higher-order temporal integration schemes and results are shown for the diffusion equation.
The post-mitotic state in neurons correlates with a stable nuclear higher-order structure.
Aranda-Anzaldo, Armando
2012-03-01
Neurons become terminally differentiated (TD) post-mitotic cells very early during development yet they may remain alive and functional for decades. TD neurons preserve the molecular machinery necessary for DNA synthesis that may be reactivated by different stimuli but they never complete a successful mitosis. The non-reversible nature of the post-mitotic state in neurons suggests a non-genetic basis for it since no set of mutations has been able to revert it. Comparative studies of the nuclear higher-order structure in neurons and cells with proliferating potential suggest that the non-reversible nature of the post-mitotic state in neurons has a structural basis in the stability of the nuclear higher-order structure. PMID:22808316
Generalized quantum kinetic expansion: Higher-order corrections to multichromophoric Förster theory.
Wu, Jianlan; Gong, Zhihao; Tang, Zhoufei
2015-08-21
For a general two-cluster energy transfer network, a new methodology of the generalized quantum kinetic expansion (GQKE) method is developed, which predicts an exact time-convolution equation for the cluster population evolution under the initial condition of the local cluster equilibrium state. The cluster-to-cluster rate kernel is expanded over the inter-cluster couplings. The lowest second-order GQKE rate recovers the multichromophoric Förster theory (MCFT) rate. The higher-order corrections to the MCFT rate are systematically included using the continued fraction resummation form, resulting in the resummed GQKE method. The reliability of the GQKE methodology is verified in two model systems, revealing the relevance of higher-order corrections.
Acoustic properties of multiple cavity resonance liner for absorbing higher-order duct modes.
Zhou, Di; Wang, Xiaoyu; Jing, Xiaodong; Sun, Xiaofeng
2016-08-01
This paper describes analytical and experimental studies conducted to investigate the acoustic properties of axially non-uniform multiple cavity resonance liner for absorbing higher-order duct modes. A three-dimensional analytical model is proposed based upon transfer element method. The model is assessed by making a comparison with results of a liner performance experiment concerning higher-order modes propagation, and the agreement is good. According to the present results, it is found that the performance of multiple cavity resonance liner is related to the incident sound waves. Moreover, an analysis of the corresponding response of liner perforated panel-cavity system is performed, in which the features of resonance frequency and dissipation of the system under grazing or oblique incidence condition are revealed. The conclusions can be extended to typical non-locally reacting liners with single large back-cavity, and it would be beneficial for future non-locally reacting liner design to some extent. PMID:27586753
Higher order direct model reference adaptive control with generic uniform ultimate boundedness
NASA Astrophysics Data System (ADS)
Maity, Arnab; Höcht, Leonhard; Holzapfel, Florian
2015-10-01
This paper proposes a new higher order model reference adaptive control (HO-MRAC) approach following direct adaptive control philosophy, which estimates unknown time-varying parameters. This approach leads to a Lyapunov based conventional MRAC update law, augmented by an observer type parameter predictor dynamics. The predictor dynamics are composed of a stable known part, a feedback of the parameter error and unknown higher order parameters, which are updated using a Lyapunov based adaptive design. So, this HO-MRAC can cope with rapidly changing parameters, due to estimation of their time derivatives. Moreover, for stability analysis, a Lyapunov based generic ultimate boundedness theorem is presented, which allows for a computation of separate bounds for each state vector partition. Furthermore, this theorem formulates the explicit specification of transient and ultimate bounds, reaching time on the ultimate bounds and a set of admissible initial conditions. Two challenging illustrative examples demonstrate the effectiveness of the proposed approach.
Perceptual and Neuronal Boundary Learned from Higher-Order Stimulus Probabilities
Köver, Hania; Gill, Kirt; Tseng, Yi-Ting L.; Bao, Shaowen
2013-01-01
During an early epoch of development, the brain is highly adaptive to the stimulus environment. Exposing young animals to a particular tone, for example, leads to an enlarged representation of that tone in primary auditory cortex. While the neural effects of simple tonal environments are well characterized, the principles that guide plasticity in more complex acoustic environments remain unclear. In addition, very little is known about the perceptual consequences of early experience-induced plasticity. To address these questions, we reared juvenile rats in complex multitone environments that differed in terms of the higher-order conditional probabilities between sounds. We found that the development of primary cortical acoustic representations, as well as frequency discrimination ability in adult animals, were shaped by the higher-order stimulus statistics of the early acoustic environment. Our results suggest that early experience-dependent cortical reorganization may mediate perceptual changes through statistical learning of the sensory input. PMID:23426696
Collapse for the higher-order nonlinear Schrödinger equation
Achilleos, V.; Diamantidis, S.; Frantzeskakis, D. J.; Horikis, T. P.; Karachalios, N. I.; Kevrekidis, P. G.
2016-02-01
We examine conditions for finite-time collapse of the solutions of the higher-order nonlinear Schr odinger (NLS) equation incorporating third-order dispersion, self-steepening, linear and nonlinear gain and loss, and Raman scattering; this is a system that appears in many physical contexts as a more realistic generalization of the integrable NLS. By using energy arguments, it is found that the collapse dynamics is chiefly controlled by the linear/nonlinear gain/loss strengths. We identify a critical value of the linear gain, separating the possible decay of solutions to the trivial zero-state, from collapse. The numerical simulations, performed for a wide class of initial data,more » are found to be in very good agreement with the analytical results, and reveal long-time stability properties of localized solutions. The role of the higher-order effects to the transient dynamics is also revealed in these simulations.« less
Bearing fault identification by higher order energy operator fusion: A non-resonance based approach
NASA Astrophysics Data System (ADS)
Faghidi, H.; Liang, M.
2016-10-01
We report a non-resonance based approach to bearing fault detection. This is achieved by a higher order energy operator fusion (HOEO_F) method. In this method, multiple higher order energy operators are fused to form a single simple transform to process the bearing signal obscured by noise and vibration interferences. The fusion is guided by entropy minimization. Unlike the popular high frequency resonance technique, this method does not require the information of resonance excited by the bearing fault. The effects of the HOEO_F method on signal-to-noise ratio (SNR) and signal-to-interference ratio (SIR) are illustrated in this paper. The performance of the proposed method in handling noise and interferences has been examined using both simulated and experimental data. The results indicate that the HOEO_F method outperforms both the envelope method and the original energy operator method.
Higher order harmonic detection for exploring nonlinear interactions with nanoscale resolution
Vasudevan, R. K.; Okatan, M. Baris; Rajapaksa, I.; Kim, Y.; Marincel, D.; Trolier-McKinstry, S.; Jesse, S.; Valanoor, N.; Kalinin, S. V.
2013-01-01
Nonlinear dynamics underpin a vast array of physical phenomena ranging from interfacial motion to jamming transitions. In many cases, insight into the nonlinear behavior can be gleaned through exploration of higher order harmonics. Here, a method using band excitation scanning probe microscopy (SPM) to investigate higher order harmonics of the electromechanical response, with nanometer scale spatial resolution is presented. The technique is demonstrated by probing the first three harmonics of strain for a Pb(Zr1-xTix)O3 (PZT) ferroelectric capacitor. It is shown that the second order harmonic response is correlated with the first harmonic response, whereas the third harmonic is not. Additionally, measurements of the second harmonic reveal significant deviations from Rayleigh-type models in the form of a much more complicated field dependence than is observed in the spatially averaged data. These results illustrate the versatility of nth order harmonic SPM detection methods in exploring nonlinear phenomena in nanoscale materials. PMID:24045269
NASA Astrophysics Data System (ADS)
Li, Jinsha; Li, Junmin
2016-07-01
In this paper, the adaptive fuzzy iterative learning control scheme is proposed for coordination problems of Mth order (M ≥ 2) distributed multi-agent systems. Every follower agent has a higher order integrator with unknown nonlinear dynamics and input disturbance. The dynamics of the leader are a higher order nonlinear systems and only available to a portion of the follower agents. With distributed initial state learning, the unified distributed protocols combined time-domain and iteration-domain adaptive laws guarantee that the follower agents track the leader uniformly on [0, T]. Then, the proposed algorithm extends to achieve the formation control. A numerical example and a multiple robotic system are provided to demonstrate the performance of the proposed approach.
ANOVA-HDMR structure of the higher order nodal diffusion solution
Bokov, P. M.; Prinsloo, R. H.; Tomasevic, D. I.
2013-07-01
Nodal diffusion methods still represent a standard in global reactor calculations, but employ some ad-hoc approximations (such as the quadratic leakage approximation) which limit their accuracy in cases where reference quality solutions are sought. In this work we solve the nodal diffusion equations utilizing the so-called higher-order nodal methods to generate reference quality solutions and to decompose the obtained solutions via a technique known as High Dimensional Model Representation (HDMR). This representation and associated decomposition of the solution provides a new formulation of the transverse leakage term. The HDMR structure is investigated via the technique of Analysis of Variance (ANOVA), which indicates why the existing class of transversely-integrated nodal methods prove to be so successful. Furthermore, the analysis leads to a potential solution method for generating reference quality solutions at a much reduced calculational cost, by applying the ANOVA technique to the full higher order solution. (authors)
Impact of higher-order modes on parameter recovery from binary black hole coalescences
NASA Astrophysics Data System (ADS)
Pekowsky, Larne
2014-03-01
Thus far modeled searches for the gravitational waves produced by the coalescence of compact binaries have used templates that include only the 2,2 mode. However, it is known that there can be significant power in higher-order modes - indeed there are parameters for which these modes become dominant. Numerical relativity can now produce waveforms that are accurate though late inspiral, merger, and ringdown including many higher-order modes. We present recent work using waveforms produced at Georgia Tech to determine how the inclusion of higher modes in model waveforms can increase the accuracy with which the parameters of the system can be recovered from a detected signal in Advanced LIGO. We consider a variety of binary black hole systems, including systems that precess.
Finite time control for MIMO nonlinear system based on higher-order sliding mode.
Liu, Xiangjie; Han, Yaozhen
2014-11-01
Considering a class of MIMO uncertain nonlinear system, a novel finite time stable control algorithm is proposed based on higher-order sliding mode concept. The higher-order sliding mode control problem of MIMO nonlinear system is firstly transformed into finite time stability problem of multivariable system. Then continuous control law, which can guarantee finite time stabilization of nominal integral chain system, is employed. The second-order sliding mode is used to overcome the system uncertainties. High frequency chattering phenomenon of sliding mode is greatly weakened, and the arbitrarily fast convergence is reached. The finite time stability is proved based on the quadratic form Lyapunov function. Examples concerning the triple integral chain system with uncertainty and the hovercraft trajectory tracking are simulated respectively to verify the effectiveness and the robustness of the proposed algorithm.
Hamiltonian structure of the higher-order corrections to the Korteweg-de Vries equation
NASA Astrophysics Data System (ADS)
Menyuk, C. R.; Chen, H.-H.
1985-10-01
Higher-order corrections to the Korteweg-de Vries equation are examined by Hamiltonian methods. Starting from the underlying Hamiltonian systems (e.g., the two-fluid equations in the case of ion-acoustic waves), one finds that the corrected equations have the same Poisson bracket as the Korteweg-de Vries equation at every order. One also finds that the underlying equations become nonlocal at sufficiently high order.
Bolognini, Gabriele; Bononi, Alberto
2009-04-27
We present a theoretical study of the performance of distributed Raman amplifiers with higher order pumping schemes, focusing in particular on double Rayleigh scattering (DRS) noise. Results show an unexpected significant DRS noise reduction for pumping order higher than third, allowing for an overall performance improvement of carefully designed distributed amplifiers, ensuring a large optical signal-to-noise ratio improvement together with reduced DRS-induced penalties.
Higher-order adaptive finite-element methods for Kohn–Sham density functional theory
Motamarri, P.; Nowak, M.R.; Leiter, K.; Knap, J.; Gavini, V.
2013-11-15
We present an efficient computational approach to perform real-space electronic structure calculations using an adaptive higher-order finite-element discretization of Kohn–Sham density-functional theory (DFT). To this end, we develop an a priori mesh-adaption technique to construct a close to optimal finite-element discretization of the problem. We further propose an efficient solution strategy for solving the discrete eigenvalue problem by using spectral finite-elements in conjunction with Gauss–Lobatto quadrature, and a Chebyshev acceleration technique for computing the occupied eigenspace. The proposed approach has been observed to provide a staggering 100–200-fold computational advantage over the solution of a generalized eigenvalue problem. Using the proposed solution procedure, we investigate the computational efficiency afforded by higher-order finite-element discretizations of the Kohn–Sham DFT problem. Our studies suggest that staggering computational savings—of the order of 1000-fold—relative to linear finite-elements can be realized, for both all-electron and local pseudopotential calculations, by using higher-order finite-element discretizations. On all the benchmark systems studied, we observe diminishing returns in computational savings beyond the sixth-order for accuracies commensurate with chemical accuracy, suggesting that the hexic spectral-element may be an optimal choice for the finite-element discretization of the Kohn–Sham DFT problem. A comparative study of the computational efficiency of the proposed higher-order finite-element discretizations suggests that the performance of finite-element basis is competing with the plane-wave discretization for non-periodic local pseudopotential calculations, and compares to the Gaussian basis for all-electron calculations to within an order of magnitude. Further, we demonstrate the capability of the proposed approach to compute the electronic structure of a metallic system containing 1688
Higher-Order, Space-Time Adaptive Finite Volume Methods: Algorithms, Analysis and Applications
Minion, Michael
2014-04-29
The four main goals outlined in the proposal for this project were: 1. Investigate the use of higher-order (in space and time) finite-volume methods for fluid flow problems. 2. Explore the embedding of iterative temporal methods within traditional block-structured AMR algorithms. 3. Develop parallel in time methods for ODEs and PDEs. 4. Work collaboratively with the Center for Computational Sciences and Engineering (CCSE) at Lawrence Berkeley National Lab towards incorporating new algorithms within existing DOE application codes.
Blowup results for the KGS system with higher order Yukawa coupling
Shi, Qi-Hong; Li, Wan-Tong; Wang, Shu
2015-10-15
In this paper, we investigate the Klein-Gordon-Schrödinger (KGS) system with higher order Yukawa coupling in spatial dimensions N ≥ 3. We establish a perturbed virial type identity and prove blowup results relied on Lyapunov functionals for KGS system with a negative energy level. Additionally, we give a result with respect to the blowup rate in finite time for the radial solution in 3 spatial dimensions.
Extraction and absorption of higher order modes in room temperature accelerators
Rimmer, R.A.
1993-02-01
This paper describes methods for extracting and absorbing unwanted higher-order modes (HOMs) from normal-conducting accelerator structures. An introduction to the problems caused by HOMs is followed by a brief history of the development of techniques to suppress them, and some examples taken from existing and planned accelerators. These include damped radio frequency (RF) cavities for storage rings such as the proposed PEP-II B factory and accelerating structures for future linear collider projects.
Waist location and Rayleigh range for higher-order mode laser beams
Luxon, J.T.; Parker, D.E.; Karkheck, J.
1984-07-01
Self has presented simple equations for Gaussian-mode laser beams for calculating focused waist location and beam waist magnification in terms of the Rayleigh range. Since the Rayleigh range is a purely geometrical quantity. Self's equations can also be applied to higher-order mode beams. A convenient form of the Rayleigh range for Hermite-Gaussian modes is presented along with representative results for Co/sub 2/ laser industrial processing facilities.
Sleep inertia, sleep homeostatic and circadian influences on higher-order cognitive functions.
Burke, Tina M; Scheer, Frank A J L; Ronda, Joseph M; Czeisler, Charles A; Wright, Kenneth P
2015-08-01
Sleep inertia, sleep homeostatic and circadian processes modulate cognition, including reaction time, memory, mood and alertness. How these processes influence higher-order cognitive functions is not well known. Six participants completed a 73-day-long study that included two 14-day-long 28-h forced desynchrony protocols to examine separate and interacting influences of sleep inertia, sleep homeostasis and circadian phase on higher-order cognitive functions of inhibitory control and selective visual attention. Cognitive performance for most measures was impaired immediately after scheduled awakening and improved during the first ~2-4 h of wakefulness (decreasing sleep inertia); worsened thereafter until scheduled bedtime (increasing sleep homeostasis); and was worst at ~60° and best at ~240° (circadian modulation, with worst and best phases corresponding to ~09:00 and ~21:00 hours, respectively, in individuals with a habitual wake time of 07:00 hours). The relative influences of sleep inertia, sleep homeostasis and circadian phase depended on the specific higher-order cognitive function task examined. Inhibitory control appeared to be modulated most strongly by circadian phase, whereas selective visual attention for a spatial-configuration search task was modulated most strongly by sleep inertia. These findings demonstrate that some higher-order cognitive processes are differentially sensitive to different sleep-wake regulatory processes. Differential modulation of cognitive functions by different sleep-wake regulatory processes has important implications for understanding mechanisms contributing to performance impairments during adverse circadian phases, sleep deprivation and/or upon awakening from sleep. PMID:25773686
Sleep inertia, sleep homeostatic and circadian influences on higher-order cognitive functions.
Burke, Tina M; Scheer, Frank A J L; Ronda, Joseph M; Czeisler, Charles A; Wright, Kenneth P
2015-08-01
Sleep inertia, sleep homeostatic and circadian processes modulate cognition, including reaction time, memory, mood and alertness. How these processes influence higher-order cognitive functions is not well known. Six participants completed a 73-day-long study that included two 14-day-long 28-h forced desynchrony protocols to examine separate and interacting influences of sleep inertia, sleep homeostasis and circadian phase on higher-order cognitive functions of inhibitory control and selective visual attention. Cognitive performance for most measures was impaired immediately after scheduled awakening and improved during the first ~2-4 h of wakefulness (decreasing sleep inertia); worsened thereafter until scheduled bedtime (increasing sleep homeostasis); and was worst at ~60° and best at ~240° (circadian modulation, with worst and best phases corresponding to ~09:00 and ~21:00 hours, respectively, in individuals with a habitual wake time of 07:00 hours). The relative influences of sleep inertia, sleep homeostasis and circadian phase depended on the specific higher-order cognitive function task examined. Inhibitory control appeared to be modulated most strongly by circadian phase, whereas selective visual attention for a spatial-configuration search task was modulated most strongly by sleep inertia. These findings demonstrate that some higher-order cognitive processes are differentially sensitive to different sleep-wake regulatory processes. Differential modulation of cognitive functions by different sleep-wake regulatory processes has important implications for understanding mechanisms contributing to performance impairments during adverse circadian phases, sleep deprivation and/or upon awakening from sleep.
A higher-order tangent linear parabolic-equation solution of three-dimensional sound propagation.
Lin, Ying-Tsong
2013-08-01
A higher-order square-root operator splitting algorithm is employed to derive a tangent linear solution for the three-dimensional parabolic wave equation due to small variations of the sound speed in the medium. The solution shown in this paper unifies other solutions obtained from less accurate approximations. Examples of three-dimensional acoustic ducts are presented to demonstrate the accuracy of the solution. Future work on the applications of associated adjoint models for acoustic inversions is proposed and discussed.
Analysis of Higher Order Modes Damping Techniques in 9 Cell Cavity with Modified Drift Tubes
NASA Astrophysics Data System (ADS)
Shashkov, Ya. V.; Mitrofanov, A. A.; Sobenin, N. P.; Zvyagintsev, V. L.
Electrodynamic characteristics (EDC) of higher order modes (HOM) were calculated for a superconducting 9-cell accelerating cavity of eLinac accelerator with operating frequency of 1300 MHz. Several HOM damping techniques including damping with grooved, fluted and ridged beam pipes were analyzed and compared. The influence of the parameters of the drift tube on the HOM damping and on the parameters of the fundamental wave was analyzed.
Higher order modes of a 3rd harmonic cavity with an increased end-cup iris
T. Khabibouline; N. Solyak; R. Wanzenberg
2003-05-19
The cavity design for a 3rd harmonic cavity for the TTF 2 photoinjector has been revised to increase the coupling between the main coupler and the cavity cells. The iris radius of the end cup of the cavity has been increased to accomplish a better coupling. The basic rf-parameters and the higher order modes of the modified design are summarized in this report.
A single dose of oxytocin nasal spray improves higher-order social cognition in schizophrenia.
Guastella, Adam J; Ward, Philip B; Hickie, Ian B; Shahrestani, Sara; Hodge, Marie Antoinette Redoblado; Scott, Elizabeth M; Langdon, Robyn
2015-11-01
Schizophrenia is associated with significant impairments in both higher and lower order social cognitive performance and these impairments contribute to poor social functioning. People with schizophrenia report poor social functioning to be one of their greatest unmet treatment needs. Recent studies have suggested the potential of oxytocin as such a treatment, but mixed results render it uncertain what aspects of social cognition are improved by oxytocin and, subsequently, how oxytocin might best be applied as a therapeutic. The aim of this study was to determine whether a single dose of oxytocin improved higher-order and lower-order social cognition performance for patients with schizophrenia across a well-established battery of social cognition tests. Twenty-one male patients received both a single dose of oxytocin nasal spray (24IU) and a placebo, two weeks apart in a randomized within-subjects placebo controlled design. Following each administration, participants completed the social cognition tasks, as well as a test of general neurocognition. Results revealed that oxytocin particularly enhanced performance on higher order social cognition tasks, with no effects on general neurocognition. Results for individual tasks showed most improvement on tests measuring appreciation of indirect hints and recognition of social faux pas. These results suggest that oxytocin, if combined to enhance social cognition learning, may be beneficial when targeted at higher order social cognition domains. This study also suggests that these higher order tasks, which assess social cognitive processing in a social communication context, may provide useful markers of response to oxytocin in schizophrenia. PMID:26150070
Higher-order contributions to transport coefficients in two-temperature hydrogen thermal plasma
Sharma, Rohit; Singh, Gurpreet; Singh, Kuldip
2011-06-15
Within the framework of Chapman-Enskog method, electron transport properties and their higher-order contributions have been studied in temperature range 5000-40 000 K at different pressures for hydrogen thermal plasma in local thermodynamic equilibrium (LTE) and non-local thermodynamic equilibrium (NLTE) regimes. Two cases of thermal plasma have been considered: (i) Ground state (GS) plasma in which all atomic hydrogen has been assumed to be in ground state and (ii) the excited state (ES) plasma in which hydrogen atoms are distributed in various possible electronically excited states (EES). The plasma composition is calculated by modified Saha equation of van de Sanden et al. The influence of non-equilibrium parameter {theta} (=T{sub e}/T{sub h}) on these properties has been examined in both the cases. It has been observed that both EES and {theta} modify the plasma composition and consequently affect the electron transport properties (viz., electron thermal conductivity, electrical conductivity, thermal diffusion and thermal diffusion ratio). It is shown that non-equilibrium parameter {theta} has meager effect on the higher-order convergence in comparison to EES. The unique behaviour observed for third-order contribution to these transport properties in GS plasma for small values of {theta} could be explained only when EES are taken into account. It is noted that EES show their influence on higher-orders to a considerable extent even when e-H(n) cross-sections are replaced by the ground state ones. Thus electron transport coefficients and their higher-order contributions are affected significantly due to inclusion of EES in LTE and NLTE plasmas.
NASA Technical Reports Server (NTRS)
Majumdar, A. K.
1979-01-01
Expressions are derived for higher-order skewness and excess coefficients using central moments and cumulants up to 8th order. These coefficients are then calculated for three probability distributions: (1) Log-normal, (2) Rice-Nakagami, and (3) Gamma distributions. Curves are given to shown the variation of skewness with excess coefficients for these distributions. These curves are independent of the particular distribution parameters. This method is useful for studying fluctuating phenomena, which obey non-Gaussian statistics.
Extension of Lieb-Schupp theorem to Heisenberg models with higher-order interactions
NASA Astrophysics Data System (ADS)
Tanaka, Kengo
2016-10-01
We extend the Lieb-Schupp theorem to Heisenberg models with higher-order interactions on nonfrustrated or frustrated finite lattices. These lattices are constructed by even-numbered rings with or without crossing bonds and have reflection symmetry. The results show that the ground state has total spin zero in wide interaction parameter regions which are not covered by the results of Marshall-Lieb-Mattis-type arguments.
Constructing Higher-Order DNA Nanoarchitectures with Highly Purified DNA Nanocages.
Xing, Shu; Jiang, Dawei; Li, Fan; Li, Jiang; Li, Qian; Huang, Qing; Guo, Linjie; Xia, Jiaoyun; Shi, Jiye; Fan, Chunhai; Zhang, Lan; Wang, Lihua
2015-06-24
DNA nanostructures have attracted great attention due to their precisely controllable geometry and great potential in various areas including bottom-up self-assembly. However, construction of higher-order DNA nanoarchitectures with individual DNA nanostructures is often hampered with the purity and quantity of these "bricks". Here, we introduced size exclusion chromatography (SEC) to prepare highly purified tetrahedral DNA nanocages in large scale and demonstrated that precise quantification of DNA nanocages was the key to the formation of higher-order DNA nanoarchitectures. We successfully purified a series of DNA nanocages with different sizes, including seven DNA tetrahedra with different edge lengths (7, 10, 13, 17, 20, 26, 30 bp) and one trigonal bipyramid with a 20-bp edge. These highly purified and aggregation-free DNA nanocages could be self-assembled into higher-order DNA nanoarchitectures with extraordinarily high yields (98% for dimer and 95% for trimer). As a comparison, unpurified DNA nanocages resulted in low yield of 14% for dimer and 12% for trimer, respectively. AFM images cleraly presented the characteristic structure of monomer, dimer and trimer, impling the purified DNA nanocages well-formed the designed nanoarchitectures. Therefore, we have demonstrated that highly purified DNA nanocages are excellent "bricks" for DNA nanotechnology and show great potential in various applications of DNA nanomaterials.
Impedance Eduction in Ducts with Higher-Order Modes and Flow
NASA Technical Reports Server (NTRS)
Watson, Willie R.; Jones, Michael G.
2009-01-01
An impedance eduction technique, previously validated for ducts with plane waves at the source and duct termination planes, has been extended to support higher-order modes at these locations. Inputs for this method are the acoustic pressures along the source and duct termination planes, and along a microphone array located in a wall either adjacent or opposite to the test liner. A second impedance eduction technique is then presented that eliminates the need for the microphone array. The integrity of both methods is tested using three sound sources, six Mach numbers, and six selected frequencies. Results are presented for both a hardwall and a test liner (with known impedance) consisting of a perforated plate bonded to a honeycomb core. The primary conclusion of the study is that the second method performs well in the presence of higher-order modes and flow. However, the first method performs poorly when most of the microphones are located near acoustic pressure nulls. The negative effects of the acoustic pressure nulls can be mitigated by a judicious choice of the mode structure in the sound source. The paper closes by using the first impedance eduction method to design a rectangular array of 32 microphones for accurate impedance eduction in the NASA LaRC Curved Duct Test Rig in the presence of expected measurement uncertainties, higher order modes, and mean flow.
Replication of DNA Tetrahedron and Higher-order Self-assembly of DNA Origami
NASA Astrophysics Data System (ADS)
Li, Zhe
Deoxyribonucleic acid (DNA) has been treated as excellent building material for nanoscale construction because of its unique structural features. Its ability to self-assemble into predictable and addressable nanostructures distinguishes it from other materials. A large variety of DNA nanostructures have been constructed, providing scaffolds with nanometer precision to organize functional molecules. This dissertation focuses on developing biologically replicating DNA nanostructures to explore their biocompatibility for potential functions in cells, as well as studying the molecular behaviors of DNA origami tiles in higher-order self-assembly for constructing DNA nanostructures with large size and complexity. Presented here are a series of studies towards this goal. First, a single-stranded DNA tetrahedron was constructed and replicated in vivo with high efficiency and fidelity. This study indicated the compatibility between DNA nanostructures and biological systems, and suggested a feasible low-coast method to scale up the preparation of synthetic DNA. Next, the higher-order self-assembly of DNA origami tiles was systematically studied. It was demonstrated that the dimensional aspect ratio of origami tiles as well as the intertile connection design were essential in determining the assembled superstructures. Finally, the effects of DNA hairpin loops on the conformations of origami tiles as well as the higher-order assembled structures were demonstrated. The results would benefit the design and construction of large complex nanostructures.
NASA Astrophysics Data System (ADS)
Scholtes, Ingo; Wider, Nicolas; Garas, Antonios
2016-03-01
Despite recent advances in the study of temporal networks, the analysis of time-stamped network data is still a fundamental challenge. In particular, recent studies have shown that correlations in the ordering of links crucially alter causal topologies of temporal networks, thus invalidating analyses based on static, time-aggregated representations of time-stamped data. These findings not only highlight an important dimension of complexity in temporal networks, but also call for new network-analytic methods suitable to analyze complex systems with time-varying topologies. Addressing this open challenge, here we introduce a novel framework for the study of path-based centralities in temporal networks. Studying betweenness, closeness and reach centrality, we first show than an application of these measures to time-aggregated, static representations of temporal networks yields misleading results about the actual importance of nodes. To overcome this problem, we define path-based centralities in higher-order aggregate networks, a recently proposed generalization of the commonly used static representation of time-stamped data. Using data on six empirical temporal networks, we show that the resulting higher-order measures better capture the true, temporal centralities of nodes. Our results demonstrate that higher-order aggregate networks constitute a powerful abstraction, with broad perspectives for the design of new, computationally efficient data mining techniques for time-stamped relational data.
Transverse vibrations of shear-deformable beams using a general higher order theory
NASA Technical Reports Server (NTRS)
Kosmatka, J. B.
1993-01-01
A general higher order theory is developed to study the static and vibrational behavior of beam structures having an arbitrary cross section that utilizes both out-of-plane shear-dependent warping and in-plane (anticlastic) deformations. The equations of motion are derived via Hamilton's principle, where the full 3D constitutive relations are used. A simplified version of the general higher-order theory is also presented for beams having an arbitrary cross section that includes out-of-plane shear deformation but assumes that stresses within the cross section and in-plane deformations are negligible. This simplified model, which is accurate for long to moderately short wavelengths, offers substantial improvements over existing higher order theories that are limited to beams with thin rectangular cross sections. The current approach will be very useful in the study of thin-wall closed-cell beams such as airfoil-type sections where the magnitude of shear-related cross-sectional warping is significant.
Barutcu, A Rasim; Lajoie, Bryan R; Fritz, Andrew J; McCord, Rachel P; Nickerson, Jeffrey A; van Wijnen, Andre J; Lian, Jane B; Stein, Janet L; Dekker, Job; Stein, Gary S; Imbalzano, Anthony N
2016-09-01
The packaging of DNA into chromatin plays an important role in transcriptional regulation and nuclear processes. Brahma-related gene-1 SMARCA4 (also known as BRG1), the essential ATPase subunit of the mammalian SWI/SNF chromatin remodeling complex, uses the energy from ATP hydrolysis to disrupt nucleosomes at target regions. Although the transcriptional role of SMARCA4 at gene promoters is well-studied, less is known about its role in higher-order genome organization. SMARCA4 knockdown in human mammary epithelial MCF-10A cells resulted in 176 up-regulated genes, including many related to lipid and calcium metabolism, and 1292 down-regulated genes, some of which encode extracellular matrix (ECM) components that can exert mechanical forces and affect nuclear structure. ChIP-seq analysis of SMARCA4 localization and SMARCA4-bound super-enhancers demonstrated extensive binding at intergenic regions. Furthermore, Hi-C analysis showed extensive SMARCA4-mediated alterations in higher-order genome organization at multiple resolutions. First, SMARCA4 knockdown resulted in clustering of intra- and inter-subtelomeric regions, demonstrating a novel role for SMARCA4 in telomere organization. SMARCA4 binding was enriched at topologically associating domain (TAD) boundaries, and SMARCA4 knockdown resulted in weakening of TAD boundary strength. Taken together, these findings provide a dynamic view of SMARCA4-dependent changes in higher-order chromatin organization and gene expression, identifying SMARCA4 as a novel component of chromatin organization. PMID:27435934
Alamia, Andrea; Solopchuk, Oleg; D'Ausilio, Alessandro; Van Bever, Violette; Fadiga, Luciano; Olivier, Etienne; Zénon, Alexandre
2016-03-01
Because Broca's area is known to be involved in many cognitive functions, including language, music, and action processing, several attempts have been made to propose a unifying theory of its role that emphasizes a possible contribution to syntactic processing. Recently, we have postulated that Broca's area might be involved in higher-order chunk processing during implicit learning of a motor sequence. Chunking is an information-processing mechanism that consists of grouping consecutive items in a sequence and is likely to be involved in all of the aforementioned cognitive processes. Demonstrating a contribution of Broca's area to chunking during the learning of a nonmotor sequence that does not involve language could shed new light on its function. To address this issue, we used offline MRI-guided TMS in healthy volunteers to disrupt the activity of either the posterior part of Broca's area (left Brodmann's area [BA] 44) or a control site just before participants learned a perceptual sequence structured in distinct hierarchical levels. We found that disruption of the left BA 44 increased the processing time of stimuli representing the boundaries of higher-order chunks and modified the chunking strategy. The current results highlight the possible role of the left BA 44 in building up effector-independent representations of higher-order events in structured sequences. This might clarify the contribution of Broca's area in processing hierarchical structures, a key mechanism in many cognitive functions, such as language and composite actions. PMID:26765778
Electroweak higher-order effects and theoretical uncertainties in deep-inelastic neutrino scattering
Diener, K.-P.O.; Dittmaier, S.; Hollik, W.
2005-11-01
A previous calculation of electroweak O({alpha}) corrections to deep-inelastic neutrino scattering, as e.g. measured by NuTeV and NOMAD, is supplemented by higher-order effects. In detail, we take into account universal two-loop effects from {delta}{alpha} and {delta}{rho} as well as higher-order final-state photon radiation off muons in the structure function approach. Moreover, we make use of the recently released O({alpha})-improved parton distributions MRST2004QED and identify the relevant QED factorization scheme, which is DIS-like. As a technical by-product, we describe slicing and subtraction techniques for an efficient calculation of a new type of real corrections that are induced by the generated photon distribution. A numerical discussion of the higher-order effects suggests that the remaining theoretical uncertainty from unknown electroweak corrections is dominated by nonuniversal two-loop effects and is of the order 0.0003 when translated into a shift in sin{sup 2}{theta}{sub W}=1-M{sub W}{sup 2}/M{sub Z}{sup 2}. The O({alpha}) corrections implicitly included in the parton distributions lead to a shift of about 0.0004.
Howe, George W; Hornberger, Anna P; Weihs, Karen; Moreno, Francisco; Neiderhiser, Jenae M
2012-05-01
Recent work on comorbidity finds evidence for hierarchical structure of mood and anxiety disorders and symptoms. This study tests whether a higher-order internalizing factor accounts for variation in depression and anxiety symptom severity and change over time in a sample experiencing a period of major life stress. Data on symptoms of depression, chronic worry, and social anxiety were collected five times across seven months from 426 individuals who had recently lost jobs. Growth models for each type of symptom found significant variation in individual trajectories. Slopes were highly correlated across symptom type, as were intercepts. Multilevel confirmatory factor analyses found evidence for a higher-order internalizing factor for both slopes and intercepts, reflective of comorbidity of depression and anxiety, with the internalizing factor accounting for 54% to 91% of the variance in slopes and intercepts of specific symptom sets, providing evidence for both a general common factor and domain-specific factors characterizing level and change in symptoms. Loadings on the higher order factors differed modestly for men and women, and when comparing African American and White participants, but did not differ by age, education, or history of depression. More distal factors including gender and history of depression were strongly associated with internalizing in the early weeks after job loss, but rates of change in internalizing were associated most strongly with reemployment. Findings suggest that stressors may contribute in different ways to the common internalizing factor as compared to variance in anxiety and depression that is independent of that factor.
Axicons for mode conversion in high peak power, higher-order mode, fiber amplifiers.
Nicholson, J W; DeSantolo, A; Westbrook, P S; Windeler, R S; Kremp, T; Headley, C; DiGiovanni, D J
2015-12-28
Higher-order mode fiber amplifiers have demonstrated effective areas as large as 6000 μm2, allowing for high pulse energy and peak power amplification. Long-period gratings are used to convert the fundamental mode to the higher-order mode at the entrance to the amplifier, and reconvert back to the fundamental at the exit, to achieve a diffraction limited beam. However, long period gratings are susceptible to nonlinearity at high peak power. In this work, we propose and demonstrate axicons for linear bulk-optic mode conversion at the output of higher order mode amplifiers. We achieve an M2 of less than 1.25 for 80% mode conversion efficiency. Experiments with pulsed amplifiers confirm that the mode conversion is free from nonlinearity. Furthermore, chirp pulse amplifier experiments confirm that HOM amplifiers plus axicon mode convertors provide energy scalability in femtosecond pulses, compared to smaller effective area, fundamental mode fiber amplifiers. We also propose and demonstrate a route towards fiber integration of the axicon mode convertor by fabricating axicons directly on the tip of the fiber amplifier end-cap.
NASA Astrophysics Data System (ADS)
Shchukin, E.; van Loock, P.
2016-03-01
We derive two types of sets of higher-order conditions for bipartite entanglement in terms of continuous variables. One corresponds to an extension of the well-known Duan inequalities from second to higher moments describing a kind of higher-order Einstein-Podolsky-Rosen (EPR) correlations. Only the second type, however, expressed by powers of the mode operators leads to tight conditions with a hierarchical structure. We start with a minimization problem for the single-partite case and, using the results obtained, establish relevant inequalities for higher-order moments satisfied by all bipartite separable states. We give an explicit example of a non-Gaussian state that exhibits fourth-order but no second-order EPR correlations. Similarly, a certain fourth-order condition cannot be violated by any Gaussian state and we present non-Gaussian states whose entanglement is detected by that condition. Violations of all our conditions are provided, so they can all be used as entanglement tests.
Radiation Heat Transfer Between Diffuse-Gray Surfaces Using Higher Order Finite Elements
NASA Technical Reports Server (NTRS)
Gould, Dana C.
2000-01-01
This paper presents recent work on developing methods for analyzing radiation heat transfer between diffuse-gray surfaces using p-version finite elements. The work was motivated by a thermal analysis of a High Speed Civil Transport (HSCT) wing structure which showed the importance of radiation heat transfer throughout the structure. The analysis also showed that refining the finite element mesh to accurately capture the temperature distribution on the internal structure led to very large meshes with unacceptably long execution times. Traditional methods for calculating surface-to-surface radiation are based on assumptions that are not appropriate for p-version finite elements. Two methods for determining internal radiation heat transfer are developed for one and two-dimensional p-version finite elements. In the first method, higher-order elements are divided into a number of sub-elements. Traditional methods are used to determine radiation heat flux along each sub-element and then mapped back to the parent element. In the second method, the radiation heat transfer equations are numerically integrated over the higher-order element. Comparisons with analytical solutions show that the integration scheme is generally more accurate than the sub-element method. Comparison to results from traditional finite elements shows that significant reduction in the number of elements in the mesh is possible using higher-order (p-version) finite elements.
Gavrishchaka, V.V.; Ganguli, G.I.; Bakshi, P.M.; Koepke, M.E.
1998-01-01
The formalism necessary to study the collective properties of a plasma system with inhomogeneous flows is nonlocal and generally in the form of an integrodifferential equation. Usually the eigenvalue condition is reduced to a second-order differential equation for simplicity. While the gross physical behavior of the system can be obtained from the second-order differential equation level of description, higher-order corrections are necessary for greater accuracy. The limit in which the scale-size of the velocity inhomogeneity is large compared to the ion gyroradius is considered and a transverse flow profile sharply localized in space ({open_quotes}top-hat{close_quotes} profile) is assumed. In this limit, a simple analytical method for the solution of the general eigenvalue condition to all orders is developed. A comparison of the properties of the solutions obtained from the second-order differential equation level of description with those obtained from higher orders is presented. Both the resonant (dissipative) and the nonresonant (reactive) effects of velocity shear are considered. It is found that while the overall features are well represented by the second-order level of description, the higher-order corrections moderate the destabilizing effects due to velocity shear, which can be quite significant in some cases. {copyright} {ital 1998 American Institute of Physics.}
On the polarization of non-Gaussian optical quantum field: Higher-order optical-polarization
Singh, Ravi S.; Prakash, Hari
2013-06-15
Polarization of light signifies transversal, anisotropic and asymmetrical statistical properties of electromagnetic radiation about the direction of propagation. Traditionally, optical-polarization is characterized by Stokes’ theory susceptible to be insufficient in assessing the polarization structure of optical quantum fields and, also, does not decipher the twin characteristic polarization parameters (‘ratio of real amplitudes and difference in phases’). An alternative way, in the spirit of classical description of optical-polarization, is introduced which can be generalized to deal higher-order polarization of quantum light, particularly, prepared in non-Gaussian Schrodinger Cat or Cat-like states and entangled bi-modal coherent states. On account of pseudo mono-modal or multi-modal nature of such optical quantum field, higher-order polarization is seen to be highly sensitive to the basis of description. -- Highlights: •We have generalized the usual concept of optical-polarization. •A concept of higher-order optical-polarization is introduced. •This concept is applied to compute the polarization-parameters of non-Gaussian Optical field. •To the best of our knowledge, no study is performed which investigates such optical quantum field.
A Frank mixture copula family for modeling higher-order correlations of neural spike counts
NASA Astrophysics Data System (ADS)
Onken, Arno; Obermayer, Klaus
2009-12-01
In order to evaluate the importance of higher-order correlations in neural spike count codes, flexible statistical models of dependent multivariate spike counts are required. Copula families, parametric multivariate distributions that represent dependencies, can be applied to construct such models. We introduce the Frank mixture family as a new copula family that has separate parameters for all pairwise and higher-order correlations. In contrast to the Farlie-Gumbel-Morgenstern copula family that shares this property, the Frank mixture copula can model strong correlations. We apply spike count models based on the Frank mixture copula to data generated by a network of leaky integrate-and-fire neurons and compare the goodness of fit to distributions based on the Farlie-Gumbel-Morgenstern family. Finally, we evaluate the importance of using proper single neuron spike count distributions on the Shannon information. We find notable deviations in the entropy that increase with decreasing firing rates. Moreover, we find that the Frank mixture family increases the log likelihood of the fit significantly compared to the Farlie-Gumbel-Morgenstern family. This shows that the Frank mixture copula is a useful tool to assess the importance of higher-order correlations in spike count codes.
The usefulness of higher-order constitutive relations for describing the Knudsen layer.
Gallis, Michail A.; Lockerby, Duncan A.; Reese, Jason M.
2005-03-01
The Knudsen layer is an important rarefaction phenomenon in gas flows in and around microdevices. Its accurate and efficient modeling is of critical importance in the design of such systems and in predicting their performance. In this paper we investigate the potential that higher-order continuum equations may have to model the Knudsen layer, and compare their predictions to high-accuracy DSMC (direct simulation Monte Carlo) data, as well as a standard result from kinetic theory. We find that, for a benchmark case, the most common higher-order continuum equation sets (Grad's 13 moment, Burnett, and super-Burnett equations) cannot capture the Knudsen layer. Variants of these equation families have, however, been proposed and some of them can qualitatively describe the Knudsen layer structure. To make quantitative comparisons, we obtain additional boundary conditions (needed for unique solutions to the higher-order equations) from kinetic theory. However, we find the quantitative agreement with kinetic theory and DSMC data is only slight.
Precision Measurements of Higher-Order Angular Galaxy. Correlations Using 10 Million SDSS Galaxies
NASA Astrophysics Data System (ADS)
Ross, Ashley J.; Brunner, R. J.; Myers, A. D.
2006-06-01
We present estimates of the galaxy, N-point, area-averaged angular correlation functions, ωN(θ),; for N = 2,...,7 from the third data release (DR3) of the Sloan Digital Sky Survey. Our sample was constructed from galaxies with r magnitude between 18 and 21, and is currently the largest study of galaxy higher-order correlations. The calculated angular correlation functions are used to measure the projected, sN, and real space, SN, hierarchical amplitudes. Our measurements of the real space amplitudes are remarkably precise over the physical scales 0.2-10 h-1 Mpc, and are consistent with Gaussian primordial density fluctuations. Our measurements also suggest that higher-order galaxy bias is non-negligible. By defining b1 = 1, we find that c2 = -0.26 ± 0.10 and c3 = 1.0 ± 0.9. This is the first reported measurement of a marginally significant third-order bias, and it hints at the importance of even higher-order bias terms. We find early-type galaxies exhibit significantly different clustering than late-types at both small and large scales. At large scales (r > 1 h-1 Mpc), we find the SN for late-type galaxies are lower than for early-types, implying a difference between the higher-order bias of the respective samples. We find b1,early = 1.38 ± 0.10, c2,early = 0.29 ± 0.12, b1,late = 0.81 ± 0.03, and c2,late = -0.68 ± 0.09. This supports recent measurements of the higher-order correlations of infrared-selected galaxies, which found a positive c2, presumably due to the dominance of early-type galaxies in the 2MASS sample (Frith et al. 2005). We have extended our analysis to photometrically-selected quasars in the SDSS DR3, and are planning to leverage future SDSS data releases to make even tighter constraints on primordial non-Gaussianity and non-linear bias components. We acknowledge support from NASA grants NAG5-12578 and NAG5-12580, Microsoft Research, and the NSF PACI Project.
ERIC Educational Resources Information Center
Shukla, Divya; Dungsungnoen, Aj Pattaradanai
2016-01-01
Higher order thinking skills (HOTS) has portrayed immense industry demand and the major goal of educational institution in imparting education is to inculcate higher order thinking skills. This compiles and mandate the institutions and instructor to develop the higher order thinking skills among students in order to prepare them for effective…
Higher Order, Hybrid BEM/FEM Methods Applied to Antenna Modeling
NASA Technical Reports Server (NTRS)
Fink, P. W.; Wilton, D. R.; Dobbins, J. A.
2002-01-01
In this presentation, the authors address topics relevant to higher order modeling using hybrid BEM/FEM formulations. The first of these is the limitation on convergence rates imposed by geometric modeling errors in the analysis of scattering by a dielectric sphere. The second topic is the application of an Incomplete LU Threshold (ILUT) preconditioner to solve the linear system resulting from the BEM/FEM formulation. The final tOpic is the application of the higher order BEM/FEM formulation to antenna modeling problems. The authors have previously presented work on the benefits of higher order modeling. To achieve these benefits, special attention is required in the integration of singular and near-singular terms arising in the surface integral equation. Several methods for handling these terms have been presented. It is also well known that achieving he high rates of convergence afforded by higher order bases may als'o require the employment of higher order geometry models. A number of publications have described the use of quadratic elements to model curved surfaces. The authors have shown in an EFIE formulation, applied to scattering by a PEC .sphere, that quadratic order elements may be insufficient to prevent the domination of modeling errors. In fact, on a PEC sphere with radius r = 0.58 Lambda(sub 0), a quartic order geometry representation was required to obtain a convergence benefi.t from quadratic bases when compared to the convergence rate achieved with linear bases. Initial trials indicate that, for a dielectric sphere of the same radius, - requirements on the geometry model are not as severe as for the PEC sphere. The authors will present convergence results for higher order bases as a function of the geometry model order in the hybrid BEM/FEM formulation applied to dielectric spheres. It is well known that the system matrix resulting from the hybrid BEM/FEM formulation is ill -conditioned. For many real applications, a good preconditioner is required
International Scientific Terminology and Neologisms in the Course of Unification.
ERIC Educational Resources Information Center
Stoberski, Zygmunt
1978-01-01
Provides a list of international medical and pharmaceutical terminology in three stages of development: (1) established international terms; (2) neologisms in the course of unification; and (3) recent neologisms in the course of unification. (AM)
Gauge-Higgs EW and grand unification
NASA Astrophysics Data System (ADS)
Hosotani, Yutaka
2016-07-01
Four-dimensional Higgs field is identified with the extra-dimensional component of gauge potentials in the gauge-Higgs unification scenario. SO(5) × U(1) gauge-Higgs EW unification in the Randall-Sundrum warped space is successful at low energies. The Higgs field appears as an Aharonov-Bohm phase 𝜃H in the fifth dimension. Its mass is generated at the quantum level and is finite. The model yields almost the same phenomenology as the standard model for 𝜃H < 0.1, and predicts Z‧ bosons around 6-10 TeV with very broad widths. The scenario is generalized to SO(11) gauge-Higgs grand unification. Fermions are introduced in the spinor and vector representations of SO(11). Proton decay is naturally forbidden.
Yukawa unification in heterotic string theory
NASA Astrophysics Data System (ADS)
Buchbinder, Evgeny I.; Constantin, Andrei; Gray, James; Lukas, Andre
2016-08-01
We analyze Yukawa unification in the context of E8×E8 heterotic Calabi-Yau models which rely on breaking to a grand unified theory (GUT) via a nonflat gauge bundle and subsequent Wilson line breaking to the standard model. Our focus is on underlying GUT theories with gauge group S U (5 ) or S O (10 ). We provide a detailed analysis of the fact that, in contrast to traditional field theory GUTs, the underlying GUT symmetry of these models does not enforce Yukawa unification. Using this formalism, we present various scenarios where Yukawa unification can occur as a consequence of additional symmetries. These additional symmetries arise naturally in some heterotic constructions, and we present an explicit heterotic line bundle model which realizes one of these scenarios.
Park, Yoon-Dong; Shin, Soowan; Panepinto, John; Ramos, Jeanie; Qiu, Jin; Frases, Susana; Albuquerque, Patricia; Cordero, Radames J B; Zhang, Nannan; Himmelreich, Uwe; Beenhouwer, David; Bennett, John E; Casadevall, Arturo; Williamson, Peter R
2014-05-01
Polysaccharide capsules are important virulence factors for many microbial pathogens including the opportunistic fungus Cryptococcus neoformans. In the present study, we demonstrate an unusual role for a secreted lactonohydrolase of C. neoformans, LHC1 in capsular higher order structure. Analysis of extracted capsular polysaccharide from wild-type and lhc1Δ strains by dynamic and static light scattering suggested a role for the LHC1 locus in altering the capsular polysaccharide, both reducing dimensions and altering its branching, density and solvation. These changes in the capsular structure resulted in LHC1-dependent alterations of antibody binding patterns, reductions in human and mouse complement binding and phagocytosis by the macrophage-like cell line J774, as well as increased virulence in mice. These findings identify a unique molecular mechanism for tertiary structural changes in a microbial capsule, facilitating immune evasion and virulence of a fungal pathogen.
Park, Yoon-Dong; Shin, Soowan; Panepinto, John; Ramos, Jeanie; Qiu, Jin; Frases, Susana; Albuquerque, Patricia; Cordero, Radames J. B.; Zhang, Nannan; Himmelreich, Uwe; Beenhouwer, David; Bennett, John E.; Casadevall, Arturo; Williamson, Peter R.
2014-01-01
Polysaccharide capsules are important virulence factors for many microbial pathogens including the opportunistic fungus Cryptococcus neoformans. In the present study, we demonstrate an unusual role for a secreted lactonohydrolase of C. neoformans, LHC1 in capsular higher order structure. Analysis of extracted capsular polysaccharide from wild-type and lhc1Δ strains by dynamic and static light scattering suggested a role for the LHC1 locus in altering the capsular polysaccharide, both reducing dimensions and altering its branching, density and solvation. These changes in the capsular structure resulted in LHC1-dependent alterations of antibody binding patterns, reductions in human and mouse complement binding and phagocytosis by the macrophage-like cell line J774, as well as increased virulence in mice. These findings identify a unique molecular mechanism for tertiary structural changes in a microbial capsule, facilitating immune evasion and virulence of a fungal pathogen. PMID:24789368
Small neutrino masses and gauge coupling unification
NASA Astrophysics Data System (ADS)
Boucenna, Sofiane M.; Fonseca, Renato M.; González-Canales, Félix; Valle, José W. F.
2015-02-01
The physics responsible for gauge coupling unification may also induce small neutrino masses. We propose a novel gauge-mediated radiative seesaw mechanism for calculable neutrino masses. These arise from quantum corrections mediated by new S U (3 )C⊗S U (3 )L⊗U (1 )X (3-3-1) gauge bosons and the physics driving gauge coupling unification. Gauge couplings unify for a 3-3-1 scale in the TeV range, making the model directly testable at the LHC.
Temperature-Transformed ``Minimal Coupling'': Magnetofluid Unification
NASA Astrophysics Data System (ADS)
Mahajan, S. M.
2003-01-01
The dynamics of a relativistic, hot charged fluid is expressed in terms of a hybrid magnetofluid field which unifies the electromagnetic field with an appropriately defined but analogous flow field. The unification is affected by a well-defined prescription that allows the derivation of the equations of motion of a plasma embedded in an electromagnetic field from the field-free equations. The relationship of this prescription with the minimal coupling prescription of particle dynamics is discussed; the changes brought about by the plasma temperature are highlighted. A few consequences of the unification are worked out.
Philip, Krupa; Martinez, Aldo; Ho, Arthur; Conrad, Fabian; Ale, Jit; Mitchell, Paul; Sankaridurg, Padmaja
2012-01-01
Total ocular higher order aberrations and corneal topography of myopic, emmetropic and hyperopic eyes of 675 adolescents (16.9 ± 0.7 years) were measured after cycloplegia using COAS aberrometer and Medmont videokeratoscope. Corneal higher order aberrations were computed from the corneal topography maps and lenticular (internal) higher order aberrations derived by subtraction of corneal aberrations from total ocular aberrations. Aberrations were measured for a pupil diameter of 5mm. Multivariate analysis of variance followed by multiple regression analysis found significant difference in the fourth order aberrations (SA RMS, primary spherical aberration coefficient) between the refractive error groups. Hyperopic eyes (+0.083 ± 0.05 μm) had more positive total ocular primary spherical aberration compared to emmetropic (+0.036 ± 0.04 μm) and myopic eyes (low myopia=+0.038 ± 0.05 μm, moderate myopia=+0.026 ± 0.06 μm) (p<0.05). No difference was observed for the anterior corneal spherical aberration. Significantly less negative lenticular spherical aberration was observed for the hyperopic eyes (-0.038 ± 0.05 μm) than myopic (low myopia=-0.088 ± 0.04 μm, moderate myopia=-0.095 ± 0.05 μm) and emmetropic eyes (-0.081 ± 0.04 μm) (p<0.05). These findings suggest the existence of differences in the characteristics of the crystalline lens (asphericity, curvature and gradient refractive index) of hyperopic eyes versus other eyes.
Effect of higher-order multipole moments on the Stark line shape
NASA Astrophysics Data System (ADS)
Gomez, T. A.; Nagayama, T.; Kilcrease, D. P.; Montgomery, M. H.; Winget, D. E.
2016-08-01
Spectral line shapes are sensitive to plasma conditions and are often used to diagnose electron density of laboratory plasmas as well as astrophysical plasmas. Stark line-shape models take into account the perturbation of the radiator's energy structure due to the Coulomb interaction with the surrounding charged particles. Solving this Coulomb interaction is challenging and is commonly approximated via a multipole expansion. However, most models include only up to the second term of the expansion (the dipole term). While there have been studies on the higher-order terms due to one of the species (i.e., either ions or electrons), there is no model that includes the terms beyond dipole from both species. Here, we investigate the importance of the higher-order multipole terms from both species on the Hβ line shape. First, we find that it is important to include higher-order terms consistently from both ions and electrons to reproduce measured line-shape asymmetry. Next, we find that the line shape calculated with the dipole-only approximation becomes inaccurate as density increases. It is necessary to include up to the third (quadrupole) term to compute the line shape accurately within 2%. Since most existing models include only up to the dipole terms, the densities inferred with such models are in question. We find that the model without the quadrupole term slightly underestimates the density, and the discrepancy becomes as large as 12% at high densities. While the case of study is limited to Hβ, we expect similar impact on other lines.
Efficient Reformulation of the Thermoelastic Higher-order Theory for Fgms
NASA Technical Reports Server (NTRS)
Bansal, Yogesh; Pindera, Marek-Jerzy; Arnold, Steven M. (Technical Monitor)
2002-01-01
Functionally graded materials (FGMs) are characterized by spatially variable microstructures which are introduced to satisfy given performance requirements. The microstructural gradation gives rise to continuously or discretely changing material properties which complicate FGM analysis. Various techniques have been developed during the past several decades for analyzing traditional composites and many of these have been adapted for the analysis of FGMs. Most of the available techniques use the so-called uncoupled approach in order to analyze graded structures. These techniques ignore the effect of microstructural gradation by employing specific spatial material property variations that are either assumed or obtained by local homogenization. The higher-order theory for functionally graded materials (HOTFGM) is a coupled approach developed by Aboudi et al. (1999) which takes the effect of microstructural gradation into consideration and does not ignore the local-global interaction of the spatially variable inclusion phase(s). Despite its demonstrated utility, however, the original formulation of the higher-order theory is computationally intensive. Herein, an efficient reformulation of the original higher-order theory for two-dimensional elastic problems is developed and validated. The use of the local-global conductivity and local-global stiffness matrix approach is made in order to reduce the number of equations involved. In this approach, surface-averaged quantities are the primary variables which replace volume-averaged quantities employed in the original formulation. The reformulation decreases the size of the global conductivity and stiffness matrices by approximately sixty percent. Various thermal, mechanical, and combined thermomechanical problems are analyzed in order to validate the accuracy of the reformulated theory through comparison with analytical and finite-element solutions. The presented results illustrate the efficiency of the reformulation and its
NASA Astrophysics Data System (ADS)
Simon, Nicole A.
Virtual laboratory experiments using interactive computer simulations are not being employed as viable alternatives to laboratory science curriculum at extensive enough rates within higher education. Rote traditional lab experiments are currently the norm and are not addressing inquiry, Critical Thinking, and cognition throughout the laboratory experience, linking with educational technologies (Pyatt & Sims, 2007; 2011; Trundle & Bell, 2010). A causal-comparative quantitative study was conducted with 150 learners enrolled at a two-year community college, to determine the effects of simulation laboratory experiments on Higher-Order Learning, Critical Thinking Skills, and Cognitive Load. The treatment population used simulated experiments, while the non-treatment sections performed traditional expository experiments. A comparison was made using the Revised Two-Factor Study Process survey, Motivated Strategies for Learning Questionnaire, and the Scientific Attitude Inventory survey, using a Repeated Measures ANOVA test for treatment or non-treatment. A main effect of simulated laboratory experiments was found for both Higher-Order Learning, [F (1, 148) = 30.32,p = 0.00, eta2 = 0.12] and Critical Thinking Skills, [F (1, 148) = 14.64,p = 0.00, eta 2 = 0.17] such that simulations showed greater increases than traditional experiments. Post-lab treatment group self-reports indicated increased marginal means (+4.86) in Higher-Order Learning and Critical Thinking Skills, compared to the non-treatment group (+4.71). Simulations also improved the scientific skills and mastery of basic scientific subject matter. It is recommended that additional research recognize that learners' Critical Thinking Skills change due to different instructional methodologies that occur throughout a semester.
Selection of Higher Order Regression Models in the Analysis of Multi-Factorial Transcription Data
Prazeres da Costa, Olivia; Hoffman, Arthur; Rey, Johannes W.; Mansmann, Ulrich
2014-01-01
Introduction Many studies examine gene expression data that has been obtained under the influence of multiple factors, such as genetic background, environmental conditions, or exposure to diseases. The interplay of multiple factors may lead to effect modification and confounding. Higher order linear regression models can account for these effects. We present a new methodology for linear model selection and apply it to microarray data of bone marrow-derived macrophages. This experiment investigates the influence of three variable factors: the genetic background of the mice from which the macrophages were obtained, Yersinia enterocolitica infection (two strains, and a mock control), and treatment/non-treatment with interferon-γ. Results We set up four different linear regression models in a hierarchical order. We introduce the eruption plot as a new practical tool for model selection complementary to global testing. It visually compares the size and significance of effect estimates between two nested models. Using this methodology we were able to select the most appropriate model by keeping only relevant factors showing additional explanatory power. Application to experimental data allowed us to qualify the interaction of factors as either neutral (no interaction), alleviating (co-occurring effects are weaker than expected from the single effects), or aggravating (stronger than expected). We find a biologically meaningful gene cluster of putative C2TA target genes that appear to be co-regulated with MHC class II genes. Conclusions We introduced the eruption plot as a tool for visual model comparison to identify relevant higher order interactions in the analysis of expression data obtained under the influence of multiple factors. We conclude that model selection in higher order linear regression models should generally be performed for the analysis of multi-factorial microarray data. PMID:24658540
Equivalence of two formalisms for calculating higher order synchrotron sideband spin resonances
Mane, S.R.
1988-05-11
Synchrotron sideband resonances of a first order spin resonance are generally regarded as the most important higher order spin resonances in a high-energy storage ring. Yokoya's formula for these resonances is rederived, including some extra terms, which he neglected, but which turn out to be of comparable magnitude to the terms retained. Including these terms, Yokoya's formalism and the SMILE algorithm are shown to be equivalent to leading order in the resonance strengths. The theoretical calculations are shown to agree with certain measurements from SPEAR.
Higher-Order Spectral Analysis of F-18 Flight Flutter Data
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Dunn, Shane
2005-01-01
Royal Australian Air Force (RAAF) F/A-18 flight flutter test data is presented and analyzed using various techniques. The data includes high-quality measurements of forced responses and limit cycle oscillation (LCO) phenomena. Standard correlation and power spectral density (PSD) techniques are applied to the data and presented. Novel applications of experimentally-identified impulse responses and higher-order spectral techniques are also applied to the data and presented. The goal of this research is to develop methods that can identify the onset of nonlinear aeroelastic phenomena, such as LCO, during flutter testing.
Quantum Enhancement of Higher-Order Phononlike Excitations of a Bose-Einstein Condensate
Rowen, E. E.; Bar-Gill, N.; Davidson, N.
2008-07-04
In a Bose-Einstein condensate, the excitation of a Bogoliubov phonon with low momentum (e.g., by a two-photon Bragg process) is strongly suppressed due to destructive interference between two indistinguishable excitation pathways. Here we show that scattering of this sound excitation into a double-momentum mode is strongly enhanced due to constructive interference. This enhancement yields an inherent amplification of second-order sound excitations of the condensate, as we confirm experimentally. We further show that due to parity considerations, this effect is extended to higher-order excitations.
N = 151Pu ,Cm and Cf nuclei under rotational stress: Role of higher-order deformations
NASA Astrophysics Data System (ADS)
Hota, S. S.; Chowdhury, P.; Khoo, T. L.; Carpenter, M. P.; Janssens, R. V. F.; Qiu, Y.; Ahmad, I.; Greene, J. P.; Tandel, S. K.; Seweryniak, D.; Zhu, S.; Bertone, P. F.; Chiara, C. J.; Deo, A. Y.; D'Olympia, N.; Gros, S.; Guess, C. J.; Harrington, T.; Hartley, D. J.; Henning, G.; Hoffman, C. R.; Jackson, E. G.; Kondev, F. G.; Lakshmi, S.; Lauritsen, T.; Lister, C. J.; McCutchan, E. A.; Moran, K.; Nair, C.; Peterson, D.; Shirwadkar, U.; Stefanescu, I.
2014-12-01
Fast-rotating N = 151 isotones 245Pu, 247Cm and 249Cf have been studied through inelastic excitation and transfer reactions with radioactive targets. While all have a ground-state band built on a νj15/2 [ 734 ] 9 /2- Nilsson configuration, new excited bands have also been observed in each isotone. These odd-N excited bands allow a comparison of the alignment behavior for two different configurations, where the νj15/2 alignment is either blocked or allowed. The effect of higher order deformations is explored through cranking calculations, which help clarify the elusive nature of νj15/2 alignments.
Assessment of Higher-Order RANS Closures in a Decelerated Planar Wall-Bounded Turbulent Flow
NASA Technical Reports Server (NTRS)
Jeyapaul, Elbert; Coleman, Gary N.; Rumsey, Christopher L.
2014-01-01
A reference DNS database is presented, which includes third- and fourth-order moment budgets for unstrained and strained planar channel flow. Existing RANS closure models for third- and fourth-order terms are surveyed, and new model ideas are introduced. The various models are then compared with the DNS data term by term using a priori testing of the higher-order budgets of turbulence transport, velocity-pressure-gradient, and dissipation for both the unstrained and strained databases. Generally, the models for the velocity-pressure-gradient terms are most in need of improvement.
Higher order mode damping studies on the PEP-II B-Factory RF cavity
Rimmer, R.; Goldberg, D.; Lambertson, G.; Voelker, F. ); Ko, K.; Kroll, N.; Pendleton, R.; Schwarz, H. ); Adams, F.; De Jong, M. )
1992-03-01
We describe studies of the higher-order-mode (HOM) properties of the prototype 476 MHz RF cavity for the proposed PEP-II B-Factory and a waveguide damping scheme to reduce possible HOM-driven coupled-bunch beam instability growth. Numerical studies include modelling of the HOM spectrum using MAFIA and ARGUS, and calculation of the loaded Q's of the damped modes using data from these codes and the Kroll-Yu method. We discuss briefly the experimental investigations of the modes, which will be made in a full-size low-power test cavity, using probes, wire excitation and bead perturbation methods.
Higher order mode damping studies on the PEP-II B-Factory RF cavity
Rimmer, R.; Goldberg, D.; Lambertson, G.; Voelker, F.; Ko, K.; Kroll, N.; Pendleton, R.; Schwarz, H.; Adams, F.; De Jong, M.
1992-03-01
We describe studies of the higher-order-mode (HOM) properties of the prototype 476 MHz RF cavity for the proposed PEP-II B-Factory and a waveguide damping scheme to reduce possible HOM-driven coupled-bunch beam instability growth. Numerical studies include modelling of the HOM spectrum using MAFIA and ARGUS, and calculation of the loaded Q`s of the damped modes using data from these codes and the Kroll-Yu method. We discuss briefly the experimental investigations of the modes, which will be made in a full-size low-power test cavity, using probes, wire excitation and bead perturbation methods.
Time-domain multimode dispersion measurement in a higher-order-mode fiber
Cheng, Ji; Pedersen, Martin E. V.; Wang, Ke; Xu, Chris; Grüner-Nielsen, Lars; Jakobsen, Dan
2012-01-01
We present a new multimode dispersion measurement technique based on the time-of-flight method. The modal delay and group velocity dispersion of all excited modes in a few-mode fiber can be measured simultaneously by a tunable pulsed laser and a high speed sampling oscilloscope. A newly designed higher-order-mode fiber with large anomalous dispersion in the LP02 mode has been characterized using this method, and experimental results are in good agreement with the designed dispersion values. The demonstrated technique is significantly simpler to implement than the existing frequency-domain or interferometry-based methods. PMID:22297348
Nonlinear optics in the LP(02) higher-order mode of a fiber.
Chen, Y; Chen, Z; Wadsworth, W J; Birks, T A
2013-07-29
The distinct disperion properties of higher-order modes in optical fibers permit the nonlinear generation of radiation deeper into the ultraviolet than is possible with the fundamental mode. This is exploited using adiabatic, broadband mode convertors to couple light efficiently from an input fundamental mode and also to return the generated light to an output fundamental mode over a broad spectral range. For example, we generate visible and UV supercontinuum light in the LP(02) mode of a photonic crystal fiber from sub-ns pulses with a wavelength of 532 nm.
Exotic quantum holonomy and higher-order exceptional points in quantum kicked tops.
Tanaka, Atushi; Kim, Sang Wook; Cheon, Taksu
2014-04-01
The correspondence between exotic quantum holonomy, which occurs in families of Hermitian cycles, and exceptional points (EPs) for non-Hermitian quantum theory is examined in quantum kicked tops. Under a suitable condition, an explicit expression of the adiabatic parameter dependencies of quasienergies and stationary states, which exhibit anholonomies, is obtained. It is also shown that the quantum kicked tops with the complexified adiabatic parameter have a higher-order EP, which is broken into lower-order EPs with the application of small perturbations. The stability of exotic holonomy against such bifurcation is demonstrated.
Analysis of laminated composite plates using a higher-order shear deformation theory
NASA Technical Reports Server (NTRS)
Phan, N. D.; Reddy, J. N.
1985-01-01
A higher-order deformation theory is used to analyse laminated anisotropic composite plates for deflections, stresses, natural frequencies and buckling loads. The theory accounts for parabolic distribution of the transverse shear stresses, and requires no shear correction coefficients. A displacement finite element model of the theory is developed, and applications of the element to bending, vibration and stability of laminated plates are discussed. The present solutions are compared with those obtained using the classical plate theory and the three-dimensional elasticity theory.
Effects of static equilibrium and higher-order nonlinearities on rotor blade stability in hover
NASA Technical Reports Server (NTRS)
Crespodasilva, Marcelo R. M.; Hodges, Dewey H.
1988-01-01
The equilibrium and stability of the coupled elastic lead/lag, flap, and torsion motion of a cantilever rotor blade in hover are addressed, and the influence of several higher-order terms in the equations of motion of the blade is determined for a range of values of collective pitch. The blade is assumed to be untwisted and to have uniform properties along its span. In addition, chordwise offsets between its elastic, tension, mass, and aerodynamic centers are assumed to be negligible for simplicity. The aerodynamic forces acting on the blade are modeled using a quasi-steady, strip-theory approximation.
Higher Order Mode Coupling in Feed Waveguide of a Planar Slot Array Antenna
NASA Technical Reports Server (NTRS)
Rengarajan, Sembiam
2011-01-01
A simple technique was developed to account for the higher order mode coupling between adjacent coupling slots in the feed waveguide of a planar slot array. The method uses an equation relating the slot impedance to the slot voltage and a reaction integral involving the equivalent magnetic current of the slot aperture and the magnetic field coupled from an adjacent slot. In the proposed method, one uses the Elliott s design technique to determine tilt angles and lengths of the coupling slots. The radiating slots are modeled as shunt admittances, and the coupling slots are modeled as series impedances.
Realization of polarization evolution on higher-order Poincaré sphere with metasurface
Liu, Yachao; Ling, Xiaohui; Yi, Xunong; Zhou, Xinxing; Luo, Hailu Wen, Shuangchun
2014-05-12
We present a simple and convenient method to yield cylindrical vector (CV) beams and realize its polarization evolution on higher-order Poincaré sphere based on inhomogeneous birefringent metasurface. By means of local polarization transformation of the metasurface, it is possible to convert a light beam with homogeneous elliptical polarization into a vector beam with any desired polarization distribution. The Stokes parameters of the output light are measured to verify our scheme, which show well agreement with the theoretical prediction. Our method may provide a convenient way to generate CV beams, which is expected to have potential applications in encoding information and quantum computation.
Generation of arbitrary cylindrical vector beams on the higher order Poincaré sphere.
Chen, Shizhen; Zhou, Xinxing; Liu, Yachao; Ling, Xiaohui; Luo, Hailu; Wen, Shuangchun
2014-09-15
We propose and experimentally demonstrate a novel interferometric approach to generate arbitrary cylindrical vector beams on the higher order Poincaré sphere (HOPS). Our scheme is implemented by collinear superposition of two orthogonal circular polarizations with opposite topological charges. By modifying the amplitude and phase factors of the two beams, respectively, any desired vector beams on the HOPS with high tunability can be acquired. Our research provides a convenient way to evolve the polarization states in any path on the high order Poincaré sphere. PMID:26466249
Travelling wave solutions for higher-order wave equations of kdv type (iii).
Li, Jibin; Rui, Weigou; Long, Yao; He, Bin
2006-01-01
By using the theory of planar dynamical systems to the travelling wave equation of a higher order nonlinear wave equations of KdV type, the existence of smooth solitary wave, kink wave and anti-kink wave solutions and uncountably infinite many smooth and non-smooth periodic wave solutions are proved. In different regions of the parametric space, the sufficient conditions to guarantee the existence of the above solutions are given. In some conditions, exact explicit parametric representations of these waves are obtain. PMID:20361813
Strong higher-order resonant contributions to x-ray line polarization in hot plasmas
NASA Astrophysics Data System (ADS)
Shah, Chintan; Amaro, Pedro; Steinbrügge, Rene; Beilmann, Christian; Bernitt, Sven; Fritzsche, Stephan; Surzhykov, Andrey; Crespo López-Urrutia, José R.; Tashenov, Stanislav
2016-06-01
We studied angular distributions of x rays emitted in resonant recombination of highly charged iron and krypton ions, resolving dielectronic, trielectronic, and quadruelectronic channels. A tunable electron beam drove these processes, inducing x rays registered by two detectors mounted along and perpendicular to the beam axis. The measured emission asymmetries comprehensively benchmarked full-order atomic calculations. We conclude that accurate polarization diagnostics of hot plasmas can only be obtained under the premise of inclusion of higher-order processes that were neglected in earlier work.
NASA Technical Reports Server (NTRS)
Brakman, B.; Dioso, L.; Parker, D.; Segal, L.; Merriman, C.; Howard, I.; Vu, H.; Anderson, K.; Riley, S.; Amery, D.
1989-01-01
This report summarizes the efforts of the NASA/USRA Advanced Design Program during the 1988-89 scholastic year. The primary goal was to address specific needs in the design of an integrated system to grow higher order plants in space. The initial phase of the design effort concentrated on studying such a system and identifying its needs. Once these needs were defined, emphasis was placed on the design and fabrication of devices to meet them. Specific attention was placed on a hand-held harvester, a nutrient concentration sensor, an air-water separator, and a closed-loop biological system simulation.
A higher order panel method for general analysis and design applications in subsonic flow
NASA Technical Reports Server (NTRS)
Johnson, F. T.; Rubbert, P. E.; Ehlers, F. E.
1976-01-01
A higher-order panel method is described for numerical solution of boundary-value problems relating to steady inviscid irrotational incompressible subsonic fluid flow in a domain. Both Neumann and Dirichlet boundary conditions are treated; two types of auxiliary conditions are used to remove the degrees of freedom that arise from specifying only the derivative of the perturbation velocity potential. Four general network types and two expansions of the induced potential kernel are employed in the numerical solution. Some results are presented which illustrate the modeling options and numerical characteristics of the method.
Higher Order Modes HOM___s in Coupled Cavities of the Flash Module ACC39
Shinton, I.R.R.; Jones, R.M.; Li, Z.; Zhang, P.; /Manchester U. /Cockcroft Inst. Accel. Sci. Tech. /DESY
2012-09-14
We analyse the higher order modes (HOM's) in the 3.9GHz bunch shaping cavities installed in the FLASH facility at DESY. A suite of finite element computer codes (including HFSS and ACE3P) and globalised scattering matrix calculations (GSM) are used to investigate the modes in these cavities. This study is primarily focused on the dipole component of the multiband expansion of the wakefield, with the emphasis being on the development of a HOM-based BPM system for ACC39. Coupled inter-cavity modes are simulated together with a limited band of trapped modes.
Strong higher-order resonant contributions to x-ray line polarization in hot plasmas.
Shah, Chintan; Amaro, Pedro; Steinbrügge, Rene; Beilmann, Christian; Bernitt, Sven; Fritzsche, Stephan; Surzhykov, Andrey; Crespo López-Urrutia, José R; Tashenov, Stanislav
2016-06-01
We studied angular distributions of x rays emitted in resonant recombination of highly charged iron and krypton ions, resolving dielectronic, trielectronic, and quadruelectronic channels. A tunable electron beam drove these processes, inducing x rays registered by two detectors mounted along and perpendicular to the beam axis. The measured emission asymmetries comprehensively benchmarked full-order atomic calculations. We conclude that accurate polarization diagnostics of hot plasmas can only be obtained under the premise of inclusion of higher-order processes that were neglected in earlier work. PMID:27415199
NASA Astrophysics Data System (ADS)
Akhras, G.; Cheung, M. S.; Li, W.
1994-08-01
In the present study, a finite strip method for the elastic analysis of anisotropic laminated composite plates is developed according to higher-order shear deformation theory. This theory accounts for the parabolic distribution of the transverse shear strains through the thickness of the plate and for zero transverse shear stresses on the plate surfaces. In comparison with the finite strip method based on first-order shear deformation theory, the present method gives improved results while using approximately the same number of degrees of freedom. It also eliminates the need for shear correction factors in calculating the transverse shear stiffness.
Soliton solutions of the KdV equation with higher-order corrections
NASA Astrophysics Data System (ADS)
Wazwaz, Abdul-Majid
2010-10-01
In this work, the Korteweg-de Vries (KdV) equation with higher-order corrections is examined. We studied the KdV equation with first-order correction and that with second-order correction that include the terms of the fifth-order Lax, Sawada-Kotera and Caudrey-Dodd-Gibbon equations. The simplified form of the bilinear method was used to show the integrability of the first-order models and therefore to obtain multiple soliton solutions for each one. The obstacles to integrability of some of the models with second-order corrections are examined as well.
HOMOR: higher order model outlier rejection for high b-value MR diffusion data.
Pannek, Kerstin; Raffelt, David; Bell, Christopher; Mathias, Jane L; Rose, Stephen E
2012-11-01
Diffusion MR images are prone to artefacts caused by head movement and cardiac pulsation. Previous techniques for the automated voxel-wise detection of signal intensity outliers have relied on the fit of the diffusion tensor to the data (RESTORE). However, the diffusion tensor cannot appropriately model more than a single fibre population, which may lead to inaccuracies when identifying outlier voxels in crossing fibre regions, particularly when high b-values are used to obtain increased angular contrast. HOMOR (higher order model outlier rejection) was developed to overcome this limitation and is introduced in this study. HOMOR is closely related to RESTORE, but employs a higher order model capable of resolving multiple fibre populations within a voxel. Using high b-value (b=3000 s/mm2) diffusion data from a population of 90 healthy participants, as well as simulations, HOMOR was found to identify a decreased number of outlier voxels compared to RESTORE primarily within areas of crossing, bending and fanning fibres. At lower b-values, however, RESTORE and HOMOR give similar results, which is demonstrated using diffusion data acquired at b=1000 s/mm2 in a mixed cohort. This study demonstrates that, although RESTORE is suitable for low b-value data, HOMOR is better suited for high b-value data. PMID:22819964
A source array for generating higher order acoustic modes in circular ducts
NASA Technical Reports Server (NTRS)
Wyerman, B. R.; Reethof, G.
1976-01-01
A unique source array has been developed for the generation of both spinning and non-spinning higher order modes in a circular duct. The array consists of two concentric rings of sources. Through individual control of the response of each element, the array provided phase and amplitude control in the radial as well as circumferential directions. Radial modes shapes were measured in a 12-inch diameter anechoically-terminated hollow duct. These modes could be generated at their cut-off frequency and throughout a frequency range extending to the cut-off frequency for the next higher order radial mode. Comparisons are given between theory and experiment for the generation of specific modes. The radial dependence of the measured mode shapes was enhanced considerably by the design of this array. The results indicate a significant improvement over previous mode generation mechanisms. The contamination of the generated mode by additional spurious modes is also considered for variations between individual elements within the source array.
Higher-order analysis of crack tip fields in elastic power-law hardening materials
NASA Astrophysics Data System (ADS)
Xia, L.; Wang, T. C.; Shih, C. F.
1993-04-01
A HIGHER-ORDER asymptotic analysis of a stationary crack in an elastic power-law hardening material has been carried out for plane strain, Mode I. The extent to which elasticity affects the near-tip fields is determined by the strain hardening exponent n. Five terms in the asymptotic series for the stresses have been derived for n = 3. However, only three amplitudes can be independently prescribed. These are K1, K2 and K5 corresponding to amplitudes of the first-, second- and fifth-order terms. Four terms in the asymptotic series have been obtained for n = 5, 7 and 10; in these cases, the independent amplitudes are K1, K2 and K4. It is found that appropriate choices of K2 and K4 can reproduce near-tip fields representative of a broad range of crack tip constraints in moderate and low hardening materials. Indeed, fields characterized by distinctly different stress triaxiality levels (established by finite element analysis) have been matched by the asymptotic series. The zone of dominance of the asymptotic series extends over distances of about 10 crack openings ahead of the crack tip encompassing length scales that are microstructurally significant. Furthermore, the higher-order terms collectively describe a spatially uniform hydrostatic stress field (of adjustable magnitude) ahead of the crack. Our results lend support to a suggestion that J and a measure of near-tip stress triaxiality can describe the full range of near-tip states.
In Vivo Generalized Diffusion Tensor Imaging (GDTI) Using Higher-Order Tensors (HOT)
Liu, Chunlei; Mang, Sarah C.; Moseley, Michael E.
2009-01-01
Generalized diffusion tensor imaging (GDTI) using higher order tensor statistics (HOT) generalizes the technique of diffusion tensor imaging (DTI) by including the effect of non-Gaussian diffusion on the signal of magnetic resonance imaging (MRI). In GDTI-HOT, the effect of non-Gaussian diffusion is characterized by higher order tensor statistics (i.e. the cumulant tensors or the moment tensors) such as the covariance matrix (the second-order cumulant tensor), the skewness tensor (the third-order cumulant tensor) and the kurtosis tensor (the fourth-order cumulant tensor) etc. Previously, Monte Carlo simulations have been applied to verify the validity of this technique in reconstructing complicated fiber structures. However, no in vivo implementation of GDTI-HOT has been reported. The primary goal of this study is to establish GDTI-HOT as a feasible in vivo technique for imaging non-Gaussian diffusion. We show that probability distribution function (PDF) of the molecular diffusion process can be measured in vivo with GDTI-HOT and be visualized with 3D glyphs. By comparing GDTI-HOT to fiber structures that are revealed by the highest resolution DWI possible in vivo, we show that the GDTI-HOT can accurately predict multiple fiber orientations within one white matter voxel. Furthermore, through bootstrap analysis we demonstrate that in vivo measurement of HOT elements is reproducible with a small statistical variation that is similar to that of DTI. PMID:19953513
Higher-order exchange interactions leading to metamagnetism in FeRh
NASA Astrophysics Data System (ADS)
Barker, Joseph; Chantrell, Roy W.
2015-09-01
The origin of the metamagnetic antiferromagnetic-ferromagnetic phase transition of FeRh is a subject of debate. Competing explanations invoke magnetovolume effects or a purely thermodynamic transition within the spin system. It is experimentally difficult to observe the changes in the magnetic system and the lattice simultaneously, leading to conflicting evidence over which mechanism causes the phase transition. A noncollinear electronic structure study by Mryasov [Phase Transitions 78, 197 (2005), 10.1080/01411590412331316591] showed that nonlinear behavior of the Rh moment leads to higher-order exchange terms in FeRh. Using atomistic spin dynamics, we show that the phase transition can occur due to the competition between bilinear and the higher-order four spin exchange terms in an effective spin Hamiltonian. The phase transition we see is of first order and shows thermal hysteresis in agreement with experimental observations. Simulating subpicosecond laser heating, we show an agreement with pump-probe experiments with a ferromagnetic response on a picosecond time scale.
Higher-Order Motion-Compensation for In Vivo Cardiac Diffusion Tensor Imaging in Rats
Welsh, Christopher L.; DiBella, Edward V. R.; Hsu, Edward W.
2015-01-01
Motion of the heart has complicated in vivo applications of cardiac diffusion MRI and diffusion tensor imaging (DTI), especially in small animals such as rats where ultra-high-performance gradient sets are currently not available. Even with velocity compensation via, for example, bipolar encoding pulses, the variable shot-to-shot residual motion-induced spin phase can still give rise to pronounced artifacts. This study presents diffusion-encoding schemes that are designed to compensate for higher-order motion components, including acceleration and jerk, which also have the desirable practical features of minimal TEs and high achievable b-values. The effectiveness of these schemes was verified numerically on a realistic beating heart phantom, and demonstrated empirically with in vivo cardiac diffusion MRI in rats. Compensation for acceleration, and lower motion components, was found to be both necessary and sufficient for obtaining diffusion-weighted images of acceptable quality and SNR, which yielded the first in vivo cardiac DTI demonstrated in the rat. These findings suggest that compensation for higher order motion, particularly acceleration, can be an effective alternative solution to high-performance gradient hardware for improving in vivo cardiac DTI. PMID:25775486
Pecka, Shannon; Schmid, Kendra; Pozehl, Bunny
2014-12-01
This article describes development of the Pecka Grading Rubric (PGR) as a strategy to facilitate and evaluate students' higher-order thinking in discussion boards. The purpose of this study was to describe psychometric properties of the PGR. Rubric reliability was pilot tested on a discussion board assignment used by 15 senior student registered nurse anesthetist enrolled in an Advanced Principles of Anesthesia course. Interrater and intrarater reliabilities were tested using an interclass correlation coefficient (ICC) to evaluate absolute agreement of scoring. Raters gave each category a score, scores of the categories were summed, and a total score was calculated for the entire rubric. Interrater (ICC = 0.939, P < .001) and intrarater (ICC = 0.902 to 0.994, P < .001) reliabilities were excellent for total point scores. A content validity index was used to evaluate content validity. Raters evaluated content validity of each cell of the PGR. The content validity index (0.8-1.0) was acceptable. Known-group validity was evaluated by comparing graduate student registered nurse anesthetists (N = 7) with undergraduate senior nursing students (N = 13). Beginning evidence indicates a valid and reliable instrument that measures higher-order thinking in the student registered nurse anesthetist.
Gravitational and higher-order form factors of the pion in chiral quark models
Broniowski, Wojciech; Arriola, Enrique Ruiz
2008-11-01
The gravitational form factor of the pion is evaluated in two chiral quark models and confronted with the recent full-QCD lattice data. We find good agreement for the case of the spectral quark model, which builds in the vector-meson dominance for the charge form factor. We derive a simple relation between the gravitational and electromagnetic form factors, holding in the considered quark models in the chiral limit. The relation implies that the gravitational mean squared radius is half the electromagnetic one. We also analyze higher-order quark generalized form factors of the pion, related to higher moments in the symmetric Bjorken X variable of the generalized parton distribution functions, and discuss their perturbative QCD evolution, which is needed to relate the quark-model predictions to the lattice data. The values of the higher-order quark form factors at t=0, computed on the lattice, also agree with our quark-model results within the statistical and method uncertainties.
Adaptation to Changes in Higher-Order Stimulus Statistics in the Salamander Retina
Tkačik, Gašper; Ghosh, Anandamohan; Schneidman, Elad; Segev, Ronen
2014-01-01
Adaptation in the retina is thought to optimize the encoding of natural light signals into sequences of spikes sent to the brain. While adaptive changes in retinal processing to the variations of the mean luminance level and second-order stimulus statistics have been documented before, no such measurements have been performed when higher-order moments of the light distribution change. We therefore measured the ganglion cell responses in the tiger salamander retina to controlled changes in the second (contrast), third (skew) and fourth (kurtosis) moments of the light intensity distribution of spatially uniform temporally independent stimuli. The skew and kurtosis of the stimuli were chosen to cover the range observed in natural scenes. We quantified adaptation in ganglion cells by studying linear-nonlinear models that capture well the retinal encoding properties across all stimuli. We found that the encoding properties of retinal ganglion cells change only marginally when higher-order statistics change, compared to the changes observed in response to the variation in contrast. By analyzing optimal coding in LN-type models, we showed that neurons can maintain a high information rate without large dynamic adaptation to changes in skew or kurtosis. This is because, for uncorrelated stimuli, spatio-temporal summation within the receptive field averages away non-gaussian aspects of the light intensity distribution. PMID:24465742
Sutheerawatthana, Pitch; Minato, Takayuki
2010-02-15
The response of a social group is a missing element in the formal impact assessment model. Previous discussion of the involvement of social groups in an intervention has mainly focused on the formation of the intervention. This article discusses the involvement of social groups in a different way. A descriptive model is proposed by incorporating a social group's response into the concept of second- and higher-order effects. The model is developed based on a cause-effect relationship through the observation of phenomena in case studies. The model clarifies the process by which social groups interact with a lower-order effect and then generate a higher-order effect in an iterative manner. This study classifies social groups' responses into three forms-opposing, modifying, and advantage-taking action-and places them in six pathways. The model is expected to be used as an analytical tool for investigating and identifying impacts in the planning stage and as a framework for monitoring social groups' responses during the implementation stage of a policy, plan, program, or project (PPPPs).
Silva, Carlos A B; Rodrigues, Clóves G; Ramos, J Galvão; Luzzi, Roberto
2015-06-01
Construction, in the framework of a nonequilibrium statistical ensemble formalism, of a higher-order generalized hydrodynamics, also referred to as mesoscopic hydrothermodynamics, that is, covering phenomena involving motion of fluids displaying variations short in space and fast in time-unrestricted values of Knudsen numbers, is presented. In that way, an approach is provided enabling the coupling and simultaneous treatment of the kinetics and hydrodynamic levels of descriptions. It is based on a complete thermostatistical approach in terms of the densities of matter and energy and their fluxes of all orders covering systems arbitrarily driven away from equilibrium. The set of coupled nonlinear integrodifferential hydrodynamic equations is derived. They are the evolution equations of the Gradlike moments of all orders, derived from a generalized kinetic equation built in the framework of the nonequilibrium statistical ensemble formalism. For illustration, the case of a system of particles embedded in a fluid acting as a thermal bath is fully described. The resulting enormous set of coupled evolution equations is of unmanageable proportions, thus requiring in practice to introduce an appropriate description using the smallest possible number of variables. We have obtained a hierarchy of Maxwell times, associated to the set of all the higher-order fluxes, which have a particular relevance in the process of providing criteria for establishing the contraction of description. PMID:26172796
An advanced higher-order theory for laminated composite plates with general lamination angles
NASA Astrophysics Data System (ADS)
Wu, Zhen; Zhu, Hong; Chen, Wan-Ji
2011-10-01
This paper proposes a higher-order shear deformation theory to predict the bending response of the laminated composite and sandwich plates with general lamination configurations. The proposed theory a priori satisfies the continuity conditions of transverse shear stresses at interfaces. Moreover, the number of unknown variables is independent of the number of layers. The first derivatives of transverse displacements have been taken out from the inplane displacement fields, so that the C0 shape functions are only required during its finite element implementation. Due to C0 continuity requirements, the proposed model can be conveniently extended for implementation in commercial finite element codes. To verify the proposed theory, the fournode C0 quadrilateral element is employed for the interpolation of all the displacement parameters defined at each nodal point on the composite plate. Numerical results show that following the proposed theory, simple C0 finite elements could accurately predict the interlaminar stresses of laminated composite and sandwich plates directly from a constitutive equation, which has caused difficulty for the other global higher order theories.
Virtual Laboratories to Achieve Higher-Order Learning in Fluid Mechanics
NASA Astrophysics Data System (ADS)
Ward, A. S.; Gooseff, M. N.; Toto, R.
2009-12-01
Bloom’s higher-order cognitive skills (analysis, evaluation, and synthesis) are recognized as necessary in engineering education, yet these are difficult to achieve in traditional lecture formats. Laboratory components supplement traditional lectures in an effort to emphasize active learning and provide higher-order challenges, but these laboratories are often subject to the constraints of (a) increasing student enrollment, (b) limited funding for operational, maintenance, and instructional expenses and (c) increasing demands on undergraduate student credit requirements. Here, we present results from a pilot project implementing virtual (or online) laboratory experiences as an alternative to a traditional laboratory experience in Fluid Mechanics, a required third year course. Students and faculty were surveyed to identify the topics that were most difficult, and virtual laboratory and design components developed to supplement lecture material. Each laboratory includes a traditional lab component, requiring student analysis and evaluation. The lab concludes with a design exercise, which imposes additional problem constraints and allows students to apply their laboratory observations to a real-world situation.
Integrating reaction and analysis: investigation of higher-order reactions by cryogenic trapping
Stockinger, Skrollan
2013-01-01
Summary A new approach for the investigation of a higher-order reaction by on-column reaction gas chromatography is presented. The reaction and the analytical separation are combined in a single experiment to investigate the Diels–Alder reaction of benzenediazonium-2-carboxylate as a benzyne precursor with various anthracene derivatives, i.e. anthracene, 9-bromoanthracene, 9-anthracenecarboxaldehyde and 9-anthracenemethanol. To overcome limitations of short reaction contact times at elevated temperatures a novel experimental setup was developed involving a cooling trap to achieve focusing and mixing of the reactants at a defined spot in a fused-silica capillary. This trap functions as a reactor within the separation column in the oven of a gas chromatograph. The reactants are sequentially injected to avoid undefined mixing in the injection port. An experimental protocol was developed with optimized injection intervals and cooling times to achieve sufficient conversions at short reaction times. Reaction products were rapidly identified by mass spectrometric detection. This new approach represents a practical procedure to investigate higher-order reactions at an analytical level and it simultaneously provides valuable information for the optimization of the reaction conditions. PMID:24062850
Evidence of Higher-Order Effects in Thermally-Driven, Rapid Granular Flows
Hrenya, C.M.; Galvin, J.E.; Wildman, R.D.
2008-01-01
Molecular dynamic (MD) simulations are used to probe the ability of Navier–Stokes-order theories to predict each of the constitutive quantities – heat flux, stress tensor and dissipation rate – associated with granular materials. The system under investigation is bounded by two opposite walls of set granular temperature and is characterized by zero mean flow. The comparisons between MD and theory provide evidence of higher-order effects in each of the constitutive quantities. Furthermore, the size of these effects is roughly one order of magnitude greater, on a percentage basis, for heat flux than it is for stress or dissipation rate. For the case of heat flux, these effects are attributed to super-Burnett-order contributions (third order in gradients) or greater, since Burnett-order contributions to the heat flux do not exist. Finally, for the system considered, these higher-order contributions to the heat flux outweigh the first-order contribution arising from a gradient in concentration (i.e. the Dufour effect).
Candel, A.; Kabel, A.; Lee, L.; Li, Z.; Limborg, C.; Ng, C.; Prudencio, E.; Schussman, G.; Uplenchwar, R.; Ko, K.; /SLAC
2009-06-19
Over the past years, SLAC's Advanced Computations Department (ACD), under SciDAC sponsorship, has developed a suite of 3D (2D) parallel higher-order finite element (FE) codes, T3P (T2P) and Pic3P (Pic2P), aimed at accurate, large-scale simulation of wakefields and particle-field interactions in radio-frequency (RF) cavities of complex shape. The codes are built on the FE infrastructure that supports SLAC's frequency domain codes, Omega3P and S3P, to utilize conformal tetrahedral (triangular)meshes, higher-order basis functions and quadratic geometry approximation. For time integration, they adopt an unconditionally stable implicit scheme. Pic3P (Pic2P) extends T3P (T2P) to treat charged-particle dynamics self-consistently using the PIC (particle-in-cell) approach, the first such implementation on a conformal, unstructured grid using Whitney basis functions. Examples from applications to the International Linear Collider (ILC), Positron Electron Project-II (PEP-II), Linac Coherent Light Source (LCLS) and other accelerators will be presented to compare the accuracy and computational efficiency of these codes versus their counterparts using structured grids.
Higher-order action planning for individual and joint object manipulations.
Meyer, Marlene; van der Wel, Robrecht P R D; Hunnius, Sabine
2013-04-01
Many actions involve multiple action steps, which raises the question how far ahead people plan when they perform such actions. Here, we examined higher-order planning for action sequences and whether people planned similarly or differently when acting individually or together with an action partner. For individual performances, participants picked up an object with one hand and passed it to their other hand before placing it onto a target location. For joint performances, they picked up the object and handed it to their action partner, who placed it onto the target location. Each object could be grasped at only two possible grasping positions, implying that the first selected grasp on the object determined the postures for the rest of the action sequence. By varying the height of the target shelf, we tested whether people planned ahead and modulated their grasp choices to avoid uncomfortable end postures. Our results indicated that participants engaged in higher-order planning, but needed task experience before demonstrating such planning during both individual and joint performances. The rate of learning was similar in the two conditions, and participants transferred experience from individual to joint performance. Our results indicate similarity in mechanisms underlying individual and joint action sequence planning. PMID:23361302
Improvements to local projective noise reduction through higher order and multiscale refinements
NASA Astrophysics Data System (ADS)
Moore, Jack Murdoch; Small, Michael; Karrech, Ali
2015-06-01
The broad spectrum characteristic of signals from nonlinear systems obstructs noise reduction techniques developed for linear systems. Local projection was developed to reduce noise while preserving nonlinear deterministic structures, and a second order refinement to local projection which was proposed ten years ago does so particularly effectively. It involves adjusting the origin of the projection subspace to better accommodate the geometry of the attractor. This paper describes an analytic motivation for the enhancement from which follows further higher order and multiple scale refinements. However, the established enhancement is frequently as or more effective than the new filters arising from solely geometric considerations. Investigation of the way that measurement errors reinforce or cancel throughout the refined local projection procedure explains the special efficacy of the existing enhancement, and leads to a new second order refinement offering widespread gains. Different local projective filters are found to be best suited to different noise levels. At low noise levels, the optimal order increases as noise increases. At intermediate levels second order tends to be optimal, while at high noise levels prototypical local projection is most effective. The new higher order filters perform better relative to established filters for longer signals or signals corresponding to higher dimensional attractors.
Empowerment theory: clarifying the nature of higher-order multidimensional constructs.
Peterson, N Andrew
2014-03-01
Development of empowerment theory has focused on defining the construct at different levels of analysis, presenting new frameworks or dimensions, and explaining relationships between empowerment-related processes and outcomes. Less studied, and less conceptually developed, is the nature of empowerment as a higher-order multidimensional construct. One critical issue is whether empowerment is conceptualized as a superordinate construct (i.e., empowerment is manifested by its dimensions), an aggregate construct (i.e., empowerment is formed by its dimensions), or rather as a set of distinct constructs. To date, researchers have presented superordinate models without careful consideration of the relationships between dimensions and the higher-order construct of empowerment. Empirical studies can yield very different results, however, depending on the conceptualization of a construct. This paper represents the first attempt to address this issue systematically in empowerment theory. It is argued that superordinate models of empowerment are misspecified and research that tests alternative models at different levels of analysis is needed to advance theory, research, and practice in this area. Recommendations for future work are discussed.
The impedance problem of wave diffraction by a strip with higher order boundary conditions
Castro, L. P.; Simões, A. M.
2013-10-17
This work is devoted to analyse an impedance boundary-transmission problem for the Helmholtz equation originated by a problem of wave diffraction by an infinite strip with higher order imperfect boundary conditions. A constructive approach of operator relations is built, which allows a transparent interpretation of the problem in an operator theory framework. In particular, different types of operator relations are exhibited for different types of operators acting between Lebesgue and Sobolev spaces on a finite interval and the positive half-line. All this has consequences in the understanding of the structure of this type of problems. In particular, a Fredholm characterization of the problem is obtained in terms of the initial space order parameters. At the request of the author and the Proceedings Editor the above article has been replaced with a corrected version. The original PDF file supplied to AIP Publishing contained an error in the title of the article. The original title appeared as: 'The Impedance Problem of Wave Diffraction by a trip with Higher Order Boundary Conditions.' This article has been replaced and the title now appears correctly online. The corrected article was published on 8 November 2013.
Adaptation to changes in higher-order stimulus statistics in the salamander retina.
Tkačik, Gašper; Ghosh, Anandamohan; Schneidman, Elad; Segev, Ronen
2014-01-01
Adaptation in the retina is thought to optimize the encoding of natural light signals into sequences of spikes sent to the brain. While adaptive changes in retinal processing to the variations of the mean luminance level and second-order stimulus statistics have been documented before, no such measurements have been performed when higher-order moments of the light distribution change. We therefore measured the ganglion cell responses in the tiger salamander retina to controlled changes in the second (contrast), third (skew) and fourth (kurtosis) moments of the light intensity distribution of spatially uniform temporally independent stimuli. The skew and kurtosis of the stimuli were chosen to cover the range observed in natural scenes. We quantified adaptation in ganglion cells by studying linear-nonlinear models that capture well the retinal encoding properties across all stimuli. We found that the encoding properties of retinal ganglion cells change only marginally when higher-order statistics change, compared to the changes observed in response to the variation in contrast. By analyzing optimal coding in LN-type models, we showed that neurons can maintain a high information rate without large dynamic adaptation to changes in skew or kurtosis. This is because, for uncorrelated stimuli, spatio-temporal summation within the receptive field averages away non-gaussian aspects of the light intensity distribution.
Higher order thinking skills competencies required by outcomes-based education from learners.
Chabeli, M M
2006-08-01
Outcomes-Based Education (OBE) brought about a significant paradigm shift in the education and training of learners in South Africa. OBE requires a shift from focusing on the teacher input (instruction offerings or syllabuses expressed in terms of content), to focusing on learner outcomes. OBE is moving away from 'transmission' models to constructivistic, learner-centered models that put emphasis on learning as an active process (Nieburh, 1996:30). Teachers act as facilitators and mediators of learning (Norms and Standards, Government Gazette vol 415, no 20844 of 2000). Facilitators are responsible to create the environment that is conducive for learners to construct their own knowledge, skills and values through interaction (Peters, 2000). The first critical cross-field outcome accepted by the South African Qualification Framework (SAQA) is that learners should be able to identify and solve problems by using critical and creative thinking skills. This paper seeks to explore some higher order thinking skills competencies required by OBE from learners such as critical thinking, reflective thinking, creative thinking, dialogic / dialectic thinking, decision making, problem solving and emotional intelligence and their implications in facilitating teaching and learning from the theoretical perspective. The philosophical underpinning of these higher order thinking skills is described to give direction to the study. It is recommended that a study focusing on the assessment of these intellectual concepts be made. The study may be qualitative, quantitative or mixed methods in nature (Creswell 2005). PMID:17131612
Steady-state BOLD Response to Higher-order Cognition Modulates Low-Frequency Neural Oscillations.
Wang, Yi-Feng; Dai, Gang-Shu; Liu, Feng; Long, Zhi-Liang; Yan, Jin H; Chen, Hua-Fu
2015-12-01
Steady-state responses (SSRs) reflect the synchronous neural oscillations evoked by noninvasive and consistently repeated stimuli at the fundamental or harmonic frequencies. The steady-state evoked potentials (SSEPs; the representative form of the SSRs) have been widely used in the cognitive and clinical neurosciences and brain-computer interface research. However, the steady-state evoked potentials have limitations in examining high-frequency neural oscillations and basic cognition. In addition, synchronous neural oscillations in the low frequency range (<1 Hz) and in higher-order cognition have received a little attention. Therefore, we examined the SSRs in the low frequency range using a new index, the steady-state BOLD responses (SSBRs) evoked by semantic stimuli. Our results revealed that the significant SSBRs were induced at the fundamental frequency of stimuli and the first harmonic in task-related regions, suggesting the enhanced variability of neural oscillations entrained by exogenous stimuli. The SSBRs were independent of neurovascular coupling and characterized by sensorimotor bias, an indication of regional-dependent neuroplasticity. Furthermore, the amplitude of SSBRs may predict behavioral performance and show the psychophysiological relevance. Our findings provide valuable insights into the understanding of the SSRs evoked by higher-order cognition and how the SSRs modulate low-frequency neural oscillations. PMID:26284992
Higher-order ice-sheet modelling accelerated by multigrid on graphics cards
NASA Astrophysics Data System (ADS)
Brædstrup, Christian; Egholm, David
2013-04-01
Higher-order ice flow modelling is a very computer intensive process owing primarily to the nonlinear influence of the horizontal stress coupling. When applied for simulating long-term glacial landscape evolution, the ice-sheet models must consider very long time series, while both high temporal and spatial resolution is needed to resolve small effects. The use of higher-order and full stokes models have therefore seen very limited usage in this field. However, recent advances in graphics card (GPU) technology for high performance computing have proven extremely efficient in accelerating many large-scale scientific computations. The general purpose GPU (GPGPU) technology is cheap, has a low power consumption and fits into a normal desktop computer. It could therefore provide a powerful tool for many glaciologists working on ice flow models. Our current research focuses on utilising the GPU as a tool in ice-sheet and glacier modelling. To this extent we have implemented the Integrated Second-Order Shallow Ice Approximation (iSOSIA) equations on the device using the finite difference method. To accelerate the computations, the GPU solver uses a non-linear Red-Black Gauss-Seidel iterator coupled with a Full Approximation Scheme (FAS) multigrid setup to further aid convergence. The GPU finite difference implementation provides the inherent parallelization that scales from hundreds to several thousands of cores on newer cards. We demonstrate the efficiency of the GPU multigrid solver using benchmark experiments.
Higher-order interaction between molluscs and sheep affecting seedling numbers in grassland
NASA Astrophysics Data System (ADS)
Clear Hill, B. H.; Silvertown, J.
Vertebrate and invertebrate herbivores are both important in mesotrophic grasslands and these two different classes of herbivore potentially interact in their effect upon plant populations. We used two field experiments to test for higher order interactions (HOIs) among sheep, slugs and seedlings, using the mechanistic definition that an HOI occurs when the presence of one species modifies the interaction between two others. In each experiment slug addition and slug-removal treatments were nested inside treatments that altered sheep grazing intensity and timing, and the emergence, of seedlings from experimentally sown seeds was monitored. In Experiment 1, seedling numbers of Cerastium fontanum were increased by intense summer grazing by sheep in both slug-addition and slugremoval treatment, but winter grazing by sheep only increased seedling emergence if slugs were removed. In Experiment 2, winter grazing by sheep significantly reduced total seedling emergence of four species sown ( Lotus corniculatus, Plantago lanceolata, Leucanthemum vulgare, Achillea millefolium), but the effect was only seen where slugs were removed. Though the experimental system is a relatively simple one with only four components (sheep, slugs, seedlings and the matrix vegetation), higher order interactions, a combination of direct and indirect effects and possible switching behaviour by slugs are all suggested by our results.
NASA Astrophysics Data System (ADS)
Ma, Zhipeng; Park, Seongsu; Yamashita, Naoki; Kawai, Kentaro; Hirai, Yoshikazu; Tsuchiya, Toshiyuki; Tabata, Osamu
2016-06-01
DNA origami provides a versatile method for the construction of nanostructures with defined shape, size and other properties; such nanostructures may enable a hierarchical assembly of large scale architecture for the placement of other nanomaterials with atomic precision. However, the effective use of these higher order structures as functional components depends on knowledge of their assembly behavior and mechanical properties. This paper demonstrates construction of higher order DNA origami arrays with controlled orientations based on the formation of two types of DNA junctions: anti-parallel and parallel double crossovers. A two-step assembly process, in which preformed rectangular DNA origami monomer structures themselves undergo further self-assembly to form numerically unlimited arrays, was investigated to reveal the influences of assembly parameters. AFM observations showed that when parallel double crossover DNA junctions are used, the assembly of DNA origami arrays occurs with fewer monomers than for structures formed using anti-parallel double crossovers, given the same assembly parameters, indicating that the configuration of parallel double crossovers is not energetically preferred. However, the direct measurement by AFM force-controlled mapping shows that both DNA junctions of anti-parallel and parallel double crossovers have homogeneous mechanical stability with any part of DNA origami.
Surface-enhanced Raman scattering as a higher-order Raman process
NASA Astrophysics Data System (ADS)
Mueller, Niclas S.; Heeg, Sebastian; Reich, Stephanie
2016-08-01
We propose to understand surface-enhanced Raman scattering (SERS) as a higher-order Raman process that contains the plasmonic excitation. The SERS amplitudes are calculated with third- and fourth-order perturbation theory. Treating the plasmonic excitation as a quasiparticle, we derive analytic expressions for all coupling matrix elements. This leads to a general theory of plasmonic enhancement in SERS that can be applied to arbitrary plasmonic nanostructures. We obtain the plasmon eigenvectors of a gold nanosphere and a nanosphere dimer. They are used to calculate the enhancement of the Raman cross section of a molecule coupled to the dipole plasmon mode. The enhancement of the cross section is up to three orders of magnitude stronger than predicted by the theory of electromagnetic enhancement. The difference is most pronounced in vacuum and decreases with increasing dielectric constant of the embedding medium. The predictions from understanding SERS as a higher-order Raman process agree well with recent experiments; they highlight the dominance of plasmonic enhancement in SERS.
Pecka, Shannon; Schmid, Kendra; Pozehl, Bunny
2014-12-01
This article describes development of the Pecka Grading Rubric (PGR) as a strategy to facilitate and evaluate students' higher-order thinking in discussion boards. The purpose of this study was to describe psychometric properties of the PGR. Rubric reliability was pilot tested on a discussion board assignment used by 15 senior student registered nurse anesthetist enrolled in an Advanced Principles of Anesthesia course. Interrater and intrarater reliabilities were tested using an interclass correlation coefficient (ICC) to evaluate absolute agreement of scoring. Raters gave each category a score, scores of the categories were summed, and a total score was calculated for the entire rubric. Interrater (ICC = 0.939, P < .001) and intrarater (ICC = 0.902 to 0.994, P < .001) reliabilities were excellent for total point scores. A content validity index was used to evaluate content validity. Raters evaluated content validity of each cell of the PGR. The content validity index (0.8-1.0) was acceptable. Known-group validity was evaluated by comparing graduate student registered nurse anesthetists (N = 7) with undergraduate senior nursing students (N = 13). Beginning evidence indicates a valid and reliable instrument that measures higher-order thinking in the student registered nurse anesthetist. PMID:25842643
Higher order dispersion in the propagation of a gravity wave packet
NASA Technical Reports Server (NTRS)
Yeh, K. C.; Dong, B.
1989-01-01
To the first order of approximation, the complex amplitude of a wave packet in an anisotropic and dispersive medium is convected with the group of velocity. However, a gravity wave is a vector wave. Its wave packet must be formed by superposition of various wave numbers with corresponding frequencies, as is the case for scalar waves, and additionally by superposing many eigenmodes which also depend on the wave number. To represent the vector wave packet self-consistently, it is found that a gradient term must be included in the expansion. For a Guassian wave packet, this gradient term is shown to have important implications on the velocity vector as represented by its hodograph. Numerical results show that the hodograph is influenced by the location of the relative position of interest from the center of a Gaussian pulse. Higher order expansion shows that an initial Gaussian wave packet will retain its Gaussian shape as it propagates, but the pulse will spread in all directions with its major axis undergoing a rotation. Numerical results indicate that these higher order dispersive effects may be marginally observable in the atmosphere.
Yamasaki, Taiga; Idehara, Katsutoshi; Xin, Xin
2016-07-01
We propose a new method to estimate muscle activity in a straightforward manner with high accuracy and relatively small computational costs by using the external input of the joint angle and its first to fourth derivatives with respect to time. The method solves the inverse dynamics problem of the skeletal system, the forward dynamics problem of the muscular system, and the load-sharing problem of muscles as a static optimization of neural excitation signals. The external input including the higher-order derivatives is required for a calculation of constraints imposed on the load-sharing problem. The feasibility of the method is demonstrated by the simulation of a simple musculoskeletal model with a single joint. Moreover, the influences of the muscular dynamics, and the higher-order derivatives on the estimation of the muscle activity are demonstrated, showing the results when the time constants of the activation dynamics are very small, and the third and fourth derivatives of the external input are ignored, respectively. It is concluded that the method can have the potential to improve estimation accuracy of muscle activity of highly dynamic motions. PMID:27211782
Evidence of Higher-Order Solar Periodicities in China Temperature Record
NASA Astrophysics Data System (ADS)
Tiwari, R. K.; Rajesh, R.; Padmavathi, B.
2016-07-01
We examine here a 2000-year-long record of surface air temperature from China using powerful spectral and statistical analysis techniques to assess the trend and harmonics, if any. Our analyses reveal statistically significant periodicities of order ~900 ± 50, ~480 ± 20, 340 ± 10, ~190 ± 10 and ~130 ± 5 years, which closely match with the known higher-order solar cycles. These periodicities are also similar to quasi-periodicities reported in the climate records of sedimentary cores of subarctic and subpolar regions of North America and North Pacific, thus attesting to the global signature of solar signals in temperature variability. A visual comparison of the temperature series shows that the nodes and antinodes of the underlying temperature variation also match with sunspot variations. We also compare the China temperature (CT) with temperature of northern and southern hemispheres of the past 1000 years. The study reveals strong correlation between the southern hemispheric temperatures and CT during the past 1000 years. However, the northern hemisphere temperature shows strong correlation with CT only during the past century. Interestingly, the variations in the correlation coefficient also have shown periodicities that are nearly identical to the periods observed from CT and higher-order solar cycles. We suggest that the solar irradiance induces global periodic oscillations in temperature records by transporting heat and thermal energy, possibly through the coupling of ocean-atmospheric processes and thereby reinforcing the Sun-ocean-climate link.
First and Higher Order Effects on Zero Order Radiative Transfer Model
NASA Astrophysics Data System (ADS)
Neelam, M.; Mohanty, B.
2014-12-01
Microwave radiative transfer model are valuable tool in understanding the complex land surface interactions. Past literature has largely focused on local sensitivity analysis for factor priotization and ignoring the interactions between the variables and uncertainties around them. Since land surface interactions are largely nonlinear, there always exist uncertainties, heterogeneities and interactions thus it is important to quantify them to draw accurate conclusions. In this effort, we used global sensitivity analysis to address the issues of variable uncertainty, higher order interactions, factor priotization and factor fixing for zero-order radiative transfer (ZRT) model. With the to-be-launched Soil Moisture Active Passive (SMAP) mission of NASA, it is very important to have a complete understanding of ZRT for soil moisture retrieval to direct future research and cal/val field campaigns. This is a first attempt to use GSA technique to quantify first order and higher order effects on brightness temperature from ZRT model. Our analyses reflect conditions observed during the growing agricultural season for corn and soybeans in two different regions in - Iowa, U.S.A and Winnipeg, Canada. We found that for corn fields in Iowa, there exist significant second order interactions between soil moisture, surface roughness parameters (RMS height and correlation length) and vegetation parameters (vegetation water content, structure and scattering albedo), whereas in Winnipeg, second order interactions are mainly due to soil moisture and vegetation parameters. But for soybean fields in both Iowa and Winnipeg, we found significant interactions only to exist between soil moisture and surface roughness parameters.
Higher order thinking skills competencies required by outcomes-based education from learners.
Chabeli, M M
2006-08-01
Outcomes-Based Education (OBE) brought about a significant paradigm shift in the education and training of learners in South Africa. OBE requires a shift from focusing on the teacher input (instruction offerings or syllabuses expressed in terms of content), to focusing on learner outcomes. OBE is moving away from 'transmission' models to constructivistic, learner-centered models that put emphasis on learning as an active process (Nieburh, 1996:30). Teachers act as facilitators and mediators of learning (Norms and Standards, Government Gazette vol 415, no 20844 of 2000). Facilitators are responsible to create the environment that is conducive for learners to construct their own knowledge, skills and values through interaction (Peters, 2000). The first critical cross-field outcome accepted by the South African Qualification Framework (SAQA) is that learners should be able to identify and solve problems by using critical and creative thinking skills. This paper seeks to explore some higher order thinking skills competencies required by OBE from learners such as critical thinking, reflective thinking, creative thinking, dialogic / dialectic thinking, decision making, problem solving and emotional intelligence and their implications in facilitating teaching and learning from the theoretical perspective. The philosophical underpinning of these higher order thinking skills is described to give direction to the study. It is recommended that a study focusing on the assessment of these intellectual concepts be made. The study may be qualitative, quantitative or mixed methods in nature (Creswell 2005).
Numerical time dependent sheet cavitation simulations using a higher order panel method
NASA Astrophysics Data System (ADS)
Dekoninggans, H. J.
1994-03-01
This thesis deals with sheet cavitation. The investigation is aimed at profile design with respect to cavitation control. At present it is possible to predict the shape of cavities on an arbitrary two-dimensional profile in stationary flows. To compute the flow around an arbitrary profile, a higher order three-dimensional panel method program has been developed. The main algorithm used in this program is based on a special case of Green's theorem, called 'de Morino formulation'. This computer program (flow program) can calculate the potential on the body and the velocities at the surface of the body or in the flow field. A theoretical method is developed for time simulation of unsteady sheet cavitation. Numerical simulations of the flow around profiles and of cavitation have been carried out. The numerical results of the panel methods have been compared with other calculations of the two-dimensional flow around profiles and of three-dimensional flow around a sphere and a wing. Simulations of the growth of sheet cavitation on a foil have also been carried out. The conclusion is that higher order panel methods are more accurate than the zero order methods. Further refinement of the Kutta condition is required, however.
NASA Astrophysics Data System (ADS)
Mishra, Jitendra K.; Priye, Vishnu; Rahman, B. M. A.
2016-07-01
A triangular profile multicore fiber (MCF) optical interconnect (OI) is investigated to augment performance that typically degrades at high data rates for higher order modulation in a short reach transmission system. Firstly, probability density functions (PDFs) variation with inter-core crosstalk is calculated for 8-core MCF OI with different index profile in the core and it was observed that the triangular profile MCF OI is the most crosstalk tolerant. Next, symbol error probability (SEP) for higher order quadrature phase shift keying (QPSK) modulated signal due to inter-core crosstalk is analytically obtained and their dependence on typical characteristic parameters are examined. Further, numerical simulations are carried out to compare the error performance of QPSK for step index and triangular index MCF OI by generating eye diagram at 40 Gbps per channel. Finally, it is shown that MCF OI with triangular index profile supporting QPSK has double spectral efficiency with tolerable trade off in SEP as compared with those of binary phase shift keying (BPSK) at high data rates which is scalable up to 5 Tbps.
NASA Astrophysics Data System (ADS)
Fogg, Stephen L.
2006-05-01
Nonlinear `parametric' sonar is distinguished by highly predictable in-water formations of identifiable von Helmholtz spectral energies produced directly as a result of two or more preselected primaries simultaneously contained in a transmit waveform. In the nearly half-century of scientific endeavors within the field of parametric sonar, the methodical investigation into formulation techniques and practical applications using higher-order combination tones has been noticeably lagging the attention received by their more commonly recognized kin of second-order sum and difference frequencies. Generalized mathematical and graphical viewing techniques are presented for elucidating the abundance of cross-band complexities and facilitating preliminary design efforts specifically employing any of these higher-order parametric frequency components on operational systems. Recent sonar experiments implementing pulsed parametric transmit waveforms intended to fully exploit their intrinsic broadband nonlinear energy have demonstrated the potential for improved underwater target detection and classification in acoustically harsh environments. However, research efforts could benefit from more efficient and universal tools for predetermining all of the desired in-water spectral-temporal characteristics. New developments utilizing this methodology have led to unique approaches for designing stepped CW, LFM and hyperbolic FM detection waveforms incorporating enhanced signal processing qualities and constructing coding schemes for reliable underwater acoustic digital communications.
NASA Technical Reports Server (NTRS)
Jothiprasad, Giridhar; Mavriplis, Dimitri J.; Caughey, David A.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
The efficiency gains obtained using higher-order implicit Runge-Kutta schemes as compared with the second-order accurate backward difference schemes for the unsteady Navier-Stokes equations are investigated. Three different algorithms for solving the nonlinear system of equations arising at each timestep are presented. The first algorithm (NMG) is a pseudo-time-stepping scheme which employs a non-linear full approximation storage (FAS) agglomeration multigrid method to accelerate convergence. The other two algorithms are based on Inexact Newton's methods. The linear system arising at each Newton step is solved using iterative/Krylov techniques and left preconditioning is used to accelerate convergence of the linear solvers. One of the methods (LMG) uses Richardson's iterative scheme for solving the linear system at each Newton step while the other (PGMRES) uses the Generalized Minimal Residual method. Results demonstrating the relative superiority of these Newton's methods based schemes are presented. Efficiency gains as high as 10 are obtained by combining the higher-order time integration schemes with the more efficient nonlinear solvers.
Cross-ratio identities and higher-order poles of CHY-integrand
NASA Astrophysics Data System (ADS)
Cardona, Carlos; Feng, Bo; Gomez, Humberto; Huang, Rijun
2016-09-01
The evaluation of generic Cachazo-He-Yuan(CHY)-integrands is a big challenge and efficient computational methods are in demand for practical evaluation. In this paper, we propose a systematic decomposition algorithm by using cross-ratio identities, which provides an analytic and easy to implement method for the evaluation of any CHY-integrand. This algorithm aims to decompose a given CHY-integrand containing higher-order poles as a linear combination of CHY-integrands with only simple poles in a finite number of steps, which ultimately can be trivially evaluated by integration rules of simple poles. To make the method even more efficient for CHY-integrands with large number of particles and complicated higher-order pole structures, we combine the Λ-algorithm and the cross-ratio identities, and as a by-product it provides us a way to deal with CHY-integrands where the Λ-algorithm was not applicable in its original formulation.
Silva, Carlos A B; Rodrigues, Clóves G; Ramos, J Galvão; Luzzi, Roberto
2015-06-01
Construction, in the framework of a nonequilibrium statistical ensemble formalism, of a higher-order generalized hydrodynamics, also referred to as mesoscopic hydrothermodynamics, that is, covering phenomena involving motion of fluids displaying variations short in space and fast in time-unrestricted values of Knudsen numbers, is presented. In that way, an approach is provided enabling the coupling and simultaneous treatment of the kinetics and hydrodynamic levels of descriptions. It is based on a complete thermostatistical approach in terms of the densities of matter and energy and their fluxes of all orders covering systems arbitrarily driven away from equilibrium. The set of coupled nonlinear integrodifferential hydrodynamic equations is derived. They are the evolution equations of the Gradlike moments of all orders, derived from a generalized kinetic equation built in the framework of the nonequilibrium statistical ensemble formalism. For illustration, the case of a system of particles embedded in a fluid acting as a thermal bath is fully described. The resulting enormous set of coupled evolution equations is of unmanageable proportions, thus requiring in practice to introduce an appropriate description using the smallest possible number of variables. We have obtained a hierarchy of Maxwell times, associated to the set of all the higher-order fluxes, which have a particular relevance in the process of providing criteria for establishing the contraction of description.
Minimal model for dark matter and unification
Mahbubani, Rakhi; Senatore, Leonardo
2006-02-15
Gauge coupling unification and the success of TeV-scale weakly-interacting dark matter are usually taken as evidence of low-energy supersymmetry (SUSY). However, if we assume that the tuning of the Higgs can be explained in some unnatural way, from environmental considerations for example, SUSY is no longer a necessary component of any beyond the standard model theory. In this paper we study the minimal model with a dark matter candidate and gauge coupling unification. This consists of the standard model plus fermions with the quantum numbers of SUSY Higgsinos, and a singlet. It predicts thermal dark matter with a mass that can range from 100 GeV to around 2 TeV and generically gives rise to an electric dipole moment (EDM) that is just beyond current experimental limits, with a large portion of its allowed parameter space accessible to next-generation EDM and direct detection experiments. We study precision unification in this model by embedding it in a 5D orbifold GUT where certain large threshold corrections are calculable, achieving gauge coupling and b-{tau} unification, and predicting a rate of proton decay just beyond current limits.
Principles of the Unification of Our Agency
ERIC Educational Resources Information Center
Roth, Klas
2011-01-01
Do we need principles of the unification of our agency, our mode of acting? Immanuel Kant and Christine Korsgaard argue that the reflective structure of our mind forces us to have some conception of ourselves, others and the world--including our agency--and that it is through will and reason, and in particular principles of our agency, that we…
NASA Astrophysics Data System (ADS)
Cyganek, Boguslaw; Smolka, Bogdan
2015-02-01
In this paper a system for real-time recognition of objects in multidimensional video signals is proposed. Object recognition is done by pattern projection into the tensor subspaces obtained from the factorization of the signal tensors representing the input signal. However, instead of taking only the intensity signal the novelty of this paper is first to build the Extended Structural Tensor representation from the intensity signal that conveys information on signal intensities, as well as on higher-order statistics of the input signals. This way the higher-order input pattern tensors are built from the training samples. Then, the tensor subspaces are built based on the Higher-Order Singular Value Decomposition of the prototype pattern tensors. Finally, recognition relies on measurements of the distance of a test pattern projected into the tensor subspaces obtained from the training tensors. Due to high-dimensionality of the input data, tensor based methods require high memory and computational resources. However, recent achievements in the technology of the multi-core microprocessors and graphic cards allows real-time operation of the multidimensional methods as is shown and analyzed in this paper based on real examples of object detection in digital images.
Explicit higher order symplectic integrator for s-dependent magnetic field
Wu, Y.; Forest, E.; Robin, D.S.
2001-06-01
We derive second and higher order explicit symplectic integrators for the charged particle motion in an s-dependent magnetic field with the paraxial approximation. The Hamiltonian of such a system takes the form of H {summation}{sub k}(p{sub k} - a{sub k} {rvec q}, s){sup 2} + V({rvec q}, s). This work solves a long-standing problem for modeling s-dependent magnetic elements. Important applications of this work include the studies of the charged particle dynamics in a storage ring with strong field wigglers, arbitrarily polarized insertion devices,and super-conducting magnets with strong fringe fields. Consequently, this work will have a significant impact on the optimal use of the above magnetic devices in the light source rings as well as in next generation linear collider damping rings.
NASA Astrophysics Data System (ADS)
Lee, Ji Yeoun; Hahn, Minsoo
2010-12-01
A preprocessing scheme based on linear prediction coefficient (LPC) residual is applied to higher-order statistics (HOSs) for automatic assessment of an overall pathological voice quality. The normalized skewness and kurtosis are estimated from the LPC residual and show statistically meaningful distributions to characterize the pathological voice quality. 83 voice samples of the sustained vowel /a/ phonation are used in this study and are independently assessed by a speech and language therapist (SALT) according to the grade of the severity of dysphonia of GRBAS scale. These are used to train and test classification and regression tree (CART). The best result is obtained using an optima l decision tree implemented by a combination of the normalized skewness and kurtosis, with an accuracy of 92.9%. It is concluded that the method can be used as an assessment tool, providing a valuable aid to the SALT during clinical evaluation of an overall pathological voice quality.
Vibrational higher-order resonances in an overdamped bistable system with biharmonic excitation
NASA Astrophysics Data System (ADS)
Chizhevsky, V. N.
2014-10-01
Experimental evidence of vibrational higher-order resonances in a bistable vertical-cavity surface-emitting laser driven by two harmonic signals with very different frequencies is reported. The phenomenon shows up in a parameter space (the dc current, the amplitude of the high-frequency signal) as well-defined structures with multiple local maxima at higher harmonics of the low-frequency signal. Such structures appear due to a strong suppression of higher harmonics for certain values of the high-frequency amplitude and the dc current. Complexity of the structures and the total number of the local maxima depend on the harmonic order k . The behavior of nonlinear distortion factor is also studied. The experimental results are in a good agreement with the numerical results which were obtained in the model of the bistable overdamped oscillator with biharmonic excitation.
NASA Technical Reports Server (NTRS)
Krishnamurthy, T.; Romero, V. J.
2002-01-01
The usefulness of piecewise polynomials with C1 and C2 derivative continuity for response surface construction method is examined. A Moving Least Squares (MLS) method is developed and compared with four other interpolation methods, including kriging. First the selected methods are applied and compared with one another in a two-design variables problem with a known theoretical response function. Next the methods are tested in a four-design variables problem from a reliability-based design application. In general the piecewise polynomial with higher order derivative continuity methods produce less error in the response prediction. The MLS method was found to be superior for response surface construction among the methods evaluated.
Higher Order Modes in Third Harmonic Cavities for XFEL/FLASH
Shinton, I.R.R.; Baboi, N.; Eddy, N.; Flisgen, T.; Glock, H.W.; Jones, R.M.; Juntong, N.; Khabiboulline, T.N.; van Rienen, U; Zhang, P.; /Manchester U. /DESY /Cockcroft Inst. Accel. Sci. Tech.
2010-06-01
We analyse higher order modes in the 3.9 GHz bunch shaping cavities recently installed in the FLASH facility at DESY. We report on recent experimental results on the frequency spectrum from probe based measurements made at CMTB at DESY. These are compared to those predicted by finite difference and finite element computer codes. This study is focused mainly on the dipole component of the multi-pole expansion of the wakefield. The modes are readily identifiable as single-cavity modes provided the frequencies of these modes are below the cut-off of the inter-connecting beam pipes. The modes above cut-off are coupled to the 4 cavities and are distinct from single cavity modes.
Degenerate higher order scalar-tensor theories beyond Horndeski and disformal transformations
NASA Astrophysics Data System (ADS)
Ben Achour, Jibril; Langlois, David; Noui, Karim
2016-06-01
We consider all degenerate scalar-tensor theories that depend quadratically on second-order derivatives of a scalar field, which we have identified in a previous work. These theories, whose degeneracy, in general, ensures the absence of Ostrogradsky's instability, include the quartic Horndeski Lagrangian and its quartic extension beyond Horndeski, as well as other Lagrangians. We study how all these theories transform under general disformal transformations and find that they can be separated into three main classes that are stable under these transformations. This leads to a complete classification modulo disformal transformations. Finally, we show that these higher order theories include mimetic gravity and some particular khronometric theories. They also contain theories that do not correspond, to our knowledge, to already studied theories, even up to disformal transformations.
Cavity Alighment Using Beam Induced Higher Order Modes Signals in the TTF Linac
Ross, M.; Frisch, J.; Hacker, K.E.; Jones, R.M.; McCormick, D.; O'Connell, C.; Smith, T.; Napoly, O.; Paparella, R.; Baboi, N.; Wendt, M.; /DESY
2005-07-06
Each nine cell superconducting (SC) accelerator cavity in the TESLA Test Facility (TTF) at DESY [1] has two higher order mode (HOM) couplers that efficiently remove the HOM power [2]. They can also provide useful diagnostic signals. The most interesting modes are in the first 2 cavity dipole passbands. They are easy to identify and their amplitude depends linearly on the beam offset from the cavity axis making them excellent beam position monitors (BPM). By steering the beam through an eight-cavity cryomodule, we can use the HOM signals to estimate internal residual alignment errors and minimize wakefield related beam emittance growth. We built and tested a time-domain based waveform recorder system that captures information from each mode in these two bands on each beam pulse. In this paper we present a preliminary experimental study of the single-bunch generated HOM signals at the TTF linac including estimates of cavity alignment precision and HOM BPM resolution.
Recent Applications of Higher-Order Spectral Analysis to Nonlinear Aeroelastic Phenomena
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Hajj, Muhammad R.; Dunn, Shane; Strganac, Thomas W.; Powers, Edward J.; Stearman, Ronald
2005-01-01
Recent applications of higher-order spectral (HOS) methods to nonlinear aeroelastic phenomena are presented. Applications include the analysis of data from a simulated nonlinear pitch and plunge apparatus and from F-18 flight flutter tests. A MATLAB model of the Texas A&MUniversity s Nonlinear Aeroelastic Testbed Apparatus (NATA) is used to generate aeroelastic transients at various conditions including limit cycle oscillations (LCO). The Gaussian or non-Gaussian nature of the transients is investigated, related to HOS methods, and used to identify levels of increasing nonlinear aeroelastic response. Royal Australian Air Force (RAAF) F/A-18 flight flutter test data is presented and analyzed. The data includes high-quality measurements of forced responses and LCO phenomena. Standard power spectral density (PSD) techniques and HOS methods are applied to the data and presented. The goal of this research is to develop methods that can identify the onset of nonlinear aeroelastic phenomena, such as LCO, during flutter testing.
Technical decision-making with higher order structure data: starting a new dialogue.
Gabrielson, John P; Weiss, William F
2015-04-01
Characterization of the higher order structure (HOS) of biological products has been growing in importance in recent years. Scientists in the biopharmaceutical industry, academic researchers, and regulators are all increasingly aware of the critical role that HOS plays in maintaining the stability and intended biological function of biopharmaceutical products. We organized a consortium of scientists and researchers from industry and academic institutions to address how HOS data can be used most effectively to drive decisions during product development. In this commentary, we introduce the purpose, objectives, and scope of the consortium and then provide some brief points to consider in the context of characterizing HOS of biopharmaceutical products. Scientific advances in HOS analysis, as well as continued dialogue among academia, industry, and regulatory agencies will ensure that appropriate methodologies are used to inform technical decision-making during biopharmaceutical development.
Two-Photon or Higher-Order Absorbing Optical Materials for Generation of Reactive Species
NASA Technical Reports Server (NTRS)
Cumpston, Brian (Inventor); Lipson, Matthew (Inventor); Marder, Seth R. (Inventor); Perry, Joseph W. (Inventor)
2013-01-01
Disclosed are highly efficient multiphoton absorbing compounds and methods of their use. The compounds generally include a bridge of pi-conjugated bonds connecting electron donating groups or electron accepting groups. The bridge may be substituted with a variety of substituents as well. Solubility, lipophilicity, absorption maxima and other characteristics of the compounds may be tailored by changing the electron donating groups or electron accepting groups, the substituents attached to or the length of the pi-conjugated bridge. Numerous photophysical and photochemical methods are enabled by converting these compounds to electronically excited states upon simultaneous absorption of at least two photons of radiation. The compounds have large two-photon or higher-order absorptivities such that upon absorption, one or more Lewis acidic species, Lewis basic species, radical species or ionic species are formed.
Tanaka, Hiroki; Miyazaki, Naoyuki; Matoba, Kyoko; Nogi, Terukazu; Iwasaki, Kenji; Takagi, Junichi
2012-07-26
Polymorphic adhesion molecules neurexin and neuroligin (NL) mediate asymmetric trans-synaptic adhesion, which is crucial for synapse development and function. It is not known whether or how individual synapse function is controlled by the interactions between variants and isoforms of these molecules with differing ectodomain regions. At a physiological concentration of Ca(2+), the ectodomain complex of neurexin-1 β isoform (Nrx1β) and NL1 spontaneously assembled into crystals of a lateral sheet-like superstructure topologically compatible with transcellular adhesion. Correlative light-electron microscopy confirmed extracellular sheet formation at the junctions between Nrx1β- and NL1-expressing non-neuronal cells, mimicking the close, parallel synaptic membrane apposition. The same NL1-expressing cells, however, did not form this higher-order architecture with cells expressing the much longer neurexin-1 α isoform, suggesting a functional discrimination mechanism between synaptic contacts made by different isoforms of neurexin variants.
Modulational instability in metamaterials with saturable nonlinearity and higher-order dispersion
NASA Astrophysics Data System (ADS)
Latchio Tiofack, C. G.; Mohamadou, Alidou; HASH(0x2fc74c8), Alim; Porsezian, K.; Kofane, Timoleon C.
2012-06-01
Modulational instability (MI) in negative refractive metamaterials with saturable nonlinearity, fourth-order dispersion (FOD), and second-order nonlinear dispersion (SOND) is investigated by using standard linear stability analysis and the Drude electromagnetic model. The expression for the MI gain spectrum is obtained, which clearly reveals the influence of the saturation of the nonlinearity, FOD, and SOND parameters on the temporal MI. The evolution of the MI in negative refractive metamaterials is numerically investigated. Special attention is paid to study the effects of the higher-order dispersion terms on the formation and evolution of the solitons induced by MI. It is shown that as the third-order dispersion term increases, the solitons travel toward the right. Moreover, the magnitude of the FOD term influences considerably the number of wave trains induced by MI.
NASA Astrophysics Data System (ADS)
Polyanskii, Peter V.; Felde, Christina V.; Konovchuk, Alexey V.; Oleksyuk, Maxim V.
2015-11-01
Recording nonlinearity is conventionally considered as the source of noise in holographic imaging. Important exclusion from this general statement is nonlinear holographic associative memory, where the quadratic recording nonlinearity causes true brightness rendering and the possibility for associative coupling and reconstructing optical signals of arbitrary complexity which are stored at the same carrier without interference. In this paper we discuss the role of nonlinearities of an amplitude response of a hologram of the orders higher than the quadratic one in implementing the second-ordered holographic associative memory. We show that higher-order nonlinearities are also involved in implementing this type of memory. This conclusion may be of importance for interpretation of biological/human memory also. The highlight of our study is the conclusion that reconstruction of the complex conjugate heteroassociative response is provided directly, viz. by the set of specified by us pseudogratings, rather than by the mechanism of sequential diffractions.
Two-photon or higher-order absorbing optical materials for generation of reactive species
NASA Technical Reports Server (NTRS)
Cumpston, Brian (Inventor); Lipson, Matthew (Inventor); Marder, Seth R. (Inventor); Perry, Joseph W. (Inventor)
2003-01-01
Disclosed are highly efficient multiphoton absorbing compounds and methods of their use. The compounds generally include a bridge of pi-conjugated bonds connecting electron donating groups or electron accepting groups. The bridge may be substituted with a variety of substituents as well. Solubility, lipophilicity, absorption maxima and other characteristics of the compounds may be tailored by changing the electron donating groups or electron accepting groups, the substituents attached to or the length of the pi-conjugated bridge. Numerous photophysical and photochemical methods are enabled by converting these compounds to electronically excited states upon simultaneous absorption of at least two photons of radiation. The compounds have large two-photon or higher-order absorptivities such that upon absorption, one or more Lewis acidic species, Lewis basic species, radical species or ionic species are formed.
Higher-order wavelet reconstruction/differentiation filters and Gibbs phenomena
NASA Astrophysics Data System (ADS)
Lombardini, Richard; Acevedo, Ramiro; Kuczala, Alexander; Keys, Kerry P.; Goodrich, Carl P.; Johnson, Bruce R.
2016-01-01
An orthogonal wavelet basis is characterized by its approximation order, which relates to the ability of the basis to represent general smooth functions on a given scale. It is known, though perhaps not widely known, that there are ways of exceeding the approximation order, i.e., achieving higher-order error in the discretized wavelet transform and its inverse. The focus here is on the development of a practical formulation to accomplish this first for 1D smooth functions, then for 1D functions with discontinuities and then for multidimensional (here 2D) functions with discontinuities. It is shown how to transcend both the wavelet approximation order and the 2D Gibbs phenomenon in representing electromagnetic fields at discontinuous dielectric interfaces that do not simply follow the wavelet-basis grid.
Solutions to higher-order anisotropic parabolic equations in unbounded domains
Kozhevnikova, L M; Leont'ev, A A
2014-01-31
The paper is devoted to a certain class of doubly nonlinear higher-order anisotropic parabolic equations. Using Galerkin approximations it is proved that the first mixed problem with homogeneous Dirichlet boundary condition has a strong solution in the cylinder D=(0,∞)×Ω, where Ω⊂R{sup n}, n≥3, is an unbounded domain. When the initial function has compact support the highest possible rate of decay of this solution as t→∞ is found. An upper estimate characterizing the decay of the solution is established, which is close to the lower estimate if the domain is sufficiently 'narrow'. The same authors have previously obtained results of this type for second order anisotropic parabolic equations. Bibliography: 29 titles.
Higher order terms of radiative damping in extreme intense laser-matter interaction
Pandit, Rishi R.; Sentoku, Yasuhiko
2012-07-15
The higher order terms of the Lorentz-Abraham-Dirac equation have been derived, and their effects are studied via a relativistic collisional particle-in-cell simulation. The dominant group of terms up to the fourth order of the Lorentz-Abraham-Dirac equation is identified for ultra-intense laser-matter interactions. The second order terms are found to be the damping terms of the Lorentz force while the first order terms represent friction in the equation of motion. Because the second order terms restrict electron acceleration during the laser interaction, electrons/ions are prevented from over-accelerating. Radiative damping becomes highly significant when I{>=} 10{sup 22} W/cm{sup 2} while Bremsstrahlung will be saturated, thus radiative damping will be a dominant source of hard x-rays in regimes at extreme intensities.
Lawo, Steffen; Hasegan, Monica; Gupta, Gagan D; Pelletier, Laurence
2012-11-01
The centrosome is the main microtubule organization centre of animal cells. It is composed of a centriole pair surrounded by pericentriolar material (PCM). Traditionally described as amorphous, the architecture of the PCM is not known, although its intricate mode of assembly alludes to the presence of a functional, hierarchical structure. Here we used subdiffraction imaging to reveal organizational features of the PCM. Interphase PCM components adopt a concentric toroidal distribution of discrete diameter around centrioles. Positional mapping of multiple non-overlapping epitopes revealed that pericentrin (PCNT) is an elongated molecule extending away from the centriole. We find that PCM components occupy separable spatial domains within mitotic PCM that are maintained in the absence of microtubule nucleation complexes and further implicate PCNT and CDK5RAP2 in the organization and assembly of PCM. Globally, this work highlights the role of higher-order PCM organization in the regulation of centrosome assembly and function. PMID:23086237
Performance of Higher Order Campbell methods, Part I: review and numerical convergence study
NASA Astrophysics Data System (ADS)
Elter, Zs.; Bakkali, M.; Jammes, C.; Pázsit, I.
2016-06-01
This paper investigates, through numerical simulations, the performance of a signal analysis method by which a high temperature fission chamber can be used over a wide range of count rates. Results reported in a previous paper (Elter et al., 2015 [1]) indicated that the traditional Campbell method and the pulse mode cannot provide a sufficient overlap at medium count rates. Hence the use of the so-called Higher Order Campbell (HOC) methods is proposed and their performance is investigated. It is shown that the HOC methods can guarantee the linearity (i.e. correctness) of the neutron flux estimation over a wide count rate, even during transient conditions. The capabilities of these methods for suppressing parasitic noise (originating from various sources) are verified.
Higher Order Bases in a 2D Hybrid BEM/FEM Formulation
NASA Technical Reports Server (NTRS)
Fink, Patrick W.; Wilton, Donald R.
2002-01-01
The advantages of using higher order, interpolatory basis functions are examined in the analysis of transverse electric (TE) plane wave scattering by homogeneous, dielectric cylinders. A boundary-element/finite-element (BEM/FEM) hybrid formulation is employed in which the interior dielectric region is modeled with the vector Helmholtz equation, and a radiation boundary condition is supplied by an Electric Field Integral Equation (EFIE). An efficient method of handling the singular self-term arising in the EFIE is presented. The iterative solution of the partially dense system of equations is obtained using the Quasi-Minimal Residual (QMR) algorithm with an Incomplete LU Threshold (ILUT) preconditioner. Numerical results are shown for the case of an incident wave impinging upon a square dielectric cylinder. The convergence of the solution is shown versus the number of unknowns as a function of the completeness order of the basis functions.
Perry, Lynn K.; Samuelson, Larissa K.; Malloy, Lisa M.; Schiffer, Ryan N.
2011-01-01
Research suggests variability supports successful categorization, however, the scope of variability’s support at the level of higher-order generalization remains unexplored. A longitudinal study examined the role of exemplar variability in first- and second-order generalization in the context of early nominal-category learning. Sixteen eighteen-month-old children were taught twelve categories. Half were taught with sets of highly similar exemplars; half with sets of more variable exemplars. Participants’ learning and generalization of trained labels and their development of more general word-learning biases were tested. All children learned labels for trained exemplars, but children trained with variable exemplars generalized to novel exemplars of these categories, developed a discriminating word-learning bias generalizing labels of novel solid objects by shape and nonsolids by material, and accelerated in vocabulary acquisition. These data demonstrate that variability leads to better abstraction of individual and global category organization, increasing learning outside the laboratory. PMID:21106892
Dynamics of thermally induced ice streams simulated with a higher-order flow model
NASA Astrophysics Data System (ADS)
Brinkerhoff, D. J.; Johnson, J. V.
2015-09-01
We use a new discretization technique to solve the higher-order thermomechanically coupled equations of glacier evolution. We find that under radially symmetric continuum equations, small perturbations in symmetry due to the discretization are sufficient to produce the initiation of nonsymmetric thermomechanical instabilities which we interpret as ice streams, in good agreement with previous studieswhich have indicated a similar instability. We find that the inclusion of membrane stresses regularizes the size of predicted streams, eliminating the ill-posedness evident in previous investigations of ice stream generation through thermomechanical instability. Ice streams exhibit strongly irregular periodicity which is influenced by neighboring ice streams and the synoptic state of the ice stream. Ice streams are not always the same size but instead appear to follow a temperature-dependent distribution of widths that is robust to grid refinement. The morphology of the predicted ice streams corresponds reasonably well to extant ice streams in physically similar environments.
NASA Astrophysics Data System (ADS)
Ikuta, Akira; Orimoto, Hisako; Ogawa, Hitoshi
In this study, a stochastic detection method of failure of machines based on the changing information of not only a linear correlation but also the higher order nonlinear correlation is proposed in a form suitable for on-line signal processing in time domain by using a personal computer, especially in order to find minutely the mutual relationship between sound and vibration emitted from rotational machines. More specifically, a conditional probability hierarchically reflecting various types of correlation information is theoretically derived by introducing an expression on the multi-dimensional probability distribution in orthogonal expansion series form. The effectiveness of the proposed theory is experimentally confirmed by applying it to the observed data emitted from a rotational machine driven by an electric motor.
Constraints on Tree-Level Higher Order Gravitational Couplings in Superstring Theory
Stieberger, Stephan
2011-03-18
We consider the scattering amplitudes of five and six gravitons at tree level in superstring theory. Their power series expansions in the Regge slope {alpha}{sup '} are analyzed through the order {alpha}{sup '8} showing some interesting constraints on higher order gravitational couplings in the effective superstring action such as the absence of R{sup 5} terms. Furthermore, some transcendentality constraints on the coefficients of the nonvanishing couplings are observed: the absence of zeta values of even weight through the order {alpha}{sup '8} like the absence of {zeta}(2){zeta}(3)R{sup 6} terms. Our analysis is valid for any superstring background in any space-time dimension, which allows for a conformal field theory description.
Evolution of higher order nonlinear equation for the dust ion-acoustic waves in nonextensive plasma
Yasmin, S.; Asaduzzaman, M.; Mamun, A. A.
2012-10-15
There are three different types of nonlinear equations, namely, Korteweg-de Vries (K-dV), modified K-dV (mK-dV), and mixed modified K-dV (mixed mK-dV) equations, for the nonlinear propagation of the dust ion-acoustic (DIA) waves. The effects of electron nonextensivity on DIA solitary waves propagating in a dusty plasma (containing negatively charged stationary dust, inertial ions, and nonextensive q distributed electrons) are examined by solving these nonlinear equations. The basic features of mixed mK-dV (higher order nonlinear equation) solitons are found to exist beyond the K-dV limit. The properties of mK-dV solitons are compared with those of mixed mK-dV solitons. It is found that both positive and negative solitons are obtained depending on the q (nonextensive parameter).
Substance and artifact in the higher-order factors of the Big Five.
McCrae, Robert R; Yamagata, Shinji; Jang, Kerry L; Riemann, Rainer; Ando, Juko; Ono, Yutaka; Angleitner, Alois; Spinath, Frank M
2008-08-01
J. M. Digman (1997) proposed that the Big Five personality traits showed a higher-order structure with 2 factors he labeled alpha and beta. These factors have been alternatively interpreted as heritable components of personality or as artifacts of evaluative bias. Using structural equation modeling, the authors reanalyzed data from a cross-national twin study and from American cross-observer studies and analyzed new multimethod data from a German twin study. In all analyses, artifact models outperformed substance models by root-mean-square error of approximation criteria, but models combining both artifact and substance were slightly better. These findings suggest that the search for the biological basis of personality traits may be more profitably focused on the 5 factors themselves and their specific facets, especially in monomethod studies.
Hatch, David R.; Del-Castillo-Negrete, Diego B; Terry, P.W.
2012-01-01
Higher order singular value decomposition (HOSVD) is explored as a tool for analyzing and compressing gyrokinetic data. An efficient numerical implementation of an HOSVD algorithm is described. HOSVD is used to analyze the full six-dimensional (three spatial, two velocity space, and time dimensions) gyrocenter distribution function from gyrokinetic simulations of ion temperature gradient, electron temperature gradient, and trapped electron mode driven turbulence. The HOSVD eigenvalues for the velocity space coordinates decay very rapidly, indicating that only a few structures in velocity space can capture the most important dynamics. In almost all of the cases studied, HOSVD extracts parallel velocity space structures which are very similar to orthogonal polynomials. HOSVD is also used to compress gyrokinetic datasets, an application in which it is shown to significantly outperform the more commonly used singular value decomposition. It is shown that the effectiveness of the HOSVD compression improves as the dimensionality of the dataset increases. (C) 2012 Elsevier Inc. All rights reserved.
A higher order plate theory for dynamic stability analysis of delaminated composite plates
NASA Astrophysics Data System (ADS)
Chattopadhyay, A.; Radu, A. G.; Dragomir-Daescu, D.
A higher order shear deformation theory is used to investigate the instability associated with delaminated composite plates subject to dynamic loads. Both transverse shear and rotary inertia effects are taken into account. The procedure is implemented using the finite element method. Delamination is modeled using the penalty parameter approach. The natural frequencies are computed and compared with NASTRAN 3D results and available experimental data. The effect of delamination on the critical buckling load and the first two instability regions is investigated for various loading conditions, plate thickness and boundary conditions. As expected the natural frequencies and the critical buckling load of the delaminated plate are lower than those of the nondelaminated plate. They decrease with increase in delamination length. Increase in delamination length causes instability regions to be shifted to lower parametric resonance frequencies and the normalized width of the instability regions to increase.
Symbolic Algebra Development for Higher-Order Electron Propagator Formulation and Implementation.
Tamayo-Mendoza, Teresa; Flores-Moreno, Roberto
2014-06-10
Through the use of symbolic algebra, implemented in a program, the algebraic expression of the elements of the self-energy matrix for the electron propagator to different orders were obtained. In addition, a module for the software package Lowdin was automatically generated. Second- and third-order electron propagator results have been calculated to test the correct operation of the program. It was found that the Fortran 90 modules obtained automatically with our algorithm succeeded in calculating ionization energies with the second- and third-order electron propagator in the diagonal approximation. The strategy for the development of this symbolic algebra program is described in detail. This represents a solid starting point for the automatic derivation and implementation of higher-order electron propagator methods.
Priority setting in health care and higher order degree change in risk.
Courbage, Christophe; Rey, Béatrice
2012-05-01
This paper examines how priority setting in health care expenditures is influenced by the presence of uncertainty about the severity of the illness and the effectiveness of medical treatment. We provide necessary and sufficient conditions on social preferences under which a social planner will allocate more health care resources to populations at higher risk. Changes in risk are defined by the concept of stochastic dominance up to order n. The shape of the social utility function and an equity weighting function are used to model the inequality aversion of the social planner. We show that for higher order risk changes, the usual conditions on preferences such as prudence or relative risk aversion are not necessarily required to prioritise health care when there are different levels of uncertainty associated with otherwise similar patient groups.
Sensitivity analysis of complex coupled systems extended to second and higher order derivatives
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, Jaroslaw
1989-01-01
In design of engineering systems, the what if questions often arise such as: what will be the change of the aircraft payload, if the wing aspect ratio is incremented by 10 percent. Answers to such questions are commonly sought by incrementing the pertinent variable, and reevaluating the major disciplinary analyses involved. These analyses are contributed by engineering disciplines that are, usually, coupled, as are the aerodynamics, structures, and performance in the context of the question above. The what if questions can be answered precisely by computation of the derivatives. A method for calculation of the first derivatives has been developed previously. An algorithm is presented for calculation of the second and higher order derivatives.
Higher-order electroweak corrections to the partial widths and branching ratios of the Z boson
NASA Astrophysics Data System (ADS)
Freitas, Ayres
2014-04-01
Recently, the calculation of fermionic electroweak two-loop corrections to the total width of the Z boson and hadronic Z-peak cross-section in the Standard Model has been presented, where "fermionic" refers to diagrams with closed fermion loops. Here, these results are complemented by presenting contributions of the same order for the Z-boson partial widths, which are the last missing pieces for a complete description of Z-pole physics at the fermionic two-loop order. The definition of the relevant observables and the calculational techniques are described in detail. Numerical results are presented conveniently in terms of simple parametrization formulae. Finally, the remaining theoretical uncertainties from missing higher-order corrections are analyzed and found to be small compared to the current experimental errors.
Higher-order QCD predictions for dark matter production in mono- Z searches at the LHC
NASA Astrophysics Data System (ADS)
Neubert, Matthias; Wang, Jian; Zhang, Cen
2016-02-01
We present theoretical predictions for mono- Z production in the search for dark matter in Run-II at the LHC, including next-to-leading order QCD corrections and parton-shower effects. We consider generic simplified models with vector and scalar s-channel mediators. The calculation is performed by implementing the simplified models in the F eynR ules/M adG raph5_ aMC@NLO framework, which allows us to include higher-order QCD corrections and parton-shower effects in an automated way. We find that these corrections are sizeable and help to reduce the theoretical uncertainties. We also investigate the discovery potential in several benchmark scenarios in the 13 TeV run at the LHC.
Double Quarter Wave Crab Cavity Field Profile Analysis and Higher Order Mode Characterization
Marques, Carlos; Xiao, B. P.; Belomestnykh, S.
2014-06-01
The Large Hadron Collider (LHC) is underway for a major upgrade to increase its luminosity by an order of magnitude beyond its original design specifications. This novel machine configuration known as the High Luminosity LHC (HL-LHC) will rely on various innovative technologies including very compact and ultra-precise superconducting crab cavities for beam rotation. A double quarter wave crab cavity (DQWCC) has been designed at Brookhaven National Laboratory for the HL-LHC. This cavity as well as the structural support components were fabricated and assembled at Niowave. The field profile of the crabbing mode for the DQWCC was investigated using a phase shift bead pulling technique and compared with simulated results to ensure proper operation or discover discrepancies from modeled results and/or variation in fabrication tolerances. Higher-Order Mode (HOM) characterization was also performed and correlated with simulations.
Symbolic Algebra Development for Higher-Order Electron Propagator Formulation and Implementation.
Tamayo-Mendoza, Teresa; Flores-Moreno, Roberto
2014-06-10
Through the use of symbolic algebra, implemented in a program, the algebraic expression of the elements of the self-energy matrix for the electron propagator to different orders were obtained. In addition, a module for the software package Lowdin was automatically generated. Second- and third-order electron propagator results have been calculated to test the correct operation of the program. It was found that the Fortran 90 modules obtained automatically with our algorithm succeeded in calculating ionization energies with the second- and third-order electron propagator in the diagonal approximation. The strategy for the development of this symbolic algebra program is described in detail. This represents a solid starting point for the automatic derivation and implementation of higher-order electron propagator methods. PMID:26580756
Alves-Foss, J.; Levitt, K.
1991-01-01
In this paper we present a generalization of McCullough's restrictiveness model as the basis for proving security properties about distributed system designs. We mechanize this generalization and an event-based model of computer systems in the HOL (Higher Order Logic) system to prove the composability of the model and several other properties about the model. We then develop a set of generalized classes of system components and show for which families of user views they satisfied the model. Using these classes we develop a collection of general system components that are instantiations of one of these classes and show that the instantiations also satisfied the security property. We then conclude with a sample distributed secure system, based on the Rushby and Randell distributed system design and designed using our collection of components, and show how our mechanized verification system can be used to verify such designs. 16 refs., 20 figs.
Higher-order prediction terms and fixing the renormalization scale using the BLM approach
NASA Astrophysics Data System (ADS)
Mirjalili, Abolfazl; Khellat, Mohammad Reza
2014-12-01
There is an ambiguity in the perturbative series of QCD observables on how to choose the renormalization and even more the factorization scale. There are many approaches to overcome this obstacle and to fix the scales. Among them, there is the Brodsky-Lepage-Mackenzie (BLM) approach which is based on an intriguing principle. Based on the BLM approach, we intend to absorb the nf-terms in the pQCD series that rightly determines the running behavior of the running coupling into the running coupling. We make an extensive use of the BLM approach to investigate the details of predicting higher order correction terms of some QCD observables. By this way we test different methods to improve the prediction process. It is also found out that an overall normalization could change BLM predictions effectively.
Measurement of electrodynamics characteristics of higher order modes for harmonic cavity at 2400 MHz
NASA Astrophysics Data System (ADS)
Shashkov, Ya V.; Sobenin, N. P.; Gusarova, M. A.; Lalayan, M. V.; Bazyl, D. S.; Donetskiy, R. V.; Orlov, A. I.; Zobov, M. M.; Zavadtsev, A. A.
2016-09-01
In the frameworks of the High Luminosity Large Hadron Collider (HL-LHC) upgrade program an application of additional superconducting harmonic cavities operating at 800 MHz is currently under discussion. As a possible candidate, an assembly of two cavities with grooved beam pipes connected by a drift tube and housed in a common cryomodule, was proposed. In this article we discuss measurements of loaded Q-factors of higher order modes (HOM) performed on a scaled aluminium single cell cavity prototype with the fundamental frequency of 2400 MHz and on an array of two such cavities connected by a narrow beam pipe. The measurements were performed for the system with and without the matching load in the drift tube..
Fundamental measure theory for smectic phases: scaling behavior and higher order terms.
Wittmann, René; Marechal, Matthieu; Mecke, Klaus
2014-08-14
The recent extension of Rosenfeld's fundamental measure theory to anisotropic hard particles predicts nematic order of rod-like particles. Our analytic study of different aligned shapes provides new insights into the structure of this density functional, which is basically founded on experience with hard spheres. We combine scaling arguments with dimensional crossover and motivate a modified expression, which enables an appropriate description of smectic layering. We calculate the nematic-smectic-A transition of monodisperse hard spherocylinders with and without orientational degrees of freedom and present the equation of state and phase diagram including these two liquid crystalline phases in good agreement with simulations. We also find improved results related to the isotropic-nematic interface. We discuss the quality of empirical corrections and the convergence towards an exact second virial coefficient, including higher order terms.
Noise-intensity fluctuation in Langevin model and its higher-order Fokker-Planck equation
NASA Astrophysics Data System (ADS)
Hasegawa, Yoshihiko; Arita, Masanori
2011-03-01
In this paper, we investigate a Langevin model subjected to stochastic intensity noise (SIN), which incorporates temporal fluctuations in noise-intensity. We derive a higher-order Fokker-Planck equation (HFPE) of the system, taking into account the effect of SIN by the adiabatic elimination technique. Stationary distributions of the HFPE are calculated by using the perturbation expansion. We investigate the effect of SIN in three cases: (a) parabolic and quartic bistable potentials with additive noise, (b) a quartic potential with multiplicative noise, and (c) a stochastic gene expression model. We find that the existence of noise-intensity fluctuations induces an intriguing phenomenon of a bimodal-to-trimodal transition in probability distributions. These results are validated with Monte Carlo simulations.
PEP-II B-Factory prototype higher order mode load design
Pendleton, R.; Ko, K.; Ng, N.
1995-10-01
To reduce the impedance of the cavity higher order modes, (HOM`s), a compact broad-band, low-reflection, waveguide load is required with a VSWR less than 2:1 in the frequency range 714 MHz to 2500 MHz. The load must also work in the high vacuum of the cavity, and be capable of dissipating up to 10 kW of power which is generated by the interaction of the beam with the cavity HOM`s and which is directed to each load assembly. A prototype load assembly is being fabricated which uses the lossy ceramic Al-N with 7% by weight glassy carbon to absorb the microwave power.
A Higher-Order Bending Theory for Laminated Composite and Sandwich Beams
NASA Technical Reports Server (NTRS)
Cook, Geoffrey M.
1997-01-01
A higher-order bending theory is derived for laminated composite and sandwich beams. This is accomplished by assuming a special form for the axial and transverse displacement expansions. An independent expansion is also assumed for the transverse normal stress. Appropriate shear correction factors based on energy considerations are used to adjust the shear stiffness. A set of transverse normal correction factors is introduced, leading to significant improvements in the transverse normal strain and stress for laminated composite and sandwich beams. A closed-form solution to the cylindrical elasticity solutions for a wide range of beam aspect ratios and commonly used material systems. Accurate shear stresses for a wide range of laminates, including the challenging unsymmetric composite and sandwich laminates, are obtained using an original corrected integration scheme. For application of the theory to a wider range of problems, guidelines for finite element approximations are presented.
Two-photon or higher-order absorbing optical materials and methods of use
NASA Technical Reports Server (NTRS)
Marder, Seth (Inventor); Perry, Joseph (Inventor)
2012-01-01
Compositions capable of simultaneous two-photon absorption and higher order absorptivities are provided. Compounds having a donor-pi-donor or acceptor-pi-acceptor structure are of particular interest, where the donor is an electron donating group, acceptor is an electron accepting group, and pi is a pi bridge linking the donor and/or acceptor groups. The pi bridge may additionally be substituted with electron donating or withdrawing groups to alter the absorptive wavelength of the structure. Also disclosed are methods of generating an excited state of such compounds through optical stimulation with light using simultaneous absorption of photons of energies individually insufficient to achieve an excited state of the compound, but capable of doing so upon simultaneous absorption of two or more such photons. Applications employing such methods are also provided, including controlled polymerization achieved through focusing of the light source(s) used.
J.K. Sekutowicz, P. Kneisel
2009-05-01
A coaxial coupling device located in the beam pipe of the TESLA type superconducting cavities provides for better propagation of Higher Order Modes (HOMs) and their strong damping in appropriate HOM couplers. Additionally, it also provides efficient coupling for fundamental mode RF power into the superconducting cavity. The whole coupling device can be designed as a detachable system. If appropriately dimensioned, the magnetic field can be minimized to a negligible level at the flange position. This scheme, presented previously*, provides for several advantages: strong HOM damping, flangeable solution, exchangeability of the HOM damping device on a cavity, less complexity of the superconducting cavity, possible cost advantages. This contribution will describe the results of the first cryogenic test.
Numerical simulation of stratified shear flow using a higher order Taylor series expansion method
Iwashige, Kengo; Ikeda, Takashi
1995-09-01
A higher order Taylor series expansion method is applied to two-dimensional numerical simulation of stratified shear flow. In the present study, central difference scheme-like method is adopted for an even expansion order, and upwind difference scheme-like method is adopted for an odd order, and the expansion order is variable. To evaluate the effects of expansion order upon the numerical results, a stratified shear flow test in a rectangular channel (Reynolds number = 1.7x10{sup 4}) is carried out, and the numerical velocity and temperature fields are compared with experimental results measured by laser Doppler velocimetry thermocouples. The results confirm that the higher and odd order methods can simulate mean velocity distributions, root-mean-square velocity fluctuations, Reynolds stress, temperature distributions, and root-mean-square temperature fluctuations.
NASA Astrophysics Data System (ADS)
Mimasu, Ken; Sanz, Verónica; Williams, Ciaran
2016-08-01
We present predictions for the associated production of a Higgs boson at NLO+PS accuracy, including the effect of anomalous interactions between the Higgs and gauge bosons. We present our results in different frameworks, one in which the interaction vertex between the Higgs boson and Standard Model W and Z bosons is parameterized in terms of general Lorentz structures, and one in which Electroweak symmetry breaking is manifestly linear and the resulting operators arise through a six-dimensional effective field theory framework. We present analytic calculations of the Standard Model and Beyond the Standard Model contributions, and discuss the phenomenological impact of the higher order pieces. Our results are implemented in the NLO Monte Carlo program MCFM, and interfaced to shower Monte Carlos through the Powheg box framework.
Detecting missing signals in multichannel recordings by using higher order statistics.
Halabi, R; Diab, M O; Moslem, B; Khalil, M; Marque, C
2012-01-01
In real world applications, a multichannel acquisition system is susceptible of having one or many of its sensors displaced or detached, leading therefore to the loss or corruption of the recorded signals. In this paper, we present a technique for detecting missing or corrupted signals in multichannel recordings. Our approach is based on Higher Order Statistics (HOS) analysis. Our approach is tested on real uterine electromyogram (EMG) signals recorded by 4×4 electrode grid. Results have shown that HOS descriptors can discriminate between the two classes of signals (missing vs. non-missing). These results are supported by statistical analysis using the t-test which indicated good statistical significance of 95% confidence level.
Development of V/STOL methodology based on a higher order panel method
NASA Technical Reports Server (NTRS)
Bhateley, I. C.; Howell, G. A.; Mann, H. W.
1983-01-01
The development of a computational technique to predict the complex flowfields of V/STOL aircraft was initiated in which a number of modules and a potential flow aerodynamic code were combined in a comprehensive computer program. The modules were developed in a building-block approach to assist the user in preparing the geometric input and to compute parameters needed to simulate certain flow phenomena that cannot be handled directly within a potential flow code. The PAN AIR aerodynamic code, which is higher order panel method, forms the nucleus of this program. PAN AIR's extensive capability for allowing generalized boundary conditions allows the modules to interact with the aerodynamic code through the input and output files, thereby requiring no changes to the basic code and easy replacement of updated modules.
Wavelet Transform Based Higher Order Statistical Analysis of Wind and Wave Time Histories
NASA Astrophysics Data System (ADS)
Habib Huseni, Gulamhusenwala; Balaji, Ramakrishnan
2016-06-01
Wind, blowing on the surface of the ocean, imparts the energy to generate the waves. Understanding the wind-wave interactions is essential for an oceanographer. This study involves higher order spectral analyses of wind speeds and significant wave height time histories, extracted from European Centre for Medium-Range Weather Forecast database at an offshore location off Mumbai coast, through continuous wavelet transform. The time histories were divided by the seasons; pre-monsoon, monsoon, post-monsoon and winter and the analysis were carried out to the individual data sets, to assess the effect of various seasons on the wind-wave interactions. The analysis revealed that the frequency coupling of wind speeds and wave heights of various seasons. The details of data, analysing technique and results are presented in this paper.
Naik, Ganesh R; Kumar, Dinesh K
2011-01-01
The electromyograpy (EMG) signal provides information about the performance of muscles and nerves. The shape of the muscle signal and motor unit action potential (MUAP) varies due to the movement of the position of the electrode or due to changes in contraction level. This research deals with evaluating the non-Gaussianity in Surface Electromyogram signal (sEMG) using higher order statistics (HOS) parameters. To achieve this, experiments were conducted for four different finger and wrist actions at different levels of Maximum Voluntary Contractions (MVCs). Our experimental analysis shows that at constant force and for non-fatiguing contractions, probability density functions (PDF) of sEMG signals were non-Gaussian. For lesser MVCs (below 30% of MVC) PDF measures tends to be Gaussian process. The above measures were verified by computing the Kurtosis values for different MVCs.
Spontaneous breakdown of Lorentz symmetry in scalar QED with higher order derivatives
Polonyi, Janos; Siwek, Alicja
2011-10-15
Scalar QED is studied with higher order derivatives for the scalar-field kinetic energy. A local potential is generated for the gauge field due to the covariant derivatives and the vacuum with nonvanishing expectation value for the scalar field, and the vector potential is constructed in the leading-order saddle-point expansion. This vacuum breaks the global gauge and Lorentz symmetry spontaneously. The unitarity of time evolution is assured in the physical, positive norm subspace, and the linearized equations of motion are calculated. The Goldstone theorem always keeps the radiation field massless. A particular model is constructed where the full set of standard Maxwell equations is recovered on the tree level, thereby relegating the effects of broken Lorentz symmetry to the level of radiative corrections.
Higher-Order Compact Schemes for Numerical Simulation of Incompressible Flows
NASA Technical Reports Server (NTRS)
Wilson, Robert V.; Demuren, Ayodeji O.; Carpenter, Mark
1998-01-01
A higher order accurate numerical procedure has been developed for solving incompressible Navier-Stokes equations for 2D or 3D fluid flow problems. It is based on low-storage Runge-Kutta schemes for temporal discretization and fourth and sixth order compact finite-difference schemes for spatial discretization. The particular difficulty of satisfying the divergence-free velocity field required in incompressible fluid flow is resolved by solving a Poisson equation for pressure. It is demonstrated that for consistent global accuracy, it is necessary to employ the same order of accuracy in the discretization of the Poisson equation. Special care is also required to achieve the formal temporal accuracy of the Runge-Kutta schemes. The accuracy of the present procedure is demonstrated by application to several pertinent benchmark problems.
Disabled vs nondisabled readers: perceptual vs higher-order processing of one vs three letters.
Allegretti, C L; Puglisi, J T
1986-10-01
12 disabled and 12 nondisabled readers (mean age, 11 yr.) were compared on a letter-search task which separated perceptual processing from higher-order processing. Participants were presented a first stimulus (for 200 msec. to minimize eye movements) followed by a second stimulus immediately to estimate the amount of information initially perceived or after a 3000-msec. interval to examine information more permanently stored. Participants were required to decide whether any letter present in the first stimulus was also present in the second. Two processing loads (1 and 3 letters) were examined. Disabled readers showed more pronounced deficits when they were given very little time to process information or more information to process.
Quaternion higher-order spectra and their invariants for color image recognition
NASA Astrophysics Data System (ADS)
Jia, Xiaoning; Yang, Hang; Ma, Siliang; Song, Dongzhe
2014-06-01
This paper describes an invariants generation method for color images, which could be a useful tool in color object recognition tasks. First, by using the algebra of quaternions, we introduce the definition of quaternion higher-order spectra (QHOS) in the spatial domain and derive its equivalent form in the frequency domain. Then, QHOS invariants with respect to rotation, translation, and scaling transformations for color images are constructed using the central slice theorem and quaternion bispectral analysis. The feature data are further reduced to a smaller set using quaternion principal component analysis. The proposed method can deal with color images in a holistic manner, and the constructed QHOS invariants are highly immune to background noise. Experimental results show that the extracted QHOS invariants form compact and isolated clusters, and that a simple minimum distance classifier can yield high recognition accuracy.
Two-photon or higher-order absorbing optical materials for generation of reactive species
NASA Technical Reports Server (NTRS)
Cumpston, Brian (Inventor); Lipson, Matthew (Inventor); Marder, Seth R (Inventor); Perry, Joseph W (Inventor)
2007-01-01
Disclosed are highly efficient multiphoton absorbing compounds and methods of their use. The compounds generally include a bridge of pi-conjugated bonds connecting electron donating groups or electron accepting groups. The bridge may be substituted with a variety of substituents as well. Solubility, lipophilicity, absorption maxima and other characteristics of the compounds may be tailored by changing the electron donating groups or electron accepting groups, the substituents attached to or the length of the pi-conjugated bridge. Numerous photophysical and photochemical methods are enabled by converting these compounds to electronically excited states upon simultaneous absorption of at least two photons of radiation. The compounds have large two-photon or higher-order absorptivities such that upon absorption, one or more Lewis acidic species, Lewis basic species, radical species or ionic species are formed.
Pulse transmission receiver with higher-order time derivative pulse generator
Dress, Jr., William B.; Smith, Stephen F.
2003-08-12
Systems and methods for pulse-transmission low-power communication modes are disclosed. A pulse transmission receiver includes: a front-end amplification/processing circuit; a synchronization circuit coupled to the front-end amplification/processing circuit; a clock coupled to the synchronization circuit; a trigger signal generator coupled to the clock; and at least one higher-order time derivative pulse generator coupled to the trigger signal generator. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.
Higher-order Lie symmetries in identifiability and predictability analysis of dynamic models.
Merkt, Benjamin; Timmer, Jens; Kaschek, Daniel
2015-07-01
Parameter estimation in ordinary differential equations (ODEs) has manifold applications not only in physics but also in the life sciences. When estimating the ODE parameters from experimentally observed data, the modeler is frequently concerned with the question of parameter identifiability. The source of parameter nonidentifiability is tightly related to Lie group symmetries. In the present work, we establish a direct search algorithm for the determination of admitted Lie group symmetries. We clarify the relationship between admitted symmetries and parameter nonidentifiability. The proposed algorithm is applied to illustrative toy models as well as a data-based ODE model of the NFκB signaling pathway. We find that besides translations and scaling transformations also higher-order transformations play a role. Enabled by the knowledge about the explicit underlying symmetry transformations, we show how models with nonidentifiable parameters can still be employed to make reliable predictions.
Khandekar, A A; Malwatkar, G M; Patre, B M
2013-01-01
In this paper, a discrete time sliding mode controller (DSMC) is proposed for higher order plus delay time (HOPDT) processes. A sliding mode surface is selected as a function of system states and error and the tuning parameters of sliding mode controller are determined using dominant pole placement strategy. The condition for the existence of stable sliding mode is obtained by using Lyapunov function. The proposed method is applicable to HOPDT processes with oscillatory and integrating behavior, open loop instability or non-minimum phase characteristics and works satisfactory under the effect of parametric uncertainty. The method does not require reduced order model and provides simple way to design the controllers. The simulation and experimentation results show that the proposed method ensures desired tracking dynamics.
Collapse of higher-order solute concentration moments in groundwater transport
NASA Astrophysics Data System (ADS)
Srzic, Veljko; Andricevic, Roko; Gotovac, Hrvoje; Cvetkovic, Vladimir
2013-08-01
In this paper, we use numerical simulations based on a Lagrangian framework to study contaminant transport through highly heterogeneous porous media due to advection and local diffusion (under local diffusion, we assume coupled effect of mechanical dispersion and molecular diffusion). The analysis of the concentration field is done for the case of a two-dimensional hydraulic conductivity domain representing the aquifer, with three log-conductivity structures that differ in spatial correlation. In addition to different conductivity structures, we focus our investigation on mild and highly heterogeneous porous media characterized by the values of hydraulic log-conductivity variance >(σY2>) being equal to 1 and 8. In the concentration moment analysis, we show that a linear relationship exists between higher-order to second-order normalized concentration moments on a log-log scale up to the fourth-order moment. This leads to the important finding that moments of a higher than the second order can be derived based on information about the first two concentration moments only. Such a property has been observed previously for boundary-layer water channels, wind tunnels, and turbulent diffusion in open terrain and laboratory experiments. Normalized moments are shown to collapse for different types of hydraulic conductivity structures, Peclet (Pe) numbers and σY2 values. In the case of local diffusion absence, a linear log-log relationship is derived analytically and is set as a lower limit. The deviation from the lower limit is explained to be predominantly caused by the local diffusion, which needs time to evolve. In the case of local diffusion presence, we define the moment deriving function (MDF) to describe the linear log-log relationship between higher-order concentration moments to the second-order normalized one. Finally, the comparison between numerical results and those obtained from the Columbus Air Force Base Macrodispersion Experiment (MADE 1) is used to
NASA Astrophysics Data System (ADS)
Li, Pengfei; Gantoi, Florentina M.; Shabana, Ahmed A.
2011-12-01
Most existing beam formulations assume that the cross section of the beam remains rigid regardless of the amplitude of the displacement. The absolute nodal coordinate formulation (ANCF); however, allows for the deformation of the cross section and leads to a more general beam models that capture the coupling between different modes of displacement. This paper examines the effect of the order of interpolation on the modes of deformation of the beam cross section using ANCF finite elements. To this end, a new two-dimensional shear deformable ANCF beam element is developed. The new finite element employs a higher order of interpolation, and allows for new cross section deformation modes that cannot be captured using previously developed shear deformable ANCF beam elements. The element developed in this study relaxes the assumption of planar cross section; thereby allowing for including the effect of warping as well as for different stretch values at different points on the element cross section. The displacement field of the new element is assumed to be cubic in the axial direction and quadratic in the transverse direction. Using this displacement field, more expressions for the element extension, shear and the cross section stretch can be systematically defined. The change in the cross section area is measured using Nanson's formula. Measures of the shear angle, extension, and cross section stretch can also be systematically defined using coordinate systems defined at the element material points. Using these local coordinate systems, expressions for a nominal shear angle are obtained. The differences between the cross section deformation modes obtained using the new higher order element and those obtained using the previously developed lower order elements are highlighted. Numerical examples are presented in order to compare the results obtained using the new finite element and the results obtained using previously developed ANCF finite elements.
A wireless and passive pressure sensor system based on the magnetic higher-order harmonic field
NASA Astrophysics Data System (ADS)
Tan, Ee Lim
The goal of this work is to develop a magnetic-based passive and wireless pressure sensor for use in biomedical applications. Structurally, the pressure sensor, referred to as the magneto-harmonic pressure sensor, is composed of two magnetic elements: a magnetically-soft material acts as a sensing element, and a magnetically hard material acts as a biasing element. Both elements are embedded within a rigid sensor body and sealed with an elastomer pressure membrane. Upon excitation of an externally applied AC magnetic field, the sensing element is capable of producing higher-order magnetic signature that is able to be remotely detected with an external receiving coil. When exposed to environment with changing ambient pressure, the elastomer pressure membrane of pressure sensor is deflected depending on the surrounding pressure. The deflection of elastomer membrane changes the separation distance between the sensing and biasing elements. As a result, the higher-order harmonic signal emitted by the magnetically-soft sensing element is shifted, allowing detection of pressure change by determining the extent of the harmonic shifting. The passive and wireless nature of the sensor is enabled with an external excitation and receiving system consisting of an excitation coil and a receiving coil. These unique characteristics made the sensor suitable to be used for continuous and long-term pressure monitoring, particularly useful for biomedical applications which often require frequent surveillance. In this work, abdominal aortic aneurysm is selected as the disease model for evaluation the performance of pressure sensor and system. Animal model, with subcutaneous sensor implantation in mice, was conducted to demonstrate the efficacy and feasibility of pressure sensor in biological environment.
Higher-order nonlinear Schrodinger equations for simulations of surface wavetrains
NASA Astrophysics Data System (ADS)
Slunyaev, Alexey
2016-04-01
Numerous recent results of numerical and laboratory simulations of waves on the water surface claim that solutions of the weakly nonlinear theory for weakly modulated waves in many cases allow a smooth generalization to the conditions of strong nonlinearity and dispersion, even when the 'envelope' is difficult to determine. The conditionally 'strongly nonlinear' high-order asymptotic equations still imply the smallness of the parameter employed in the asymptotic series. Thus at some (unknown a priori) level of nonlinearity and / or dispersion the asymptotic theory breaks down; then the higher-order corrections become useless and may even make the description worse. In this paper we use the higher-order nonlinear Schrodinger (NLS) equation, derived in [1] (the fifth-order NLS equation, or next-order beyond the classic Dysthe equation [2]), for simulations of modulated deep-water wave trains, which attain very large steepness (below or beyond the breaking limit) due to the Benjamin - Feir instability. The results are compared with fully nonlinear simulations of the potential Euler equations as well as with the weakly nonlinear theories represented by the nonlinear Schrodinger equation and the classic Dysthe equation with full linear dispersion [2]. We show that the next-order Dysthe equation can significantly improve the description of strongly nonlinear wave dynamics compared with the lower-order asymptotic models. [1] A.V. Slunyaev, A high-order nonlinear envelope equation for gravity waves in finite-depth water. JETP 101, 926-941 (2005). [2] K. Trulsen, K.B. Dysthe, A modified nonlinear Schrödinger equation for broader bandwidth gravity waves on deep water. Wave Motion 24, 281-289 (1996).
NASA Astrophysics Data System (ADS)
Sondhiya, Deepak Kumar; Gwal, Ashok Kumar; Kumar, Sushil
2016-07-01
In recent years a number of scientists have reported correlations between observations of electromagnetic radiation and earthquakes. These observation of seismo-electromagnetic waves have been made both on the ground in the earthquake regions and by spacecraft over earthquake regions. In this work an attempt to develop a complex approach to the problem of searching for electromagnetic earthquake precursor signatures is made on the basis of DEMETER satellite observation.The main focus is concerned with the analysis of electric field data in Very Low Frequency (VLF) range using wavelet transform and higher order statistics. We observed electromagnetic turbulence in VLF range resulting from three earthquakes occurred at Keplulauan, Talud, Indonesia form 2009-2011.It is probably due to generation of electric field in a forthcoming earthquake's epicentral zone and penetrating in to the ionosphere. Large value of kurtosis shows the higher level of intermittence in the VLF signal before earthquake. It is possible to conjecture that the sources of this intermittence are the Coherent Structure (CS). For the better understanding of this behavior skewness parameter are used. The high energy at the large scales of the VLF turbulence due the earthquake preparation process contributes to creation of CS in the VLF signal. The results discussed were obtained during a very quiet time and therefore no ionospheric and magnetospheric sources of perturbation were expected. The statistical behavior of the signal (intermittent) and the shape of the spectra suggest that turbulence observed during this event is of the Kolmogorov type. Keywords: Turbulence, Higher order statistics and wave-wave interaction